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Editorial on the Research Topic
Interaction of tectono-sedimentary processes in the South China Sea and
their implication for hazards

Introduction

The South China Sea (SCS), one of the largest marginal seas in the western Pacific, has a
distinct setting that superposes complex tectonic environments, such as subduction setting,
continental rifting, and seafloor spreading. Even through the SCS is a well-studied marginal
sea, there are a number of unsolved questions concerning its formation, evolution,
geodynamic processes, and geohazards. With the expanding of seafloor infrastructure
(submarine cables, oil platforms) and increasing coastal population, the SCS region is
particularly vulnerable to marine geohazards, e.g., submarine earthquakes, landslides and
their associated tsunami hazards. In this context, it is of great scientific significance to further
study the tectonic and sedimentary processes that have taken place in the past, as well as the
present, in the SCS, and to better characterize the geological hazards they may pose.

To address these Research Topic and advance our understanding of the SCS, we
proposed this Research Topic in Frontiers in Earth Science and collected a total of
17 high-quality papers. The papers cover the following four subjects: 1) Tectonics
around the SCS; 2) Sedimentary process in the northern margin of SCS; 3) Geohazards;
and 4) Numerical modeling. The multiscale, interdisciplinary and thematic nature of the
research will allow for a better assessment of geological processes, climate and environmental
changes, and potential marine geo-hazards in the region. By bringing together cutting-edge
research on the SCS, this Research Topic aims to provide a comprehensive and up-to-date
understanding of the region’s geology and help mitigate the impact of future hazards in this
following.

Here we present a short review of the contributions organized by the main subjects.
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Tectonics around the SCS

Tan et al. estimated the uplift rate of the Hengchun Ridge (ca. 0.
3 km/Ma) based on a linear regression between the hyperstretched
continental crust (HSCC) and the observed depth of the prism crest.
They suggest a two-stage collision hypothesis for the Taiwan orogen:
the first stage was dominated by structurally underplated HSCC, and
the second is a combination of the arrival of the continental shelf and
arc–continent collision.

Yin et al. proposed compressional tectonic stress field weakened
gradually from south to north, while the northern Zhongjiannan
basin was formed under the dextral strike-slip movement of the Red
River Fault. The above knowledge provides a reference for studying
the initiation time of dextral strike-slip along the Red River
Fault Zone.

Wu et al. confirmed the initial spreading of the South China Sea
was dominated by local punctiform break-up, with the oldest
anomaly, C12n (~30.8 Ma), appearing at two turns of the
continent-ocean boundary. The study also observes the opening
of the northwestern Sub-basin was rotated around a fixed point at
the west, with a fault at the eastern end formed by the trajectory of
the conjugate point during seafloor spreading.

He et al. suggested that the value of fault deformation width is
generally less than 80 km andmostly less than 50 km in the northern
South China Sea margin. They analyzed an inverse discrepancy in
the southeast of the Qiongdongnan basin, likely due to differences in
syn-rift sediment thickness causing a transition between inverse and
positive extension discrepancies.

Liang et al. mapped four wave-cut platforms in the southern
Pearl River Delta and dated two of them, with results suggesting
uplift rates ranging from 0.30 to 0.38 mm/a during 239–128 ka and
0.09 mm/a since 128 ka. A decrease in the uplift rate, may
correspond to a weakened differential uplift onshore of the
seismically active Littoral Fault Zone.

Zhan et al. proposed that the NW-trending Yanjiang-
Yitong’ansha strike-slip fault zone have initiated sinistral motion
around 35 Ma and served as a transfer zone during the intense
rifting in the Pearl River Mouth Basin from 65 to 35 Ma, and then
became a sinistral transtensional fault from 35 Ma to 16.5 Ma.

Chen et al. confirmed mottled clay overlying fluvial deposits or
embedding homogeneous aeolian yellow silt can provide useful
information on paleo-earthquakes. They suggest that the mottled
clay structure in the Huizhou Basin is a product of liquefaction-
induced soft-sediment deformation structure, and provide a
potential indicator of paleo-earthquakes in the coastal Quaternary
basins of the northern South China Sea.

Sedimentary process in the northern margin
of SCS

Yang et al. investigated weak and high energy deposition
influenced by El Niño-Southern Oscillation (ENSO) activity
and high-frequency tropical storms. Growing human activity
during 1.0–1.6 kyr impacted sediment flux. Understanding
these dynamics can inform sustainable development in the
Pearl River Delta.

Liu et al. revealed the Xuande Atoll is a carbonate platform
formed since the early Miocene followed by a final shrinking stage in
the southern and western parts due to tectonic subsidence and
increased sediment inputs.

Zhong et al. analyzed intensified erosion in the neritic region of
the northeastern South China Sea occurred due to fluvial incision
caused by sea-level decline during the last glacial period and strong
transportation by coastal currents.

Xiong et al. evaluated the pore pressure profile and indicates that
overpressure zone mainly develops from the middle of Zhujiang
Formation to the upper member of Enping Formation due to fluid
expansion from hydrocarbon generation.

Geohazards

Zhou et al. systematically studied the geological hazards in the
Xisha Sea area since the Miocene using high-resolution seismic data
and provide a guide for future exploration and disaster prevention in
the Xisha Sea area.

Nawanao and Ramos identified more than 1,200 submarine
landslides and found that small submarine landslides are mainly
controlled by submarine canyon systems at shallow depths, while
large submarine landslides cluster where seamount subduction
induces slope steepening. The study highlights the importance of
understanding spatial, geomorphological, and tectonic controls in
identifying offshore areas susceptible to large submarine landslides
and tsunamis in active margins.

Ramirez et al. compared two tsunami models-one with only an
earthquake component and one with an additional submarine mass
failure component based on the San Andres submarine mass failure,
suggesting an earthquake-triggered submarine mass failure source
mechanism for the 1994 Mindoro tsunami.

Numerical modeling

Ma et al. used 2-D thermo-mechanical modeling to examine
how bathymetric highs affect the topography of the overriding
plate and the morphology of the subducting plate. The results
show that the dramatic changes in the dip angle and the convex
shape in the northern Manila Trench were caused by subduction
of a large thin continental terrane, while the smooth morphology
of the subducting slab in the southern segment and straight
trench were associated with normal oceanic subduction with
small seamounts.

Li et al. utilized 3D geodynamical numeric models to study how
pre-existing transform faults interact with rifting/spreading centers.
The results showed that the pre-existing transform faults affect
rifting/spreading propagation, leading to the formation of ridge
segments with offset distance.

Wen et al. applied two travel time correction methods to
image different S-wave velocity structures the northeastern South
China Sea. This study shows that sedimentary layer velocity was
the main influencing factor for S-wave phase ray tracing, while
the velocity of sediments had little effect on Moho S-wave
reflections.
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The Manila Trench is located at the eastern boundary of the South China Sea (SCS). It
develops through the subduction of the SCS beneath the Philippine Sea Plate (PSP) since
the early Neogene, driven by the northwestern plate motion of the PSP. The northern
segment of the Manila trench at around 18° N—21.5°N is characterized by an obvious
eastward convex in the trench shape and abrupt changes of slab dip angle, whereas the
southern segment of the Manila trench at around 15°N—18°N is featured by an almost
straight NS-trending trench line and smooth subducting slab morphology. However, the
cause for the along-strike variations along the Manila trench remains poorly understood. In
this study, we use 2-D thermo-mechanical modeling to investigate how bathymetric highs
embedded in the subducting slab affect the topography of overriding plate and the
morphology of subducting plate. Three major factors of bathymetric highs are
systematically examined: 1) the crustal properties, 2) the width, and 3) the thickness.
Geodynamic results suggest that the most important factor controlling abrupt changes in
dipping angle is the crustal properties of bathymetric highs. Also, reduction of crustal
thickness and increasing the width of continental bathymetric highs favor the abrupt
change of dipping angle, whereas thicker (≥25 km) bathymetric highs are more likely to be
blocked in the subduction zone before slab break-off. According to our numerical
modeling results, we suggest that dramatic changes in the dip angle in the northern
Manila trench and the convex shape were caused by subduction of a large thin continental
terrane, whereas the smooth morphology of subducting slab in the southern segment and
straight trench were associated with normal oceanic subduction with small seamounts.

Keywords: numerical modeling, bathymetric highs, subduction, Manila trench, South China Sea

INTRODUCTION

Sharp discontinuities in trench shape and various morphologies of subducting slabs are often linked
with bathymetric highs subduction (Miller et al., 2004, 2005; Mason et al., 2010). For example, the
subduction of Ogasawara Plateau may have influenced the varied trench and slab morphology at the
junction of the Izu-Bonin and Mariana arcs in the West Pacific (Mason et al., 2010). Similar arcuate
plate boundary development is also found during the subduction of the Nazca Ridge beneath the
continental South American Plate (Rosenbaum et al., 2005). These bathymetric highs include terrane
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with oceanic crustal properties, such as oceanic plateaus,
seamounts, and submarine ridges, and terrane with continent
crustal properties, such as microcontinents and continental
fragments. Several studies on subduction with bathymetric
highs have been conducted, allowing scientists to better
understand its dynamic effects: 1) the transition from flat or
low angle subduction to steep-slab subduction (Van Hunen et al.,
2002, Van Hunen et al., 2004; Martinod et al., 2005; Gerya et al.,
2009; Huangfu et al., 2016; Manea et al., 2017; Leng and Huang,
2018; Dai et al., 2020; Yan et al., 2020, 2021), 2) indentation of the
trench (Dominguez et al., 1998, 2000; Morra et al., 2006), 3)
surface topography development (Li F. C. et al., 2013; Ruh, 2016)
and crustal shortening (Liao et al., 2018), 4) trench migration (Li
Z. H. et al., 2013; Yoshida, 2017; Tao et al., 2020), 5) continental
underplating (Vogt and Gerya, 2014; Magni et al., 2017). In
particular, Tetreault and Buiter (2012, 2014), Yang et al. (2018)
and Liu et al. (2021) have systematically presented how various
crustal properties of bathymetric highs (with continent versus
oceanic crustal affinity) impact the amount of accreted/subducted
crust, the distinct modes of terrane accretion/complete
subduction, and the deformation type of the overriding plate.
However, these recent studies have employed a fixed terrane size

and did not investigate the effects of terrane thickness and width
on slab subduction processes.

The South China Sea is one of the largest marginal seas of the
western Pacific (Deng et al., 2020). TheManila trench is located at
the eastern boundary of the SCS. It was created by the subduction
of the SCS plate beneath the Philippine Sea Plate (PSP) since the
early Neogene, and it was induced by the northwestern plate
motion of the PSP (Huang et al., 2006; Fan et al., 2016; Wu et al.,
2016) (Figure 1A). For the northern Manila trench at around 18°

N—21.5° N, where an obvious seaward convex is found, the
morphology of the subducted SCS plate is characterized by
dramatic changes from a horizontal subducting angle to near-
vertical (Figure 1B) (Fan et al., 2016; Wu et al., 2016; Chen et al.,
2021). A large buoyant plateau (≥300 km in width) was proposed
to explain the sharp convex in the trench line, and the crustal
property of the plateau was recently proposed as highly thinned
continental crust (12–15 km in thickness) (Eakin et al., 2014;
Lester et al., 2014; Sibuet et al., 2016; Liu et al., 2018) rather than
oceanic crust as early identified (Hsu et al., 2004). For the
southern Manila trench at around 15° N—18°N, the most
remarkable morphological relief is an almost straight trench
line and widely distributed small seamounts (≤100 km in

FIGURE 1 | (A): Tectonic setting of the Manila trench, South China Sea. Continent-ocean boundary (COB) lines indicate COB locations (modified from Liu et al.,
2018). (B) and (C): Vertical cross sections of P-wave tomography along the profiles at 20°N and 17°N, respectively. The buoyant plateau and its subducted part (the gray
shaded area), and the tomography sections are modified from Fan et al. (2016).
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width), such as the subducting Huangyan-Zhenbei seamounts
chain. Based on high-resolution P-wave tomographic images, the
morphology of the subducted SCS plate beneath the southern
segment of the Manila trench showed no abrupt change in
dipping angle (Figure 1C), whereas slab break-off might occur
at the depths between 60 and 190 km near 17°N (Cheng et al.,
2019). The trench shape and subducting slab morphology of the
northern Manila trench are distinct from the southern segment.
However, there have been few comprehensive analyses to discuss
the relationship between the subducting bathymetric highs and
the along-strike variations of the Manila trench.

In this study, we have undertaken a series of 2-D numerical
thermomechanical experiments to investigate 1) the potential
crustal properties of the northeastern SCS near the Manila
trench at around 20° N and 2) the key physical parameters
controlling the subducting slab morphology variations
between the northern and southern Manila trench. Based
on our systematic numerical results, we demonstrate that
dramatic changes in the dip angle in the northern Manila
trench and the convex shape were caused by subduction of a
large thin continental terrane, whereas the smooth
morphology of subducting slab in the southern segment
and straight trench were associated with normal oceanic
subduction with small seamounts.

GEOLOGICAL BACKGROUND

The South China Sea is located in an important geodynamic
intersection zone surrounded by Eurasian plates and the Pacific
and Indian oceans. The partial subduction of the SCS along the
Manila trench represents the last phase of a near-complete
Wilson cycle, following continental rifting, breakup, and
seafloor spreading. Based on deep-tow magnetic anomalies,
multi-channel seismic data, the results of microfossils from
IODP Expeditions and 39Ar/40Ar data, the SCS has undergone
multiphase rifting events since the Late Cretaceous to Paleogene
(Sun et al., 2009; Franke et al., 2014; Li et al., 2015; Sibuet et al.,
2016; Ding et al., 2020; Zhang et al., 2020; Zhao et al., 2021),
leading to the opening of the SCS basin at ~32–33 Ma, and
stopped spreading at ~15 Ma in the east subbasin and ~16 Ma
in the southwest subbasin, followed by eastward subduction
under the Philippine Sea Plate (PSP) along the Manila trench
(Li C. F. et al., 2013, 2015; Chen et al., 2017, 2021; Jian et al., 2018;
Sun et al., 2018; Deng et al., 2020; Hung et al., 2020). Large
amounts of magmatism persisted for nearly 10 Ma after the
cessation of seafloor spreading and generated the Zhenbei-
Huangyan seamount chain (Sibuet et al., 2016; Hung et al., 2020).

There is a wide discussion on the geometry of the Manila
trench (Yang et al., 1996; Bautista et al., 2001; Eakin et al., 2014;
Fan et al., 2015, 2016), which forms a broad bend to the east at
around 21°–18° N, trends N-S almost in a straight line from 18° to
13°N, and swerves abruptly to the ESE at its southern terminus at
13°N. Several models have been proposed to explain the sharp
bend in the trench line. For example, Bautista et al. (2001)
interpreted these as a collision and subsequent partial
subduction of a large buoyant plateau (Figure 1). Despite its

implications to the buoyancy effect, the crustal properties of this
plateau in northeastern SCS remain controversial.

Geophysical studies on the deep lithospheric structures of the
northeastern SCS near the northern Manila trench contribute to
defining the continent-ocean boundary (COB) locations in the
SCS. The crust located west of the Manila trench and north of the
COB is thinned continental crust rather than thickened oceanic
crust (Liu et al., 2018). Early studies defined COB1 (Figure 1) and
suggested that the northeastern SCS was composed entirely of
ocean crust up to 21.5°N (Hsu et al., 2004), based on E-W
trending magnetic anomalies. Controversially, later evidence
from refraction and multi-channel seismic (MCS) reflection
data (Wang et al., 2006; Yeh et al., 2010, 2012; Lester et al.,
2013, 2014; McIntosh et al., 2013, 2014; Eakin et al., 2014; Sibuet
et al., 2016) defined the COB location as being more
southeastward (COB2 in Figure 1). For example, Eakin et al.
(2014) showed evidence for extended to hyper-extended
continental crust subducting along the Manila trench,
underplated to the accretionary prism at 21.5°N. Sibuet et al.
(2016) has presented several features on MCS profiles suggesting
that the crust of the northeastern part of the SCS is thinned
continental crust intruded by post-rift volcanism. Most recently,
an E-W oriented ocean bottom seismograph wide-angle
refraction profile (21° N) is constructed in the northeastern
SCS in 2015 (Liu et al., 2018) to further define the COB
location (COB3 in Figure 1). Abundant Moho interface was
shown, and a 12–15 km thick continental crust was further
identified. Additionally, dramatic changes in the dipping angle
of the subducted SCS plate are revealed from the northern Manila
trench (20°–21.5°N). According to seismic and tomography data
in this area (Fan et al., 2016), at 20°N, the SCS plate initially
subducts along the Manila trench to a ~250 km depth at a low
angle of ~25°. Then, it changes abruptly to a higher dip angle of
~75° to a depth of ~500 km. Further tomography studies and slab
unfolding estimated the subducted portion of the SCS slab
extended 400–500 km east of the present Manila trench (Wu
and Suppe, 2018).

Compared to the controversial crustal properties near the
northern Manila trench, the SCS plate near the southern
Manila trench (at ~15–17°N) is a typical or thickened oceanic
crust, subducting with numerous seamounts. As these seamounts
are formed after SCS seafloor spreading cessation, the dating
results of seamount ages range from 15–6.64 Ma (Tu et al., 1992;
Yan et al., 2008; Wang et al., 2009; Zhang et al., 2020) based on
petrological samples. Huangyan-Zhenbei seamounts chain,
located in the center of the east subbasin, is an E-W trending
chain of seamounts oriented obliquely to the surrounding
N055°seafloor expansion trends (Zhao et al., 2018) (Figure 1).
It consists of Zhenbei seamount in the westmost (9.1 ± 0.2–10.0 ±
1.8 Ma, basalts isotopic age) (Wang et al., 2009), the Huangyan
seamount in the middle, and a further east one with NEE-
trending that reaches the Manila trench (Cheng et al., 2019).
The crustal thickness beneath the Huangyan and Zhenbei
seamounts is generally between 12 and 13.2 km based on
wide-angle seismic refraction data (He et al., 2016; Zhao et al.,
2018). High-resolution regional tomographic studies show that
the SCS slab subducts along the southern Manila trench (at
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16–17°N) at an angle of ~45°–300 km depth, and the slab
morphology is smooth without dramatic changes in the
dipping angle (Figure 1C).

The 1,200 km long NS-trending Luzon island arc, stretching from
24°N to 13°N, resulted from the subduction of the SCS plate beneath
the PSP along the Manila trench (Fan et al., 2016; Liu et al., 2021),
which was induced by continuous NNWmovement of the PSP since
25Ma. The average plate convergence rate between the PSP and SCS
was given as 7 cm/yr (Seno et al., 1993; Kreemer et al., 2003; Simons
et al., 2007; Hsu et al., 2012). TheMoho discontinuity is identified at a
depth of 18–34 km in Luzon inferred from receiver function analysis
(Besana et al., 1995). The results agree with a more recent gravity
model by Manalo et al. (2015), reflecting a ~21–31 km thick crust
across the Central Philippines.

NUMERICAL IMPLEMENTATION AND
MODEL SETUP

Governing Equations
The momentum, continuity, and heat conservation equations for
the two-dimensional creeping-flow, accounting for thermal and
chemical buoyancy, were solved using modified I2VIS code
(Gerya & Yuen, 2003, 2007). The incompressible continuity
equation approximated conservation of mass:

zvx
zx

+ zvz
zz

� 0

Two-dimensional Stokes equations:

zσ′xx
zx

+ zσ′xz
zz

� zP

zx
zσ′zz
zz

+ zσ′xz
zx

� zP
zz

− gρ(T, P, C)
and a heat conservation equation:

ρCp(DT

Dt
) � −zqx

zx
− zqz

zz
+Hr +Ha +Hs

qx � −k(T, P, C) zT
zx

, qz � − � −k(T, P, C) zT
zz

Hr � constant (C), Ha � Tα
DP

Dt
,

Hs � σ′xx _εxx + σ′zz _εzz + 2σ′xz _εxz

are used, where D/Dt is the substantive time derivative
; k(T, P, C) is the thermal conductivity as a function of
temperature (T), pressure (P), and composition (C)
(Hofmeister, 1999); Cp is the effective isobaric heat capacity,
incorporating latent heat; Hr, Ha, and HS denote radioactive heat
production, the energetic effect of isothermal (de)compression
(i.e., adiabatic heating/cooling), shear heating, α is the thermal
expansion coefficient, σ′xx, σ′zz, σ′xz are deviatoric stress
components and _εxx, _εzz, _εxz are strain rate components.

Rock Rheology Implementation
Viscosity, dependence on strain rate, pressure, and temperature
were defined in terms of deformation invariants:

ηdiffusion �
AD

2σn−1cr

exp(Ea + VaP

RT
)

ηdislocation �
1
2
( _EII)

1−n
n

(AD)−1
n exp(Ea + VaP

nRT
)

1
ηductile

� 1
ηdiffusion

+ 1
ηdislocation

where _EII is the second invariant of the strain rate; σcr denotes
critical stress between dislocation creep and diffusion; AD, Ea,
Va, and n are material constant, activation energy, activation
volume, and stress exponent, respectively (Gerya, 2019; Tang
et al., 2020). These material properties were determined from
laboratory flow experiments and are provided in Table 1.

Plasticity was implemented using the Druker-Prager yield
criterion (Ranalli, 1995). The calculated creep viscosity is
therefore limited as follows:

σyield � C + P sin(φeff)
ηplastic �

σyield

2 _εII

σyield is the yield stress. C is the residual rock strength. P is the
dynamic pressure. φ is the internal frictional angle. φeff can be
illustrated as the effective internal frictional angle.

With the ηplastic and ηductile, visco-plastic rheology is
employed to the model where the rheology behavior depends
on the minimum viscosity (Ranalli, 1995):

1
ηeff

� 1
ηductile

+ 1
ηplastic

Model Setup
The initial configuration of reference 2D numerical model is
shown in Figure 2. The numerical model box with 1,361 by 351
nodal points is non-uniform and corresponded to 4,000 by
1,400 km physical dimension. The rectangular grid contain a
1,000 km wide high-resolution area of 1 by 1 km grid step size in
the center of the domain. The rest of the model is at a lower
resolution (up to 10 by10 km grid step size). Over 5.7 million
Lagrangian markers randomly distribute in the whole model
domain.

The oceanic crust contain a thin continental terrane, fated to
collide with the seaward-moving overriding continental plate.
The oceanic crust is composed of 2-km-thick upper crust of
hydrothermally-altered basalt, underlain by 5-km-thick lower
crust of gabbroic rocks that covered 2,500 km horizontally.
The continental crust is felsic and has a total thickness of
30 km, composed of 15 km upper and 15 km lower crust that
extend over 1,500 km. The large 300 km wide and 15 km thick
continental terrane is defined 200 km from the trench on the
oceanic plate. Oceanic plateau (Figure 2B) paired numerical
experiments with similar parameters differing only by the
crustal property of the terrane are run in parallel to compare
the different dynamic effects with continental terrane.
Lithosphere yield stress profiles comparing the properties of
continental terrane and oceanic plateau are shown in Figures
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2C,D. Both the asthenosphere and upper mantle are composed of
anhydrous peridotite and are defined by the temperature profile.
The rheological parameters used in the reference model are
summarized in Table 1. We keep our model with a far-field
push on the overriding plate (7 cm/yr) to be similar to the average
plate convergence rates of the Manila trench (Seno et al., 1993;
Kreemer et al., 2003; Simons et al., 2007; Hsu et al., 2012) while
simultaneously as simple as possible to test different model
parameters. It is also important to note that prescribing
velocity of overlying rather than subducting plate enhances
tendency of slab flattening (van Hunen et al., 2004).

All mechanical boundary conditions are free slip, and only the
lower boundary was permeable, satisfying an external free slip
boundary condition (Gorczyk et al., 2007; Ueda et al., 2008). In
addition, on the top of the rocky portion of the model is treated as
an internal free surface (Schmeling et al., 2008) by using a top
layer (of 20 km thickness) with low viscosity (1018 Pas) and low
density (1 kg/m3 for air, 1,000 kg/m3 for sea water) to allow for
the surface topographic evolution.

The initial temperature field of the oceanic plate is defined by
its oceanic geotherm for a specific lithospheric cooling age of
20 Ma, according to the subducting slab age of the Manila trench
(Wu et al., 2016). The oceanic plateau embedded into the oceanic
crust is assumed to have the same thermal structure as the oceanic
lithosphere. Therefore, the initial temperature field of the
continental plate is increased linearly from 0°C at the surface
to 1,344 °C at the lithosphere-asthenosphere boundary (140 km
depth). For the asthenospheric mantle (>140 km), a thermal
gradient of 0.5°C km−1 is used.

SUBDUCTION OF THIN CONTINENTAL
TERRANE

A series of models (Model-C100, Model-C200, Model-C300,
Model-C400) are conducted to test the influence of a
bathymetric high with continental affinity. We focus on the
thickness and width of the terrane. Four groups of
experiments with fixed terrane width (100 km, 200 km,
300 km, and 400 km for each group) are examined by
changing the terrane thickness (10 km, 15 km, 20 km, 25 km,

and 30 km in thickness for each group). A representative selection
of the models is shown in Table 2 to discuss how different size
terranes embedded in the subducting slab affect the subduction
process.

Reference Model
The numerical evolution of the reference model (Model-C300-
15) is shown in Figure 3. In this model, a thin continental terrane
(15-km thick, 300-km wide) is embedded in the oceanic plate.
The slab initially subducts with a smooth morphology, and the
thin continental terrane passes through the subduction channel
(Figure 3A). A small part of the upper crust of the terrane is
accreted to the overriding continent margin. This leads to an
uplift in the accretionary wedge (Figure 3B1). Then the terrane is
subducted into the deep mantle creating a shallower slab angle at
a depth of ~100 km. The downgoing oceanic plate is substantially
narrowed at a depth of ~250 km and shows a rheologically weak
gap in the narrowed part (Figure 3C2), leading to an abrupt
change in the dipping angle (from ~20° to ~58°) (Figure 3C1).
Finally, the slab pull causes the occurrence of slab break-off
(Figure 3D). This model illustrates that the subduction of a
large (300-km wide) terrane with thin continental (15-km thick)
affinity leads to an abrupt change in the dip angle and an uplift in
the accretionary prism.

Variations in Thickness of Large-Size
Terranes (≥300km in Width)
Model-C400 differs from Model-C300 only because the
continental terrane has a larger width (400-km wide
continental terrane). The evolution of Model-C400 is similar
to Model-C300. Figure 4 shows the morphology of the subducted
plate right before breaking off.

For terranes with thin continent crust (≤15 km in thickness)
(Liu et al., 2018; Deng et al., 2020), abrupt changes in dipping
angle are shown in Figures 4A,B,F,G, and the plates narrow at a
depth of 200–300 km. Figures 4A,B show that the significant
change in the dip angle happens after the terrane pushes into the
mantle in Model-C300, whereas part of the terrane is still going
through the subduction channel in Model-C400 due to a
larger width.

TABLE 1 | Material properties used in the numerical experiments.

Material State ρ0 (kg m-3) k (W m−1 K−1) Hr (μWm−3) Plastic
Sin(ϕeff)

Viscous Flow law η0 (pan s) Ea (kJ mol−1) Va (J bar−1) n

CUC Solid 2,700 0.64 + 807/(T + 77) 1.0 0.15 Wet Quartzite 1.97 × 1017 154 1.2 2.3
CLC Solid 2,800 0.64 + 807/(T + 77) 0.25 0.15 Plagioclase_An75 4.8 × 1022 238 0.8 3.2
OUC Solid 3,000 1.18 + 474/(T + 77) 0.25 0 Wet Quartzite 1.97 × 1017 154 0.8 2.3
OLC Solid 3,000 1.18 + 474/(T + 77) 0.25 0.6 Plagioclase_An75 4.8 × 1022 238 0.8 3.2
Mantle Dry 3,300 0.73 + 1293/(T + 77) 0.022 0.6 Dry_olivine 3.98 × 1016 532 0.8 3.5

470 0.8 4.0Wet 3,200 0 Wet_olivine 5.01 × 1020

References — 1,2 3 1 — 4 4 4 4 4

References: 1, Turcotte and Schubert, 2002; 2, Bittner and Schmeling, 1995; 3, Clauser and Huenges, 1995; 4, Ranalli, 1995. CUC, continental upper crust; CLC, continental lower crust;
OUC, oceanic upper crust; OLC, oceanic lower crust.
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In the case of a normal-thickness continental terrane
(25–30 km in thickness), most of the terrane is blocked in the
subduction zone before the slab breaks off, and only smaller parts
are sheared off and dragged down into the mantle (Figures
4D,E,I,J). For both Model-C300 and Model-C400, the oceanic
slab subducts at a shallow angle at an early stage and gradually
steepens to nearly vertical. The morphology of the downgoing
plate remained smooth and showed no abrupt change in the
dipping angle before the slab broke off. Most parts of the thick
continental terrane were blocked due to its buoyancy (Cloos,

1993), and terrane collision and lateral accretion occurred to
accommodate the constant convergence (Figure 5). A
“subduction zone jump” (Yan et al., 2021) after the collision is
shown in Figure 5, whichmay be caused by the detachment of the
buoyant crust of the terrane (Zhang et al., 2020).

Terranes with thin continent crust (20 km in thickness) act as
a transition from thin terrane subduction with an abrupt
morphology change to normal-thickness terrane collision. The
oceanic plate is subducted at a gradually deeper angle, and there is
no abrupt change in slab morphology before the slab breaks off

FIGURE 2 | Initial setups of the numerical models (A) Full box initial geometry (4,000 × 1,400 km). The orange arrow denotes the right overthrusting velocity. (B)
Zoomed area of the collision domain (900 × 200 km). The white solid lines are isotherms with an increment from 100 to 1,300°C. Composition color codes: 0, stick air; 1,
water; 2, sediments; 3 and 4, upper and lower continental crust, respectively; 5 and 6, upper and lower oceanic crust, respectively; 7, lithospheric mantle; 8,
asthenosphere mantle; 9. hydrated mantle (weak zone). (C) and (D) Lithosphere yield stress profiles for continental terrane and oceanic plateau, respectively. See
Table 1 for the rheological parameters. UC, upper crust; LC, lower crust.
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(Figures 4C,H). Most of the upper crust of the subducting thin
continental terrane is accreted to the leading edge of the overriding
plate. In contrast, the lower crust and minor part of the upper one
bypass the accretionary prism and is lost by subduction. As a result,
crustal thickening accumulate in the downgoing plate and
propagate toward the accretionary wedge. The depth at which
part of the terrane detached from the subducting slab is as shallow
as 30 km. Thickened upper crust contributes to a vertical increase
of accretionary prism (Figures 4C1,H1), which is similar to the
uplift in the reference model (Figure 3B).

The Model-C300 and Model-C400 sets demonstrate that the
thickness of a large continental terrane plays a vital role in slab
morphology during the subduction process. A thin continental
terrane causes an abrupt change in dipping angle before slab
breakoff, while a normal-thickness continental terrane resists
subduction and encourages “subduction zone jump” (Figure 5).

Variations in Thickness of Moderate/
Small-Size Terranes (200 km/100 km in
Width)
Model-C100 and Model-C200 are identical to the reference
model except for the terrane width. Model-C100 has a small-
size continental terrane (100-km wide) (Yan et al., 2021), and
Model-C200 has a moderate-size continental terrane (200-km
wide) (Gerya et al., 2009). Figure 6 shows the morphology of the
subducting plate right before breaking off.

A small and thin continental terrane (100 km in width and ≤
15 km in thickness) leads to complete terrane subduction. As the
whole terrane is dragged down into the deep mantle, the downgoing
plate show no change in the dipping angle (Figure 6A) or a relatively
slight change from 29° to 44° (Figure 6B). The change in slab
morphology is more obvious in the moderate-size continental
terrane subducting process (Figures 6F,G). When the small/

moderate-size terrane has a thicker crust (20–30 km thick), the
model evolution is similar to Model-C300 and Model-C400,
which present the large continental terrane subduction. The
subducting slab show no abrupt change in the dipping angle
before breaking off (Figures 6C–F, H–J), with blocked terrane
and subsequent “subduction zone jump” in normal-thickness
continental terrane models (25–30 km thick), and partial terrane
accretion in thin continental terrane model (20 km thick).

Model-C100 and Model-C200 illustrate that the width of the
continental terrane is also a controlling factor on the subducting
slab morphology. Thus, the moderate-size continental terrane or
wider ones are more likely to form the abrupt change of dipping
angle during the subducting process.

SUBDUCTION OF OCEANIC PLATEAU

We test the effect of oceanic plateau subduction to clarify its
different influence on slab morphology from continental terrane
subduction. Figure 7 show the evolution of Model-O300-15 with
an oceanic plateau (15-km thick, 300-km wide) embedded in the
subducting plate. The oceanic plate begin to subduct along the
weak zone. Once the oceanic plateau enter the subduction zone, a
large part of the upper crust of the plateau is sheared off and
accreted into the accretionary prism (Figures 7A1,B1). When the
oceanic plateau bypass the subduction channel, the downgoing
oceanic plate show no abrupt change in dipping angle (Figures
7A1, B1, C1). Materials of the forearc region of the overriding
plate do not show obvious uplift. The slab break-off occur before
the whole plateau is dragged down into the subduction channel
(Figure 7C1). Significant flexural stresses are generated in the
subducting plate before breaking off (Figure 7B2).

A series of oceanic plateau models (Model-O100, Model-
O200, Model-O300, and Model-O400) are performed to
compare their influence on subducting slab morphology and

TABLE 2 | Parameters and results of representative experiments.

Model name Terrane Terrane Width (km) Terrane Thickness (km) Results

Model-C300-10 Continent (large) 300 10 Figure 4
Model-C300-15 (Reference model) Continent (large) 300 15 Figure 3
Model-C300-20 Continent (large) 300 20 Figure 4
Model-C300-25 Continent (large) 300 25 Figure 4
Model-C300-30 Continent (large) 300 30 Figure 4
Model-C100-10 Continent (small) 100 10 Figure 6
Model-C100-15 Continent (small) 100 15 Figure 6
Model-C100-20 Continent (small) 100 20 Figure 6
Model-C100-25 Continent (small) 100 25 Figure 6
Model-C100-30 Continent (small) 100 30 Figure 6
Model-O300-15 Oceanic (large) 300 15 Figure 7
Model-O100-10 Oceanic (small) 100 10 Figure 8
Model-O100-15 Oceanic (small) 100 15 Figure 8
Model-O100-20 Oceanic (small) 100 20 Figure 8
Model-O100-25 Oceanic (small) 100 25 Figure 8
Model-O100-30 Oceanic (small) 100 30 Figure 8
Model-O400-10 Oceanic (large) 300 10 Figure 8
Model-O400-15 Oceanic (large) 300 15 Figure 8
Model-O400-20 Oceanic (large) 300 20 Figure 8
Model-O400-25 Oceanic (large) 300 25 Figure 8
Model-O400-30 Oceanic (large) 300 30 Figure 8
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FIGURE 3 | Evolution of the reference model (Model-C300-15), with thinned continental terrane (15-km thick, 300-km wide). Left: Evolution of composition in
Model-C300-15. The composition code shown here is the same as in Figure 1. Right: Evolution of viscosity in Model-C300-15. Black arrows in (A1), (B1), (D1) and (C2)
indicates the partially subducted continental terrane, the uplift in the accretionary wedge, the slab break off, and the rheologically weak gap in the mantle, respectively.
Red box in (B1) indicates the uplift in the accretionary wedge. The magnitude of angle in Figure C1 shows the abrupt change of dipping angle.
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FIGURE 4 |Comparison of large-size terrane models with varied terrane thickness, showing the slab morphology right before breaking off. (A–E) Slab morphology
of Model-C300, in which the terrane is 300 km wide. The terrane thickness is 10–30 km from A to E, respectively. (C1) Topography result of Figure (C) (F–J) Slab
morphology of Model-C400, in which the terrane is 400 km wide. The terrane thickness is 10–30 km from F to J, respectively. (H1) Topography result of Figure (H) and
The black arrows in (A), (B), (F), and (G) indicate the change in dipping angle. The black arrows in C and H refer to no abrupt change in dipping anlge before slab
break off. The red boxes and arrows indicate the uplift in the accretionary wedge. The black arrows in (D), (E), (I), and (J) show the blocked terranes.
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corresponding thicknesses to continental terrane models (Model-
C100, Model-C200, Model-C300, and Model-C400). Here a
selection of the models performed is shown in Figure 8 to
compare models with small/large-size oceanic plateaus
(100 km/400 km in width). In Figure 8, it is clear that neither
a small oceanic plateau nor a large one favored the abrupt change
in the dipping angle, irrespective of how thick the oceanic plateau
is. For plateau thicknesses no more than 20 km, part of the upper
crust is accreted into the accretionary wedge, and the rest of the
plateaus subduct into the deep mantle (Figures 8A–C,F–H). For
plateau with an over-thickened crust (25 km or 30 km in
thickness), most part of the plateau is blocked in the
subduction zone before slab break-off (Figures 8D,E,I,J).
According to our model results, a thicker oceanic plateau on
the subducting plate favor a faster break-off event.

These model results indicate that the oceanic plateau
subduction is more likely to form a smooth slab morphology,
differing from the abrupt change in the dipping angle in thin
continental terrane subduction models.

DISCUSSION

The Role of Crustal Properties and Size of
Bathymetric Highs in Subducting Slab
Morphology
Figure 9 summarizes the model results from varied terrane
crustal properties, width, and thickness. The reference model
has a 300 km wide and 15 km thick continental terrane. It is
characterized by deep continental crust subduction and by an
abrupt change in subducting slab morphology (Δθ > 20°,
Figure 9). Additional tests show that: 1) terrane width or
thickness variation has no significant effect on subducting slab
morphology of oceanic plateau models (Model-O100, Model-
O200, Model-O300, and Model-O400). No change in the dipping
angle is observed (Δθ = 0°) before slab break-off occurs (Figures
8, 9). 2) continental terrane models with a terrane thickness
≥20 km (Figures 4C–E, H–J, Figures 6C–E, H–J and Figure 9)
showed no abrupt change in the dipping angle before shallow slab

FIGURE 5 | Evolution of Model-C300-30, with normal-thickness continental terrane (30-km thick, 300-km wide). Left: Evolution of composition in Model-C300-30.
The composition code shown here is the same as in Figure 1. Right: Evolution of viscosity in Model-C300-30. Black arrows in (A1), (B1), and (C1) indicate the slab
break-off, the blocked terrane and the initiation of a new subduction zone behind it, and the location of the new subduction zone, respectively.
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FIGURE 6 |Compared small/moderate-size continental terrane models with varied terrane thickness, showing the slabmorphology right before breaking off. (A–E)
Slab morphology of Model-C100, in which the terrane is 100 km wide. The terrane thickness is 10–30 km from A to E, respectively. (F–J) Slab morphology of Model-
C200, in which the terrane is 200 km wide. The terrane thickness is 10–30 km from F to J, respectively. The black arrows in (A), (B), (F) and (G) indicate the change in
dipping angle and the subducted terrane. The black arrows in (C), (D), and (H) indicate the partially accreted terrane crust. The red boxes in (C), (D), and (H)
indicate the uplift in accretionary wedge. The black arrows in (E), (I), and (J) indicate the blocked terranes.
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FIGURE 7 | Evolution of Model-O300-15, with oceanic plateau (15-km thick, 300-km wide). Left: Evolution of composition in Model-O300-15. The composition
code shown here is the same as in Figure 1. Right: Evolution of viscosity in Model-O300-15. Black arrows in (A1), (B1), and (C1) indicate the subducting oceanic
plateau, the partially accreted plateau crust and the smooth subducting slab morphology, and the slab break-off, respectively.
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FIGURE 8 | Compared small/large-size oceanic plateau models with varied plateau thickness, showing the slab morphology right before breaking off. (A–E) Slab
morphology of Model-O100, in which the oceanic plateau is 100 kmwide. The plateau thickness is 10–30 km from A to E, respectively. (F–J) Slabmorphology of Model-
O400, in which the oceanic plateau is 400 km wide. The plateau thickness is 10–30 km from F to J, respectively. All the model results in this figure show no abrupt
change in dipping angle.

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 94314713

Ma et al. Bathymetric Highs Subduction

20

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


break off, whatever how wide the terrane is. 3) in the context of
thin continental terrane models (terrane thickness = 10 km or
15 km) (Figures 4A,B, F–G), Figure 6A,B, F–G and Figure 9),
large-size terrane (Model-C300 and Model-C400) favors for the
abrupt change of dipping angle (Δθ > 20°, Figure 9) during the
subducting process. In contrast, small-size terrane (Model-
C100) is more likely to result in a slight change in dipping
angle (Δθ < 20°, Figure 9) or no change (Δθ = 0°, Figure 9)
before slab break-off. Moderate-size terrane (Model-C200)
is a transition type from abrupt change to slight change, and
its Δθ = 20° (Figure 9).

Our oceanic plateau models show no abrupt change in the
dipping angle before slab break-off, consistent with the results of
Cheng et al. (2019), who showed that seamount subduction
promotes the break-off process, and Gerya et al. (2009), who
showed smooth morphology of slab position lines. Other
previous numerical models with bathymetric highs, including
continental fragments, seamounts, oceanic plateaus, and island

arcs, focus on various types of accretion (Tetreault and Buiter,
2012, 2014; Li Z. H. et al., 2013; Vogt and Gerya, 2014; Yang et al.,
2018). This partially compares well with our numerical
experiments. Part of the upper crust of the subducting thin
continental terrane/oceanic plateau is accreted to the leading
edge of the overriding plate. The above models are 20 km thick
and 100–200 km wide (small to moderate-size) bathymetric
highs, consistent with the average thickness of global thin
continental fragments/oceanic plateaus. Recent numerical
modeling studies test small to large-size oceanic plateaus (Tao
et al., 2020; Yan et al., 2021; Almeida et al., 2022; Wang et al.,
2022) to investigate how buoyant plateaus contribute to dip angle
change, subduction polarity reversal, and subduction zone
jumping. Previous analogue models investigate the effects of
seamount subduction on the structural deformation of the
accretionary wedge, especially the evolution of faults in the
wedge (Dominguez et al., 1998, 2000; Li F. C. et al., 2013;
Wang et al., 2021). Li F. C. et al. (2013) investigates the

FIGURE 9 |Regime diagram showing the effect of terrane thickness and width on slab morphology. Each colored solid line and dot indicate one set of model with a
fixed width (e.g., the green line, model C-100, represents continental terrane model with a terrane width of 100 km; the purple hollow circle, model O-200, represents
oceanic plateau model with a terrane width of 200 km). It is worth noting that oceanic plateau models (O-100, O-200, O-300, O-400) are all with Δθ = 0°, so only colored
dots are shown on horizontal axis rather than lines. Three distinct modes of subducting slab morphology are observed: abrupt change in dipping angle (Δθ > 20°),
slight change in dipping angle (Δθ < 20°), no change in dipping angle before slab break-off (Δθ = 0°). The horizontal axis depends on terrane thickness. The vertical axis
depends on Δθ. Δθ = θ2—θ1. “C” and “O” represent continental terrane model and oceanic plateau model, respectively.
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seamount subduction along the Manila trench by combining
analog and gravity modeling, and suggests that the dip anlge of
subducting plate may be associated with extict mid-ocean ridge
subduction. However, as most of the analogue models focus on
seamount or oceanic ridge subduction, the effects of continental
terrane subduction are rarely to be compared with in analoge
modeling. Our models systematically investigate the subduction
process of different bathymetric highs with varied crustal
properties, width, and thickness and further illustrate that the
abrupt change of subducting slab morphology is not only
controlled by the crustal properties of bathymetric high but
also by its thickness and width.

Sharp changes in subducting slab angle imply localized slab
bending, which is driven by combined effects of rheological
weakness and positive buoyancy of subducted continental
crust. Similar localized bending process (segmentation) of
purely oceanic subducting slabs has been recently suggested by
Gerya et al. (2021), which is primarily driven by strain weakening
of outer-rise normal faults, and grain-size reduction (ductile
damage) of the lithospheric mantle. However, our models do
not consider the grain-size reduction in the slab, which prevents
us from directly comparing our models with seismic tomography
data beneath the Manila trench. Such comparison also requires
(cf. discussion in Gerya et al., 2021) better resolution of seismic
data in Manila subduction zone, which is currently unavailable.

Implications for the Subduction Along the
Manila Trench
The Manila trench is characterized by distinct trench shape and
subducting slab morphology between the northern and southern
segment. Here, we apply our results to understand the
relationship between the subducting bathymetric highs and the
along-strike variations of the Manila trench. This study
performed an overriding plate push at the rate of 7 cm/yr
(Seno et al., 1993; Kreemer et al., 2003; Simons et al., 2007;
Hsu et al., 2012), a relatively young subducting oceanic plate
(20 Myrs) (Wu et al., 2016), and a thin continental terrane (15 km
thick in the reference model) (Wang et al., 2006; Yeh et al., 2010,
2012; Lester et al., 2013, 2014; McIntosh et al., 2013, 2014; Eakin
et al., 2014; Sibuet et al., 2016; Liu et al., 2018) to compare with the
geological settings of the Manila trench.

As shown in Figure 1, at around 20°N, where the maximum
seaward convex of the Manila trench is found, the crustal
property of the northeastern SCS was initially characterized as
the oceanic crust (Hsu et al., 2004), whereas later studies
suggested that it is thin continent crust with a thickness of
~12–15 km (Wang et al., 2006; Yeh et al., 2010, 2012; Lester
et al., 2013, 2014; McIntosh et al., 2013, 2014; Eakin et al., 2014;
Sibuet et al., 2016; Liu et al., 2018). Additionally, dramatic
changes in the dipping angle of the subducted SCS plate are
revealed from the northern Manila trench (20° N) (Fan et al.,
2016;Wu et al., 2016; Chen et al., 2021). According to seismic and
tomography data in this area (Fan et al., 2016), at 20° N, the SCS
plate subducts initially along the Manila trench to ~250 km depth
at a low angle of ~25°. Then, it abruptly changes to a higher dip
angle of ~75° to a depth of ~500 km (Figure 10A2). In our model

results, the thin continental terrane was initially subducted along
the subducting channel at a low angle. Then, it changed abruptly
to a much higher dip angle (Figure 10A1), whereas all oceanic
plateau models do not result in an abrupt change in the dipping
angle. Thus, our continental terrane model result is consistent
with the tomographic profile at the northern Manila trench
(20°N), and further support that the crust located west of the
Manila trench and around 20°N is a thin continental crust, rather
than oceanic plateau.

In contrast, the southern Manila trench is characterized by
widely distributed small-size seamounts (<100 km in width), e.g.,
Huangyan-Zhenbei seamounts chain with a crustal thickness
between 13 and 14 km (He et al., 2016; Zhao et al., 2018;
Cheng et al., 2019). Thus, our model with a 15 km-thick and
100 km-wide oceanic plateau is suitable for this area. This model
does not result in an abrupt change in dipping angle
(Figure 10B1), which is also compared well with the smooth
slab morphology in the tomographic profile of the southern
Manila trench (17° N) (Figure 10B2). Futher investigation of
lateral slab morphology variations will require application of 3D
thermomechanical modelling approaches. Also, the model results
indicate that the most important factor controlling the
occurrence of an abrupt change in dipping angle is the crustal
properties of bathymetric high along the Manila trench. Only
subducting plate with continental terrane may initially subduct
along the trench at a low angle and then changes abruptly to a
higher dip angle, while comparable size oceanic plateau
subduction favors for smooth subducting slab morphology.

Our model results exhibit that the second-order factor
controlling the subducting slab morphology is the thickness
of continental terrane. A thin continental terrane (10 km or
15 km thick) has a strong ability to result in an abrupt change
in dipping angle before slab breakoff (Figures 4, 6, 9). In
comparison, a thicker continental terrane (≥25 km thick) is
more likely to be blocked in the subduction channel (Figures
4, 6), and favors for “subduction zone jump.” The latter point
is similar to the ‘subduction zone jump’ phenomenon in Tao
et al. (2020) and Yan et al. (2021), which is beyond the focus of
this paper. In addition, the continental terrane width also has
implications for affecting the downgoing slab morphology.
According to our model results, the moderate-size continental
terrane or wider ones (≥200 km in width) are more likely to
form the abrupt change of dipping angle during the
subducting process (Figures 4, 6, 9). These results are
comparable with geological observations of the Manila
trench, where large-size (≥300 km in width) and thin
(≤15 km in thickness) continental terrane subduction leads
to an abrupt change in the dipping angle in the northern
segment, and small-size (≤100 km in width) seamounts
subduction results in a smooth subducting slab morphology
in the southern segment.

The geophysical studies of northern Manila trench indicate
that the accretionary wedge shows an vertical volume increase,
and it may be due to the accreted crustal material from the thin
continental terrane (Eakin et al., 2014). According to our models,
Figures 10A3, B3 compare the topography evolution of large thin
continental terrane subduction with small oceanic plateau
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subduction. The former contributes to a relatively evident vertical
increase in the accretionary wedge volume (Figure 10A3), which
is similar with the topographic uplift in Figures 4C1, H1. These
topographic results of continental terrane models agree with the
geophysical observations from Eakin et al. (2014).

CONCLUSION

We test a series of 2-D geodynamic models to investigate
subduction processes involving thin continental terrane and
oceanic plateau and provide insights from numerical
modeling on properties of the subducted crust of the South
China Sea along the Manila trench. There are three key
findings of the study.

1. The first-order factor controlling an abrupt change in the
dipping angle is the crustal properties of bathymetric highs.
Subducting plate with continental terrane initially subducts

along the trench at a low angle and then changes abruptly to a
higher dip angle. In contrast, comparable size oceanic plateau
subduction does not result in the abrupt change in the
dipping angle.

2. For continental terranes, the crustal thickness and terrane
width affect the subducting slab morphology. The subduction
of a wide continental terrane (≥300 km) with thin crust
(≤15 km in thickness) favors the abrupt change in dipping
angle. Overthickened terranes (≥25 km in thickness) are more
likely to be blocked in the subduction zone.

3. The model results explain the differences in subducting slab
morphology between the northern (around 20° N) and
southern (around 17°N) segments of the Manila trench. For
the northern Manila trench, numerical models with large thin
continental terrane (≥300 km in width and ≤15 km in
thickness) lead to an abrupt change in dipping angel, which
corresponds to tomography profile at 20°N. On the other
hand, for the southern Manila trench, models with small
(≤100 km in width) oceanic plateaus (seamounts) are

FIGURE 10 | Comparison of modeled and observed subducting South China Sea (SCS) slab morphology along the Manila trench. (A1) Model results of thin
continental terrane subduction. The red arrow indicates an abrupt change in the dip angle. (A2) Vertical cross section of P-wave tomography along the profile at northern
Manila trench (20° N). Modified from Fan et al., 2016. (A3) Topography evolution of thin continental terrane subduction. (B1) Model results of oceanic plateau subduction.
(B2) Vertical cross section of P-wave tomography along the profile at southern Manila trench (17° N). Modified from Fan et al., 2016. (B3) Topography evolution of
oceanic plateau subduction. The red circle indicates the vertical increase in the accretionary prism volume.
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characterized by smooth subducting slab morphology, which
corresponds to the tomography profile at 17°N.
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Exhumation history of the
Hengchun Ridge and its
implications for Taiwan orogenic
processes

Pingchuan Tan1,2*, Weiwei Ding1,2,3 and Jiabiao Li1,3

1Key Laboratory of Submarine Geosciences, Ministry of Natural Resources & Second Institute of
Oceanography, Ministry of Natural Resources, Hangzhou, China, 2Southern Marine Science and
Engineering Guangdong Laboratory, Zhuhai, China, 3School of Oceanography, Shanghai Jiao Tong
University, Shanghai, China

The orogenic evolution of Taiwan is thought to have occurred with a steady and

southward propagating trend since the Late Miocene. Recent studies suggest a

two-stage collision for the Taiwan orogen and that the collision occurred

simultaneously along the entirety of the island of Taiwan. To test this

hypothesis, we evaluated 270 bathymetry profiles normal to the trench to

constrain variations in the width, length, and crest of the Taiwan accretionary

prism from the northern Central Ridge to the southern Hengchun Ridge. South

of Taiwan Island, a gradual increase in the width and elevation of the

accretionary prism of the Hengchun Ridge is noted. Assuming that the uplift

of Hengchun Ridge is dominated by the accretion of hyper-stretched

continental crust (HSCC), we estimated the uplift rate of the ridge (ca.

0.3 km/Ma) based on a linear regression between the HSCC and the

observed depth of the prism crest. Using this uplift rate, we forward

modeled the prism crest depth variations from 19.7°N to 23.5°N, and

compared these values to observations. The model gives a good match to

observations of the Hengchun Ridge, but significantly deeper depths to the

north of Hengchun Peninsula. This suggests that the Taiwan orogeny had two

stages: the first stage was dominated by structurally underplated HSCC, and the

second is a combination of the arrival of the continental shelf and arc–continent

collision. In addition to the widely accepted arc–continent collision, our study

suggests that both the location and orientation of the continent–ocean

boundary play important roles in orogeny.

KEYWORDS

hengchun ridge, taiwan orogenic, manila subduction, hyper-stretched continental
crust, south China sea
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Introduction

The Taiwan orogeny has been described as an evolving

tectonic setting resulting from active and oblique collision

between the north-trending Luzon Arc and the northeast-

trending Eurasian continental margin (Suppe, 1984). This

tectonic setting indicates that the collision started in the north

and propagated southward, as suggested by many studies (Liu

et al., 2001; Willett et al., 2003; Huang et al., 2006). Both Liu et al.

(2001) and Willett et al. (2003) observed a southward

propagation of the collision zone (starting at 5–7 Ma) using

apatite and zircon fission-track ages based on the analysis of

sedimentary rocks and bedrock in the Central Ridge of Taiwan.

Based on regional geological settings and records, Huang et al.

(2006) proposed a scenario in which continuous southward

migration of the collision zone occurred since around 6.5 Ma.

Recently, based on interpretations of the detrital

thermochronology record of sediment samples in Taiwan,

Resentini et al. (2020) observed a southward exhumation

process, and Malusa and Fitzgerald (2020) identified a

migration of fast erosion rates in the accretionary wedge from

the northern to southern Coastal Range since the Late Miocene.

Both studies support a southward propagation of the collision

zone during oblique arc–continent collision. However, several

other studies have challenged the idea of a southward

propagation (Mesalles et al., 2014; Lee et al., 2015). According

to thermochronological constraints and the timing of rapid

subsidence in the eastern Taiwan foreland basin based on

recently published zircon fission-track ages, both Lee et al.

(2015) and Mesalles et al. (2014) observed an onset of

exhumation in both the northern and southern parts of

Taiwan Island at ca. 5–7 Ma, suggesting that collision may

have occurred simultaneously along the entirety of the island.

In addition, slow to moderate uplift of Central Ridge rocks since

6–7 Ma, followed by a rapid uplift after 2–3 Ma (Teng, 1990; Hsu

et al., 2016; Lee et al., 2006) may suggest a two-stage collision for

the Taiwan orogen, rather than a single southward arc–continent

collision process.

Recent geophysical studies have observed that the passive

margins of the northern South China Sea (SCS) are

characterized by a wide area (>200 km) of extremely

thinned hyper-stretched continental crust (HSCC), rather

than a narrow transition zone, which is presently

subducting along the Manila Trench (Lester et al., 2013;

McIntosh et al., 2013; Eakin et al., 2014; Lester et al., 2014;

Liu et al., 2018) (Figure 1). In addition, the results of seismic

refraction profiles across the Hengchun Ridge show that the

uplift of the Hengchun Ridge is primarily caused by the

accretion of HSCC (McIntosh et al., 2013). HSCC

underthrusting could be the dominant process in the

initial stage of mountain building in Taiwan; this is

supported by a comparison between crustal structure

(McIntosh et al., 2013) and geothermal gradients (Mesalles

et al., 2014) on and offshore Taiwan. Because the boundary

between the oceanic crust, HSCC, and continental crust at the

northern margin of the SCS have different trends than those

of the Manlia Trench (Figure 1), the subducted plate along

the Hengchun Ridge varies from oceanic crust to HSCC to

continental crust moving northward. Thus, the Hengchun

Ridge can be used as an analog for studying the evolution of

accretionary prisms developed from oceanic crust to HSCC

subduction, providing an opportunity to study the early

orogenic history of Taiwan Island. Integrating these

observations with onshore geology allows us to further

construct the entire tectonic evolution of the Taiwan

orogeny, which developed from oceanic crust subduction

to arc–continental collision.

Tectonic background

Taiwan Island features an active orogenic system

resulting from the collision between SE Eurasia and the

Luzon Arc west of the Philippine Sea plate (Teng, 1990). It

developed by at least 10 Ma during the eastward subduction

of the SCS oceanic crust (Liu et al., 2019), which is

characterized by a high convergent rate (8 cm/yr) (Yu

et al., 1997). The initial stages of the Taiwan collision

started with the arrival of Eurasian continental crust along

the Manila Trench around 5–7 Ma (Willett et al., 2003; Lee

et al., 2015). Following the accretion of continental crust

(McIntosh et al., 2005, 2013), the prism collided with the

northernmost Luzon volcanic arc of the Philippine Sea Plate,

at which time more rapid uplift occurred with the arrival of

thicker continental crust intersecting the prism (Mesalles

et al., 2014).

Based on present-day geological observations, the

tectonic setting of the region changes from north to south

along the Taiwan orogen (Figure 1). In the north, the Taiwan

orogen is primarily composed of three distinct geomorphic

units; from west to east, these are the subducted Eurasian

continental margin, the accretionary prism, and the accreted

Luzon Arc (Huang et al., 2006) (Figure 1). Morphologically,

the Central Ridge of Taiwan extends continuously from

Hengchun Peninsula to the offshore Hengchun Ridge

(Figure 1) and has a common tectonic origin (Huang

et al., 2006; McIntosh et al., 2013). The Central Ridge

stretches from 22°N to 25.25°N and has a length of more

than 500 km. The Hengchun Peninsula, which is located at

the southernmost part of Taiwan Island, is the southern

extended segment of the Central Ridge, and marks the

northern most part of the accretionary prism in the

Manila subduction zone (Zhang et al., 2016). Based on

regional tectonostratigraphic records, Huang et al. (2006)

suggested that the onset of collision in the Hengchun

Peninsula could have started during the early Pliocene. To
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the south, the submarine Hengchun Ridge stretches more

than 350 km from 20.2°N to 22°N, representing a subduction

wedge between the Manila Trench and the fore-arc basin of

the Luzon Trough. This northward increase in width and

elevation results in a significant change in morphology, likely

in response to an earlier collision process (McIntosh et al.,

2013). Two distinct structural domains (the upper and lower

slope) have been observed in the Hengchun Ridge. The upper

slope has imbricated thrusts and folds, while the lower slope

is characterized by a sharp change in bathymetric relief

(Lester et al., 2013; Eakin et al., 2014). The transition from

lower to upper slope could be caused by out-of-sequence

thrusts (Lin et al., 2008), or structurally underplated

subducted crust (Lester et al., 2013). To the west, several

seismic studies show that the northern SCS has a broad

(>200 km) continental–ocean transition zone that

comprises HSCC (stretching factor 3–5) with a thickness

between 5 and 15 km, which is presently subducting at the

Manila Trench (Wang et al., 2006; Lester et al., 2013;

McIntosh et al., 2013; Eakin et al., 2014; Lester et al., 2014;

Liu et al., 2018) (Figure 1). Furthermore, seismic studies

reveal a high-velocity anomaly suggestive of a HSCC

structurally underplated beneath the base of the

accretionary prism (width 20 km, height 10 km) (Lester

et al., 2013) (MGL0905-27 in Figure 1). This feature was

also discovered beneath onshore Taiwan with a thicker (up to

30 km) and slightly wider spatial (ca. 30 km) extent

(McIntosh et al., 2005, 2013) (OBS1995 in Figure 1). Based

on regional seismic studies and magnetic anomalies, the

subduction of oceanic crust at the Manila Trench probably

occurs only to the south of 20.2°N (Eakin et al., 2014).

Materials and methods

Because the continental-ocean transition zone of the

northern margin of the SCS trends differently than the

Manila Trench, the subducted plate along the trench varies

from oceanic to HSCC, and northward to continental crust

subduction. To understand how the structure of prism

growth is related to this process, we estimated changes in

the morphology of the accretionary prism northward. The

bathymetrical map is derived from Tozer et al. (2019)

(SRTM15+) with a resolution of 15 s. For the location of

the Manila Trench between 23°N and 23.5°N, we estimated

the location based on a frontal thrust fault (Laonung fault)

west of the Central Range. This fault was proposed following

the proto-Manila trench and acted as the deformation front

of the subduction wedge during the arc-continental collision

(Huang et al., 1997). Between 21.5°N and 23°N, the trench

represents as a deformation front on land connecting the

offshore Manila Trench (e.g., Lallemand and Tsien, 1997; Liu

et al., 1997; Liu et al., 2004). Here, we estimate the sea–land

connection of the deformation front from Liu et al. (1997).

Then, we extracted the bathymetry of the Taiwan

accretionary prism normal to the trench every 2 km,

representing a variation in width, slope, and crest of the

accretionary prism from 19.7°N to 23.5°N. This resulted in the

obtainment of 270 different profiles normal to the trench.

Along the profile, the spacing is 1 km; this retains the main

structural characteristics of the prism. The crest of the prism

is calculated based on the average depth of the ten shallowest

points of the prism. The width of the prism is estimated from

the trench point to the western boundary of the prism (solid

red line in Figure 1). The slope is estimated based on a

FIGURE 1
Regional features illustrated on a bathymetric map
[SRTM15+; (Tozer et al., 2019)]. Solid black lines represent the
locations of the regional seismic refraction profiles: OBS 2001
(Wang et al., 2006), T1 and T2 (Eakin et al., 2014), OBS 2015-2
(Liu et al., 2018), OBS 1995 (McIntosh et al., 2005), MGL0905-27
(Lester et al., 2013), MGL0905-20 (Lester et al., 2014), and OBS
2012 (Wan et al., 2017). The area of hyper-stretched continental
crust (HSCC), indicated by transparent blue, is constrained by
regional seismic refraction profiles and modified from Li et al.
(2019). The solid red line indicates the eastern boundary of the
accretionary prism. The Luzon Arc is moving northwestward
towards the Eurasian continent at 70–80 mm/yr (Yu et al., 1999).
CR: Central Ridge, EUP: Euroasian Plate, HR: Hengchun Ridge, HP:
Hengchun Peninsula, LA: Luzon Arc, PSP: Philippine Sea Plate.
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standard least-squares linear regression model (y = a + b·x,
where the b is the slope) for each accretionary prism using the

GMT program “gmtregress” (Wessel and Smith, 1991).

Although the slope could have been affected by regional

processes (slumps, erosion, and mud volcanoes), a gradual

process of slope change should provide a representative

mechanism for the growth of the accretionary prism,

where greater and lesser slopes indicate that the growth of

the prism is dominated by vertical and horizontal accretion,

respectively.

To analyze the exhumation history of Hengchun Ridge,

it is also necessary to know its uplift rate. We first estimated

the amount of subducted HSCC based on a simple geometric

relationship between the Manila Trench and HSCC, where

the HSCC east of the Manila Trench was simply extended

following the trend of the HSCC to the west of the trench

(Figure 2). Some uncertainties related to the change of

geometry of the Manila Trench were noted because the

trench migrated westward during subduction; however,

based on reconstructions by Seton et al. (2012), the

overall configuration of the northern Manila Trench has

experiences little change since the Late Miocene. Moreover,

to the east of the trench, the geometry of the HSCC is

generally consistent with a map of a subducted thinned

continental crust slab, which is unfolded and restored to the

Earth surface based on the regional tomography data

provided by Wu et al. (2016) and Liu et al. (2018). Using

an E–W effective convergence rate of 50 mm/yr for the

northern Manila Trench (Tan, 2020), we split the E–W

convergence rate normal to the trench and calculated a

trench-normal subduction plate velocity along the trench.

Then, the duration of the subduction of HSCC could be

estimated. If the growth of the Hengchun Ridge was

dominated by underplating of HSCC to the accretionary

prism, a positive correlation between the duration of the

subducted HSCC and the depth of the prism crest should be

observed. Subsequently, the uplift rate of the Hengchun

Ridge can be estimated by using linear regression to fit

the data.

Results

Hyper-stretched continental crust
underplating

The amount and duration of HSCC subduction between

19.7°N and 23.5°N is shown in Figure 3A. The area between

19.7°N and 21.5°N includes the Hengchun Ridge (offshore),

while the Hengchun Peninsula covers an area between 21.5°N

and 22.5°N. The area north of 22.5°N represents the Central

Ridge. The initial stage of HSCC subduction is at 20.2°N. A

gradually increasing amount of HSCC subduction is noted

between 20.2°N and 21.5°N (0–230 km); this corresponds to

the duration of HSCC subduction from 0 to 5 Ma. Between

21.5°N to 23.5°N, the duration and amount of subducted

continental crust remain almost unchanged at 5 Ma and

240 km, respectively. The relationship between the

duration of HSCC subduction and the observed depth of

the prism crest over Hengchun Ridge is shown in Figure 3B.

In general, a strong positive correlation is observed between

the two, with a correlation coefficient (R) of 0.93. The

observed prism crest increases from −2000 to 0 m and is

associated with an increase in duration from 0 to 5 Ma. Linear

regression determined that the uplift rate of the Hengchun

Ridge is 0.296 ±0.011 km/Ma (red circle and solid line in

Figure 3B). There are some uncertainties in the uplift rate due

to the uncertainties of the convergence rate. Previous studies

have shown that the Philippine Sea Plate is moving toward

FIGURE 2
Area of the hyper-stretched continental crust (HSCC) in the
study region. The distribution of HSCC to the east of the Manila
Trench was simply extended following the trend of HSCC west of
the trench. HSCC subduction normal to the trench is
indicated bywhite dashed lines. Owing to different trends between
the trench and the HSCC, an increasing amount of HSCC
subduction occurs from Hengchun Ridge to Hengchun Peninsula.
CR: Central Ridge, HR: Hengchun Ridge, HP: Hengchun Peninsula,
LA: Luzon Arc.
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the Eurasian continent at the rate of 60–80 mm/yr in

300°–310°azimuth (Yu et al., 1997; Yu et al., 1999). This

results in E–W effective convergence rate at the trench

from 45 to 70 mm/yr. Here, we tested the sensitivity of the

convergence rate from 45 mm/yr to 70 mm/yr to see how it

changes from the uplift rate. The result shows that the

changing of the convergence rate still results in a positive

correlation between the duration of HSCC subduction and

the prism crest, and the uplift rate changes to 0.266 km/Ma

and 0.355 km/Ma at a convergence rate of 45 and 70 mm/yr,

respectively, (green and blue circles and dashed lines in

Figure 3B).

Morphology of the taiwan accretionary
prism

The morphology of the Taiwan accretionary prism is shown

in Figure 4. To the south of 20.2°N, oceanic crust subduction

exhibits less variation in width (70–80 km), slope (0.04–0.05), and

crest of the prism (−1,500 m to −1,200 m). Between 20.2°N and

21.3°N (the Hengchun Ridge), the crest of the prism gradually

increases (−1,500 m to −500 m); this is associated with an

increase in width from 70 to 110 km. The northward increase

in the size of the prism probably results from the accretion of

terrigenous sediments in the SCS continental margin and Taiwan

orogen to the north. The prism slope is almost the same (0.04),

suggesting that the growth of the accretionary prism can be

attributed to both vertical and horizontal accreted. From

21.6°N to 22.2°N, the width increases from 130 to 150 km; this

is associated with a minor change in crest depth (from −500 to

0 m). A decreasing slope in this area (from 0.03 to 0.02) suggests

that the growth of the accretionary prism is marked by horizontal

advection. North of 22.5°N represents the Hengchun Peninsula

and Central Ridge. Here the crest of the accretionary prism

exhibits significant uplift from 0 to 3,500 m. The width of the

accretionary prism is almost constant at 140 km, while the slope

dramatically increases from 0.01 to 0.04, reflecting the rapid

vertical growth of the accretionary prism. The length and

slope of the accretionary prism could be affected by the

uncertainties of the location of the Manila Trench just SW of

Taiwan Island, as the Manila Trench gradually loses its

bathymetric identity north of 21.5°N. There are several

possible ways of the connection between the deformation front

FIGURE 3
(A) Amount and duration of hyper-stretched continental crust (HSCC) subduction. The start of HSCC subduction occurs at 20.2°N. For
Hengchun Ridge, the amount and duration of HSCC subduction increases from 0 to 220 km and 0 to 5 Ma, respectively. For the onshore Hengchun
Peninsula and Central Ridge, the amount and duration remain constant at 240 km and 5 Ma, respectively. (B)Correlation between the duration of the
HSCC subduction and observed crest of the prism over Hengchun Ridge. The red circle shows the correlation based on the E-W effective
convergence rate of 50 mm/yr, and a red solid line indicates a best-fit line. The green and blue circles and dashed lines represent the correlation
based on the E-W convergence rate of 45 and 70 mm/yr, respectively. The positive correlation suggests that the uplift of Hengchun Ridge is
dominated by the accretion of HSCC underthrusting.
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on land and the Manila Trench offshore in SW Taiwan Island

(e.g., Huang et al., 2004; Yu, 2004; Han et al., 2017). Here, we test

the sea–land connection proposed by Han et al. (2017), Lacombe

et al. (2001)), and Lin et al. (2008) (Figure 4A) to see how it

changes the estimated length and slope of the accretionary prism.

The test shows that the length of the accretionary prism changes

of up to 40 km, while the slope to be changed by generally less

than 0.01. In addition, the large amounts of mud diapirs andmud

volcanos are active offshore and onshore SW Taiwan Island (e.g.,

Chen et al., 2014; Doo et al., 2015) could potentially change the

height, accordingly the slope of the accretionary prim. Regional

seismic reflection profiles show that the height of the mud

volcano is generally less than 400 m (Chen et al., 2014), which

results in slope changes of up to 0.003.

Discussion

A range of interpretations have been proposed for the

evolution of the Taiwan orogen. Based on regional tectonic

settings, subduction of SCS crust results in an oblique

arc–continent collision starting at approximately 6.5 Ma in

northern Taiwan and propagating southward (Huang et al.,

2006). Using stratigraphic evidence, low-temperature

FIGURE 4
(A) Bathymetry of the Taiwan accretionary prism from 19.5°N to 24°N. Solid red lines indicate the western and eastern boundaries of the
accretionary prism. Black, green, and blue dotted lines indicate possible trench locations proposed byHan et al. (2017), Lin et al. (2008), and Lacombe
et al. (2001) SW of Taiwan Island. (B) Variations in prism width and slope from 19.7°N to 23.5°N. (C) Comparison between the modeled (red solid line)
and observed prism crest (black solid line) from 19.7°N to 23.5°N. The modeled duration of the subducted hyperextended continental crust is
shown below. The green and blue dash lines show the modeled prism crest using E-W effective convergence rate at 45 and 70 mm/yr, respectively.
(D) Profiles across the accretionary prism at 20.0°N, 21.0°N, and 21.5°N, representing a typical cross section of oceanic subduction, hyper-stretched
continental crust subduction, and initial arc–continental collision, respectively. CR: Central Ridge, EUP: Eurasian Plate, HR: Hengchun Ridge, HP:
Hengchun Peninsula, LA: Luzon Arc, PSP: Philippine Sea Plate.
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thermochronological analysis, and regional seismic data, several

studies have proposed a two-stage collision for the Taiwan

orogen (Lee et al., 2006; Mesalles et al., 2014; Hsu et al.,

2016). The first stage started around 6–8 Ma (Teng, 1990; Liu

et al., 2001; Lee et al., 2006) with a southward propagation of

arc–continent collision (Liu et al., 2001; Willett et al., 2003;

Malusa and Fitzgerald, 2020; Resentini et al., 2020) or a

simultaneous mountain building along the Taiwan orogenic

belt (Lee et al., 2006; Mesalles et al., 2014; Lee et al., 2015;

Hsu et al., 2016). The simultaneous hypothesis is supported by

the fact that both the Luzon Arc and continental margin exhibit

subparallel northward trends during the Late Miocene (Lee et al.,

2015). The uplift of the accretionary wedge can be caused by

arc–continent collision (Lee et al., 2015; Resentini et al., 2020),

subduction of extended continental crust (Lee et al., 2006;

Mesalles et al., 2014), HSCC structural underplating at the

base of the accretionary prism (Lester et al., 2013; McIntosh

et al., 2013), and a combination of crustal accretion, subducting

continental crust, and southward propagation of the arc collision

(Willett et al., 2003). During this stage, the exhumation rate was

slow to moderate (<0.5 km/Ma) (Lee et al., 2006; Hsu et al.,

2016). The second stage recorded an additional period of

shortening and exhumation. The rate of exhumation

significantly accelerated to 2–10 km/Ma at ca. 1–3 Ma (Teng,

1990;Willett et al., 2003; Lee et al., 2006; Mesalles et al., 2014; Hsu

et al., 2016). A consistent acceleration in exhumation rate is

observed along the entirety of the Taiwan orogen, but the

exhumation rate at south is lower than that to the north,

suggesting a longer collision history in the north (Lee et al.,

2006; Hsu et al., 2016). The acceleration of the exhumation rate

could be caused by progressive underthrusting of thicker crust

(Lee et al., 2015; Hsu et al., 2016) and shortening of the prism

associated with Luzon Arc collision (Lee et al., 2006; Mesalles

et al., 2014).

FIGURE 5
Evolution of the Taiwan accretionary prim since the Late Miocene. The location of the trench is derived from Deng et al. (2020) and the area of
the HSCC is modified from Li et al. (2019). Owing to differences in orientation between the Manila Trench and the hyper-stretched continental crust
(HSCC) of the northern South China Sea, the amount of HSCC subduction changes from south to north and has varied through time. The subparallel
trend between the trench and the continental margin supports simultaneous mountain building along the Taiwan orogenic belt during the first
stage of the Taiwan orogeny.
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Our data show that the width and crest of the Hengchun

accretionary prism gradually increase northward (Figure 4).

Assuming prism growth from only the subducted HSCC, we used

the duration of the HSCC and the uplift rate of the Hengchun Ridge

(0.296 km/Ma) to forward model how much of the accretionary

prism has been uplifted north of 19.7°N (Figure 4C). The result shows

that our modeled prism crest (red solid line in Figure 4C) fits

reasonably well with observations south of 22°N. Considering the

uncertainties of the convergence rate, changing the E-W convergence

rate to 45mm/yr and 70mm/yr (green and blue dashed line in

Figure 4C) still result in a reasonable fit between the observed and

modeled prism crest. The estimated uplift rate of theHengchun Ridge

(0.266–0.355 km/Ma) is in agreement with the exhumation rate

(<0.5 km/Ma) characterizing the early stages of mountain

formation in Taiwan (Lee et al., 2006; Hsu et al., 2016). In

addition, our model shows that the initial age of HSCC

subduction at Hengchun Peninsula (22°N) is 4–5Ma (Figure 4C).

This is comparable to the regional sedimentary record, which

indicates that the onset of the submarine collision in the

Hengchun Peninsula could have started during the early Pliocene

(Huang et al., 2006). The slope of the Hengchun accretionary prism

(21°N to 22°N) gradually decreases from 0.04 to 0.02. Considering an

uncertainty of the slope by up to 0.01, it still shows a decreasing trend,

suggesting that the growth of the Hengchun Ridge is dominated by

horizontal advection. This is comparable to the first stages of Taiwan

orogenic formation, where the horizontal transport of materials from

the prism was more important than its vertical uplift (Willett et al.,

2003). In conclusion, the similarity of the exhumation rate, duration,

and mechanism of submarine collision both onshore and offshore

Taiwan suggest a common tectonic origin between the two. It is likely

that the first stage of the Taiwan orogen was dominated by HSCC

subduction. The subparallel trend between the trench and the

continental margin supports simultaneous mountain building

along the Taiwan orogenic belt during the first stage of collision

(Figure 5).

North of 22°N, the observed prism crest experienced a

dramatic uplift. This region also features a significantly

higher (2,000–3,000 m) prism crest than modeled values,

indicating that the growth of the prism is not dominated

by HSCC subduction, evidencing another stage of collision

evolution. During this stage, a significant increase in prism

slope (from 0.01 to 0.04) indicates the dominance of vertical

uplifting over horizontal advection. This is in agreement with

more rapid uplift; indeed, the exhumation rate increases to

2–10 km/Ma during the second stage of the Taiwan orogen

(Lee et al., 2006; Hsu et al., 2016). In addition, considering the

onset of the first stage Taiwan collision at 6–7 Ma (Lee et al.,

2006) and the duration of HSCC subduction (5 Ma; Figure 4),

the estimated duration of the second collision stage is 1–2 Ma.

This is in agreement with several onshore studies suggesting

that the second stage of the Taiwan orogen began at around

1–3 Ma (Teng, 1990; Willett et al., 2003; Lee et al., 2006;

Mesalles et al., 2014). Our model shows that to the north of

the Hengchun Peninsula, thick continental crust subduction

caused significant uplift the accretionary prim (Figure 5). In

addition, a gradual increase in both prism crest and slope

northward suggests that the north experienced rapid uplift

(Figure 4C). This is consistent with lower exhumation rates

recorded in the Hengchun Peninsula than the Central Ridge

(Lee et al., 2006). This exhumation rate could be related to

the combination of the oblique collision between the

continental crust and north-trending Luzon Arc result in

shortening of continental margin section, and the

southward-increasing erosion rate at Taiwan Island

(Malusa and Fitzgerald, 2020).

Conclusion

Based on a combination of the exhumation history of the

Hengchun accretionary prism and the onshore geology of

Taiwan Island, our study supports a two-stage Taiwan orogen.

Owing to the difference in orientation between the Manila

Trench and the HSCC of the northern SCS, the amount of

HSCC subduction over the Hengchun Ridge has changed

from south to north (Figure 5). We use this as an analog to

analyze the first stage of the Taiwan orogeny. During this

stage, the uplift rate of Hengchun Ridge is estimated based

on correlations between the duration of HSCC subduction

and the observed depth of the prism crest, and uses linear

regression to perform the fit. The initial HSCC subduction is

coeval with the start of the Taiwan orogen at 6–7 Ma. In

addition, the uplift of Hengchun Ridge is dominated by an

accretion of structurally underplated HSCC, which is

dominated by horizontal advection rather than vertical

uplift. The exhumation rate is moderate to low (ca.

0.3 km/Ma) and is comparable to the exhumation rate

(<0.5 km/Ma) of the first stage of Taiwan mountain

formation. The subparallel trend between the trench and

continental margin supports simultaneous mountain

accretion along the entire Taiwan orogen. After

subduction of the entire HSCC, the second stage of the

Taiwan orogeny occurred. During this stage, the

exhumation rate of the prism accelerated significantly.

This higher rate was most likely caused by the arrival of a

thick continental shelf intersecting the prism, together with

continent–arc collision. Compared to the widely accepted

arc–continent collision model, our study suggests that both

the location and orientation of the continental–ocean

boundary can also play important roles in orogeny.
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Tsunamis have been known to result from a wide range of phenomena, such as

earthquakes, volcanic eruptions, submarine mass failures, and meteorite

impacts. Of earthquake-generated tsunamis, those arising from strike-slip

mechanisms are less common, with the 1994 Mindoro tsunami in the

Philippines among the few known examples. The 1994 Mindoro tsunami

followed a Mw 7.1 earthquake along the right-lateral Aglubang River Fault.

The tsunami affected the coasts surrounding the Verde Island Passage, one

of the Philippines’ insular seas located between the islands of Luzon and

Mindoro, and east of the West Philippine Sea margin. A total of 78 lives were

lost due to the earthquake and tsunami, with 41 being directly attributed to the

tsunami alone. Despite the close spatial and temporal association between the

1994 Mindoro earthquake and tsunami, previous numerical modeling suggests

the need for other contributing mechanisms for the 1994 tsunami. In this study,

we conducted submarine geomorphological mapping of the South Pass within

the Verde Island Passage, with particular focus on identifying possible

submarine mass failures. Identification of submarine features were based on

Red Relief Image Map (RIMM), Topographic Position Index (topographic

position index)-based landform classification, and profile and plan curvatures

derived fromhigh-resolution bathymetry data. Among the important submarine

features mapped include the San Andres submarine mass failure (SASMF). The

San Andres submarine mass failure has an estimated volume of 0.0483 km3 and

is located within the Malaylay Submarine Canyon System in the Verde Island

Passage, ~1 km offshore of San Andres in Baco, Oriental Mindoro. We also
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explored two tsunami models (EQ-only and EQ+SMF) for the 1994 Mindoro

tsunami using JAGURS. The source mechanisms for both models included an

earthquake component based on the Mw 7.1 earthquake, while the EQ+SMF

also included an additional submarine mass failure component based on the

mapped San Andres submarine mass failure. Modeled wave heights from the

EQ-only model drastically underestimates the observed wave heights for the

1994 Mindoro tsunami. In contrast, the EQ+SMF model tsunami wave height

estimates were closer to the observed data. As such, we propose an

earthquake-triggered, submarine mass failure source mechanism for the

1994 Mindoro tsunami.

KEYWORDS

1994 Mindoro earthquake and tsunami, submarine geomorphology, submarine mass
failure, numerical modeling, Verde Passage, Philippines

1 Introduction

Tsunamis have been a ubiquitous phenomenon around

the world, with several notable examples occurring within the

past 2 decades. While most destructive tsunamis are generated

by major to great megathrust earthquakes, such as the

2004 Indian Ocean and the 2011 Tohoku-oki tsunamis,

more recent events arose from less common, non-seismic

sources. These include the 2022 Hunga Tonga tsunami,

which followed the eruption of the Hunga Tonga-Hunga

Ha’apai submarine volcano, and the 2018 Sulawesi tsunami,

which resulted from the combined effects of a Mw

7.5 earthquake along the Palu-Koro fault system in

Indonesia (Heidarzadeh et al., 2018), associated submarine

landslides (Gusman et al., 2019; Pakoksung et al., 2019), and

coastal liquefaction (Sassa and Takagawa, 2018).

With exception to impact-generated tsunamis, tsunamis

from strike-slip earthquakes are even much less common, as

the resulting vertical seafloor displacements from such events are

usually too small to initiate tsunamis (Tanioka and Satake, 1996;

Heidarzadeh et al., 2017). Aside from the previously mentioned

2018 Sulawesi tsunami, the 1994 Mindoro tsunami in the

Philippines is another example of a tsunami occurring after a

strike-slip earthquake (Tanioka and Satake, 1996; Pakoksung

et al., 2019).

The 1994 Mindoro tsunami was preceded by a Mw

7.1 earthquake along the Aglubang River Fault, within the

South Pass of the Verde Island Passage in the Philippines. The

tsunami produced wave heights at shore exceeding 7 m

(Supplementary Table S1), despite the earthquake’s

dominantly right-lateral, strike-slip mechanism. Tanioka

and Satake (1996) suggested that the coseismic horizontal

displacement of the coastal shelf, which is intersected

obliquely by the right-lateral Aglubang River Fault, played

an important role in producing the observed tsunami wave

amplitudes. Contrary to this, numerical modeling by the same

authors has shown that a source mechanism based on Mw

7.1 earthquake alone severely underestimates the wave height

amplitudes and distribution compared to actual observations

of the tsunami run-up and inundation.

The possible role of a submarine mass failure (SMF) in

the generation of the 1994 Mindoro tsunami was then

proposed by Tanioka and Satake (1996), and is explored

in detail in this study. In general, SMF-generated tsunamis

are characterized by much larger run-ups in the near-field

compared to the far-field (Okal and Synolakis, 2004), which

was also observed for the 1994 Mindoro tsunami (Imamura

et al., 1995). Moreover, SMFs have been invoked as an

important contributing mechanism for tsunamis similar

to the 1994 Mindoro tsunami, wherein the estimated sea

surface displacement derived from the associated

earthquake is insufficient to account for the resulting

run-ups. These include the 1946 Alaska (Fryer et al.,

2004; von Huene et al., 2014), the 1998 Papua New

Guinea (Synolakis et al., 2002; Satake and Tanioka, 2003),

and the 2018 Sulawesi (Gusman et al., 2019; Pakoksung

et al., 2019) tsunamis.

2 Philippine tectonics and tsunamis

The archipelagic nature of the Philippines, combined with

its tectonic setting, makes it susceptible to tsunamis (Bautista

et al., 2012). Most of the Philippine archipelago is within the

Philippine Mobile Belt (PMB), which is bounded by

oppositely-dipping subduction zones to its east and west,

with the exception of the Palawan Microcontinental Block

(PMCB) (Figure 1A; Gervasio, 1971; Rangin, 1991; Yumul

et al., 2008; 2009; Lagmay et al., 2009; Mines and Geosciences

Bureau, 2010). To the east, the Philippine Sea Plate (PSP) is

subducting beneath the PMB along the Philippine Trench

(Hamburger et al., 1983; Ozawa et al., 2004; Yumul et al., 2008;

Mines and Geosciences Bureau, 2010). To the west, the

oceanic lithospheres underlying the South China Sea, Sulu

Sea, and Celebes Sea are subducting beneath the PMB along

the Manila, Negros-Sulu, and Celebes trenches, respectively.
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(Hayes and Lewis, 1984; Mitchell et al., 1986; Rangin et al.,

1999; Yumul et al., 2008; Mines and Geosciences Bureau,

2010). Of the 35 certain tsunami events in the Philippines

with wave heights of at least 1 m (Table 1; Bautista et al., 2012;

NCEI/WDS, 2022), three of the largest were generated by

subduction-zone earthquakes. These are the 1897 Zamboanga

tsunami, which was initiated along the Sulu Trench, and the

1918 Celebes Sea and 1976 Moro Gulf tsunamis which were

FIGURE 1
Philippine tectonic setting and notable tsunamis. (A) The 35 positive tsunamigenic earthquakes in the Philippines since 1589 AD with recorded
or estimated wave heights at shore of at least 1 m (Bautista et al., 2012; NCEI/WDS, 2022) are plotted with yellow circles, or with the corresponding
focal mechanism solution (FMS) diagrams. The most significant tsunamis, with maximum wave heights at shore exceeding 4 m, are also labeled.
Oceanic trenches are also shown and labeled, including active faults in red (PHIVOLCS). (B) Location of the South Pass within the Verde Island
Passage, where the 1994 Mindoro tsunami occurred. (C) Tsunami wave heights (modified from Imamura et al., 1995; see Supplementary Table S1)
and directions of wave inundation (PHIVOLCS, 1994). The trace of the offshore extension of the Aglubang River Fault is also indicated, as mapped
from the analysis of high-resolution bathymetry data in this study. FMS diagrams are from the Global Centroid Moment Tensor catalog (GCMT;
Dziewonski et al., 1981; Ekstrom et al., 2012). PMB = Philippine Mobile Belt; PMCB = Palawan Microcontinental Block; PSP = Philippine Sea Plate;
MT = Manila Trench; NT = Negros Trench; ST = Sulu Trench; CT = Cotabato Trench; ELT = East Luzon Trough; PT = Philippine Trench; PF =
Philippine Fault; SS = Sulu Sea; CS = Celebes Sea; KIG = Kalayaan Island Group; PR = Philippine Rise; ARF = Aglubang River Fault; CMF = Central
Mindoro Fault; LVPF = Lubang-Verde Passage Fault; BR = Baco River; MR = Malaylay River.
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initiated along the Cotabato Trench. The 1976 Moro Gulf

tsunami (Badillo and Astilla, 1978; Bautista et al., 2012;

Claro et al., 2021) is the most destructive of the known

tsunami events in the Philippines.

Earthquakes along offshore intraplate and upper-plate

faults have also produced tsunamis in the Philippines—the

most notable of which are the 1970 Baler, 1992 Davao

Oriental, and 1994 Mindoro tsunamis (Bautista et al.,

2012). The 1994 Mindoro tsunami, which is the focus of

this study, occurred within the Verde Island Passage

(Figure 1B). Major tectonic structures in proximity to the

Verde Island Passage include the southern terminus of the

Manila Trench, and active strike-slip faults such as the WNW-

trending left-lateral Lubang-Verde Passage Fault (Karig, 1983;

Rangin et al., 1988), the NNW-trending Central Mindoro

Fault (Karig, 1983; Rangin et al., 1988), and the NNW-

trending right-lateral Aglubang River Fault (PHIVOLCS,

1994).

TABLE 1 The 35 tsunamigenic earthquakes in the Philippines, with recorded or estimated maximum wave heights at shore of at least 1 m.

Id Y M D Hr Min Long Lat Depth
(km)

Maga Wave
heightb

Places
affected

1 1828 11 9 18 30 119.5 13.7 - 6.6 1 Port of Manila

2 1840 3 22 8 30 123.85 12.95 - 6.8 2 Sorsogon Bay

3 1863 6 3 19 30 120.9 14.55 - 6.5 1–2 Manila Bay

4 1869 8 16 15 0 123.85 12.4 - 6.5 1 Masbate, Masbate

5 1880 7 18 12 40 121.55 14.9 - 7.6 2 Puerto Real, Quinanliman and Tacligan in Real, Quezon

6 1897 9 21 13 12 121.3 7.5 - 7.5 6 Sulu Sea

7 1917 1 31 12 2 125.6 5.5 - 6.4 1.5 Glan, Sarangani

8 1918 8 15 20 18 124.4 5.9 - 8 8 Celebes Sea coast; Lebak, Sultan Kudarat

9 1921 11 12 2 36 127 8 - 7.5 2 Manay, Mati, and Caraga in Davao Oriental

10 1923 7 18 10 42 125 9.3 - 5.5 1 Mambajao, Camiguin

11 1924 4 15 0 20 126.5 6.5 - 8.3 2 Pujada Bay

12 1924 5 6 0 16 119 16 - 7 1 Agno, Pangasinan

13 1925 5 5 18 7 122.7 9.3 - 6.8 1–2 Southern coast of Negros

14 1925 5 25 11 44 122.5 12.5 - 6.25 2 Tugdan, Romblon

15 1925 11 13 20 14 125 13 - 7.3 2 Batag Island, Northern Samar

16 1928 6 15 14 13 121.5 12.5 - 7 1 Mangarin Bay

17 1928 12 19 19 27 124 7 - 7.5 1 Cotabato River and Illana Bay

18 1929 6 13 17 24 127 8.5 - 7.2 2 Hinatuan Bay

19 1934 2 14 11 59 119 17.5 - 7.6 2 San Esteban and Vigan, Ilocos Sur

20 1937 8 20 19 59 121.5 14.5 - 7.5 1 Lopez and Calauag Bays

21 1948 1 25 1 46 122 10.5 - 8.2 2 San Joaquin, Miagao, Oton in Iloilo; Nueva Valencia, Guimaras

22 1968 8 2 4 19 122.2 16.5 - 7.3 3 Casiguran Bay

24 1970 4 7 13 34 121.717 15.761 - 7 4.3 Baler and San Luis, Aurora

25 1973 3 17 16 30 122.787 13.372 - 7.3 1.3 Calauag and Alabat, Quezon

26 1975 10 31 16 28 125.993 12.54 - 7.4 1–2 Taft, Eastern Samar

27 1976 8 17 0 11 124.023 6.262 33 8.1 9 Lebak, Sultan Kudarat; Moro Gulf

28 1990 2 8 15 15 124.694 9.755 16.2 6.6 1 Alijuan River, Duero, Bohol; Bohol Strait; Camiguin Island

29 1990 7 16 16 26 121.172 15.679 15 7.8 2 Brgy. Darigayos, Luna, La Union

30 1992 5 17 17 49 126.753 7.183 34 7.1 5 Manay and Caraga, Davao Oriental

31 1994 11 15 3 15 121.087 13.532 15 7.1 7 Northern Oriental Mindoro; Verde Island in Batangas

32 1995 4 21 8 34 125.58 12.059 21.7 7.3 2 San Julian and Dolores, Eastern Samar

33 1999 12 12 2 3 119.67 15.85 35.1 6.8 1.5 Iba and Palauig, Zambales

34 2002 3 6 5 15 124 6.1 28.7 7.2 2 Palimbang, Sultan Kudarat

35 2012 2 6 11 49 123.14 9.97 12 6.9 2 La Libertad, Negros Oriental

aMoment magnitude. For earthquake magnitudes reported as surface wave (Ms) and body wave (Mb) magnitudes, empirical equationsby Scordilis (2006) were used to convert the values to

moment magnitude.
bMaximum wave height at shore (meters).

The row in bold emphasizes the 1994 Mindoro tsunami, which is the focus of this study.
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3 The 1994 Mindoro tsunami

In the early morning of 15 November 1994, at around 3:

15 a.m. local time (GMT+8), a Mw 7.1 earthquake occurred

underneath the South Pass of the Verde Island Passage in the

Philippines (Figures 1B–D; PHIVOLCS, 1994). The earthquake is

associated with the offshore extension of the right-lateral

Aglubang River Fault, based on its epicenter (13.5 N, 121.1 E),

focal mechanism solution, and surface rupture in Oriental

Mindoro along the Aglubang River Fault (PHIVOLCS, 1994).

Within a few minutes after the earthquake, tsunami waves hit the

surrounding coastal areas of northern Oriental Mindoro, Baco

FIGURE 2
Barangay San Andres in Oriental Mindoro, 25 years after the 1994 tsunami. (A) NNE-looking image overlooking Sitio Malaylay in Barangay San
Andres, taken during low tide. The area is mostly a mangrove swamp, with Nypa fruticans as the most common mangrove. Note the dilapidated
structures which were initially damaged by the 1994 tsunami. The location of Figure 2A is shown in Figure 1C. The exposed tidal bar in the foreground
of B is also labeled. (B) SE-looking, along-the-coast view of Sitio Malaylay. Note the protruding trunks of drowned mangrove trees along the
foreshore and the absence of the tsunami beach ridge that was deposited by the 1994 tsunami, both of which indicate post-1994 coastal erosion.
The location of a geoslicer sample, MAL-G3, is also shown. (C) Visual stratigraphic interpretation of MAL-G3. The 1994 Mindoro tsunami deposit is
partially preserved, overlying the older mangrove swamp sediments.

Frontiers in Earth Science frontiersin.org05

Ramirez et al. 10.3389/feart.2022.1067002

41

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1067002


Islands, Verde Island, and Batangas in Southern Luzon

(PHIVOLCS, 1994; Imamura et al., 1995). Among the hardest

hit is Barangay San Andres in the town of Baco, Oriental

Mindoro, and the Baco Islands, which were inundated by

tsunami waves exceeding 7 m and 5 m, respectively

(Supplementary Table S1). A total of 78 lives were lost, with

41 directly due to the tsunami. The cost of repairing and

rehabilitating the damages to infrastructure was estimated at

around PHP 5.5 million (PHIVOLCS, 1994). The 1994 tsunami also

left behind a 1-m high tsunami beach ridge along the coast of

Barangay San Andres (PHIVOLCS, 1994), although it was not

observed during fieldwork conducted in 2019 (Figure 2). The

tsunami beach ridge was most likely eroded given that the

Barangay San Andres coast has been subjected to at least 120 m

of coastal erosion since 1992, as observed frommultiple Landsat and

Sentinel-2 satellite imagery (Supplementary Figure S1). An extreme

wave event deposit, most likely a preserved section of the

1994 Mindoro tsunami, was also identified in a geoslicer sample

obtained in Barangay San Andres (Figure 2C). The suspected

1994 tsunami deposit is characterized by the presence of large

(>5 cm) mud clasts in a muddy, medium to coarse sand matrix,

with a basal erosional contact with the underlying,mangrove swamp

sediments.

The 1994 Mindoro tsunami was initially assumed to be

caused by the Mw 7.1 earthquake (PHIVOLCS, 1994; Bautista

et al., 2012), due to the close spatial and temporal association

between the two. However, as previously mentioned, results of

previous numerical modeling of the 1994 tsunami based on the

Mw 7.1 earthquake alone (Tanioka and Satake, 1996) are

inconsistent with observed tsunami wave heights. As such, in

this study, we explored the possibility of one or several submarine

mass failures as a contributing mechanism for the 1994 tsunami.

4 Submarine geomorphology of the
South Pass

4.1 Morphometric analysis and
geomorphological interpretation of
bathymetry data

The 20 m resolution digital bathymetry data for the Verde

Island Passage (Supplementary Figure S2), obtained from

multibeam surveys conducted by the National Mapping Resource

and Information Authority (NAMRIA) in 2011, was used in the

submarine geomorphological mapping. Geomorphometric analysis

of the bathymetry data was performed through topographic position

index (TPI)-based landform classification and derivation of land

surface parameters (i.e., slope, openness, profile and plan curvature)

in a GIS platform. These parameters were then used as basis in

identifying submarine geomorphological features (i.e., gullies, ridges,

fault line scarps, shelf breaks and scarps, seafloor bedforms, and

submarine mass failures).

4.1.1 Delineation of linear features using red
relief image maps

The Red Relief Image Map (RIMM; Chiba et al., 2008) is a

pseudo-3D relief visualization technique that highlights both coarse-

and fine-resolution surface features simultaneously across a wide

variety of topographic positions, without the dependency on light

directions, unlike shaded relief maps. It is generated by combining

two land surface parameters: slope and differential openness. In

RIMM, a red color ramp is used to visualize the slope angle, while its

saturation is modified based on the differential openness. As such,

convex features (e.g., ridges and crests) appear as bright areas;

concave features (e.g., valleys and depressions) and steep slopes

appear as red; and flat areas appear as gray.

The RRIM for the South Pass was generated in QGIS 3.22.4.

The slope was calculated using the Slope terrain analysis module

(GDAL/OGR contributors, 2020), following Horn’s algorithm.

The positive (PO) and negative openness (NO) were calculated

using the Topographic Openness module from the System for

Automated Geoscientific Analyses (SAGA) (Conrad et al., 2015),

following the definition of openness by Yokoyama and others

(2002). We then calculated the differential openness (DO) from

the PO and NO, using the formula from Chiba et al. (2008):

DO � (PO − NO)
2

The slope was visualized using a red color ramp, while the

differential openness used a black-to-white color ramp. The RRIM

effect is achieved by overlaying the slope over the differential

openness, using the blending mode Multiply. Prominent linear

features were manually delineated from the RRIM (Figure 3A).

4.1.2 TPI-based landform classification
The topographic position index (TPI) is calculated by

obtaining the difference between the elevation of the point of

interest (Z0) and the mean elevation (ZC) around a neighborhood

area with a predetermined size C (Guisan et al., 1999; Wilson and

Gallant, 2000). By calculating the TPI using two neighborhood

sizes (CS and CL), distinct small- and large-scale landform units

can be defined based on the values of TPI and the standard

deviation (SD) within C (Weiss, 2001; De Reu et al., 2013).

The TPI Based Landform Classification module in SAGA

(Conrad et al., 2015) was used to derive the landform classes,

using pixel (px), small (CS), and large neighborhood (CL) sizes of

20 m, 100 px, and 1000 px, respectively. The landform classes for

submarine geomorphology were modified from those originally

defined by Weiss (2001) for terrestrial landscapes (Table 2).

The modifications include the use of appropriate submarine

landform terms corresponding to each landform class. For

example, additional landforms such as shelves and plateaus

were added to the submarine landform class 3, since both are

similar to plains in terms of their low relief. Moreover, Weiss’

landform classes 1, 2, and 3 were merged into a single class

grouping together all narrow channel-like landforms (i.e., gullies,
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upland drainages, and canyons), as well as narrow valleys and

depressions. This is to simplify the distinction of negative relief

landforms into narrow (class 1) and wide (class 2) morphologies.

Similarly, Weiss’ landform classes 8 and 9 were also merged into

a single class, which includes both midlsope ridges and local

ridges located within valleys. This again, allows for a simpler

distinction versus prominent ridges (high ridges, or class 7 in this

study).

The TPI-based landform classification for the South Pass

is shown in Figure 3B. Violet and blue were used for

landform classes with negative relief (1 and 2); yellow for

low relief landforms (3); orange for open and upper slopes

(4 and 5); and green for positive relief landforms (6 and 7).

4.1.3 Profile and plan curvatures
Profile and plan curvatures are measures of the rate of

change (radians per m) of the slope and aspect of a topographic

surface, respectively. Profile curvature is measured along the

vertical direction. On the other hand, plan curvature is

measured along the horizontal direction, parallel to elevation

contours, and hence are also referred to as contour curvature.

Positive and negative values for both plan and profile curvatures

correspond to convex and concave morphologies in relation to

the downslope direction (Wilson and Gallant, 2001). The

profile and plan curvatures in 20-m resolution for the South

Pass were also calculated in 20-m resolution using SAGA, as

shown in Figures 3C,D.

FIGURE 3
DEM-derived layers used in the submarine geomorphologicalmapping of the South Pass, Verde Island Passage. (A) Red Relief ImageMap (RRIM)
with manually delineated linear features. (B) Landform classification based on Topographic Position Index. (C) Profile curvature. (D) Plan curvature.
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4.1.4 Geomorphological classification of linear
features

The linear features delineated from the analysis of RRIM

for the South Pass were manually classified based on their

interpreted geomorphology. The TPI-based landform

classification, profile curvature, and plan curvature were

also used as guides for interpretation. A summary of the

submarine geomorphological features and their expressions

in the RRIM, TPI-based landform classification, and profile

and plan curvatures are shown in Table 3. The resulting

submarine geomorphological map and bathymetric profiles

of the South Pass are also shown in Figure 4.

4.1.5 Mapping of submarine mass failures (SMFs)
Particular focus was also given on the identification of

probable SMFs which were primarily based on their

morphological expressions as discussed by Scarselli (2020),

such as headwall scarps, lateral margins, and toe deposits.

Morphological criteria for the identification of terrestrial

landslides from high-resolution digital terrain data (Van Den

Eeckhaut et al., 2012; Pawluszek, 2018) were also used to

supplement the identification of SMFs, based on the

morphological similarities between submarine and terrestrial

landslides. The head scarp length, transport direction, and

area of each mapped SMF was also measured in QGIS.

TABLE 2 Landform classification based on TPI values.

Small
neighborhood (CS = 100)

Large neighborhood
(CL = 1,000)

Landform classes Id

Weiss (2001) This study

Z0 < -SD Z0 < -SD Canyons, deeply incised streams Gullies, local incised valleys and depressions 1

Z0 < -SD 0 ≤ Z0 ≤ SD Midslope drainages, shallow valleys

Z0 < -SD Z0 > SD Upland drainages, headwaters

-SD ≤ Z0 ≤ SD Z0 < -SD U-shaped valleys Wide valleys, canyons, troughs, and depressions 2

-SD ≤ Z0 ≤ SD 0 ≤ Z0 ≤ SD; slope ≤5 Plains Plains, plateaus, and shelves 3

-SD ≤ Z0 ≤ SD 0 ≤ Z0 ≤ SD; slope >5 Open slopes Open slopes 4

-SD ≤ Z0 ≤ SD Z0 > SD Upper slopes Upper slopes 5

Z0 > SD Z0 < SD Local ridges/hills in valleys Midslope and local ridges 6

Z0 > SD 0 ≤ Z0 ≤ SD Midslope ridges

Z0 > SD Z0 > SD Mountain tops, high ridges Seamounts, high ridges, and scarps 7

TABLE 3 Geomorphological classification of linear features.

Landform Descriptiona TPI landform
classb

Profile
curvature

Plan
curvature

Gullies Narrow, incised channels; flanked by midslope ridges 1 concave

Ridges Linear bathymetric highs flanked by steep slopes 6, 7 convex convex

Fault line scarp Linear slope breaks or steep valleys, conforms with the focal mechanism of the
15 November 1994 Mw 7.1 Mindoro earthquakec

1 concave -

Shelf breaks, scarps Linear slope breaks separating an upper, gentler slope face or shelf and a lower,
steeper slope face

7; separates 3,
5 from 4

convex -

Seafloor bedforms Low relief, regularly-spaced crests and troughs 3 - -

Submarine mass
failuresd

Headwall scarps Steep, arcuate and concave-facing downslope 7 convex concave

Lateral margins Scarps or ridges perpendicular to the headwall scarp 6, 7 convex

Toe deposits High surface roughness due to displaced blocks; occurrence of pressure ridges

aAs recognized from the red relief image map (RRIM).
bSee Table 2 for the TPI, landform categories.
cOriented subparallel to nodal plane one from GCMT, focal mechanism (Strike: N 21 W; Dip: 70; Rake: 178; Dziewonski et al., 1981; Ekstrom et al., 2012).
dFrom morphological descriptions of submarine mass failure structures by Scarselli (2020) and morphological criteria for the identification of terrestrial landslides from high-resolution

digital terrain data by Van Den Eeckhaut and others (2012) and Pawluszek (2019).
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Furthermore, we also identified the SMFs that have probably

occurred after the 1950s, based on the comparison between the

2011 bathymetry with 1950s point depth sounding data. The

point depth sounding data was obtained from NAMRIA

topographic map of Calapan, Oriental Mindoro (3260 III),

which was based on aerial photography and coastal surveys

and offshore surveys from 1947 to 1953.

Both bathymetry data sets generally show minor differences

with each other, with a coefficient of determination (R2) of 0.95

(Supplementary Figure S3). As such, we can use the two

bathymetry datasets to reliably estimate the net erosion from

1956 to 2011. The net erosion for each point depth location was

estimated based on the difference between the two datasets. Post-

1956 SMFs were identified based on the occurrence of net erosion

downslope of SMF scarps.

4.2 Main undersea features

The submarine geomorphological map and bathymetric profiles

of the South Pass is shown in Figure 4. The South Pass (SP) is

divided into two regions of distinct bathymetric levels by a ~21 km

FIGURE 4
Submarine geomorphology of the South Pass, Verde Island Passage. (A)Map of submarine landforms and features. The headwall scarps of the
15mapped probable SMFs (Table 4) are also labeled. The extent of the 3D rendering in Figure 5 is also shown. (B) Relief map of the South Pass, labeled
with identifiedmain submarine features and transects for the bathymetric profiles shown in (C). ARF = Aglubang River Fault; BIS = Baco Islands Shelf;
CS = Calapan Saddle; MSCS = Malaylay Submarine Canyon System; NMS = Northern Mindoro Shelf; VBIS = Verde-Baco Islands Saddle; VIS =
Verde Island Shelf; VPB = Verde Passage Basin; BR = Baco River; MR = Malaylay River.
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long SW-facing slope, trending NW from the Northern Mindoro

Shelf (NMS) towards Verde Island. The Verde Passage Basin (VPB)

floors the SW region and further extends outside SP to the

northwest, with its shallowest portions at the 300-m isobath. To

its south, the VBP is bounded by the western Northern Mindoro

Shelf (wNMS). The wNMS is composed of a gentle (<5°) upper shelf
with amaximumwidth of ~3 km, and a steeper (5–10°) insular slope

transitioning into the VPB.

On the other hand, the NE region of SP is much shallower

than VPB, and is divided into a series of insular shelves and

saddles. The eastern Northern Mindoro Shelf (eNMS) is also

composed of a gentle (<5°) upper shelf underlying the Calapan

Bay, with a maximum width of ~1.3 km, and a steeper insular

slope extending to the 150-m isobath, where it transitions to the

Calapan Saddle (CS). CS is ~9-km long, ~1.2-km wide, and has a

maximum depth of less than 250 m. To its north lies the Baco

Island Shelf (BIS). Between the BIS and the Verde Island Shelf

(VIS) lies the deeper Verde-Baco-Island Saddle (VBIS). The VBIS

is ~6-km long, ~1.2-km wide, and has a maximum depth of less

than 350 m. Both CS and VBIS connect the waters of Verde

Island Passage and the Tayabas Bay, which lies east of the

South Pass.

4.3 The offshore trace of the Aglubang
River Fault (ARF)

The previously described SW-facing, steep (10–45°) linear slope

correlates with one of the nodal planes (Strike: N 21W; Dip: 70)

defined by the focal mechanism solution of the 15 November

1994 Mw 7.1 earthquake (Dziewonski et al., 1981; Ekstrom et al.,

2012). This earthquake, associated with the Aglubang River Fault,

resulted in a ~35-km total onshore surface rupture in Oriental

Mindoro (PHIVOLCS, 1994). As such, the NW-trending trough

and scarp are interpreted as the approximate fault line scarp of the

offshore extension of the Aglubang River Fault (ARF). This

interpretation is in agreement with the mapped offshore

extension of the ARF by Sarmiento and others (2022).

4.4 The Malaylay Submarine Canyon
System (MSCS)

A prominent feature identified within the South Pass is the

NW-trending, 8-km long Malaylay Submarine Canyon System

(MSCS; Figure 5), eponymously named due to its proximity to

Malaylay Island in Oriental Mindoro. TheMSCS can be classified

as a headless, shelf-incising canyon due to the absence of a shelf

valley connecting it to the adjacent outlets of the Baco and

Malaylay rivers. The eastern side of the MSCS is structurally

controlled by the Aglubang River Fault (ARF) fault line scarp

described in the previous section.

The MSCS is divided into a lower and upper course. The

~4.5-km wide upper course is composed of two canyons, namely,

the Kaliwa (KlC) and Kanan (KnC) canyons. These canyons are

respectively equivalent to the Malaylay and Baco canyons

described by Sequeiros and others (2019), with the names

modified to avoid confusion with the MSCS.

FIGURE 5
Three-dimensional view of the offshore Aglubang River Fault and the Malaylay Submarine Canyon System (MSCS). The red dots show the
location of depth comparisons with the thickness of eroded material in meters. KnC = Kanan Submarine Canyon; KlC = Kaliwa Submarine Canyon.

Frontiers in Earth Science frontiersin.org10

Ramirez et al. 10.3389/feart.2022.1067002

46

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1067002


Both the Kaliwa and Kanan canyons exit into the ~6-km

long, ~1-km wide lower course dubbed as the Main Canyon by

Sequeiros and others (2019). The Main Canyon eventually exits

into the Verde Passage Basin at depths of ~350 m.

4.5 Submarine mass failures in the South
Pass

A total of 15 probable submarine mass failures (SMFs) were

identified within the South Pass, based on the occurrence of

bight-shaped headwall scarps (Figure 4). Their corresponding

head scarp lengths, areas, transport directions, and relative ages

are also listed in Table 4. These SMFs were identified along the

shelf edges of the eastern Northern Mindoro Shelf (eNMS), and

within the Malaylay Submarine Canyon System (MSCS), the

Verde Island Shelf (VIS), the Baco Island Shelf (BIS), the Calapan

Saddle (CS), and the Verde–Baco Islands Saddle (VBIS).

The largest of the probable SMFs in terms of area are SMF 8

(0.822 km2), SMF 5 (1.430 km2), and SMF 7 (1.969 km2). Of the

three, only SMF 5 can be reliably considered as having occurred

after 1950s, with net erosion ranging from 24 to 105 m, based on

nine measurements (Figures 5, 6). SMF 6 (0.056 km2) also shows

significant net erosion of 31 m, although based only on one

measurement. SMFs 1 to 4 show insignificant net erosion

(<10 m), which may indicate their relatively older age. On the

other hand, no comparison points were available for SMFs 7 to 15.

Aside from its size and availability of net erosion

measurements, SMF 5 is particularly notable due to its

proximity to Barangay San Andres in Baco, Oriental

Mindoro, which received the most damage from the

tsunami. We therefore focus the following discussions on

SMF 5, which we formally refer to as the San Andres SMF

(SASMF).

4.6 The San Andres submarinemass failure
(SASMF) and the 1994 Mindoro tsunami

The proposed occurrence of the San Andres SMF (SASMF)

has been based on the net erosion derived from the comparison

between two, widely spaced bathymetry datasets. The question,

therefore, is whether the observed net erosion was a product of a

single, catastrophic event (e.g., submarine mass failure) or a series

of smaller and/or gradual processes (e.g., turbidity currents).

The occurrence of erosional events within the MSCS since

1997 has been documented and studied by Sequeiros and others

(2019), in relation to the destructive effects of erosion on a gas

pipeline installed in 2001. Throughout a 21-year duration

(January 1997 to September 2018) with a total of 27 pipe and

aerial surveys, only two significant erosional events were

documented within the MSCS, both of which were attributed

to typhoon-triggered turbidity currents. Of the 11 typhoons that

have passed over or within the vicinity of the MSCS, only

typhoons Reming (Durian) in 2006 and Nina (Nock-Ten) in

2016 caused turbidity currents, resulting in pipe displacements

and damage to protective rock berms. Seabed erosion due to

these turbidity currents occur within established gullies and

TABLE 4 The 15 mapped probable SMFs in the South Pass.

SMF ID Locationa Latitude Longitude Length (m) Area Transport direction Relative age (post-1950s?)b

1 eNMS 13.43 121.17 880.72 0.103 N 09 E No

2 eNMS 13.42 121.16 910.32 0.115 N 24 W No

3 eNMS 13.42 121.15 636.40 0.053 Due N No

4 eNMS 13.42 121.14 413.25 0.034 N 8 W No

5 MSCS 13.42 121.12 2092.89 1.430 Due N Yes (9; 24–105 m)

6 BIS 13.47 121.16 603.36 0.056 N 07 E Yes (1; 31 m)

7 VIS 13.54 121.17 4,065.74 1.969 S 78 E N/A

8 VIS 13.55 121.13 2,702.10 0.822 N 44 E N/A

9 VIS 13.58 121.14 1,490.99 0.427 N 23 W N/A

10 VIS 13.56 121.03 1,244.12 0.408 S 55 W N/A

11 CS 13.43 121.13 432.05 0.041 N 63 E N/A

12 BIS/VBIS 13.51 121.18 409.66 0.036 N 13 W N/A

13 BIS/VBIS 13.51 121.18 415.55 0.036 Due N N/A

14 BIS/VBIS 13.51 121.18 500.78 0.049 N 56 W N/A

15 BIS 13.48 121.12 556.80 0.099 N 70 E N/A

aeNMS–eastern Northern Mindoro Shelf; MSCS–Malaylay Submarine Canyon System; BIS–Baco Islands Shelf; VIS–Verde Island Shelf; CS–Calapan Saddle; VBIS–Verde–Baco Islands

Saddle.
bBased on comparison of 2011 bathymetry and 1950s point depth sounding data. If Yes, the number of comparison points and the range of net erosion values are also indicated. No means

net erosion is <10 m. N/A means no comparison points were plotted downslope of the SMF.

The row in bold empahsizes the San Andres SMF, which is focused in this study.
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FIGURE 6
Initial sea surface displacement, tsunami propagation, andmaximumwave height distribution of the EQ-onlymodel. The Aglubang River Fault is
shown in red, segmented into two sub-faults as described in Table 5.
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canyons of the MSCS. Erosion thickness generally does not

exceed 5 m, except in some localized zones where it may

reach up to 10 m. Moreover, the likelihood of turbidity

currents within the MSCS due to hyperpycnal outflows from

the Baco and Malaylay rivers has been ruled out, owing to

insufficient sediment concentration even during annual

monsoon floods.

We can then reasonably constrain the occurrence of the

SASMF between the 1950s and 1997. Also, by extrapolating the

frequency of typhoon-triggered turbidity currents within the

MSCS as discussed above (~1 in 11.5 yrs), we estimate four to

five erosional events between the 1950s and 1997. Assuming a 5-

m average thickness of eroded material per event, the cumulative

erosion thickness is roughly 20–25 m. This estimate is on the

lower end of the net erosion observed for the SASMF, which

ranges from 24–105 m. Note that the simple estimate presented

above assumes a negligible sediment input from the Baco and

Malaylay rivers, which is unlikely as sediment yields of 0.336 and

0.351 MT/yr are estimated for both rivers, respectively (Sequeiros

et al., 2019). Furthermore, in contrast to the much wider extent of

the SASMF (~1.43 km2), the extent of the turbidity currents’

influence is restricted within existing gullies and canyons within

the MSCS.

While further constraints on the timing of the SASMF are

unavailable at present, we hypothesize that the SASMF was

likely triggered by the Mw 7.1 1994 Mindoro earthquake. This

idea is premised on the following: 1) the 1994 Mindoro

earthquake is within the possible window of occurrence for

the SASMF, as already established above; and 2) modeling the

1994 Mindoro tsunami with the SASMF as an additional

source mechanism approximates the observed wave height

distribution better than the model based on the

1994 earthquake alone. We further elaborate on the second

point in the following sections.

5 Numerical modeling of the
1994 Mindoro tsunami

5.1 Modeling methods

The two models (EQ-only and EQ+SMF) for the

1994 Mindoro tsunami were calculated using JAGURS (Baba

et al., 2015). JAGURS is a numerical code that calculates the

propagation and inundation of tsunami waves over gridded

terrain, based on the linear and nonlinear Shallow Water

Equations (SWE), and Boussinesq Equations to account for

wave dispersion (Baba et al., 2015).

5.1.1 Preparation of terrain data
The 20-m digital bathymetry and the 5-m IFSAR topography

data from NAMRIA were used as terrain inputs for both models.

Merging of the two datasets and interpolation for areas with

unavailable data were done in QGIS3, using the tension spline

interpolation method in the SAGA raster terrain module Close

Gaps. Final preparation of the terrain data for JAGURS was done

using GDAL and GMT.

5.1.2 EQ-only model source mechanism
The source mechanism for the EQ-only model was based on

the 15 November 1994 Mw 7.1 Mindoro earthquake along the

right-lateral Aglubang River Fault (ARF). The initial sea surface

displacement was calculated in JAGURS, based on the surface

deformation due to a finite rectangular source (Okada, 1985).

The effects of horizontal displacement (Tanioka and Satake,

1996) were also included in the calculations.

The fault parameters used in the calculations are shown in

Table 5. We decided to segment the ARF into two sub-faults to

reflect both the mapped offshore fault line scarp in this study and

the mapped onshore fault rupture by PHIVOLCS (1994). As

such, the strike of the sub-faults followed the general trends of the

offshore fault line scarp and onshore fault rupture, while the

downdip width is calculated using the scaling relationship

equation based on moment magnitude by Wells and

Coppersmith (1994). The dip angle (70°) is based on the

GCMT focal mechanism of the Mw 7.1 earthquake

(Dziewonski et al., 1981; Ekstrom et al., 2012). This dip angle

generally coincides with the mapped offshore fault line scarp

when projected from the hypocentral location (13.5 N, 121.1 E,

7–12 km depth) of the earthquake as reported by PHIVOLCS

(1994). The slip amount was based on the maximum vertical

displacement (1.9m) observed onshore at Baruyan Lake

(PHIVOLCS, 1994).

5.1.3 EQ+SMF model source mechanism
A combined source mechanism is modeled based on the

1994 earthquake and SMF identified from submarine

geomorphological mapping. For the earthquake component,

the initial sea surface displacement from the EQ-only model

was also used, as described in the previous section.

For the SMF component, we used the semi-empirical

predictive equation by Sabeti and Heidarzadeh (2022), which

was tested for the 1994 Skagway, Alaska and the 1998 Papua New

Guinea submarine landslide-generated tsunamis. The equation

relates the SMF volume (V) in km3 and the initial submergence

depth (d) in m to the maximum initial wave amplitude (ηmax) in

m, as follows:

η max � 50.67(V
d
)0.34

The parameters used in the calculation of the SMF-

generated wave are shown in Table 6. The initial sea

surface displacement from the earthquake and SMF-

generated wave were added to produce the EQ+SMF model

initial conditions, based on the assumption that the

tsunamigenic SMF was coseismic.
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5.1.4 Parameters for tsunami propagation and
inundation modeling

The numerical models used a terrain grid resolution of

0.00015° (~15 m), with model bounds (NW and SE corners)

of 13.65015 N, 120.9000 E and 13.4000 N, 121.19970 E. Total

model duration was set at 15 min, with a calculation time step of

0.05 s. Snapshots of the model results were taken every 20 s. The

effects of Coriolis motion and seawater compressibility were

assumed negligible. The models used the linear shallow water

equations to calculate the tsunami propagation.

5.1.5 Calculation of modeled wave height
statistics and error

We obtained modeled wave height statistics (i.e., mean,

median, minimum, maximum, first quartile, third quartile,

standard deviation) for 22 shoreline sections (SS1—SS22)

around northern Oriental Mindoro, Baco Islands, and Verde

Island.

We also compared the modeled wave heights (Wm) with

11 observed wave height measurements (Wo; see Supplementary

Table S1) by calculating the root mean squared error (RMSE).

The root mean squared error (RMSE) for both models was

calculated using the equation, where the number of

observations (n) is 11:

RMSE �
������������
Σ(Wm −Wo)2

n

√

5.2 The EQ-only and EQ+SMF tsunami
models

5.2.1 Tsunami propagation
As previously described, we modeled two scenarios (EQ-only

and EQ+SMF) for the 1994 Mindoro tsunami. We used the San

Andres SMF as basis for the SMF component of the EQ+SMF

model. The initial sea surface displacement, snapshots of tsunami

propagation, and maximum wave height distributions for the

EQ-only and EQ+SMF models are shown in Figures 6, 7,

respectively.

For the EQ-only model, initial sea surface displacements

(Figure 6) ranged from -0.57 to 0.50 m. The sea surface

displacements coincide with the locations of the insular slopes

surrounding Verde Island, Baco Islands, and Calapan, which

moved coseismically with the 1994 earthquake.

According to the EQ-only model, the movement of the ARF

fault line scarp generated tsunami waves to the southwest,

eventually reaching the coasts of Baco in 1 min; Puerto Galera

in 2 min; and San Teodoro in 3 min. Meanwhile, Verde Island,

Baco Islands, and Calapan were hit by tsunami waves within the

first minute after the earthquake. Tsunami wave refraction

around the northwestern point of Verde Island can also

observed prominently 4 min after the earthquake. At least two

distinct tsunami waves hit the coasts of Oriental Mindoro

(Supplementary Figure S4), consistent with anecdotes from

post-tsunami field surveys (PHIVOLCS, 1994; Imamura et al.,

1995).

On the other hand, the EQ+SMF model is dominated by the

SMF-generated wave, which is expected given its considerably

larger amplitude (±8.27 m) compared to the earthquake-

generated waves (Figure 7). The SMF produced a leading-

TABLE 5 Fault parameters for the Aglubang River Fault as used for the earthquake source mechanism. The two sub-faults are based on the
geomorphological expression of the offshore extension (this study), and themapped onshore rupture (PHIVOLCS, 1994) as labeled in Figures 6, 7.

Id Latitudea Longitudea Deptha,c

(km)
Strike Dipd Length

(km)
Widthe

(km)
Raked Slipb

(m)

1 13.416b,e 121.136b,e 0 330e 70 15.6e 14 -178 2

2 13.245b 121.179b 0 342b 70 19.2b 14 -178 2

aLocation of the upper right corner of the rectangular fault plane.
bField and instrumental data from PHIVOLCS (1994).
cValue selected as 0 for the surface-rupturing earthquake.
dGlobal Centroid Moment Tensor (GCMT) focal mechanism solution (Dziewonski et al., 1981; Ekstrom et al., 2012).
eScaling relationships by Wells and Coppersmith (1994).
fDerived from submarine geomorphological mapping (this study).

TABLE 6 SMF parameters used in this study.

SMFa

Area (A) 1.43 sq. Km

Volume (V) 0.0483 cu. Km

Initial submergence depth (d) 10 m

SMF-generated tsunami wave

Amplitude (ƞmax)
b 8.27 m

Radius (r)a 500 m

Central location (latitude, longitude)a 13.42176 N, 121.12342 E

aDerived from submarine geomorphological mapping (this study).
bCalculated using the equation by Sabeti and Heidarzadeh (2022).
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FIGURE 7
Initial sea surface displacement, tsunami propagation, and maximumwave height distribution of the EQ+SMF model. The Aglubang River Fault
is shown in red, segmented into two sub-faults as described in Table 5. The amplitudes of the SMF-generated wave crests and troughs are also
labeled accordingly. In the last panel, note the focused distribution of extremewave heights (>4 m) at Baco and Baco Islands, which is consistent with
observed data, and is absent in the EQ-only model.
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depression wave towards Baco, consistent with eyewitness

accounts (PHIVOLCS, 1994; Imamura et al., 1995). The SMF-

generated wave spread out in all directions, with significant

refraction towards the Baco Islands as it hit the Baco Island

Shelf to the northeast. Focusing of tsunami waves were also

observed leeward of the largest of the Baco Islands, as was

similarly inferred from post-event runup measurments

(Imamura et al., 1995).

Arrival times within the South Pass for both models are very

short (<1–3 min), due to the near-field nature of the tsunami

sources considered. However, the EQ+SMF model also shows

farther propagation of tsunami waves north of Verde Island and

towards Southern Luzon, as shown by the maximumwave height

distributions (Figures 6, 7).

5.2.2 Wave heights at shore
Figure 8 shows the comparison between modeled and observed

wave heights at shore for 22 selected shoreline sections. The wave

height statistics from the EQ-only and EQ+SMF models for the

22 selected shoreline sections are also listed in Supplementary Table S2.

FIGURE 8
Comparison between observed and modeled (EQ-only and EQ+SMF) wave heights. The upper panels show the locations of the shoreline
sections, while the lower panels show the box plots of modeled wave heights for the EQ-only and EQ+SMF tsunami models. Observed wave heights
are derived from run-up measurements by Imamura and others (1995), based on the wave-height-at-shore and run-up empirical relationship
equation by Smart and others (2016).
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For the EQ-only model, the predicted median wave heights for San

Andres (SS9) andBaco Islands (SS20) are 0.63mand0.70m, respectively.

On the other hand, the predicted median wave heights from the

EQ+SMFmodel are 9.78m for SanAndres, and 2.00m for Baco Islands.

Furthermore, calculated RMSE values (Table 7) are

consistently lower for the EQ+SMF model versus the EQ-

only model. Using median wave heights at shore values, the

RMSE for the EQ-only and EQ+SMF models are 3.21 m and

1.60 m, respectively. Using mean wave heights at shore values,

the RMSE for the EQ-only and EQ+SMFmodels are 3.19 m and

1.72 m, respectively. Finally, using all wave heights at shore

values, the RMSE for the EQ-only and EQ+SMF models are

3.20 m and 2.34 m, respectively.

5.3 The Mw 7.1 earthquake alone is not
enough to produce the 1994 Mindoro
tsunami

The results of our EQ-only model produced higher wave heights

than those predicted by the earliermodel of Tanioka and Satake (1996).

Their model predicted wave heights of 0.07 m, 0.09 m, and 0.09m for

Baco,Wawa, andCalapan, respectively.Meanwhile, ourEQ-onlymodel

predictedmedian wave heights at shore of 0.63m (SS9), 0.74m (SS12),

and0.98m (SS16), respectively. These higherwaveheights are likely due

to theuse of bathymetry datawith ahigher resolution. Lower resolutions

smooth out bathymetric features such as insular shelves and slopes. This

likely results in lower predicted wave amplitudes due to horizontal

displacement of the seafloor, which is a significant contributor to initial

tsunami wave heights. On the other hand, both models also predict

higher wave heights for Calapan than in Baco, which is contrary to

observed wave heights (2.83m and 7.61 m, respectively).

More importantly, the EQ-onlymodel severely underestimates the

observed wave heights at shore for the 1994Mindoro tsunami. For the

EQ-only model, the predicted median wave heights for San Andres

(SS9) and Baco Islands (SS20) are 0.63m and 0.70 m, respectively. In

contrast, observed wave heights at shore for San Andres and Baco

Islands are 7.61m and 5.32 m, respectively. Overall, the results of the

EQ-onlymodel clearly show that theMw7.1 1994Mindoro earthquake

alone is not enough to produce the wave height magnitudes and

distribution observed for the 1994 Mindoro tsunami.

5.4 The 1994 Mindoro tsunami has a
combined earthquake and submarine
mass failure source mechanism

The comparison between both modeled (EQ-only and

EQ+SMF) and observed data wave height at shore

distributions (Figure 8) shows that the EQ+SMF model

approximates the observed data better than the EQ-only

model. Quantitatively, this is also indicated by the lower

RMSE values for the EQ+SMF model compared to the EQ-

only model.

Considering the sample of the modeled wave height at shore

measurements as a whole (n=341), the EQ-SMF model has a

RMSE of 2.34 m versus the EQ-only model with a RMSE of

3.20 m. While this already indicates better predictions of the

EQ+SMF model over the EQ-only model, the RMSE calculations

for EQ+SMF are drastically affected by the large spread of

predicted wave height at shore values specifically at SS9 (San

Andres), with a standard deviation of 4.68 m. In contrast, the

maximum spread of wave height at shore values for the EQ-only

model is at SS12, with a standard deviation of 0.57 m. The larger

spread observed for the EQ+SMFmodel is likely a function of the

higher predicted wave heights compared to the EQ-only model.

Moreover, constructive interference of waves would result in very

high wave amplitudes at certain locations. The most extreme

example is at SS9, which has predicted maximum and median

wave heights at shore of 22.03 m and 9.78 m, respectively.

Furthermore, the RMSE of the EQ+SMF model improves if

only the median or mean wave heights at shore values are

considered in the calculation. RMSE values considering

median and mean wave heights are 3.21 m and 3.19 m, and

1.60 m and 1.72 m, respectively. The two-fold increase in RMSE

values between the EQ+SMF and EQ-only models clearly

supports our hypothesis that the 1994 Mindoro tsunami is an

earthquake-triggered, submarine mass failure tsunami.

TABLE 7 Root mean squared error (RMSE) calculations for EQ-only and EQ+SMFmodels usingmean, median, and all predicted wave heights at shore
values.

(Wm −Wo)2 RMSE

n SS1 SS4 SS6 SS9 SS10 SS12 SS16 SS17 SS18 SS20 SS21

EQ-only (mean) 11 1.38 0.69 0.34 48.84 12.65 5.54 3.40 3.92 0.95 21.13 12.99 3.19

EQ-only (median) 11 1.54 0.76 0.36 48.81 12.63 6.24 3.47 3.91 0.75 21.41 13.24 3.21

EQ-only (all) 341 3.20

EQ+SMF (mean) 11 0.04 0.22 0.01 13.90 0.36 1.74 1.83 1.38 0.20 9.13 3.73 1.72

EQ+SMF (median) 11 0.00 0.21 0.04 4.70 0.75 2.51 2.27 1.51 0.26 11.00 4.85 1.60

EQ+SMF (all) 341 2.34
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6 Conclusion

In this study, we combined submarine geomorphological

mapping and numerical modeling to constrain and describe a

more probable mechanism for the 1994 Mindoro tsunami. We

have identified and mapped a previously undescribed submarine

mass failure within the Malaylay Submarine Canyon System

(MSCS), which we refer to as the San Andres submarine mass

failure (SASMF). Furthermore, we have established evidence that

constrains its occurrence between the 1950s and 1997, and ruled

out turbidity currents as triggering mechanisms for extensive

submarine mass failure. We therefore infer that the San Andres

SMF is concurrent with the Mw 7.1 1994 Mindoro earthquake,

and as such, is an important contributing mechanism to the

resulting 1994 Mindoro tsunami.

To test this hypothesis, we modeled two scenarios for the

1994 Mindoro tsunami; the first was based on the Mw 7.1 quake

alone (EQ-only model), while the second one included a

submarine mass failure component based on the San Andres

SMF (EQ+SMF model). The results of the numerical modeling

show that the EQ+SMF model predicted wave height at shore

values closer to observed data, compared to those predicted by

the EQ-only model. As such, the results of our numerical

modeling support the likelihood of a combined earthquake

and submarine mass failure mechanism for the 1994 Mindoro

tsunami.

On the other hand, significant improvements on the

EQ+SMF model can and should still be made, as evident from

the RMSE values, which are still in the same order of magnitude

as the wave height measurements. Such discrepancies are

expected given the limitations of how we calculated the

submarine mass failure (SMF) component of the source

mechanism. The calculations for the SMF component, based

only on the volume and initial submergence depth, do not take

into account the transport mechanics (i.e., translational,

slumping, debris flow, turbidity flow) and dynamic aspects

(i.e., velocity, acceleration) of the submarine mass failure

(Harbitz et al., 2006; Masson, et al., 2006; Løvholt et al.,

2015). Constraining these parameters requires a more detailed

characterization of the San Andres SMF, which is beyond the

scope of this work. Moreover, because bathymetry data obtained

close to the 1994 tsunami is unavailable, we have opted to use the

2011 bathymetry data in the numerical modeling. This

simplification has introduced another source of error, as

changes in the bathymetry due to erosional and depositional

processes would have definitely occurred between 1994 and 2011.

While past research on Philippine tsunamis have been

focused on earthquake-generated mechanisms, our findings

highlight the importance of including SMF-generated

tsunamis in assessing the country’s coastal hazards. With

the increasing availability of high-resolution bathymetry

data not just for the inland and territorial seas of the

Philippines but also globally, our methods on submarine

geomorphological mapping and numerical modeling can be

replicated to map and identify past and potential SMFs and

estimate the magnitude and extent of the resulting tsunamis.

This is particularly important for SMFs forming along shelves

proximal to populated coastal areas like the San Andres SMF,

which render conventional tsunami warning systems

insufficient due to very short tsunami arrival times.
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Ridge jumps occurred during the spreading process of the South China Sea.

Recent research on the lower crustal reflectors event on seismic profiles found

at least two southward ridge jumps, but only one has been confirmed by

geomagnetic data. Based on magnetic anomalies in the northern South

China Sea and the “two ridge jumps” model, this study identified that an

early ridge jump occurred at anomaly C10n (28.3 Ma), with a southward

jump of 20 km. According to the magnetic lineation distribution in the

northern South China Sea, initial spreading was dominated by local

punctiform break-up and the oldest anomaly, C12n (~30.8 Ma), appeared at

two turns of COB. In the IODP Expedition 367&368 drilling area, the continuity

of magnetic anomalies from Ridge A to Ridge C was enhanced gradually,

representing the transition from local magmatism before the final crustal

break-up to a stable igneous oceanic crust. The earliest seafloor spreading

magnetic lineation in the Northwestern Sub-basin is C12n (~30.8 Ma) and the

magnetic lineation corresponding to the fossil spreading ridge is C10r (~29 Ma).

The average half-spreading rate was ~27.2 mm/yr. The opening of the

Northwestern Sub-basin appears to have been rotated around a fixed point

at the west, with a fault at the eastern end formed by the trajectory of the

conjugate point moving during seafloor spreading.

KEYWORDS

Northeastern SCS, magnetic anomaly lineations, initial seafloor spreading, two ridge
jumps, 28.3 Ma

Introduction

In contrast to the stable seafloor spreading ridge in the Atlantic and the symmetric

free drifts of the plates on both sides, the initial spreading of the South China Sea (SCS)

was asymmetric. The north continental margin (South China Block) was relatively stable.

However, the southern continental margin drifted southward (Figure 1). This implies that

the spreading ridge of the SCS exhibited continuous southward movement or intermittent

southward jumps during seafloor spreading (Taylor and Hayes, 1983; Briais et al., 1993).
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Themagnetic lineationmodel of one ridge jump has been verified

using recent geomagnetic data (Li et al., 2014). In previous

magnetic lineation models concerning the spreading of the

SCS, no reversal of magnetic lineation was present after the

ridge jump. On the other hand, the one-jump model is

insufficient to explain the asymmetric spreading of the SCS.

A recent study on the lower crustal reflectors based on the

multi-channel seismic (MCS) profiles found that at least two

southward ridge jumps occurred during the opening of the SCS.

The second ridge jump event explained in this new model is

consistent with the interpretation of magnetic lineation (Briais

et al., 1993; Li et al., 2014). However, the first ridge jump event

has not yet been recognized in terms of magnetic anomalies.

In this study, the age of the first ridge jump event was

recognized by reorganizing high-resolution magnetic

anomalies in the northern SCS and combining the “two ridge

jumps” model interpreted by seismic profiles. On this basis, the

magnetic lineation features of initial seafloor spreading in the

northern SCS were determined.

Geological background

The SCS is located at the intersection of the Eurasian Plate,

Indo-Australian Plate, and the Philippine Plate. The SCS has

experienced continental margin rifting, continental crust break-

up, and seafloor spreading since the Cenozoic (Figure 1).

Studying the spreading history and tectonic evolution of the

SCS is important for understanding the Cenozoic structure in

East Asia and surrounding areas (Wang et al., 2019; Li et al.,

2021).

In early studies on the seafloor spreading of the SCS, a

geophysical survey including the reflection seismic and

geomagnetic field data was carried out towards the end of the

1960s. An approximately E-W trending magnetic anomaly

lineation of unknown age was discovered, for the first time, in

the Eastern sub-basin (Emery and Ben-Avraham, 1972; Ben-

Avraham and Uyeda, 1973). However, this finding was uncertain

due to limitations in terms of data precision. Subsequently, Briais

et al. (1993) organized all available data regarding magnetic

anomalies in the SCS by 1990, and proposed the most

detailed results regarding the spreading history of the SCS to

date. They pointed out that the ridge jumped southward during

25–23 Ma, and the trend changed from EW to NE-SW.

Barckhausen et al. (2014) proposed that the initial spreading

age of the eastern basin was 32 Ma, based on the profiling analysis

results of magnetic anomalies in the SCS basin and the southward

ridge jump at 25 Ma. Further, the Southwestern sub-basin began

to open, and both stopped expanding simultaneously at 20.5 Ma.

This phenomenon has led to significant controversy in the

research community (Barckhausen, et al., 2015; Chang, et al.,

2015). The approximately NW-trending Zhongnan Fault,

between the Eastern sub-basin and Southwestern sub-basin,

has also been investigated, and the Liyue Bank is considered

to be conjugated with the Zhongsha Block (Barckhausen et al.,

2014).

Based on the latest deep-tow magnetic anomaly profiles and

IODP349 drilling data, Li et al. (2014) determined that a

southward ridge jump of 20 km occurred around 23.6 Ma in

the East sub-basin. Furthermore, seafloor spreading propagated

to the Southwest sub-basin during 23.6 Ma–21.6 Ma. The

terminal age of seafloor spreading is 15 Ma in the Eastern

sub-basin and 16 Ma in the Southwestern sub-basin. In their

interpretation, an approximately NS-trending Zhongnan Fault

was introduced separately into the Eastern sub-basin and

Southwestern sub-basin. The extinct spreading centre before

the jump was about 170 km away from the north COB and

180 km away from the current extinct spreading centre in the

south.

A recent study on the lower crustal reflector (LCR) event on

seismic profiles N3 and N4 of the northern SCS found two groups

of conjugate LCR structures, and suggested that these conjugate

events were related to episodic ridge jumps, which occurred

around 27 Ma and 23.6 Ma, according to the calculations of the

FIGURE 1
Morphological features and major tectonic of the SCS. The
blue dashed lines are the boundary of the basin, and the thick black
dashed line is the COB bounded by the 10 km crustal thickness
(Wu et al., 2017). NWSB: Northwestern sub-basin, ESB:
Eastern sub-basin, SWSB: Southwestern sub-basin, PRMB: Pearl
River Mouth Basin, QDNB: Qiongdongnan Basin, ZJNB:
Zhongjiannan Basin, NWXB: Nanweixi Basin, LYB: Liyue Basin.
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asymmetric accretion offset (Ding et al., 2018). The process of the

second jump, as determined based on seismic profiles, was

consistent with the results of the geomagnetic interpretation

model (Li et al., 2014). However, the first ridge jump has not

been verified by the magnetic lineation model. Further, to the

best of our knowledge, no existing magnetic lineation model has

explained the age reversal of the ocean crust after the ridge jump.

Data and methods

The magnetic anomaly data used in this study was mainly

shipboard magnetic data accumulated in the offshore regions of

China over several years. The mean square error was smaller than

4 nT and the data grid spacing was 1 arc-minute (Wu et al., 2019).

The magnetic anomalies are shown in Figure 2. Since the study

area is of a lowmagnetic latitude, low-latitude reduction to the pole

(RTP) was performed using the iterative energy-balancingmethod,

which not only ensures the recovery of abnormalities but also

guarantees a robust anomaly amplitude (Li, 2008). The obtained

RTP magnetic anomalies are shown in Figure 3. It can be seen that

the previously recognised negative magnetic anomaly lineations

(C11r and C10r) correspond to the positive magnetic anomaly belt

before the RTP. The converse was true for the positive magnetic

anomaly lineation C8, which corresponded to the negative

magnetic anomaly belt before the RTP and the positive

magnetic anomaly belt after the RTP. This completely agrees

with the effect of magnetic anomalies under low-latitude and

approximately horizontal magnetisation. Thus, the reliability of

the RTP magnetic anomalies was confirmed.

The magnetic lineation fitting of profiles was conducted

using MODMAG (Mendel et al., 2005), which has been

extensively applied in the field of ocean magnetic lineation

analysis (Li et al., 2014; Dumais et al., 2020).

Results

The magnetic anomalies and RTP magnetic anomalies in the

northern SCS are shown in Figure 2 and Figure 3, respectively. The

continent-ocean boundary (COB), in red, was determined according

to the 10 km thickness of the crust, which was obtained by gravity

inversion (Wu et al., 2017). This is consistent with the position

determined by the seismic profile (Piao et al., 2022). The F1 and

F2 Faults are the Yangjiang-Yitong East Fault and Huidong-

Beiweitan Fault. Both were deduced to be important base faults

in the Mesozoic (Chen et al., 2005) and the Mesozoic subduction

accretion zone (Zhou and Yao, 2009) (black dotted lines with arrows

in Figure 2 and Figure 3). F3 is the north extension of the Zhongnan

Fault, which is a transform fault identified by previous researchers

(Taylor and Hayes, 1980, 1983; Larsen, et al., 2018). The F1 fault

connected with the F3 fault after extending southward at the border

between the Eastern sub-basin and the Northwestern sub-basin. The

three magnetic lineations in black solid lines originated from the

data of Li et al. (2014).

The two groups of symmetric LCR structures on the seismic

profile N4 were assumed to correspond to the two southward ridge

jumps (Ding et al., 2018). Comparing the magnetic anomalies on

N4 profile, it is clear that the previously identified magnetic

lineation (Li et al., 2014) fell within the positive and negative

intersection range of magnetic anomalies and RTP magnetic

anomalies, which conformed to the low-latitude sub-horizontal

magnetic anomaly features (Figure 4A). The inversion results of

the magnetization on the N4 profile is shown in Figure 4B. The

boundaries between positive and negative magnetisation are

expressed as black lines. There were variations in magnetization

in each interval of the positive and negative magnetizations. The

negative magnetization intervals are expressed as a blue gradient,

and the positive magnetization intervals are expressed as a red

gradient. It is clear that these positive and negative magnetization

intervals were consistent with those determined according to the

magnetic anomalies in Figure 4A. However, the amplitude of C9r

FIGURE 2
Magnetic anomalies in the northern SCS.

FIGURE 3
RTP magnetic anomalies in the northern SCS.
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decreased significantly and the lineation features were submerged

in the negative magnetic anomaly lineation produced by C10r and

C8r at the two sides (Figure 4A). C9r has no negative

magnetization, but a reduction in magnetization intensity in the

middle. According to the magnetic lineation fitting on the deep-

tow magnetic anomaly profile de12 (Li et al., 2014), the fitted

positive magnetic anomaly signals corresponding to C9r were not

observed. In the plane graph of magnetic anomalies (Figure 2), the

weak magnetic anomalies that were approximately EW trending

were among the background field of the strong negative anomalies,

without signs of eastward extension. However, they were

integrated with the high-amplitude magnetic anomalies toward

the west. These magnetic anomalies exhibited significantly

different characteristics for the magnetic lineations at the north

and south sides. A group of LCR structures exist in this region

(Ding et al., 2018), indicating that this may be the location of the

first ridge jump.

Therefore, one approximately NS-trending profile (P1 in

Figure 2 and Figure 3) was chosen in the northern SCS for

the magnetic lineation simulation according to the “two jumps”

spreading model. The magnetic lineation that the profile ran

through had relatively good continuity and was able to avoid the

confounding effects of any breakage in the magnetic anomalies.

The magnetic lineation fitting was completed using MODMAG

(Mendel et al., 2005). The calculation parameters were selected in

reference to the de12 deep-tow magnetic profile (Li et al., 2014).

The simulation results are shown in Figure 5.

The negative magnetic anomaly region between the two

magnetic lineations of C10r is the position of the first ridge jump

(Figure 5). The corresponding magnetic lineation jumped 20 km

southward near C10n at 28.3 Ma. The second ridge jump was near

C6cr on the south side, where it jumped 20 km southward at

23.85Ma. In the “two jumps” model, the time and position of the

second jump are consistent with those in previous research. However,

the positive magnetic anomalies of C9r were masked by anomalies at

the two sides due to the first ridge jump at 28.3Ma, which is in

agreement with observed magnetic anomalies. In other words, C11r

couldmove continuously toward the north, reaching the north side of

U1500, and U1502 was over magnetic anomaly C12n (Figure 5).

The “two ridge jumps” model of P1 fitting conforms to the

observation of magnetic anomalies and seismic profiles. On this

basis, the distribution of magnetic lineations in the northern SCS

was tracked (Figure 6). The results showed that, in the initial

spreading stage of the SCS, the Eastern sub-basin and the

Northwestern sub-basin opened almost simultaneously. The

Northwestern sub-basin stopped spreading at C10r (~29.0 Ma).

Subsequently, the spreading centre of the Eastern sub-basin

FIGURE 4
Magnetic anomalies on N4 profile. (A) Magnetic anomalies
and RTP Magnetic anomalies. The yellow and pink shades
represent the negative and positive magnetic lineation areas
respectively; (B) inverted basement magnetization. MQZ:
magnetic quiet zone; OC: oceanic crust.

FIGURE 5
“Two jumps”magnetic lineation simulation of P1 profile in the
northern SCS. (A) Observed magnetic anomalies; (B) calculated
magnetic anomalies; and (C) magnetization model of the ocean
crust. The pink dotted lines represent the jump positions of
the spreading centre.

FIGURE 6
Magnetic lineation distribution in the northern SCS. The short
red lines are positive-polarity magnetic lineations. The short black
lines are negative-polarity magnetic lineations. The white lines
indicate the seismic profile. The black dotted lines are faults.
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jumped southward at 28.3 Ma and then continued spreading.

Specifically, the important boundary fault F1 (NW-trending

Yangjiang-Yitong East Fault) in the east-west section extended

towards the south during the spreading process. The north section

of Zhongnan Fault was formed to regulate and separate the Eastern

sub-basin and Northwestern sub-basin.

Discussion

Magnetic anomaly features of the initial
spreading near the COB

During the spreading of the SCS, to its north was the relatively

stable South China Block, and to its south was the southward

drifting Nansha Block. Any symmetric growth of the ocean crust

from the spreading centre to the two sides of each spreading

position required the continuous movement of the spreading

centre. The magnetic anomalies demonstrated the poor and

short continuity at the position of the COB. There were two

turns at 116.5°E, 18.3°N, and 117.5°E, 19.5°N along the COB, where

the NW-trending Mesozoic faults F1 and F2 (shown in Figure 2)

corresponded to the oldest magnetic anomaly (C12n). This

indicated that these NW-trending inherited faults influenced

the continental margin rift of the SCS. Initial seafloor spreading

of the SCS may be dominated by local punctiform break-up like

that of the Red Sea (Bonatti, 1985). The initial spreading processes

at different positions varied significantly. Finally, the differential

spreading features from east to west, influenced by the COB

structure, were formed (Figure 9). However, Li et al. (2014)

believed that the age of the initial spreading along the COB in

the northern area of the ocean basin varied by 1–2 Ma.

When the east section of COB approaching the Manila

Trench, the magnetic lineation of the ocean crust was

damaged by subduction. However, early seafloor spreading

was generally dominated by an approximate NS-trending

spreading tendency. The local, approximately NE-trending

magnetic lineation, was generally adapted to spreading spaces

at different positions under the regulation of the NW-trending

fault, rather than the indicated changes in the spreading

direction.

Magnetic anomaly characteristics in the
IODP drilling area

The RTP magnetic anomalies in the IODP drilling area are

shown in Figure 7. Sites U1501, U1504, and U1505 surround a

small local high-magnetic anomaly and correspond to the outer

margin high (OMH) on the L1555 profile (Sun et al., 2016). Ridge

A, Ridge B, and Ridge C (Larsen et al., 2018) were divided

according to the acoustic basement, and are shown as thin white

solid lines in Figure 7.

FIGURE 7
RTP magnetic anomalies in the IODP drilling area. The
magnetic lineations in the black and red solid lines are the same as
those in Figures 1, 2, 5. The red thick line shows the COB. The black
dotted line shows the transition fault and the threewhite solid
lines show Ridge A, Ridge B, and Ridge C (Larsen et al., 2018).

FIGURE 8
Magnetic lineation analysis of the Northwestern sub-basin.
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Ridge A, as expressed in the acoustic basement, extended from

Sites U1499 to U1502 along the COB. However, the magnetic

anomalies of U1499 and U1502 had significantly different

characteristics. The former was a low-magnetic anomaly region,

indicating the absence of any strong magnetic source. Moreover,

this is consistent with the result that breccia was encountered

during the drilling of the basement. Borehole U1502 was drilled on

the locally high-magnetic anomalies, and the encountered

basement was basalt with a strong hydrothermal alteration

(Larsen et al., 2018). Hence, the locally high magnetic

anomalies differed from the OMH at Sites U1501 and U1505.

According to the trend of the magnetic anomalies, Ridge A could

extend eastward to Site U1435 of the IODP349 expedition, and is

also an OMH; therefore, they may have the same origin. The

continuity of such high magnetic anomalies was unstable. For

example, there were locally low-magnetic anomalies between Sites

U1499 andU1502, as well as between Sites U1502 andU1435. This

might be related to the local magmatic activity before the final crust

break-up. According to the tracking results of the “two ridge

jumps” model, the magnetic anomaly C12n was located at these

positions. According to the GPTS2004 geomagnetic time scale

(Ogg and Smith, 2004), the corresponding age was between

30.627 and 31.116Ma.

Site U1500 drilled Ridge B and penetrated pillow, which

corresponded to the magnetic anomaly C11n. Ridge B had better

continuity than Ridge A and could extend eastward to Site

U1432. However, Ridge B is marked by local interruptions

when it is extended eastward, indicating that Ridge B is closer

to the location of the final crustal break-up than Ridge A.

Ridge C was in the negative lineation of the RTP magnetic

anomalies. Similar to C10n, RidgeC corresponded to the first jump

position in the “two ridge jumps”model. The east–west continuity

of the negative magnetic lineation was extremely developed and

could be found in the entire northern SCS along the COB, which

was dominated by the stable accretion of igneous oceanic crust.

Spreading process of the northwestern
sub-basin

The Northwestern Sub-basin has narrow spaces. On one hand,

magnetic anomaly lineations are rarely sequential. On the other

FIGURE 9
Schematic model of initial spreading and ridge jump in the northern SCS.

Frontiers in Earth Science frontiersin.org06

Wu et al. 10.3389/feart.2022.1015856

62

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1015856


hand, the morphological characteristics of these magnetic anomaly

lineations have different forms than typical oceanic crust, resulting

in great differences in the basin age determined according to

magnetic lineations. According to the interpretation of the

seismic profile, the Northwestern sub-basin has one additional

set of Cenozoic sedimentary strata than the Eastern sub-basin. It

is speculated that the Northwestern sub-basin is older than the

Eastern sub-basin. The sedimentary sequences filling the

Northwestern and Eastern sub-basins are comparable in

continuity, which is attributed to simultaneous spreading. Three

high-resolution seismic profiles that run through the Northwestern

sub-basin all suggested that both the Northwestern and Eastern sub-

basins began to open simultaneously, and that the basin openingwas

characterised by a spreading direction from the east to the west

(Ding et al., 2009; Cameselle et al., 2015).

According to magnetic anomalies in the Northwestern sub-

basin (Figure 2 and Figure 3) and the previous magnetic lineation

tracking results. Combining this finding with the recognised age of

the magnetic lineations in the IODP drilling area and the RTP

magnetic anomaly features in the Northwestern sub-basin, it was

concluded that the magnetic lineation at the initial spreading of the

Northwestern sub-basin was C12n (~30.8 Ma), and the azimuth

angle was about 99°. The location of the initial spreading of the

Northwestern sub-basin was thus determined. The symmetric

magnetic lineation near the Shuangfeng seamount was C11n

(~29.8 Ma), a product of the follow-up westward spreading, with

an azimuth angle of about 63°. Themagnetic lineation corresponding

to the fossil spreading centre was C10r (~29Ma) (white dotted lines

in Figure 8) rather than the Shuangfeng seamount. The distance

between the two C12n positions was 98 km, suggesting an average

half-spreading rate of about 27.2 mm/yr.

The striking changes in the recognised magnetic lineations are

consistent with the boundary forms of the Northwestern sub-basin.

The magnetic lineation striking (spreading direction) also changed

gradually with changes in the boundary form. In other words, the

boundary form controls the local spreading direction. It seems that

the spreading process of the Northwestern sub-basin was formed by

the rotation of the Zhongsha Block on the south side around a fixed

point at the west end. In this way, the Northwestern sub-basin

developed from east to west, and the north section of the Zhongnan

Fault was formed along the trajectory of the initial break-up

conjugation points (points A and B in Figure 8).

Based on the NW trending changes of the north section of the

Zhongnan Fault and the form of the Northwestern sub-basin, it is

speculated that the Northwestern sub-basin may have formed by

gradual “avulsion” from east to west along the pre-existing NW

trending Yangjiang-Yitong Fault (F1 in Figure 8) during the earliest

spreading of the Eastern sub-basin, rather than experiencing typical

spreading. In otherwords, the crustal break-up occurred from east to

west under the extension stress of the region. This also implies that

the Zhongsha Block may have experienced a clockwise rotation at

about 30 Ma, rather than simply drifting southward, controlling the

Northwestern sub-basin formation (Figure 9).

Conclusion

The characteristics of the magnetic anomalies and the

initially spreading magnetic lineation were discussed herein

based on a new survey on shipboard magnetic anomalies in

the northern SCS. The calculated RTP magnetic anomalies in the

lower crust reflector structures found in the seismic profiles were

also analysed. Some major conclusions can be drawn, as follows.

1) There were two ridge jumps during the initial spreading of the

SCS. The spreading centre jumped 20 km southward at

28.3 Ma. The corresponding magnetic lineation was near

C10n. The second ridge jump occurred at 23.85 Ma, which

was southward another 20 km. The corresponding magnetic

lineation was near C6cr.

2) The initial spreading of the SCS was controlled by the COB in

the northern SCS, which was locally dominated by

punctiform break-up. The oldest magnetic anomaly (C12n)

occurred at the two turns of the COB.

3) Ridge A, in the IODP drilling area, is a locally high-magnetic

anomaly with poor continuity; it corresponds to C12n

(30.8 Ma). Ridge A is related to the local magmatic activity

before the final break-up. Ridge B corresponds to C11n, and

its continuity is relatively good; it is located at the onset of the

oceanic crust. Ridge C is close to C10n and corresponds to the

first ridge jump. The magnetic lineation exhibits stable

continuity from east to west, which can be seen in the

entire northern SCS along the COB. In summary, Ridge C

has become normal oceanic crust for stable spreading.

4) C12n is the oldest magnetic lineation in the Northwestern sub-

basin (~30.8 Ma). C11n is the symmetricmagnetic lineation near

the Shuangfeng seamount (~29.8 Ma). C10r is the magnetic

lineation corresponding to the fossil spreading centre (~29Ma),

with an average half-expansion rate of approximately 27.2 mm/

yr. The Northwestern sub-basin seems to have opened from east

to west, with rotation around a fixed point at the west end.

Moreover, the north section of the Zhongnan Fault is formed

along the trajectory of the conjugation break-up point during

seafloor spreading.
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The Zhongjiannan Basin is located west of the South China Sea (SCS) and was

affected by the left-lateral strike-slip of the Red River Fault (RRF), the West Edge

Fault of the South China Sea (WEFSCS) and the continental rifting of the South

China Sea in the early Cenozoic. The Zhongjiannan Basin formed in a strike-pull

basin with an S‒N distribution. During the middle Miocene, the sea spreading of

the SCS stopped, but the dynamicmechanism of the Zhongjiannan Basin, which

controlled the sedimentary and the structural evolution after the late Miocene,

remains unclear. In this paper, through the segment interpretation of the latest

seismic section in the Zhongjiannan Basin, we conduct a comparative study of

the sedimentary structure in the southern and northern Zhongjiannan Basin

since the late Miocene. Combined with the regional tectonic dynamics analysis,

we propose that the sedimentary and structural evolution of the Zhongjiannan

Basin since the late Miocene was mainly controlled by residual magmatic

activity in the Southwest Subbasin (SWSB) after expansion stopped, and the

compressional structure stress field weakened gradually from south to north.

The compressional tectonic stress field from north to south was formed in the

northern basin under the dextral strike-slip movement of the RRF. The

sedimentary and structural environment was relatively stable in the middle

basin. Therefore, the sedimentary-structure evolution of the Zhongjiannan

Basin since the late Miocene was controlled by the two different structural

stress fields. The above knowledge not only has guiding significance for oil and

gas exploration in the Zhongjiannan Basin but also provides a reference for

studying the initiation time of dextral strike-slip along the Red River Fault Zone,

as well as the junction position between the RRF and the WEFSCS.
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Zhongjiannan Basin, lateMiocene, tectonic dynamics, Red River Fault (RRF),West Edge
Fault of the South China Sea (WEFSCS)
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1 Introduction

The Indian plate and Eurasian plate collision led to the

extrusion of the Indo-china block southeast since the

Cenozoic and formed the giant strike-slip structural belt of

the Ailaoshan-Red River Fault Zone (Tapponnier et al., 1986;

Replumaz et al., 2001; Schoenbohm et al., 2005; Schoenbohm et

al., 2006). The two left-lateral strike-slip fault zones, as well as the

continental rifting of the SCS, jointly controlled the sedimentary

and structural evolution of the western basin in the SCS in the

early Cenozoic. A series of strike-pull basins of the SCS

distributed along the fault zones, such as the Yinggehai Basin,

Zhongjiannan Basin and Wan ‘an Basin, were formed (Sun et al.,

2003; Cai, 2014; Yin et al., 2015; Lei et al., 2021). To enter the

Miocene, the tectonic dynamics of western basins in the SCS

underwent a major change due to the seafloor spreading of the

SCS ending and the sinistral strike-slip movements of RRF and

WEFSCS weakening (Zhu and Lei, 2013; Cai, 2014; Sun et al.,

2019a; Zhang et al., 2021). The basins transformed into a

depression subsidence stage, and the tectonic activity was

weak. The crustal rose and fall with sea level, causing the

basins in the western SCS conference to transition into the

phase of uplift and local slow deposition. The crust of the

western basins has been uplifted (denuded) and sinked (rapid

subsidence) several times since the late Miocene, but the dynamic

mechanism controlling the sedimentary-structure evolution of

the basins during this period remains unclear. We select the

Zhongjiannan Basin in the western SCS as the research object,

using the latest seismic sections obtained by the Guangzhou

Marine Geological Survey, and analyse the sedimentary

characteristics and structural development in the northern,

central and southern basins since the late Miocene. Combined

with an analysis of the regional tectonic dynamic environment,

the dynamic processes controlling the sedimentary-structural

evolution of the Zhongjiannan Basin since the late Miocene

are studied.

2 Geological setting

The Zhongjiannan Basin is located in the western SCS, with a

nearly north-south lozge-shaped distribution as a whole (Chen

and Zhong, 2008). It is bounded by the Qiongdongnan Basin in

the north and the RRF-WEFSCS in the west and connected with

the SWSB by the Xiya uplift in the southeast (Figure 1). It is a

hydrocarbon basin with a complex geological structure

background. The RRF (Allen et al., 1984; Liu et al., 2012) and

theWEFSCS are connected in the northern part of Zhongjiannan

Basin, and both are jointly control the sedimentary-structure

evolution of the basin, making it a strike-slip basin (Zuchiewicz et

al., 2013; Nguyen and Hoai, 2019). However, the junction

position of the two faults and their relationship are still

unclear. On the other hand, the Zhongjiannan Basin is

influenced by several tectonic movements, such as continental

margin rifting to seafloor spreading, resulting in a continental

margin extension basin nature (Briais et al., 1993; Li et al., 2014).

Therefore, the Zhongjiannan Basin has both strike-slip and

extensional structural attributes and widely developed flower

structure and extensional structure styles in the basin.

A structural pattern of alternating uplift and depression as well

as faults, folds and unconformity interfaces developed in the basin.

Five sets of strata were developed, namely, Holocene—Pliocene,

Upper Miocene, Middle Miocene—Lower Miocene,

Oligocene—Upper Eocene, and Middle Eocene—Paleocene (Gao

et al., 2000; Chen and Zhong, 2008). The Cenozoic sedimentary

formations are 2000–11,000 m thick. According to the seismic

reflection characteristics of the unconformity interface and the

regional seismic sequence division scheme, eight obvious seismic

reflection interfaces, T1, T2, T3, T5, T6, T7, T8, and Tg, can be

recognized in the Zhongjiannan Basin (Qiu et al., 1997; Zhong and

Gao, 2005). Among them, Tg is the initial continental margin rifting

and basement interface of the basin, T7 and T6 is the South China

Sea breakup unconformity, T7 representing continental margin

breaking and the beginning of seafloor spreading, T6

FIGURE 1
Regional tectonic background of the Zhongjiannan Basin,
South China Sea YGHB- Yinggehai Basin, PRMB- Pearl River Mouth
Basin, QDNB- Qiongdongnan Basin, ZJNB- Zhongjiannan Basin,
WAB- Wan ‘an Basin, NWSB- northwest subbasin of SCS,
SWSB- Southwest Subbasin of SCS, ESB- East Subbasin of SCS,
SLS- Sulu Sea, CS- Celebes Sea, PS- Philippine Sea: (1)- Combined
belt of Western SCS, including RRF in the north, WEFSCS in center
and Wan ‘an Fault in the south, (2)- Combined belt of Northern
SCS, namely, Qiongnan suture zone, (3)- subduction-collision
zone of Eastern SCS, (4)- Subduction collision zone of SCS.
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corresponds to the tectonic event of oceanic ridge jumping, and T5 is

the unconformity interface formed at the end of seafloor spreading.

T3 corresponds to the tectonic transition surface of important

regional plate recombination events and rapid global sea level

decline. Based on the comparison of drilling data and seismic

data (Fyhn et al., 2009; Fyhn et al., 2013), it is determined that

the age of the unconformity interface is 11.6 Ma, which is the

interface between themiddleMiocene and LateMiocene. This paper

mainly studies the tectonic dynamics of sedimentary-structure

evolution above the T3 interface (since the late Miocene) in the

Zhongjiannan Basin.

3 Data and methods

The 2D seismic data used in this paper are all measured data

from the marine survey conducted in Zhongjiannan Basin by the

Guangzhou Marine Geological Survey. The 2D seismic data were

collected in 2001, with 240 tracks and 30 coverage times, a

distance of 50 m between shot points and a recording length

of 9 s. The acquisition ship was the Tanbao ship, with a density of

32 km × 32 km and a distance of 4 km between velocity spectral

points. The seismic data were reprocessed in 2013, with a

distance of 1 km between velocity spectral points. In this way,

the quality of seismic data can be improved to the maximum

extent, and the sedimentary stratigraphic structure and tectonic

reflection characteristics can be displayed more clearly from their

recognition at shallow depths.

4 Characteristics of sedimentary
structure development in the
Zhongjiannan Basin since the late
Miocene (T3)

In the Zhongjiannan Basin, the reflecting interface between

the Middle Miocene and late Miocene (T3) is a regional

unconformity interface that can be traced throughout the

basin and represents a transition from slow to rapid

subsidence. The sedimentary-structure features above the T3

interface can be divided into three sections: south, middle and

north.

FIGURE 2
Sedimentary-structure development characteristics in the northern Zhongjiannan Basin (See line A1 in Figure 1 for profile location).

Frontiers in Earth Science frontiersin.org03

Yin et al. 10.3389/feart.2022.996267

67

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.996267


The stratigraphic development of the southern section of the

Zhongjiannan Basin is relatively complete. The seismic reflection

characteristics are parallel or subparallel, indicating that the tectonic

activity was weak, the sedimentary was stable, and the fault structure

did not develop during the early deposition. However, due to the

influence of magma intrusion and upwelling in the later period, the

seamount emerged more, a large amount of magma formed

horizontal compression on the stratum, and the stratum was

arched at the seamount, showing an inclined shape and partial

deflection deformation. The magmatic activity and incline and

bending deformation of the strata mainly occurred in the

southern uplift zone but weakened to the north (Figure 2).

In the middle Zhongjiannan Basin (middle section), the

seismic reflection characteristics show parallel continuous

reflection above the T3 interface, which shows that the

formation retains the original sedimentary characteristics.

Fault and fold structures are few, and the overall tectonic

activity is weak. In addition to the northern central depression

affected by magma upwelling, the rest is characterized by stable

sedimentary characteristics (Figure 3).

The sedimentary structure above the T3 interface in the

northern section of the Zhongjiannan Basin is relatively

complex and can be roughly divided into three layers (Figure

4). The seismic reflection of the bottom layer (T3–T32) is parallel

and continuous, reflecting stable sedimentary characteristics

without folding deformation and indicating that it was not

affected by tectonic activity. The seismic reflection of the

middle layer (T32-T2) is disorderly, and the seismic reflection

interface is discontinuous and inclined or curved, indicating that

the stratum is damaged and that the tectonic activity is intense.

From the characteristics of the disorderly seismic reflection,

tectonic activity occurred when the strata were not

consolidated diagenesis, so it can be inferred that tectonic

activity and deposition occurred simultaneously. The seismic

reflection interface of the upper layer (above T2) is relatively

continuous, but most of it is inclined and curved, reflecting that

FIGURE 3
Sedimentary-structure development characteristics in the central Zhongjiannan Basin (See line A2 in Figure 1 for profile location).
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FIGURE 5
Seismic reflection characteristics between the Zhongjiannan Basin (A) and the U1434A drill of the SWSB (B).The position of profile a is shown in
Box e in Figure 2A. The position of profile b can be seen along survey Line A2 in Figure 1.

FIGURE 4
Sedimentary-structure development characteristics in the southern Zhongjiannan Basin (See line A3 in Figure 1 for profile location).
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although the tectonic activity is weaker than that of the middle

layer, it has continued until now, and there are still folds and

faults in local areas (Figure 4).

5 Tectonic dynamics of the
Zhongjiannan Basin since the late
Miocene (T3)

5.1 Southern Zhongjiannan Basin

Sedimentary and structural development in the southern

Zhongjiannan Basin shows that sequence stratigraphy

developed stably since the late Miocene, but later influenced

by magma upwelling, the stratigraphy became tilted and bent.

From the formation development and structure analysis, the

formation deformation caused by these magmatic activities is a

long process, and the early strata (below T3) do not show

obvious synsedimentary folds, indicating weak magmatic

activities before the late Miocene. The strata below T3 have

the characteristics of cutting (Figure 2), and the upper strata

(above T3) have the phenomenon of overpassing near

seamounts, indicating relatively strong magmatic activity

after T3 (since Pliocene). Some magmatic rocks directly

reach the seafloor to form seamounts (Figure 2), indicating

that the activity has continued until now. Because the southern

Zhongjiannan Basin is close to the SWSB and the magmatism in

Zhongjiannan Basin weakens from south to north, we infer that

these magmatic activities are from the residual magmatic

activities of the SWSB after seafloor spreading (Li et al.,

2014; Li et al., 2015; Sun et al., 2019b; Sun et al., 2021). By

further comparing the seismic section passing through the

spreading center of the SWSB (Figure 5), it is found that the

development and structural characteristics of the strata above

the T3 interface in the southern Zhongjiannan Basin are very

similar to those of the SWSB, which were deformed by the uplift

of the magma in the late stage (Figure 5). This further confirms

that the tectonic dynamics in the southern Zhongjiannan Basin

since the late Miocene are mainly derived from the residual

magmatic activity of the SWSB. In addition, the magmatic

FIGURE 6
The junction position of RRF and WEFSCS in seismic section. The position of profile can be seen survey line A6 in Figure 1.
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activity was weak in the early Miocene (before the late Miocene)

and strong in the late Miocene (since the late Miocene), which

may be related to the supply of deep magma. These magmatic

activities intruded into the bottom of the strata, resulting in

compressional inclined or bending deformation of the strata,

which was strong near the SWSB and gradually weakened to the

FIGURE 7
Seismic reflection sections of the Huaguang Sag of the Qiongdongnan Basin (A) and Yinggehai Basin (B), cited by Liu et al, 2015a. Note: The
locations of Sections a and b are shown Lines A7 and A8 in Figure 1, respectively.

FIGURE 8
Tectonic dynamicsmodel of the Zhongjiannan Basin before and after the lateMiocene. YGHB- Yinggehai Basin, PRMB- Pearl RiverMouth Basin,
QDNB- Qiongdongnan Basin, ZJNB- Zhongjiannan Basin, WAB- Wan ‘an Basin, NWSB- northwest subbasin, SWSB- southwest subbasin, ①-RRF,
②-WEFSCS,③-Wan�an Fault. (A) Tectonic setting and stress field orientation of Zhongjiannan Basin before the late Miocene. (B) Tectonic setting and
stress field orientation of Zhongjiannan Basin after the late Miocene. (C) Structural model of the S-N profile in the western South China Sea after
the late Miocene.
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north, so that the central (central depression) and northern

Zhongjiannan Basin were basically unaffected.

5.2 Northern Zhongjiannan Basin

The structural characteristics above the T3 interface in the

northern Zhongjiannan Basin are significantly different from

those in the central and southern basins, showing that the

middle and upper strata (above T32) have experienced strong

tectonic activity and that the strata have been severely damaged

(Figure 4). Due to the stable development and weak tectonic activity

of the strata above the T3 interface in the middle of the

Zhongjiannan Basin, the dynamics cannot come from the south.

Combined with the analysis of regional tectonic movement during

this period, we speculate that it is probably related to the dextral

strike-slip movement of the Red River Fault zone in the north.

At the end of the Mesozoic, the Indian plate subducted

into the Eurasian plate, resulting in the formation of the

Himalayan orogenic belt and Tibetan Plateau, as well as the

Indochina Peninsula extruding southward along the

Ailaoshan-Red River Fault Zone (Tapponnier et al., 1986;

Tapponnier et al., 1990; Briais et al., 1993; Cao et al.,

2017). The Red River fault zone extends from northwest

Yunnan to the SCS (Tapponnier et al., 1986; Rangin et al.,

1995; Liu et al., 2015b). The fault zone has the characteristics

of segmented activity in space and is characterized by early

sinistral strike-slip movement and late dextral strike-slip

movement over time (Trinh et al., 2012; Cai et al., 2019).

At present, there are two scientific controversies concerning

the RRF that have become research hotspots in earth science

(Cao et al., 2011; Liu et al., 2012; Liu et al., 2015a; Cao et al.,

2017). One is the starting time of dextral strip-slip movement

of the RRF, which is 17 Ma (Tapponnier et al., 1990; Gilley et

al., 2003), 8 Ma (Xiang et al., 2004, 2006), and 5 Ma (Leloup et

al., 1993; Leloup et al., 1995; Leloup et al., 2001). The other is

that the junction position and their relationship between the

RRF and WEFSCS in the western SCS are still uncertain.

According to the reflection characteristics of the seismic

section in the northern Zhongjiannan Basin, the formation

above the T32 interface had a greater influence by the

extrusion stress field, and the seismic reflection characteristics

show clutter reflection, which reflects that tectonic activity

occurred in unconsolidated rock and that tectonism and

sedimentation occurred at the same time (Figure 4).

Calculating the position of sedimentary thickness and the

structural layer, we speculate that the earliest time of tectonic

activity is 7–8 Ma, but the exact age is subject to subsequent

drilling dating. This is the sedimentary-structure response of the

dextral strike-slip of the RRF in the northern Zhongjiannan

Basin. According to the location of the folds in the section (Figure

6), the junction position of the RRF and WEFSCS can be

confirmed. The cut-off point is in the position between the

central seismic section and northern seismic section. At the

junction position, the top seismic section shows that there is an

obvious fracture trace, and there is also a deep large fault, which

should be the transition zone between the RRF and WEFSCS. By

measuring the junction position in this section (Figure 6) and in

the western SCS (Figure 1), the junction position between the RRF

and WEFSCS can be determined for the sea area of N15.5°. North

of N15.5° is the influence region of the RRF, and to the south is the

influence region of the WEFSCS, they are independent fault

systems of each other since the late Miocene. The dextral

strike-slip RRF affecting the formation only in the northern

Zhongjiannan Basin is characterized by the formation of

extrusion deformation and does not affect the formation in the

central Zhongjiannan Basin. In other words, the WEFSCS has not

experienced dextral strike-slip along with the RRF since 7–8 Ma.

We tracked the characteristics of the seismic profile in the

Qiongdongnan Basin and Yinggehai Basin near the RRF (Figure

7) and discovered that the formation development and structural

deformation characteristics are similar to those in the northern

Zhongjiannan Basin since the late Miocene, which further

confirms that the tectonic dynamics of the northern

Zhongjiannan Basin came from the dextral strike-slip

movement of the RRF since the late Miocene.

5.3 Tectonic dynamic model

The tectonic dynamic environments of the Zhongjiannan Basin

before and since the late Miocene are completely different. Before

the late Miocene, affected by Indosinian Block extrusion in the

southwest direction, the RRF and WEFSCS experienced sinistral

strike-slip movement together. With the seafloor spreading of the

SWSB, the Zhongjiannan Basin was controlled by an extensional

stress field in the N‒S direction, and a strike-slip-pull-apart basin

was formed with alternations between uplift and depression (Figure

8A). The Zhongjiannan Basin has been affected by two distinct

tectonic dynamic environments since the late Miocene. The

southern basin was mainly affected by residual magmatic activity

after the expansion of the SWSB stopped. Due to magma upwelling,

the Zhongjiannan Basin folds and bends, and the tectonic stress field

gradually weakens from south to north, while the central

Zhongjiannan Basin is basically unaffected. The northern

Zhongjinan Basin was mainly affected by dextral strike-slip

movement of the RRF, and the formation above the T32

interface experienced strong folding and deformation.

Sedimentary-structural features recorded that the dextral

movement of the RRF occurred at 7–8Ma and lasted until now

but gradually weakened after the T2 interface (approximately 5 Ma)

(Figure 8B). The WEFSCS did not follow the dextral strike-slip

movement of the RRF. According to the deformation range of

stratigraphic folds caused by the dextral strike-slip of the RRF, the

junction position of the RRF and the WEFSCS can be determined,

which is approximately N15.5°(Figure 8C).
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6 Conclusion

1. There have been different sedimentary-structure characteristics

in the south, middle and north of Zhongjiannan Basin since the

late Miocene. Under the influence of magmatism, the formation

in the southern basin was uplifted, tilted and deformed locally.

The middle formation is stable, and the tectonic activity is weak.

In the northern basin, a strong compressional structure occurred,

and the formation was damaged or folded.

2. The Zhongjiannan Basin has been affected by two tectonic

dynamics since the late Miocene. In the south, it was affected

by residual magmatic activity after the expansion of the SWSB

stopped, forming longitudinal uplift and a transverse compressive

tectonic stress field, which gradually weakened from south to

north. In the north, the tectonic activity was weak, and the

deposition was stable at the early stage (T3-T32), but during

the late stage (above T32), the compressional tectonic stress field

was formed under the influence of the dextral strike-slip

movement of the RRF, which has lasted until now.

3. The sedimentary-structure characteristics of the Zhongjiannan

Basin since the late Miocene reveal that the dextral strike-slip

movement of the RRF occurred at 7–8Ma, and the junction

position between the RRF and WEFSCS is approximately N15.5°.
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Xuande Atoll is an isolated carbonate platform that has developed since the

early Miocene. This study conducted high-resolution seismic surveys and

shallow drilling to understand its internal structure and development. Five

seismic sequences were observed (from bottom to top): SQ1 (early

Miocene), SQ2 (middle Miocene), SQ3 (late Miocene), SQ4 (Pliocene), and

SQ5 (Quaternary). The seismic data indicated that the platform formation

started in the early Miocene and flourished during the early and middle

Miocene. The platform shrank before the isolated platform formed in the

middle Miocene. The final shrinking stage occurred in the southern and

western parts of the platform at the end of the Miocene, which may reflect

rapid tectonic subsidence and increased terrigenous sediment inputs owing to

the formation of the semi-marginal sea. The peri-platform contains a falling

sea-level sequence that was dominated by mass wasting deposits.

KEYWORDS

carbonate platform, tectonic control, monsoon, coral atoll, Xisha

Introduction

Siliciclastic sequence stratigraphy on continental margins has constrained the lateral

contrasts from shelf to deep-water basin facies, which usually comprise lowstand,

transgressive, and highstand sequences controlled by changes in sea level (Mitchum Jr

et al., 1977; Vail et al., 1977; VanWagoner et al., 1987; Jervey, 1988; Posamentier and Vail,

1988; Sarg, 1988; Jovane et al., 2016). However, the sequence stratigraphy of carbonate

margins is not entirely understood, particularly on modern isolated platforms. The

sequence and structure of the isolated carbonate platform are controlled by various

factors, including tectonics, sea levels, carbonate productivity, terrigenous sediment
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inputs, and marine palaeoceanography (Eberli and Ginsburg,

1987; Wilson, 2002; Wilson, 2008; Betzler et al., 2009; Schlager

and Warrlich, 2010). The structure of tropical carbonate

sequences depends not only on relative decreases in sea level

but also on the reef production rate, erosion rate, and

accommodation space. Generally, no apparent lateral

variations are observed in the reef flat but can be observed in

falling sea level tracts (FSTs) on the reef slope, including strong

gravity flow and bottom current deposits. Sea level, coral reef

growth, and palaeoceanography also affect the structure of

tropical carbonate platforms. A carbonate platform can

produce debris that is then transported to the deepwater slope

by gravity flow (Wilson, 2002; Fournier et al., 2004;Wilson, 2008;

Schlager and Warrlich, 2010).

Although seismic imaging of drowned or buried isolated

carbonate platforms has been conducted in the Gulf of Papua

New Guinea, Northeast Australia, Great Bahama Bank, and

Southeast Asia (Ludmann et al., 2005; Tcherepanov et al.,

2008; Wu et al., 2014), only a few high-resolution seismic

surveys of the shallow lagoon and reef flat have been

performed. In particular, few multi-channel seismic (MCS)

surveys have been performed on most modern carbonate

platforms, which are common in the Xisha archipelago in the

South China Sea (SCS) (Wu et al., 2014; Shao et al., 2017).

Xuande atoll is located in the east of the Xisha archipelago.

Previous studies have described the development of Xuande Atoll

based on lithological observations, sedimentary facies analysis,

thin section identifications, and geochemical analyses of samples

from drilled wells (Shao et al., 2017). However, as all these wells

were drilled on the Yongxing Island of Xuande Atoll, the results

only reflect vertical facies variations; thus, the three-dimensional

structure of the platform remains unclear. We conducted four

seismic survey lines across Xuande Atoll in the Xisha archipelago

in 2017 (Figure 1). In this study, we report on newly collected

data from seismic surveys and holes drilled across Xuande Atoll.

We investigated the three-dimensional growth of the platform

using seismic and well data to determine the development of this

modern isolated carbonate platform to improve our current

understanding of modern carbonate platform development

and determine the sequence stratigraphy and evolution of

Cenozoic platforms (Figure 1).

Geologic setting

The Xisha archipelago is located on the continental slope of

the SCS margin, which has been undergoing continental rifting,

subsequent extension, and post-extensional drift since the late

Cretaceous (Figure 1). The timing of the seafloor spread has

recently been revised from 33 to 23.6 Ma in the northwest sub-

basin and from 23.6 to 15 Ma in the east sub-basin, using data

from the International Ocean Discovery Project (IODP) Site

U1435 (Taylor and Hayes, 1980; Briais et al., 1993a; Cullen, 2010;

Li et al., 2015). Tectonically, the Xisha archipelago is part of the

Xisha uplift, which was formed by Palaeocene hyper-extended

rifting bounded by high-angle faults (Tapponnier et al., 1982a;

Qiu et al., 2001; Hall, 2002; Li et al., 2015). Since the late early

Miocene, the regional tectonics have comprised a post-rifting

setting characterised by thermal subsidence (Wu et al., 2009). In

addition, the acoustic basement of the uplift is Precambrian grey

granite gneiss and Mesozoic volcanic rocks, as determined from

data from well XY-1 (Wang et al., 1979; Qiu et al., 2006).

Recently, well XK-1 encountered metamorphic rocks and

granite basement at depths of 1257.52–1268.02 m, comprising

late Jurassic adamellites (152 ± 1.7 Ma) and Cretaceous granites

(107.8 ± 3.6 Ma) (Zhu et al., 2017). The basement observed in

well XK-1 could be volcaniclastic rocks (36.01 ± 0.59–37.68 ±

1.37 Ma) and Yanshanian granitic rocks (105.73 ± 1.39–146.10 ±

1.73 Ma), as well as scattered Precambrian crystalline basement

FIGURE 1
Geomorphology and seismic line location. (A) Bathymetric
map of the northern South China Sea. (B) Bathymetric map of
Xuande Atoll. Water depths in the reef flat were measured using a
single-beam system, while the deepwater data were obtained
using a multi-beam system. Red lines: multi-channel seismic (MCS)
survey lines; circles: drilled holes.
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(623.40 ± 6.67–884.1 ± 7.70 Ma). Owing to the stable tectonic

setting associated with the steep incline generated in the

Palaeocene, the Xisha platform initiated in the early Miocene

and has remained active to the present (Ma et al., 2011; Wu et al.,

2014; Shao et al., 2017).

The geomorphology of Xuande Atoll has recently been

investigated using dense single-beam bathymetric

measurements of the reef flat and multi-beam bathymetry

of the lower slope (Figure 2). Three coral reef flats are present

on the huge reef platform, including Qilianyu shoal, Yongxing

Island, and Southwest shoal. The water depth ranges from 0 to

65 m and rapidly increases to 800–1232 m on the platform

slope. The slope reaches 30° at the reef flat front (Figure 2).

The lithology and biostratigraphy of the platform have been

investigated using two wells (Xiyong-1 and Xichen-1) drilled

on Xuande Atoll during the 1980s and well Xike-1 drilled in

2013–2014 (Wang et al., 1979; Xu et al., 2002; Wang et al.,

2015).

Four wells have been drilled on Yongxing Island. Wells XY-1,

XY-2, XS-1, and XK-1 penetrated up to 1384.68, 600.02, 200.63,

and 1268 m, respectively (Figures 1, 2). Based on the wells drilled

on Xuande Atoll, the thicknesses of the carbonate platform

determined from wells XY-1 and XK-1 are approximately

1275 m and 1251 m, respectively. The Neogene carbonate

platform grew on Precambrian or Mesozoic metamorphic and

volcanic basement (Zhao et al., 2011), or on Mesozoic

metamorphic rocks (152.9 ± 1.7 Ma) and granites (107.8 ±

3.6 Ma) (Zhu et al., 2017). The late Cenozoic platform strata

are divided into the Guangle, Xisha, Xuande, Yongle, and

Yongxing formations (Figure 3). This stratigraphy was

established in the 1990s; however, it has many issues related

to the drilling locations and the lack of good chronology data

FIGURE 2
Stratigraphic contrasts in well XK-1 on Yongxing Island at Xuande Atoll (Shao et al., 2017). The drilling site is shown in Figure 1.
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(Zhao et al., 2011; Zhu et al., 2015). Data from well XK-1

improved the stratigraphy in the region by integrating

geochronological information from magnetostratigraphy and

astronomical tuning as the age-depth model of well XK-1 has

been calibrated (Yi et al., 2018). Based on the model, the bottom

ages of the Sanya, Meishan, Huangliu, Yinggehai, and Ledong

formations were determined to be 24.3, 16.6, 10.4, 5.7, and

2.2 Ma, respectively.

Data and methods

Seismic surveys were performed onboard the R/V NH503

from 31 August to 6 September 2017. This was the first seismic

experiment across a shallow carbonate platform in the SCS.

The acoustic signals were generated by two clustered GI-guns

with a maximum of around 210 in3 and included frequencies

of 40–2000 Hz, with the dominant frequencies centred at

150–200 Hz. The seismic signals were received by a GEO-

Sense 48 receiver (Netherlands) with an offset of 9.5 m. The

sampling interval was 0.25 m, and the vertical resolution

reached 2 m. The streamer was 600 m in length, with a

6.25 m channel distance. The source distance was 12.5 m;

therefore, the seismic system had a 90 m migration distance

and a 24 m overlap. Seismic data processing was performed

using the GeoCluster 6100 software package. The key

processing steps included: 1) muting using the frequency

panel to reduce random noise, Radon transform, and

common migration offset distances; 2) suppressing multiple

reflections using surface-related multiple elimination (SRME)

and prediction deconvolution; 3) velocity analyses, including

precision velocity analysis and migration velocity scanning; 4)

remaining multiple wave suppression with spectral and static

plots; 5) Kirchhoff pre-stack time migration, particularly

migration offsets of the aperture and angle; and 6) pre-

stack muting to obtain the true amplitude section. Data

interpretation was performed using sequence stratigraphic

methods. The original seismic data were interpreted using

Geoframe 2012. All vertical scales used for the seismic profiles

shown herein were two-way travel times. The seismic data

were then used to investigate the subsurface structure and

sedimentary characteristics of the platform.

Multi-beam bathymetric and single-channel seismic

data collected by the Guangzhou Marine Geological

Survey (GMGS) were used to image the slopes of the

Xisha archipelago. A bathymetric map of the archipelago

was constructed from the multi-beam depth soundings

combined with satellite data. Multi-beam bathymetry

data acquired with a SeaBeam 2112 system (USA) were

used to analyse the geomorphology of the archipelago. The

multi-beam data were processed using navigation filtering,

parameter calibration, transducer draft correction, sound

velocity correction, and data filtering (Chen et al., 2015). A

100 m × 100 m cell size was used for the raster grids in

this study, with a vertical resolution of 3% of the water

depth.

FIGURE 3
Seismic sequence stratigraphy across the Xisha Uplift in the South China Sea. (A) Uninterpreted and (B) interpreted sections. SB is the seafloor
reflector, and T20, T30, T40, T50, and T60 represent the bottom of the Quaternary, Pliocene, Late Miocene, Middle Miocene, and Early Miocene,
respectively. Seismic reflector Tg is the acoustic basement reflection.
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Results and interpretation

Modern carbonate platforms exhibit high-amplitude,

parallel, and continuous reflections on their tops, and low-

amplitude reflections in their internal regions above the

basement (Figures 4–7). Six key reflectors were identified in

the seismic profile across the platform. Reflector T0 is a seafloor

reflector that images the morphology of the platform. T0 shows

the flat on the platform and steep slopes on the margins of the

platform (Figure 1). Reflector T20 represents the bottom of the

Quaternary strata. Reflectors T30 (bottom of the Pliocene), T40

(bottom of the late Miocene), and T50 (bottom of the middle

Miocene) represent the bases of different strata, while Tg is a

reflector of the acoustic basement that varied in amplitude and

frequency, occurring as an undulating interface reflector.

According to the reflectors, the reef carbonate strata can be

divided into six seismic sequences: SQ1 (early Miocene), SQ2

(middle Miocene), SQ3 (late Miocene), SQ4 (Pliocene), and SQ5

(Quaternary) from the basement to the seafloor (Figures 4–7).

SQ1 is located above the acoustic basement and is

characterised by parallel and sub-parallel seismic reflections

(Figures 4–6). The reflections onlap the basement high and

have complex inner reflections in the eastern part of profile

05 (Figure 4). During the early Miocene, the Xisha uplift was

drowned because of marine inundation, and reef carbonates grew

on the basement high. During the beginning of the early

Miocene, shallow water carbonate deposits formed on the

slopes of Xuande Atoll (Figures 6–8). The reef platform was

lateral and grew vertically during the early Miocene. Thus, reef

carbonates are widely distributed on Xuande Atoll and in

adjacent areas (Figures 6–8).

SQ2 represents middle Miocene carbonate strata and is

characterised by parallel and sub-parallel seismic reflections in

the western part of the profile (Figure 7). However, SQ2 has

complex mound-shaped cluttered and wavy divergent reflections

in the eastern part of the profile (Figure 8). During the middle

Miocene, reef carbonates formed on the leeward slope of the basal

uplift and started to grow on the windward slope in the eastern part.

These carbonate sequences were deposited on the platform during a

stable sea level period. During the late middle Miocene, the sea level

increased rapidly, and the carbonate platformmigrated accordingly.

A pinnacle reef formed on the western slope of the atoll, whereas a

wavy drift occurred on the eastern slope. The carbonate platform

was only aggraded at Xuande Atoll, whereas deepwater gravity flow

deposits, including mass transport deposits (MTDs), formed in the

peri-platform area (Figure 8).

FIGURE 4
(A)Original and (B) interpreted sections of the seismic profile
XDS05.

FIGURE 5
(A)Original and (B) interpreted sections of the seismic profile
XDS01.
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SQ3 represents lateMiocene carbonate strata and is characterised

by parallel and sub-parallel seismic reflections on both sides of the

profile (Figure 7). SQ3 also contains S-type reflection structures in the

peri-platform area. The reef carbonates grew favourably at Xuande

Atoll, owing to rapid subsidence (Figures 5, 6). However, reef growth

did not occur in the peri-platform area. The last apparent shrinkage of

the platform occurred northward and eastward at the end of the

Miocene (Figure 9).

SQ4 represents Pliocene carbonate strata and is characterised

by parallel and sub-parallel seismic reflections on both sides of

the profile. During the Pliocene, the carbonate platform was

limited at the atoll. SQ5 represents Quaternary carbonate strata

and is characterised by parallel and sub-parallel seismic

reflections on both sides of the profile (Figures 6, 7). High-

amplitude chaotic reflections were observed on the slope of the

atoll, which could represent bottom current deposits around the

atoll (Figure 8). Most of the seafloor around the atoll is covered

by hemipelagic sediment, and the slopes contain tidal channels or

gullies (Figures 7, 8). The platform margin regressed by 8 km,

and the platform decreased from the 300 m to the 60 m isoline,

after which the sea level rose and lateral aggradation occurred on

the eastern margin of the atoll.

Discussion

Evolution of the Xuande Atoll

The Xisha uplift was undergoing rifting and erosion during

the Paleogene. During the early Miocene, coral reef carbonates

covered the rapidly subsiding basement in the Xisha region,

which covered most of the Xisha uplift located on the continental

margin and captured little terrigenous sediment (Wu et al., 2014).

Later, the bioherms of the Xisha Islands aggraded and prograded,

forming the large shallow carbonate deposits observed in the

seismic profiles (Figures 4–7), including the reef flat and

interbedded lagoon-beach facies that were also observed in

well XK-1 (Shao et al., 2017; Wu et al., 2020).

During the early and late middle Miocene, the rising sea level

decelerated and then decreased (Shao et al., 2017). The

carbonates in well XK-1 exhibited reef-beach facies, owing to

prevailing corrosion and leaching processes in a mixed meteoric

water-marine environment (Shao et al., 2017). In the early

middle Miocene, shallow carbonate sequences were observed

at Xuande Atoll (Figures 6, 7). The shallow carbonate deposits

were distributed throughout the Xisha area (Ma et al., 2011). The

FIGURE 6
(A)Original and (B) interpreted sections of the seismic profile
XDS10.

FIGURE 7
(A)Original and (B) interpreted sections of the seismic profile
XDS11.
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peri-platform facies then changed to deepwater facies, indicating

that the carbonate platform became isolated during the late

middle Miocene (Figure 10).

During the late Miocene, the isolated platform continued to

aggrade. Then, when the sea level increased again from the late

Miocene to the Pliocene (Shao et al., 2017), the atoll reef terraces

extended more broadly and were dominated by lagoon and reef

flat facies on their inner sides. However, the platform shrank on

the eastern and northern margins (Figure 9). Throughout the

Pleistocene, the sea level decreased from its maximum and

oscillated with a few deviations. As a result, the carbonate

platform on which well XK-1 is located was eroded by

freshwater diagenesis. Strata with overbedded reef and beach

facies were widely produced, except for patchy carbonates

preserved in relatively better conditions (Figure 10). As the

upward growth rate of a carbonate platform fails to keep pace

with the rates of subsidence or sea level rise, most of the pre-

existing reefs and carbonate platforms will become drowned,

leaving only the atoll reefs circled topographic highs to continue

developing vertically (Hallock and Schlager, 1986; Belopolsky

and Droxler, 2003). Such reefs grew rapidly at Xuande Atoll, and

some biohermal clasts eroded by ocean waves were deposited

around the reefs, partly conveyed downslope by small channels

(Figure 4). Atoll reefs developed mainly around the reef islands

on the Xisha uplift, represented by the Xuande and Yongle atoll

reefs. The Xuande isolated platform underwent slight

asymmetric development (Figure 11). The reef flats grew in

the north and east, with discontinuity in the south and west

(Figures 1, 4, 5, 11). Patch reefs also formed in the lagoon.

Apparent platform shrinkage then occurred northward and

eastward at the end of the Miocene (Figure 9).

Stratigraphic sequence

The exposed surface of an isolated carbonate platform may

represent a seismic boundary at low sea levels. Six exposed

surfaces were observed in the carbonate sequences of Xuande

Atoll, which formed during gentle decreases in sea level (Figures

4–9). These exposed surfaces usually occurred with dissolution

and highly developed porosity and caves, which generally occur

in red algal limestones (Zhu et al., 2015). Falling-stage systems

tracts (FSTs) could also act as markers of sequence boundaries,

which formed highstand tracts (Schlager and Warrlich, 2010).

The seismic profiles of Xuande Atoll showed FSTs on the

northeastern margin.

The application of the FST model to the margin of the atoll has

been discussed in recent years (Schlager and Purkis, 2013).

Boundaries in the FST model have been proposed and indicate

stratigraphic forwardmodelling. Comparisons with previous studies

have been used to determine the controls and stability domains of

two conceptual models concerning relative decreases in sea level in

carbonate sequence stratigraphy. In the standard model, deposition

occurs during increasing and stable relative sea level stands, whereas

a continuous erosional unconformity develops during decreases in

sea level. The FST model postulates that significant deposition

occurs during decreases in sea level. Sedimentological principles,

numerical models, and previous studies of tropical carbonate

sequences indicate that the presence or absence of an FST is not

simply a function of the rate of the decreasing sea level but rather

depends on the balance of the erosion, decreasing sea level, and

carbonate production rates. Previous studies plotted in the

parameter space support the modelling results. The range of

rates required for the FST is common in the geologic records.

Consequently, the FST can be expected to be more common around

the Xuande Atoll (Figures 7, 8).

FIGURE 8
(A) Western and (B) eastern slopes of the seismic profile
XDS05.
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Mechanisms for platform drowning

The earliest platform drowning event occurred at 15.5 Ma in

the latest early Miocene, which included decreased carbonate

production and increased water depth (Figure 8). The

microfacies of the XY-1 and XK-1 wells at depths of

1000–1100 m included in situ corals and coral fragments in

the low section, whereas the middle and upper sections were

dominated by coralline algae and foraminifera, respectively (Ma

et al., 2018). Biological studies have suggested that corals are the

most successful benthic carbonate producers in oligotrophic

environments but are not competitive in more nutrient-rich

water (Hallock and Schlager, 1986; Mutti and Hallock, 2003;

Wilson, 2008; Roger et al., 2012). Coral is symbiotic with

zooxanthellae (Dubinsky and Falkowski, 2011). Increased

nutrient levels stimulate plankton blooms, thereby reducing

water transparency and inhibiting the photosynthesis of the

zooxanthellae, which limits coral growth (Hallock and

Schlager, 1986; Mutti and Hallock, 2003). Subsequently,

coralline algae likely occurred in the middle section in

response to variations in nutrient levels (i.e., from oligotrophic

to mesotrophic conditions) (Hallock et al., 1991; Esteban, 1996;

Fournier et al., 2005; Sattler et al., 2009; Lüdmann et al., 2018). In

the upper section, coralline algae were gradually replaced by large

benthic foraminifera (Ma et al., 2018), including Lepidocyclina

and Miogypsina, which represents a eutrophic environment

(Hallock et al., 1991; Sattler et al., 2009). Synchronous similar

sedimentary microfacies during the drowning of carbonate

platforms have been observed on the Liuhua and Malampaya

carbonate platforms in the SCS (Fournier et al., 2005; Sattler

et al., 2009). The vertical succession of sedimentary microfacies

from in situ corals to coralline algae and foraminifera was not

only a response to continuous increases in nutrient levels but also

reflects the deepening of the depositional environment as the

Lepidocyclina–Miogypsina requires a deep and low energy

environment (Hallock and Schlager, 1986; Geel, 2000; Halfar

and Mutti, 2005). As the water depth increased, the high

electrical resistance in this section reflected an increasingly

muddy component. Carbonate platform drowning is defined

by accumulation rates that fail to keep pace with long-term

subsidence and sea level changes. The high production of a coral

reef can easily keep up with sea level fluctuations, whereas

coralline algal growth is much slower. Consequently, we

concluded that increased nutrient levels caused production on

the Xisha platform to fail to keep pace with subsidence (Wu et al.,

2014), resulting in the drowning of the platform in the late early

Miocene. While temperature changes may have also affected reef

growth, temperature alone cannot change the style of reef

builders (Hallock and Schlager, 1986; Sattler et al., 2009).

Furthermore, the temperatures during the late early Miocene

were relatively stable; thus, temperature was not likely a decisive

factor. This temperature analysis was similar to that of the

adjacent coeval platform demise in the Dongsha Sea region.

The most important platform drowning event occurred in

the late Miocene (10.5–8.2 Ma), which corresponded to the

formation of a semi-marginal sea (Li et al., 2014). The

sedimentary microfacies in the two wells contained in situ

corals in the lower section, an algally (Halimeda) dominant

middle section, and a foraminiferally dominant upper section

(Figure 2). Based on analyses of these sedimentary microfacies

associated with slow subsidence, weak eustatic fluctuations, and

slightly decreasing temperatures (Wu et al., 2014), we inferred

that increased nutrient levels caused the Xisha platform to drown

again in the early late Miocene.

Tectonic subsidence

The global sea level fluctuation was around 40 m in the

Miocene; however, the thickness of the Miocene carbonate

succession in XK-1 is nearly 1 km (Yi et al., 2018), suggesting

that an accommodation space created by tectonic subsidence was

the main reason for platform growth. The relative sea level is

directly linked to carbonate production in carbonate depositional

FIGURE 9
Interpreted seismic profile XDS01, showing platform shrinkage at the end of the Miocene.
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systems (Tucker and Wright, 2009). Carbonate production is

high when a large area of shallow water is available; however, if

this area is reduced, the production decreases (Tucker and

Wright, 2009). More than 1 km-thick carbonate succession

since the Early Miocene indicates the higher accommodation

space related to relative sea-level change caused by tectonic

subsidence. The subsidence during the early Miocene was

1.0–1.5 km in the deep-water area. The total subsidence

was <2 km in the northern Qiongdongnan Basin, which is

similar to the results obtained from the wells in this area (Xie

et al., 2008; Wu et al., 2014; Shi et al., 2017). Owing to low

sediment inputs and the palaeo-water depth, the tectonic

subsidence of the Xisha and Guangle uplifts cannot be

accurately restored.

Stretching and thinning of lithospheric mantle and crust are

commonly considered the primary reason for the subsidence of

passive continental margin rift basins, as confirmed by the imitation

of crust stretching in the north margin of the South China Sea (Cui

et al., 2008; Tong et al., 2009). The mechanism driving crustal

extension remains controversial between two factors: dominant

extrusion of the Indochina Block and sinistral motion on the

Red River Fault Zone (Tapponnier et al., 1982a; Tapponnier

et al., 1982a; Briais et al., 1993a; Briais et al., 1993b; Leloup et al.,

2001) or the subduction of a proto-SCS in the North Borneo Trench

(Taylor and Hayes, 1980; Hall, 2002).

Platform development associated with
East Asian monsoons

The reef builders of the Xuande platform were dominantly

corals, algae, and other benthic organisms (Wu et al., 2019),

which were limited by the maximum depth at which

photosynthesis can occur (~100 m) (Riding, 2000a; Woodroffe

and Webster, 2014).

During the Miocene, the prevailing summer wind is the East

Asian summer monsoon (Clift et al., 2014). Therefore, the wind-

driven surface currents and upwelling created a favourable

environment for reef growth in the Xisha region. The warm

summer wind satisfied the temperature requirement for the reefs.

With wind-driven southwest to northeast surface currents, the

intense wave action was concentrated on the windward side of

the Xisha platform, which is where the reefs were centralised. As

the reefs grew, reef detritus accumulated on the foreslope and

formed biohermal clasts, some of which were transported by the

surface currents to the leeward side of the platform and formed

shoal deposits.

In addition, nutrient levels trigged by upwelling would have

diffused throughout the platform by the southwestern surface

current, which may have induced further reef development on

FIGURE 10
Model of the development of Xuande Atoll in the Xisha
archipelago.
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the southwestern part of the platform. The scale and growth rate

of reefs in moderate nutrient content regions are greater than in

other parts of the SCS (Su et al., 2006); however, high nutrient

contents can lead to reef demise (Hallock and Schlager, 1986;

Fournier et al., 2005; Sattler et al., 2009). Wu et al. (2019)

reported a change in carbonate factory during the Miocene,

which was related to the intensification of summer monsoons.

A relationship between nutrient-level-related monsoons and

platform partial drowning was reported in the Maldives

(Betzler et al., 2018). This relationship requires confirmation

on the Xuande platform (Qin et al., 2022).

Conclusion

This study conducted high-resolution seismic surveys of

Xuande Atoll in the Xisha archipelago, which identified six

seismic reflectors. The results showed that the late Cenozoic

carbonate strata on the isolated platform can be divided into five

sequences (SQ1, SQ2, SQ3, SQ4, and SQ5). The platform

isolation started in the early Miocene, and the platform

flourished in the middle Miocene. However, the platform

decreased since the late Miocene. During the earliest

Quaternary, the platform regressed by 8 km. Late aggradation

and lateral regression occurred in the latest Pliocene, which may

have been related to the strength of the East Asian monsoon,

rapid subsidence, and increased nutrient levels in the northern

SCS. The platform slopes were characterised by gravity flows and

bottom current deposits. Tectonic events were likely the most

important factors in the evolution of the platform, along with

terrigenous sediment inputs. The uplift of the Indo-China

Peninsula and the formation of the semi-closed SCS increased

terrigenous sediment inputs and were unfavourable to reef

growth.

FIGURE 11
Asymmetric development of the Xuande isolated carbonate platform determined from seismic imaging. (A) E–W sedimentary model across the
entire atoll. (B) N–S sedimentary model across the western margin of the atoll.
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An approach to determine brittle
upper crustal thinning: Insights
into crustal extension
discrepancy in the central part of
Qiongdongnan Basin

Chao He1,2, Zhongxian Zhao3*, Eun Young Lee4 and
Yulong Xue1,2

1Hainan Key Laboratory of Marine Geological Resources and Environment, Haikou, China, 2Marine
Geological Institute of Hainan Province, Haikou, China, 3Key Laboratory of Ocean and Marginal Sea
Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China,
4Department of Geology, University of Vienna, Vienna, Austria

Summing fault heaves is the most commonly used method to evaluate upper

crustal thinning. However, since fault deformationwidth (W) is often assumed as

a constant in the range of 75–150 km, the stretching factor estimated from fault

geometry (βf) accompanies significant uncertainty. Here we propose a new

approach to determine brittle stretching factors on the foundation of numerical

analyses of W and further compare our results to previous methods, with

specific reference to the central part of Qiongdongnan Basin, South China

Sea (SCS). Our results suggest that the value of W is generally less than 80 km

and mostly less than 50 km in the northern SCS margin. We confirm that

applying an overestimated value of W can lead to an underestimated

amount of fault-related extension and overstatement of extension

discrepancy in the rifted margin. Results also indicate an inverse discrepancy

with our new method in the southeast of the basin. The difference in syn-rift

sediment thickness across the rifted margin likely drove the lower crust flow

causing a transition between inverse and positive extension discrepancies.

KEYWORDS

fault deformation width, crustal extension discrepancy, stretching factor β, brittle
upper crustal extension, numerical modeling, Qiongdongnan basin

1 Introduction

Rifted margins are the result of thinning and breakup processes of the continental

lithosphere, leading to the formation of new oceanic lithosphere. The upper crust shows

complex structural patterns inherited from brittle deformation, ductile deformation, and

subsidence. Fault geometry and polyphase faulting may be impacted by interactions with

lower crust andmantle melting as well as mantle exhumation. This makes it challenging to

resolve the crustal extension with fault growth and further understand potential

hazardous earthquakes and related mechanisms of economically important
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hydrocarbon accumulations (Peron-Pinvidic and Manatschal,

2019; Sapin et al., 2021). Stretching factor (β) is a key

parameter to quantify the amount of thinning. Previous

studies revealed that the stretching factor measured from fault

heaves (βf, Table 1) is far less than that determined by crustal

thinning and subsidence analyses in rifted continental

margins (Ziegler, 1983; Driscoll and Karner, 1998; Davis

and Kusznir, 2004; Kusznir and Karner, 2007). This

phenomenon is defined as extension discrepancy, which

has been widely reported, including around the northern

South China Sea (SCS) margins (Clift et al., 2002; Tsai

et al., 2004; Bai et al., 2019). However, this discrepancy

has remained a matter of controversy. Some authors argue

that no such discrepancy exists, i.e., recognized faults are

insufficient to evaluate the total amount of upper crust

extension (Walsh et al., 1991; Reston, 2007; Crosby et al.,

2008). There are studies, indicating that the discrepancy

might be induced by unrecognized polyphase faulting

(Reston, 2005), top basement faulting (Reston, 2009), and

sequential faulting (Ranero and Perez-Gussinye, 2010).

Furthermore, the method to calculate the stretching factor

on basis of the fault heaves are highly dependent on the fault

deformation width, which is not well constrained.

The practical method proposed by Davis and Kusznir (2004)

to estimated βf in the reference frame of the extended continental

lithosphere is given by

βf(x) � 1 + β0cos 2π(x − x0)
W

(1)

E � ∫w

0
(1 − 1

βf(x)
)dx (2)

where x is horizontal coordinate; x0 is fault location coordinate

measured from the seismic profile; β0 is a constant determined

numerically after substituting Eq. 1 into Eq. 2; E is the amount of

extension which is also measured from the profile; W is fault

deformation width; which is built on basis of an assumption that

W is known as a constant in the range of 75–150 km (Roberts

et al., 1993; Davis and Kusznir, 2004). Whereas, the assumption

ends up with same values of βf among different faults, as long as E

and W stay constant. For instance, on the condition of same

amount of extension, low-angle normal fault in deep-water and

steep fault in shallow water share the same values of βf. This error
in estimating brittle extension, in turn, questions the extension

discrepancy. Therefore, better constraints on upper crustal

thinning are required. In this study, we propose a new

approach to brittle extension on the foundation of numerical

analyses of W. We verify our approach by comparing it to

conventional methods. Our new methods are applied to the

central part of Qiongdongnan Basin which was magma-poor

during rifting with no obvious evidences of asthenospheric

melting (Clift and Sun, 2006). The optimization of W is

aimed at improving the estimation accuracy of the upper

crustal thinning and further investigations of both positive

and negative extension discrepancies.

2 Geological setting

The SCS is the largest marginal sea in the west Pacific and

surrounded by the Eurasian, Pacific and Indian Plates. The

tectonically complex history was due to its position, affected

by the opening of SCS (Taylor and Hayes, 1983; Briais et al.,

1993), Red River strike-slip fault (Tapponnier et al., 1990; Leloup

et al., 2001; Morley, 2002; Searle, 2006), oblique compression of

Philippine Plate (Rangin, 1991; Hall et al., 1995), and back-arc

spreading associated with the subduction of Pacific Plate to

Eurasian Plate (Taylor and Hayes, 1980; Packham, 1996).

Multi-stage rifting processes have taken place in the northern

SCS margin, which transformed from active continental margin

in the Mesozoic to passive margin in the Cenozoic (Savva et al.,

2014). Due to a lack of seaward dipping reflectors (Barckhausen

and Roeser, 2004; Franke et al., 2014; Brune et al., 2016), the

northern SCS margin was classified into non-volcanic margin.

With an advance in understanding of seismic and drilling data,

the opinion about rifting-related magmatism is changing recently

(Larsen et al., 2018; Sun et al., 2018; Ding et al., 2020; Li et al.,

2022). However, general consensus so far is that the margin was

not as magma-rich as NE Atlantic margins. The northern margin

ranging from the South China Block to the oceanic crust of SCS

covers a total width of over 400 km (Figure 1A). Three

NE-trending extensional basins spread from east to west;

Taixinan Basin, Zhujiangkou Basin and Qiongdongnan Basin.

TABLE 1 Stretching factors related to this study.

Symbol Quantity

β Stretching factor defined by Mckenzie (1978) which is uniform in upper crust and whole crust based on pure shear model

βuc Upper crustal stretching factor

βc Whole crustal stretching factor

βf Upper crustal stretching factor based on summing fault heaves (Davis and Kusznir, 2004)

βz Upper crustal stretching factor based on dividing into zones (Zhao et al., 2018)

βw Upper crustal stretching factor based on fault deformation width
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The Qiongdongnan Basin on the northwest continental slope of

SCS is located betweenHainan Island in the northwest and the Xisha

block in the southeast, which is featuring a narrow shelf and slope

(Figure 1). The water depth deepens dramatically from 200 to

1,200 m at the Center Depression. The syn-rifting stage occurred

from ~45Ma to ~23Ma, followed by the post-rift period. The

unconformity formed at ~23Ma separates the basin evolution into

two distinct stages: Paleocene, Eocene and Oligocene syn-rifting and

Early Miocene to Quaternary post-rifting (Zhang et al., 2013). The

syn-rift stage is characterized by well-developed NE-trending faults.

FIGURE 1
(A) Topography and bathymetry of the South China Sea (SCS) in the western Pacific. (B) Structural map of the Qiongdongnan Basin (QDNB; see
location in Figure 1A). Location of a deep-reflectionmultichannel seismic profile (Line 1) across the central part of QDNB is shown. YNS, YachengNan
Sag; YBS, Yacheng Bei Sag; SXS, Songtao Xi Sag; SDS, Songtao Dong Sag; LDS, Ledong Sag; LSS, Liushui Sag; SNS, SongtaoNan Sag; BDS, Baodao Sag;
CCS, Changchang Sag; BJS, Beijiao Sag.

Frontiers in Earth Science frontiersin.org03

He et al. 10.3389/feart.2022.1016529

89

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1016529


In the eastern part, however, nearly EW-trending faults are present

and rift-related magmatism was reported in the Changchang Sag

(Figure 1B). In the western part, a large scale detachment fault

cutting the Moho was identified, which is connected to the adjacent

Red River Fault Zone (Zhao et al., 2018). Previous studies have

focused on the distinct differences between the eastern and western

Qiongdongnan Basin, including but not limited to structure (Zhang

et al., 2013), sedimentation, subsidence (Zhao et al., 2013) and

mechanism (Zhao et al., 2015).

3 Materials and methods

3.1 Seismic data

The deep-reflection multichannel seismic Line 1, provided by

China National Offshore Oil Corporation, was chosen for this study

(see location in Figure 1B). The profile is perpendicular to the

structural strike and well-developed faults in the central part of

Qiongdongnan Basin. Eighteen planar normal faults (F1 to F18;

Figure 2) developed during the rifting were identified, which show

variability in dips and sizes. F18 at the southeast end is the largest

fault with greatest offset and low-angle dip. F3, F13, and F15 have

steeper dip angles with θ > 50°. These faults, tilting SE and NW,

compose a graben and half-grabens which exhibit features of both

symmetric and asymmetric geometry. The profile recorded reflectors

of the stratigraphic unconformities and Moho depth with

discontinuity. The unconformities at S100 (~45Ma) and S60

(~23Ma) correspond to the start and end of the syn-rifting,

respectively.

3.2 Stretching factor evaluation with new
method

3.2.1 Initial model setup
In the 2D model of brittle upper crust (Figure 3A), the

instantaneous stretching is supposed as two results: brittle

layer connected (Figure 3B) and disconnected (Figure 3C).

The rotation of faults or beds (i.e., the dip maintains during

FIGURE 2
(A) Seismic profile of Line 1 (see location in Figure 1B). (B) Interpretation of Line 1 showing the Moho depth, major unconformities (S100–S30),
and overall recognized 18 planar normal faults tilting SE and NW (F1 to F18). The unconformities of S100 (~45 Ma) and S60 (~23 Ma) are indicated.
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thinning) was not counted for this model, as the brittle faults

in deformation response incline to vertical shear, rather than

the domino-style (Anderson, 1951; Westaway and Kusznir,

1993; Davis and Kusznir, 2004).

The stretching factor β is defined as the ratio of the final

length to the initial length byMckenzie (1978), which is shown in

Figure 3:

β � W

W0
(3)

Figure 3A shows the simple trigonometry:

W0 � H0

tan θ (4)

From the geometry illustrated in Figures 3B,C, if taken x0 = 0:

W � x3 � H0

tan θ + E (5)

Thus, substituting Eqs 4, 5 into Eq. 3 yields the average β:

β � 1 + E × tan
θ
H0

(6)

Hence, both values of deformation width (W) and stretching

factor (β) are highly dependent on the initial brittle crustal

thickness and fault attitude. W is positively proportional to

initial layer thickness (H0) and extension amount (E), and

inversely proportional to dip (θ). β is the opposite of W.

Given that H is the layer thickness after stretching, x0 = 0,

x1 = E, x2 = H0/tanθ and x3 = x2+E, H in case of fault displaced

and connected (Figure 3B), is determined:

H �
⎧⎪⎨⎪⎩

H0 − x × tan θ (0≤x<x1)
(x2 − x1) × tan θ (x1 ≤ x< x2)

H0 − (x3 − x) × tan θ (x2 ≤ x≤ x3)
(7)

H where fault displaced and disconnected (Figure 3C) is as

follows:

H �
⎧⎪⎨⎪⎩

H0 − x × tan θ (0≤x<x1)
0 (x1 ≤ x< x2)

H0 − (x3 − x) × tan θ (x2 ≤ x≤ x3)
(8)

Combined with Eqs 7, 8, any horizontal coordinate (x) is

given on account of the fact that measured vertical lengths are

more reliable than horizontal lengths (Davis and Kusznir, 2004):

β(x) � H(x)
H0

(9)

3.2.2 Parametric analysis
Quantitative analysis of W and β in different faulting

geometries was conducted by applying Eqs 5–9, respectively.

Sensitivity analysis of each individual parameter (H0, θ, E) based
on Eqs 6–9 is given in Supplementary Figures S1–S3. H0 was

examined from 5 km to 50 km with an increment of 5 km at each

step in Figures 4, 5. At thicknesses over 50 km, a change of H0

had little impact on the outcome (Supplementary Figure S1).

Figure 4 presents plots of varying W values in the parameter

domain space (dip-offset) with a set of initial thickness values (H0 =

5, 10, ..., 50 km). The contour-plots show that the deformationwidth

increases with the initial thickness in general. But it highlights that

H0 has limited effect on W after H0 = 30 km. When H0 =

5 km–20 km, W changes exponentially at the central of the

domain and linearly at the upper left and bottom of the domain.

Specifically, in the case of H0 = 5 km, W is a single variable with dip

when (θ < 5°). As the dip goes steeper (5°< θ < 12°), W is linear

increasing with offsets at beginning (E < 10 km), then this trend

changes to exponential growth. As long as θ > 45°, the trend converts

back into linear growth. Overall, the exponential changes gradually

FIGURE 3
2Dmodel sketch to show the deformation of normal fault. (A)
The initial (Andersonian) fault break. (B) Brittle layer displaced and
connected. (C) Brittle layer displaced and disconnected, where H0

is the initial layer thickness, θ is fault dip, E is extension
amount, W is fault deformation width, W0 is the initial width and x0
to x3 are horizontal co-ordinate of breakpoints, respectively. To
simplify, the flexure response to gravity and loads is not showing.
These equally apply to both brittle curved faults and bending
layers, and do not affect the formula presented.
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FIGURE 4
Comparison of deformation width (W) contour-plots in the parameter domain space (dip-offset) are shown at H0 = 5 km, 10 km, 15 km, 20 km,
25 km, 30 km, 35 km, 40 km, 45 km, and 50 km.
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FIGURE 5
Comparison of β contour-plots in the parameter domain space (dip-offset) are shown at H0 = 5 km, 10 km, 15 km, 20 km, 25 km, 30 km, 35 km,
40 km, 45 km, and 50 km.
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to linear as H0 increases. After H0 reaches 40 km, the contours of W

are characterized by linearly distribution. In practice, the value of W

of subhorizontal listric fault should be larger than 120 km whether

large or small scale (Figure 4 H0 = 10 km).

Figure 5 depicts β values in the parameter domain space (dip-

offset) with the same set of initial thickness values (H0 = 5, 10, ...,

50 km). The contour-plots show that β decreases rapidly with

increasing H0 = 5–30 km, then decreases slowly. With an

increasing H0, β shows a transition from exponential decline

to linear decline curves, particularly in the upper right part of the

domain. In practice, high angle normal faults with small scale and

low angle faults of large offsets achieve the same degree of

thinning.

3.2.3 β function
White and McKenzie (1988) expressed β with a Gaussian

function. On the basis of E measured from fault heaves, β(x) is
mapped to a profile of β applying the continuous cosine function Eq.
1 (Davis and Kusznir, 2004). The form and width of the function,

which does not alter the total extensions, are arbitrary and not

critical (Davis and Kusznir, 2004). Based on these previous studies

and line-types of β curves shown in Supplementary Figures. S1–S3,

we choose a sine function after comparing with Eq. 1, which is

defined as:

βW(x) � 1 + β0[sin( πx
2W

+ π

4
) − sin

π

4
] (10)

Replacing W in Eq. 10 by Eq. 5 gives the βw as follows:

βW(x) � 1 + β0[sin( π tan θ x
2H0 + 2E tan θ +

π

4
) − sin

π

4
] (11)

As it is shown in Figure 6, the calculated curves using Eq.

11 are generally consistent with corresponding curves

estimated from Eq. 9, slightly higher in the middle and

lower in both flanks. This numerical approach incorporates

the role of fault deformation width (W), which is neglected in

the early model and leads to an underestimation of upper

crustal stretching factor. This difference has implication on

the evolution and development of rifted basins and margins.

Moreover, faults are assumed to be planar in the model of

Davis and Kusznir (2004). Since listric faults are common in

the Qiongdongnan Basin as shown in Line 1 (Figure 2), this

sine function is adequate to approximate faulting patterns in

the study area.

3.3 Stretching factors of upper and whole
crust in the central part of Qiongdongnan
Basin

The stretching factors of the upper crust (βuc) along Line

1 are estimated using three methods: the aforementioned method

(βw), as well as methods based on fault geometry (βf) (Davis and

Kusznir, 2004) and zone division (βz) (Zhao et al., 2018).

Parameters for each fault and zone (Figure 2B) are given in

Table 2.

In Eqs 5–9, the initial thickness of the brittle layer (H0) is

unknown. It is usually infeasible to estimate, because the transition

of brittle and ductile crust is difficult to identify on the seismic

profile. To assess the range of reasonable values, we propose 10 km

as the H0 minimum, which corresponds to ~33% of the initial

whole crust thickness in the west of Qiongdongnan Basin

(~22–40 km; Zhao et al., 2018) as the case of the northern SCS

at the Early Cenozoic suggested by Dong (2020). It also conforms

to the 10–15 km range suggested for the transition depth of brittle

and ductile crust in the present South China Block (Zuber et al.,

1986; Clift et al., 2001). Furthermore, since faults do not cut

through the Moho as shown in Figure 2A, thus we propose the

present crust thickness (CT) at the breaking point (x2 in Figures

4B,C) on the footwall as the H0-maxima (Table 1; for H0 = CT in

Figure 7A). In Eqs 1, 2, since W has been assumed ranging of

75–150 km, we also evaluate W at 150 km and 75 km. To account

for the unrecognized or small-scale faults below the seismic

resolution, the amount of fault heaves (βf) is increased by 40%

(Walsh et al., 1991).

The whole crust stretching factor (βc) is defined as the ratio of
the initial crust thickness to the final crust thickness. The pre-

rifted crustal thickness of the northern SCS margin is assumed to

be 32 km in this study (Zhao et al., 2018). The thicknesses of syn-

rift (45–23 Ma), and post-rift (23–0 Ma) sediments are estimated

using two-way travel time (TWT) of the seismic data (Figure 2A).

The time-depth conversion of the stratigraphic sequences is

based on VSP data (Zhao et al., 2015). The crustal thickness

is derived by assuming an average crustal P-wave velocity of

~6.5 km/s as previous studies (Zhao et al., 2015).

4 Results

4.1 Upper crust thinning

In the upper crust, βw is 1–2.4 by assuming H0 = CT, while βw
varies from 1 to 3.3 by applying H0 = 10 km to all faults

(Figure 7A). The curve of βw (H0 = 10) exhibits β-maxima at

a distance of ~95 km with the highest frequency variation among

all the three methods on upper crust.

βf shows a smooth function curve between 1.6 and 2.0 with

W = 150 km for each fault set and between 1.7 and 2.3 with

W = 75 km, while it expands to 1.4–2.9 with W = 20 km

(Figure 7A). When applying lower values of W from 150 km to

20 km, the variation of βf is gradually amplifying; e.g., when

W = 20 km, a peak of βf = ~2.9 is indicated at the distance of

~100 km. The curve of βf (W = 150 km) exhibits near-

symmetry, while that of βf (W = 20 km) is characterized by

asymmetry. All three βf -minima exceed those of βw and βz as
the result of correction.
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βz values of six zones (1.2–3.1; Table 1) are presented in

Figure 7A. Compared to the other curves, βz is shown as a

stepwise line with large Δβz, since values are estimated on the

basis of averaging the exaggerated geometry of trough and crest

in each zone.

4.2 Crustal thickness and thinning

Along Line 1, the crust thickness shows a large variation

ranging from maxima of >20 km at the basin margins to a

minimum of <10 km at a distance of ~20 km (Figure 7B).

FIGURE 6
Two β profiles generated by Eq. 9 under the given of two parameter sets are shown in red and green, respectively. The best fit β curves by Eq. 11
with the corresponding parameter sets are presented in blue and black.

TABLE 2 Parameters of faults (F1 to F18 in Line 1; see location in Figure 2). Zone length, zone offset and βz of six zones (Figure 2B) are provided.

Fault
num

Loc.
(km)

Dip
dir

Dip
(°)

Offset
(km)

H0

(km)
Zone Zone

length
(km)

Zone
offset
(km)

βz

1 7.6 left 23.2 2.4 17.4 1 10.6 3.0 1.4

2 9.9 left 26.8 0.6 16.6

3 12.9 right 52.9 6.7 15.6 2 28.5 9.9 1.5

4 26.5 right 50.6 3.2 13.2

5 41.3 right 26.6 2.5 10.3 3 22.2 5.4 1.3

6 54.2 left 23.2 1.8 12.0

7 57.5 right 27.7 1.0 11.7

8 63.8 right 31.7 1.3 12.3 4 10.8 5.3 2.0

9 66.7 right 33.5 1.6 13.0

10 74.4 left 41.7 2.5 13.8

11 76.6 left 21.1 0.9 13.6 5 11.1 2.1 1.2

12 79.1 left 20.9 0.9 13.3

13 79.8 right 54.4 0.3 13.3

14 85.5 right 48.3 1.1 13.3 6 33.4 22.7 3.1

15 89.3 left 55.6 0.7 13.7

16 91.3 right 45.0 1.8 14.1

17 99.6 left 31.9 4.4 16.2

18 117.9 left 15.9 14.7 19.2
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The thinner crusts of ~10 km at the two flanks of Songnan

Sag and Songnan Uplift correspond to the maxima of βc.
Between the distance of 20 and 110 km, the thickness varies

around ~12.5 km with a slight increase from ~10 km to

~15 km.

In Figure 7A, the extension discrepancy is indicated at a

distance of c. 20–70 km, which is significant in the center of

Songnan Sag and Songnan Uplift. However, it appears to be

ambiguous in the Beijiao Sag and Southern Uplift where the

water depth stabilizes at ~1.6 km.

5 Discussion

5.1 Role of fault deformation width in
estimating brittle crustal stretching factor

Fault deformation width (W) has been an unknown

parameter and cannot be calculated (Roberts, 1993; Davis,

2004; Zhao, 2018), which is fundamentally important in

determining the stretching factor of brittle crustal

extension. Roberts (1993) set up W as constant of

75–150 km for contrastive analysis of backstripping and

forward modelling in the North Sea, and it has since been

adopted as default by subsequent works. However, the

assumption contains potential uncertainties, because it is

disregarding differences in faults heaves, dips and initial

brittle crustal thicknesses. To capture the uncertainty

derived from using the constant W range, we revisit the

conventional method (Davis and Kusznir, 2004) and

evaluate the role of W (Figure 8). Theoretically, applying

the most favorable W value in the suggested range

(75–150 km) to one single fault leads to Δβf = 0.14 at most.

W, therefore, seems to have negligible impact on βf. However,

its importance becomes more apparent as it decreases, e.g.,

Δβf = 0.8 if a maximum of 150 km and a minimum of 20 km

are assigned to W. Even a proposed value of W (W = 75 km)

results in a substantial underestimation (i.e., Δβf = 0.7).

Our results indicate that W is generally less than 80 km

and narrow it down to the range of 10–60 km even in the

marginal case of H0 = 50 km with dip in the range of 30°–75°

(Figure 4). Since the ductile-brittle transition is suggested

between 10 and 15 km in the modern South China Block

(Zuber et al., 1986; Clift et al., 2001), the W value in the

FIGURE 7
(A) β-Profiles along Line 1, evaluated by different methods and parameters. (B) Crust thickness, sediments thickness and water depth along Line
1. Sediment thicknesses of the total, syn-rift and post-rift are shown. The crust thinned sharply from 21.6 to 9.4 km over a ~7 km distance at the north
of Songnan Sag, which corresponds to the transition of thickest to thinnest crust.
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northern SCS is proposed as less than 50 km (extreme case is

H0 = 15 km in Figure 4). As we decrease W = 150 km to W =

20 km, the trend of βf curves changes to multi-wave

converging towards the functions of βz and βw as shown in

Figure 7A. Our findings demonstrate that W is an important

control on the brittle extensional estimation, but has been

overestimated in previous studies. A lower W value than the

conventionally used range may lead to more accurate model

outcomes. The discord is likely a critical cause for

underestimation of the upper crustal stretching factor.

Stretching estimation based on current fault geometry shown

in seismic image is insufficient to evaluate the brittle upper crust

thinning due to undetected faulting. According to Reston (2005;

2007), polyphase faulting incurs geometric changes such as

shallower-dipping, which could be crosscut by steeper normal

faults developed in later stages. The extension by unrecognized

faulting is generally corrected by increasing its value by a factor of

40% (Walsh et al., 1991). However, since more complex fault

geometries have experienced larger heaves and stronger

deformation, a different degree of correction is required in

consideration of geometric complexity (Clift et al., 2001), and

vice versa. Our method improves this accuracy by numerical

analyses of W (Figure 7A). Our results show that βf at W =

150 stays mostly uniform over the entire profile with a slight

maximum in the Songnan Sag, but peaks of βf curves at lower W
values were recorded in the Beijiao Sag, with 2.3 for W = 75 and

2.9 for W = 20, respectively (Figure 7A). The peaks correspond to

the βz trend, which shows the highest value in the Beijiao Sag and

the second highest value in the Songnan Sag (Figure 7A). Although

βz is less accurate by exaggerating both maxima and minima, it is

advantageous to see the overall variation trend with limits.

5.2 Limitations

Our methodology underlines the importance of W, which is

beneficial to estimate the upper crustal extension and can be applied

to other studies on brittle extension. However, if the estimation

requires sophisticated controls for the extension over time and

depth, some improvements are required. Above all, the rotation of

faults or beds has to be considered as the stretching factor βd is

based on a domino-style fault block model, which can contribute

critically to avoid underestimation of βf as well as the uncertainty of
extension discrepancy. Several studies have indicated that initial

dips of normal faults may subsequently rotate to shallower ones due

to isostatic response (Spencer, 1984; Wernicke and Axen, 1988),

particularly faults with large offsets (Buck, 1988), i.e., their initial

dips are larger than the current dips identified from profiles. A

numerical simulation model by Lavier and Manatschal (2006)

confirmed that steep normal faults rotate to conjugate concave

downward faults, which lead to crust thinning at magma-poor

margins. A balanced kinematic model proved that sequential

faulting turns high-angle normal faults into low-angle ones as

accommodation of thinning, which is limited by lower crust,

deforming in response to upper crust in the cold basin or

lithosphere (Ranero and Perez-Gussinye, 2010). For instance, we

infer that the original dip of F18 with offset up to ~14.7 km could be

much higher than 15.9°. It is supported by the cases that normal

faults in the brittle upper crust develop at dips θ>45° and stay active
at dips θ ≥ 30° with offset <10 km (Anderson, 1951; Byerlee, 1978;

Sibson, 1985; Buck, 2007; Reston, 2007). This is one potential cause

for the drastic drop of βw in the Beijiao Sag and Beijiao Uplift.

Another aspect to consider is the inapplicability of heat flow on

older basins and underestimation of crustal thinning affected by

asthenospheric melting. During the rifting, heat flow increases due

to lithosphere thinning and rising of the asthenospheric mantle,

which is closely associated with the crustal stretching, flexural uplift,

and subsidence. The thermal effect of depositing cold sediments on

top of the lithosphere leads to a depression in the thermal gradient,

extending down into the lithosphere (the thermal blanketing effect)

(Karner, 1991; Kim et al., 2020). Such lithospheric and

asthenospheric-scale mechanisms during rifting require

comprehensive considerations of the thermal evolution in our

numerical methods.

FIGURE 8
β-Profiles generated from different values of W and the same single fault based on Eqs 1, 2, all with 40% correction.
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5.3 Insights into extension discrepancy

The extension discrepancy has been widely reported in the

northern SCS (Clift et al., 2002; Tsai et al., 2004; Bai et al., 2019).

In this study, significant extension discrepancy was also indicated

at the distance of c. 20–70 km of Line 1 (Figure 7A), which

corresponds to the Songnan Sag and Uplift characterized by

asymmetrical half-grabens. In the Beijiao Sag which is dominated

by grabens, positive extension discrepancy is indicated by βf
when applying W = 150, while inverse discrepancy is widely

discovered when evaluating βf with W = 20. We infer that the

extension discrepancy in previous studies is over-predicted by an

overestimated W. The inverse discrepancy has so far been

overlooked in the northern SCS. A balancing of positive

discrepancy and inverse discrepancy along the extension

direction supports the presence of crustal extension

discrepancy, as the same amount of thinning is expected

across the entire profile at crustal scale (Reston, 2007), i.e.

cross sectional area of crust along the extension direction

maintains the uniform β during syn-rifting and post-rifting

(Figure 9A).

Depth Dependent Stretching (DDS) or Depth Dependent

Thinning (DDT) (Royden and Keen, 1980; Rowley and Sahagian,

1986; Roberts et al., 1993; Kusznir and Karner, 2007) seems to be

the convincing model to explain the mechanism of extension

discrepancy. However, the depth dependence at lithospheric level

is unsuitable to explain the estimation in the central part of

Qiongdongnan Basin where a local positive discrepancy is

located next to a local inverse discrepancy. The potential

explanations for inverse discrepancy include: 1) upper plate

(hanging wall) of detachment fault of simple shear (Wernicke,

1985) which is in conflict with the observation showing

symmetric grabens and asymmetric half-grabens, being firstly

excluded. 2) top-down break up (Anderson, 2001). i.e., the first

degree break-up of upper crust precedes that of lower crust as

tensile stress instead of magmatism upwelling from

asthenosphere takes charge. This is an attractive interpretation

since the magmatism upwelling did not occur in the central part

of Qiongdongnan Basin during rifting. However, this model

suggests that the upper crust thinning is greater than that of

lower crust, which results in an inverse discrepancy at the

thinnest whole crust location (Reston and McDermott, 2014).

It does not fit in the study area that a positive discrepancy is

described at the thinnest crust. Moreover, previous studies (Davis

and Kusznir, 2004) suggested that the breakup of lithosphere

inclines to bottom up in the deep-water area, like the Beijiao Sag.

3) lower crust flow in hot lithosphere like northern SCS

(Figure 9B). During rifting, the syn-rift sediments were

deposited up to ~8 km in the northwest (Figure 7B), which is

closer to Hainan Island and exhibits positive discrepancy. The

inverse discrepancy is predominant in the southeast where it

shows relatively thin thickness of syn-rift sediments (up to 4 km;

Figure 7B). Compared to the northwest, the southeast area was

far away from provenance. Such variation in sediment thickness

FIGURE 9
(A) Cross sectional area remains constant before and after extension; (B) Schematic illustrations showing that the pressure by variation of
sediment thickness drives the ductile lower curst flowing.
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could contribute to a laterally differential pressure, which might

drive the lower crust flow causing transitions between inverse

and positive discrepancies. The ductile lower crust is generally

inclined to flow along the rifting direction (McKenzie and

Jackson, 2002). This is an elementary impact since sediment

thickness is also dependent on subsidence associated with

tectonic processes and thermal effects, which we will

investigate further to understand the mechanism in the future

studies.

6 Conclusion

We evaluate the role of fault deformation width in

estimating upper crust extension. This parameter plays an

important role in the determination of upper crustal

stretching factor. Our results suggest that the value of W has

often been overestimated in previous studies, and should be less

than 80 km in general and less than 50 km in the northern SCS.

The overestimated value of W causes a considerable

underestimation of upper crustal stretching and over-

reported extension discrepancy. When our new approach

and/or a lower value of W (W = 20 km) are applied to

estimation of the upper crustal extension in the central part

of Qiongdongnan Basin, an inverse discrepancy is indicated in

the deep-water area featured by symmetrical grabens. We

suggest that the significant difference in syn-rift sediment

thickness probably drives the lower crust flow causing a

transition between inverse discrepancy and positive

discrepancy in the central part of Qiongdongnan Basin.
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Hydrodynamic variations and
human activities have influenced
sediment fluxes in the pearl river
delta since the late holocene
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Climate change and human activity can both exert a role in the river discharge

and sediment load in river deltas when the sea level remains relatively stable.

The Pearl River Delta constitutes the metropolitan region of the

Guangdong–Hong Kong–Macau Greater Bay Area, and its evolution in the

past and future impacts the sustainable development of this region. In this

manuscript, a core situated in the northern South China Sea, adjacent to Qiao

Island of Zhuhai city in the Pearl River Delta, was selected to investigate the

hydrodynamic variation influenced by tropical processes and the sediment flux

imposed by human activities. Using paleosecular variations (PSVs) in

geomagnetic field correlations constrained by seven radiocarbon ages, an

~2.5 kyr chronology was provided for core sediments ~2.8 m in length. The

magnetic fabric results suggest that deposition was influenced by the two types

of hydrodynamic-weak energy modulated by El Niño–Southern Oscillation

(ENSO) activity and higher energy regulated by high-frequency tropical storms.

The cyclic variations in the degree of anisotropy of magnetic susceptibility (P)

indicate two periodic changes at approximately 300 and 100 years, which were

forced by ENSO activity, while the ratio of lineation with foliation (q value)

implies a higher energy flow period of 1.3–1.9 kyr, arising from strong tropical

storms. Moreover, the high saturation remanence (SIRM) introduces more

sediment flux, which is impacted by growing human activity during the

period of 1.0–1.6 kyr.

KEYWORDS

pearl river delta, magnetic fabric, ENSO activity, tropical storm, human activity

Introduction

River deltas occupy the most economically dynamic land area in the world and

contain more than 322 million people (Macklin and Lewin, 2015). The formation and

evolution of deltas have been dominantly controlled by natural processes, such as climate

change, sea-level fluctuations and tectonic activities, on a geological time scale (Goodbred
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and Kuehl, 2000; Zong et al., 2009). However, the terrigenous

debris flux accompanied by river discharge may exert a crucial

impact on the morphology of the delta when the sea level and

tectonic activity remain relatively stable (McManus, 2002). The

enhanced river flow is linked to the patterns and processes of

sediment erosion and accumulation that modulate delta

progradation and distributary channel extension laterally

(Shaw et al., 2016). Sediment retention, which is influenced by

natural processes or human activities, may cause delta

degradation, while marine processes intensify in the context of

global warming (Wu et al., 2016; Hoitink et al., 2017; Ranasinghe

et al., 2019; Xie et al., 2022). Especially in the Anthropocene, the

double impacts of human activity and climate change on river

discharge and sediment inputs are responsible for the rapid

transition of the delta shape (Hassan, 1997; Macklin & Lewin,

2015; Hoitink et al., 2017; Liu et al., 2019; Zhou et al., 2019).

Enhanced weathering processes, intensified precipitation and

developing agricultural industrialization can cause delta

progradation and channel migration, while the embankment

of channels and the construction of dams may result in delta

retrogradation (Hassan, 1977; Macklin and Lewin, 2015; Nian

et al., 2022).

The Pearl River Delta, a metropolitan region of the

Guangdong-Hong Kong-Macau Greater Bay Area, is one of

the most densely urbanized regions in the world, with a

population of more than 67 million (Yang et al., 2019). Heavy

rainfall arising from tropical storms and ENSO activity enhances

river discharge and causes a large amount of sediments to enter

the lower reaches of the delta region (Liu et al., 2017; Deng et al.,

2018; Chen et al., 2020; Yan et al., 2022). In contrast, urbanization

prevents the production of terrigenous debris and channel

reformation (Zhou et al., 2019; He et al., 2022). This delta is a

typical zone in which to research the evolution of river discharge

and sediment input under the interaction of natural processes

and human activity. In this manuscript, we select a sediment core

to investigate the hydrodynamic variability and terrigenous flux

since approximately 2.5 kyr BP, which would be beneficial for

understanding the morphological evolution of the delta during

the period of strong human activity. Radiocarbon dating and

paleomagnetic secular variations are employed to determine the

sediment chronology, and the anisotropy of magnetic

susceptibility and the fraction of fine sand are used to analyze

the hydrodynamic conditions. The saturation remanence (SIRM)

and high coercivity remanence (HIRM) are employed as proxies

for terrigenous debris inputs.

Geographical context and methods

The Pearl River Delta covers a region of ~5.5 *104 km2, which

is formed by three major rivers (West River, North River and East

River) flowing into the northern South China Sea (Figure 1).

Lingdingyang is one of the largest estuary bays that formed after

the deglaciation period (Zong et al., 2009). The drainage system

of the three rivers extends to the southeastern margin of Tibet

across Guangdong, Guangxi and Guizhou Provinces,

constituting diverse geomorphic conditions, such as karst

landforms, hills, basins in the upper and middle streams and

the highly urbanized delta plain downstream (Wei et al., 2020).

The area of soil erosion, which provides abundant terrigenous

debris for river loading, is approximately 58,900 km2 and

remained almost unchanged from 1995 to 2004 (Zhou et al.,

2019;Wei et al., 2020). The annual water discharge varied around

a mean value of ~2.8 *1010 m3, while the sediment load exhibited

a decreasing trend at a rate of -2.24*104 t/year between 1955 and

2018 (Wei et al., 2020). The average annual precipitation

(1954–2018) varied from 1120 to 1981 mm, with a mean

value of 1559 mm. ENSO activity and tropical storms exert a

crucial impact on the precipitation in this region. Large

precipitation variations (>5%) and most of the years with low

precipitation are associated with ENSO events (El Niño years)

(Wei et al., 2020).

FIGURE 1
The Pearl River drainage basin (redrawn from Wei et al., 2020) (A) and core locations (B).
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Two piston cores, ZH06 (2.81 m in length) and ZH05 (1.82 m

in length) (22.39°N, 113.64°E), in the Lingdingyang Sea area

adjacent to Qiao Island of Zhuhai city were selected in 2008

(Figure 1). The sediments in the two cores were homogenous silt

and clay and were gray in color. Two cores were split, and one-half

was continuously sampled by pushing ceramic boxes (1*1*1 cm)

into the core sections. A total of 278 and 179 samples were collected

in cores ZH06 and ZH05, respectively, for paleomagnetic

measurements. Moreover, the paired powder samples were

selected for grain size analysis. The volume magnetic

susceptibility of the sediments from the two cores displays a

similar pattern (Supplementary Figure S1), exhibiting the same

stratigraphy and consistent deposition processes. Here, the

experimental works weremainly focused on the ZH06 core samples.

All box samples were measured for natural remanent

magnetization (NRM) and then stepwise demagnetized with

a fully automated 2G-Rapid system using peak fields of

0–80 mT (total of 10 steps) after the volume magnetic

susceptibility and magnetic fabric (MF) were initially

measured using a Bartington MS2 system and an

MFK1 Kappabridge, respectively. The parameters of MF,

such as the degree of anisotropy susceptibility (p), foliation

(F), lineation (L), shape factors (q and T) and imbrication

angle (β), were calculated from the statistical methods of

Constable & Tauxe (1990) and (Taira, 1989). Anhysteretic

remanence (ARM) was then imparted with a 0.05 mT

steady field and an 80 mT alternating field, and saturation

isothermal remanence (SIRM) was imposed using a DC field

FIGURE 2
Hysteresis loops and Day-plot project following Dunlop (2002) for the representative samples (A); FORC diagram processed using FORCinel
software (Egli, 2013) and temperature dependence of magnetic susceptibility variation are displayed in (B) and (C), respectively. In (A), SD = single
domain; PSD = pseudosingle domain and MD = multidomain. (C) FORC diagrams of several typical samples.
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of 1 T. IRM-300 mT was then measured, giving a reverse

300 mT field. High coercivity remanence HIRM and S300
ratios were determined by (SIRM-IRM-300)/2 and IRM-300/

SIRM, respectively. Both ARM and SIRM were also

demagnetized and measured at 20, 40, 60 and 80 mT fields.

The magnetic susceptibility variations independent of

temperature (κ-T) were measured in argon conditions

within a cycle from room temperature to ~700°C for four

freeze-dried powder samples in an MFK1 Kappabridge. The

hysteresis properties of the samples were determined using a

Princeton Measurements Corporation vibrating sample

magnetometer (MicroMag 3900) with a maximum applied

field of 1 T. The saturation magnetization (Ms) (at 1.0 T),

saturation remanence (Mrs), and coercivity (Bc) were obtained

after correcting for the paramagnetic contribution identified

from the slope of the high field sections of the curve.

Subsequently, the coercivity of the remanence (Bcr) was

determined using the demagnetized curve of Mrs. FORC

diagram measurements were performed on for four samples

following the methods of Harrison and Feinberg (2008). The

maximum saturation field was 1.0 T, and the regular grid

comprised 150 hysteresis loop curves with a 500 ms averaging

time. The FORC data were processed using FORCinel

software with a VARIFORC smoothing algorithm (Egli, 2013).

FIGURE 3
Downcore variations in environmentalmagnetism proxies of volumemagnetic susceptibility (κ) (A), saturation isothermal remanence (SIRM) (B),
anhysteretic remanence (ARM) (C) and the ratio of ARM(0–60)mT/SIRM(0–60)mT (D), S300 (E) and HIRM (F).

FIGURE 4
Projection of the magnetic fabric parameters of the shape factor (T)-degree of anisotropy (P) (A) and shape factor (q)-P (B).
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The samples for grain size analysis were pretreated with HCl

(10%) hydrogen peroxide (H2O2) (30%) to remove the carbonate

and organic matter, and then (NaPO3)6 was added to prohibit the

fine particles from aggregating. Experiments were performed

with a MasterSizer 2000 laser particle analyzer, achieving a

distribution from 0.2 to 1000 μm. These magnetic and grain

size experiments were performed at the Institute of Geology and

Geophysics, Chinese Academy of Sciences (CAS) and Sun Yat-

Sen University, respectively.

Intact shells, conches and terrigenous plant debris were

selected for radiocarbon dating. Five samples were prepared

into graphite at the Guangzhou Institute of Geochemistry,

Chinese Academy of Sciences and then determined at the Key

Laboratory of Heavy Ion Physics, Beijing University, and two

samples were measured at the Beta Laboratory.

Results

Magnetic mineral assemblage

The hysteresis loops of four representative samples

displayed a narrow shape and reached saturation

magnetization below a 300 mT field. The coercivity of

remanence (Bcr) varied from 20 to 35 mT. The Day-plot

projection describes the PSD state of magnetic mineral

FIGURE 5
Variations in foliation (F) (A), degree of anisotropy (P) (B), and shape factor (q) (C) coeval with the particle size fractions of <7.5 (D)
and >100 μm (E).

FIGURE 6
Principal component plots (top) (Kirschvink, 1980) of representative specimens. Open circles (cross) display projections onto the vertical
(horizontal) plane.
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grains (Dunlop, 2002) (Figure 2). The κ-T profiles have the

most magnetic susceptibility loss at approximately 580°C,

although a prominent increase at approximately 260°C

existed. One sample at a depth of ~227.9 cm displayed a

“waist-shaped” loop with relatively high Bcr (~118 mT) and

Bc (~32.9 mT) values. The susceptibility of the heating curve

showed two stages, rising at temperatures of approximately

320°C and 500°C (Figure 2), which may arise from the

contributions of pyrrhotite and pyrite (Yang et al., 2008).

The S300 ratio value preserved a relatively stable mean value of

approximately 0.93 except in the interval of 2.26–2.38 m

(decreased to 0.43). The remanence ratio of ARM and

SIRM from 0 to 60 mT with their primary values are

generally greater than 0.8 (ARM(0–60)mT/ARM and

SIRM(0–60)mT/SIRM), and the SIRM/κ ratio does not show

very high values. The magnetic hysteresis data of Mrs/Mr were

less than <0.5, and Bcr/Bc exceeded 2, indicating little

influence of iron sulfides (Roberts et al., 2011). These

results demonstrate that the magnetic minerals of

sediments were mainly dominated by soft magnetite, while

the contribution of a few iron sulfides to the remanence is

minor (Deng et al., 2001; Roberts et al., 2011). The high-

coercivity minerals are preserved only in the sediments within

2.26–2.38 m.

Generally, the ratios of ARM/SIRM can serve as a proxy of

the magnetic grain size variations when the remanence of

sediments is mainly dominated by magnetite. To remove the

influence of a few iron sulfides on the remanence, we employ

the remanence difference ratios in the 0–60 mT

demagnetization field (ARM(0–60)mT/SIRM(0–60)mT) to

estimate the relative variations in the magnetic grain size.

The variations in the volume magnetic susceptibility (κ),
SIRM and ARM display a clear two-stage pattern

(Figure 3). Below ~140 cm, low values associated with a

weak increasing trend denote low concentrations of

magnetic minerals, while high values above 140 cm

represent high concentrations. Low and high concentration

values are linked to fine and coarse magnetic mineral

granularity, respectively (ARM/SIRM). This stage shift

should arise from the magnetic mineral inputs while the

mineral assemblages are consistent (the relatively stable

S300 ratio). The HIRM values also increased following the

SIRM and ARM, exhibiting that the high-coercivity

components in the sediments, such as hematite (Roberts

FIGURE 7
Correlation of the ChRMdirections of core ZH06 (A)with eastern Asian stack curves (EA-STACK) (Zheng J et al., 2014) (B) and archaeomagnetic/
CALS10k.2 model results of eastern China (Brown et al., 2015) (C). The radiocarbon ages are displayed in (A). The dotted lines show the favorite tied
points between the different curves.
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et al., 2021; Jiang et al., 2022), which formed during pedogenic

processes in the catchment areas, were transported to the

Pearl River Delta region.

Magnetic fabric and particle size variations

The stereographic projection of the anisotropy principal axes

displays a normal depositional fabric (Supplementary Figure

S2A). The maximum axes are scattered around the horizontal

plane, and the minimum axes cluster tightly around the vertical

plane. The principal directions of the long axes are aligned along

the northeast direction after correction based on the natural

remanence declination of the uppermost sediments

(Supplementary Figure S2B). The T-P projection of magnetic

fabric indicates that most specimens had oblate shapes, whereas a

few prolate samples had small p values (<1.04) (Tarling &

Hrouda, 1993) (Figure 4). The q-P plot shows that the

deposition was dominated by normal currents, slope gravity

and viscous suspension (Taira, A., 1989; Bradák-Hayashia

et al., 2017). However, some large q values (>0.6) present

increasing tangential stress and higher energy. A weak

negative correlation between p and q suggests that increasing

q is accompanied by decreasing anisotropy, possibly due to

rearrangement and the relatively chaotic behavior of grains in

higher-energy dynamics conditions.

The higher anisotropy (larger p-value) with low L in the

foliation plane may correspond to the relatively lower-energy

currents and the strengthening of the gravitational force

during grain transport (Figure 5). The foliation (F) and the

degree of anisotropy (p) varied in cycles. Increasing p indicates

relatively enhanced hydroenergy at the boundary of the water

and sediment surfaces. However, the terrigenous particle size

did not mimic the cyclic variations in the magnetic fabric

parameters. The fine silt and clay fraction (<7.5 μm) appeared

high in the middle part and low in the upper and lower parts.

The coarse size fraction exhibited high frequency fluctuation

below ~140 cm and a relatively high value above 100 cm. The

different changing patterns of p and particle size present two

types of hydrodynamic conditions. The magnetic fabric is

related to the bottom hydroconditions, while the coarse

particle size is responsible for higher-energy currents.

TABLE 1 The age-depth relation of Core Zh06.

a. Radio-carbon ages

Sample Materials Depth (cm) Lab. No. Measuring results
(yr BP)

Calibration results
(1 sigma, yr
BP)

ZH06-1–2 Shell 20 GZ4472 Present

ZH06-1–4 Shell 85 GZ4473 805 ± 25 689–713

ZH06-2–1 Plant debris 99.5 BETA 1280 ±30 1243–1273

ZH06-2–2 Shell 106 GZ4474 795 ± 25 702–723

ZH06-2 conchs 106 GZ4749 710 ± 30 652–676

ZH06-2–3 Plant debris 145.5 BETA 1920 ±30 1819–1885

ZH06-3–5 conch 258 GZ4475 2045 ± 25 1972–2003

b. Determining ages using PSV correlation

Depth (cm) Correlation age (kyr) Error (kyr)

12 0.17 0.01

44 0.5 0.05

91 0.8 0.02

112 1.0 0.05

136 1.3 0.02

152 1.44 0.04

185 1.55 0.04

258 1.9 0.02

280 2.16 0.05
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Natural remanence (NRM)

The NRM of all samples can be demagnetized using

alternative fields (AFs) of 0–80 mT. A weak second NRM

component can be removed in a few samples at AFs of

10–20 mT (Figure 6). The characteristic remanent

magnetization (ChRM) and maximum angle deviation

(MAD) can be evaluated between 20 and 80 mT. The

remanence of only 47 samples displayed a relatively

scattered distribution, and these samples were rejected

when analyzing the directional changes in core sediments.

Downcore variations in ChRM inclinations and declinations

are shown in Figure 7 (the declination represents only the

relative change). The MAD values are generally <5°,
confirming that the magnetization components are well

defined. The directions of both inclination and declination

are characterized by several prominent lows and peaks, which

represent the paleosecular variations in the geomagnetic field.

The large variability in the directions in the upper layer (from

100 to 10 cm) exceeds the results of the archaeomagnetic and

CALS 10 K.2 models (Brown et al., 2015; Cai et al., 2017),

which may result in debate about the reliability of the

FIGURE 8
Comparison of p (A), HIRM (B)with δ18O of core 17,940 (C) (Wang et al., 1999), the sea surface temperature (SST) of the western Pacific (E) (Stott
et al., 2004) and ENSO proxies (F,G) (Moy et al., 2002; Conroy et al., 2008)
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paleomagnetic directions. However, we do not have enough

reason to reject these results because the well-preserved

natural remanence, the minimal sediment disturbance, and

the relatively low p values (<1.06) associated with fine

sediments (the fraction of the grain size <60 μm varied

around 80%) are conducive to record the geomagnetic field.

Radiocarbon dating results

The radiocarbon ages are given in Table 1a. The ages from

the different labs may have a little discrepancy for the same

layer sediments, which can arise from the dating materials and

lab error. The calibrated ages suggest that the core sediments

are younger than 2.5 kyr despite the nonlinear distribution of

seven ages. Although the dating materials are intact shells,

conches and terrigenous debris, the complex deposition

process and possible reworking under delta conditions may

prevent the construction of a reliable chronology of

sediments. Almost the same age at the different depths of

85 cm and 106 cm may originate from the downward activity

of benthic shells or conches. The reverse age at a depth of

99.5 cm with the adjacent layers may reflect old plant debris

pollution from the drainage system.

Discussion

Constructing the chronology based on the
PSV correlation

The paleomagnetic field variations (PSVs) were

determined as the long-term temporal changes in the

Earth’s magnetic field longer than several hundreds of

years, which resulted from the effect of magnetic diffusion

in the core-mantle boundary zone (Korte & Holme, 2010;

Korte et al., 2011; Laj & Channell, 2015). A series of studies

have suggested that the PSV can serve as an effective dating

tool within a region of thousands of kilometers (Yang et al.,

2009; Shanahan et al., 2013). In eastern China, the nondipole

field has a common influence on the geomagnetic field, and

the PSV has had a similar pattern since the Holocene (Korte &

Holme, 2010). This feature meets the criteria of PSV dating of

the sediments. Zheng Y et al. (2014) reconstructed a PSV stack

of East Asia (EA-Stack) by synthesizing sedimentary and

archeological results, which provides an important

reference curve for a large region.

During the river delta deposition process, ocean currents

and bottom fauna often disturb the materials; however, the

reworked sediments mostly occur near the water–sediment

interface. The magnetic minerals are realigned along the

Earth’s magnetic field after these disturbances. The natural

remanence preserved in such sediments can record the

features of the Earth’s magnetic field. We link our

inclination and declination records to the EA-Stack

constrained by the radiocarbon ages, and six tied points

can be recognized in the inclination correlation (Figure 7).

For the upper 20 cm sediments, we correlate them to the

archaeomagnetic records of East Asia and the

CALS10k.2 model results (Brown et al., 2015; Cai et al.,

2017) to achieve a tied point at ~12 cm. Hence, a

correlation depth-age model can be reconstructed based on

these tied points (Table 1b). A possible error may occur within

180–280 cm. Our inclination displayed a relatively stable

plateau with some fluctuations, while the EA-Stack

exhibited a decreasing trend. However, the radiocarbon

ages of 1852 and 1988 at depths of 145.5 cm and 258 cm

provide two constrained points. The chronology of core

sediments can be established by the deposition rate and

correlation age. The results attest that the core sediments

approximately 283 cm in length document a deposition of

approximately 2.1 kyr.

FIGURE 9
Comparison of the particle size fraction >100 µm (A) and q
values with flood proxies reconstructed from a stalagmite from
Shennongjia (Zhu Z. M et al., 2017) (C) and historical records of the
Yangtz River delta (D) (Nian et al., 2022).
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Hydrodynamic change and tropical
precipitation

Anisotropic magnetic susceptibility reflects the fabric acquired

by the sediments during deposition (Wassmer et al., 2015), which

is often used to determine the paleocurrent direction, tsunami

events and deposition process (Schneider et al., 2014; Bradak-

Hayashi et al., 2017). The different flow stresses in the bottom layer

can induce the varying p and the orientation of the long axis

(Kmax). When the currents have weak or laminar flow, Kmax is

parallel to the flow direction (Tarling & Hrouda, 1993). The p

values of our core were less than 1.04 for most sediments, which

are mainly dominated by foliation (F). Low and high p values

indicate weak and increased flow stress during the deposition

period, respectively. The flow strength at the core site may be a

mixture of river currents with waves and tides; however, the latter

two should have a relatively mean stable strength with daily and

monthly fluctuations. The change in the flow stress should mainly

arise from the river discharge influence, which is heavily controlled

by precipitation. Comparing the variations in pwith the detrended

HIRM values, a consistent pattern appeared (Figure 8). A high

HIRM represents a greater flux of terrigenous debris under the

intensification of pedogenic processes in subtropical regions with

warm and wet climate conditions (producing more high-coercivity

minerals) (Long et al., 2011; Jiang et al., 2018; Jiang et al., 2022).

Enhanced rainfall strengthens the river discharge and sediment

load (Liu et al., 2017), which increases p values. Hence, cyclic p and

HIRM indicate the periodicity of tropical precipitation.

Performing the spectral analysis for p values (Li et al., 2019),

two periods of approximately 300 years and 100 years are

significant (Supplementary Figure S3). High p values remain

consistent with the sea surface temperature of the western

tropics (Stott et al., 2004), which would induce an ENSO boom

(Moy et al., 2002; Conroy et al., 2008; Karamperidou et al., 2015;

Barr et al., 2019). Simulation studies and modern observation

records also confirm that in contrast to the monsoon change

recorded in stalagmites, ENSO activities and tropical storms play

an important role in tropical precipitation, although an ambiguous

relationship exists at interannual time scales (Liu et al., 2017; Deng

et al., 2018; Yan et al., 2022). Strong ENSO activities (La Niña

years) induce more rainfall in river basins (Barr et al., 2019), which

influences land and ocean areas. The δ18OG. Ruber of core

FIGURE 10
The relation of sediment inputs expressed by magnetic proxies with population growth in Guangdong Province (Zhu et al., 1988).
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17,940 selected from the northern South China Sea (Wang et al.,

1999) agrees well with the p and HIRM curves, suggesting a

common forcing process arising from precipitation.

Strong tropical storms, especially typhoons, can induce heavy

rainfall in a short time (Yan et al., 2022). This process causes

higher energy transport, high-density water and grain-to-grain

interactions, and the sediments in the bottom layer are “slurry-

like”. The q values of the magnetic fabric increase with low p values

and coarse particle sizes. That is, the large q values can hint at floods

and a high-energy flow. During the period of 1.4–1.9 kyr BP

(Figure 9), coarse particle grains fluctuate with high frequency

and amplitude, and the q values have a corresponding pattern.

They present high-frequency tropical storms, agreeingwell with the

flood events that occurred in the Yangtze RiverDelta (Zheng J et al.,

2014; Nian et al., 2022) and central China, which were

reconstructed from the historical reference and IRM flux in the

stalagmite (Zhu Y. N et al., 2017), respectively. The high-frequency

typhoon events correspond to the low temperature in eastern

China (Ge et al., 2003). When the temperature increased, the

typhoon frequency decreased. The consistent high-frequency

tropical storms forced flood events, which affected not only the

eastern coastal area of China but also the central part of China.

Human activity-induced sediment flux

The remanence of sediments was mainly dominated by soft

magnetite, and SIRM variations arose from the concentration of

magnetite, which depends on terrigenous inputs. The sediment

load increase should have responded to an increasing SIRM trend

from approximately 1.6–1.0 kyr BP (Figure 10). Neither high-

energy tropical storms nor relatively weak ENSO activity display

this long-term trend (Conroy et al., 2008; Nan et al., 2014)

(Figures 8, 9), and the increase in the sediment load may arise

from other factors. Some investigations show that the sediment

supply from the Pearl River over the last ~150 years was

dominated by human activities (Ranasinghe et al., 2019). The

population of Guangdong Province grew from 240,000 to

2,920,000, and most of them lived in the Pearl River Basin

(Zhu et al., 1988). Increasing cultivation activities destroyed

vegetation and produced a large amount of debris, which was

transported to the lower reaches of the delta. Since approximately

500 years ago, the population has also increased rapidly, but the

central region has migrated to the lower reaches of the delta

region, and dam construction and reclamation have limited the

debris into the river system. Therefore, the relationship between

population growth and sediment flux at approximately 2.5 kyr

BP indicates that different human activities have an important

impact on sediment inputs. In an agricultural society, planting

activities in river basins increase sediment inputs, but modern

human activities in the lower reaches of the delta may reduce the

inflow of debris despite natural processes.

Conclusion

The sediments of core ZH06, which is from the Pearl River

subaqueous delta and is ~2.8 m in length, provide the

hydrodynamic evolution process and sediment input history

impacted by human activity. The paleomagnetism and

magnetic fabric analysis provide the chronology of sediments

and the proxies indicating the water energy and sediment flux.

Based on the environmental and magnetism investigations, we

can infer some insights about the deposition process in the Pearl

River Delta region.

1) The deposition may be disturbed by various factors, and the

radiocarbon ages have difficulty constraining the age of

sediments. The paleosecular variations, which rely on

geomagnetic field variations over hundreds to thousands of

years, have provided a reliable chronology since

approximately 2.5 kyr.

2) Cyclic variations in the degree of anisotropy of magnetic

susceptibility (P) at 100 and 300 years imply relatively weak

energy arising from ENSO activities, which dominate the

precipitation in this region.

3) The large shape factor (q) values coeval with the coarser

particle size fraction denote the higher-energy current, which

can induce the “slurry-like” transport of sediments during the

period of 1.3–1.9 kyr, in which the strong tropical storms

occurred at high frequencies and intensities.

4) The increasing trend of the SIRM from 1.3 to 10 kyr BP indicates

increasing human activity after the Sui Dynasty. The agricultural

planting in the river basin destroyed the vegetation and

produced large amounts of debris, which flowed into the

river and were transported to the lower reaches of the delta.
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Temporally varied coastal uplift
rates north of the Littoral Fault
Zone since the late Quaternary in
the northern South China Sea:
Insights from the wave-cut
platform and cosmogenic
exposure dating
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While understanding the long-term slip rate of active normal faults is essential for the

comprehensive assessment of seismic activity, it is difficult due to the absence of age

control in the erosional bedrock region. The preserved sequence of wave-cut

platforms in granite allows exploration of the long-term slip rate in the footwall of

some normal faults. We investigated wave-cut platforms in the southern Pearl River

Delta (PRD), a coastal delta transectedby the seismically active Littoral Fault Zone (LFZ)

in the northern South China Sea, to derive slip rates and their impacts on the seismic

hazard potential. Wemapped a flight of fourwave-cut platforms (T1–T4), dated the T2
and T4 platforms by 10Be cosmogenic nuclide dating, and used the absolute age to

correlate theun-datedplatform toglobal sea-level highstands.Our results allocate the

ages of 128 ka, 197 ka, and 239 ka to the upper three wave-cut platforms and yield

temporally various uplift rates ranging from 0.30 to 0.38mm/a during 239–128 ka to

0.09mm/a since 128 ka. A decrease in the uplift rate, which coincided with a

decreased subsidence rate within the PRD in previous work, implied a weakened

differential uplift onshore of the LFZ system. Our findings infer that the transgression

event occurred as early asmarine isotope stage (MIS) 7 in the PRD, consistentwith the

view that Pleistocene sedimentation began in MIS 5 or earlier in the PRD.

KEYWORDS

coastal uplift, Littoral Fault Zone, wave-cut platform, cosmogenic dating, Pearl River
Delta

OPEN ACCESS

EDITED BY

Shiming Wan,
Institute of Oceanology (CAS), China

REVIEWED BY

Kai Deng,
ETH Zürich, Switzerland
Yongjian Yao,
Guangzhou Marine Geological Survey,
China

*CORRESPONDENCE

Hao Liang,
liangh27@mail2.sysu.edu.cn

SPECIALTY SECTION

This article was submitted toQuaternary
Science, Geomorphology and
Paleoenvironment,
a section of the journal
Frontiers in Earth Science

RECEIVED 23 August 2022
ACCEPTED 07 November 2022
PUBLISHED 13 January 2023

CITATION

Liang H, Zhang K, Li Z, Chen Z, Hui G,
Huang P, Tian Q, Tang Y, Chen C,
Zhang Y, He X, Yan Y, Dai X, Li Z, WangW
and Zhang P (2023), Temporally varied
coastal uplift rates north of the Littoral
Fault Zone since the late Quaternary in
the northern South China Sea: Insights
from the wave-cut platform and
cosmogenic exposure dating.
Front. Earth Sci. 10:1026181.
doi: 10.3389/feart.2022.1026181

COPYRIGHT

© 2023 Liang, Zhang, Li, Chen, Hui,
Huang, Tian, Tang, Chen, Zhang, He,
Yan, Dai, Li, Wang and Zhang. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 13 January 2023
DOI 10.3389/feart.2022.1026181

115

https://www.frontiersin.org/articles/10.3389/feart.2022.1026181/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1026181/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1026181/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1026181/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1026181/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1026181/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1026181/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2022.1026181&domain=pdf&date_stamp=2023-01-13
mailto:liangh27@mail2.sysu.edu.cn
https://doi.org/10.3389/feart.2022.1026181
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2022.1026181


Introduction

The slip rate at the coastline from the area of distributed

normal faulting in the continental margin is commonly used to

gain insights into the processes of intraplate deformation

(Merritts and Bull, 1989; Monaco et al., 1997; Palyvos et al.,

2005). Because the inner edge between a subhorizontal wave-cut

platform and a steep coastal cliff represents an approximation of

zero height above sea level at the time of platform formation,

their current altitudes can be used to correlate with oscillating

sea-level highstands and to further quantify the slip rate of faults

for long-term seismic hazard analysis (Roberts et al., 2013; Jara-

Muñoz et al., 2015; Meschis et al., 2018; Pedoja et al., 2018).

However, obtaining precise dating results on erosional or thin

depositional wave-cut platforms is challenging and, thus, less

studied. Fortunately, cosmogenic nuclide dating provides the

exposure age of the wave-cut platforms, and further permits slip

rate calculations when the initial and modern altitudes of

platforms are determined (Marquardt et al., 2004; Saillard

et al., 2011; Rodríguez et al., 2013). This approach accurately

evaluates Quaternary tectonic activity in erosional bedrock

regions, which helps to quantitatively understand long-term

seismic hazard assessment along faults.

The Pearl River Delta (PRD), where major drainages

converge into the South China Sea from several estuaries, is

one of the largest coastal deltas in China (Figure 1). The bedrock

FIGURE 1
Tectonic setting of the northernmargin of the South China Sea, southern China. The earthquake locations are constrained to a depth of <30 km
between 1976 and 2022 from data from the China Earthquake Network Center and Guangdong Provincial Seismological Bureau. The faults are
adapted fromHuang et al. (1982), Yu et al. (2016), andHuang et al. (2021). The locations of the wave-cut platforms in previous studies are fromHuang
et al. (1982), Jiang and Hu (1994), Wang et al. (2011), and Zhao (2017). F1: Littoral Fault Zone; F2: South Wuguishan Fault; F3: North Wuguishan
Fault; F4: Xinhui–Shiqiao Fault; F5: Wuhua–Shenzhen Fault; F6: Xijiang Fault; F7: Baini–Shawan Fault; F8: Hualong–Huangge Fault; F9:
Nangang–Taiping Fault. The topography is from the Shuttle Radar Topography Mission (SRTM) digital elevation model at 90-m resolution.
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of the PRD is predominately composed of Mesozoic granite and

is cut through by a set of conjugate ENE-striking and NNW-

striking faults (Huang et al., 1982; Chen et al., 2002; Yao et al.,

2008). The ENE-striking Littoral Fault Zone (LFZ) system is a

major intraplate extensional zone in the northern South China

Sea that could present potentially intense seismic activity (Liu,

1985; Zhao et al., 2004; Cao et al., 2018; Hui et al., 2021; Dai et al.,

2022a; Hui et al., 2022; Li et al., 2022) and has caused several

strong earthquakes historically [e.g., the 1918 Ms 7.5 Nan’ao

earthquake, Xia et al. (2020)]. To elucidate the slip rates of this

active normal-fault system, numerous samples from the

subsiding hanging wall of the ENE-striking faults where

Quaternary deposits were preserved have been dated (Huang

et al., 1983, 1985; Chen et al., 1994; Yao et al., 2008). However,

few dating results exist from the uplifting footwall due to poor

preservation for sediment dating. Thus, understanding the

longer-term activity of these normal faults through the

Quaternary, which requires robust dating on both fault walls,

is lacking. Fortunately, Pleistocene differential uplift is visible in

sequences of preserved wave-cut platforms throughout the coast

in the PRD. In this study, we present sequential wave-cut

platforms in the footwall of a coastal ENE-striking fault in the

southern PRD. We dated the granite-composed wave-cut

platform according to the 10Be cosmogenic depth profile,

calculated the uplift rates, and correlated the un-dated

platforms to past eustatic sea-level highstands based on the

best-fit predictions. As a result, we identified marine isotope

stages (MISs) 5e, 7a, and 7e platforms in the study site. Moreover,

we observed temporally varied slip rates before and after

approximately 128 ka, which may be relevant to a weakened

differential uplift onshore in the LFZ system.

Background

Brief genetic process of wave-cut
platforms

A new wave-cut platform is created by continuous wave

abrasion and consists of two distinct features: a gently

seaward dipping erosional platform and a seaward

dipping sea cliff (Armijo et al., 1996). The junction of

the platform and sea cliff is the inner edge of the

platform and often preserves the wave-cut notch. The

inner edge of the platform occurs at the shoreline and

represents the peak of local sea level at a short time of

its formation (<1 ka). Hence, the wave-cut platform can

correspond to the fixed dates of highstands (e.g.,128, 197,

239, 290, or 338 ka). Platforms or notches that are formed

below the highstand are destroyed or overprinted by wave

erosion during subsequent sea-level highstands. With

tectonic uplift, the platform rises above sea level and

becomes a paleo-horizontal indicator.

Littoral Fault Zone

The LFZ is an ENE-striking intraplate deformation zone

along the northern margin of the South China Sea. The entire

fault zone extends approximately 1,000 km along the South

China coastline with an approximate width of 20 km (Liu,

1985; Zhao et al., 2004; Cao et al., 2018; Hui et al., 2021,

2022). Offshore of the PRD estuary at water depths of

30–50 m, the LFZ (F1) presents right-step dextral features on

the horizontal view, and southeast-dipping normal faulting in the

vertical view (Liu, 1985; Zhao et al., 2004; Cao et al., 2018; Hui

et al., 2021, 2022). Seismic profiles reveal that the LFZ acted as a

northern boundary fault of the South China Sea with a width of

6–10 km (Li et al., 2022). The Cenozoic history of the LFZ is

complex, containing initial fault activity of low-angle basement

decollement, then inherited high-angle SE-dipping normal

faulting, and finally strike-slip faulting. The active LFZ had

potentially produced 18 large earthquakes (>Ms 6.0),

including the Ms 7.0 Nan’ao earthquake in 1600, Ms

7.5 Qionghai earthquake in 1605, and Ms 7.5 Nan’ao

earthquake in 1918 (Xia et al., 2020; Dai et al., 2022; Hui

et al., 2022). Onshore, the granitic basement of the PRD is

transected by three NE- to ENE-striking faults (South

Wuguishan Fault, F2; North Wuguishan Fault, F3; and

Xinhui–Shiqiao Fault, F4, Figure 1) and several NNW-striking

faults (Chen et al., 2002; Yu et al., 2016). The NE- to ENE-striking

faults exhibit normal faulting with high dipping angles (Huang

et al., 1985; Chen et al., 1994), showing uplifts in their footwalls.

The NNW-striking faults bound the river course and segmented

the NE- to ENE-striking faults in places, but their activities are

less well known. We are interested in the onshore ENE-striking

F2 in the southern PRD because it appears to control the opening

of estuaries and dominate the differential uplift that can be

explored through the mapping and dating of wave-cut platforms.

Sediment dating in the PRD

Following long-term peneplanation since the Oligocene

(Huang et al., 1982), sedimentation in the PRD only produced

two Quaternary terrestrial-marine units: T1–M1

(Terrestrial–Marine units 1, upper) and T2–M2

(Terrestrial–Marine units 2, lower) that correspond to sea-

level fluctuations (Huang et al., 1982; Zong et al., 2009b; Xu

et al., 2022). The T1–M1 unit has a consensus age of Holocene

(Zong et al., 2009a; Xu et al., 2020), whereas the deposition age of

the T2–M2 unit remains controversial. Early works dated the

M2 unit to MIS 3 (approximately 32–64 ka) by the 14C approach

(Huang et al., 1982; Chen et al., 1994; Wang et al., 2009).

However, subsequent studies suggested that contamination

with younger carbon and the upper limit of radiocarbon

dating (<50 ka) would lead to significant age underestimation

(Yim et al., 1990, 2008; Zong et al., 2009b; Yu et al., 2016) and
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suggested MIS 5 (approximately 82–128 ka) for M2 deposition.

The wide disparity in the time results in various interpretations of

the tectonic context of the PRD in the Late Quaternary. In the

MIS 3 view, M2 formed during the highstand of MIS 3

(approximately −60 m to −80 m) and was tectonically raised

to the modern average depths (approximately −15 m to −30 m),

for which the dates are obtained from quartz optically stimulated

luminescence (OSL) of sandy sediments in the T2 unit (Tang

et al., 2011; Wang et al., 2015). In contrast, in the MIS 5 view,

M2 formed during the highstand of MIS 5 (approximately −20 m

to 5 m) and tectonically subsided to the modern average depth, a

view that is supported by feldspar OSL dating (Yim et al., 2008;

Zong et al., 2009b; Yu et al., 2016; Xu et al., 2022). One way to

address the dipolar age issue is to determine a regional uplift rate

and examine whether deposits related to the MIS 3 highstand

could rise to the modern depth based on the resultant rate. This

challenge motivated us to examine landforms related to

highstands in the erosional area. Wave-cut platforms, which

occur where uplift outpaces sea-level highstands, commonly

document long-term tectonic activity (Armijo et al., 1996;

Roberts et al., 2013, 2013; Jara-Muñoz et al., 2015; Meschis

et al., 2018; Pedoja et al., 2018; Robertson et al., 2019; Racano

et al., 2020) and are ideal for addressing the dipolar age issue. A

previous study indicated that at least 67 sites of wave-cut

platforms (or notches) are preserved in the PRD (Wang et al.,

2011). Because most sites preserved few sediments and lacked age

control, previous studies provided only a rough understanding of

tectonics (Wang et al., 2011; Zhao, 2017). In our recent

investigation, wave-cut platforms preserved in granite were

observed along the footwall of the coastal F2 (Figure 1),

which is suitable for 10Be cosmogenic exposure dating. We

conducted field investigations, digital elevation model (DEM)

measurements, and dating to allocate the highstands to wave-cut

platforms and then discussed differential uplift in the PRD

region.

Methods

Investigation of the wave-cut platforms

Because the inner edges of the wave-cut platforms

represent paleo-sea-level highstands, we mapped the

platform extent through topographic profiles from a 12.5-

m DEM (from Advanced Land Observing Satellite-1, ALOS

12.5-m resolution DEM, https://search.asf.alaska.edu) and

field-based measurements. Because of thick vegetation and

their relatively small size, it was difficult to recognize the

apparent extents of the wave-cut platforms along their strike

solely from the DEM data. Therefore, we selected 13 serial

topographic profiles perpendicular to the strike of the coast

(Figure 2) and recorded the positions and altitudes of the

landward up-dip slope breaks as indicators of the inner edges

of the wave-cut platforms. Areas with apparent fluvial

incisions were skipped to ensure wave-cut-induced

geomorphic features. We defined each inner edge of the

wave-cut platform based on three or more slope breaks

with similar altitudes in the topographic profiles. The

DEM-based inner edges were verified through field

observations with indicators including slightly seaward-

sloping surfaces that were up-dip bounded by abrupt

paleocliff-like features or marked wave-cut notches and

stacks. Field measurements were recorded using a

differential global positioning system (DGPS; vertical error

up to 0.1 m) and laser distance measuring equipment (0.1 m

resolution within 300 m). The verified inner edges were

correlated with DEM elevation to obtain a robust regional

cross-section of the uplifted wave-cut platform. Each

platform was ordered from low to high and specified with

subscripts.

Chronological sampling, preparation, and
modeling approach

We applied cosmogenic 10Be exposure dating to the granite

platform treads to constrain the potential formation ages of the

wave-cut platforms. For the surface sample, we collected one

sample on a wave-cut platform without apparent weathering. For

the depth profile, we collected four samples from a ~1-m man-

made quarried wall downward at intervals of 25–35 cm/site.

Because of rainfall and intermittent runoff, part of the platform

surface was eroded at the top of the quarried wall. The erosional

thickness between the platform extent to the edge of the quarried

wall was estimated for correction in the depth profile modeling.

Approximately 1,500 g of rock was collected for each sample. The

samples were pretreated at the Guangdong Provincial Key

Laboratory of Geodynamics and Geohazards and the State

Key Laboratory of Environmental Geochemistry, Institute of

Geochemistry, Chinese Academy of Sciences, as described by

Kohl and Nishiizumi (1992).

The cosmogenic nuclide concentration of surface (Nz(t),

atoms/g) exposed at time t (a) at constant production and

erosion rates can be expressed as:

Nz(t) � Pn,0ⅇ−
ρz
Λn⎛⎝1 − ⅇ( ρr

Λn
+λ)t

ρr
Λm1

+ λ
⎞⎠ + Pm1,0ⅇ−

ρz
Λm1⎛⎜⎜⎜⎝1 − ⅇ( ρr

Λm1
+λ)t

ρr
Λm1

+ λ
⎞⎟⎟⎟⎠

+ Pm2,0ⅇ
− ρz
Λm2⎛⎜⎜⎜⎝1 − ⅇ( ρr

Λm2
+λ)t

ρr
Λm2

+ λ
⎞⎟⎟⎟⎠ (1)

where Pn,0, Pm1,0, and Pm2,0 are the surface production rates

(atoms/(g*a)) induced by nucleons, negative muons, and fast

muons; Λn, Λm1, and Λm2 are the attenuation lengths (g/cm2) of

the nucleons and muons (negative and fast), respectively; z

is the surface depth (cm); λ is the decay constant; ρ is the

density (g/cm3); and r is a constant erosion rate (cm/ka).
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For the depth profile samples, the measured 10Be

concentration (C, atoms/g) included the in situ-produced (Nz,

atoms/g), and the inherited (Cinℎ, atoms/g) concentrations:

C � Nz(t) + Cinh � ∑PziTei + Cinh (2)

where Nz(t) � ∑PziTei, Pzi � Pi,0ⅇ
−ρz
Λi , Tei � (1−ⅇ(

ρr
Λi

+λ)t
ρr
Λi
+λ ), i = n, m1, m2

Te is the effective exposure age (ka), which is the time

required to accumulate a concentration Nz at production rate

Pz without erosion and radioactive decay (Wang and Oskin,

2021).

In realistic cases, the estimated total eroded thickness (D, cm)

from field evidence can be more straightforward than obtaining

an erosion rate r. With eroded thickness, the effective exposure

age can be rewritten as:

Tei � (1 − ⅇ(ρD/Λi+λt)
ρD/Λit + λ

)i � n,m1, m2 (3)

Taking account of Eq. 3, one would expect to use linear

regression to obtain the inheritance. To rewrite Eq. 3 into a linear

form, the natural logarithm of the Tem over Ten ratio can be

expressed by Maclaurin expansion as an approximation (Wang

and Oskin, 2021):

gi � Temi

Ten
≈ ⅇ

−12( ρD
Λmi

−ρDΛn)+1/24[(( ρD
Λmi
)

2

−(ρD
Λn
)

2

)]
, i � 1, 2 (4)

Bringing Eq. 4 into Eqs 1, 2 results in the following,

C(z) � PznTen + Pzm1g1Tem1 + Pzm2g2Tem2 + Cinh

� PzeTen + Cinh (5a)
where

Pze � Pzn + Pzm1g1 + Pzm2g2 (5b)

In which Eq. 5 satisfies the linear form and linear least

squares can be applied. By applying linear least squares

inversion with known production rates, eroded thickness,

and sample concentrations, the fitted Ten and Cinh can be

determined.

FIGURE 2
Simplified topographic and geological map of the study area. Locations of topographic profiles 1 to 13 and the 10Be cosmogenic sampling site
are shown with a 10-m topographic contour spacing interval ranging from 0-m to 120-m at altitude.
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To compute the exposure age, inheritance of cosmogenic

production, and estimated erosion rate of the depth profile, we

applied the Monte Carlo approach described byWang and Oskin

(2021) to find the best-fit results according to the distributions of

the predicted iterations. To compute the exposure age of the

surface sample, we applied a web-based calculator (https://crep.

otelo.univ-lorraine.fr/#/samples) to obtain a reference age,

assuming that the erosion rate and inheritance from the depth

profile are constant over time. The detailed methods for sample

pretreatment and calculation of cosmogenic nuclide

concentrations are shown in the Supplementary Material.

Allocating the wave-cut platforms to sea-
level highstands

The predicted elevation of the highstands (Ep) can be

calculated from the relationship between the highstand age

related to the wave-cut platform formation age (T) and the

sea-level elevation of the highstand (SL) under a given uplift

rate (u):

Ep � (T × u) + SL (6)

If the highstand age (T) is independently known, an average

uplift rate (u) over the duration (T) is easily obtained by Eq. 6. In

a realistic case, a constant uplift rate over time is questionable,

which could significantly affect the allocation between

Quaternary sea-level highstands and individual wave-cut

platforms. We applied the following process to test the uplift-

rate scenarios: (a) obtain an initial uplift rate (u0) by correlating

the elevation (Em) of a dated wave-cut platform (in an age of T0)

with sea-level data, assuming a constant uplift rate through T0;

(b) apply u0 to examine whether Ep matches all Em in the study

area; (c) if not, iterate a new uplift rate (ui) to find the best fit for

the elevations of the older wave-cut platforms (Epi) at Ti (greater

than T0), which can be expressed as:

Epi � (Ti − T0) × ui + (T0 × u0) + SL (7)

The fit between Ep and Em is evaluated by their absolute

difference (ΔE) for a given highstand age (Ti) and uplift rate (ui).

The elevations (SL) and ages (Ti) of each highstand are up to 500 ka,

from Grant et al. (2014). The calculations are facilitated by the uplift

rate (ui) in an interval of 0.01 mm/a. We defined the best-fit uplift

rate (ui) of each undated platform by ΔE < 5; lower platforms with

fitted uplift rates should correlate with younger highstands and a

uniform uplift rate in individual glacial-interglacial cycles.

Uncertainties and errors

The average elevation measurement errors from DEM

were ±10 m. The uncertainties in 10Be concentrations, as

shown in Table 1, depend on the combined uncertainties by

sampling (<5%), propagating the production rate and analytical

uncertainty in the laboratory. Sea-level curve uncertainties vary

with the data used. The reported uncertainty of the Grant et al.

(2014) curve is 12 m.

We applied the standard error (SE) described by Robertson

et al. (2019) to propagate the uplift value error equation:

SE(u)2 � u2 × ((σH2/(HT −HSL)2) + (σT2/T2)) (8)

where u is the uplift rate, σH is the combined uncertainty for the

measured wave-cut platform elevation and sea-level curve, HT is

the measured inner-edge elevation of the wave-cut platform, HSL

is the predicted sea level of the highstand, and σT is the dating

error.

Results

Elevation of the wave-cut platforms

From the 13 DEM-based topographic profiles and

approximately 40% field-based verifications excluding

areas with thick vegetation or limited access to platforms,

we identified the inner edges of the wave-cut platforms in the

study area (Figures 3A,B). The cross-plots of DEM-based

inner-edge elevations against the field-based inner-edge

elevations provided confidence in the verification of the

wave-cut platforms (R2 = 0.989; Figure 3C). According to

the inner-edge elevations, a flight of four wave-cut platforms

was defined in the study area (Figure 3D).

The T4 platform, bounded landward by inner edges

reaching an altitude of 33–38 m above sea level (a.s.l.;

Figures 3A, 4A), is characterized by remnants of narrow

platforms that are carved in Mesozoic granite. Notches can

be observed close to the inner edge of the platform, without

apparent weathering. We collected one sample (XC) on the

wave-cut platform surface (Table 1). Downslope, the T3

platform outcrops with the altitude of the inner edge

ranging from 23 to 25 m a.s.l (Figures 3A, 4B). Because of

thick vegetation, the narrow T3 platforms are visible only in a

few places.

The T2 platform is extensive, with the inner edge ranging

from 14 to 18 m a.s.l. (Figure 3B). Because of rainfall and

intermittent runoff, approximately 40 cm of bedrock was

eroded at the seaward edge of the platform. Quarrying was

conducted on the platform to expose a freshly quarried wall

for 10Be depth profile dating (Figure 4C). We collected four

samples (GDS-P1to GDS-P4) downward the platform tread at

25–35-cm intervals. The T1 platform is the lowest order of the

terrace sequence, with an altitude of 1–3 m a.s.l. This platform

shows a wide, flat surface with remnant sea stacks and merges

with the coastal plain (Figures 3B, 4D,E).
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Results of 10Be exposure dating

The measured 10Be concentrations of the one surface

sample and four depth profile samples, ranging between

6.15 ± 0.28 × 104 atoms/g and 34.10 ± 1.09 × 104 atoms/g,

are listed in Table 1 along with the 1σ errors. We use the

eroded-thickness approach to invert the inherited

concentration, erosion rate, and exposure age of the depth

profile for a uniformly distributed, field-measured 0–40 cm

eroded-thickness (Figure 4C).

By applying least-squares linear inversion, the fitted lines of

the model data and depth profile curves are shown in

Figure 5A,B. The distribution of Te (95% confidence) yields

ranged from 66.5 to 119.0 ka, with a peak at 86.0–88.0 ka

TABLE 1 10Be sample locations and analysis.

Coordinates and
altitude

Sample ID Depth (cm) Thickness (cm) Surface production
rate (atoms/(g*a))a

10Be (104

atoms/g)

10Be error
(104 atoms/g)

22.1597°N 113.0279°E 17 m a.s.l GDS-P1 5 5 3.0171 21.3 0.57

GDS-P2 35 5 10.2 0.41

GDS-P3 55 5 7.6 0.31

GDS-P4 80 5 6.1 0.28

22.1597°N 113.0279°E 35 m a.s.l XC 0 5 3.0171 34.1 1.09

aSurface production rates of 10Be are calculated based on MATLAB scripts (Hidy et al., 2010; Lifton et al., 2014).

FIGURE 3
Compiled profiles of wave-cut platforms reproduced by digital elevation model (DEM)-based topographic profiles. The elevations of the slope
breaks are at altitudes of 33–38 m and 23–25 m in (A), and at 14–18 m and 1–3 m in (B). The profile IDs are labeled. (C) Cross-plots of DEM-based
inner-edge elevations against the field-based inner-edge elevations. (D) Cross-section of wave-cut platforms in the study area.
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(Figure 5C). The inheritance was very low, with most modeling

results in the range of −9.00 to −1.20 × 104 atoms/g (95%

confidence). Although inheritance should be greater than zero,

removing negative inheritance would bias the best-fit

distribution toward a younger age (Wang and Oskin, 2021).

Thus, for samples with very low inheritance, truncating negative

inheritance results would shift the realistic age to the extreme

older tail of the age distribution. As all predictions are required to

estimate the full distribution of the exposure age within errors,

those negative values were permitted statistically and

subsequently excluded. Excluding the negative results, the

possible range of inheritance was 0–0.74 × 104 atoms/g

(Figure 5D). The corresponding exposure age and erosion rate

of the T2 platform ranged from 101.38 ka to 132.16 ka (Figure 5E,

95% confidence) and 0.36–0.40 cm/ka, respectively (Figure 5F,

95% confidence). The predicted erosional thickness was 45 cm,

consistent with the erosional thickness measured in the field

(Figure 5G).

Assuming a constant erosion rate and very low inheritance

(0.36–0.40 cm/ka and nearly zero from resultant data of the

T2 platform), we obtained an age of 239.87 ± 14.18 ka for the

T4 platform based on the 10Be concentration of the surface

sample.

Discussion

Allocation of highstand ages for the wave-
cut platforms

The estimated exposure age suggests that the T2 platform

could be allocated to a highstand at approximately 128 ka, which

is equivalent to MIS 5e. Given this age and the elevation of sea

level described by Grant et al. (2014), we obtain an initial uplift

rate (u0) of 0.09 ± 0.030 mm/a since 128 ka. Although the surface

sample of T4 suggests a reference age of approximately 239 ka,

which is equivalent to MIS 7e, whether the platform would be

overprinted independently in such time requires further

examination.

When applying u0 to examine whether the Ep values of the T3

and T4 platforms matched the Em values in the study area,

the resultant fit failed to reach the range of ΔE < 5, suggesting

that the uplift rate was not constant during the formation of

the T3 and T4 platforms. Following the iterations of best fit with a

fixed uplift rate since 128 ka (0.09 mm/a) and a given uplift

rate ranging from 0 mm/a to 0.5 mm/a with an interval of

0.01 mm/a during 128–500 ka revealed three predicted

scenarios that satisfied our defined fit condition: 1) T3 and T4

FIGURE 4
(A)View of the T4 platformwith a notch close to the inner edge. (B)View of the T3 (red shading) platform. (C) The T2 platform and the locations of
10Be cosmogenic dating depth profile samples; note that approximately 40 cm of bedrock was eroded. (D) View of T2 (yellow shading), and T1 (blue
shading) platforms. (E) The sea stack is preserved on the T1 platform close to the coastal plain.
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platforms with highstand ages of 239 ka and 388 ka and uplift

rates in the range of 0.22–0.25 mm/a; 2) T3 and T4 platforms with

highstand ages of 197 ka and 239 ka and uplift rates in the range

of 0.30–0.38 mm/a; and 3) T3 and T4 platforms with highstand

ages of 197 ka and 290 ka and uplift rates in the range of

0.39–0.41 mm/a (Figures 6A–C).

We plotted highstand elevations with the fit rates for each

scenario to examine whether the predicted wave-cut platform

would be overprinted in a subsequent highstand. In the scenario

of 0.22–0.25 mm/a, the elevations of the T3 and T4 platforms

were 21.1–24.5 m and 30.9–38.7 m. However, the predicted

elevations of the platforms for 328 ka (44.0–50.1 m) would

FIGURE 5
Linear regression results for the GDS data set with the eroded-thickness approach after 100,000 iterations. (A) Relationship of sample
concentration to production rate at depth. (B) Distribution of the depth profile models with best-fit curves. (C) Distribution of the effective exposure
age (Te). (D)Modeling-inherited concentration. (E) Estimated exposure age based on a preset erosional thickness. (F)Distribution of erosion rates. (G)
Distribution of predicted erosional thicknesses.
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overprint the T4 platform (Figure 6D), suggesting that this

scenario was unlikely to occur. In the scenario of

0.30–0.38 mm/a, the elevations of the T3 and T4 platforms

were 20.7–26.4 m and 30.0–38.9 m and were preserved

without significant overprinting (Figure 6E). In the scenario of

0.39–0.41 mm/a, the elevations of the T3 and T4 platforms were

27.1–28.5 m and 35.4–38.7 m. Analogous to the scenario of

0.22–0.25 mm/a, the predicted elevations of the platform

relating to 239 ka (40.1–42.3 m) would overprint the T4

platform (Figure 6F), suggesting that this scenario was

unlikely to occur. The best-fit uplift rate and results of our

examination of highstand overprinting suggested that the T3

and T4 platforms could be allocated to highstands at 197 ka (MIS

7a) and 239 ka (MIS7e), respectively. These results well matched

the reference 10Be exposure age of the T4 platform. Considering

the errors in field measurements, the uncertainty of the uplift rate

would range from 0.017 mm/a to 0.034 mm/a. Overall, the T2, T3,

and T4 wave-cut platforms were assigned to 128 ka (MIS 5e),

197 ka (MIS 7a), and 239 ka (MIS 7e), with a decreasing uplift

rate ranging from 0.30 ± 0.034 mm/a to 0.38 ± 0.017 mm/a

before 128 ka and to 0.09 ± 0.030 mm/a since 128 ka.

Implications

Considering the controversial context of the T2–M2 unit, our

preferred allocations of highstand ages for the wave-cut

platforms have several implications. First, transgression

events likely occurred as early as MIS 7 (190–239 ka) in the

southern PRD, as indicated by the allocated highstand age

of the highest T4 platform (Figure 7). Recent OSL dating

has revealed pre–MIS-5 deposits in the southern PRD,

suggesting that Quaternary sedimentation was likely initiated

before 128 ka (Xu et al., 2022). If correct, our finding would

be consistent with the suggestion that M2 is at least correlated

with MIS 5 and perhaps even older. Moreover, the elevation of

the predicted wave-cut platforms in MIS 3 were allocated

at −78 m to −97 m in our best-fit model. These elevations are

much lower than the average depth of M2 in the PRD

(approximately −15 m to −30 m), suggesting that is unlikely to

preserve MIS 3 wave-cut platforms or sediments in the uplifted

wall areas.

Second, our preferred uplift rates provide significant

benchmarks for elucidating the differential uplift in the PRD.

Considering M2 as deposits of MIS 5e (Xu et al., 2022), the

estimated offset between the top of M2 (approximately −23 m)

and the elevation of the T2 wave-cut platform (17 m) is

approximately 40 m along F2. Given this offset, the average

slip rate along the F2 could reach 0.31 mm/a since 128 ka. As

the ENE-striking faults are segmented by the NNW-striking

ones, this estimated rate could vary spatially. However, the

uplift rate decrease derived from our results coincides with

decreasing slip rates in the inland PRD (0.34 mm/a before

128 ka and 0.16 mm/a since 128 ka, Huang et al., 2021),

FIGURE 6
Uplift rate scenarios satisfying the defined fit conditions (A–C); the associated elevations of the wave-cut platforms of all highstands >500 ka
(D–F) are shown when the 128-ka highstand is tied to 17 m.
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implying that the differential uplift is uniform across the NNW

faults. Although the cause for temporally various rates remains

unclear, our finding likely implies a weakened differential uplift

since 128 ka onshore of the LFZ. Notably, compared to the

coastal faults in the Andes or Sicily (ranging from

0.4–0.8 mm/a, Saillard et al., 2011; Meschis et al., 2018), this

slip rate is relatively slow. However, this does not mean a lower

geohazard risk. As several large earthquakes have occurred

around the PRD, the risk defense of geohazards should be

explicitly considered in engineering and city construction.

Third, the granitic wave-cut platforms can be used to provide

cosmogenic dating ages that correlate with the highstands and,

hence, would be an effective way to constrain the uplift rate in the

area without fault-related sediments. This may have wider

significance because wave-cut platforms suitable for 10Be

cosmogenic exposure dating are more common than sites

containing corals suitable for U-series dating. The application

of the 10Be cosmogenic approach allows many more sites to be

dated across a wider region, as granitic wave-cut platforms are

widely developed along the coast of southern China. Moreover,

this approach provides an independent correlation with

sediments in the subsiding wall where the Quaternary

sediments were deposited. With clear benchmarks of both

uplifting and subsiding walls, a more comprehensive and

precise slip rate, and ultimately the tectonic pattern of the

PRD could be determined.

Conclusion

(1) The measured uplift wave-cut platforms, constrained by 10Be

cosmogenic dating and the best-fit allocation of undated wave-

cut platforms, were correlated with sea-level highstands at

128 ka and 239 ka, suggesting uplift rates of 0.30–0.38 mm/a

during 239–128 ka and 0.09 mm/a from 128 ka in the footwall

of coastal F2.

(2) The observed oldest wave-cut platforms implied a

transgression event as early as MIS 7 (239–190 ka) in the

southern PRD, implying that Pleistocene deposition likely

started at 239 ka, coeval with the recently inferred OSL

dating age.

(3) 10Be cosmogenic exposure dating of wave-cut platforms,

in combination with sea-level highstand correlation,

is an acceptable method to derive the long-term slip

rate of the LFZ and its paralleled offshore faults in the

granitic coastline in the northern margin of the South

China Sea.
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The divergent rifting/spreading centers and the strike-slip transform faults are

the essential tectonic units on Earth, the dynamic evolution of which regulates

the development of rifting/spreading basins. The propagation of rifting/

spreading centers may interact with pre-existing transform faults, but how

they interact with each other remains enigmatic. Here we use three-

dimensional geodynamical numeric models to systematically simulate the

interaction between rifting/spreading propagation and the pre-existing

transform faults. Our model results provide the following findings. 1) The

pre-existing transform faults affect rifting/spreading propagation promoting

the formation of ridge segments with an offset distance, facilitating the process

of spreading of thewestern sea basin and restraining the propagation of the east

sea basin. Yet, the evolution of the transform faults is regulated by rifting/

spreading propagation, featured by the increase of its length, the change in its

width along strike and the presence of lineated magmatism. 2) The initial length

and orientation of the pre-existing transform faults largely affect rifting/

spreading propagation, i.e., large transform fault length favors the formation

of large offset between ridge segments, and oblique transform faults facilitate

the formation of overlapped spreading centers. 3) Model results shed new light

on the evolution of the South China Sea basin, implying that the observed ridge

segments in the east and southwest sub-basins, the difference of the Zhongnan

Fault Zone width along strike and the lineated volcanos along the Zhongnan

Fault Zone are the results of the interaction between the rifting/spreading

propagation and the pre-existing transform fault.

KEYWORDS

rifting/spreading propagation, pre-existing transform faults, geodynamic modeling,
South China Sea, Zhongnan Fault Zone
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Introduction

Rifting/spreading centers and (continental/oceanic)

transform faults are essential tectonic units affecting

lithosphere dynamics. These two tectonic units are not

isolated in nature but often show intensive interactions. A

possible interaction between the two units is how the pre-

existing transform faults interact with rifting/spreading

propagation, as observed in many natural examples (e.g., the

South China Sea basin). Individual process of either transform

fault evolution or rifting/spreading propagation is largely

investigated in previous studies (e.g., Hey et al., 1980;

Courtillot, 1982; Vink, 1982; Gerya, 2013; Le Pourhiet et al.,

2017; Illsley-Kemp et al., 2018; Le Pourhiet et al., 2018), but the

interaction between rifting/spreading propagation and pre-

existing transform faults remains poorly understood.

The South China Sea basin is a possible example showing

rifting/spreading propagation interacted by the pre-existing

FIGURE 1
Natural example of the SouthChina Sea basin showing rifting/spreading propagation and the pre-existing transform fault. (A) Simplified tectonic
background of the South China Sea basin. Yellow line represents themagnetic anomalies (from Sibuet et al., 2016). Orange line is the Zhongnan Fault
Zone (ZFZ). (B) Plate kinematic reconstruction sketches at different times (C–D) Variations in margin width and ocean basin width along the strike of
the spreading ridge. We used the movement track of the South China Sea margin reconstructed by Bai et al. (2015) and the COB track
reconstructed by Muller et al. (2016) to compute the basin and margin width along longitude.
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Zhongnan Fault Zone (Figure 1A), which evolved from a

continental transform fault in the rifting stage to an oceanic

transform fault in the spreading stage since. The South China Sea

basin spreading started at ~32 Ma and terminated at ~15 Ma

(Briais et al., 1993; Li et al., 2012; Sibuet et al., 2016), and the

spreading process is largely three-dimensional with strong lateral

variations. The spreading ridge of the South China Sea basin

propagated from east to west (Figure 1B), with decreasing

oceanic basin width from east to west (Figures 1C, D). The

Zhongnan Fault Zone is a boundary separating the east ocean

basin from the west (Barckhausen et al., 2004; Li et al., 2008; Li

et al., 2012, 2014; Barckhausen and Roeser, 2014). Although the

age of the Zhongnan Fault Zone is debated (Tongkul et al., 1993;

Li et al., 2008; Yan, 2008; Li et al., 2012; Li et al., 2014; Ruan et al.,

FIGURE 2
Numerical model setup. (A) Initial model configuration. Blue arrows display the initial velocity field in themodel domain. (B) Enlarged view of the
proto-rifting zone. Color code of the lithology: 1-upper continental crust, 2-lower continental crust, three- lithospheric mantle, 4-asthenospheric
mantle, 5-proto rifting zone. (C) Initial vertical distribution of temperature and lithospheric strength.

FIGURE 3
Variations onmodel configuration inmap view. (A) Blankmodel without pre-existing transform faults. (B) Referencemodel (C–D)Model test on
the length and orientation of the transform faults.
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FIGURE 4
Evolution of the reference model shown by lithology snapshots (A–C) Model results at 3.72 Myr, 6.43 Myr, and 12.60 Myr, respectively. Left
panels: 3D visualization. White dashed lines show the locations of the cross sections displayed in the right panels. Right panels: Cross sections. White
dashed lines represent the isotherms.
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2016; Sibuet et al., 2016), increasing studies proposed that the

Zhongnan Fault Zone was formed before the South China Sea

basin spreading (Briais et al., 1993; Yan, 2008; Sibuet et al., 2016;

Li et al., 2017). The recent studies using seismic reflection data

demonstrated that the Zhongnan Fault Zone developed before

the opening of the South China Sea basin (Li et al., 2017; Xu et al.,

2019, Xu et al., 2021).

This study investigates systematically how pre-existing

transform faults interact with rifting/spreading propagation

using a three-dimensional thermomechanical coupled

numeric model. The model results suggest that the pre-

existing transform faults strongly interact with rifting/

spreading propagation, forming discontinuous ridge

segments and promoting the growth of transform faults. Our

results shed new light on the dynamic evolution of rifting/

spreading propagation and transform fault growth in the South

China Sea basin.

Methods

Numerical methods

We use the 3D thermomechanical code I3ELVIS (Gerya and

Yuen, 2003; Gerya, 2013) to conduct numerical simulations. The

code solves the three-dimensional mass conservation equation

(incompressible medium), momentum conservation equation,

and energy conservation equation using the finite difference

algorithm. The Stokes flow is coupled with the time-

dependent heat conservation equation. The following three

governing equations (i.e., the mass, momentum and energy

conservation equations) are solved in the numerical code:

div(vi) � zvi
zxi

� 0

zσ ij′

zxj
� zP

zxi
− gρ(C,M, P, T)

FIGURE 5
Evolution of the blankmodel (i.e., without pre-existing transform faults) shown by lithology (A–B)Model results in 3D views (C–D)Model results
shown in cross sections.
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ρCp(dT
dt

) � z

zxi
(k zT

zxi
) +H

where vi is the velocity vector, ρ is the density of rock, which

changes with rock parameters, g is gravitational acceleration, σ ij′

is the deviatoric stress tensor, σxi is the shear stress tensor, Cp is

isobaric heat capacity, dT/dt is the partial derivative of

temperature T with respect to time T, k is the thermal

conductivity, which is affected by temperature T, pressure P

and rock type C, H represents internal heat source, including

radioactive heat source, shear heat source, adiabatic pressure heat

source and phase change heat source (Burg and Gerya, 2005).

The numerical simulation program in this study integrates

the rheological relationship of the strain rate with the visco-

plastic constitutive relationship to calculate the deviatoric stress

tensor. Plastic rheology is described by the Drucker–Prager

yield criterion, where the yield stress (σyield) is pressure-

dependent (C is rock cohesion, φ is internal friction angle

and λ is the pore fluid coefficient). Viscosity due to plastic

deformation (ηplastic) is computed based on the square root of

the second invariant of strain rate ( _εII). Eventually, the effective

viscosity of rocks (ηeff) is constrained by both viscous and

plastic deformation.

ηductile � _εII
1−n
n A

−1
n exp(Ea + PVa

nRT
)

σyield � C0 + P sin(φ)(1 − λ)
ηplastic �

σyield
2 _εII

ηeff � min (ηductile , ηplastic)

FIGURE 6
Comparison between the reference model and the blank model (A–D)Map view of strain localization. Background color represents strain rate
and arrows are velocity vectors.
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In the simulation, rock deformation and material migration

are solved by marker-in-cell method. The rock deformation

(nonlinear visco-plastic deformation) of each layer is

controlled by the rheological properties of different lithology.

In addition, partial melting, plate dehydration, water migration

and mineral phase transformation are introduced into the

calculation program to simulate the various processes of

natural tectonic movement.

Model setup

The physical dimension of our models is 2,020 km ×

1,540 km × 500 km (in the order of x, y and z directions), with

a uniform grid consisting of 308 × 404 × 100 Eulerian nodes. The

thickness of the lithosphere in our model is 120 km, with a 15 km

thick upper crust and a 15 km thick lower crust. A transform fault

with the length of 300 km and the width of 20 km is imposed in the

middle of the model domain, parallel to the direction of boundary

extension. A proto rifting zone with the length of 500 km and the

width of 20 km is employed on the right edge of themodel domain,

which evolves to a mature rifting and spreading center. Different

lithological compositions are employed to control the initial

physical and chemical properties in the model. Wet quartzite

and felsic granulite are applied for the continental upper and

lower crust, respectively. Dry olivine is used for the lithospheric

and asthenospheric mantle. Wet Olivine that has weak rheological

properties is employed to the transform fault zone and the proto

rifting zone. In addition, a layer of ‘sticky’ air (viscosity of 1018 Pa s)

is applied above the crust which allows the surface of the crust to

deform freely and spontaneously (Crameri et al., 2012).

A linear temperature structure is employed for the lithosphere.

The temperature increases linearly from 273 K at the surface

(20 km) to 773 K at the moho surface (50 km) and increases

linearly from the moho to 1573 K at the lithosphere and

asthenosphere boundary (120 km). The asthenospheric mantle is

adiabatic with thermal gradient of 0.5°C/km. Constant temperature

is applied at the top and bottom boundaries. The left and right

boundaries are thermal isolated with no heat flux across.

Velocity boundary conditions are free slip on all boundaries.

Additional internal boundary velocities (e.g., 3 cm/yr in the blank

model as well as in the reference model, Figures 2A, 3) are set at

the southern boundary at z = 300 km.

Due to the imposed “sticky air” layer, the crustal surface is

roughly described as a free surface and can therefore deform

spontaneously. We use simplified erosion and sedimentation

method that are independent of topographic slope and local

elevation (Burov and Cloetingh, 1997). Constant and moderate

erosion and deposition rates (0.315 mm/year) that within the

range of natural data are employed. The surface erosion and

sedimentation are simulated by resolving the transport equation

at the Eulerian node for each time step (Gerya and Yuen, 2003):

zys

zT
� vy − vx

zys

zx
− vs + ve

where ys is the vertical position of the crustal surface, vy and vx are

the vertical and horizontal velocity components on the crustal

surface, vs and ve are the rates of sedimentation and erosion,

respectively, which correspond to the following relations: vs =

0 and ve = 0.315 mm/yr for ys < 20 km, vs = 0.315 mm/yr and ve =

0 for ys ≥ 20 km (the initial depth of the crustal surface is 20 km).

We set up a series of geodynamic numerical models to

explore the interaction between the pre-existing transform

faults and the rifting/spreading propagation (map view of the

initial model configuration in terms of the location of the rifting/

spreading center and the transform fault; Figure 3). We further

run a blank model without pre-existing transform faults to

compare rifting/spreading propagation (Figure 3A). Based on

FIGURE 7
Evolution of sea basin width and transform fault length. (A) Evolution of the oceanic basin width with along-strike variations. The red bar
represents the transform fault location. (B) Evolution of basin expanding and transform fault growth (basin width is computed in the middle of each
basin segment).
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the reference model (Figure 3B), we further investigate parameter

effects in terms of the length and orientation of the pre-existing

transform fault (Figures 3C,D).

Results

Reference model evolution

We conducted a series of numerical models to investigate

the influence of pre-existing transform faults on rifting/

spreading propagation. Typical evolution stages of the

reference model are documented (Figure 4 and

Supplementary Figure S1). 1) In the early stage, rifting

propagation dominates model evolution (Figure 4A). The

rifting center is formed along the prescribed proto rifting

zone, and propagates laterally. In front of the propagated

rifting center, the evolution of the pre-existing transform

fault is featured by transtensional deformation in the middle

and transpressional deformation at the ends. As a

consequence of the transtensional and transpressional

deformation, material upwelling and downwelling in the

FIGURE 8
Effect of transform fault length (A–B)Map view of viscosity fields (C–D) Lithology field in 3D view. Mid-ocean ridges are indicated by the green
dashed lines (E–F) Growth of transform faults and oceanic basins (Data are taken from the middle of the ocean basin and transform fault).
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fault zone is observed, respectively (BB′ profile, Figure 4A). 2)
With further model evolution, propagation of the rifting/

spreading center is affected by the presence of the transform

fault, and the remarkable feature is the formation of the two

ridge segments with an offset distance (Figure 4B). The

younger ridge segment connects the tip of the transform

fault, and the offset distance between the two ridge segments

is half of the transform fault length. The ridge-transform

fault-ridge system is established. 3) In the late stage, steady

spreading forms leading to the widening of sea basins. The

transform fault grows dramatically with the increase in its

length, from the original length of 400 km–~730 km at this

moment (BB’ profile, Figure 4C).

We further run a blank model to investigate the propagation

of rifting/spreading centers without the influence of pre-existing

transform faults (Figure 5). Similar to the reference model, the

rifting/spreading centers first develop along the proto rifting

zone, and propagate laterally to the other side of the model

domain. The main difference is that a relatively straight and

continuous spreading ridge is formed in the blank model, in

contrast to the formation of two ridge segments affected by the

pre-existing transform fault in the reference model.

FIGURE 9
Model results with different fault orientations (A–B) Model results shown by viscosity field (top view) (C–D) Cross-section features of model
results shown by viscosity field.
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The difference between the two models is further compared

in terms of strain rate evolution (Figure 6). In the reference

model, the transform fault interacts rifting/spreading

propagation, inhibiting the continuous strain localization

ahead of the propagated spreading center. Two strain

localization zones connecting to the ends of the transform

fault are formed (Figure 6A), and the one locates closer to the

extensional boundary evolves to a spreading center finally, while

the other one becomes abandoned (Figure 6C). In the blank

model, strain localization continuously formed ahead of the

propagated rifting/spreading center, although diffusive strain

distribution is seen in the early stage (Figures 6B,D).

In addition, the extending of the sea basins is computed in the

reference model and compared to that in the blank model

(Figure 7). The eastern sea basin (separated by the transform

fault) is wider than that of the western sea basin since it develops

earlier (Figure 7). Gradual decrease in the width of the eastern sea

basin is observed (Figure 7A), as a consequence to spreading

propagation. The width of the western basin, however, is

relatively constant with negligible variation along strike

(Figure 7A). The main reason is the fast strain localization in

the western basin facilitated by the southern end of the transform

fault. The blank model without the pre-existing transform fault

shows a gradual decrease in the width of the sea basin from east to

west in the entire model. Besides, the width of the western basin

in the reference model is slightly larger than that in the blank

model (Figure 7B), suggesting the promotion of the pre-existing

transform fault on the development of the western basin.

Influence of transform fault length

We further conduct a series of numerical experiments to

study the influence of transform fault length. Based on the

reference model (i.e., 400 km of the transform fault length),

we test the models with a shorter (i.e., 200 km) and a longer

(i.e., 600 km) pre-existing transform fault (Figure 8). In the

model with a shorter pre-existing transform fault (i.e., 200 km;

Figure 8A), a continuous spreading ridge with slight curvature

around the transform fault is formed (Figure 8A). The growth of

FIGURE 10
Transform fault evolution affected by rifting/spreading propagation. (A) Model results at 2.32 Myr shown by viscosity field in 3D view. Black
dashed lines are cross sections shown in (B–G). (B–D) Temporal evolution of AA′ profile along the strike of the transform fault (times at 1.03, 1.47 and
2.32 Myr) (E–G) Cross sections perpendicular to the transform fault. Black arrows represent velocity vectors.
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the transform fault terminates after the spreading ridge

propagating to the fault and breaking the preexisting

transform fault (Figure 8E). In the model with a longer

transform fault (i.e., 600 km; Figure 8B), however, two ridge

segments are formed with a larger offset distance compared to

that in the reference model. The transform fault continues to

grow with the spreading of the ridge centers (Figure 8F). These

differences suggest that long transform faults promote the

formation of two separated ridge segments during spreading

propagation.

Influence of transform fault orientation

The initial orientation of the transform Faults may influence

rifting/spreading propagation. Based on the reference model

with a pre-existing orthogonal transform fault, the models

with obliquely distributed transform faults (i.e., rotated

leftwards/rightwards by 30°) are further tested (Figure 9).

Results show that model evolution differs largely from the

reference model. 1) Firstly, the initially obliquely orientated

transform faults fail to evolve to mature oceanic transform

faults. Instead, the oblique transform faults experience

intensive extension, forming inclined spreading ridges (Figures

9A, B). 2) Secondly, two ridge segments are formed in these

models. However, unlike the reference model that ridge segments

are connected to the transform fault, overlapping ridge segments

are established in these models with the rotation of the

microplate in between (Figures 7C, D). The resulted

overlapping ridge segments reflect strong interaction of the

oblique transform faults on rifting/spreading propagation.

Discussion

Transform fault evolution affected by
rifting/spreading propagation

The evolution of the pre-existing transform fault is also

affected by rifting/spreading propagation. 1) Along the strike

of the transform fault, two small-scale mantle convection cells are

developed beneath the transform fault, with upwelling in the

middle and downwelling at the ends (Figure 10C). These two

convection cells are asymmetric and the one locates closer to the

extensional boundary is more intense (Figure 10D). As a

consequence to the upwelling/downwelling, decompressional

melting and material dripping are formed in the middle and

at the ends of the transform fault, respectively. Thus, the growth

of the transform fault (i.e., increase of its length) is mainly due to

the extension in the middle. The two ends of the transform fault

are mainly under compression. 2) Perpendicular to the strike of

the transform fault, cross sections reveal the variation of

transform fault width. Ahead of the propagating ridge, the

middle part of the transform fault becomes much wider, due

to asthenospheric mantle upwelling triggered by ridge

propagation. The southern end of the transform fault becomes

FIGURE 11
Formation of the volcanic chain along the strike of the transform fault. (A) Volcanic chain visualized by temperature shown in map view (B–D)
Lithology snapshots showing the evolution of the volcanic chain along the AA′ profile. White dashed lines represent the isotherms.
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wider than the northern end, mainly because the transform fault

grows to the south affected by the prescribed boundary extension

(Figures 10E, F). Fault growth at the northern end is negligible,

with very minor influence from the two ridge segments.

Besides, evolution of the transform fault is characterized by the

formation of a volcanic chain (Figure 11A) due to the punctuated

distribution of decompressional melting along the strike of the

transform fault (Figure 11B). The volcanic chain is thus the

surface expression of the deep discontinuous melting centers

(Figure 10A). The deep discontinuous melting centers appear

first in the middle of the transform fault (Figure 11B), and then

establish at the southern end of the fault (Figure 11C), and finally

migrate southward with the growth of the transform fault

(Figure 11D). The discontinuous randomly distributed melting

centers along the transform fault are caused by the small-scale

mantle convection cells due to transtensional and tranpressional

deformation as described above.

Implications for the spreading of the south
China sea basin

Our model results are comparable to the observations of the

South China Sea basin, in terms of the growth of transform faults,

the formation of ridge segments and the establishment of a volcanic

chain. According to the fine interpretation of the seismic reflection

FIGURE 12
Variations in the width of the Zhongnan Fault Zone in the South China Sea basin. (A) Topographic map in the South China Sea basin (B–D)
Seismic reflection profiles of the north, central and south Zhongnan Fault Zone (L1, L2 in a, from Xu et al., 2019, L3 from Qiu et al., 2019).
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profiles in the South China Sea basin (Figure 12B), the Zhongnan

Fault Zone cuts through the T6 horizon as well as the Tg horizon,

but does not cut through the T5 horizon (where T5, T6 and Tg

represents the early Miocene interface, the late Oligocene interface,

and the early Oligocene basement, respectively), indicating that the

Zhongnan Fault Zone was active before the early Oligocene-prior to

the spreading of the South China Sea basin (~32Ma; e.g., Li, 2012;

Xu et al., 2019). This supports that the Zhongnan Fault Zone was a

continental transform fault which evolved to an oceanic transform

fault before and after the South China Sea basin spreading.

Firstly, the dynamic growth of the transform faultmodeled in our

study is comparable to the Zhongnan Fault Zone in the South China

Sea basin (Figure 12; Xu et al., 2019; Barckhausen and Roeser, 2004,

Barckhausen et al., 2014; Frank, 2013; Frank et al., 2004; Ruan et al.,

2016; Sibuet et al., 2016). 1) The Zhongnan Fault Zone is 15–25 km

wide at its northern end (Figure 12B), 60 km wide in the middle

(Figure 12C) and ~35 km wide in the southern end (Figure 12D)

revealed by seismic reflection data (Ruan et al., 2016; Qiu et al., 2019;

Xu et al., 2021). Our model results are consistent with this

phenomenon (Figure 10), and the increased width of the

Zhongnan Fault in its middle, as suggested by our model results,

is likely caused by asthenospheric mantle upwelling ahead of the

propagated spreading ridge. 2) The length of the Zhongnan Fault

increased with the extension of the South China Sea basin. According

to the plate reconstruction of the South China Sea basin (Briais et al.,

1993) and the relative positions of the Zhongsha block and the Liyue-

North Palawan micro-continent (Li, 2011), the Zhongnan Fault has

been continuously growing southward with the significant increase in

its length (Yan e al, 2014; Li et al., 2017). Our model results of

transform fault growth are thus consistent with this observation.

Secondly, the formation of ridge segments with an offset

distance is a remarkable feature of the South China Sea basin.

Seafloor spreading in the southwest sub-basin of the South China

Sea initiated at the south end of the Zhongnan Fault Zone, and

propagated from east to west since 23.8 Ma (Figure 13B). An offset

distance of ~110 km is formed between the two ridge segments in

the east and southwest sub-basins (Figure 13A). Our model results

are consistent with this phenomenon and indicate that the

Zhongnan Fault Zone facilitated strain localization and promoted

the formation of the ridge segment in the southwest sub-basin.

Thirdly, the lineated volcanic chain is observed along the

Zhongnan Fault Zone in the South China Sea basin (Figure 13A).

FIGURE 13
Plate reconstructions of the South China Sea basin at 23 and 15 Ma and post-spreading Seamounts distribution. (A) Schematic diagram of the
South China Sea basin tectonics, the red line is the Zhongnan Fault Zone, the yellow dots represent sea seamounts. The seamount ages are from
Pautot et al., 1990; Tongkul 1993;Wang et al., 1985,Wang et al., 2009; Yan et al., 2008; Yan et al., 2008; Yan et al., 2014 (B–C) Plate reconstructions of
the South China Sea basin (~23, 15 Ma, from Sibuet et al., 2016), the red dashed line is themid-ocean ridge, and the red solid line is the Zhongnan
Fault Zone.
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According to our model results, formation of the lineated

volcanic chain is likely related to the extensional deformation

along the transform fault (Figure 11A). The reported ages of the

volcanos from the volcanic chain along the Zhongnan Fault Zone

were younger than the termination of the South China Sea basin

spreading (Wang et al., 1985, Wang et al., 2009; Pautot et al.,

1990; Tongkul 1993; Yan et al., 2008; Yan et al., 2008; Yan et al.,

2014), indicating post-spreading magmatism. Whether there

were older magmatic events along the Zhongnan Fault Zone

remains enigmatic and need to be explored in the future.

The uplifting elevated topography and Moho surface of the

transform fault suggested revealed by ourmodels are observed at the

Zhongnan Fault Zone, where there is only 8–10 km crust left and

high values of gravity anomaly features (Ruan et al., 2016; Jourdon

et al., 2020). In addition, a linear post-spreading seamount chain

developed along the Zhongnan Fault Zone (Li et al., 2017; Xu et al.,

2021), which indicates thin lithosphere and upwelling of hot

asthenospheric underneath the fault zone. These observations

suggest that the Zhongnan Fault Zone may have interacted with

the spreading ridge of the east subbasin and experienced stages of

extension. However, the Zhongnan Fault Zone/transform fault has

only been discussed in earlier studies for its morphology, dynamic

evolution and deep structure, its influence on sea floor spreading is

not fully investigated (Barckhausen et al., 2004; Frank et al., 2004;

Frank, 2013; Barckhausen et al., 2014; Ruan et al., 2016; Sibuet et al.,

2016). Our results suggest that transform faults perpendicular to

mid-ocean ridges have a significant influence on the spreading

processes and evolution of ocean basins (e.g., North Iceland,

Karson et al., 2019). The interaction with the oceanic spreading

meanwhile leads to faults growth in its width and length. Brune et al.,

2014, Clauser and Huenges, 1995, Gerya, 2010, Glerum et al., 2020,

Gudmundsson et al., 2007, Guo et al., 2019, Huang et al., 2014, Lei

et al., 2020, Li et al., 2011, Li et al., 2018, Li et al., 2019, Liao and

Gerya, 2015, Karson et al., 1984, Ranalli, 1995, Ros et al., 2017,

Taylor and Hayes, 1980, Wang et al., 2022.

Conclusion

We conducted a systematic study to investigate the

interaction between pre-existing transform faults and rifting/

spreading propagation using 3D dynamical numerical

simulations. The main conclusions are given below:

1) The pre-existing transform faults affect rifting/spreading

propagation promoting the formation of ridge segments with

offset distances. The formation and development of the younger

ridge segment is promoted by the pre-existing transform faults.

Evolution of the pre-existing transform faults is also affected by

spreading propagation featured by fault widening with melting

and fault growth with increased length.

2) The initial length and orientation of the pre-existing

transform faults affect rifting/spreading propagation,

controlling the offset distance between the ridge segments

and the formation of overlapping ridge segments.

3) Our model results are comparable with natural observations

in the South China Sea basin, in terms of the formation of

offset ridge segments and transform fault evolution. We

suggest that the pre-existing Zhongnan fault zone

interacted rifting/spreading propagation and regulated

seafloor spreading of the South China Sea basin.
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Geological hazards can cause significant harm to the construction andmaintenance

of reef infrastructure projects in the Xisha Sea area. This study uses high-resolution

multichannel earthquake data, single-channel seismic profiles, and multi-beam

survey data to identify and analyze the geological hazards in the Xisha Sea area

since the Miocene. Based on the geophysical data interpretation, the destructive

geological disaster factors that are active, such as active faults, shallow gas, diapers,

landslides, multistage scarps (steps), scouring troughs, and canyons, as well as the

restrictive geological disaster factors without activity ability, such as buried

paleochannels, pockmarks, reefs, and undersea volcanoes, are identified and

analyzed. This paper discusses the causes and hazards of geological hazards and,

for the first time, draws a comprehensive plane layout of the geological hazards. The

above analysis demonstrates that the scarps are mainly located around the atolls or

platforms, and the slope of the southeast seabed topography is significantly higher

than that of the northwest. There are seven medium and large landslides, mainly

located around Yongxing Plateau and Yongle Plateau, caused by gravity and faulting.

Shallow gas is mainly developed in the southern part of the North Reef and is

indicated by diaper structures, faults, and gas chimneys. A series of shallow faults are

developed in the study area, mainly steep normal faults. The scouring troughs are

primarily distributed near the Yongxing Platform, Zhongjian North Platform, and

Huaguang Platform. Submarine canyons are primarily located in the northern and

southern parts of the Shidao Platform. Affected by multiple factors such as

hydrodynamic conditions, the stability of sedimentary layers, and sediment supply,

the scour degree varies, with the general depth ranging from several meters to

several hundred meters. Underwater infrastructure in the study area should not be

constructed in areaswith active anddestructivegeological hazards. The results of this

study can serve as a guide for further exploration in the Xisha area and disaster

prevention and mitigation during construction activity in the area.

KEYWORDS

Xisha sea area, high-resolution seismic, geological hazards, seabed scarps, submarine
landslides, scour trough, spatial distribution
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1 Introduction

Hazardous geology refers to naturally occurring or man-

made geological conditions/phenomena that cause or can cause

harm to human life or property. The research objectives of

hazardous geological studies are the factors causing geological

disasters, including geological bodies and geological phenomena

and their occurrence, development mechanisms, and distribution

(Liu et al., 2002). With the vigorous development of resource

surveys in marine environments, such as for oil and gas, natural

gas hydrate, and other marine engineering operations, the

demand for a census of marine geological hazards has also

been increasing. Marine disaster geology has also been

continuously applied in practice, becoming a powerful means

for achieving disaster prevention and mitigation in marine

development activities (Bao and Jiang, 1993). In recent years,

the instability of seabed geological conditions and the frequent

occurrence of various marine disasters have increasingly affected

human activities and economies (Ni, 2009; Li, 2013; Ma et al.,

2014).

The South China Sea is located at the intersection of the

Eurasian, Pacific, and Indo-Australian tectonic plates. The Xisha

Islands are located northwest of the South China Sea (Figure 1).

More than 40 islands, sandbars, reefs, and beaches are distributed

in this sea. With a total island area of 8 km2, the Xisha Islands are

the archipelago with the largest total land area among the four

major archipelagos in the South China Sea. The development of

infrastructure in the Paracel Islands and the development of

industries such as the fishery and tourism industries have been

essential to safeguarding national sovereignty. In recent years, the

construction of Sansha City has been carried out rapidly.

Determining geological engineering conditions is crucial to

ensure proper site selection and the safe construction of

various projects. With the development, management, and

promotion of tourism, fisheries, and seabed resources in the

Xisha Islands, close attention must be paid to the possible risks of

marine geological disasters affecting marine engineering facilities

and the marine environment.

From the perspective of disaster-causing factors and disaster-

laden environments, China’s sea area is divided into four levels of

geological disaster risk (Ye et al., 2011). Among them, the Xisha

waters in the South China Sea belong to the land slope (island

slope) disaster geological area (III3), a high-risk designation.

There are few studies on the disaster geology of the Xisha sea

area. Chen et al. (2021) studied the types and distribution

characteristics of the disaster geology in the southeast of the

Xuande Atoll in the Xisha Sea area. However, the research scope

was small and with limitations. Using geophysical data collected

since 2015, this paper comprehensively studied the types of

geological disasters in the Xisha sea area and explored the

causes of geological hazards. It is critical to fill the research

gap, provide a basis for further exploration and disaster

prevention and reduction to avoid the hazards in engineering

construction, and provide a guarantee for particular navigation.

2 Geological setting

The South China Sea is located at the Indo-Australian Plate,

the Eurasian Plate, and the Pacific Plate. It is the largest marginal

sea basin in theWestern Pacific and is part of theWestern Pacific

marginal trench-arc-basin system. The formation of continental

FIGURE 1
(A) Location map of the study area, modified from Cao et al. (2017). (B) Location map of seismic survey line used in the text. (C) Water depth
profile of AA’.
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margin basins in the northern part of the South China Sea is

mainly related to the South China Sea movement and the

Dongsha movement. It has undergone three stages: rifting,

rifting with thermal subsidence, and the Cenozoic tectonic

activity period (Kuang et al., 2014; Yang et al., 2016). The

study area is located in the western part of the continental

shelf and slope transition zone of the passive continental

margin in the north of the South China Sea (Figure 1). It is

adjacent to the continental shelf of Hainan Island in the west, the

Xisha Trough in the north, and the Zhongsha Trough and South

China Sea Basin in the East and south, respectively. The terrain is

complex and changeable, mainly composed of islands, reefs,

platforms, and valleys with a water depth of 0–2600 m.

The Xisha Sea area has experienced two tectonic evolution

stages, the Paleogene fault depression, and the Neogene

depression. It has a double-layer structure of a lower fault and

upper depression, correspondingly forming two tectonic layers.

The Xisha uplift area was in a state of uplift and denudation

before the Miocene. Since the Miocene and the thermal

subsidence of the South China Sea, the Xisha Sea area has

sunk underwater and entered a period of large-scale reef

formation. Reef formation has occurred in the area for more

than 20 million years, and at present, reef facies sediments with a

thickness of more than 1,200 m are present (He and Zhang, 1986;

Lv et al., 2002; Lv et al., 2011; Yang et al., 2016). In the Xisha Sea

area, the drilling data of Well XY1 shows that since the Miocene,

a vast reef formation developed on the Precambrian granite

basement, reaching 1,251 m in thickness (Gong and Li, 1997;

Zhao, 2010). Drilling data show that the entire area of the Xisha

Islands subsided underwater since the Miocene, making the area

have a suitable temperature, salinity, and water depth for the

widespread development of reef carbonate formations.

The sequence stratigraphic framework since the Miocene in

the study area has been established based on geophysical and

drilling data (He and Zhang, 1986; Ma et al., 2010). Five third-

order sequence interfaces (T1, T2, T3, T5, and T6 (Figure 2)) are

identified, which correspond to the bottom boundaries of the

Quaternary, Pliocene, Late Miocene, Middle Miocene, and Early

Miocene, respectively.

3 Materials and methods

Since 2015, the Guangzhou Marine Geological Survey has

carried out 3,988 km of high-resolution single-channel seismic

surveys, 1,205.7 km of multichannel seismic surveys, and

15,467 km of multi-beam bathymetry surveys in the Xisha Sea

area (16°N−17°N, 111°E−112°30′E). The survey work has led to

identifying the types and distributions of the geological hazards

in the Xisha Sea area.

FIGURE 2
The stratigraphic column of XY1 well in the Xisha Sea area (Modified from Ma et al. (2010)).
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The single-channel seismic measurement used the IXSEA

DELPH SEISMIC single-channel data acquisition and processing

system. The seismic source adopted a GI gun source system, with

a working pressure of 2000 psi and a capacity of 210. The

SURESHOT source gun control system was used; the cable

sinking depth was 0.5–1.5 m, and the subsidence depth of the

source was 3 m. The offset distance between the GI air gun source

and the receiving cable was 8−10 m. The length of the collected

data record was 1000 m, and the width of the printed simulation

profile was 400 m. In the muddy sedimentary area with a water

depth of more than 30 m, the detection depth can reach

(vertically) >100 m, and the vertical resolution was better than

3 m; under normal circumstances, the continuous missed test

was less than 250 m, and the cumulative missed test was less than

6% of the entire survey line.

The shallow formation profile measurement used the

EdgeTech3200XS CHIRP type shallow formation profiler. The

recorded formation reflection signal was coherent and clear, and

the formation reflection interface layer was clear and easy to trace

continuously. The penetration depth in the work area reached

~30 m. The penetration depth could exceed 80 m.

The multichannel seismic measurement source system was

composed of three rows of sub-arrays with a capacity of 1270 cu.

in. and a total capacity of 3810 cu. in. The air gun controller was

the Bigshot air gun synchronization controller produced by the

Real Time System Company in the United States. The air

compressor was the JOY4 air compressor. The working

pressure was 2000PSI. The receiving cable of the receiving

system adopted a Sentinel 24-bit digital solid cable of the

France Sercel company, and 360 solid cables were used during

the operation. The SYS3 water bird control system and the 5011E

export compass controlled the cable depth control system. It

consisted of a depth gauge and a 5010-type depth gauge; the

water depth in the survey area was shallow, and the maximum

water depth was less than 1200 m. Therefore, the multichannel

seismic measurement adopted a parameter system with a focal

depth of 7 m, a capacity of 3810 in3, and a cable depth of 9 m.

Most of the measuring lines have an accuracy of less than 0.5 m.

The first-grade rate was 92.28%, the second-grade rate was

7.72%, and the self-assessment pass rate was 100%.

The SIMRAD EM710S multi-beam bathymetry system was

used according to the requirements for tolerance in the “Ocean

Multi-beam Measurement Regulations” (DZ/T 0292–2016); the

time limit difference was 0.6 m when the water depth was less

than 30 m. When the water depth was greater than 30 m, the

limit difference was 2% of the water depth.

4 Types of hazardous geology

At present, the classification of geological disasters in China is

not consistent. Based on the disaster location, they are classified

into surface and underground types. They are then subdivided into

direct, potential, and direct obstacles (Li, 1990). They are also

classified into lithospheric, atmospheric, hydrosphere, and

biosphere, according to the different spheres that cause disasters

(Liu et al., 1992). Some scholars have proposed the types of

hydrodynamics, aerodynamics, soil mechanics, gravity, and

tectonic stress according to the dynamics that cause geological

disasters (Chen and Li, 1993). In addition, according to the activity

of the disaster geological factors, scholars have divided geological

disasters into two types: those with destructive capabilities and

those without destructive capabilities (Feng et al., 1996; Liu, 1996).

Further, based on the location of the internal and external

dynamic systems and geological disaster factors, some scholars

have divided geological disasters into four types: structural,

coastal, submarine, and shallow (Liu et al., 2000). The authors

of this paper believe that the purpose of geological disaster

classification is to directly classify the geological disasters and

their degree of harm and to clarify which geological disasters can

be prevented and which cannot be prevented and only avoided.

Therefore, based on the interpretation results of geophysical

survey data in this study, the geological disasters are divided

into two categories (Table 1): active and destructive geological

disasters, such as active faults, shallow gas, diapirs, landslides,

steep ridges, scour troughs, etc. The second comprises inactive

geological hazards, such as buried ancient river channels,

pockmarks, volcanic structures, etc.

5 Characteristics, distribution, and
causes of major geological hazards

According to previous investigations and research results,

numerous volcanoes (Zhang BK. et al., 2014; Zhang et al.,

2014b; Feng et al., 2017), normal faults (Lin et al., 2009; Yang

et al., 2015; Du et al., 2021), reefs (Wei et al., 2008; Yang et al.,

2011), etc. Have been developed in the Xisha Sea area since

Pliocene, and scarps, landslides, faults, etc. (Chen et al., 2021)

are developed in the southeast of Xuande Atoll, A large

number of pits are developed near the Xisha Uplift area

(Chen, 2011; Sun et al., 2012; Guan et al., 2014; Chen

et al., 2015; Ye et al., 2019; Yang et al., 2020; Wang et al.,

2021). Based on a large amount of new measured data, a large

number of steep slopes, shallow gas, buried ancient river

channels, large landslides, shallow faults, and scour

channels have been newly discovered in this paper. The

geological disasters in Xisha Islands have been

systematically summarized for the first time. Landslides,

steep slopes, shallow gas, mud diapirs, buried ancient river

channels, shallow active faults, pits, scour channels, and other

geological hazard phenomena are primarily located

throughout the study area (Figure 3), which are potentially

harmful to marine engineering. The following describes the

main geological characteristics and the distribution of the

geological hazards.
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5.1 Destructive and active geological
hazards

5.1.1 Multistage scarps (steps)
The seabed topography is mainly controlled by the Xisha

platform and is closely related to the distribution of islands in

the study area. The overall topography is characterized by

islands at the center, declining altitude towards the

surrounding area, with the upper slope being steep and the

lower slope being gentler. The water depth ranges from 0 m to

800 m, and coral islands, reefs, and their subordinate

platforms are developed throughout. The topographic

variations of each island and reef are similar, characterized

by a steep slope in the southeast and a gentle slope in the

northwest. The average slope value of the periphery ranges

between 5.0° and 22.0°. The distribution of landslide masses

from north to south can reach 30°km, which is considerable.

The water depth is less than 300 m, and the steep slope of the

plateau changes violently, with a slope of about 21°. The

plateau slope reduces within a water depth of 300–950 m

with a slope value of about 1.5°.

The study area includes Yongle Atoll and Xuande Atoll,

where many reefs and reef platform uplifts are developed. In

many platform edges or steep areas, the coral reef strata grow in a

cliff-like manner and go down the platform with a multi-level

steep ridge (more than 5.6°–10°, Figure 4). The height difference

ranges from hundreds of meters to kilometers, and there is a

gradual downward slope reduction in the multi-level scarps. The

scarps in the study area are primarily located at the edges of the

Ganquan Platform, the China Construction Beihai Platform, the

Yongxing Atoll, the Yongle Atoll, the Dongdao Platform, etc. The

submarine topographic slope of the southeast side is significantly

higher than that of the northwest side. The average submarine

slope of the scarps on the northwest side of the island reef area is

about 4.6°, and the average submarine slope of the scarps on the

southeast side is about 22°. For example, the scarp in the

southeast of Xuande Atoll (Figure 4) is a two-level scarp, of

which the primary scarp has a gradient of 7.8° and an elevation of

416 m. The secondary scarp has a gradient of 14.8° and an

elevation of 460 m.

The scarps in the study area are closely related to the

development of the carbonate platform in the Xisha area.

FIGURE 3
Geological distribution map of environmental hazards in Xisha Sea area.
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During the Middle Miocene, the sea level was relatively high, and

the carbonate platform expanded vertically and horizontally. The

slope basin around the platform gradually entered the semi-deep

sea environment and began receiving numerous gravity flow

sediments transported in turbidity currents. During the late

Miocene, the relative sea level rose rapidly again, and the

platform mainly grew longitudinally (Yang et al., 2014; 2016;

Li et al., 2020). The platform as a whole deposited a thicker layer

of carbonate rock strata, forming a large atoll reef several

kilometers above the sea floor (Ma et al., 2011). This has

resulted in the formation of many scarps and landslides.

These scarps can cause erosion, fracture activity, landslides,

and other effects and should be regarded as active, destructive

geological hazards (Ma et al., 2017). Generally, the degree of soil

consolidation in these scarps is poor, which makes them an

adverse topographic factor when laying and maintaining

submarine pipelines. They can also easily cause platform tilt

and pipeline sliding (Liu et al., 2014).

5.1.2 Submarine collapse/landslide
A submarine landslide is a phenomenon in which

unconsolidated soft sediments or rocks with weak structural

planes on the sea floor move downward along a weak

structural plane under gravity. It includes geological processes

such as sliding, collapse, and debris flow (Hampton et al., 1996;

Locat and Li, 2002; Moscardelli et al., 2006; Moscardelli and

Wood, 2008; Wang Dawei et al., 2009, 2011; Wu et al., 2011).

They also include mass transport deposits (MTDS).

Submarine collapses/landslides in the study area are related

to local magmatic activities, faults, scarps, or steep slopes.

Generally, they occur in areas with a particular drop in the

terrain, such as slope areas around a platform and the edges of

seamounts (mounds). Due to their gravity, faults, and other

factors, local sediments lose stability, slide down, and collapse

along the slope or fault. They then pile up disorderly at places

with flat terrain and open accommodation spaces on the platform

slope, forming collapsed sedimentary bodies. This collapsing

phenomenon in the study area is mainly distributed on the

slopes around the platform, with irregular shapes or multiple

mound-shaped reflections, internal chaotic reflections (Figure 5

and Figure 6), no stratification, and mainly reef debris

accumulations. There are seven medium and large landslides

identified in the study area, including two in the west and one in

the southeast of Yongxing Plateau, two in the west and two in the

south of Yongle Plateau, with an area of 323 km2, 100 km2,

176 km2, 116 km2, 96 km2, 173 km2, and 99 km2. Here, we take

the large landslide with an area of 323 km2 found on the west side

of the Yongxing Plateau as an example (Figure 6), distributed

within 500−950 m of water depth. The length of the landslide

mass from north to south can reach 30 km, the maximum width

is 13km, and the cliff on the side wall of the landslide can reach

345 m. The seismic profile shows that the landslide comprises

two parts: the slow accumulation landslide at the back end and

the fast accumulation landslide at the front end, which was

formed during the late Miocene. Multiple landslide surfaces

are developed inside, indicating that the landslide is

characterized by multistage and multistage development.

There are many waterways and buried ancient rivers in the

landslide body. The waterways are generally 700 m wide and

30 m deep, with an average gradient of 5.5°. Multistage secondary

small landslides are widely developed on both sides of the

waterways. The front rapid landslide body has chaotic

FIGURE 4
The reflection characteristics of stepped scarps and slumping deposits are shown on a single earthquake.
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reflection seismic facies, reflecting the rapid accumulation of

sediments. It is a typical submarine landslide fan. In addition,

some submarine landslide valleys have not been filled by

sediments, indicating that there was still activity during the

Quaternary.

A landslide is very harmful to offshore engineering facilities.

Due to its instability, it often leads to the collapse of offshore

structures installed on it. This causes damage to offshore

engineering facilities, such as deep-sea oil and gas drilling

installations, oil pipelines, submarine cables, etc., leading to

potential heavy casualties and economic losses. Submarine

landslides can also cause huge waves and even tsunamis (Fine

et al., 2005; Ni, 2009; Li, 2013).

5.1.3 Shallow gas
Shallow submarine gas usually refers to the gas

accumulations in sediments less than 1,000 m below the sea

floor (Davis, 1992). Shallow submarine gas is widely distributed

throughout Chinese seaways. In some places, the oil and gas

seedlings of the sea surfaces have a history of more than 100 years

(He et al., 2000; He et al., 2010). Engineering hazards caused by

shallow gas have also been reported frequently (Chen et al., 2010;

Guo et al., 2013; Liu et al., 2019).

The interpretation of multichannel seismic data and the

rich acoustic anomalies present in the data directly prove the

existence of shallow gas in the study area. Seismic records show

that the reflections between the layers of gas-bearing sediments

are chaotic. The reflected waves with good continuity are

suddenly interrupted, and the co-axial axis is hidden or

disappears altogether, or the reflection is blurred. Further,

the reflections are columnar, sac-like, and strip-like but not

rule-like. The southern part of the North Reef is mainly

composed of shallow gas as indicated by diapir structures,

faults, and gas chimneys (Figure 7A). Deep fluid or gas

upwelling has occurred, part of which was captured by the

Middle-Late Miocene reefs to form a reef trap (shown in the

earthquake data as a tower tip mound reflection in the T3-T5

interface). Part of the gas continued upwelling to the shallow

stratum, and some gas was even released into the seawater. This

process caused the interruption of the horizontal axis in the

stratum, forming chaotic reflections in the shape of columns,

mushrooms, etc. The surrounding and upper sedimentary

layers generated numerous strong reflections. The top

surface is wavy, clearly defined with the surrounding rock,

and has clear upward warping traction characteristics

(Figure 7D). The bright spots and scattered reflections on

the section indicate that gas played an essential role in the

middle stage of the formation of this type of structure. The

natural gas and fluid permeability are related to the formation

of these uplifts or mud diapirs. BSR (Bottom Simulating

Reflector) are seen in the upper strata of the mud diapirs

and gas chimneys (Figure 7C), and a blank band appears

above the BSR, indicating gas hydrate accumulation in the

mud diapirs in the peripheral seafloor sediments. At the top

of the gas chimneys and mud diapirs, many shallow minor

faults control the upward leakage of shallow gas, forming gas

chimneys, and there is a pull-down phenomenon in the same

internal direction axis (Figure 7B).

5.1.4 Active fracture
Active faults are one of the hazard types that require great

attention when it comes to offshore engineering. The geophysical

FIGURE 5
The reflection characteristics of landslides on the platform slope are displayed on a single earthquake.
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data and the geological background of the study area indicate that

the shallow faults in the study area were still active in the

Quaternary, making them potentially quite dangerous. Some

of the detrimental effects of these faults include the fact that

they may directly affect offshore engineering activities. For

example, when the drilling activity encounters a fault, it may

lead to a stuck pipe and mud leakage (Ma and Chen, 2006). The

seismic activity and stratum collapse caused by secondary faults

are potential geological hazards.

The formation of the Xisha block was mainly controlled by

the surrounding fault structures and affected by the multistage

expansion of the South China Sea basin, forming the tectonic

evolution characteristics of a “lower fault and upper

depression.” There are many deep and large faults on the

platform’s periphery, such as the Xisha Trough fault zone and

the Binhai fault zone on the north side, the Ailaoshan-Honghe

fault zone on the west side, and the Zhongsha Trough fault

zone on the south side (Xu et al., 2010; Cao et al., 2014). A

series of normal faults with extensional shear properties are

developed along these fault zones (Lin et al., 2009), and a

series of normal faults are also developed in the transition

zone between the Xisha block and the northwest sub-basin,

indicating that the area has prominent extensional

characteristics (Ding et al., 2009).

Many small shallow faults are developed in the study area in

NE-NEE and NW directions. They are also mainly normal faults

with a steep occurrence, vertical fault displacement of about 10m,

and horizontal fault displacement of less. They are staggered T1

(Quaternary stratigraphic bottom) seismic reflection interface

and the seabed (Figure 11). In the single-channel seismic section,

the faults are characterized by in-phase axis dislocation and

distortion, different internal and external reflection patterns of

the reflection wave groups on both sides of the fault, and

sometimes an inconsistent thickness of the two plates. The

faults are associated with volcanic activity, gas-bearing

structures, and pockmarks.

FIGURE 6
Landslides and ancient channel sediments of different stages in the northwest of Xuande Atoll.
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5.1.5 Submarine erosion of gullies (troughs) and
canyons

Submarine scour gullies (troughs) are widely developed

around the platforms. They are mainly distributed on the

southern and eastern slopes of the Yongxing Platform, the

southwest and southeast slopes of the Zhongjian North

Platform, and the northwest and southern slopes of the

Huaguang Platform (Figure 3). They are large or small and

often occur in groups. The cross-section of the scour trough is

mostly V-shaped and U-shaped, the wall of the valley side is

relatively steep, and the sediments are collapsed (Figure 8), being

controlled by the faults. Along the fault boundary, the sediments

are continuously scoured by the current, denuded, and

accumulate at the bottom of the valley for local deposition or

transported and redeposited with the current. The current

seafloor scour gullies have been affected by multiple factors,

such as hydrodynamic conditions, stability of the sediment layer,

and sediment supply. The scour degree varies, with most water

depths ranging from several meters to several hundred meters.

On the southern side of the Xuande Platform in the study area, a

series of east-west and north-south erosion grooves are

developed on the slope (Figure 9). These grooves occur in

water depths of 350 m–750 m; the cutting depth of the

grooves ranges from 15 m to 40 m, and the width of the

grooves mouths ranges from 110 m to 500 m. The grooves

extend along the slope into deep water, nearly parallel to each

other, forming a train of skirts around the reef.

There are more than six small and medium-sized canyons in

the study area. The head of these small canyons generally has

multiple branches and is connected with other geomorphic units,

such as erosion and scouring grooves, which are in a “funnel”

shape on the plane. The scales of these canyons are larger than

FIGURE 7
Schematic diagram of seismic profile of mud diapir and gas chimney at the edge of the platform (B). (C) and (D) are magnified views of
corresponding parts in (A).
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that of steep slope erosion grooves, with a length of up to 20 km

and a width of about 600 m−1500 m. The cross section of the

canyons is V-shaped, and the undercutting erosion depth is

generally 20 m−40 m. Generally, the erosion depth of the

upper half of the canyons is deep, and the undercutting

erosion depth of some small canyons in the south of the

Huaguang Plateau can reach 150 m. The most typical canyon

is the Yongle Canyon, located north of the East Island Platform

(Li et al., 2017). The overall morphology of the Yongle canyon is

several small canyons on the northeast side of the East Island

platform converging into the main big canyon leading to the

northwest sub-basin. The upstream slope of the Yongle Canyon

is steep and varies greatly, and the channels around the atoll and

the submarine landslide system are the transport channels of

detrital materials in the source region. In the middle and lower

reaches of the basin, the slope is gentle, the slope variation is

slight, and the detrital material is mainly transported and merges

into the erosion and collapse debris on both sides of the slope,

forming a horn-shaped entrance basin in the northwest sub-

basin (Wu and Qin, 2009).

The canyon area and scour trough are continually affected by

erosion, a typical active geological hazard. The terrain changes

are complex, and the unstable sediments on both sides of the

valley slopes and valley shoulders cause fracturing and distortion

of pipelines in the area and dumping of the foundation piles of

drilling platforms. Also, the topographic conditions on both sides

of the eroded valley/canyon can cause the strata on both sides to

be deposited. Collapse or slip can occur, causing devastating

damage to various constructions around it. Therefore, areas with

eroded valleys/canyons should be avoided when choosing sites

for engineering activities. In particular, the eroded valleys south

of the Xuande Atoll, the west and southeast of the Middle North

Sea Platform, the northwest of the Huaguang Reef, and the

canyons on the northern and southern sides of the Dongdao

FIGURE 8
Scour trough phenomenon reflected on a single earthquake.

FIGURE 9
Three dimensional topographic diagram of erosion scouring
trough, AA’ is the water depth profile.
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Platform should be avoided when looking to create underwater

engineering structures.

5.2 Destructive and inactive geological
hazards

5.2.1 Buried palaeochannels
During the Wurm glacial stage of the Late Pleistocene, the

global sea level generally dropped, the sea water retreated, and the

continental shelf was exposed to land. Rivers and lakes of various

scales developed. Since the Holocene, with the sharp rise in the

sea level, the early channels sunk into the seabed, and most were

buried under sediments of different thicknesses, forming ancient

buried channels.

The paleochannels in the study area mainly developed

between the T0 to T2 interface in the sediments from the Late

Pliocene to the Late Pleistocene with NW-trending and NE-

trends. Figure 10 shows that 12 continuously migrating

paleochannels developed in the southwest corner of the Xisha

area. The paleochannels in different periods are crisscrossed

vertically and horizontally, superimposed on each other, and

show complex variations. Wave-like reflection interfaces can be

seen at the bottom of the paleochannels, and chaotic

discontinuous-relatively continuous reflections reflect the

strata inside the ancient rivers. It shows that the study area in

the Late Pliocene-Late Pleistocene was in an erosion and scouring

stage and went through many stages of erosion-filling-re-

erosion-refilling.

Paleochannel sediments are often complex and variable,

and physical and mechanical properties vary significantly in

the horizontal direction, such as particle size composition,

sorting degree, density, compressive strength, and shear

strength. The sediments and fillings of the paleochannels

are mainly coarse clastic sand and gravel with large

porosity, fast interlayer water circulation, and strong

permeability. These could have easily been generated by

long-term erosion, scour, and overburden loads in the

strata (Kou, 1990; Chen and Li, 1993; Bao, 1995). Local

collapse destroys the formation’s original structure and

causes basement instability. River sediments often contain a

large amount of organic matter, which may form shallow gas.

FIGURE 10
Seismic profile of buried paleochannel migration, where (B) is the enlarged part of (A, C) is the fine description of the internal structure of (B)
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This gas makes the area unsuitable for constructing offshore

pile foundations and drilling platforms.

5.2.2 Seabed pockmarks
Submarine pockmarks are a negative seafloor topography

formed by fluid and gas in formations leaking upward along

migration channels and eroding the sediments on the seabed

surface (Judd et al., 2007; Hovland et al., 2012; Luo et al., 2012;

Riboulot et al., 2013; Riboulot et al., 2014; Andreassen et al.,

2017). The continued escape of gas from a formation can cause

sediments to collapse, creating pits on the seafloor surface. The

results of multi-beam surveys show that large and small pits in

the study area are highly developed, especially on the northwest

side, where the scales are large. Multiple pits are distributed

together to form a pockmark group. Four larger pockmarks

groups are located on the east side of the Ganquan Plateau,

the south side of the Xisha Trough, the south side of the Jinyin

Valley, and the southwest side of the Xuande Atoll. This paper

temporarily named them the Ganquan East Pockmark Group,

the Xisha Trough South Pockmark Group, the Valley South

Pockmarks Group, and the Xuande South Porkmarks

Group. The strata in the pockmarks area are mainly

characterized by weak or scattered local reflections

(Figure 11), and a large number of normal faults are

developed in the shallow part.

The Ganquan East Pockmark Group is the largest one in the

study area (Figure 12). It is dumbbell-shaped (wide on both

sides and narrow in the middle), with an area of about

1505 km2. It is about 56.5 km long in the NS direction,

15–44 km wide in the EW direction, and has a water depth

of 850–1250 m. There are three small pit groups arranged along

the NE direction in the Xisha Trough South Pockmark Group

(with a total area of about 1409 km2), the westernmost of which

is in the shape of a NE-direction strip, and the other two are

irregular. The Valley South Pockmark Group is smaller, about

176.2 km2, and a small oval-shaped depression is developed on

the west side of the group. It is ~2.4 km long, 1.3 km wide, and

3.2 km2 in area. The water depth in the depression is about

120 m; The Xuande South Pockmarks Group is in the shape of

an irregular strip and is about 22.5 km long, 3–4 km wide, and

72.8 km2 in area. Several small sea mounds are developed in the

pockmark group.

It is generally thought that deep fluids (such as hydrocarbon

gas, pore fluid, groundwater, etc.) migrate upward to shallow

formations through migration channels (such as faults,

unconformities, weak zones, etc.) and accumulate to form

overpressure formations. When the pressure of the overlying

formation decreases and the overpressure fluid in the lower part

breaks through the seal, the fluid leaks. At the same time, the

pore water in the formation is discharged from the pore space

and transported to the seabed sediments, causing the relatively

weak local seabed sedimentary formations to deform. The pore

water also gradually erodes the local seabed formations,

reducing the volume of sediments and forming pits (King

and Maclean, 1970; Harrington, 1985; Scanlon and Knebel,

1989; Khandriche and Werner, 1995; Cathles et al., 2010). The

pits in the study area are mainly of tectonic origin and have

been generated due to faults, gas chimneys, mud volcanoes,

mud diapirs, and other tectonic processes related to fluid

activities. The undulating seabed topography in the area of

the pockmark groups and the uneven settlement inside and

outside the pockmarks can adversely affect cables and pipelines

FIGURE 11
Active faults and Markeng recorded by single seismic profile.
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laid in the area, and, therefore, doing so should be treated with

caution.

5.2.3 Submarine volcanoes
Existing studies have pointed out that in the northwest of the

South China Sea, where the Xisha Sea area is located, after

seafloor expansion, volcanic structures with small individual

areas, large numbers, and apparent inherited activity became

widely distributed (Zhang et al., 2014b). There is a concentrated

distribution of Cenozoic volcanic activity in the area (Zhang

et al., 2014b). Seismic profiles show about 10 volcanic structures

in the southern part of the Xisha Sea area (Feng et al., 2017).

According to our latest data, about 30 volcanic structures intrude

into the Quaternary strata in the Xisha Sea area, even erupting

out of the sea floor to form seamounts with different sizes and

exposed areas ranging from 1.5 km2 to 125 km2. Volcanic

structures are mainly manifested in the perforation of the

seabed, typical low-frequency and strong reflections of the

contour, internal chaos, discontinuous strong amplitude

reflection characteristics or blank discontinuous weak

reflection characteristics, and a main invasion of the Pliocene

and Pleistocene strata. In addition, a single volcanic structure has

been found in the western edge, and central part of the Xisha

area, and volcanic activity has invaded the surrounding

Quaternary strata.

Active volcanoes have a strong disaster-causing effect, but

most of the submarine volcanoes in the study area are no longer

active, making them inactive geological hazards. The submarine

volcanoes in the study area have had a noticeable transformation

effect on the submarine topography, resulting in a considerable

height difference between the volcanoes and the surrounding

strata. The volcanoes have also dragged or disturbed the

surrounding strata, resulting in the instability of the strata,

making the area not conducive to laying large-scale pipelines

or constructing platforms.

6 Conclusion

Based on the interpretation and analysis of geophysical data

and from the perspective of geological hazards in the Xisha Sea

area, the following conclusions are drawn:

FIGURE 12
Three-dimensional topographic map of the Ganquan East Porkmark Group and Seaknolls Group.

TABLE 1 Geological classification of disasters in the Xisha Sea area.

Geological hazard type Geological hazard factors

Destructive geological hazards with activity ability Active fault, shallow gas, diapir, landslide, scarp, scouring trough, canyon

Destructive geological hazards without activity capacity Buried palaeochannels, pockmarks, bioherms, mounds, volcanic structures
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1) Based on the interpretation of geophysical survey data, the

geological hazards are divided into two categories: active and

destructive geological hazards, such as active faults, shallow

gas, diapirs, landslides, steep ridges, scour grooves, etc. The

second comprises inactive geological hazards, such as buried

ancient river channels, pits, etc.

2) The steep ridges are mainly located around the atolls or

platforms. The average submarine slope of the scarps on the

northwest side of the island reef area is about 4.6°, and the

average submarine slope of the scarps on the southeast side is

about 22°. Landslides are mainly developed in the west and

southeast of the Yongxing Plateau and the west and south of

the Yongle Plateau. There are seven medium and large slumps

caused by gravity and faulting. Shallow gas is mainly developed

in the southern part of the North Reef and mainly includes

shallow gas indicated by diapirs, faults, and gas chimneys. The

shallow faults in the study area are mainly steep normal faults.

The paleochannels in the study area are mainly developed in

the sediments of the Late Pliocene to the Late Pleistocene with

NW and NE trends, and they underwent a multistage erosion-

filling-re-erosion-refilling process. In the Xisha Sea area, there

are four large pockmark groups, the Ganquan East Pockmark

Group, the Xisha Trough South Pockmark Group, the Haigu

South Pockmark Group, and the Xuande South Pockmark

Group. They are mainly tectonic, including faults, gas

chimneys, mud volcanoes, mud diapirs, and other structures

related to fluid activities. Due to the influence of multiple

factors, such as hydrodynamic conditions, the stability of

sedimentary layers, and sediment supply, the scour valleys

on the seafloor vary in terms of the scour degree. The

degree of scouring varies from several meters to several

hundred meters.

3) If engineering construction is to be carried out, hidden

dangers should be identified before offshore construction,

and measures should be taken to prevent harm to engineering

infrastructure. To prevent geological disasters, engineering

constructions should not be carried out in various shallow

seabeds, especially active ones. Areas with geological hazards,

such as the steep ridges around various atolls and platforms,

landslides on the west and southeast sides of Yongxing Island,

landslides in the west and south of Yongle Plateau, shallow

gas in the southern part of the North Reef, active faults, mud

diapirs, scour trough and canyon should be avoided when

undertaking construction works in the area.
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Cenozoic evolution of the
Yangjiang-Yitong’ansha fault
zone in the northern South China
Sea: Evidence from 3D seismic
data
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The Yanjiang-Yitong’ansha Fault Zone (YYFZ) traverses the Pearl River Mouth

Basin (PRMB) and plays an essential role in basin formation and hydrocarbon

accumulation in the PRMB. Because of the lack of seismic data, its distribution,

evolution, and effect on the basin evolution in the Cenozoic are poorly known.

Based on a detailed interpretation of 3D multi-channel seismic data and

previous research results, the YYFZ was identified and characterized. It

comprises a series of NW-trending strike-slip faults that exhibit horsetail and

en echelon structures in themap view and flower-like or Y-shaped structures in

the profile view. By comprehensively analyzing the Paleogene migration of

depocenters, activity characteristics of the YYFZ-related faults, and the

relationships between faults and sedimentary sequences along the YYFZ, we

propose the sinistral motion of the YYFZ initiated at about 35 Ma. The YYFZ

served as a transfer zone during the intense rifting in the PRMB from 65 to

35 Ma. Then due to the combined effect of the Indian-Eurasian collision to the

west, the Pacific subduction to the east, and the proto-SCS slab-pull to the

south, it became a sinistral transtensional fault from 35 Ma to 16.5 Ma. Our

results highlight the significant role of the NW-trending fault systems in the

basin formation and the regional tectonic evolution of the PRMB.

KEYWORDS

sinistral motion, dynamic mechanism, Yangjiang-Yitong’ansha fault zone, Pearl River
Mouth Basin, Cenozoic evolution
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1 Introduction

As one of the largest marginal basins in the western Pacific

region, the South China Sea (SCS) has been studied not only for

its rich hydrocarbon and mineral resources but also for its

unique tectonic location that makes it an ideal natural

laboratory for studying and testing modes of lithospheric

extension and breakup (Sun et al., 2016; Ye et al., 2020). The

Pearl River Mouth Basin (PRMB) on the northern SCS is a

Cenozoic sedimentary basin undergoing multiple extension

episodes during the late Cretaceous to Oligocene. Faults in

the PRMB, especially the strike-slip ones, significantly impact

basin formation and hydrocarbon accumulation (Hou et al.,

2008; Cao et al., 2014). Previous studies indicated that many

regional strike-slip fault zones develop in the PRMB and

control its tectonic configuration (Figure 1; Li et al., 2012;

Cheng et al., 2012; Wang et al., 2014; Wang W et al., 2017;

Wang et al., 2020; Wang et al., 2021; Wang et al., 2022; Mu et al.,

2022; Zhou et al., 2022). However, its formation mechanisms

remain controversial. Some authors referred to the PRMB as a

transtensional basin triggered by widely distributed NE-

trending strike-slip faults (Xu and Zhang, 2000; Cheng et al.,

2012; Li et al., 2012; Xu et al., 2014; Wang P et al., 2017; Mu

et al., 2022; Zhou et al., 2022), whereas others proposed that the

basin as a rift basin (Ho-Shing, 1990; Ge et al., 2020; Fu et al.,

2021; Hao et al., 2021).

In the past few decades, the structural characterization of the

PRMB has been one of the most studied targets (e.g., Shi et al.,

2020; Huang et al., 2018; Zhang et al., 2021; Ye et al., 2020; Zhao

et al., 2020; Hui et al., 2022; Ge et al., 2022). However, most of the

studies mainly focus on the NE/NEE-trending faults since they

control the basin’s overall architecture (e.g., Liu et al., 2018; Ye

et al., 2018, 2020; Zhao Y et al., 2018; Zhou et al., 2018; He et al.,

2019; Zhou et al., 2019; Zhou et al., 2019; Ma B et al., 2020;

Camanni and Ye, 2022; Suo et al., 2022). Less attention has been

devoted to understanding the NW-trending ones, for example,

the Yangjiang-Yitong’ansha Fault Zone (YYFZ). Previous

studies indicate that the YYFZ is an important NW-

trending strike-slip fault zone influencing crustal structure,

continent-ocean transition zone, basement lithology,

sedimentary facies, Mesozoic tectonic environment,

Cenozoic fault strike, and basin structure in the northern

FIGURE 1
(A) Regional tectonic locations. (B) Structural units of the PRMB and the locations of regional strike-slip fault zone (modified after Zhu W et al.,
2009; Zhu et al., 2021; Wang et al., 2020).
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SCS (Figure 2; Hu et al., 2009; Wang et al., 2006; Guo et al.,

2016; Wei et al., 2011; Sun et al., 2008; Zhong et al., 2014; Liu

et al., 2013; Cai et al., 2021; Sun et al., 2014; Zhu et al., 2017; Lu

et al., 2011; Li et al., 2019). Owing to its specific geographical

location, the YYFZ is an ideal site for investigating the NW-

trending strike-slip fault zones.

The YYFZ, not often legible in shallow levels along its strike,

has a complex geological history, and its origin and evolution

likely had profound consequences on the formation of the PRMB

(Mu et al., 2022; Wang et al., 2022). Previous research has shown

that the YYFZ offset both basement gravity and magnetic

anomaly belts and NE-trending faults in the PRMB and

experienced marked sinistral motion during the Mesozoic

(Zhou et al., 2006; Chen et al., 2005). However, limited by the

low resolution of seismic data, its structural characteristics are

still unclear, and its tectonic evolution remains controversial.

Some authors believed that the YYFZ only exhibits a tectonic

transition zone in the Cenozoic (Zhong et al., 2014; Ma M et al.,

2020). Some authors considered that it experienced sinistral

movements throughout the Mesozoic (Zhou et al., 2006; Chen

et al., 2005; Sun et al., 2009) and was subsequently reactivated as a

dextral strike-slip fault during the Cenozoic (Chen et al., 2005; Lv

et al., 2017). Besides, the YYFZ is generally considered as a major

sinistral strike-slip fault since the Early Oligocene (Wang et al.,

2013; Sun et al., 2014; Zhang et al., 2019; Cai et al., 2021; Liu X

et al., 2021; Zhan et al., 2021; Zhang et al., 2021). Further, Li et al.

(2019) have confirmed the YYFZ experienced sinistral

transtensional deformation in the early Cenozoic, followed by

dextral transtensional deformation from about 23.8 Ma to the

present, based on the comparison of structural style and tectonic

evolution history on both sides of the YYFZ. However, the

following essential problems about the YYFZ had not been

FIGURE 2
(A) Tectonic framework of the study area and the location of the YYFZ. (B–E) are the strike rose diagrams ofmajor faults in the Yangjiang, Enping,
Kaiping, and Baiyun sags, respectively.
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discussed clearly: 1) the structural features and initial activity of

sinistral strike-slip faults, 2) the evolution history, 3) the control

and influence of strike-slip fault on the evolution of the PRMB,

and the driving mechanism in the Cenozoic.

In this study, we applied high-resolution 3D seismic data

covering the western PRMB to investigate the YYFZ

geometrical characteristics and discuss its Cenozoic evolution

history. We also built a geodynamic model to reveal the

influence of strike-slip fault on the evolution of the PRMB

with some synchronous plate motions around the SCS in the

Cenozoic. Our research has implications for understanding the

complexity and diversity of faults in the PRMB and the

geological evolution of the basins, which would benefit

petroleum exploration there.

2 Geological setting

The PRMB, with a total area of 175,000 km2, is a long and

wide ENE-trending graben located in the northern margin of

SCS. Controlled by two groups of faults with NE and NW strikes,

the basin presents a segmental and zonal structural framework in

the NE and NW directions, respectively (Figure 1; Cheng et al.,

2012; Zhong et al., 2014). From north to south, the basin can be

FIGURE 3
Comprehensive stratigraphic column of the PRMB showingmajor tectonic and depositional events (modified after Li H et al., 2014; ZhuW et al.,
2009; Zhu et al., 2021; Zhang et al., 2021).
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divided into five first-order structural units: the northern uplift

zone, the northern depression zone, the central uplift zone, the

southern depression zone, and the southern uplift zone (Xie et al.,

2014; Wang P et al., 2017). The northern depression belt consists

of the Zhu Ⅰ Depression (Enping Sag, Xijiang Sag, Huizhou Sag,

Lufeng Sag, and Hanjiang Sag) and the Zhu Ⅲ Depression

(Wenchang Sag, Yangchun Sag, Yangjiang Sag, Qionghai Sag,

and Yangjiang low Uplift). The central uplift belt consists of

Shenhu Uplift, Panyu low Uplift, and Dongsha Uplift from west

to east. The central depression zone consists of the Zhu II

Depression (Shunde Sag, Kaiping Sag, Yunkai low Uplift, and

Baiyun Sag) and Chaoshan Depression. The Sag and Uplift in

PRMB are mainly NE/ENE-trending. The faults developed in the

PRMB during Cenozoic are mainly composed of NE-to EW-

trending normal faults and NW-trending shear faults. The basin

is divided into segments from west to east by NW-trending

Qionghai, Yangjiang-Yitong, Huizhou, Huidong-Beiweitan,

Raoping-Taixinan, Nanao-Taiwanxi faults (Chen et al., 2005).

The general stratigraphic column of the PRMB is shown in

Figure 3. The Paleogene to Lower Oligocene strata consist of

fluvial-lacustrine sediments in discrete rifts, among which the

Eocene Wenchang and Enping Formations contain dark

lacustrine mudstones that are primary source rocks for

hydrocarbons in this area. Deposits in the Upper Oligocene

Zhuhai Formation are transitional (alternatively coastal and

littoral) and contain both source rocks and reservoirs.

Neogene strata consist of marine sediments that constitute a

generally transgressional sequence. The Cenozoic strata

comprised seven lithostratigraphic units (Figure 3). They are

from the bottom to the top, the Shenhu (E1s) Formation, the

Wenchang (E2w) Formation, the Enping (E2e) Formation,

Zhuhai (E3z) Formation in the Paleogene and Zhujiang (N1z)

Formation, Hanjiang (N2h) Formation, Yuehai (N2y) Formation

and Wanshan (N2w) Formation in the Neogene. Nine high-

amplitude seismic interfaces were recognized and tracked

throughout the study area: the T30, T32, T40, T60, T70, T80, T90,

and Tg. These seismic interfaces correspond to lithostratigraphic

interfaces standing for the second- and third-order sequence

boundaries (Ye et al., 2018).

The NEE-trending Yangjiang Sag is bounded by the

Yangchun Low Uplift to the north, the Shenhu Uplift to the

south, theWenchang Sag to the west, and the Enping Sag of Zhu I

depression to the east (Figure 4). Separated by the Yangjiang Low

Uplift, it can be divided into the west and east sag. The structure

of the west sag is north-faulted and south-overlapped, while that

of the east sag is relatively complex, represented by single half-

grabens and composite half-grabens. From west to east,

Yangjiang Sag is further subdivided into six subsags: the YJ

FIGURE 4
Secondary tectonic units of the Yangjiang Sag and adjacent areas (See Figure 2 for the location).
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FIGURE 5
Structure, fault system, and stratum characteristics of the YYFZ. Profile locations are shown in Figure 2. The faults derived from the YYFZ
terminate mainly in N2w.
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33, YJ 24, EP19, EP20, EP21, and EP27 subsags. The YJ33 and

YJ24 subsags are bounded by the F1, the EP19 subsag is

controlled by the F2 and F3, the EP20 subsag is determined by

the F4, the EP21 subsag is controlled by F5 and F6, and the

EP27 subsag is controlled by F7 and F8. These boundary faults

trend mostly NE-ENE and WNW.

3 Data and methods

Structural features and the spatial distribution of the YYFZ in

the PRMB were analyzed through detailed seismic interpretation.

All these 3D seismic and well data were acquired by the China

National Offshore Oil Corporation (CNOOC) Shenzhen Branch

and associated cooperative services companies over the past

decades. The seismic profiles nearly cover the whole region of

Yangjiang Sag, over 5,600 km2. The bin size of the survey is 12.5 *

12.5 m. Inline seismic profiles are orientated NW, approximately

perpendicular to the basin trend. Standard seismic interpretation

workflows for the tectonic-stratigraphic analysis and magmatic

body identifications were carried out in Geoframe Open Works

(software). A stratigraphic framework was established by

integrating 3D seismic and log data with VSP information

from some typical wells. Due to its relatively integrated

stratigraphic sequence, petroleum exploration boreholes were

used to calibrate the Cenozoic strata. Twelve key seismic-

stratigraphic boundaries have been identified and named

following the nomenclature termed by the CNOOC as Tg

(66.5 Ma), T82 (42.5 Ma), T81 (39.5 Ma), T80 (35 Ma), T71

(33 Ma), T70 (30Ma), T60 (23 Ma), T50 (18.5 Ma), T40

(15.5 Ma), T32 (13.8 Ma), T30 (10.5 Ma) and T20 (5.5 Ma)

(Figure 3). Fault dip and displacement values are calculated on

the seismic profiles that cut across the fault (Huang and Liu, 2014).

The time-depth conversion was performed using a second-

order polynomial, D=0.000274591t2+0.72410996t+31.78776360

(D-depth/m, t-TWT/ms), derived from boreholes within the

study area.

The workflow includes the following steps: 1) identify and

correlate seismic horizons; 2) generate time structural maps,

seismic volume slices, and fault distribution maps during the

different seismic reflectors; 3) observe the patterns of en echelon,

feather-shaped, horsetail-shaped in map view; 4) observe the

stacking patterns of flower-like or Y-shaped structures along the

YYFZ; 5) systematically investigate the concomitant changes of

depocenters; 6) calculate fault kinematics features; 7) conclude

the initial time and evolutionary history of the YYFZ.

Fault geometry features were portrayed based on seismic

sections covering the entire study area. Fault orientations are

depicted in rose diagrams. Fault kinematics features and their

tectonic evolution history were analyzed using 2Dmove software.

The evolution history of the YYFZ can be constrained by growth

strata and fault assemblage in the profile.

4 Results

The seismic sections across the YYFZ were selected to

represent its structural characteristics in the Yangjiang Sag,

the northern Kaiping Sag, and the Yunkai Low Uplift. As

shown in Figure 5, the YYFZ mainly displays sub-vertical

faults, Y-shaped or flower-like structures. In the Yangjiang

Sag, the abovementioned structures were primarily observed

between the interface T70 or T80 and T32, while in the

northern Kaiping Sag and the Yunkai Low Uplift, they were

mainly between T80 and T32 with a few just between Tg and T60

(Figure 5).

4.1 Distribution patterns in map view

4.1.1 Yangjiang sag
Previous studies have suggested that the density of secondary

faults can be used to constrain the relative intensity of faults

(Huang et al., 2015). Here, we used fault patterns at different

seismic reflectors to delineate the distribution and variations in

secondary faults in different strata. In the deeper seismic

reflectors (Figure 6A), the main faults formed simple NE- and

ENE-trending alignments parallel or left-stepping en echelon

structures. Subsequently, the formation of a fault system in the

early stage may be related to extension, accompanied by slighter

dextral transtensional. Besides, these faults only occur in the

eastern section, which may be related to the YYFZ as a transfer

zone. In contrast, in the middle seismic reflectors, the number,

size, and distribution area of the ENE-trending fault become

large. Broom-shaped structures and en echelon fault patterns

were more extensively developed in the Yangjiang Sag (Figures

6B,C), suggesting that the strike slipping was more intense than

in the early Middle Eocene. Meanwhile, a few EW- and

WNW–trending faults arose in the sag, especially in its

eastern part. The horsetail-shaped structures and right-

stepping en echelon fault structure can be identified. The rose

diagrams also show that strikes of newborn faults changed from

the NE–ENE to the EW-WNW since the Late Eocene, implying a

change in the extensional stress from NWN to N–S during the

syn-rift stage. In the post-rift stage, the ENE- or NE-trending

fault is less active. However, the abundant WNW-or EW-

trending faults formed and cut off the pre-existing NE- or

ENE-trending faults. These WNW-trending faulting assembled

into right-stepping en echelon or horsetail-like patterns

(Figure 6D).

The abovementioned characteristics reveal that the YYFZ

experienced two tectonic episodes during the Cenozoic: 1)

extensional deformation as a transfer zone during the Eocene

and 2) sinistral transtensional deformation from the Oligocene to

Neogene. Besides, the intensity of the dextral transtensional

motion was weak during the early Middle Eocene. Still, it was
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enhanced from the Middle Eocene to the Middle Miocene and

became less active in the sag.

4.1.2 Northern kaiping sag
This study area is located in the Kaiping Sag, bounded by the

Baiyun Sag to the east, Panyu low Uplift and Shenhu Uplift to the

north, and the Yunkai low Uplift to the south (Figure 2). In the

sag, the major faults are EW-trending and display simple parallel

or right-stepping en echelon structures (Figure 2). Similarly, in

the middle seismic reflectors (such as the T70 interface), the fault

distribution pattern in the northern Kaiping Sag also suggests

that the boundary faults are composed of a series of NW- or EW-

trending faults. However, they are not continuous and smaller,

and display a right-stepping en echelon pattern (Figure 7).

4.1.3 Yunkai low uplift
The Yunkai Low Uplift, mainly distributed along the NW

direction, is located in the tectonic transition zone from the

Kaiping Sag in the west to the Baiyun Sag in the east (Figure 8).

Influenced by the YYFZ, the pre-existing faults experienced

strike-slip reactivation, and the Uplift is characterized by

WNW-trending right-stepping small-scale normal faults

arranged in en echelon pattern (Figure 8). Therefore, to

unravel the tectonic evolution of YYFZ, the fault patterns in

different seismic reflectors of the Yunkai Low Uplift are carried

out. Themaps show that the dominant trend of faults in the study

area mainly includes NWW/NW, EW, and ENE directions

(Figure 9A), which show a clockwise rotation. During the Late

Eocene to the Oligocene (corresponding to the T80-T70 in space,

~35–30 Ma in time), the main faults in the Yunkai Low Uplift

were WNW/NW-trending and short with curved or sigmoidal

features (Figure 9B). They were different from the NEE-trending

main faults in the northern depression zone, such as the

Yangjiang Sag. The horsetail- or right-stepping fault patterns

in the Yunkai Low Uplift can be seen (Figures 9B,C), which

suggests slighter sinistral transtension. Compared with the

deeper sector, the number, size, and distribution area of the

WNW-/NW-trending faults in the shallow seismic reflectors

FIGURE 6
Fault patterns in different seismic reflectors of the Yangjiang Sag. (A)-T82; (B)-T80; (C)-T70; (D)-T40.
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FIGURE 7
Distribution characteristics of fault plane combination along T70 in the northeastern part of the Kaiping Sag (Figure 2 shows figure location). (A).
T0 planemap; (B) Two-dimensional fracture plane distribution along the coherent attribute recognition (revised fromWang et al., 2021a; Wang et al.,
2021b).

FIGURE 8
Structural units and fault pattern in the Zhu II Depression. The WNW- and E-W-trending secondary faults are assembled to produce an en
echelon fault pattern in the T80 interface. Figure location is shown in Figure 2 (revised from Wang et al., 2021).
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become smaller (Figures 9C,D). Besides, a group of NW-trending

minor faults at the interface T40 exhibits a left-stepping en

echelon pattern, suggesting ENE-trending dextral

transtensional motion (Figure 9D).

Similarly, the strike-slip motion is evident in the BY13 area

southwest corner of the Yunkai Low Uplift. During the early

faulting, these NW-trending faults were reactivated as normal

faults (Figure 9A). Compared with the Tg interface, the fault

appears as discontinuous linear structures from the Late Eocene

to the Early Miocene (T80-T60 in space; Figures 9B,C).

Meanwhile, these WNW-trending secondary faults developed

along the NW-trending fault’s right side and converged to the

main faults. In comparison, the upper faults at interface T40 are

composed of a series of WNW-trending faults, which present

right-stepping en echelon arrangement (Figure 9D).

4.2 Structure styles in sections

4.2.1 Yangjiang sag
The profiles crossing the Yangjing Sag indicate that the NE-

NEE trending faults determine the structural framework of the

subbasin. As the main fault of the study area, the NEE-trending

F1 and F4 faults present as a listric fault with a large offset.

Notably, a series of WNW-trending secondary faults began to

develop in the E2e depositional stage. Some of them form flower-

like or Y-shaped structures, indicating transtensional

deformation characteristics.

To reveal the profile features of those WNW-trending

secondary faults from north to south, we chose four

SWW–NEE typical seismic profiles in the Yangjiang Sag

(Figure 10, LineE-H). Profiles reveal that the NW-trending

YJ1, YJ2, YJ3, YJ4, and YJ5 faults display a geometric feature

similar to a steeply dipping listric fault in the lower part but a

negative flower or Y-shaped structure in the upper part (this is,

the lower listric upper flower structure) (Figure 10). These faults

penetrate the T80 or Tg unconformity, terminate below the T32

(Figure 10), and control non-wedge-like sedimentation. Among

those faults, the YJ2 fault in the north segment is mainly west

dipping, and those in the south segment are mainly east dipping

(Figure 10, LineE, and F), which display ribbon effect (Romeo

et al., 2005) in space. Similarly, the YJ3 fault in the north segment

is mainly east-dipping, and those in the south segment are mainly

west-dipping (Figure 10, LineF, and G).

FIGURE 9
Fault patterns in different seismic reflectors of the Yunkai low uplift (revised from Sun et al., 2014; Yu et al., 2021). (A)-Tg; (B)-T80; (C)-T60;
(D)-T40.
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4.2.2 Northern kaiping sag
The basement-involved faults in the northern Kaiping Sag

are mainly planar or shovel-type faults at a high angle. Notably, a

set of new normal faults began to develop during the depositional

stage of E2e. Some of them form flower-like or Y-shaped

structures with main faults. Besides, magmatic diapirs

intruded into the sedimentary cover of the basin along these

faults and even erupted over the seabed. According to growth

strata and fault assemblage in the profile (Figure 11, Line I), a

displacement of normal fault or transtensional fault occurred in

the basement-involved faults in the E2e-E3z depositional stage.

4.2.3 Yunkai low uplift
As the transition zone between the two sags, the Yunkai Low

Uplift connects the Kaiping Sag and the Baiyun Sag with a slope

and a faulted step zone, respectively (Figure 2). On the Yunkai

Low Uplift, the Wenchang Formation is mostly eroded, directly

overlain by the Enping Formation. Inside the Uplift, various

scales of listric and planar normal faults develop. Several normal

fault combinations display asymmetrical negative flower

structures (Figure 11, LineJ, and K). The deep layer structure

is characterized by a listric fault through the Tg interface and

developed upward across the T80 interface.

4.3 Characteristics of the sedimentary
succession

Sequence thicknesses in different stages reveal three-stage

depocenter migration, indicating two-stage structural

transitions in the study area. There developed five

independent depocenters during the depositional stage of

E2w, forming YJ24, EP19, EP20, EP21, and EP27 subsags,

respectively (Figure 12A). In this period, these subsags were

mainly controlled by the main faults (such as F1, F4, F6, and F7)

obviously, and the center of the E2w sequence is distributed

primarily in the east of the sag with the characteristics of thick

in the east and thin in the west. However, during the

depositional stage of E2e
L, the depocenter migrated to the

west Yangjiang Sag for the first time; the EP19 and

YJ24 subsags presented, leading to thick in the west and thin

in the east. Furthermore, from E2e
L to E3z, the study area

presents a westward thickening slope and their depocenters

are located along the NWW-trending faults and align in a right-

stepping en echelon pattern, indicating that the NW-trending

faults were sinistral during the depositional stage of E2e
L-E3z

(Figures 12B–D). The depocenter migration is probably

consistent with the intense activity of the strike-slip faults.

FIGURE 10
Interpreted seismic profiles showing fault intersections in the Yangjiang Sag. Profile locations are shown in Figure 6C. The profiles reveal that the
NW-trending faults are characterized by flower-like structures that indicate they experienced transtensional deformation.
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Based on the analyses presented above, the residual thickness

of E2w, E2e, and E3z showed an obvious counter-clockwise

rotation of the depocenter orientations from ENE to WNW in

the Yangjiang Sag; a similar depocenter rotation also occurred in

the Yunkai Low Uplift at the same time (Yu et al., 2021).

Consequently, it indicates a clockwise rotation of the

extension stress field from NW (in the E2w depositional stage)

to S-N (in the E2e depositional stage), consistent with the stress

field rotation in the PRMB (Hao et al., 2021).

5 Discussion

5.1 Initiation of the sinistral motion of the
YYFZ

Several distinctive structures were used to identify the YYFZ

in the PRMB. These structures include 1) a high-subvertical dip

angle (Harding, 1990) or a Y-shaped structure governed by

steeply dipping faults and a flower structure in cross-section

(Harding, 1985; Cheng et al., 2017; Han et al., 2017), 2) the

abrupt changes of the thickness of the same lithologic

stratigraphic unit, the sedimentary facies, and the formation

occurrence across fault planes in the section (Ghalayini et al.,

2014), 3) linear geometry, en echelon faults, pull-apart

structures, and horsetail splays in the map view (Harding,

1985; Mcclay, 2001); dolphin (Graham et al., 1984) and

ribbon effects (Romeo et al., 2005) in space. Previous results

have shown that the blind fault and tectonic trend zones in

sedimentary layers would inherit from pre-existing faults when

suffering deformation (Bellahsen and Daniel, 2005; Wang et al.,

2015). These pre-existing structures incline to show strike-slip

deformation, accompanying many minor faults aligning in a

parallel or en echelon arrangement (Liu Y et al., 2021). In this

study, the YYFZ exhibited en echelon arrays of minor faults in

the map view and flower-like or Y-shaped structures in the

section. These small-scale normal faults are arranged in a right-

stepping en echelon pattern on the T80 seismic interface,

indicating that the YYFZ has a consistent initiation time

(i.e., at about 35 Ma) and has the same overall kinematic

framework. The fault plan arrangements suggest that these

NW or WNW-trending faults had experienced sinistral

FIGURE 11
Seismic profiles show the geometry of the NW-trending faults in the northern Kaiping Sag and Yunkai low uplift. The location of seismic profiles
Line I and Line J-K are demonstrated in Figures 8, 9, respectively. These faults are characterized by flower or Y-shaped structures.
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strike-slip motion. Besides, the syn-depositional fault map of

Paleogene shows that the E2e
L sequence presents a thickening

slope westward, and the depocenters are located in the NWW

trending faults, which also confirms that the NW-trending

strike-slip faults began to slightly motion during the stage

(Figure 12B). Based on the fault pattern in the BY13 area,

Sun et al. (2014) indicated that the NW-trending shear faults

acted sinistrally about 32 Ma. Wang et al. (2013) also proposed

that the sinistral transtensional activities occurred during the

middle to early Oligocene, according to a comprehensive

interpretation of seismic stratigraphic sequence and faults.

It is difficult to track the activity history because the strike-slip

faultsmove along the strike (Yu et al., 2008). However, the activity of

secondary faults derived from the main strike-slip faults can reveal

the tectonic activity of strike-slip faults. By calculating the activity

rate of main faults in the Yangjiang Sag during the Paleogene, the

results reveal that the NE/ENE-trending normal faults activated

during the depositional stage of E2e and reached the peak stage

during the period of the E2e
L sequence. Meanwhile, the WNW-

trending faults related to the YYFZ are active during the depositional

stage of E2e (Figure 13), whichmay also suggest that the YYFZ began

to be active during the period.

FIGURE 12
Sequence characteristics of different periods in the Yangjiang Sag area. (A), (B), (C), and (D) show the thickness of the E2w, E2e

U, E2e
L, and E3z

Formation, respectively. Note the depocenter migration in (B) and (C).

FIGURE 13
Average rates of active dip-slip faulting of main faults in the Yangjiang Sag.
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As mentioned above, we suggest that all these fault bends or

en echelon structures were induced by the sinistral strike-slip

motion of the YYFZ, indicating that the sinistral slip of the YYFZ

commenced at about 35 Ma.

5.2 Cenozoic evolutionary history of the
YYFZ

Much previous work has shown that the Meso-Cenozoic

evolution of the YYFZ was characterized by huge and significant

sinistral motion (Zhan et al., 2021; Mu et al., 2022; Wang et al.,

2022), whereas its Cenozoic evolutionary history is poorly

known.

Evidence of the sense of motion from flower-like structures

in the profile and en echelon arrangement in the plane along the

YYFZ indicate that the Cenozoic sinistral motion occurred

around 35 Ma. The fault pattern in the plane and the main

fault cut through in the strata abovemaker T80 in the profile show

that their remarkable formation period was during the

depositional stage of E2e–N1z (T80-T40 in space), indicating

sinistral motion of the YYFZ during the period (Figures 5, 6).

Remarkably, the change of tectonics stress regime and sediment

provenance before and after the T80 reflection interface occurred

in the PRMB (Tang et al., 2020), which is further validated by the

fact that the EW-trending normal faults are primarily developed

in the Yangjiang Sag (Figure 6B). Besides, combined with the

sedimentary thickness data, the Yangjiang Sag is a strike-slip

pull-apart superimposed area composed of multiple WNW-

trending faults in the E2e-E3z depositional stage, displaying en

echelon arrangement itself to some extent as well (Figures

13B–D). These features strongly confirm that the YYFZ was

active during these two periods. One further point should also be

emphasized, although the depocenter appears not obvious in

Neogene strata, some en echelon subsidiary faults are

nevertheless still developed among shallow strata (Figure 6D),

indicating that strike-slip motion still occurred during Neogene

but has become much weaker.

The kinematics characteristics of the YYFZ in the Eocene

remain controversial; some workers suggest that the YYFZ

showed dextral displacement in the earlier faulting stage,

which subsequently results in the boundary fault right

laterally displaced (Lv et al., 2017); however, other authors

proposed that the NW-trending pre-existing faults probably

reactivated only as a transform zone under the NW-SE

oriented stress field, regulating the differential tectonic

deformation on both sides (Zhan et al., 2021; Shen et al.,

2022). The transform zone is characterized by transform fault,

which links different segments of extensional structural domains

(Chen et al., 2011). Remarkably, the YYFZ in the Yangjiang Sag,

as a transfer zone, accommodates the differential tectonic

deformation on both sides (such as F1 and F6) during the

depositional stage of E2w. Moreover, the SW-NE-directed

seismic profiles cross YYFZ in the Yunkai Low Uplift show

that the listric-shaped or flat-shaped faults and graben-like basins

are primarily identified during the early Eocene to the middle

Eocene, indicating that faults are mainly derived from the

extensional activity.

Many investigations on the post-rift stage faults in the PRMB

(Sun et al., 2014; Wu et al., 2014; Zhou et al., 2020) show that the

number of subsidiary normal faults related to the sinistral shear

of the YYFZ decreased greatly after 13.8 Ma and distributed more

concentrated in NWW direction at shallow levels. Besides, the

strike-slipping of the YYFZ controlled the distribution of magma

activities in the western PRMB from 23.6–10 Ma, considering

that nearly all the igneous rocks were distributed along the YYFZ

(Li G et al., 2022).

According to the above discussions, we propose a new

Cenozoic evolutionary history of the YYFZ (Figure 14). After

a long period and significant sinistral motion during the

Mesozoic, the YYFZ was reactivated as a transfer zone as a

whole during 65–35 Ma. Besides, the principal deformation zone

along the NE-trending strike-slip fault controlled the

development of a series of Paleogene half-grabens (Cheng

et al., 2012; Li et al., 2012; Wang W et al., 2017; Wang et al.,

2020;Wang et al., 2021; Zhan et al., 2021). A sinistral shear with a

component of extensional deformation from 35 to 16.5 Ma;

meanwhile, the sinistral motion was most intense from 21 to

16.5 Ma. After 16.5 Ma, the SCS stopped the seafloor spreading,

and the whole area entered a thermal subsidence period (Sun

et al., 2008). In this period, the activity of YYFZ maintained the

previous sinistral motion and the activity intensity decreased.

5.3 Implication for regional tectonic
evolution and geodynamics of SCS

During the Paleogene (ca. 65–55 Ma), the Pacific plate

subducted beneath the Eurasian continent and interacted with

mantle materials, which probably resulted in slab retreat of the

Pacific Plate and subsequently induced the initial rifting in PRMB

(Allen et al., 1998; Liu et al., 2017; Ren, 2018; Wang et al., 2020;

Wang et al., 2021). During this period, the rifting activities

occurred only in the northern depression zone (Wenchang

Sag in the Zhu Ⅲ depression and Lufeng Sag of Zhu Ⅰ
depression), and the study area (the Yangjiang Sag and the

Yunkai Low Uplift) was an uplift area. Subsequently,

accompanied by the constant slab retreat of the Pacific Plate

(Müller et al., 2008), several NE/ENE-trending syn-depositional

faults widely developed in the PRMB during the early Eocene to

the early middle Eocene (ca. 55-44 Ma), such as Yangjiang Sag,

which exhibited listric-shaped or flat-shaped patterns on seismic

profiles and dominated graben-like basins (Figure 15A).

During the late Middle Eocene to the Early Miocene (ca. 44-

21 Ma), the Indian Plate continued to move northeastwards with

a gradually declining plate velocity (Lee and Lawver, 1995;
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Torsvik et al., 2008). Simultaneously, to the east of the SCS, the

subduction direction of the Pacific Plate changed from NNW to

WNW, and the subduction velocity of the Pacific Plate to Eurasia

increased from 38 mm/yr to 90 mm/yr (Northrup et al., 1995;

Copley et al., 2010), to the south of the SCS, the S-directed slab-

pull force of the proto-SCS began to affect the continental margin

of the SCS. Eventually, the common effect among these three

dynamic systems probably leads to a dextral trans-extensional

stress field. Therefore, the NE-trending faults changed from

normal to right-lateral strike-slip faults and were mainly

active in the PRMB (Figure 15B; Wang et al., 2021).

Besides, the dextral activity of the NE-trending fault has a

FIGURE 14
Cenozoic evolution history of the YYFZ (revised from Huang et al., 2015).

FIGURE 15
Simplifiedmodel showing three-stage extension and geodynamics in the Cenozoic PRMB (revised fromHall, 2012; Li S et al., 2022; Wang et al.,
2022). (A)-55 Ma; (B)-35 Ma; (C)-20 Ma.
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significant impact on the structure evolution of the PRMB

(Mu et al., 2022; Zhou et al., 2022). Influenced by the dextral

shear activity, the subsidence center of the Yangjiang Sag and

the syn-depositional faults were primarily NEE-trending

during this stage.

It is generally agreed that the Red River Fault (RRF)

experienced an earlier sinistral deformation (e.g., Tapponnier

et al., 1990; Leloup et al., 1995) and a later dextral movement

(e.g., Clift and Sun, 2006; Sun et al., 2009; Sibuet et al., 2016).

However, the timing of sinistral shear deformation is still a

controversial topic. Most geologists suggested that the onset of

the sinistral shearing activity along the Red River Fault occurred

at ~35 Ma (Leloup et al., 1995; Sun et al., 2003; Clift and Sun,

2006; Liang et al., 2007; Zhu M et al., 2009; Zhao Z et al., 2018;

Wang et al., 2019). However, some studies implied that the

sinistral shearing deformation occurred much later, at

30–21 Ma (e.g., Cao et al., 2011; Liu et al., 2012, 2015; Tang

et al., 2013). In this study, we suggest that the sinistral motion of

the YYFZ has started since the formation of T80 interfaces (about

35 Ma), which is consistent with the initiation time of the RRF

proposed by Lei et al. (2021). Thus, we infer that these faults

probably have a consistent initiation time (at about 35 Ma).

At this moment, the Pacific Plate subducted beneath the

Eurasia Plate with a high speed of 80 mm/yr to the east

(Northrup et al., 1995); more importantly, the rapid

extrusion of the Indochina block induced by the Indian-

Asian collision occurred to the west (Lee and Lawver, 1995;

Zhang et al., 2013; Guo et al., 2022; Wang et al., 2022). Besides,

it is worth noting that the S-directed slab-pull force of the

proto-SCS also plays an important role (Hall, 2013; Madon

et al., 2013). Influenced by the joint action among these three

dynamic systems and the secondary shear stress field trigged by

the NE trending strike-slip fault (Zhou et al., 2022), the NW-

trending faults in the northern SCS were reactivated

subsequently, creating a series of en echelon arrays of minor

faults and flower-like structures at depth (Zhang et al., 2019; Liu

Y et al., 2021), where a conspicuous blind fault zone developed,

similar to the NW-trending YYFZ in this study. Following the

renewed north-south extension in the South China continental

margin, the SCS spreading began at 34 Ma or 32 Ma (Li C.-F

et al., 2014), resulting in the concentration of extensional stress

sharply on the oceanic ridge.

After the Miocene (ca. 21-0 Ma), the SCS began to subduct

along theManila Trench and affect the adjacent tectonic domains

(Gao et al., 2018). At the same time, the Philippine Plate was

subducting in the WNW direction (Yan et al., 2022), and the

Indian Plate continued to move northeastwards. The joint effect

resulted in continuous sinistral motion of the NW-trending

faults. In contrast, the NE-trending faults were not active or

slightly active (Figure 15C). Above all, the three-stage evolution

of the faults in the study area is an outcome of the basin

evolution, which is closely associated with the movement of

surrounding plates.

6 Conclusion

Based on the fault system maps and seismic profiles, we

systematically investigated the development characteristics of the

fault system in the western PRMB and can make the following

conclusions:

1. A series of EW- and WNW–trending faults arose in the E2e

depositional stage, which exhibit horsetail and en echelon structures

in themap view and flower-like or Y-shaped structures in the profile.

Together with the response of depocenters in the Yangjiang Sag

adjacent to the YYFZ, we suggest that the YYFZ have a consistent

initiation time (i.e., at about 35Ma).

2. Combined with the Cenozoic evolution of the PRMB, the

Cenozoic activity of the YYFZ includes the following three stages:

1) 65-35 Ma, the YYFZ was a first-order transfer zone

accommodating significant intraplate extensional deformation;

2) 35–16.5 Ma, the YYFZ displays as a sinistral strike-slip fault

zone; 3) after 16.5 Ma, the activity of YYFZ maintained the

previous sinistral motion and tended to be weakened.

3. The evolution of the PRMB in the late stage is affected by

strike-slip reactivation along the YYFZ. This reactivation may be

related to the joint action among the rapid extrusion of the

Indochina block induced by the Indian-Asian collision to the

west, the subduction of the Pacific Plate beneath the Asia

continent to the east, and the slab-pull system of the proto-

SCS to the south.
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The accurate understanding of the origin of overpressure is the basis of formation
pressure research and the corework of determining the distributionof formation pore
pressure in drilling design. The deepwater area of Baiyun Sag in the Pearl River Mouth
Basin in the northern margin of the South China Sea has been proved to be a
hydrocarbon rich depression. In recent years, overpressure has been encountered in
the middle and deep layers, but the geological origin of the overpressure in the deep
water area are still unclear. Therefore, the pore pressure profile of the Baiyun Sag was
evaluated using the data of drilling and seismic velocity, and the relationship between
overpressure and the generation mechanism was established. Most of the
surrounding and shallow strata of Baiyun Sag show normal pressure, while the
middle and deep strata generally show overpressure, with the maximum pressure
coefficient up to 1.55. The overpressure zone mainly develops from the middle of
Zhujiang Formation to the upper member of Enping Formation. The mudstone
resistivity and density values of the two typical Wells deviated from the normal
trend. The density showed a constant trend with the increase of depth, while the
resistivity showed a certain degree of reversal. The upper layer of the overpressure
zone showed abnormally high resistivity values, corresponding to the overgland and
transition zone formed by high carbonate content. There is no obvious increase of
porosity in the overpressured sandstone strata of Baiyun sag, which does not have the
characteristics of undercompaction. The velocity in the overpressure section of the
twoWells varies greatly, and the density is basically unchangedor slightly decreased. It
is concluded that the overpressure is caused by fluid expansion from hydrocarbon-
generation. The large-scale and long-term fluid expansion caused by hydrocarbon
generation and expulsion of source rocks provides the power source for the
formation of overpressure in Baiyun sag. The distribution of effective source rocks
has a controlling effect on the distribution range of overpressure. The tight sandstone
strata in the Zhuhai, Wenchang and Enping formations become the cover layer of the
overpressure system in the longitudinal direction.
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Pearl River Mouth Basin, Baiyun Sag, overpressure characteristics, controlling factors,
overpressure origin
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1 Introduction

Accurate understanding of formation pore pressure before
opening the formation is an important part of reducing drilling
risk and cost (Yassir and Bell, 1996). In drilling operations, proper
drilling fluid density sequence is the core content of drilling design,
and a clear formation pore pressure distribution is the premise of
this work (Slavin and Smirnova, 1998). Depending on the sequence
of drilling operations, formation pore pressure can be evaluated in
two ways: monitoring and forecasting. Formation pressure
monitoring generally starts from the comparison of Wells before
drilling (Osborne and Swarbrick, 1997). The formation pressure is
calculated in combination with the new dynamic data during
drilling, which is used to adjust the drilling fluid performance
and drilling strategy in real time (Hunt et al., 1994). Formation
pressure prediction is to evaluate formation pressure using seismic
and well drilled data in order to calculate formation pressure as
accurately as possible before drilling (Hao et al., 2002). The
prediction of formation pressure is generally based on the basic
theories of Terzaghi and Biot theorem (Belonin and Slavin, 1998).
Quantitative models such as Eaton method and Bowers method
have been developed for pressure calculation, but these models are
based on the premise of correctly understanding the causes of
overpressure (Bowers G L, 1995; Luo and Vasseur, 1996; Peter
et al., 2004; Lahann and Swarbrick, 2011; Zhao et al., 2018).

As for the research on the causes of overpressure, unbalanced
compaction was believed to be the main reason for the formation of
overpressure in the early stage, and then hydrocarbon generation
expansion gradually came into people’s view (Teige et al., 1999;
Mark et al., 2009; Guo et al., 2010). The contribution of other causes
of overpressure, especially the montmorillite-illite transformation,
tectonic extrusion, pressure transfer, etc. to the formation of
overpressure has been discovered and confirmed (Guo et al.,
2011, 2012). The authors propose that the overpressure in the
tensioning basin is mainly caused by unbalanced compaction and

hydrocarbon generation, which develop at different diagenetic
stages and burial depths Xu et al., 2019a.

The deep water area of Baiyun Sag in the Pearl River Mouth
Basin in the northern continental margin of the South China Sea is a
hydrocarbon rich depression which has been proved by exploration
practice (Figure 1) (Sun et al., 2011). It has the characteristics of
hydrocarbon resources, which are both oil-gas generation and gas-
dominated (Shi et al., 2007; Hu et al., 2021). In recent years, the
Enping Formation has encountered overpressure in the middle and
deep depths, but the distribution and geological origin of the
overpressure in the deep water area are still unclear (Figure 2)
(Li et al., 2012; Han et al., 2017). Due to the lack of offshore drilling
data, unclear classification of overpressure causes and unclear
response characteristics of LWD (Logging While Drilling) data,
the prediction accuracy of pre-drilling overpressure in this area is
low, and drilling accidents related to formation overpressure often
occur in drilling practice, which not only affects the exploration
results, but also causes considerable economic losses. Therefore, the
pore pressure profile of the Enping Formation in the Baiyun Sag was
evaluated using the data of well drilling and seismic velocity, and the
relationship between overpressure and the generation mechanism
was established.

2 Geologic setting

Located in the slope area of the northern continental shelf of
the South China Sea, the Pearl River Mouth Basin is a Cenozoic
passive continental margin extensional faulted basin, which is
divided into five northeastern tectonic units from north to south,
including the Northern Fault Step Zone and Depression Zone,
the Central Uplift Zone, the Southern Depression Zone and
Uplift Zone (Zhang et al., 2014). Each tectonic unit is further
divided into several secondary depressions and low uplift, among
which the Baiyun Sag in the south is the largest and deepest

FIGURE 1
The Paleogene tectonic units of the Pearl River Mouth basin (adapted after Wang et al., 2017). 1 boundary of first-order tectonic unit, 2 boundary of
second-order tectonic unit, 3 forward direction structure, 4 Negative direction structure, 5 Location of study area, 6 drilling wells position.
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secondary depression. Influenced by the collision of Indo-
Australian plate and Eurasian plate, subduction of Pacific
plate and mantle plume arching, the Pearl River Mouth Basin
is a Mesozoic and Cenozoic oil-bearing basin formed on the
basement of Caledonian, Hercynian and Yanshanian folds
(Wang et al., 2017). Baiyun Sag is located in the transition
zone and upper slope area of the southwest Pearl River Mouth
Basin (Figure 1) (Sun et al., 2014). It is a negative structural unit
with long-term stable subsidence. In general, it is NEE trending,
Panyu Low Uplift in the north, and adjacent to Shenhu Dark sand
uplift and the second pearl depression in the west by a NW
trending basement fault and magmatic activity zone. The east
side is the Dongsha Uplift (Li et al., 2013a). Due to the downward
slope of the depression facing the outlet of the Pearl River, there is
sufficient supply of terrigenous sediments, and the lacustrine
source rocks with large thickness are developed, and their
deposition and filling are characterized by unilateral lateral
transport of sediments. Therefore, the Cenozoic sedimentary
filling characteristics of Baiyun Sag show the evolution law of
“coarser lower and finer upper, from land to sea, from shallow
water to deep water, and from over-compensation to
under-compensation”. Baiyun Sag is located in the transitional
zone between continental crust and oceanic crust (Zheng et al.,
2012). The sedimentary basement is mainly medium-acid
magmatic rocks, followed by metamorphic rocks and basic
rocks. The crust thickness is relatively thin, generally ranging
from 18 km to 28 km. The geothermal gradient is 31.5°C–41°C/
hm, which belongs to the depression with high geothermal field
(Han et al., 2017). The Baiyun Sag is mainly filled with the Eocene
lacustrine sedimentary Wenchang Formation, the Lower

Oligocene fluvial lacustrine coal measure sedimentary Enping
Formation, the Upper Oligocene shallow Marine shelf-delta
sedimentary Zhuhai Formation, the Lower Miocene deep
water continental slop-deep water fan sedimentary Zhujiang-
Hanjiang Formation, Late Miocene Yuehai Formation, Pliocene
Wanshan Formation and Quaternary (Li et al., 2012).

3 Pore pressure estimation methods

Using drilling and seismic data, we apply different methods to
calculate or measure pore formation pressure.

3.1 Eaton’s prediction method

The original Eaton method is a method to calculate formation
pressure based on the normal compaction trend line proposed by
Eaton in 1972. It is one of the most widely used formation pressure
determination methods in petroleum industry. Eaton (1976)
established the expression of the relationship between formation
pore pressure and logging acoustic time difference based on the
experience and theoretical analysis in the Gulf of Mexico and other
areas. This relationship does not change with the lithology or depth.
The principle is that the change of pressure gradient of overlying
strata determines the relationship between the ratio of actual and
normal trend values of observed compaction parameters and
formation pore pressure (Eaton B A, 1976). In the face of
different overpressure causes, the coincidence rate of calculation
results can be improved by adjusting the index N. Its expression is:

FIGURE 2
Stratigraphic column for the Baiyun Sag.
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where, Pp is the formation pore pressure; Po is the overburden
pressure; Ph is normal hydrostatic pressure; tn, Vn, Rn, Cn, ρn, dcn are
divided into the sonic time difference, sonic velocity, resistivity,
electrical conductivity, density and dc index of the normal trend line
of a certain depth of mud shale. to, V0, Ro, C0, ρ0, dc are respectively
measured sonic time difference, sonic velocity, resistivity, electrical
conductivity, density and dc index of mud shale at a given depth.N is
the Eaton index and the coefficient related to strata.

3.2 Bowers’ prediction method

Bowers method was put forward by Bowers in 1995. It
systematically considered the formation mechanism of mudstone’s
unbalanced compaction and other overpressures, and unified the
other overpressure causes with the concept of pore fluid expansion
(Dutta, 2002). Finally, the overpressure causes were summarized into
two main factors: unbalanced compaction and pore fluid expansion.
Since the uneven compaction of mudstone and pore fluid expansion
show two opposite processes in the stress-strain curve of the
sedimentation and overloading process, namely the sedimentation
and overloading process and the unloading process, the sedimentation
and overloading process is the process in which the vertical effective
stress continues to increase or remain unchanged (Bowers G L, 2002).
The relation curve of acoustic velocity and vertical effective stress of
mudstone reflecting this process is called sedimentation and
compaction curve. The unloading process refers to the process in
which the vertical effective stress decreases. The unloading curve is the
relationship between the acoustic velocity of mudstone and the
vertical effective stress reflecting this process (Rrmdhan and
Goulty, 2011). The core of Bowers’ method is that the
overpressure caused by uneven compaction of mudstone should be
determined by the compaction curve to determine the vertical
effective stress, while the abnormal high pressure caused by pore
fluid expansion should be determined by the unloading curve to
determine the vertical effective stress. Then the effective stress
theorem is used to calculate the formation pore pressure, that is,
the overburden pressure and the vertical effective stress are used to
determine the formation pore pressure. It is generally considered that
this method does not require the establishment of a normal
compaction trend line, but the process of establishing a loading
curve is equivalent to the way of establishing a trend line.

Within the stress range of research significance, the original
sedimentary loading curve of mudstone can be described as follows:

V � 5000 + AσBev

The unloading curve can be described as follows:

V � 5000 + A σ max
σev
σ max

( ) 1
U[ ]

B

where, V is the acoustic velocity of mudstone, σev is the vertical
effective stress, A and B are the relevant constant coefficients, σmax

and Vmax are the maximum vertical effective stress and the
corresponding acoustic velocity at the beginning of unloading,
and U is the elastic-plastic coefficient of mudstone.

3.3 MDT method

The Modular Formation Dynamics Tester (Zhang et al., 2020)
has become an indispensable part of formation testing projects in oil
and gas Wells due to its superior testing performance and reliability.
In the study area, MDT pressure sampling was performed in almost
all evaluationWells drilled with a certain hydrocarbon display. With
the widespread application of MDT cable formation testing, a series
of reservoir parameters can be obtained by scientific and reasonable
analysis of pressure measurement data, such as formation pressure
gradient, temperature gradient, and fluidity, which reflects the
physical properties of the reservoir. In general, due to reservoir
properties, it is not possible to measure all pressure points in MDT
tests as effective points. Overpressure points, leakage points (seat
seal failure) and dry points are often detected.

3.4 Abnormal drilling mud density and gas
measurement

In the process of drilling, gas anomalies in gas logging are often the
display of abnormally high pressure zones, including background gas,
single root gas, aftereffect gas, drilling gas, and suction gas, etc.
Therefore, the existence of overpressure can be predicted according
to drilling fluid gas penetration and formation pressure can be judged in
an auxiliary way. Tingay et al. (2013) summarized six principles for
formation pressure determination by logging gas measurement:

1) If the background gas is normal and there is no gas infiltration
from the borehole wall, PP (pore pressure)< Swab (swab
pressure)< ESD (Equivalent Static Density)< ECD
(equivalent circulating density);

2) If the background gas is normal and there is sporadic wall
infiltration gas, Swab < PP < ESD < ECD;

3) If the background gas is normal and there is continuous
borehole penetration gas, Swab < ESD < PP < ECD;

4) If the background gas increases and there is sporadic or
continuous penetration into the wellbore, Swab < ESD <
ECD < PP;

(5)If there is a large increase in background gas and borehole
infiltration gas cannot be identified, Swab < ESD < ECD << PP;
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6) If there is a good correspondence between the decrease of gas
total and the increase of ECD, then PP > ECD.

4 Results interpretation

4.1 Characteristics of measured pressure

According to the results of MDT sampling analysis, the salinity
of formation water in the study area ranges from 27,472 to
306,328 g/L, and the formation water is mainly of CaCl2 type.
The density of formation water is about 1,004–1,074 g/cm3, and
the hydrostatic pressure gradient is 0.98–1.05 MPa/hm. The average
value is about 1.02 MPa/hm. In this paper, pressure coefficient 1.2 is
used as the boundary between normal pressure system and
overpressure system. According to the statistics of 43 measured
pressure values of seven Wells with MDTmeasured pressure data in
Baiyun Sag, most of the measured pressure values in the periphery
and shallow area of the sag are normal pressure, with pressure
coefficient ranging from 0.9 to 1.0, while the deep area is generally

overpressure, with pressure coefficient exceeding 1.3 and up to 1.55
(Figure 3).

4.2 Characteristics of mudstone
overpressure response

The measured MDT pressure can obtain the information of
pressure and temperature of permeable rock strata, which can
directly reflect the formation pressure state of the test interval.
However, the longitudinal continuous pressure distribution
profile of a large set of strata cannot be obtained, and it is
generally difficult to obtain effective MDT data points in
mudstone interval. Therefore, it is necessary to use geophysical
logging data to study the longitudinal continuous response
characteristics of overpressure in mudstone and sandstone
intervals, and further identify the overpressure zone in
combination with MDT testing of sandstone intervals (Bowers,
1995; Dutaa, 2002; Najibi et al., 2017). Previous studies have
shown that the overpressure zone generally has the
characteristics of low acoustic velocity, while the resistivity
logging response to overpressure is complex, and the density
logging presents abnormally low density values for the
overpressure zone caused by undercompaction. According to
the relationship between mudstone acoustic velocity, mudstone
resistivity, density and other logging data and formation pore
pressure calculation results (Figures 4, 5), the interface depth of
the overpressure top in well BY01 is 3,550 m Figure 4, and from
the depth to the bottom hole 5,050 m, the mudstone acoustic
velocity deviates from the normal compaction trend, resulting in
abnormal low acoustic velocity. The overpressure system runs
from the middle part of the Pearl River Formation to the top of the
Enping Formation. At a depth of 4,625 m, the MDT measured
formation pressure of sandstone in the middle section of Zhujiang
Formation is 69.23 MPa, and the pressure coefficient is 1.54, which
corresponds to the maximum pressure point estimated by
mudstone acoustic velocity. The acoustic time difference of well
BY02 Figure 5 sandstone also deviates from normal compaction,
and the amplitude is similar to or slightly smaller than mudstone.
The interface depth of the overpressure top in well BY02 is
3,780 m. From the depth to the bottom hole of 5,120 m, the
acoustic velocity of mudstone deviates from the normal
compaction trend, resulting in abnormal high acoustic time
difference. The overpressure system runs from the middle of
Zhujiang Formation to the top of Enping Formation at a depth of
4,745 m, and the measured formation pressure value of MDT is
71.5 MPa and the pressure coefficient is 1.55. The pressure coefficient
predicted by the maximum pressure position corresponding to the
acoustic time difference of mudstone is about 1.56. The mudstone
resistivity and density values of the two typical Wells deviated from
the normal trend. The density showed a constant trend with the
increase of depth, while the resistivity showed a certain degree of
reversal. The upper layer of the overpressure zone showed abnormally
high resistivity values, corresponding to the overgland and transition
zone formed by high carbonate content. The overpressure logging
response shows that the overpressure zone in Baiyun sag is mainly
developed from the middle part of Zhujiang Formation to the upper
part of Enping Formation.

FIGURE 3
Pore pressure coefficient profile of the study area.
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FIGURE 4
Calculation results of pore formation pressure and depth profiles of well-logging parameters, including velocity, density, resistivity and MDT data
from Well BY01.

FIGURE 5
Calculation results of pore formation pressure and depth profiles of well-logging parameters, including velocity, density, resistivity and MDT data
from Well BY02.
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4.3 Pore pressure profile

The data of this study came from the MDT measured
temperature and pressure data of seven Wells in Baiyun Sag.
There were 53 measured pressure data, and the data points were
concentrated in the depth range of 1,300–5,000 m. According to
different horizons, Baiyun Sag is divided into four sets of
overpressure systems: Zhujiang Formation, Zhuhai Formation,
Enping Formation and Wenchang Formation (Figure 3,
Figure 6). On the whole, the measured pressure in the shallow
layer of Baiyun Sag is mainly normal pressure, and the pressure
coefficient is mainly distributed in the range of 0.95–1.05, while
there is overpressure in the middle and deep layer, and the pressure
coefficient is greater than 1.3. Among them, the Pearl River
Formation presents overpressure in some areas, and the pore
pressure coefficient is up to 1.4. The formation of Zhuhai
Formation presents overpressure in some areas, and the
maximum pore pressure coefficient is about 1.5. The Enping
Formation presents overpressure in most areas, and the
maximum pore pressure coefficient can reach 1.6. It is speculated
that overpressure is common in Wenchang Formation, and the
maximum pore pressure coefficient is more than 1.6.

5 Discussion

5.1 Cause of overpressure in Baiyun Sag

The stress action and fluid expansion in the process of rock
compaction are two widely recognized overpressure formation
mechanisms (Eaton, 1976; Guo et al., 2010), and the geological
factors leading to the formation of overpressure usually include:
tectonic extrusion, undercompaction, hydrocarbon generation,
crude oil cracking, hydrothermal action, clay mineral
dehydration, etc Xu et al., 2019b. Based on the analysis of
geological conditions and geophysical parameters, it is concluded
that the overpressure in the middle and deep Baiyun Sag does not
have the characteristics of undercompaction, and the main cause of
the overpressure is fluid expansion. The formation of
undercompaction and overpressure usually requires high

deposition rate and large sets of mudstone deposition. However,
the depositional environment of Zhuhai Formation in the BY well
area of Baiyun Sag is continental shelf delta front, and the
depositional environment of the upper member of Enping
Formation is braided river delta plain, which lacks the
development background of large sets of mudstone and does not
have the geological conditions for the formation of
undercompaction and overpressure. In addition, rock porosity
and pore structure are the key parameters that reflect
undercompaction and overpressure. No significant increase of
porosity has been observed in sandstone strata in the
overpressure section of Baiyun Sag. Thin section identification of
reservoir rocks in the overpressure section shows that lineal contact
and serrated contact are dominant among the grains (Figure 7A), or
the physical properties are dense due to the filling of carbonate
cements between grains (Figure 7B), reaching the middle diagenetic
stage B. It does not have the characteristics of undercompaction.

Bowers. (1995) summarized the relationship between effective
stress-velocity and effective stress-density in the overpressure
section caused by undercompaction and fluid expansion, and
pointed out that the overpressure caused by undercompaction
was located on the stress loading curve, while the overpressure
caused by fluid expansion was located on the upper part of the stress
unloading curve. As indicated by the velocity-effective stress
identification chart in this area, the overpressure section generally
shows a tendency to deviate from normal compaction (Figures 8A,
C), which is the cause of fluid expansion. Lahann and Swarbrick,
(2011) proposed that the dension-velocity intersection diagram
could distinguish the overpressure caused by dehydration of clay
minerals from that caused by hydrocarbon-generation. The
overpressure mudstone caused by dehydration of clay minerals
showed a significant decrease in acoustic velocity and a slight
increase in density, while the overpressure mudstone caused by
fluid expansion caused by hydrocarbon-generation basically
remained unchanged or slightly decreased in density. On the
rate-density chart, the velocities in the overpressure section of the
two Wells varied greatly, and the density remained basically
unchanged or slightly decreased. It can also be concluded that
the overpressure in the area was mainly caused by fluid
expansion caused by hydrocarbon generation (Figures 8B, D).

FIGURE 6
Profile distribution of pressure coefficient in Baiyun sag (Modified from Tian et al., 2020)
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5.2 Control factors of overpressure
distribution

According to the analysis of various geological conditions, the
formation and distribution of overpressure in Baiyun Sag are
affected by two factors.

1) Hydrocarbon generation and distribution range of source rocks.
The Wenchang Formation is a semi-deep lacustrine source rock
with TOC content of 0.9%–1.8%. The Enping Formation is
dominated by transgressive/Marine source rocks with TOC
content of 0.7%–5.4% and Ro of 1.8%–3.5% (about
200°C–260°C) (Mi et al., 2018). According to the results of

FIGURE 7
Microscopic characteristics of sandstone reservoir in overpressure section (A) The sandstone appears to have low porosity under the microscope,
BY01-2987m; (B,C) Concave-line contact between particles, BY01-3025m; (D) A large amount of carbonate cements are filled between particles, BY02-
3231 m.

FIGURE 8
The genetic mechanism of overpressure is identified in Baiyun Sag, the plate according in Bowers (1995). (A,B) drop point results of Paleogene
mudstone data in Well BY01. (C,D) drop point results of Paleogene mudstone data in Well BY02.
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source rock thermal evolution simulation (Zhang et al., 2014),
the Wenchang Formation entered the oil generation stage at
37 Ma, and the late high heat flow event led to the rapid gas
generation stage since 16 Ma. Enping Formation also entered the
stage of large-scale gas generation since 16 Ma (Hu et al., 2021).
Due to the large burial depth and high geothermal gradient of the
Wenchang Formation in Baiyun Sag, there is still potential for oil
cracking gas on a large scale. The fluid expansion caused by
hydrocarbon generation and expulsion in large-scale and long-
term source rocks provides the power source for the formation of
overpressure in Baiyun Sag. On the other hand, the Eocene
Wenchang Formation and Enping Formation are the two main
source rocks developed in Baiyun Sag (Zhu et al., 2012; Li et al.,
2013b), and the adjacent Zhujiang Formation and Shenhu

Formation received oil and gas migration and charging from
the former, resulting in formation overpressure. It can be clearly
seen on the plane (Figures 9, 10) that the area with the maximum
organic matter maturity and effective thickness of the source
rocks is consistent with the position with the highest formation
pressure coefficient, indicating the control effect of the
distribution of the source rocks on the overpressure distribution.

2) Formation and distribution of tight strata. Baiyun Sag is
characterized by high variable geothermal temperature. With
the increase of geothermal gradient, sandstone porosity and
permeability decrease significantly (Qing et al., 2018).
Previous analysis results of reservoir diagenesis and
accumulation system showed that (citation), before the main

FIGURE 9
Contour map of maturity of organic matter in the Middle of Enping Formation, Baiyun Sag Mi et al., 2018.

FIGURE 10
Isothickness map of Palaeogene effective source rocks in Baiyun Sag Mi et al., 2018.
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hydrocarbon charging of 13.8 Ma, the sandstone reservoir of
Zhuhai Formation in the middle-high geothermal gradient area
of Baiyun Sag had been generally diagenetic densification, and
the remaining porosity was reduced from 22.8% to 11.9%, which
formed an effective seal on the pressure system of the lower bed.
It is not conducive to the expulsion of oil and gas generated by
source rocks of Wenchang-Enping Formation. After this period,
the deep sandstone reservoirs in Wenchang Formation and
Enping Formation were also generally densified in the main
accumulation period, which resulted in the poor outflow of oil
and gas. Some drilling in Baiyun Sag reveals that the deep strata
all have overpressure, the pressure state of sandstone and
mudstone interval is closely related, and the overpressure of
sandstone originates from mudstone. The overpressure of
sandstone is usually the result of the transfer of overpressure
fluid from mudstone to sandstone, and the overpressure
amplitude in sandstone is usually smaller than or close to the
overpressure amplitude in mudstone, which depends on the
contact characteristics between sand and mudstone, the ability
of fluid transfer and exchange, and the overpressure equilibrium
time (Hao et al., 2002). Well BY01 is located in the center of the
depression, and the sandstones in the nearly kilometer well
section all contain gas. Since Zhuhai Formation, overpressure
is common in the formation, and the sandstone reservoir has
densification characteristics, while the overpressure top interface
is in good consistency with the depth of the tight reservoir
(Figures 4, 5), which confirms the sealing effect of the deep
tight sandstone adjacent to the source rock.

Conclusion

1) Most of the surrounding and shallow strata of Baiyun sag show
normal pressure, while the middle and deep strata generally show
overpressure, with the maximum pressure coefficient of 1.55. The
overpressure logging response shows that the overpressure zone in
Baiyun Sag is mainly developed from the middle part of Zhujiang
Formation to the upper part of Enping Formation. The mudstone
resistivity and density values of the two typical Wells deviated from
the normal trend. The density showed a constant trend with the
increase of depth, while the resistivity showed a certain degree of
reversal. The upper layer of the overpressure zone showed
abnormally high resistivity values, corresponding to the overgland
and transition zone formed by high carbonate content.

2) The Zhujiang Formation in Baiyun Sag presents overpressure in
some areas, and the pore pressure coefficient is up to 1.4. The
formation of Zhuhai Formation presents overpressure in some
areas, and the maximum pore pressure coefficient is about 1.5.
The Enping Formation presents overpressure inmost areas, and the
maximum pore pressure coefficient can reach 1.6. It is speculated
that overpressure is common in Wenchang Formation, and the
maximum pore pressure coefficient is more than 1.6.

3) There is no obvious increase of porosity in the sandstone strata of
the overpressured section of Baiyun Sag, and the thin section
identification of the reservoir rocks of the overpressured section
shows that the intergranular contact is mainly line contact and
serrated contact, which reaches the middle petrogenesis stage B,
and the sandstone does not have the characteristics of

undercompaction. According to the velocity density chart, the
velocity of the overpressure section of the two Wells varies
greatly, and the density is basically unchanged or slightly
decreased. It is concluded that the overpressure in this area is
mainly caused by fluid expansion caused by hydrocarbon-
generation.

4) The large-scale and long-term fluid expansion caused by
hydrocarbon generation and expulsion of source rocks
provides a power source for the formation of overpressure in
Baiyun Sag, and the distribution of effective source rocks has a
controlling effect on the distribution range of overpressure. The
sandstone reservoirs in Zhuhai Formation, Wenchang
Formation and Enping Formation were generally densified
before a large amount of oil and gas was generated, which
resulted in the poor outflow of oil and gas, and these tight
strata became the cover of overpressure system in the
longitudinal direction.
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Frontal wedge variations and
controls of submarine landslides
in the Negros–Sulu Trench
System, Philippines

Lyndon P. Nawanao Jr* and Noelynna T. Ramos

Geomorphology and Active Tectonics Research Laboratory, National Institute of Geological Sciences,
University of the Philippines Diliman, Quezon City, Philippines

Frontal wedge characteristics provide clues to the efficiency of the overriding slab
for large displacement during megathrust and upper-plate earthquakes, whereas
submarine landslides along active margins may trigger or amplify tsunamis. The
lack of clear precursors of submarine failures poses difficulty in monitoring and
providing real-time alert warning systems. With that, delineating submarine
features along active margins, their spatial distribution, and controls provide
valuable information in identifying regions susceptible to large submarine
landslides and tsunami hazard assessments. In this study, we performed terrain
and morphometric analyses on 20 m resolution bathymetry data to map
submarine landslides, submarine canyons, and lineaments in the forearc
margin of the Negros–Sulu Trench System in the Philippines. Lineaments are
distributed mainly along the frontal wedge, where previous seismic surveys
revealed that the mapped ridges are morphotectonic expressions of thrusted
sediments. Themorphological variations of the four frontal wedge segments were
attributed to heterogeneous sediment influx, convergence rates, and subduction
processes. More than 1,200 submarine landslides and their morphometric
parameters were delineated, and exploratory spatial analyses indicate
clustering and underlying controls. The tendencies of prolate submarine
landslides (high L/W) to significantly cluster along submarine canyons while
oblate morphologies (low L/W) along the frontal wedge reflect the different
environments and geomorphological conditions to form these contrasting
shapes. Ubiquitous small submarine landslides are mainly controlled by
submarine canyon systems at relatively shallow depths of <2 km, where high
sediment influx from inland sources preconditions instability. Large submarine
landslides (>0.5 km3), on the other hand, are significantlymost clusteredwhere the
Cagayan Ridge seamount collides and subsequently subducts beneath the
northernmost frontal wedge. This suggests the dominant role of seamount
subduction and related tectonic processes causing slope steepening to mainly
induce large submarine landslides. This study unveiled how submarine landslides
vary morphologically depending on their spatial, geomorphological, and tectonic
controls in the active margin. This new information provides clues in identifying
offshore areas susceptible to large submarine landslides that may induce
damaging tsunamis in the Negros–Sulu Trench System as well as in other
active margins of similar underlying controls.

KEYWORDS

frontal wedge, submarine landslides, Negros–Sulu Trench System, Sulu Sea, submarine
canyons, exploratory spatial analyses
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1 Introduction

Submarine landslides occur when driving stresses on sediment
layers increase or when shearing resistance decreases and are mainly
triggered and preconditioned by the following: earthquakes, slope
steepening, volcanic eruptions, rapid loading causing overpressure,
wave and tidal loading, rapid sediment loading, gas hydrates, fluid
migration, and weak stratigraphic layers (Vanneste et al., 2013;
Scarselli 2020; Watson et al., 2020). Moreover, submarine landslides
can induce tsunamis. This occurs when seafloor vertical
displacement is translated into the seawater column and is a
function of submarine landslide volume, depth, acceleration,
velocity, and fluid density (Harbitz et al., 2014; Yavari-Ramshe
and Ataie-Ashtiani 2016; Løvholt et al., 2017; Baba et al., 2019).
Complex triggering factors with no clear precursors are the main
challenges in creating an effective real-time early-warning system for
submarine landslide-driven tsunamis.

In the past, submarine landslides were overlooked to cause
damaging tsunamis until the 1998 Papua New Guinea submarine
slump. This event caused a 15 m wave height leading to more than
2,200 fatalities that reshaped the perspective on the impacts of
submarine landslides (Heinrich et al., 2001; Tappin 2021).
Advancements in seafloor mapping and tsunami modeling have
also led to revisiting past tsunamis that were once attributed only to
earthquakes. Tsunami modeling of the following events was found
to either be amplified or mainly induced by an earthquake-triggered
submarine landslide: 1908 Mw 7.1 Messina (12 m maximum
tsunami, 80,000 fatalities) (Schambach et al., 2020), 1945 Mw
8.1 Makran (15 m, 4,000) (Rastgoftar and Soltanpour 2016),
1946 Ms 7.1 Aleutian (16 m, 167) (Fryer et al., 2004), 1964 Mw
9.2 Alaska (12 m, 131) (Parsons et al., 2014), 1992 Ms 7.5 Flores
Island (26 m, 1,713) (Hidayat et al., 1995; Imamura et al., 1995),
1994 Mw 7.1 Mindoro (7 m, 78) (Ramirez et al., 2022), as well as the
more recent 2011 Mw 9.0 Tohoku (40 m, 18,490) (Tappin et al.,
2014) and 2018 Mw 7.5 Sulawesi (10 m, 2,000) (Takagi et al., 2019;
Nakata et al., 2020) tsunami events.

The 1945 Makran, 1946 Aleutian, 1964 Alaska, 1992 Flores
Island, and 2011 Tohoku tsunami events occurred along active
margins, where subduction processes predominantly trigger
submarine failures. Recent studies linked the distribution of
submarine landslides in forearc basins to seismic loading,
oversteepening of the frontal wedge, seamount subduction, and
submarine canyon development (Mountjoy et al., 2009; Pedley
et al., 2010; Watson et al., 2020). The frontal wedge is of
particular interest as its configuration implicates the variability of
subduction processes along the trench. This includes whether a
trench segment undergoes accretion or erosion (e.g., Kao et al., 2000;
Pedley et al., 2010; Armada et al., 2020) as well as the relationship
between the frontal wedge morphometry and maximum tsunami
wave heights for megathrust earthquakes (Qiu and Barbot 2022).
The link between the frontal wedge and subsequent submarine
landslides was also documented in other active margins including
the Nankai Trough (Moore et al., 2019), Hikurangi Trough (Pedley
et al., 2010), and Java Trench (Kopp et al., 2006). These studies
highlight the role of variability in subduction processes along the
trench and the consequent submarine slope failures.

Mapping both the frontal wedge and other submarine features as
well as conducting exploratory spatial statistics can be significant

initial steps toward providing informed decisions in minimizing the
impacts and inferring seafloor areas that are susceptible to
tsunamigenic submarine landslides (e.g., Völker, 2010; Kawamura
et al., 2012; Parsons et al., 2014; Watson et al., 2020; Gamboa et al.,
2022).

The Philippines is an archipelago surrounded by subduction
zones with the potential to generate strong to great earthquakes that
can trigger submarine landslides. Despite its active seismicity and
tectonics, the Negros–Sulu Trench System (NSTS) remains
understudied, and its submarine geomorphological features are
poorly constrained. In this study, we mapped the frontal wedge
variations, submarine canyons, lineaments, and submarine
landslides in the active margin of the Sulu Sea using high-
resolution multibeam bathymetry data. Furthermore, this study
aims to infer the controls of submarine landslides through their
morphometric parameters and exploratory spatial analyses. For the
first time, the morphological characteristics of these submarine
features in the NSTS are examined in detail, with a particular
focus on the morphological variations and spatial distribution of
submarine landslides.

2 Sulu Sea tectonic setting and
historical tsunamis

The NSTS is an active margin where the Sulu Sea subducts
beneath the Philippine Mobile Belt (PMB). This marginal basin is
enclosed by the Zamboanga Peninsula and the islands of Sulu,
Panay, Negros, and Palawan. The Sulu Sea is divided into four
major tectonic terranes: northwest Sulu basin (NWS), Cagayan
Ridge (CR), southeast Sulu basin (SES), and the accretionary
prism (AP) along the NSTS (Rangin, 1989). The Palawan
Microcontinental Block (PCB) terrane occupies north of the Sulu
Sea. The NWS has thicker crust (>10 km) than the SES (6 km), and
between these two sediment-filled sub-basins is the Cagayan Ridge
seamount composed of basalt, tuff, and andesite (Rangin and Silver
1990) (Figure 1). GPS surveys revealed that this trench system
generally has low convergence rates (<60 mm yr−1) (Rangin et al.,
1999; Simons et al., 1999). Two prominent models suggest that the
Sulu Sea was formed due to back-arc rifting from the subduction of
either the proto-South China Sea along the Cagayan Arc (e.g., Bellon
& Rangin, 1991; Rangin & Silver, 1991; Schlüter et al., 2001; Liu et al.,
2014) or the Celebes Sea along the Sulu and Zamboanga Peninsula
Arc (Rangin, 1989; Hall 2002, 2013, 2012; Lai et al., 2021).

Since 1589, three historical tsunamigenic earthquakes occurred
along the NSTS: 1897 Ms 7.5, 1925 Ms 6.8, and 1948 Ms 8.2 events
(Bautista et al., 2012). The 1897 earthquake event had an epicenter
near the Zamboanga Peninsula and generated up to a 6 m tsunami
that widely affected the coastal areas in the Sulu Sea. The basin-wide
distribution and maximum tsunami wave height for a Ms
7.5 earthquake pose questions regarding its mechanism. Whether
this event was a tsunami earthquake or triggered by a submarine
landslide is still unknown. On the other hand, the 1925 and
1948 earthquake events generated a tsunami of up to 2 m that
only affected southeastern Negros and Panay islands, respectively.
The 1948 event is distinct among the three as its epicenter is inland.
The rupture parameters of these tsunamigenic earthquakes,
however, are still poorly constrained.
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3 Materials and methods

3.1 Delineating submarine landslides and
their morphological parameters, submarine
canyons, and lineaments

The bathymetry data of the National Mapping and Resource
Information Authority (NAMRIA) has a 20 m resolution and a
depth accuracy of 1 m. These were collated from the multibeam
bathymetric surveys in the Sulu Sea between 1999 and 2018 by
the NAMRIA and the Naval Oceanographic Office
(NAVOCEANO, United States). Terrain analyses were
applied to the bathymetry data including slope, roughness,
and hillshade. Slope was derived using the algorithm of Horn
(1981). By showing both the slope and depth through
transparency adjustments, submarine landslides, canyons,
and lineaments were mapped. To delineate submarine

canyons, drainage extraction algorithms in ArcGIS were
utilized including flow direction and flow accumulation.

The submarine landslides were mapped based on the following key
morphological features: head scarp (scar) characterized by a relatively
steep slope at the top of the landslide, arcuate or concavemorphology of
the landslide area, and the presence of mass transport deposits (MTDs)
at the toe of the landslide (Watson et al., 2020). Majority of the mapped
landslides, however, are based mainly on head scarp and arcuate
morphologies due to the rare occurrence of MTDs observed. The
apparent rare occurrence of MTDs is attributed to the resolution of
the bathymetry and the low preservation of these deposits once
disintegrated. Interactive 2D cross-sectional profiles in QGIS also
aided in recognizing the concave morphology of submarine
landslides, especially at smaller scales. The submarine landslides are
further categorized into four levels (1–4) of confidence scale (Watson
et al., 2020) based on the presence of key morphological features of
submarine landslides (Figure 2).

FIGURE 1
The Sulu Sea Basin and nearby tectonic features. Major tectonic terranes in the Sulu Sea include the northwest Sulu basin (NWS), Cagayan Ridge
(CR), southeast Sulu basin (SES), and accretionary prism (AP) along the Negros–Sulu Trench System (NSTS). The Palawan Microcontinental Block
(PCB) consists of continent-derived lithologies rifted from the eastern Eurasian margin, while the arc-derived Philippine Mobile Belt (PMB) comprises
the rest of the archipelago (modified from Rangin, 1989). Arrows indicate the velocity vectors (mm yr−1) from continuous GPS campaigns
(1994–1996) across the Philippines (Rangin et al., 1999; Simons et al., 1999). Red circles indicate the epicenter of the three historical tsunamigenic
earthquakes in the Sulu Sea (Bautista et al., 2012). The onshore faults, lineaments (black lines), and catalog (1589–2020) of surface-wave magnitude
(Ms) earthquakes (EQ) are from PHIVOLCS. The inset map shows the location of the Sulu Sea (SS) and the other surrounding basins (West Philippine
Sea, WPS; Cotabato Sea, CS; Philippine Sea, PS) and trenches (Manila Trench, MT; Negros Trench, NT; Sulu Trench, ST; Cotabato Trench, CT;
Philippine Trench, PT; East Luzon Trough, ELT).
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Table 1 shows the delineated morphometric parameters of
submarine landslides modified after Gamboa et al. (2022) and
Watson et al. (2020). Volume, in particular, was estimated by
first creating a pre-landslide digital elevation model (DEM)
similar to the methods of Gamboa et al. (2022). The pre-
landslide DEM is estimated by sampling elevations around the
perimeter of the landslide and applying a multi-level b-spline
interpolation at a larger 100 x 100 m raster grid. Volume is
calculated based on the surface difference between the pre-
landslide DEM as the top surface and the present bathymetry
data as the base. Figure 3 shows a sample of the modeled pre-
landslide surface and the present scarp morphology for volume
calculation.

3.2 Statistical analyses of submarine features

Two-dimensional (2D) histograms were applied among the
morphometric parameters to infer correlations. Ripley’s L
function (Ripley 1977) was calculated through the spatstat
package in R to determine whether the distribution of submarine
landslides has significant clustering across different distance scales.

The L function is a linear transformation of the K function expressed
in distance and calculated by:

L r( ) �
�����
K r( )
π

√
�

�����������������
A∑n

i�1∑n
j�1,j ≠ ik i, j( )

πn n − 1( )

√
(1)

where A = area of the bathymetry coverage, n = total number of
mapped submarine landslides, r = distance, and k(i, j) is the
weighting factor for edge detection. A neighboring (j) submarine
landslide is included in the summation when its distance from the
reference submarine landslide (i) is ≤ r. The centroid of each
submarine landslide served as an input point. Observed L(r)
greater than the expected values indicate significant clustering,
whereas lower observed L(r) suggest dispersion. A total of
999 permutations were run to calculate the confidence interval
(CI) envelope of the L(r) signifying complete spatial randomness.

Kernel density analysis was performed in ArcGIS to estimate the
2D probability density distribution (Silverman 1986) of the
delineated submarine landslides, submarine canyons, and
lineaments. The distribution of earthquakes (1589–2020) from
the Philippine Institute of Volcanology and Seismology
(PHIVOLCS) was also included in the kernel estimation. Kernel

FIGURE 2
Landslide morphometric parameters (length, width, MTDs, head scarp) and confidence classification based on Watson et al. (2020). (A) Category 1:
well-defined head scarp, arcuate morphology, and MTD at the toe. (B) Category 2: well-defined head scarp and arcuate morphology, eroded to no clear
indication of MTDs. (C) Category 3: presence of head scarps, although eroded, and arcuate morphology. No MTDs. (D) Category 4: Heavily eroded
headscarps and no MTDs but with arcuate morphology; these are mainly small submarine landslides limited by the bathymetry resolution.
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density can provide insights into the intensity variation, spatial
correlation among submarine features, and underlying processes
that may be linked to the distribution of submarine landslides. These
kernel densities are further evaluated through correlation matrices
of the raster bands between submarine landslides and submarine
canyons, lineaments, and earthquakes.

To examine statistically significant clusters of relatively large-
and small-volume submarine landslides, we identified their
spatial distribution using the Getis-Ord (Gi*) statistic (Getis
and Ord 1992) that calculates the z-score and equivalent
p-values of each submarine landslide:

G*
i d( ) � ∑n

j�1wi,jxj − x�∑n
j�1wi,j

s

��������������
n∑n

j�1w
2
i,j− ∑n

j�1wi,j( )2

n−1

√ (2)

where G*
i = z-score, xj = volume, wi,j = weighting factor based on the

spatial relationship of i and j neighbors at distance d, x�= mean sample
volume, and s = volume standard deviation among neighbors. The
optimized hot spot analysis in ArcGIS based onGetis-Ord assigns a fixed
distance d based on the first peak clustering (=14.3 km). Submarine
landslides were then grouped into seven: one that belongs to null groups
(1), three that belong to significant clusters of high values at 99%
confidence interval (CI) (2), 95% CI (3), 90% CI (4), and three that
belong to significant clusters of low values at 99% CI (5), 95% CI (6),
and 90% CI (7). These groups are then compared based on select
morphometric parameters using boxplots. In addition to volume,
another morphometric parameter that was calculated with Gi* is the
length-to-width ratio (L/W) to explore significant clusters of prolate
(high L/W) and oblate (low L/W) submarine landslides relative to the
flow direction. Altogether, these exploratory spatial analyses aim to

TABLE 1 Delineated morphometric parameters of submarine landslides
modified from Gamboa et al. (2022) and Watson et al. (2020).

Parameter Description

Minimum depth (top
depth)

Submarine landslide depth (km) of the head scarp

Maximum depth Submarine landslide depth (km) of the toe

Mean depth Mean depth (km) within the landslide area

Height Difference between the maximum and minimum
depths (km)

Head scarp length Length (km) of the landslide head scarp

Area Area of the landslide polygon (km2)

Length Landslide length perpendicular to the contour and flow
direction (km)

Width Landslide width, i.e., the widest distance within the
landslide area perpendicular to the length (km)

L/W Length-to-width ratio

Maximum slope Highest slope within the submarine landslide area,
typically along the head scarp (°)

Mean slope Mean slope within the submarine landslide area (°)

Volume Estimated volume (km3) of the submarine landslide
based on the difference between the surface of the
modeled pre-landslide and present landslide DEM

Distance from trench The shortest distance of the submarine landslide from
the trench (km)

Distance from submarine
canyon

The shortest distance of the submarine landslide from
a submarine canyon (km)

FIGURE 3
Three-dimensional (3D) perspective of the modeled pre-landslide and the present surface of the submarine landslides. (A) The modeled pre-
landslide is calculated based on the multi-level b-spline calculation at a coarser 100 x 100 m resolution around the perimeter of the submarine landslide
that represents the intact slope. (B) The present surface DEM serves as the base, whereas the modeled pre-landslide is the top surface for estimating the
slump volume.
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unravel spatial patterns, providing insights into the occurrence and
controls of submarine landslides in the NSTS.

4 Results

4.1 Submarine landslides, submarine
canyons, lineaments, and frontal wedge
variations

A total of 1,214 submarine landslides were mapped
(Figure 4) with 64.7% under category 4, 31.6% category 3,

3.1% category 2, and 0.6% category 1. The multitude of
categories 3 and 4 reflects the limitation of the bathymetry
resolution in readily discerning head scarp and arcuate
morphologies but without traces of MTDs. Large networks of
submarine canyons were mapped between Negros Island and
Zamboanga Peninsula and between Panay and Negros islands.
Submarine gullies develop at the shelf edge of about 180 m below
sea level and interconnect with larger submarine canyons at
deeper portions as slope abruptly increases (Figures 5D, E).
Lineaments are mainly situated along the frontal wedge,
occurring as parallel ridges, with the majority following a
north-to-northeast trend. In addition, the northwest-trending

FIGURE 4
Submarine landslides, submarine canyons, and lineaments mapped in the active margin of the NSTS. Rose diagram shows the general northerly
trend of the lineaments. Four segments (NT1, NT2, ST1, ST2) were delineated based on the orientation and width variations of the frontal wedge. Squares
a–d show the locations of representative submarine features in Figure 5. Red lines are transects of seismic reflection profiles from Schlüter et al. (1996)
(Figure 6). The northwest-trending lineaments mapped offshore of Zamboanga Peninsula are inferred to be an extension of the
Sindangan–Cotabato–Daguma Lineament (SCDL) in western Mindanao Island (orange lines = onshore faults/lineaments from PHIVOLCS).
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FIGURE 5
Close-up view of the mapped submarine features (see Figure 4 for their location). (A) Large submarine landslides along the steep frontal wedge of
the northern NT segment (NT1) and steep bathymetry of the colliding Cagayan Ridge (CR) in the west. Between the frontal wedge and the CR is a deeply
incised submarine canyon that is parallel to the trench. (B) Prominent deformation front and associated submarine features of the frontal wedge in the
northern ST segment (ST1). (C) Poorly developed frontal wedge, submarine canyons, and submarine landslides in the southern ST segment (ST2). (D)
Well-developed networks of submarine canyons and associated submarine landslides offshore of southern Negros island. (E) Three-dimensional
perspective of submarine landslides in Figure 5D.
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lineaments offshore of Zamboanga Peninsula are inferred to be
an extension of the Sindangan–Cotabato–Daguma Lineament
(SCDL) (Pubellier et al., 1996) (Figure 4).

Interpreted seismic reflection profiles (Figure 6) by Schlüter et al.
(1996) across the trenches revealed that these mapped frontal ridges
are seafloor manifestations of accreted trench sediments thrusted by

FIGURE 6
Interpreted seismic reflection profiles (as shown in Figure 4) perpendicular to the frontal wedge (adapted from Schlüter et al., 1996 with permission
from Elsevier). (A) (Line SO 49-16) Collision and subduction of the Cagayan Ridge seamount beneath the northern accretionary prism. (B) (Line SO 49-09)
Reverse faults associated with the frontal accretion of sediments in the southern Negros Trench segment (NT2). (C) (Line SO 49-06) Dense high-angle
reverse faults associated with frontal accretion in the northern Sulu Trench segment (ST1), manifested by dense lineaments and ridges as shown in
Figure 5B. The identified oceanic splinter is linked to intense thrusting and folding along this segment.
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reverse faults. Profile A–A′ shows the collision and subsequent
subduction of the Cagayan Ridge beneath the northern Negros
Trench forearc. In profiles B–B′ and C–C′, the décollement and
subduction of the southeast Sulu Sea along the frontal wedge are
shown. Notably, profile C–C′ also depicts a crustal splinter that is
associated with intense thrusting and folding along this segment.

Four segments were delineated based on frontal wedge
variations: (1) The northern Negros Trench (NT1) is northeast
trending (15° azimuth) and transects between 10.86°N and 9.76°N
with a length of about 126 km. This segment is bounded by the
Cagayan Ridge seamount chain and southern Panay Island. Its
frontal wedge has a maximum width of about 30 km and
steepens subvertically northward. (2) The southern Negros
Trench (NT2) is northwest trending (azimuth 340°), with a

length of 131 km and a maximum width of 15 km. (3) The
northern Sulu Trench (ST1) is northeast trending (azimuth 19°)
with a length of 146 km and a frontal wedge width of 20 km. (4)
Lastly, the southern Sulu Trench (ST2) segment is east-northeast
trending (azimuth 61°) with a length of about 170 km. Unlike the
other segments, ST2 has a poorly developed frontal wedge with
subparallel lineaments.

4.2 Morphometry of submarine landslides

Morphometric parameters that are size-dependent, i.e., area,
volume, width, height, length, and head scarp length, all follow a
power-law distribution with ubiquitous low values (Figures 7A–F).

FIGURE 7
Histograms of submarine landslide morphometric parameters. (A) Area, (B) volume, (C) width, (D) height, (E) length, (F) head scarp length, and
(G) distance from submarine canyons follow a power-law distribution, reflecting the ubiquitous small submarine landslides. (H) L/W ratio, (I–K) depth,
and (L, M) slope show a positively skewed binomial distribution. On the other hand, the (N) distance from the trench has an irregular distribution.
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The distance from the submarine canyon also follows the same
distribution. On the other hand, L/W, maximum slope, and mean,
top, and maximum depth have skewed binomial distributions that
peak around 1.4–1.8 km. Of the 1,214 submarine landslides, 78% have
an area and volume of <5 km2 and 0.5 km3, respectively (Figure 7).
The mean area and volume are 1.8 km2 (median = 4.0 km2) and
0.03 km3 (median = 0.18 km3), respectively. The average maximum
slope is 38°, and the majority (23%) of distances from the trenches
were <20 km. On the other hand, 77% of submarine landslides are less
than 5 km away from submarine canyons.

Area, volume, length, width, distance from submarine canyons,
head scarp length, and height were scaled logarithmically in the 2D
histogram to normalize highly skewed power-law distributions. A
base of 10 was arbitrarily chosen for the logarithmic normalization.
Figure 8 and Figure 9 show the 2D histogram correlation relative to
the volume and L/W, respectively, among morphometric parameters.
Area, length, width, headscarp length, and height show positive
correlations with volume as these are typically size-dependent. The

maximum slope is also positively correlated with volume. Although
the plots were highly scattered, an apparent inverse trend is observed
between volume and the distance from the trench and L/W. Top and
mean depths show an apparent positive trend where volume increases
with depth up to around 3 km and then shifts to an inverse pattern
toward 5 km depth. For L/W correlations, the rest of the parameters
have highly scattered plots, except for the apparent negative trend
with respect to area, width, maximum slope, and distance from
submarine canyons. In addition, an apparent positive trend is
observed between length and L/W.

4.3 Spatial distribution and correlation of
submarine features

Ripley’s L function (Figure 10) shows higher observed L (L̂ obs(r))
than the expected (L̂ theo(r)) values, indicating a non-random
distribution and clustering at a wide range of distances. This is

FIGURE 8
2D histograms of submarine landslide parameters with respect to volume (refer to Figure 7 for units). Size-dependent parameters such as (A) area,
(B) length, (C) width, (H) head scarp length, and (J) height show a positive correlation with volume. The (D) maximum slope also shows a positive trend
with volume. Other parameters (E-L) have a weak association with volume, but an apparent inverse trend can be observed with (F) distance from the
trench and (I) L/W. Volume is observed to increase with (K, L) depth up to around 3 km and then shifts to a negative trend toward 5 km depth.
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exemplified by the inhomogeneous kernel density of submarine
landslides in Figure 11A. The highest intensity distribution of
submarine landslides is located offshore between southeastern
Negros Island and northern Zamboanga Peninsula, as well as
between southern Panay and southwestern Negros islands.
Submarine canyons also have a similar distribution to submarine
landslides (Figure 11C), whereas lineaments (Figure 11B) are
concentrated in the frontal wedge of the trench. Matrix
correlation among kernel densities including earthquakes reveals
that submarine canyons have the highest correlation (0.76) with the
distribution of submarine landslides.

Regions with significant clusters of high and low volume and
L/W based on Getis-Ord statistics are shown in Figure 12.
Significantly large-volume (>0.5 km3) submarine landslides are
clustered offshore of southern Panay Island as well as offshore

southeastern Negros, Zamboanga Peninsula, and Sulu islands. On
the other hand, those with a significantly small volume (<0.05 km3)
are concentrated where the highest probability density of submarine
landslides and canyons occurs (Figures 11A,C, respectively).
Significantly high L/W submarine landslides (Figure 12B) are
clustered along areas with high kernel density of submarine
canyons (Figure 11C). Those with significantly low L/W are
clustered along the frontal wedge and abyssal plains.

4.4 Significant clusters of high and low
volume and L/W

Significant clusters of submarine landslides were grouped based
on the degree of statistical significance (% CI), while their depth and

FIGURE 9
2D histograms of submarine landslide parameters with respect to the L/W (refer to Figure 7 for units). Majority of the parameters have highly
scattered plots (E, F, H, I, J, K, L), although (A) area, (C)width, (D)maximum slope, and (G) distance from the submarine canyon show an apparent inverse
trend. In addition, an apparent positive trend is observed in (B) length and L/W.
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slope parameters were plotted in boxplots (Figure 13). Significant
clusters of large-volume submarine landslides (90%, 95%, and 99%
CI) have a wide interquartile range (IQR) of top and mean depths
(Figures 13A, B), whereas significantly small-volume (90% and 95%
CI) submarine landslides have a narrow IQR around 1–2 km depths.
An opposite trend is observed for those with significantly high and
low L/W ratios (Figures 13E, F). Submarine landslides with high
L/W ratios (90%, 95%, 99% CI) have high distribution occurring at
shallower depths, whereas those with low L/W ratios (90%, 95%,
99% CI) occur at deeper levels with a wider IQR. In terms of slope,
those with significantly high volume have generally steeper mean
and maximum slope than those with significantly low volume
(Figures 13C, D). On the other hand, groups in terms of L/W
have a similar range of mean slope (Figure 13G), but the maximum
slope decreases with higher L/W ratios (Figure 13H).

5 Discussion

5.1 Frontal wedge variations along the NSTS

The well-developed frontal wedge of the three segments (NT1,
NT2, ST1) of the NSTS is linked to relatively high sedimentation
rates of this active margin demonstrated by dense networks of
submarine canyons (i.e., conduits of inland clastic deposits) and
low overall convergence rates (54 mm yr−1, NT; 28 mm yr−1, ST)
based on previous GPS surveys (Rangin et al., 1999; Simons et al.,
1999). High sediment influx and slow convergence rates
(<60 mm yr−1) are conducive conditions in developing
accretionary margins and frontal wedge (e.g., Huene and Scholl,
1991; Lallemand et al., 1994; Clift and Vannucchi 2004; Simpson

2010). In addition, morphological variations of the frontal wedge
along the NSTS are attributed to the heterogeneity of sediment
distribution from nearby islands and variability of convergence rates
and forearc deformation. NT1, NT2, and ST1 segments are relatively
closer to Panay, Guimaras, Negros, and Zamboanga Peninsula.
These segments are presumed to receive higher sediment influx
due to larger land areas than the ST2 segment which is closer to the
smaller Sulu Group of Islands (Figure 1). Similar findings along the
northern segments of both the Manila (Armada et al., 2020) and
Japan (Tsuru et al., 2002; Kodaira et al., 2017) trenches also
attributed the well-developed accretionary prism to higher
sedimentation influx than the southern segments.

Another variation observed on the trench segments is their
steepness, most notably on NT1, which is marked by an
oversteepened frontal wedge. While well-developed frontal
wedges have been correlated to high sediment influx and slow
convergence rates, oversteepening is mainly driven by seamount
subduction. These bathymetric highs cause intense uplift,
deformation, and thrust faulting of the overriding plate inducing
steepening and erosion (Yang et al., 2022). Examples of these frontal
wedge oversteepening include segments of the Hikurangi Trough
(Pedley et al., 2010), Java Trench (Masson et al., 1990), Middle
America Trench (Hühnerbach et al., 2005), and Nankai Trough
(Bangs et al., 2006; Moore et al., 2019). Similarly, the collision and
subsequent subduction of the northeastern portion of the Cagayan
Ridge along NT1 presumably induce oversteepening of the frontal
wedge as well as its orientation change to the northeast.

The characteristics of the four trench segments based on frontal
wedge variations provide essential information not only on the
potential impacts of submarine landslides but also for modeling
future megathrust tsunami scenarios. Furthermore, the width of the
frontal wedge is indicative of its tsunami hazard potential as tsunami
run-ups of shallow megathrust ruptures have been correlated to the
width of the frontal wedge (Qiu and Barbot 2022). This is further
emphasized by historical records where great offshore earthquakes
occur mostly along accretionary prisms with thick sediment cover
(Bilek and Lay 2018).

5.2 Controls of submarine landslide
distribution

Exploratory spatial analyses revealed non-random and
significant clustering of submarine landslides in which ubiquitous
and small-volume landslides are controlled predominantly by
submarine canyon systems. These conduits of terrestrial
sedimentation influx induce overloading and instability to
precondition slope failures. In addition, significant clustering of
prolate (high L/W) submarine landslides coincides with the
distribution of submarine canyon systems. The resemblance of
prolate morphology to submarine canyons implies that these
prolate submarine landslides influence the development of
submarine canyon networks. Small submarine landslides may
eventually interconnect forming incisions for sediment
transportation (Baztan et al., 2005; Micallef et al., 2012). This
relationship between prolate submarine landslides and submarine
canyons is further supported by the apparent inverse trend between
L/W and the distance from submarine canyons (Figure 9F). These

FIGURE 10
Ripley’s L function of submarine landslide distribution. The
observed L (Lobs(r)) values are significantly higher than the expected
(Ltheo(r)) across different distances indicating significant clustering and
inhomogeneity over various distances. The confidence interval
(CI; Lhi(r) and Lhi(r)) envelope is calculated based on 999 permutations
to compare L(d) at a certain distance where points are distributed
randomly.
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clustered submarine landslides with high L/W are prevalent in
relatively shallower depths around 1–3 km where submarine
canyons typically form. On the other hand, significant clusters of
oblate (low L/W) submarine landslides mainly occur along the
frontal wedge and in abyssal plains (Figure 12B). This is due to
the subparallel and steep ridges along the frontal wedge that are
suitable morphotectonic structures to form oblate submarine
landslides.

While small landslides are mainly controlled by submarine
canyons, large ones are significantly clustered along steep slopes
and at varying depths. Most notably, the NT1 frontal wedge is
marked by the densest cluster of large submarine landslides. As
discussed in Section 5.1, this segment has an oversteepened and wide
frontal wedge linked to the collision and subsequent subduction of
Cagayan Ridge seamounts. Thus, we associate the seamount

subduction and subsequent slope oversteepening as dominant
preconditioning factors for the occurrence of large submarine
landslides along this segment. Modeling of seamount subduction
beneath the accretionary prism, in its initial stage, resulted to
oversteepening of the frontal wedge, reactivation of frontal thrust
faults, and large submarine landslides (Dominguez et al., 2000; Ruh
2016; Morgan and Bangs 2017). This is supported by other
accretionary prisms where seamount subduction underlies large
submarine landslides (e.g., Hühnerbach et al., 2005; Pedley et al.,
2010). While it is unclear what causes the clustering of large
submarine landslides in other portions, the role of nearby fault
structures (e.g., SCDL), intense tectonic deformation and fully
subducted seamounts, together with sediment overloading could
all play complex roles to induce steepening. Nonetheless, the
identified regions with clusters of large submarine landslides

FIGURE 11
Kernel density variations (per km2) of (A) submarine landslides, (B) earthquakes, (C) submarine canyons, and (D) lineaments across the NSTS.
Earthquake kernel density is distributed mainly along the Negros Trench segments, whereas that of lineaments along the frontal wedge. Matrix band
correlations showed that submarine canyons have the highest correlation to submarine landslide distribution of 0.76, followed by earthquakes (0.46) and
then lineaments (0.20).
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FIGURE 12
Getis-Ord (Gi*) analysis of submarine landslide distribution with respect to volume and L/W. (A) Significant clusters of large-volume submarine
landslides (red dots) are found in different regions of the activemargin, but the densest clusters are in the northernNT segment (NT1), where collision with
the Cagayan Ridge occurs. Significant clusters of small-volume submarine landslides (blue dots) are located offshore of Negros Island and Zamboanga
Peninsula, corresponding to areas with the densest submarine canyon systems (Figure 11A). (B) Significant clusters of high L/W (red dots) are also in
regions with dense submarine canyon systems. On the other hand, the frontal wedge and abyssal plain host significant clusters of low L/W (blue dots).

FIGURE 13
Boxplots showing the depth and slope of submarine landslides that are grouped based on the Gi* statistic (blue boxplots, based on volume; yellow
green, based on L/W) in Figure 13 (red hue, hot spots; blue hue, cold spots). Red dots indicate the outliers, while broken lines inside the interquartile range
(IQR) show the mean value. (A–D) Box plots based on the volume show that significant clusters of large submarine landslides have depths with wide IQR
(0.1–4 km), while small ones are in a narrow IQR of about 0.1–2 km. Mean slope (C) tends to concentrate between 10° and 30° with slightly lower
values for significantly small-volume submarine landslides. (D)Maximum slope showed a positive association with clusters of significantly large-volume
submarine landslides, whereas small-volume landslides have a lower maximum slope. (E–H) Clusters of significantly high L/W occur in shallower depths
and slightly lower slopes than those of significantly low L/W.
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provide significant insights into modeling landslide-driven
tsunamis, where the estimated volume is highly correlated with
potential tsunami wave height (Sabeti and Heidarzadeh 2022).

This study highlights the dominant role of submarine canyon
systems due to high sediment influx and subduction-induced
oversteepening to precondition slope instability. As the slope
becomes unstable, gravity and earthquakes can readily trigger
submarine failures along active margins (Masson et al., 2006;
Scarselli 2020). The possible presence of gas hydrates may also be
involved as they occur along margins with high sedimentation influx
(e.g., Gee et al., 2007; Mountjoy et al., 2014; Crutchley et al., 2016).
Thus, we recommend dense seismic reflection surveys to further
map the underlying structures and their variations across the active
margin in detail. In addition, the current resolution of bathymetry
data is inadequate to map even smaller (m-scale) submarine
landslides. This has been shown by the absence of significant
clusters of small submarine landslides at 99% CI. As bathymetry
resolution has been a common limitation in mapping submarine
landslides (e.g., Gazioǧlu et al., 2005; Watson et al., 2020; Gamboa
et al., 2022), higher-resolution multibeam bathymetry surveys will
further improve the characterization of submarine
geomorphological features.

6 Conclusion

Four frontal wedge segments were delineated in the NSTS, with
varying widths, lengths, and associated morphotectonic features. These
variations are linked to the disparity of convergence rates along the
trench, subduction processes, and heterogeneous distribution of
sediments from inland sources. A total of 1,214 submarine
landslides and their morphometric parameters along this active
margin were delineated. Prolate submarine landslides (high L/W)
tend to form in submarine canyons, whereas oblate morphologies
(low L/W) generally occur along the frontal wedge and abyssal
plains. These opposing submarine landslide morphologies reflect
their different environments and geomorphological conditions.

Ubiquitous small submarine landslides are mainly controlled by
submarine canyon systems where high sediment influx from inland
sources preconditions instability. These small-volume submarine
landslides also occur in relatively shallow depths of about 1–2 km
and generally have a lower mean and maximum slope. On the other
hand, seamount subduction and related tectonic processes that
induce oversteepening play dominant role to precondition large
submarine landslides. This study revealed the influence of spatial,
geomorphological, and tectonic controls to the morphological
variations of submarine landslides in the active margin.
Furthermore, the identified regions with clustered large
submarine landslides and the segments of the NSTS provide
essential information in modeling fault and submarine failure-
driven tsunamis and identification of highly exposed coastal
areas. This study also demonstrates the use of morphological and
exploratory spatial analyses to elucidate underlying controlling
factors and to evaluate the hazard potential of areas with limited
geological and geophysical datasets.
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A Corrigendum on
Frontal wedge variations and controls of submarine landslides in the
Negros-Sulu Trench system, Philippines

by Nawanao LP and Ramos NT (2023). Front. Earth Sci. 11:1054825. doi: 10.3389/feart.2023.
1054825

In the published article, there was an error in Figure 5 as published. An older version of
the figure was used. The revised Figure 5 has updated subfigures B, C, and D, which are
located in squares b–d in Figure 4. The corrected Figure 5 and its caption appear below.

The authors apologize for this error and state that this does not change the scientific
conclusions of the article in any way. The original article has been updated.
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FIGURE 5
Close-up view of the mapped submarine features (see Figure 4 for their location). (A) Large submarine landslides along the steep frontal wedge of
the northern NT segment (NT1) and steep bathymetry of the colliding Cagayan Ridge (CR) in the west. Between the frontal wedge and the CR is a deeply
incised submarine canyon that is parallel to the trench. (B) Prominent deformation front and associated submarine features of the frontal wedge in the
northern ST segment (ST1). (C) Poorly developed frontal wedge, submarine canyons, and submarine landslides in the southern ST segment (ST2). (D)
Well-developed networks of submarine canyons and associated submarine landslides offshore of southern Negros Island. (E) Three-dimensional
perspective of submarine landslides in Figure 5D.
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An erosive neritic area of Shantou
in coastal NE South China Sea
since at least MIS 5 revealed by
OSL dating of cores

Jiemei Zhong1, Bohui Liu1, Yang Ou1, Ruonan Tian1*,
Jingxiang Shan1, Yantian Xu2, Feng Wang1, Mahmoud Abbas  1,
Ke Zhang3 and Zhongping Lai1*
1Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and
Prevention, Shantou University China, and Southern Marine Science and Engineering Guangdong
Laboratory (Zhuhai), Zhuhai, China, 2School of Geography and Tourism, Jiaying University, Meizhou,
China, 3Guangdong Provincial Key Laboratory of Geodynamics and Geohazard, School of Earth Science
and Engineering, Sun Yat-sen University, Guangzhou, China

The neritic region of the Chaoshan plain is located on the northeastern (NE)
boundary of the South China Sea (SCS). Despite the extensive research on the
stratigraphic architecture and sedimentary processes within the Chaoshan
plain, the neighboring neritic area remains largely unexplored. In this study,
we provide a new set of ages on seventeen quartz optically stimulated
luminescence (OSL) dating results from four cores (SY2-2, SY3-1, SY3-2, and
HS02) to investigate the regional chronostratigraphy and sedimentology of the
area. The samples were collected at depths ranging from 0.6 to 73.5 m and
yielded ages ranging from 4.9 ± 0.3 ka to >139 ± 28 ka. Sedimentation thickness
from cores SY3-2, SY2-2, and HS02 is less than 4.2 m, 5.5 m, and 6.4 m,
respectively, since at least Marine Isotope Stage (MIS) 5, and the Holocene
sediments of core SY3-2 are less than 4.2 m thick. The preservation state of the
sediments in the area is poor since at least 83.6 ka, indicating an intensified
erosion in the neritic region of the northeastern South China Sea (NESCS) since
at least MIS 5. This erosion may have been caused by fluvial incision resulting
from sea-level decline during the last glacial period, as well as strong
transportation caused by coastal currents.

KEYWORDS

OSL dating, drilling cores, Chaoshan plain, South China sea, sedimentary environment

1 Introduction

The continental shelf is a vital component in sedimentation and the land-sea
interaction, holding significant geological information such as changes in sea level,
tectonic activity, and sedimentary processes (Li et al., 2014; Wang et al., 2019; Qin et al.,
2023; Wang et al., 2023). The eastern continental shelf of China is abundant in
Quaternary sediments with thicknesses exceeding 10 m since the Holocene (Wang
et al., 2020). For instance, the Holocene sediments thicknesses recorded from core
samples in the Bohai Sea and the south Yellow Sea are around 15 and 13 m thick,
respectively (Liu et al., 2010; Lan et al., 2018; Chen et al., 2020; Long et al., 2022). Studies
on the inner shelf of the East China Sea have mainly yielded a paleoclimate record since
the Last Deglaciation, with thickness of the Holocene sediments approximately 20 m
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thick (Xu et al., 2009; Zheng et al., 2010). The thickness of the
Holocene deposits in from the northern South China Sea (SCS)
are around 10 m (Wang et al., 2020). The sedimentation
characteristics of these regions revealed that aggradation was
the dominant process in the eastern continental shelf of China
since the Holocene. The Chaoshan Plain is located in
southeastern China and borders the northeastern South China
Sea (NESCS). The Quaternary deposits in the Chaoshan plain
reach a maximum thickness of about 141 m (ChenW., 1984; Song
et al., 2012). Several investigations on the Quaternary sediments
have been conducted in the Chaoshan plain using multi proxy
dating techniques (Chen G., 1984; Li et al., 1987; Li et al., 1988;
Zong, 1992; Zheng and Li, 2000; Song et al., 2012; Tang et al.,
2018; Zhong et al., 2022). On the contrary, core and
chronological data from the adjacent neritic area are limited.
The lack of information on sedimentary structures and ages in
the area has hindered thorough comprehension of the
sedimentary evolution of the Chaoshan region. It remains
unclear how many transgressive layers have formed in this
area since the Holocene and whether aggradation or incision
has been the dominant process since that time. Additionally, the
contribution of the sea-level changes and/or tectonic activities on
sedimentary process are still debated. The present study
employed the optically stimulated luminescence (OSL) dating
method to determine the age of the Quaternary sediments from
four cores in the neritic area of the Lianjiang River plain, namely,
SY2-2, SY3-1, SY3-2, and HS02. The chronological data obtained
from these cores will provide an opportunity to understand the
timing of the deposition of the Quaternary sediments and factors
that led to its formation in the region.

2 Geological setting and sample
collection

The SCS is located at the intersection of Eurasia, India-Australia,
and the Philippine Sea plates, and is considered as the largest
marginal sea in East Asia (Xia et al., 2020). The Chaoshan plain
is lying at the NESCS and composed of three major sub-plains, the
Lianjiang River plain, the Rongjiang River plain, and the Hanjiang
River plain (Figure 1). The Lianjiang River plain extends to about
50 km inland, with a drainage area of up to 838.5 km2 and water
discharge amounts of approximately 587 million m3/yr (Tang et al.,
2018). It characterized by warm-and-wet zone influenced by the East
Asian summer monsoon (EASM), with an annual temperature of
22.3°C on average and annual precipitation from 1800 to 2,100 mm
(Tang et al., 2018). Differential uplifting–subsidence movement
from the Neogene to the early Quaternary has changed the
Lianjiang River plain into a faulted basin (Chen W., 1984).
Therefore, the Lianjiang River plain has a large accommodation
space for the Quaternary deposition, and the thickness of
sedimentary sequences reaches up to 141 m (Chen W., 1984; Li
et al., 1987; Wang et al., 1997).

Four borehole cores were obtained by rotary drilling from the
neritic area of the Lianjiang River plain (Figure 1), i.e., HS02
(116°44ʹ6.51ʺ E, 22°52ʹ10.67ʺ N), SY3-1 (116°43ʹ56.05ʺ E,
22°54ʹ7.07ʺ N), SY3-2 (116°43ʹ57.32ʺ E, 22°54ʹ6.44ʺ N), and SY2-2
(116°46ʹ44.2ʺ E, 22°54ʹ37.36ʺ N). The drilling sites are at an altitude
that ranging between 29 and 34 m below mean sea level (bmsl), and
core lengths range from 95.15 m to 95.35 m. Details of core lithology
are shown in Supplementary Table S1. Seventeen OSL samples were
collected from cores SY2-2, SY3-1, SY3-2, and HS02. Despite the

FIGURE 1
Location of the Chaoshan Plain, its neritic area, and core sites. (A) General map of the northern SCS and its significant surface circulations. The
Chaoshan Plain and its adjacent neritic area are outlined by a solid red line rectangle. The surface circulations in the northern SCS were adapted from
Zhang et al. (2022). The SCSBK abbreviation denotes the SCS Branch of Kuroshio, and the black numbers represent major modern surface currents, as
follows: 1: Guangdong Coastal Current, 2: SCS Warm Current, 3: Loop Current, and 4: Coastal Current. (B) The major area of the Chaoshan Plain,
include the Lianjiang River, Hanjiang River, and Rongjiang River plains. Four cores (SY3-1, SY3-2, SY2-2, and HS02) were obtained from the neritic area of
the Lianjiang River plain. Core WYZK-06 was from Song et al. (2012), and core CN-01 was from Tang et al. (2018). Base maps from http://www.gscloud.
cn/and https://www.ngdc.noaa.gov/mgg/global/global.html.
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sampling difficulties that prevented high-resolution sampling, this
limitation does not affect the scientific discussion presented in our
study.

3 OSL dating

3.1 Samples pretreatment

Seventeen OSL samples were treated with 10% HCl and 30%
H2O2 successively to remove carbonates and organic materials.
Wet sieving was utilized to obtain coarse-grained fractions
(90–125 µm) according to availability. 90–125 µm fractions were
treated with 40% HF for ~40 min to remove feldspar and washed
with 10% HCl for about 30 min to remove the fluoride
precipitation generated during etching. The purity of quartz
fractions was tested by the infrared stimulated luminescence
(IRSL) signals.

3.2 De determination

90–125 µm quartz fractions were mounted on the center
(5 mm diameter) of 9.7-mm diameter stainless-steel discs
using silicone oil for equivalent dose (De) measurements.
Irradiation, preheating, and OSL measurements were
conducted on a Risø TL/OSL-DA-20 reader equipped with
a90Sr/90Y beta source and blue LEDs (λ = 470 ± 20 nm)
(Bøtter-Jensen et al., 1999). All quartz signals were stimulated
at 130 °C for 40 s and recorded by an EMI 9235QA

photomultiplier tube fitted with a 7.5-mm Hoya U-340 filter.
The De in this study was measured by the SAR-SGC method (Lai
and Ou, 2013), a combination of single aliquot regenerative dose
(SAR) protocol (Murray and Wintle, 2000) and standard growth
curve (SGC) method (Roberts and Duller, 2004; Lai, 2006). The
preheat for natural and regenerative dose signals was 260 °C for
10 s (Wintle and Murray, 2006), and the preheat for test doses
response was 220 °C for 10 s. Preheat plateau test and dose
recovery test results from this study and neighboring Pearl
River Delta showed that preheat temperature at 260°C for 10 s
was appropriate for dating (Xu et al., 2020; Lin et al., 2022; Xu
et al., 2022; Lin et al., 2023). For samples SY3-2-G01, SY3-2-G02,
SY3-2-G03, and those from core SY2-2, 6 aliquots were measured
using the SAR protocol, and 12 aliquots were measured for the
natural LN/TN measurement. Given the saturation of the OSL
signal in samples from cores SY3-2 and SY2-2, the De value of
samples SY3-2-G04, SY3-2-G05, and samples from cores SY3-1,
HS02 were determined based solely on the natural LN/TN

measurement to expedite the measurement process. After
eliminating any obvious statistical outliers, the final De value
for a sample was calculated.

3.3 Quartz luminescence characteristics

Tests including the preheat plateau, dose recovery, recycling
ratio, and recuperation were conducted on sample SY3-2-G01 to
examine the suitability of luminescence properties for the SAR
protocol (Wintle and Murray, 2006).

The preheat plateau test was conducted with a preheat
temperature ranging from 200°C to 300°C with an interval of
20°C for 10 s and cut-heat temperatures kept at 220°C for 10 s,
using a heating rate of 5 C/s. Twelve aliquots (two aliquots per
preheat temperature) were measured at each temperature point. The
results indicate a preheat plateau between 260°C to 280°C
(Figure 2A).

The dose recovery test is to examine whether the De

measurement protocol can recover a known laboratory dose
(Wintle and Murray, 2006). Ideally, the measured dose is in
agreement with the given laboratory dose (Wintle and Murray,
2006). The dose recovery test was applied to twelve natural
aliquots of sample SY3-2-G01. The given laboratory dose is
20.83 Gy. The measured average De value at the 260°C
preheat temperature was 21.3 Gy, resulting in the ratio of
dose recovery of 1.02 (Figure 2B). The results are within 10%
of the natural dose, indicating that the SAR protocol can recover
a laboratory dose.

Recycling ratio and recuperation tests are mainly examining
whether no obvious thermal transfer was present and whether
sensitivity changes could be well corrected in the measurement
(Wintle and Murray, 2006). Research showed that a reliable De

value can preferably meet two requirements including
recuperation < 5% and the recycling ratio within 0.9–1.1
(Wintle and Murray, 2006). The average recycling ratio for
sample SY3-2-G01 at the 260°C preheat temperature was 1.01
(Figure 2C), indicating that the sensitivity changes were well
corrected. The recuperation for sample SY3-2-G01 at the 260°C
preheat temperature was 1.7% (Figure 2D), suggesting that no

FIGURE 2
Quartz luminescence characteristics for sample SY3-2-G01. (A)
Preheat plateau test, (B) dose recovery test, (C) recycling ratio test, and
(D) recuperation test at different preheat temperatures.
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obvious thermal transfer was present. Besides, the accepted De

aliquots for each sample in this study matched the criteria of
recycling ratios between 0.9 and 1.1 and recuperation
ratios <5%.

3.4 Dose rate measurement

Inductively coupled plasma mass spectrometry (ICP-MS)
was used for measuring uranium (U) and thorium (Th).
Inductively coupled plasma/optical emission spectrometry
(ICP/OES) was utilized for determining potassium (K). The
cosmic ray dose was calculated depending on the depth,
altitude, and geomagnetic latitude of each sample. The
moisture content was estimated to be 25% ± 5% for all OSL
samples, considering the variation of moisture content within
the burial period in the study region. The dose rates and final
ages were calculated on the website program DRAC (Durcan
et al., 2015).

4 OSL dating results and discussion

4.1 Sediment ages of cores

Representative decay and growth curves of samples SY3-2-
G01 and SY2-2-G15 are shown in Figure 3. The decay curves show
that OSL intensity decreasing rapidly during the first second of
stimulation toward background levels, indicating that the OSL
signals are dominated by the fast component in these samples
(Wintle and Murray, 2006). The well-fitted growth curves show
that the combined SAR–SGC protocol is appropriate for all the
samples in this study. Our quartz OSL results from the four cores
are listed in Table 1 and can be shown in Figure 4, with ages
ranging from 4.9 ± 0.3 ka to 139 ± 28 ka. Quartz OSL signal

saturation could be observed in sixteen samples, with De exceeding
190 Gy, indicating that the obtained dating results are regarded as
minimum ages (Lai, 2010; Murray et al., 2021; Long et al., 2022; Xu
et al., 2022).

The De is usually saturates at ~150 Gy, resulting in age
underestimation for sediments over 50 ka (Buylaert et al., 2007;
Lai, 2010; Timar-Gabor et al., 2011; Lai and Fan, 2014; Chapot
et al., 2016). Underestimation of quartz OSL age is common in
coastal deposits. OSL and thermally transferred OSL (TT-OSL)
signals of quartz samples from the coastal plain of Israel
demonstrated that the upper limit of quartz De from Nilotic
origin is close to 140 Gy (Faershtein et al., 2019). In the
western Bohai Sea (China), the De values of quartz OSL
samples are >200 Gy, resulting in ages saturation at >80 ka
(Long et al., 2022). Core HPQK01 in the Pearl River Delta also
showed that quartz OSL ages ranging from 125 ± 18 ka to 58 ± 6 ka
are considered as minimum ages due to the OSL signal
saturation >150 Gy (Xu et al., 2022). Age underestimation of
fine quartz (11–44 μm) from the Lianjiang River plain occurred
on samples older than ~130 ka (Tang et al., 2018). Our results
suggest that the quartz OSL ages older than ~60 ka are
underestimated as a result of signal saturation (~180 Gy).

4.2 Poor preservation of the late Quaternary
sediments

The OSL dating results obtained from core sediments in the
neritic area of the Lianjiang River plain suggest that the timing of
deposition is between 4.9 ± 0.3 ka and >83.6 ± 6.5 ka, with
sedimentation thickness of less than 6.4 m since at least MIS 5
(Figure 4). The sediment thickness in the inner Lianjiang River
plain is at least 80 m since MIS 5, which gradually decreases to
less than 20 m thick in the outer Lianjiang River plain (Song
et al., 2012; Tang et al., 2018) (Figure 5). In the neritic area of the

FIGURE 3
OSL decay and growth curves of samples (A) SY3-2-G01 and (B) SY2-2-G15 in the neritic area of the Lianjiang River plain.
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Lianjiang River plain, the Holocene sediments are around the
same thickness as those in the outer Lianjiang River plain, less
than 4.2 m (Tang et al., 2018) (Figure 5). However, core
sediments at depths of 12.9 m, 18 m, and 19.4 m were dated
to 1,442 ± 65 cal a BP, 11,712 ± 508 cal a BP, and 9,321 ± 221 cal
a BP, respectively, indicating that nearly 20 m thick of the
Holocene sedimentation formed in the neritic area between
the Chaoshan plain and Nanao Island (Sun et al., 2007). The
Bohai Sea and the China Sea contain the Holocene sediments
that are more than 12 m thick (Liu et al., 2017; Long et al., 2022),
while they are thinner in the SCS, around 10 m (Wei et al., 2015;
Wang et al., 2020). The neritic area of the Lianjiang River plain
has comparatively poor conditions for sedimentary

preservation. The preservation of the late Quaternary
sediments in the Lianjiang River plain is still debated. Some
studies attributed it to tectonic activities, while others suggested
the corresponding of the sea-level variations (Song et al., 2012;
Tang et al., 2018).

The South China Block comprises four NE-trending faults,
namely, the Littoral, Changle-Nan’ao, Zhenghe-Dabu, and
Shaowu-Heyuan-Yangjiang faults (Figure 6) (Sun et al., 2014;
Wang et al., 2014). Of these faults, the Littoral and Changle-
Nan’ao faults are active since the Quaternary, and have a
significant impact on the Liangjiang River plain and its
neritic area (Xu et al., 2010; Wang et al., 2014). These faults
have influenced sedimentary evolution and paleo-depositional

TABLE 1 OSL dating results from cores SY3-1, SY3-2, SY2-2, and HS02, in the neritic area of the Lianjiang River plain.

Sample ID Depth
m)

Grain
size (μm)

Aliquot
number

Moisture
(%)

U
(ppm)

Th
(ppm)

K (%) Dose rate
(Gy/ka)

De
(Gy)

Age (ka)

SY3-1-G02 19.1 90–125 3a 25 ± 5 3.2 ± 0.16 14.22 ±
0.71

2.06 ±
0.21

2.98 ± 0.17 321 ± 16 >107.6 ±
8.2

SY3-2-G01 0.6 90–125 4b + 10a 25 ± 5 5.07 ±
0.25

15.57 ±
0.78

2.08 ±
0.21

3.57 ± 0.18 17.6 ±
0.5

4.9 ± 0.3

SY3-2-G02 4.8 90–125 4b + 8a 25 ± 5 2.25 ±
0.11

11.29 ±
0.56

1.97 ± 0.2 2.66 ± 0.15 222 ± 12 >83.6 ±
6.5

SY3-2-G03 6.5 90–125 6b + 6a 25 ± 5 1.79 ±
0.09

9.47 ± 0.47 1.84 ±
0.18

2.36 ± 0.14 229 ± 18 >97.1 ±
9.6

SY3-2-G04 10.2 90–125 5a 25 ± 5 3.9 ± 0.2 16.92 ±
0.85

2.16 ±
0.22

3.37 ± 0.18 239 ± 41 >71 ± 12.7

SY3-2-G05 14.4 90–125 7a 25 ± 5 4.1 ± 0.2 15.75 ±
0.79

2.25 ±
0.22

3.39 ± 0.18 243 ± 33 >71.7 ±
10.4

SY2-2-G15 5.45 90–125 6b + 5a 25 ± 5 2.27 ±
0.11

9.47 ± 0.47 1.75 ±
0.18

2.39 ± 0.14 236 ± 23 >98.9 ±
11.1

SY2-2-G14 14.95 90–125 6b + 7a 25 ± 5 2.97 ±
0.15

13.79 ±
0.69

2.21 ±
0.22

3.05 ± 0.17 227 ± 16 >74.6 ±
6.8

SY2-2-G13 19.55 90–125 6b + 4a 25 ± 5 4.05 ± 0.2 14.72 ±
0.74

2.01 ± 0.2 3.12 ± 0.17 402 ± 69 >129 ± 23

SY2-2-G12 28.45 90–125 6b + 5a 25 ± 5 3.46 ±
0.17

13.18 ±
0.66

2.23 ±
0.22

3.09 ± 0.18 312 ± 30 >101 ±
11.3

SY2-2-G10 43.35 90–125 2b + 5a 25 ± 5 3.78 ±
0.19

10.2 ± 0.51 1.64 ±
0.16

2.52 ± 0.13 334 ± 20 >133 ± 11

SY2-2-G09 47.75 90–125 2b + 4a 25 ± 5 3.81 ±
0.19

18 ± 0.9 2.17 ±
0.22

3.36 ± 0.18 335 ± 26 >99.7 ±
9.4

SY2-2-G07 64.05 90–125 3b + 6a 25 ± 5 3.17 ±
0.16

14.24 ±
0.71

1.96 ± 0.2 2.87 ± 0.16 334 ± 28 >117 ± 12

SY2-2-G03 73.45 63–125 6b + 5a 25 ± 5 3.59 ±
0.18

17.62 ±
0.88

2.59 ±
0.26

3.63 ± 0.21 506 ± 96 >139 ± 28

HS02-G01 6.4 90–125 9a 25 ± 5 2.7 ± 0.14 11.73 ±
0.59

2.06 ±
0.21

2.82 ± 0.16 233 ± 27 >82.6 ±
10.6

HS02-G02 10.5 90–125 4a 25 ± 5 3.18 ±
0.16

14.65 ±
0.73

2.11 ±
0.21

3.07 ± 0.17 197 ± 38 >64.2 ± 13

HS02-G03 12.7 90–125 3a 25 ± 5 2.93 ±
0.15

13.47 ±
0.67

2.21 ±
0.22

3.03 ± 0.17 249 ± 11 >82.1 ± 6

a Numbers of aliquots measured using the standard SGC, method.

b Numbers of aliquots measured using the standard SAR, method.
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FIGURE 4
Profiles and OSL ages of cores HS02, SY3-1, SY3-2, and SY2-2.

FIGURE 5
The stratigraphic correlation of cores WYZK-06, CN-01, HS02, SY3-1, SY3-2, and SY2-2. Core HS02, SY3-1, SY3-2, and SY2-2 were obtained during
this study, while coreWYZK-06was obtained from Song et al. (2012), and core CN-01was obtained from Tang et al. (2018). Core altitude is represented in
the Y-axis as below mean sea level (bmsl) and above each core stratigraphy as above mean sea level (amsl).
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environments, resulting in accumulation and transportation of
the Quaternary along the faults (Sun et al., 2007).

However, the southeastern neritic area of the Lianjiang River
plain is under intense interaction of the SCS and Lianjiang River.
Global sea level declined since the end of the last interglacial
period and reached the maximum at ca. 130 m bmsl during the
last glacial maximum (LGM; ca. 30–20 ka) (Hanebuth et al., 2006;
Hodgson et al., 2006; Lambeck et al., 2014; Spratt and Lisiecki,
2016). Low-stand sea level led to the incision of the Lianjiang

River and the exposure of the continental shelf in the northern
SCS (Wei et al., 2015; Xu et al., 2019). A series of buried
paleochannels extending from the southeastern neritic area of
the Lianjiang River plain to approximately 25 km offshore were
discovered and considered as the paleo-Lianjiang River (Figure 7)
(Liu et al., 2005). The cores in this study are located at the
southern part of the paleo-channels of the Lianjiang River, where
they likely experienced fluvial incision during the last glacial
period. Lan et al. (1991) demonstrated that the medium coarse
sands in the Taiwan Shoal were mainly transported by the
currents from the coastal region of southeastern China during
10–20 ka BP based on the 14C dating. Sediments from the core
sites were largely transported to the Taiwan Shoal by the
Hanjiang diluted water and Guangdong Coastal Currents
(Figure 1A), resulting in limited sediments in the neritic area
of the Lianjiang River plain (Lan et al., 1991; Lian and Li, 2011).
Studies have shown that terrigenous sediments can be
transported and spread by oceanic currents once they enter
continental margins (Liu et al., 2008; Liu Z. et al., 2016;
Zhang et al., 2022). For instance, the sediment from the Pearl
River is predominantly transported southwestward via coastal
currents, while Taiwan-derived sediments are among the
principal contributors in the NESCS due to the influence of
deep-water currents and surface currents that vary seasonally
(Liu Z. et al., 2016; Zhang et al., 2022). Therefore, fluvial incision
during the last glacial period and strong transportation by coastal
currents may result in poor preservation of sediments since at
least 83.6 ka in the study area.

The Chaoshan plain neritic area experienced poor sediment
preservation since MIS 5, while other regions experienced
transgressions and regressions resulting in more than 30 m thick
of deposition. Studies from the Bohai Sea, the western South Yellow
Sea, and the East China Sea have revealed evidence of sea-level
changes and their impact on sedimentary processes (Liu J. et al.,
2016; Liu et al., 2017;Wang et al., 2019;Wang et al., 2020; Long et al.,

FIGURE 6
The gravity anomaly and fault distribution in the South China
Block (SCB) and the northern Continental Margin of the SCS (modified
from Wang et al. (2014)). ① Littoral Fault Zone, ② Changle-Nan’ao
fault, ③ Zhenghe-Dabu Fault, ④ Shaowu-Heyuan-Yangjiang
Fault, ⑤ Wuchuan-Sihui Fault, ⑥Hepu-Beiliu Fault, red rectangle
shows the major area of Lianjiang plain and its southeastern neritic
area.

FIGURE 7
(A) The major area of Lianjiang River plain and its southeastern neritic area in this study. (B) Location of the paleo-river channel of paleo Lianjiang
River in the neritic area of the modern Lianjiang River mouth, modified from Liu et al. (2005).
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2022). Further research indicated that sea-level changes were
identified as the primary control for sedimentation on the
northeastern SCS, with Kuroshio intrusion being responsible for
the transport of Taiwan-derived sediment during the late
Quaternary (Zhang et al., 2022). In summary, the sedimentary
processes in the eastern continental shelf of China were mainly
influenced by sea-level changes.

5 Conclusion

In this study, we used quartz OSL technique to date the
Quaternary sediments from cores SY2-2, SY3-1, SY3-2, and
HS02 in the neritic area of the Lianjiang River plain. Seventeen
dates ranged from 4.9 ± 0.3 ka to >139 ± 28 ka. Except for SY3-2-
G01, all samples were considered minimum ages due to De
saturation (>190 Gy). Our findings reveal that the sediments have
been poorly preserved for at least 83.6 ka, with a sedimentation
thickness since at least MIS 5 of less than 6.4 m and Holocene
sediments of less than 4.2 m. This study has shown that erosion has
occurred in the neritic area of the Lianjiang River plain in the NESCS
since at least MIS 5 due to fluvial incision caused by low sea levels
during the last glacial period and strong coastal currents.
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Soft-sediment deformation
structures of mottled clay in
HuizhouQuaternary basin, coastal
South China

Zhen Chen1,2†, Wen Wang3†, Ping Huang2, Yongjie Tang1,
Jing Wang4, Qiang Zeng2 and Cong Chen1*
1School of Earth Sciences and Engineering, Sun Yat-sen University, Zhuhai, China, 2GDZD Institute on
Deep-Earth Sciences, Guangzhou, China, 3Nonferrous Metals Geological Bureau of Guangdong Province
935 Battalion, Huizhou, China, 4Museum and History Museum of Sun Yat-sen University, Guangzhou,
China

Tectonically induced liquefaction and the resulting soft-sediment deformation
structure (SSDS) can provide useful information on paleo-earthquakes, which is
vital for the assessment of geohazard susceptibility in tectonically active regions. In
this study, we combined sedimentary and chronological methods to the reveal
detailed characteristics of the mottled clay in the Huizhou Quaternary Basin. The
dating results suggest that mottled clay usually developed during the late
Pleistocene, overlying the fluvial deposit or embedding homogeneous aeolian
yellow silt. Mottled clay has a typical bimodal frequency distribution with modal
sizes at 5 and 80–90 μm, which are identical to those of the yellow silt and the
underlying fluvial sand, respectively. Micro-X-ray fluorescence mapping revealed
high concentrations of Fe and Si in the red and white fraction, respectively. In
addition, the red fraction of mottled clay has a high hematite content, similar to
loess-like yellow silt, whereas the white fraction and the underlying fluvial
sediments are dominated by goethite. This sedimentary evidence together
suggests that the mottled clay could be an admixture of aeolian yellow silt and
the underlying fluvial sand. Furthermore, diverse deformed structures (e.g.,
fragmented structures, sand veins, sand dykes and flame structures) were
observed in mottled clay. Therefore, we suggest that the mottled clay
structure in the Huizhou Basin is a product of liquefaction-induced SSDS.
Tectonic activity was considered to have triggered the liquefaction and SSDS,
which is supported by the close spatial relationship between the mottled clay and
regional faults. We propose that the SSDS of mottled clay could be a potential
indicator of paleo-earthquakes in the coastal Quaternary basins of the northern
South China Sea.

KEYWORDS

soft-sediment deformation, mottled clay, tectonic activity, late Pleistoncene, Huizhou
basin, South China

1 Introduction

Tectonic-induced liquefaction and resulting soft-sediment deformation structure (SSDS)
that was preserved in the geological record, are commonly used to derive information (e.g.,
intensity and recurrence intervals) of paleo-earthquake, and are thus vital for the assessment of
geohazard susceptibility in tectonically active regions (Allen, 1986; Deev et al., 2009; Qiao et al.,
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2017; Liang et al., 2018; Tuttle et al., 2019; Üner et al., 2019). For
example, a compilation of historical earthquakes that occurred during
the last millennium and the related liquefaction in Italy permitted the
establishment of an empirical relationship between themagnitude and
distance of liquefaction (Galli, 2000). An integrated method was
applied to provide information on the seismic shaking intensity
recorded in lacustrine sediments at sites where it was difficult to
conduct research by excavating trenches owing to their rough
topography, strong erosion, or the absence of co-seismic ruptures
(Zhong et al., 2022). In particular, paleo-earthquakes in the late
Quaternary are actively researched because their potential risk to
contemporary urban growth and safety in habitations, which have
been successfully identified, for instance, in Ecuador (Hibsch et al.,
1997), Kyrgyzstan (Gladkov et al., 2016), and Brazil (Rossetti et al.,
2017), mostly based on liquefaction and SSDS features in the deposit
profiles. However, in addition to earthquakes, liquefaction-induced
SSDS can also be triggered by other factors, such as water waves, rapid
sediment accumulation, groundwater movement, ice-wedges, and
meteorites (Owen and Moretti, 2011; Su et al., 2022). Therefore,
correctly determining the trigger for liquefaction-induced SSDS is
fundamental for interpreting information on paleo-earthquake. A
methodology and criteria for analyzing SSDS and distinguishing the
triggers have been proposed, involving sedimentological,
paleoenvironmental and tectonic contexts (Owen and Moretti, 2011).

In the coastal region of the northern South China Sea (SCS), there
are many Quaternary basins, such as the Pearl River Delta (PRD),
Lianjiang Plains, Hanjiang Delta and Fujian coastal basins, the
emergence of which is generally related to the regional neo-
tectonic activity (Chen et al., 2002; Yao et al., 2013). Previous
studies have also revealed geological evidence of late Quaternary
fault activity (e.g., Song et al., 2001; Tang et al., 2011). For
example, a sedimentary layer younger than 23 ka was cut off by a
normal fault with a fault-throw of 53 cm at the Xilingang Site in the
PRD (Tang et al., 2011). Several historical earthquake events are also
documented (Wei et al., 2000). This implies that the PRDwith a dense
population and economic activity is tectonically active. Moreover,
most Quaternary basins are filled with several to dozens of meters of
loose, water-saturated silt and sand, consisting mainly of fluvial,
marine and aeolian sediments (Wang et al., 2018a; Tang et al.,
2018). Tectonic and sedimentary features generally favor the
development of liquefaction (Owen and Moretti, 2011). However,
tectonic activity-induced liquefaction and related SSDS in the PRD
remain poorly understood. Mottled clay, which exhibits a mixed
yellow, red and white color, broadly developed in these coastal
Quaternary basins and is primary regarded as a weathering
product of the underlying fluvial/marine sediments (Huang, 1982;
Li et al., 1984). Later, Wang et al. (2018b) suggested an aeolian origin
of the mottled clay rather than a weathering product based on
sedimentary and geochemical analyses, and proposed that the
mottled structure was formed by post-sedimentary modification of
oxidation. Recently, we studied a series of drilling cores derived from
the Huizhou Basin (HZB) in the eastern PRD and found diverse
deformed structures in the mottled clay sediments, implying a
potential liquefaction origin of the mottled structure.

In this study, we combined sedimentary and chronological
methods, including lithological feature, grain size analysis, micro-
X-ray fluorescence (μ-XRF) scanning, diffuse reflectance
spectroscopy (DRS) analysis, and accelerator mass spectrometry

radiocarbon dating (AMS 14C), to reveal detailed characteristics of
mottled clay in the drilling cores derived from the HZB. We further
discuss the origin of the mottled structures, which are possibly
liquefaction-induced SSDS triggered by regional neo-tectonic
activity during the late Pleistocene.

2 Geological settings

The Pearl River, one of the longest watercourses in southern
China, includes three major tributaries (i.e., the Xijiang River,
Beijiang River and Dongjiang River), and its delta (the PRD) is
the largest Quaternary plain in the coastal northern SCS (Figure 1A).
The HZB situated in the eastern PRD is an alluvial basin of the
middle Dongjiang River, ranging from 114°20’ to 114°40’ E and
22°50’ to 23°10’ N. The evolution of the Huizhou Basin was mostly
controlled by the SW-NE and NW-SE faults, that is, the Huizhou
Fault to the west, Lianghua Fault to the east, the Zijin-Boluo Fault
and Tonghu Fault to the north, and the Lianhuashan Fault to the
south (Figure 1B) (Li et al., 2020, 2021). The Zijin-Boluo and
Tonghu faults belong to the same regional fault zone, with a
length of approximately 20 km, striking NE, inclining SE and
dipping 40°–60°. The Lianhuashan Fault is part of the Wuhua-
Shenzhen Fault zone, striking NE and inclining NW. The Huizhou
Fault is approximately 20 km long, striking NW, inclining NE and
dipping 65°–75°. All five faults are normal faults (BGMRGP, 1988),
and are considered as being active. The bedrock of the HZB consist
mainly of Jurassic and Cretaceous igneous rock and sandstone,
which have an unconformity contact with the overlying
unconsolidated late Quaternary sediments. At present, the HZB
experiences a subtropical monsoonal climate, with a mean annual
temperature of 21.9°C, summer temperature of 27.9°C and winter
temperature of 14.5°C, respectively, between 1954 and 2006 AD (Li
et al., 2008).

3 Material and methods

3.1 Drilling cores

In this study, 12 cores (Table 1) were drilled in the HZB during
April-May 2022 to reveal the features of Quaternary sediments in the
basin. Combined with three published drilling cores, the lithological
chart shows that the Quaternary sediments are generally
approximately 15–25 m thick, and the overall succession can be
divided into three units from the bottom to the top based on the
lithology as follows (Figure 2): 1) Unit I, Q3

a
fluvial sediment; the

lithology is grayish white to yellow gravel sand, sand or clay sand,
underlain by weathered pre-Cenozoic bedrock. The thickness of this
unit is generally larger than 10 m. 2) Unit II, Q3

b aeolian sediment,
mostly consists of loess-like silt, with occasional mottled clay. The
thickness of this unit varies in the basin, mostly between 2 and 10 m.
3) Unit III, Q4 fluvial or marsh sediments; it mainly consists of gray to
yellow coarse to fine sand, silt and clay. The organic carbon content of
this unit is generally higher than that of Unit I. In particular, a mottled
clay structure with 1–5 m thick was found in seven of the 12 drilling
cores in the HZB. The mottled clay exhibits a mixed yellow, red and
grey-white color, and the bright clay generally shows vein- and/or
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flame-like vertical structures intruding into yellow/red sediments
(Figure 3B). The deformation features were clearly distinguished
from the underlying loess-like silt or fluvial sand deposits
(Figure 3). The normal aeolian sediment is homogeneous in color
and grain size (Figure 3A), and fluvial sand deposits present
pronounced horizontal features (e.g., laminae).

3.2 AMS 14C dating

To constrain the age of the Quaternary stratigraphy in the
HZB, we collected ten samples from the drilling cores for AMS
14C dating. Bulk organic sediment samples were pretreated using
the standard acid-base-acid (ABA) method and analyzed at the

FIGURE 1
Location and tectonic landform map of the Huizhou Basin. (A) The location of the Pearl River Delta PRD and the Huizhou Basin. JT, SJ and TS were
the sampling locations of Wang et al. (2018b). (B)Distribution of theQuaternary sediment, regional basement faults and the locations of the drilling cores.

TABLE 1 Locations of the drilling cores in the Huizhou Basin.

Core ID Longitude (E) Latitude (N) Elevation (m) Mottled clay

HZ-ZK01 114° 27′ 02.3448″ 23° 01′ 51.4574″ 11.7 No

HZ-ZK02 114° 28′ 19.3890″ 23° 04′ 10.9721″ 11.6 No

HZ-ZK03 114° 32′ 37.8219″ 23° 02′ 13.6413″ 15.5 No

HZ-ZK04 114° 35′ 13.9168″ 23° 03′ 28.5875″ 15.9 Yes

HZ-ZK05 114° 33′ 26.3536″ 23° 08′ 03.1127″ 15.0 Yes

HZ-ZK06 114° 27′ 06.0229″ 23° 07′ 05.7405″ 11.1 Yes

HZ-ZK07 114° 24′ 36.9448″ 23° 06′ 01.1982″ 14.2 No

HZ-ZK08 114° 31′ 01.4063″ 23° 09′ 48.9913″ 13.2 No

HZ-ZK09 114° 28′ 23.1944″ 23° 09′ 13.6555″ 10.7 Yes

HZ-ZK10 114° 25′ 47.2292″ 23° 10′ 10.8851″ 12.0 Yes

HZ-ZK11 114° 25′ 22.8159″ 23° 08′ 14.7721″ 11.7 Yes

HZ-ZK12 114° 22’ 22.2858″ 23° 10′ 43.8220″ 10.7 Yes
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Qingdao National Laboratory for Marine Science and
Technology, China. The dates were then calibrated to calendar
years (i.e., cal BP) using the IntCal20 Data Sets (Reimer et al.,
2020) (Table 2). Additionally, the optically stimulated
luminescence (OSL) dates provided in a previous study (Li
et al., 2021) were combined to constrain the age of the lower
fluvial deposit (Figure 2), which is generally beyond the dating
limit of the AMS 14C method.

3.3 μ-XRF, DRS and grain size analysis

In this study, we conducted μ-XRF and DRS analysis to reveal
detailed geochemical element and iron oxide features of mottled clay
structure in theHZB. Three thin sections ofmottled clay structure (10 cm
in diameter and dozens of centimeters in length) (Table 3) were collected
for μ-XRF scanning, using an M4 Plus Micro Area X-Ray Fluorescence
Analyzer at Guangzhou Tuoyan Analytical Technology Co. Ltd. The

FIGURE 2
Comparison chart of the drilling cores in the Huizhou Basin. Cores HZK1-3 are according to Li et al. (2021). AMS 14C and OSL dating results are also
indicated.

FIGURE 3
Photograph of different lithological layers in the Huizhou Basin. (A)Homogeneous loess-like yellow silt. (B)Mottled clay, exhibiting a yellow, red and
grey-white mixed color and vertical structure. (C) Fluvial sand deposit with horizontal features.
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instrument is equipped with a 20 μm diameter polycapillary X-ray lens
and two X-Flash silicon drift detectors and operated at a voltage of 50 kV
and a current of 300 μA. The scanning was carried out at a 20 μm spot
size, 5 ms acquisition time and 35 μmpoints distance. Original data were
processed using M4 tornado software to analyze the spectral peak
information, and derive the element surface distribution map.

Four samples with different lithologies (Table 3) were ground in an
agatemortar and passed through a 200-mesh sieve prior toDRS analysis.
In particular, the red and white fractions of mottled clay were separated
into two separate samples. DRS analysis was conducted using a Perkin
Elmer (U.K.) ultraviolet-visible near-infrared spectrophotometer with a
wavelength range of 175–3,300 nm at the Instrumental Analysis &

Research Center of Sun Yat-sen University. Data for the visible light
range of 400–700 nm were collected at 1 nm intervals and used as the
first-order derivative of the peak height mapping.

Furthermore, we collected samples from different lithological layers
of core HZ-ZK06 for grain size analysis. The grain size was determined
using a Malvern (U.K.) Mastersizer 2000 laser particle size instrument
(measurement error <2%). Prior to measurement, the samples were
pretreated with 10%H2O2 and 10% HCl to remove organic matter and
carbonates, respectively. Then samples were washedwith distilledwater,
sieved through a 1,000 μmmesh, and dispersedwith 0.05 mol/L sodium
hexametaphosphate (NaPO3)6 solution. Before the analysis, the samples
were placed in an ultrasonic vibrator for 20 min.

TABLE 2 AMS14C dating results of the late Pleistocene sediments in the Huizhou Basin.

Sample no. Depth (m) Material Radiocarbon age (a BP) Calibrated age (2σ, cal a BP)

HZ-ZK01-14C-01 4.81 organic sediment 1275 ± 25 1131–1284

HZ-ZK04-14C-01 1.25 organic sediment 4080 ± 25 4444–4478

HZ-ZK05-14C-01 4.85 charcoal 20650 ± 190 24254–25303

HZ-ZK05-14C-02 12.35 charcoal - -

HZ-ZK06-14C-01 16.44 charcoal 44400 ± 1840 43429–51403

HZ-ZK07-14C-01 5.71 charcoal 4300 ± 50 4655–5038

HZ-ZK09-14C-01 4.30 organic sediment 35110 ± 600 39108–41369

HZ-ZK10-14C-01 4.10 organic sediment 27030 ± 280 30474–31692

HZ-ZK12-14C-04 4.90 organic sediment 9220 ± 45 10249–10504

HZ-ZK12-14C-02 12.70 charcoal - -

TABLE 3 Sampling information and analysis methods.

Sample ID Drilling core Depth (m) Lithological Method

XRF-01 HZ-ZK04 3.30–3.60 mottled clay μ-XRF

XRF-02 HZ-ZK05 6.05–6.20 mottled clay μ-XRF

XRF-03 HZ-ZK12 13.30–13.35 mottled clay μ-XRF

UV-01 HZ-ZK03 7.50 loess-like yellow silt DRS

UV-02 HZ-ZK12 13.36 red fraction of mottled clay DRS

UV-03 HZ-ZK12 13.40 white fraction of mottled clay DRS

UV-04 HZ-ZK06 13.50 fluvial sand DRS

GS-01 HZ-ZK06 2.70 loess-like yellow silt grain size

GS-02 HZ-ZK06 3.50 mottled clay grain size

GS-03 HZ-ZK06 4.50 mottled clay grain size

GS-04 HZ-ZK06 5.50 mottled clay grain size

GS-05 HZ-ZK06 8.50 loess-like yellow silt grain size

GS-06 HZ-ZK06 13.80 fluvial sand grain size

GS-07 HZ-ZK06 15.80 fluvial sand grain size

GS-08 HZ-ZK06 17.80 fluvial sand grain size

GS-09 HZ-ZK06 18.40 fluvial sand grain size
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4 Results

4.1 Dating results

The results suggest that the unconsolidated sediment in the HZB
has mostly developed since the late Pleistocene, directly overlying the
weathered pre-Cenozoic bedrock. The radiocarbon dating results of
the samples from HZ-ZK01, HZ-ZK04, HZ-ZK07, and ZH-ZK12
suggest that the uppermost Unit III (fluvial or marsh sediments) was
mostly deposited during the Holocene (Table 2). The ages of the
samples fromUnit II (aeolian sediment) ranged between 20 and 35 ka
BP, which is consistent with the ages of the yellow silt in the PRD.
Wang et al. (2018a, b) demonstrated that the aeolian deposits found in
most Quaternary basins of Southeast China developed during the Last
Glacial period and were predominantly deposited during the Last
Glacial Maximum (LGM). However, the ages of the underlying fluvial
sediments (Unit I) exceeded the beyond the he dating limit of the
AMS 14C method. A previous study using the OSL dating method (Li
et al., 2021) suggests that Unit I could be older than 103 ± 10.5 ka
(Figure 2).

4.2 Grain size characteristics

Grain size analysis is one of the most popular methods used for the
analysis of sediments and helps determine the transport agents and
sedimentary environment (Xu et al., 1992). The grain size distribution
characteristics of the samples from core HZ-ZK06 generally became
finer from the bottom to the top (Figure 4B). Specifically, the frequency
distribution curves of the fluvial deposits have a unimodal or

multimodal form biased towards the coarse-grain end. The primary
modal size of the lower fluvial sample (18.4 m)was around 85 μm,while
those of the upper fluvial samples (13.8, 15.8, and 17.8 m) were around
75 and 9 μm, respectively. The yellow silt samples (2.7 and 8.5 m)
present a uniform unimodal distribution with a fine tail and sharp
kurtosis. The modal size of yellow silt is about 5 μm. The curves of
yellow silt in the HZB decreased abruptly at the coarse-grained end and
more gradually at the fine-grained end, similar to those of the loess-like
yellow silt in the PRD (Figure 4B) and typical Chinese loess (Wang et al.,
2018a). However, the modal size of yellow silt in the HZB is finer than
those in the PRD (~16 μm), indicating wind sorting and decreasing
transporting capacity. Nevertheless, our results suggest that the yellow
silt in the HZB shares a common sedimentary type (aeolian) with loess-
like yellow silt in the PRD and typical loess in China.

The mottled clay in core HZ-ZK06 occurred as an interbed
within a thick layer of homogeneous yellow silt (Figure 4A), showing
a deformation structure. The frequency distribution curves of the
samples have a typical bimodal distribution, with a primary modal
size of 80–90 μm and a secondary modal size of about 5 μm.
Interestingly, the two distinct modal sizes were identical to those
of the yellow silt and underlying fluvial sand, respectively. The finer
part (<20 μm) of the curves is also similar with the curves of yellow
silt. This implies that the mottled clay may be an admixture of fluvial
sand and yellow silt.

4.3 μ-XRF element mapping

μ-XRF is a non-destructive method offering excellent spatial
resolution and high sensitivity for small geochemical element

FIGURE 4
Lithology and grain size distribution of core HZ-ZK06. (A) Photography and lithology of core HZ-ZK06. (B) Grain size frequency distribution of
different lithological layers from core HZ-ZK06. The frequency distribution of loess-like yellow silt in the Pearl River Delta is also shown (grey lines) (Wang
et al., 2018b).
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concentrations (Hoehnel et al., 2018). In this study, three thin
sections of mottled clay showed a heterogeneous spatial
distribution of geochemical elements. Generally, the red/yellow
fraction of the mottled clay had high concentrations of Fe and
Cr, whereas the gray/white fraction had high Si, Al and K
concentrations (Figure 5, Figure 6, Figure 7). In particular, the
visual structures of samples can be characterized by the varying
concentrations of Fe, because the redness of the sediment is
dominantly controlled by the type and concentration of iron
oxides (Sun et al., 2011). Moreover, the core HZ-ZK04 sample
showed a fragmented structure in the spatial distribution of elements
(Figure 5B). In core HZ-ZK05, a small white sand vein was
characterized by extremely low Fe concentrations, intruding into
yellow silt with high Fe concentrations (Figure 6B).

4.4 DRS characteristics

Discriminating iron oxides is of great environmental
significance; for example, they are indicators of the sedimentary
environment (Zhang et al., 2009). In the subtropical region, hematite
and goethite are the two main iron oxide minerals (Wang et al.,
2018b), the contents of which in the sediment can be obtained from
the DRS first-order derivative curves. The characteristic peak of
hematite is typically observed at a wavelength of 565 nm, whereas

goethite has two characteristic peaks at 535 and 435 nm (Deaton and
Balsam, 1991; Ji et al., 2002). In general, goethite tends to be enriched
in wet environments, whereas large amounts of hematite reflect dry
environments (Cornell and Schwertmann, 2003; Balsam et al.,
2004).

In this study, two peaks at wavelengths of 565 and 435 nm were
presented in the loess-like yellow silt (UV-01) and the red fraction of
mottled clay (UV-02) samples (Figure 8). The peak at 565 nm is
substantially greater than that at 435 nm, which indicates that
hematite predominates over goethite in the loess-like yellow silt
and the red fraction of mottled clay. Due to overall low iron content
as revealed by μ-XRF analysis (Figures 5–7), the DRS curve of the
white fraction of mottled clay (UV-03) is relatively flat, and three
peaks could be discerned at 435, 505 and 555 nm, respectively
(Figure 8). The hematite peak at 565 nm is usually offset to
555 or 575 nm after being affacted by the Fe content, and the
characteristic peak of goethite at 535 nm is often biased toward
505 nm (Deaton and Balsam, 1991; Ji et al., 2002). Therefore, the
white fraction of the mottled clay contained both goethite and
hematite, with the former being higher than the latter. The DRS
curve of the fluvial sand (UV-04) shows two peaks at 435 and
505 nm, indicating the predominance of goethite. Overall, the curves
of the loess-like yellow silt and the red fraction of mottled clay (UV-
01 and UV-02) share a similar pattern with high hematite content,
indicating a relatively dry sedimentary environment (i.e., aeolian

FIGURE 5
Photograph (A) and μ-XRF element mapping of mottled clay structure (B) of core HZ-ZK04. The mottled clay shows a fragmented structure in the
spatial distribution of elements.
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deposit). In contrary, samples of the white fraction of the mottled
clay and fluvial sediment were predominantly goethite, reflecting a
typical aquatic environment.

5 Discussion

5.1 Identification of the soft-sediment
deformation structure

Mottled clay is primarily regarded as a weathering product of
underlying fluvial/marine sediments (Huang, 1982; Li et al., 1984).
Based on the evidences from grain size, mineral, and geochemical
composition, Wang et al. (2018b) suggested no obvious weathering
transition relationship between mottled clay and its underlying
sediments, and proposed that the mottled structure was formed
by post-sedimentary oxidation modification of homogeneous
aeolian dust accumulated during the last glacial period, under the
hot and humid conditions of the Holocene epoch. However, in the
HZB, the mottled clay layer was not always overlaid with the
Holocene organic-rich sediments. Instead, it is also overlaid with

late Pleistocene fluvial sand (e.g., in core HZ-ZK12, Figure 7), or
occurs as an interbed within the thick layer of homogeneous yellow
silt (Figure 4A). Therefore, we suggest that the mottled clay is neither
a post-sedimentary oxidation product of the loess-like yellow silt,
nor a weathering product of the underlying fluvial/marine
sediments. Alternatively, μ-XRF element mapping shows that the
red/white fraction of mottled clay has a different geochemical
composition (Figures 5–7). Two major components of grain size
(5 and 80–90 μm) are identical to the modal sizes of the yellow silt
and the underlying fluvial sand, respectively (Figure 4B). In addition,
the red fraction of mottled clay had a high hematite content, similar
to loess-like yellow silt, whereas the white fraction and the
underlying fluvial sediments were dominated by goethite
(Figure 8). These two types of iron oxides refer to opposite
sedimentary environments (i.e., dry vs. wet conditions), implying
that the accumulation of these two fractions was asynchronous.
Furthermore, there are diverse deformed structures in the mottled
clay, such as fragmented structures (Figure 5B), sand veins
(Figure 6B), sand dykes (Figure 7B) and flame structure. The
degree of deformation also increases upwards in mottled clay,
which is a common characteristic of liquefaction-related

FIGURE 6
Photograph (A) and μ-XRF elementmapping ofmottled clay structure (B) of core HZ-ZK05. The sand vein is characterized by low Fe concentrations.
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deformations (Owen and Moretti, 2011). Therefore, we suggest that
the mottled clay structure in the HZB is a product of liquefaction-
induced SSD, which produced an admixture of aeolian yellow silt
and underlying fluvial sand.

Several key factors of sediment characteristics, including grain
size, porosity, saturation, permeability barrier, overburden pressure,
and sediment history strongly influence susceptibility to liquefaction
(Owen and Moretti, 2011). In most cases, liquefaction develops in
loose, water-saturated silt or fine sand without previous liquefaction.
A higher overburden pressure could also decrease the potential for
liquefaction, such that most liquefaction develops in sediment with a
small buried depth (generally less than 5 m) (Obermeier, 1996). In
HZB, the underlying fluvial sand is mostly fine, loose, and water-
saturated. In the other hand, the overlying yellow silt layer could act
as a permeability barrier, leading to an increase in the pore-fluid

pressure. These sedimentary characteristics of the HZB generally
promote the development of liquefaction. Moreover, the fluvial sand
and aeolian yellow silt are significantly different in many
sedimentary characteristics, such as grain size, iron oxides, and
geochemical (Figures 4–8), which favors the preservation of
liquefaction-induced SSDS.

5.2 Triggers for the liquefaction and related
SSDS

Liquefaction-induced SSDS can be triggered by many factors,
which can be categorized into two types (Owen and Moretti, 2011).
The first type is directly associated with sedimentation processes and
termed autogenic or internal triggers and includes groundwater

FIGURE 7
Photograph (A) and μ-XRF element mapping of mottled clay structure (B) of core HZ-ZK12.
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fluctuations, water flows/waves, rapid sediment loading, tidal shear,
tsunamis and permafrost thawing. Other triggers such as
earthquakes, meteorite impacts and volcanic eruptions act as
external agents (Su et al., 2022), and are referred to as allogenic
triggers. Regarding the liquefaction-induced SSDS of mottled clay in
the HZB, some triggers could be eliminated by exclusion. First,
meteorite impacts and volcanic eruptions can be ruled out, because
such events could produce unique geomorphological formations
and sedimentary deposits, which have not been found in the study
region since the late Pleistocene. The high hematite content in the
red fraction of mottled clay indicates a relatively dry sedimentary
environment, and in some cases, a mottled clay structure occurs
interbedded with aeolian yellow silt (e.g., core HZ-ZK06), which
together exclude an underwater sedimentary environment and thus
possible triggers of water flows/waves and tidal shear. Third, the
LianhuashanMountains situated between the HZB and the northern
SCS (Figure 1B) could be a barrier weakening the influence of
tsunamis and storm surges. Finally, paleotemperature
reconstruction from a nearby maar lake indicates a drop of about
6 °C during the Last Glacial Maximum, a period of maximum glacier
extent since the late Pleistocene, compared to modern annual
temperature (Chu et al., 2017). Considering the present
subtropical climate with hot conditions (e.g., 14.5 °C in winter)
(Li et al., 2008), the freeze-thaw process was not likely the trigger
that led to the formation of SSDS in the mottled clay layer of
the HZB.

Instead, liquefaction-induced SSDS in the mottled clay layer of
the HZB were interpreted as tectonic activity -induced after
consideration of all other possible trigger agents. As a subsidence
basin controlled by active faults (Figure 1B), the HZB has

experienced tectonic activity since the late Pleistocene. For
example, a normal fault cutting a peat bed dated at 33.59 ±
0.16 ka BP was found in the Huizhou fault zones (unpublished
data). After homogeneous aeolian dust accumulation, seismic
shaking led to a sudden increase in pore-water pressure and
triggered the liquefaction of the underlying fluvial sediments. The
excessive pore pressure water and sand mixture upwelled and
intruded into the overlying loess-like yellow silt layer. This
intrusion deformed the homogeneous aeolian layer, formed
vertical structures (e.g., sand vein), and resulted in an admixture
of aeolian silt and fluvial sand as revealed by the results of grain size,
DRS and μ-XRF analysis. Moreover, the spatial distribution of the
mottled clay layer is highly related to regional faults (Figure 9). For
example, most cores with mottled clay layers were concentrated in
the communicating zone of the Tonghu and Huizhou faults, where a
historical earthquake with the magnitudes of 4 occurred in October
1590 (Wei et al., 2000). The spatial relationship between the mottled
clay layers and regional faults strongly supports the suggestion of
tectonic activity -induced liquefaction and SSDS. Notably, the
formation of mottled clay structures in the different cores did
not occur during a single seismic event. Generally, seismic events
tend affect surface sediments (e.g., Shao et al., 2020). Multiple
deformed layers in the vertical direction (e.g., two layers in core
HZ-ZK12) reflect the repetition of paleo-earthquakes since the late
Pleistocene in the HZB.

Seismically induced liquefaction and SSDS are usually recorded
in lacustrine (e.g., Becker et al., 2002; Fan et al., 2022), fluvial (e.g.,
Suter et al., 2011; Rossetti et al., 2017) and aeolian (e.g., Moretti,
2000; Brand and Maithel, 2020) sediments. In the upper Senne area
of Northwest Germany, seismically triggered SSDS in mixed alluvial

FIGURE 8
DRS first order derivative curves of different lithological samples in the Huizhou Basin. Samples of UV-01 to UV-04 refer to the loess-like yellow silt,
the red fraction of mottled clay, the white fraction of mottled clay and fluvial sand, respectively.
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and aeolian deposits that accumulated during the Last Glacial were
also recognized (Brandes and Winsemann, 2013). Two outcrops
from the Senne area consist mainly of alluvial deposits, overlain by
several-meter-thick aeolian deposits, similar to the lithological
succession of late Quaternary sediments in the HZB. Different
types of SSDS, including closely spaced low offset normal faults,
ball-and-pillow structures, flame structures, sills and irregular
sedimentary intrusions, dikes, and sand volcanoes, were identified
based on a detailed sedimentological analysis (Brandes and
Winsemann, 2013). In the coastal region of the northern SCS,
aeolian yellow silt broadly developed during the Last Glacial
period in coastal basins, mostly underlain by late Pleistocene
fluvial or alluvial deposits. This lithological succession is
susceptible to seismically induced liquefaction. Therefore, the
SSDS of the mottled clay layer could be a potential indicator of
paleo-earthquakes in the coastal region of the northern SCS.

6 Conclusion

Tectonically induced liquefaction and the resulting SSDS are of
great significance in long-term research on paleo-earthquakes in
tectonically active regions. In this study, we combined age dating,
grain size analysis, μ-XRF element mapping and DRS
measurement to characterize the mottle clay structure in the

HZB. The results indicate that mottle clay is an admixture of
aeolian yellow silt and underlying fluvial sands, originating from
liquefaction-induced SSDS during the late Pleistocene. After
considering possible trigger agents, tectonic activity was
considered to have trigger liquefaction and SSDS, which is
supported by the close spatial relationship between mottled clay
and regional faults. The SSDS of mottled clay could be a potential
indicator of paleo-earthquakes in the coastal region of the northern
South China Sea.
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