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Mastering the sensorimotor capabilities of our 
body is a skill that we acquire and refine over time, 
starting at the prenatal stages of development. This 
learning process is linked to brain development and 
is shaped by the rich set of multimodal information 
experienced while exploring and interacting with 
the environment. 

Evidence coming from neuroscience suggests the 
brain forms and maintains body representations as 
the main strategy to this mastering. Although it is 
still not clear how this knowledge is represented in 
our brain, it is reasonable to think that such internal 
models of the body undergo a continuous process 

of adaptation. They need to match growing corporal dimensions during development, as well 
as temporary changes in the characteristics of the body, such as the transient morphological 
alterations produced by the usage of tools.

In the robotics community there is an increasing interest in reproducing similar mechanisms in 
artificial agents, mainly motivated by the aim of producing autonomous adaptive systems that 
can deal with complexity and uncertainty in human environments. Although promising results 
have been achieved in the context of sensorimotor learning and autonomous generation of 
body representations, it is still not clear how such low-level representations can be scaled up to 
more complex motor skills and how they can enable the development of cognitive capabilities. 

Recent findings from behavioural and brain studies suggests that processes of mental 
simulations of action-perception loops are likely to be executed in our brain and are dependent 
on internal motor representations. The capability to simulate sensorimotor experience might 
represent a key mechanism behind the implementation of further cognitive skills, such as self-
detection, self-other distinction and imitation. Empirical investigation on the functioning of 
similar processes in the brain and on their implementation in artificial agents is fragmented. 

Artificial agent, re-enacting past and future 
sensorimotor states.

NAO robot created by SoftBank Robotics
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Editorial on the Research Topic

Re-Enacting Sensorimotor Experience for Cognition

Recent findings in cognitive science suggest that the human brain implements processes of simula-
tion of sensorimotor activity (Pezzulo et al., 2013; Case et al., 2015; Wood et al., 2016). By re-enacting 
sensorimotor experience, the brain would be capable of anticipating the sensory consequences of 
intended motor actions. This would enable the individual to efficiently and fluidly interact with the 
environment.

This e-book puts forward the hypothesis that similar mechanisms underlie the development of 
basic cognitive capabilities. Therefore, sensorimotor simulation processes may represent one of the 
bridges between motor development and cognitive development in humans.

This collection comprises manuscripts published by Frontiers in Robotics and Artificial Intelligence, 
under the section Humanoid Robotics in the research topic “Re-enacting sensorimotor experience 
for cognition.” The e-book aims at condensing the latest theoretical review and experimental studies 
that address new paradigms for learning and integrating multimodal sensorimotor information 
in artificial agents, re-use of the sensorimotor experience for cognitive development and further 
construction of more complex strategies and behaviors using these concepts.

1. tHEorEtiCal aNd rEViEW StUdiES

In their review paper, Schillaci et al. introduce recent research on exploration as a drive for motor 
and cognitive development, and how this has been applied to robotics. After focusing on the develop-
ment of internal body representations, the authors review research that highlights the importance of 
sensorimotor simulations and their role in the grounding of higher cognitive capabilities in robots. 
Most of these works have been inspired by sensorimotor and enactive theories. Froese and Sierra, 
in their review of the volume edited by Bishop and Martin on Contemporary Sensorimotor Theory 
(2014), draw the attention of the reader to the similarities and the differences of the current senso-
rimotor and enactive theories. However, the authors point out the need of additional comparative 
studies, in particular in the context of Robotics and AI.

Nonetheless, several challenges have already been posed by these theories. How can we explain 
the phenomenological character of experience (Froese and Sierra)? Are body representation and 
internal simulation processes involved in coding a basic sense of self in artificial agents, and if 
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so, how (Schillaci et al.; Schillaci et al., 2016)? What should be 
built into an artificial agent “so that it really feels the touch of a 
finger, the redness of red, or the hurt of a pain” (O’Regan, 2014)? 
Terekhov and O’Regan show mathematically and in simulation 
that naive artificial agents can build the abstract notion of space 
from their perceptual systems by learning sensorimotor invari-
ants. Without making assumptions about the existence of space, 
such agents are able to learn the notion of rigid displacement. 
Their findings give a role to artificial intelligence in the quest 
of explaining the nature of space, prevalently addressed by 
philosophy and physics.

Vernon et  al. analyze the role of memory in anticipation 
processes. They propose a framework integrating procedural 
and episodic memory into internal simulation processes. Joint 
episodic and procedural memory facilitates prospection as it 
constrains the combinatorial explosion of potential perception-
action associations allowing effective action selection in reaching 
goals.

2. EXPEriMENtal StUdiES

Motor and cognitive developments in infancy are characterized 
by a process, where the individual is actively involved in the 
shaping of the experience through exploration (Schillaci et al.). 
Exposure to different sensorimotor experiences can influence 
cognitive development. Lones et al. demonstrate that this applies 
also to artificial agents. They observed that robots showed 
greater cognitive capabilities when exposed to a rich set of novel 
sensorimotor experiences as opposed to robots raised in poorly 
stimulant environments.

Exploration is the drive for motor and cognitive develop-
ment (Schillaci et  al.). The production of behavioral diversity 
is fundamental for discovering new aspects of the environment 
and of the individuals embodiment. Benureau and Oudeyer 
propose a mechanism for creating behavioral diversity in robots 
by re-enacting previously experienced sensorimotor actions. The 
artificial agent is capable of learning efficiently and adapting its 
past experience to new contexts even when characterized by high 
dimensional sensorimotor spaces. For example, by re-enacting 
past interaction with an object, the system is capable of learning 
more efficiently and capable of adapting to objects that are differ-
ent in morphology.

How can this sensorimotor experience be stored in artificial 
agents? Vicente et  al. propose a mechanism for simultaneous 
body schema adaptation and end-effector pose estimation on a 
humanoid robot. The system learns an internal body representa-
tion which is used to generate hypotheses of limb positions in 
space. These hypotheses are combined in a Bayesian fashion with 
the real perceptual feedback in a visual servoing control scheme 
that enables precise reaching actions.

Similarly, Escobar Juárez et  al. address the development 
of internal body representations in artificial agents through 

Self-Organizing Maps and Hebbian learning. The authors present 
two experiments that show the capabilities of this architecture 
to implement internal simulation processes. Most importantly, 
these experiments show its potential as a building block for the 
coding of more complex sensorimotor schemes and behaviors. 
Schrodt and Butz propose a similar architecture, but with a prob-
abilistic flavor. The system they propose is based on a stochastic 
generative neural network and is capable of implementing mental 
simulations in an artificial system. Moreover, the system learns to 
infer actions from partial sensory information and implements 
imagination capabilities to emulate and to recognize observed 
actions using the self body model.

Finally, Billing et al. present a learning mechanism that enables 
a simulated robot to mentally imagine navigating in an apart-
ment environment. The proposed model can learn from human 
demonstrations and can re-enact the demonstrated behavior 
both overtly (using real sensory observations) and covertly (using 
simulated sensory observations).

3. CoNClUSioN

The studies presented in this e-book offer support for the funda-
mental role that processes of re-enacting sensorimotor experience 
can have in the development of motor and cognitive skills, both in 
humans and in artificial agents. By bringing together theoretical 
review and experimental studies, we hope to further strengthen 
what we believe to be a very important research topic.

The works presented here study highly important but still 
very low-level processes. A fundamental issue to be addressed 
in future research is how the behavioral and computational 
components identified by the aforementioned studies support 
higher level cognition and action. In fact, the majority of the 
studies in the field address the bootstrapping of particular skills 
without explaining how the development of further skills may 
progress. We strongly believe that further investigation on the 
interaction between mechanisms for artificial curiosity, explora-
tion, body representations, memory, and simulation processes 
would provide insights in the quest for open-ended development 
in artificial agents.
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Cognitive robotics research draws inspiration from theories and models on cognition, 
as conceived by neuroscience or cognitive psychology, to investigate biologically plau-
sible computational models in artificial agents. In this field, the theoretical framework 
of Grounded Cognition provides epistemological and methodological grounds for the 
computational modeling of cognition. It has been stressed in the literature that sim-
ulation, prediction, and multi-modal integration are key aspects of cognition and that 
computational architectures capable of putting them into play in a biologically plausible 
way are a necessity. Research in this direction has brought extensive empirical evidence, 
suggesting that Internal Models are suitable mechanisms for sensory–motor integration. 
However, current Internal Models architectures show several drawbacks, mainly due 
to the lack of a unified substrate allowing for a true sensory–motor integration space, 
enabling flexible and scalable ways to model cognition under the embodiment hypoth-
esis constraints. We propose the Self-Organized Internal Models Architecture (SOIMA), 
a computational cognitive architecture coded by means of a network of self-organized 
maps, implementing coupled internal models that allow modeling multi-modal sensory–
motor schemes. Our approach addresses integrally the issues of current implementations 
of Internal Models. We discuss the design and features of the architecture, and provide 
empirical results on a humanoid robot that demonstrate the benefits and potentialities of 
the SOIMA concept for studying cognition in artificial agents.

Keywords: internal models, cognitive robotics, self-organized maps, sensory–motor schemes, computational 
architecture

1. inTrODUcTiOn

Cognitive robotics is an active research field in the cognitive sciences since the role of embodiment 
has been acknowledged as crucial to understand and reproduce natural cognition, showing as well a 
stance against the classic theory of cognition as symbolic processing. Research in cognitive robotics 
draws inspiration from theories and models on cognition, as conceived by neuroscience or cognitive 
psychology, to investigate biologically plausible computational models in artificial agents. Scientific 
aims include studying the implications of these models under controlled conditions and providing 
agents with basic cognitive skills (Pfeifer and Scheier, 2001).
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In this research field, Grounded Cognition (Barsalou, 2008) 
constitutes a theoretical reference framework, including the 
account of embodied cognition, which stresses the importance 
of the body–environment interaction for the structuring and 
emergence of cognitive skills (Wilson, 2002).

Under this perspective, we are committed to investigate 
biologically plausible computational architectures in which to 
model cognition effectively. This issue has not trivial answers 
since there are several constraints on the nature, the role, and the 
architectural integration of the underlying artificial mechanisms 
by means of which we shall achieve computationally effective 
ways to model cognition. Some of these most relevant constraints 
are revised now.

In Grounded Cognition, all aspects of experience, perceptual 
states (for instance, those produced by vision, hearing, touching, 
tasting), together with internal bodily states and action, have neu-
ral correlates in the brain that are stored in memory. These neural 
activation patterns constitute multi-modal representations that 
are re-enacted during perception, memory, and reasoning. Modal 
re-enactments of these patterns constitute internal simulation 
processes (Barsalou, 2003) and are considered to lie at the heart 
of the off-line characteristics of cognition (Wilson, 2002). Thus, 
the theory of simulation is at the core of the embodied cognition 
hypothesis.

This shift in the paradigm about cognition has necessarily 
brought new design considerations on computer models in 
order to achieve embodied or grounded cognition, which have 
taken center stage in Artificial Intelligence [e.g., Grush (2004), 
Svensson and Ziemke (2004), and Pezzulo et al. (2011, 2013a)]. 
Thus, emphasis has been made on the predictive learning and 
internal modeling capabilities of the sensory–motor system 
(Pezzulo et al., 2013b).

Furthermore, in the embodied cognition framework, the 
acquisition of sensory–motor schemes is central (Pfeifer and 
Bongard, 2007), for they underlie cognition (Lungarella et  al., 
2003) and are grounded in the regularities of the sensory–motor 
system interactions with its environment. The cerebral cortex 
provides the necessary substrate for the development of these 
sensory–motor schemes as it constitutes the locus of the integra-
tion of multi-modal information.

All these considerations point to the fact that simulation, pre-
diction, and multi-modal integration are key aspects of cognition 
and it has been stressed in the literature the necessity to achieve 
cognitive architectures capable of putting them into play in a 
biologically plausible way (Pezzulo et al., 2011). This paper is an 
attempt in this direction.

Based on extensive empirical evidence of its putative function-
ality in the Central Nervous System (Kawato, 1999; Blakemore 
et  al., 2000; Wolpert et  al., 2001), Forward and Inverse Models 
provide arguably a sound epistemological basis to understand 
cognitive processes at a certain level of description under the 
embodied cognition framework.

A thorough review of the implementations of internal models 
is out of the scope of this work. However, it is worth noting that 
most of the implementations show shortcomings in light of our 
previous discussion [e.g., see Arceo et al. (2013)]. First, we find 
that current implementations of internal models lack of flexibility 

as a consequence of the computational tools used. This translates 
into the fact that learning plasticity is highly reduced or even 
absent [e.g., see Lara and Rendon-Mancha (2006), Dearden 
(2008), Möller and Schenck (2008), and Schenck et al. (2011)]. 
Second, the implementations redound in ad  hoc inverse and 
forward models, not easily scalable, and in some cases, using dif-
ferent networks for different motor commands [e.g., Möller and 
Schenck (2008)]. Finally, in the literature, there is an abstract and 
high-level coding of inverse models as in Dearden (2008), where 
inverse models are coded as direct actions.

We propose a new computational architecture for building 
cognitive tasks under the paradigm of Grounded Cognition: the 
Self-Organized Internal Models Architecture (SOIMA), a com-
putational cognitive architecture coded by means of a network of 
self-organized maps, implementing coupled internal models that 
allow multi-modal associations. The SOIMA tackles integrally 
the issues of current implementations as will be discussed in the 
sequel.

The structure of the paper is as follows: in Section 2, we intro-
duce the SOIMA architecture, explaining its theoretical founda-
tions, justifying the Internal Models approach for modeling 
cognition and detailing the SOIMA’s structure. Also, the features 
that make of it a suitable cognitive architecture tackling current 
implementations’ shortcomings are introduced in this section. In 
Section 3, we provide two experimental case studies to demon-
strate the architecture’s functionality. We first introduce a case 
study for saccadic control in order to demonstrate the SOIMA 
features in detail. Then, we show a Hand–Eye Coordination task 
allowing us to demonstrate a scaling-up of the architecture, show-
ing how the connectivity enhancements enable flexible and effec-
tive ways to model more complex tasks. In Section 4, we conclude 
by discussing the results and perspectives for future research.

2. selF-OrganiZeD inTernal MODels 
archiTecTUre: sOiMa

2.1. Biological Foundations
Brain plasticity regulates our capability to learn and to modify 
our behavior. Plastic changes are induced in neural pathways and 
synapses by the bodily experience with the external environment.

In the neurosciences literature, it has been proposed that the 
rich multi-modal information flowing through the sensory and 
motor streams is integrated in a sort of body schema, or body rep-
resentation. Fundamental for action planning and for efficiently 
interacting with the environment (Hoffmann et al., 2010), such 
a body representation would be acquired and refined over time, 
already during pre-natal developmental stages.

For example, Rochat (1998) showed that infants exhibit, at 
the age of 3 months, systematic visual and proprioceptive self-
exploration. The authors also report that infants, by the age of 
12 months, possess a sense of a calibrated intermodal space of 
their body, that is a perceptually organized entity which they 
can monitor and control (Rochat and Morgan, 1998). As dis-
cussed by Maravita et al. (2003) and Maravita and Iriki (2004), 
converging evidence from animal and human studies suggests 
that the primate brain constructs various body-part-centered 
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FigUre 1 | internal models canonical representation. (a) Inverse 
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about the change in the sensory state of the agent. (B) Forward model: given 
the current sensory state St and a motor command Mt, the forward model 
predicts the resulting sensory state prediction St+

∗
1, were the command 
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∗

1 and St+1. The former is 
the actual expected state for the next time-step, but the latter may require 
several time-steps in order to be attained.
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representations of space, based on the integration of different 
motor and sensory signals, such as visual, tactile, and propriocep-
tive information.

Sensory receptors and effector systems seem to be organized 
into topographic maps that are precisely aligned both within and 
across modalities (Udin and Fawcett, 1988; Cang and Feldheim, 
2013). Such topographic maps self-organize throughout the brain 
development in a way that adjacent regions process spatially close 
sensory parts of the body. Kaas (1997) reports a number of stud-
ies showing the existence of such maps in the visual, auditory, 
olfactory, and somatosensory systems, as well as in parts of the 
motor brain areas.

All this evidence suggests thus that cognition relies on self-
organized body-mapping structures integrating sensory–motor 
information. But how does this integration takes place?

The work of Damasio (1989) and Meyer and Damasio (2009) 
proposes a functional framework for multi-modal integration 
supported by the theory of convergence-divergence zones (CDZ) 
of the cerebral cortex. This theory holds that specific cortical areas 
can act as sets of pointers to other areas and, therefore, relate vari-
ous cortical networks to each other.

CDZ integrate low level cortical area networks (close to the 
sensory or motor modalities) with high level amodal constructs, 
which solves the problem of multi-modal integration since it ena-
bles the extraction of complex pure and non-segmented sensory 
information units and sensory–motor contingencies.

In the CDZ convergence process, modal information spreads 
to the multi-modal integration areas; while in the divergence 
process, multi-modal information propagates to modal networks 
generating the re-enactment of sensory or motor states. It is in 
this sense that the propagation bi-directionality provides the 
mechanism of mental imagery and the re-enactment of sensory–
motor states.

This bi-directional capability is, thus, fundamental for 
multi-modal integration and, hence, for cognition. The lack of 
this property is precisely one of the main limitations of current 
cognitive architectures that our model tackles as will be shown in 
subsequent sections.

2.2. internal Models
Internal models merge in a natural way sensory and motor 
information and create a multi-modal representation (Wolpert 
and Kawato, 1998). These models also provide agents with antici-
pation, prediction, and motor planning capabilities by means of 
internal simulations (Schillaci et al., 2012b).

We are particularly interested in the pair formed by Inverse-
Forward models. The inverse model (IM) is a controller 
(Figure 1A), which generates the motor command ( Mt

∗ ) needed 
to achieve a desired sensory state (St+1) given a current sensory 
state (St). The forward model (FM) is a predictor (Figure 1B) that 
predicts the sensory state entailed ( St+

∗
1 ) by some action of the 

agent (Mt) given a current sensory state (St).
While the IM is mainly required for motor control, the FM 

has been proposed as a possible model for a number of important 
issues, among which are sensory cancelation (Blakemore et al., 
2000), state estimation (Wolpert et  al., 1995), and body map 
acquisition (Schillaci et al., 2012a).

The coupled pair IM–FM has been introduced by Jordan and 
Rumelhart (1992) from control theory. In neuroscience, one of 
the first proposals was the MOSAIC architecture by Wolpert and 
Kawato (1998) and has been used in action recognition (Demiris 
and Khadhouri, 2006; Arceo et  al., 2013), own body distinc-
tion (Schillaci et al., 2013), and mental simulation (Möller and 
Schenck, 2008).

In Cognitive Robotics, internal models have been used for 
action execution and recognition (Dearden, 2008), safe naviga-
tion planning (Lara and Rendon-Mancha, 2006; Möller and 
Schenck, 2008), and saccades control (Schenck et al., 2011). On 
the other hand, several works have proposed IM–FM couplings 
to perform different tasks. For example, in Schillaci et al. (2012b), 
several IM–FM pairs are used to recognize an action when com-
paring the output of each pair with the real situation. In the case 
of Schenck (2008), each pair is used in order to produce the motor 
command enabling an agent to reach a desired position, where 
the FM acts as the desired position monitor.

Internal Models are thus a suitable mechanism for multi-modal 
representations. They constitute a sound basis for modeling cogni-
tion and they also provide a coherent epistemological framework 
for studying it under the embodied cognition framework.

In our work, we propose an architecture that preserves the 
structural ideas put forward by Damasio along with the self-
organizing and multi-modal integration properties of the brain, 
in the framework of internal models. This allows for building 
a mechanism for the integration and generation of multi-
modal sensory–motor schemes in the framework of Grounded 
Cognition.

The SOIMA relies on two main learning mechanisms. The first 
one consists in Self-Organizing Maps (SOMs) that create clusters 
of modal information coming from the environment. The second 
one codes the internal models by means of connections between 
the first maps using Hebbian learning. This Hebbian association 
process generates sensory–motor patterns that represent actual 
sensory–motor schemes.

This coding approach of internal models using SOMs and 
Hebbian learning allows for a modular implementation, and 
constitutes the main contribution of our work. The architecture 
allows for an integrated learning strategy and provides means for 
building coupled sensory–motor schemes in a flexible way. Most of 
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the previous approaches of internal models  implementations, 
as reported in the literature, provide different computational 
substrates that connect to each other in order to synthesize 
the coupled model. The substrates may even be of different 
nature (e.g., different kinds of neural networks), which obligates 
to use distinct learning strategies for each model. In many cases 
also, the resulting models are ad hoc for the task. Our approach 
synthesizes the coupled model on the same substrate, conferring 
connectivity enhancements that allow for modular and flexible 
internal models implementations and sensory–motor scheme 
maps. This mapping capability may be exploited in interesting 
ways as will be discussed in the conclusions.

We now discuss the implementation details of these two learn-
ing mechanisms in the SOIMA.

2.3. sOiMa’s structure
2.3.1. Modal Information Clustering
In the SOIMA, the basic units are SOMs (Kohonen, 1990) that 
generate clusters of information coming from different modali-
ties (sensory or motor) or from other SOMs.

When training a SOM, a topological organization occurs in a 
space of lower dimension (2D or 3D) than the modal input space. 
This organization corresponds to a partition of the input space 
into regions that reveal the similarities of the input data.

A SOM is an artificial neural network endowed with an 
unsupervised learning mechanism based on vector quantization. 
Vector quantization refers to the fitness of a probability density 
function to a discrete set of prototype vectors.

In our case, we are interested in evaluating the differences 
between the vectors not only in terms of their relative distance 
but also in terms of their orientation. The cosine similarity can 
be used to obtain the differences in orientation, so we use both 
measures for clustering data in the SOM. Thus in our design, 
when a vector x occurs at the input, the activation Aj of each node 
in the SOM is defined as

 

Aj j
j

j

= − + −
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where wj is the vector of weights between the input and the node 
j, the first term is the Euclidean distance between x and wj and the 
second term is the cosine similarity. The winning node is the one 
with the lowest activation.

Once the winning node is computed, the weights of the neu-
rons are updated according to the following equation

 ∆ = −w x wj j jt hα( ) ( )  (2)

where wj is the weight between the input vector x and node j, hj is 
the neighborhood function of node j defined as

 h ej

j
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−
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where βj is the distance between node j and the winning unit, and 
n is the total number of nodes in the map. If βj is greater than the 
size of the neighborhood v then hj = 0, v decreases monotonically 

from vi
1 to vf = 1, where vi and vf are the initial and final neighbor-

hood sizes, respectively.
And finally α(t) is the learning rate that increases as a function 

of time, defined by:
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where αi and α f are the initial and final learning rates, respectively, 
and t is the current learning period.

2.3.2. Modal Maps Association
The association between SOMs of different modalities has been 
reported in recent work. In Westerman and Miranda (2002), the 
association between vocalization and hearing maps can be used 
for modeling the emergence of vocal categories. In Li et al. (2007), 
clues about the vocabulary development age in infants, using a 
similar association scheme, were found. In Mayor and Plunkett 
(2010), an association between visual and hearing maps was used 
to determine the taxonomic response in early learning of words. 
Morse et al. (2010a) integrates different sensory and motor modal 
maps through a changing network with Hebbian learning to build 
a semantic meaning acquisition system.

In our work, we create the modal association between different 
SOMs through weights connected using the well-known Hebbian 
learning rule (Hebb, 1949). The rule states

When an axon of cell A is near enough to excite a cell 
B and repeatedly or persistently takes part in firing it, 
some growth process or metabolic change takes place 
in one or both cells such that A’s efficiency, as one of the 
cells firing B, is increased (Hebb, 1949).

In this respect, the Hebbian rule establishes that the connec-
tion between neurons is reinforced according to the activation of 
neurons that participate in the connection. In our model, we use 
the following positive Hebbian rule for modulating connections 
between nodes of different maps:

 ∆ =w u uij i jα  (5)

where wij is the weight of the connection between the node the 
node i, and j α is the learning rate, ui is the activation of the node 
i as uj is the activation of the node j.

Figure 2 depicts the proposed architecture showing two maps 
(S and M) corresponding to the modalities of the agent. We 
consider M as a modality so that, together with S, the top map 
forms a multi-modal representation (MMR). The idea of Hebbian 
training is to modulate a network of connections between the top 
SOM and each modality SOM. Each node of the top SOM is con-
nected to every node of the modality SOMs. These connections 
are originally set to 0.

The association process takes place as follows. The two maps 
S and M are fed with the sensory and motor data generated 

1 This initial value is oftentimes taken as the 15% of the size of the map.
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throughout the interaction of the agent with the environment. 
Every time an input pattern is introduced, there is a winning 
node in S and M, respectively. Then the inputs to the top map are 
the coordinates of these winning units, so that a corresponding 
winning unit occurs at the top SOM. A Hebbian modulation 
is then applied to the connection between these nodes. In this 
way, a sensory–motor scheme is coded on the MMR through the 
Hebbian mechanism. Once the system has being trained, this 
association allows for retrieving all the modalities when any of 
them is present.

As can be seen in Figure 2, each winning unit of the MMR 
map receives one connection coming from the M map and two 
connections coming from the S map, representing two differ-
ent time steps (a change in the sensory situation); the motor 
command is the one associated with that change in the sensory 
situation. Thus, the trained system associates a triplet formed 
by a sensory situation, a motor command, and a correspond-
ing predicted sensory situation associated with these two. It 
could be said then that the MMR codes the associated triplet, 
as each node in this map codes for a specific sensory–motor 
experience of the agent. The MMR map is coded as a cube 
in order to better represent the multi-modal space. In this 
configuration, each triplet has 26 direct neighbors providing 
a richer structure.

We now discuss the main attributes of the SOIMA.

2.4. sOiMa’s Features
One of the main advantages of the SOIMA resides in its 
 bi-directional functionality, since it can work either as a forward 
or as an inverse model, depending on the inputs that are fed to the 
system. In other words, the system integrates the sensory–motor 
scheme in such a way that it is now independent of the direction-
ality of the modal information flow.

When a forward model is required, an S and M signal for the 
time t should be present, activating the corresponding maps and 
their connections toward the MMR of the system2 (see Figure 2). 
Thence, the signal would spread back to the map S, producing with 
its activation the prediction of the sensory state at the time t + 1.

If, on the contrary, an inverse model is needed, then the required 
inputs are two sensory situations, coded in S corresponding to 
times t and t + 1, in turn triggering the activation of the MMR 
map and, thence, activating the node in M corresponding to the 
pair in S.

Some interesting features of the MMR are noteworthy. The 
MMR allows the bi-directional feature to be functional all 
the time. In other words, any model (IM or FM) can be easily 
implemented by instantiating the corresponding inputs for the 
required functionality. In this way, both internal models are 
coded on the same substrate, enabling the design of integrated 
learning strategies.

Moreover, the MMR allows for the construction of coupled 
IM–FM pairs in a modular way. Indeed, as either model (IM or 
FM) can be instantiated at any time, the output of one of them 
can be used as input to the other, constituting thus an IM–FM 
coupling. Thus, several IM–FM couplings can be instantiated 
sequentially, so as to build a simulation process for instance. 
Hence, it is possible to feed sequentially in time the IM or FM, 
either with data coming from the environment or produced 
by the system itself. Also, the MMR allows for the integration 
of other MMRs, which enables the coupling of distinct sen-
sory–motor schemes. These features will be illustrated in the 
experiments.

Last, but not least, the MMR is not built from an abstract 
representation, in the sense of being defined by the programmer 
of the system as in the classical AI paradigm. Rather, it constitutes 
a representation grounded in the bodily constrained interaction of 
the agent with its surrounding environment.

The online learning ability of the architecture is also notewor-
thy. While running, the system is able to acquire new knowledge 
in order to improve its performance on an ongoing basis. This 
capability is achieved through the updating of the weights 
interconnecting the SOMs, so the system can adapt to unfamiliar 
situations as they arrive. This feature will be made clearer in the 
next section.

3. eXPeriMenTs anD resUlTs

In order to demonstrate the functionality of the SOIMA, we 
introduce two case studies using a NAO3 humanoid robot. The 
first experiment is intended to demonstrate the SOIMA’s func-
tionality by modeling saccadic movements of the eye in order 
to center a stimulus. This experiment was designed to describe 
the detailed workings of the SOIMA implementation and shows 
also that the SOIMA approach allows to cope with typical 
dimensionality issues of the visual input space. The second case 

2 The activation of the top map constitutes the integration and multi-modal repre-
sentation of the event.
3 Developed by Aldebaran Robotics.
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study introduces an example of how the SOIMA can be scaled 
upwardly to model more complex cognitive tasks. In this second 
experiment, we aim at implementing a Hand–Eye Coordination 
(HEC) strategy using the SOIMA. Here, the architecture is used 
as a building block, allowing for exploiting previously acquired 
knowledge.

3.1. saccadic control
3.1.1. Visuomotor Schemes Modeling
Rapid eye motions, the so-called saccadic movements (Leigh and 
Zee, 1999), are intended to project the image of the visual area of 
interest in the most sensitive part of the retina, called the fovea. 
Saccadic control is a canonical problem involving sensory predic-
tive and fine-tuning motor control capabilities.

It is worth mentioning a brief comment on the work of Kaiser 
et al. (2013) that introduces a saccadic control system based on 
internal models and asserts that addressing the image prediction 
problem is rather highly complex due to the input high dimen-
sionality. For this reason, in their proposal predictions are not 
made, rather inverse mappings are computed from the output 
image to the input image.

The implementation of internal models can be made with 
any of the available learning techniques in artificial intelligence. 
However, there are serious limitations to the use of images, 
because they increase the dimensionality of the problem as well 
as the difficulty on finding regularities in the inputs. As an end 
result, the coding and learning of visuomotor schemes becomes 
a major difficulty.

By contrast, the scheme that we propose addresses the 
prediction problem using images of high dimensionality, 
which enables the development of more versatile models. 
Our system allows for learning the relationship between the 
camera motions and the corresponding sensory changes. 
Once learned, the model works as a mechanism that retrieves 
the  motor command required to take some stimulus in the 
image to any desired area in the same image. In particular, we 
want the model to focus on some salient stimulus. A similar 
implementation is presented in Karaoguz et al. (2009) where a 
SOM is used for gaze fixation.

We use as input an image grabbed from one of the cameras in 
the NAO humanoid robot. Our experiment on saccadic control 
is an instance of a modular system that implements different 
coupled internal models pairs (FM–IM). We use the simulations 
provided by the FM–IM pair to provide the motor commands 
necessary to place some stimulus present in the image at any 
specified position. In Figure 3, we show the schematic functional 
diagram of the system.

At this point, it is worth mentioning that an important feature 
of the architecture is the ability to learn the Hebbian connections 
online. Initially, there is no association between the maps in the 
system, i.e., all connections have a value of 0; therefore, no motor 
command may be suggested aiming at focusing the St stimulus by 
means of the inverse model. Hence, when a motor command can-
not be retrieved from the system, a motor-babbling mechanism 
generates a random movement. This command is then executed, 
obtaining thus the St+1 image. This information is integrated into 
the connections between SOMs using on-line Hebbian learning. 

The final result is the association of two nodes from the S map, 
one representing St and one representing St+1 with one node in the 
M map representing the motor command that brings about this 
change in the sensory space.

Thus, in the first part of the forward-inverse coupling, input 
St represents the current visual sensory input, i.e., the image 
with a stimulus appearing at some arbitrary position. Input St+1 
represents the desired visual sensory state, i.e., the image with 
the stimulus in the desired position (this image is built or taken 
from a database). With these inputs, the inverse model suggests 
an initial motor command Mt

∗  aiming at the desired sensory 
change4.

This motor command along with the image St is fed to the for-
ward model to predict the sensory outcome St+

∗
1 . This predicted 

image is compared with the desired one St+1 to compute the error. 
In turn, the error is used to decide whether this output should 
be fed back as St, so that a corrective saccadic movement can be 
performed. In other words, supplementary control commands 
may be stacked together with the first Mt

∗  in order to reach the 
desired situation St+1.

Finally, once the motor commands required to bring St to the 
desired St+1 are found, they are executed in the system with actual 
movements.

The details of the clustering of the modal maps and their 
Hebbian connections are discussed now.

Experiments were carried out on a simulated NAO humanoid 
robot endowed with 21 degrees of freedom (DOF) and two 
cameras. The Webots v8.0.3 was used to test the saccadic move-
ments system. The experimental setup consisted in the robot 
facing a wall, situated at a distance of 40 cm, where a single visual 
stimulus was displayed, as shown in Figure 4. The model showed 
in Figure 3 was used to control the saccadic movements toward 
the visual stimulus.

The two DOF associated to the agent’s head movement were 
used: yaw (rotation around the vertical axis) and pitch (rotation 
around the horizontal axis); the camera is situated in the upper 
part of the head and has an image resolution of 640 × 480 pixels.

3.1.2. Sensory Input Processing
Learning requires a set of training patterns, each containing an 
image for St, one for St+1 and a motor command that brings the 

4 Recall that once the system is trained, it can be used as an inverse or a forward 
model.
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system from St to St+1. The motor command is defined as a pair 
(Δ Yaw, Δ Pitch).

To build the images, two stages of processing are necessary. 
In the first stage, a fovealized image is obtained from the original 
camera image (640 × 480 pixels). To foveate the images, we apply 
a radial mapping with high resolution toward the center of the 
image and low toward the periphery. The mapping emulates 
the human retina properties containing high concentration of 
photoreceptors in the fovea. It fulfills a special function in our 
design, because when a stimulus is located near the central part of 
the image (fovea) a small change in Yaw or Pitch corresponds to 
a large position change of the stimulus in the image. This enables 
a more accurate detection of the position of the stimulus nearby 
the central region of the image. As a result, the task of center-
ing a stimulus in the image is more accurate. The fovealization 
algorithm delivers a 320 × 240 image.

The second processing phase is intended to facilitate the 
identification of salient stimuli in the image captured by the 
camera. This is achieved through binary thresholding and 
gaussian smoothing. At this stage, the image size is 40  ×  30 
pixels, reducing the sensory input space dimensionality. In 
Figure 5, we can see the visual stimuli at the different stages 
of processing.

In our system, a motor command Mt is a change (Δ) in the 
orientation (in degrees) on the horizontal and vertical axes of the 
robot’s head. Any change between two positions depends on the 
resolution of the motors. This resolution in our case was built 
using a mapping mechanism similar to that applied to the visual 
modality. This motor mapping consisted in a variable yaw–pitch 
movement resolution, being this higher in the center than in the 
periphery.

To visualize the motor space, a motor resolution image (IRM) 
was made from a total of 5000 head joints configurations. Initially, 
IRM is an image where all its pixels are set to 0. Then for each 
position, the center of mass of the visual stimulus in the image 
is computed. According to the location of the center of mass, the 
value of the corresponding pixel in IRM is increased. This gave rise 
to an intensity image where each pixel value is proportional to the 
number of positions in each location.

The IRM image is depicted in Figure 6. As it can be seen, the 
highest visual stimulus density on camera positions is located in 
the central region of the image.

3.1.3 SOMs Training
For the training of the SOMs, 5000 random patterns with different 
initial (St) and final (St+1) camera positions and their correspond-
ing Mt were taken with the following structure:

•	 St: it was formed by a 1200 values vector normalized from 0 to 
1, taken from a 40 × 30 pixel salient features image.

•	 St+1: it was formed with the same procedure as for St but with a 
different camera position.

•	 Mt: it consists of two values (ΔYaw, ΔPitch) built in accordance 
with the following:

 
∆ = −

+
Yaw Yaw YawS St t

( )
1

 (6)

 
∆ = − .

+
Pitch Pitch PitchS St t

( )
1  (7)

normalized from 0 to 1. With the robot placed at 40 cm from the 
stimulus, the Yaw axis of the camera covers an angle of 43.5° and 
the Pitch axis 37.8°, assuring that the stimulus is always on sight. 
The value of 1 represents the biggest positive possible change 
above the corresponding axis and 0 represents the biggest pos-
sible change in the other direction. Values of (0.5, 0.5)  represent 
absence of movement in both axes.

The SOIMA used is shown in Figure 2. We used a 30 × 30 
SOM to code S, and a 40 × 40 for M, finally for the MMR a three-
dimensional 30 × 30 × 30 SOM was used. These maps were trained 
individually using the respective collected modal information 
patterns using the procedure described in Section 2.3.
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FigUre 6 | Visual stimulus distribution on different positions of the camera.
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3.1.4. Online Hebbian Learning
As mentioned in Section 3.1.1, the online learning capability 
gradually increases sensory–motor knowledge on saccadic 
movements, which decreases the use of the random mechanism 
(Figure 7A). In turn, the system reduces the error as it focuses the 
visual stimulus (Figure 7B).

Figure 7B depicts the quartiles of 11 subsets of the available 
data on the online learning error. Red lines show the medians 
of each subset. The figure shows that the variability of the error 
reduces with time. The mean value of each subset stabilizes quickly 
and falls within the third quartile, showing that the distributions 
of these data sets are not gaussian.

When the motor command is suggested by the system (i.e., 
when the SOIMA already contains a multi-modal association and 
is able to act as IM and FM), learning also occurs:

•	 when the architecture generates a sequence of two or more 
simulated saccadic movements to reach from St to St+1, a single 
motor command is learned as the association between the two 
sensory situations.

•	 in those cases, when after running a motor command the 
position error is greater than a certain threshold, another 
motor command is calculated and executed by re-enacting 
the system with St+

∗
1

5. This new motor command is added to 

5 The reader must bear in mind that the system codes the FM–IM coupling. In other 
words, it is possible to generate new motor commands from the FM predicted 
sensory output ( St+

∗
1

), by using it as input again to the IM. This new motor com-
mand can in turn be used once again to generate a new prediction.

the previous motor command, so that this new association is 
integrated into the system as if it were a single execution.

3.1.5. Saccadic Control Execution
3.1.5.1. Prediction
For illustration purposes, we want the system to center the stimu-
lus on the image in a foveation-like process.

In principle, training data covers the whole of the visual field of 
the camera, so it would be possible to give another location of the 
stimulus as desired sensory situation St+1. However, the desired 
stimulus St+1 is built from a repository of images containing a 
single object in the center of the image.

A typical test example is depicted in Figure  8, in this two 
prediction steps are conducted:

•	 Step 1: the current camera image is fed into the system and 
processed according to areas of salient features to form St. The 
desired image St+1 is also fed into, with the stimulus located 
at the center. These inputs go through the inverse model and 
generate a suggestion for the motor command Mt

∗ . The latter 
is in turn applied together with St to the forward model to 
generate a prediction St+

∗
1 . This output is compared with the 

St+1, the desired situation, to compute the error.
•	 Step 2: if the error is greater than a threshold, St+

∗
1  is fed back 

into the system again, as the new St, to obtain an additional 
motor command in order to achieve the marked position 
accurately.

It is worth noting that for both steps, the error is calculated 
between the prediction of the forward model and the desired 
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FigUre 7 | Performance of the system during training. (a) Average 
percentage of random motor commands used as learning occurs. (B) Error 
in pixels between final position and center of image.

FigUre 8 | Typical prediction example.
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situation. Only when the error between the prediction and the 
desired state is lower than the threshold, a motor command is 
executed. This could mean that more than two internal simula-
tions are run.

Ninety-five tests were performed on the saccadic control 
model (Figure  9) from different robot’s head positions, with 
the initial stimulus located at distinct locations on the captured 
camera image (blue squares). After two internal simulations, the 
position of the stimulus is shown with red crosses with a mean 
error of 35.72 pixels (red disk), which means a 1.3% of the total 
image size and 3° of robot’s motion.

The error coming from the saccadic movements are chiefly 
due to the visual fovealization since it reduces the information 
available around the image periphery, which causes precision loss 
in determining the initial stimulus location.

3.1.5.2. Execution
It is known that two components of a motoneuronal control 
signal generate the saccadic eye movement in humans (Bahill 
et al., 1975). These components correspond to an initial saccade 
and a corrective saccade.

Based on this fact, after realizing the sequence of moves sug-
gested by the model (initial or approaching saccade), a second 
tuning or corrective motion is executed (see Figure 10). These 
two execution steps are described next.

•	 Approaching saccadic movement: the current image of the cam-
era, St, and the target image St+1, with the stimulus at the center, 
are fed into the system. These inputs go through SOIMA and 
generate a suggested motor command Mt

∗  that is applied to 
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FigUre 10 | execution algorithm for saccadic movements. See text for explanation.

FigUre 9 | Prediction performance: position of the stimulus after two 
predictions for 95 random initial positions.
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the Nao Robot. The error of the resulting stimulus location in 
the picture is calculated in order to know whether a second 
movement, for better accuracy, is necessary.

•	 Tuning saccadic movement: if the error is greater than a 
threshold of 10 pixels (0.1% of image surface and 0.8° of robot’s 
movement), the actual image is fed back again to SOIMA to 
obtain an additional tuning motor command in order to reach 
the desired position accurately.

As opposed to the control described in Section 3.1.5, in this 
case motor commands are actually executed in both movements. 

In practice, this means that both movements in this strategy 
could contain more than one simulation step.

The system was tested on 84 patterns and it was found an aver-
age error of 36.1 pixels on the original 640 × 480 pixels image, 
which corresponds to a 3.1° error on approaching saccadic move-
ments. For the tuning motion, a mean error of 19.3 pixels was 
obtained corresponding to a 1.6° error (see Figure 11).

3.1.5.3. Tracking of Stimulus
In addition, we realized a tracking experiment. The stimulus was 
moved around the wall plane facing the robot, while the latter 
executed a centering or foveation task by means of the acquired 
saccadic control model. The purpose of this experiment is to 
show that even when the stimulus spatial reference with respect 
to the robot changes, and so do the perspective, the agent is able 
to effectively use the saccadic controller.

In Figure  12, we depict a path following task. Red arrows 
show the sequence of the path followed by the stimulus. Numbers 
associated with each arrow correspond to the saccadic move-
ments executed to center the stimulus on the image. Finally, blue 
numbers and circles show the centering task error in pixels over 
every point of the path.

3.2. hand–eye coordination
Coordination of visual perception with body movements is an 
important prerequisite for the development of complex motor 
abilities.

Visuomotor coordination refers to the process of mapping 
visuospatial information into patterns of muscular activation. 
Such mapping is learned through the interaction of the agent with 
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FigUre 12 | Path followed by the stimulus on the robot’s image plane. 
Red arrows and numbers show the path sequence and the number of 
saccadic movements in each centering task. Blue circles and numbers depict 
the error in pixels after centering the stimulus.

FigUre 11 | execution performance, including coarse and fine 
motions: initial stimulus locations in the picture through 84 test 
patterns (blue squares), ending stimulus locations during the 
approaching saccadic movement (red crosses), mean error (red 
circle), and final stimulus locations during the tuning saccadic 
movement (green crosses).

18

Escobar-Juárez et al. A Self-Organized Internal Models Architecture

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 22

his environment. In particular Hand–Eye Coordination (HEC) 
refers to the coordinated use of the eyes with one or both hands 
to perform a task.

Here, we propose an implementation of the SOIMA for the 
learning of a sensory–motor scheme that allows HEC in a NAO 
humanoid robot. Once this coordination is learned then, given 
a particular posture (i.e., arm and hand postures) of the robot, 
the system should provide a head posture such that the hand 
appears in the visual field. It is worth mentioning that a posture 
is determined by absolute joint angles.

The SOIMA structure proposed can be seen in Figure  13, 
showing the integration of a HEC Multi-Modal Representation, 

together with the saccadic control presented in the previous 
section.

Here, V is an 80  ×  80 SOM coding the coordinates of the 
position of the robot’s hand in the image plane. The image was 
obtained from the lower camera in the head of the robot. The 
coordinates were estimated with the use of the ARToolkit library,6 
using a fiduciary marker in the hand of the robot.

Head is a 100 × 100 SOM coding the values of the two degrees 
of freedom of the head (yaw and pitch). Arm is a 80 × 80 SOM 
coding shoulder pitch, shoulder roll, elbow yaw, and elbow roll of 
the left robot arm. Finally, MMReh is a 150 × 150 SOM that codes 
the Multi-modal Representation of the sensory–motor scheme. 
The SOMs were trained using 6453 random patterns. The sac-
cadic control used the same SOMs described in the previous 
experiment.

In this experiment, the system for saccadic control was used 
only as a tool for the training and testing of the HEC system. 
Given that both the HEC and the saccadic control system use the 
same visual input, the map V was the same as previously defined.

The experiments were carried out using the simulated NAO in 
an empty arena as shown in Figure 14.

Motor babbling was used in order to train the Hebbian associa-
tions for the HEC system. The general procedure for training was:

•	 Execution of random head and arm movements.
•	 Verify whether the marker was detected. When detected, the 

positions of head and arm as well as the visual information 
were fed into the system.

•	 The connection between the winning units in each of the three 
maps was reinforced.

During training, the saccadic control system was used to 
increase the variability and precision of the patterns used for the 
Hebbian associations. In the cases where the marker was found 
in the image, but not in the fovea, the saccadic control system was 
used to center the stimulus.

Two tests were carried out to assess the full system:

•	 First, the robot performed random arm movements and 
these were fed into the system; the head would then follow 
successfully the hand position, centering the stimulus in the 
foveal area.

•	 Second, a pointing test was implemented. A marker was ran-
domly placed in the arena, the system would then perform a 
random exploration of the visual space. Once the maker was in 
sight, the saccadic control system would center the stimulus. 
The HEC system would then successfully position the hand 
before the marker.

Video material on both tests is available at the following url 
links: Test 1 on simulated robot7; Test 1 on real robot8; Test 2 on 
simulated robot9; Test 2 on real robot.10

6 www.hitl.washington.edu/artoolkit
7 https://youtu.be/agrkeUxiQZA
8 https://youtu.be/7h_luKEre5s
9 https://www.youtube.com/watch?v=BrFS7EWz4kc
10 https://www.youtube.com/watch?v=ed7WkMgjybo
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FigUre 14 | hand–eye coordination task experimental setup. Given 
particular arm and hand postures of the robot, the system provides a head 
posture such that the hand appears in the visual field.

FigUre 13 | The sOiMa up-scaled when implementing a hand–eye coordination strategy, including the saccadic control presented in the previous 
section. Two Multi-Modal Representations (sensory–motor schemes) are coupled together through modal maps. See explanation in text.
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4. DiscUssiOn anD cOnclUsiOn

The relevance of modeling sensory–motor schemes relies on the 
fact that they are considered to be the fundamental unit of analy-
sis for cognitive processes and skills under the cognitive robotics 
school of thought (Lungarella et al., 2003). Cognition relies on 
self-organized structures integrating sensory–motor information. 
As internal models create naturally a multi-modal representation 
of sensory–motor flows, they have been extensively studied as a 
suitable mechanism for sensory–motor integration.

Based on these considerations, we developed a new computa-
tional architecture called SOIMA, drawing biological inspiration 
from the theory of convergence–divergence zones of the cerebral 
cortex proposed by Damasio (1989) and Meyer and Damasio 
(2009) and from the self-organizing properties of the brain.

In order to introduce the architecture and prove its feasibil-
ity and performance, we implemented two case studies. The 
first experiment implemented a strategy of saccadic movement 
control consisting in centering a salient stimulus in the visual 
sensory space using the SOIMA. This experiment shown that the 
SOIMA approach allows to cope with vision issues regarding the 
input space dimensionality. The second case study implemented 
a Hand–Eye Coordination strategy allowing to show how the 

SOIMA can be scaled upwardly in order to model more complex 
cognitive tasks.

The SOIMA integrates important qualities of online learning 
and introduces a novel form of internal models implementation 
not reported before. Even though there exists work showing 
coupled Self-Organized Networks (Hikita et al., 2008; Luciw and 
Weng, 2010; Morse et al., 2010b; Lallee and Dominey, 2013), our 
proposal goes a step further in that we model the predictive capa-
bilities of the human cognitive machinery by means of internal 
models. However, current internal models architectures show 
major drawbacks so as to model cognition under the embodi-
ment hypothesis constraints (e.g., independent coding of the 
inverse and forward models). The main attributes of the SOIMA 
provide means for autonomous sensory–motor integration, as it 
allows for multi-modal activation patterns to organize themselves 
into a coherent structure through Hebbian association, creating 
thus a multi-modal grounded representation. The bi-directional 
capability of the SOIMA allows this representation to become a 
sensory–motor scheme available as both a forward (predictive) 
and an inverse (controlling) model. The lack of this property is 
precisely one of the main limitations of current cognitive archi-
tectures. This bi-directional mechanism provides, thus, a unified 
substrate allowing for a true sensory–motor integration space 
and for coherent sensory–motor learning strategies.

We would like to highlight five main features making the 
SOIMA stand apart from current implementations of internal 
models and sensory–motor schemes. The first three features have 
been tested in the case studies presented here, the remaining two 
represent current work:

•	 Modularity and scalability: the experiments reported here 
exemplify the modular character of SOIMA. This feature 
redounds in an integrated learning strategy and allows for the 
scalability of the system. The architecture is modular in that the 
logical structure of the MMR is not hardwired, but develops as 
the agent interacts with the environment. This in turn provides 
means for the construction of sensory–motor schemes that 
can be sequentially re-enacted to accomplish a particular task. 
The workings of the architecture enable the system to learn 
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online both, the FM and the IM, in an integrated way. New 
examples of sensory–motor schemes are acquired as the agent 
experiences the world; thus, incorporating new knowledge for 
later use. A first example of the scalability of the system was 
reported here. Every new sensory–motor scheme generates a 
new MMR, coding a particular IM–FM coupling. Thus, differ-
ent sensory–motor schemes can be coupled together in order 
to increase the sensory–motor capabilities of the agent. In this 
sense, the system is scalable. In summary, the SOIMA should 
be seen as a core unit for building more complex structures 
allowing to re-use previous knowledge.

•	 Bidirectionality: given the internal coding of the relations 
between the sensory and motor modalities, the SOIMA works 
as either a Forward or an Inverse model. The connections 
between the maps admit the bidirectional flow of information, 
therefore choosing the model depends on the question asked 
and the available input. As mentioned before, current imple-
mentations use mostly MLP networks, with one or various 
networks coding the Forward model and separately networks 
coding the Inverse model, which obligates to use different 
learning strategies for each model. Our approach synthesizes 
the coupled model on the same substrate, conferring con-
nectivity enhancements that allow for integrated learning 
strategies and sensory–motor scheme maps.

•	 Temporality: different moments in time for the sensory 
situation are coded in the same map. The temporal relations 
between situations are coded in the Hebbian connections 
between maps. As a consequence, several time steps can be 
integrated into the same sensory–motor scheme. Another 
concern regarding temporality is stability. That is, whether 
the system will be able to cope with environmental changing 
conditions, i.e., become stable after some perturbation. This is 
indeed a major concern that is currently being investigated. 
Future work includes experimenting with other kinds of 
self-organizing maps (e.g., Dynamic SOMs). It is expected 
that these other maps would also allow for sensory–motor 
scheme reconfiguration in the long run, if ever the available 

knowledge is not enough to properly model contingent task 
changes.

•	 Motor Mapping: the characterization of the information in the 
motor map should allow for trajectory generation in the motor 
space. Moving in the motor map from unit to unit would then 
have a mapping in the physical space of the agent.

•	 Robustness to lack of information: the structure proposed can 
be the base for capabilities such as action recognition. The 
agent codes a SOIMA based on its own experience and its 
own sensory–motor model; however, when observing the exe-
cution of an action some information would not be available 
(i.e., proprioceptive information). The lack of this information 
should not represent a problem as the activation produced by 
the available input should propagate the activation in the rest 
of the architecture.

The results presented here are encouraging and permit us to 
assert that the organization and functioning of the SOIMA is 
promising for undertaking research in further directions. In the 
context of Grounded Cognition, we consider that our work con-
stitutes a biologically plausible computational approach, effective 
for the development of complex cognitive behavior models. As 
such, we hope that the SOIMA concept will enable the study 
and test of diverse hypotheses on the underpinning processes 
of cognition and the development of artificial agents exhibiting 
coherent behavior in their environment.
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to cognitive Development: 
investigating the influence of 
experiential Diversity on the 
Development of an epigenetic robot
John Lones*, Matthew Lewis and Lola Cañamero

Embodied Emotion, Cognition and (Inter-)Action Lab, School of Computer Science, University of Hertfordshire, Hatfield, UK

Using an epigenetic model, in this paper we investigate the importance of sensorimotor 
experiences and environmental conditions in the emergence of more advanced cognitive 
abilities in an autonomous robot. We let the robot develop in three environments afford-
ing very different (physical and social) sensorimotor experiences: a “normal,” standard 
environment, with reasonable opportunities for stimulation, a “novel” environment that 
offers many novel experiences, and a “sensory deprived” environment where the robot 
has very limited chances to interact. We then (a) assess how these different experiences 
influence and change the robot’s ongoing development and behavior; (b) compare the 
said development to the different sensorimotor stages that infants go through; and (c) 
finally, after each “baby” robot has had time to develop in its environment, we recreate 
and assess its cognitive abilities using different well-known tests used in developmental 
psychology such as the violation of expectation (VOE) paradigm. Although our model 
was not explicitly designed following Piaget’s or any other developmental theory, we 
observed, and discuss in the paper, that relevant sensorimotor experiences, or the lack 
of, result in the robot going through unforeseen developmental “stages” bearing some 
similarities to infant development, and could be interpreted in terms of Piaget’s theory.

Keywords: epigenetic development, developmental robotics, sensorimotor development, cognitive development, 
social robotics, affective adaptation, human–robot interaction, autonomous robot

1. inTrODUcTiOn

The first 2 years of life represent a period of rapid cognitive development in human infants. During this 
2-year period, behavioral patterns shift from simple reactions to incorporating the use of symbols in 
mental representations, setting the stage for further cognitive development (Piaget, 1952; DeLoache, 
2000). While this cognitive development process is still not fully understood, some evidence does 
suggest that early stimulation provides the foundation for this process (Piaget, 1952; Fischer, 1980; 
Fuster, 2002; Bahrick et al., 2004). This theory of development is perhaps best explained in Piaget’s 
concept of sensorimotor development. According to Piaget’s work (Piaget, 1952), during the senso-
rimotor period infants go through 6 substages of development, which we will briefly lay out.
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The first stage, often simply referred to as the “reflex stage,” 
lasts from birth until around 1  month of age, with infants 
limited to simple automatic “innate” behaviors (Piaget and 
Inhelder, 1969). The second stage, known as “primary circular 
reactions,” occurs approximately between 1 and 4 months and 
sees the infant’s behavior begin to incorporate, repeat, and refine 
reflex behaviors focused on their own bodies. In the third stage, 
which takes place between the 4th and 8th month, infants start 
to notice that their actions can have interesting effects on their 
immediate environment. By around the 8th to 12th month, 
infants begin to display coordination in their secondary circular 
reactions facilitating goal-directed behavior. In addition, dur-
ing this stage, infants begin to show signs of understanding the 
concept of object permanence (Baird et al., 2002). Between 12 
and 18 months, children’s behavior starts to incorporate tertiary 
circular reactions, where they will now both take greater interest 
in and experiment with novel objects. Finally, before the end 
of the 24th month, it is expected that children would have 
developed some form of mental representation and symbolic 
thought, whereby they will now engage in both imitation and 
make-believe behaviors.

In Piaget’s theory, these different substages represent pro-
gressive incremental steps in the cognitive development of the 
infant (Piaget, 1952). However, it should be noted that, in other 
works, some of the different cognitive developments, such as 
the understanding of object permanence, have been found to 
occur in different life stages (Baillargeon et  al., 1985; Kagan 
and Herschkowitz, 2006) and that, even within the Piagetian 
tradition, the very notion of progressive developmental stages 
has been questioned in favor of other aspects of development, 
such as domain specificity (Karmiloff-Smith, 1992). This would 
suggest that the complexity of human development implies that 
either the different milestones overlap or are not necessarily 
entirely dependent on their “predecessor,” with environmental 
conditions also constituting an important factor influencing 
the outcome and process of development (Baillargeon, 1993). 
Alternatively, it cannot be ruled out that flaws or oversights 
in experimental models may have lead to different outcomes 
(Munakata, 2000). In any case, the milestones put forward by 
Piaget do seem to represent critical cognitive developments 
which are likely to set the foundation and facilitate the emer-
gence of more advanced functions (Piaget, 1952; Baird et al., 
2002; Fuster, 2002; Bahrick et al., 2004). It is likely then that, 
if the abilities gained during these stages are indeed important 
in the development of human cognition, then they would also 
be significant in the development of adaptive autonomous 
robots undergoing “similar” sensorimotor experiences as those 
related to the development of those skills (Asada et al., 2009; 
Cangelosi et al., 2015). This potential has led to the design of 
a range of different models using sensorimotor developmental 
principles.

In this paper, we examine the role that exposure to sensory 
stimuli may have on the cognitive development of an autono-
mous robot. Unlike related studies such as (Shaw et  al., 2012; 
Ugur et  al., 2015), which explicitly model the developmental 
process, the model used in our experiments was not designed 
following a particular sensorimotor developmental theory, 

but based on a plausible epigenetic1 mechanism (Lones and 
Cañamero, 2013; Lones et  al., 2014). However, similar to the 
work of Cangelosi et  al. (2015) and Ugur et  al. (2015), our 
model leads to the emergence of an open-ended learning process 
achieved by allowing a robot to be able to identify and learn 
about interesting phenomena, a common goal of developmental 
models (Marshall et al., 2004). The underlying approach that our 
model takes to achieve the desired open-ended development also 
has similarities to other developmental models. Here, we use a 
novelty-driven approach regulated by intrinsic motivation (see 
Section 2.2.3). Using novelty as a way to regulate interactions 
with the environment and drive development has been previ-
ously explored for example by Blanchard and Cañamero (2006) 
and Oudeyer and Smith (2014). While there are significant 
differences in the way in which curiosity is generated by these 
models (here through hormone modulation with regard to the 
robot’s internal and external environment), similar to Oudeyer 
and Smith (2014), we use the concept of curiosity to model the 
robot’s novelty-seeking behavior by encouraging it to reduce 
uncertainty in an appropriate manner given its current internal 
state. This mechanism drives the robot’s interactions, permitting 
it to learn and develop in an appropriate manner as it is exposed 
to different sensorimotor stimuli as a result of its interactions.

Using this model in an autonomous robot, we observed a natu-
ral and unforeseen developmental process somewhat similar to 
the sensorimotor development suggested by Piaget (1952), as we 
will present in this paper. As we will see, the robot’s progression 
through, as well as the emergence of, the behaviors associated 
with the different developmental stages, depend on the robot’s 
environment, and more specifically on the sensory stimuli that 
the robot is exposed to over the course of its development. For 
example, a robot placed in an environment deprived of sensory 
stimulation did not develop behaviors or abilities associated with 
the sensorimotor developmental theory. By contrast, a robot 
given free range in a novel environment, showed the emergence 
of different stages and abilities associated with the developmental 
process, i.e., primary and later secondary circular reactions as 
a consequence of its interactions in the environment. In our 
model, this would suggest that the emergence of these stages is 
related to exposure of the robot to environmental stimuli. More 
importantly, this leads to the research question of whether the 
emergence of these similar processes and stages would have 
any consequence for the cognitive development of the robot, or 
whether the similarities are simply related to a temporal phe-
nomenon. In order to investigate this question, we allowed three 
robots to develop under different environmental conditions, 
two of which provided different levels of novelty and sensory 
stimulation, and the final was equivalent to sensory deprivation. 
We tested the robots’ cognitive abilities in a range of scenarios 
ranging from a simple learning task to a more specific violation 
of expectation paradigm.

1 The term “epigenetic” is used here to refer to mechanisms that lead to changes 
in gene expression (Schlichting and Pigliucci, 1998; Holliday, 2006; Lones and 
Cañamero, 2013) rather than the Piagetian notion, widely adopted in the field of 
developmental robotics, referring to developmental processes not directly stem-
ming from the action of genes (Cangelosi and Riga, 2006).
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The model used for these tests is based on an earlier hormone-
driven epigenetic model presented in (Lones and Cañamero, 
2013). This previous model showed the ability to both rapidly 
adapt to a range of different dynamic environmental conditions 
and react appropriately to unexpected stimuli. However, this 
early epigenetic model was based on reactive behaviors and 
lacked cognitive development, limiting the ability of the robot to 
produce and engage in planned behaviors, or to explicitly learn 
about new aspects of its surroundings; thus, the robot was partly 
dependent on information about the environment “pre-coded” 
in its architecture. In an attempt to overcome these limitations, 
we integrated in the robot’s architecture a new form of neural 
network that we have since called an “Emergent Neural Network” 
(ENN), in which nodes and synaptic connections between them 
are created as the robot is exposed to stimulation. This network 
should therefore allow the robot to learn about different aspects 
of the environment with regard to the affordances they provide 
(Lones et al., 2014).

This extended model uses the same hormonal system as we 
used previously in (Lones and Cañamero, 2013), this time to 
modulate the development of the ENN in an “appropriate” man-
ner dependent on the interaction with the external environment. 
The proposed model not only allowed the robot to learn about dif-
ferent aspects of its environment and engage in planned behavior 
in an appropriate manner but also gave it the ability to shape its 
body representation due to its interaction with the external envi-
ronment. This allowed the robot to adapt successfully to a range of 
simple, but “real-world” and dynamic environments such as our 
office environment (Lones et al., 2014). However, the ENN used in 
(Lones et al., 2014) while successful, had constraints imposed on 
it due to the focus of that particular study, where the interest lay in 
the roles that homeostasis and hormones played on modulating 
curiosity and novelty-seeking behavior. Specifically, the network 
was explicitly pre-trained in a sterile environment and then fro-
zen, removing the potential for additional learning. In contrast, 
here, where the interest lies in the roles that stimulation has on 
the robots’ “cognitive development,” the network did not undergo 
any pre-training and was fully active throughout. This means 
that the robot’s learning is dependent on its own sensorimotor 
experiences within its environment. As we will demonstrate, for 
this particular model, the quality of these sensorimotor experi-
ences is paramount to the robots’ cognitive development, where 
a robot which has been exposed to rich sensorimotor experience 
develops not only greater cognitive abilities but also goes through 
developmental stages that we had not anticipated and which bear 
some similarities to infant development.

2. MaTerials anD MeThODs

2.1. robot and sensors
For the experiments reported in this paper, we used the 
medium-sized wheeled Koala II robot by K-Team. This robot is 
equipped with 14 infra-red (IR) sensors spread around the body, 
which are used to detect the distance, size, and shape of different 
objects. In lieu of traditional touch sensors, the IR sensors were 
also used to detect contact. In addition, to complement these 
sensors, a Microsoft LifeCam provided a microphone for sound 

detection and, along with the OpenCV library, simple color-
based vision. The robot’s architecture was written in C++, and 
control of the model was handled through a serial connection 
to a computer running Ubuntu.

2.2. architecture of the robot
The software architecture giving rise to the behavior of the robot 
combines three main elements: a number of survival-related 
homeostatically controlled variables that provide the robot with 
internal needs to generate behavior; a hormone-driven epigenetic 
mechanism that controls the development of the robot; and a 
novel neural network that we have named a “emergent neural 
network”, which provides the robot with learning capabilities. 
These three elements of the model interact in cycles or action 
loops of 62.5 ms in order to allow the robot to develop and adapt 
to its current environmental conditions as shown in Figure  1. 
This development occurs in the following manner:

•	 The levels of the survival-related homeostatically controlled 
variables change as a function of the actions and interactions 
with its environment (see Section 2.2.1).

•	 Deficits of the different homeostatic variables trigger the 
secretion of different artificial hormones (see Section 2.2.2).

•	 The different hormones, once secreted modulate both the 
epigenetic mechanism and emergent neural network (see 
Section 2.2.3).

2.2.1. Homeostatic Variables
Homeostatic imbalances have often been linked to the generation 
of drives and motivation in biological organisms, providing them 
with a potential short-term adaptation tool (Berridge, 2004). In 
a similar manner, in robotics, artificial homeostatic variables 
have been used as an effective way of generating motivations 
and behaviors which can be used for adaptive robotic control-
lers (Cañamero, 1997; Breazeal, 1998; Cañamero et  al., 2002; 
Di Paolo, 2003; Cos et  al., 2010). We have endowed our robot 
with three survival-related variables that it must maintain within 
appropriate ranges in order to survive: health, energy, and inter-
nal temperature. The three variables decrease as a function of the 
robot’s actions and interaction within its environment. Health is 
a simulated variable which decreases proportionally in relation to 
physical contact, as shown in formula 1:

 ∆ =
− ≥





Health

C Cif
otherwise

5
0  (1)

where C is the intensity of any contact, and the value 5 represents 
a threshold/resistance to damage2 that must be surpassed in 
order for health loss to occur. Health deficits can be recovered 
through the consumption of specific resources found in the 
environment.

Energy is linked directly to the robot’s battery and decreases 
at an average of around 15 mAh/min, although the exact amount 

2 Value of less than 5 are roughly equivalent to gentle strokes or minor contact 
resulting in no health loss.
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varies as a function of the robot’s motor usage. Although the 
total battery size is approximately 3500 mAh, the robot has been 
programed to only sense a maximum charge of up to 75 mAh 
(around 5  min of running time) at any given time, creating a 
 virtual battery. This allows us to implement a virtual charging 
system where the robot needs to find specific energy resources 
in order to recharge its virtual battery back to the maximum 
75 mAh.

For both the energy and health resources, the robot recovers 
7.5 and 10 U (10% of maximum capacity), respectively, per action 
loop when the resource is directly in front of the robot and within 
roughly 10 cm distance. Finally, the robot’s internal temperature 
is related to the speed of the motors and the climate, following 
equation (2):

 ∆ = | | ∗Temperature speed Climate
10

 (2)

where |speed| is the current absolute value of speed of the wheels 
(measured in rotations per action loop) and 10 is a predeter-
mined constant to regulate the temperature gain with regard to 
movement. Climate refers to the external temperature, usually 
measured using a heat sensor; however, for these experiments, in 
order to remove unwanted variations, this was set to be detected 
as a constant of 24 [i.e., 24°C (75°F)].

The robot’s body temperature is set to dissipate at a constant 
rate of 5% of the total internal temperature per action loop. 
Dissipation is the only method available to the robot to reduce its 
body temperature, meaning that in order to cool down, the robot 
must either reduce or suppress movement.

Each of the survival-related homeostatic variables has a lethal 
boundary which, if transgressed, results in the robot’s death. 
In  the case of energy and health, the lethal boundary is set at 
the bottom end of the range of permissible values (0), in the 
case of temperature the lethal boundary is at the upper end of 
the range (100).

2.2.2. Hormone-Driven Epigenetic Mechanism
While survival-related homeostatic imbalances, as previously 
mentioned, are often used to model motivation and drive 
behavior in autonomous robots, these imbalances alone may not 
be enough to ensure adaptive behavior in dynamic or complex 
environments (Avila-Garcia and Cañamero, 2005). A suggested, 
and so far successful, addition to the previous architecture, 
consists of integrating different hormone or endocrine systems 
into the model (Avila-Garcia and Cañamero, 2005; Timmis et al., 
2010; Lones and Cañamero, 2013). These systems borrow from 
biological examples, where neuromodulatory systems have been 
shown to regulate behavior and allow rapid and appropriate 
responses to environmental events (Krichmar, 2008). These 
models have been used for a range of environments and condi-
tions such as single-robot open field experiments (Krichmar, 
2013) to multiple robot setups such as predator–prey scenarios 
(Avila-Garcia and Cañamero, 2005) to robotic foraging swarms 
(Timmis et al., 2010).

In our setup, we use a model consisting of five different arti-
ficial hormones, both “endocrine” (eH) and “neuro-hormones” 
(nH) to help the robot maintain the three previously discussed 
homeostatic variables. While both hormone groups share 
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common characteristics, they also present some significant dif-
ferences. The first group of hormones (eH) is secreted by glands as 
a function of homeostatic deficits; each of the three homeostatic 
variables has an associated hormone. These hormones – E1 asso-
ciated with energy, H1 associated with health, and T1 associated 
with internal temperature – are secreted as shown in equation (3):

 eHSecretion Deficith h h=ψ  (3)

where eHSecretionh is the amount of hormone h secreted, ψh > 0 
is a constant regulating the amount of hormone h secreted by 
the gland (it can be thought of as reflecting the gland’s “activity 
level”), and Deficith (0 ≤ Deficith < 100) is the value of the relevant 
homeostatic variable’s deficit.

These hormones play a key role, as the robot is unable to 
directly detect the values of own homeostatic deficits; rather, the 
concentrations of the different hormones are used to signal home-
ostatic deficits through modulation of the ENN as discussed in 
Section 2.2.3, leading to the generation of drives and motivations.

The second group of hormones (nH) consists of two hor-
mones: curiosity (nHc) and stress (nHs). These two hormones, 
which are secreted in relation to internal and external stimuli, 
are loosely based on the hormones Testosterone and Cortisol. nHc 
will encourage outgoing behavior by increasing novelty seeking 
and suppressing detection of perceived negative stimuli. As an 
example, common behaviors linked to a high concentration 
of this hormone would be interest and interactions with novel 
objects. In contrast, nHs will reduce novelty-seeking behavior and 
heighten the detection of any negative stimuli. An example of a 
behavior linked to a high concentration of this hormone would be 
the withdrawal to a perceived area of safety, which in our experi-
mental setup often consisted of the edge of the environment – a 
wall – leading to the emergence of a sort of wall-following behav-
ior. The robot’s perception of walls providing safety arises here 
due to their perceived lack of novelty and they offer protection 
to one side of the robot. For the full implementation of the nH 
hormone group, please see Lones et al. (2014), we briefly sum-
marize the behaviors of the hormones in equations (4) and (5).

 nHSecretion
pS r

nHc
v

v

s

=
+ ∑

 (4)

where pS is the sum of all perceived “positive” stimuli, rv ≥ 0 is 
the (perceived) recovery of a homeostatic variable v during the 
current action loop, and nHs is the concentration of the stress 
hormone which suppresses the secretion of nHc. By “positive 
stimuli,” we refer to the stimulation associated (by the robot’s neu-
ral network) with the recovery (i.e., the correction of the deficit) 
of a homeostatic variable. In other words, positive stimulation pS 
is the sum of any output associated with the recovery of a homeo-
static variable and is calculated by the synaptic function of the 
output nodes of the neural network, as shown in equation (12).

 nHSecretion roD oS nSs = × ×  (5)

where roD or the “perceived risk of death” is the sum of all homeo-
static deficits, oS or “overall stimulation” is the sum of the total 

amount of stimulation (regardless of its type), and nS is the sum 
of perceived “negative” stimuli. By “negative stimuli,” we refer to 
the stimulation associated (by the robot’s neural network) with 
the worsening (i.e., the increase of the deficit) of a homeostatic 
variable. In other words, negative stimulation nS is the sum of any 
output associated with the worsening of a homeostatic variable 
and is calculated by the synaptic function of the output nodes of 
the neural network, as shown in equation (12). The overall stimu-
lation oS is also determined by the synaptic function of the output 
nodes of the network and is the sum of the total synaptic output.

Once secreted, all hormones decay at a constant rate shown 
in equation (6).

 hC hCh t h t, + ,= . ×1 0 95  (6)

where hCh,t+1 is the hormone concentration in the next action 
loop.

The second aspect of the hormonal system is the inclusion of 5 
hormone receptors, each one associated with a specific hormone. 
These receptors are part of the ENN and detect the current 
concentration of their relevant hormone (see Sections 2.3.2 and 
2.3.3). The sensitivity of these hormone receptors is not constant; 
rather, it is modulated by a hormone-driven epigenetic mecha-
nism (Crews, 2008; Zhang and Ho, 2011) that we introduced in 
Lones and Cañamero (2013). This epigenetic mechanism consists 
of a feedback loop where the concentrations of the different 
hormones will lead to either upregulation (increased sensitivity) 
or downregulation (decreased sensitivity) of their respective 
receptors, following equation (7):

 senS senS hC
h t h t

h
, + ,= ×1 σ

 (7)

where senSh,t+1 is the hormone receptor’s sensitivity in the next 
action loop, hCh is the relevant hormone concentration, and σ a 
constant value that regulates the speed of the epigenetic change.

2.2.3. Emergent Neural Network
The emergent neural network consists of a novel design in which 
nodes are created as a function of the robot’s interactions and 
exposures to different environmental stimuli. This emergent 
neural network, of which an example can be seen in Figure 2, 
is designed to allow the robot to learn the affordance of different 
aspects of its environment. Here, the term “affordance” is used in 
the context of the robot learning the potentialities of an action 
or interaction with different aspects of its environment in rela-
tion to its current internal state. Since the internal state of the 
robot presented here is dependent on and made up of the three 
homeostatic variables (see Section 2.2.1), the affordances learned 
by the robot will be in relation to the ability of actions to affect 
these said variables. For example, a potential action involving the 
energy resource will likely have an affordance associated with 
energy recovery. At this stage, it is important to highlight two 
aspects of the robotic model:

•	 First, all behaviors discussed here emerge as a result of the 
development and modulation of the neural network, simply 
put there are no pre-designed behaviors or internal states.
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•	 Second, the development of both the neural network and 
affordances are based on the robot’s perceptions and interac-
tions, therefore robots with different morphological designs 
or placed in different environmental conditions will likely 
develop in different ways.

2.3. Detailed Description of the 
emergent neural network
The emergent neural network used in this paper consists of a 
three-layer network design shown in Figure 2. The first layer of 
the network consists of an input layer which is fed sensory data 
from a range of different classification networks. The second layer 
is the hidden layer in which nodes emerge as a function of the 
robot’s interactions and environmental exposures. This layer is 
responsible for recognizing different aspects of the environment 
and assigning an appropriate affordance based on the robot’s past 
experiences. The final layer is the output layer which simply sums 
the detected affordances.

2.3.1. Classification and Input Nodes
The input layer consists of three fixed nodes, each representing 
one of the robot’s different sensory modalities. These modalities 
are vision, IR, and sound and receive input data from different 
pre-processing classification algorithms shown in Table  1 and 
Figure 3. These three input nodes are quite different to conven-
tional neurons found in other networks. In our network, these 
nodes will fire differently depending on which classification 

network is currently feeding input, with each node in the input 
layer associated with a specific fixed group of classification 
networks (see Table 1). For example, the node representing the 
vision modality is associated with classification networks that 
detect color, shape, and size. These input layer nodes work as 
follows.

For each sensory modality, the output from each of the pre-
processing classification networks (shown in Table  1) consists 
of a 4-digit input pattern that feeds into the appropriate node 
in the input layer. The four digits provide information about 
the sensory modality used, the type of stimulus, the position 
of the stimulus with respect to the body coordinates of the 
robot, and the number of instances of that stimulus detected 
in that action loop. The number of pre-processing classification 
networks associated with each node of the input layer depends 
on the modality of the latter – three for vision, four for IR, and 
one for sound (see Table 1). For each input pattern received, each 
node in the input layer will either strengthen its connection with 
a node in the hidden layer corresponding to that input pattern 
if a node has already been associated with it, or create a new 
node if the pattern is classified as novel. In any one time frame, 
a node in the input layer can receive multiple inputs from each 
pre-processing classification network, and thus it can potentially 
create multiple new nodes in the hidden layer.

As an example, when perceiving the face depicted in Figure 4, 
the vision node in the input layer would receive an input 
from  the  shape pre-processing classifier consisting of the four 
digits 1 (indicating the vision modality), 0 (representing a circle), 
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FigUre 3 | a generic example of the types of nodes in the enn, the three input nodes, each representing one of the robot’s senses can been seen 
on the left, and a hidden layer node on the right.

Table 1 | The different sensory modalities and their implementation and design.

Vision ir sound

Sense Color Shape Size Shape Size Distance Movement Volume
Sensor Webcam Webcam Webcam IR IR IR IR Webcam
Algorithm OpenCV HSV OpenCV contour OpenCV contour Pattern detection Pattern detection IR value Compare IR value Sound
Values White = 0 Circle = 0 Small = 0 Flat = 0 Small = 0 Close = 0 None = 0 Silent = 0

Black = 1 Square = 1 Medium = 1 Curved = 1 Medium = 1 Medium = 1 Small = 1 Quiet = 1
Green = 2 Rectangle = 2 Large = 2 Corner = 2 Large = 2 Far = 2 Medium = 2 Medium = 2
Red = 3 Triangle = 3 Unknown = 9 Hole = 3 Unknown = 9 Unknown = 9 Large = 4 Loud = 3
Yellow = 4 Crescent = 4 Unknown = 9 Unknown = 9
Blue = 5 Unknown = 9
Unknown = 9

FigUre 4 | To provide an example of how the robot perceives its environment, we have shown the robot a simple picture of a face, seen in image (1) 
on the left. a simple example on how the enn may develop in relation to this picture is then shown on the right. The robot is shown the 6 pictures on 
the left to see which ones are identified as being the same. In this particular example, the robot has learned to identify the original by the presence of a large circle, 2 
smaller circles and a half crescent; hence, samples 1, 3, and 5 on the left are all considered by the network to be the same face.
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4 (if the face was directly ahead), and 3 (for the three circles: two 
eye circles plus the larger enclosing circle). It would additionally 
receive an input of 1, 4, 4, and 1 (indicating, respectively, vision, 
crescent, ahead, and one instance).

2.3.2. Hidden Layer
The second layer of the ENN is the hidden layer, which receives 
data from the input layer and sends data to the output layer. This 
layer initially starts empty, and nodes are created as a function of 
the robot’s exposure to different stimuli. Creation of nodes takes 
place under two circumstances:

 1. When an input node fires but has no synaptic connection to a 
relevant node (as described in the section above), or

 2. When two or more hidden layer nodes fire at the same 
time.

When a new node is created in the hidden layer, in addition 
to being connected to the relevant nodes that led to its creation 
(which provide the input), it is also fully connected to the nodes 
of the output layer. However, all these different connections can 
disappear as the network continues to develop. When a synaptic 
connection between two nodes i and j is created, it is given a 
strength of sPij = 0.5. The connection strength is then updated as 
the robot interacts with its environment, using a sigmoid func-
tion, as seen in equation (8).

 sP eij
e

xije

=α β  (8)

where α and β are constants, and xij is the sum of times the nodes 
i and j have fired together, minus the number of times that they 
have not fired together, within a range of −10,000 < xn < 10,000. 
A negative value of xij thus means that, more often than not, the 
nodes have not fired together.

Equation (8) results in a synaptic connection with strength in 
the range 0 < sPij < 1. Due to the sigmoid nature of the function, 
the closer the synaptic strength gets to either end of this range, 
the lower the rate of change, or plasticity, of the connection. The 
synaptic strength of a connection between nodes plays a number 
of roles in this ENN, as will be discussed shortly. One of the most 
important roles is simply determining if a connection exists 
between nodes. This is achieved as follows:

•	 If a synaptic connection between two nodes exists but the 
synaptic strength drops below 0.05, then the connection is 
broken.

•	 If a synaptic connection does not exist but synaptic strength 
would be above 0.1 if it existed, then a connection is made.

In addition, when a synaptic connection is made from a new 
node to a node in the output layer, this connection is assigned 
an affordance – the potential to recover a homeostatic variable. 
Initially, this affordance is set at the change detected in the related 
output node’s homeostatic variable. For instance, a new synaptic 
connection to the energy output node during a loop when the 
robot gained 2  units of energy will result in that connection 
receiving an initial affordance value of 2. This affordance assigned 
to the synaptic connection then changes as the robot continues 

to interact with that particular aspect of the environment, as 
follows:

 
∆ = ×

+ ×
, , , ,Affordance Affordance sP

HomeostaticChange
v i j v i j ij

v (11− sPij )
 (9)

where HomeostaticChangev is simply the change in a homeo-
static variable v in the current action loop compared with the 
previous one.

In order for a node i in the hidden layer to fire, it must receive 
a total input that is greater than or equal to its total number of 
synaptic inputs, thus:

 output
input sC

i d
i d i

,
,=

>=





1
0

if
otherwise  (10)

where sCi is number of input synaptic connections for node i, and 
d (0 ≤ d < 8) is the direction of the detected stimulus with respect 
to 8 equally spaced body coordinates of the robot, the third digit 
of the input pattern discussed in Section 2.3.1. Using this system, 
0 represents the body coordinate directly behind the robot, and 
then going clockwise each subsequent value represents the next 
coordinate. For example, 4 represents a coordinate directly in 
front of the robot.

As shown in equation 10, if the firing threshold is reached, the 
nodes fire with a value of 1; however, the synaptic function sFi,j,d, 
or output of the hidden layer node i, is then modified depending 
on the outgoing connection of the node and the directional origin 
of the stimulus d. If a hidden layer node i is connected to another 
hidden layer node j, the synaptic function is:

 sF output nHmodulation eHModulationi d i d i
v

v i, , ,= × × ∑  (11)

where eHModulationv,i is the modulation of the endocrine 
hormones eHv on node i [see equations  (13) and (14)] and 
nHmodulationi, is the combined strength of the modulation from 
the neuro-hormones stress and curiosity nH [see equation (15)]. 
The roles of hormones in the ENN are discussed in greater detail 
in Section 2.3.3.

If the node is connected to an output node for homeostatic 
variable v then the synaptic function is given by:

 
sF nHmodulation output

Affordance eHModula
i j v d i i d

v i j

, , , ,

, ,

= ×
× × ttionv i,

 (12)

A basic example of how the ENN works and allows the robot to 
identify objects and stimuli can be seen in Figure 4, which shows 
how the robot perceives a simple face. Here, the robot is able to 
identify the face by the presence of the key characteristics of a large 
circle, 2 small circles and a crescent. However, the robot cannot 
detect spatial arrangements, and therefore, as long as the features 
are close enough, they will be identified as the same object. The 
characteristics used by the robot to identify objects depend on its 
past learning. A relatively new robot, for instance, may identify all 
pictures as being the same, since they all posses a circular shape. 
In contrast, a robot with greater environmental exposure, such 
as the one used in this example, will have more specific criteria.
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2.3.3. Hormones in the ENN
As shown in equations (11) and (12), different hormone concen-
trations modulate the synaptic functions of the ENN. As discussed 
in Section 2.3.2, these hormones modulate the nodes within the 
ENN as a function of the internal state of the robot. In the case 
of the eH hormones, the strength of the modulation is dependent 
on the hormone’s sensor’s sensitivity and the connections of the 
nodes. For a node i directly connected to the output layer, the 
modulation by the eHv is given by:

 eHModulation eHConcentration senSv i v v, = ×  (13)

where eHConcentrationv is the concentration of the eHhormone 
eHv, senSv is the sensitivity to eHv [see equation (7)].

However, for nodes not directly connected to an output node, 
the modulation from the eH becomes weaker, as shown in equa-
tion (14), resulting in a larger modulation of the nodes closer to 
the output layer and/or with stronger synaptic connections to it. 
Using hormonal modulation in this manner promotes the activa-
tion of nodes that have a higher synaptic strength, and hence 
promotes behaviors that, in past interactions, have led to better 
homeostatic balance.

 eHModulation
eHModulation sP

noIv i
j O i

v j i j

j
,

∈

, ,=
×

∑
( )

 (14)

where O(i) is the set of output nodes from node i, i.e., the set 
of nodes that are connected to output of i, eHModulationvi is 
the strength of the modulation in the current node, dependent 
on the sum of the signal passed down from connecting nodes 
eHModulationvj, and noIj the number of input connections of 
node j.

In contrast to the eH hormones, the nH hormones surround 
the ENN, affecting all nodes equally. The nH behave differently as 
their role is to either promote or suppress novelty-seeking behav-
ior. This is caused by the combined effect of the curiosity and 
stress hormones. The curiosity hormone increases the activation 
of nodes with a low synaptic strength and suppresses nodes with a 
high synaptic strength. Conversely, the stress hormone increases 
the activation of nodes with a high synaptic strength and sup-
presses nodes with a low synaptic strength, as in equations (11) 
and (12). Therefore, the robot is using the synaptic strength as a 
way of assessing the novelty value of an object or aspect of the 
environment, since a high synaptic strength only happens if an 
object behaves as expected each time the robot interacts with it. 
This can be seen below in equation (15)

 
nH ulation sP nHConcentration senS

sP nHConc
ij ij s s

ij

mod = × ×
+ − ×( )1 eentration senSc c×

 (15)

where nHConcentrations is the concentration of the stress hor-
mone (s), senSs is the receptor’s sensitivity to the stress hormone, 
nHConcentrationc is the concentration of the curiosity hormone 
(c) and senSc the receptor’s sensitivity to the curiosity hormone.

2.3.4. Output Layer
The final layer of the ENN is the output layer, which consist of a 
fixed number of nodes equal to the total number of survival-related 

homeostatic needs. Each output node simply sums up the total 
input from the hidden layer in order to calculate the affordance 
of moving in a certain direction.

 output sFv d
i

i v d, , ,= ∑  (16)

The output of the ENN then feeds directly into (and modu-
lates) the robot’s actuators – in this case, the wheels:

 WheelSpeed output seti
v d

v d i d= ×
,

, ,∑  (17)

where WheelSpeedi is the speed of the left (0) or right wheel (1), 
setid are constant vectors equal to (−10, −10, −5, −3, 1, 3, 5, 10) 
if i = 0, or (−10, 10, 5, 3, 1, −3, −5, −10) if i = 1. This means that 
if a single stimulus originating from the left side of the robot is 
detected, the robot’s left wheel moves at a speed of 5 × output and 
the right wheel moves at a speed of 5 × output. Therefore, a posi-
tive output will result in the robot turning toward the stimulus 
and a negative output in turning away from it.

To summarize, the causal chain that leads to internal or exter-
nal stimuli promoting different behaviors is as follows:

 1. As homeostatic deficits occur they lead to the release of the 
associated endocrine hormone eH [see equation (3)].

 2. Internal and external stimuli lead to the release of the neuro-
hormones, with curiosity being secreted in relation to per-
ceived positive stimulation and stress in relation to negative 
stimulation [see equations (4) and (5)].

 3. The robot’s sensitivity to each hormone is dependent on its 
historic exposure to it [see equation (7)].

 4. The artificial hormones modulate the synaptic function of 
the hidden layer nodes [see equation (12)] depending on the 
nodes position in the network [see equations (13) and (14)].

 5. The output nodes sum up the synaptic function of connected 
neural pathway [see equation (16)], with the value dependent 
on past outcomes associated with pathways activation [see 
equations (8) and (9)].

 6. The output from the network then affects the behavior (wheel 
speed), by promoting or suppressing the tendency to move in 
a certain direction at a certain speed. The larger the output, 
the greater modulating effect it will have on behavior [see 
equation (17)].

2.4. experimental setup
To test the effects of the previously described robot architecture, 
we allowed the robot to develop in three different environments 
with a single run of 60  min of duration in each. These three 
environments were (1) a base/standard environment, (2) a novel 
environment, and (3) a sensory deprivation environment. For 
each of these environments, the robot spent the first 10 minutes 
with a caregiver who looked after it, and introduced the robot to 
core components of the environment. In the remaining 50 min-
utes, the robots were then placed in their specific environments. 
The base and novel environments both consisted of our open 
lab environment (see Figure  5) with some differences that we 
will discuss in the relevant sections (Sections 1 and 2). In the 
sensory deprivation environment, the robot was placed and left 
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FigUre 5 | Different aspects of the environment used during the experiments. (1) shows a panoramic picture of the standard open environment used during 
3.1 and 3.2. (2) shows an example of one of the novel structures used during experiment 3.2. (3) shows the koala robot used during this work and the cardboard 
box the robot was placed in to create a sensory deprivation environment. (4) shows two AIBO robots used as novel objects in the test described in Section 4.2.
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alone inside a cardboard box after the initial 10 minutes with the 
caregiver. In the three environments, the robot would have access 
to two sources of each type of resource; in the third experiment, 
this meant that the resources were placed inside the box along 
with the robot.

3. eXPeriMenTs anD resUlTs

Before the robots were placed into their different environments, 
each spent the first 10 min of their “life” with the caregiver. This 
caregiver provided an identical experience for each of the robots 
with the primary purpose to teach them the critical aspects needed 
to survive, such as how to recover from homeostatic deficits. This 
period essentially consisted of the caregiver sating the robot’s 
needs by bringing the relevant resource to them. During this 
period, the robot’s behaviors were essentially driven by exposure 
to stimuli. In some ways, these basic behaviors are similar to the 
so-called reflex acts of a newborn. At this stage, both newborns 

and the robots display many “reflex” behaviors; for instance, a 
newborn will “grasp” objects placed into their hand or suck an 
object placed against their lips; our robots’ “reflexive” behaviors 
will generally see them move toward or away from (attraction vs. 
repulsion) different environmental stimuli.

In this first phase, the interactions between the robots and the 
caregiver resulted in the emergence of five main reflex behaviors. 
The first three occur due to the homeostatic variables, which are 
Attraction/Repulsion, Avoidance, and Recoil. Attraction and 
Repulsion emerged when the caregiver fed the robots by placing a 
relevant resource in front of them. This “feeding” by the caregiver, 
made the robot move toward the caregiver when hungry and then 
away when sated. Avoidance emerged when the caregiver moved 
too close to the robot, making the robot move toward an area with 
more space. Recoil emerged when physical contact occurred; 
unlike with the avoidance behavior, here the robot will prefer to 
move in an opposite direction to the stimulus rather than simply 
toward more space.
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The final two reflex behaviors seen during this period are 
slightly different. The Exploration behavior emerges due to a 
combination of the first three behaviors: the Attraction behav-
ior gives the robot the motivation to move forward while the 
Avoidance and Recoil lead to a motivation to avoid collisions. 
Finally, Localized Attention, the last innate behavior seen dur-
ing this period, is based partly on learning and emerges around 
the 8-minutes mark. This behavior sees the robot turn to face a 
moving object that is roughly within a 30-cm range. The basis 
behind this behavior can be traced to the fact that the robot at 
this stage associates movement with the presence of the caregiver3 
and therefore the impending “feeding,” which can only occur if 
the robot is facing the resource (and hence the caregiver holding 
it). At the end of this initial period, the caregiver would leave the 
environment and be outside the robot’s view.

3.1. First experiment: The standard 
environment
In the first of the three experiments, the robot was placed in our 
open lab environment shown in Figure 5. For this experiment, 
the robot was given free rein of our lab with only limited changes 
to the environment made. These changes include (a) the use of 
plywood borders to block access to “problem” areas where the 
robot’s sensors and actuators would be unsuitable and (b) the 
placement of resources. Additionally, blackout curtains were 
used to block natural light, in order to keep lighting conditions 
comparable through the experiments.

3.1.1. First Experiment: Minutes 10–20
During this period of the experiment, the caregiver was removed 
from the environment, and with him the feeding interaction 
between the caregiver and the robot. From now on, in order to 
maintain its homeostatic balance, the robot would need to seek 
out the different resources scattered throughout the environment. 
Resources were placed in manner in which they could be clearly 
seen by the robot – four resources, one in each corner, alternating 
in type – with the aim of causing it to move around the environ-
ment in order to experience different sensorimotor stimuli. The 
prior 10-min exposure to resources through the caregiver’s feed-
ing was enough for the robot to have begun to learn some of the 
key features of the different resources, such as their shape, color, 
and size, to allow the robot to detect them.

The immediate challenges that the removal of the caregiver 
presents to the robot are threefold. First, the robot must be able 
to manage conflicting needs, e.g., if it chooses to replenish energy 
it must at least temporarily forgo reducing its temperature or 
replenishing its health. Second, the robot needs to develop toler-
ance so its consumption pattern – particularly to what level it can 
let a homeostatic variable drop before replenishing – is appropri-
ate for the current environment. Third, the robot must adapt its 
sensorimotor behavior – how fast to move and when to turn to 
avoid collisions – to the current environmental conditions.

3 Although the robot did posses color vision at this stage, perhaps due to environ-
mental noise or to slower development of vision, the robot relied on movement to 
detect the caregiver.

At the beginning of this period, the robot was highly sensitive 
to its internal needs – attempting to replenish any variable that 
was roughly below 90%. Due to spacing of the resources, the robot 
was often able to see at least one of each type at any given time, 
and therefore at this point, it did not search the environment 
when a deficit occurred but rather moved to the nearest perceived 
resource. This movement was often inefficient (see Figure 6) as 
in many cases a closer resource was located outside its immediate 
field of view, either to the side or behind. However, at this point 
in time, the robot’s behavior was still largely reflex-driven – see-
ing the resource made the robot move toward it. When two 
homeostatic variables were low and the required resources could 
both be seen, the robot’s choice of which variable to recover 
first would be determined based on the size of both the internal 
deficit and the detected stimuli. A problem with satisfying needs 
in this manner is due to a combination of noise – the perceived 
size the of external stimuli would fluctuate  –  and homeostatic 
variables not decreasing linearly or at an equal rate; the robot’s 
intrinsic motivations would thus fluctuate, and hence its “goals” 
and executed behaviors often changed before a need was satiated 
as shown in Figure 7.

3.1.2. First Experiment: Minutes 20–30
The inefficiency in the robot’s behavior after the withdrawal of the 
caregiver initially leads to the robot having issues in maintain-
ing homeostasis. However, after the robot had been sufficiently 
exposed to its environment and the epigenetic mechanism began 
to regulate hormone receptors, its behaviors became more appro-
priate, and the robot was able to recover a homeostatic deficit 54% 
faster on average. This can been seen in Figures 6 and 7 which 
show, respectively, the change in the robot’s movement patterns 
and motivations.

As shown in Figures  6 and 7, the robot’s movements have 
become much more efficient for its environment, as it now moves 
more directly between the resources with limited motivation or 
behavior switching. This occurred first as a result of a change in 
tolerances to homeostatic deficits. As the robot had consistently 
lower but stable homeostatic variables due to needing to feed 
for itself, it soon became tolerant to these lower levels through 
the epigenetic mechanism. This resulted in reduced urgency in 
replenishing its internal variables, to the extent that they would 
now need to reach an average level of around 60% instead of 
the previous 90% before the robot would become motivated to 
replenish them. As a consequence of the reduced need to replenish 
the homeostatic variables of energy and health, the robot was no 
longer under such internal pressure to move quickly between the 
resources and could reduce its overall speed, resolving the issues 
of overheating and increased collisions associated with faster 
movement in the previous period. Additionally, while the robot 
maintained a relatively constant speed in previous periods, slow-
ing down only to consume or due to internal overheating, now 
the robot began to modulate its speed to match the environmental 
conditions. For example, the robot would move slower near the 
edges of the environment where it previously had collisions, and 
faster in the open middle areas.

This period represented an important time in the robot’s 
development. As described previously, during the early stages of 
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FigUre 6 | a comparison of the movement patterns of the robot in the standard environment in the 10–20 minute period of the experiment (left) and 
in the 20–30 minute period (right). The red and blue dots represent the location of the health and energy resources respectively. Here, we can see that in the later 
period the robot movements become more purposeful moving directly between the different resources. It should be noted that the movement maps were created 
using data from the robot’s wheel speeds, rather than an overhead recording, therefore there may be some discrepancies.
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this experiment, when the robot was first exposed to this environ-
ment, its behavior was almost entirely reflex-driven. However, 
due to motor stimulation, the robot’s behavior has started to 
become adaptive, taking into account the current environmental 
conditions and its own physical body.

This period therefore potentially bears some similarities to 
the concept of primary circular reaction in infant development. 
Much like with infants at this stage, here the robot’s focus is on 
the effects that its behaviors had on its own body – for instance, 
developing appropriate movement speeds and understanding 
and adapting to the restraints of the levels of its homeostatic 
variables. Similarly, for both the robot and the infant, behaviors 
categorized as primary circular reactions emerge as accidental 
discoveries (Papalia et al., 1992; Schaffer, 1996).

3.1.3. First Experiment: Minutes 30–40
During the first 30  minutes or so, the robot had begun to 
adapt its behaviors with regard to maintaining homeostasis by 
developing behaviors which have similarities to primary circular 
reactions. However, at this point, the robot began to show the 
emergence of more complex behaviors that could be considered 
similar to secondary or even tertiary circular reactions, as we 
will discuss in more detail below. At around the 33  minutes 
mark, due to the robot’s previously discussed reduced need 
for, and increased efficiency in, maintaining homeostasis, the 
robot spent a much smaller proportion of its time attending to 
homeostatic needs, showing a reduction from 93% of its time 
actively searching for resources in the first 30  minutes down 
to 59% in this period shown in Figure  8. This reduction in 
time needed to maintain homeostasis provided the robot with 
the opportunity to explore and interact with other aspects of 
the environment. During this period of exploration, using the 
previously discussed novelty mechanism (see Section 2.2.3), the 
robot’s motivations were determined by both the internal and 
external environment. Such exploration would take different 
forms, depending on hormonal levels. With high levels of the 
nHc, which is associated with positive stimuli and a good level of 

homeostatic variables, the robot’s attention was focused on the 
novel aspects of the environment. These novel aspects tended 
to be objects or areas that the robot had limited knowledge of, 
and/or objects that had some perceived uncertainty or danger 
as to the outcome of any interaction. In contrast, with higher 
levels of the nHs, which is associated with negative stimuli, 
over-stimulation and poor homeostasis maintenance, the robot 
is more attracted to, and will interact with, less novel aspects, 
such as those it already had some understanding of, or perceives 
to be safe, e.g., the walls of the environment due to their static 
nature. In cases where very high levels of the nHs were present, 
the robot would simply move to an area of perceived safety and 
only leave when the nHs levels had decreased sufficiently.

This period represented an important stage in development 
of the robot for two critical reasons. First, during this period, the 
increased exploration is strongly linked to the growth of the ENN 
(see Section 4.1). Second, this exploration and interaction repre-
sent an opportunity for the robot to further understand both its 
own body and the ways in which it can influence its environment. 
Due to the relatively static nature of this first environment – most 
objects were either immovable or too large for the robot to mean-
ingfully interact with them –  interaction was relatively limited; 
it consisted for the most part in pushing an object for a few 
seconds, before learning that the only outcome of this behavior 
was a reduction in its health due to the contact, thus reducing 
future attempts to interact with the said object. However, around 
the 38th minute, the robot found the resources which consisted 
of small plastic balls, light, and easy to push, and therefore the 
robot was able to create an interesting novel experience for itself 
by pushing the balls.

3.1.4. First Experiment: Minutes 40–60
During the latter stages of this experiment, due to improved 
efficiency in recovering homeostatic deficits, the robot spent 
most of the time either idle or interacting with resources. Initially, 
this interaction consisted of small pushes that took place over a 
period of around 10  minutes. The motivation for the robot to 
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FigUre 7 | a comparison of the three main motivations (replenishment of a homeostatic variable) for each robot during the experiments. As can be 
seen, during the period immediately following the initial ten minutes with the caregiver, changes and growth of motivations are much more volatile. This leads to 
increased occurrences of rapid behavior switching. Due to the volatility of change, this can lead to both inefficiencies and missed opportunities, i.e., constantly 
moving between two resources without (fully) feeding.
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push the balls was twofold. Initially, the pushing was curiosity 
driven, as the robot tried to learn what the pushing resulted in. 
After around 5  minutes, however, the pushing became novelty 
driven, caused by the new element of motion, as mentioned in 
the previous section. As expected in our model, due to the high 
novelty that resulted from pushing an object, the robot would 
only “purposefully” push objects when it had high ratio of nHc to 
nHs concentration.

This emergent behavior presents some similarities with ideas 
of secondary circular reactions. For example, a child using a rattle 
and our robot pushing the ball share the fact that the agent is 
beginning to notice and explore that their actions and behaviors 
can have interesting effects on their surroundings. Similarly, later 
the behavior where we see the robot pushing the ball in order to 
create a novelty source has similarities to progression of second-
ary circular reaction to coordinated secondary circular reaction, 
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FigUre 8 | The type of behavior executed by each robot during each 
10 min period. As previously stated, the robot has no explicit behaviors; 
instead, behaviors executed by the robot have been classified into four 
general groups. Interaction includes any purposeful movement toward or 
contact with an aspect of the environment, foraging refers to any behavior 
that deals with the recovery of a homeostatic variable, this includes 
consuming, moving toward and searching for a resource, exploration 
includes any movement-based behavior, while finally inactive is any period 
where the robot remains stationary without consuming or engaging in 
interactions.
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where the robot is now demonstrating the ability to manipulate 
an object to achieve a desired effect.

We observed another interesting phenomenon at around the 
47 minutes mark, as the robot seemed to develop a search strat-
egy while looking for resources. Previously, when searching for 
a resource, the robot would randomly explore its environment; 
however, at this point, the robot began to show some strategy in 
its search, since instead of the random exploration, it would now 
move to the walls and follow them to search for the resources, 
which were placed near the corners of the environment. The 
emergence of this behavior further reduced the average time 
spent searching for a resource from the previous 59% down to 
47%. As time went on, this behavior continued to develop and 
the robot began to learn to associate certain easily identifiable 

landmarks in the lab, such as a blue screen or a cupboard, with the 
presence of a particular resource. This ability greatly improved 
the time needed to find a resource, further reducing the average 
time spent searching for resources down to 21%. This behavior 
might suggest that the robot had developed some notion of “object 
permanence’’. However, it may be a simple association between 
resources and landmarks, which is a significantly simpler concept 
than object permanence. In order to investigate which of these 
might be the case, we carried out the experiments reported in 
Section 4.3.

3.2. second experiment: The novel 
environment
In the second experiment, we developed the robot in an envi-
ronment very similar to the one used in the first experiment, 
with the difference of the inclusion of a range of different novelty 
sources. These included light movable objects arranged in vari-
ous shapes and patterns, as shown in Figure 5, as well as two 
small Khepera robots that moved around randomly. If, at any 
time, any of these object were knocked over (e.g., due to the 
Koala robot’s interactions) or stopped functioning as intended, 
the caregiver would replace or reset them as soon as the robot 
had moved away.

3.2.1. Second Experiment: Minutes 0–30
As we would expect, in the early stages of this experiment the 
exposure to additional (with respect to the first environment) 
sources of novelty had no real effect on the robot due to its effort 
to maintain homeostasis. Apart from the need to avoid the two 
additional randomly moving robots and the additional novel 
objects, the behavior and development of this robot was almost 
identical to the robot in the first experiment as shown in Figures 7 
and 8. For this reason, we will not spend time discussing this 
robot’s early life but will rather move on to the second half of the 
experiment, when the behavior started to deviate.

3.2.2. Second Experiment: Minutes 30–50
Much like the robot in the first experiment, at around 33 minutes 
into its development, this robot had adapted to its environment 
well enough to no longer need to spend the majority of its time 
looking for resources. The exception to this, shown in Figures 7 
and 8, occurs between the 40th and 50th minutes. Due to the 
increased interaction with objects as discussed shortly, the robot 
suffers additional health damage as it learns how to properly 
interact; therefore, it spends additional time during this period 
recovering its health variable.

While the robot in the first environment spent much of its 
“free time” being idle simply due to a lack of things to do, 
(i.e., a very limited number of novelty sources to interact with), 
this robot had a much larger range of possible objects to learn 
about. As before, the robot’s interest in the novel objects in the 
environment depended on the concentration of the nHc and 
nHs hormones. Initially, with a high value of the nHc, the robot’s 
attention was mostly focused on the randomly moving robots. 
During this period of high concentration of nHc, in the initial 
instances, the robot would simply engage in a following behavior 
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FigUre 9 | an overview of the average perceived novelty of 5 
different aspects of the robot’s environment during each time period. 
It should be expected that as a robot interacts with an aspect the novelty 
value will decrease. The exception to this is if the object has unpredictable or 
dynamic behavior in which case the novelty value would be expected to rise 
as the robot interacts with it.
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moving behind the nearest moving robot. After around 2–3 
instances of this following behavior, the robot began to intensify 
its interaction by engaging in both pushing and approaching the 
small robot from different angles. Since the randomly moving 
robots had been programed to stop if contact was detected, the 
novelty value that the robot would associate with them greatly 
diminished over a period of around 5  minutes, dropping to 
almost zero novelty near the start of the 50th minute as shown 
in Figure 9.

In contrast, with a medium concentration of the nHc, the 
robot was attracted to the different arrangements of objects 
that were constructed with the small tin cans (see Figure  5). 
Initially, the robot would either move close to these structures 
or slowly circle around them. After a couple of minutes, when 
the robot was familiar with the structures, it began to make 
physical contact with them through gentle bumps and pushes. 
Due to the lightweight nature of the tin cans, any physical contact 
from the robot would easily knock them over, and this resulted 

in the robot detecting not only a large amount of unexpected 
rapid movement around itself but also collisions, as some of 
the tin cans hit the robot. Since the robot only had a moderate 
amount of the nHc when initially interacting with the structures, 
their falling resulted in significant over-stimulation, leading to 
increased secretion of the nHs and the robot’s withdrawal to a 
perceived safer location. These implications of the early contact 
with the structures resulted in the robot associating a higher level 
of perceived novelty with them due to the uncertainty of the 
outcome of any interaction. This increase in novelty associated 
with the structures along with the decrease in novelty associated 
with the Khepera robots resulted in structures having the highest 
perceived novelty as shown in Figure  9. Due to the increased 
perceived novelty, the robot would now only interact with the 
novel structures with high nHc levels. The higher concentration 
of nHc protected the robot from becoming overstimulated due to 
unpredicted outcomes, which led to more thorough interaction 
with the structures. In the last 5–10  minutes of this period, 
the robot engaged with the structures in a number of different 
ways as it attempted to learn about them  –  including moving 
around them at different speeds, stopping near them at different 
distances, trying to move through them, and pushing them with 
different intensities.

3.2.3. Second Experiment: Minutes 50–60
At around 54 minutes into its development, the robot started 
displaying a new behavior: it would gently push over a struc-
ture before moving away and stopping. As we previously 
mentioned, when a structure was knocked down, the caregiver 
would replace it when the robot had moved away. As soon 
as the caregiver entered the environment to replace the tin 
cans, the robot immediately moved toward them and tried to 
interact with the caregiver. The caregiver, due to a number of 
factors such as size, shape, and movement, was unsurprisingly 
perceived as highly novel by the robot (see Figure  9). What 
was, however, interesting is that the robot seemed to engage in 
this sequence of behaviors “on purpose.” It is likely that, after 
experimenting with the objects, the robot had learned that 
by pushing the structures over, it could cause the caregiver to 
enter the environment and use this to satisfy its own need for 
novelty. Before the 54th minute, the robot had not displayed 
this behavior sequence of trying to have the caregiver enter the 
environment; yet, after the first occurrence, in the remaining 
6 minutes of the experiment, this behavior occurred 11 addi-
tional times. In all cases, this behavior only occurred with high 
nHc and low nHs levels, supporting the idea that the robot was 
using this behavioral sequence “on purpose” to satisfy its own 
need for novelty. Examining the ENN seems to back up this 
idea, as neurons associated with the caregiver were active when 
interacting with the tin cans.

This behavior by the robot could be regarded as the emergence 
of a form of tertiary circular reactions and potentially bear a 
similarity to a representation of cause and effect. With regard to 
tertiary circular reactions, the robot was demonstrating the abil-
ity to not only manipulate and experiment with different objects 
in its environment, but also to use these objects in order to change 
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its environment, thus suggesting some sort of representation of 
cause and effect, an aspect of tertiary circular reactions (Papalia 
et al., 1992).

The formation of these representations is less clear, though, 
since the robot’s behavior of knocking over structures in order 
to bring the unseen caregiver back into the environment could 
potentially suggest object permanence, which we test later in 
Section 4.3.

3.3. Third experiment: sensory Deprivation
In the final experiment, instead of being allowed to move freely 
in an open environment like in the previous experiments, after 
the first 10 minutes of interaction with the caregiver this robot 
was placed in a small cardboard box with the resources directly 
in front of it, in an attempt to create a sensory deprivation expe-
rience (see Figure 5). As would be expected, with both resources 
directly in front of it and little room to move, the robot remained 
mostly inactive throughout the sensory deprivation period as 
shown in Figure 8.

4. cOMParing The cOgniTiVe 
DeVelOPMenT OF OUr rObOTs

From the overview of the experiments, it appears that the robot 
that developed in the novel environment (Section 3.2) gained 
more advanced cognitive abilities than the robots developed in 
the standard and “sensory deprivation” environments. These 
advanced cognitive abilities would seem to support the idea that 
an environment which provides a richer sensorimotor experi-
ence over the course of development leads to a greater cognitive 
development in autonomous robots too. However, we must ask 
the question whether these more advanced cognitive abilities are 
a permanent result of the actual developmental process, or a tran-
sient phenomenon due to the different environmental conditions. 
In order to try to understand if these developmental conditions 
had indeed affected the cognitive development of the robots, in 
the following section we compare the robots’ neural networks and 
behavior in different developmental tests.

4.1. comparison of neural 
Development and activity
For a first comparison between the robots, we will look in closer 
detail at the development of their different neural networks, 
which can be seen in Figure 10.

Figure 10 shows that the robot from the novel environment 
developed a larger neural network with significant growth occur-
ring in the latter stages of the experiment, coinciding with the 
robot going through what in Section 3.2.2 we considered related 
to the coordination of secondary and tertiary reactions during the 
exploration period. Additionally, we can see again that the robot 
from the novel environment had a significantly larger number of 
neurons firing per action loop in the later stages. The increased 
number of nodes and neural activity from the novel robot can be 
explained due to this robot developing larger neural pathways. 
The increased pathways benefited the robot by giving it a better 
“understanding” of its environment.

4.2. learning and association: 
introduction of a new Object
We next tested the ability of each of the three versions of the 
Koala robot – the robots from the experiments carried out in the 
“standard,” “novel,” and “sensory deprivation” environments – to 
learn by introducing two new novel objects that the robots had 
not seen before – two AIBO robots (one white and one black) 
shown in Figure  5. These novel objects were set to work in a 
similar manner to the energy resource, recharging the energy 
of the robot when it was close, although these novel objects 
provided a much greater rate of energy replenishment – 30 units 
of energy per  second, 4 times faster than the original energy 
resource. The Koala robots were then given a choice between the 
novel objects and the original energy resource, with the assump-
tion that if/once the robots learned that the novel resources 
provided a greater charge, they would prefer them over the 
original resources.

In order to conduct this experiment, two minor changes were 
made to the robot’s architecture. First, the energy level was set to 
20% after every action loop, to ensure the robot had a permanent 
motivation to recover from energy deficits. Second, the secretion 
of the nHc was suppressed to remove the motivation to move 
to the novel resources based purely on their novelty value. The 
experiment involved two parts, with results show in Table 2 and 
Figure 11.

For the first part of the experiment, the first novel object (the 
white AIBO) was placed directly in front of the Koala robot (close 
enough to charge) for a period of 10 s, to give the Koala an oppor-
tunity to learn about it; after this period, both this novel object 
and the original energy resource were placed slightly spread in 
front of the robot at a distance of around 1 m, forcing the robot 
to choose which one to move to in order to replenish its energy 
levels. This entire cycle was then repeated 10 times.

The results are reported in Table 2, where we can see that the 
“novel” robot appears to immediately learn the increased energy 
affordance provided by the first novel object and was significantly 
more attracted to it. In comparison, the “standard” robot would 
often pick the novel resource after increased exposure to it, 
although as seen in Figure 11 it was only slightly preferred. The 
“sensory deprived” robot did not show any signs of adaptation, 
systematically selecting the original energy resource.

For the second part of this experiment, conducted immedi-
ately after the first part, we changed the first novel object with 
the second (the black AIBO). Unlike in the previous part of the 
experiment, the new novel object was not placed in front of the 
robot at any time; instead, it was placed 1 m ahead of the robot 
and slightly spread. Once again each of the versions of the Koala 
robot underwent another 10 runs with a similar need to replenish 
its energy level. While the robot had never seen the second novel 
object before, this object shares similarities with the first, hence 
here we are testing if the robot can identify that the two novel 
objects share similarities and therefore may behave in a similar 
manner, i.e., both would offer rapid replenishment of the energy 
deficit. The results are shown in Table 2, where we can see that 
even though the novel robot had never seen or interacted with 
the new novel object, unlike the other robots, due to its more 
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FigUre 10 | The total number of neurons generated by the enn for each of the robots over the course of the experiment (top) as well as the total 
number of firing nodes (bottom). The nodes themselves are generated as a function of the robots interaction with its environment. A higher number of nodes would 
suggest that the robot has learned about a larger number of, or in more detail about, different objects or aspects of its environment. A higher number of nodes firing 
appear to be related to the robot either noticing more aspects of the environment or having a greater understanding of the affordance of different aspects of the 
environment.
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developed neural network (Section 4.1), it was able to identify 
the similarities between the two novel objects and recognize that 
the second had similar properties (i.e., the ability to provide a 
rapid charge) to the first. In contrast, while the standard robot did 
seem to identify some similarities between the two novel objects, 
leading to a slight perceived affordance of energy recovery with 
the new objects, the perception was not good enough for it to 
choose the novel object over the safer original energy resource. 

Finally, the sensory deprived robot, which only showed minimal 
learning in the first stage of this experiment, showed no associa-
tion between the two objects.

4.3. Object Permanence: recreation of a 
hidden-Toy Test
One of the tests most commonly used in developmental psy-
chology to assess whether infants have acquired the notion 
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Table 2 | The robots’ choices between the novel and the original 
resource in the first (left) and the second part (right) of the learning 
experiment.

First experiment second experiment

run standard 
robot

novel 
robot

sensory- 
dep robot

run standard 
robot

novel 
robot

sensory-
dep robot

1 Original Novel Original 1 Original Novel Original
2 Original Novel Original 2 Original Novel Original
3 Novel Novel Original 3 Original Novel Original
4 Novel Novel Original 4 Original Novel Original
5 Novel Novel Original 5 Original Novel Original
6 Novel Novel Original 6 Original Novel Original
7 Novel Novel Original 7 Original Novel Original
8 Original Novel Original 8 Original Novel Original
9 Novel Novel Original 9 Original Novel Original

10 Novel Novel Original 10 Original Novel Original
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of object permanence is the hidden toy test4 (Piaget, 1952; 
Baillargeon, 1993; Munakata, 2000). We reproduced this test by 
placing a needed resource in front of each of the Koala robots at 
a range of 2 m. As the robot began to move toward the resource, 
5 tins cans, used to build the previous novel structure shown in 
Figure 5, were placed directly in front of the resource to block 
it from the robot’s view. If the robot has a representation of 
object permanence, we would hypothesize that the robot would 
continue to move toward the object even when it is hidden 
from sight. If the robot stopped for more than 10 seconds, or 
1 minute had passed after the resource had been hidden, the 
experiment ended to reduce the risk that the robot might find 
the resource accidentally or as part of its exploratory behavior. 
This experiment was conducted 10 times for each robot, and the 
results are shown in Table 3.

As shown in Table 3, the robots from the novel and standard 
environments both had some success in finding the resources 
once hidden; in comparison, the robot from the sensory dep-
rivation environment was unsuccessful every time. If we look 
at the behavior and neural activity of the robots, shown in 
Figure 12, we can see that the robot from the novel environ-
ment was the only one to consistently search for the resource 
after it was hidden. In addition, this robot was also the only 
one which consistently (i.e., in every run) had high activity 
along the neural pathway associated with the detection of the 
resource even after it had disappeared. This neural activity 
resulted from the fact that the original signal remained active 
along the pathway due to the modulation of this pathway by the 
different hormone concentrations, leading to feedback loops. 
These loops provide the robot with an ability akin to “active,” or 
“short term” memory.

The 3 occasions when this robot failed to find the resource 
were due to the fact that the robot moved past the hidden 
resource. The fact that the neural activity remained high during 
these failed attempts suggests that, while the robot shows neural 

4 We have also carried out experiments using the A-not-B test with robots that were 
developed in an environment with human “caregivers”. Results of these experi-
ments will be reported in a forthcoming publication.

activity associated with the hidden object and the behavior it 
affords, without the expected feedback from sensory readings 
regarding the distance and position of the object, the robot 
cannot consistently locate it. This would appear to back up the 
previous observation that the first two robots had gained an abil-
ity consistent with the “understanding” of object permanence 
during their developmental runs, rather than having this skill 
from the start.

4.4. Violation of expectation Paradigm
For the final experiment, we tested the robots using another 
common cognitive test, the Violation of Expectation paradigm 
(VOE). VOE experiments are normally carried out by showing 
very young infants two different pictures, one of which shows an 
impossible outcome – often some type optical illusion – while the 
other is almost identical but without the impossibility (Sirois and 
Mareschal, 2002). The experiment seeks to assess if the baby can 
notice the impossibility by measuring which picture it looks at 
more. The underlying assumption is that if the baby can identify 
the impossibility in the picture, it must have some expectation 
about the object represented in that picture, and will look at it for 
longer than at the image without the impossibility.

We created a version of this experiment suitable for our robots. 
Here, a white ball was placed in front of the robot. For the pos-
sible outcome, we simply measured how long the ball which has 
not been seen before held the robot’s attention. For the “VOE,” 
the white ball was again placed in front of the robot; however, 
the robot’s sensors were manipulated to make it appear as if the 
ball became smaller as the robot moved toward it. We once again 
measured how long the ball held the robot’s attention. If the robot 
can identify the “VOE,” we would expect it to hold its attention 
for a longer period of time.

As shown in Table 4, the “VOE” held the novel robot’s atten-
tion for significantly longer than the possible object. In contrast, 
the robot from the standard environment only showed slightly 
more interest in the “VOE”; due to the small difference, it is not 
possible to conclusively suggest that this robot was showing an 
interest in the “VOE.” Finally, the sensory deprived robot showed 
no real difference in the time spent with both objects, suggesting 
the VOE paradigm had no real influence on the robot.

Our results suggest that the ability to respond to “VOE” 
arises as part of the later stages of the sensorimotor development 
process, which only the robot from the novel environment went 
through. Incidentally, this finding correlates with Piaget’s devel-
opmental theory regarding when these skills should emerge. It 
should be noted that the VOE paradigm has been criticized by 
other developmental psychologists, who debate whether these 
skills are indeed learned as suggested by Piaget (1952) in his 
theory of development, or if they are part of a core knowledge 
that all infants possess from birth, as suggested by Baillargeon 
et al. (1985), Baillargeon (1993), and Spelke et al. (1992). These 
authors have previously used the VOE paradigm to demonstrate 
that babies are able to identify impossibility much earlier than 
would be expected if Piaget’s theory was correct. In the case of a 
robot, we can be certain that this was not part of the robot’s core 
knowledge but is developed given the appropriate sensorimotor 
experiences.
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FigUre 11 | The results of the first (left) and second (right) part of the learning experiment. The units in the y-axis show the strength of the perceived 
energy affordance of the two objects which is determined by equation (12). Run 0 is the perceived energy affordance before the start of experiments.

Table 3 | results of the hidden-toy test.

run novel robot’s time standard robot’s time sens-dep robot’s time

1 32 16 Not found 
2 14 Not found Stopped 
3 17 Not found Stopped 
4 32 32 Stopped 
5 Not found Not found Stopped 
6 Not found Not found Stopped 
7 15 Not found Stopped 
8 Not found 43 Not found 
9 23 Not found Stopped 

10 19 12 Stopped 

Time is measured in seconds.

40

Lones et al. From Sensorimotor Experiences to Cognitive Development

Frontiers in Robotics and AI | www.frontiersin.org August 2016 | Volume 3 | Article 44

There have also been debates (Baillargeon et  al., 1985; 
Baillargeon, 1993) regarding whether the violation of expecta-
tion paradigm used with infants may have been biased, suggest-
ing that the impossible variation offered other additional stimuli 
(e.g., more activity or increased number of elements in the 
impossible picture), which attracts the infants’ attention rather 
than their ability to identify or be attracted to the perceived 
impossibility. We could also imagine that the higher novelty of 
the impossible object might to some extent be responsible for 
the response of the infants. In the case of our robot experiments, 
we would be happy to accept that the different response that the 
novel robot displays in the face of impossible experiences might 
be due to novelty. However, the novelty offered by the impossible 
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Table 4 | results from the VOe experiment showing the time (in seconds) 
spent focusing on or interacting with the impossible and possible object.

run novel robot’s time base robot’s time sens-dep robot’s time

impossible Possible impossible Possible impossible Possible

1 46 17 21 18 19 20
2 48 15 22 19 23 21
3 43 17 19 22 21 23
4 49 18 17 15 20 20
5 54 14 19 12 15 15
6 52 18 16 15 19 20
7 49 19 15 14 18 19
8 56 16 14 13 19 20
9 49 14 16 16 14 13

10 54 17 21 15 18 16

FigUre 12 | Overview of the behavior and neural activity of our three robots during the hidden toy test. The graph on the left shows the neural activity 
along the pathways associated with the hidden resource of each robot. Neural activity is measured as the percentage of active nodes. Crosses indicate the points at 
which each robot has found (i.e., detected) the hidden resource. Dotted lines are used to show the neural activity of the robot after this point. In most cases, the 
robot will detect a resource some seconds before it physically reaches it. As we can see, the perception of the hidden resource gives rise to increased neural activity. 
After the resource is hidden (at around the 10s mark), the pathway of the robot from the novel environment is the most active even without being able to see the 
resource: this robot has neural activity associated with the object and the behavior that it affords even after it has been hidden from view. On the right, the diagrams 
show the trajectories of the robots for each run. We can see that the robot from the novel environment was the most successful in finding the hidden resource.
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object (a white ball which behaves in a way that violates all the 
robot’s previous sensorimotor experiences) is very different 
from the type of novelty offered by the perception of the novel 
object (white ball).

Although both exposure to a new object and a “VOE” episode 
produce “novelty,” which we could define as the lack of behaviors 
and representations associated with an object, there is a qualita-
tive difference in the effects that both experiences have on the 
robot’s neural network. Novelty that arises from exposure to a 
new object is related to the level of plasticity between two con-
necting neurons [see equation (15)]: the higher the novelty of the 
object, the lower the level of plasticity, and a totally new object 
will give rise to new nodes and connections. Novelty related to 

a violation of expectation episode involves, in addition to the 
above, a change in the neural pathway associated with closely 
related previous experience. Specifically, an existing pathway is 
activated but a number of new nodes rapidly emerge along this 
pathway, linked to the elements of the new experience that violate 
the expectations from previous experiences (see Figure 13, label 
“Novel Robot”). Due to the activity of the pathway and the rapid 
growth of new nodes along it, a large number of “messy” and 
overlapping connections between nodes are quickly generated, 
increasing perceived novelty due to their high plasticity. These 
overlapping connections also effectively lead to the emergence of 
a sort of positive feedback loop within the pathway. This results 
in a greater level of activity along that pathway and therefore 
increased novelty. Over time, if the robot is repeatedly exposed 
to the “violation of expectation,” the original nodes and the new 
nodes will separate along two distinct pathways, the overlapping 
connections get “pruned,” and the feedback loops disappear (see 
Section 2.3.2), as shown in Figure 13, label “Novel Robot after 
repeated exposure”. This results in the consolidation of the new 
pathway and thus the previous “violation of expectation” becomes 
a normal “experience” for the robot. However, if exposure to the 
“VOE” stimulus is infrequent, the pathways will not split and the 
novelty associated with it will persist.

5. cOnclUsiOn anD DiscUssiOn

In this paper, we have demonstrated the importance of sensorimo-
tor experiences and environmental conditions in the emergence 
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of more advanced cognitive abilities in an autonomous robot. The 
robot exposed to a wide range of novel sensorimotor experiences 
and different stimuli showed greater cognitive abilities than 
the robots from the other environments. Particularly, the robot 
raised in a context of sensory deprivation showed no additional 
behaviors or abilities outside simple reflex-like behavior that each 
robot started with. Furthermore, this sensory deprived robot 
performed badly at adapting and in learning tasks compared with 
the other robots. Our model thus shows that a richer sensorimo-
tor experience during early development correlates with greater 
cognitive ability.

We have also shown how an autonomous robot implement-
ing an epigenetic architecture has the potential to go through 
developmental stages in a similar manner as outlined in 
Piaget’s sensorimotor theory. Our robot starts with a simple 
reflex-like behavior, yet through interactions with the external 
environment and stimulation from its internal environment, 
it develops more complex behaviors and cognitive abilities. 
Our robot was not explicitly designed around a developmental 
theory, but these developmental substages emerged purely due 
to the interactions among the different aspects of the architec-
ture – the hormonal, epigenetic, and ENN – and the external 
environment. In our past studies such as Lones and Cañamero 
(2013), when not all the previous components were present, 
the developmental phenomena described here did not emerge. 
In  particular, the addition of the ENN, with its learning and 

representational capabilities, in interaction with the other ele-
ments of the architecture, was a key factor in the emergence 
of these developmental phenomena. Our model thus offers 
potentially useful insights to bridge gaps between studies of epi-
genetic mechanisms such as Crews’ (2010) and developmental 
epigenetic theories such as Piaget’s (1952) by showing how the 
former can lead to the emergence of the latter.
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FigUre 13 | a snapshot of the neural pathway associated with a “violation of expectation episode. The greater effect can be seen in the network of the 
“Novel Robot”: exposure leads to the generation of a larger number of nodes and connections leading to a greater neural activity and to the creation of a new 
pathway if exposure to the same type of episode re-occurs often enough.
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The production of behavioral diversity – producing a diversity of effects – is an essen-
tial strategy for robots exploring the world when facing situations where interaction
possibilities are unknown or non-obvious. It allows to discover new aspects of the
environment that cannot be inferred or deduced from available knowledge. However,
creating behavioral diversity in situations where it is most crucial – new and unknown
ones – is far from trivial. In particular in large and redundant sensorimotor spaces, only
small areas are interesting to explore for any practical purpose. When the environment
does not provide clues or gradient toward those areas, trying to discover those areas relies
on chance. To address this problem, we introduce a method to create behavioral diversity
in a new sensorimotor task by re-enacting actions that allowed to produce behavioral
diversity in a previous task, along with a measure that quantifies this diversity. We show
that our method can learn how to interact with an object by reusing experience from
another, that it adapts to instances of morphological changes and of dissimilarity between
tasks, and how scaffolding behaviors can emerge by simply switching the attention of the
robot to different parts of the environment. Finally, we show that the method can robustly
use simulated experiences and crude cognitive models to generate behavioral diversity
in real robots.

Keywords: exploration, transfer learning, sensorimotor, robot, behavioral diversity

1. MOTIVATION

The engagement of robots and animals with the world generates a complex sensorimotor flow, which
features a large motor space and multiple sensory modalities. While the body, as an active interface
to the environment, simplifies in important ways the raw experience of the world (Hoffmann and
Pfeifer, 2012), the learning and decision-making challenges the individual faces are still formidable.

In recent years, the child-as-a-scientist paradigm (Gopnik, 1997, 2012; Schulz and Bonawitz, 2007;
Gweon and Schulz, 2008; Cook et al., 2011) has emerged as a major paradigm of child cognitive
development. It considers the hypothesis that children can act as would rational thinkers, creating
experiments and testing hypotheses through their interaction with the world in a manner struc-
turally similar to scientific inquiry. Several works have indeed shown that preschoolers understand
causality, distinguish it from spurious associations, and construct interventions to do so (Gopnik
et al., 2001; Schulz et al., 2007).

Constructing and carrying out informative interventions, i.e., interactions that afford information
gain, decrease the number of interactions necessary to understand a phenomenon, therefore
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ensuring an economy of time and energy. Yet, it also requires
cognitive resources that may either be lacking (the individual
cannot grasp the situation with his current cognitive abilities) or
may represent too high an effort to justify the information gain
they afford.

Robots – the focus of this paper – face a similar situation. In
autonomous developmental contexts, robots do not have access to
descriptions of their environments crafted by experts. Rather, they
have to learn from experience.When social peers are not available,
this experience has to be acquired autonomously from their own
exploration of the environment. They have to act in unfamiliar
situations that – due to a fundamental scarcity of knowledge –
escape, at first, their abilities to fully grasp them, either through
representation, prediction, control, or planning.

Designing informative interventions in those situations then
faces a chicken-and-egg problem: knowing which interventions
are going to be informative requires information that is not
yet available, and that must be acquired through informative
interventions.

Of course, that does not mean that informative interventions
cannot be conducted, as any interaction can turn out to be infor-
mative a posteriori. But the fundamental problem of choosing
which interventions to conduct while being unable to predict
which ones are going to be informative remains.

A possible strategy, then, is to create behavioral diversity. Behav-
ioral diversity characterizes the number and variety of behaviors
an agent exhibits in its environment. Determining how different
two behaviors are largely depends on the observer and its motives.
For instance, a humanoid robot placed on a surface and executing
random motor activations will engage in complex and unique
patterns of movements and will end up convulsing on the floor
most of the time. Arguably, each pattern of movement can be
considered as a different behavior. But for a task such as standing
up, the elevation of the head during movement might be the
only relevant signal. In that perspective, all patterns of movement
resulting in convulsions on the floor represent the same behavior
while the robot sitting up or standing up represent different ones.

In this paper, and in the context of an autonomous robotic
perspective, we characterize behaviors through the environmental
feedback they elicit, as perceived by the robot itself, rather than
the actions they necessitate. Exhibiting behavioral diversity then
equates producing a diversity of effects in the environment. The
dimensions of those define what we will call here, with three
interchangeable terms: behavioral space, effect space, or sensory
space.

Producing behavioral diversity can be a good strategy in
unknown situations because it is not directed toward – and as such
not constrained to produce information about – a specific goal.
Instead, it creates a set of observations about diverse features of
the environment, offering the robot a set of options that can be
explored and exploited toward specific objectives afterward. The
usefulness of such strategies for robots has been recently explored
through models of curiosity-driven learning and intrinsically
motivated reinforcement learning (Oudeyer and Kaplan, 2007;
Baldassarre and Mirolli, 2013; Benureau and Oudeyer, 2015),
and in a related line of work, on novelty and diversity search in
evolutionary robotics (Mouret and Doncieux, 2009; Lehman and
Stanley, 2011).

In many practical contexts, the situation facing the robot is
not completely unknown, and rational deductions and inferences
can be made about what type of interactions are going to be
informative. Still, they may not narrow the number of candidate
interventions to a reasonable number. In that context, producing
behavioral diversity can be seen as an essential strategy to deal
with the limits of pure logical reasoning. It provides a heuris-
tic mechanism for discovering knowledge by the learner-as-a-
scientist (be it a human or a robot) when rational mechanisms
used to uncover the laws of the world cannot be applied.

In other words, such a heuristic picks up when rational deduc-
tions end: logical reasoning identifies a set of interactions worth
trying, and the behavioral diversity heuristic provides a sampling
method to choose what to try among this remaining set. For
instance, a child playing with a teddy bear and a rattle may under-
stand that to figure out what a rattle does, interactions with the
teddy bear are uninformative. This halves the space of candidate
interactions but provides no clue about which interactions are
interesting to try on the rattle. Trying to interact with the rattle
in different ways is then an effective strategy.

This selective exploration principle is elegantly formulated by
Cook et al. (2011) in the children’s case: “selective exploration
of confounded evidence is advantageous even if children explore
randomly (with no understanding of how to isolate variables):
the more different actions children perform, the better their
odds of generating informative data.” (p. 352). Gweon and
Schulz (2008) provide a study where children presented with
confounding evidence increase the variability of their exploration,
even if that represents a physical effort. Schulz and Bonawitz
(2007) and Bonawitz et al. (2012) report similar results: children
preferentially engage with a confounding toy, rather than to play
with a new one.

But producing behavioral diversity is not necessarily a trivial
task. While producing random motor behavior is algorithmically
straightforward – it boils down to picking a random motor
action among the ones available – it does not typically generate
a diversity of interactions and effects in the environment: motor
diversity does not translate into effect diversity. This is caused by
the typical heterogeneous distribution of the redundancy of the
sensorimotor space: to some effects correspond a large number
of motor commands, while some effects can only be produced by
a small, specific set of them. In an interaction task with an object,
for instance, few motor commands may actually produce contact
with the object. The rest of them produce the same effect on the
object: nothing. As such, a uniform, random sampling of a large
motor space will only produce effects in highly redundant parts
of the sensory space for any reasonable (i.e., at the timescale of
a lifetime) number of samples. Therefore, an efficient sampling
strategy must be devised.

However, as producing behavioral diversity is most useful in
tasks where little or no knowledge of the underlying environ-
mental mechanisms exists, and this knowledge is precisely what
would be needed to choose which interactions to carry in order to
produce effects as diverse as possible, the production of behav-
ioral diversity suffers a similar chicken-and-egg problem as the
one raised by the design of informative interventions: it needs
knowledge to create interactions that will generate data that will
serve to derive the knowledge it needs.
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One possibility to break the circularity is to procure knowledge
from somewhere else. In this paper, we introduce a method to
create behavioral diversity in an unknown task by leveraging past
experience from another task. We consider a scenario where one
task has been explored, and a new, unknown task is presented
to the robot. The relationship between the two tasks is not given
to the robot, and can be arbitrary. The only constraint is that at
least some motor commands executed in the previous task can be
reexecuted in the new one. Besides this, the method transparently
adapts to arbitrary changes in sensory modalities and learning
algorithms between tasks.

In the next section, we first formalize the problem (Section 2)
and introduce a measure to quantify behavioral diversity in con-
tinuous sensorimotor spaces. We then introduce our method
(Section 3). In Section 4, we present a simple application of the
method. Then, in Section 5, we detail a more complex situation
where a robotic arm interacts with different objects.

2. PROBLEM

An environment is here formally defined as amapping f fromM to
S, which can be stochastic.M is the motor space, and it represents
a parameterization of the movements the robot can execute. It is a
bounded hyperrectangle ofRdM ; dM is the dimension of the motor
space. S is the effect space, of dimension dS; it is a bounded subset
of RdS . Effects and goals (i.e., desired effects) are elements of S. In
this paper, bothM and S are multidimensional continuous spaces,
with dS ≪ dM.

Here, the elements of the motor space do not directly encode
the raw commands that the motors of the robot receive. Instead,
we usemotor primitives that transform vectors of parameters from
the motor space M into streams of real-time, hardware-specific
motor commands. Amotor primitive can be a simple goal position
for a given motor, or be a Dynamic Movement Primitive (DMP)
(Ijspeert et al., 2013) that translates parameters into smoothmotor
trajectories; both will be used in this paper. Likewise, the sensory
space does not contain the raw readings of the sensors but rather
behavioral descriptors: parameterized behavioral representations
of raw sensors data after it has been processed by sensory prim-
itives. Concretely, a sensory primitive can encode the position
of an end-effector in Cartesian space or the displacement of an
object after a robot interacted with it. This allows to flexibly
encode sensory feedback into high-level representations. Such
sensory primitives do not only abstract low-level feedback data:
they represent the robot’s attention, by encoding specific features
of the environment and not others, and we use them deliberately
this way in this paper.

Environments are black boxes, and only the parameterizations
M and S are known to the robot. Let us remark that, while valuable
information can be encoded in the boundaries of S, nothing
prevents S to be arbitrarily large compared to the reachable space
f (M), i.e., the set of effects that can actually be produced. In
order to avoid unnecessary complexity in this paper, we will
only consider experiments where S is not significantly larger
than the axis-aligned bounding box of f (M). A method to deal
with arbitrarily large S can be found in Benureau and Oudeyer
(2015).

An exploration task, subsequently referred simply as a task, is
defined as a pair ( f, n) with f: M 7→ S the environment and n the
maximum number of samples of f allowed, i.e., the number of
actions the robot can execute in the environment.

We will consider scenarios made of two tasks, a task
A= ( fA,nA), the source task, and a taskB= ( fB,nB), the target task.
We assume that motor commands from MA can be reexecuted
in the target task. In this paper, we will consider MA =MB, but
other scenarios are possible, such as the existence of a knownmap-
ping between the two motor spaces (for instance, reusing motor
commands used on the left arm of a humanoid on its right one).
The reexecutability constraint is a strong one, but as robots body
typically changemuch less quickly than their environments, many
tasks share the same motor space. This may be less true for high-
level motor, or action, spaces, but if no known mapping exists for
the action spaces of two different tasks, the method does not just
faces a problem of applicability: it is also probably of little use.

The source task is considered to have been interacted with
using an arbitrary method, generating a sequence of observations
{xi,yi}0≤i<nA in (MA × SA)nA , composed of the executed motor
commands and observed effects. On the other hand, the robot has
not yet interacted with the target task B.

The problem we are tackling in this paper is the question of
transfer: how can the previous interaction with task A can be
exploited to improve the exploration of task B?

We compare the case where information from A is exploited
versus the situation where it is not, using as a baseline mecha-
nism a random goal babbling architecture (SAGG-Random). Goal
babbling has previously been shown to be an efficient strategy for
the acquisition of inverse models (Baranes and Oudeyer, 2013;
Moulin-Frier andOudeyer, 2013) and in the production of behav-
ioral diversity. We compare both cases using a behavioral diver-
sity measure: threshold coverage (Benureau and Oudeyer, 2015).
Improving the exploration of task B therefore means increasing
the threshold coverage.

2.1. Threshold Coverage
Threshold coverage or τ -coverage is a behavioral diversity mea-
sure: it considers only the consequences of the motor commands,
i.e., in our autonomous context, the behavioral effects as encoded
in S, not the motor activations themselves. Motor motions can
of course be part of behavior and contribute to diversity, when
adequate sensors and sensory primitives are used to encode them
in S. This is, for instance, the case in the behavioral descriptors
used by the MAP-Elites algorithms (Cully et al., 2015).

Threshold coverage considers the volume of the union of the
set of hyperballs of radius τ – the threshold – that have for centers
the observed effects (Figure 1).

Formally, considering a set of points C belonging to Rn, and
τ ∈R+, we define the τ -coverage of C as:

coverageτ (C) = volume

∪
yi∈C

B(yi, τ)


with B(yi, τ ) the hyperball of center yi and radius τ .

The threshold coverage measure allows to quantify how much
of the effect space is not more distant than τ of an observed effect.
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volume of the union = diversity
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FIGURE 1 | In this 2D example, the threshold diversity is represented
by the green area (top). The threshold diversity measure quantifies how
spread are the observed effects, up to a threshold τ . The measure is not
sensitive to differences between distributions where all centers are pairwise
more distant than τ (bottom).

As a consequence, the threshold coverage measure is insensitive
to differences between sets where the observed effects are pairwise
more distant than τ (Figure 1).

Computing the threshold coverage requires to compute the
volume of an arbitrary set of balls of the same radius. Exact
methods exist usingVoronoi PowerDiagrams (Cazals et al., 2011),
that partition the space into asmany areas as there are balls; in each
area, the center of only one ball is present, and the contribution
of this ball to the overall volume can be computed independently
of the others. There are also approximate methods based on
Monte-Carlo sampling (Till and Ullmann, 2009).

We use the threshold coverage to characterize and contrast the
robots’ behavior under different algorithms. Let us remark that the
robot, as an autonomous agent, never has access to the threshold
coverage measure; it is purely an experimenter’s tool.

3. METHOD

The idea behind our algorithm is to select a subset of motor
commands executed during the exploration of the source task, and
reexecute each of them on the target task. This subset is assembled
with motor commands that generated diverse effects, i.e., that
generated behavioral diversity, in the source task.

The assumption is that the production of behavioral diversity
is due to the motor commands generating forces that engage the
environment in different ways. Reexecuted in a different task,
these motor commands are a priori more likely to generate a
diverse set of effects – and thus information – than a set of motor
commands that produced the same effect in the source task.

We can interpret the method in the context of the learner-
as-a-scientist paradigm; it can be viewed as creating a repertoire
of experiments to conduct in unknown situations to discover
how the environment behaves and what interactions it responds
to. This type of behavior is seen in nature: “A young corvide
bird, confronted with an object it has never seen, runs through
practically all of its behavioral patterns, except social and sexual
ones” (Lorenz, 1996).

Likewise, a robot interacting with a ball needs to use different
movements to make it roll left, right or forward. Having learned

motor 

space

body 

redundancy

environment 

redundancy

effect

space

forces applied  

by the body

FIGURE 2 | In this schematic representation, four clusters of effects
are produced through different types of redundancies. From top to
bottom, the first two effects are similar because their motor commands are
similar. The second cluster exhibits body redundancy: two different motor
commands end up generating the same forces on the environment. The third
exhibits environmental redundancy: different forces produce the same effect.
The fourth exhibits all of the three previous cases. Assuming the environment
is neither stochastic nor chaotic, when selecting a diverse set of effects in the
sensory space (for instance, the set highlighted in orange), the set of motor
commands that generated them tends to display low body redundancy.

those movements, if the robot is provided with a cube, the pre-
diction or control model of the ball is difficult to exploit directly:
the two objects have significantly different dynamics. However,
by reusing the behavioral patterns – the movements – on the
cube that pushed the ball in different directions, the robot can
immediately produce a diversity of effects on the cube, and start
learning which ones still apply and are most effective.

Selecting motor commands through diversity can be under-
stood as trying to filter body redundancy. In a given task, the
redundancy of the body and the environment will make different
motor commands produce the same effect, as Figure 2 illustrates.
If the body redundancy is at play, two different motor commands
will end up applying similar forces on the environment: this is the
case of a redundantmulti-joint robotic arm, wheremultiplemotor
motions exist that generate the same end-effector trajectory. If
the environmental redundancy is at play, different forces will
produce the same salient effect: this is the case when pushing or
pulling on a closed door. A set of motor commands that produce
a diversity of effects tends to display neither body nor environ-
mental redundancy. When the environment changes, the absence
of body redundancy is conserved among this set. And if the new
environment is similar to the old one, some of the environmental
redundancy may be avoided as well.

Of course, a stochastic or chaotic environment can counterbal-
ance its redundancy: the samemotor command executedmultiple
times can generate diverse effects. In that case, however, reexe-
cuting this motor command multiple times in the new task is a
justified strategy to generate diversity.

In the following, we detail first how the source task is explored,
and the learning algorithms we use. Then, we explain how the
exploration is modified for the target task.

3.1. Exploration of the Source Task
In this paper, the source task will be explored using a goal-
directed exploration algorithm. Goal-directed exploration
(Oudeyer and Kaplan, 2007) implementations have been
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proposed in Baranes and Oudeyer (2010), Jamone et al. (2011),
and Rolf et al. (2011), and as part of the SAGG-RIAC architecture
(Baranes and Oudeyer, 2013) and have been shown to be effective
in exploring sensorimotor spaces with large motor spaces. These
methods for goal babbling as well as related methods such as
MAP-Elite (Cully et al., 2015) have also been shown to efficiently
generate forms of behavioral diversity.

In what follows, we introduce and use the E algorithm,
a variant of the SAGG-Random goal babbling algorithmic archi-
tecture (Baranes and Oudeyer, 2013; Moulin-Frier and Oudeyer,
2013). We adapt SAGG-Random by adding a bootstrapping phase
of random motor babbling lasting Kboot steps before the random
goal babbling phase (Algorithm 1); the bootstrapping phase is
necessary because the inverse models we use need some existing
data to work. During the bootstrapping phase, random motor
commands are executed, while during the random goal babbling
phase, random goals are chosen uniformly in S, and an inverse
model (introduced in Section 3.2) is used to transform goals
into motor commands. In the experiments, we set Kboot to a
low value in order to reduce the duration of the random motor
babbling phase, without significantly compromising performance.
In a more general context, Kboot could be computed dynamically,
for instance, by using the method introduced in Benureau and
Oudeyer (2015).

We use here two implementations of this architecture, corre-
sponding to two different learning algorithms, IP
and ILBFGSB-LWLR, to implement the I step, as
described in the next section.

3.2. Inverse Model
An inverse model is used whenever goal babbling is chosen as an
exploration strategy in the E algorithm. Let us remark that
our objective here is not to acquire a forward or inverse model of
the environment. The learning algorithms are functional entities
of the exploration process, and the models they produce are not
evaluated. In particular, theymaymake assumptions that preclude
them from creating accurate models of the environment – we will
discuss such a case in Section 4. In this article, we will be using
two different inverse models: a simple, perturbation-based one
and another based on an optimized regression method.

3.2.1. Perturbation-Based Inverse Model
The perturbation-based model finds the best motor command to
reach the goal among those already executed in the past and cre-
ates a slightly perturbed variation of it to be executed, in a fashion
similar to the mutation operators of evolutionary algorithms.

Given a motor command x = {x0, x1,…, xdM−1} in M, a
perturbation of x is defined by:

PERTURBd(x) = {RANDOM(max(ai, xi − d(bi − ai)),
min(xi + d(bi − ai), bi))}0≤i<dM

with M =
∏

0≤i<dM [ai, bi] as a hyperrectangle of RdM and with
the function R(a,b) drawing a random value in the interval
[a,b] according to a uniform distribution. d is the perturbation
parameter, and belongs to [0, 1]; it is the only parameter of the
inverse model, that we can now express in Algorithm 2.

ALGORITHM 1 | EXPOLORE ( (f, n), Kboot).

Input: (f, n) ◃ Exploration task.
Input: Kboot ◃ Duration of random motor babbling.
Output: H= {xj, yj}0≤j<n ∈ (S×M)n ◃ Exploration history.

H←∅
for t: 0→ n – 1 do
if t<Kboot then ◃ Run motor babbling for the first Kboot

steps.xt←MOTORBABBLING(M)
else ◃ Then switch to goal babbling.

xt←GOALBABBLING(S, H)
yt← f (xt) ◃ Execute the motor command.
add (xt, yt) to H ◃ Update the history.

procedure MOTORBABBLING(M) ◃ Motor babbling does not depend on
history.choose xt randomly in M

return xt

procedure GOALBABBLING(S, H) ◃ Corresponds to the SAGG-Random
architecture.choose a goal gt randomly in S

xt← INVERSE(gt, H) ◃ Use the inverse model on the goal to
produce a motor command.return xt

ALGORITHM 2 | INVERSEPERTURBd(gt, H).

Input: gt ∈S ◃ A goal.
Input: H= {(xj,yj)}0≤j<t−1 ∈ (M×S)t−1 ◃ Current history: past t−1

observations.
Input: d ∈ [0, 1] ◃ Perturbation ratio.
Output: xt ∈ M ◃ Candidate motor command.

xnn, ynn ← argminxj,yj∈H (||yj−g||) ◃ ynn is the nearest neighbor of g.

xt ← Perturbd(xnn) ◃ Perturbing the motor command of the
nearest effect.

ALGORITHM 3 | INVERSELBFGSB-LWLR(gt, H).

Input: gt ∈ S ◃ A goal.
Input: H= {(xj,yj)}0≤ j< t−1 ∈ (M×S)t−1 ◃ Current history: past

t–1 observations.
Output: xt ∈ M ◃ Candidate motor

command.

xnn, ynn ← argminxj,yj∈H (||gt−yj ||) ◃ ynn is the nearest
neighbor of gt.Initialize L-BFGS-B optimization with xnn

xt ← MinimizeLBFGSBx∈M(||gt – PredictLWLR(x, H)||)

This perturbation-based inverse algorithm is simple and effec-
tive. Its complexity is linear in both dM (perturbation) and nds
(nearest neighbor search). Its main assumption is that a small
perturbation of the motor space produces a comparatively small
change in the sensory feedback. The model has difficulties escap-
ing local minima. In practice, in the experimental contexts con-
sidered in this paper, the performance and robustness of this
model is competitive withmore complex approaches. This inverse
model is not completely unreasonable in biological organisms
(Loeb, 2012), and that related algorithms implemented as part of
the SAGG-Random architecture such as in Baranes and Oudeyer
(2013) and Moulin-Frier et al. (2014), as well as other variations
such as the MAP-Elite algorithm (Cully et al., 2015), have yielded
good results in diverse robotics contexts.

3.2.2. Optimized Regression Inverse Model
We also use an optimized regression inverse model in some
experiments, based on an optimization routine, L-BFGS-B
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(Byrd et al., 1995; Zhu et al., 1997), and a predictor, Locally
Weighted Linear Regression (LWLR) (Cleveland and Devlin,
1988; Atkeson et al., 1997a,b).

3.2.2.1. Forward Model
To approximate the function f from a set of observations, we
employ Locally Weighted Linear Regression (LWLR) (Cleve-
land and Devlin, 1988; Atkeson et al., 1997a,b), an incremental
machine learning algorithm. Although LWLR is more sophisti-
cated than the perturbation-based inverse model, it is still a sim-
ple method compared to the state-of-the-art. Here, the absolute
learning performance is of little concern as we are interested in
comparing different exploration strategies. Still, LWLR is reason-
ably robust (Munzer et al., 2014) for the learning tasks we are
considering. Compared to the perturbation-based inverse model,
LWLR is able to extrapolate, i.e., the distance between the goal
and the existing observations is taken into account, but it also
needs several closely clustered observations to do so efficiently;
the perturbation-based inverse model only ever needs one.

Given a set of observationsH= {(xj,yj)}0≤j<t–1 where for each
j, f (xj)= yj, and given a query vector xq, for which we wish to
predict the effect, we compute the Euclidean distance to xq from
each point xj, and derive the following Gaussian weights wj:

wj = e
−∥xj−xq∥2

2σ2

We consider the matrices X with Xi,j = (xi)j, Y with Yi,j = (yi)j,
and W= diag(w0,w1,. . .wt–2), and compute:

β = ((WX)TWX)+((WX)TWY)

where (WX)TWX is a symmetric matrix, and ((WX)TWX)+ is its
Moore–Penrose inverse (Penrose and Todd, 1955). Then,

yq = xqβ

yq is the LWLR estimate of xq, given the observed data H. We
call PLWLR(xq, H) the function that computes yq for any
xq ∈M given H.

In our implementation, σ, which controls the locality of the
regression, is dynamically computed.We computeσ as the average
distance of the k= 2dM + 1 closest points of the query vector xq.
All other points of H besides the k closest neighbors are given a
weight of zero.

3.2.2.2. Inverse Model
Given a goal gt ∈ S, we want to produce a motor command xt ∈M
so that || f (xt) – gt|| is small.

With M being a hyperrectangle of RdM , we use L-BFGS-
B (Limited-memory Broyden–Fletcher–Goldfarb–Shanno Bound
constrained (Byrd et al., 1995; Zhu et al., 1997), version 3.0
(Morales and Nocedal, 2011)), a quasi-Newton method for
bound-constrained optimization, to minimize the error. L-BFGS-
B use an approximation of the Hessian matrix to direct the opti-
mization (because the Hessian cannot be directly computed, it is
approximated using finite differences). We approximate ||f (x) –
g|| with ||PLWLR(x, H) – g|| and use it with L-BFGS-B to
further approximate argminx∈M(||f (x) – g||).

The optimization process is initialized with the motor com-
mand corresponding to the closest neighbor of g in the set of
observations (see Algorithm 3).

The I method is replaced by either IP
or ILBFGSB-LWLR in the source task exploration algo-
rithm, E, and the one of the target task, R, that we
introduce now.

3.3. Exploration of the Target Task
The exploration of the target task is organized around two algo-
rithms. The first, T, is applied at the end of the interaction
with the source task and produce a set of motor commands bins
that are used by the second, R, to affect the exploration of the
target task.

The T selects motor commands that produced a diver-
sity of effects. It works by partitioning the sensory space of the
source task, SA. We use a simple grid here. To each cell of the grid
corresponds a bin of motor commands that contains all the motor
commands whose effects belong to the cell. This way, similar
effects in the source task have their motor command gathered in
the same bin (see Algorithm 4).

The R method is a variation of the E algorithm,
where a part of the random motor babbling steps are replaced by
reuse steps. During a reuse step, a random bin among the ones
generated by the T algorithm is selected, and a random
motor command is drawn from the bin without replacement
and executed in the environment. Such a selection generates a
sequence ofmotor commands that correspond to effects represen-
tative, on average, of the diversity of effects produced in the source
task. Goal babbling behavior is unaffected.

To produce the R method, the call to MB
in the E algorithm is replaced by a probabilistic call to
RB and MB, according to a probabil-
ity preuse (see Algorithm 5).

This procedure has a low computational cost, and only transfers
structured sets of motor commands between tasks. No sensory
data are shared across tasks, which mean that no forward or
inverse model is shared. It makes the method compatible with
arbitrary changes in sensory modalities, and insensitive to the
quality forward or inverse models of the source task, should
they exist. Furthermore, by separating the T and R
method, we can precompute the transferred data before the
second task is known, and then use it even if the sensory data of
the first task has been forgotten.

Here, we have proposed a T method that partitions
the sensory space of the source task. This partitioning encodes

ALGORITHM 4 | TRANSFER(HA).

Input: HA = {(xj ,yj )}0≤j<nA ◃ Exploration history of the source task.
Input: A partitioning method. ◃ We use grid partitioning in this paper.
Output: B ◃ Set of motor commands bins.

Partition SA according to the partitioning method, and to each region,
assign a bin.

The set of all bins is B
for (xj, yj) ∈ HA do

add xj to binB (yj) ◃ binB (yj) is the bin of the region of SA
where yj belongs
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ALGORITHM 5 | REUSE(( fB, nB), B, Kboot, preuse).

Input: ( fB, nB ) ◃ Target task.
Input: B ◃ Set of bins of motor

commands.
Input: Kboot ◃ Duration of bootstrapping.
Input: preuse ◃ Ratio of transfer motor

babbling.
Output: HB = {(xj,yj)}0≤j<nB ∈ (SB ×MB)

nB ◃ Observation history.

HB ← ∅
for t: 0→ nB − 1 do

if t≤Kboot then
if RANDOM(0, 1)≤preuse then ◃ Probabilistic call to reuse.

xt ← REUSEBABBLING(MB, B)
else

xt ← MOTORBABBLING(MB)
else
xt ← GOALBABBLING(SB, HB)

yt ← fB(xt ) ◃ Execute the command.
add (xt, yt) to HB ◃ Update the history.

Procedure REUSEBABBLING(MB, B)
if at least one bin of B is not empty then

choose a non-empty bin bR of B randomly.
draw xt from bR without replacement
return xt

else ◃ Revert to motor babbling
if no reusable command is
available.

return MOTORBABBLING(MB)

diversity, andmay be non-trivial in complex sensory spaces. There
is flexibility in how the T method could be implemented
however. It could, through an arbitrary method – optimization
of a diversity measure for instance – build a small set of motor
commands whose effects have high diversity, and return a single
bin containing them to the Rmethod, discarding other obser-
vations from the source task. The R method would select
randomly from this single bin as a result.

In the following sections, we conduct experiments to show
that R is effective in situations that involve changes in the
morphology of the robot (arms with different link lengths in
Section 4), that involve switching an object for another between
the source and the target task (ball/cube experiment in Section
5.2), exploiting pure random motor babbling (Section 5.2.2),
dealing with dissimilar situations (Section 5.2.3), and scaffolding
ones (pool experiment in Section 5.3). We also investigate how
R can be used to exploit simulation results on real robots
(Section 5.5).

4. EXPERIMENT ON PLANAR ARMS

To illustrate the R method, let us consider a pair of planar
robotic arms, each with 20 joints. The first arm has same-length
links totaling one meter, and the environment returns the Carte-
sian position of the end-effector. The second arm has links such
that, going from the base to the end-effector, each link is 0.9
times smaller than the previous one, while the total length of the
arm remains one meter; this arm also returns the position of the
end-effector, but using polar coordinates (Figure 3).1

1The source code and data for producing all graphs is published (Benureau and
Oudeyer, 2016) and is made available at https://dx.doi.org/10.6084/m9.figshare.
2816284

FIGURE 3 | When executing the same command on both arms, the
position of the end-effector is significantly different most of the time.
Here depicted are 50 pairs of executions of the same motor command on the
two 20-joint arms, five of which that are highlighted.

The two arms have a different morphology – a situation
akin to morphological development. They share, however, the
same number of joints with the same available ranges (±150°):
they have the same motor space and motor parameterization.
However, because the lengths of the links are different, most
motor commands will result in a different position for the
end-effector, as shown in Figure 3. And because the positions
are expressed in two different coordinate systems, the inverse
model of one arm is difficult to exploit on the other arm,
without having, or learning, a mapping between the coordinate
systems.

The exploration on the first arm is conducted over 5000
steps, using the E algorithm with Kboot = 50, with the
perturbation-based inverse model with d= 0.05, i.e., perturbing
each joint by at most± 15°.

The exploration of the target arm is the same as the source
arm, except that all the 50 motor babbling steps of the source
exploration strategy are replaced by reuse steps, as per the R
algorithm with preuse = 1. Figure 4A illustrates how motor com-
mands to be reused are selected, as per the T algorithm.
Figures 4B,C show the difference between the bootstrapping
phase of the R and E algorithm. The impact of R
on the exploration is important at the beginning and remains
beneficial throughout, even after 5000 steps.

Figure 5 displays the τ -coverage (with τ = 0.05) of both
the R and the E algorithm on the target arm over
100 repetitions of the experiment. In both cases, the cover-
age was computed in the Euclidean space. The R strat-
egy provides a performance increase that last even after 5000
steps: in 75% of the cases, the R strategy performs strictly
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C TARGET TASK, EXPLORE ALGORITHM

A SOURCE TASK

B TARGET TASK, REUSE ALGORITHM

selected effects selected motor commands

reused motor commands

random motor commands no reuse exploration (400 steps) no reuse exploration (5000 steps)

reuse exploration (400 steps) reuse exploration (5000 steps)

FIGURE 4 | Illustration of the REUSE algorithm. After the end of the exploration of the source arm (A), a 20×20 grid partitions the effect space, and as many
times as necessary (50 times here), a random cell is chosen, as well as a random effect inside it (dots highlighted in red). The motor commands that produced the
chosen effects are then reexecuted on the target arm (B). This replaces the initial 50 motor babbling steps of the EXPLORE algorithm (C). In both cases, the effects
produced by random motor babbling or a reused motor command have been highlighted in red. While random motor babbling produces convoluted arm postures
whose effects are clustered around the center, the reused motor commands produce effects spread out over the reachable space, and feature straighter postures.
This difference in bootstrapping has a huge impact on the coverage at t= 400, and a lesser, but still present one after 5000 steps.

better than the best-case scenario of the E strategy. The
usage of R accelerates the exploration of the reachable
space.

However, an interesting phenomenon is present. Theworst case
of the R strategy, as shown by the dotted lines, performs
worse than the worst case of the E strategy.
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coverage area (in m2)

timesteps

with reuse

without reuse

maximum coverage

FIGURE 5 | The exploration with Reuse on the second arm covers
significantly more of the reachable space early on than the one
without. The graph shows the τ -coverage (with τ = 0.05) of the second arm
explored with the REUSE and EXPLORE algorithm respectively, over 100
repetitions of each experiment. The median case is displayed, surrounded by
a margin going from the 25th to the 75th percentiles. In dashed lines, the
worst and the best coverages are also pictured.

To understand why, it is interesting to look at goal babbling
as an evolutionary algorithm. From an evolutionary robotics per-
spective, the motor commands are the genetic encoding, the arm
posture the phenotype and the effect – the position of the end
effector – is the behavior of the arm. At each timestep of goal bab-
bling, a random goal is chosen. The distance to this goal defines
a fitness function, and the highest-performing past observation,
whose effect is the nearest neighbor of the goal, is chosen to
reproduce through mutation: this is how our perturbation-based
inverse model works.

Therefore, after the bootstrapping phase, arm postures are cho-
sen for reproduction in proportion of how close their effects are to
the chosen goals. When using random motor babbling, most pos-
tures produce effects near the center. Because goals are randomly
chosen in the [−1,1]× [−1,1] square, most goals are farther from
the center than most observed effects. It means that postures
producing effects on the edge of the initial cluster are chosen
and mutated with disproportionate frequency. Through repeated
selection and mutations those postures and their descendants,
straighter and straighter postures are discovered.

Sometimes, however, those initial arm postures contain loops.
Those loops represent local minima that are difficult to escape.
The mutation and selection process – our perturbation-based
inverse model – tends to straighten arm postures to reach distant
target. In the process, loops are tightened, not removed. Therefore,
the maximum span of the arm is reduced, and the exploration
covers only a fraction of the reachable space, as shown in the
graphs of Figure 6.

On the source arm, because the links are all of the same length,
loops have the same cost in span regardless of where they appear.
But on the target arm, they are most costly near the base of the
arm, where links are longer. Therefore, arm postures featuring
loops near the base of the arm tend to be shorter on average than
postures with loops near the tip, even in a randommotor babbling
sampling. It means that, when using the E algorithm,
most of the time, those postures do not get selected for far goals
after the bootstrapping phase, as better solutions exist. Therefore,
the postures that explore the edge of the reachable space have a

tendency to have either loops near the tip of the arm or no loops
at all.

The only way for postures with costly loops near the base of
the arm to be selected on the target arm is for them to have the
rest of the arm rather straight, and in a fashion disproportionate
with the other arm postures they compete with. This is exactly
the scenario that happens in the worst case of R: all the
reused arm postures where the tip is far from the center have
loops near the base of the arm, as Figure 6 illustrates. This is not
a problem for the source arm, but for the target arm it limits the
achievable span much more than if the loops were near the tip of
the arm.

This explains the difference in coverage between the worst case
of the R and E algorithm on the target arm, and
serves to illustrate a danger of the R algorithm: providing
good solutions trapped in local minima early in exploration can
prevent the discovery of better solutions, more adapted to the
target task. Let us remark here that all the 50 motor babbling
steps of the E algorithmwere replaced by reuse steps in the
R algorithm. But allowing a portion of the 50 steps to remain
random motor babbling, for instance with preuse = 0.5, would not
solve the problem (we tested), as the arm postures with the best
span in the bootstrapping phase would remain the reused ones,
and get selected and mutated more than the others.

Of course, the occurrence of such a problem is highly contin-
gent on the specifics of the two tasks, on how goals are chosen
and what inverse model is used. But the risk, when transferring
knowledge or skill from one task to another, to negatively impact
the performance in the target task is always a possibility, and is
difficult to protect from inside the framework of the problem we
are considering.

Still, this does not mean that R should be avoided. While
it has the potential to induce performance-hindering local min-
ima, it also has the potential to propose good solutions early in
exploration. During the first 150 steps, the worst case scenario of
the R algorithm is actually better than the best-case scenario
of the E one. In a robotic and operational context, having
good-enough solutions quickly might matter more than finding
perfect ones eventually. Robots do not live at the asymptote. If
a robot needs to learn how to whisk for a recipe, it may matter
more than the eggs and milk are mixed under 15 minutes than the
fact that the quickly discovered whisking motion consumes more
energy, is less efficient andmakesmore noise than necessary. Even
in a learning context, having good early performance can help
decide quickly if the skill is possible to learn, worth learning, and
can help form an estimation ofwhat is achievable in the target task,
which may in turn quickly bootstrap planning capabilities.

Before moving on to a more complex experimental setup, it
is interesting to analyze why the R method is effective. As
pointed out before, the two arms have different inverse mod-
els, and the relationship between them is non-trivial. By reusing
motor commands that produce a diversity of effects, we make
the assumption that the diversity mapping is simpler between
the two tasks: a set of motor commands generating a certain
amount of diversity on the source arm will generate a similar
amount on the target arm. This is something we can verify
experimentally.

Frontiers in Robotics and AI | www.frontiersin.org                                                     52                                                                             March 2016 | Volume 3 | Article 8

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Benureau and Oudeyer Behavioral Diversity Generation through Reuse

all 50 transferred motor commands 

(executed on the target arm)

L1

L2

L1

L2

L2

L2

L2

L2

smaller 

coverage

D WORST CASE, EXPLORE ALGORITHM:

TARGET ARM

B REUSED COMMANDSA WORST CASE, REUSE ALGORITHM:

SOURCE ARM

C WORST CASE, REUSE ALGORITHM:

TARGET ARM

L2

L2

L2

L2

L1

L1

L1

L1

FIGURE 6 | Using REUSE can be worse than not using it. This graphs depicts the worst case – coverage-wise – of the REUSE and EXPLORE algorithms among the
100 cases used to compute Figure 5, for t= 5000. In (A,C,D), the arm postures with the longest span in the cardinal and intercardinal directions are displayed. In
the worst case of REUSE, the source exploration features postures that have loops near the base of the arm (A). We can even distinguish between two species of
postures. Ones that have a loop starting on the first joint (L1), and ones on the second joint (L2). Those postures are selected by the REUSE algorithm (B), and
reexecuted in the target task (C), resulting in posture with loops that severely limits the span of the arm, as they are composed of long segments. The species
distribution L1/L2 is remarkably similar between the source and the target task. When EXPLORE is run directly on the target arm, those loops are eliminated by the
competition with posture without loops or with loops near the tip of the arm, of far less consequence.

In Figure 7, the coverage of sets of random motor commands
of diverse sizes is highly correlated between the two arms. This
correlation in the production of diversity is therefore an assump-
tion it seems possible to rely on and exploit, even, in some cases,
when the sensory modalities or the morphology of the robots are
different between tasks.

5. OBJECT INTERACTION TASKS

5.1. Experimental Setup
We consider an experiment where a robotic arm interacts with an
object and observes its displacement at the end of the interaction.
In a developmental context, an interaction task is relevant, as it

Frontiers in Robotics and AI | www.frontiersin.org                                                     53                                                                             March 2016 | Volume 3 | Article 8

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Benureau and Oudeyer Behavioral Diversity Generation through Reuse

Pearson correlation = 0.993

coverage (m2)

increasing-length links arm

coverage (m2)

same-length links arm

FIGURE 7 | The diversity production of the same-length-links arm and
the increasing-length-links arm is highly correlated. The graph displays
the coverage of 1000 different sets of random motor commands of size 1,
2, . . ., 1000, respectively, for the 20-joint source and target arm, with
τ =0.05.

pertains to the early exploration of the world, where the function
of most objects is still unknown.

We used both a simulated and a hardware setup, but com-
paratively few experiments were conducted on the hardware. For
this reason, in this section, we mainly focus on describing the
simulated setup, but discuss aspects related to the morphology of
the real robot as well. The hardware setup is thoroughly described
in Section 5.4.

The robot is a serial chain of six servomotors. The three proxi-
malmotors areDynamixel RX-64 and the three distal ones areRX-
28. Those servomotors are capable of delivering respectively 6.0
and 2.5 N ·m of stall torque, with an angular resolution of 0.29°,
measured with a mechanical potentiometer, whose precision is
variable (across the angle range and between different motors).
During the experiments, the real servomotors were operated in
position control mode using the embedded PIDs, with a control
loop for the position running at 100Hz. In simulation, the physical
characteristics of the motors are reproduced as much as possible,
and their control in position is done in lockstep with the physics
engine simulation steps, at 50Hz.

5.1.1. Dynamic Movement Primitives
The movements of the robot are generated using dynamic move-
ment primitives (DMP). DMPs are parametrized dynamical sys-
tems introduced by Ijspeert et al. (2002). They are computed
from sets of differential equations that produce smooth move-
ments robust to perturbations. We chose DMPs, and the specific

parameterization we explain below, because it allowed to express
many different arm trajectories with a compact description (i.e.,
few motor dimensions). We use the implementation of Stulp
(2014), based on Ijspeert et al. (2013) with the sigmoid variation
of Kulvicius et al. (2012).

DMPs are based on damped spring dynamics, perturbed by a
forcing term [equation (1)]. The forcing term is a linear combina-
tion of basis functions [equation (4)]. Here, Gaussian activation
functions ψi(st) are used, with center ci and width σi, weighted by
wi [equation (3)]. vt is the phase of the forcing term, described by
an sigmoid decay term [equation (2)]. In the following equations,
T is the duration of the movement,∆t is the time resolution, α, β,
and γ are constants and g is the target state.

ẍt = α(β(g− xt)− ẋt) + ft (1)

v̇t = − γe
γ
∆t

(T−t)

(1 − e
γ
∆t

(T−t)
)
2 (2)

ψi(t) = e−(
t
T−ci)

2
/2σ2

i (3)

ft =
∑N

i=0 ψi(t)wi∑N
i=0 ψi(t)

vt (4)

In this experimental setup, the start- and end-points are made
identical (g= x0) and correspond to the motor being in the zero
position (Figure 8). We use two basis functions per motor, with c0
and c1 fixed, respectively, at 1/3T and 2/3T, with T= 2.5 s (∆t is
20ms and the simulation is stopped at 5 s). σ0 and σ1 are shared
by all motors.

We do not directly use the weights for parametrizing the motor
space. Instead, we use the LWLR function approximator provided
with the DMP library (Stulp, 2014), and define two linear func-
tions per motor, with slopes a0,a1 and offsets b0,b1, respectively.
The function approximator then computes the forcing term to
approximate as much as possible these functions at time c0 and
c1. Although directly manipulating the weights would be more
natural, this method provides a rich diversity of trajectories,
and, because DMPs were not a focus of our work, we did not
inquire further aboutmaking the systemperformbetter ormaking
the representation more compact. Each motor has independent
a0,a1,b0,b1 parameters, and the motors share σ0, σ1, while c0,c1
are fixed. With six motors, the motion trajectory of the robot is
therefore parametrized by a vector of dimension 26. After solving
and integrating the dynamical system, we obtain each motor
angular position as a function of time.

To avoid the real robot removing (rather brutally) their own
wires, the range of the first and fourth motor from the base are
restricted to ±110° and ±120° (Figure 8). All other motors are
physically restricted by their horns to ±99°. In simulation, the
robot has the same angle constraints.

The ranges of the DMP parameters are set, so that 95% of the
trajectories of a motor would fall in between the angles themotors
were able to produce (using an empirical evaluation), and the rest
are clipped to legal motor values.

Before executing the motion on the robot, we check for self-
collisions, and collisions with the armature of the experiment.
If present, the trajectory is truncated and stops just before the
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FIGURE 8 | The robot is provided an object to interact with. Pictured here, the position zero of the robot, which corresponds to the start and target position for
each movement.

collision to avoid damage on the real robot. The same collision
prevention methods are used in simulation, with the exception
that the robot can collide freely with the ground.

5.1.2. Environment and Objects
The simulation is conducted using the robot simulator V-REP
(Virtual Robot Experiment Platform), with the Open Dynamic
Engine (ODE) as a physics engine backend. The environment
features an object placed in a cubic arena. The robot arm can
interact with the object and the ground.

We consider two sizes for the arena: 600mm width and
2000mm width. The larger arena approximates an unbounded
environment, while interactions between the object and the walls
are frequent in the smaller one. Unless indicated otherwise, we
assume the 600-mm arena is used. Two different objects are used:
a ball and a cube, of diameter and width both equal to 45mm.

As a physics engine, ODE has many undesirable and chaotic
behaviors that could be overexploited to produce diversity. For
instance, movements where the robot pushes from the top of an
object toward the ground yield large and significantly different
object displacements over repeated executions.

As a preventive measure, we monitor the forces that are applied
between the end effector of the robot and the rest of the environ-
ment. If at any point a reactive force exceeds 100N, the simulation
is discarded, and the sensory feedback that would be produced by
an immobile robot is returned.

5.1.3. Sensory Primitive
At the end of the simulation, the trajectory of the object is pro-
cessed by sensory primitives that compute the sensory feedback.
We consider a simple sensory primitive that returns the displace-
ment of the object projected on the ground at the end of the
simulation. The displacement is returned as a vector of length 3:
the displacement in x, in y, and a discrete dimension of saliency,
which has value 0 if no collision happened, and 1 otherwise.

The saliency dimension helps separate observations that cre-
ate collisions from one that do not. This is not crucial for the

perturbation-based inverse model, but it makes the LWLR-based
inverse model more robust.

5.1.4. Behavior of the Setup
The simulation environment does not yield repeatable results.
Repeated executions of the same movement can generate signifi-
cantly different effects, as shown inFigure 9A. Indeed, the random
seed of the physics engine is not reset when the scene is reset.2
As ODE uses the current state of the random generator to decide
the order with which to resolve the constraints at each step, small
variations are introduced that are amplified by the chaotic nature
of the interaction with the objects.

In Figure 9B, the same motor command is executed on the
cube and ball task. The same motions do not generate necessarily
similar effects on the objects. Moreover, the interaction with the
object can significantly impact the trajectory of the end effector.

We ran experiments on the ball task (because the cube occupies
more volume, the ball gives a lower estimate of the collision
probability) to decide which number of motor babbling timesteps
to use during the experiments. By tallying the number of collisions
(not counting those that generate too much force) on a large
number of randommotor babbling steps (25,000), we estimate the
probability to interact with the object during amovement at 2.87%
for the cube and 1.81% for the ball. To ensure a high probability
that every motor babbling phase had at least one collision, we
set the bootstrapping phase to 200 steps (resulting in 99.17 and
97.40% probability of at least one collision for the cube and the
ball, respectively).

5.2. Cube and Ball Experiments
In this section, we conduct several experiments with the ball and
the cube task. All experiments are conducted in simulation. In all
experiments, the coverage measure is computed with the radius,

2This is an implementation detail of V-REP, and there was no way to change it the
version we used.
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FIGURE 9 | (A) The physics engine is chaotic. When the same motor command is reexecuted multiple times, the variations in object displacement are significant.
(B) When reusing a motor command moving with the ball on the cube, the produced displacements can be quite different. Let us remark that the interaction with the
object can largely impact the robot’s motion.

τ , set to 22.5mm, which is the radius of the ball and the half-width
of the cube.

5.2.1. Cubes and Balls
The first experiments look at how R is effective when reusing
the exploration of one object for another.

The source task is explored using the E algorithm with
the perturbation-based inverse model (d= 0.05). The random
motor babbling phase lasts 200 steps (Kboot = 200). The target
task is explored with the R algorithm, with the same inverse
model, and 200 steps of bootstrapping as well. During the boot-
strapping phase, each motor babbling step has a 50% probability
to be replaced by a reuse steps (preuse = 0.5). In both cases, the
exploration lasts 1000 steps in total.

Figure 10 depicts an execution of the R algorithm. The
cube is the source task, and the ball is the target task, compared
with the ball task using the E algorithm. The impact of
R is visible during the bootstrapping phase: reusing motor
commands from the cube exploration allows to move the ball in
many directions in the first 200 steps. In the E case, only
three interactions are made during that time.

In Figure 11, the τ -coverage the four combinations of the cube
and ball tasks is shown, for 25 repetitions of the experiment.
The R algorithm outperforms the E algorithm in all
four cases, but the improvements are most important early in
exploration. Moreover, when a task uses itself as a source, the
impact of the R algorithm is predictably better than when
coming from the other object. This is mostly pronounced on the
cube task: reusing the ball task is much less effective than when
the cube task reuses itself.

A likely explanation of this asymmetry lies in how differently
the two objects respond to interaction: the ball will discriminate
betweenmost interactions, moving in slightly different directions,
while many interactions with the cube will make it just tip over on
one side. Therefore, the cube needs more pronounced motions of

the robot to be displaced across the arena, whereas the ball only
has to explore small variations of the same movements, which are
less effective at generating diversity when reused on the cube.

5.2.2. Different Exploration Algorithms
So far, the source task and the target task have only differed in
their exploration algorithm by a few randommotor babbling steps
replaced by R steps. But the exploration of the source task in
not constrained in any suchway by the use of the R algorithm.

We consider the case where the source task is explored by a
pure random motor babbling strategy. At each of the 1000 steps
of the exploration, a random motor command is chosen in the
hyperrectangle M and executed. The parameters of the R
algorithm remain the same as before. Figure 12 shows the impact
of such a change on the R coverage.

The coverage is improved by reusing motor commands from
a random motor babbling source, but less so than when using
the E algorithm in the source task. The coverage hits a
ceiling at around 50 steps into the bootstrapping phase, because
the source task did not generate enough diversity to sustain the
R algorithm for 200 steps. This leads to the idea of shortening
the bootstrapping phase: many times more interactions with the
object have been discovered through R after 50 steps than the
E case will discover through random motor babbling in
200 steps. The goal babbling algorithm has enough observations
to be effective.

Figure 13 demonstrates that this is a viable strategy. In the case
of the ball task as source task, the coverage improvement in early
exploration is actually much greater when the ball task is explored
with random motor babbling than with the E algorithm
(Figure 11).

The effectiveness of the R algorithm at exploiting a ran-
dom motor babbling source also validates the selection process
of the motor commands through the diversity of the effects they
produced. Indeed, if R was merely selecting random motor
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FIGURE 10 | The coverage of the REUSE exploration benefits from a high diversity of effects during the bootstrapping phase. The graphs show the
distribution of effects during the 200-step bootstrapping phase (in red), and during the subsequent goal-babbling phase (in blue), and the corresponding τ -coverage
(in green, τ = 22.5mm), across three explorations. The source task (A) is the cube task. It is used by the REUSE algorithm for the target task, the ball task (B). To
compare the REUSE and the EXPLORE algorithm, the exploration of the ball task under the EXPLORE algorithm is presented in (C). Interestingly, we can see that during
the exploration of the source task, the robot only learned to push the cube away. This has a notable influence on the exploration of the target task: the reused motor
commands produce effects that also largely push the ball away. Even after the end of the goal babbling phase on the source task, the area surrounding the robot
features fewer effects than the rest of the effect space. This illustrates the same sort of issue as the one discussed in Section 4. Still, in this case, the EXPLORE

algorithm does worse: with only three interactions after 200 steps, the exploration is biased toward the lower-right corner.
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FIGURE 11 | Whether reusing the cube on the ball task or the ball on the cube task, REUSE brings an important coverage boost early in exploration.
The figure presents the median of the coverage for the REUSE and EXPLORE cases in the four possible combinations of the cube and ball tasks. The shaded area is
delimited by the 25th and 75th percentiles of 25 repetitions of each experiment, and the best and worst case is shown by dashed lines. The effect of REUSE is
increased when reusing from the same task, and the ball task is able to exploit the cube task better than the reverse.
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FIGURE 12 | The REUSE method is able to exploit observations generated by random motor babbling. The source task in these graphs was explored using a
pure random motor babbling strategy. Repeated 25 times.

commands from the source task, the R method would be
equivalent to the random motor babbling strategy when reusing a
random motor babbling source: randomly selecting samples from
a random source is equivalent to directly sampling the random
source. The improvement in coverage here can only be attributed,
then, to the selection of motor commands through diversity.

5.2.3. Robustness to Dissimilarity
In the previous experiments, the cube and the ball share the same
location relative to the robot. This is of course an important reason
for the effectiveness of the R algorithm. While there may be
ways for the robot to adapt to such change and still be able to take
advantage of R – for instance, by having high-level motor

primitives expressed in an object-centered reference frame – they
are not the focus of this article.

However, an important consideration is to examine if the R
algorithm can decrease the performance of the exploration. The
response is of course positive. One can construct a source and
a target task so that wasting half of the random motor babbling
phase on reusing motor commands guaranteed not to produce
any interesting effects could negatively impact the exploration
performance. Here, we show that the R algorithm is reason-
ably robust to a change in the position of the object in the ball
environment: some, but not much, of the performance is lost.

In the ball task, the ball is located just under the robot. The
displaced task is in every way identical to the ball task, except

Frontiers in Robotics and AI | www.frontiersin.org                                                     58                                                                             March 2016 | Volume 3 | Article 8

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Benureau and Oudeyer Behavioral Diversity Generation through Reuse

random cube         ball  [short reuse]

maximum coverage
0.36 

0.20 

0.10 

0 
0 200 400 600 800 1000 

timesteps

coverage (in m )2

with reuse

without reuse

50 reuse 

steps

random ball         cube  [short reuse]

maximum coverage
0.36 

0.20 

0.10 

0 
0 200 400 600 800 1000 

timesteps

coverage (in m )2

FIGURE 13 | REUSE allows to shorten the bootstrapping phase. The Kboot parameter is equal to 50 steps in for the REUSE algorithm here. The source task is
explored with random motor babbling. Repeated 25 times.
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FIGURE 14 | Reusing from a dissimilar ball task has no significant impact on performance. In the displaced task, the ball has been moved to the side of the
robot, rendering most motor commands useful for interacting with the ball on one task useless in the other. Repeated 100 times.

that the ball has been moved on the right side of the robot.
Most movements generating an interaction with a ball will not
generate onewith the other ball.Moreover, this ball is harder to hit
with randommovements, with an interaction probability of 0.99%
(versus 1.81% before). This is important, because it means that if
100 movements are wasted on reexecuting motor commands that
will not hit the ball, the probability of interactingwith the ball goes
from 86 to 63%.

This is reflected in the results, Figure 14. While the loss in
coverage at the median is small, the difference is apparent at the
25th percentile in both cases. And the when the displaced task is
the target task, the performance below the 25th percentile is much
worse for R than for E.

While they are not explored here, there are several ways to
prevent negative transfer. One is to decrease preuse, as it decreases
the how the R algorithmmodifies the original E algo-
rithm.When preuse is equal to zero, both algorithms are equivalent.
Another possibility is to dynamically adjust preuse based on the
relative performance of the two bootstrapping strategies: random
motor babbling or reused motor commands. We have proposed
an algorithmic framework to do precisely that in Benureau and
Oudeyer (2015). Ultimately, the decision to use R or not
sometimes cannot bemade inside the problemwe defined: it must
come from an external mechanism, which needs only to point out
the existence of a relationship between tasks, without specifying

it. We investigate an example where a caregiver could fill that role
in the next section.

5.3. Scaffolding Diversity:
The Pool Experiment
So far, the R algorithm has brought quantitative improve-
ments in coverage,most of the time in the early phase of the explo-
ration.We now introduce an experiment that show that R can
radically affect how exploration happens: namely, that can allow
to explore an environment that is difficult to explore directly.

We consider the pool task, where two balls are present in the
arena, with one out of reach. The robot must strike the first
ball and make it collide with the second ball to interact with
it (Figure 15A). The second, out-of-reach ball is the only one
that is perceived through the sensory primitive. Therefore, in
response to the execution of a motor command, the exploration
algorithm receives the displacement of the second ball only. The
exploration algorithm is therefore unaware of any interaction with
the first ball.

Exploring such a task with the E algorithm is ineffi-
cient. The probability of interacting with the first ball during the
random motor babbling phase is low (1.81%). The probability of
interacting with the first ball in such a way that it collides with
the second ball is very low (0.04%). Even by setting Kboot to 300
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FIGURE 15 | The REUSE algorithm helps discover difficult-to-find areas of the sensorimotor space. In the pool experiment, a ball (in orange) is placed out of
reach and the only option to interact with it is to interact with another ball (in blue), which is not tracked by the sensory primitive (A). Exploring such an environment
directly is difficult, because the odds of stumbling on an arm motion that leads to an interaction with the second ball are very low as demonstrated by an execution of
the EXPLORE algorithm (B). Using the ball task as a source (C), some of those interactions are easily discovered, and the goal babbling of the pool task can start
creating diversity from them (D).

steps as we do for this experiment, most of the time, no interaction
is witnessed after the end of random motor babbling, and goal
babbling cannot function without at least one observation of a
collision (Figure 15B).

Discovering the possibilities offered by such an environment
hinges on chance. Without guidance, no informative intervention
can be carried out because the environment gives neither clues
about the existence of such informative interventions nor any
gradient to follow toward their location: this is the bootstrapping
problem, similar to the one encountered in evolutionary robotics
(Mouret and Doncieux, 2009). In a context where an agent must
allocate its time efficiently between different learning situations,
the pooltask will most probably be quickly abandoned with the
conclusion that it does not offer anything to learn.

In such a context, the R algorithm can provide a way
to discover those interesting parts of the sensorimotor space in
a reasonable amount of time. We use the ball task used in the
previous sections as a source task for the pool task (Figure 15C).
During the exploration of the ball task, the robot discovers how

to move the ball in different directions. Through R, the robot
replays those movements on the pool task, moving the blue ball
in different directions. Some of those movements make the blue
ball strike the orange ball, and thus generate novel environmental
feedback. The goal babbling algorithm is then able to explore
different ways the second ball can be moved (Figure 15D).

By looking at the coverage of the R versus E strat-
egy over 100 repetitions of the experiment (Figure 16), we see that
the 10th percentile of R is better than the 90th percentile of
the E strategy.

This experiment showcases an important possibility offered by
the R algorithm: environment-driven exploration. By sim-
ply placing an agent inherently driven to explore to produce
behavioral diversity, a caregiver can scaffold complex and directed
behavior by manipulating the environment – here, by adding a
ball – without giving any explicit goal or reward, and without the
need to reprogram the robot.

The R algorithmwould work equally well if the source task
already contained both balls, with the blue ball tracked instead
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FIGURE 16 | Most of the explorations with EXPLORE never make the ball move in the pool environment. Using REUSE, however, the exploration of the second
ball is consistently diverse, and 90% of the REUSE exploration generate strictly more coverage than the 90% of the explorations with the EXPLORE algorithm.

of the orange one. In that scenario, the sensory primitive would
encode the attention of the robot, and moving from the source to
the target task only necessitates switching the attention from the
blue ball to the orange one. This is another role that a caregiver
could fulfill.

5.4. Hardware Setup
In this section, we present a hybrid simulation/hardware setup
that was used to validate some results of the simulation. The setup
features real robots, but the interaction with the object is done in
a physics engine.

5.4.1. Hybrid Interactions
The robot (Figure 17) has a reflective marker at the tip, which
allows to accurately capture its position at 120Hz during itsmove-
ment using an OptiTrack Trio camera system. A virtual marker
then replays the trajectory in a simulation where a virtual object
has been put. As themarker is the only part of the robot tracked by
the camera, it is the only part of the robotic arm that is transposed
in the simulation and therefore that can collide with the object.

Contrary to the fully simulated experiment, the simulated
marker does not interact with the groundwhere the object rest and
can therefore pass through it. Moreover, the immediate reaction
force on the marker can exceed 100N without the interaction
being discarded.

We chose to use a real robot and a simulated environment for
the simplicity and flexibility it affords. Tracking and resetting an
object a few thousands of times requires some formofmechanism,
or a bigger robot, which makes the experimental setup more
complicated. Additionally, the robot never experiences physical
collisions, which reduces the risk of damage when babbling, given
the type of robot we had. And prototyping new environments,
with new objects or layouts, is cheap and unconstrained.

At the same time, using a virtual environment for an interaction
task removes some of the main source of interest of the setup: a
realistic, difficult to simulate interaction with a real object with
kinesthetic feedback. Still, the real robot and the cameras bring
real sources of motor and sensory noise that are important to
check against when studying the production of diversity.

5.4.2. Cube and Ball
We reproduce the cube and ball experiments on the real setup.
This time, the inverse model used is the ILBFGSB-LWLR
one, and the arena is 2000mm by 2000mm. This approximates an
unbounded environment.

The results in Figure 18 show that R is effective on the
hardware setup. Because the arena is more than 10 times bigger
than the 600mm by 600mm arena, the production of coverage
does not level-off as fast. In particular, the pooling around the
walls seen in Figure 10 is much less present. This explains why
there is still a difference of coverage after 1000 steps between
the R and E algorithm. In situations where the time
allowed to explore a task is finite and much lower than would be
needed to discover all the possibilities of the environment, R
can therefore significantly increase the amount of knowledge
discovered by a robot.

5.5. Reality Gap Experiments
So far, we have shown that R is effective in situations that
involve switching the object (ball/cube experiment in Section 5.2),
changes in the morphology of the robot (different link lengths in
Section 4), or increased complexity (scaffolding experiments in
Section 5.3). The purpose of using R in these situations is to
leverage past experiences to provide the locations of possible good
mapping in the sensorimotor space.

In this section, we show that the R method can be used to
leverage experiences acquired in simulation on real robots, even
when the simulation is not accurate.

5.5.1. The Reality Gap
Many experiments learning controllers for legged robots have
reported remarkable performances for simulated robots. But
far fewer have been able to transfer controllers learned in
simulation onto real robots and preserve performance (Lipson
et al., 2006; Palmer et al., 2009). In other words, the transfer
from simulation to reality is not efficient: this is the reality gap
problem (Jakobi et al., 1995; Jakobi, 1998). In robotics, the reality
gap is overwhelmingly studied in the context of the optimization
of controllers in simulation to be transferred on a real robot, in
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FIGURE 17 | The hardware setup consists of four robots, separated so that they cannot interact with each other. The tracking system is positioned in
front of the setup and has three cameras that capture the position of the four markers. The monitor on the right shows the detection mask of each camera. Most
movements of the stems will keep the marker visible, but some will not. However, those movements will overwhelmingly be far away from the virtual objects as it
involves the robots arching backward to block the view of the marker from the camera with their own body. Once the movement of the arm is finished, the trajectory
of the marker is transposed and replayed into the simulation, where the interaction with the object happens.

particular in the context of evolutionary robotics (Nolfi et al.,
1994; Koos et al., 2013).

The most straightforward way to deal with the reality gap is to
create the most accurate simulation possible. But this is fraught
with problems, and leads to fragile and expensive simulations.

Some approaches improve the simulator during learning based
on empirical observations (Bongard and Lipson, 2005; Bongard
et al., 2006; Zagal et al., 2008; Koos et al., 2009). Other methods
consider the simulator as fixed, and evaluate themapping between
the simulator and the reality. This allows to estimate the discrep-
ancy between the two and to only perform simulated optimization
in areas where the discrepancy is low (Koos et al., 2013).

5.5.2. Crude Simulations
With R, we take a different approach. Instead of spending
ever-increasing efforts to create or search for a realistic simulation,
we go in the opposite direction; we search for a much simpler,
much cruder simulation that still affords us an exploratory advan-
tage through R. Jakobi (1997) proposes a similar method
where he identifies a minimal set of features responsible for the
behavior of the robot, and simulates only those. But our approach
is different still: our aim is not to transfer behaviors, but it is to
transfer behavioral diversity.

To test this, we create a simplified kinematic simulation of the
object interaction setup of Section 5.1. Instead of using a physics
engine, we compute the trajectory of the end-effector by feeding
the kinematic model with the joint trajectories produced by the
motor primitives. Moreover, the object is approximated to its axis-
aligned bounding box. If the trajectory of the end-effector enters
the bounding box, the velocity of the end-effector is averaged
from its last 10 positions, and the displacement of the object is
computed as a vector of the same direction as the velocity of the
end-effector, and with a norm proportional to the end-effector
velocity. There is no floor to interact with, the displacement of the
object is computed in three dimensions, and then projected on the
x and y dimensions.

Under thismodel, there is no difference anymore between a ball
and a cube. No contact is simulated except the one between the
object and the end-effector, and the collisions are computed as if
they were always directed toward the center of mass of the object.

The kinematic simulation is run for 1000 timesteps using the
E exploration strategy (Kboot = 300, d= 0.05). The explo-
ration is then transferred to the V-REP simulation of the ball task
of Section 5.1. The exploration on the full simulation uses the
R algorithm and is parametrized with Kboot = 300, d= 0.05,
and preuse = 50%. The results are available Figure 19.
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FIGURE 18 | REUSE provides a head start to the exploration on the hardware setup. The coverage performance is shown for each repetition of the experiment.
The arena is the 2000mm width 1, and the inverse model used is INVERSELBFGSB-LWLR.

kin         ball  [simulation]

maximum coverage
0.36 

0.20 

0.10 

0 
0 200 400 600 800 1000 

timesteps

coverage (in m )2

with reuse

without reuse

kin         ball  [hardware]

maximum coverage
0.36 

0.20 

0.10 

0 
0 200 400 600 800 1000 

timesteps

coverage (in m )2

FIGURE 19 | Even with a crude model, the REUSE transfer is effective. The simulation results show 25 repetitions with the median, the 25th and 75th percentile
margins and the best and worst case in dashed lines. The experiment is repeated on the hardware four times. Each of the coverage curves for those repetitions is
represented.

Even with a crude simulation devoid of most physical features,
the R strategy is able to take significant advantage of the
generated data.

5.5.3. A Cruder Simulation
We simplify the previous simulation. Instead of computing the
displacement of the object, the sensory response is only con-
ditioned by the end-effector entering the bounding box. If that
happens, a random value between 0 and 1 is returned. Else, a
random value between −1 and 0 is returned. The sensory signal
has only one dimension. This experiment also affords us with
another example of R being compatible with a change in
sensory modalities.

Learning with such a poor sensory feedback is more difficult.
The simulation has essentially become an indicator for a possible
collision. Yet, R still provides an improvement (Figure 20).
As should be expected, the improvement is less than when the
simulation is more informative.

A weakness of our reality gap experiments is that even a simple
forward kinematic model usually displays good performance on
a rigid body robotic arm. Although we removed many aspects
of the physical simulation, we retained the essential part. The
discrepancy then between a collision detected in simulation and
one produced in reality is low. This easily explains the results
obtained. And while we claimed not to assume that the simulation
needs to be physically accurate, it actually is, but qualitatively.
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FIGURE 20 | Even with a cruder model, the REUSE transfer is still
effective. 25 repetitions.

The way the object displacement is computed in the first crude
simulation can also be criticized. Although it seems that, by not
taking into account any geometry of the object, or not considering
the floor we have lost much information, the direction of the
displacement is directly correlated to the direction of the end-
effector when a collision happens. This sensory feedback is prob-
ably richer in information that the final position of the object in
the physical simulation. It is also a signal that is easier to learn.
The first crude simulation could be considered as a scaffolding
that offers knowledge of a pivotal aspect of the interaction – the
direction and velocity of the colliding tip of the arm just before
the collision – that was hidden so far.

Of course, these criticisms can also be considered positively:
yes, the crude models are qualitatively accurate with regards to
the presence of a collision, and R is able to take advantage of
a merely qualitative, rather than numerical, accuracy.

In a self-sufficient perspective, the crude simulations could
be considered as cognitive models. Their simplicity and relaxed
qualitative naturemakes their acquisition by a self-sufficient robot
more reasonable than realistic simulations. Instead of reproducing
reality, these cognitive simulations can do away with much of the
realismwhile retaining power to direct and inform behavior. They
pose as artifices of cognition that would allow robots, in some
situations, to reason about the world without having to predict or
simulate it accurately.

6. RELATED WORKS

Goal-directed exploration (Oudeyer and Kaplan, 2007; Baranes
and Oudeyer, 2010; Jamone et al., 2011; Rolf et al., 2011; Baranes
and Oudeyer, 2013), as well as related methods such as MAP-
Elite (Cully et al., 2015), has been shown to be effective at creating
behavioral diversity in large sensorimotor spaces. However, these
methods only consider a single task. The R algorithm pro-
poses to transfer the behavioral diversity from one task to another.
It, therefore, works particularly well when combined with these
strategies as we have demonstrated in this paper.

The R method is an instance of a transfer algorithm.
Machine learning algorithms improve their prediction or control
capabilities from data. Transfer learning algorithms (Thrun and
Pratt, 1998; Taylor and Stone, 2009; Pan and Yang, 2010) aim at
improving their prediction or control capabilities on a problem

either from another problem’s existing data or more directly from
the other problem’s learned prediction or control capabilities. In
other words, transfer learning expands the scope of the data that
can be used on a specific problem.

Therefore, transfer learning is typically used when not enough
data is available to obtain the desired performance. Creating a
zebra classifier can be difficult if only a few labeled pictures are
available. While a horse classifier does not address the exact same
problem, enough commonalities exist between the two for useful
information to be extracted from the horse classifier and used in
the zebra one.

Transfer learning algorithms have been historically developed
for tasks where unlabeled data is plentiful, but labeling is expen-
sive; robots face a similar labeling problem. Every motor action
a robot undertakes is costly in time and energy. Therefore, while
the motor action possibilities are numerous, only a small fraction
of them can be executed to observe the environmental response
they produce – i.e., labeled – during the time allotted to learn a
problem. Transfer learning in robots allows to make use of the
observations acquired outside of the current problem.

Many different methods have been developed on how, what,
and when to transfer data from one task to another, and the
interested reader can consult Thrun and Pratt (1998), Taylor and
Stone (2009), Pan andYang (2010), and Lazaric (2012) for reviews.

In evolutionary robotics, Velez and Clune (2014) shows that
controllers evolved in a first maze through Novelty Search
(Lehman and Stanley, 2011), i.e., with the incentive to behave
differently from the rest of the population, provide a head start
on the exploration of a second maze. In comparison with R,
the transferred controllers are valued not because they solve dif-
ferent tasks, or explore the maze differently: they are issued from
independent runs, and all solve the same task, going to the same
predefined goal. Rather, they are valued because they can adapt
faster to the new task than random controllers, having acquired
exploration abilities in the first maze. In the Intelligent Trial and
Error algorithm (IT&E) (Cully et al., 2015), a performance map
is generated by MAP-Elite on a task and then reused to find
a fast adaptation to a different task. However, the performance
mapping is used to guide the search, which is focused on a specific
objective.

In reinforcement learning, an interesting method comes from
Sherstov and Stone (2005) that creates a set of tasks from a source
task, and prune the action space from any action that is not
optimal in at least one task of the set. The diversity of the set of
tasks creates a filter that is used to reduce diversity in the set of
actions.

In the context of Markov-Decision Processes (MDP), policy
reuse (Fernández andVeloso, 2006) builds a library of policy. Each
policy corresponds to a specific reward function over the MDP.
Each time a new reward function needs to be learned, the most
similar policy in the policy library is reused probabilistically with a
ε-greedy strategy. The policy reuse algorithm focuses on learning
how to solve a single reward function at a time, over discrete or
discretized domains. Like IT&E, it uses the reward function to
decide which policy to reuse.

We first exposed the R method in Benureau and
Oudeyer (2013). The T was driven by intrinsic moti-
vation then. It was changed to a diversity-driven method in
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Benureau et al. (2014) but the empirical results presented then
were limited to the content of Sections 5.2.3 and 5.4.2. This paper
provides a comprehensive empirical study and investigates many
different situations: changes in morphology, sensory modalities,
and the exploitation of a random motor babbling source. The
effectiveness of R is explained by showing how the diversity
of two different tasks can be highly correlated, and we investigates
the details of a situation where R, at his worst, is less efficient
than the worst-case without it. The paper also makes two major
new contributions: the application of R to scaffolding behav-
ior (Section 5.3) and exploiting simulation results on real robots
(Section 5.5).

7. DISCUSSION

7.1. Synthesis
Sensorimotor spaces present difficulties that preclude an isolated
approach. They typically feature a large motor space that cannot
be explored exhaustively. Rather, often, only a few small regions
of it are actually interesting to explore for any practical purpose.
The difficulty, of course, lies in discovering those regions. However
smart an exploration algorithm is, when the environment does not
provide clues or gradient toward those regions, finding them relies
on chance.

The R method proposes a way to discover these small
regions of interesting behavior by relying on past experience. In an
autonomous context where neither experts nor peers are present,
and in a developmental context where robots are supposed to
accumulate experience about the world over large periods of
time, relying on past experience seems trivially self-evident. It can
prove, however, challenging. A strength of the R method is
that it makes easy to use past experiences that would otherwise
be considered incompatible with the current situation. We have
provided examples of the R method adapting to changes in
objects (cube and ball, Section 5.2), in morphology (length of
arm links in Section 4), in task dissimilarity (change in the ball
position, Section 5.2.3), in sensorymodalities (coordinate systems
in Section 4 and crude simulation in Section 5.5.3), in complexity
(pool experiment in Section 5.3), and in execution context (from
simulation to reality in Section 5.5).

Yet, the R method remains, at its heart, remarkably sim-
ple: create a collection of actions having generated a diversity of
effects in a previous task, and optimistically reexecute them in the
new one. As a consequence, the method is algorithmically cheap.
The only constraint is that actions from the source task must be
reexecutable in the target task.

While the R method makes many past experiences sud-
denly compatible with the current situation, it does not mean
that they are relevant or beneficial. The planar arms experiments
(Section 4) provided us with evidence that complex interactions
between the tasks, the inverse model and the R method
may worsen the exploration in some cases rather than help it.
And much of the success of the R method lies in the sim-
ilarity between the tasks. When the two tasks are too dissim-
ilar, the R method needs to degrade gracefully, and this
is what the experiment with the displaced task demonstrated
(Section 5.2.3).

The R method does not merely improve or accelerate
the exploration of sensorimotor spaces. As the pool experiment
illustrates (Section 5.3), it can scaffold the exploration of difficult
environments. It allows a caregiver to guide the exploration of an
autonomous agent, leading it to acquire specific and sophisticated
behaviors, without specifying an explicit goal or reward, by either
directing the attention or manipulating the environment.

The R method also seems naturally suited to propose
solutions to a difficult problem: exploiting simulation results on
real robots. The R method does this by side-stepping the
difficulty of preserving performance. Instead, it focuses on pre-
serving behavioral diversity, providing good starting points in the
sensorimotor space of the real robot (Section 5.5). Moreover, our
experiment with crude simulations suggests that cheap cognitive
models can efficiently serve an efficient source of behavioral
diversity, informing the exploration in the real world and in
full-featured simulations.

7.2. Limitations and Perspectives
The works presented here suffers many limitations. The R
algorithm is only analyzed with regards to the behavioral diversity
it creates through the τ -coverage metrics and not on the quality of
either the predictive or control models that can be derived from
the observations it generates. This should be investigated in future
works, especially in context where robots must apply their skills
and knowledge to reach specific goals.

This leads us to the issue of chaotic environments, evoked in
Section 3. In the full simulation of the interaction task (Section
5.1), we monitored the reactive forces to mitigate the chaotic
behavior of the physics engine.More generally, chaotic areas of the
sensorimotor spaces generate behavioral diversity that is difficult
to exploit for practical purposes. To make R more robust
to these aspects, the chaotic and stochastic characteristics of the
reused motor command should be explicitly evaluated.

Another blind spot of the R algorithm is motor command
diversity. When the effect diversity of the source task is low,
motor commands producing similar effects are reused. In such
a case, choosing motor commands according to how different
they are from one another would increase the diversity of the
set of transferred commands. This would make R robust to
scenarios where, for instance, all motor commands produce the
same effect in the source task.

Another venue of improvementwould be tomakeR active,
i.e., aware of its own effect of the exploration. By having a feedback
on its performance, the algorithm could dynamically decide to
modify the value of preuse or of the length of the bootstrapping
phase (Section 5.2.2). This could also lead to R identifying
which parts of the source task observations produce the most
diversity on the target tasks, and to preferentially to R motor
commands from those areas: this could have been exploited in the
pool experiment in particular (Section 5.3).

In this paper, we have only considered one source task. But
R should be expanded to multiple tasks scenarios, since
autonomous developmental robots are not expected to have only
one explored task in their past experience.

The experimental setups presented in this paper do not yet
allow to generalize to many robotic contexts. The algorithm
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should be tested in more diverse environments, with different
sensory primitives, and in particular fully autonomous, real-
world ones.
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Online Body Schema Adaptation
Based on Internal Mental Simulation
and Multisensory Feedback
Pedro Vicente*, Lorenzo Jamone and Alexandre Bernardino

Institute for Systems and Robotics (ISR/IST), LARSyS, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

In this paper, we describe a novel approach to obtain automatic adaptation of the robot
body schema and to improve the robot perceptual and motor skills based on this body
knowledge. Predictions obtained through a mental simulation of the body are combined
with the real sensory feedback to achieve two objectives simultaneously: body schema
adaptation and markerless 6D hand pose estimation. The body schema consists of a
computer graphics simulation of the robot, which includes the arm and head kinematics
(adapted online during the movements) and an appearance model of the hand shape
and texture. The mental simulation process generates predictions on how the hand will
appear in the robot camera images, based on the body schema and the proprioceptive
information (i.e., motor encoders). These predictions are compared to the actual images
using sequential Monte Carlo techniques to feed a particle-based Bayesian estimation
method to estimate the parameters of the body schema. The updated body schema will
improve the estimates of the 6D hand pose, which is then used in a closed-loop control
scheme (i.e., visual servoing), enabling precise reaching. We report experiments with the
iCub humanoid robot that support the validity of our approach. A number of simulations
with precise ground-truth were performed to evaluate the estimation capabilities of the
proposed framework. Then, we show how the use of high-performance GPU programing
and an edge-based algorithm for visual perception allow for real-time implementation in
real-world scenarios.

Keywords: humanoid robot, internal learning model, visual control, simulation, body schema

1. INTRODUCTION

Humans develop body awareness through an incremental learning process that starts in early infancy
(von Hofsten, 2004), and probably even prenatally (Joseph, 2000). Such awareness is supported
by a neural representation of the body that is constantly updated with multimodal sensorimotor
information acquired during motor experience and that can be used to infer the limbs’ position in
space and guide motor behaviors: a body schema (Berlucchi and Aglioti, 1997).

In particular, during the first months of life, infants spend a considerable amount of time
observing their own hands while moving (Rochat, 1998). Specific experiments in which babies
were laying supine in the dark, with the head turned to one side, show voluntary arm control
to bring the hand within the cone of light emitted by a narrow beam, so to make it visible (Van
der Meer, 1997). These early behaviors might support an initial visual-proprioceptive calibration
of the eye-hand system, which is required to perform reaching movements effectively later on.
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Indeed, while until 4months reaching movements seem not to
exploit any visual feedback, as trajectory correction is absent
(Bushnell, 1985; von Hofsten, 1991), from 5months vision is used
to correct the hand pose during the movement (Mathew and
Cook, 1990), with performance that improves incrementally (Ash-
mead et al., 1993). However, after 9months, this visual guidance
almost disappears, as children become able to plan a proper hand
trajectory at the movement onset (Lockman et al., 1984). Accord-
ing to Bushnell (1985), this decline of visually guided reaching is
fundamental for the further cognitive development of the infant,
as it frees a big portion of visual attention that can be, thus, devoted
to perceive and learn other aspects of the experienced situations.

Interestingly, these observations suggest that an internal model
might have been learned through sensorimotor experience during
the first months, and later exploited for improved motion control.
Indeed, general theories of human motor learning and control
claim that forward and inverse internal models of the limbs are
learned andmaintained updated in the cerebellum (Wolpert et al.,
1998). While inverse models are used to compute the muscle acti-
vations required to perform a desired movement, forward models
can be used to simulatemotor behaviors and to predict the sensory
outcomes of specificmovements (Miall andWolpert, 1996). These
predictions are exploited in different ways: for example, they are
combined with the actual sensory feedback through Bayesian
integration to improve the estimation of the current state of the
system (Körding and Wolpert, 2004).

Moreover, according to Sober and Sabes (2005), humans use
visual and proprioceptive signals to estimate the position of the
arm during the planning of reaching movements. The combina-
tion of these two feedback sources is dependent not only on the
task but also on the content of the visual information, suggesting
a strategy to minimize the predictive error. The brain chooses the
best combination to reduce the influence of the noise present in
the feedback signals.

Clearly, endowing artificial agents with similar capabilities is a
major challenge for cognitive robotics, and it paves the way for the
next generation of autonomous humanoid robots that will have to
operate alongside humans in unstructured environments.

Fundamental tasks like grasping objects while avoiding obsta-
cles and self-collisions require an accurate representation of the
body schema. For example, think about an apparently simple task
like taking a coffeemug and give it to a humanwithout spilling out
the content: a precise estimation and control of the end-effector
pose are of paramount importance both to first approach the
mug and grasp it and to continuously control its pose during the
movement.

The robots employed in very structured environment (e.g.,
industrial robots) might not need to use vision for similar tasks
(i.e., the objects are already in known positions), or might use
images coming from cameras that are fixed in the environment.
In these cases, a calibration of the system performed during occa-
sional maintenance operations is typically enough to guarantee
the repeatability of the movements. Instead, humanoid robots are
complex systems with many moving parts, including the cam-
eras providing the visual inputs, which are typically located in a
moving head: for this kind of systems, a continuous online re-
calibration is needed to assure the accuracy of visually guided

movements. Moreover, robot vision in unstructured environ-
ments is more challenging because of the unpredictable nature of
the image background: strategies to cope with this kind of visual
feedback are, therefore, required.

Our objective in this paper is to perform continuous online
adaptation of an analytical internal model of the robot (i.e., the
robot body schema) using multimodal sensory information (i.e.,
vision and proprioception), and to exploit the updated model to
facilitate the estimation of the 6D pose of the robot end-effector
(i.e., the hand palm).

Some works have been proposed in the literature to address the
body schema adaptation problem (See Related Work). However,
most of them rely on artificial markers to visually identify the
robot end-effector, and use local optimization method for the
model adaptation. Our method goes further by using natural
visual cues (marker-free solution) and a global estimation
approach based on sequential Monte Carlo methods for the
model adaptation.

We apply ourmethod to the iCub humanoid robot (Metta et al.,
2010), depicted in Figure 1. Instead of learning an internal model
from scratch, we exploit a computer graphics (CG) model of the
robot that includes the CAD kinematics [provided within the
YARP/iCub software framework as described in Pattacini (2011)]
and an appearance model of the hand shape and texture. This
model is adapted in real-time during reaching movements using
data from the motor encoders and from the cameras located
in the robot eyes. The model adaptation consists in estimating
a set of joint offsets to be added to the CAD kinematics to
better describe the real robot. The model is a forward model,
and it can be directly used to make forward predictions. In our
approach, we use the model and the encoders measurements to
make predictions (i.e., visual hypotheses) about how the hand
should appear in the robot cameras; the predictions are combined
with the actual visual information using Bayesian techniques (i.e.,
sequential Monte Carlo) to estimate the 6D pose of the end-
effector (3D position and 3D orientation) and to calibrate the
model kinematics. Moreover, the model can be used to make
inverse predictions, which are required for movement control.
In particular, we implement both feedforward control (open-
loop), based on inverse kinematics computation, and feedback
control (closed-loop), using the pseudo-inverse of themodel Jaco-
bian and the estimated pose of the end-effector as the feedback
signal.

We report experiments both in simulation, with the iCub
dynamic simulator (Tikhanoff et al., 2008), and with the real iCub
humanoid robot. The real-time implementation on the real robot
is made possible by two techniques: GPU programing, to achieve
faster computation, and an edge-based metric to compare the
visual hypothesis with the actual visual perception. This is essen-
tial to improve robustness in real-world scenes, with a natural
non-structured background.

Our solution draws inspiration from human development and
learning, as: (i) the internal model is updated online based on
the visual feedback of the hand, as infants seem to do between
4 and 8months of age and (ii) the estimation of the pose of the
end-effector results from the Bayesian integration of the sensory
(visual) feedback and the predictions made by the internal model,
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FIGURE 1 | The iCub humanoid robot uses its internal mental simulation to imagine (generate synthetic images of) the hand pose in real time. By
comparing the generated images (̂yi) to the ones obtained through stereo vision (y), it simultaneously achieves better hand pose estimation and automatic calibration
of the internal model.

a strategy that seems to characterize human perception as well, as
described in Körding and Wolpert (2004).

The rest of the paper is organized as follows. In Section “Related
Work,” we report the related work in robotics and we highlight
our contribution more specifically. Then in Section “Proposed
Method,” we formulate the problem and our proposed solution.
We provide details on the body schema implementation, on the
robotic platform used and on the error metrics employed (see
Experimental Setup) and we present experimental results in sim-
ulation and with the real robot (see Results). Then, in Section
“Discussion,” we discuss the proposed method and the results
achieved. Finally, in Section “Conclusion and Future Work,” we
draw our conclusions and sketch the future work.

2. RELATED WORK

Reaching for objects and manipulating them is a crucial behav-
ior in both humans and robots. While the classical approach in
robotics is to rely on analyticalmodels formotion control, humans
learn such models from motor experience.

A number of works have proposed computational models to
acquire these abilities through learning, without relying on any
explicit model (Reinhart and Steil, 2009; Ciancio et al., 2011;
Caligiore et al., 2014; Peniak and Cangelosi, 2014).

An alternative approach is to learn a model from sensorimotor
data, and use the model for control. Such a model is typically
referred to as “body schema.”

The acquisition and adaptation of a robot body schema has
been a topic of considerable attention [see, for example, Hoffmann
et al. (2010) for a review up to the year 2010]. Learning (or
adapting) the body schema of a humanoid robot can be seen
also as a calibration problem, in which the goal is to align the
reference frame located in the eyes, where visual information
about the environment is obtained, with the one centered in the
hand (i.e., eye-hand calibration). Clearly, in order to accurately

perform reaching and grasping actions a good calibration of these
reference frames is required.

Since the visual estimation of the hand pose is a very chal-
lenging task, a way to simplify the calibration problem is to use
a marker to visually detect the end-effector (i.e., the robot hand,
in the humanoid case). For instance, the method used by Birbach
et al. (2012) requires 5min of data acquisition during specific
robot movements with a special marker in the robot wrist. It
optimizes offline some parameters of the kinematic chain (angle
offsets and elasticity) of an upper humanoid torso using non-
linear least squares.

Online solutions have been studied, for example, in Ulbrich
et al. (2009) and Jamone et al. (2012), in which visual markers are
used to easily detect the hand position. The inclusion of additional
parts into the kinematic chain (i.e., tools) has been considered as
well in Jamone et al. (2013a,b).

In general, the adoption of a learning-by-doing strategy, in
which a model is learned online during the execution of a goal-
driven movement (goal-directed exploration (Jamone et al., 2011)
or goal babbling (Rolf, 2013)), has been shown to improve learning
performances, for example, by reducing the time required for con-
vergence.Moreover, it allows to learn not only forwardmodels but
also inversemodels, including, for example, the inverse kinematics
of a redundant robot system (Rolf et al., 2010; Damas et al., 2013).

Although visual servoing techniques have been studied since
the early 1980s (Agin, 1980) and a number of advanced solu-
tions have been proposed during the last 30 years (Chaumette
and Hutchinson, 2007), real-time reaching and grasping tasks in
humanoid robots are often performedwithout any visual feedback
of the hand (Saxena et al., 2008; Ciocarlie et al., 2010). Also
according to Bohg et al. (2014), very few methods for grasp-
ing control take advantage of vision to correct the pose of the
robot end-effector. The main reason for this is that the visual
estimation of the pose of the end-effector is difficult to achieve
and computationally expensive; therefore, such visual feedback is
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typically noisy and cannot be obtained at a fast rate. However,
purely open-loop reaching and grasping can hardly be successful,
because the robot models are typically not accurate enough. For
example, in Figueiredo et al. (2012) grasping is performed in
kitchenware objects using a very precise robotic arm; however,
some of the grasping experiments failed due to “contact between
the hand and the object before grasping.” These undesired and
unexpected premature contacts can be mitigated with a visual
servoing approach.

Chaumette and Hutchinson (2006) define visual servoing as
a feedback closed-loop control strategy based on vision. Many
visual servoing applications rely on eye-in-hand frameworks,
where the cameras are attached to the robot end-effector (La Anh
and Song, 2012; Ma et al., 2013). In humanoid robots, the cameras
are placed in the head, and visual servoing can be done with an
eye-to-hand approach (Hutchinson et al., 1996).Most applications
of eye-to-hand visual servoing use markers in the end-effector in
order to estimate its pose.

In Kulpate et al. (2005), the use of a single camera, a landmark
in the hand (a light bulb emitting a red light) and a flat mirror,
improves the estimation of the hand position and orientation. In
Vahrenkamp et al. (2008), a red ball is attached to the robot wrist
to allow for precise grasping using stereo calibrated vision. The
humanoid REEM is used in Agravante et al. (2013) to perform
reaching and grasping with visual feedback, using special markers
on the hand and on the objects; the results show how the reaching
motion planned on the basis of the robot kinematicmodel was not
accurate enough to allow for precise object grasping, and how the
inclusion of a visual servoing component could accommodate for
such inaccuracies.

Marker-free solutions have been explored as well, either for
body schema adaptation or for visual servoing control. The solu-
tion proposed in Ulbrich et al. (2012) is based on the decom-
position of the kinematic chain into smaller segments; then,
both offline and online learning solutions are proposed to learn
the kinematic structure of the robot. Although it seems that
no markers are used, no description is present about how the
end-effector pose is measured. In Fanello et al. (2014), eye-
hand calibration is realized by performing several ellipsoidal arm
movements with a predefined hand posture, tracking the tip of
the index finger in the camera images. Optimization techniques
are employed to learn the transformation between the fingertip
position obtained by the stereo vision and the one computed
from the forward kinematics. Such transformation is then used
to calibrate the kinematics. However, the hand orientation is not
considered.

A marker-less visual servoing strategy can be used if one can
estimate the pose of the robot hand using visual data. This is a
challenging problem per se that has been studied both in Human-
Computer Interaction and in Robotics (see Erol et al. (2007)
for a review up to the year 2007). A few interesting works in
robotics have used machine learning techniques to deal with the
problem of robot hand detection. Leitner et al. (2013) used the
Cartesian Genetic Programming method to learn how to detect
the robot hand inside an image from visual examples. Online
Multiple Instance Learning was used by Ciliberto et al. (2011)
for the same task (detect the robot hand), through the use of

proprioceptive information from the arm joints and visual optic
flow to automatically label the training images. However, in both
works the hand orientation is neglected – only the position of
the hand is learned. The work by Gratal et al. (2011) proposes a
3D-model based approach and an edge based error function to
estimate the pose of the Schunk Dexterous Hand. This method
is similar to ours as they exploit also graphics acceleration tech-
niques and an edge-based approach. However, their optimization
method is based on Virtual Visual Servoing (Comport et al., 2006)
that, being a gradient based method, is prone to converge to
local minima. On the contrary, we propose a sequential Monte
Carlo method that is robust to non-convex/non-gaussian error
functions.

2.1. Our Contribution
This paper extends our previous work on eye-hand adaptation in
a humanoid robot (Vicente et al., 2014) and its GPGPU imple-
mentation (Vicente et al., 2015), by (i) comparing the influence
of the number of particles in the estimation of the pose of the
end-effector; (ii) performing an edge-based likelihood on the
real robotic platform, and (iii) exploiting the derived models for
the closed-loop control of the robot end-effector using visual
feedback.

Our proposed system outperforms the related works described
above by combining a number of features that are, in our opin-
ion, fundamental to obtain an accurate control of goal-directed
movements in humanoid robots. Our method does not use any
special marker in the robot end-effector or in the robot wrist –
it is a marker-free system. We estimate the 6D end-effector pose,
rather than only the position, and we perform this estimation
online during reaching tasks – our method does not require the
execution of specific movements to calibrate the body schema.
Moreover, we exploit the body schema adaptation and the real-
time estimation of the end-effector pose to perform a marker-
free visual servoing control strategy that improves the accuracy
of reaching movements. To the best of our knowledge, a system
that combines these fundamental features and that is successfully
implemented in a real humanoid robot was not yet proposed in
the literature.

3. PROPOSED METHOD

The body schema adaptation can be seen as an internal process
that occurs in the mind of the robot and on the perception of the
self. We focus on the perception of the arms and hands by the
visual system placed in the robot head. This problem is known
in human sciences as eye-hand coordination. In robotics, the
eye-hand coordination relies on computing the transformation
between two reference frames: (i) the eye reference frame and (ii)
the end-effector reference frame. In our case, the first is located in
the center of the left-eye and the latter in the center of the hand
palm (see Figure 2). Moreover, the end-effector pose is defined
as the pose of the hand palm in the eye reference frame. In this
work, we estimate the end-effector pose using vision (left and right
images) and proprioception (encoder readings), and adapt the
initial body schema to reduce themismatches between the internal
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FIGURE 2 | The end-effector’s pose (palm of the hand) is a function of the joints angles. Axis color notation: x-red; y-green; z-blue. (For a more detailed
description visit: http://wiki.icub.org/wiki/ICubForwardKinematics). Best seen in color.

model prediction of the end-effector pose and the observed end-
effector pose. According to the free-energy principle (Friston,
2010), biological agents try to minimize its free energy with the
environment to achieve equilibrium. The free-energy principle
tries to mathematically define how humans and animals optimize
their expectation of the world. Thus, the free-energy measures
the surprise present in perception given a generative model. The
agent can suppress free energy by acting on the world (exciting the
sensory input) or by changing its generative model to compensate
the perception. Moreover, if we see the agent’s body schema as
the hidden state of the generative model, one of the solutions to
achieve the equilibrium is to perform the body schema adaptation,
as proposed in this work.

To achieve this goal, we consider two phases of reaching move-
ments. First, an open-loop ballistic movement drives the end-
effector to the vicinity of the target without visual feedback.
During this period, vision is used to estimate the end-effector
pose and adapt the internal model but the arm controller does
not use this information. Second, a closed-loop control based on
vision drives the robot’s end-effector to the desired final pose,
relative to the target of interest. During this stage, the internal
model continues its adaptation based on vision and the arm
controller used the adapted model to move the arm. In this
section, we describe ourmethodology to address these phases.We
begin by introducing the body schema model of our humanoid
robot. Then, we explain the end-effector’s vision based pose
estimation method during the ballistic movement. Finally, we
describe how to perform the control of the arm using the visual
feedback.

3.1. Body Schema Modeling
Let us consider the problem of estimating the robot’s end-effector
pose in the left camera’s reference frame (an analogous analysis
can be done for the right camera). The real pose (xr) can be rep-
resented by a generic 4 × 4 roto-translation matrix T. Using the
robot kinematics function from the left camera to the hand palm
K (·) and the vector of joint encoder readings θ (see Figure 2), an
estimate of the pose can be obtained by:

T̂kin = K (θ) (1)

However, several sources of error may affect this estimate. Let
us consider the existence of calibration errors (bias). This source
of error can be encoded in many different ways. We propose to
encode it in the robot’s joint space, i.e.,

θr = θ + β (2)

where θr are the real angles; θ are the measured angles; β are
joint offsets representing calibration errors. Given an estimate of
the joint offsets β̂, a better end-effector’s pose estimate can be
computed by:

T̂joint = K
(
θ + β̂

)
. (3)

Another solution is to encode the calibration error in Cartesian
space using a roto-translation matrix defined as:

T̂Cart = K (θ) · T̂ERR (4)

where TERR encodes the calibration errors.
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The generalization of the learned parameters to other parts
of the workspace was analyzed before in Vicente et al. (2015).
We have shown that a parameterization of the error in the body
schema in terms of joint offsets generalizes better to other parts
of the workspace when compared to the non-calibrated case and
to the Cartesian Error modeling, because the dominant sources of
error are actually joint offsets.

Therefore, in this work, the learning process of the internal
model consists in estimating the joint’s offsets (β) in the kinematic
chain [see equation (2)]. Moreover, as we have access to the
proprioceptive feedback (θ), estimating the joint offsets rather
than the absolute joint values is a more effective approach: (i)
the search space is smaller and (ii) we can use the adapted body
schema (learned offsets) in other movements without re-learning
it from scratch.

3.2. State Estimation with Sequential
Monte Carlo Methods
Let x be a generic state vector and y the observation vector. Assum-
ing that y depends stochastically on x at time t1 one can devise a
Bayesian filter to estimate the state x from the observation y. The
Bayesian filter consists of two steps: prediction and update. In the
former, we calculate xt from the previous state xt–1 according to
the following equation:

p(xt|y1:t−1) =

∫
p(xt|xt−1) · p(xt−1|y1:t−1) dxt−1 (5)

where p(xt|xt–1) is the transition probability and p(xt–1|y1:t−1) the
previous estimation of the state at time t− 1. In the second step,
we update the posterior distribution with the last observation:

p(xt|y1:t) = η · p(yt|xt) · p(xt|y1:t−1) (6)

where η is a normalization factor and the probability p(yt|xt) is
called measurement probability.

The particle filter, also known as sequentialMonteCarlo (SMC)
method, is a non-parametric implementation of the Bayes filter,
where we approximate the posterior distribution equation (6) by
a finite number of samples, called particles:

p(xt|y1:t) ≈
M∑

m=1
ω[m]δ(xt − x[m]

t ) ·

( M∑
m=1

ω[m]

)−1

(7)

where M is the number of particles, x[m]
t (with 1<m<M) is one

particle, ω[m] is the weight of particle m and
M∑

m=1
ω[m] = 1. The

three stages of the particle filter are as follows:

1. Prediction: we sample x[m]
t from p(xt|x[m]

t−1) adding these parti-
cles to a temporary set X̄t.

2. Update: we receive a new observation vector, yt, and update
the particle weight or particle likelihood (ω[m]) according to:
ω[m] = p(yt|x

[m]
t ).

1In other words, x and y belong to a generativemodel also known as hiddenMarkov
model.

3. Re-sampling: the particles are sampled according to their
weight: ω[m]. This step is of paramount importance for the
particle filter algorithm to work properly, Thrun et al. (2005)
called it: the “trick” of the algorithm.We replace theM particles
in the temporary set X̄t by another M particles according to
their weights ω[m]. Whereas in the temporary X̄t the particles
were distributed according to equation (5), after this step they
are distributed (approximately) according to the posterior [see
equation (6)].

For further details on Bayes and Particle filters, one can read
Thrun et al. (2005).

3.3. Parameter Estimation with Sequential
Monte Carlo Methods
In spite of being often used to track dynamic states, some modifi-
cations to the sequential Monte Carlo (SMC) methods have been
proposed to estimate static parameters as well. In Kantas et al.
(2009), the authors perform an overview of SMC methods for
parameter estimation. Let, again, x be the initial non-static state
vector and β the static parameter vector. An augmented state is
defined as follows:

xaug = [x β]T (8)

One of the proposed solutions to estimate the parametersβ is to
introduce an artificial dynamics, changing from a static transition
model:

βt = βt−1 (9)

to a slowly time-varying one:

βt = βt−1 + w (10)

where w is an artificial dynamic noise that decreases when t
increases.

3.3.1. Our Formulation
In our particular case, we are interested in the estimation of the
end-effector pose (x) as well as the calibration error parameters
β. We define the augmented state vector at time t as:

Xaug
t = [ vec(K (θt + βt) ) βt]

T (11)

where K(·) is the robots kinematics function [see equation (3)]
and the vector β is composed of the offsets in the kinematics
chain from the camera to the end-effector. To reduce the com-
plexity of the problem, we only consider the angular offsets of
the arm kinematic chain (7 DOF), as the head chain is assumed
to be calibrated, for instance, using the procedure defined in
Moutinho et al. (2012). Alsomiscalibration in the finger joints has
a smaller impact in the observations since they are at the end of the
kinematic chain.

The offsets in equation (11) define the parameter vector,
β= [β1 β2 β3 β4 β5 β6 β7]T, as an unobserved Markov process
where βi is the offset in joint i of the arm assuming an initial
distribution:

p(β0) (12)

According to the general model in equation (10), β is the
vector composed by the offsets in the arm, and the artificial noise
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w ~N (0, K) is a zero mean Gaussian noise with a given diagonal
covariance K = σ2

s I7 and σs is an appropriately defined SD
reflecting the magnitude of the calibration errors.

The first part of the augmented state, K(θt +βt), is determin-
istic given βt since it is based on the robot kinematics function
and the noiseless encoder readings, thus estimating the posterior
distribution of the full state is equivalent to posterior distribution
of the particles:

p(βt|y1:t,θ1:t) ≡ p(xaug
t |y1:t) (13)

We use a SMC method to approximate the posterior distri-
bution defined in equation (13) by a set of random samples
(particles):

Bt :=
{
β
[1]
t ,β

[2]
t ,β

[3]
t , ...,β

[M]
t

}
(14)

where M is the number of particles, β[m]
t (with 1<m<M) is

one state sample, and Bt is the particle set at time t. The a
posteriori density distribution is approximated by the weighted set
of particles:

p(βt|y1:t,θ1:t) ≈
M∑

m=1
ω[m]δ(βt − β

[m]
t ) ·

( M∑
m=1

ω[m]

)−1

(15)

where ω[m] is the weight of particle m, δ(.) is the Dirac delta
function, and the last factor is the normalization factor. In the
beginning of each time step t, all the particles have the same
weight: ω[m] = 1

M . Under the Markov assumption, we can
compute recursively p(βt|y1:t, θ1:t) sampling from the previous
estimation p(βt–1|y1:t–1, θ1:t–1).

The filter has three stages as defined in Section “State estima-
tion with Sequential Monte Carlo Methods”: prediction, update,
and re-sampling:

1. Prediction: we sample β
[m]
t from p(βt|β[m]

t−1), according to the
transition [see equation (10)], in our case β[m]

t = β
[m]
t−1 + w.

2. Update: we receive a new observation vector, yt, and update
the particle weight (ω[m]) according to: ω[m] = p(yt|β

[m]
t ),

i.e., the particle likelihood. Our observation model and
the particle likelihood are defined in Section “Observation
Model.”

3. Re-sampling: the particles are sampled according to their
weight using the systematic re-sampling method (Hol et al.,
2006), which guarantees that a particle with a weight greater
than 1/M is always re-sampled, whereM is the total number of
particles.

3.4. Observation Model
In this section, we address the problem of how to calculate the
measurement probability in equation (6). Themeasurement prob-
ability can also be seen as the particle weight/likelihood after
normalization. Our humanoid robot has two sources of infor-
mation: (i) cameras on the eyes (visual sensing) and (ii) head
and arm encoders (proprioceptive sensing). These two sources of
information are related by the following model:

yt = F(θt + βt) + η (16)

where θt are the encoder readings and βt the actual offsets in
the joints at time step t. The function F(.) encodes the kinematic
structure [see equation (1)], appearance of the robot, the camera’s
intrinsic parameters, and the image rendering model provided
by a computer graphics engine able to generate realistic views
of the robot. The actual observation, yt, is a random variable
that concatenates the images acquired from the left and right
cameras and η an image random noise (due to diverse non-
modeled sources, e.g., specularities, shadows, camera jitter, etc.,
not necessarily Gaussian).

To sample from this model, we use the computer graphics
rendering engine that generates virtual images of the robots cam-
eras for arbitrary values of the vector β and encoder readings θ
(see Figure 3):

ŷ[m]
t = F(θt + β

[m]
t ) (17)

where ŷ[m]
t represents the concatenation of the virtual images in

the left and right cameras of the robot simulator for each generated
hypothesis (particle). The particles can be seen as the multiple
hypotheses generated by the brain while imagining the possible
images consistent with the current state.

From the comparison between the real measurements yt
and the virtual measurements ŷ[m]

t , through a suitable function
g(yt, ŷ

[m]
t ), we can compute the likelihood of β at time t:

l(β[m]
t ) = p(yt|θt,β

[m]
t ) ∝ g(yt, ŷ

[m]
t ) (18)

Wehave defined two different approaches for implementing the
comparison function g(·,·). One is based on the hand’s silhouette
through image segmentation and the other is based on image
contours through edge extraction.

3.4.1. Silhouette Segmentation
In this approach, we use the segmented binary images from the
real and virtual cameras (see Figure 4). To compute the similarity
between the real and virtual binarymasks (silhouettes), we use the
Jaccard coefficients (sJc) (see Cox and Cox (2000) for more detail).
Let R(y) be the real silhouette and R(ŷ) the virtual silhouette. The
Jaccard coefficient is defined as follows:

sJc(y, ŷ) =
# (R(y) ∩ R(ŷ))
# (R(y) ∪ R(ŷ)) (19)

where # denotes the number of pixels in the region.
The numerator term in equation (19) is measuring how similar

and overlaid are the two silhouette regions and the denominator is
normalizing the metric to a range [0,1]. Therefore, we define the
likelihood model as follows:

p(yt|βt,θt) ∝ sJc(yt, ŷt) (20)

In order to apply this approach, we need a good segmentation
of the area of interest in the image. In this work, this is a feasible
approach if one of the following conditions aremet: either the head
of the robot is static and a silhouette can be extracted by back-
ground segmentation methods, or the background is uniformly
colored and a good silhouette can be obtained by color segmen-
tation methods. In case, the head is moving or the background is
cluttered, this approach is not robust and the edge-based method,
described in the following section, is preferred.
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FIGURE 3 | Image generation in the internal mental simulator. The observation is defined as the concatenation of the left and right cameras.

FIGURE 4 | Example of silhouette segmentation. The silhouette is a
binary image (B) extracted from an image of the iCub hand (A) computed by
image segmentation techniques. Results obtained from the iCub simulator.

3.4.2. Edge Extraction Approach
In this approach, the segmentation of the area of interest is not
needed, instead, we exploit the edge information extracted from
images, which is more robust to clutter, thus, more suitable to
realistic environments. For this approach, we compute the average
distance between the edges of the real image to the closest edge
in the virtual image, and denote this quantity d̄. A perfect match
between the real and virtual images will correspond to d̄ = 0
whereas bad matches will correspond to large values of d̄. The
likelihood function is thus defined as:

p(yt|βt,θt) ∝ exp−λedge· d (21)
where λedge is a tuning parameter to control sensitivity in the
distance metric.

To compute d̄, we make use of the distance transform (Borge-
fors, 1986). The distance transform (DT) consists in the appli-
cation of an edge detector to the image (e.g., Canny (1986))
and then, for each pixel, compute its distance to the closest
edge point. This distance has a minimum of 0 pixel and a
maximum of 255 pixel, since the DT result is a 8-bit single-
channel image. In Figure 5, we give an example of the right cam-
era’s image and the corresponding edge and distance transform
images.

Let D(y) be the distance transform of the real images and
E(ŷ[m]) be the edge map of the virtual images (binary image
indicating the edge pixels).

The average distance, d̄[m] for each particle, can be efficiently
computed using the Chamfermatching distance (Borgefors, 1988)
defined as follows:

d̄[m] =
1
k ·

N∑
i=0

E
(
ŷ[m](i)

)
·D (y(i)) (22)

where k is the number of edge pixels in the virtual image, i is an
index that runs over all pixels, andN is the total number of pixels.

3.5. Computing the Parameter Estimate
Although the parameters are represented at each time step as a
distribution approximated by the particles, for practical purposes
we must compute our best guess of the parameter vector β̂. We
use a kernel density estimation (KDE) to smooth the weight of
the particles according to the information of neighbor particles,
and choose the particle with the highest smoothed weight (ω′[i])
as our parameter estimate:

ω′
[i]

= ω[i] + α · 1
M

M∑
m=0

ω[m] · K(β[i],β[m]) (23)

where ω[i] is the particle likelihood, α is a smoothing parameter,
M is the number of particles used in our SMC implementation,
and β[i] is the particle we are smoothing. The sum term is the
influence of the neighbors in the score of particle i. K is a kernel
specifying the influence of one particle in others based on their
distance. We use a Gaussian Kernel in our experiments:

K(β[i],β[j]) =
1√

2π|Σ|
e[−

1
2 (β

[i]−β[j])
T
Σ−1(β[i]−β[j])] (24)

where Σ is the co-variance matrix and |Σ| its determinant.
Since the joints’ offsets (β) are independent of each other, Σ

will be a diagonal matrix:

Σ = σ2
KDE · I7 (25)

where σKDE is the SD in each joint, which we assume equal. This
parameter determines if two particles are close or not. If we have a
high σKDE, all particles will be “close” to each other. On the other
hand, if we have a small σKDE, all particles will be fairly isolated in
the world resulting in ω′[i] ≈ ω[i].

It is worth to note that due to the redundancy in the robot
kinematics (joints space is 7DOF while the end-effector pose is
6DOF) different solutions in the setBt may correspond to the same
target pose. Therefore, the likelihood function l(β) is multimodal
and a particular choice of β̂ will be just one set of offsets that
can explain the end-effector’s appearance in the images. For this
reason, the proposed method with sequential Monte Carlo, which
does not assume any particular distribution of the posterior, is a
suitable parameter estimation approach.
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FIGURE 5 | Example of the computation of the edges and distance transform of the iCub hand in a real environment on the right camera. (A similar
example can be shown for the left camera.) (A) is the input image, (B) shows the edges extraction using Canny, 1986, and (C) the distance transform using
Borgefors, 1986.

3.6. Controlling the End-Effector
In this work, we focus on the control of the arm to obtain a
desired end-effector’s pose using the robot internal body schema.
We have implemented two control modalities: (i) an open-loop
“ballistic” movement and (ii) a closed-loop strategy exploiting
visual feedback.

3.6.1. Open-Loop
The open-loop control is the dominant control mode in robotics
manipulation. It relies on accurate calibration of the robot system
and accurate object sensing. It exploits the inverse kinematics
of the head-arm-hand chain, from the eye to the end-effector
and only uses visual sensing for the initial estimation of the
object/target pose. During arm control, only proprioceptive feed-
back is used. The open-loop control relies on solving the robot’s
inverse kinematics (K−1):

qd = K−1(xd) (26)

where qd is the joints configuration (command) that leads to the
desired end-effector’s pose (xd) and K−1 the inverse kinematics
function.

The trajectory between the initial joints configuration (qi) and
the desired one (qd) is a linear trajectory in the joint space,
performing a movement with a constant velocity according to the
following equation:

qt+1 = qt +
qd − qi
∆t (27)

where qt is the joint command at time t and ∆t is the desired
movement duration.

3.6.2. Closed-Loop
In the closed-loop approach, instead of controlling the position
of the joints, we control the joint velocities q̇ based on visual
feedback.

As mentioned in Section “Related Work,” our problem is an
instance of eye-to-hand visual servoing. Two control modalities
are common in visual servoing approaches: (i) image-based con-
trol, where the arm’s motion is determined by the error between
the current and desired configurations in the image coordinates

or (ii) a position-based approach, where the arm’s motion is
determined by the error between the current and desired 6D poses
of the end-effector. Our approach is a position-based strategy in
an eye-to-hand configuration. See Hutchinson et al. (1996) for a
more detailed taxonomy of visual servoing strategies.

Following the notation in Siciliano and Khatib (2007), the error
(e) to be minimized is defined as follows:

e = xc − xd (28)

where xd is the desired 6D pose of the end-effector and xc the
current.

The relationship between the joint velocities and the time
variation of the 6D pose error is given by:

ė = J(q) · q̇ (29)

where J(q) is the robot Jacobian from the left-eye to the end-
effector reference frame.

If we defined ė = −λ · e (to ensure an exponential decoupled
decreasing error) and invert the robot Jacobian (J(q)) by using
the Moore-Penrose pseudo inverse, we end up with the following
control law:

q̇ = −λ · J†(q) · e (30)

where J†(q) is the pseudo-inverse in the joint angles q.
In our case, as we correct the joint angles on the robot arm, the

control law with the improved robot Jacobian will be:

q̇ = −λ · J†(θ + β̂) · e (31)

where θ are the encoder readings and β̂ the joint offset vector.

4. EXPERIMENTAL SETUP

4.1. Robotic Platform
The iCub (see Figure 1) is a humanoid robot for research in
artificial intelligence and cognition. It has 53motors thatmove the
legs, waist, head, arms, and hands, and it has the average size of a
3-year-old child. It was developed in the context of the EU project
RobotCub (2004–2010) and subsequently adopted by more than
25 laboratories worldwide. Its stereo vision system (cameras in the
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eyeballs), proprioception (motor encoders), touch (tactile finger-
tips and artificial skin), and vestibular sensing (IMU on top of
the head) are important characteristics that allow the study of
autonomy in humanoid robots. The robot is equipped with a
dynamic simulator (Tikhanoff et al., 2008) that can be controlled
using the same software that is used for the real robot. We resort
to this simulator in a number of experiments in order to evaluate
the performance of our approach with precise ground-truth (that
we cannot access on the real robot).

4.2. Body Schema
The body schema can be considered the agent’s knowledge about
the kinematics, posture, and appearance of its body parts. The
body schema is a mental state that includes sensory information
about the self and the world and about the relationships between
the body parts. In this work, we have implemented the iCub’s
body schema on 3D computer graphics engines. Graphics engines
permit an effective generation of mental images of body states
through the knowledge of the kinematic structure of the robot,
and its body appearance. The internal mental simulator projects
the 3D simulated body into the robot vision. In particular, we
are interested in the projection of the arms and hands – the end-
effectors. The capabilities of the internal mental simulator are
similar to the real agent: (i) we can control the end-effector to a
given pose, (ii) it has proprioceptive sensing, thus, we can acquire
the current joint values of the arm and head, and (iii) it has stereo
vision – projecting the 3D world into 2D images.

4.3. Error Metrics
4.3.1. Position and Orientation
In order to evaluate the accuracy of our method, we compute the
Cartesian error (ECartesian) composed of position and orientation
errors between two generic poses, A and B, as:

ECartesian = [do, dp] (32)

The general orientation error (do) is defined as:

do(RA,RB) =

√
|| logm(RT

ARB)||2F
2

180
π

[◦] (33)

where RA and RB are two rotation matrices from the eye reference
frame to the end-effector frame. The principal matrix logarithm,
logm, with the Frobenius norm, (||·||F), implements the usual
distance on the group of rotations. The general position error
between the two different poses is computed by the Euclidean
distance, dp(PA, PB):

dp(PA,PB) =

√
(xA − xB)2 + (yA − yB)

2 + (zA − zB)2 (34)

where PA and PB are 3D Cartesian positions of the end-effector.

4.3.2. Defined Poses
In this work, we define four different poses. The real pose (xr) is
defined as:

xr = [Pr vec(Rr)] (35)

where Rr is the real rotation matrix and Pr the real 3D position.
This pose is the ground-truth data for evaluating the method. In
the simulation experiments, this is the pose with the introduced
artificial offsets. The second pose is the desired pose (xd) which is
the pose that we want to achieve during the reaching task:

xd = [Pd vec(Rd)] (36)

The initial pose (xi) is the initial joint configuration at the
beginning of the reaching movement. Finally, the estimated pose
(xe) that is the robot’s forward kinematics applied to the sumof the
measured joint angles θ (the proprioception) and the estimated β

(or β= 0 when the adaptation is not performed):

xe = [Pe vec(Re)] (37)

4.3.3. Estimation and Reaching errors
The estimation error – Eestimation – is the difference between the
real pose (xr) and the estimated pose (xe) using equations (33)
and (34):

Eestimation = [do(Rr,Re) , dp(Pr,Pe)] (38)

The real reaching error – Erreaching – is defined as the difference
between the desired (xd) and real pose (xr):

Erreaching = [do(Rd,Rr) , dp(Pd,Pr)] (39)

It measures how far the end-effector is from the target pose.
The estimated reaching error – Eereaching – is defined as the

difference between the desired (xd) and estimated pose (xe):

Eereaching = [do(Rd,Re) , dp(Pd,Pe)]. (40)

It represents the robot’s belief on how far its end-effector is from
the target pose.

4.4. Computer Specifications
The experiments were performed in a computer equipped with
an Intel® Xeon® Processor W3503 at 2.4GHz with two cores,
two threads, and a 4-MB memory cache and a NVidia GeForce
GTX 750 with 512 CUDA Cores, a base clock of 1020MHz and
2048MB of memory (RAM).

4.5. Experimental Settings
In this section, we describe the experimental parameters, common
to all the presented results. We initialize the SMC with M= 200
particles, defining p(β0) ~ N (0, Q) [see equation (12)] with a
given diagonal covariance Q=σ2

i I7 and σt = 5°. In all the exper-
iments we started from scratch, i.e., the best estimation at t= 0
is the proprioception of the robot (β= 0). The artificial dynamic
noise is initialized with σs = 4° and it decreases with t by a factor
of 0.8:

σs(t) = σs(t− 1) ∗ 0.8 (41)

where t is the frame index. This value has a lower bound of 0.08°
to allow continuous adaptation.

The kernel density estimation was initialized using a SD of
σKDE = 1° in equation (23) and a neighborhood influence of
α= 500 in equation (25).
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5. RESULTS

In this section, we report the experimental results. We divide
them into two parts: simulations (Section “Simulation Results”)
and real-world evaluations (Section “Real Robot Results”). In the
former, we evaluate quantitatively our method comparing the
body schema adaptation with the ground-truth measurements
and in the latterwe test our approach qualitatively in the real robot.

In Section “Reaching Movement and Body Schema Adapta-
tion,” we show how the online adaptation of the body schema and
the estimation of the pose of the end-effector allow to accurately
reach for a desired pose, using a combined open-loop and closed-
loop control scheme: (i) during the open-loop control (described
in Section “Open-Loop”), the online body schema adaptation
is performed, allowing for better estimation of the end-effector
pose and (ii) during the closed-loop control (described in Section
“Closed-Loop”), the end-effector pose feedback is exploited to
accurately reach for the desired pose.

Then, in Section “Trade-Off between the Number of Parti-
cles and Estimation Accuracy,” we assess the performance of the
internal model estimation procedure, evaluating the relationship
between the number of particles used in the optimization proce-
dure and the accuracy of the estimation.

Finally, in Section “Real Robot Results,” we show the method
working in the real world: the iCub robot performs online adap-
tation of its body schema (i.e., including both arms) and real-
time estimation of the pose of its end-effectors (i.e., both right
and left hands) exploiting visual feedback from its cameras, in an
unstructured environment (i.e., with natural background in the
images).

5.1. Simulation Results
In the simulation experiments, we use the iCub simulator both as
robot and as internal mental simulation. The iCub simulator is a
realistic software that uses ODE (Open Dynamic Engine) for sim-
ulating the motion of rigid bodies and their physical interaction.
It uses the same software and control architecture of the real iCub
robot. In order to consider the iCub simulator a realistic model
of the real robot, we introduce artificial angular offsets in the 7
DOFs of the right arm kinematic chain. We define ETA= [5, 4, 3,
−2, 3,−7, 3]; these offsets have the same order ofmagnitude of the
calibration errors, we typically encounter on the real robot.We use
the same set of offsets in all the simulation experiments, in order
to be able to compare the different results. Therefore, in these
experiments the only difference between the robot and the inter-
nal mental simulation is the set of artificial offset; the goal of the
body schema online adaptation is to compensate for these offsets.

Hand visual perception relies on the silhouette segmentation
approach (described in Section “Silhouette Segmentation”); a
homogeneous white background is located in front of the robot
and the segmentation is performed based on color information.
In general, the silhouette approach is effective in cases where
the segmentation is easy (e.g., with the white background). In
Section “Real Robot Results,” wewillmotivate the use of a different
strategy, the edge-based approach (described in Section “Edge
Extraction Approach”), for the real robot experiments, where we
deal with natural background; such strategy could not, however,

be used in these simulation experiments, because the texture
model of iCub simulator is poor (based on simple cylinders and
cubes of a homogeneous gray color) and too few edges are present
in the images.

5.1.1. Reaching Movement and Body Schema
Adaptation
In this first set of experiments, we have two main objectives: (i)
evaluate the error in the end-effector pose estimation equation
(38) during the movements, and (ii) show the convergence of
the reaching error (real and estimated, equations (39) and (40),
respectively) during the closed-loop control made possible by the
body schema adaptation.

We define a constant duration of the open-loop phase (120
frames) in order to estimate a stable solution for the joint offsets
(β) and we define 50 frames in the close-loop as the maximum
number of frames to acquire during the reaching to the desired
pose xd using visual feedback. The error decaying factor presented
in the closed-loop control section was initialized with the value
λ= 5 [see equation (31)].

Overall, we perform 120 movements with different initial and
final poses in order cover different areas of the working space:
4 different final poses with 10 initial poses, with 3 repetition
of each movement. The results in this section show the mean
and SD over the 120 experiments performed. We initialize our
sequential Monte Carlo implementation with 200 particles and
with β= 0, i.e., we always start the movements with the nominal
non-calibrated model.

In Figure 6, we can see the mean and the SD of the end-
effector pose estimation error during the movements. We show
the error both with the nominal non-calibrated model (without
online adaptation) and with the online adaptation. The algorithm
converges to a good estimation after about 60 frames, improving it
during the last part of themovement. It can be noticed that, in spite
of having constant artificial offsets in the joints (i.e., a constant
source of error), the pose estimation error in the non-calibrated
case (without online adaptation, red dotted line in Figure 6) is not
constant and it depends on the current arm configuration.

In Figure 7, the evolution of the reaching error [see equation
(39)] during the whole movement (open-loop and closed-loop) is
displayed. Both the mean and the variance of the error over the
40 movements are shown. The high variance at the beginning of
themotion is due to different (10) initial poses of the end-effector;
some of them are closer (~60mm) to the target pose than others
(~120mm). During the reachingmovement, this variance reduces
as the arm goes to the different (4) target poses; the variance is due
to different arm configuration with constant artificial joint offsets.

The open-loop part of the movement is planned at the move-
ment onset, based on the non-calibrated model. Therefore, the
reaching error at the end of the open-loop phase is equal to the
pose estimation error with the non-calibrated system (as it can be
seen by comparing the red dotted lines in Figure 6) to the line in
Figure 7 at frame 120, for both position and orientation. Then, the
body schema adaptation performed during the open-loop phase
can be exploited at the onset of the closed-loop phase to obtain
an accurate estimate of the pose of the end-effector; this allows
to consistently reduce the reaching error already at frame 130.
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FIGURE 6 | Estimation error of the end-effector during the open-loop phase: (A) orientation and (B) position.

However, as expected, the error does not converge to 0 because
there is still a residual error in the estimation of the end-effector
pose (that can be appreciated in the blue bold line of the plot in
Figure 6). Figure 8 shows a close-up of the final frames of the
movement. The estimated reaching error (the dotted green line)
converges indeed to 0, indicating that the closed-loop control is
working properly. However, as mentioned above, the real reaching
error (black solid line, same information as in Figure 7) does not
converge, due to the residual estimation errors.

Table 1 reports the exact numerical data related to the plots
in Figures 6 and 7: the pose estimation error at the end of the
open-loop phase (both with and without online adaptation) and
the reaching error (both at the end of the open-loop and at the end
of the closed-loop).

5.1.2. Trade-Off between the Number of Particles and
Estimation Accuracy
To generate particles/images and to compare them online with the
ones obtained fromvisual feedback requires a lot of computational
effort in the two processing units (Central Processing Unit (CPU)
and Graphical Processing Unit (GPU)); therefore, the overall

computational burden increases with the number of particles
used in the SMC method. In order to better understand how the
number of particles influences the accuracy of the estimation, we
performed an extensive evaluation in which several movements
are executed and the body schema adaptation is performed using
different amounts of particles: M= 100; 200; 500; 1000; 2000.
For each value of M, we perform 40 different movements with
different initial and final poses. In each experiment, we maintain
the parameters defined before in Section “Experimental settings”
and we change only the amount of particles used; we performed
the same motions of the right arm with the same visual feedback.
The final end-effector pose estimation errors (mean and SD over
the 40 movements) for each value of M are shown in Figure 9;
then, in Table 2 we report only the mean values, and we compare
them to the non-adaptation case as well. A clear trend can be
noticed, which relates the increase of the number of particles
to the decrease of the estimation error. However, this relation
is non-linear: the slope of the curve is higher in the beginning
and lower in the end. Indeed, the difference between the use
of M= 1000 and M= 2000 is quite small, which suggests that
further increasing the number of particles would not improve
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FIGURE 7 | Real reaching error during the whole movement: (A) orientation and (B) position. The error is the average over 120 experiments: 4 different final
poses, 10 different initial poses and each movement is repeated three times. It can be seen how the closed-loop correction considerably reduces the reaching error.

FIGURE 8 | Real and estimated reaching error in the closed-loop phase: (A) orientation and (B) position. In black (solid), we can see the real reaching error
and, in green (dotted), we can see the estimated reaching error. The latter converges to 0 as expected, proving that the closed-loop control is working properly.
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TABLE 1 | Estimation and real reaching errors in the final poses of each movement: the estimation errors and the real reaching errors of open-loop are
computed at frame 120, in the final pose of the open-loop phase.

Estimation error Real reaching error

Without adaptation With adaptation Open-loop Closed-loop

Mean SD Mean SD Mean SD Mean SD

Orientation error [°] 13.30 3.13 6.14 2.49 13.30 3.15 5.81 2.49
Position error [mm] 43.79 5.40 5.45 2.55 43.79 5.42 5.13 2.57

FIGURE 9 | Comparing the final estimation error (orientation (A) and position (B)) using different amount of particles. The mean value of the error over 40
movements is shown. The accuracy increases with the number of particle used in anon-linear way, and it seems to stabilize after 1000 particles.

TABLE 2 | Trade-off between number of particles and accuracy of the estimation.

No adaptation 100 particles 200 particles 500 particles 1000 particles 2000 particles

Orientation error [°] 14.50 8.48 6.85 5.73 4.50 4.34
Position error [mm] 41.29 8.61 5.35 4.40 3.87 3.09

For each value of the number of particles, we show the average value of the estimation errors over the 40 test movements.

the estimation considerably. Moreover, it can be noticed that the
estimation of the end-effector orientation benefits more of the
increasing number of particles than the estimation of the end-
effector position; this might be an indication that the orientation
is more difficult to estimate.

In Figure 10, we show the temporal evolution of the pose
estimation error during the arm movement in two representative
cases: with M= 200 and M= 2000 particles. Although the orien-
tation and position errors are smaller in the 2000 particles case,
more computation is required with respect to the case with 200
particles (computation takes about 10 times longer). The time
needed to generate and evaluate 200 particles is around 0.8 s per
frame, while for 2000 particles is 7.5 s per frame. In other words,
more time is needed to generate and evaluate the hypotheses and,
therefore, the movement must be slower if we want to acquire the
same number of frames/images.

In summary, there is a trade-off between the accuracy of the
estimation and the computation time for each iteration. In order
to be able to perform the end-effector pose estimation in real-time

in our current computer system, we chose to use M= 200 par-
ticles; this choice allows us to perform the estimation during
reaching movements performed at natural speed (i.e., in the order
of 0.01m/smeasured on the end-effector), with an average estima-
tion error of about 5.35mm in position and 6.85° in orientation.

5.2. Real Robot Results
In the real-world experiments, we use the real iCub as robot
(see Figure 1) and a Unity® computer graphics model as internal
mental simulation.

Unity® is a renowned cross-platform game engine developed by
Unity Technologies that can generate very realistic virtual images.
While the iCub Simulator uses simplified meshes of the robot
external surfaces, our Unity model of the iCub renders the full
CAD model of the robot, thus providing a much better match of
the real robot appearance; in particular, for our experiments, a
good appearance model of the robot hands is crucial. To perform
the internal mental simulation process in real-time, we rely on
GPU programing to achieve faster computation, as described in
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FIGURE 10 | Evolution of the estimation error (orientation (A) and position (B)) for the non-calibrated system and for the system with online estimation
performed with either 200 or 2000 particles. The mean value of the error over 40 movements is shown.

FIGURE 11 | Hierarchical tree with the most important Unity Objects from the shoulder to the fingers.

details in Vicente et al. (2015). Moreover, at each time instant we
render only the robot parts that are visible by the robot cameras
using a shader in the graphics pipeline, instead of rendering the
whole robot appearance. A hierarchical tree of the robot kine-
matics is defined where each node has a reference frame attached
and a pivot point that is used to perform the rotation of this
hierarchical object structure (See Figure 11). In other words, this
tree represents the relationship between the several objects in the
model (i.e., the robot body parts). For instance, the fingers are
coupled with the robot hand, so that if the handmoves, the fingers
will move along with it and update their absolute position in the
world, maintaining the relative pose in the hand reference frame.

In these experiments, we exploit the edge-based approach for
the hand visual perception, described in Section “Edge extraction
approach.” The silhouette approach that we used in the simula-
tion experiments is not suitable in real-world scenarios due to
the non-homogeneous background in the images, which makes
segmentation difficult and noisy.

We maintain the initialization parameters defined in Section
“Experimental Settings” andwe define the tuning parameter of the
edge distance as λedge = 0.01. This results in a higher likelihood
when the distance of the nearest edge is around 1 pixel and a
likelihood close to 0 when the distance reaches its maximum
value (255).
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As a way to evaluate the performance of the method in a real
environment, we have chosen to use the left and right hands and
apply the end-effector pose estimation on both. The goal is to
get the hands close to each other with the index fingers almost
touching. To achieve that the desired poses of the left and right
end-effectors (i.e., the left and right hand palms) are defined with
the same orientations, and with positions that differ only in the
X-axis, of 12 cm; the fingers are slightly bent, so that the fingertips
would touch when the hands are facing each other 12 cm apart.
The target pose was chosen to be close to the center of both
cameras for visualization purposes; however, this method can be
applied in every location of the robot workspace, as long as the
hands are in the field of view of one of the cameras. Therefore,
the results shown are not specific to this target pose and similar
experiments can be performed in any other configuration.

The robot starts from the home position seen in Figure 12.
The left arm moves to the desired pose xd and the target pose

for the end-effector of the right arm is defined to have the same
orientation of the left arm end-effector and a distance in the
perpendicular direction of the palm of 12 cm.

In the first part of the experiment, we control both the left
and the right arms to the desired end-effector poses, with open-
loop control, performing the body schema adaptation and the
estimation of the poses of the end-effectors. In the second part
of the experiment, we control the pose of both end-effectors to
the desired poses with closed-loop control, exploiting the adapted
body schema and the improved pose estimation. In Figure 13,
we show the comparison between the non-calibrated case (after
the open-loop control, top row), where the hands have a distance
from each other of approximately 16 cm and the fingertips are
not aligned, and the adaptation performed using our method
(with the closed-loop control, bottom row), where the hands are
about 12 cm apart and the fingertips are touching each other
(as desired).

FIGURE 12 | Body schema online adaptation performed in the real robot. Images seen by the robot eye cameras Left (A) and Right (B) Cameras and by an
external camera (C) placed in front of the robot. Initial robot configuration.

FIGURE 13 | Body schema online adaptation performed in the real robot. Images seen by the robot eye cameras Left (A,D) and Right (B,E) Cameras and by
external camera (C,F) placed in front of the robot. First row (A–C): the left arm is controlled toward a target end-effector pose and the right arm is controlled toward
the same end-effector pose with a shift of 12 cm, with open-loop control. However, the resulting end-effector poses are not the desired one, due to inaccuracies in
the body schema. Adaptation parameters are estimated during the motion of both arms, and used to update the body schema. Second row (D–F): the pose of both
end-effectors is corrected using the updated body schema and a closed-loop control strategy that exploits the improved pose estimation.
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6. DISCUSSION

We have reported results both in simulation and in the real robot.
The former constitute a quantitative evaluation with respect to
ground-truth data; the latter demonstrate that the system can
be used in the real world successfully. Indeed, in both cases, we
achieve good results showing that both the estimation and reach-
ing errors are decreased. Our approach is biologically inspired as
evidence in neuroscience suggests that the human brain keeps an
updated representation of the body (i.e., a body schema) that is
employed to generate hypotheses of the limbs positions in space,
which are combined with the actual perception of the self in a
Bayesian fashion. Our system outperforms the current state of the
art in the sense that (i) it does not rely on markers on the end-
effector, using the pure visual feedback coming from the robot
stereo cameras, (ii) the body schema adaptation is performed
during reaching movements without a specific adaptation pro-
cedure, and (iii) such adaptation is performed online in real-
time. While the body schema adaptation and pose estimation can
be performed during each reaching movement, the adaptation
parameters obtained during one movement generalize well to
other areas of the workspace. This has been extensively docu-
mented in a previous publication (Vicente et al., 2015), inwhichwe
also show that our choice of parameterization (i.e., offsets in the
arm joints) outperforms other solutions proposed in the literature,
such as the use of offsets in the Cartesian position and orientation
of the end-effector.

In general, the scalability of systems depends on the size of
the search space (i.e., the parameters space). The fact that we
parameterize the model with the joint offsets does not mean that
other sources of error could not be accounted for. In theory, with
a sufficient number of particles (and with a sufficient number of
examples) any kind of error that causes a mismatch between the
kinematic model and the real robot (e.g., unalignment of one joint
axis of rotation, change in the length of one link, change in the
elastic properties of one transmission cable) can be compensated
for, since our sequential Monte Carlo parameter optimization
approach attempts to minimize the prediction error between the
body schema hypothesis and the visual perception. Although a
quantitative analysis of the estimation with different error sources
was not performed in this paper, the encouraging results obtained
on the real robot (where other error sources than joint offsets are
likely to be present) suggest that our system could deal with them.

The results provided in Section “Trade-Off between the Num-
ber of Particles andEstimationAccuracy” show that increasing the
number of particles would lead to better estimation performance;
however, the computational burden would also increase con-
siderably. Interestingly, our architecture for the internal mental
simulation could be easily made parallel to increase the com-
putation speed. In the current system, one computer generates
multiple hypotheses based on a single internal model; the number
of generated hypothesis is the same of the number of particles. The
hypothesis is then compared to the robot visual perception. The
use of a big cluster of computers in which each machine runs an
instance of the internal model and generates only a single hypoth-
esis would considerably reduce the computation time, allowing to
use a high number of particles (at the cost of using a high number
of computers).

Our proposed solution is not robot-dependent, and can be
applied to other robotic platforms in a straightforward manner,
provided that a kinematic and graphical (texture) model of the
robot is available. Clearly, the more the texture model of the robot
is close to the real robot appearance, the better the estimation
performance is expected to be. This is because in our current
solution the appearance of the internal model is not updated
exploiting the visual information gathered by the robot: only the
kinematic structure is adapted based on themismatch between the
internal model predictions and the visual feedback.

7. CONCLUSION AND FUTURE WORK

Wepresented a novel system for simultaneous online body schema
adaptation and end-effector pose estimation implemented on the
iCub humanoid robot. The parameter adaptation is performed
with a sequential Monte Carlo framework during the execution of
reachingmovements.We rely only on the robot embedded sensors
(vision sensing from stereo cameras and proprioception) without
using any special visual marker. Our method draws inspiration
from human perception and learning, as we combine the pre-
diction made by a learned internal model with the actual visual
feedback to improve the perceptual skill of the robot.

Overall, our simulation experiments show that we can reduce
the end-effector pose estimation error considerably with respect
to using the nominal (non-calibrated) robot model (of about eight
times in the end-effector position and 2.2 times in the end-effector
orientation). Moreover, the use of a closed-loop correction after
the initial open-loop reaching motion (during which the body
schema adaptation and pose estimation are performed) allows to
reduce the reaching error of about 8.5 times in position and 2.3
times in orientation.

We demonstrated the applicability of our system to real-world
scenarios by performing a bimanual reaching task with the real
iCub robot, where the combined open-loop and closed-loop con-
trol strategy, made possible by the accurate pose estimation,
allowed to decrease the positioning error of both end-effectors
by 4 cm.

Some possible directions for the future work have been dis-
cussed in Section “Discussion.”Moreover, an interesting improve-
ment to increase the robustness of the edge matching would be to
use also the orientation of the matching edge on the model and
compare its location and orientation with an edge in the realistic
platform sensing information.
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APPENDIX

Pseudo-code
In this appendix, we will give details on the implementations
of some of the modules used in our approach. We show the
pseudo-code of the most important modules developed.

We developed two modules: main module (Algorithm1) and
the internal mental simulation (Algorithm2). In our work, they
communicate via YARP middle-ware.

Themainmodule is responsible for processing the images from
the robot to generate the particles and updated their likelihood.
Moreover, it publishes the estimated β that can be used to correct
the end-effector pose. In the internal mental simulator, we gener-
ate the hypotheses and test them returning the likelihood of each
particle.

ALGORITHM 1 | Main module.

procedure MAIN

for t← 0, MaxFrames do ◃ e.g., MaxFrames= 170
Receive images from the robot cameras
Receive Joint encoders (θ)
yt =Process-Images(RC, LC)
Bt =SMC(Bt−1, yt, θ)
Perform Kernel Density Estimation on set Bt

Publish estimation βt

end for
end procedure

procedure PROCESS-IMAGES(RC,LC)

if Silhouette-based then
Silhouette segmentation
Concatenation of Images – yt

end if
if Edge-based then

Edge Extraction ◃ using (Canny, 1986)
Distance transform ◃ using (Borgefors, 1986)
Concatenation of Images – yt

end if
return yt

end procedure

procedure SMC(Bt−1, yt, θ)
B̂t = Bt = ∅
for m← 1, M do ◃ M is the number of particles

sample β
[m]
t ∼ p(βt|β[m]

t−1)

w[m]
t =Simulator(β[m]

t , yt, θ) ◃ According to w[m]
t = p(yt|β

[m]
t )

B̂t = B̂t + ⟨β[m]
t ,w[m]

t ⟩
end for
for m← 1, M do ◃Re-sampling Stage

draw β
[m]
t with probability ∝ w[m]

t
add β

[m]
t to Bt

end for
return Bt

end procedure

ALGORITHM 2 | Internal mental simulator.

procedure SIMULATOR(β
[m]
t , yt , θ)

Generate pose with β
[m]
t and θ

if Silhouette-based then
Generate binary Images ŷt
w[m]
t = Likelihood-Assessment(ŷt, yt ) ◃ Using GPGPU programing

end if
if Edge-based then
Generate Edge Images ŷt
w[m]
t = Likelihood-Assessment(ŷt, yt ) ◃ Using GPGPU programing

end if
return w[m]

t
end procedure
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Several simulation theories have been proposed as an explanation for how humans
and other agents internalize an “inner world” that allows them to simulate interactions
with the external real world – prospectively and retrospectively. Such internal simulation
of interaction with the environment has been argued to be a key mechanism behind
mentalizing and planning. In the present work, we study internal simulations in a robot
acting in a simulated human environment. A model of sensory–motor interactions with the
environment is generated from human demonstrations and tested on a Robosoft Kompaï
robot. The model is used as a controller for the robot, reproducing the demonstrated
behavior. Information from several different demonstrations is mixed, allowing the robot
to produce novel paths through the environment, toward a goal specified by top-down
contextual information. The robot model is also used in a covert mode, where the execu-
tion of actions is inhibited and perceptions are generated by a forward model. As a result,
the robot generates an internal simulation of the sensory–motor interactions with the
environment. Similar to the overt mode, the model is able to reproduce the demonstrated
behavior as internal simulations. When experiences from several demonstrations are
combined with a top-down goal signal, the system produces internal simulations of novel
paths through the environment. These results can be understood as the robot imagining
an “inner world” generated from previous experience, allowing it to try out different
possible futures without executing actions overtly. We found that the success rate in
terms of reaching the specified goal was higher during internal simulation, compared
to overt action. These results are linked to a reduction in prediction errors generated
during covert action. Despite the fact that the model is quite successful in terms of
generating covert behavior toward specified goals, internal simulations display different
temporal distributions compared to their overt counterparts. Links to human cognition
and specifically mental imagery are discussed.

Keywords: embodied cognition, imagination, internal simulation, learning from demonstration, representation,
simulation theory, predictive sequence learning, prospection
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1. INTRODUCTION

Cognitive science has traditionally equated cognition with the
processing of symbolic internal representations of an external
world [e.g., Pylyshyn (1984), Fodor and Pylyshyn (1988), Newell
(1990), and Anderson (1996)]. While clearly humans experience
some kind of “inner world,” i.e., the ability to imagine their envi-
ronment and their own interactions with it embodied/situated
theories of cognition [e.g., Varela et al. (1991), Clancey (1997),
Clark (1997), and Lakoff and Johnson (1999)] have questioned
the traditional view of symbolic mental representations. In arti-
ficial intelligence research, in particular, some have argued for
the need of “symbol grounding” (Harnad, 1990), i.e., the ground-
ing of amodal symbolic representations in non-symbolic iconic
and categorical representations that allow to connect senses to
symbols, while others have argued that the “physical grounding”
of “embodied” and “situated” robots simply makes representa-
tion unnecessary [e.g., Brooks (1991)]. In this context, alterna-
tive accounts of cognition as based on different types of mental
simulation or emulation have gained substantial interest [e.g.,
Barsalou (1999), Hesslow (2002), Grush (2004), Gallese (2005),
and Svensson (2013)]. According to these theories, the “inner
world” and the human capacity for imagination are based on
internally simulated action and perception, i.e., the brain’s ability
to (re- or pre-) activate itself as if it was in actual sensorimotor
interaction with the external world.

While there have been many advances in providing robots
with some kind of inner world, the inner worlds of robots have
traditionally been based on predefined ontologies and still lack
in complexity and flexibility compared to the inner worlds of
humans. In this paper, we describe a learning mechanism that
enables a simulated robot to mentally imagine moving around
in an apartment environment. The robot does not only repeat
previously experienced routes but also shows a kind of organic
compositionality (Tani et al., 2008), allowing it to reenact – and
recombine – parts of previous sensory–motor interactions in
novel ways. The basic mechanism underlying this is grounded
in simulation theories, in particular, the type of mechanisms
suggested by Hesslow (2002) and consists of learning associations
between sensor and motor events.

In the present work, we combine previous efforts on internal
simulation (Stening et al., 2005; Ziemke et al., 2005; Svensson,
2013) with those on Learning from Demonstration (LFD) (Billing,
2012) into a model that can learn from human demonstrations
and reenact the demonstrated behavior both overtly and covertly.
We here evaluate several aspects of such covert action: (1) can
the robot produce internal simulations similar to a previously
executed overt behavior; (2) towhat extent can the systemproduce
internal simulations of new behavior, that is, reenact and recom-
bine previously experienced episodes into a novel path through
the environment; and (3) how can such internal simulations in a
robot be compared with simulation theories of human cognition?

The rest of this paper is organized as follows. Simulation the-
ories of cognition are introduced in Section 2, and a problem
statement of recombining previous experiences into novel simu-
lations is presented in Section 3. The modeling technique, based
on Predictive Sequence Learning (PSL), is presented in Section 4,
followed by a description of the experimental setup in Section 5.

Our hypotheses are made explicit in Section 6. Results are pre-
sented in Section 7, and the paper is concluded with a discussion
in Section 8.

2. SIMULATION THEORIES

In simple terms, simulation theories explain cognition as simu-
lated actions and perceptions. The term simulation, as used in this
paper, is more specifically related to the following two notions:

• Reactivation: Simulation is the reactivation of various brain
areas, especially areas along the sensory and motor hierarchies,
and

• Prediction: The covert or simulated actions can directly evoke
sensory activity that corresponds to the activity of the sensory
organs that has previously occurred following action execution
in that context.

Ideas relating to reactivation and prediction are not new but
have received renewed attention in the last couple of decades [e.g.,
Damasio (1994), Barsalou (1999), Möller (1999), Hesslow (2002),
Gallese (2003), and Grush (2004)]. The idea of reactivation can be
found dating (at least) as far back as the British empiricists and
associationists (Hesslow, 2002).

Alexander Bain suggested that thinking is essentially
a covert or weak form of behavior that does not acti-
vate the body and is therefore invisible to an external
observer [. . .]. Thinking, he suggested, is restrained
speaking or acting (Hesslow, 2002, p. 242).

The idea of restrained actions was also popular among some of
the behaviorists, perhaps most prominently Watson, who viewed
cognition or thinking asmotor habits in the larynx (Watson, 1913,
p. 84), cited in Hickok (2009). While the idea of reactivation in
these early theories was rather underspecified and susceptible to
criticism (for example, the finding that paralysis induced to the
muscles by curare did not have any observable effects on thinking)
(Smith et al., 1947; Hesslow, 2002), modern theories of simulation
and reactivation [e.g., Barsalou (1999), Hesslow (2002), andGrush
(2004)] further specify the nature of the reactivations (i.e., simu-
lated actions and perceptions) based on both behavioral studies
using elaborate experimental setups and a large body of neurosci-
entific evidence, e.g., Jeannerod (2001). We do not elaborate on
the empirical evidence cited in support for simulation theories in
this paper, but reviews can be found in Colder (2011), Hesslow
(2012), and Svensson (2013).

Given that simulation theories have been put forward to explain
many different cognitive phenomena and span a wide range of
disciplines, such as linguistics [e.g., Zwaan (2003)], neuroscience
(Colder, 2011), and psychology [e.g., Barsalou (1999)], they are
not entirely coherent in their particular details of implementation
and hypotheses about the underlying mechanisms. They also
differ with regard to their view of knowledge and the relation
between the cognitive agent and its environment (Svensson,
2007, 2013). However, to some extent, they share a commitment
to the reactivation hypothesis and/or the prediction hypothesis.
The following subsections provide a summary of three of the
perhaps most commonly cited simulation theories: Hesslow’s
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simulation hypothesis (Hesslow, 2002), Grush’s emulation
theory of representation (Grush, 2004), and Barsalou’s notions
of perceptual symbol systems and situated conceptualizations
(Barsalou, 1999, 2005).

2.1. Simulation Hypothesis
Hesslow (2002, 2012) argued that his simulation hypothesis rests
on three basic assumptions:

• Simulation of actions: We can activate motor structures of the
brain in a way that resembles activity during normal action but
does not cause any overt movement.

• Simulation of perception: Imagining perceiving something is
essentially the same as actually perceiving it, only the perceptual
activity is generated by the brain itself rather than by external
stimuli.

• Anticipation: There exist associative mechanisms that enable
both behavioral and perceptual activity to elicit perceptual
activity in the sensory areas of the brain (Hesslow, 2002, p. 242).
Most importantly, a simulated action can elicit perceptual activ-
ity that resembles the activity that would have occurred if the
action had actually been performed.

A central claim of the simulation hypothesis is that it is not nec-
essary to posit some part of the brain or some autonomous agent
self-performing the simulation, but the anticipation mechanism
will ensure thatmost actions are accompanied by probable percep-
tual consequences (Hesslow, 2002). That means there is no need
to posit an independent agent (i.e., homunculus) that evaluates the
simulation; rather, the (simulated) sensory events will elicit previ-
ously learned affective consequences that guide future behavior by
rewarding or punishing simulated actions. The mechanisms that
ensure that the simulations are established are likely to be realized
by neuralmechanisms located inmany different areas of the brain,
rather than there being a single neuralmechanism for anticipation
(Svensson et al., 2009b; Svensson, 2013).

2.2. Emulation Theory of Representation
Grush (2004) proposed a general theory of representation
based on the control-theoretic concept of emulation or forward
modeling. The concept of a forwardmodel is well known inmotor

control and has, in that context, also been linked to seemingly
more mental abilities such as forming mental images of actions
[e.g., Wolpert et al. (1995)].

Generally, a forwardmodel (ϕ) takes the current state (xt) of the
system and a control signal (ut), and estimates the consequences
of that control signal in terms of a new state of the system (x̂t+1),
at some future time t+ 1:

x̂t+1 = ϕ(xt, ut) (1)

The forward model acts in combination with the controller, or
inverse model π:

ût = π(xt) (2)

An illustration of an agent implementing forward and inverse
models along the principles put forward by Hesslow (2002) and
Grush (2004) is presented in Figure 1. We should, however, note
that the forward and inverse models are here depicted as associ-
ations between perceptions and actions, not functions of the sys-
tem’s state as defined in equations (1) and (2). Grush (2004) uses
a Kalman filter to compute the system state based on perceptual
information. However, Hesslow (2002) takes an associationist’s
perspective and argues for an implicit state representation.

While, as already noted above, forward and inverse models of
the motor system have been linked to mental imagery, the general
idea of simulation theories is that simulations are not restricted
to only the immediate control of the body. As can be seen in,
e.g., Barsalou (1999)’s theory of perceptual symbol systems and
situated conceptualizations, simulations can also include more
distal and distant aspects of embodied interaction (Svensson
et al., 2009b).

2.3. Perceptual Symbol Systems
Barsalou (1999, 2005) proposed a theory of perceptual symbol
systems, consisting of three parts: (1) perceptual symbols, i.e., the
reenactment of modality-specific states; (2) simulators and asso-
ciated simulations; and (3) situated conceptualizations. For read-
ability, we only focus on the latter (Barsalou, 1999) for a descrip-
tion of parts 1 and 2. According to Barsalou (2005), our ability to
categorize and conceptualize the world depends on a particular
type of simulation, which he terms situated conceptualizations,

FIGURE 1 | Left, an agent, encapsulated by a blue line, that perceives (y) and acts (u) upon its environment, depicted as a sine wave. The dashed line
depicts the inverse model ϕ, and the dotted line represents the forward model ω. The prediction error given by the comparator is used to update both models (white
arrow). Right, the same agent conducting internal simulation. Here, output of the forward model is not (only) used for learning but fed back into the inverse model in
order to compute the next action. As a result, the iterative process can continue without overt interactions with the world.
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in which the conceptualizer is placed directly in the respective
situations, creating the experience of being there . . . (Barsalou,
2005, p. 627). Barsalou illustrated this as follows:

Consider a situated conceptualization for interacting
with a purring house cat. This conceptualization is
likely to simulate how the cat might appear percep-
tually. When cats are purring, their bodies take par-
ticular shapes, they execute certain actions, and they
make distinctive sounds. All these perceptual aspects
can be represented as modal simulations in the situ-
ated conceptualization. Rather than amodal redescrip-
tions representing these perceptions, simulations rep-
resent them in the relevant modality-specific systems
(Barsalou, 2005, p. 626–627).

In such a situation, simulated perceptions and actions/
emulations are connected into simulated chains of embodied
interactions that involve bodily aspects as well as physical and
social aspects of the environment and enable our conceptual
understanding of the situation.

3. PROBLEM STATEMENT

One of the key premises of simulation theories is that the capacity
to reenact previous experiences covertly allows the agent to get
away from the here and now and generate the experience of a
novel sequence of events. This allows the agent to “try out” differ-
ent scenarios without the effort and possible dangers of actually
executing them.

As an example, close your eyes and imagine yourself in your
home. You wake up, get out of the bed, go through the bedroom
door, continuing the shortest way out of the building – it is quite
easy to imagine, even if you have never taken exactly this path
before. You combine previous experiences from your home into
something new.

An abstraction of the scenario described above is given in
Figure 2.With the knowledge of getting fromA to B and fromC to
D, the internal simulation exploits that intersection to postulate a
possible way of getting fromA toD or C to B. An agent standing at
A can of course follow the known path from A toward B and look
for opportunities to reach D, but with many behaviors to choose
from the goal quickly becomes unreachable. Internal simulations
drastically reduce the effort of trying out different combinations
of known behaviors in the real world.

Despite the fact that simulation theories constitute common
sources of inspiration for roboticists, the basic scenario described

FIGURE 2 | Abstract depiction of two paths, from A to B and from C to
D. The two paths, depicted as dashed lines, share some experiences,
indicated with a dotted circle, allowing the agent to combine previously
experienced episodes into new behavior, e.g., going from A to D. See text for
details.

above has to our knowledge never been computationally analyzed
using internal simulation. Over the last two decades, compu-
tational models, such as HAMMER (Demiris and Hayes, 2002;
Demiris and Khadhouri, 2006; Demiris et al., 2014), MOSAIC
(Wolpert and Kawato, 1998; Haruno et al., 2003), MTRNN
(Yamashita and Tani, 2008), and MSTNN (Jung et al., 2015), have
received significant attention. These models all rely on prediction
and to some extent a pairing of forward and inverse models, and
somehave been used for internal simulation. But none have, to our
knowledge, been used for generating novel, goal-directed behavior
using internal simulation.

Tani (1996) presents an early approach to model-based learn-
ing using a recurrent neural network that generates an internal
simulation of future sensory input. Another example of goal-
directed planning using internal simulations was presented by
Baldassarre (2003). While both these models produce simulations
of goal-directed behavior, they do not learn from human
demonstrations.

Pezzulo et al. (2013) argued that there is a need for grounded
theories, including simulation theories, to develop better process
models of “how grounded phenomena originate during develop-
ment and learning and how they are expressed in online pro-
cessing” and that an important challenge is explaining “how
abstract concepts and symbolic capabilities can be constructed
from grounded categorical representations, situated simulations,
and embodied processes.” The grounded cognition approach
and Barsalou’s situated conceptualization (Barsalou, 1999, 2005;
Barsalou et al., 2003) suggest that abstract thinking and other cog-
nitive phenomena are based on and consist of processing involving
bodily (e.g., proprioceptive, interoceptive, and emotional) states
as well as the physical and social environment. Therefore, com-
putational models of simulation theories need to better reflect the
bodies and environments that humans inhabit to develop richer
concepts that can be used to think about the world and oneself.

Here, we directly address the latter part of this question by eval-
uating to what extent the robot model, based on the principles of
simulation theories, can internalize the environment and generate
new behavior in the form of internal simulations. Specifically, we
are interested in to what degree the robotmodel can produce goal-
directed covert action and to what degree the internal simulation
replicates the sensory–motor interactions of the overt behavior.

3.1. Computational Models of Internal
Simulation
A possible approach of implementing simulations as proposed by
Hesslow (2002) in computational agents can be found already in
the work of Rumelhart et al. (1986) on artificial neural networks.
They suggested that it is possible to “run a mental simulation” by
having one network that produces actions based on sensory input
and another that predicts how those actions change the world. By
replacing the actual inputs with the predicted inputs, the networks
would be able to simulate future events (Rumelhart et al., 1986,
p. 41–42). The assumption is that if the predicted sensory input
is similar enough to the actual sensory input, the agent can be
made to operate covertlywhere the predicted sensory input is used
instead of the actual sensory input. Two early implementations of
simulation-like mechanisms of this kind were the “Connectionist
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Navigational Map (CNM)” of Chrisley (1990) and the simulated
robot (arm) “Murphy” by Mel (1991). The theoretical motivation
behind the connectionist navigational map was the transition
from non-conceptual to conceptual knowledge [see, e.g., Barsalou
(1999)], and latermodels have focused on, for example, allocentric
spatial knowledge (Hiraki et al., 1998), learning the spatial layout
of a maze-like environment [e.g., Jirenhed et al. (2001) and Hoff-
mann and Möller (2004)], obstacle avoidance (Gross et al., 1999),
and robot dreams (Svensson et al., 2013).

These experiments have shown that the computational agents
can learn to produce internal simulations that guide behavior in
the absence of sensory input. However, it is not a trivial task to
construct such simulations. For example, one can easily imag-
ine that if predictions start to diverge from the actual sensory
states, simulations will drift and become increasingly imprecise.
Jirenhed et al. (2001) found that some behaviors caused states in
which predictions could not be learnt which hindered successful
internal simulations to develop, and Hoffmann and Möller (2004)
identified an accumulation of error as the chains of predictions
increase in length, which could restrict the ability to create longer
sequences of simulations. On the other hand, in Baldassarre
(2003)’s model, noisy predictions did not accumulate for each
time step. Others have suggested that the states in internal simula-
tions should not be judged by their correspondence to real sensory
input, rather the important aspect is that the internal simulations
constructed by the robot support successful behavior (Gigliotta
et al., 2010). For example, Ziemke et al. (2005) demonstrated a
simple internal simulation in a Khepera robot [K-Team (2007)],
using a feed forward neural network. The network generated
both actions and expected percepts, allowing the robot to reenact
earlier sensory–motor experiences andmove blindfolded through
its environment. Despite the fact that the actions produced during
internal simulation produced roughly the same coherent behavior,
the internally generated sensor percepts used for blind navigation
were actually quite different from the previously experienced real
sensory inputs.

The current models of mechanisms based on simulation the-
ories have shown the viability of creating internal models out of
simple sensory–motor associations, but the environments have
often been of very low complexity. For example, the environ-
ments consist of very simplemazes without obstacles/objects [e.g.,
Jirenhed et al. (2001) and Ziemke et al. (2005)] or with only a few
simple block shaped obstacles/objects [e.g., Tani (1996) and Gross
et al. (1999)].

Two computational models that have been used in more
complex settings are HAMMER (Demiris and Simmons, 2006;
Demiris et al., 2014) and the recurrent neural network models by
Tani and colleagues (Tani et al., 2008; Yamashita and Tani, 2008;
Jung et al., 2015).

Already in an early presentation of the model (Demiris and
Hayes, 2002), HAMMER was used for internal simulation in the
context of imitation learning. Framed as active imitation, Demiris
and Hayes (2002) present a system producing a set of parallel
internal simulations. The output of each simulation, generated
by paired forward and inverse models, is compared with the
demonstrator’s observed state, and the error is used to assign a
confidence level to each simulation. Since each pair of forward
and inverse models is trained to implement a specific behavior,

the method can be used for imitation. Together with theMOSAIC
model (Haruno et al., 2003), HAMMER constituted significant
inspiration for our own previous work on behavior recognition
(Billing et al., 2010). For further positioning of the HAMMER
architecture in relation to other cognitive architectures, please
refer to Vernon (2014).

Another topic of interest has been the formation of concepts
and abstractions of the sensorimotor flow in internal simulations.
For example, Stening et al. (2005) developed a two-level architec-
ture inwhich the higher level was able to form internal simulations
of the “rough” structure of the environment, based on simple
categories, such as “corner” or “corridor,” developed through
unsupervised learning at the lower level. Another example is
Tani et al. (2008), who investigated the development of flexible
behavior primitives achieving a kind of “organic compositional-
ity” in a humanoid robot, and the robot was also able to reactivate
the primitives internally in a mental simulation. These types of
behavior primitives could be seen as potential buildings blocks of
the situated conceptualizations suggested by Barsalou (2005).

4. PREDICTIVE SEQUENCE LEARNING

As discussed in Section 3, we are interested in investigating how
prior experiences can be combined into new, goal-directed behav-
ior during both overt and covert actions. The proposed system is
based on our earlierwork onLearning fromDemonstration (LFD)
(Billing and Hellström, 2010) and the PSL algorithm [e.g., Billing
et al. (2011a,b, 2015)]. PSL resembles many of the principles put
forward in Sections 2–3 and implements forward and inverse
models as a joint sensory–motor mapping:

êt+1 = f (ηt) (3)

where et = (ut−1, yt) represents a sensory–motor event at time
t, comprising perceptions yt and actions ut−1. êt+1 is the pre-
dicted event estimate. A sequence of events constitutes the
sensory–motor event history η:

ηt = (e1, e2, . . . , et) (4)

PSL constitutes a minimalist approach to prediction and
control, compared to, e.g., HAMMER (Demiris and Hayes,
2002; Demiris and Khadhouri, 2006) and CTRNN (Yamashita
and Tani, 2008), as discussed in Section 2. Both HAMMER
and CTRNN have been evaluated in LFD settings and could
be expected to produce more accurate prediction and control,
especially with high-dimensional and noisy data. However, for
the present evaluation, PSL was chosen since it, in contrast to
the HAMMER architecture, represents a fully defined algorithm,
leaving less room for platform specific interpretations. It also
takes an associationist approach to learning, implementing a
direct perception – action mapping closely resembling Hesslow’s
simulation hypothesis (Hesslow, 2012) as depicted in Figure 1
[compared with the use of a state estimate, equations (1) and (2)].
In this respect, PSL is model free (Billing et al., 2011a) and, in
the form used here, comprises only two parameters: membership
function size (τ) and the precision constant α̂. Both parameters are
described in detail below.
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With a closer connection to biology, CTRNN represents a the-
oretically interesting alternative but requires much larger training
times and could therefore pose practical problems for conducting
the kind of evaluations presented here.

In the language of control theory, we would define a trans-
fer function describing the relation between the system’s inputs
and outputs. An estimator, such as maximum likelihood, would
then be used to estimate the parameters for the model. For an
introduction to this perspective in robotics, see, e.g., Siegwart
and Nourbakhsh (2004). Here, we take a different approach and
formulate f [equation (3)] as a set of fuzzy rules, referred to
as hypotheses (h), describing temporal dependencies between a
sensory–motor event et+1 and a sequence of past events (et−|h|+1,
et−|h|+2, . . . , et), defined up until current time t:

h :
(
ϒτ+1 is Eh1 ∧ ϒτ+2 is Eh2 ∧ . . . ∧ ϒt is Eh|h|

)
C⇒ϒt+1 is Ēh. (5)

where ϒi is the event variable, and Eh(e) is a fuzzy membership
function returning a membership value for a specific et. The
right-hand side Ēh is a membership function comprising expected
events at time t+ 1. |h| denotes the length of h, i.e., the number of
left-hand-side conditions of the rule. τ equals t− |h|. C represents
the confidence of h within a specific context, described in the
following section. Both E and Ē are implemented as standard
cone membership functions with base width ε [e.g., Klir and
Yuan (1995)].

A set of hypotheses is used to compute f [equation (3)], pro-
ducing a prediction êt+1 given a sequence of past sensory–motor
events η. The process of matching hypotheses to data is described
in Section 1, and the use of PSL as forward and inverse models
during overt and covert actions is described in Section 3.

As hypotheses represent weighted associations between a
sequence of sensory–motor events, PSL can be viewed as a
variable-order Markov model. Generated hypotheses are initially
associating a single et with êt+1, implementing a first-order
association. In cases where et does not show Markov property,
an additional hypothesis is generated: (et−1, et) ⇒ êt+1,

implementing a second-order association. Seen as a directed
graph between sensory–motor events, PSL implements several
aspects of a joint procedural–episodic memory (Vernon et al.,
2015). For a detailed description of the learning process of PSL,
please refer to Billing et al. (2015).

PSL is not expected to produce a better estimate in terms of
prediction error than what can be gained using control theory
approaches, but allows estimated mapping functions, defined as
sets of hypotheses, to be recombined in order to produce novel
behavior. This property is not as easily achieved using a control-
theoretic approach.

4.1. Matching Hypotheses
Given a sequence of sensory–motor events, η= (e1, e2, . . . , et), a
match αt(h) is given by

αt (h) =
|h|−1∧
i=0

Ehi (et−i) (6)

where ∧ is implemented as a min-function.

Hypotheses are grouped into fuzzy sets C whose membership
value C(h) describes the confidence of h at time t:

C (h) =

t∑
k=th

αk (h) Ēh (ek+1)

t∑
k=th

αk (h)
(7)

where th is the creation time of h. Each set C represents a context
and can be used to implement a specific behavior or part of a
behavior. The responsibility signal λt(C) is used to control which
contexts are active at a specific time. The combined confidence
value C̃t (h), for hypothesis h, is a weighted average over all C:

C̃t (h) =

∑
C
C (h)λt (C)∑
C

λt (C)
(8)

where C̃t is a single fuzzy set representing the combination of all
active contexts at time t. Hypotheses contribute to a prediction
in proportion to their membership in C̃, their length, and match
αt(h). The aggregated prediction Ê (et+1) is computed using the
Larsen method [e.g., Fullér (2000)]:

Ê (et+1) =
∨
h

Ēh (et+1) C̃(h)|h|αt(h)2 (9)

During learning, new hypotheses are created when Ê(et+1) <

α̂, that is, when the observed sensory–motor event et+1 in the
training data does not match the prediction. The precision con-
stant α̂ ∈ [0, 1] is, in fuzzy-logic terms, an α-cut, i.e., α̂ specifies
a threshold for prediction precision, where a high value results in
highly precise predictions and a large number of hypotheses, while
a small α̂ renders less hypotheses, and less precise predictions [see
Billing et al. (2011b) for details].

While the PSL algorithm used here is identical to earlier work,
a different defuzzification method is used. Billing et al. (2015)
employed a center of max defuzzification method, while we here
use a probabilistic approach. Ê is treated as a probability dis-
tribution and converted to crisp values by randomly selecting
a predicted sensory–motor event ê ∈ Ê in proportion to their
membership in Ê.

The PSLmapping function [equation (3)] can now be redefined
as context-dependent forward and inverse models:

ŷt+1 = ϕ (ηt,λt) (10)
ût = π (ηt,λt) (11)

4.2. Illustrative Example
Figure 3 presents an example of PSL applied to a simplified robot
scenario. Consider a robot placed in an environment depicted as a
gray area in the figure. A demonstration (η), comprising 8 sensory
motor events, shows how to get from its current location to the
goal (G). Using η as training data, PSL generates a knowledge base
comprising 9 hypotheses, under context C.

When placed in the test environment, PSL is used as a controller
to generate a sequence of actions from start to goal. Note that the
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starting location is not identical and that the test environment is
slightly different from the one used for training. The output pro-
duced by PSL is presented in Figure 3 as f, aligned with the event
sequence ηr observed while executing selected actions. At time
step 1, PSL bases its prediction on a single (blue) sensory–motor
event which, according to the knowledge base, can have three
possible outcomes (h1, h2, and h5). PSL selects among these in
proportion to the confidence levels, represented by the number
above hypotheses’ arrows in the figure. The action associated
with the selected sensory–motor event is executed and the robot
approaches the corner at time step 2. Predictions are again based
on ηr , h3 is selected, and a right turn is issued.

While continuing this thought example, PSL will produce
correct predictions at t= 3 and 4, incorrect prediction at t= 5
and 6, and finally catching up with correct predictions at t= 7
and 8. Errors are only perceptual and appropriate actions are
executed also in these cases, allowing the robot to stay on path
also when there are differences between predicted and observed
sensory–motor events.

FIGURE 3 | An illustrative example of PSL. A robot, illustrated as a square
with rounded corners, and an arrow indicating its direction are placed in a
simple environment with dotted lines representing obstacles. G marks the
goal location. Colored squares represent unique sensory–motor events.
See text for details.

In a realistic scenario, there will never be an exact match
between hypotheses in the knowledge base and observed per-
ceptions and actions. Matching perceived data to sensory–motor
events is controlled by the membership function [equation (5)].
A wide membership, with a large τ, allows many hypotheses to be
selected, increasing the robot’s ability to act also in relatively novel
situations. However, a value of τ that is too large reduces precision
as a larger number of hypotheses match observed data, increasing
the risk that inappropriate actions are selected even in well-known
environments. A balance between the two allows certain variabil-
ity in the environment, while still producing stable behavior. This
balance can hence be seen as a type of exploration – exploitation
trade-off present in many machine learning approaches.

4.3. Overt and Covert Actions
Hypotheses generated by PSL are used in two modes: (1) as a
robot controller (overt action) and (2) for internal simulation
(covert action). In Mode 1, the forward model is ignored, and
πpsl [equation (11)] is directly used as a controller for the robot.
All sensory–motor events et comprises perceptions yt from the
robot’s sensors and actionsut =πpsl(ηt ,λt). This process resembles
Figure 1 (left) with the distinction that learning is only active
when the robot is teleoperated by a human teacher.

Mode 2 resembles the right part of Figure 1. πpsl is here
paired with ϕpsl (Eq. 10) to create a reentrant system. Here, only
e1 = (∅, y1) is taken from the robot’s sensors. All events êt>1 are
generated by

êt+1 =
(
πpsl (ηt,λt) ,ϕpsl (ηt,λt)

)
(12)

ηt = (e1, ê2, . . . , êt) (13)

As a result, the internal simulation is only based on e1, the
demonstrations used to train PSL, and the responsibility signal
λt . While λ is in general time varying and can be computed
dynamically, using a method for behavior recognition (Billing
et al., 2011b, 2015), it was here used as a constant goal signal.

For analytic purposes, we also need to define the prediction
error δt(C):

δt(C) = 1 − Ê(C, et) (14)

representing the error for context C at time t. Ê(C, et) denotes
the context specific aggregate [equation (9)]. Asmentioned above,
et>1 is not available during covert action. In this case, we consider
et ≈ êt, allowing computations of prediction errors also during
internal simulation.

Based on our measure of prediction error, the confidence γt(C)
in context C at time t is given by

γt (C) =
γt−1 (C) exp

(
(E(C,et)−1)2

2λ2

)
N∑
i=1

[
γt−1 (Ci) exp

(
(E(Ci,et)−1)2

2λ2

)] (15)

This definition of confidence has its roots in the MOSAIC
architecture (Haruno et al., 2003) and has previously been used
to compute the responsibility signal λt = γt online (Billing et al.,
2015).
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5. EXPERIMENTAL SETUP

To evaluate to what degree the model is able to produce goal-
directed behavior during both overt and covert actions, nine test
cases were evaluated. A simulated Kompaï robot (Robosoft, 2011)
placed in an apartment environment (Figure 4) was selected as
a test platform. Microsoft Robotics Developer Studio (MRDS)
was used for robot simulations. The apartment environment is
a standard example environment, freely available from Microsoft
(2015). PSL1 and related software was implemented using Java™.
Motivation and hypotheses follow in Section 6.

The Kompaï robot was equipped with a 270° laser scanner
and controlled by setting linear and angular speeds converted to
motor torques by the low-level controller. The 271 laser scans were
converted into a 20-dimensional vector where each element rep-
resents themean distance within a 13.5° segment of the laser data.
In total, each sensory–motor event e comprised 20 sensor dimen-
sions from the laser data and two motor dimensions (linear and
angular speeds). All data were sampled over 20Hz, and as a result,
each sensory–motor event had a temporal extension of 50ms.

A similar setup was used in previous evaluations of PSL (Billing
et al., 2011b, 2015). While the setup is still far from humanoid
sensor and motor complexity, the Kompaï robot is designed to act
in human environments and does represent a significant increase
in environmental and perceptual complexity compared to previ-
ous work using simulated Khepera robots (Jirenhed et al., 2001;
Stening et al., 2005; Ziemke et al., 2005; Svensson et al., 2009a).

1The Java™ implementation of Predictive Sequence Learning and related libraries
are freely available as a software repository at https://bitbucket.org/interactionlab/
psl, licensed under GNU GPL3.

Three behaviors with different start and goal locations were
demonstrated by remote controlling the robot using a joy pad:

• ToKitchen: From the storage room (Area 1) to the kitchen
(Area 2);

• ToTV : From the bed (Area 3) to the TV (Area 4);
• GoOut: From the bathroom (Area 5) to the elevator (Area 6).

Each behavior was demonstrated four times, producing a
total of 12 demonstrations. During demonstration, sensor read-
ings and executed motor commands were recorded. Laser scans
were given a maximum distance of 16m and the member-
ship function base (ε) was set to 1.6m. α̂= 0.9 for all condi-
tions. Parameter selection was based on previous work (Billing
et al., 2015), where a similar setup was used. Preliminary
demonstrations were recorded to select suitable start and stop
locations and to verify the technical implementation. These
demonstrations were thereafter discarded. A set of 12 demon-
strations was then recorded for the final training set. These
demonstrations were verified by training PSL on all demon-
strations from a single behavior and letting PSL act as a con-
troller for the robot, reproducing the demonstrated behavior. All
demonstrations passed verification; hence, no recordings were
discarded.

For the following test cases, all 12 demonstrations were used as
training data for PSL. During training, each behavior was given a
unique context [equation (7)], allowing a top-down responsibility
signal [equation (8)] to bias selection of hypotheses when PSL
was used as a controller. As a result, the selection of specific
context can be said to indicate a goal in the form of the target
location of the corresponding behavior. PSL was trained on all 12

FIGURE 4 | Simulated apartment environment. Green, blue, and red lines indicate approximate paths from start (1, 3, and 5) to goal (2, 4, and 6) locations, for
the three demonstrated behaviors, ToKitchen, ToTV, and GoOut. See text for details.
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demonstrations for eight epochs each. One epoch is here defined
as a single presentation of all 12 demonstrations2 in randomorder.

In each test phase, the robotwas placed onone of the three start-
ing locations (Areas 1, 3, and 5, Figure 4) and executed with a top-
down responsibility signal [λ(C)] selecting one of the three goal
locations presented during the demonstration phase. For selected
context, λ(C)= 1.0. The responsibility signal for other contexts
was set to λ(C)= 0.1, allowing hypotheses from these contexts
to influence prediction, but down-prioritized in competition with
hypotheses trained under the selected context. See Section 4 for a
detailed mathematical formulation.

All combinations of the three starting positions and three goals
(contexts) were tested, constituting a total of nine conditions: stor-
age to kitchen (ToKitchen), bed to kitchen, bathroom to kitchen,
storage to TV, bed to TV (ToTV), bathroom to TV, storage
to elevator, bed to elevator, and bathroom to elevator (GoOut).
Note that ToKitchen, ToTV, and GoOut were the behaviors used
in the demonstration and training phase. Each condition was
executed 20 times using overt action and another 20 times using
covert action (internal simulation), producing a total of 360 trials3.
See Section 4.3 for a detailed description of the two modes of
execution.

6. HYPOTHESES

Following the basic premise presented in Section 3, success-
ful internal simulation should be able to produce realistic sen-
sory–motor interactions of a novel path through the environment.

H1: the simulated robotic system should be able to reenact
all nine conditions presented in Section 5, producing an internal
simulation connecting the sensory–motor state perceived at the

2Repeated presentation of the same training data allows PSL to form stable statistical
dependencies between sensory–motor events and to extend the temporal window,
i.e., creating longer hypotheses, when needed. This repeated presentation of sensor
data may not be completely realistic from a biological point of view but can be seen
as a standard method similar to the many epochs used when training, e.g., artificial
neural networks.
3Log files from human demonstrations and all 360 simulated trails are available for
download at https://bitbucket.org/interactionlab/psl/branch/reenact

starting point, with the sensory–motor state corresponding to
the goal.

In humans and animals, internal simulations happen at dif-
ferent temporal scales (Svensson et al., 2009b; Svensson, 2013),
comprising automatic unconscious mental simulations involved
in, for example, perception that occur at a very rapid time scale
and often involve detailed sensor andmotor states [e.g., Gross et al.
(1999), Möller (1999), and Svensson et al. (2009b)]. Deliberate
mental simulations, e.g., mental imagery, occur at time scales
corresponding to the overt behavior (Guillot and Collet, 2005).
For example, Anquetil and Jeannerod (2007) studied humans
performing mental simulations of grasping actions in both first
and third person perspectives. The time to complete simulated
actions was found to be closely similar in the two conditions.
The approach used here runs internal simulations solely on a
sensory–motor level, with exactly the same speed (20Hz) as the
overt behavior.

H2: internal simulations are therefore expected to display a
similar temporal extension as the corresponding overt behavior.

7. RESULTS

Figure 5A presents sensor perceptions (laser scans) generated
during overt action, plotted in relation to the executed path from
the bed (Area 5, Figure 4) to the kitchen (Area 2). While both
bed and kitchen were present as start and goal locations in the
training data, the path from bed to kitchen was not demonstrated.
The robot model combines previously experienced episodes from
several different demonstrations into a novel path, correspond-
ing to the schematic illustration from A to D presented in
Figure 2.

The path from bed to kitchen was also executed covertly
(Figure 5B). In this case, actions were not sent to the robot
controller and the path (black line) was reconstructed from the
sequence of covert actions. Presented sensor percepts are not
taken from the robot’s sensors, but instead generated by the
internal (PSL) model.

As an illustration of how information from the different
demonstrations were used during internal simulation, prediction

A B

FIGURE 5 | Illustration of sensory–motor interactions along a path from bed (Area 5, Figure 4) to the kitchen (Area 2), using overt (A) and covert (B)
action. An approximate path is generated from executed actions and illustrated as a black line. Colored points represent laser scans in relation to the executed path,
from start (green) to goal (red). This path was not presented during training and corresponds to the A to D path in Figure 2, i.e., a novel path generated through the
recombination of previously experienced episodes. Blue circles along the path mark 2.5-s intervals.
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errors, and confidence levels for each context (behavior) is
presented in Figure 6. As visible in the figure, the ToTV context
is initially generating relatively small prediction errors, leading to
high confidence levels for this context (c.f. Section 3). After about
10 s, ToTV is starting to produce larger errors, leading to a switch
in confidence to the ToKitchen context. This switch is the result
of a strong responsibility signal [λt(C)] for the ToKitchen context
and also associated with the robot turning toward the kitchen (c.f.
Figure 5).

Both examples presented in Figure 5 are successful in the sense
that the correct goal, indicated by the top-down signal λ, was
reached. Over all nine conditions executed with overt action, the
correct goal was reached in 65% of all runs. In 29% of the runs,
one of the remaining two goals was reached, leaving 6%of the runs
failed, in the sense that no goal was reached.

In runs with covert action, the robot did not move. In
order to determine how the internal simulation terminated, the
sensory–motor patterns of all 180 covert runs were plotted (as
in Figure 5B) and the goal was visually identified. Over all nine
conditions, the correct goal was reached in 75% of all runs, a
different goal was reached in 7% of the runs and 18% of the runs
were classified as failed.

Goal reaching frequencies for each condition, including both
overt and covert runs, are presented inFigure 7. Examples of failed
internal simulations and internal simulations reaching the wrong
goal are given in Figure 8.

7.1. Simulation Time
In order to test hypothesis 2 (Section 6), simulation time is com-
pared to the time of the overt behavior, presented in Figure 9.
Some conditions, Bed to Kitchen and Bathroom to TV, display
similar temporal distributions. However, seen over all conditions,
the correlation between overt and covert execution times is weak,
with internal simulations producing both longer (Storage to TV)

and shorter (bottom three conditions, Figure 9) execution times.
A two-tailed t-test over all runs reveals a significant difference
between overt and covert execution times (p< 0.005).

The strongest difference between overt and covert execution
times is found in conditions Storage to TV and Bed–Elevator, with
the former showing longer covert execution times, and the latter
shorter times for covert runs. A deeper analysis of these conditions
is presented below.

Typical runs from Storage to TV are displayed in Figure 10.
The internal simulation (b) is semantically correct; it replicates
all important aspects of the overt execution (a), but misrepresents
the first part of the path, through the storage room depicted in
green. The total execution time of the simulated path is in this case
almost twice as long as its overt counterpart, 30 versus 18 s. The
time of exit from the storage room is 17.5 s in the covert condition
and 4.0 s in the overt case, implying that the vast majority of the
temporal difference between the two conditions appears in the
storage room.

This distortion of the internal simulation could not be
explained by a difference in prediction error. A two tailed t-test
showed no significant difference between prediction errors for
overt and covert conditions over the relevant periods, 0< t< 4 s
and 0< t< 7.5 s, respectively (p= 0.24). The observed distortion
may instead be explained by a closer analysis of the PSL model.
Figures 10C,D depicts number ofmatching hypotheses over time.
The number of matching hypotheses is here defined as number
of h for which αt(h)> 0 [c.f. Equation (6)]. A large number of
matching hypotheses indicate larger uncertainty in the model.
Both overt and covert runs display an initial period where a rela-
tively large number of hypotheses match present sensory–motor
events. Both these periods roughly correspond to the time it took
to exit the storage room, 4 and 17.5 s, respectively.

In overt mode, large model uncertainty is not a problem
as long as suitable actions are selected. Events are driven for-
ward through interaction with the environment. However, in
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FIGURE 6 | Prediction errors and confidence levels for overt (A) and covert (B) runs from bed to kitchen, as depicted in Figure 5. Values are given for
each context (c.f. Section 5). See Section 3 for definitions.
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A B

FIGURE 8 | (A) Internal simulation from the storage room (Area 1, Figure 4), here depicted in green, to the TV (Area 4), depicted in red. The simulation diverges
from the path indicated by the active context (ToTV) and terminates in a sensory–motor pattern more similar to the elevator (Area 6). (B) Unsuccessful internal
simulation from bed (Area 5, Figure 4) to the kitchen (Area 2). The simulation appears to mistake the bed for the entrance corridor and terminates quickly in front of
the elevator.

covert mode, the PSL model must also produce suitable per-
ceptions in order to drive the internal simulation. A larger
number of matching hypotheses is likely to produce oscillating
perceptions, leading to simulation distortion. This explanation is

further supported by significantly larger prediction errors being
generated in the storage room, compared to the rest of the exe-
cuted path. This difference was observed during covert simulation
(p< 0.005), but not for the overt condition (p= 0.14).
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FIGURE 10 | Typical runs from condition Storage to TV. Upper plots present laser scans in relation to the executed path, generated during overt (A) and covert
(B) runs from storage room (green) to TV (red). Blue circles along the path, represented by the black line, mark 2.5-s intervals. Lower plots present number of
matching hypotheses over time, for overt (C) and covert (D) runs. See text for details.
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A similar analysis of Bed–Elevator (Figure 11) reveals the
opposite effect. In this case, the covert execution reproduces both
start and goal correctly but misses parts of the path in between.
Specifically, the corridor leading up to the elevator, visible in the
overt run (a) is missing in the internal simulation (b). While
the first 15 s of the covert run appears similar to its overt coun-
terpart, the total time is much shorter, 18 s compared to 29 s.
Hence, the shorter simulation time is due to a lost segment of
the simulation rather than a general increase in execution speed
over the whole simulation. At t= 15 s, the robot is approaching
a door leading to the corridor, followed by a left turn toward
the elevator. An enlargement of this sequence of events, from
t= 14 s to t= 20 s, is presented in Figure 11C. The door shows
up in the figure as a narrow passage just before the left turn. It is
likely that sensory interactions, when exiting the door and facing
the corridor wall, are similar to perceptions when approaching
the elevator. This hypothesis is confirmed by comparing sensor
events from the covert condition to a subset of events from
the overt case, when approaching the elevator (24< t< 26 s).
A period between 16.25 and 17 s from the covert case shows
very similar sensor interactions to the selected period from the
covert condition. This pinpoints the time where events from the
door passage are confused with events form the elevator, and a
segment for the original path disappears. Figure 11D presents a
magnification of the covert condition, with laser scans prior to
16.5 s are colored in green and scans after 16.5 s are red. Green
scans belong to the door passage, while red scans represent the
elevator.

8. DISCUSSION

We present a robot model that can execute both overt and
covert actions based on human demonstrations. The presented
system, implemented on a simulated Kompaï robot (Robosoft,
2011), can learn from several demonstrations and execute a novel
path through an apartment environment toward a goal. We also
demonstrate that the system is able to generate internal simu-
lations of sensory–motor experiences from executing a specific
goal-directed behavior.

The model presents an associationist’s approach to control
an internal simulation, representing knowledge as coordination
between perceptions and actions. Hence, despite the fact that
the model is evaluated as a method for path following and
generation, the system state is only represented implicitly, and
very little application specific information is introduced. Mod-
els using simulated experience [c.f. Sutton and Barto (1998)] to
improve valuations of explicitly represented system states exist
in the form of reinforcement learning Dyna-based algorithms
[e.g., Santos et al. (2012) and Lowe and Ziemke (2013)]. How-
ever, these algorithms are limited to updating (either randomly
or heuristically) already experienced states and do not simulate
novel paths. We use a morphologically simple robot, allowing
us to study the principles of simulation in human-like envi-
ronments without introducing the complexity of a humanoid
robot. The selected platform [Microsoft (2015)] is freely avail-
able, facilitating replication of, and comparisons with, the present
study.

The results provide support for Hypothesis 1 (Section 6). The
system can generate the sensory–motor experiences of executing
a novel path through the environment, without actually executing
these actions. The robot model is able to pursue goals during
both overt and covert behaviors. While the proportion of runs
leading to a goal was slightly lower in the covert condition (82%),
compared to 94% during overt action, the robot’s ability to pursue
the correct goal is significantly better during covert action.

One possible interpretation of this result is that internal sim-
ulation could potentially be beneficial as a training exercise since
difficult skills are “easier” to execute covertly, increasing the likeli-
hood of successful reenaction. Motor imagery and other forms of
imagery have been used to increase the performance of athletes
and for rehabilitation (Guillot and Collet, 2005; Munzert et al.,
2009). Of particular interest to our experiment is the work of
Vieilledent et al. (2003), who investigated the influence of mental
imagery on path navigation. In their study, subjects were to nav-
igate blindfolded three different 12.5-m long hexagonal shapes,
indicated by wooden beams laid out on the floor. They found
that a learning period, including either mental imagery, men-
tal imagery, and simultaneous walking or walking with sensory
feedback from a wooden beam, resulted in increased perfor-
mance compared to a resting condition or walking withoutmental
imagery.

In a similar study, Commins et al. (2013) did not find any
increase in performance of mental imagery, but they did find
that errors increased with distance in both the actual walking
condition and imagery condition. Thus, more studies are needed
to investigate the actual benefit of mental imagery in navigation.
While it is possible that there are several factors that contribute
to the differences in performance, our finding that goal pursuit is
easier to execute covertly might be a clue to why mental training
is advantageous in some cases.

With regard to the differences observed between the overt and
covert runs, it should be noted that humans do not necessarily
perform perfectly when acting based on internal simulations.
Vieilledent et al. (2003) and Commins et al. (2013) showed that
blind navigation resulted in similar trajectories and relatively
accurate behaviors in terms of both deviation from target and
temporal extension, but Vieilledent et al. (2003) found that in
the blindfolded condition, the path was not as straight and turns
where not as sharp leading to a more circular shape and also some
distortions of the overall shape. From a simulation theory per-
spective, it would be suggested that even the blindfolded walking
is based on chained simulations of covert actions and percep-
tions, but in this case guided by the additional proprioceptive
feedback.

In light of these results, we should not expect the robot
model to reproduce a perfect trajectory toward the target dur-
ing covert action. This appears to be the case. We hypothesized
(H2, Section 6) that successful internal simulations should have
the same temporal extension as their overt counterpart. This
hypothesis was not confirmed. The model generated internal
simulations that were both longer and shorter than the overt coun-
terparts, producing significantly different temporal distributions
compared to overt results. Two cases were analyzed in detail: (1)
indicating prolongation due to sensory–motor event oscillation
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A B

C D

FIGURE 11 | Typical runs from condition Bed–Elevator. (A) Laser scans in relation to the path, executed overtly from bed (green) to the elevator (red). Blue
circles along the path, represented by the black line, mark 2.5-s intervals. (B) Corresponding laser scans generated in covert mode. (C) Magnification of selected
period (14–20 s) from the overt condition. (D) Corresponding (15–17 s) magnification from covert condition. See text for details.

caused by high model uncertainty (Figure 10) and (2) abbrevia-
tion caused by strong event similarities along the simulated path
(Figure 11).

These results indicate that multiple types of distortions could
affect internal simulations. If similar effects are present also during
human mental imagery, we should be able to find longer simula-
tion times in situations that are difficult for participants to reenact
covertly. It is also possible that participants demonstrate shorter
execution times during mental imagery in cases where it is easy
for participants to mistake one location for another, causing parts
of the path to be left out from the internal simulation. Both these,

and other, effects may appear simultaneously, and it may therefore
be difficult to analyze mental imagery solely based on its total
execution time.
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Prospection lies at the core of cognition: it is the means by which an agent – a person
or a cognitive robot – shifts its perspective from immediate sensory experience to
anticipate future events, be they the actions of other agents or the outcome of its own
actions. Prospection, accomplished by internal simulation, requires mechanisms for both
perceptual imagery and motor imagery. While it is known that these two forms of imagery
are tightly entwined in the mirror neuron system, we do not yet have an effective model
of the mentalizing network which would provide a framework to integrate declarative
episodic and procedural memory systems and to combine experiential knowledge
with skillful know-how. Such a framework would be founded on joint perceptuo-motor
representations. In this paper, we examine the case for this form of representation,
contrasting sensory-motor theory with ideo-motor theory, and we discuss how such a
framework could be realized by joint episodic-procedural memory. We argue that such
a representation framework has several advantages for cognitive robots. Since episodic
memory operates by recombining imperfectly recalled past experience, this allows it to
simulate new or unexpected events. Furthermore, by virtue of its associative nature,
joint episodic-procedural memory allows the internal simulation to be conditioned by
current context, semantic memory, and the agent’s value system. Context and semantics
constrain the combinatorial explosion of potential perception-action associations and
allow effective action selection in the pursuit of goals, while the value system provides
the motives that underpin the agent’s autonomy and cognitive development. This joint
episodic-procedural memory framework is neutral regarding the final implementation of
these episodic and procedural memories, which can be configured sub-symbolically
as associative networks or symbolically as content-addressable image databases and
databases of motor-control scripts.

Keywords: autonomy, cognitive system, development, episodic memory, ideo-motor theory, internal simulation,
procedural memory, prospection

Introduction

The goal of this article is to argue the case of the use of joint episodicmemory to facilitate prospection
and goal-directed action in cognitive robotics. The article begins with insights from the biological
sciences regarding the prospective nature of action, leading to a discussion of the role of memory
in prospection, and the realization of prospection through internal simulation. This sets the scene
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for the introduction of ideo-motor theory, vis-à-vis sensory-
motor theory, and an explanation of the importance of joint
perceptuo-motor representations. This is then followed by two
examples of how these principles have been applied in cognitive
architectures and an argument in favor of explicit perceptuo-
motor memory – joint episodic-procedural memory – over
perceptuo-motormappings.We finish with a description of a sim-
ple proof-of-principle example implementation of joint episodic-
procedural memory for overt attention.

The Goal-Directed and Prospective Nature
of Action

Evidence from many different fields of research, including psy-
chology and neuroscience, suggests that the movements of bio-
logical organisms are organized as actions and not reactions (von
Hofsten, 2004). While reactions are elicited by earlier events,
actions are initiated by a motivated subject, they are defined by
goals, and they are guided by prospective information (Vernon
et al., 2010). For example, when performing manipulation tasks
or observing someone else performing them, subjects fixate on
the goals and sub-goals of the movements not on the body parts,
e.g., the hands or the objects (Johansson et al., 2001; Flanagan and
Johansson, 2003). This happens only if a goal-directed action is
implied. When showing the same movements without the context
of an agent, subjects fixate the moving object instead of the goal.

Evidence from neuroscience also shows that the brain repre-
sents movements in terms of actions even at the level of neural
processes [see Vernon et al. (2010), Chapter 4]. For example, the
primate brain has two areas devoted to controlling movements:
the premotor cortex and the motor cortex. The premotor cortex
is the area of the brain that is active during motor planning and
it influences the motor cortex which then executes the motor
program comprising an action. The premotor cortex receives
strong visual inputs from a region in the brain known as the
inferior parietal lobule. These inputs serve a series visuomotor
transformations for reaching (Area F4) and grasping (Area F5).
Single neuron studies have shown that most F5 neurons code
for specific goal-directed actions, rather than their constituent
movements. Furthermore, several F5 neurons, in addition to their
motor properties, respond also to visual stimuli. These are referred
to as visuomotor neurons. The significance of this is that the
premotor cortex of primates encodes actions (including implicit
goals and expected states) and not just movements. The goal,
therefore, is the fundamental property of the action rather than
the specific motoric details of how it is achieved.

In primates, two classes of visuomotor neurons can be distin-
guished within area F5: canonical neurons and mirror neurons
(Rizzolatti and Fadiga, 1998). The activity of both canonical and
mirror neurons correlates with two distinct circumstances. In the
case of canonical neurons, the same canonical neuron fires when
a monkey sees a particular object and also when the monkey
actually grasps an object with the same characteristic features. On
the other hand, mirror neurons (Gallese et al., 1996; Rizzolatti
et al., 1996; Rizzolatti and Craighero, 2004) are activated both
when an action is performed and when the same or similar action
is observed being performed by another agent. These neurons are

specific to the goal of the action and not themechanics of carrying
it out. So, for example, a monkey observing another monkey, or
a human, reaching for a nut will cause mirror neurons in the
premotor cortex to fire; these are the same neurons that fire when
the monkey actually reaches for a nut. However, if the monkey
observes another monkey making exactly the same movements
but there is no nut present – there is no apparent goal of the
reaching action – then the mirror neurons do not fire. Similarly,
differentmotions that comprise the same goal-directed action will
cause the same mirror neurons to fire. It is the action that matters:
mirror neurons are not active if there is no explicit or implied
goal. Since goals focus on the future, not the present, this again
demonstrates the importance of prospection in action.

Finally, there is another reason why actions are guided by
prospective information as opposed to instantaneous feedback
data. Often, events in the agent’s world may precede the feedback
signals about them because the delays in the control pathways
of biological systems may be substantial. If you cannot rely on
feedback, the only way to overcome the problem is to anticipate
what is going to happen next and to use that information to control
one’s behavior.

Prospection, then, is central to cognition. The question is how
this prospection is achieved. The answer is, somewhat surpris-
ingly, memory.

Memory

Memory facilitates the persistence of knowledge and forms a
reservoir of experience. Without it, it would be impossible for the
system to learn, develop, adapt, recognize, plan, deliberate, and
reason (Vernon, 2014). Memory functions to preserve what has
been achieved through learning and development, ensuring that,
when a cognitive system adapts to new circumstances, it does not
lose its ability to act effectively in situations towhich it had adapted
previously. But memory has another role in addition to preserving
past experience: to anticipate the future. It forms the basis for
one of the central pillars of cognitive capacity, i.e., the ability to
simulate internally the outcomes of possible actions and select the
one that seems most appropriate for the current situation. Viewed
in this light, memory can be seen as a mechanism that allows
a cognitive agent to prepare to act, overcoming through antici-
pation the inherent “here-and-now” limitations of its perceptual
capabilities.

We can distinguishmemory inmany ways (Squire, 2004;Wood
et al., 2012). For example, it can be distinguished on the basis of
the nature of what is remembered and the type of access we have
to it. Specifically, memory can be categorized as either declarative
or procedural, depending on whether it captures knowledge of
things – facts – or actions – skills. Sometimes they are charac-
terized as memory of knowledge and know-how: “knowing that”
and “knowing how.”1 This distinction applies mainly to long-term
memory but short-term memory too has a declarative aspect.
Declarative memory is sometimes referred to as propositional
memory because it refers to information about the agent’s world

1The distinction between knowing that and knowing how was made in 1949 by
Gilbert Ryle in his book The Concept of Mind (Ryle, 1949)
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that can be expressed in the form of propositions. This is signifi-
cant because propositions are either true or false. Thus, declarative
memory typically deals with factual information. This is not the
case with skill-oriented procedural memory. As a consequence,
declarative memories, in the form of knowledge, can be commu-
nicated from one agent to another through language, for example,
whereas procedural memories can only be demonstrated.

Two different types of declarative memory can be distin-
guished. These are episodic memory and semantic memory.
Episodic memory (Tulving, 1972, 1984) plays a key role in cog-
nition and in the anticipatory aspect of cognition in particular. It
refers to specific instances in the agent’s experiencewhile semantic
memory refers to general knowledge about the agent’s world
which may be independent of the agent’s specific experiences. In
this sense, episodicmemory is autobiographical. By its very nature
in encapsulating some specific event in the agent’s experience,
episodic memory has an explicit spatial and temporal context:
what happened, where it happened, and when it happened. This
temporal sequencing is the only element of structure in episodic
memory. Episodic memory is a fundamentally constructive pro-
cess (Seligman et al., 2013). Each time an event is assimilated into
episodic memory, past episodes are reconstructed. However, they
are reconstructed a little differently each time. This constructive
characteristic is related to the role that episodic memory plays
in the process of internal simulation that forms the basis of
prospection, the key anticipatory function of cognition.

In contrast, semantic memory “is the memory necessary for
the use of language. It is a mental thesaurus, organized knowl-
edge a person possesses about words and other verbal symbols,
their meaning and referents, about relations among them, and
about rules, formulas, and algorithms for the manipulation of the
symbols, concepts, and relations.”2

Episodic memory and semantic memory differ in many ways.
In general, semantic memory is associated with how we under-
stand (or model) the world around us, using facts, ideas, and
concepts. On the other hand, episodic memory is closely asso-
ciated with experience: perceptions and sensory stimulus. While
episodic memory has no structure other than its temporal
sequencing, semantic memory is highly structured to reflect
the relationships between constituent concepts, ideas, and facts.
Also, the validity (or truth, since semantic memory is a subset
of propositional declarative memory) of semantic memories is
based on social agreement rather than personal belief, as it is
with episodic memory.3 Semantic memory can be derived from
episodic memory through a process of generalization and consol-
idation. Episodic memory can be both short-term and long-term
while semantic memory and procedural memory are long-term.

Memory and Prospection
Memory plays at least four roles in cognition: it allows us
to remember past events, anticipate future ones, imagine the

2This quotation explaining the characteristics of semanticmemory appears in Endel
Tulving’s 1972 article (Tulving, 1972), p. 386 and is quoted in his Précis (Tulving,
1984). While this definition of semantic memory dates from 1972, it is still valid
today. It also explains the linguistic origins of the term.
3Semantic memory and episodic memory can be contrasted in many other ways:
twenty-seven differences are listed in Tulving (1983), p. 35.

viewpoint of other people, and navigate around our world. All
four involve self-projection: the ability of an agent to shift per-
spective from itself in the here-and-now and to take an alternative
perspective. It does this by internal simulation, i.e., themental con-
struction of an imagined alternative perspective (Schacter et al.,
2008). Thus, there are four forms of internal simulation (Buckner
and Carroll, 2007):

1. Episodic memory (remembering the past).
2. Navigation (orienting yourself topographically, i.e., in relation

to your surroundings).
3. Theory ofmind (taking someone else’s perspective onmatters).
4. Prospection (anticipating possible future events).

Each form of simulation has a different orientation (past,
present, or future) and each refers to the perspective of either the
first person, i.e., the agent itself, or another person.

Prospection – the mental simulation of future possibilities –
plays a central role in organizing perception, cognition, affect,
memory, motivation, and action (Seligman et al., 2013). Prospec-
tion is referred to in various ways, e.g., episodic future thinking,
memory of the future, pre-experiencing, proscopic chronesthesia,
mental time travel, and just plain imagination and it can involve
conceptual content and affective – emotional – states (Buckner
and Carroll, 2007).

Recent evidence suggests that all four kinds of internal simula-
tion involve a single core brain network and this network overlaps
what is known as the default-mode network, a set of interconnected
regions in the brain that is active when the agent is not occupied
with some attentional tasks (Østby et al., 2012).

It is significant that all four forms of simulation are construc-
tive, i.e., they involve a form of imagination. There is a difference
between knowing about the future and projecting ourselves into
the future. The latter is experiential and the former is not. Thus,
episodic memory (memory of experiences) and semantic mem-
ory (memory of facts) facilitate different types of prospection.
Episodic memory allows you to re-experience your past and pre-
experience your future. There is evidence that projecting yourself
forward in time is important when you form a goal, creating a
mental image of yourself acting out the event and then episodically
pre-experiencing the unfolding of a plan to achieve that goal. This
use of episodic memory in prospection is referred to as episodic
future thinking, a term coined by Cristina Atance and Daniela
O’Neill to refer to the ability to project oneself forward in time
to pre-experience an event (Atance and O’Neill, 2001; Szpunar,
2010).

The constructive aspect of episodic memory, whereby old
episodic memories are reconstructed slightly differently every
time a new episodic memory is assimilated or remembered, is
particularly important in the context of internal simulation of
events that have not been previously experienced. While episodic
memory certainly needs some constructive capacity to assemble
individual details into a coherent memory of a given episode, the
constructive episodic simulation hypothesis (Schacter and Addis,
2007a,b; Schacter et al., 2008; Szpunar, 2010) suggests that its
role in prospection involving the simulation of multiple possible
futures imposes an even greater need for a constructive capacity
because of the need to extrapolate beyond past experiences. In
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other words, simulating multiple yet-to-be-experienced futures
requires flexibility in episodic memory. This flexibility is possible
because episodic memory is not an exact and perfect record of
experience but one that conveys the essence of an event and is open
to re-combination.

It is also significant that when humans imagine the future, they
not only anticipate an event, but they also anticipate how they feel
about that event. These are referred to as hedonic consequences of
the event: whether we feel good about it or bad about it, whether
it is associated with pleasure or pain, and lack of concern or
fear. Thus, the pre-experience of prospection also involves “pre-
feeling.” The brain accomplishes prospection by simulating the
event and the associated hedonic experience (Gilbert and Wilson,
2007). While pre-feeling is not always reliable because contextual
factors also play a part in the hedonic experience, this hedonic
aspect of episodic memory is important because it reflects the
affective nature of cognition and opens up a plausible way to factor
emotional drives and value systems into the operation of memory,
prospection, and action selection.

Internal Simulation and Action

In the preceding section, we considered internal simulation
entirely in terms of memory-based self-projection, using re-
assembled combinations of episodic memory to pre-experience
possible futures, re-experience (and possibly adjust) past expe-
riences, and project ourselves into the experiences of others.
However, we know that action plays a significant role in our
perceptions so the question then is: does action play a role in
internal simulation? The answer is a clear “yes” (Hesslow, 2002,
2012; Svensson et al., 2007). Internal simulation extends beyond
episodic memory and includes simulated interaction, particularly
embodied interaction. Although the terms simulation, internal
simulation, and mental simulation are widely used, you will also
see references being made to emulation, very often when the
approach endeavors to model the exact mechanism by which the
simulation is produced (Grush, 2004).

The Simulation Hypothesis
There are a number of simulation theories, but perhaps the most
influential is what is known as the simulation hypothesis (Hesslow,
2002, 2012). It makes three core assumptions:

1. The regions in the brain which are responsible for motor
control can be activated without causing bodily movement.

2. Perceptions can be caused by internal brain activity and not just
by external stimuli.

3. The brain has associative mechanisms that allow motor behav-
ior or perceptual activity to evoke other perceptual activity.

The first assumption allows for simulation of actions and is
often referred to as covert action or covert behavior. The second
allows for simulation of perceptions. The third assumption allows
simulated actions to elicit perceptions that are like those that
would have arisen if the actions had actually been performed.
There is an increasing amount of neurophysiological evidence in
support of all three assumptions (Svensson et al., 2013). If we link
these assumptions together, we see that the simulation hypothesis

FIGURE 1 | Internal simulation. (A) stimulus S1 elicits activity s1 in the
sensory cortex. This leads to the preparation of a motor command r1 and an
overt response R1. This alters the external situation, leading to S2, which
causes new perceptual activity, and so on. There is no internal simulation.
(B) The motor command r1 causes the internal simulation of an associated
perception of, for example, the consequence of executing that motor
command. (C) The internally simulated perception elicits the preparation of a
new motor command r2, i.e., a covert action, which in turn elicits the internal
simulation of a new perception s3 and a consequent covert action r3, and so
on [redrawn from Hesslow (2002)].

shows how the brain can simulate extended perception-action-
perception sequences by having the simulated perceptions elicit
simulated action which in turn elicits simulated perceptions, and
so on. Figure 1 summarizes the simulation hypothesis, showing
three situations, one where there is no internal simulation, one
where a motor response to an input stimulus causes the internal
simulation of an associated perception, and one where this inter-
nally simulated perception then elicits a covert action which in
turn elicits a simulated perception and a consequent covert action,
and so on.

Motor, Visual, and Mental Imagery
Action-directed internal simulation involves three different types
of anticipation: implicit, internal, and external (Svensson et al.,
2009). Implicit anticipation concerns the prediction of motor
commands from perceptions (which may have been simulated
in a previous phase of internal simulation). Internal anticipation
concerns the prediction of the proprioceptive consequences of
carrying out an action, i.e., the effect of an action on the agent’s
own body. External anticipation concerns the prediction of the
consequences for external objects and other agents of carrying
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out an action.4 Implicit anticipation selects some motor activity
(possibly covert, i.e., simulated) to be carried out based on an asso-
ciation between stimulus and actions; internal anticipation and
external anticipation then predict the consequences of that action.
Collectively, they simulate actions and the effects of actions.

Covert action involves what is referred to asmotor imagery and
simulation of perception is often referred to as visual imagery.
Perceptual imagery would perhaps be a better term since there is
evidence that humans use imagery from all the senses. In a way,
motor imagery is also a form of perceptual imagery, in the sense
that it involves the proprioceptive and kinesthetic sensations asso-
ciated with bodilymovement. However, reflecting the interdepen-
dence of perception and action, covert action often has elements
of bothmotor imagery and visual imagery and, vice versa, the sim-
ulation of perception often has elements of motor imagery. Visual
imagery andmotor imagery are sometimes referred to collectively
as mental imagery (Wintermute, 2012). Moulton and Kosslyn
(2009) identify several different types of perceptual imagery and
distinguish between two different types of simulation: instrumen-
tal simulation and emulative simulation. The former concerns
itself only with the content of the simulation while the latter also
replicates the process by which that content is created in the sim-
ulated event itself. They refer to this as second-order simulation.

Joint Perceptuo-Motor Representations

In the foregoing, we remarked on the fact that mental imagery,
viewed as another way of expressing the process of internal simu-
lation, comprises both visual imagery (or perceptual imagery) and
motor imagery. More importantly, though, we noted that these
two forms of imagery are tightly entwined: they complement each
other and the simulation of perception and covert action both
involve elements of visual and motor imagery.

Classical treatments of memory usually maintain a clear dis-
tinction between declarative memory and procedural memory, in
general, and between episodic memory and procedural memory,
in particular. However, contemporary research takes a slightly
different perspective, binding the twomore closely, e.g., themirror
neuron system, in particular. While it is still a major challenge to
understand how these two memory systems are combined, this
coupling is the basic idea underpinning joint perceptuo-motor
representations: representations that bring together the motoric
and sensory aspects of experience in one framework, such as that
anticipated in the simulation hypothesis.

In this section, we look at four approaches that have been
developed to address joint perceptuo-motor representations. First,
we look at two approaches to implementing ideo-motor theory in
cognitive robotics: Shanahan’s Global Workspace Theory archi-
tecture and Demiris’s HAMMER architecture. We follow this by
highlighting two additional approaches that endeavor to inte-
grate perceptuo-motor representations more tightly: the Theory
of Event Coding (TEC) andObject-ActionComplexes. Since none
of these explicitly incorporate episodic or procedural memory, we
then suggest a way of drawing the principal ideas of each together

4The terms internal anticipation and external anticipation are also referred to as
bodily anticipation and environmental anticipation (Svensson et al., 2013).

in a form of explicit joint episodic-procedural memory. We then
argue that this joint episodic-procedural memory allows several
of the challenges of cognitive robotics to be addressed.

Before discussing these, to provide the necessary context for
prospective perceptuo-motor representations, we first address the
difference between sensory-motor theory and ideo-motor theory.

Sensory-Motor Theory and Ideo-Motor Theory
Broadly speaking, there are the two distinct approaches for
planning actions: sensory-motor action planning and ideo-motor
action planning (Stock and Stock, 2004). Sensory-motor action
planning treats actions as reactive responses to sensory stimuli
and assumes that perception and action use distinct and sepa-
rate representational frameworks. The sensory-motor view builds
on the classic unidirectional data-driven information-processing
approach to perception, proceeding stage by stage from stimulus
to percept and then to response. It is unidirectional in that it does
not allow the results of later processing to influence earlier pro-
cessing. In particular, it does not allow the resultant (or intended)
action to impact on the related sensory perception.

Ideo-motor action planning, on the other hand, treats action as
the result of internally generated goals. It is the idea of achieving
some action outcome, rather than some external stimulus, that
is at the core of how cognitive agents behave. This reflects the
view of action described above, with action being initiated by a
motivated subject, defined by goals, and guided by prospection.
The key point of the ideo-motor principle is that the selection
and control of a particular goal-directed movement depends on
the anticipation of the sensory consequence of accomplishing the
intended action: the agent images (e.g., through internal simula-
tion) the desired outcome and selects the appropriate actions in
order to achieve it.

There is an important difference, though, between the con-
crete movements comprising an action and the higher-order
goals of an action. Typically, actors do not voluntarily pre-
select the exact movements required to achieve a desired goal.
Instead, they select prospectively guided intention-directed goal-
focused action, with the specific movements being adaptively
controlled as the action is executed. Thus, ideo-motor theory
should be viewed both as an anticipatory idea-centered way of
selecting actions and as a way of bridging the higher-order con-
ceptual representations of intentions and goals5 with the con-
crete adaptive control of movements when executing that action
(Ondobaka and Bekkering, 2012).

In contrast to sensory-motor models, ideo-motor theory
assumes that perception and action share a common representa-
tional framework. Because ideo-motormodels focus on goals, and
because they use a common joint representation that embraces
both perception and action, they provide an intuitive explanation
of why cognitive agents, humans in particular, are so adept at
and predisposed to imitation (Iacoboni, 2009). The essential idea
is that when I see somebody else’s (goal-directed) actions and

5Michael Tomasello and colleagues note that the distinction between intentions and
goals is not always clearly made. Taking their lead from Michael Bratman (1998),
they define an intention as a plan of action an agent chooses and commits itself to
in pursuit of a goal. An intention therefore includes both a means (i.e. an action
plan) as well as a goal (Tomasello et al., 2005).
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the consequences of these actions, the representations of my own
actions that would produce the same consequences are activated.

At first glance, ideo-motor theory seems to present a puzzle:
how can the goal, achieved through action, cause the action in
the first place? In other words, how can the later outcome affect
the earlier action? This seems to be a case of backward causation.
The solution to the puzzle is prospection. It is the anticipated goal
state, not the achieved goal state, that impacts on the associated
planned action. Goal-directed action, then, is a center-piece of
ideo-motor theory, which is also referred to as the goal trigger
hypothesis (Hommel et al., 2001).

Before proceeding to consider two cognitive architectures that
build on ideo-motor theory, we mention cognitive maps to high-
light the importance of joint perceptuo-motor representations in
animal and robot cognition. The idea of a cognitive map was
introduced by Tolman as a geometric representation to support
navigation in biological agents (Tolman, 1948). While there is a
certain lack of consensus on what exactly constitutes a cognitive
map (Bennett, 1996; Eichenbaum et al., 1999), most agree that it
involves metric information rather than purely topological infor-
mation to encode spatial relationships in an allocentric framework
and that it exploits path integration, at least partially, to effect
navigation (Gallistel, 1989, 1990; Stachenfeld et al., 2014); for an
alternative perspective, see Gaussier et al. (2002). In any case,
a cognitive map combines memories of environmental cues (or
perceptual landmarks) with geometrical properties of space that
are specified by the remembered landmarks (Metta et al., 2010).
Based on the existence of the hippocampus place cells (O’Keefe,
1976), O’Keefe and Nadel suggested that the hippocampal forma-
tion provides the neural basis for the cognitive map (O’Keefe and
Nadel, 1978).

However, the hippocampus does not just create and store cog-
nitive maps but it also plays a part in episodic memory, e.g.,
helping to minimize the similarities between new representations
and representations that already exist in memory (McNaugton
et al., 2006). As with episodic memory, it is also responsible for
associating information in ways that allow flexible use of past
experiences to guide future actions (flexible memory expression)
(Eichenbaum et al., 1999; McNamara and Shelton, 2003). Fur-
thermore, it has a role as a prediction mechanism for novelty
detection and especially as a way to merge planning and sensory-
motor function in a single coherent system (Gaussier et al., 2002).
As McNaughton et al. note, “. our current understanding of [the
hippocampal formation] underscores the growing paradigm shift
in the neurosciences away from thinking about neural coding as
being driven primarily by bottom-up, sensory inputs, but rather
as a reflection of rich and complex internal dynamics” (McNaug-
ton et al., 2006). Taken together, the characteristics of cognitive
maps and the operation of the hippocampal formation echo the
arguments being put forward in this paper about the importance
of joint perceptuo-motor representations in cognition.

The Global Workspace Cognitive Architecture
Shanahan (Shanahan, 2005a,b, 2006; Shanahan and Baars, 2005)
proposes a biologically plausible brain-inspired neural-level
cognitive architecture in which cognitive functions such as antici-
pation and planning are realized through internal simulation of
interaction with the environment. Action selection, both actual

FIGURE 2 | The Global Workspace Theory cognitive architecture:
achieving prospection by sensori-motor simulation [redrawn from
Shanahan (2006)].

and internally simulated, is mediated by affect. The architec-
ture is based on an external sensori-motor loop and an internal
sensori-motor loop in which information passes throughmultiple
competing cortical areas and a global workspace (Baars, 1998,
2002).

Shanahan’s cognitive architecture is comprised of the following
components: a first-order sensori-motor loop, closed externally
through the world, and a higher-order sensori-motor loop,
closed internally through associative memories (see Figure 2).
The first-order loop comprises the sensory cortex and the basal
ganglia (controlling the motor cortex), together providing a
reactive action-selection sub-system. The second-order loop
comprises two associative cortex elements which carry out
off-line simulations of the system’s sensory and motor behavior,
respectively. The first associative cortex simulates a motor
output while the second simulates the sensory stimulus expected
to follow from a given motor output. The higher-order loop
effectively modulates basal ganglia action selection in the first-
order loop via an affect-driven amygdala component. Thus,
this cognitive architecture is able to anticipate and plan for
potential behavior through the exercise of its “imagination” (i.e.,
its associative internal sensori-motor simulation).

The HAMMER Architecture
While internal simulation is an essential aspect of human cogni-
tion, it is also an increasingly important part of artificial cognitive
systems. For example, TheHierarchical AttentiveMultipleModels
for Execution andRecognition (HAMMER) architecture (Demiris
and Khadhouri, 2006; Demiris et al., 2014) builds on the simula-
tion hypothesis, accomplishing internal simulation using forward
and inverse models which encode internal sensori-motor models
that the agent would utilize if it were to execute that action (see
Figure 3).

HAMMER deploys several inverse-forward pairs to simulate
multiple possible futures using a winner-take-all attention process
to select the most appropriate action to execute. HAMMER
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FIGURE 3 | The HAMMER architecture, showing multiple inverse models
(B1 to Bn) taking as input the current system state, which includes a
desired goal, suggesting motor commands (M1 to Mn), with which the
corresponding forward models (F1 to Fn) form predictions of the

system’s next state (P1 to Pn). These predictions are verified at the next time
state, resulting in a set of error signals (E1 to En). Redrawn from Demiris and
Khadhouri (2006). See also Demiris et al. (2014) for an alternative rendering of
the HAMMER architecture.

includes recurrent connections, thereby allowing multi-stage
extended internal simulation and mental rehearsal. This pro-
vides the architecture with a way of encapsulating the internal
simulation hypothesis proposed by Hesslow (2002, 2012).

The inverse model takes as input information about the current
state of the system and the desired goal, and it outputs the motor
commands necessary to achieve that goal. The forward model
acts as a predictor. It takes as input the motor commands and
simulates the perception that would arise if this motor command
were to be executed, just as the simulation hypothesis envisages.
HAMMER then provides the output of the inverse model as the
input to the forwardmodel. This allows a goal state (demonstrated,
for example, by another agent or possibly recalled from episodic
memory) to elicit the simulated action required to achieve it. This
simulated action is then usedwith the forwardmodel to generate a
simulated outcome, i.e., the outcome that would arise if the motor
commandswere to be executed. The simulated perceived outcome
is then compared to the desired goal perception and the results
are then fed back to the inverse model to allow it to adjust any
parameters of the action.

A distinguishing feature of the HAMMER architecture is that it
operates multiple pairs of inverse and forward models in parallel,
each one representing a simulation – a hypothesis – of how the
goal action can be achieved. The choice of inverse/forward model
pair is made by an internal attention process based on how close
the predicted outcome is to the desired one. Furthermore, it
provides for the hierarchical composition of primitive actions into
more complex sequences.

From Perceptuo-Motor Mappings to
Perceptuo-Motor Memory
Both Global Workspace Theory and HAMMER are good models
of the simulation hypothesis for internal simulation as a vehicle
for prospection in cognition. However, they focus on themapping
between perception andmotor command, withmemory being left
implicit (see Figures 4 and 5).

Othermodels, such as theTheory of Event Coding (TEC) (Hom-
mel et al., 2001) and Object Action Complexes (OACs) (Krüger
et al., 2011) attempt to provide a tighter coupling of the perceptual
and motor aspect in a joint perceptuo-motor representation.

The Theory of Event Coding (TEC) is a representational frame-
work for combining perception and action planning. It focuses
mainly on the later stages of perception and the earlier phases
of action. As such, it concerns itself with perceptual features but
not with how those features are extracted or computed. Similarly,
it concerns itself with preparing actions – action planning – but
not with the final execution of those actions and the adaptive
control of various parts of the agent’s body. The main idea is
that perception, attention, intention, and action all work with a
common representation and, furthermore, that action depends on
both external and internal causes.

TEC provides a basis for combining both sensory-motor and
ideo-motor action planning (Stock and Stock, 2004) and to be
a joint representation that serves both sensory-stimulated action
and prospective goal-directed action. The core concept in TEC is
the event code. This is effectively a structured aggregation of distal
features of an event in the agent’s world. These feature codes can
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FIGURE 4 | Prospection by internal simulation achieved by (A) direct
perceptuo-motor mappings as envisaged, e.g., by Hesslow (2002,
2012), and by (B) joint perception and motor memory mapping as
envisaged, e.g., by Shanahan (2006).

FIGURE 5 | Prospection by internal simulation achieved by inverse
models mapping from current state and goal state to predicted motor
command, then validating this by mapping from predicted motor
command to predicted perceptual outcome, as envisaged by Demiris
and Khadhouri (2006) and Demiris et al. (2014). Many mappings are
possible so an internal attention winner-take-all competition selects the most
appropriate action to take.

be relatively simple (e.g., color, shape, moving to the left, falling)
or more complex, such as an affordance. Also, TEC feature codes
can emerge through the agent’s experience; they do not have to be
pre-specified. A given TEC feature code is associated with both
the sensory system and the motor system. Typically, a feature
code is derived from several proximal sensory sources (sensory
codes) and it contributes to several proximal motor actuators
(motor codes). Each event code comprises several feature codes
representing some event, be it a perceived event or a planned
event. Feature codes associated with an event are activated both
when the event is perceived and when it is planned. Because
features can be elements of many event codes, the activation of
a given feature effectively primes, i.e., predisposes, all the other
events of which this feature is a component.

Inspired by the Theory of Event coding, an Object-Action
Complex (OAC) (Krüger et al., 2011) is a triple, i.e., a unit with
three components: (E, T, M). E is an “execution specification”

(effectively an action). T is a function that predicts how the
attributes that characterize the current state of the agent’s world
will change if the execution specification is executed. Effectively,
of T as a prediction of how the agent’s perceptions will change as
a result of carrying out the actions given by E. M is a statistical
measure of the success of the OAC’s past predictions. In this
way, an OAC combines the essential elements of a joint repre-
sentation – perception and action – with a predictor that links
current perceived states and future predicted perceived states that
would result from carrying out that action. To a large extent, an
OAC models an agent’s interaction with the world as it executes
some motor program (this is referred to as a low-level control
program C P in the OAC literature). For example, an OAC might
encode how to grasp an object or push an object into a given
position and orientation (usually referred to as the object pose).
OACs can be learned and executed, and they can be combined
intomore complex representations of actions and their perceptual
consequences.

To date, neither TEC nor OAC has been embedded in the more
general internal simulation framework described above. So, it is
proposed here that there is a strong case for making memory –
episodic and procedural – more explicit and embedding them in
an internal simulation framework (such as that envisaged in the
simulation hypothesis, the GWTArchitecture, and theHAMMER
architecture) in a way that makes their links more explicit (such
as that envisaged in TEC and OAC). We address such a possible
framework on the next section.

A Network-Based Joint Episodic-
Procedural Memory for Internal Simulation

The core idea being proposed is to unwind the temporal and
causal relationships between specific perceptions and actions that
are implicit in the mappings of, e.g., GWT and HAMMER, and
make them explicit in a weighted network of associations between
perceptions and actions, in the manner of TEC and OAC (see
Figure 6). In doing so, it makes the input to the joint perceptuo-
motor mapping explicit as perceptual episodic memories and
motoric procedural memories (see Figures 7 and 8). In the case of
episodic memory, this provides a way to include other modalities
including affective or hedonic memories. Procedural memory
operates associatively in their own right: such procedural mem-
ories are not static but are dynamic and adapt as the action is
executed.

Furthermore, such a framework allows one to expose the map-
ping dynamics explicitly. This may have several advantages in, for
example, cognitive development which focuses on extending the
timescale of the agent’s prospective capacity and expanding the
agent’s repertoire of actions. Specifically, development might be
facilitated by adjusting and adapting the network structure – its
topology and strength of connectivity – as a function of experi-
ential learning, intrinsic value systems (Merrick, 2010), including
those derived from autonomic self-maintenance (Bickhard, 2000),
and affective homeostasis and allostasis (Sterling, 2004, 2012;
Morse et al., 2008; Ziemke and Lowe, 2009).

The network model of joint episodic-procedural memory facil-
itates prospection in three senses: prospection by predicting the
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FIGURE 6 | Joint episodic-procedural memory as an explicit network
of associations between perceptions and actions, drawn from
episodic and procedural memories, unwinding the temporal and
causal relationships between specific perceptions and actions that
are implicit in the mappings of other perceptuo-motor
representations.

FIGURE 7 | The episodic elements of the joint episodic-procedural
memory are drawn from episodic memory and therefore operate
associatively in their own right. Furthermore, this provides a way to
include other modalities of episodic memory (top right) including affective or
hedonic memories.

outcome of an action carried out in given perceptual circum-
stances, prospection by predicting the action required to achieve
a goal in given perceptual circumstances, and abductive inference
of the perceptual states that explains an outcome of a give action
(see Figure 9).

Keeping episodic memory explicit in this framework preserves
the flexibility for adaptive reconstruction and novel association.
Since episodic memory operates by recombining imperfectly
recalled past experience, this allows it to simulate new or unex-
pected events as outlined above.

There is, however, a potential problem in that the scope for
exponential growth in association is significant. Something is
needed to constrain this potential combinatorial explosion if such
a joint episodic-procedural memory system is to be capable of

FIGURE 8 | The procedural elements of the joint episodic-procedural
memory are drawn from procedural memory and, again, operate
associatively in their own right. Such procedural memories are not static
but are dynamic and adapt as the action is executed (top right).

FIGURE 9 | The network model of joint episodic-procedural memory
facilitates prospection in three senses: (A) prospection by predicting
the outcome of an action carried out in given perceptual
circumstances, (B) prospection by predicting the action required to
achieve a goal in given perceptual circumstances, and (C) abductive
inference of the perceptual states that explains an outcome of a give
action.

useful prospection through internal simulation. Because the asso-
ciative links are exposed explicitly in the network organization,
this framework for a joint episodic-procedural memory allows the
internal simulation to be conditioned by current context, semantic
memory, and the agent’s value system by adjusting the associa-
tive links. Context and semantics constrain the combinatorial
explosion of potential perception-action associations and allow
effective action selection in the pursuit of goals, while the value
system modulates the memory network to promote the agent’s
autonomy and cognitive development.

Finally, the approach being suggested here is an abstract schema
and is therefore neutral regarding the final implementation of
these episodic and procedural memories. These can be effected
either as an emergent cognitive system, instantiating them sub-
symbolically in a biologically inspired manner as associative net-
works [e.g., Hopfield nets such as in Mohan et al. (2014) or
brain-based devices such as in Krichmar and Edelman (2005,
2006)]. Alternatively, they can be effected symbolically as more
traditional AI systems. For example, episodic memory might
be implemented using content-addressable image databases with
traditional image indexing and recall algorithms, while proce-
dural memory could be encapsulated in databases of motor-
control scripts derived from experiential learning or from shared
resources [e.g., Tenorth and Beetz (2009) and Tenorth et al.
(2012, 2013)]. The traditional AI implementation, for the pur-
pose of practical cognitive robotics, has a number of advantages.
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Although episodic memory will typically exploit by iconic repre-
sentations, these representations are often augmented by symbolic
tags when derived from on-line repositories. This symbolic tag-
ging makes the integration of semantic knowledge much easier.
The fact that both episodic memory and procedural memory are
derived from experience, directly or indirectly, also finesses the
symbol grounding problem (Harnad, 1990; Sloman). The tradi-
tional AI implementation also renders the knowledge contained
in the memory inherently transferrable to other agents, provided
their sensory systems are compatible and there is a known map-
ping – direct or indirect – between the embodiments of each agent,
as described in Argall et al. (2009).

An Example Joint Episodic-Procedural
Memory for Overt Attention

The iCub is a 53 degree-of-freedom humanoid robot (see
Figure 10) that was designed to be an open-systems platform for
research in cognitive development (Sandini et al., 2007; Tsagarakis
et al., 2007; Metta et al., 2010). It is approximately 1m tall, weighs
22 kg, has visual, vestibular, auditory, and haptic sensors, and
is capable of dexterous manipulation. To date, iCubs have been
delivered to over 20 research laboratories in Europe and one in
the U.S.A.6

The original iCub cognitive architecture (Sandini et al., 2007;
Vernon et al., 2010) focused on gaze-modulated goal-directed
reaching and locomotion. Episodic memory and procedural
memory were designed to effect internal simulation in order to
provide capabilities for prediction and model construction boot-
strapped by learned affordances. Motivations encapsulated in the
system’s affective state addressed curiosity and experimentation,
both of which are exploratory motives, triggered by exogenous
and endogenous factors, respectively. This distinction between the
exogenous and the endogenouswas reflected in the overt attention
system that could be triggered by both external and internal
events. A simple process of homeostatic self-regulation governed
by the affective state provided elementary action selection. Finally,
all the various components of the cognitive architecture operated
concurrently so that a sequence of states representing cognitive
behavior emerges from the interaction of many separate parallel
processes rather than being dictated by somepre-programed state-
machine.

In the variant of the iCub cognitive architecture presented
here, the separate episodic and procedural memories have been
replaced by a simple proof-of-principle joint episodic-procedural
memory (see Figure 11). This is the focus of the current article
and the specific objective is to investigate how a joint episodic-
procedural memory can be used for representation, develop-
ment, and adaptation of scan-path patterns that result from overt
and covert attention. This particular model of attention uses an
information-theoretic saliency map (Bruce and Tsotsos, 2009)
with an overt attention system comprising (1) the winner-take-
all process effected by a selective tuning model to identify a single
focus of attention (Tsotsos et al., 1995; Tsotsos, 2006, 2011), (2) an
Inhibition-Of-Return (IOR)mechanism to attenuate the attention

6For more information on the iCub robot see http://www.icub.org.

FIGURE 10 | The iCub humanoid robot: an open-systems platform for
research in cognitive development.

value of previous winning locations so that new regions become
the focus of attention, and (3) a habituation process to reduce
the salience of the current focus of attention with time thereby
ensuring that attention is fixated on a given point for a limited
period (Zaharescu et al., 2004). Fixation points are represented
using retinotopic images rather than conventional rectangular
regularly sampled images. The retinotopic images are constructed
using a scale and rotation-invariant log-polar transform (Brac-
cini et al., 1981; Berton, 2006; Berton et al., 2006; Traver and
Bernardino, 2010) to map the Cartesian camera image data to a
non-uniformly sampled image that reflects the foveated sampling
in the primate retina. The resultant scan path patterns are captured
in an elementary joint episodic-procedural memory: the episodes
are retinotopic log-polar images of the fixation points and the
actions are the saccade angles.

The episodic memory in the iCub cognitive architecture is a
simple associatively recalled memory of autobiographical events.
It is a form on one-shot learning and does not generalize multiple
instances of an observed event. In the current implementation,
the episodic memory provides a purely visual iconic memory of
landmark appearance using scale- and rotation-invariant7 retino-
topic log-polar images as the landmark representation (Brac-
cini et al., 1981; Berton, 2006; Berton et al., 2006; Traver and
Bernardino, 2010) with image recognition being effected using
color histogram intersection (Swain and Ballard, 1990, 1991). In
essence, the iCub episodicmemory implements a form of content-
addressable memory which is populated by log-polar landmark
images acquired under the control of the iCub’s covert and overt
attention sub-system.

Procedural memory maintains a very simple repository of
elementary actions. The current implementation comprises gaze
motor commands in a body-centered frame of reference and sym-
bolic tags denoting one of five possible associated actions (reach,
push, grasp, locomote, or wait). These are just placeholders for

7The rotation invariance of log-polar images is restricted to roll: rotation about the
camera’s principal axis.
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FIGURE 11 | A variant of the iCub cognitive architecture (Vernon et al.,
2007, 2010) targeting visual attention with information-theoretic exogen-
ous salience (Bruce and Tsotsos, 2009), the Selective Tuning Model for

saccade selection (Tsotsos et al., 1995; Tsotsos, 2006, 2011), overt
attention with inhibition of return and habituation modulated scan path
dynamics (Zaharescu et al., 2004), and joint episodic-procedural memory.

more flexible and adaptive gaze-directed motor control schemes
[e.g., Lukic et al. (2012)] to be implemented later.

The joint episodic-procedural memory itself is a network of
associations between motor events and pairs of sensory events. In
this variant of the iCub cognitive architecture, a sensory event is a
visual landmark which has been acquired by the iCub and stored
in the episodic memory. A motor event is a gaze saccade with an
optional reaching, grasping, or locomotionmovement. Thus, joint
episodic-procedural memory can be viewed as a directed network
with two types of nodes, one representing sensory patterns –
retinotopic log-polar images of the fixation points – and the other
representing motor patterns – the saccade motor commands.
A path through the network traverses alternately sensory and
motor nodes and any clique in this memory network effectively
captures a causal relationship between a sensory state, a motor
state, and a subsequent sensory state (or a sequence of such associ-
ations). An extended path in this memory captures the scan path
pattern of the robot as it pays attention to its visual environment
(see Figure 12).

The key feature of this form of joint episodic-procedural mem-
ory representation of the attention pattern of the robot is that it
lends itself to development: modulation or dynamically recon-
figuration of the connectivity of this network – which is learned
from experience – so that its prospective capacity increases as
new memories are added as a result of the agent’s interaction with
its environment. Various forms of adaptive reconfiguration are
currently being examined, some based on small world networks
(Watts and Strogatz, 1998; Newman, 2000; Bohland and Minai,
2001; Kleinberg, 2006; Telesford et al., 2011) and others based

on information theoretic models that dynamically modulate the
pathways in flow networks (Ulanowicz, 2000).

Conclusion

While action and prospection are intimately linked, most research
on prospection has tended to focus on the constructive role of
episodic memory (Tulving, 1972, 1984; Seligman et al., 2013),
i.e., the so-called episodic future thinking (Atance and O’Neill,
2001), often achieved through internal simulation, i.e., the men-
tal construction of an imagined alternative perspectives (Buck-
ner and Carroll, 2007) and simulated embodied interaction
(Svensson et al., 2007). Although hedonic affective experience has
been addressed to some extent (Gilbert and Wilson, 2007; Lowe
and Ziemke, 2011), procedural memory has been neglected in
modeling prospective capacities. When it is included, it usu-
ally takes the form of distinct forward models that predict the
sensory outcome of a given motor command (Hesslow, 2002,
2012; Shanahan, 2006) and inverse models that determine the
action required to produce a given goal perception (Demiris
and Khadhouri, 2006). Ideo-motor theory (Stock and Stock,
2004; Iacoboni, 2009) is an exception to this. It assumes that
perception and action share a common representational frame-
work and that action is the causal result of internally gener-
ated goals. Such a joint representation provides greater flexibility
in prospection through both inductive inference and abductive
inference.

With few exceptions, such as the Theory of Event
Coding (Hommel et al., 2001) and object-action complexes
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FIGURE 12 | A screen shot of an experiment using joint
episodic-procedural memory with covert attention: (top left) the
fixation point identified by the Selective Tuning Model (Tsotsos
et al., 1995; Tsotsos, 2006, 2011) based on (bottom left) the
information-theoretic exogenous salience (Bruce and Tsotsos,
2009) and (top middle) the inhibition of return and habituation
Gaussian modulation functions; (bottom middle) the retinotopic
log-polar episodic memory – the current fixation image is denoted

by the red rectangle and the blue shirt is clearly visible in the fovea;
(top right) the input image shifts to place the fixation point at the
center; (bottom right) a graphic visualization of the joint
episodic-procedural memory, with fixation-point episodes rendered
as green circles, saccade actions rendered as red circles, and
graph connections as directed arrows. Note that this graph is not
registered with the image since the actions are specified in gaze angles,
not image coordinates.

(Krüger et al., 2011), joint perceptuo-motor representations have
received little attention and none have addressed integration of
hedonic affective experience. Our conjecture is that an internal
simulation capability founded on ideo-motor theory and joint
representations, and drawing on recent progress in the modeling-
related mirror neuron system (Gallese et al., 1996; Rizzolatti et al.,
1996; Rizzolatti and Craighero, 2004; Thill et al., 2013), pro-
vides a viable way to approach the integration of procedural and
episodic memory as a joint perceptuo-motor system. Our specific
contention is that it is helpful to conceive of this joint episodic-
procedural memory – for goal-directed internal simulation – as
a network of associations between elements of both episodic and
procedural memories. This perspective is neutral regarding the
final implementation of these episodic and procedural memories
and it can facilitate both emergent and cognitivist AI approaches.

We argue that such a framework meets several challenges in
cognitive robotics such as the need to accommodate modal and

modal episodic data and extended perceptuo-motor sequences,
as well as mechanisms for conditioning the association dynam-
ics with external constraints derived from semantic declarative
knowledge, current context, and affective value signals. It also
addresses the need to integrate the episodic andprocedural knowl-
edge gathered by robots as they operate of their physical envi-
ronment with information extracted from web-based knowledge
bases. This is particularly important if the power of indirect
knowledge (acquired by interpreting third-party descriptions) is
to be harnessed in the development of robot skills.
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Alexander V. Terekhov* and J. Kevin O’Regan
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The question of the nature of space around us has occupied thinkers since the dawn
of humanity, with scientists and philosophers today implicitly assuming that space is
something that exists objectively. Here, we show that this does not have to be the
case: the notion of space could emerge when biological organisms seek an economic
representation of their sensorimotor flow. The emergence of spatial notions does not
necessitate the existence of real physical space, but only requires the presence of
sensorimotor invariants called “compensable” sensory changes.We showmathematically
and then in simulations that naive agents making no assumptions about the existence of
space are able to learn these invariants and to build the abstract notion that physicists
call rigid displacement, independent of what is being displaced. Rigid displacements
may underly perception of space as an unchanging medium within which objects are
described by their relative positions. Our findings suggest that the question of the nature
of space, currently exclusive to philosophy and physics, should also be addressed from
the standpoint of neuroscience and artificial intelligence.

Keywords: sensorimotor contingencies, space perception, naive agent, concepts development, compensable
transformation, geometry, artificial intelligence and robotics

1. INTRODUCTION

Howdowe know that there is space around us?Our brains sit inside the dark bony cavities formed by
the skull, with myriads of sensorimotor signals coming in and going out. From this immense flow
of spikes, our brains conclude that there is such thing as space, filled with such things as objects,
and that there is such thing as body – a special type of object which brains have most control over.
Taking this “tabula rasa” approach, it is not clear what constitutes space as something discoverable
in the sensory information, or, in other words, how space manifests itself to a naive agent that has
no information other than its undifferentiated sensory inputs and motor outputs.

Poincaré (1905) was among the first to recognize this problem and to attempt its mathematical
formalization. He suggested that space can manifest itself through what he called “compensable
changes”: such changes in the world, which the agent can nullify by its own action. For example,
consider standing in front of a red ball. The light reflected from the ball is projected into the retina
where it creates excitation of the sensory cells. If now the ball displaces 1m away the input to the
retina becomes different fromwhat it was before. Yet, you canmake the input to be the same as before
if you walk 1m in the same direction as the ball. It is through this ability to nullify the changes in the
environment that we learn about space (Poincaré, 1905). This approach was further developed by
Nicod (1929), who showed, among other things, that temporal sequences can be used to determine
the topology of space. After Nicod, this line of research was for long time discontinued, until it
was reinitiated in the field of artificial intelligence and robotics (Kuipers, 1978; Pierce and Kuipers,
1997). Nowadays, a whole body of work has accumulated describing how robotic agents can build
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models of themselves and their environments (Kaplan and
Oudeyer, 2004; Klyubin et al., 2004, 2005; Gloye et al., 2005; Bon-
gard et al., 2006;Hersch et al., 2008;Hoffmann et al., 2010;Gordon
and Ahissar, 2011; Sigaud et al., 2011; Koos et al., 2013). However,
the question of the acquisition of the spatial concepts as something
independent of particular sensory coding remains rather poorly
studied [however, see Philipona et al. (2003), Roschin et al. (2011),
and Laflaquiere et al. (2012)].

In the current paper, we show how a naive agent can acquire
spatial notions in the formof internalized (or “sensible,” cf., Nicod,
1929) rigid displacements.We show that being equippedwith such
notions the agent can solve spatial tasks that would be unsolvable
in the metric of the original sensory inputs. Moreover, we show
that notions indistinguishable from internalized rigid displace-
ments can be built by an agent inhabiting a spaceless universe. We
thus suggest that the notion of space we possess is a construct of
our perceptual system, based on certain sensorimotor invariants,
which, however, do not necessitate the objective existance of
space.1

2. ILLUSTRATION OF PRINCIPLE

To illustrate the principle, consider first the sensory universe or
“Merkwelt” (cf von Uexküll, 1957) of the one-dimensional agent
in Figure 1. Note that in the present work, we are attempting a
proof of concept showing that an agent interacting with the world
could adduce the notion of space. For this reason, we will be
assuming that the agent is equipped with sufficient memory and

1While the present article concerns the notion of space, it would be extremely
interesting to attempt a similar approach for the emergence of the notion of time.
However at present we have no clear idea of how to do this. In the present article we
have attempted to reduce assumptions about time to a minimum.

computational resources to perform the necessary manipulation
of the sensorimotor information.

Assume (though this is not known to the agent’s brain) that its
body is composed of a single photoreceptive sensor that can move
laterally inside its body using a “muscle” (Figure 1A). Assume a
one-dimensional environment as in Figure 1B, and assume first
that it is static. If the agent were to perform scanning actions
with the muscle and were to plot photoreceptor output against
the photoreceptor’s actual physical position, it would obtain a
plot such as Figure 1D. But it cannot do this because it has no
notion, let alone any measure, of physical position, and only has
knowledge of proprioception. The agent can only plot photore-
ceptor output against proprioception, and so obtains a distorted
plot as in Figure 1F. This “sensorimotor contingency” (MacKay,
1962; O’Regan and Noë, 2001) is all that the agent knows about.
It does not know anything about the structure of its body and
sensor, let alone that there is such a thing as space in which it is
immersed. Indeed, the agent does not need such notions to under-
stand its world, since its world is completely accounted for by its
knowledge of the sensorimotor contingency it has established by
scanning.

But now suppose that the environment can move relative to the
agent, for example, taking Figures 1B,B′. The previously plotted
sensorimotor contingency will no longer apply, and a different
plot will be obtained (e.g., Figure 1F′). The agent goes from being
able to completely predict the effects of its scanning actions on its
sensory input, to no longer being able to do so.

However, there is a notable fact which applies. Although the
agent does not know this, physicists looking from outside the
agent would note that if the displacement relative to the envi-
ronment is not too large, there will be some overlap between
the physical locations scanned before and after the displace-
ment. In this overlapping region, the sensor occupies the same

FIGURE 1 | Algorithm of space acquisition illustrated with a simplified agent. The agent (A) has the form of a tray, inside which a photoreceptor s moves with
the help of a muscle, scanning the environment (B) composed of scattered light sources. The length of the muscle is linked to the output of the proprioceptive cell p
in a systematic, but unknown way. The output of the photoreceptor depends on its position x in real space (D). The agent learns the sensorimotor contingency
(F) linking p and s. After a rigid displacement of the agent, or a corresponding displacement of the environment from (B) to (B′), the output of the photoreceptor
changes from (D) to (D′) and a new sensorimotor contingency (F′) is established. For a sufficiently small rigid displacement, the outputs of the photoreceptor will
overlap before and after the displacement. The agent makes a record of the corresponding proprioceptive values between the sensorimotor contingency (F,F′)
(arrows from a, b, c to a′, b′, c′) and constructs the function p′ =φ(p) [(H), bold line]. Different functions φ [thin lines in (H)] correspond to different rigid
displacements. If the agent faces a different environment (C) and makes a rigid displacement equivalent to its displacement to (C′), the outputs of the photoreceptor
change from (E) to (E′) and the corresponding sensorimotor contingency changes from (G) to (G′). Yet, because of the existence of space, the same function φ links
(G) to (G′). The tests in Figures 3–6 show that the functions φ constitute the basis of spatial knowledge. Reproduced with permission from Terekhov and O’Regan
(2014) © 2016 IEEE.
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positions relative to the environment as it occupied before the
displacement occurred. Since sensory input depends only on
the position of the photoreceptor relative to the environment,
the agent will thus discover that for these positions the sensory
input from the photoreceptor will be the same as before the
displacement.

Registering such a coincidence is not uncommon for an agent
with a single photoreceptor, but the same would happen for an
agent with numerous receptors. For such a more complicated
agent, the coincidence would be extremely noteworthy.

In an attempt to better “understand” its environment, the agent
will thus naturallymake a catalog of these coincidences (cf. arrows
in Figures 1F,F′), and so establish a function φ linking the values
of proprioception observed before a change to the corresponding
values of proprioception after the change. Such a function for all
values of proprioception is shown in Figure 1H.

Assume that over time, the environment displaces rigidly to
various extents, with the agent located initially at various posi-
tions. Furthermore, assume that such displacements can happen
for entirely different environments (e.g., Figure 1C). Since the
sensorimotor contingencies themselves depend on all these fac-
tors, it might be expected that different functions φ would have
to be cataloged for all these different cases. Yet, it is a remarkable
fact that the set of functions φ is much simpler: for a given
displacement of the environment, the agent will discover the same
functions φ, even when this displacement starts from different
initial positions, and even when the environment is different.

We shall see below that this remarkable simplicity of the func-
tions φ provides the agent with the notion of space. But, first let us
see where the simplicity derives from.

Each function φ links proprioceptive values before an environ-
mental change to proprioceptive values after the change, in such
a way that for the linked values the outputs of the photoreceptor

match before and after the change. Seen from outside the agent,
the physicist would know that this situation will occur if the
agent’s photoreceptor occupies the same position relative to the
environment before and after the environmental change. And this
will happen if (1) the environment makes a rigid displacement,
and if (2) the agent’s photoreceptor makes a rigid displacement
equal to the rigid displacement of the environment. Thus, physicists
looking at the agent would know that the functions φ actually
measure, in proprioceptive coordinates, rigid physical displace-
ments of the environment relative to the agent (or vice versa)
(see Section 6).

Let us stress again that a priori there was no reason at all why
the φ functions for different starting points should be the same
for a given displacement, and the same for all environments. But
now, we can understand why the set of functions φ is so simple: it
is because a defining property of rigid displacements is that they
are independent of their starting points, and independent of the
properties of what is being displaced.

The functions φ can thus be seen as perceptual constructs
equivalent to physical rigid displacements, or one could say, fol-
lowing Nicod (1929), that they are sensible rigid displacements,
where sensible refers to the fact that they are defined within the
Merkwelt of the agent.

3. RESULTS

To illustrate that these sensible rigid displacements or func-
tions φ really have the properties of real physical rigid displace-
ments, we will use computer simulations with the more com-
plex two-dimensional agent described in Figure 2. The details
of the simulation are presented in the Methods (section 5). In
Formalization (section 6), we show that the demonstration applies
to an arbitrarily complicated agent, with certain restrictions.
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FIGURE 2 | The tray-like two-dimensional agent. (A) The agent inhabits a plane where it can perform uncontrolled hops (or equivalently, the environment can
shift through unknown distances), resulting in the translation of the agent’s body in an unknown direction through an unknown distance. Outside of the agent’s plane
there is an environment made of light sources. The agent can sense the light sources with nine photoreceptors placed on its mobile retina (B), which can translate
with the help of muscles, and whose position is sensed by eight pressure-sensitive proprioceptive cells scattered over the agent’s body. As the retina performs the
scanning motion (C), the proprioceptors take values lying in a two-dimensional proprioceptive manifold inside the eight-dimensional space of the possible
proprioceptive outputs. This manifold can be unfolded into a plane. (D) An example environment and the output of one photoreceptor over this unfolding as the
agent performs scanning movements of the retina. This unfolding will be used hereafter in order to illustrate the outputs of the photoreceptors as the agent performs
scanning movements of the retina.
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In Figure 3, the two-dimensional simulated agent is first shown
an environment that makes a certain displacement (or the agent
makes an equivalent hop relative to the environment). The agent
is then shown two other instances of the same displacement,
but with two completely different environments. Even though
in each case, the sensory experiences of the agent are differ-
ent, and even though they change in different ways, the Figure
shows that the same function φ can be used to account for these
changes. This is what is to be expected from a notion of rigid
displacement, which should not depend on the content of what
is displaced.

Figure 4 shows further that, once equipped with the notion
of sensible rigid displacement, the agent is well on its way
toward understanding space. In particular, sensible rigid dis-
placements endow the agent with the percept of space as an
unchanging medium, which implies being able to distinguish
between the sensory changes caused by the proper movements
of the agent from those reflecting the deformation of the envi-
ronment. Figure 4 shows how the simulated agent is able to
distinguish between the two despite the fact that in the sensory
input a rigid shift may look like a deformation (Figure 4C),
while deformations may seem just like a minor displacement
(Figure 4B).

Figure 5 shows that the agent can define the notion of relative
position of A with respect to B. This notion is more abstract
than displacement, as there exist numerous paths leading from
B to A, while relative position is independent of the choice of a
particular path. The notion of relative position allows the agent
to “understand” that it is at the same “somewhere” independently
of how it got there. To define the notion of relative position, the
agentmust be able to take different combinations of displacements
having the same origin and destination, and consider them as
equivalent.

4. DISCUSSION

We have shown that, without assuming a priori the existence
of space, the agent invents the notions of sensible displacement,
unchanging medium and relative position. These notions allow
the agent to conceive of its environment in a way that we can
assimilate to possessing the notion of space. The agent can now
separate the properties of its sensed environment into prop-
erties a physicist would call spatial (position, orientation) and
non-spatial (shape, color, etc). These are the properties whose
changes the agent respectively can and cannot account for in terms
of sensible rigid displacements. Several further points should
be mentioned.

The method that the agent uses to “invent” its notion of space
involves defining φ functions from matching sensory signals. As
is the case for temporal coincidence, this can be understood as a
strategy of associating causes that lead to the same consequences
(Markram et al., 2011). This is a productive learning strategy in
general and is easily implementable in neural hardware.

Note, however, that constructing sensible rigid displacements
on the basis of matches is only possible if sensory changes caused
by modifications in the environment can be compensated (i.e.,
equalized or canceled) by the agent’s own action. The conditions

for this to be possible are (1) that the agent be able to act,2
and (2) that appropriate compensatory changes can occur in the
environment. The agent’s own actions are thus crucial for the
acquisition of the notion of space. Of course, if the agent knows
in advance that there is space, it may be able to reconstruct it
without acting. But if the agent has limited action capacities, it
will not invent space “correctly.” In particular, the simple two-
dimensional agent we have considered has a retina that can trans-
late, but cannot rotate. This agent will therefore classify relative
position, but not orientation, as being a spatial property. Evi-
dence from biology also shows the importance of action in the
acquisition of spatial notions: an example is the classic result
of Held and Hein (1963).

In addition to action, sufficient richness of the environment is
essential for an agent to discover space. If for example displace-
ment in a certain direction has no sensory consequences, or if
they are ambiguous, then the agent will be unable to learn the
corresponding sensible rigid displacements. Again this is coherent
with biology, where it has been shown (Blakemore and Cooper,
1970) that kittens raised in visual environments composed of
vertical stripes are blind to displacements of horizontally aligned
objects and vice versa.

Another point worth mentioning is the fact that sensible rigid
displacements are nothing but abstract constructs – they do not
imply that something really moves: if the agent inhabited a differ-
ent physical universe but where the sensorimotor regularities were
the same, then it would develop the same construct of sensible
rigid displacement. For example in Audio Agent (section 7), we
describe an agent whose world consists only of sounds, but that
develops sensible rigid displacements in pitch analogous to the
spatial constructs of the agent in Figure 1.

A final point concerns the statistical approaches often used
up to now to understand brain functioning (Zhaoping, 2006;
Ganguli and Sompolinsky, 2012). Such approaches use statistical
correlations to compress the data observed in sensory and motor
activity. It is possible that these approaches may be adapted to
capture the “algebraic” notion of mutual compensability between
environment changes and an agent’s actions that is instantiated by
the functions φ and that is essential for understanding the essence
of space.

In conclusion, the three-dimensional space we perceive could
be nothing but a construct, which simplifies the representation
of information provided by our limited senses in response to
our limited actions. In reality space – if it exists – may have
a higher number of dimensions, most of which we perceive as
non-spatial properties because of our inability to perform corre-
sponding compensatory movements. Or, conversely, there may
in fact be no physical space: our impression that space exists
may be nothing but a gross oversimplification generated by our

2In the particular case of our agent the action involves moving the sensor within the
agent’s body. This ensures that the agent has a reliable measure of the motion that
it is producing, with, in particular, a one-to-one relation between muscle changes
and physical changes. Our algorithm would have to be improved in order to allow
cases where the agentmoved its body using, for example, legs whose repeated action
creates motion, since here there is no longer a one-to-one link between leg muscle
command and physical change in space.
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perceptual systems, with the real world only being very approxi-
mately describable as a collection of “objects” moving through an
“unchanging medium.”

5. METHODS

5.1. Agent
The two-dimensional agent from Figure 2 was simulated to illus-
trate the acquisition of spatial knowledge. The agent has a square
body in a form of a tray, within which a square retina translates.
We choose the measurement units so that the retina movements
are confined to a unit square. The position x, y of the retina is
registered by proprioceptors scattered over the body surface and
having outputs

pj = exp

{
−
(dpj )

2

(σ
p
j )

2

}
,

where dpj is the distance between the center of the retina and the
location of the j-th proprioceptor, and σpj is its acuity.

The retina is coveredwith photoreceptors,measuring the inten-
sity of the light coming from Nℓ spot light sources located in a
plane above the agent. The response of j-th photoreceptor is

sj =
Nℓ∑
i=1

Ii exp
{
−
(dsij)2

(σsj )
2

}
,

where dsij is the distance between the projection of the i-th light
source onto the plane of the agent and the j-th photoreceptor; Ii is
the intensity of the i-th light source, and σsj is the acuity of the j-th
photoreceptor.

For the simulations presented in the paper we deliberately
distributed the eight proprioceptors over the agent’s body in a

non-uniform way so as to ensure a certain amount of distortion
of the image in Figures 3–5. Their acuities σpj was set to 0.3 for all
receptors. The positions of the nine photoreceptors were drawn
randomly from a square with sides of length 0.3. The acuity of the
receptors σsj took random values between 0.03 and 0.3. Due to the
retinal mobility the agent’s “field of view” was a 1.0× 1.0 square
centered at what we call the agent’s position.

5.2. Learning Functions φφφ
The agent was placed into the environment with 200 light sources
distributed randomly in 3× 3 square, centered at the agent’s initial
position (see Figure 6). The agent scanned the environment by
moving the retina inside the body and tabulating the tuples of
proprioceptive and photoreceptive inputs ⟨pk, sk⟩. The agent then
jumped to a new position, which was within a 1.8× 1.8 square
centered at its initial position, and again scanned the environment
and tabulated the tuples ⟨p′k, s

′
k⟩. The agent then looked for the co-

occurrences sk = s′k′ and put the corresponding proprioceptive
inputs into pairs ⟨pk, p

′
k′⟩. The function φ was then defined as the

set of all such pairs.
Exclusively for the sake of code optimization when “scanning”

the environment the retina moved over a regular 201× 201 grid.
The outputs of the photoreceptors were considered as matching if
for every photoreceptor the difference of the outputs before and
after the jump was less than 0.005. The corresponding values of
proprioception before and after the jump were taken to form the
function φ. If the value of every proprioceptor in one pair differed
by less than 0.01 from the value of proprioceptor in the other pair,
then one of the pairs was discarded. The destination points of the
agent’s jumps also belonged to a regular grid centered at the agent’s
initial position and having a step size of 0.02. In total, we obtained
8281 different functions φ.
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FIGURE 3 | The notion of sensible rigid displacements. Seemingly different changes in sensory input will be associated if they correspond to the same
displacement in real physical space. The 2D agent is presented with a reference displacement of the environment (B), which it scans before and after the
displacement. The output of one of the photoreceptors over the unfolded proprioceptive manifold (Figure 2C) is presented in (A). Then the agent is presented with
test displacements (C) from different initial positions and for different environments. Even though the test displacements may strongly alter the shape of the
reference, the agent succeeds in associating test and reference if they correspond to the same physical displacement (D). This ability of the agent provides the basis
of the notion of displacement independent of the environment.
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the agent makes a jump and simultaneously the environment is stretched or shrunk along one axis by a certain amount (B), which can be zero (C). The agent is to
judge whether the environment was the same before and after the jump. Note that the visual input in the modified environment (E) resembles the original (D) more
than it does the unchanged environment (F). Yet, the agent can successfully identify the case when the environment does not change, and it can do this
independently of the extent of the jumps (G). This ability of the agent underlies the notion of space as an unchanging medium through which the agent makes
displacements.

A B

FIGURE 5 | The notion of relative position, independent of the connecting path. The 2D agent can construct the notion of relative position of a destination
point with respect to an origin by associating all possible paths connecting the origin to the destination. The agent was presented with a reference single-segment
path. Then it was returned to the origin and moved along two-, three-, or four-segment paths with possibly different destination points at a distance in the range
[−0.15, 0.15] from the destination of the reference path; all points were chosen on the same straight line (A). The surrounding environment was altered at every path
presentation in order to ensure that the agent calculated the displacement instead of comparing the view at the destination points. The agent successfully associated
together paths which arrived close to the original destination point. This association was more accurate for the 2-segment path, and became weaker as the number
of path segments increased (B). This can be explained by accumulation of the integration error.

It must be emphasized here that though we used only rigid
displacements of the environment for learning the φ functions,
the result would have been essentially the same if arbitrary
deformations of the environment were allowed. For instance,
in our pilot simulations, we allowed the environment to shift
and then deform along one of the axes, and then computed
the corresponding φ functions. We found that the φ functions
for such non-rigid changes of the environment contained less
than 3% of what a pure rigid displacement would contain and
depended heavily upon the particular environment used. Thus,
introducing a simple criterion, like retaining only those φ func-
tions with a certain number of points, and running the sim-
ulations for both rigid and non-rigid changes would produce
essentially the same functions φ as running the simulations for
rigid displacements only.

5.3. Sensible Rigid Displacement
The agent was facing 40 light sources distributed uniformly along
a circle with 0.1 radius. The center of the circle was chosen
randomly within a 1.0× 1.0 square centered at the agent. In the
reference displacement, all stars moved as a whole to a new
random position, which was also within a 1.0× 1.0 square. The
agent determined the function φ corresponding to the reference
displacement. Then the agent was shown one of four objects
shown in Figure 3: the same circle, a square (composed of 40
lights), a triangle (39 lights), or a star (40 lights). The square and
triangle had sides of length 0.2, and the star had a ray length 0.3.
The objects underwent a random test displacement with initial
and final positions within a 1.0× 1.0 square. In order to save
simulation time, we only considered displacements which differed
from the reference by no more than 0.1 for each axis. The agent
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FIGURE 6 | Acquisition of φ functions. The agent scans the environment
composed of random light sources before (A) and after (B) a rigid
displacement caused by the agent’s jump. The corresponding function φ is
illustrated in (C) with the arrows connecting points of coinciding
photoreceptor outputs before (the origin of the arrow) and after the jump (the
end of the arrow). (D) illustrates the meaning of the function φ, which is the
field of the proprioceptive changes necessary to compensate changes in
photoreceptors induced by the rigid motion (jump).

determined the functions ∼φ for each of the tests and computed
the distance between φ and ∼φ as

ρ(φ,
∼
φ ) =

∑
k′ ,̃k′:pk=p̃̃k

∥p′k′ − p̃′k̃′∥, (1)

where ||·|| is a euclidean distance in the proprioception space. The
agent identified two displacements as the same if the error was
below a threshold which was chosen so that 90% of displacements
of size less than 0.005 were considered identical. The procedure
was repeated 1,000 times.

5.4. Unchanging Medium
The agent was facing 40 light sources distributed uniformly over
a circle with radius 0.1. The center of the circle was chosen
randomly in a 0.4× 0.4 square centered at the agent. The agent
scanned the environment and tabulated the tuples ⟨pk, sk⟩. Then
the agent made a jump to a random point located in a 0.6× 0.6
square and simultaneously the circle was randomly stretched or
shrunk by up to 50% along a fixed axis. Only those jump destina-
tions were considered for which the agent could “see” the entire
circle. The agent scanned the environment again and tabulated
new tuples ⟨p′k, s

′
k⟩. The agent then searched for a functionφwhich

gave the best fit of the photoreceptors after the jump based on

their values before the jump. In particular, the following error was
computed:

ε =

Nk∑
k=1

∥sk − s′k′∥,

where k′ was such that φ(pk) = p′k′ . If the error was below the
threshold, the agent assumed that the environment did not change
during the jump. The threshold value of the error was chosen in
such a way that the agent answered correctly in 90% of cases when
the deformation of the circle was below 0.5%. Figure 2 shows the
result of simulations computed on the basis of 10,000 repetitions
of the test.

5.5. Relative Position
The agent was facing an environment filled with 200 light sources
with random locations and intensities. It was displaced from its
original position to the destination point, which had coordinates
(0.6, 0.6) relative to the agent’s initial position. The agent deter-
mined the reference function φref, which gave the best account
of the displacement-induced changes of the photoreceptor out-
puts. Then the environment was replaced with a new randomly
generated environment, and the agent was moved along a path
composed of several segments. At every intermediate point along
the path, the agent determined the function φj accounting for
the changes in photoreceptor values. The agent then computed
the composition function φcomp =φn ◦ · · · ◦φ1, where n is the
number of path segments. For any two functions φ and ∼φ defined
by sets of pairs ⟨pk, p

′
k′⟩ and ⟨p̃k̃, p̃

′
k̃′⟩ the composition ∼φ ◦ φ was

defined as a set of pairs ⟨pk, p̃
′
k̃′⟩, such that p′k′ = p̃k̃. The distance

between φref and φcomp was computed using formula 1. The test
and reference paths were assumed to correspond to the same rela-
tive position if the distancewas below the same threshold as for the
sensible rigid displacements. The procedure was repeated 1,000
times for two-, three-, and four-segment paths. Each intermediate
point of the path was within the 0.9× 0.9 square centered at the
original position. In order to reduce simulation time the final
points of all paths lay on the same line and were not more than
0.1 away from the origin.

6. FORMALIZATION

Here, we consider a general agent immersed in real physical space.
Later, we will abandon the assumption of the existence of physcial
space and give the conditions for the emergence of perceptual
“space-like” constructs independently of whether they correspond
to any real physical space.

Let s be the vector of the agent’s exteroceptor outputs. The
exteroceptors are connected to a body, assumed to be rigid, whose
position and orientation is described by a spatial coordinate
defined by the vector x. For every environment E , the outputs of
the exteroceptors are defined by a function

s = σE (x). (2)

We assume that this function has the property that if the envi-
ronment E makes a rigidmotion and becomes E ′, then there exists
a rigid transformation T of entire space such that

s′ = σE′(x) = σE (T(x)). (3)
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Proprioception p reports the position of the exteroceptors in
the agent’s body. For a given position of the agent X we assume
there is a function πX such that

p = πX (x). (4)

Again, the function πX has the property that the agent’s dis-
placement to a position X ′ can be accounted for by the rigid
transformation T of entire space:

p′ = πX ′(x) = πX (T (x)). (5)

Assuming that proprioception unambigously defines the posi-
tion of the exteroceptors in space

x = π−1
X (p)

and
s =

(
σE ◦ π−1

X

)
(p)

where the function
(
σE ◦ π−1

X
)

is the sensorimotor contingency
learned by the agent for every position X of itself and of the
environment E .

When the agent or the environmentmoves, a new sensorimotor
contingency is established

s′ =
(
σE′ ◦ π−1

X ′

)
(p′) =

(
σE ◦ T ◦ T −1 ◦ π−1

X

)
(p′).

The agent learns the functionφ linking the values p and p′ such
that s= s′, or(

σE ◦ π−1
X

)
(p) =

(
σE ◦ T ◦ T −1 ◦ π−1

X

)
(p′).

The function φ is not always defined uniquely since the map-
ping σE can be non-invertible. It can be inverted in the domain
of its arguments if the environment is sufficiently rich, i.e., if the
vector of exteroceptor outputs is different at every position of the
exteroceptors within the range admitted by the proprioceptors. In
this case

φ = πX ◦ T ◦ T−1 ◦ π−1
X . (6)

It can be seen from the expression for the function φ that it
simply gives a proprioceptive account of the relative rigid displace-
ment T ◦T−1 of the environment and the agent. The functions
φ are thus the agent’s extensible rigid displacements, which are
associated with the environment’s rigid motion from E to E ′ and
the agent’s rigid motion from X to X ′. As is clear from equation
6, the function φ only depends on the transformations T and
T . In physical space, these transformations depend only on the
displacements themselves and are independent of the initial posi-
tions of the agent and the environment, and of the content of the
environment. Moreover, since the transformations T and T form
Lie groups, the functionsφ also inherit some group properties. For
any two φ functions,

φ1 = πX ◦ T ◦ T−1
1 ◦ π−1

X and φ2 = πX ◦ T2 ◦ T−1
2 ◦ π−1

X .

there exists a function φ3 such that

φ1◦φ2 = πX ◦T1◦T−1
1 ◦T2◦T−1

2 ◦π−1
X = πX ◦T3◦T−1

3 ◦π−1
X = φ3

whereT 3 andT3 are transformations describing the total displace-
ments of agent and of the environment, for which T3 ◦ T−1

3 =

T1 ◦ T−1
1 ◦ T2 ◦ T−1

2 .
The functions φ do not form a group. This is because they

are defined only on a subset of proprioceptive values, for which
the exteroceptor outputs overlap before and after the shift. It may
happen that the domain of definition of the function φ3 is larger
than that of φ1 ◦φ2 and hence the composition φ1 ◦φ2 is not one
of the functions φ.

Up until this point we have assumed the existence of real
physical space. Now, we would like to abandon this assumption,
and only retain the conditions which allow the construction of the
function φ. This gives us a list of requirements for the existence
of “space-like” constructs. (1) There must be a variable x and
functions σE and πX such that the outputs of the extero- and
proprioceptors can be described by the equations (2) and (4),
and the function π must be invertible. The agent must be able to
“act,” i.e., induce changes in the variable x. (2) Moreover, there
must exist (and be sufficiently often) changes of the environment
E →E ′ and/or of the agentX →X ′ such that the equations (3) and
(5) hold. The corresponding transformations T and/or T must be
applicable to all environments E and external states of the agent
X , and they must form a group with respect to the composition
operator.

Note that the requirement (2) does not presume that there are
no other types of changes of the environment and/or of the agent.
The agent will identify only the changes possessing such a prop-
erty as sensible rigid displacements and will obtain the functions φ
that correspond to them.

Also note again that here we do not assume the existence of
space. We only make certain assumptions regarding the structure
of the sensory inputs that the agent can receive.

The agent presented in Figure 2 of the main text will only
recognize translations as the spatial changes, because it can only
translate its retina, and hence for this agent the variable x only
includes the position of the retina in space, not its orientation.

One can imagine an agent that can stretch its retina in addition
to translations and rotations. For such an agent, the variable x
will include position, orientation, and stretching of the retina.
If this agent can stretch its entire body, or if the environment
has a tendency for such deformations, then stretching will be
classified as a sensible rigid displacement similarly to translations
and rotations.

One can also imagine an agent whose sensory inputs do not
depend on physical spatial properties, but satisfy the requirements
described above. Such an agent will develop a false notion of
space, where it is not present. The description of such an agent is
given below.

7. AUDIO AGENT

Here, we show that an agent can develop incorrect spatial knowl-
edge, i.e., that does not correspond to physical space, if the con-
ditions presented in the previous section are satisfied. The agent,
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FIGURE 7 | A simple audio agent. The agent (A) consists of a rod attached to a support, oscillating in response to the acoustic waves (B). The agent measures the
intensity of this oscillation with an “exteroceptor” s. By exercising its muscle the agent can change the stiffness of the spring at the support and thus the
eigenfrequency f of the rod, measured with the proprioceptor p. For an acoustic wave generated by a single note (A) the exteroceptor response s depends on the
eigenfrequency f as shown in (D). However, the agent measures the proprioceptive response p and not the eigenfrequency, and so only has access to the
sensorimotor contingency (F). The change of the note from (B) to (B′) results in a shift in the characteristics (D) to (D′) and in the establishment of a new
sensorimotor contingency (F′). The agent can learn the functions φ (H) by taking note of the coincidences in the exteroceptor output s. If a pair of notes is played
(C,C′) with the dependencies (E,E′), new sensorimotor contingencies are obtained by the agent (G,G′), yet the same functions φ link them together. Reproduced
with permission from Terekhov and O’Regan (2014) © 2016 IEEE.

inspired by Jean Nicod, inhabits the world of sounds (Figure 7).
Its environment is a continuously lasting sine wave, or a chord
(Figure 7A). The agent consists of a hair-cell, which oscillates
in response to the acoustic waves (Figure 7B). The amplitude of
this oscillation is measured by an exteroceptor s. The response is
maximal if the frequency f of one of the sine waves coincides with
the eigenfrequency of the hair-cell.

The agent can “scan” the environment by changing the stiffness
at the cell’s attachment point and thus its eigenfrequency, which
is measured by the proprioceptor p. For the environment B, the
dependency between the amplitude and the cell’s eigenfrequency
has the shape illustrated in Figure 7D. We assume that for
any other note (like B′), the dependency between the ampli-
tude and the cell’s eigenfrequency remains the same, but shifted
(Figure 7D′).

The agent does not know these facts. It only knows the depen-
dency between exteroception s and proprioception p, which con-
stitutes the sensorimotor contingency (Figure 7F) corresponding
to the environment B. For a new note (B′), a new sensorimotor
contingency F′ is established. Yet, as before, the agent notices that
the outputs of the exteroceptor s coincide for certain values of p.
It makes note of these coincidences and defines the functions φ
corresponding to all changes of the notes (Figure 7H).

The same procedure applies if the agent faces a chord of two (C
and C′) ormore notes. Instead of changes in the pitch of a note, we
nowhave transposition of thewhole chord. The agent can discover
that the same set of functions φ works for notes and for chords.

Although this agent is unable to move in space and although it
only perceives continuous sound waves, it can nevertheless build
the basic notions of space. However, these notions are “incorrect,”
in the sense that they do not correspond to actual physical space,
but to the set of note pitches. The sensible rigid displacements
for this agent correspond to transpositions of the chords. The
unchanging medium is the musical scale, and the relative position
of one chord with respect to an identical but transposed chord is

just the interval throughwhich the chord has been transposed. For
such an agent, a musical piece is somehow similar to what a silent
film is for us: it is a sequence of objects (notes), appearing, moving
around (changing pitch), and disappearing.

Using the formalism introduced above, we can say that for
this agent, the spatial variable is frequency, f. For any given envi-
ronment E , which in this case is constituted by simultaneously
played notes, the output of the exteroceptor s depends only on
the eigenfrequency of the hair-cell, which can be measured using
the same variable f. This means that the function σE (f ) exists.
The rigid shift of the environment E to E ′, which is the chord
transposition, results just in frequency scaling: σE′ (f )=σE (kf ).
Evidently, these transformations form a group. Proprioception p
signals the stiffness of the hair-cell, which is functionally related
to its eigenfrequency, and hence the invertible function π(f ) also
exists. As our auditory agent is unable to perform anything sim-
ilar to rigid displacements, the function π does not depend on
anything equivalent to the state X of our original simple agent
(Figure 1).

The existence of the functions σE (f ) and π(f ) fulfills the
requirement (1) from the previous section. We can assume that
music being played is just a piano exercise and hence the chords
are often followed by their transposed versions. In this case there
exist (and are sufficiently often) changes of the environment
E →E ′, which correspond to a simple shift of all played notes by
the same musical interval. These shifts evidently form a group,
and hence the requirement (2) is also fulfilled. The fulfilment of
these two requirements suffices for the existence of sensible rigid
displacements and thus for basic spatial knowledge, described
above.
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Just Imagine! Learning to Emulate
and Infer Actions with a Stochastic
Generative Architecture
Fabian Schrodt* and Martin V. Butz

Cognitive Modeling, Department of Computer Science, University of Tübingen, Tübingen, Germany

Theories on embodied cognition emphasize that our mind develops by processing
and inferring structures given the encountered bodily experiences. Here, we propose a
distributed neural network architecture that learns a stochastic generative model from
experiencing bodily actions. Our modular system learns from various manifolds of action
perceptions in the form of (i) relative positional motion of the individual body parts, (ii)
angular motion of joints, and (iii) relatively stable top-down action identities. By Hebbian
learning, this information is spatially segmented in separate neural modules that provide
embodied state codes and temporal predictions of the state progression inside and
across the modules. The network is generative in space and time, thus being able to
predict both, missing sensory information and next sensory information. We link the
developing encodings to visuomotor and multimodal representations that appear to be
involved in action observation. Our results show that the system learns to infer action types
and motor codes from partial sensory information by emulating observed actions with the
own developing body model. We further evaluate the generative capabilities by showing
that the system is able to generate internal imaginations of the learned types of actions
without sensory stimulation, including visual images of the actions. The model highlights
the important roles of motor cognition and embodied simulation for bootstrapping action
understanding capabilities. We conclude that stochastic generative models appear very
suitable for both, generating goal-directed actions and predicting observed visuomotor
trajectories and action goals.

Keywords: artificial neural networks, mental imagery, embodied simulation, sensorimotor learning, generative
model, action understanding, action emulation, Bayesian inference

1. INTRODUCTION

It appears that humans are particularly good at learning by imitation, gaze following, social
referencing, and gestural communication from very early on (Tomasello, 1999). Inherently, the
observation of others is involved in all of these forms of social learning. Learning by imitation, for
instance, is assumed to develop from pure mimicking of bodily movements toward the inference
and emulation of the intended goals of others from about 1 year of age onward (Carpenter et al.,
1998; Want and Harris, 2002; Elsner, 2007). Yet how are goals and intentions inferred from visual
observations, and how does this facilitate the activation of the respective motor commands for
imitation? The intercommunication between specific brain regions, which are often referred to as
mirror neuron system or action observation network, has been suggested to enable this inference

Frontiers in Robotics and AI | www.frontiersin.org                                                     128                                                                           March 2016 | Volume 3 | Article 5

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://dx.doi.org/10.3389/frobt.2016.00005
https://creativecommons.org/licenses/by/4.0/
mailto:tobias-fabian.schrodt@uni-tuebingen.de
mailto:tobias-fabian.schrodt@uni-tuebingen.de
http://dx.doi.org/10.3389/frobt.2016.00005
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2016.00005&domain=pdf&date_stamp=2016-03-04
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00005/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00005/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00005/abstract
http://loop.frontiersin.org/people/177694/overview
http://loop.frontiersin.org/people/58395/overview
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Schrodt and Butz Stochastic Emulation and Inference

of others’ intentions and imitation of their behavior (Buccino
et al., 2004; Rizzolatti and Craighero, 2004, 2005; Iacoboni, 2005,
2009; Iacoboni and Dapretto, 2006; Kilner et al., 2007). While
a genetic predisposition may supply the foundation to develop
such a system (Rizzolatti and Craighero, 2004; Ferrari et al., 2006;
Lepage and Théoret, 2007; Bonini and Ferrari, 2011; Casile et al.,
2011), its development – per se – seems to be strongly determined
by social interaction (Meltzoff, 2007; Heyes, 2010; Nagai et al.,
2011; Froese et al., 2012; Saby et al., 2012), sensorimotor experi-
ence, motor cognition, and embodiment (Gallese and Goldman,
1998; Catmur et al., 2007; Gallese, 2007a; Gallese et al., 2009).
Due to observations such as the foregoing, cognitive science has
recently undergone a pragmatic turn, focusing on the enactive
roots of cognition (Engel et al., 2013).

Embodied cognitive states, according to Barsalous simulation
hypothesis (Barsalou, 1999, 2008), are situated simulations that
temporarily activate – or re-enact – particular events by means
of a set of embodied modal codes. However, if mental states are
grounded in own-bodily experiences and self-observations, how
does the brain establish the correspondence to the observation of
others in the first place?Wehave recently shown that this so-called
correspondence problem [cf. Heyes (2001) and Dautenhahn and
Nehaniv (2002)] can be solved by an embodied neural network
model that is adapting to the individual perspectives of others
(Schrodt et al., 2015). This model clustered sensorimotor con-
tingencies and learned about their progress in a single competi-
tive layer composed of cells with multimodal tuning, enabling it
to infer proprioceptive equivalents to visual observations while
taking an actors perspective.

In this paper, we propose a stochastic variant of the clustering
algorithm, which we introduced in our previous work, that is
generative in multiple, distributed domains. The system can be
considered to develop several hiddenMarkovmodels from scratch
and incorporates them by integrating conditional state transition
probabilities statistically. It thereby learns an embodied action
model that is able to simulate forward in time consistent visual-
proprioceptive self-perceptions. This bodily grounded simulation
is primed when observing biological motion patterns, leading
to the ability to re-enact the observed behavior using the own
embodied codes. Hence, our model supports the view that mental
states are embodied simulations [cf. Gallese (2007b)] and provides
an explanation to how the perception of others’ actions can be
consistently incorporated with the own action experiences when
encoded at distributed neural sites.

Our model can be compared to an action observation net-
work, in that it models the processing of (i) visual motion sig-
nals, believed to be processed in the superior temporal sulcus;
(ii) spatiotemporal motor codes, which can be related to neural
activities in the posterior parietal lobule and the premotor cortex,
and (iii) compressed, intentional action codes, which have been
associated with neural activities in the inferior frontal gyrus [see,
e.g., Iacoboni (2005), Kilner (2011), and Turella et al. (2013)].
Accordingly, we train and evaluate a tripartite network structure,
interpreting and referring to (i) relative positional body motion
as visual biological motion stimuli, (ii) joint angular motion as
motor codes, and (iii) action identities as intentions or goals in
our experiments. In doing so, we focus on bodily movements,

including walking, running, and playing basketball, where the
stimuli originate frommotion captures of human subjects. Despite
the simplicity of these stimuli, our results show that it is possible
to identify compressed intention codes from observing biological
motion patterns and to concurrently infer consistent motor emu-
lations of observed actions using distributed, bodily grounded
encodings. Analogously, actions can be simulated in visual and
motor modalities when only an intention prior is provided, offer-
ing a possible explanation to how simulation processes may drive
forth goal-directed and imitative behavior, and link it to social
learning.

In the following, we refer to related work in Section 2 and spec-
ify the model architecture, including its modularized structure
as well as the probabilistic learning and information processing
mechanisms in Section 3. We then describe the motion capture
stimuli, the bottom-up processing, and clarify the connection of
the resulting perceptions to encodings involved in action under-
standing in Section 4. The model is evaluated on motion track-
ing data, showing action inference, completion, and imagination
capabilities in Section 5. Finally, we discuss current challenges and
future application options in Section 6.

2. RELATED WORK

Lallee and Dominey (2013) implemented a model that integrates
low-level sensory data of an iCub robot, encoding multimodal
contingencies in a single, 3D, and self-organizing competitive
map. When driven by a single modal stimulus, this multimodal
integration enables mental imagery of corresponding perceptions
in other modalities. In accordance with findings from neuro-
science, the modeled self-organizing map is topographic with
respect to its discrete multimodal cell tunings. The states gen-
erated by our model can also be embedded in metric spaces.
In contrast, however, our model encodes modal prototype vec-
tors separately and activates them stochastically. This allows to
encode multimodal perceptions without redundancies. Moreover,
it enables the resolution of ambiguities over time by predictive
interactions between the encoded modalities. Our results show
that cells can be activated by multimodal perceptions without
necessarily encoding multimodal stimuli locally, while moreover
being able to encode specific actions by means of distributed
temporal statistics.

Taylor et al. (2006) implemented a stochastic generative neu-
ral network model based on conditional restricted Boltzmann
machines (RBMs). When trained on motion captures similar to
those used in our evaluations, the model is able to reproduce
walking and running movements as well as transitions between
them in terms of sequences of angular postures. Although the
encoding capacity of RBMs is theoretically superior in comparison
to Markov state-based models because they encode multidimen-
sional state variables, the experiments show the typical tradeoff
of requiring considerably more training trials and randomized
sampling. Our model is able to expand its encoding capacity on-
demand and thus avoids both a sampling and frequency bias.
Our model, nevertheless, accounts for scalability and encoding
capacity since states are distributed over several Markov models.
This enables to learnmodal state transition densities locally and to
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reconcile them with sensory signals and cross-modal predictions
as required.

Comparable to the realization by Baker et al. (2009) of a
qualitative cognitive model suggested by Gergely et al. (1995),
intention inferences in our model are based on Bayesian statistics
given visually observed action sequences. In contrast, our model
learns the sensorimotor contingencies that facilitate this inference
without relying on specific behavioral rationality assumptions.
Comparably, the intention priors in our model are statistically
determined by assessing the own behavioral biases during an
embodied training phase. Thereby, our experiments are based on
the assumption that an observer expects an actor to behave in the
same way they would behave – that is, by inferring cross-modal
observation equivalences based on the own-bodily experiences –
and thus essentially models the development of social cognition
[cf. Meltzoff (2007)].

Similar to Friston et al. (2011), our neural network models
action understanding by inferring higher level, compact action
codes, given lower level sensory motion signals. However, in con-
trast to Friston et al. (2011), no motion primitives are provided,
but they are learned in the form of intention clusters, which
integrate sensory–motor information over space and time.

3. NEURAL NETWORK ARCHITECTURE

The stochastic generative neuralmodel consists of several stochas-
tic neural layers or modules, which process information in iden-
tical fashion. The layers can be arranged hierarchically and con-
nected selectively. Each layer calculates a normalized, discrete
probability density estimate for the determination of a state in
a specific state space. Each neuron corresponds to a possible
state, and the binary activation of a single cell corresponds to
the determination of that state. The neurons are activated by
developing and incorporating prototype tunings and temporal
state predictions. Each neuron sends intramodular state transition
predictions to the other neurons in the layer and cross-modular
predictions to associated layers, such that the distributed states
are able to develop self-preserving, generative temporal dynamics.
The development of these predictions can be compared to pre-
dictive coding (Rao and Ballard, 1999) and results in a Hebbian
learning rule similar to Oja’s rule (Oja, 1989) as described in
Section 3.3.

Figure 1 shows the particular network architecture developed
here. Referring to the human action observation network, three
layers of this kind interact with each other in a hierarchy of two
levels: at the bottom level, a vision layer processes bottom-up
visual motion cues and predicts the continuation of this visual
motion over time as well as corresponding action intentions
and motor codes. Further, a motor layer processes bottom-up
proprioceptions of joint angular motion and predicts the con-
tinuation of these signals over time as well as corresponding
action intentions and visual motion. Finally, at the top level,
an intention layer encodes the individual actions for which the
system is trained on, predicts possible action transitions over
time, and top-down the corresponding vision and motor layer
states that may be active during a particular action. Hence, at
the bottom level, top-down and generative activities are fused

FIGURE 1 | Architecture overview in the context of action inference
and simulation. The model consists of three stochastic layers: a vision layer,
a motor layer, and an intention layer. All layers predict the next state in other
layers (red arrows) and the next state in the same layer (blue arrows). The
vision and motor layers can be driven by sensory, bottom-up signals (green
arrows 1 and 2), while the top layer can be driven by top-down signal input
(green arrow 3). Normalization of a layer input is indicated by the circled Σ.

with bottom-up sensory signals, in common with the intramodu-
lar and cross-modular predictions generated by the bottom lay-
ers themselves. In a context where each bottom module repre-
sents a specific modality, the intramodular predictions can be
considered to represent the expected state progression in the
respective modality, while cross-modular predictions implement
cross-modal inferences. The cross-modular predictions enable the
inference of motor and intention codes from visual observations
during action observation, where only visual motion cues are
available.

The streams of sensory information are assumed to be provided
by populations of locally receptive cells with tuning to specific
stimuli, which is in accordance with findings in neuroscience
(Pouget et al., 2000). These populations essentially forward the
information bymeans of a full connection to the bottom stochastic
layer that reflects the correspondingmodality. Section 4 elaborates
further on how the respective perceptions and stimuli are encoded
and how they can be related to an action observation network.
This encoding has been published recently as part of a perspective-
inference model given dynamic motion patterns (Schrodt et al.,
2015). The following sections thus focus on the stochastic neural
layers on top of the populations.

3.1. Stochastic Neural Layers
Each stochastic neural layer learns a discrete, prototypic repre-
sentation of the provided sensory input information. To do so,
the layer grows a set of cells on demand with distinct sensory
tunings. The recruitment of cells and adaptation of prototypes
is accomplished by unsupervised mechanisms as explained in
Section 3.2. Each cell in a layer learns predictions of the tem-
poral progress of these prototypic state estimates in the layer.
Furthermore, each cell learns to predict the cell activations that
may be observed in other, associated layers, which is explained
in Section 3.3. An exemplary stochastic neural layer connected to
another layer in this way, together with the neural populations that
forward sensory signals is shown in Figure 2. In the following,
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FIGURE 2 | Two stochastic state layers in hierarchical compound. The
bottom-up sensory state recognition signal is provided by multiple
populations of tuned cells. The signals Pk |S provided by the match mk

between cell prototypes w⃗k and the current stimulus a⃗M are indicated by the
green connection diagram. Analogously, top-down recognition signals can be
defined. Lateral recurrences in blue represent state transition probabilities,
including the self-recurrence to preserve a state. Red lines denote
cross-modular predictions of states. Arrow head lines indicate signals that are
summed up by a cell, while bullet head lines indicate modulations of cell
inputs [cf. equation (2)].

the determination of states and incorporation of predictions is
formalized.

The layers in our model simplify competitive neural processes
such that only a single cell in each layer is activated at the same
time. Cell activations are binary and represent the event that a spe-
cific state in the corresponding state space is determined. This is
comparable to a winner-takes-all approach [cf. Grossberg (1973),
for evaluations]. However, the determination of the state in each
layer depends on a fusion of predictive intramodular and cross-
modular probabilities and sensory state recognition probabilities.
By stochastic sampling, a single cell is selected as competition win-
ner in each time step, where the winning probability is determined
by the fused inputs to each cell. In the process, the input vector to a
layer depicts a discrete probability density for the stochastic event
of observing a particular state. For this reason, each layer uses a
specific normalization of incoming signals that ensures that the
all signals sum up to 1.

We denote cells inside a layer by an index setM and cells outside
by an index set N. The binary output xk(t) of a state cell indexed
k∈M is determined by the normalized probability term

Xk(t) = P(x(t) > xj(t) ∀j ̸= k, j ∈ M)

=
netk(t)∑
j∈M netj(t)

(1)

where Xk(t) denotes the winning event probability, and
xk(t)∈ {0,1} denotes the realization of this probability or
abstract, binary cell activation calculated by stochastic sampling

at time step t. The input netk(t) to the cell k is provided by the
probability fusion

netk(t) =
(
Pk|S(t) + Pk|C(t)

)
· Pk|I(t) (2)

where Pk|S(t) is a sensory (S) recognition signal depicting the
probability that the state k is considered the current observation
given sensory inputs, Pk|I(t) is the intramodular (I) prediction of
the successor state, and Pk|C(t) is the cross-modular (C) prediction
of the succession, defined by

Pk|I(t) =
∏
i∈M

1 − xi(t− 1) · (1 − P(xk(t) = 1|xi(t− 1) = 1))

(3)

Pk|C(t) =
∑
j∈N

xj(t− 1) · P(xk(t) = 1|xj(t− 1) = 1) (4)

Taken together, equation (2) firstly fuses probabilistic sensory
recognition signals with probabilistic cross-modular predictions
coming in from the last winner cells of other layers. Then, it
restricts the activation of cells to probabilistic intramodular pre-
dictions propagated from the last winner cell in the layer to all
potential successors (including the last winner itself), as indicated
in Figure 2.

The sensory recognition probability Pk|S(t) is also responsible
for clustering the sensory streams into discrete, prototypic states.
In the following, we explain the segmentation by unsupervised
Hebbian learning.

3.2. Segmentation and Recognition of
Population-Encoded Activations
For generating the above binary stochastic cells, we use an instar
algorithm that is capable of unsupervised segmentation of nor-
malized vector spaces similar to Grossberg’s Adaptive Resonance
Theory (Grossberg, 1976a,b,c). In contrast, our approach pro-
vides state recognition probabilities and can thus be applied to
implement non-deterministic learning and recognition. Another
difference to common implementations is that cell prototypes are
created on demand and initialized with zero vectors.

We define the sensory recognition probability Pk|S(t) of a state
k∈M as a function of the congruence or match mk(t) between a
state cell’s prototype vector w⃗k and the current activation vector
a⃗M(t) jointly provided by all population cells. The concatenated
population activation dedicated to a state layer is assumed to
be normalized to length 1. Since the model is designed for a
separate learning and testing phase, we provide separate recogni-
tion functions, assuming full sensory confidence during training,
and some sensory uncertainty during testing, which generally
means observing previously unseen data. During training, this
assumption inevitably results in the sensory recognition of the best
matching state via

Ptraining
k|S (t) =

{
1 if mk(t) ≥ ml(t) ∀l ∈ M
0 else

(5)

as well as a sensory recognition that is distributed over all states
during testing, which we define by

Ptesting
k|S (t) = β · 2

1 + exp(−κ(mk(t)− 1)) (6)
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where κ denotes an uncertainty measure for sensory data, and β
denotes the maximum sensor confidence. The prototype match to
the current stimulus is described by

mk(t) =
{

a⃗M(t)⊙w⃗k
||w⃗k|| if k is recruited

θ if k is free
∈ [−1, 1] (7)

where⊙ denotes the scalar product, such that the match function
is based on the angular match between the normalized prototype
vector w⃗k encoded in cell k and the current normalized stimulus
a⃗M(t). Each layer expands its capacity on demand, comparable to
Growing Neural Gas by Fritzke (1995). When a cell has fired a
sensory recognition signal [Pk|S(t)= 1] once during training, it
is converted from a free cell to a recruited cell in the sense that
its prototype vector is adapted from zero to the current stimulus
[following the learning rule in equation (8)]. The match of a free
cell is fixed to θ, such that when no cell match is greater than θ,
the free pattern is recruited and another free cell is created with
zero vector prototype. Thus, we call θ the recruitment threshold
in the following. Assuming a small learning rate, we can ensure
that each training input is encoded in the network with a tolerance
mismatch of θ, irrespective of the amount of data, the presentation
order, or frequency. Further, it was suggested previously that
adding noise to the match function introduces a specific degree of
noise robustness to this segmentation algorithm during training
(Schrodt et al., 2015).

Prototype vectors of cells are trained to represent the current
population activation using the Hebbian inspired instar learning
rule:

∇w⃗k(t) = ηs · xk(t) · (⃗aM(t)− w⃗k(t)) (8)

where ηs denotes the spatial learning rate. Since learning is gated
by the binary cell realization xk(t), only the prototype of the
winner cell is adapted.

During testing, the sensory recognition function [equation (6)]
ensures the distribution of sensory state recognition probabili-
ties over all stochastic cells rather than a single one to account
for sensory uncertainty. Perfectly matching cells are recognized
with probability β (before normalization), whereas the probability
to recognize states not perfectly in the center of the stimulus
decreases in dependency on κ and the mismatch. This means also
that when no learned prototype matches sufficiently well dur-
ing testing, the sensory recognition distribution becomes nearly
uniform, such that intramodular and cross-modular predictions
gain a relatively strong influence on the determination of the
current state [cf. equation (2)]. Therefore, the network is able
to dynamically switch from a bottom-up driven state recogni-
tion to a forward simulation of the state progression when sen-
sory information is unknown or uncertain. In the following, we
detail how intramodular and cross-modular predictions can be
learned by a Hebbian learning rule that is equivalent to Bayesian
inference.

3.3. Learning Intramodular and
Cross-Modular Predictions
Upon winning, a cell learns to predict which observations will
be made next in the same and in other layers. This is realized

by asymmetric bidirectional recurrences between cells in a layer,
representing the intramodular predictions Pk|I(t), and between
cells of two layers, representing the cross-modular predictions
Pk|C(t). Intramodular recurrences propagate the state transition
probability from the last winner to all cells in the same layer
and thus implement a discrete-time Markov chain, where Markov
states are learned from scratch during the training procedure.
Cross-modular connections bias the state transition probability
density in other layers, given the current sensory observation, by
means of temporal Bayesian inference.

Taken together, in a fully connected architecture, intramodular
and cross-modular state predictions are represented by a full
connection between all state cells in the network (including self-
recurrences). These connections generally encode conditional
probabilities for the subsequent observation of specific states.
They can be learned by Bayesian statistics, which would result in
asymmetric weights.

wij(t) = P(xj(t) = 1|xi(t− 1) = 1) =
∑

t xi(t− 1) · xj(t)∑
t xi(t− 1) (9)

wji(t) = P(xi(t) = 1|xj(t− 1) = 1) =
∑

t xi(t) · xj(t− 1)∑
t xj(t− 1) (10)

To derive a neurally more plausible learning rule to train a
weight from cell i to cell j, we transpose the derivative of this
formula with respect to time:

∂wij(t)
∂t

=

∂
∑

t xi(t−1)·xj(t)
∂t

∑
t xi(t− 1)− ∂

∑
t xi(t−1)
∂t

∑
t xi(t− 1) · xj(t)(∑

t xi(t− 1)
)2

=
xi(t− 1) · xj(t) ·

∑
t xi(t− 1)− xi(t− 1) ·

∑
t xi(t− 1) · xj(t)(∑

t xi(t− 1)
)2

=
xi(t− 1) · xj(t)− xi(t− 1) · wij(t)∑

t xi(t− 1)

=
xi(t− 1)

(
xj(t)− wij(t)

)∑
t xi(t− 1)

= ηp · xi(t− 1) · (xj(t)− wij(t)), ηp =
1∑

t xi(t− 1) (11)

With the predictive learning rate ηp set constant, this is a
temporal variant of Oja’s associative learning rule (Oja, 1989),
also referred to as outstar learning rule. Thus, this form of
Hebbian learning is equivalent to Bayesian inference under the
assumption of a learning rate that decays inversely proportional
to the number of activations of the preceding cell i. In this
case, each cell calculates the average of all observed (temporally)
conditional probability densities in the same and other layers.
However, since the states are adapted simultaneously with the
learning of state conditionals, it is advantageous to implement a
form of forgetting. Hence, we define the learning rate by ηp =

1
(
∑

t xi(t−1))α , where α< 1 implements forgetting. All state pre-
dicting weights wij are initialized equally to represent multiple
uniform distributions, and adapt in accordance with learning
rule 11.
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The capability of simulating distributed state progressions, also
without sensory stimulation, follows from the stochastic selection
of cell activations based on the learned, conditional state pre-
dictions. As a result of the bidirectional connections, the model
becomes able to infer momentarily or permanently unobservable
states and to mutually synchronize, or keep consistent, activations
in the respective layers. By pre-activating a subset of cells in a layer,
also a subset of learned state sequences can unfold. In the context
of actions, this leads to the ability to synchronously simulate the
state progression that corresponds to one of multiple encoded
bodily movements in the vision and motor layers when biased
top-down by a constant intention signal. The probability fusion
in equation (2) accounts for an approximation of the respective,
multi-conditional state probabilities. In the following section, we
describe in further detail the application of this model to action
understanding and the respective stimuli used in our evaluations.

4. MODELING ACTION OBSERVATION

The focus of this paper lies on the learning of an embodied, dis-
tributed, and multimodal model of action understanding, which
involves bottom-up as well as top-down and generative processes.
It consists of three stochastic layers, each modeling codes and
processes that are believed to be involved in action observation,
the inference of goals, and respective motor commands that facil-
itate the emulation of observed actions. The first layer comprises
visual biological motion patterns. The second layer encodes the
corresponding joint angular motor perceptions. Accordingly, the
model includes two groups of modal input populations, which
encode visual and proprioceptive stimuli. Moreover, we include
an amodal or multimodal intrinsic representation of action inten-
tions. These codes are believed to be represented at distributed
neural sites. It is typically assumed that action goals and intentions
are encoded inferior frontally, motor codes and plans posterior
parietally, and biological, mainly visually driven motion patterns
in the superior temporal sulcus [cf. Iacoboni (2005), Kilner (2011),
and Turella et al. (2013)]. Inferences and synchronization pro-
cesses between these neural sites are modeled by cross-modular
state predictions between the layers in the network, while the
intramodular predictions restrict the state progression to the expe-
rienced, own-bodily contingencies. Figure 1 shows an overview of
the implemented learning architecture in this context.

In the following, we describe the bottom-up processing chain
of our model referring to psychological and neuroscientific evi-
dence. We start with the simulation environment and the motion
capture data format that provides the respective stimuli for our
evaluations. Subsequently, we focus on important key aspects
for the recognition of biological motion, their implications, and
implementation in the model. Finally, we describe how the result-
ing perceptions are interpreted in the context of different modal-
ities involved in action perception, inference, and emulation.

4.1. Motion Captures and
Data Representation
We evaluate our model making use of the CMU Graphics Lab
Motion Capture Database (http://mocap.cs.cmu.edu/). Record-
ings from subjects performing three different cyclic movements

FIGURE 3 | Simulated body driven by motion capture data. The
left-sided image shows the limbs (blue lines between dots) and joints (green
dots) that provide relative visual and joint angular input to the model.
Moreover, three snapshots of the utilized motion tracking trials are shown:
basketball dribbling, running, and walking.

(walking, running, and basketball dribbling) in three trials each
were utilized, as shown in Figure 3. For each movement, we
chose a short, cyclic segment of the first trial as the training
set and the other two, full trials as the testing set. In this way,
the training set was rather idealized, while the testing set con-
tained more information which, although inside the same action
classes, strongly differed to the training data. Themotion tracking
data were recorded with 12 high-resolution infra-red cameras at
120Hz using 41 tracking markers attached to the subjects. The
resulting 3D positions were then matched to separate skeleton
templates for learning and testing to obtain series of joint angular
postures and coherent relative joint positions.

In the experiments, we chose the time series of 12 of the
calculated relative joint positions as input to the visual processing
pathway of the model. We selected the start and end points of the
left and right upper arm, forearm, upper and lower leg, shoulder,
and hip joints relative to the waist, as shown in Figure 3. Each was
encoded by a three-dimensional Cartesian coordinate. As input
to the motor pathway, we chose the calculated joint angles of 8
joints, each encoded by a one- to three-dimensional radian vector,
depending on the degrees of freedom of the respective joint. We
selected the left and right hip joints, knee joint, shoulder joints,
and the elbow joints, resulting in 16 DOF overall. A map of the
inputs at a single, exemplary time step is shown in Figure 3. The
visual and motor pathways are neural substructures of the here
proposed model and preprocess the raw data as described in the
following.

4.2. Aspects of Biological Motion and
Preprocessing
Giese and Poggio (2003) summarize critical properties of the
recognition of biological motion from visual observations, such
as selectivity for temporal order, generality, robustness, and view
dependence. First, scrambling the temporal order in which bio-
logical motion patterns are displayed typically impairs the recog-
nition of the respective action. This temporal selectivity is real-
ized in our model by learning temporally directed state pre-
dictions. Second, biological motion recognition is highly robust
against spatiotemporal variances (such as position, scale, and
speed), body morphology and exact posture control, incomplete
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representations (such as point-light displays), or variances in illu-
mination. We model these generalization capabilities by means of
(i) the usage of simplified forms of representation of biological
motion stimuli as described above, (ii) the extraction of invariant
and valuable information in a neural preprocessing stage, and
(iii) the simulation of observed motion with the own embodied
encodings. Third, the recognition performance decreases with
the amount of rotation an action is perceived from with respect
to common perspectives. The prototypic cells in our network
also respond to specific, learned views of observed movements.
However, the preprocessing of our model is able to also infer and
adapt to observed perspectives to a certain degree.

This neurally deployed preprocessing is a part of the model
that is not detailed in this paper. To summarize, the extraction
of relevant information results in fundamental spatiotemporal
invariances of the visual perception to scale, translation, move-
ment speed, and body morphology. This is achieved by (i) expo-
nential smoothing to account for noise in the data, (ii) calculation
of the velocity, and (iii) normalization of the data to obtain the
relative motion direction of each relative feature processed [see
Schrodt and Butz (2014) and Schrodt et al. (2014a,b, 2015) for
details]. For reasons of consistency, both the visual and motor
perceptions are preprocessed in this manner. As to visual percep-
tion, the preprocessing stage is able to account also for invariance
to orientation by means of active inference of the perspective
an observed biological motion is perceived from. Compensating
for the perspective upon observation solves the correspondence
problem, which can be considered a premise for the ability to infer
intrinsic action representations of others using the own, embodied
encodings, as detailed in our previous work. As a matter of focus,
however, we neglect the influence of orientation in the following
experiments, meaning that the orientation of the learned and
observed motions was identical.

Visual stimuli preprocessed in this manner are represented by a
number of neural populations, each encoding the spatially relative
motion direction of a specific bodily feature. Consequently, each
cell in a population is tuned to a specific motion direction of a
limb. Following this, the visual state layer accomplishes a segmen-
tation of the concatenation of all visual population activations into
whole-body, directional motion patterns. Analogously, the direc-
tions of changes in the joint angles are represented by populations
and segmented into whole-body motor codes. In the following,
we draw a comparison of this visuomotor perspective and our
representation of intention codes to findings in neuroscience and
psychology.

4.3. Visuomotor Perspective and Intentions
The superior temporal sulcus is particularly well known for
encoding (also whole-body) biological motion patterns (Bruce
et al., 1981; Perrett et al., 1985; Oram and Perrett, 1994) and
has been considered to provide important visual input for the
development of attributes linked with the mirror neuron system
(Grossman et al., 2000; Gallese, 2001; Puce and Perrett, 2003;
Ulloa and Pineda, 2007; Pavlova, 2012; Cook et al., 2014). Visual
motion cues are necessary and most critical for the recognition
of actions (Garcia and Grossman, 2008; Thurman and Grossman,
2008). As initially shown by Johansson (1973), the perception

of point-like bodily landmarks in relative motion is sufficient in
this process. Thus, we assume that the above relative directional
motion information can be perceived visually and is sufficient for
action recognition. In contrast, joint angular motion cannot be
perceived directly from such minimal visual information, which
particularly applies to inner rotations of limbs. Thus, we assume
that the directional angular limb motion is perceived propri-
oceptively. In the context of actions, we consider a prototype
of such whole-body joint angular motion a motor code. Similar
motor codes are assumed to be activated during the observation of
learnedmovements (Calvo-Merino et al., 2005) andmay be found
in posterior parietal areas and related premotor areas (Iacoboni,
2005; Friston et al., 2011; Turella et al., 2013).

Further, in the context of themirror neuron system, intentional
structures can be assumed to be encoded in the inferior frontal
gyrus (Iacoboni, 2005; Kilner, 2011; Turella et al., 2013). We sim-
plify these intention codes by top-down, symbolic representations
of specific actions. For the following experiments, we define three
binary intentions in line with the motion tracking recordings
explained before (basketball, running, and walking). Due to this
symbol-like nature, the resulting intention layer cells can also
be considered action classes or labels, while the derivation of
intentions can be considered an online classification of observed
bodily motion given visual cues. Since intentions are provided
during training, the intention state cells and their predictions can
be considered to develop by supervised training of action labels.
However, all state variables are segmented using the unsupervised
algorithm as described in Section 3.2.

During the observation of others, neither information about
their proprioceptions nor their intentions are directly accessible.
According to the embodied simulation hypothesis, the developing
embodied states can nevertheless be inferred when observing oth-
ers (Barsalou, 1999, 2008; Calvo-Merino et al., 2005).Hence, in the
following experiments, we evaluate the inference and embodied
simulation capabilities of our model.

5. EVALUATIONS

In the following experiments, we evaluate (a) the embodied learn-
ing of modal prototypes and predictions by means of the seg-
mentation of different streams of information into prototypic
state cells, (b) the resulting ability to infer intentions and motor
states upon the observation of others’ actions, and (c) the model’s
capability to simulate movements without sensory stimulation,
keeping visual and motor states consistently. For all of the exper-
iments, we chose the parameterization ηs = 0.01, α= 0.9, β= 0.5,
κ= 16, and θ= 0.85 unless stated otherwise.

5.1. Experiment 1: Learning a Sensorimotor
Model Mediated by Intentions
In the first experiment, we show how state cells develop from
scratch given streams of relative visual and motor motion input.
As shown in Figure 4, all layers are driven by data, assuming
maximum sensory confidence and thus disabling the influence of
predictions. Training consisted of learning perfectly cyclic motion
tracking snippets: first, a 115 time steps or 0.96-s basketball trial
where a single dribble and 2 footsteps were performed was shown
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11 times in succession, resulting in 1265 time steps of training.
Then, a 91 time steps or 0.75-s running trial performing 2 foot-
steps was shown 14 times, resulting in 1274 frames. Finally, a 260
time steps or 2.17-s walking trial performing 2 steps was shown

FIGURE 4 | Experiment 1: state segmentation and learning. Dashed
lines indicate the learning of prototype states and temporal predictions.
During learning, all information is assumed to be available, sensory signals are
fully trusted.

B

A

FIGURE 5 | (A) The systematic time series of prototype matches and resulting recognition signals of five visual states, developing during training with θ= 0.1. Three
different, cyclic motion tracking trials were learned repeatedly during this procedure (the first two repetitions are shown). Light red patches tagged with btrain indicate
the time intervals the basketball training trial was shown, the light green patches rtrain indicate the intervals of the running trial, and the light blue patches tagged
wtrain indicate training on the walking trial. It can be seen that the time series of prototype matches (blue lines) are comparable when re-enacting the presentation of a
motion tracking trial, since cells learn to encode specific parts of the data. Because the movements were cyclic, also the determined visual states (red lines) formed
cyclic time series. Initially, some state prototypes were recoded when another movement was shown. (B) Equivalent evaluation of the state cell development in the
motor layer.

5 times repeatedly, resulting in 1300 frames. The training data
thus consisted of 3.88 s of unique data samples. The whole cyclic
repetition of these trials was streamed into the model five times,
while recruiting states, learning state prototypes and the resulting
intra- and cross-modular predictions.

Figure 5 shows the recruitment of five visual and three motor
state cells from scratch and the respective match to the driving
stimuli in the example of a recruitment threshold θ= 0.1. Because
of the cyclic nature of the trained movements, the activations of
those states form cyclic time series. The recruitment threshold θ
basically defines the discretization of the state spaces. Hence, the
higher the recruitment threshold θ, the more states develop, as
concluded inTable 1. Note that learningwas deterministic in these
settings, whichmeans that (a) adaptedweights were not initialized
randomly, but with a zero vector and (b) we assumed full sensor
confidence such that the probability to recognize a state is a binary
function. In consequence, there was no variance in the developing
states.

Figure 5 also indicates that non-disjunct state encodings
develop for the three differentmovements: only one of the states is
recognized exclusively during the perception of a specific move-
ment. Thus, classifications of movements are barely possible using
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TABLE 1 |Overview of the number of developing states during learning in dependency on θ and the resulting classification performances during observation
of movements not seen during training.

θ Layer No. of developing states Correct classifications (%) Classifier confidence (%)

Basketball Running Walking Basketball Running Walking

0.1 Visual 6 21.49 92.36 96.14 44.71 44.65 47.00
Motor 3
Intentions 3

0.3 Visual 8 60.31 98.28 95.43 50.90 50.95 50.75
Motor 7
Intentions 3

0.5 Visual 16 51.64 99.66 99.71 53.97 59.88 65.99
Motor 15
Intentions 3

0.7 Visual 31 43.26 98.51 99.24 60.83 67.97 75.79
Motor 37
Intentions 3

0.85 Visual 72 53.02 99.02 99.18 65.10 73.50 80.73
Motor 107
Intentions 3

Correct classification denotes the percentage of time steps the maximally likely intention output corresponded to the actually shown movement. The classifier confidence shows the
average inferred probability of the maximally likely intention during testing.

Bayesian statistics with such a low recruitment threshold. Hence,
in the following section, we examine the influence of increasing
the visual and motor state granularity on the model’s ability to
infer movement classes.

5.2. Experiment 2a: Inference of Intentions
upon Observation
For the classification of movements, or in this context, for the
inference of intentions, the distinctness of the state structures
with respect to the movements developing during training plays
a major role. Since the information the state cells are encoding
in their prototype vector is hard to visualize, we calculated the
average pixel snapshot of the simulation display for each state
while it was recognized [using an averaging formula analogously
to equation (11)]. Basketball movements were displayed in red,
running movements in green, and walking movements in blue.
Consequently, if only a single state was created to represent all
of the training data, the resulting state snapshot would show a
mixture of all postures included in all of the movements, while
overlapping postures would be black and non-overlapping pos-
tures would be colored. On the contrary, a state cell that was rec-
ognized only at a single time step during training would result in
a snapshot showing only the corresponding posture in the respec-
tive color of the movement. Hence, the color of the snapshots can
be considered a qualitative measure for the distinctness of states
with respect to the three movements. Also, each snapshot shows
the segments of the movements a state cell responds to and thus
the model’s “imagination” of the movement when modalities are
inferred or simulated. Figure 6 shows exemplar snapshots of cells
created during the training phases using different recruitment
thresholds θ. As expected, higher thresholds lead to the creation
of movement-exclusive states.

To evaluate the influence of the multimodal state segmenta-
tion on the model’s ability to infer intentions and to test for

A B C D

FIGURE 6 | Average simulation display while specific sensory states
were observed. (A) Displays an example snapshot of a state created with
learning threshold θ= 0.3. It shows that the state was recognized
non-exclusively, that is, for each of the learned movements. The disjunction of
patterns improves when increasing the threshold, such that for θ=0.85,
movements and specific parts of the movements are clearly identifiable by
observing specific states [snapshots (B–D)].

generalization at the same time, we measured the influence of θ
on the correctness of the inferred values and the model’s confi-
dence, when different movements were presented after training.
As indicated above, the testing set did not contain the motion
tracking trials trained on. Rather, it contained two other basketball
trials of 4.39 and 3.2 s, two other running trials of 3.56 s each, and
two other running trials of 1.15 and 1.27 s. The testing data thus
consisted of 17.13 s of unique data samples. Some trials included
motion segments very different from the learnedmovements. Par-
ticularly, the basketball testing trials contained segments where
the subject stood still and was lifting the ball or segments where
the dribbling was incongruent with the footstep cycle, whereas the
model was only trained on a single, congruent basketball dribbling
snippet. Also, as indicated in Figure 7, only the visual modality
was fed into the network during testing trials, which accounts for
the fact that intentions and also motor commands are not directly
observable during observation of actions. Note that the model did
not obtain information about the time stepwhen a newmovement
was shown during testing.
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Classification results for four different θ averaged over 6 inde-
pendent testing trials are shown in Figure 8. Despite the missing
motor modality and the deviations in the observed posture con-
trol, the model was able to identify the character of the running
and walking movements throughout, as concluded in Table 1. In
doing so, accurately recognized visual state cells were enough to
push the visual, motor, and intention state determination into
temporal attractor sequences that consisted of the cyclic emula-
tion of the respective movement using the embodied encodings.
Following inputs then either maintained this emulation when
close enough to the encodings or forced the convergence to

FIGURE 7 | Experiment 2a/b: inference of intentions and motor
commands from visually observed movements. Solid lines indicate the
propagation of sensory signals (green), cross-modular predictive signals (red),
and intramodular predictions (blue). During testing, only the visual sensor is
available and fused with the emerging predictions, assuming some uncertainty
in sensory information. Intentions are inferred visually, while corresponding
motor commands are inferred from vision and the derived intention.

FIGURE 8 | Inference of intentions from visually observed movements shown for different θ. The red line indicates the moving average (one-second time
window) of the derived basketball state probability in the intention layer, while light red background shows the interval in time the testing trials btest and b

test were
actually presented. Analogously, green indicates running and blue indicates walking. The classifier confidence improves with θ as a result of learning more disjunct
sets of states per movement.

another attractor sequence, that is, a shift in the perception. This
effect can be seen clearly in the basketball trials, were episodes
similar enough to the training data existed. However, as explained
above, the basketball training trials were short and idealized,
and they did not contain incongruent dribbling. The model then
partly inferred a similarity with the trained walking movement in
these segments, resulting in a bistable perception as shown in the
graphs. This effect shows how the model is limited to the learned,
embodied encodings when inferring intentions. It can be avoided
by adding further training data.

When the learned movements were represented by a higher
number of mainly disjunct states with respect to the movements,
the model’s ability to infer the intentions slightly improved. As a
result of the more disjunct patterns, however, the confidence in
classification improved consistently with θ from about 45 to 73%
on average. As explained in the following, the classifier confidence
has an influence on the inference of motor states.

5.3. Experiment 2b: Inference of Motor
Commands upon Observation
Analogously to the preceding experiment, where we could show
that intentions could be classified purely from visually observed
motion patterns, we now evaluate if also the corresponding motor
commands can be inferred using the same mechanisms. Poten-
tially, this task is more difficult, since the set of available motor
commands consists of a larger number of states in the motor
layer when compared with the intention layer, and since the
motor state transitions typically underlie faster dynamics. Seeing
that the observed movements differed severely from the learned
movements, we evaluate if the inferred motor state snapshots
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FIGURE 9 | Example clips of the state sequences recognized in the visual layer and inferred in the motor layer when observing three different
movements (basketball, running, and walking testing trials). Each row shows the sequence of states by means of the representing snapshots over time (FLTR)
for the respective modality and motion capture trial. Snapshots at the same position show the same time step in the sequence of visual and motor states and mostly
show very similar parts of the movements. Because the inference is a stochastic process and because visual and motor states are not segmented in identical fashion
as a result of the different information coding in the modalities, slight misalignments can occur. However, strong incongruence is avoided because of the visuomotor
coupling. Moreover, although ambiguous patterns are included in the sequence, the network maintains the activation cycle of the movement-specific states because
pattern transition probabilities are biased by top-down propagated intention signals.

correspond to the visual state snapshots at the same time steps
and if the sequence in which they occur during the observation
is plausible.

Figure 9 shows the coincidence of state snapshots of the rec-
ognized visual states and inferred motor states when observing
the testing trials. When similar state snapshots are activated in
both the visual and the motor domains, the two modalities can be
considered to be synchronized in the emulation of the observed
movement. In this process, both the cross-modular prediction
from the vision to motor layer and the motor states predicted by
the currently inferred intention bias the activation of motor states
as indicated in Figure 7. The classifier confidence depicts the
probability that a cell in the intention layer is selected as winner.
Thus, increasing the classifier confidence will also increase the
probability that movement-specific motor states are determined.
Thus, since the classifier confidence increases with θ, the ability to
imagine a sequence ofmotor codes corresponding to the currently
observed visual motion, and the interpreted intention improves
with the discretization of the state spaces.

5.4. Experiment 3: Simulation of Actions
Learning a tripartite model of visual motion states, corresponding
motor codes, and intentions enables the inference of various bits of
missing information. Seeing that information is encoded in nor-
malized probability densities and information transfer is realized
stochastically, activities in the network are self-sustaining even

FIGURE 10 | Experiment 3: movement simulation with visuomotor
coupling. No sensory signal is provided. While the stochastically emerging
visual and motor states are biased by the top-down predictions induced by a
constant intention signal, the coupling between vision and motor codes
ensures the synchronization of the simulated pattern sequences.

when sensory input is completely suppressed. When only pro-
vided with a top-down activation of a particular motion intention
in the intention layer (cf. Figure 10), the model simulates likely
sequences of modal visual and motor state sequences according
to the learned temporal statistics.

In this experiment, we recorded the coinciding visual and
motor state sequences generated by the model when a top-down
intention-like action code is kept active in the intention layer.
The results in Figure 11 show that the learned sequences can
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FIGURE 11 | Example clips of the state sequences simulated synchronously in the visual and motor modalities when three different intention priors
(basketball, running, and walking) are provided. Each row shows the respective modality and intention prior. As during motor inference, snapshots at the same
position mostly show very similar parts of the movements, while misalignments are mostly avoided. Again, the network maintains the activation cycle of the
movement-specific states because pattern transition probabilities are biased by the provided top-down-propagated intention signals.

be replicated accurately both in the visual and in the motor
domains. Although multiple ambiguous states were learned, as
can be seen in the visual imaginations that are multi-colored,
the simulated state sequence remains in the correct sequence and
movement class. This is because the transition probabilities in
the respective modalities are biased by the top-down intention
signal.

The results also show that motor and visual state estimates
remain approximately synchronized, seeing that the simulated
states represent similar visual and motor imaginations at similar
time steps. This indicates that the sensorimotor coupling is capa-
ble of synchronizing different modalities for periods of time. The
reason for this synchronization lies in the lateral predictive con-
nections between vision and motor layers: upon a transition from
one visual state to another, the conditional probabilities for motor
states given the new visual state change in an according fashion,
such that the current motor state is more likely to transit to the
most likely successor, which is not only determined by the top-
down intention layer signal but also by the intramodular motor
state transition probabilities and by the cross-modular activation
predictions from the vision layer. Vice versa, the motor states bias
the transition in the visual modality, leading to the observable
mutual synchronization.

6. SUMMARY AND CONCLUSION

Our work shows that stochastic generative neural networks can be
used to model action inference, mental imagery, and action simu-
lation capabilities. Referring to Barsalou’s simulation hypothesis,

it suggests that simulation processes in the brain may help to
recognize, generalize, and maintain action perceptions and infer-
ences using the own embodied encodings. In our model, these
embodied simulations enable a consistent, multimodal interpre-
tation of observed actions in abstract domains. In particular, we
have shown that action observationmodelsmay rely on encodings
that represent actions in a distributed and predictive manner:
although some cells were encoding motion components that were
active during the observation of various actions, cross-modular
predictions enabled the consistent simulation of specific action
sequences. Due to the predictive visuomotor coupling, temporal
synchronicity of the activated states was ensured. Thus, the pre-
dictive, stochastic, and generative encodings resulted in the main-
tenance of overall consistent, multimodal motion imaginations.
In combination with the previously published substructure of the
model that resolves spatiotemporal variances by preprocessing of
stimuli and inference of the perspective (Schrodt et al., 2015), a
neural network architecture can be generated that infers the type
of observed actions and possibly underlying motor commands,
irrespective of the vantage point and despite variations of the
movements. The model is thus able to establish the correspon-
dence between self-perceptions and the perception of others,
which can be considered an essential challenge inmodeling action
understanding.

Despite these successes, the model is currently based on sev-
eral assumptions. For one, we assume that raw visual and motor
perceptions and intentions can be simplified by compressed codes
without losing model relevance, and that the respective motion
features can be identified reliably. Although it is particularly
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unclear how to incorporate realistic motor and intention codes
in computational models, future model versions can be enhanced
toward the processing of raw video streams of actions: the sim-
ulation snapshots in the experiments (see Figures 9 and 11)
were calculated analogously to the conditional state predictions
[equation (12)]. This shows that the states developed by the system
can be suitably mapped onto lower level visual modalities. Thus,
further developed models may hierarchically process lower level
visual information similar to Jung et al. (2015), however, based
on top-down predicted, higher level, and bodily groundedmotion
estimates.

Further, without sensory stimuli, the system’s simulation of
action states is a discrete time stochastic process. While the
sequence of simulated states was mostly correct, the temporal
duration of the activation was characterized by relatively high
variance. Adding further modal state layers could diminish this
variance. Particularly, the current model incorporates motion
signals only and no static or postural information is processed.
Exemplarily, the model implemented by Layher et al. (2014)
triggers a reinforcement learning signal upon the encounter
of low motion energy, which was used to foster the genera-
tion of posture snapshots in extreme poses. Comparably to the
variance of simulated states, also the mean durations of state
activations were partially distorted because of the approximate
fusion of predicted state probability densities during testing.
Integrating the systems predictions also during learning to a
certain extent may improve the fusion of probabilities. It may
also improve noise robustness and the establishment of disjunct
modal state sequences. As shown in the experiments, disjunct
states and state transitions are advantageous for the correct clas-
sification and emulation of actions. Techniques are available
that can prevent the system to fall into an illusionary loop,
when overly trusting the own predictions (Kneissler et al., 2014,
2015).

Moreover, the system currently simplifies a cell activation
competition such that only one cell in each layer is adapted
at each iteration. Using Mexican hat or softmax functions for
the adaptation of learned states may speed up learning. Along
similar lines, learning may be further improved when allowing a
differential weighting of the provided input features. Currently,
each input feature has the same influence in determining the
creation of a new state. The recruitment of new prototypic states
may be made dependent on the predictive value of all currently
available states, including their specificity and accuracy, as is, for
example, done in the XCSF learning classifier system architec-
ture (Stalph et al., 2012; Kneissler et al., 2014). Another current

challenge to the system is to infer limb identities purely from
visual information. The observed limb positions are fed into the
dedicated neural network inputs. An adaptive confusion matrix
could wire respective limb information appropriately, possibly
by back-propagating mismatch signals. Additionally, lower level
Gestalt constraints may be learned and used to adapt such a
matrix.

Finally, despite the challenges remaining, also in its current
form, the system may be evaluated as a cognitive model, and it
may be used in robotics applications. Main predictions of the
cognitive model come in the form of how visual motion will be
segmented into individual motion clusters and how predictive
encodings of the modalities modeled in the system will influence
each other. Also, false information or distracting information
from one module is expected to impair action recognition and
simulation capabilities in the connected modules. On the robotics
side, related techniques were applied using virtual visual servoing
for object tracking (Comport et al., 2006) and for improving the
pose estimates of a robot (Gratal et al., 2011). Our model offers
both generative, visual servoing options and temporal motion
predictions and inference-based, action recognition capabilities.
In future work, this offers the opportunity to develop a cognitive
system that is able to identify and subsequently emulate specific
intention- or goal-oriented actions, striving for the same goal but
adapting themotor commands to the own-bodily experiences and
capabilities.
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Sensorimotor control and learning are fundamental prerequisites for cognitive devel-
opment in humans and animals. Evidence from behavioral sciences and neuroscience 
suggests that motor and brain development are strongly intertwined with the experiential 
process of exploration, where internal body representations are formed and maintained 
over time. In order to guide our movements, our brain must hold an internal model of 
our body and constantly monitor its configuration state. How can sensorimotor control 
enable the development of more complex cognitive and motor capabilities? Although 
a clear answer has still not been found for this question, several studies suggest that 
processes of mental simulation of action–perception loops are likely to be executed in 
our brain and are dependent on internal body representations. Therefore, the capability 
to re-enact sensorimotor experience might represent a key mechanism behind the 
implementation of higher cognitive capabilities, such as behavior recognition, arbitration 
and imitation, sense of agency, and self–other distinction. This work is mainly addressed 
to researchers in autonomous motor and mental development for artificial agents. In 
particular, it aims at gathering the latest developments in the studies on exploration 
behaviors, internal body representations, and processes of sensorimotor simulations. 
Relevant studies in human and animal sciences are discussed and a parallel to similar 
investigations in robotics is presented.

Keywords: sensorimotor learning, exploration behaviors, body representations, internal models, sensorimotor 
simulations, developmental robotics

1. iNTRODUCTiON

The capability to perform sensory-guided motor behaviors, or sensorimotor control, is generally 
not fully developed at birth in mammals. Rather, it emerges through a learning process where the 
individual is actively involved in the interaction with the external environment. In humans, similarly, 
sensorimotor control is developed along the ontogenetic process of the individual. Developmental 
psychologists consider this skill as a fundamental prerequisite for the acquisition of more complex 
cognitive and social capabilities.

In robotics, a large number of studies investigated mechanisms for sensorimotor control and 
learning in artificial agents. Inspired by human development and aiming at producing adaptive 
systems (Asada et al., 2009; Law et al., 2011), researchers proposed robot learning mechanisms based 
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on exploration behaviors. Evidence from human behavioral and 
brain sciences suggests that motor and brain development are 
strongly intertwined with this experiential process, where inter-
nal body representations would be formed and maintained over 
time. However, it is still not clear how sensorimotor development 
is linked to the development of cognitive skills. Indeed, one of the 
most challenging questions in developmental sciences, including 
developmental robotics, is how low-level motor skills scale up to 
more complex motor and cognitive capabilities throughout the 
lifespan of an individual.

A recent line of thought identifies the capability to internally 
simulate sensorimotor cycles based on previous experience, or to 
re-enact past sensorimotor experience, as one of the fundamental 
processes implicated in the implementation of cognitive skills 
(Barsalou, 2008). Several behavioral and brain studies can be 
found in the literature that support this idea. In this work, we argue 
that sensorimotor simulation mechanisms may serve as a bridge 
between sensorimotor representation and the implementation of 
basic cognitive skills, such as behavior recognition, arbitration 
and imitation, sense of agency, and self–other distinction. During 
the last years, an increasing number of robotics studies addressed 
similar processes for the implementation of cognitive skills in 
artificial agents. However, empirical investigation on exploration 
behaviors for the learning of sensorimotor control, on the func-
tioning and modeling of simulation processes in the brain, and 
on their implementation in artificial agents is still fragmented.

This paper aims at gathering the latest developments in the 
study on exploration behaviors, or internal body representations, 
and on re-using sensorimotor experience for cognition. For each 
of these topics, relevant studies in human and animal sciences will 
be introduced and similar studies in robotics will be discussed. 
We strongly believe that this can be beneficial for those research-
ers who investigate autonomous motor and mental development 
for artificial agents. This manuscript provides a comprehensive 
overview of the state of the art in the mentioned topics from 
different perspectives. Moreover, we want to encourage robotic 
researchers in sensorimotor learning and in body representations 
to make a step further by investigating how the acquired senso-
rimotor experience can be used for cognition. Nonetheless, we 
would like to encourage researchers to not overlook the process of 
acquisition of sensorimotor experience by assuming the existence 
of a repertoire of sensorimotor schemes, when investigating com-
putational models for internal simulations. We strongly believe 
that tackling both issues at the same time not only would provide 
a more comprehensive view of the developmental process in arti-
ficial agents but it would also give insights into the generalization 
and specialization of the proposed models. In addition, we believe 
that addressing both sensorimotor and cognitive development 
by simulation processes would bridge different specialties and 
provide new research directions for developmental robotics.

2. eXPLORATiON AS A DRive FOR 
MOTOR AND COGNiTive DeveLOPMeNT

In the late 1980s, a new era known as post-cognitivism started 
to flourish in the cognitive sciences, bringing new philosophical 
interest on embodiment and on the importance of the role of 

the body for cognition (Wilson and Foglia, 2011). According to 
the embodied cognition framework, sensorimotor interaction is 
essential for the development of cognition. A common character-
istic of humans, animals, and artificial agents is their embodiment 
and their being situated in an environment they can interact with. 
They possess the means for shaping these interactions: a body 
that can be actuated by controlling its muscles (in humans and 
animals) or actuators (in artificial agents) and the capability to 
perceive internal or external phenomena through their senses 
(in humans and animals) or sensors (in artificial agents) (Pfeifer 
and Bongard, 2006). In animals and humans, brain development 
is modulated by the multimodal sensorimotor information 
experienced by the individual while interacting with the external 
environment. In the literature, this process is often referred as 
sensorimotor learning. Theorists on grounded cognition propose 
that cognitive capabilities are grounded on sensorimotor experi-
ences (Barsalou, 2008). Although the validity of this theory is still 
under debate, it is commonly accepted that sensorimotor control 
and learning are fundamental prerequisites for cognitive devel-
opment in humans. Therefore, developmental roboticists are 
particularly interested in implementing exploration behaviors in 
artificial agents, which would allow them to gather the necessary 
sensorimotor experience to further develop complex motor and 
cognitive skills.

Humans are not innately skillful at governing their body. 
Motor control is a capability that is acquired and refined over 
time, as demonstrated by several studies. For example, Zoia 
and colleagues have shown that learning of motor control is 
an ongoing process already during pre-natal stages (Zoia et al., 
2007). In fact, they observed an improvement of coordinated 
kinematic patterns in fetuses between the age of 18 and 22 weeks. 
At initial stages, fetuses’ hand movements directed at their eyes 
and mouth were inaccurate and characterized by jerky and zigzag 
movements. However, already around the 22nd week of gesta-
tion, fetuses showed more precise hand trajectories, characterized 
by acceleration and deceleration phases that were apparently 
planned according to the size and to the delicacy of the target 
(facial parts, such as mouth or eyes). It is plausible to think that 
such an improvement in sensorimotor control would be the result 
of an experiential process, driven by exploration behaviors. Many 
developmental studies agree with this hypothesis (Piaget, 1954; 
Kuhl and Meltzoff, 1996; Thelen and Smith, 1996; Meltzoff and 
Moore, 1997). Others show systematic exploration behaviors 
already at early stages of post-natal development [for example, in 
the visual and proprioceptive domains (Rochat, 1998)].

In developmental psychology, exploration behaviors are seen 
as the common characteristic of initial stages of motor and cogni-
tive development. In an early study, Jean Piaget defined explora-
tion behaviors as circular reactions – or repetitions of movements 
that the child finds pleasurable – through which infants gather 
experience and acquire governance of those motor capabilities 
(such as reaching an object) that will enable them, subsequently, 
to explore the interactions with objects and with people (Piaget, 
1954). Therefore, exploration would pave the way to the develop-
ment of more complex motor and social capabilities. In a study 
on language acquisition, for example, Kuhl and Meltzoff (1996) 
reported that in infants younger than 6 months the vocal tract and 
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the neuromusculature are still immature for the production of 
recognizable sounds. It is through exploratory behaviors, which 
Meltzoff and Moore (1997) named as body or vocal babbling, that 
infants would learn articulatory–auditory relations, a prerequisite 
for language acquisition.

However, it is not clear what the drive of exploration behaviors 
is. Behavioral studies agree with the fact that animals and humans 
seem to have a common desire to experience and to acquire new 
information (Berlyne, 1960; Reio et al., 2006; Reio, 2011). Such 
a characteristic, commonly referred to as curiosity, is usually 
associated with the experience of rewards, similar to appetitive 
desires for food and sex (Litman, 2005). However, several theories 
have been developed on the mechanisms that explain curiosity. 
For example, the curiosity-driven theory assumes that organisms 
are motivated to acquire new information through exploratory 
behaviors by the need of restoring cognitive and perceptual 
coherence (Berlyne, 1960). Such a coherence can be disrupted by 
an unpleasant experience of uncertainty, an unpleasant feeling of 
deprivation, the reduction of which is rewarding (Litman, 2005).

Curiosity and exploration behaviors are considered as 
fundamental aspects of learning and development. However, 
studying them in humans and animals often means to observe 
and to analyze only their behavioral effects, which is of course 
limiting the understanding of the underlying processes. Robots 
recently came into play as they provide a valuable test bed for 
the investigation of such mechanisms. Investigating curiosity 
and exploration behaviors in artificial agents is indeed also 
advantageous for developmental roboticists, whose aim is to 
produce autonomous, adaptive, and social robots, which learn 
from and adapt to the dynamic environment using mechanisms 
inspired by human development (Lungarella et  al., 2003). The 
developmental approach in robotics is not only motivated by 
a mere interest in mimicking human development in artificial 
agents. Rather, studying human development can give insights 
in finding those basic behavioral components that may allow 
for the autonomous mental and motor development in artificial 
agents. In fact, researchers in developmental robotics try to avoid 
defining models of robot embodiment and of their surrounding 
world a priori, in order to not stumble across problems, such as 
robot behaviors lacking adaptability and the capability to react to 
unexpected events (Schillaci, 2014).

In developmental robotics, the general approach consists 
of providing artificial agents with learning mechanisms based 
on exploration behaviors. In addition to humans, robots can 
generate useful information about their bodily capabilities while 
interacting with the external environment. This information is 
shaped by the characteristics of the agent’s body and of the envi-
ronment. In addition, dynamic environments and temporary or 
permanent changes in the bodily characteristics of the individual, 
for example, the ones caused by the usage of tools, can strongly 
affect the information that is perceived through the senses and the 
way the individual can interact with its surroundings. Therefore, 
pre-defining models of the robot’s body and of the environment 
can be very challenging, or even impossible, as an enormous 
number of variables have to be taken into account, for covering 
all the aspects of such dynamic systems. This is one of the main 
motivations behind the developmental approach in robotics, 

where researchers try to implement computational models that 
self-organize along the sensorimotor information that is gener-
ated from the bodily interaction of the agent with the external 
environment, such as the one produced through exploration 
behaviors, while assuming as little prior information to construct 
the model as possible.

Several studies on the development of motor and cognitive 
skills based on exploration behaviors can be found in the litera-
ture on developmental robotics. For example, in a survey on cog-
nitive developmental robotics, Asada and colleagues presented 
a developmental model of human cognitive functions starting 
from the fetal simulation of sensorimotor learning of body rep-
resentation in the womb up to the social development through 
interaction between individuals, namely imitation (Asada et al., 
2009). The authors put a central role to exploration behaviors for 
the emergence of cognition in infants and artificial agents. These 
behaviors are the drive to the construction of body representa-
tions (see Section 3), or mappings of multimodal sensorimotor 
information, which are necessary for interacting with the external 
environment, for example, with objects. Learning of coordinated 
movements, such as reaching and grasping, is considered to 
develop along the infant’s acquisition of predictive capabilities, 
which may play an important role in the development of non-
verbal communication, such as pointing or imitation (Asada 
et al., 2009; Hafner and Schillaci, 2011).

Dearden and Demiris (2005) also adopted exploration behav-
iors for learning internal forward models in an artificial agent. 
As it will be discussed in more details in the following sections 
of this paper, forward models enable a robot to predict the con-
sequence of its motor actions. In Dearden and Demiris (2005), a 
robot performed random movements of its gripper and visually 
observed the outcome of these actions. The internal forward 
model was encoded as a Bayesian network, whose structure and 
parameters were learned using the sensorimotor data gathered 
during the exploration behavior performed in the motor space. 
This exploration strategy, known also as random body babbling, 
chooses motor commands from the range of possible movements 
in a random fashion. Takahashi and colleagues implemented a 
similar exploration mechanism in a simulated robotic setup for 
learning motion primitives under tool-use conditions (Takahashi 
et al., 2014). A simulated robotic arm was programed to execute 
an exploration behavior  –  random body babbling  –  in order 
to gather sensorimotor information to be used for building up 
a body representation. The authors adopted a recurrent neural 
network for training the body representation and a deep neural 
network for encoding the tool dynamic features and evaluated the 
approach in an object manipulation task.

Stoytchev (2005) presented an experiment with a simulated 
robot on learning the binding affordances of objects using pre-
defined exploration motion primitives that were selected in a 
random fashion. The action opportunities that an object provides 
to the agent, or affordances, were learned during the exploration 
session where the robot randomly chose sequences of pre-defined 
behaviors, applied them to explore the objects, and detected 
invariants in the resulting set of observations. However, the pro-
posed approach is limited by the usage of pre-defined movements 
and by the lack of variability in the exploration behaviors. In fact, 
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FiGURe 1 | A sequence from an exploration behavior – in this case random motor babbling – performed by the humanoid robot Aldebaran Nao. In the 
bottom, the corresponding frames grabbed by the robot camera are shown. Picture taken from Schillaci and Hafner (2011).
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there could be object affordances that are unlikely to be discov-
ered due to the unavailability of specific exploratory behaviors.

Many other developmental robotics studies adopting random 
exploration behaviors, and comparing different random move-
ment strategies (Schillaci and Hafner, 2011), can be found in the 
literature. However, random exploration strategies – such as ran-
dom body babbling, or motor babbling (see Figure 1) – have been 
found to be not optimal, especially when applied to robotic sys-
tems characterized by a high number of degrees of freedom. More 
efficient sensorimotor exploration behaviors have been proposed. 
For example, Baranes and Oudeyer (2013) presented an intrinsi-
cally motivated goal exploration mechanism that allows active 
learning of inverse models, or controllers, in redundant robots. In 
the proposed methodology, exploration is performed in the task 
space, making it more efficient than exploring the motor space, 
especially when using high-dimensional robots. Rolf and Steil 
showed a similar approach based on goal-directed exploration in 
the task space, which enabled successful learning of the controller 
on a challenging robot platform, the Bionic Handling Assistant 
(Rolf and Steil, 2014).

Investigating goal-directed exploration behaviors provided 
new insights and research directions toward the understanding 
of the mechanisms behind curiosity. In fact, one of the main 
questions posed by researchers on goal-directed exploration in 
artificial agents is how to generate goals in the task space. The 
typical approach proposes to simulate curiosity in an artificial 
agent, by adding interest factors in the exploration phase, usually 
based on measuring the confidence that the system has toward 
possible goals in the space to be explored. Information seeking 
through exploration behaviors, according to Gottlieb et al. (2013), 
is “a process that obeys the imperative to reduce uncertainty and 
can be extrinsically or intrinsically motivated.” This is in line with 
what has been proposed by Litman (2005), as mentioned before in 
this section, that the drive of curiosity might rely on the reduction 
of the unpleasant experience of uncertainty, which is rewarding. 
Oudeyer et al. (2007), Baranes and Oudeyer (2013), Moulin-Frier 
et al. (2013), and Schmerling et al. (2015) adopted an intrinsi-
cally motivated goal exploration mechanism, named Intelligent 

Adaptive Curiosity (IAC), which relies on the uncertainty reduc-
tion idea and on exploration based on learning progress. In other 
words, IAC selects goals maximizing a competence progress, thus 
creating developmental trajectories driving the robot to progres-
sively focus on tasks of increasing complexity and is statistically 
significantly more efficient than selecting tasks in a random 
fashion. IAC has been applied to different contexts in artificial 
agents, such as in learning sensorimotor affordances (Oudeyer 
et al., 2007), in learning inverse kinematics of a simulated robotic 
arm and in learning motor primitives in mobile robots (Baranes 
and Oudeyer, 2013), in vocal learning (Moulin-Frier et al., 2013), 
in the context of oculomotor coordination (Gottlieb et al., 2013), 
and in learning visuo-motor coordination in a humanoid robot 
(Schmerling et  al., 2015). In this latter study, in particular, the 
authors showed not only the superiority of goal-directed explora-
tion strategies, compared to random ones, but also their effective-
ness in the case where two separate motor sub-systems, head and 
arm in the presented experiment, need to be coordinated.

Other experiments on curiosity-driven exploration behav-
iors can be found in the literature. However, most of them 
adopt an approach similar to IAC that implements exploration 
mechanisms based on the learning progress. Ngo et al. (2013), 
for example, proposed a system that generates goals based on 
the confidence in its predictions about how the environment 
reacts to its actions; when the confidence on a prediction is low, 
the environmental configuration that generated such an event 
becomes a goal. Pape et al. (2012) presented a similar curiosity-
driven exploration behavior in the context of tactile skills learn-
ing, which allowed the robotic system to autonomously develop a 
small set of basic motor skills that lead to different kinds of tactile 
input, and to learn how to exploit the learned motor skills to 
solve texture classification tasks. Jauffret et al. (2013) presented 
a neural architecture based on an online novelty detection 
algorithm that is able to self-evaluate sensory-motor strategies. 
Similar to the abovementioned mechanism, in the proposed 
system, the prediction error coming from unexpected events 
provides a measure of the quality of the underlying sensory-
motor schemes and it is used to modulate the system’s behavior 
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TABLe 1 | Summary of robotic studies discussed in this work.

Robotic  
study

exploration 
behaviors

Body  
representation

Predictive  
processes

Skills  
implemented

Simulated  
or real robot

Learning  
tool

Cognitive developmental 
robotics: a survey (Asada et al., 
2009)

Yes Yes Yes Spatial perception, 
vocal imitation

Fetal simulation 
and real humanoid 
robot

Several tools, 
including self-
organizing maps 
and Hebbian 
learning

Learning forward models for 
robots (Dearden and Demiris, 
2005)

Random motor 
babbling

Not explicitly 
addressed

Yes Recognition and 
imitation of hand waving 
movements

Robot gripper 
and camera

Bayesian 
network

Toward learning the binding 
affordances of objects: a 
behavior-grounded approach 
(Stoytchev, 2005)

Random selection 
of pre-defined 
behaviors

Not explicitly 
addressed

No Learning of object 
affordances

Simulated robotic 
arm

Search in history 
table storing 
behaviors/
affordance 
mappings

Tool-body assimilation model 
based on body babbling 
and neurodynamical system 
(Takahashi et al., 2014)

Random body 
babbling

Yes No Object manipulation 
using tools

Simulated robotic 
arm and tools

Recurrent neural 
network and 
deep neural 
network

Oudeyer et al. (2007), Baranes 
and Oudeyer (2013), Moulin-Frier 
et al. (2013), and Schmerling 
et al. (2015)

Intrinsically 
motivated 
(goal-directed) 
exploration

Sensorimotor 
mappings

Yes, during the 
exploration

Visuo-motor coordination, 
learning of sensorimotor 
affordances, motion 
primitives, and model-
based vocal production

Simulated and 
real robots

k-NN-based 
search, 
Gaussian 
mixture models

Learning tactile skills through 
curious exploration (Pape et al., 
2012)

Curiosity-driven 
reinforcement 
learning 
(goal-directed 
exploration)

Not explicitly 
addressed

Yes, during the 
exploration

Tactile exploratory and 
texture classification skills

Biomimetic 
robotic finger

Reinforcement 
learning

Babyrobot – a study on sensori-
motor development (Metta, 
2000)

Goal-directed 
exploration

Self-organizing maps 
and multimodal 
mapping

Yes Visuo-motor coordination Robot head 
and manipulator

Self-organizing 
neural networks

Active motor babbling for 
sensorimotor learning (Saegusa 
et al., 2008)

Exploration based 
on prediction 
error dependent 
confidence 
measures

Visuo-motor mapping Yes, in estimating 
the prediction 
error dependent 
confidence

Visuo-motor coordination Humanoid robot Multi-layer 
perceptrons

Epigenetic Robotics Architecture 
(Morse et al., 2010)

Not explicitly 
addressed

Self-organizing 
maps for multimodal 
mappings

Spreading of 
activations 
between maps

Grounding of linguistic 
labels onto body 
postures, visual and 
auditory modalities

Humanoid robot Self-organizing 
maps and 
Hebbian learning

Kajić et al. (2014) and Schillaci 
et al. (2014)

Random motor 
exploration

Self-organizing maps 
for sensorimotor 
mappings

Yes, for executing 
reaching and pointing 
behaviors

Visuo-motor coordination 
and proto-imperative 
pointing gestures

Humanoid robot Self-organizing 
maps and 
Hebbian learning

Schillaci et al. (2012a) and 
Schillaci (2014)

Random motor 
exploration

Sensorimotor 
mappings encoded in 
internal models

Internal simulations 
based on inverse and 
forward predictions

Action selection for 
tool-use

Humanoid robot k-NN and 
multi-layer 
perceptrons

(Continued)
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in a navigation task. A greedy goal-directed exploration strategy 
has been adopted, instead, by Berthold and Hafner (2015), who 
presented an approach for online learning of a controller for a 
low-dimensional spherical robot based on reservoir computing. 
The exploration strategy adopted by the authors generated motor 
commands aimed at regulating the sensory input to externally 
generated target values.

The number of robotics studies investigating sensorimotor 
exploration behaviors for robot learning has been considerably 

growing in the last couple of decades. This section mentioned 
the most prominent studies, with a particular focus on the 
competences that such exploration behaviors allowed the robots 
to acquire. Table 1 summarizes the studies that are cited in this 
work, and for each of them it points out whether and what explo-
ration strategies have been used for learning particular skills. 
As evident in these descriptions, most of the studies addressing 
intelligent exploration behaviors, or exploratory strategies that 
try to mimic human curiosity, are prevalently adopted only for 
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Robotic  
study

exploration 
behaviors

Body  
representation

Predictive  
processes

Skills  
implemented

Simulated  
or real robot

Learning  
tool

Reaching for the unreachable: 
integration of locomotion 
and whole-body movements 
for extended visually guided 
reaching (Brandao et al., 2013)

Goal-directed 
reaching 
movements

Kinematic models Yes, in the reaching 
behavior

Gaze-centered whole-
body reaching and 
locomotion

Humanoid robot Non-linear 
regression 
(LWPR)

Representations of body 
schemas for infant robot 
development (Shaw et al., 2015)

Intrinsic motivation-
based exploration

Yes, sensorimotor 
maps

Yes, in the 
exploration behavior

Staged development 
of eye saccades, 
gaze control, primitive 
reaching, coordinated 
reach-to-seen and gaze-
to-touch behaviors

Humanoid robot Topological 
maps and 
Hebbian learning

Interpersonal maps: how to 
map affordances for interaction 
behavior (Hafner and Kaplan, 
2008)

Precoded motion 
primitives

Body maps and 
interpersonal maps 
based on information 
distance

Yes, in imitation 
mechanisms

Imitation between agents Robot dogs Distance 
between 
information 
sources

Ince et al. (2009) Precoded motion 
primitives

Mapping between 
motor commands 
and auditory 
ego-noise

Predictions for ego-
noise suppression

Ego-noise modeling and 
suppression

Humanoid robot k-NN in a ego-
noise template 
database

Internal simulation of perception: 
a minimal neuro-robotic model 
(Ziemke et al., 2005)

Navigation with an 
evolved controller

Not explicitly address Yes Prediction of non-present 
sensory input for robot 
navigation

Simulated mobile 
robot

Recurrent neural 
networks and 
evolution

Self body mapping in mobile 
robots using vision and forward 
models (Escobar et al., 2012)

Random 
exploration of the 
environment

Not explicitly 
addressed

Yes Long-term predictions, 
collision-free navigation

Simulated and real 
mobile robot

Multi-layer 
perceptrons

Action selection and mental 
transformation based on a chain 
of forward models (Hoffmann 
and Möller, 2004)

Random 
exploration of the 
environment

Not explicitly 
addressed

Yes Long-term predictions for 
robot navigation

Real mobile robot Multi-layer 
perceptrons

Contingency perception and 
agency measure in visuo-
motor spiking neural networks 
(Pitti et al., 2009)

Random 
exploration

Not explicitly 
addressed

Yes Self–other distinction Real robot head Spiking neural 
networks

Schillaci et al. (2013) and 
Schillaci (2014)

Random 
exploration

Not explicitly 
addressed

Yes Self–other distinction Real and simulated 
humanoid robot

Multi-layer 
perceptrons

TABLe 1 | Continued
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learning sensorimotor skills. Unfortunately, links from sensori-
motor development to cognitive development in these studies are 
often missing. Moreover, most of the abovementioned studies on 
intelligent exploration strategies usually address a unique sensory 
modality. How can exploration be performed in multimodal 
domains? What is the role of attention and priming behaviors 
in curiosity-driven exploration? Few studies tackle these issues, 
such as Forestier and Oudeyer (2015) and di Nocera et al. (2014). 
However, these and similar questions must be better addressed, in 
order to allow these strategies to be adopted in the implementa-
tion of more complex learning mechanisms.

In the following sections, we focus the review on studies on 
internal body representations and internal models, and on the 
predictive capabilities that they could provide to artificial agents. 
As it will be described in the rest of this paper, predictive processes 
and, in general, simulation processes of sensorimotor activity 
could represent the bridging mechanisms between sensorimotor 
learning, implemented through exploration behaviors, and the 
development of basic cognitive skills.

3. iNTeRNAL BODY RePReSeNTATiONS

The rich multimodal information flowing through the sensory 
and motor streams during the interaction of an individual with 
the environment contains information about the body of the 
individual that has been proposed to be integrated in our brain 
in a sort of body schema (Hoffmann et  al., 2010). This schema 
would keep an up-to-date representation of the positions of the 
different body parts in space and of the space of each individual 
modality and their combination (Hoffmann et al., 2010). Such a 
representation would be fundamental, for example, for constantly 
monitoring the position and configuration of our body, and thus 
for guiding our movements with respect with an environment.

In neuroscience, it is known that neural pathways and synapses 
in the brain change with the behavior and the interaction of the 
individual with the environment. Plastic changes are produced 
by sensory and motor experiences, which are strongly dependent 
on the characteristics of the body of the subject. Studies on body 
representations (Udin and Fawcett, 1988; Cang and Feldheim, 
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FiGURe 2 | illustration of the changes in bimodal receptive field properties, following tool-use. Picture taken from Maravita and Iriki (2004). The authors of 
this work recorded the neuronal activity from the intraparietal cortex of Japanese macaques. In this brain region, neurons respond to both somatosensory and visual 
stimulation. The authors observed that some of these “bimodal neurons” (distal-type neurons) responded to somatosensory stimuli at the hand (A) and to visual 
stimuli near the hand (B), also when this moved in space. After the monkey had performed 5 min of food retrieval with an extension tool, the visual receptive fields 
(vRFs) of some of these bimodal neurons expanded to include the length of the tool (C). The vRFs of these neurons did not expand when the monkey was merely 
grasping the tool with its hand (D). Similarly, other bimodal neurons (proximal-type neurons) responded to somatosensory stimuli at the shoulder/neck of the 
monkey (e) and had visual receptive fields covering the reachable space of the arm (F). After tool-use, the visual receptive fields of these neurons expanded to cover 
the reachable space accessible with the tool (G).
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2013) suggested the existence of topographic maps in the brain, 
or projections of sensory receptors and of effector systems into 
structured areas of the brain. These maps self-organize through-
out the brain development in a way that adjacent regions process 
spatially close sensory parts of the body. Kaas (1997) reported 
a number of studies showing the existence of such maps in 
the visual, auditory, olfactory, and somatosensory systems, as 
well as in parts of the motor brain areas. Moreover, evidence 
suggests that different areas belonging to different sensory and 
motor systems are integrated into a unique representation. The 
findings from Iriki et al. (1996), Maravita et al. (2003), Holmes 
and Spence (2004), and Maravita and Iriki (2004), for example, 
support the existence of an integrated representation of visual, 
somatosensory, and auditory peripersonal space in human and 
non-human primates, which operates in body-part-centered 
reference frames. In developmental psychology, Butterworth and 
Hopkins (1988) reported evidence demonstrating that various 
sensorimotor systems are potentially organized and coordinated 
in their functioning from birth, such as primitive forms of visu-
ally guided reaching (Von Hofsten, 1982). Similarly, Rochat and 
Morgan (1998) suggested that infants, already around the age of 

12 months, possess a sense of a calibrated body schema, which 
is a perceptually organized entity which they can monitor and 
control. The existence of a body representation in the brain is 
also suggested by studies on sensory and motor disorders. For 
example, Haggard and Wolpert (2005) have shown that several 
sensory and motor disorders can be explained as caused by 
damage to some of the properties of a body representation in the 
human brain that are required for multimodal integration and 
coordinated sensorimotor control.

Body representations very likely undergo a continuous process 
of adaptation, as humans and animals follow an ontogenetic pro-
cess, where corporal dimensions and morphology change over 
time. Nonetheless, even temporary alterations of the body of the 
individual can happen, such as those produced by the usage of 
tools. The way the brain deals with these changes has attracted the 
interest of many researchers. For example, Cardinali et al. (2009) 
studied the alterations in the kinematics of grasping movements 
from free-hand conditions to tool-use ones. Other studies (Iriki 
et al., 1996; Maravita and Iriki, 2004; Sposito et al., 2012; Ganesh 
et al., 2014) reported effects in the dynamics of movements with 
the usage of tools (see Figure  2), as well as plastic changes in 
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FiGURe 3 | epigenetic Robotics Architecture, proposed by Morse and colleagues. Self-organizing maps are used to encode different sensory and motor 
modalities, such as color, body posture, and words. These maps are then linked using Hebbian learning with the body posture map that acts as a central hub. 
Picture taken from Morse et al. (2010).
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the primary somatosensory cortex in the human brain (Schaefer 
et al., 2004).

It is still very challenging to reproduce and to deploy in a 
computational model the partially unexplained but fascinating 
capabilities of our brain to acquire and to maintain internal body 
representations, and to re-adapt them to temporary or permanent 
bodily changes. A typical challenge is related to finding a proper 
balance between stability and plasticity of the internal model of 
the body, which can ensure both long-term memory maintenance 
and propensity to sudden and temporary alteration of the body 
schema. During the last couple of decades, interest in the possibil-
ity to develop models inspired by the mechanisms of human body 
representations has been growing also in the robotics community. 
Equipping robots with multimodal body representations, capable 
of adapting to dynamic circumstances, would indeed improve 
their level of autonomy and interactivity. Morever, body repre-
sentations can be seen as the set of sensorimotor schemes that 
an agent acquires through the interaction with the environment.

In the robotics literature, several terms can be found referring 
to the same concept of the abovementioned internal body repre-
sentations, such as body schemes, body maps, internal models of 
the body, multimodal maps, intermodal maps, and multimodal 
representations. The investigation in body representations in 
robotics has probably started within the context of the develop-
ment of visuo-motor coordination. Visuo-motor coordination is 
often referred to as the capability to reach a particular position 
in the space with a robotic arm, but could also be referred to 
oculomotor control and eye (camera) head coordination. In 
both cases, this skill requires knowledge and coordination of 
the sensory and motor systems, thus a knowledge of an internal 
model or representation of the embodiment of the artificial 
system. For example, Metta (2000) implemented an adaptive 
control system inspired by human development of visuo-motor 

coordination for the acquisition of orienting and reaching 
behaviors on a humanoid robot. The robotic agent started with 
learning how to move its eyes only and proceeded with acquir-
ing closed-loop gains, reflex-like modules controlling the arm 
sub-system, and finally eye–head and head–arm coordination. 
Goal-directed exploration behaviors have been compared to 
random exploration ones in the study. Similarly, Saegusa et  al. 
(2008) studied the acquisition of visuo-motor coordination skills 
in a humanoid robot using an intelligent exploration behavior 
based on a prediction error-dependent interest function. Kajić 
et al. (2014) adopted a random exploration strategy for acquir-
ing visuo-motor coordination skills, but proposed a biologically 
inspired model consisting of Self-Organizing Maps (Kohonen, 
1982) for encoding the sensory and motor mapping. Such a 
framework led to the development of pointing gestures in the 
robot. The model architecture proposed by Kajić et al. (2014) was 
inspired by the Epigenetic Robotics Architecture [ERA, Morse 
et al. (2010)], where a structured association of multiple SOMs 
has been adopted for mapping different sensorimotor modalities 
in a humanoid robot. The ERA architecture resembles the forma-
tion and maintenance of topographic maps in the primate and 
human brain (see Figure 3). Shaw et al. (2015) proposed a similar 
architecture for body representation based on sensorimotor maps 
and intrinsic motivation-based exploration behaviors. In their 
experiment, the robot progressed through a staged development 
whereby eye saccades emerged first, followed by gaze control, 
then primitive reaching, and followed by eventual coordinated 
gaze-to-touch behaviors. An extension of the approach proposed 
by Kajić et al. (2014) was presented by Schillaci et al. (2014), where 
Dynamic Self-Organizing Maps [DSOMs (Rougier and Boniface, 
2011)] and a Hebbian paradigm were adopted for online and con-
tinuous learning on both static and dynamic data distributions. 
The authors addressed the learning of visuo-motor coordination 
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FiGURe 4 | illustration of body representation proposed by Schillaci 
et al. (2014) and Kajić  et al. (2014). The body representation is formed by 
two self-organizing maps [standard Kohonen SOMs in Kajić et al. (2014) and 
Dynamic SOMs in Schillaci et al. (2014)], connected through Hebbian links. 
On the left side, the 2-dimensional lattices of the two self-organizing maps 
(arm and head) are shown. Picture taken from Schillaci et al. (2014).
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in robots, but focused on the capability of the proposed internal 
model for body representations to adapt to sudden changes in 
the dynamics of the system. Brandao et al. (2013) presented an 
architecture for integrating visually guided walking and whole-
body reaching in a humanoid robot, thus increasing the reachable 
space that can be acquired with the visuo-motor coordination 
learning mechanisms proposed above. Goal-directed exploration 
mechanisms have been used by the authors.

Roncone et  al. (2014) investigated the calibration of the 
parameters of a kinematic chain by exploiting the correspond-
ences between tactile input and proprioceptive modality (joint 
angles), or the tactile-proprioceptive contingencies, in the 
humanoid robot iCub. The study is in line with the finding from 
Rochat and Morgan (1998), who suggested that the multimodal 
events continuously experienced by infants, such as the visual-
proprioceptive event of looking at their own movements, or the 
perceptual event of the double touch resulting from the contact 
of two tactile surfaces, would drive the establishment of an inter-
modal calibration of the body. Yoshikawa et al. (2004) addressed 
visuo-motor and tactile coordination in a simulated robot. 
In particular, they proposed a method for learning multimodal 
representations of the body surface through double-touching, as 
this co-occurred with self-occlusions. Similarly, Fuke et al. (2007) 
addressed the learning of a body representation consisting of 
motor, proprioceptive, tactile, and visual modalities in a simu-
lated humanoid robot. The authors encoded sensory and motor 
modalities as self-organizing maps. Hikita et al. (2008) extended 
this multimodal representation to the context of tool-use in a 
humanoid robot. Similarly, Schillaci et al. (2012a) implemented 
a learning mechanisms based on random exploration strategies 
for the acquisition of visuo-motor coordinationon a humanoid 
robot (see Figure 4) and analyzed how the action space of both 
arms can vary when the robot is provided with an extension tool 
(see Figures 5 and 6). The extended arm experiment can be seen 
as the body of the robot being temporarily extended by a suitable 
tool for a specific task (Schillaci, 2014).

Nonetheless, several other studies can be found in the 
literature, which address body representations for artificial 
agents outside the context of visuo-motor coordination. For 
example, Hafner and Kaplan (2008) extended the notion of body 
representations, or body maps, to that of interpersonal maps, a 
geometrical representation of the relationships between a set 
of proprioceptive and heteroceptive information sources. The 
study proposed a common representation space for comparing 
an agent’s behavior and the behavior of other agents, which was 
used to detect specific types of interactions between agents, such 
as imitation, and to implement a prerequisite for affordance 
learning. The abovementioned Epigenetic Robotics Architecture 
Morse et al. (2010) addressed body representations for ground-
ing linguistic labels onto body postures, visual, and auditory 
modalities. A similar framework has been proposed by Lallee and 
Dominey (2013), which encodes sensory and motor modalities as 
self-organizing maps into a body representation. Through the use 
of a goal-directed exploration behavior, the system learns a body 
model composed of specific modalities (arm proprioception, 
gaze proprioception, vision) and their multimodal mappings, or 
contingencies. Once multimodal mappings have been learned, 

the system is capable of generating and exploiting internal rep-
resentations or mental images based on inputs in one of these 
multiple dimension (Lallee and Dominey, 2013). Kuniyoshi and 
Sangawa (2006) presented a model of neuro-musculo-skeletal 
system of a human infant, composed of self-organizing cortical 
areas for primary somatosensory and motor areas that partici-
pate in the explorative learning by simultaneously learning and 
controlling the movement patterns. In the simulated experiment, 
motor behaviors emerged, including rolling over and crawling-
like motion. Body representations that include the auditory 
modality have been also addressed, although not explicitly, by 
Ince et al. (2009), who investigated methods for the prediction 
and suppression of ego-motion noise. The authors built up an 
internal body representation of a humanoid robot consisting of 
motor sequences mapped to the recorded motor noise and their 
spectra. This resulted in a large noise template database that was 
then used for ego-noise prediction and subtraction.

Exploration behaviors for the acquisition and maintenance 
of internal body representations is a very elegant and promis-
ing developmental approach for providing artificial agents with 
robustness and adaptivity to dynamic body and environments. 
However, how can these low-level behaviors and representations 
enable the development of more complex cognitive and motor 
capabilities? Although this question has still not been clearly 
answered, several behavioral and brain studies suggest that 
processes of mental simulations of action–perception loops are 
likely to be executed in our brain and are dependent on internal 
motor representations. The capability to simulate sensorimotor 
experience might represent a key mechanism behind the imple-
mentation of higher cognitive skills, as discussed in the following 
section.
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FiGURe 5 | Reachable spaces for both hands of the Aldebaran Nao robot. Each point in the clouds has been experienced together with the motor command 
that resulted in that end-effector position. Picture taken from Schillaci (2014).
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4. SeNSORiMOTOR SiMULATiONS

In one of the most influential post-cognitivist studies, Lakoff and 
Johnson (1980) argued that cognitive processes are expressed and 
influenced by metaphors, which are based on personal experi-
ences and shape our perceptions and actions. Correlations and 
co-occurrence of embodied experiences would lead to primitive 
conceptual metaphors. As argued by Lakoff, physical concepts, 
such as running and jumping, can be understood through the 
sensorimotor system, as they can be performed, seen, and felt. 
Abstract concepts would get their meaning via conceptual 
metaphors, a combination of basic primitive metaphors that get 
their meaning via embodied experience. Therefore, Lakoff (2014) 
concludes that the meaning of concepts comes through embodied 
cognition. Moreover, in Lakoff and Johnson (1980), the authors 
argued that metaphorical inferences would arise from neural 
simulation of experienced situations.

Similarly, Varela, Thompson, and Rosch argued that the 
interactions between the body, its sensorimotor circuit, and 
the environment determine the way the world is experienced. 
Cognitive agents are living bodies situated in the environment 
and knowledge would emerge through the embodied interaction 
with the world (Varela et  al., 1992). According to the enaction 
paradigm proposed by Varela and colleagues, the embodied 

actions of an individual in the world constitute the way how 
the environment is experienced and thereby ground the agent’s 
cognition. This is at least accepted in the Narrow Conception of 
Enactivism (de Bruin and Kästner, 2012).

A related concept is known in the philosophical and scientific 
literature as mental imagery [for a literature review on embod-
ied cognition and mental imagery, see Schillaci (2014)]. This 
phenomenon has been defined as a quasi-perceptual experience 
(in any sensory modality, such as auditory, olfactory, and so on) 
which resembles perceptual experience but occurs in absence of 
external stimuli (Nigel, 2014). What is the nature of this mental 
phenomenon has always been a very debated topic [Nigel (2014) 
provides a more comprehensive review of the literature on mental 
imagery]. Not surprisingly, studies on mental imagery can be 
found already in Greek philosophy. In De Anima, Aristotle saw 
mental images, residues of actual impressions or phantasmata as 
playing a central role in human cognition, for example, in memory. 
Behaviorists believed that psychology must have handled only 
observable behaviors of people and animals, not unobservable 
introspective events. Therefore, mental imagery was reputed as 
not being sufficiently scientific (Watson, 1913), since no rigorous 
experimental method was proposed to demonstrate it. Only after 
the 1960s, mental imagery gained new attention in psychology 
and in the neuroscience (Nigel, 2014).
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FiGURe 6 | Reachable space for the arms of the Nao, when one of the two arms is equipped with an extension tool. The extension tool considerably 
modifies the action space of the left arm. Picture taken from Schillaci et al. (2012a) and Schillaci (2014).
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During the last 20  years, many behavioral and cognitive 
studies on attitudes, emotion, and social perception investigated 
and supported the hypothesis that the body is closely tied with 
cognition. We argue that sensorimotor simulations are behind 
all of these processes. Strack et  al. (1988) demonstrated that 
people’s facial activity influences their affective responses. 
Participants were holding a pen in their mouth in a way that 
either inhibited or facilitated the muscles typically associated 
with smiling without requiring subjects to pose in a smiling 
face. The authors found that subjects reported more intense 
humor responses when cartoons were presented under facilitat-
ing conditions than under inhibiting conditions (Strack et  al., 
1988). These results highlight the important overlapping between 
motor activity and the affective response an agent has.

Wexler and Klam (2001) presented a study where par-
ticipants predicted the position of moving objects, in cases 
of actively produced and passively observed movement. The 
authors found that in the absence of eye tracking, when occlud-
ing the object, the estimates are more anticipatory in the active 
conditions than in the passive ones. The anticipatory effect of 
an action depended on the congruence between the motor 
action and the visual feedback: the less congruent were the 
motor action and the visual feedback, the more diminished the 
anticipatory effect, but it was never eliminated. However, when 
the target was only visually tracked, the effect of manual action 

disappeared, indicating distinct contributions of hand and eye 
movement signals to the prediction of trajectories of moving 
objects (Wexler and Klam, 2001).

Animal research also suggests that rat brains implement simu-
lation processes. O’Keefe and Recce (1993) found that particular 
cells in the hippocampus of the rat’s brain seem to be involved in 
the representation of the animal’s position. Their observations of 
the firing characteristics of these cells suggested that the position 
of the animal is periodically anticipated along the path. In a study 
on visual guidance of movements in primates (Eskandar and 
Assad, 1999), monkeys were trained to use a joystick to move 
a spot to a specific target. During the movements, the authors 
modified the relationship between the direction of joystick and 
movements of the spot, and eventually occluded the spot, thus 
dissociating the visual and motor correlations. The authors 
observed cells in the lateral intraparietal area of the monkey’s 
brain, which were not selectively modulated by either visual input 
or motor output, but rather seemed to encode the predicted visual 
trajectory of the occluded target (Eskandar and Assad, 1999).

Wolpert et al. (1995) suggested that sensorimotor prediction 
processes exist in motor planning and execution also in humans. 
In testing whether the central nervous system is able to maintain 
an estimate of the position of the limbs, the authors asked partici-
pants to move their arm in the absence of visual feedback. Each 
participant gripped a tool that was used to measure the position 
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of the thumb and to apply forces to the hand using torque motors. 
The experimenters were disturbing the hand movements of the 
participants, which were then asked to indicate the visual esti-
mate of the unseen thumb position using a trackball held, in the 
other hand. The distance between the actual and visual estimate 
of thumb location, used as a measure of the state estimation 
error, showed a consistent overestimation of the distance moved 
(Wolpert et al., 1995). The authors observed a systematic increase 
of the error during the first second of movement and then a decay. 
Therefore, they proposed that the initial phase is the result of a 
predictive process that estimates the hand position, followed by 
a correction of the estimate when the proprioceptive feedback is 
available (Wolpert et al., 1995). In another study, Wolpert et al. 
(1998) suggested that an internal body representation consisting 
of a combination of sensory input and motor output signals is 
stored in the posterior parietal cortex of the brain. The authors 
also reported that a patient with a lesion of the superior parietal 
lobe showed both sensory and motor deficits consistent with an 
inability to maintain such an internal representation between 
updates.

Blakemore et  al. (2000b) supported the existence of self-
monitoring mechanisms in the human brain for explaining why 
tickling sensations cannot be self-produced. The proposal is that 
sensory consequences of self-generated actions are perceived 
differently from an identical sensory input that is externally 
generated. This would explain the cancelation or attenuated tickle 
sensation when this is the consequence of self-produced motor 
commands (Blakemore et al., 2000b). The data reported in the 
study suggest that brain activity differs in response to externally 
and internally produced stimuli. Moreover, it has been proposed 
that illnesses, such as schizophrenia, would disable the patient’s 
capability to detect self-produced actions, therefore producing an 
altered perception of the world (Frith et al., 2000).

The internal models proposed by Wolpert et al. (1998) could 
explain the computational processes behind the attenuation of 
sensory sensation reported above. In particular, Wolpert and 
colleagues suggest that these internal models are constructed 
through the sensorimotor experience of the agent in the 
environment and used in simulation for processes, such as the 
attenuation of sensory sensations in Blakemore et  al. (2000a) 
and conditions as in Frith et al. (2000). A similar effect has been 
reported by Weiss and colleagues in a study on selective attenua-
tion of self-generated sounds (Weiss et al., 2011). The experience 
of generating actions, or self-agency, has been suggested to be 
linked to the internal motor signals associated with the ongoing 
actions. It has been proposed that the experience of perceiving 
actions as self-generated would be caused by the anticipation 
and, thus, the attenuation of the sensory consequences of such 
motor commands (Weiss et al., 2011). The results reported by the 
authors confirmed this hypothesis, as they found that participants 
perceived the loudness of sounds less intensive when they were 
self-generated than when they were generated by another person 
or by a software.

Further evidence suggesting that an internal model of our 
motor system is involved in the capability to distinguish between 
self and others can be found in Casile and Giese (2006). In 
this study, the authors showed that participants were better at 

recognizing themselves than others when watching movies of 
only point-light walkers. Knoblich and Flach (2001) performed 
a study on the capability of participants to predict the landing 
position of a thrown dart, observed from a video screen. The 
authors reported that predictions were more accurate when 
participants observed their own throwing actions than when 
they observed another person’s throwing actions, even if the 
stimulus displays were exactly the same for all participants. The 
results are consistent with the assumption that perceptual input 
can be linked with the action system to predict future outcomes 
of actions (Knoblich and Flach, 2001).

4.1. Computational Models 
for Sensorimotor Simulations
Hesslow (2002) supported with a set of evidence the simula-
tion theory of conscious thought, by assuming that simulation 
processes are implemented in our brain and that the simulation 
approach can explain the relations between motor, sensory, and 
cognitive functions and the appearance of an inner world. In 
the investigation on internal simulation processes in the human 
brain, internal forward and inverse models have been proposed 
(Wolpert et  al., 2001). A forward model is an internal model 
which incorporates knowledge about sensory changes produced 
by self-generated actions of an individual. In other words, 
a forward model predicts a sensory outcome St+1 of a motor 
command Mt applied from an initial sensory situation St. This 
internal model was first proposed in the control literature as 
a means to overcome problems, such as the delay of feedback 
on standard control strategies and the presence of noise, both 
also characteristic of natural systems (Jordan and Rumelhart, 
1992). More recently, Webb (2004) presented a discussion on the 
possibilities offered by the studies in invertebrate neuroscience 
to unveil the existence of these types of models. The research 
concludes that although there is no conclusive evidence, forward 
models might answer some of the open questions on the mapping 
between motor and sensory information.

While forward models present the causal relation between 
actions and their consequences, inverse models perform the 
opposite transformation providing a system with the necessary 
motor command Mt to go from a current sensory situation St to a 
desired one (St+1) (see Figure 7). Inverse models are also very well 
known in control theory and in robotics, as they have been used 
for the implementation of inverse kinematics in robotic manipu-
lators. Kinematics describe the geometry of motion of points and 
objects. In classic control theory, kinematics equations are used 
to determine the joint configuration of a robot to reach a desired 
position of its end-effector.

Recently, forward and inverse models became central players 
in the coding of sensorimotor simulations, as they naturally 
fuse together different sensory modalities as well as motor 
information, not only providing individuals with multimodal 
representations but also encoding the dynamics of their motor 
systems (Wilson and Knoblich, 2005). Studies such as the ones 
reported in the previous section shed light on the importance that 
the prediction of the sensory consequences of our own actions 
has for basic motor tasks (Blakemore et  al., 1998). Forward 
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FiGURe 7 | inverse and forward model pairs. The joint actions of these 
two models can produce internal simulations of sensorimotor cycles.
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models, by functioning with self-generated motor commands are 
an important base for the feeling of agency, as suggested by Weiss 
et  al. (2011). A faulty functioning of forward models, in their 
role as self-monitoring mechanisms, is thought to be responsible 
for some of the symptoms present in schizophrenia (Frith, 1992). 
In general, the capability to anticipate sensorimotor activity is 
thought to be crucially involved in several cognitive functions, 
including attention, motor control, planning, and goal-oriented 
behavior (Pezzulo, 2007; Pezzulo et al., 2011).

Research has been done on computational internal models 
for action preparation and movement, in the context of reaching 
objects and of handling objects with different weights (Wolpert 
and Ghahramani, 2000). The main proposal became a standard 
reference known as the MOdular Selection And Identification for 
Control (MOSAIC) model (Haruno et  al., 2001). In MOSAIC, 
different pairs of inverse and forward models encode specific 
sensorimotor schemes. The contribution of each pair to choose 
a motor command is weighted by a responsibility estimator 
according to the context and the behavior the system is currently 
modeling (Haruno et al., 2001). The authors extended the model 
to encode more complex behaviors and actions in Hierarchical 
MOSAIC (Wolpert et  al., 2003). Conceptually, HMOSAIC is 
capable of accounting and model social interaction, action 
observation, and action recognition.

Tani et al. (2005) proposed an architecture in which multiple 
sensorimotor schemes can be learned in a distributed manner 
based on using a recurrent neural network with parametric 
biases. The model was demonstrated to implement behavior 
generation and recognition processes in an imitative interac-
tion experiment, thus acting as a mirror system. Moreover, the 
model has been shown to support associative learning between 
behaviors and language, supporting the hypothesis posed by 
Arbib (2002) that the capabilities of the mirror neurons for 
conceptualizing objects manipulation behaviors might lead to 
the origins of language (Tani et al., 2005). In the framework of 
cognitive robotics, interesting work has been done in incorporat-
ing internal simulations for navigation on autonomous robots. 
Ziemke et al. (2005) incorporated several aspects of the senso-
rimotor theories and performed internal simulations to achieve 
a navigation task. A trained robot equipped with the proposed 
framework was able, in some cases, to move blindly in a simple 
environment, using as input only own sensory predictions rather 
than actual sensory input.

Lara and Rendon-Mancha (2006) equipped a simulated 
agent with a forward model implemented as an artificial neural 
network. The system learned to successfully predict multimodal 
sensory representations formed by visual and tactile stimuli 

for an obstacle avoidance task. Following the same strategy, 
Escobar et  al. (2012) made an experiment on robot naviga-
tion through self body-mapping and the association between 
motor commands and their respective sensory consequences. 
A mobile robot was made to interact with its environment 
in order to know the free space around it from re-enaction 
of sensory–motor cycles predicting collisions from visual 
data. The robot formed multimodal associations, consisting 
of motor commands, disparity maps from vision and tactile 
feedback, into a forward model, which was trained with data 
coming from random trajectories. The resulting forward model 
allowed the robot to navigate avoiding undesired situations by 
performing long-term predictions of the sensory consequences 
of its actions (Escobar et al., 2012).

Following navigation studies, Möller and Schenck (2008) made 
an experiment on anticipatory dead-end recognition, where a 
simulated agent learned to distinguish between dead ends and 
corridors without the necessity to represent these concepts in 
the sensory domain. With interacting with the environment, the 
agent acquired a visuo-tactile forward model that allowed it to 
predict how the visual input was changing under its movements 
and whether movements were leading to a collision. In addi-
tion, the agent learned an inverse model for suggesting which 
actions should be simulated for long-term predictions. Finally, 
Hoffmann and Möller (2004) and Hoffmann (2007) presented 
a chain of forward models that provides a mobile agent with the 
capability to select different actions to achieve a goal situation 
and perform mental transformations during navigation. It  is 
worth highlighting that in the last five examples, the agents 
make use of long-term predictions (LTP) to achive the desired 
behaviors. These LTPs are achieved by executing sensorimotor 
simulations aquired throught the interaction of the agents with 
the environment.

Akgün et al. (2010) presented an internal simulation mecha-
nism for action recognition, inspired by the behavior recognition 
hypothesis of mirror neurons. The proposed computational 
model, similar to HAMMER and MOSAIC, is capable of recog-
nizing actions online using a modified Dynamical Movement 
Primitives framework, a non-linear dynamic system that has 
been proposed for imitation learning, action generation, and rec-
ognition by Ijspeert et al. (2001). Schrodt et al. (2015) presented a 
generative neural network model for encoding biological motion, 
for recognizing observed movements and for adopting the point 
of view of an observer. The proposed model learns map and seg-
ment multimodal sensory streams of self-motion to anticipate 
motion progression, to complete missing sensory information, 
and to self-generate motion sequences that have been previously 
learned. In addition, the model was equipped with the capability 
to adopt the point of view of an observed person, establishing full 
consistency with the embodied self-motion encodings by means 
of active inference (Schrodt et al., 2015).

A MOSAIC-like architecture for action recognition was also 
presented by Schillaci et  al. (2012b), where the authors also 
compared different learning strategies for inverse and forward 
model pairs (see Figure 8). In an experiment on action selection, 
Schillaci et al. (2012b, 2014) showed how a robot can deal with 
tool-use when equipped with self-exploration behaviors and 
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FiGURe 8 | An example of an internal simulation [image taken from Schillaci (2014)]. The inverse model simulates the motor command (in the example, a 
displacement of the joints of one arm of the humanoid robot Aldebaran Nao) needed for reaching a desired sensory state, from the current state of the system. 
Before being sent to the actuators, such a simulated motor command can be fed into the forward model that anticipates its outcome, in terms of sensory 
perception. A prediction error of the internal simulation can be calculated by comparing the simulated sensory outcome with the desired sensory state.
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with the capability to execute internal simulations of sensori-
motor cycles. Schillaci et  al. implemented learning of internal 
models through self-exploration on a humanoid robot, which 
were consequently used for predicting simple arm trajectories 
and for distinguishing between self-generated movements and 
arm trajectories executed by a different robot (Schillaci et  al., 
2013) or by a human (Schillaci, 2014).

Interesting research on sensorimotor simulations can be 
found in the context of action execution and recognition. For 
example, Dearden and Demiris (2005) presented a study where a 
robot learned a forward model that successfully imitated actions 
presented to its visual system. In a later study, Dearden (2008) 
presented a more complex system where a robot learns from a 
social context by means of forward and inverse models using 
memory-based approaches. Nishide et  al. (2007) presented a 
study on predicting object dynamics through active sensing expe-
riences with a humanoid robot. For predicting the movements of 
an unknown object, a static image of the object and robot motor 
command are fed into a neural network that was trained in a 
previous stage through a learning mechanism based on active 
sensing. In the HAMMER architecture (Hierarchical Attentive 
Multiple Models for Execution and Recognition) proposed by 
Demiris and Khadhouri (2006), inverse and forward model 
pairs encoded sensorimotor schemes and were used for action 
execution and action understanding. The HAMMER architec-
ture was implemented using Bayesian Belief Networks and was 
also extended to include cognitive processes, such as attention 
(Demiris and Khadhouri, 2006).

Kaiser (2014) investigated a computational model for perceiv-
ing the functional role of objects, or their affordances, based 
on internally simulated object interactions. The approach 
was based on an implementation of visuo-motor forward 

models based on feed-forward neural networks and geometric 
approximations. The models were trained with sensorimotor 
data gathered from self-exploration, although in a structured 
systematic fashion, i.e., by defining grids in sensorimotor space 
or in motor space (Kaiser, 2014).

A promising line of investigation addresses the implementa-
tion of simulation processes for the development of the sense of 
agency, the sense of being the cause or author of a movement, 
and for distinguishing between self and other. Pitti et al. (2009) 
proposed a mechanism of spike timing-dependent synaptic plas-
ticity as a biologically plausible model for detecting contingency 
between multimodal events and for allowing a robotic agent to 
experience its own agency during motion.

Finally, we would like to highlight the work presented in 
Hoffmann (2014), where the paradigm of cognitive developmen-
tal robotics is addressed through a case study. In this, information 
flow is analyzed with an agent interacting with the world. A very 
critical view of the paradigm is addressed in the light of embodied 
cognition and the enactive paradigm. Extraction of low-level 
features in the sensorimotor space is analyzed and use in higher 
level behaviors of the agent where sensorimotor associations are 
formed. Interestingly, an important conclusion is the importance 
and usefullness of forward models in the control structure of 
agents.

5. CONCLUSiON

The goal of developmental roboticists is to implement mechanisms 
for autonomous motor and mental development in artificial 
agents. We argued that mechanisms for sensorimotor simulation 
may be the bridge between low-level sensorimotor representa-
tions learned through experience and the implementation of 
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basic cognitive skills in artificial agents. Several robotics studies 
showed that internal simulations and imagery can provide robots 
with capabilities, such as long-term prediction for navigation, 
behavior selection and recognition, and perception of the 
functional role of objects, and can even serve as a possible 
basis for the acquisition of the sense of agency and for the 
capability to distinguish between self and  other.

A prerequisite for the implementation of sensorimotor simu-
lation processes in artificial agents is the knowledge about the 
characteristics of their motor systems and their embodiment. 
In fact, to be able to internally simulate the outcome of their 
own actions, robots need to know their action possibilities and 
to have an antecedent perceptual experience about the conse-
quences of their activities. An elegant and promising way for 
allotting artificial agents with such a knowledge is provided by 
exploration, a learning mechanism inspired by human develop-
ment. By exploring their bodily capabilities and by interacting 
with the environment, possibly using mechanisms resembling 
human curiosity, robots can generate a rich amount of sensory 
and motor experience. Maintaining this multimodal informa-
tion into internal representations of the robot’s body could be 
not only helpful for monitoring the correct functioning of the 
system but also exploited for detecting unexpected events, such 
as temporary or permanent changes in the agents morphology, 
and for adapting to them. Such a possibility would be impossible 
to implement with a priori defined models of the robot body and 
its surrounding environment, as this would require not only the 
exact knowledge of the dynamics of the artificial system and its 
surroundings, as well as the definition of all the variables that 
could affect the normal functioning of the system. It is important 
to note that different implementations have made use of different 

computational strategies for the coding of these body representa-
tions. However, in all cases, these representations encompass the 
bulk of the possibilities an agent has of sensing and acting in 
the world. Following this line of thought, simulations are the 
off-line rehearsal of these schemes.

We argue that sensorimotor learning, internal body repre-
sentation, and internal sensorimotor simulations are paramount 
in the development of artificial agents. Also, we strongly believe 
that the three processes have to be considered interdependent 
and necessary when investigating autonomous mental develop-
ment. It is for these reasons, we tried to give an interdisciplinary 
overview of what we believe to be the most prominent studies on 
these topics, from the disciplines of robotics, cognitive sciences, 
and neuroscience.
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A book review on
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by Bishop, J. M., and Martin, A. O. (eds). (2014). Switzerland: Springer International Publishing

Consciousness, with its irreducible subjective character, was almost exclusively a philosophical topic
until relatively recently. Today, however, the problem of explaining the felt quality of experience has
also become relevant to science and engineering, including robotics andAI: “What would we have to
build into a robot so that it really felt the touch of a finger, the redness of red, or the hurt of a pain?”
(O’Regan, 2014, p. 23). Yet a practical response still requires an adequate theory of consciousness,
which brings us back to the hard problem: how canwe account, from a scientific point of view, for the
phenomenological character of experience? Over a decade ago, O’Regan and Noë (2001) proposed
a new approach to these questions, the so-called sensorimotor approach to perceptual experience.
How far has this approach come and what are its outstanding challenges? The volumeContemporary
Sensorimotor Theory, edited by Bishop and Martin, takes stock of the current state of the field.

The book starts with Bishop andMartin (2014) presenting different facets of sensorimotor theory,
highlighting, for example, that O’Regan (2011) and Noë (2004) ended up developing different
ideas concerning the applicability of the theory to robots: a positive account appealing to higher-
order cognitive capacities versus a skeptical stance citing the necessity of life for mind, respectively.
Ambiguous labeling does not help the current situation. According to Hutto and Myin (2013), the
sensorimotor approach of O’Regan and Noë (2001) is also “enactive,” a label which Noë (2004)
himself began to adopt, but from which Pascal and O’Regan (2008) distanced themselves. In
fact, several overlapping approaches may be distinguished in addition to the classic sensorimotor
approach, including sensorimotor enactivism (Varela et al., 1991; Noë, 2004), which turned into
autopoietic enactivism (Thompson, 2005, 2007; Noë, 2009; Froese and Di Paolo, 2011), and which
is distinguished from radical enactivism by Hutto and Myin (2013). The book’s contributions range
over all of them.

Noë did not contribute to this volume, but his absence is compensated by other submissions.
Pepper (2014) points out some conceptual difficulties with Noë’s theory of perception, which could
be resolved with Merleau-Ponty’s phenomenology of the body schema and sedimentation. Wadham
(2014) claims that Noë’s theory implies the invisibility of perspectival properties, which requires a
revision of his theory of perspectival content.

O’Regan (2014) reports on his sensorimotor approach. He proposes that “experiencing a sen-
sation involves being engaged in sensorimotor interaction” but that “being conscious of some-
thing [. . .] requires appeal to a form of ‘higher-order’ cognitive access” (p. 34). In contrast,
Rainey (2014) argues that consciousness is non-conceptual while experience is conceptual,
and that consciousness is, therefore, the enabling ground for the possibility of experience.
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Scarinzi (2014) points out difficulties faced by O’Regan’s
approach, characterized as “semi-enactive,” that could be resolved
by paying closer attention to the lived body, as done by autopoietic
enactivism (Thompson, 2007). Paine (2014) also critically
examines O’Regan’s proposal, evaluating how Heideggerian
phenomenology may help his ideas about robot consciousness
to evade Dreyfus (2007) objections against AI. Paine also notes
that O’Regan leaves out any role for emotion.

This concern is shared by Parthemore (2014), who proposes
to extend sensorimotor theory by taking into account emotional
affect and the somatosensory system, and to, thereby, turn it into a
better theory of concepts. Other authors also propose extensions.
Lyon (2014) explores the implications of extending sensorimotor
theory beyond vision and touch, in particular to audition. Rucin-
ska (2014) extends sensorimotor theory to explain basic forms
of pretense. Cowley (2014) considers how language extends the
sensorimotor domain.

There is also an unresolved tension about the role of infor-
mational content in the generation of perceptual consciousness
in the book. Some authors explore the qualitative differences
between types of sensations in terms of information processing
(Gamez, 2014), while others advocate abandoning the appeal to
informational content altogether (Loughlin, 2014). One problem
with a non-representational approach is to explain the experience
of imaginary things. Rucinska (2014) account of “seeing-as” may
help in developing a solution.

To sum up, this volume invites us to refine our notions of
consciousness and experience on the basis of the close rela-
tionship between action and perception. However, more work
needs to be done to compare and contrast the distinct kinds of

sensorimotor/enactive theories. In the context of AI and robotics,
for example, we need to clearly distinguish between sensorimotor
and autopoietic enactivism. The popularity of the sensorimotor
approach is largely explained by its applicability to the design
of AI and robotics (e.g., Hoffmann, 2014; Lyon, 2014), and by
O’Regan’s (2014) claim that it could lead to genuine examples of
conscious machines. But this appeal is counterbalanced by a set of
philosophical difficulties (Bishop and Martin, 2014), including a
lack of clear definitions as to what it means to be an agent or to
perform an action (Thompson, 2005).

Autopoietic enactivism, on the other hand, gives us amore solid
conceptual foundation of subjectivity by drawing from biological
embodiment and from the phenomenological tradition, but not
without unfortunate implications for research in AI and robotics
(Froese and Ziemke, 2009). Although dynamical systems models
of cognition can help us to formally define different notions
of sensorimotor contingency (Buhrmann et al., 2013), they are
forced to abstract away the autopoietic foundations of agency. Of
course, even on this view, research in robotics and the sensori-
motor approach continue to form a productive relationship. Yet
investigating the hard problem of perceptual experience requires
working directly with the first-person perspective. In accordance
with the contribution by Gibbs and Devlin (2014), we propose
that we can keep the advantages of a synthetic methodology by
shifting emphasis from autonomous robotics to human–computer
interfaces (Froese et al., 2012). As Gillies and Kleinsmith (2014)
propose, such an embodied and enactive approach to design-
ing human–computer interfaces opens up new opportunities for
exploringmore intuitive interfaces that directly tap into our bodily
capacities for perceptual consciousness.
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