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The Relationship Between Dielectric
Properties, Thermoacoustic Signals
and Temperature of Liver Tissues at
3.0GHz
Jiawu Li1, Lin Huang2*, Yitong Peng2, En Li2 and Yan Luo1*

1West China Hospital, Sichuan University, Chengdu, China, 2School of Electronic Science and Engineering, University of
Electronic Science and Technology of China, Chengdu, China

Purpose: This study aimed to investigate the relationship between dielectric properties
(permittivity and conductivity), thermoacoustic signals (TAS) and temperature of liver
tissues at 3.0 GHz.

Materials and Methods: An open-ended coaxial probe was used to measure the
dielectric properties of fresh porcine liver tissues in vitro, and a thermoacoustic imaging
(TAI) system was used to collect the TAS. Porcine liver tissues were placed on a heating
platform, and the dielectric properties measuring probe and temperature sensor were
inserted into the liver tissues separated by 1.5 cm. First, the liver tissues were gradually
heated by a heating platform from room temperature (30°C) to 60°C, and the dielectric
properties and TAS were measured as the temperature increased approximately every
1°C. Second, after the temperature of the porcine liver tissue reached 60°C, the heating
platform was turned off to naturally cool the porcine liver tissue to room temperature.
During the process, the dielectric properties and TAS were also measured as the
temperature decreased every 1°C. Finally, the changes in the dielectric properties and
TAS of the liver tissues with temperature at 3.0 GHz frequency were analyzed.

Results: During the process of heating the tissues up to 60°C, the conductivity of the
porcine liver tissues decreased while the permittivity and TAS of the porcine liver tissues
increased, and the relationships were nonlinearly correlated. Meanwhile, during the cooling
process, the conductivity of the porcine liver tissues increased, while the permittivity and
TAS decreased, and the relationships were also nonlinearly correlated.

Conclusion: The dielectric properties and TAS of porcine liver tissue changed significantly
with temperature, which makes it possible to differentiate the safety margin during liver
thermal ablation with thermoacoustic imaging (TAI). While the relationship between
temperature, dielectric properties and TAS needs to be further investigated, TAI has
the potential to be utilized for safety margin screening during thermal ablation.
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INTRODUCTION

Hyperthermia therapy is a medical treatment that exposes
biological tissue to high temperatures to destroy and kill cancer
cells, and has become an important tumor treatment modality
in addition to surgical treatment, chemotherapy, radiotherapy
and immunotherapy. The key to local thermal ablation is to
produce a necrotic area that completely covers the tumor.
Therefore, real-time evaluation of the ablation process and the
safety margin is essential. Thermal ablation is mainly used to
treat liver tumors smaller than 3 cm [1]; however, with the
expansion of indications, single liver tumors smaller than, for
example, 5 cm can also be treated with thermal ablation [2],
which makes the evaluation of safety margins more important
to ensure complete tumor ablation. The dielectric properties of
biological tissues carry abundant physiological and
pathological information, but they are sensitive to
environmental factors, especially the influence of
temperature [3, 4]. Therefore, changes in tissue dielectric
properties must be considered during thermal ablation.
Moreover, knowledge of the temperature-dependent
dielectric properties of liver tissues is important to imaging
modalities that generate images based on differences in
dielectric properties.

Since the importance of the dielectric properties of
biological tissues to the diagnosis and treatment of diseases
has been recognized, many researchers have studied the
dielectric properties of human or animal biological tissues
[5–7]. Although several studies have explored the dielectric
properties of liver tissues at different frequencies at room
temperature [8, 9], the dielectric properties of liver tissues
at different temperatures need further investigation. Recently,
there have been studies on the correlation between the
dielectric properties of liver tissues and temperature
[10–15]. Although most of these studies were limited to a
narrow frequency range of 460–480 kHz (RF frequencies), they
indicated that the dielectric properties of liver tissue are
temperature dependent. In recent years, the dielectric
properties of biological tissues under microwave frequencies
have also attracted more attention [14, 16]. However, the
temperature-dependent dielectric properties of liver tissues
within the temperature range of 30°C–60°C at 3.0 GHz have
been only partially studied. In clinical thermal ablation,
2.45 GHz is mainly utilized. Thus, it is necessary to further
explore the temperature-dependent dielectric properties of
liver tissues during the heating and cooling process.

Thermoacoustic imaging (TAI) is a novel imaging modality
that can reflect the biological characteristics (especially
dielectric properties) of tissues via thermoacoustic effects,
and has the advantages for high contrast of microwave
imaging and high resolution for ultrasound imaging [17].
Some studies have investigated the relationship between
thermoacoustic signals (TAS) and temperature in phantom
and biological tissues [18, 19], while a few studies have
explored the temperature-dependent TAS and dielectric
properties simultaneously in liver tissues [19, 20].
Meanwhile, the combination of temperature, dielectric

properties and TAS has certain guiding significance for the
theoretical study of TAI for the detection of ablation safety
boundaries. Furthermore, the frequency of TAI is 3.0 GHz,
which is close to the frequency used for microwave ablation
(2.45 GHz), and the dielectric properties of liver tissue are
similar at these two frequencies [5]. Therefore, this study
aimed to explore the dielectric property changes of ex vivo
porcine liver tissue during the heating and cooling process, as
well as the temperature dependence of TAS at 3.0 GHz.

MATERIALS AND METHODS

In this study, fresh porcine liver tissue was obtained from a
local slaughterhouse. All porcine liver tissues used in the
experiment were acquired from different individuals to
minimize sampling error. Homogeneous blocks of porcine
liver, at least 3*3 cm2, were used for the experiments. Each
ex vivo porcine liver tissue was wrapped in aluminum foil to
keep it fresh before experiments. The initial temperature at the
beginning of the experiments was approximately 30°C.

Calibration of the Dielectric Properties
Measuring Device
The dielectric property measurement was conducted with an
open-ended coaxial system [21], as shown in Figure 1. In this
study, short standard calibration was attained by pressing the
coaxial probe on a thin copper sheet. Then, an open standard
was established by placing the probe in free space, and the load
standard was completed by immersing the probe into
deionized water. After calibration the performance of the
coaxial probe was verified by measuring the conductivity of
pure water during the heating and cooling process, which is
shown in Figure 2.

Dielectric Property Measurement of Liver
Tissues
Figures 1A,B shows the placement of the coaxial probe and
thermometer. The ex vivo porcine liver tissues were placed on a
heating platform (JF-956K, Tianjin, China), and the
temperature of the heating platform was controlled by an
external temperature regulating system. A digital
thermometer (Omega Engineering, Inc., Stanford, CT) was
used to measure the temperature of the liver tissues. The
dielectric property measuring probe was inserted 0.5 cm
deep into the center of the liver tissue, and two temperature
probes were inserted at the same depth in the same plane
approximately 1.5 cm away from the dielectric property testing
probe. The measuring system was kept stationary throughout
the experiment. In total, four liver tissues were used in the
study. The probe was wiped with clean test paper before the
measurement of the different liver tissues so that probe
residues did not affect the test results.
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Thermoacoustic Signal Measurement of
Liver Tissues
The thermoacoustic signal (TAS) was collected with a previously
reported array transducer-based system [22] [Figure 3A presents a
schematic of the TA imaging system]. Briefly, pulsed microwaves
emitted from a homemade microwave generator (frequency:
3.0 GHz, bandwidth: 50MHz, peak power: 60 kW, pulse
duration: 550 ns) were coupled to a handheld antenna [23] via a
semirigid coaxial cable (1.5 m long with 2.2 dB insertion loss). The
actual average microwave power density at the liver was only
approximately 15.0 mW/cm2 when a 50 Hz repetition frequency
and 550 ns pulse duration were utilized, which is below the IEEE
standard for safety levels (20mW/cm2 at 3.0 GHz) [24]. The excited
TAS was captured by a 128-element linear array transducer

(8.5MHz center frequency, SH7L38, SASET. Inc., China) and
further amplified by homemade 128 channel amplifiers
(bandwidth: 0.2–2.5MHz, gain: 56 dB). Finally, the TAS was
averaged 50 times and recorded by two 32-channel acquisition
cards (NI5752, NI Inc., United States) at a sampling rate of
50MPs. The TA images were recovered by using a delay and
sum algorithm created by MATLAB (Mathworks Inc., Natic,
MA) [25]. To investigate the relationship between TAS and the
temperature of liver tissue, the TA images were obtained (Figures
3B,C), and the sum of the area within the white square was regarded
as the TAS for further analysis.

During the heating process, the temperature of the liver tissuewas
gradually increased to 60°C by adjusting the power of the heating
plate. When the temperature of the liver tissue reached 60°C, the

FIGURE 1 | Schematic diagram (A) and image (B) of the experimental setup for dielectric property measurement in ex vivo liver tissues. The porcine liver tissue was
placed on the surface of a heating platform, and the dielectric properties testing probe and temperature probes were inserted into liver tissues at an interval of 1.5 cm.

FIGURE 2 | Conductivity changes of pure water with temperature. The conductivity of pure water decreased gradually in the heating process and increased
gradually in the cooling process.
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heating platform was turned off to naturally cool the liver tissue to
room temperature. The dielectric properties and TAS of ex vivo
porcine liver tissues at temperatures ranging from room temperature
(30°C) to 60°C at a frequency of 3.0 GHz (the frequency used for
thermoacoustic imaging) were measured. A temperature above 60°C
was not attempted because significant physiological changes were
expected in tissues above 56°C–60°C [26, 27], which is also an

indicator of effective tumor destruction during thermal ablation [28].
The dielectric properties and TAS were measured every 1°C
throughout the heating and cooling process. The relationship
between dielectric properties (permittivity and conductivity), TAS
and temperature of the liver tissue at 3.0 GHz frequencies was
expressed by polynomial curve fitting. Higher correlations have
correlation coefficient, R2, closer to 1.

FIGURE 3 | Schematic of the TA imaging system (A), and the corresponding TA images of porcine liver tissue at 35 and 60°C (B,C).

FIGURE 4 | Changes in the conductivity properties of ex vivo liver tissue during the heating and cooling process. The red lines in the figures (A–D) represent the
polynomial curve fitting of the conductivity of liver tissue during the heating process, with an R2 values of 0.955–0.9948. The black line represents the polynomial curve
fitting of conductivity of liver tissue during the cooling process, with an R2 of 0.99–0.9994. The results show an almost nonlinear relationship between the conductivity of
liver tissues and temperature.
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RESULTS

The Relationship Between the Conductivity
of Pure Water and Temperature
The conductivity of pure water decreased gradually in the
heating process and increased gradually in the cooling
process, which is consistent with other studies [29]
(Figure 2). This may be related to higher temperatures,
resulting in more intense thermal motion of water

molecules, making it more difficult to induce uniform
polarization.

Temperature-Dependent Dielectric
Properties and Thermoacoustic Signals of
Ex Vivo Porcine Liver Tissue
In general, the dielectric properties and TAS changes of liver tissues
with temperature were consistent in all the test groups. During the

FIGURE 5 | The permittivity changes of ex vivo liver tissue during the heating and cooling process. The red lines in the figures (A–D) represent the polynomial curve
fitting of the permittivity of liver tissue during the heating process, with an R2 values of 0.9825–0.9952. The black line represents the polynomial curve fitting of permittivity
of liver tissue during the cooling process, with an R2 of 0.9839–0.9948. The results show an almost nonlinear relationship between the permittivity of liver tissue and
temperature.

FIGURE 6 | The thermoacoustic signals changes of ex vivo liver tissue during the heating and cooling process. The red line in the figure (A,B) represents the
polynomial curve fitting of thermoacoustic signal of liver tissue during the heating process, with an R2 values of 0.8745–0.9714. The black line represents the polynomial
curve fitting of thermoacoustic signal of liver tissue during the cooling process, with an R2 of 0.7509–0.9178. The results show that almost a nonlinear relationship
between thermoacoustic signal of liver tissue and temperature.
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process of heating to 60°C, the conductivity of the porcine liver
tissues decreased with temperature (Figure 4), the permittivity
(Figure 5) and TAS (Figure 6) of the porcine liver tissues
increased, and the relationships were nonlinearly correlated.
Meanwhile, during the cooling process, the conductivity of the
porcine liver tissues increased with temperature, while the
permittivity and thermoacoustic signals decreased, and the
relationships were also nonlinearly correlated.

In addition, during the processes of heating and cooling
the liver tissues, the change rates of the conductivity per

degree were 0.0035 ± 0.0025 and 0.0038 ± 0.0043,
respectively. The change rates of the permittivity per
degree were 0.0274 ± 0.0130 and 0.0263 ± 0.0105,
respectively. The change rates of the conductivity and
permittivity of the liver tissues during the heating and
cooling process are presented in Figure 7.

During the process of heating and cooling, the
conductivity and permittivity at the same temperature
point are different, and Figure 8 shows the change curve
of the difference.

FIGURE 7 | The change rate of conductivity and permittivity of liver tissues during the heating and cooling process. During the heating and cooling process of liver
tissues, the change rate of conductivity per degree was 0.0035 ± 0.0025 and 0.0038 ± 0.0043, respectively (A), and the change rate of permittivity per degree was
0.0274 ± 0.0130 and 0.0263 ± 0.0105, respectively (B).

FIGURE 8 | The difference between conductivity (A–C) and permittivity (D–F) of liver tissues at the same temperature point during the heating and cooling process.
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DISCUSSION

This study explored the change in dielectric properties and TAS
of fresh ex vivo porcine liver tissue with temperature. The results
showed that the permittivity, conductivity and TAS of porcine
liver tissues changed regularly with temperature at 3.0 GHz.
Recently, an increasing number of studies have been
conducted on the dielectric properties of the liver in the
radiofrequency (RF) and microwave (MW) frequency ranges
with changes in temperature.

In the RF frequency range, [10] explored the temperature-
dependent in-vivo and ex-vivo conductivity at 470 kHz, and
the results showed that conductivity increased continuously
and uniformly from body temperature to 77°C, and a
continuous reduction in conductivity was observed during
the cooling phase. In addition, [11] measured the dielectric
properties of porcine liver ex vivo up to 100°C at 480 kHz and
found increasing conductivity with temperature.
Furthermore, [12] measured the conductivity of liver tissue
at 500 kHz at temperatures ranging from 40 to 90°C. They
found that the conductivity increased with temperature, and
the change was irreversible above 60°C. The study of [30]
indicated that at 915 MHz, the permittivity of ex vivo bovine
liver decreased with temperature, while the conductivity
gradually increased.

However, the frequency of RF ablation is lower than that of
microwave ablation. To date, only a few studies have been
found on the temperature-dependent conductivity properties
of liver tissues at a higher frequency (1–3 GHz). [14] showed a
significant decrease in conductivity (approximately 33%) in
liver tissue at 2.45 GHz when the temperature increased to
over 60°C, with a dramatic drop when the temperature was
close to 100°C. [31] explored the changes in the dielectric
properties in liver tissue at 915 and 2.45 GHz with
temperatures up to 100°C. Their study indicated that
permittivity and conductivity decrease substantially and
irreversibly at high temperatures. Interestingly, as seen from
the graphs presented in their results, when the temperature
was below 60°C, the conductivity increased with increasing
temperature at 915 MHz and decreased with increasing
temperature at 2.45 GHz. The electrical conductivity results
of liver tissues with temperature increases at higher
frequencies are consistent with our study. It seems that at a
lower frequency (below 1 GHz), the conductivity of liver tissue
increases with temperature, and at a higher frequency
(1–3 GHz), it decreases with temperature. This is related to
the fact that the ionic loss increases with temperature, and the
relaxation process is dominated by ionic losses at low
frequencies and dielectric losses at higher frequencies.

Our study showed that the permittivity and conductivity
changes of the liver tissues with temperature were nonlinear at
3.0 GHz. Furthermore, previous studies have reported that
dielectric properties are not always linear over a wide range
of temperatures and frequencies [15, 32]. However, studies
have proposed that the temperature coefficients of permittivity
and conductivity are linear, which can be used to further

deduce the dielectric properties of biological tissues [30,
33]. Further studies are needed to determine whether there
is a linear relationship between temperature and the
permittivity and conductivity of biological tissues. In
addition, we found that as the temperature increased, the
dielectric properties of the liver tissues changed irreversibly;
that is, at the same temperature point during the heating and
cooling process, the conductivity and permittivity were
different. This change is most obvious when the
temperature reaches 45°C, which may be related to the
aggravation of tissue cell damage after the temperature
exceeds 45°C [34, 35], rather than tissue dehydration, as
significant tissue dehydration occurs when the temperature
reaches 100°C. In this study, we further explored the changes in
the thermoacoustic signals of liver tissues with temperature.
The results showed that the TAS of liver tissues increased with
temperature and decreased during the cooling process. [19]
explored the relationship between TAS and temperature in
porcine livers in vitro, and the results showed that the
thermoacoustic signal increased with temperature
(30°C–50°C), and the relationship was nonlinear, which is in
agreement with our results. The changes in TAS were
consistent with the changes in permittivity with
temperature, which could provide theoretical guidance for
thermoacoustic imaging to distinguish ablation tissue from
normal tissue.

However, the current study has some limitations. The
microwave ablation uses 2.45 GHz for thermal ablation,
which was slightly different from the frequency used for
TAI (3.0 GHz). However, according to a previous study [36]
and an open data site “Calculation of the Dielectric Properties
of Body Tissues in the frequency range 10 Hz–100 GHz” [5],
the dielectric properties of the liver at 2.45 GHz (s = 1.6864 S/
m, εr = 43.035) and 3.0 GHz (s = 2.0755 S/m, εr = 42.165) are
close. In addition, the results were obtained from in vitro
porcine liver tissue, which may differ from in vivo experiments.
Finally, the porcine liver tissues used in the experiment were
acquired from different individuals, but the resulting dielectric
properties and thermoacoustic signals showed a consistent
trend with temperature.

CONCLUSION

In this study, we explored the temperature-dependent
dielectric properties and TAS of porcine liver tissue at
3.0 GHz. The experimental results indicated that the
dielectric properties and TAS of porcine liver tissue
changed significantly with temperature, which makes it
possible to differentiate the safety margin during liver
ablation by thermoacoustic imaging. However, the
relationship between temperature, dielectric properties and
TAS needs to be further investigated, especially the
quantitative correlation between TAS and temperature,
which will be useful in the quantitative evaluation of
clinical thermal ablation boundaries.
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COVID-19 CT image
segmentation method based on
swin transformer

Weiwei Sun1, Jungang Chen1, Li Yan2, Jinzhao Lin1, Yu Pang1*
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Information and Engineering, Southwest Medical University, Luzhou, China

Owing to its significant contagion and mutation, the new crown pneumonia

epidemic has caused more than 520 million infections worldwide and has

brought irreversible effects on the society. Computed tomography (CT) images

can clearly demonstrate lung lesions of patients. This study used deep learning

techniques to assist doctors in the screening and quantitative analysis of this

disease. Consequently, this study will help to improve the diagnostic efficiency

and reduce the risk of infection. In this study, we propose a new method to

improve U-Net for lesion segmentation in the chest CT images of COVID-19

patients. 750 annotated chest CT images of 150 patients diagnosed with

COVID-19 were selected to classify, identify, and segment the background

area, lung area, ground glass opacity, and lung parenchyma. First, to address the

problem of a loss of lesion detail during down sampling, we replaced part of the

convolution operation with atrous convolution in the encoder structure of the

segmentation network and employed convolutional block attention module

(CBAM) to enhance theweighting of important feature information. Second, the

Swin Transformer structure is introduced in the last layer of the encoder to

reduce the number of parameters and improve network performance. We used

the CC-CCII lesion segmentation dataset for training and validation of the

model effectiveness. The results of ablation experiments demonstrate that this

method achieved significant performance gain, in which the mean pixel

accuracy is 87.62%, mean intersection over union is 80.6%, and dice

similarity coefficient is 88.27%. Further, we verified that this model achieved

superior performance in comparison to other models. Thus, the method

proposed herein can better assist doctors in evaluating and analyzing the

condition of COVID-19 patients.

KEYWORDS
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1 Introduction

According to several studies (Zhu et al., 2019; Dong et al., 2020;

Xu et al., 2020), computed tomography (CT) clearly displays the

characteristic lung lesions of Covid-19 in patients. However, CT

scans contain hundreds of slices, and CT images must be

reconstructed and transmitted through an image archiving and

communication system for doctors to interpret results and

diagnose patients. Covid-19 and other types of pneumonia are

generally identified by radiologists by simply processing images

at communication system terminals, reading them, or projecting

them through a lamp (Bai et al., 2020; Song et al., 2021; Bernheim

et al., 2020; Rubin et al., 2020; Wong et al., 2020; Lee et al., 2001).

Simultaneously, radiologists must be experienced to achieve

sufficient detection results. Covid-19 has similar medical imaging

characteristics to other types of pneumonia (Shi et al., 2020), and CT

can be used to determine whether a patient is infected with viral

pneumonia (Covid-19 is a viral pneumonia caused by the SARS-

COV-2 virus) (Chen and Li, 2020). However, CT is unable to

determine which virus causes viral pneumonia; the novel

coronavirus or another virus, making it difficult to distinguish

and diagnose the virus type. Considering these difficulties,

quickly and accurately distinguishing between Covid-19 and

other types of pneumonia is crucial to facilitating the screening

process in clinical practice. Therefore, with the AI-assisted diagnosis

of medical images, accurate and efficient recognition of Covid-19

lung CT images is of profound significance for controlling the

epidemic (Ardila et al., 2019; Esteva et al., 2019; Esteva et al., 2017;

Litjens et al., 2017; Mei et al., 2020; Qin et al., 2019; Topol 2019; Li

et al., 2020; Jaiswal et al., 2020).

Locality is used by traditional convolutional networks to

improve efficiency but at the cost of losing the connection in a

global context. Convolutional architecture has an inherent induction

bias, lacking an understanding of position dependence in images

(Wang et al., 2020; Valanarasu et al., 2021). In a study byDosovitskiy

et al. (2020), the proposed vision transformer (ViT) was trained on

large image datasets using location-embedded two-dimensional

(2D) image patches as input sequences, thus achieving a

performance comparable to that of convolutional networks.

Based on the transformer architecture, a self-attention

mechanism was utilized to encode the position dependence at a

distance to learn efficient representations. However, most existing

transformer-based network architectures require large datasets for

training. Generalization may be inadequate if the training is

performed using insufficient data. In a study by Hassani et al.

(2021), a compact convolutional transformer (CCT) (Wang et al.,

2021) was proposed to eliminate the misunderstanding of the

requirement of a transformer for large amounts of data. It

achieves comparable performance on small datasets; however,

when the input dimension is large, the operational cost of the

self-attention mechanism increases significantly. Global pooling

does not use the location information in the process of extracting

pneumonia symptoms, potentially causing loss of location

information. For imaging tasks, it is important to obtain the

spatial position structure of an image.

Therefore, we use a new method to solve the above problems in

CT lesion segmentation of COVID-19. To solve the problem of

detail loss, we add CBAM (Woo et al., 2018) and atrous convolution

to the U-Net encoder part, and replace the partial convolution

operation with the empty convolution operation. This can solve the

problem of feature image detail loss caused by the decrease of

resolution after repeated down-sampling operations. A Swin

Transformer (Liu et al., 2021) is added to obtain local

information in the CNN network, and the joint loss function is

used for optimization during training. Thus, the segmentation of

background regions, lungs, ground-glass opacities, and lung

parenchyma in the chest CT images of patients is achieved. The

results of ablation experiments demonstrate that this method

achieved significant performance gain, in which the mean pixel

accuracy is 87.62%, mean intersection over union is 80.6%, and dice

similarity coefficient is 88.27%. The feasibility and effectiveness of

this method are proved. Chest CT examination has a very important

application prospect in clinical observation of treatment effect,

monitoring of lesions and follow-up.

2 Materials and methods

Here, a new lesion segmentation method in chest CT images of

COVID-19 patients is proposed, and the network structure is shown

in Figure 1. The input is downsampled 4 times in total. The encoder

performs a normal convolution and a dilated convolution operation

before downsampling. The BN layer and the activation function

layer are added to speed up the network convergence process. The

CBAM mechanism is introduced in the downsampling process.

After each downsampling iteration, the size of the feature vector is

halved, and the number of channels is doubled. In the experiment,

images with a height andwidth of 512 and three channels are used as

input, that is,512 × 512 × 3 After being processed by the encoder

part, a feature vector of size 32 × 32 × 512 is output. Then, the

downsampled feature images are flattened to fit the vector

dimension of the Swin Transformer structure by linear

embedding. The vector dimension does not change in the

Transformer encoder structure, and a sequence vector of 1,024 ×

512 dimensions is output. The sequence vector is restored to 32 ×

32 × 512 by the Reshape operation to fit the input dimension

requirement of the segmentation network upsampling. Finally, the

segmentation result whose height and width are consistent with the

input is obtained after passing through the decoder for four

upsampling iterations.

2.1 Convolution attention module

We use an attention mechanism in the network to perform

weight adjustment on the feature vectors. This is similar to how
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FIGURE 1
Segmentation network structure diagram.

FIGURE 2
Flowchart of the attention module of the convolutional block.

FIGURE 3
Flowchart of channel attention mechanism.
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the human brain focuses on important information. Important

information is made more prominent, and other information is

filtered. The convolutional attention module is composed of

channel attention and spatial attention modules, which are

used for the attention mechanism of the feature vector

channel and space, respectively. The process is shown in

Figure 2. Finally, the attention weights are multiplied by the

input feature image to obtain the output feature image.

2.1.1 Channel attention mechanism
Channel attention assigns weights to each channel of the

feature image. Valid channel weights are increased, and

invalid channel weights are suppressed. The flow of the

channel attention mechanism is shown in Figure 3. The

input feature F ∈ RH×W×C is average-pooled to generate the

vector FC
avg ∈ R1×1×C, where C represents the channel. The

vector FC
max ∈ R1×1×C is generated by a max-pooling

operation. Average pooling has the advantage of optimizing

the spatial information of feature images. Max pooling can

extract landmark information in feature images. The two

output features are fed into a shared multilayer perceptron,

and features with contextual descriptions are generated.

Finally, the ReLU activation function is used to output the

feature image channel weights. Feature images are summed

and merged elementwise. The feature vector MC ∈ RC×1×1 is

output through the sigmoid activation function.

According to the above process, the calculation formula is as

follows:

Mc(F) � σ(MLP(AvgPool(F)) +MLP(MaxPool(F)))
� σ(W1(W0(Fc

avg)) +W1(W0(Fc
max)))

(1)

where σ represents the Sigmoid activation function, AvgPool

represents the average pooling operation, MaxPool represents

the maximum pooling operation, MLP represents the shared

multi-layer perceptron, andW0 andW1 ∈ RC/r×C are the weights

of the shared multi-layer perceptron.

2.1.2 Spatial attention mechanism
The spatial attention mechanism can measure some regions

of the feature image to obtain higher responses, and the

mechanism flow is shown in Figure 4. Suppose the feature

vector optimized by the channel attention module is

F′ ∈ RH×W×C. F′ generates the two-dimensional vector

FS
avg ∈ RH×W×1 by the max pooling operation, and

FS
max ∈ RH×W×1 is generated through average pooling, where

S represents a channel. The two-dimensional vector

information obtained by the pooling operation is

concatenated. The feature information is fused through the

convolution operation, and a two-dimensional spatial attention

image is generated through the sigmoid activation function.

Finally, the output of the spatial attention module is dot

multiplied with the feature image at the pixel level to obtain

the weighted feature image.

The equation of the above process is as follows:

Ms(F) � σ(f7×7([MaxPool(F′),AvgPool(F′)]))
� σ(f7×7([Fs

max, F
s
avg]))

(2)

where σ is the sigmoid activation function, and f7×7 indicates

that the feature vector in parentheses is convolved with a

convolution kernel of size 7 × 7.

F represents the feature image, the output F′ is optimized by

the channel attention module, and the output F″ is optimized by

the spatial attention module. Therefore, feature F is optimized by

the CBAM module:

F′ � Mc(F) ⊗ F (3)
F″ � Ms(F‘) ⊗ F′ (4)

where ⊗ represents that the elementwise multiplication.

FIGURE 4
Flow chart of spatial attention mechanism.
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2.2 Atrous convolution

Feature information is extracted using U-Net model

convolution operations. Due to device performance

limitations, multiple pooling operations reduce the resolution

of feature vectors. When using the convolution operation to

extract higher-level features, the next convolution operation can

obtain a larger receptive field. However, as the feature size

decreases, feature information will be lost. The restoration

detail information cannot be restored, while upsampling

restores the size. Replacing ordinary convolution operations

with atrous convolution can achieve a larger receptive field

range within a limited convolution kernel. Therefore, the loss

of detail information caused by the downsampling process can be

solved. The ordinary convolution and atrous convolution

methods and the obtained receptive fields are shown in

Figure 5. In the right image of Figures 5A,B, the feature maps

of 9 × 9 use a convolution kernel of size 3 × 3 and stride 1 for

convolution operation. In the right picture of Figure 5A, the

receptive field is obtained after two ordinary convolution

iterations; the range is 5 × 5. In the right picture of Figure 5B,

the receptive field is obtained after one ordinary convolution and

one dilated convolution with a dilation factor of 2; the range is 7 ×

7. It shows that a larger receptive field range is obtained after

using atrous convolution. The numbers in the figure represent

the number of times the pixels are convolved.

When using continuous atrous convolution, the dilation

factor cannot be a common divisor greater than 1. And the

expansion factor must satisfy the following formula:

Mi � max[Mi+1 − 2ri,Mi+1 − 2(Mi+1 − ri), ri] (5)

where Mi represents the maximum expansion factor of the i-th

layer, and ri is the expansion factor that represents the distance

between adjacent elements in the hollow convolution kernel,

which should be less than or equal to the size of the convolution

kernel. In the atrous convolution operation, the convolution

kernel size is fixed. When the dilation rate increases, the

spacing of adjacent elements in the convolution kernel

increases. It is also possible to keep the height and width of

the original input feature map unchanged.

FIGURE 5
Convolution operation. (A): 2D-Convolution. (B): Dilated Convolution.
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2.3 Swin transformer module

After improving the convolutional structure network of

U-Net to extract feature information, we use the Swin

Transformer to extract the global information from the

feature information. We combine the CNN with the

Transformer structural model. The insufficiency of context

dependencies in the acquisition of low-level features by

convolutional networks will be compensated. Compared with

ViT, we improve the Transformer encoder by introducing

windows multi-head self-attention (W-MSA) and shifted

windows multi-head self-attention (SW-MSA) (Hatamizadeh

et al., 2022). Assuming the input is xl−1 , the formula is as follows:

x′l−1 � xl−1 +W −MSA(LN(xl−1)), (6)
xl � x′l−1 +MLP(LN(x′l−1)), (7)
x′l � xl + SW −MSA(LN(xl)), (8)
xl+1 � x′l +MLP(LN(x′l)). (9)

where l ∈ {1, 2,/, L}
According to the Swin Transformer formula, it can be

concluded that the structure consists of two Transformer

encoder modules. After the input is normalized by the layer,

the attention value is calculated using W-MSA, and the residual

structure is formed with the original input. After layer

normalization and MLP operation, the encoder module with

the SW-MSA calculation method is used to output the feature

vector. The Swin Transformer structure is shown in Figure 6.

Compared with the ViT, an encoder module is added, and the

redesigned W-MSA and SW-MSA calculation methods greatly

reduce the computational complexity.

In the W-MSA operation of the Swin Transformer, the

feature map is divided into windows of the same size, which

is equivalent to reducing the size of the patch. Thereby the

computational complexity is reduced. We utilize the same

self-attention mechanism as ViT inside each individual

window. However, after dividing the feature map into separate

feature windows, the attention mechanism values of the feature

windows are calculated separately, and there is no information

interaction between them. As a result, the self-attention

mechanism cannot obtain global information. Therefore, the

SW-MSA operation is increased, and the window operation is

shifted. This solves the defect that information cannot be

exchanged between W-MSA operation windows. The

operation flow of common MSA, W-MSA, and SW-MSA is

shown in Figure 7. The W-MSA window size is 4. In the SW-

MSA operation, the feature window is divided into three different

patch sizes, which are 2 × 2, 2 × 4, and 4 × 4 sizes. After

combining four 2 × 2-sized windows and combining four 2 × 4-

sized windows, two feature windows with patch size 2 × 2 are

obtained. Then, the attention value is obtained by continuing the

calculation of W-MSA. Finally, the original window dimensions

are restored. As such, not only is the computational complexity

reduced, but the interactive information between the windows

can be obtained.

2.4 Optimization of loss function

In medical image segmentation, common loss functions

include cross entropy loss (CE loss) and dice coefficient loss

(Dice loss). The chest CT image segmentation method we

proposed includes four categories: background region, lung

region, ground glass opacity, and lung parenchyma. Figure 8

shows the chest CT images and the pixel distribution maps of

different categories in the corresponding segmentation gold

standard. The abscissa is the segmentation type, and the

ordinate is the number of pixels. It can be seen that the

proportion of ground glass and lung parenchyma is much

smaller than the background and lung areas. This is common

in mild and moderate patients, and there may even be no focal

manifestations. Therefore, uneven data distribution will be

caused in the experiment, which makes network training

more difficult.

The cross-entropy loss function compares the pixel-

predicted value output by the training model with the real

FIGURE 6
Swin Transformer module.
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value. In the case of training without overfitting, the smaller the

loss value, the better the result. The formula is as follows:

CE loss � −yplog2(y′) (10)
where y is the real label paper, y′ is the predicted value, and the

loss function has the same prediction weight for each category.

As shown in Figure 8, the background area accounts for a large

proportion, and the factors leading to the final result will be

biased towards the background area. After training, the

performance value of the loss function is small, but it cannot

reflect the classification effect of other categories through the loss

value.

FIGURE 7
Operation diagram of self-attention mechanism. (A): MSA. (B): W-MSA. (C): SW-MSA.

FIGURE 8
CT images and corresponding pixel category distributions.
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In dice loss, dice represents the dice similarly coefficient

(DSC), which indicates the degree of similarity between two

sample areas; the value is between 0 and 1; the larger the value,

the higher the similarity. Assuming that A and B represent sets of

regions, the DSC formula is as follows:

Dice � 2|A ∩ B|
|A| + |B| (11)

where ∩ represents the intersection of sets, and the dice loss

formula can be obtained according to the DSC. The formula is as

follows:

Dice loss � 1 − 2
∣∣∣∣Y ∩ �Y

∣∣∣∣ + 1

|Y| + ∣∣∣∣�Y
∣∣∣∣ + 1

(12)

where Y is the real segmentation area, and �Y is the model

prediction area. We add 1 to the denominator and numerator

to prevent the denominator from being zero and to reduce the

possibility of overfitting during the training process. Compared

with the CE loss function, dice loss is not affected by the

background when the number of pixel categories is unevenly

distributed. However, training instability occurs when the

prediction is incorrect. Therefore, we combine the CE loss

function and dice loss as a joint loss function and use the CE

loss function to guide dice loss for training. The formula is as

follows:

loss � 0.5 × CE +Dice loss (13)

loss � 0.5 × Y · log2(�Y) + 1 − 2
∣∣∣∣Y ∩ �Y

∣∣∣∣ + 1

|Y| + ∣∣∣∣�Y
∣∣∣∣ + 1

(14)

2.5 Datasets

We utilized a dataset from the China Consortium for Chest

CT Imaging Research (CC-CCII) (Ai et al., 2020). The CC-CCII

dataset contains 617,775 CT images from 6,752 CT scans of

4,154 patients. The study sample size was estimated by standard

AI training and validation methods. Patients were randomly

assigned to a training set (60%), an internal validation set (20%)

or a test set (20%). We chose to use 750 annotated chest CT

images selected from 150 COVID-19 patients by five radiologists

with 15 years of experience. These images include background

areas, lung areas, ground-glass opacities, and lung parenchyma.

Mild patients mainly present with ground-glass opacity, which is

distributed in the lower lobes of both lungs and adheres closely to

the pleura. Ground-glass shadows are characterized by spreading

FIGURE 9
Chest CT images of COVID-19 patients. (A): Initial CT image. (B): Gold standard. (C): Color-annotated segmentation results.
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toward the center and blurring at the edges. In moderate patients,

the number of lesions proliferated, and the lesions were markedly

plaque-like. The patient is accompanied by a condition of cough

and fatigue. In severe patients, the density of lung tissue increases

and the lung parenchyma changes. The patient presented with

fever and headache. An example of the segmentation of a chest CT

image of a COVID-19 patient is shown in Figure 9. Figure 9A is the

initial image, Figure 9B is the gold standard of the dataset, and

Figure 9C is after the gold standard mask and the initial CT image

are superimposed; the highlighted color is used to distinguish the

segmentation results. The gray area is the background area of the

patient, the red area is the lung area, the yellow area is the ground

glass opacity, and the blue area is the lung parenchyma.

2.5.1 Data augmentation
CT images have different properties, such as brightness,

saturation, and angle. Therefore, a data augmentation method

is added in the preprocessing stage of experimental training to

prevent overfitting of the training results. In this way, the model

performance is increased, and the data augmentation is shown in

Figure 10. Figure 10A is the initial image. Figures 10B–F are the

corresponding labels of the original image after rotating,

horizontally flipping, randomly cropping, adjusting saturation,

and adjusting brightness, respectively.

2.5.2 Training parameters
The training set of the CC-CCII dataset is divided into ten

groups, each time nine groups of images are used as the training

set and one group is used as the validation set. They were used in

ten-fold cross-validation experiments. After training and

validation separately, we use the test set to test, repeat this

process ten times, and finally take the average of the ten

results as the evaluation of algorithm accuracy. All CT image

pixels are resized to 512 × 512 pixels before being input into the

training model. In the model training, the network adopts the

mean square error loss function; The initial learning rate of the

Adam optimizer is 0.0001; The batch size is set to 64; And the

fully connected layer uses a dropout layer with probability 0.5.

This deep learning method does not require much analysis of the

threshold and gray value of CT images. Data augmentation is

achieved by adjusting contrast, affine transformation, and color

dithering to achieve better performance of the model. The details

of the experimental training parameters are listed in Table 1.

2.5.3 Evaluation indicators
To analyze the segmentation performance of the trained

model, we used three common performance metrics: mean

intersection over union (mIoU) (Rezatofighi et al., 2019), DSC

(Huang et al., 2022), and mean pixel accuracy (mPA)

(Paintdakhi et al., 2016). mIoU is the average of the ratios

of the intersection and union of the results predicted by the

FIGURE 10
Example of CT image data-enhancement results. (A): the original CT image and its corresponding gold standard. (B): the CT image obtained
after rotation and its corresponding gold standard. (C): the CT image obtained after horizontal flipping and its corresponding gold standard. (D): the
CT image obtained after random cropping and its corresponding gold standard. (E): the CT image obtained after adjusting the contrast and its
corresponding gold standard. (F): the CT image obtained after adjusting the brightness and its corresponding gold standard.

TABLE 1 Training parameter settings.

Type Setting

Batch size 64

Learning rate 0.0001

Optimizer Adam

Iterations (Epoch) 100

Ubuntu 18.04 PyToch1.6.0
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model for each category and the true label, DSC is the

similarity measure function, which can calculate the

similarity between the true label and the predicted label,

and mPA is represents the pixel accuracy of each category.

The pixel accuracy is summed and averaged.

mIOU � 1
k + 1

∑
k

i�0

TP

TP + FN + FP
(15)

DSC � 1
k + 1

∑
k

i�0

2TP
FP + 2TP + FN

(16)

mPA � 1
k + 1

∑
k

i�0

TP

TP + FN
(17)

where k is the number of classes, TP is the number of pixels that

are correctly predicted as positive examples, FN is the number of

pixels that are incorrectly predicted as negative examples, and FP

is the number of pixels that are incorrectly predicted as positive

examples.

3 Results and discussion

3.1 Ablation experiment

To verify the segmentation effect of the improved U-Net

model, we conducted ablation experiments. The segmentation

FIGURE 11
Example of ablation experiment comparison. (A): the CT image of the COVID-19 patient. (B): the gold standard of the CT image. (C): the U-Net
segmentation result. (D): the U-Net segmentation result after introducing atrous convolution. (E): the U-Net segmentation result after introducing
atrous convolution and CBAM. (F): the U-Net segmentation result after introducing the atrous convolution, CBAM, and Swin Transformer modules.

TABLE 2 Comparison of ablation experiments.

Modle mPA/% mIoU/% DSC/%

U-Net 85.86 78.59 86.74

U-Net + Atrous convolution 86.22 79.11 87.15

U-Net + Atrous convolution + CBAM 87.41 80.41 87.49

U-Net + Atrous convolution + CBAM + Swin Transformer 87.62 80.64 88.27

Frontiers in Physiology frontiersin.org10

Sun et al. 10.3389/fphys.2022.981463

22

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.981463


test results are shown in Figure 11. From the segmentation results

of the CT image example, it can be observed that the original

U-Net did not segment the tiny lesion details. The other

improved models identified the lesions, but the segmentation

effects were different. The U-Net segmentation result after

adding atrous convolution is shown in Figure 11D. After

adding CBAM, the effect is improved, as shown in

Figure 11E. The model segmentation results after introducing

the atrous convolution, CBAM, and Swin Transformer modules

are significantly improved, as shown in Figure 11F. The

segmentation performance of our proposed method achieved

the best performance; especially in the case of a large number of

lesion areas, the segmentation results of lesion and lung areas by

this method are closer to the corresponding gold standard.

The experimental segmentation performance indicators are

listed in Table 2. On the basis of U-Net, the atrous convolution

mPA is added, and the mIoU and DSC indicators are increased

by 0.36%, 0.52%, and 0.41%, respectively. After adding atrous

convolution and CBAM, the corresponding indicators greatly

improved. mPA, mIoU, and DSC metrics improved by 1.55%,

1.82%, and 0.75%, respectively. After adding atrous convolution,

the corresponding indicators of CBAM and the Swin

Transformer improved the most. The mPA, mIoU, and DSC

metrics improved by 1.76%, 2.05%, and 1.53%, respectively. The

corresponding metrics demonstrate the effectiveness and

feasibility of our method.

The convergence effect of the training loss function of the

new model is shown in Figure 12. The curves in the figure

represent the training loss curves from the 1st to 5th fold,

respectively. After the training method of cross-validation is

used, we find that the training loss value of each epoch in

fold 1 is the largest and the training loss value of each epoch

in fold five is the smallest. The training loss value of each epoch in

the next fold is smaller than that of the previous fold. The results

show that the convergence effect of the newmodel is significantly

improved.

3.2 Models comparison

We demonstrate the feasibility and effectiveness of the

proposed improved method through ablation experiments. To

further verify the segmentation ability of the model, we compared

it with other models. The results of the segmentation experiment

are shown in Figure 13. First, the ResU-Net model (Jha et al.,

2019) adds a residual structure to the convolution operations of

the encoder and decoder to improve model performance. In CT

FIGURE 12
Training convergence loss curve.

TABLE 3 Performance comparison of different models.

Model mPA/% mIoU/% DSC/% FLOPs (G)

ResU-Net 87.05 80.1 87.54 1.46

Attention U-Net 86.26 78.31 86.47 1.95

TransU-Net 86.99 79.33 87.31 1.39

Ours 87.62 80.6 88.27 1.44

TABLE 4 Subjective evaluation scoring method.

Score Features of the
restored image

0 Severely distorted image

1 Image with severe distortion in some areas

2 Slightly distorted image

3 Difficult to spot distorted images

4 Images with better visual effects

5 Very sharp images

TABLE 5 Subjective quality evaluation of different algorithms.

Method Sharpness Resolution Invariance Acceptability

ResU-Net 3.3 ± 0.21 3.5 ± 0.25 0.5 ± 0.39 3.8 ± 0.21

Attention U-Net 3.6 ± 0.24 3.9 ± 0.49 0.6 ± 0.16 3.9 ± 0.41

TransU-Net 3.7 ± 0.16 4.1 ± 0.21 0.6 ± 0.25 4.2 ± 0.24

Our method 3.9 ± 0.24 4.3 ± 0.07 0.7 ± 0.36 4.2 ± 0.81
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FIGURE 13
Example of comparison of different models. (A): the CT images of COVID-19 patients. (B): the gold standard of CT images. (C): the
segmentation results of our model. (D): the ResU-Net segmentation results. (E): the Attention U-net segmentation results. (F): the TransU-net
segmentation result.
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images of mild patients, our method is compared with the ResU-

net method, as shown in Figures 13C,D. In the figure, the

performance of the two methods is comparable when

segmenting smaller lesions. However, when the proportion of

the lesion area is relatively large, the segmentation results show

obvious voids, as shown in the second picture in Figure 13D.

Second, Attention U-net (Oktay et al., 2018) introduces a soft

attention mechanism, which is implemented by supervising the

upper-level features through the next-level features. Our method

is compared with the attention U-net method, as shown in

Figures 13C,E. From the segmentation results, it can be seen

that our method performs significantly better than the attention

U-net method in terms of lesion segmentation accuracy in

smaller regions. Further, leaky segmentation is present in the

sixth picture of Figure 13E. Finally, TansU-Net (Chen et al.,

2021) applies the Transformer encoder to image segmentation.

Our method is compared with the TansU-Net method, as shown

in Figures 13C,F. In the segmentation example, the TansU-Net

method also appears similar to Attention U-net, failing to

successfully identify smaller lesion areas. We used the Swin

Transformer encoder structure before the segmentation

network decoder. Although CBAM and hole convolution are

added, the FLOPs are not much different, and the comprehensive

segmentation ability is significantly better than TransU-Net. The

effectiveness of our method is further demonstrated, and some

complexity is reduced from the Transformer structure.

The comparison performance indicators of the above models

are listed in Table 3. The performance metrics of the Attention

U-Net method were the worst. The ResU-Net model

outperformed TransU-Net in segmentation performance in

the used test dataset. Compared with ResU-Net, our proposed

segmentation method has improved performance indicators.

mPA, mIOU, and DSC were improved by 0.57%, 0.5%, and

0.73%, respectively. Therefore, our proposed method performed

the best among the compared models.

3.3 Subjective evaluation

For more specialized medical evaluation of segmentation

models, clinical validation is required. We invited 10 chief

physicians with more than 5 years of clinical experience in

radiology to independently perform image analysis (sharpness,

resolution, invariance, and acceptability). The scoring criteria for

subjective evaluation are shown in Table 4. Ten groups of test

samples were randomly constructed, and each group consisted of

ten CT images of the lesion area. The subjective quality

evaluation results of different algorithms utilized by

radiologists are listed in Table 5.

As shown in Table 5, our proposed Atrous Convolution +

CBAM + Swin Transformer model achieves the best subjective

quality evaluations in terms of sharpness, resolution, invariance,

and acceptability. The main reason is the benefit from

introducing W-MSA and the exchange of information.

Compared with other segmentation methods, our W-MSA

fuses the mutual information and the multimodal features of

CT images and has strong representation. The consistency of

pathological information between segmented CT image and

original CT image was guaranteed. This method achieves the

best segmentation effect in terms of ground-glass opacity and

visible plaque and lung parenchyma lesions.

4 Conclusion

Currently, a key approach to prevent the spread of the

epidemic is to combine the chest CT images of patients for

diagnosis. Therefore, this paper proposed an improved U-Net

network for lesion segmentation in chest CT images of COVID-

19. Atrous convolution was used as the convolution operation

of each layer of the segmentation network encoder structure,

and CBAM was introduced in the downsampling process to

solve the problem of loss of lesion detail during the

downsampling process. The Swin Transformer module was

added to the encoder using the transformer structure to

obtain global feature information. The primary improvement

of the segmentation model framework is in the encoder part,

which improved the model feature extraction performance. The

results of the ablation experiments showed that the mPA,

mIOU, and DSC reached 87.62, 80.6 and 88.27, respectively.

In the subjective evaluation of radiologists, our method can

effectively segment ground-glass opacity, visible plaque and

lung parenchyma lesions, and maintain consistency with the

original CT image pathological information. In future research,

we will continue to refine the model. We aim to improve the

screening process and the quantitative analysis of the disease

and enhancing the efficiency of diagnosis and reducing

infection.
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In minimally invasive surgery, endoscopic image quality plays a crucial role in

surgery. Aiming at the lack of a real parallax in binocular endoscopic images, this

article proposes an unsupervised adaptive neural network. The network

combines adaptive smoke removal, depth estimation of binocular

endoscopic images, and the 3D display of high-quality endoscopic images.

We simulated the smoke generated during surgery by artificially adding fog. The

training images of U-Net fused by Laplacian pyramid are introduced to improve

the network’s ability to extract intermediate features. We introduce

Convolutional Block Attention Module to obtain the optimal parameters of

each layer of the network. We utilized the disparity transformation relationship

between left- and right-eye images to combine the left-eye images with

disparity in HS-Resnet to obtain virtual right-eye images as labels for self-

supervised training. This method extracts and fuses the parallax images at

different scale levels of the decoder, making the generated parallax images

more complete and smoother. A large number of experimental research results

show that the scheme can remove the smoke generated during the operation,

effectively reconstruct the 3D image of the tissue structure of the binocular

endoscope, and at the same time, preserve the contour, edge, detail, and

texture of the blood vessels in the medical image. Compared with the existing

similar schemes, various indicators have been greatly improved. It has good

clinical application prospects.

KEYWORDS

adaptive, deep learning, binocular endoscopic, smoke, three-dimensional

1 Introduction

With the development of society, image processing (Li et al., 2016a; Li et al. 2016b; Li

et al. 2018) is widely used in the medical field. During clinical surgery, the quality of

medical images is degraded by noise. Noise is mainly composed of blood, light changes,

specular reflection, smoke, etc. Among them, the smoke generated by laser and
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electrocautery-based human tissue ablations will significantly

reduce the imaging quality of the lesion area. The results will

affect the doctor’s judgment, prolong the operation time, and

increase the operation risk. Therefore, it is necessary to remove

the smoke by physical means and purify it by image-processing

algorithms (Kotwal et al., 2016; Yang and Sun, 2018; Chen et al.,

2019a; Sidorov et al., 2020; Venkatesh et al., 2020). In addition,

the particularity of the human tissue and imaging conditions are

limited. Due to the influence of equipment light source and

thermal noise acquisition, the quality of the collected endoscopic

images is generally not high. Images obtained directly by

endoscopy tend to have low imaging quality, resulting in the

loss of some vascular tissue characteristics. Therefore, for the

accuracy and convenience of later diagnosis, it is particularly

important to improve the recognition ability of endoscopic

images, filter out noise, and enhance the outline of the

vascular tissue by reconstructing 3D details.

In the 3D display research based on the traditional stereo-

matching method, the pixels of the left- and right-eye images

have a parallax correspondence, and the 3D display can be

performed after the parallax is obtained from the algorithm

model (Hu et al., 2012; Besse et al., 2014; Yang and Liu, 2014;

Penza et al., 2016). Compared with traditional algorithms, the

method based on visual Simultaneous Localization and

Mapping (SLAM) is slightly better in real-time performance.

Most SLAM algorithms perform an inter-frame estimation and

loop closure detection through feature point-matching

techniques. Although the SLAM-based method only regards

depth estimation as an intermediate product, its double-end

depth estimation network provides a clear idea for subsequent

research. Many subsequent articles have used its basic model

(Mahmoud et al., 2016; Yi et al., 2016; Vijayanarasimhan et al.,

2017; Wang et al., 2018a; Qiu and Ren, 2020). However, for the

complex tissues and organs of the human body, traditional

methods cannot meet the requirements of medical scenarios in

terms of 3D reconstruction time and accuracy. In the research

of 3D displays based on the neural network, researchers

conducted supervised training on natural scene datasets

containing depth labels. The final test can achieve the effect

of real-time depth estimation (Antal, 2016; Kendall et al., 2017;

Pang et al., 2017; Huang et al., 2018; Luo et al., 2019; Zhang

et al., 2019). Since medical endoscopic images contain fewer

datasets with depth labels (Penza et al., 2018), unsupervised

learning is more suitable for 3D display of binocular

laparoscopic images (Shurrab and Duwairi, 2022). A novel

self-supervised learning strategy based on context restoration

in order to better exploit unlabeled images (Chen et al., 2019b;

Chen et al., 2022). The virtual viewpoint is obtained as a label

through an implicit function, and the neural network is

calculated and solved. Researchers can avoid a lot of dataset

labeling work (Garg et al., 2016; Feng et al., 2017; Kendall et al.,

2017; Zhou et al., 2017; Yin and Shi, 2018; Wang et al., 2019a;

Tosi et al., 2019; Taleb et al., 2021).

In fact, it is often necessary to preprocess the image to remove

various noises in the application of traditional methods and

neural network schemes. Although the performance of neural

networks on endoscopic images increases with the number of

neurons, the complexity of convolution operations is very high.

This leads to a blind increase in the size of the network and

consumes a lot of training time. Therefore, combined with the

real-time application requirements of clinical operations and the

imaging characteristics of binocular endoscopes, we propose a

3D reconstruction method of binocular endoscope medical

images based on adaptive neural network. The overall flow

chart of the process is shown in Figure 1. The main

contributions of this paper can be summarized as follows:

1) We proposed an improved U-NET adaptive network model

for the smoke generated during laparoscopic surgery. We

added training images fused by Laplacian pyramids at each

layer of the encoder. A lightweight Convolutional Block

Attention Module (CBAM) (Woo et al., 2018) attention

mechanism module was added to the last five layers of the

decoder to improve the network’s ability to extract

intermediate features. The processing time of a single

image reaches 90.19 pfs, which can purify endoscopic

surgical smoke in real time.

2) In view of the lack of true parallax in binocular endoscope

images, we propose an improved HS-Resnet network. The

left-eye image is combined with disparity to obtain a

virtual right-eye image as a label for self-supervised

training. In the process of feature extraction, multi-scale

segmentation and synthesis are performed so that the

network can effectively extract different scale features of

various receptive fields. We reconstructed 3D structures

with visibility and realism.

3) We proposed a color-difference 3D reconstruction scheme

which separates the red component of the original image and

combines the parallax, and fuses the combined red

component with the blue–green component of the original

image to obtain a 3D image. This can effectively reduce the

details and color loss of the endoscopic image and retain the

details of the medical images.

2 Methods

2.1 Smoke removal

2.1.1 Smoke synthesis
The improved U-Net (Zhou et al., 2021) model is used to

realize the smoke purification function of endoscopic images.

The steps of the smoke purification model are shown in Figure 2

below. Due to the lack of medical endoscopic image datasets

containing real labels, we used the Render software to add smoke

to real laparoscopy images as training images, and used the
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original images without smoke as labels. The loss function was

obtained by comparing the purified image obtained by the model

and the label, and back propagation reduced the loss to obtain the

parameters of each layer of the network. In the network design, in

order to increase the network’s ability to retain image details and

colors, we added the Rapp to the encoder. For the original fog

image of Laplace fusion, the scale of Laplace transform is the

same as that of the encoder. In order to improve the network’s

performance, we added the CBAM attention mechanism to the

last five layers of the decoder to use the synthetic image

containing smoke as the training set. The original image is

sent to the improved U-Net model as a training set label for

training. Through back propagation, each layer of the network

obtains the corresponding parameters. Finally, the test set is sent

to the model to predict the purified image.

The medical scene dataset in the field of smoke

purification is relatively rare. There is currently no dataset

containing real labels. Therefore, either unsupervised learning

can be used or software can be used to add smoke to medical

endoscopic images. Then, use the images without the added

smoke as labels. In the two schemes, simple supervised

learning can be used to solve the problem after smoke

synthesis, and supervised learning is mature in the field of

deep neural networks. So, we choose the scheme of artificially

synthesizing smoke. The smoke generated in laparoscopic

surgery is usually generated randomly and has nothing to

do with the depth. The modern image-rendering engines have

a complete built-in model. This can better simulate the shape

of the smoke compared to physical solutions. Therefore, we

used the 3D graphics-rendering engine. Render to the training

FIGURE 1
Overall process flow chart.

FIGURE 2
Smoke removal flow chart.
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images are obtained by rendering the smoke on laparoscopic

images that do not contain smoke.

The smoke is rendered by the rendering engine and has

local color and transparency. The smoke is controlled by the

input parameters Trad, Drand, and Position, as shown in

formula (1):

Ismoke(x,y) � Blender(Trand, Drand, Prand) (1)

Using Render to fog the laparoscopic image, the rendered

smoke is similar to the real smoke. It has the characteristics of

local pure white and transparency. The fogged image is

superimposed by the original image and random smoke, as

shown in formula (2):

Is−image(x, y) � Is−free(x, y) + Ismoke (2)

The smoke added to the laparoscope is obtained by

superimposing the luminance values of the rendered R, G,

and B channels proportionally. The ratio is shown in

formula (3):

Imask(x, y) � (0.3pIsmoke(x, y)R) + (0.59pIsmoke(x, y)G)

+ (0.11pIsmoke(x, y)B) (3)

To better simulate light smoke, fog, and thick smoke fog, we

rendered two types of fog. Firstly, images without fog are selected

as the original training set in the dataset. In rendering, the

original dataset is randomly added fog using the data settings

of the aforementioned formula. We added primary smoke as the

light fog dataset. Then, the light fog dataset is sent into the

rendering for secondary random adding fog to obtain the thick

fog dataset. Finally, training is performed on the thick fog dataset

and the light fog dataset, respectively.

2.1.2 Improved U-net network
For the original U-Net, it is found through experiments that

it cannot effectively purify the smoke, or the image resolution

decreases after purifying the smoke. This is due to the loss of

image details in the process of up-sampling and down-

sampling. But for medical scenes, the loss of detail

information will seriously affect the doctor’s judgment.

Therefore, we added the training image fused by the

Laplacian pyramid in the down-sampling part to compensate

for the loss of details of the image during the down-sampling

process. The image fusion of the Laplacian image pyramid is

equivalent to a filter, which maps the image to different

frequency bands. The features are learned, and fusion

operations are performed on each frequency band, thereby

effectively preserving image details on each frequency band.

The U-Net model is improved according to the characteristics

of medical endoscopy, as shown in Figure 3.

The down-sampling part on the left of Figure 3 is the

encoder. The encoder can extract features of different scales of

endoscopic images through convolution operations. Each layer of

the encoder corresponds to splicing, two convolutions, and amax

pooling operation. Laplace the superposition operation refers to

the fusion of the Laplacian pyramid image for the input training

image according to the size of each layer of the encoder. The

transformed image and the features of each layer are spliced and

sent to training. The seven convolution groups are named

conv1 to conv7, respectively. The size of the convolution

kernel of each layer is 7 × 7, 5 × 5, 3 × 3, 3 × 3, 3 × 3, 3 × 3,

and 3 × 3. Each layer is convolved twice. The strides of the two

convolutions are 1 and 2, respectively. The number of output

layers per layer is 32, 64, 128, 256, 512, 512, and 512. Therefore,

the encoder down-sampling factor is 64.

FIGURE 3
Encoder–decoder network.
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The decoder restores the down-sampled image to its original

size. The CBAM attention module is inserted into the first five

layers of the decoding part of the U-Net network, as shown in the

up-sampling part on the right side of Figure 3. The decoder also

adopts 7 sets of convolutions; each group contains two up-

sampling layers with steps 1 and 2. The size of the

convolution kernel is all 3 × 3, and the number of output

layers is 512, 512, 256, 128, 64, 32, and 16, respectively. In

addition, there are corresponding connections between the

encoders and decoders where the features of the lower layers

are connected with the features of higher layers. Information

from the higher layers can be directly transmitted to the bottom

layer of the network to prevent the loss of high-quality details.

The loss function of the improved U-Net network is the

minimum absolute value deviation loss of the original image and

the synthetic smoke image, as shown in formula (4):

L � ∑
xy

∣∣∣∣Ioriginal(x, y) − Idesmoked(x, y)
∣∣∣∣ (4)

2.1.3 Laplacian image pyramid fusion
The maximum pooling operation is used in the down-

sampling process. Due to the continuous down-sampling

operation, the image details are lost in each frequency

domain. In order to better preserve the image quality in the

specified frequency domain, a Laplacian image is introduced in

the encoder part of the pyramid fusion. This method uses the

nearest point interpolation when up-sampling the image after

Gaussian sampling. Especially in the place where the image

gradient changes greatly, the problem of sudden change of the

pixel value occurs easily. The image details are lost, and there may

be mosaic or sawtooth noise (Wang et al., 2019b). This article

uses bidirectional interpolation to replace the nearest neighbor

interpolation to improve this problem. It processes the four direct

neighbors near the sample point. The image quality is higher after

processing.

The Laplacian-transformed smoke image is added before

each convolutional layer in the encoder, and the main process of

the Laplacian pyramid fusion is shown in formula 5:

Li(I) � Gi(I) − up(down(Gi(I))) (5)

where I represents the original image containing smoke; i

represents the level pyramid. up(down(Gi(I))) represents the

up-sampled lower-layer Gaussian sampled image; and Gi(I)
represents the Gaussian sampled image.

As shown in Figure 4, to smoothly image the image to

different frequency bands, we performed Gaussian down-

sampling on the endoscopic image. As shown in the color

endoscopic image, as the number of Gaussian sampling

increases, the size of the endoscopic image becomes smaller.

But it can retain the more important pieces of information in the

image. For a Laplacian-transformed image of a specific size,

Gaussian down-sampling is performed according to the

specified scale, and then the Laplacian pyramid fusion image

is obtained. As shown in the black and white image, the Laplacian

pyramid fusion image (in order to make the image easy to

observe, the brightness value of the Laplacian fusion image is

increased) effectively retains the line and edge information of the

image. The size is the same as the U-Net down-sampling size.

Therefore, it can be directly superimposed and spliced with the

input feature image in the network and then be sent to the

network for training. Finally, this article splices it to the

corresponding size of the convolutional layer to participate in

training.

2.1.4 CBAM attention mechanism
The CBAM attention mechanism module is lightweight and

effective. Therefore, we inserted the CBAM attention mechanism

module in the last five layers of the decoder; following the

network to participate in the training process to improve the

feature selection performance of the model. For any input

feature, CBAM obtains attention features along two

independent dimensions of channel and space. The original

input feature is optimized by multiplying the attention feature

with the original input feature image. The specific process is as

follows: for the input feature image F ∈ RCpHpW of any size,

CBAM will calculate a one-dimensional channel feature image

Mc ∈ RCp1p1. A two-dimensional spatial feature image

Mc ∈ R1pHpW is derived in the blue part of Supplementary

Figure S1. The orange part is shown in formulas 6 and 7. The

blue part of the channel information and the orange part of the

spatial information are fused with the original input feature to

obtain the optimized input feature. This feature is used as the

next input to the convolutional layer.

F′ � Mc(F) ⊗ F (6)
F″ � Ms(F′) ⊗ F′ (7)

We treat each channel of input features as a feature detector,

as shown in the blue part of Supplementary Figure S1. Channel

attention is used to pay attention to the content of the input

image, so the features are compressed into a “pipe”. Observe the

image content that still exists after the reduction, and find its

calculation method as follows: First, average the pooling and

summing of the input features according to their feature-stacking

direction. Convolution is performed after max pooling, followed

by the activation of the result of the convolution, and finally the

feature fusion. As shown in formulas 8 and 9:

Mc(F) � σ(MLP(AvgPool(F)) +MLP(MaxPool(F))) (8)
Mc(F) � σ(W1(W0(Fc

avg)) +W1(W0(Fc
max))) (9)

where W0 ∈ RC/rpC and W1 ∈ RCpC/r, using ReLU as the

activation function after W0.

Channel attention pays attention to the key positions of the

image. Spatial attention compresses the feature dimension into
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an “image”, which is convenient for the neural network to

identify the position of the image object. As shown in the

orange part of Supplementary Figure S1, two different feature

descriptions Fs
max ∈ R1pHpW and Fs

avg ∈ R1pHpW are obtained by

using max pooling and average pooling in the dimension of the

channel, and then, the aggregation operation is used to generate

the spatial feature image Ms(F) ∈ RH*W. As shown in formulas

10 and 11:

Ms � σ(f7p7([AvgPool(F);MaxPool(F)])) (10)
L � ∑

xy

∣∣∣∣Ioriginal(x, y) − Idesmoked(x, y)
∣∣∣∣ (11)

FIGURE 4
Laplacian image pyramid decomposition.

FIGURE 5
Flowchart of the parallax estimation algorithm.
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2.2 A method for estimating binocular
disparity in endoscope is proposed

The parallax estimation method of a binocular endoscopic

image based on self-supervised deep learning is shown in

Figure 5. The corrected left and right images are used as

inputs. The left image is used as a standard input into a

convolutional neural network for training. The left and right

original images are used as labels to provide supervision

information for the network.

Step 1: The corrected left and right images are taken as the

training images, and the left image is sent into the neural network

for training. Then, the initial left and right parallax images are

obtained by a CNN non-linear function fitting.

Step 2: The left and right parallax images obtained from the

network can be regarded as the deviation between the left and

right views. So, the virtual right image can be obtained by

combining the original left image and the left parallax

through bilinear interpolation. The virtual left image can be

obtained by combining the original right image and the right

parallax.

Step 3: Reverse propagation is carried out by comparing the

difference between the virtual left view and the real left view and

between the virtual right view and the real right view.

Appropriate parameters can be obtained for each layer of the

network.

2.2.1 CBAM attention mechanism
The encoder is used to construct the U-NET structure with

ResNet as the convolutional layer of the network, extracting the

features of endoscope images. The size of the images is restored to

the original size through the decoder. Specifically, the encoder

first preprocesses the convolution for the inputted RGB images,

with a convolution kernel size of 7 × 7, step length of 2, and zero

fill of 3. After preprocessing, the image is batch normalized,

followed by 4 convolutions with a convolution kernel of 3 × 3.

After 5 convolutions, the feature dimensions of the convolution

kernel size are 16, 32, 64, 128, and 256.

Multi-scale features are particularly important in machine

vision, which can image features to multiple frequency domains

and be conducive to keeping detailed features of images. Focusing

on medical endoscope images that require highly detailed

features, an HS-Resnet containing multi-scale features is

adopted (Godard et al., 2017). It contains a hierarchical

separation module embedded in the convolutional module of

the deep network, where HSB can effectively improve the

performance of the network and HS-ResNet 50 can achieve

81.28% of the datasets on ImageNet, exceeding the current

optimal effect of ResNet. As shown in the Figure 6, HS-Resnet

is composed of multiple segmentation and splicing operations, of

which the hierarchical segmentation and splicing operations

together constitute the HSB multi-scale feature extractor.

HSB contains two main operations: split and concatenate.

Among these two, split is used for feature grouping and to make

the two groups after grouping have the same number of channels.

When the number of features to be grouped is odd and the

channel number of the two groups after the split operation is

different, one part can be regarded directly as the output,

equivalent to identity imaging, and the other part can be used

as the input to the next convolution layer for a more in-depth and

detailed feature extraction. The concatenate operation fuses

features with the same size but different contents so that

features with different convolution degrees can carry out

information interaction. When the concatenate operation

adopts a simple superposition operation, the characterization

ability of the original features can be better ensured.

Figure 6 shows the structure of HSB, where HS-Resnet uses a

deep residual module and HSB processes features in the 3 ×

3 convolution layer. The input features are divided into S groups

xi with the same number of channels after 1 × 1 convolution.

Then, after passing through a 3 × 3 convolution layer Fi() times,

xi becomes yi, which can be divided into yi,1, yi,2, yi,3, yi,4, and

yi,5. Among them, yi,1 is added directly to the layer and to the

output xi+1, similar to the green feature on the top. yi,2 is

segmented into two groups with yellow features after the

convolution operation, where one group is added to the layer

and to output xi+1. The other group is sent to the convolution

layer after matching with yi,3. Similarly, yi,3 is divided into two

groups with red features, where one group is added to the layer

and the output xi+1. The other group is sent to the convolution

layer to obtain the green feature after matching with yi,4. yi,4 is

processed same as yi,3. Finally, the feature of yi,5 after the

convolution operation will be taken as the last part of the

layer’s output. After such continuous processing, the features

are equivalent to more scale and deeper convolution. The small

receptive field in the final output feature can pay attention to the

detail part and enhance the processing ability of the network for

small features.

Figure 6 shows the situation in which s is set to 5. In fact, a

larger number of groups can achieve the extraction performance

of more scales. A larger number of channels means richer

features requiring more parameters. Therefore, it is necessary

to choose between the number of parameters and the capability

of feature extraction.

yi � {
xi i � 1

fi(xi ⊕ yi−1,2) 1< i≤ s (12)

HSB does not increase the number of parameters in the

network. Compared with a standard convolution, it even has

fewer parameters. The standard parameter complexity is shown

in Formula 13:

Pnormal � k × k × s × w × s × w � k2 × s2 × w2 (13)
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The complexity of HSB is shown in Formula 14:

PHSB �
⎧⎪⎪⎨
⎪⎪⎩

0, i � 1

k2 × w2 × (
2s−1 − 1

2s−1
+ 1) 1< i≤ s

(14)

It can be seen from the comparison between Formulas 13 and

15 that the complexity analysis of HSB is actually smaller than

that of an ordinary convolution.

k2 × w2 × (
2s−1 − 1
2s−1

+ 1)≤ k2 × w2 × (
2s−1 − 1
2s−1

+ s − 1)<

k2 × w2 × (s − 1 + s − 1) � k2 × w2 × (2s − 2)< k2 × w2 × s2

(15)

2.2.2 Multi-scale decoder
The decoder is the deconvolution process of the encoder,

aiming to restore the image to the original image size. The

decoder up-samples the image, which includes a 3 ×

3 deconvolution, to restore each layer of the image to the

same size as the decoder. The output feature dimensions of

each convolution are 256, 128, 64, 32, and 16. Bilinear sampling

has gradient locality, and may not converge to the global

minimum during the training process of the final disparity

estimation. Therefore, the disparity is extracted from the last

four layers of the filter during decoding. And then, the disparity

calculation loss function of each layer is fused into the final loss

function solution. Each layer calculates the loss function

according to different image sizes. Due to the severe

compression of low-resolution images, it is difficult to retain

important details of the image. Parallax discontinuities are prone

to occur in the weak repeating parts of the tissue structure,

because the photometric errors at these locations are blurred and

inaccurate. Inspired by binocular stereo vision, we improved the

loss function and reconstructed the disparity image in the last

four layers of the decoder with different image sizes. The loss

functions of different scales were calculated.

2.2.3 Improved loss function
1) Photometric reconstruction loss

Self-supervised learning mainly uses the disparity

relationship between the left and right images of the binocular

endoscopic image to establish a loss function (Godard et al.,

2019). The training loss is expressed as a photometric re-

projection loss, which is used to describe the difference

between the virtual viewpoint and the real view. The total loss

is obtained by adding the losses of all pixel points. The calculation

process of the loss function is shown in formula 16:

L(p) � ∑pt(It, I′t) (16)

It is the original image, I′t is the virtual view, and pt is the

difference between the two images. The total photometric loss is

obtained by combining the differences of all images (Zhao et al.,

2019). The structural similarity index SSIM is used to

characterize the photometric reconstruction error. The specific

calculation process is shown in formula 17:

pt(It, I′t) � α

2
(1 − SSIM(It, I′t)) + (1 − α)����It, I′t

����1 (17)

Among them, α is the weight coefficient between SSIM and

L1 norms, which can be obtained from training experience. We

set it as α = 0.85. During training, the model extracts image

features from the left image in the binocular laparoscopic image

to obtain the initial disparity. Then, it use the left image and the

FIGURE 6
HSB module.
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original image to linearly translate to get the virtual right image,

and then compare the real right image with the original right

image to get the loss. Image sampling is performed using Spatial

Transformer Networks (STN) (Jaderberg et al., 2015). The

original image is sampled with the disparity image as the

standard, and the STN takes the weighted sum of the

surrounding four pixels for each sampling point. Its

calculation process can be differentiated and can follow the

neural network to participate in the process of back propagation.

As shown in formula 16, the existing literature generally

averages the re-projection loss across all training images when

calculating the photometric reconstruction error for self-

supervised depth estimation. This has some problems in

consecutive images. Certain matching feature points do not

match in the occluded image. This leads to a large error in

photometric reconstruction. However, the loss function is

averaged, so that the two points cannot be correctly matched.

Then, the obtained disparity image or depth image is blurred.

Pixels that are easily occluded during continuous motion mainly

come from the boundaries of moving objects. For example, in the

process of laparoscopic surgery, the forceps move more

frequently and there will be a long-term or short-term

occlusion in the patient’s body. The background in the human

body cannot bematched. For the photometric reconstruction loss

of the same pixel appearing in different images, this article adopts

the minimum value instead of the average value to improve the

photometric loss. As shown in formula 18:

Lp � ∑
t′
pe(It, It′→t)0Lp � min

t′
pe(It, It′→t) (18)

For all pixels in an image, it is not necessary to calculate the

loss function in its entirety. We use an automatic masking

scheme that preserves points that move relative to the camera

and removes points that are stationary relative to the camera. For

example, in laparoscopic surgery, when the abdominal lens is

rotated, all pixels move with the lens. At this point, all pixel point

losses are calculated. When the abdominal lens remains

stationary, the background of the internal abdominal cavity

that the endoscope can look into is fixed. As the forceps

moves the abdominal tissue relative to the lens, only the

moving portion is counted when calculating the loss. The rest

of the points are removed, and the removed part is called a mask.

The mask is computed by the network. Masked pixels can be

characterized as a static camera, which is equivalent to being

relatively stationary with the camera, or can represent low-

texture areas.

This article uses the binary mask parameter μ ∈ {0, 1}.
Among all loss functions, μ is only related to the photometric

reconstruction loss, as shown in formula 19:

μ � [min
t′

pe(It, It′→t)< min
t′

pe(It, I′t)] (19)

2) Left–right consistency loss

Our proposed photometric reconstruction error can examine

the similarity between the original view and the virtual view. The

left and right consistency loss is used to measure the similarity

between the left and right disparity images generated by the

network. The disparity acquisitionmodule only has the left image

as input, but needs to predict the left and right binocular disparity

images. Therefore, the similarity between the left and right

disparity images needs to be constrained. A virtual right

disparity image can be obtained by linearly transforming the

left image disparity on each pixel using right image disparity. The

original right disparity image is compared with the virtual right

disparity image, and the L1 norm is obtained as the left–right

consistency loss. The left and right consistency losses can

constrain the left and right parallaxes to ensure the accuracy

and continuity of the parallax. In order to reconstruct the loss

obtained from the right disparity, we also calculated the loss to

reconstruct the left disparity during training, as shown in

formula 20:

Ll
lr �

1
N

∑
i,j

∣∣∣∣∣∣d
l
ij − dr

ij+dlij

∣∣∣∣∣∣ (20)

3) Edge-smoothing loss

There is a very strong connection between adjacent disparity

images. Constraining the transformation magnitude of disparity

through a loss function can effectively improve the problem of

discontinuous disparity. Parallax can also be locally smoothed.

We used the L1 norm to constrain the left and right disparities to

ensure continuous and smooth binocular disparity, as shown in

formula 21:

Ll
ds �

1
N

∑
i,j

∣∣∣∣∣zxdl
ij

∣∣∣∣∣e−
����zxIlij

���� +
∣∣∣∣∣zydl

ij

∣∣∣∣∣e−
����zyIlij

���� (21)

To sum up, the improved loss function is composed of the

aforementioned three types of loss functions, as shown in

formula 22:

L � μ(Lr
p + Ll

p) + λ(Ll
lr + Lr

rl + Ll
ds + Lr

ds) (22)

2.3 Evaluation method

In clinical applications, the doctor’s subjective evaluation is

the most important factor in judging the image quality. There is

no gold standard available for quantitative assessment especially

in laparoscopic and endoscopic images (Zhang et al., 2022).

Therefore, to verify the performance of tissue blood vessels,

brightness, and color enhancement, we define two evaluation
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metrics: 1) Peak Signal-to-Noise Ratio (PSNR), and 2) Structural

Similarity Index (SSIM).

PSNR and SSIMwere used to evaluate image quality. PSNR is

a measure of the quality of image reconstruction. The higher the

PSNR value, the better the image quality will be. The formula is as

follows:

MSE � 1
mn

∑
m−1

i�0
∑
n−1

j�0
[I(i, j) −K(i, j)]2 (23)

PSNR � 10 × log10(
MAX2

I

MSE
) (24)

where MSE represents the mean square error; MAX2
i represents

the maximum possible pixel value of the image; I(i, j) represents
the original image; and K(i, j) represents the noise image.

SSIM is used to measure the similarity of two images. The

larger the SSIM value, the more similar the two images are. The

formula is as follows:

SSIM(x, y) � [l(x, y) · c(x, y) · s(x, y)] (25)

l(x, y) � 2μxμy + c1

μ2x + μ2y + c1
(26)

c(x, y) � 2σxσy + c2
σ2x + σ2

y + c2
(27)

s(x, y) � σxy + c3
σxσy + c3

(28)

where μ represents the mean, σ represents the variance; and σxy
represents the covariance of x and y; c1 � (k1L)2 and c1 � (k2L)2
represent two constants, with k1 � 0.01 and k2 � 0.03; and L

represents the range of image pixels.

3 Results and discussion

3.1 Data set and training parameter
settings

Our experimental conditions are 64-bit Windows

10 operating system, using Intel(R) Core(TM) i7-10750H

CPU; 32 GB RAM; NVIDIA 12 GB 3080Ti GPU. Install

CUDA9.0 and use cuDNN7.0 for acceleration. On this basis,

the U-Net model is built on the Tensorflow1.10.0 framework, as

shown in Supplementary Table S1.

The dataset adopts the updated laparoscopic binocular

dataset from the Hamlin Center (Chen et al., 2017). The left

eye image is used for smoke cleaning. The binocular data are used

for disparity estimation. The experimental dataset has a total of

34,240 pairs of binocular laparoscopic training images and

7,000 pairs of test images. This article divides the training

images, of which 30,000 pairs of laparoscopic images are used

as training sets and 4,240 pairs of validation images. Since many

images in the laparoscopic dataset originally contain images of

smoke, we perform supervised learning after fogging the images.

The fog in the original image will affect the performance of the

model, so we selected images that do not contain fog from the

dataset to add fog. To ensure the reliability of the experimental

data, each round of experiments is tested on synthetic smoke

images and real smoke images. They were used in ten-fold cross-

validation experiments. After training and validation separately,

we used the test set to test, repeat this process ten times, and

finally take the average of the ten results as the evaluation of

algorithm accuracy. The synthetic image test set contained

1,000 images and the real smoke dataset contained

129 images. After fog rendering was performed on each image

as a training set, the rendered images were divided into two levels:

light fog and dense fog. During the training process, all images

were first resized to a fixed size of 256 × 128, and then input to the

model, the mean square error loss function was used, Adam is

used as the optimization, the batch is set to 16, and the initial

learning rate is set to 0.0001. The experiment adopts the control

variable method, and conducts four sets of experiments for two

levels of fog: including U-Net network, U-Net network plus

CBAM attention mechanism, U-Net network plus Laplace

transform, U-Net network plus CBAM attention mechanism,

and Laplace transform.

The average training time of each model group is 4.5 h.

According to the different levels of smoke and different model

combinations, when the average loss is reduced to 0.02–0.03 in the

light fog image training set, it will no longer decrease, and overfitting

will not occur. The average loss on the validation set drops to around

0.3 and no longer decreases. When the average loss is reduced to

0.03–0.04 in the training set of dense fog images, there is no drop

and no overfitting. The average loss on the validation set drops to

around 0.4 and no longer drops. After training, export the model.

This article can perform smoke purification on the synthetic image

dataset. In order to apply it to engineering practice, this article uses

the real dataset containing smoke; this model can purify real smoke.

3.2 Experiment results of dehazing of
laparoscopic images

In addition, the test results of the synthetic dataset are shown in

Figure 7. Figure 7A shows a synthetic smoke image, which is

characterized by thick smoke and blocking of the original tissue

structure. Figure 7B shows the results of using the original U-NET.

There is still some residual smoke and the effect is not good.We used

the Laplace pyramid transform to completely purify the smoke in

Figure 7C. But, the brightness and color saturation of the bright parts

of the original image were reduced. The smoke can be effectively

purified with good color retention after the Laplacian pyramid

transform is added in Figure 7D and Figure 7E.

In order to verify the validity of the model, we used the light

fog dataset to conduct comparison experiments with other

parameter settings under the same control experiment. The

results are shown in Table 1. The training loss of adding the
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CBAM module alone is 0.023, and adding the Laplace transform

alone is 0.038. In the case of Laplacian pyramid transform and

the CBAM attention mechanism, the training loss of the model

was 0.026. The CBAM module can better optimize the model. In

terms of processing time, the CBAM module achieved a good

result of 106.4pfs, and the best PSNR value was 31.435 dB. On the

SSIM index, the experiment of adding the Laplacian pyramid

obtained the best effect of 0.98.

3.3 Three-dimensional display experiment

Resnet50 was used for training; the training time was 7–8 h;

the final loss obtained by training was 0.06. When HS-Resnet50

was used for training, the final loss was about 0.05. There was no

overfitting in both schemes. The loss of HS-Resnet50 was lower,

and the model training effect was better.

Qualitative test results are shown in Figure 8. Figure 8A and

Figure 8C show the endoscope test images. Figure 8B and

Figure 8D show the RGB parallax images obtained using the

HS-Resnet model. It can be seen from the test images that the

parallax images generated by the proposed model are complete

and continuous, without any void phenomena. In the parallax

images, a light-colored part is an object close to the camera and a

dark-colored part is an object far from the camera. It can be

confirmed from the original image that the distance relationship

in the parallax images generated by this model is accurate.

As shown in Figure 9, the binocular endoscope depth-estimation

algorithm based on the improved HS-Resnet model can effectively

obtain the disparity image while retaining the image details. The

blood vessels in the abdominal cavity in Figure 9A are well preserved

in the parallax Figure 9B. The original tissue texture of the image can

be observed through the parallax image. The blood vessel

information is very important in medical images, highlighting the

blood vessels in the image and more. More details can also prevent

doctors from accidentally injuring patients.

Figure 10 shows the influence of smoke on disparity

estimation. Figure 10A represents the synthetic smoke

image, and it can be seen from the image that the smoke

FIGURE 7
Synthetic smoke laparoscopic images and purified images. (A) Laparoscopic image with synthetic smoke and after purification; (B)
Laparoscopic image with U-NET; (C) Laparoscopic image with U-NET + BAM; (D) Laparoscopic image with U-NET + Laplace; (E) Laparoscopic
image with U-NET + CBAM + Laplace.

TABLE 1 Model performance verification.

Model PSNR SSIM PFS Loss

U-Net 30.522 0.936 72.256 0.045

U-Net + CBAM 31.435 0.966 106.40 0.023

U-Net + Laplace 31.126 0.977 74.074 0.038

U- Net + CBAM + Laplace 31.045 0.980 90.191 0.026
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covers the front of the abdominal image. Figure 10B

represents the image after chapter 3 smoke purification; it

can be seen from the image that it no longer contains smoke.

Figure 10C shows that the disparity value is obtained by

performing a depth estimation on the image containing

smoke. Due to the occlusion of the smoke, the disparity

estimation is relatively blurred. The color is darker and it is

difficult to distinguish the edge information. There are large

black areas in the image that cannot be identified. Figure 11D

shows the parallax estimation of the cleaned image compared

with Figures 10C, D is lighter in color and easier to observe.

The edge information image is clearer. The parallax

estimation model in Figure 10C is occluded by smoke,

which makes it difficult for the parallax estimation model

to estimate the specific depth of human tissue. The parallax

can be accurately estimated after the smoke is purified.

3.4 Smoke removal model performance
verification

The CBAM attention module can effectively improve various

indicators of the model. The Laplacian pyramid transform can

better retain image details. The experimental results on real

images are shown in Figure 11, and it can be seen from

Figure 11A, Figure 11C, and Figure 11A that in surgery, real

smoke generally blocks the doctor’s sight and fuzzes up the real

vision in the scene. After removal, Figure 11B, Figure 11D, and

Figure 11F show that the image processed using this model can

purify smoke in the figure so that the fuzzy images are clearer.

In each subimage, the left is a smoke image randomly

captured from a real surgery video and the right is the smoke

removal result of the CBAM + Laplace image pyramid fusion +

U-NET model.

FIGURE 8
Parallax estimation results. (A,C): endoscopic test images. (B,D): the parallax image obtained using the HS-RESNET.

FIGURE 9
Details of the parallax estimation. (A): Raw endoscope image; (B) proposed model parallax.

Frontiers in Physiology frontiersin.org12

Zhang et al. 10.3389/fphys.2022.994343

39

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.994343


The first image in each subimage is a smoke image

randomly selected from a synthetic smoke dataset; the

second image shows the smoke removal results of the basic

U-NET model; the third image shows the smoke removal

results of the CBAM + U-NET model; the fourth image shows

the smoke removal results of the Laplacian image pyramid

fusion + U-NET model; and the fifth image shows the smoke

removal results of the CBAM + Laplacian image pyramid

fusion + U-Net model.

To verify the effectiveness of this model, we compared the

frames per second (fps) of this article with six other methods. As

shown in Table 2, our 90.19 (Fps) is inferior to GAN. But it achieves

the best results on two important metrics (PSNR and SSIM) in

Figure 12. The requirements for clinical endoscopic surgery have

been met.

Figure 12A shows the PSNR comparison between our method

and the other six methods. Figure 12B shows the SSIM comparison

between ourmethod and the other six methods. Bolkar et al. (Bolkar

FIGURE 10
The effect of smoke on disparity estimation. (A) Synthetic smoke images; (B) smoke-removed images; (C) disparity images of the smoke
containing images; (D) disparity images of the smoke-free images.

FIGURE 11
Laparoscopic images of real smoke and images after removal. (A–F) are randomly selected from the experimental results. Laparoscopic images
of real smoke (left sub-panels) and images after smoke removal by U-Net + CBAM + Laplace pyramid fusion (right sub-panels).
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et al., 2018) derived the atmospheric diffusion model and

implemented it with a neural network. It is an earlier classic

method in the field of smoke purification, so the results of

various indicators are lower compared with recent methods.

Chen et al. used a synthetic dataset. The U-Net architecture is

used to achieve smoke purification. Among the several methods

compared, the time performance is better. But the purification effect

on real smoke images is poor. Shin et al. (Shin et al., 2019) adopted

the radiation reflectance optimization scheme. The processing speed

of a single image is the slowest. Wang et al. adopted the U-Net

architecture and improved the down-sampling part. Compared with

the first three methods, the PSNR index is greatly improved. Isola

et al. (2017) used the adversarial neural network method, and

achieved the best results in time performance. Salazar et al.

(Salazar-Colores et al., 2020) used an adversarial neural network

and took the dark channel-detected image as input and achieved

good performance in various indicators. We used PSNR and SSIM

in PSNR and SSIM. The two indicators have achieved the best results

among several methods. In terms of time performance, the time

indicator can achieve a stable display playback without jitter, so it

can be applied in real-time systems.

3.5 Three-dimensional model
performance verification

There are few literature studies on disparity estimation of

endoscopic images. The evaluation indicators are not unique.

Basic (Ye et al., 2017) used DeConvNet as the basis of the model

network and adopted a self-supervised scheme. The disparity

image obtained by training endoscopic images and the original

image are used as the comparison standard, taking the structural

similarity SSIM as the indicator. ELAS (Geiger et al., 2010)

triangulated the matching points of the binocular image,

making the surrounding points easier to match. SPS

(Yamaguchi et al., 2014) proposed a new target optimization

algorithm to solve the occlusion problem. The algorithm

preserved the connectivity of image segments and utilized

shape regularization in the form of boundary lengths. The

algorithm finally realized image segmentation and disparity

estimation for natural scene images. Siamese (Xu et al., 2019)

is a stereo-automatic encoding and decoding structure, which is

similar to monocular. The input codec structure is Basic. The

initial disparity image is obtained from the codec structure. Then,

TABLE 2 Processing time comparison.

Methods Model Training images Time (fps) Platform

Bolkar et al. CNN + DCP Abdominal Cavity Images 32.40 Python(Caffe)

Chen et al. CNN Abdominal Cavity Images 89.14 Python(TensorFlow)

Shin et al. physical method Natural Images 1.28 Matlab

Wang et al. U-Net Abdominal Cavity Images 24.00 Python(Keras)

Isola et al. GAN Abdominal Cavity Images 120.0 Python(Pytorch)

Salazar et al. GAN + DCP Abdominal Cavity Images 92.19 Python(Pytorch)

Our Proposed method U-Net + CBAM + Laplace Abdominal Cavity Images 90.19 Python(TensorFlow)

FIGURE 12
PSNR and SSIM comparison: (A) PSNR comparison; (B) SSIM comparison.
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the virtual view is obtained by the STN network. The loss is

obtained by comparing the difference between the real view and

the virtual view. One layer gets suitable parameters. Compared

with the method proposed, the Siamese results obtained by

binocular images are better than the Basic results obtained by

monocular images. The SSIM effect reaches 0.726 ± 0.085, which

is better than the Siamese results as shown in Table 3:

The parallax image obtained by SLAM is the true value.

Using SSIM and PSNR as standards, we compared the predicted

parallax value with the true value. The results are shown in

Table 4. Our proposed average SSIM and PSNR results were

0.8826 ± 0.0678 and 17.2594 ± 1.6254, respectively. The results

showed that the proposed method is superior to other methods.

The experiments use the binocular heart data in the Hamlin

endoscopy dataset. This dataset originally did not contain ground

truth disparity values. Several algorithms are compared in Table 5.

Godard et al. obtained the disparity image by extracting image

features through CNN in the natural scene dataset. The parallax

information from the left image to the right image is imaged to obtain

the virtual view. The loss value is obtained by comparing the virtual

view with the real view. Themodel results obtained from this training

perform well on natural scene datasets. Wang et al. (Wang et al.,

2018b) used variational disparity estimation technology to minimize

the global energy function of the entire image. Based on the grayscale

and gradient constants, they supposed that a data term and a local and

non-local smoothing termwere defined to construct the cost function.

The real disparity image was obtained. Stoyanov et al. (Stoyanov et al.,

2010) and Luo et al. (Luo et al., 2019) used two encoders and decoders

to extract the disparity images for the left and right images,

respectively. They used the traditional binocular algorithm AD-

CENSUS to generate unsupervised training. The surrogate

disparity labels, which guide the training process, achieved better

results than the previous two literature studies on both MAE and

RMSE metrics. This article compares the results with the

aforementioned four methods. From the experimental results, we

find that our result has a certain improvement in MAE. The RMSE

index has a larger improvement than the aforementioned methods.

In endoscopic image evaluation, the doctor’s subjective

evaluation is still the important method to verify the image

quality. The establishment of the quantitative assessment is a

challenging task since there are no available gold standards. More

specialized evaluations are needed to validate the effectiveness of

3D reconstruction methods for endoscopic images. Therefore, we

invited 10 chief physicians from the Affiliated Hospital of

Southwest Medical University with more than 5 years of

laparoscopic surgery experience to score the 3D images. The

subjective evaluation criteria referring to the Double Stimulus

Continuous Scale (DSCQS), 3D effect, viewing comfort, and

acceptability were rated on a scale of 1 (worst) to 5 (best). A

score of 1 indicated a non-diagnostic image, and a score of

5 indicated an excellent diagnostic image quality. Pathological

invariance was scored with 0 (change) or 1 (no change).

The evaluation of the 10 clinicians is shown in Table 6; our

method received the best subjective quality evaluation. 3D effect,

viewing comfort, and acceptability are better than other methods,

and the improved loss function can better retain the details of

medical images. It is proved that the proposed 3D reconstruction

algorithm can be applied to clinical scenarios.

In this article, a total of 1,200 endoscopic images in the

dataset were processed. The average processing time per image is

0.0275 s and 36fps was obtained. Therefore, it can meet the real-

time requirements of a 3D display system.

The improved U-NET network applied to an original

endoscopic image can obtain a better parallax image with

higher accuracy to obtain a better three-dimensional display

effect. Moreover, void-filling and reverse imaging can be

performed on the parallax image to recover a better right

view, color offset can be performed on the left and right

views, and the 3D display effect can be seen by wearing red

and blue lenses, as shown in Figure 13.

We validated the effectiveness of our method on the binocular

laparoscopy dataset. For any image on the binocular laparoscopic

dataset, an adaptive neural network endoscopic three-dimensional

reconstruction method is proposed. If there is smoke, first use the

TABLE 3 SSIM comparison.

Model Basic ELAS SPS Siamese Our proposed

Mean SSIM 0.555 0.473 0.547 0.604 0.726

Std SSIM 0.106 0.079 0.092 0.106 0.085

TABLE 4 PSNR and SSIM comparison.

Model Basic Autoencoder Our proposed

Mean SSIM 0.5414 ± 0.0709 0.8349 ± 0.0523 0.8826 ± 0.0678

Mean PSNR 7.7650 ± 1.3686 14.4957 ± 1.9676 17.2594 ± 1.6254

TABLE 5 MAE and RMSE comparison.

Model Methods MAE, mm RMSE, mm

Heart 1 Godard et al 2.39 ± 0.62 2.99 ± 0.61

Wang et al 2.16 ± 0.65 -

Stoyanov et al 2.36 ± 0.92 3.88 ± 0.87

Luo et al 1.84 ± 0.40 2.69 ± 0.58

Our Proposed 1.65 ± 0.35 2.45 ± 0.52

Heart 2 Godard et al 1.79 ± 0.40 2.65 ± 0.28

Wang et al 2.14 ± 0.83 -

Stoyanov et al 3.20 ± 1.15 4.85 ± 1.82

Luo et al 1.49 ± 0.41 1.90 ± 0.38

Our Proposed 1.45 ± 0.40 1.62 ± 0.42
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TABLE 6 Subjective evaluation and comparison of the 3D reconstruction effect. (Mean ± STANDARD, deviation).

Methods 3D Effect Viewing comfort Invariance Acceptability

Godard[27] 3.8 ± 0.48 3.5 ± 0.11 0.3 ± 0.15 3.2 ± 0.21

Wang[40] 3.7 ± 0.72 3.6 ± 0.82 0.3 ± 0.55 3.5 ± 0.74

Stoyanov[41] 3.9 ± 0.91 3.8 ± 0.25 0.4 ± 0.51 3.8 ± 0.11

Luo[42] 4.1 ± 0.40 4.0 ± 0.35 0.6 ± 0.51 4.1 ± 0.63

Proposed 4.1 ± 0.69 4.1 ± 0.11 0.7 ± 0.12 4.2 ± 0.38

FIGURE 13
Red and blue 3D display images. The left image in each sub-image is the original view, and the right image is the chromatic 3D display image. (A–D) are
randomly selected from the experimental results.

FIGURE 14
3D display of color difference; (A) Red Component; (B) Offset Red Component; (C) Blue Component; (D) Green Component; (E) Raw
endoscope image; (F) 3D Display.
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smoke purification algorithm to obtain the purified image, and

secondly obtain the disparity image. The result of 3D display is

shown in Figure 14. Figure 14A represents the red component of the

original image. Figure 14B represents the red component after fusion

of parallax. There is a slight difference between Figure 14A and

Figure 14B. It is difficult to observe with the naked eye. We need to

carefully observe the slight difference between the red boxes on the

right side of the image. There are certain wrinkles in Figure 14B. It

shows that the red component has moved after parallax stacking.

Figure 14B is a virtual image from another viewpoint. Figure 14C and

Figure 14D represent the blue and green components separated from

the original image, respectively, and Figure 14E represents the original

image. The RGB images are shown in Figure 14A, Figure 14C, and

Figure 14D, respectively. Figure 14F represents the color-difference

three-dimensional display image. FromFigure 14, we canfind that the

red–blue parallax movement range becomes larger, which is more

suitable for human eye observation.

4 Conclusion

To meet the practical application requirements of binocular

endoscopic medical images, this article organically combines a

global expansion with a local adaptive expansion of the network

structure. Aiming at the lack of real parallax in unsupervised

binocular endoscopic images, we proposed a 3D reconstruction

scheme for adaptively processing the smoke images. Subjective

evaluation and objective evaluation were used for verification.

The 3D effects in the subjective evaluation obtained an optimal

value of 4.2 ± 0.38. In the de-hazing tests on real datasets, our

method achieved an SSIM of 0.980, a PSNR of 31.545 dB, an

average running speed of 90.191 fps, and a much lower training

time than similar methods. The proposed self-supervised

disparity estimation method also outperformed the existing

methods, with an SSIM of 0.726 ± 0.085 and a PSNR of

17.2594 ± 1.6254 dB; MAE 1.45 ± 0.40, RMSE 1.62 ± 0.42. It

meets the needs of medical images in various indicators and

solves the real-time problem of clinical operations. The present

article can therefore guide the development of endoscopy devices.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material; further

inquiries can be directed to the corresponding authors.

Author contributions

GZ: Investigation, Methodology, Software, Validation,

Visualization, and Writing—original draft. ZH, EC, ZL, and

JL: Investigation, Methodology, Software, and Supervision. YP

and WS: Conceptualization, Data curation, Formal analysis,

Funding acquisition, Methodology, Project administration,

Resources, Supervision, Validation, and Writing—review and

editing.

Funding

This work was supported by the Doctoral Innovative Talents

Project of Chongqing University of Posts and

Telecommunications ([BYJS202107). Chongqing Natural

Science Foundation of China [grant number cstc2021jcyj-

bsh0218]; The National Natural Science Foundation of China

(Grant No. U21A20447 and 61971079); The Basic Research and

Frontier Exploration Project of Chongqing (Grant No.

cstc2019jcyjmsxmX0666); Chongqing technological innovation

and application development project(cstc2021jscx-gksbx0051);

The Innovative Group Project of the National Natural Science

Foundation of Chongqing (Grant No. cstc2020jcyj-cxttX0002),

and the Regional Creative Cooperation Program of Sichuan

(2020YFQ0025); The Science and Technology Research

Program of Chongqing Municipal Education

Commission(KJZD-k202000604).

Acknowledgments

We would like to thank Smart Medical System and Core

Technology Laboratory.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary Material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fphys.

2022.994343/full#supplementary-material

Frontiers in Physiology frontiersin.org17

Zhang et al. 10.3389/fphys.2022.994343

44

https://www.frontiersin.org/articles/10.3389/fphys.2022.994343/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2022.994343/full#supplementary-material
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.994343


References

Antal, B. (2016). Automatic 3d point set reconstruction from stereo laparoscopic
images using deep neural networks. Available at: http://arXiv.org/abs/1608.00203.
doi:10.48550/arXiv.1608.00203

Besse, F., Rother, C., Fitzgibbon, A., and Kautz, J. (2014). Pmbp: Patchmatch
belief propagation for correspondence field estimation. Int. J. Comput. Vis. 110 (1),
2–13. doi:10.1007/s11263-013-0653-9

Bolkar, S., Wang, C., Cheikh, F. A., and Yildirim, S. (2018). “Deep smoke removal
from minimally invasive surgery videos,” in Proceeding of the 2018 25th IEEE
International Conference on Image Processing, Athens Greece: ICIP, 3403–3407.
doi:10.1109/ICIP.2018.8451815

Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., and Rueckert, D.
(2019a). Self-supervised learning for medical image analysis using image context
restoration. Med. Image Anal. 58, 101539. doi:10.1016/j.media.2019.101539

Chen, L., Tang, W., and John, N. W. (2017). Real-time geometry-aware
augmented reality in minimally invasive surgery. Healthc. Technol. Lett. 4 (5),
163–167. doi:10.1049/htl.2017.0068

Chen, L., Tang, W., John, N. W., Wan, T. R., and Zhang, J. J. (2019b). De-
smokeGCN: Generative cooperative networks for joint surgical smoke detection
and removal. IEEE Trans. Med. Imaging 39 (5), 1615–1625. doi:10.1109/TMI.2019.
2953717

Chen, X., Wang, X., Zhang, K., Fung, K. M., Thai, T. C., Moore, K., et al. (2022).
Recent advances and clinical applications of deep learning in medical image
analysis. Med. Image Anal. 79, 102444. doi:10.1016/j.media.2022.102444

Feng, Y., Liang, Z., and Liu, H. (2017). “Efficient deep learning for stereo
matching with larger image patches,” in Proceeding of the 2017 10th
International Congress on Image and Signal Processing BioMedical Engineering
and Informatics (CISP-BMEI), Shanghai, China: IEEE, 1–5. doi:10.1109/CISP-
BMEI.2017.8301999

Garg, R., Bg, V. K., Carneiro, G., and Reid, I. (2016). Unsupervised cnn for single
view depth estimation: Geometry to the rescue. Eur. Conf. Comput. Vis. 9912,
740–756. doi:10.1007/978-3-319-46484-8_45

Geiger, A., Roser, M., and Urtasun, R. (2010). “Efficient large-scale stereo
matching,” in Proceeding of the Asian Conference on Computer Vision, Berlin
Heidelberg: Springer, 25–38. doi:10.1007/978-3-642-19315-6_3

Godard, C., Mac Aodha, O., and Brostow, G. J. (2017). “Unsupervised monocular
depth estimation with left-right consistency,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu
HI, USA: IEEE, 270–279. doi:10.1109/CVPR.2017.699

Godard, C., Mac Aodha, O., Firman, M., and Brostow, G. J. (2019). “Digging into
self-supervised monocular depth estimation,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, Seoul Korea: IEEE, 3828–3838.
doi:10.48550/arXiv.1806.01260

Hu, M., Penney, G., Figl, M., Edwards, P., Bello, F., Casula, R., et al. (2012).
“Reconstruction of a 3D surface from video that is robust to missing data and
outliers: Application to minimally invasive surgery using stereo and mono
endoscopes. Med. Image Anal. 16, 597–611. doi:10.1016/j.media.2010.11.002

Huang, P. H., Matzen, K., Kopf, J., Ahuja, N., and Huang, J. B. (2018). “Deepmvs:
Learning multi-view stereopsis,” in Proceedings IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Salt Lake City UT USA: IEEE, 2821–2830.
doi:10.1109/CVPR.2018.00298

Isola, P., Zhu, J., Zhou, T., and Efros, A. A. (2017). “Image-to-Image Translation
with Conditional Adversarial Networks,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA: IEEE, 5967–5976.
doi:10.1109/CVPR.2017.632

Jaderberg, M., Simonyan, K., and Zisserman, A. (2015). Spatial transformer
networks.” in Proceedings of the 28th International Conference on Neural
Information Processing Systems 2, 2017–2025. doi:10.5555/2969442.2969465

Kendall, A., Martirosyan, H., Dasgupta, S., Henry, P., Kennedy, R., Bachrach, A.,
et al. (2017). End-to-end learning of geometry and context for deep stereo
regression,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 66–75. doi:10.1109/ICCV.2017.17

Kotwal, A., Bhalodia, A., and Awate, S. P. (2016). “Joint desmoking and denoising
of laparoscopy images,” in Proceedings of the IEEE 13th International Symposium
on Biomedical Imaging (ISBI), Prague Czech Republic: IEEE, 1050–1054. doi:10.
1109/ISBI.2016.7493446

Li, T., Cheng, B., Ni, B., Liu, G., and Yan, S. (2016a). Multitask low-rank affinity
graph for image segmentation and image annotation. ACM Trans. Intell. Syst.
Technol. 7 (4), 1–18. doi:10.1145/2856058

Li, T., Meng, Z., Ni, B., Shen, J., and Wang, M. (2016b). Robust geometric ℓp-
norm feature pooling for image classification and action recognition. Image Vis.
comput. 55, 64–76. doi:10.1016/j.imavis.2016.04.002

Li, T., Wang, Y., Hong, R., Wang, M., and Wu, X. (2018). pDisVPL: probabilistic
discriminative visual part learning for image classification. IEEE Multimed. 25 (4),
34–45. doi:10.1109/MMUL.2018.2873499

Luo, H., Hu, Q., and Jia, F. (2019). Details preserved unsupervised depth
estimation by fusing traditional stereo knowledge from laparoscopic images.
Healthc. Technol. Lett. 6 (6), 154–158. doi:10.1049/htl.2019.0063

Luo,W., Schwing, A. G., and Urtasun, R. (2016). Efficient deep learning for stereo
matching. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 5695–5703.
doi:10.1109/CVPR.2016.614

Mahmoud, N., Cirauqui, I., Hostettler, A., Doignon, C., Soler, L., Marescaux, J.,
et al. (2016). ORBSLAM-based endoscope tracking and 3D reconstruction. Int.
Workshop Computer-assisted Robotic Endosc. 10170, 72–83. doi:10.1007/978-3-
319-54057-3_7

Pang, J., Sun, W., Ren, J. S., Yang, C., and Yan, Q. (2017). “Cascade residual
learning: A two-stage convolutional neural network for stereo matching,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Venice Italy: IEEE, 887–895. doi:10.1109/ICCVW.2017.108

Penza, V., Ciullo, A. S., Moccia, S., Mattos, L. S., and DeMomi, E. (2018). Endoabs
dataset: endoscopic abdominal stereo image dataset for benchmarking 3d stereo
reconstruction algorithms. Int. J. Med. Robot. 14 (5), e1926. doi:10.1002/rcs.1926

Penza, V., Ortiz, J., Mattos, L. S., Forgione, A., and DeMomi, E. (2016). Dense soft
tissue 3D reconstruction refined with super-pixel segmentation for robotic
abdominal surgery. Int. J. Comput. Assist. Radiol. Surg. 11 (2), 197–206. doi:10.
1007/s11548-015-1276-0

Qiu, L., and Ren, H. (2020). Endoscope navigation with SLAM-based registration
to computed tomography for transoral surgery. Int. J. Intell. Robot. Appl. 4 (2),
252–263. doi:10.1007/s41315-020-00127-2

Salazar-Colores, S., Jiménez, H. M., Ortiz-Echeverri, C. J., and Flores, G. (2020).
Desmoking laparoscopy surgery images using an image-to-image translation
guided by an embedded dark channel. IEEE Access 8, 208898–208909. doi:10.
1109/ACCESS.2020.3038437

Shin, J., Kim, M., Paik, J., and Lee, S. (2019). Radiance–reflectance combined
optimization and structure-guided $\ell _0$-Norm for single image dehazing. IEEE
Trans. Multimed. 22 (1), 30–44. doi:10.1109/TMM.2019.2922127

Shurrab, S., and Duwairi, R. (2022). Self-supervised learning methods and
applications in medical imaging analysis: a survey. PeerJ Comput. Sci. 8, e1045.
doi:10.7717/peerj-cs.1045

Sidorov, O., Wang, C., and Cheikh, F. A. (2020). Generative smoke removal.
machine learning for health workshop. PMLR 116, 81–92. doi:10.48550/arXiv.1902.
00311

Stoyanov, D., Scarzanella, M. V., Pratt, P., and Yang, G. Z. (2010). “Real-time
stereo reconstruction in robotically assisted minimally invasive surgery,” in
Proceedings of the International Conference on Medical Image Computing and
Computer-Assisted Intervention, Berlin Heidelberg: Springer, 275–282. doi:10.
1007/978-3-642-15705-9_34

Taleb, A., Lippert, C., Klein, T., and Nabi, M. (2021). Multimodal self-supervised
learning for medical image analysis. Int. Conf. Inf. Process. Med. Imaging 12729,
661–673. doi:10.1007/978-3-030-78191-0_51

Tosi, F., Aleotti, F., Poggi, M., and Mattoccia, S. (2019). “Learning monocular
depth estimation infusing traditional stereo knowledge,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach CA
USA: IEEE, 9799–9809. doi:10.1109/CVPR.2019.01003

Venkatesh, V., Sharma, N., Srivastava, V., and Singh, M. (2020). Unsupervised
smoke to desmoked laparoscopic surgery images using contrast driven Cyclic-
DesmokeGAN. Comput. Biol. Med. 123, 103873. doi:10.1016/j.compbiomed.2020.
103873

Vijayanarasimhan, S., Ricco, S., Schmid, C., Sukthankar, R., and Fragkiadaki, K.
(2017). Sfm-net: learning of structure and motion from video. Available at; http://
arXiv.org/abs/1704.07804. doi:10.48550/arXiv.1704.07804

Wang, C., Alaya Cheikh, F., Kaaniche, M., Beghdadi, A., and Elle, O. J. (2018a).
Variational based smoke removal in laparoscopic images. Biomed. Eng. Online 17
(1), 139–218. doi:10.1186/s12938-018-0590-5

Wang, C., Cheikh, F. A., Kaaniche, M., and Elle, O. J. (2018b). Liver surface
reconstruction for image guided surgery.Med. Imaging 2018 Image-Guided Proced.
Robotic Interventions, Model. 10576, 576–583. doi:10.1117/12.2297398

Frontiers in Physiology frontiersin.org18

Zhang et al. 10.3389/fphys.2022.994343

45

http://arXiv.org/abs/1608
https://doi.org/10.48550/arXiv.1608.00203
https://doi.org/10.1007/s11263-013-0653-9
https://doi.org/10.1109/ICIP.2018.8451815
https://doi.org/10.1016/j.media.2019.101539
https://doi.org/10.1049/htl.2017.0068
https://doi.org/10.1109/TMI.2019.2953717
https://doi.org/10.1109/TMI.2019.2953717
https://doi.org/10.1016/j.media.2022.102444
https://doi.org/10.1109/CISP-BMEI.2017.8301999
https://doi.org/10.1109/CISP-BMEI.2017.8301999
https://doi.org/10.1007/978-3-319-46484-8_45
https://doi.org/10.1007/978-3-642-19315-6_3
https://doi.org/10.1109/CVPR.2017.699
https://doi.org/10.48550/arXiv.1806.01260
https://doi.org/10.1016/j.media.2010.11.002
https://doi.org/10.1109/CVPR.2018.00298
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.5555/2969442.2969465
https://doi.org/10.1109/ICCV.2017.17
https://doi.org/10.1109/ISBI.2016.7493446
https://doi.org/10.1109/ISBI.2016.7493446
https://doi.org/10.1145/2856058
https://doi.org/10.1016/j.imavis.2016.04.002
https://doi.org/10.1109/MMUL.2018.2873499
https://doi.org/10.1049/htl.2019.0063
https://doi.org/10.1109/CVPR.2016.614
https://doi.org/10.1007/978-3-319-54057-3_7
https://doi.org/10.1007/978-3-319-54057-3_7
https://doi.org/10.1109/ICCVW.2017.108
https://doi.org/10.1002/rcs.1926
https://doi.org/10.1007/s11548-015-1276-0
https://doi.org/10.1007/s11548-015-1276-0
https://doi.org/10.1007/s41315-020-00127-2
https://doi.org/10.1109/ACCESS.2020.3038437
https://doi.org/10.1109/ACCESS.2020.3038437
https://doi.org/10.1109/TMM.2019.2922127
https://doi.org/10.7717/peerj-cs.1045
https://doi.org/10.48550/arXiv.1902.00311
https://doi.org/10.48550/arXiv.1902.00311
https://doi.org/10.1007/978-3-642-15705-9_34
https://doi.org/10.1007/978-3-642-15705-9_34
https://doi.org/10.1007/978-3-030-78191-0_51
https://doi.org/10.1109/CVPR.2019.01003
https://doi.org/10.1016/j.compbiomed.2020.103873
https://doi.org/10.1016/j.compbiomed.2020.103873
http://arXiv.org/abs/1704
http://arXiv.org/abs/1704
https://doi.org/10.48550/arXiv.1704.07804
https://doi.org/10.1186/s12938-018-0590-5
https://doi.org/10.1117/12.2297398
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.994343


Wang, C., Mohammed, A. K., Cheikh, F. A., Beghdadi, A., and Elle, O. J.
(2019a) ,Multiscale deep desmoking for laparoscopic surgery, Med. Imaging
2019 Image Process. 10949, 505–513. doi:10.1117/12.2507822

Wang, Y., Lai, Z., Huang, G., Wang, B. H., Van Der Maaten, L., Campbell, M.,
et al. (2019b). “Anytime stereo image depth estimation on mobile devices,” in
Proceedings of the International Conference on Robotics and Automation (ICRA),
Montreal QC Canada: IEEE, 5893–5900. doi:10.1109/ICRA.2019.8794003

Woo, S., Park, J., Lee, J. Y., and Kweon, I. S. (2018). Cbam: convolutional block
attention module. Proc. Eur. Conf. Comput. Vis. (ECCV), 3–19. doi:10.1007/978-3-
030-01234-2_1

Xu, K., Chen, Z., and Jia, F. (2019). Unsupervised binocular depth prediction
network for laparoscopic surgery. Comput. Assist. Surg. 24 (1), 30–35. doi:10.1080/
24699322.2018.1557889

Yamaguchi, K., McAllester, D., and Urtasun, R. (2014). Efficient joint
segmentation, occlusion labeling, stereo and flow estimation. Eur. Conf.
Comput. Vis. 8693, 756–771. doi:10.1007/978-3-319-10602-1_49

Yang, B., and Liu, C. (2014). Robust 3 D motion tracking for vision-based control
in robotic heart surgery. Asian J. Control 16 (3), 632–645. doi:10.1002/asjc.785

Yang, D., and Sun, J. (2018). Proximal dehaze-net: a prior learning-based deep
network for single image dehazing,” in Proceedings of the European Conference on
Computer Vision (ECCV), 729–746. doi:10.1007/978-3-030-01234-2_43

Ye, M., Johns, E., Handa, A., Zhang, L., Pratt, P., and Yang, G. Z. (2017). Self-
supervised siamese learning on stereo image pairs for depth estimation in robotic
surgery. Available at; http://arXiv.org/abs/1705.08260. doi:10.48550/arXiv.1705.
08260

Yi, K. M., Trulls, E., Lepetit, V., and Fua, P. (2016). Lift: Learned invariant feature
transform. Eur. Conf. Comput. Vis. (ECCV) 9910, 467–483. doi:10.1007/978-3-319-
46466-4_28

Yin, Z., and Shi, J. (2018). “Geonet: Unsupervised learning of dense depth, optical
flow and camera pose,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Salt Lake City UT USA: IEEE, 1983–1992. doi:10.
1109/CVPR.2018.00212

Zhang, F., Prisacariu, V., Yang, R., and Torr, P. H. (2019). “Ga-net: Guided
aggregation net for end-to-end stereo matching,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach
CA USA: IEEE, 185–194. doi:10.1109/CVPR.2019.00027

Zhang, G., Lin, J., Cao, E., Pang, Y., and Sun, W. (2022). A medical endoscope
image enhancement method based on improved weighted guided filtering.
Mathematics 10 (9), 1423. doi:10.3390/math10091423

Zhao, S., Zhang, L., Shen, Y., Zhao, S., and Zhang, H. (2019). Super-resolution for
monocular depth estimation with multi-scale sub-pixel convolutions and a
smoothness constraint. IEEE Access 7, 16323–16335. doi:10.1109/ACCESS.2019.
2894651

Zhou, J., Lu, Y., Tao, S., Cheng, X., and Huang, C. (2021). E-Res U-Net: an
improved U-Net model for segmentation of muscle images. Expert Syst. Appl. 185,
115625. doi:10.1016/j.eswa.2021.115625

Zhou, T., Brown, M., Snavely, N., and Lowe, D. G. (2017). Unsupervised learning
of depth and ego-motion from video.” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 1851–1858. doi:10.1109/
CVPR.2017.700

Frontiers in Physiology frontiersin.org19

Zhang et al. 10.3389/fphys.2022.994343

46

https://doi.org/10.1117/12.2507822
https://doi.org/10.1109/ICRA.2019.8794003
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1080/24699322.2018.1557889
https://doi.org/10.1080/24699322.2018.1557889
https://doi.org/10.1007/978-3-319-10602-1_49
https://doi.org/10.1002/asjc.785
https://doi.org/10.1007/978-3-030-01234-2_43
http://arXiv.org/abs/1705
https://doi.org/10.48550/arXiv.1705.08260
https://doi.org/10.48550/arXiv.1705.08260
https://doi.org/10.1007/978-3-319-46466-4_28
https://doi.org/10.1007/978-3-319-46466-4_28
https://doi.org/10.1109/CVPR.2018.00212
https://doi.org/10.1109/CVPR.2018.00212
https://doi.org/10.1109/CVPR.2019.00027
https://doi.org/10.3390/math10091423
https://doi.org/10.1109/ACCESS.2019.2894651
https://doi.org/10.1109/ACCESS.2019.2894651
https://doi.org/10.1016/j.eswa.2021.115625
https://doi.org/10.1109/CVPR.2017.700
https://doi.org/10.1109/CVPR.2017.700
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.994343


Synergistic delivery of resveratrol
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nanoparticles by
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Nonalcoholic fatty liver disease (NAFLD) is related to the production of reactive

oxygen species (ROS) and oxidative stress, so antioxidant treatment can prevent

its further development. Ultrasmall copper-based nanoparticles (CuNPs) have

shownmultiple enzyme-like activities for scavenging oxygen species, providing

a new strategy for the treatment of inflammatory diseases. Resveratrol (Res), a

natural polyphenol compound, has attractedmuch attention due to its ability to

inhibit oxidative stress. We therefore aimed to first combine these two agents

for the treatment of NAFLD. However, due to the poor water solubility and

stability of Res, which is easilymetabolized in the intestine, the development of a

stable and effective carrier became the key to achieving a synergistic effect.

Liver-targeted nanocarriers loaded with bioactive compounds may provide a

more effective approach for the treatment of NAFLD. Therefore, we developed

a novel ultrasonic nanobubble carrying nucleic acid aptamers with liver

targeting properties, which has the advantages of a small molecular weight,

no immunogenicity, a low cost of synthesis, and high stability through chemical

modification. Res and the ultrasmall CuNPs were specifically delivered to liver

tissue to maximize therapeutic efficiency. This study found that the

combination of these two components can effectively treat inflammation in

NAFLD and suggested that liver-targeted NAFLD-specific aptamer-mediated

targeted ultrasound nanobubbles that can simultaneously deliver Res and

CuNPs may be a safe and effective new platform for NAFLD and other liver

diseases.
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ultrasonic, nanobubble, resveratrol, ultrasmall, copper-based, nanoparticles,
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1 Introduction

Nonalcoholic fatty liver disease (NAFLD) is now considered

one of the most common chronic liver diseases, affecting

approximately 25%–30% of people worldwide (Chachay et al.,

2014; Berman et al., 2017). Its manifestations range from simple

steatosis to liver injury, followed by liver fibrosis liver cirrhosis

and liver cancer development, and a series of diseases, so early

intervention has clinical significance (Kutlu et al., 2018). Recent

studies have shown that NAFLD is associated with excessive

production of reactive oxygen species (ROS) and oxidative stress,

and hepatocytes are eventually damaged by oxidative stress and

lipid peroxidation (Schwimmer, 2007; Lomonaco et al., 2013;

Braud et al., 2017; Kasper et al., 2021; Ding et al., 2022).

At present, there is still a lack of effective therapeutic drugs

for NAFLD in the clinic. From the perspective of pathogenic

factors, the use of antioxidants can regulate adipogenesis, lipid

oxidation and peroxidation, and inflammation. By improving the

oxidative environment, liver damage and fibrosis may be

improved, ultimately delaying, preventing, and reversing the

progression of nonalcoholic steatohepatitis (NASH) and

improving clinical outcomes. Many studies have shown that

resveratrol (Res) (Abba et al., 2015; Rauf et al., 2017; Öztürk

et al., 2017) has pharmacological effects on the nervous system,

liver, and cardiovascular system and can reduce liver pathological

damage by acting as an antioxidative stress factor. Recent

research showed that ultrasmall copper-based nanoparticles

have a variety of enzymatic activities and the ability to

scavenge a variety of ROS and treat ROS-related diseases. At

the same time, their ultrasmall size ensures that their strong ROS

scavenging ability will reach any organ and might be rapidly

subjected to renal clearance, avoiding damage to normal tissues.

The synergy between these two drugs is expected to exert a strong

antioxidative stress effect, but Res has poor water solubility and is

not stable and easily metabolized by in intestinal tract, which

limits its further clinical applications. Therefore, how to use an

effective carrier to improve its stability and bioavailability is a

current research hotspot (Francioso et al., 2014; Zupančič et al.,

2015). In recent years, nanobased drug delivery systems have

become good drug and gene carrier systems because of their

stability and novel physical properties; they can quickly reach the

target tissue through the vascular endothelial system. Some

scholars reported that the use of poly(lactic-co-glycolic acid)

(PLGA) nanoparticles as a carrier system for Res successfully

achieved curative effects for nonalcoholic fatty liver (Wan et al.,

2018).

Ultrasonic nanobubble-based drug delivery systems have

attracted the attention of researchers because of their small

size, excellent stability, and novel physical and surface

properties, which allow them to quickly pass through the

vascular endothelium and enter the target tissue for

aggregation (Suzuki et al., 2016; Endo-Takahashi and Negishi,

2020; Sun et al., 2020). Although this type of nanobubble has the

ability to achieve ultrasonic targeted release, the targeting

specificity needs to be improved. At present, targeting is

mainly achieved through the modification of specific targeting

groups, such as antibodies, folic acid, and aptamers (Zhu et al.,

2018; Shen et al., 2019; Yu et al., 2020). Nucleic acid aptamers

have attracted much attention because of their unique

performance advantages, such specific affinity equal to or even

higher than that of antibodies, high stability, and high cost-

effectiveness for mass production. Some scholars have

constructed aptamer-modified nanobubbles for ultrasound

imaging of various tumor cells (Zhu et al., 2018). To date,

there are no reports on the synthesis of aptamer-modified

nanobubbles loaded with drugs and nanoparticles for the

treatment of NAFLD.

In this context, this study aimed to synthesize a nanobubble

using thin-film hydration and mechanical oscillation, and the

nanobubbles were modified with NAFLD-specific aptamers and

loaded with Res and ultrasmall copper-based nanoparticles for

ultrasonic targeted therapy for NAFLD. This study is expected to

provide new ideas and a basis for the synergistic treatment of

NAFLD with aptamer-functionalized nanobubbles for the

delivery of drugs and nanoparticles.

2 Materials and methods

2.1 Main materials and instruments

The HepG2 human hepatoma cell line was purchased from

the American Type Culture Collection (ATCC), and anhydrous

copper chloride, L-ascorbic acid and sodium hydroxide were

purchased from Sinopharm Group. Perfluoropropane was

purchased from Sichuan 273 Degrees Environmental

Protection Technology Co., Ltd.; DSPE-mPEG2K, DSPE-

mPEGK-Mal and DOTAP were purchased from Qiyue

Biological Co., Ltd.; Res was purchased from McLean; and

lecithin was purchased from Aladdin. PBS was obtained from

Gibco. The sulfhydryl-modified NAFLD01 aptamer sequence

was purchased from Shanghai Shenggong Biological Co., Ltd.

Other reagents not specifically mentioned were analytically pure.

The magnetic stirrer (Gongyi Yuhua Instrument Co., Ltd.),

centrifuge (Pingfan Technology Co., Ltd.), rotary evaporator

(Changchun Technology Co., Ltd.), cell breaker (Ningbo

Xinzhi Bio), multifunctional microplate reader (Tecan), laser

nanoparticle sizer (Brookhaven), and ultraviolet absorber

(Shanghai Jinghua Technology Co., Ltd.), X-ray diffraction

(XRD) diffractometer, Rigaku D/max 2550) used in the study

were purchased from Rigaku Company of Japan. A transmission

electron microscope (FEI Company of America), X-ray

photoelectron spectrometer (Thermo Fisher, ESCALAB

250Xi), fluorescence spectrometer (Hitachi, Japan), and

inductively coupled plasma atomic emission spectrometer

(ICP–AES, 7000DV, PerkinElmer) were also used.
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2.2 Experimental methods

2.2.1 Establishment of a cell model of
nonalcoholic fatty liver induced by high-oil fatty
acids

The human hepatocellular carcinoma cell line HepG2 was

obtained from the ATCC. Cells were cultured in Dulbecco’s

modified Eagle’s medium containing 10% fetal bovine serum

without penicillin–streptomycin. HepG2 cells were cultured

with free fatty acid (FFA) DMEM for approximately 48 h. FFA

components were composed of palmitic acid and oleic acid

(Sigma-Aldrich) at a ratio of 1:2 and diluted with FBS-free

DMEM to a final concentration of 4 mM. The cells were

stained with oil red O to confirm fat deposition (Pu et al.,

2021).

2.2.2 Evaluation of the targeted binding ability of
aptamers in the context of nonalcoholic fatty
liver disease
2.2.2.1 Laser confocal microscopy experiment

The groups were as follows. There were five groups in total:①

NAFLD cells + NAFLD01 aptamer sequence; ② NAFLD cells +

nonsense aptamer sequence;③ HepG2 cells + NAFLD01 aptamer

sequence; ④ human normal hepatocytes + NAFLD01 aptamer

sequence; and ⑤ human embryonic fibroblasts +

NAFLD01 aptamer sequence. The methods were as follows.

HepG2 cells were cultured in accordance with the above

methods. First, oil red O staining was performed to confirm fat

deposition. Then, NAFLD01 aptamer and nonsense aptamer

sequences labeled with 250 nM FITC were incubated with

NAFLD cells or HepG2 cells (number of cells: 1×106 cells) in

1 ml of binding buffer (BB) at 4°C for 1 h, stained with DAPI, and

finally washed with washing buffer three times, and

immunofluorescence images were captured.

2.2.2.2 Flow cytometry

The experimental groupings were the same as that described

in Section 2.2.2.1. The methods were as follows. All cells (5×105)

were incubated with NAFLD01 labeled with FITC at 250 nM and

BB at 200 μl at 4°C for 1 h. FITC-labeled nonsense sequences

were used as controls. After incubation, the unbound adapter was

washed away, and the cells were suspended in 500 μl WB. An

Attune NxT flow cytometer was used to measure the fluorescence

intensity.

2.2.3 Synthesis and characterization of aptamer-
modified ultrasonic nanobubbles loaded with
resveratrol and ultrasmall copper-based
nanoparticles
2.2.3.1 Synthesis of Cu5.4O NPS

CuCl2 (10 mM) was dissolved in 50 ml of deionized water

and stirred magnetically for 10 min in an 80°C oil bath. Then,

l-ascorbic acid (100 mM, 50 ml) was slowly added. After that,

the pH was adjusted to 8.0–9.0 with sodium hydroxide, and

the mixture was stirred at 80°C for 12 h. At the end of the

reaction, the large aggregated particles were removed by

centrifugation (6,577 × g, 15 min), and the supernatant was

dialyzed for 2 days (molecular weight: 10,000 Da) to remove

small molecules. Purification of Cu5.4O NPs was concentrated

by centrifugation.

2.2.3.2 Synthesis of ultrasonic nanobubbles

DPPC and DSPE-PEG (2000) were dissolved in 2 ml

chloroform at a mass ratio of 10:4. The mixture was transferred

to a 25 ml glass flask with a rotating evaporator. A dry lipid film

was produced in a commercially available rotary evaporator at

55°C and 130 RPM for 10 min by rotary evaporation. The

phospholipid mixture was dried in 1.5 ml of hydrated solution

(10% glycerol and 90% 1 × PBS, V/V). Then, the flaskwas placed in

a culture shaker at 37°C and 120 RPM for 60 min to prepare the

liposome membrane suspension. Subsequently, the liposome

suspension was placed in a vial sealed with a rubber cap. A 50-

ml syringe with a long needle was used to extract the gas in the vial,

and then C3F8 gas (the bubble core was formed later) was added to

the vial until the pressure in the vial was balanced. Finally, the vials

were placed in a mechanical vibrator and subjected to mechanical

vibration for 90 s. The stock suspension of ultrasonic nanobubbles

was immediately placed on ice. The whole process was performed

in the absence of light.

2.2.3.3 Aptamer-functionalized nanobubbles

1) DSPE-PEG (2000) was replaced with DSPE-PEG (2000)-

Mal during the synthesis of the nanobubbles. 2) Next, 10 mM

EDTA, 10 mM Tris (2-carboxyethyl) phosphine hydrochloride

and 2 mM NAFLD01 aptamer were reacted at 37°C for 1 h, and

then nanobubbles were added and incubated for 2 h. Then, the

aptamer-modified nanobubbles floating in the upper layer of the

suspension were collected by washing and centrifugation with

cold PBS solution three times (300 RPM, 3 min). 3) The NBs@

Res/Apt-NBs@Res preparation process was the same as that

described for the nanobubbles/Apt-NBs, and Res was added at

to a mass ratio of 10:4:0.3. 4) The NBs@Cu5.4O NPs/Apt-NBs@

Cu5.4Opreparationprocesswas the sameas that described for the

nanobubble/Apt-NBs, with Cu5.4O addition at a 10:4:0.3 mass

ratio. 5) The NBs@Res@Cu5.4O NPs/Apt-NBs@Res@Cu5.4O

preparation process was the same as that described for

nanobubbles/Apt-NBs; the mass ratio was set to 10:4:0.3:0.3,

and Res (1 mg/ml) and Cu5.4O NPs were added at the same time

(1 mg/ml, PBS). The preparation process of Apt-NBs@Res@

Cu5.4O NPs is shown in Scheme 1. 6) Transmission electron

microscopy (TEM), XRD, X-ray photoelectron spectroscopy

(XPS), UV–VIS spectroscopy, energy-dispersive X-ray

spectroscopy (EDS) and other approaches were used for

characterization.
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2.2.4 Aptamer-modified ultrasonic nanobubbles
loaded with resveratrol and ultrasmall copper-
based nanoparticles can be used for effective
treatment of nonalcoholic fatty liver disease
2.2.4.1 CCK8 analysis of the of Apt-NBs@Res@

Cu5.4O NPs

HepG2 cells (1×103) were inoculated into a 96-well plate and

cultured in DMEM complete medium containing 620, 310,

155 or 77.5 nM N-bromosuccinimide (NBS) (the initial

concentration of NBS was 620 nM) for 48 h. Then, the cells

were washed with PBS 3 times and incubated with 10 μl CCK-8

reagent (Bimake) for 2 h. Finally, the cell viability was measured

with a microplate reader (BioTek) at an absorption wavelength of

450 nm. The experiment was repeated 3 times, and care was

taken to avoid light during the experiment.

2.2.4.2 Aptamer-modified ultrasonic nanoparticles

loaded with resveratrol and ultrasmall copper-based

nanoparticles for the treatment of nonalcoholic fatty liver

The experimental groups were as follows: 1) HepG2 cells +

ultrasound; 2) HepG2 cells + high oil fatty acid + ultrasound; 3)

HepG2 cells + NBs + high-oil fatty acid + ultrasound; 4)

HepG2 cells + NBs@Res@Cu5.4ONPs + high-oil fatty acid +

ultrasound; 5) HepG2 cells + Apt-NBs@Res@Cu5.4ONPs +

ultrasound. The HepG2 cells were placed in a 6-well plate, and

high-oil fatty acidscontaining different nanobubbles were added

(the maximum concentration of the nanobubbles without notable

cytotoxicity was selected as the concentration for administration),

and after incubation for 24 h, ultrasound irradiation (WED-

100 ultrasound) was performed. After that, the cells were

washed with cold PBS and collected. The expression of TNF-α
and IL-10 was detected by Western blotting, and the level of total

triglycerides (TGs) was determined by ELISA. The concentration

of Res in each group was 90.6 mM (initial concentration), and the

experiment was performed in triplicate.

2.3 Statistical analysis

SPSS 22.0 was used for statistical analysis. All data are

expressed as mean ± SD, and one-way ANOVA was used for

comparisons among groups. The LSD method was used for

homogeneity of variance, and the Welch method or

Brown⁃Forsythe method was used for correction of

homogeneity of variance. Dunnett’s T3 method was used for

comparisons between groups. p < 0.05 indicated a statistically

significant difference.

3 Results and discussion

NAFLD is associated with the production of ROS and

oxidative stress (Schwimmer, 2007; Lomonaco et al., 2013;

Braud et al., 2017; Kasper et al., 2021; Ding et al., 2022). The

clinical use of broad-spectrum antioxidants such as

N-acetylcysteine and acetyl-L-carnitine, which are currently

used to clear ROS, is limited due to their poor bioavailability,

low stability and low efficacy. One promising strategy is to

develop nanozymes to maintain the natural redox balance in

biological systems. CuNPs have a wide range of enzyme-like

activities, the ability to clear ROS and ameliorate ROS-related

diseases, excellent biocompatibility and high renal clearance.

They have been shown to be effective in the treatment of a wide

range of ROS-related diseases and to have no significant toxic

effects (Liu et al., 2020). In addition, CuNPs are currently a

research hotspot because they are easy to combine with other

FIGURE 1
Oil red before staining (A), and Oil red after staining (B). The NAFLD cell model was established by oil red O staining. After being stained with oil
red O and observed under a microscope with magnification of ×40, obvious lipid droplets were formed.
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polymers and show better stability than other nanoparticle

polymers, with a large surface area and a unique

morphology. Res has been widely studied by researchers

because of its inhibitory effect on oxidative stress. To solve

the problem of Res’s poor water solubility, instability and ease

of metabolism in the intestinal tract, Wan et al. (2018)

developed PLGA nanoparticle-based RSV-PLGA-NPs that

can be loaded with Res for successful treatment of NAFLD.

The authors concluded that RSV-PLGA NPs can release RSV

continuously and have high stability, water solubility and

nontargeting properties. Teng et al. (2019) used liver-targeted

oxidized starch lysozyme (OSL) as a nanocarrier to target the

liver with covalently coupled galactose (Gal), which can be

recognized by specifically expressed salivary glycoprotein

FIGURE 2
Confocal fluorescence verifies that aptamers can target NAFLD cells. Compared to HePG2 cells, LO2 cells, and HFL1 cells, NAFLD cells showed
stronger green fluorescence signals. In addition, stronger green fluorescent signals were also shown around NAFLD01-NAFLD cells compared to
NS-NAFLD cells. Quantification analysis of fluorescence intensity of the five groups (*p < 0.05).
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receptors in liver cells. The nanocarrier specifically delivers Res to

the liver to increase its therapeutic effectiveness. Although

ultrasound nanobubbles are more suitable for delivering drugs

than the abovementioned nanocarriers because of their ability to

enter extravascular tissue, support specific ultrasound imaging,

and achieve targeted drug release, it is necessary to modify them

with specific targeting groups to improve their therapeutic efficacy.

In view of the high affinity and selectivity of aptamers, as well as

their advantages of good stability, easy chemical modification and

coupling, and low cost, we used aptamer-functionalized

ultrasound nanobubbles as nanoparticle carriers to design and

synthesize particles loaded with Res and CuNPs for synergistic

treatment of NAFLD.

3.1 Establishment of a nonalcoholic fatty
liver disease cell model induced by high-
oil fatty acids

As shown in Figure 1, HepG2 cells were treated with high-oil

fatty acids (palmitic acid/oleic acid ratio of 1/2, final

concentration of 4 mM), and many lipid droplets formed after

FIGURE 3
NAFLD01 aptamer’s specific binding to NAFLD was verified by flow cytometry. The NAFLD01 aptamer sequence exhibited stronger
fluorescence on NAFLD cells than the antisense aptamer sequence or other LO2, HFL1, and HepG2 cells.
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48 h, which confirmed the successful establishment of the

NAFLD cell model.

3.2 Ability of the aptamer to target
nonalcoholic fatty liver cells

There is a need to develop new effective methods and therapies

for NAFLD, such as molecular probes that specifically recognize

NAFLD cells. Nucleic acid aptamers (Zhou and Rossi, 2017), single-

chain oligonucleotide molecules, have the advantages of a low

molecular weight, no immunogenicity, a low synthesis cost and

high stability after chemical modification. Aptamers can selectively

bind to target sites through their unique three-dimensional

structures and have a high affinity and a specificity similar to

that of antigen-antibody interactions. Therefore, aptamers have

been widely used in diagnosis, screening and drug development.

Some aptamers not only recognize disease target molecules but also

can be modified as drugs. Pu et al. (2021) developed a NAFLD cell-

specific aptamer called NAFLD01 that specifically recognizes

cultured steatotic hepatocytes and fatty liver tissue slices. It also

improved the fatty acid degradation of NAFLD cells and increased

the expression of PPAR-α (peroxisome activating receptor-α).
Therefore, in this study, liver targeting was achieved by

modifying the NAFLD01 aptamer. In our study, the

NAFLD01 aptamer was used to modify ultrasound nanobubbles,

and the specific binding ability of the NAFLD01 aptamer to NAFLD

cells was verified through multiple experiments.

3.2.1 Confocal fluorescence microscopy
imaging demonstrated specific binding of the
NAFLD01 aptamer to nonalcoholic fatty liver
disease cells

As shown in Figure 2, the fluorescence intensity of the

fluorescein-labeled aptamer showed that NAFLD01 exhibited

the strongest binding ability to NAFLD cells compared to

nonsense sequences or other cells, which demonstrates that

the NAFLD01 aptamer binds specifically to NAFLD cells and

has potential for targeted treatment of NAFLD.

3.2.2 Flow cytometry verified the specific
binding of the NAFLD01 aptamer to
nonalcoholic fatty liver disease cells

As shown in Figure 3, the NAFLD01 aptamer sequence

exhibited stronger fluorescence on NAFLD cells than the

antisense aptamer sequence or other LO2, HFL1, and

HepG2 cells. The fluorescence signal intensity decreased in

the order NAFLD cells > NS-1 cells > HFL1 cells >

FIGURE 4
The TEM spectra of Cu5.4ONPs (A), and Apt-NBs@Res@Cu5.4ONPs (B); the size (C) and Zeta (D) of Cu5.4ONPs and Apt-NBs@Res@Cu5.4ONPs.
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HepG2 cells > LO2 cells > blank group, which further proved that

the NAFLD01 aptamer binds specifically to NAFLD cells and has

potential for targeted treatment of NAFLD.

3.2.3 Synthesis and characterization of aptamer-
functionalized ultrasound nanobubbles loaded
with Res and CuNPs

Zhu et al. (2018) constructed aptamer-modified

nanobubbles for ultrasound imaging of various tumor cells.

To date, there has been no research on the construction of

NAFLD aptamer-modified nanobubbles or the synthesis of

nanobubbles loaded with Res and CuNPs. We synthesized a

nanobubble by thin-film hydration and mechanical oscillation,

which is a relatively simple, green and economical method. As

shown in Figures 4, 5, the morphology and size potential

distribution of the materials were characterized by TEM and

a Malvern particle size potentiometer. CuNPs have a small and

uniform particle size distribution, and their particle size and

zeta potential were 46.13 nm and −18.9 mV, respectively. When

Res and CuNPs were loaded into the nanobubbles, the particle

size and zeta potential of the nanobubbles changed to 127.6 nm

and 35.73 mV, respectively. Then, the aptamer with NAFLD

was covalently modified with maleamide and sulfhydryl groups,

and the size and zeta potential of the nanobubbles changed to

193.73 nm and 27.39 mV, respectively. EDS, XRD, and XPS

spectra of ultrasonic nanobubbles were also obtained. The

results are shown in Figures 6–9 and indicate that the final

synthesized aptamer-functionalized nanobubbles contained

Cu, N, C, O, and S, among which Cu was mainly distributed

in the inner position of the nanobubbles due to its hydrophilic

properties. The C, N, and O from Res are mainly distributed in

the middle of nanobubbles due to their hydrophobic properties.

Encapsulation of Res in PLGA as a carrier can enhance its

stability, solubility and pharmacological potential. The loading

capacity of Res was measured using XPS and XRD. The results

showed that the loading capacity of Res was 206.8 mg, and the

loading rate was 94%, while the loading capacity of CuNPs was

6 mg (10 ml). We prepared nanoparticles with an encapsulation

FIGURE 5
The Energy dispersive spectra of Apt-NBs@Res@Cu5.4ONPs shows that the material also has five elements: Cu, N, O, S and C, in which Cu is
mainly located in the core of the material and N is distributed in the shell.
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FIGURE 6
The XPS spectra of Apt-NBs@Res@Cu5.4O NPs (A), The Cu2p (B), O1s (C), C1s (D) spectra of Apt-NBs@Res@Cu5.4ONPs.

FIGURE 7
The fluorescence and UV-Vis spectra (A), and XRD spectra of Apt-NBs@Res@Cu5.4O NPs (B).
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efficiency of up to 90% or higher, which showed excellent drug

loading ability. Zeta potential is an important indicator of

electrode stability. Colloidal dispersions can resist

aggregation. The higher the zeta potential is (positive or

negative), the more stable the system. As the absolute zeta

potential is greater than the electrostatic repulsion, the

nanobubble potential was 27.39 mV, which indicated that

apt-NBs@Res@Cu5.4O NPs have high colloidal stability

(Chen et al., 2016; Carbone et al., 2018). All of the above

data effectively proved the successful synthesis of Res and

CuNPs supported by adaptor-functionalized ultrasound

nanobubbles.

FIGURE 8
The linear calibration plot for Cu concentration by using Atomic Absorption Spectroscopy.

FIGURE 9
Fluorescence spectra (A) and corresponding linear calibration plot for Res (B).
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3.3 Aptamer-modified ultrasound
nanobubbles loaded with Res and CuNPs
could be used to treat nonalcoholic fatty
liver disease effectively

3.3.1 In vitro cytotoxicity test
Cytotoxicity analysis of Apt-NBs@Res@Cu5.4O NPs with

CCK8. As shown in Figure 10, nanobubbles no larger than

310 nM (Apt as the measurement unit) were basically not

cytotoxic, and this concentration was used for subsequent

treatment of NAFLD.

3.3.2 The expression levels of the inflammatory
factors TNF-α and Il-10 were detected by
Western blotting, and the level of total TGs was
detected by ELISA

The results are shown in Figures 11–13. Comparedwith that in

the other groups, the expression of the inflammatory factors TNF-

α and IL-10 in the HepG2 + Apt-NBs@Cu5.4O NPs@Res + FFA +

ultrasound group was the lowest, while the level of total TGs in the

HepG2 + Apt-NBs@Cu5.4O NPs@Res + FFA + ultrasound group

was lower than that in the FFA + ultrasound group, and there was

no significant difference between them.

FIGURE 10
Cytotoxicity analysis of Apt-NBs@Res@Cu5.4ONPs by CCK8.
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NASH, an inflammatory phase of NAFLD, has increased in

prevalence in recent years and has become the thirdmajor risk factor

for the occurrence of hepatocellular carcinoma (HCC).Many studies

have found that oxidative stress in NASH hepatocytes induces the

production of a large number of inflammatory factors that induce

gene expression and activate a self-targeted aggressive killing effect of

CD8+ T-cells, which may be an important mechanism of NASH

hepatocyte injury and progression to HCC. Whether Res and

CuNPs can effectively inhibit oxidative stress, reduce

inflammatory factor levels and reverse the inflammation

associated with NAFLD is an important therapeutic question.

The results suggest that aptamer-modified nanobubbles loaded

with drugs and CuNPs have a significant anti-inflammatory effect.

The findings of this study are as follows: 1. NAFLD01 was

verified to be a strong adapter that specifically binds to nonalcoholic

fatty liver (NAFL) cells. 2. Aptamer-modified targeted nanobubbles

were constructed to specifically bind to NAFL cells. 3. Synthesis of

NAFLD-specific aptamer-modified targeted ultrasound nanobubbles

loaded with Res and CuNPs was achieved. 4. The cytotoxicity and

efficacy of aptamer-modified nanobubbles loaded with drugs and

CuNPs in the treatment of NAFLD were demonstrated in vitro.

Until now, there has been no study on the combination of

aptamer-modified nanobubble-loaded drugs and CuNPs for the

treatment of NAFLD.

Currently, liver-targeted drug delivery systems (HTDDS)

have been widely used against liver injury and liver diseases,

FIGURE 11
The effect of different treatment on IL-10 and TNF-α expression of HepG2 cell. 1) ultrasound; 2) FFA + ultrasound; 3) NBs + FFA + ultrasound; 4)
NBs@Cu5.4O NPs@Res + FFA + ultrasound; 5)Apt-NBs@Cu5.4ONPs@Res + FFA + ultrasound.

FIGURE 12
Relative levels of TNF-α and IL-10 expression after indicated treatments. 1) ultrasound; 2) FFA + ultrasound; 3) NBs + FFA + ultrasound; 4) NBs@
Cu5.4ONPs@Res + FFA + ultrasound; 5) Apt-NBs@Cu5.4ONPs@Res + FFA + ultrasound.
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such as liver fibrosis, and HCC. HTDDS not only prolong the

blood circulation time of the drug, but also deliver the drug

exclusively to the liver, reducing side effects. These systems use

distinct ligands that can specifically recognize and interact with

receptors that are particularly overexpressed on the surface of

hepatocytes. Studies on more effective liver-targeting molecules

is presently a research hotspot. However, because nucleic acid

aptamers are more economical, stable, and have higher affinity

and specificity than other ligands without immunogenicity, some

researchers have found that NAFLD01 is an aptamer that

specifically binds to NAFL cells. However, its targeting ability

has not been generally recognized. Our research results affirm

FIGURE 13
The linear calibration plot for TG concentration by ELISA method (A) and TG level after different treatment (B); 1) ultrasound; 2) FFA +
ultrasound; 3) The NBs + FFA + ultrasound; 4) NBs@Cu5.4ONPs@Res + FFA + ultrasound; 5) Apt-NBs@Cu5.4ONPs@Res + FFA + ultrasound.

SCHEME 1
Schematic diagram of the preparation of Apt-NBs@Res@Cu5.4O NPs.
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that aptamer-mediated nanobubbles can effectively target and

bind to NAFL cells.

Our synthesized novel nanobubbles can address the

inefficiency and side effects of Res treatment of NAFLD while

simultaneously delivering CuNPs for a synergistic effect.

Moreover, our findings suggest that Res and CuNPs effectively

and synergistically inhibit NAFLD inflammation, and Apt-NBs@

Res@Cu5.4ONPs are feasible as an effective therapeutic to reverse

NAFLD at an early stage. Liver-targeted NAFLD-specific

aptamer-mediated targeted ultrasound nanobubbles may

become a safe and promising platform for the treatment of

NAFLD and other liver diseases.

4 Conclusion

In this study, we successfully prepared NAFLD01 aptamer-

functionalized ultrasound nanobubbles loaded with Res and CuNPs,

named Apt-NBs@Res@Cu5.4O NPs, which can be used for the

targeted treatment of NAFLD. A nanobubble concentration less

than 310 nM can effectively treat early NAFLD, which provides a

new approach for the synergistic treatment of NAFLD with

aptamer-functionalized nanobubbles and nanoparticles.
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Detailed insight into the radiation-induced changes in tumor microvasculature is

crucial to maximize the efficacy of radiotherapy against breast cancer. Recent

advances in imaging have enabled precise targeting of solid lesions. However,

intratumoral heterogeneity makes treatment planning and monitoring more

challenging. Conventional imaging cannot provide high-resolution observation

and longitudinal monitoring of large-scale microvascular in response to

radiotherapy directly in deep tissues. Herein, we report on an emerging non-

invasive imaging assessment method of morphological and functional tumor

microvasculature responses with high spatio-temporal resolution by means of

optoacoustic imaging (OAI). In vivo imaging of 4T1 breast tumor response to a

conventional fractionated radiotherapy at varying dose (14 × 2Gy and 3 × 8Gy) has

been performed after 2 weeks following treatment. Remarkably, optoacoustic

images can generate richful contrast for the tumor microvascular architecture.

Besides, the functional status of tumor microvasculature and tumor oxygenation

levels were further estimated using OAI. The results revealed the differential (size-

dependent) nature of vascular responses to radiation treatments at varying doses.

The vessels exhibited an decrease in their density accompanied by a decline in the

number of vascular segments following irradiation, compared to the control

group. The measurements further revealed an increase of tumor oxygenation

levels for 14 × 2Gy and 3 × 8Gy irradiations. Our results suggest that OAI could

be used to assess the response to radiotherapy based on changes in the functional

andmorphological status of tumormicrovasculature,which are closely linked to the

intratumor microenvironment. OAI assessment of the tumor microenvironment

such as oxygenation status has the potential to be applied to precise radiotherapy

strategy.
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optoacoustic imaging, radiotherapy, breast tumor, tumor microvasculature,
oxygenation status
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1 Introduction

Tumor microenvironment, such as oxygenation state, has a

great influence on the radiosensitivity of tumor cells. Tumor

microenvironment is closely related to the function of tumor

microvessels. Therefore, a detailed understanding of radiation-

induced changes in tumor microvessels is essential to maximize

the efficacy of radiation therapy for cancer (Park et al., 2012). The

main manifestations of tumor microvessels response to

irradiation are decreased perfusion, increased vascular wall

permeability, decreased number of functional vessels,

decreased vascular network density, vascular contraction, and

decreased blood flow velocity (Pedro et al., 2019; Anamitra et al.,

2022). Research has found that the therapeutic ratio in treating

cancer with radiation could be increased by delivering the

radiation in multiple fractions, fractionated radiotherapy has

been an almost universally accepted clinical practice (Brand

Douglas et al., 2019). The effect of radiation on tumor

microvessels varies with the changes of total dose, dose rate,

dose fraction and fraction number, as well as biological factors

such as tumor type, tumor site and tumor growth stage (Yoon

Stephanie et al., 2021).

Studying the mechanisms of tumor tissue destruction by

different doses of radiation, especially its microvascular response,

is crucial for optimizing treatment plan, prognosis and follow-up.

Noninvasive imagingmethods offer the potential for longitudinal

monitoring of dynamic temporal changes occurring in the tumor

microenvironment and allow us to map the spatial heterogeneity

of tumor microvessels and tumor oxygenation. Conventional

imaging methods such as magnetic resonance imaging (MRI)

(Morgan Tiffany et al., 2019; Turkkan et al., 2022), positron

emission tomography (PET) (Abravan et al., 2017; Jiang et al.,

2021) and computed tomography (CT) (Wang et al., 2011; Crane

Christopher and Koay Eugene, 2016) have been used to study

tumor blood vessels and oxygenation in animal models and

patients. However, these technologies are either more

expensive or require the use of ionizing radiation or

radioactive isotopes. The penetration depth of Doppler

ultrasound imaging (UI) is appropriate, but the contrast and

spatial resolution are insufficient to clearly identify slow blood

flow microvessels (McNabb et al., 2020). Therefore, it is of great

clinical value to study a cheap, reliable and simple method of

tumor microvessels and oxygenation imaging.

Optoacoustic imaging (OAI) is a hybrid imaging technology

that combines the sensitivity of optical imaging with the

resolution of ultrasonic imaging (Jiang, 2014; Beard Paul and

Cox Ben, 2016; Vasilis and Buehler, 2017; Liu et al., 2019). In

OAI, tissues are irradiated with near-infrared light, which is

absorbed by endogenous chromophores such as oxygenated and

deoxygenated hemoglobin, causing thermoelastic expansion and

producing broad-band pressure waves that are detected as

acoustic signals (Wang, 2016; Duan et al., 2021; Wang et al.,

2021; Gong et al., 2022). Interestingly, the absorption properties

of hemoglobin are affected by whether or not it binds to oxygen.

By comparing the PA signals of deoxyhemoglobin (Hb),

oxyhemoglobin (HbO) and oxygen saturation (sO2) could be

calculated in intratumoral and peritumoral areas (Huang et al.,

2016; Rich Laurie and Mukund, 2016; Dai et al., 2020; Jiao et al.,

2020; Qian et al., 2020). In this way, OAI uses endogenous

contrast mechanisms to visualize tumor microvascular

structure and hemodynamics. As a result, there is widespread

interest in developing OAI for medical applications, particularly

in cancer research.

In this study, we used the OAI system based on a semicircular

array detector to monitor the response of tumor vascular

networks to multiple exposures to different doses of ionizing

radiation. It meets our requirements for real-time monitoring

and quantitative analysis of tumor vessels, especially to improve

the imaging sensitivity of microvessels. Using the xenograft

mouse model of 4T1 breast cancer, we demonstrated the

differential (size dependent) nature of in vivo microvascular

response to radiotherapy. Multispectral measurements were

further used to monitor tumor hemodynamic parameters.

2 Methods and materials

2.1 In vivo models and cell lines

The experiments were carried out on nine 5-6-week-old

female Balb/c mice (18–20 g). The animals were obtained

from the department of experimental animals, Kunming

Medical University (Kunming, China). The study was

performed on the model of murine breast cancer cells 4T1

(Chinese Academy of Sciences Stem Cell Bank). The cells

were cultured in RPMI-1640 containing 10% fetal bovine

serum and penicillin-streptomycin. 1 × 106 cells in 200 μL of

PBS were injected subcutaneously into the outer side of the right

lower limb. The animal studies were approved by the Ethics

Committee of Chongqing University of Posts and

Telecommunications and Kunming Medical University.

2.2 Irradiation treatment and experimental
protocols

Irradiation was performed with RS2000 Biological X-ray

Biological Irradiator (VGeorgia, United States) in the 6X SRS

mode with an accelerating voltage of 225 kV and a dose rate of

1.8 Gy/min. The mice were immobilized so that an irradiation

field of 8 × 8 m2 was formed at the tumor and the rest of the body

was covered with a lead screen to reduce radiation to the normal

tissue. The tumor-bearing mice were randomly divided into three

groups: low dose radiation group, high dose radiation group and

control group. Animals (three mice in a group) received 14 ×

2 Gy (low dose) or 3 × 8 Gy (high dose) radiation for two
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consecutive weeks (Figure 1A). Three mice were used as an

untreated control. Tumor volume and body weight were

measured every 2 days. Tumors were measured along two

perpendicular directions with a caliper, and their volumes were

calculated as follows: V = 0.5 × a × b2, where V is the volume and a

and b are the two corresponding diameters (Figure 1B).

OA imaging was performed after tumor fractionated

radiotherapy. Mice were anesthetized with chloral hydrate by

10% chloral hydrate solution which was injected

intraperitoneally to the animal with a dose of 4 ml/kg body

weight in all the experiments. After OA investigation, all mice

were sacrificed by spinal dislocation. The tumor tissues were

collected for immunofluorescence staining. Figure 1C shows an

illustrative overview of experimental protocols.

2.3 Optoacoustic imaging system and data
processing

An in vivo laboratory-built OAI system was used in this study.

The schematic diagram of OAI system for monitoring the effects of

radiotherapy on tumormicrovessels in this study is shown in Figure 2.

In this system, a pulsed Ti:Sapphire laser (Surelite OPO, Continuum

United States) with 6–7 ns pulsed duration, 20 Hz pulse repetition

rate and wavelengths of 690–960 nm was used as the excitation

source. The maximum fluence at 690–960 nm was approximately

18 mJ/cm2 during the experimentation. A custom-made fiber bundle

with line-shaped illumination pattern (40 × 1mm2) was applied to

deliver the light from a pulsed laser. The energy of pulsed laser was

controlled below 8mJ/cm2 at the surface of the animal’s skin.

A 128 element ultrasound transducer array (center frequency

5 MHz, bandwidth 90%, Japan Probe Co., Ltd.) to receive the

photoacoustic signal. The received photoacoustic signal is

amplified by a home-made preamplifier (gain 54 dB, frequency

range: 200 kHz-15 MHz), and the amplified OA signals were then

collected by 128-channel data acquisition cards at a sampling rate of

50MS/s and 12-bit digital resolution (PXIe5105, National

Instrument, United States). Ten-time averaging of the signal can

minimize the unstability of laser energy, and thus the image quality

is improved, making the calculation of tumor area more accurate.

One complete frame of data from single wavelength was acquired in

0.5 s. During the acquisition process, real-time imaging can be

realized on the Labview panel. The OAI tumor images were

reconstructed from the photoacoustic signals using a

multispectral quantitative reconstruction algorithm. The in-plane

spatial resolution of the system is about approximately 150 μm

according to our previous research (Yang et al., 2020a).

PAT tumor images were reconstructed from photoacoustic

signals using a delay and sum reconstruction algorithm.

According to the algorithm in our previous article (Yang

FIGURE 1
Radiotherapy protocol during tumor growth process. Experiment schedule (A) and dynamics of 4T1 volume after single-dose irradiation at
different doses (B,C) Illustrative overview of experimental protocols. Time point of tumors radiotherapy is indicated by blue triangle (high dose) and
red triangle (low dose).
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et al., 2020a; Yang et al., 2020b), we can obtain the tumor

deoxyhemoglobin (Hb), oxyhemoglobin (HbO), oxygen

saturation (sO2) and water (H2O) changes of tumor regions at

three different wavelengths (760 nm, 840 nm, and 930 nm).

In each OA parameter image, an area of 20 × 20 pixels on the

normal tissue surrounding the tumor, the boundary of the tumor and

internal tumor was selected as three regions of interest (ROI I, ROI II,

andROI III). Themean pixel value of theROIswas calculated. TheROI

I was used as a baseline to calculate the relative changes on ROI II and

ROI III. The resulting OA images were processed by background

elimination and normalization. In the method of background

elimination, the OA signals below the baseline were partly removed,

and only the rest of the signals were retained (incomplete background

elimination). This method can improve the signal-to-noise ratio.

Furthermore, to conveniently calculate the pixel value within the

ROIs, regions outside the ROIs were assigned a pixel value of zero.

We can calculate the pixel value according to the following formula:

SUM = J × P, where P and J are the pixel matrix of the reconstructed

image and the binary image matrix, respectively. First, the template

image of the regions of interest (ROIs) is transformed into the binary

image matrix J, where regions outside the ROIs were assigned a pixel

value of zero. We then obtained the pixel value, that is, the normalized

optical contrast value, bymultiplying J andP. Finally, the pixel values for

each ROI were calculated.

2.4 Tumor immunofluorescence

Tumor tissues were fixed with 4% paraformaldehyde and cut

into 4-μm-thick sections after dehydration and embedment. In brief,

specimens were incubated with anti-CD31 (1:500, Abcam,

ab182981), anti-α-SMA (1:200, Servicebio, GB13044) antibodies

for staining. The slices were imaged with a NIKON ECLIPSE

C1 fluorescence microscope and scanned and analyzed with a

PANNORAMIC panoramic slice scanner and Image-Pro Plus

6.0 analysis software. Tumor slices were divided into three equal

areas, and the microvessel density (MVD) of each area was detected

by CD31 staining of perivascular cells, and the area was quantified on

the basis of the total number of microvessels per unit area; similarly,

the coverage of the perivascular cells stained for α-SMA in each area

was calculated. The vascular maturity index (VMI) refers to the

percentage of blood vessels stained with the anti-α-SMA antibody

compared to the total number of blood vessels stained with CD31.

2.5 Statistical analysis

All measurement data obtained for tumor growth are shown

as mean ± SD; deoxyhemoglobin (Hb), oxyhemoglobin (HbO)

and oxygen saturation (sO2) are shown as means ± SEM.

Parameters of microvessel density (MVD), microvessel

segments number, and size are shown as the line chat

including means, minimum and maximum values of the data

set. SPSS 25.0 software (SPSS Company, Chicago, Illinois,

United States) was used for statistical analysis. Statistically

significant value was taken as p ≤ 0.05.

3 Results

3.1 Tumor growth after irradiation

The volume in control group increased from 306.38 ±

21.33 mm3 (on day 12) to 1,566.37 ± 125.91 mm3 (on day 25).

FIGURE 2
Schematic of our OAI system for in vivo imaging tumor-bearing mouse.
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FIGURE 3
In vivo imaging of 4T1 breast tumors at HbT (overlay), HbO, HbR, H2O and sO2 distribution in control group (A), 14 × 2 Gy group (B) and 3 × 8 Gy
group (C) at 25 days after radiotherapy, and histological photograph of three collected tumor tissues in different groups. ROI I, ROI II, and ROI III in (A)
indicates the baseline, peritumor and intratumor respectively. Scale bar = 5 mm for the images.
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Irradiated tumors appeared to be of smaller size as compared to

untreated ones at the time of monitoring completion. Differences

between treated and untreated tumors on 20th day of the

experiment were assessed for all groups. Tumor growth

inhibition index (TGI) were calculated as follows: TGI = 1-

Relative Tumor Volume (irradiation group)/Relative Tumor

Volume (control group). TGI was 49.28% for 14 × 2 Gy-

irradiated tumors and 60.01% for tumors irradiated with 3 ×

8 Gy. Compared with the control group, radiotherapy

significantly inhibited the tumor progression. The tumor

growth in the high dose group was lower than that in the low

dose group (Figure 1B).

3.2 Optoacoustic imaging

Using OAI system, nine mice in control group (Figure 3A),

14 × 2 Gy group (Figure 3B) and 3 × 8 Gy group (Figure 3C) were

scanned at 25 days after radiotherapy. One representative mouse

was selected in each group. HbT (an overlay of 760 nm image,

840 nm image and 930 nm image), HbO, HbR, H2O, and sO2

distribution images were shown in Figure 3. As evidenced by the

OA images, the tumors presented as regions containing small,

broken, irregular, randomly distributed blood vessels that were

markedly different from the normal microvessels in the

surrounding healthy tissue. Untreated 4T1 breast tumor was

characterized by a more extensive distribution of hemoglobin in

the tumor peripheral area and inside the tumor. Elongated small

vascular structures formed from the inside to the surface of the

tumor, followed by superficial scabs at later stages of tumor

development. The sO2 distribution on the surface and inside the

tumor was relatively uniform. Histological photographs of three

collected tumor tissues in different groups indicated that the

tumor size in the control group was larger than that in the

irradiation group. After irradiation, only short fragments of

blood vessels retained in the tumor area, and the tumor

microvessel density and the water content was decreased

overall. Compared with the control group, the hemoglobin

concentration at the tumor boundary decreased slightly, while

the hemoglobin concentration inside the tumor decreased

significantly in the irradiation group. After irradiation, the

internal sO2 distribution is very uneven. The response was

FIGURE 4
Histogram of OA parameters. Histogram of the percentage variation (SEM) of microvessel density (MVD, 100%) (A) and microvessel segments
number (B) of 4T1 breast tumors after irradiation at different doses. (C)Histogram of the percentage variation (SEM) of sO2 at baseline, peritumor and
intratumor at different doses. The error bar indicated the standard deviation.
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more pronounced at 14 × 2 Gy irradiation dose than at 3 × 8 Gy

irradiation dose. OA data of all tumors in different groups were

statistically analyzed. Microvessel density (MVD, 100%) was

determined as a percentage of tumor area occupied by

microvessels. Number of microvessel segments was

calculated as a ratio between the number of microvessel

fragments and the corresponding vessel area. MVD,

microvessel segments number and sO2 were used to evaluate

the effect of fractionated radiotherapy at varying dose on tumor

angiogenesis. Compared with the control group, the number of

blood vessels decreased, the 14 × 2 Gy group decreased to

30.89%, the 3 × 8 Gy group decreased to 19.18%. There was

a significant difference in MVD between the irradiation group

and the control group (Figure 4A). In addition, compared with

the control group, radiotherapy decreased the number of

microvessel segments, the 14 × 2 Gy group decreased by

44.78%, the 3 × 8 Gy group decreased by 17.91%, there was

a more significant difference in microvessel segments number

in the 14 × 2 Gy group and the increase in 3 × 8 Gy group was

not statistically significant (Figure 4B). Finally, the percentage

variation (SEM) of sO2 at ROI I, ROI II and ROI III at different

doses were statistically analyzed. ROI I, ROI II and ROI III in

Figure 3A represents the baseline, peritumor and intratumor

respectively. Compared with the control group, sO2 in

irradiation group increased remarkably. There was a

significant difference in sO2 at intratumor between 3 × 8 Gy

group and the control group. Besides, there was a significant

difference in sO2 at baseline and peritumor between the

irradiation group and the control group (Figure 4C).

Tumor sections were stained with CD31-α-SMA to detect

tumor microvessels (Figure 5A). The red area represents CD31,

the green area representsα-SMA (green), and the blue area

represents the nucleus. Microvessel density (MVD) and

vascular maturity index (VMI) were used to evaluate the

effect of radiotherapy segmentation on tumor angiogenesis. As

the tumor grew, compared with the control group, the number of

blood vessels decreased, the 14 × 2 Gy group decreased to

37.52%, the 3 × 8 Gy group decreased to 11.54%. However

there was a significant difference in MVD between the 14 ×

2 Gy group and the control group (p < 0.01) (Figure 5B). In

addition, compared with the control group, radiotherapy could

increase VMI, the 14 × 2 Gy group increased to 40.48%, the 3 ×

8 Gy group increased to 19.35%, there was a more significant

difference in VMI in the 14 × 2 Gy group (p < 0.05) and the

increase in 3 × 8 Gy group was not statistically significant (p >
0.05) (Figure 5C).

FIGURE 5
Immunofluorescence analysis of 4T1 breast tumors after irradiation at different doses. (A) Shows double-marker immunofluorescence of CD31
(red) and α-SMA (green), and the blue area represents the nucleus. (B) Indicates the quantitative expression of microvessel density (MVD) in tumor
after radiotherapy. (C) Indicates the change of vascular maturity index (VMI) after radiotherapy. Compared with control the control group, *p < 0.05;
Compared with control the control group, **p < 0.01.
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4 Discussion and conclusion

A detailed understanding of radiation-induced

microvascular changes in tumors is important to maximize

the efficacy of radiotherapy. In particular, studying the

mechanism of tumor response to a single irradiation is a

pressing challenge in radiobiology. A key aspect is the

dynamic assessment of the subtle interplay between tumor

vascular responses and changes in oxygen status and the

contribution of oxygen status changes to the process of

driving tumor cell death. In this study, we used high

spatiotemporal resolution OA imaging to achieve noninvasive

assessment of tumor microvascular morphologic and functional

responses. Abundant tumor microvessels can be observed clearly

in OA images. The nature of the different (size-dependent)

responses of 4T1 breast tumor microvasculature to different

doses of radiation as seen from the obtained OA images.

Compared with the control group, the vascular density

decreased and the number of vascular segments decreased

after irradiation. MVD in OA images is the relative value,

while that in immunofluorescence images is absolute value.

Our results of the overall trend of change of MVD in OA

images were roughly consistent with those in

immunofluorescence images. The measurement results further

showed that the tumor oxygenation level and vascular

maturation index increased under 14 × 2 Gy and 3 × 8 Gy

irradiation.

Many aspects of vascular biology are affected by

radiotherapy and vary according to the radiotherapy

protocol. Radiotherapy can cause varying degrees of

endothelial cell death and redistribute neoplastic

neovascularization by pruning structurally disordered/

dysfunctional vessels, but such vascular changes may not

translate systematically into long-term effects on the tumor.

In a word, Our results indicate that different doses of

radiotherapy remodeling tumor blood vessels make tumor

vascular structure and function tend to be dynamic balance,

improve tumor angiogenesis, and improve the internal

reoxidation of tumors. Our findings show the potential of

OAI in monitoring the early radiotherapy response of tumor

and evaluating the changes of tumor mircovessels and

microenvironment. Successful development and application

of OAI for tumor imaging could potentially guide the study

design of radiotherapy and assess the dose rate, dose fraction

and fraction number. Scientific assessment of functional

microenvironment changes in response to radiotherapy

could also determine the treatment plan in cancer patients.
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Photoacoustic tomography (PAT) is an emerging biomedical imaging modality

that combines optical and ultrasonic imaging, providing overlapping fields of

view. This hybrid approach allows for a natural integration of PAT and

ultrasound (US) imaging in a single platform. Due to the similarities in signal

acquisition and processing, the combination of PAT and US imaging creates a

new hybrid imaging for novel clinical applications. Over the recent years,

particular attention is paid to the development of PAT/US dual-modal

systems highlighting mutual benefits in clinical cases, with an aim of

substantially improving the specificity and sensitivity for diagnosis of

diseases. The demonstrated feasibility and accuracy in these efforts open an

avenue of translating PAT/US imaging to practical clinical applications. In this

review, the current PAT/US dual-modal imaging systems are discussed in detail,

and their promising clinical applications are presented and compared

systematically. Finally, this review describes the potential impacts of these

combined systems in the coming future.

KEYWORDS

photoacoustics, ultrasound, multimodal, review, imaging, clinical

Introduction

Photoacoustic tomography (PAT) is an emerging method that provides a sub-

millimeter spatial resolution image with a penetration depth of several centimeters,

which is achieved by the combination of optical excitation and acoustic detection (Beard,

2011; Dai et al., 2017a; Yang and Ghim, 2021). Photoacoustic effect is induced by a

nanosecond pulsed laser source. With the light illuminating the targeted tissue, it is

absorbed by molecules inside the targeted tissues, leading to a temperature rise and

thermoelastic expansion. In response, with the generated broadband acoustic waves, the

signals are subsequently detected by conventional ultrasound (US) transducers.

Multispectral optoacoustic tomography (MSOT) is based on the principle of PAT,

which distinguishes absorbers based on their spectral signatures, due to various

optical absorbers such as endogenous material (hemoglobin, melanin, lipids, water,
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and other chromophores in human) or exogenous contrast

agents (Ntziachristos and Razansky, 2010; Bayer et al., 2013;

Li M et al., 2018).

Over the recent years, the number of studies on PAT systems

in the literature has been increasing rapidly (Su et al., 2010;

Beard, 2011; Menke, 2015; Wang et al., 2016; Upputuri and

Pramanik, 2017; Dong et al., 2017; Choi et al., 2018; Jo et al.,

2018; Li X et al., 2018; Lin et al., 2018; Manohar and Dantuma,

2019; Nyayapathi and Xia, 2019; Steinberg et al., 2019; Zhao

et al., 2019; Duan et al., 2020; Manohar and Gambhiret, 2020;

Deán-Ben and Razanskyet, 2021; Gröhl et al., 2021; Li et al.,

2021; Wen Y. T. et al., 2022; Yang and Ghim, 2021; Wen YT.

et al., 2022). In these studies, the system designs have in

common that an optimized imaging system achieved a higher

spatial and temporal resolution, better penetration in tissue with

reduced artifacts. Consequently, the advancements in PAT have

enabled a wide applications ranging from small animal studies

to clinical imaging, including imaging of breast (Becker et al.,

2018; Xu et al., 2019; Yang et al., 2020), thyroid (Dima and

Ntziachristos, 2016; Sinha et al., 2017; Roll et al., 2019), skin

(Petri et al., 2016; Dahlstrand et al., 2020), tumors (Li et al., 2015;

Yamada et al., 2020; Karmacharya et al., 2021; Knorring and

Mogensen, 2021; Wang C et al., 2021), cardiovascular (Taruttis

et al., 2013; Karlas et al., 2021a), functional neuroimaging

(Wang et al., 2003; Wu et al., 2019a), eyes (Liu and Zhang,

2016) and others (Nagae et al., 2018; Yang et al., 2018; Liang

et al., 2021; Yan et al., 2021). Therefore, PAT imaging has

broader clinical translational potential than other forms of pure

optical imaging, indicating its ability to provide potent

structural, functional, and molecular information in vivo

(Yao and Wang, 2018; Wu M et al., 2021). Notably, although

the PAT image shows the heterogenous localization in tumors,

combining US with these images can provide the exact

anatomical co-localization and establish suspect region of

interest (ROI), which allows for a more detailed PAT analysis

of these ROIs (Manohar and Dantuma, 2019; Park et al., 2017a).

Hence, it suggests the necessity of combining PAT with another

structural imaging modality with deep tissue penetration to

achieve feasible clinical applications.

Ultrasound, as a common imaging technique with deep

tissue penetration, high spatial resolution, and properties of

real-time imaging, has been widely used in clinics (Bene et al.,

2022; Paola et al., 2022). Nonetheless, its non-whole body

imaging, poor osseous and gas-containing organ penetration

capabilities limit further development. In response to these

issues, various multi-modal imaging systems have been

integrated to provide complementary information, which

consequently boost the sensitivity and specificity for disease

diagnostics.

Since the hybrid nature of PAT makes it easy to integrate

with the existing US imaging systems (Jennings and Long,

2009), several studies have been conducted on PAT/US dual-

modal systems. As an obvious reason for this combination, it

allows for the use of the same piezoelectric transducer, as well

as the same data acquisition (DAQ) process for PAT/US

signal detection (Das et al., 2009; Bouchard et al., 2014).

Consequently, the data for both images is acquired

simultaneously and gathered. Additionally, morphologic

information produced by US imaging, including tissue or

lesion boundaries (due to different sound speed and acoustic

impedance) helps PAT image reconstruction and facilitates

its semi-quantitative or quantitative assessment by tissue

functional/molecular parameters (Beard, 2011; Dong et al.,

2017).

In the last two decades, several studies on PAT/US imaging in

phantom and animals were reported (Aguirre et al., 2009; Nam

et al., 2012; Kruizinga et al., 2013; Karpiouk et al., 2012; Gerling

et al., 2014; Luke et al., 2014; Luke and Emelianov, 2015; Mallidi

et al., 2015a; Mallidi et al., 2015b; Raes et al., 2016; Salehi et al.,

2016; Kang et al., 2017; Yamaleyeva et al., 2018; Dumani et al.,

2019; Hartman et al., 2019; Dadkhah and Jiao, 2021; Kang et al.,

2022). Moreover, by combining PAT with US imaging, it has the

potential to obtain accurate and clinically relevant imaging data

for diagnostic and therapy-monitoring purposes (Mallidi et al.,

2015b). Several comprehensive researches for preclinical/clinical

applications on PAT/US systems, such as PAT/US for healthy

tissue (Lou et al., 2017; Kim and Chang, 2018; Mennes et al.,

2018), tumors and metastasis (Garcia-Uribe et al., 2015;

Neuschler et al., 2017; Yang et al., 2017; Becker et al., 2018; Li

M et al., 2018; Shiina et al., 2018; Xavierselvan et al., 2021), bones

and joints (van den Berg et al., 2017; Feng et al., 2020) and

cardiovascular (Kruizinga et al., 2013; Karlas et al., 2021a; Karlas

et al., 2021b; WuM et al., 2021; Wu Y et al., 2021) were reported.

In addition, multifunctional contrast agents for PAT and US

imaging were synthesized decades ago (Kim et al., 2010a). To

date, as there are still barriers for clinical use of dual-modal

contrast agents, most studies have been focused on the preclinical

stage so far. Potentially, simultaneous PAT/US imaging

enhanced by contrast agents such as microbubbles or

nanobubbles can be a valuable tool for intraoperative

assessment of tumor boundaries and resection margins. Thus,

it will open a novel avenue of translating PAT/US imaging to

clinical applications. Furthermore, given the nonionizing

radiation, wide availability, portability, and low-cost nature of

PAT/US imaging, this technology is thusly unique when

combined with photodynamic therapy (PDT), providing

multiparametric anatomical and functional information in

therapeutic process. In addition, due to its label-free nature,

PAT/US is capable of long-term longitudinal monitoring for

image-guided treatment.

This review will focus on the progress of PAT/US systems

with a potential of being translated into clinical applications. The

review is organized as following: in Section 2 we discuss the

overall comparison of technological advances in translational

clinical PAT/US systems; in Section 3 is dedicated to PAT/US

systems towards various clinical applications; in Section 4; we will
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briefly conclude and discuss the future directions of PAT/US for

clinical translations.

PAT/US system for clinical translation

Development of PAT/US imaging systems has been

proceeded in all aspects, including hardware, instrument

design, and image reconstruction algorithms (Poudel et al.,

2019; Tian et al., 2020). In this section, we present feasible

dual-modal platforms from a perspective of radiologists and

clinicians.

Graphical user interface

In order to achieve clinical utility of an imaging system, a

friendly GUI of the platform is important. In recent decades,

the integration technologies of PAT/US platform with

friendly GUI have been extensively studied (Aguirre et al.,

2009; Gerling et al., 2014; Dumani et al., 2019; Kang et al.,

2022). So far, the combination of PAT and US imaging system

in clinical translation has been demonstrated by different

research groups (Niederhauser et al., 2005; Kolkman et al.,

2006; Wang et al., 2011; Neuschler et al., 2017; Kim et al.,

2020; Han et al., 2022). User-friendly operation is a critical

requirement for successful clinical translation of a PAT/US

system, such that radiologists or clinicians can use the system

by themselves.

The first generation PAT/US system utilizes a duplex PAT

imaging device with a single handheld duplex probe (Jennings

and Long, 2009; Neuschler et al., 2017). The main feature of these

devices are a programmable software, which allows one tomodify

the operation sequence of the system. There are two modes of

GUI on the study devices: 1) US mode, generating only grayscale

US images, and 2) PAT/US mode, generating grayscale US

images fused with functional PAT data. In this way, the

received PAT signals are coregistered with grayscale US

signals, generating real-time and pseudo-colored maps of

relative oxygenated hemoglobin (HbO2) and deoxygenated

(HbR). Accordingly, total hemoglobin (HbT) concentration

can be calculated through the system. However, they suffered

from the limitation of lack of real-time modification of the

imaging parameters by users, hence the user-friendly GUI

needs to be explored in further study to help the user to

optimize the images.

A system having capability to support real-time parameter

modification during imaging was designed, which can optimize

the images by using the parameter control software, including

time gain compensation coefficients adjustment, dynamic range

for image optimization, the frequencies (center frequency, cutoff

frequency, and filter size) demodulation and the beamforming

options (beamforming method, apodization window type, and

speed of sound) modification. Accordingly, the users could

optimize the images in real-time by a MATLAB-based

software without pausing the imaging operation during the

image acquisition process (Kim et al., 2020). This system

advances PAT/US device one more step closer towards the

translation clinical use.

Design of PAT/US probes

Various research groups have implemented integrated PAT

and US probes for clinical applications (Levi et al., 2014; Dai

et al., 2015; Kim et al., 2016; Miranda et al., 2018; Kothapalli et al.,

2019; Zhang and Wang, 2020; Pang et al., 2022). A

programmable US system can utilize various US transducers

(Figure 1) to generate PAT/US images (Kim et al., 2016). In order

to acquire images of different depth of human in vivo, the PAT/

US platform is fully compatible with several different probes. A

novel clinical PAT/US system with various US probes were

designed as follows: 1) A linear array (L3-12); 2) A convex

array (SC1-6); 3) A phased array (SP1-4); and 4) An

intracavity transducer (EC3-10H). Accordingly, the PAT/US

system can be applied to a wide range of clinical applications

by selecting suitable sensors, from superficial tissues to deep

organs at different depths in human.

The design of the integrated PAT/US imaging probe is also

updated for efficient light delivery and optimized the geometry of

the imaging probe. An arc-array was established based on

commercial US systems (iThera Medical, Germany) (Levi

et al., 2014), which was suitable for small organs detection in

vivo. Due to the relatively small field of view (FOV) of the arc-

array transducer, it might not be suitable for the large region.

Meanwhile, the linear-array transducers were developed for

preclinical and clinical trials, including iU22 (Philips

Healthcare) (Garcia-Uribe et al., 2015) and EC-12R (Alpinion

Medical Systems, Republic of Korea) (Kim et al., 2016). However,

these high-frequency transducers suffered from a shallow

imaging depth, which were not suitable for deep organ

detection, thus were limited for general clinical applications.

The developed system can be used to provide new biological

information in diagnostic fields such as uterus, bowels, vascular

and organs adjacent to cavity viscera (prostate, pancreas, etc.).

The endoscopic image modalities have been proposed (Dai et al.,

2017b; Li et al., 2019). Emerging endoscopy techniques refers to

PAT is photoacoustic endoscopy (PAE), which incorporates PAT

in a small probe to visualize internal organs through intra-cavity

introduction (Wang, 2008). In addition to PAE, researchers are

exploring a PAT/US “mini-probe” integrated into a conventional

endoscope’s instrument channel, which is a promising strategy to

achieve clinical benefits (Yang et al., 2012). In this study, a

simultaneous PAE/EUS dual-modal system with a streamlined

shape probe (3.8-mm-diameter) was designed to image internal

organs in vivo (Yang et al., 2012). However, it could not provide a
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360° field of vision which is often needed in clinical settings.

Later, a miniaturized PAE/EUS system with a 2.5-mm-diameter

probe was conducted (Li X et al., 2018). This catheter provided a

full (360°) field-of-view cross-section images, which was

comparable with the 2.8-mm instrument channel of

conventional clinical endoscopes. A novel intrauterine PAT/

US imaging probe (linear array, 15-MHz) was designed to

detect endometrial diseases in vivo (Miranda et al., 2018). For

application within the human uterus, the intra-cavity probe (2-

mm-diameter) is comparable with an endometrial suction

curette, which is a catheter-like device with a diameter

of <3 mm. As a custom designed probe for deep tissue, the

imaging depths up to several centimeters have been achieved. A

miniaturized capacitive micromachined ultrasonic transducer

(CMUT) array for simultaneous imaging of transrectal PAT/

US system were combined for human prostate detection in vivo

(Kothapalli et al., 2019).

Moreover, with the system equipped with a three-

dimensional (3D) detection aperture, the spiral 3D images

were reconstructed for PAT/US images. Compared to

traditional sensors, this transducer had a higher bandwidth,

and the signal-to-noise ratio (SNR) was improved as well. It

has the potential to be introduced in clinics in the future. As well,

current acoustic-resolution PAE/USE generally employs a point-

FIGURE 1
PAT/US images using different transducers. (A) Photograph of the phantom. (B) Photographs of different transducers (linear array, convex array,
phased array, and intracavity transducers), real-time PAT/US images, and reconstructed PAT/US images acquired by these transducers. PAT,
photoacoustic tomography; US, ultrasound. Reprinted with permission from [Kim J., Park S., Jung Y., Chang S., Park J., Zhang Y., et al. (2016).
Programmable Real-time Clinical Photoacoustic and Ultrasound Imaging System. Sci Rep.6,35137. doi: 10.1038/srep35].
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focused transducer which is only sensitive in its focal region. As a

result, the sensitivity and lateral resolution dramatically reduce

when the targets move out of its focus. A designed line-focused

transducer emits a more uniform sound field, as compared to a

point-focused transducer, resulting in the original signal

intensity and SNR of the adjacent targets to be closer in the

radial direction, which improves the uniformity of target signals

in hybrid imaging (Pang et al., 2022). Further study is need to

evaluate the diagnostic ability and accuracy of abovementioned

PAE/USE transducers in larger clinical trials.

Miniaturization of PAT/US device

In order to achieve certain clinical applications, miniaturized

PAT/US imaging system were designed by several groups

(Kothapalli et al., 2019; Kim et al., 2020). For instance, a

devised portable PAT/US system which can visualize vascular

distribution without injecting any contrast agent was designed

(Kim et al., 2020). While US and certain optical technologies are

available in the size of a mobile phone (Ahn et al., 2015), PAT/US

systems still need to be improved to reach that level of portability,

mainly focusing on advanced laser source and high performance

DAQ system.

Conventionally, a high-power laser source is employed for

most dual-modal PAT/US systems (Kothapalli et al., 2019;

Regensburger et al., 2019; Agrawal et al., 2021a). In order to

translate PAT/US technology to clinical applications, especially

for point of care (POC) detection, a significant reduction in both

cost and size of laser source is required. To address this issue,

several cost-effective alternatives for the optical excitation/

detection (Liu and Zhang, 2016; Upputuri and Pramanik, 2017

have been explored. Recently, the light-emitting diodes (LEDs)

have emerged as portable optical sources for PAT in vivo (Anas et

al., 2018; Jo et al., 2018; Xia et al., 2019; Farnia et al., 2020; Maneas

et al., 2020). However, these state-of-art LED arrays carry

significantly lower optical energy (<0.5 mJ/pulse) and high

pulse repetition frequencies (PRF) (4 KHz) compared to the

high-power laser sources (100 mJ/pulse) with low PRFs of

10 Hz. To enhance the performance of LEDs, an arrayed

arrangement of LED elements was developed (Zhu et al., 2018;

Zhu et al., 2020), thereby increasing the pulse energies from a few

µJ to hundreds of µJ. In addition, higher PRF of the LED allowed a

sufficient and fast PAT signal averaging which led to significant

SNR improvements for deep tissue imaging. A commercial LED

based PAT/US system (Figure 2) was designed (Agrawal et al.,

2021b) with a lower mean noise compared to the laser based PAT/

US system. However, the SNR value for the laser-based PAT image

FIGURE 2
The experimental setup designed for comparing light-emitting diode (LED)-based and high-power laser-based PAT and US imaging. (A) A host
controller PC; (B) DAQ hardware; (C) A portable high-power laser with its output coupled to the input end of an optical fiber bundle; (D) Computer
display: displays PAT (red scale), B-modeUS (grayscale), and coregistered PAT/US (overlaid red PAT on gray US); (E) Arrangement of two 850 nm LED
arrays around the US probe; (F) Arrangement of twenty laser fibers inserted into the two fiber holders around the US probe; (G,H) Optical
illumination profile achieved with two LED array sources and laser sources, respectively; (I,J) Pictures of a human wrist under imaging with the LED
and laser arrangements, respectively. LED: light-emitting diode; PAT, photoacoustic tomography; US, ultrasound; DAQ: data acquisition; PC:
personal computer. Reprinted with permission from [Agrawal S., Singh M. K. A., Johnstonbaugh K., Han D. C., Pameijer C. A., and Kothapalli S-R.
(2021). Photoacoustic Imaging of Human Vasculature Using LED versus Laser Illumination: A Comparison Study on Tissue Phantoms and In vivo
Humans. Sensors. 21,424. doi: 10.3390/s21020424].
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was about 6 dB lower than the SNRwith the LED array acquisition.

Therefore, due to the low power of LED arrays, a higher frame

averaging is required to image deep tissue targets. Nevertheless,

LED-PAT/US systems have strong potential to be a mobile health

care technology for clinical applications.

Toward clinical translation PAT/US device

In order to achieve highly translatable to the clinical field,

several PAT/US systems based on commercial US system were

conducted without the need of additional hardware and

algorithms to obtain data and reconstruct images, making it

compatible with most commercial US platforms (Park et al.,

2021). However, direct use of a US commercial system to acquire

quality PAT image is difficult. The most challenging issue is how

to recover weak PAT signals from expected subsurface tissues,

since the signal level in US are generally much higher than those

in PAT, and neither the SNR nor the digitizer threshold of most

commercial US systems are suitable for directly PAT imaging.

At the initial stage towards a clinical PAT system, several

commercial PAT/US platforms have been used in preclinical

applications, including the iU22, Phillips Healthcare, Netherlands

(Kim et al., 2010b), the VevoLAZR series (FujiFilm VisualSonics,

Canada) (Needles et al., 2013), the MSOT Acuity series (iThera

Medical, Germany) (Levi et al., 2014) and the Vintage series

(Verasonics, United States) (Kothapalli et al., 2019). However, for

general clinical research, these systems suffered from several

limitations, such as immobile laser, unprogrammable US machine

and without approvement of the United States Food and Drug

Administration (FDA). Later, in order to overcome the limitations,

a clinically applicable PAT/US system was developed (Kim et al.,

2015). A portable pulsed laser (Phocus, OPOTEK, United States) and

a FDA-approved clinical US machine (EC-12R, Alpinion Medical

Systems, Republic of Korea) were integrated in the system. However,

the abovementioned systems only combine PATwithUS for imaging,

without utilizing other optical imaging modalities such as

photoacoustic microendoscopy (PAM) imaging, which providing

microvascular networks map in superficial tissue. Consequently, a

linear transducer combined PAT, PAM, andB-modeUS imaging into

one commercial US platform was design (Wang S. L et al., 2021). As

compared to existing multi-modality systems based on PAT and US,

this system provides more complementary morphological and

functional information of tissue in vivo. It has potential to achieve

the best benefits of integrated PAT/US and promised for multi-scale

and multi-functional imaging for clinical applications in the future.

Clinical applications of PAT/US
system

For clinicians or radiologists, “seeing is believing”. In the last

several years, several clinical studies on PAT/US dual-modality

were reported, including human thyroid (Dima and

Ntziachristos, 2016; Yang et al., 2017; Kim et al., 2021), breast

(Garcia-Uribe et al., 2015; Becker et al., 2018; Neuschler et al.,

2017; Nyayapathi and Xia, 2019; Kelly et al., 2020; Goh et al.,

2019; Yang et al., 2020), skin (Oraevsky et al., 2018; Park et al.,

2021), extremities (Xia et al., 2015; Mercep et al., 2015; Liu and

Zhang, 2016; Kim et al., 2016; Jo et al., 2017; Oeri et al., 2017; van

den Berg et al., 2017; Feng et al., 2020; Daoudi et al., 2021),

prostate (Agrawal et al., 2020; Kothapalli et al., 2019), bowels

(Knieling et al., 2017; Leng et al., 2018; Yang et al., 2019), vascular

(Karpiouk et al., 2012; Wu et al., 2015; Andrei et al., 2021),

placenta (Xia et al., 2015; Maneas et al., 2020) and others (Jose

et al., 2009; Gonzalez et al., 2021; Mozaffarzadeh et al., 2021).

With the combination of the two modalities in one imaging

system, it is acceptable for radiologists or clinicians to adapt and

associate morphological features with functional information.

On the other hand, US detection is naturally registered with PAT

detection; therefore, researches using US-guided PAT detection

were included in this review.We compared the properties of each

dual-modality system from device performance to clinical trials,

and fully discuss their advantages and disadvantages, as well as

possible clinical applications in future.

Thyroid imaging

Thyroid tumors are common tumors in the head and neck.

Newly-diagnosed thyroid cancer cases have increased due to

advancements in diagnostic imaging techniques such as US,

X-rays, and magnetic resonance imaging (MRI) (Vaccarella

et al., 2016). Although the incidence of malignant cases of all

the discovered thyroid nodules were about 10%, not all nodules

need to be treated immediately. Hence, it is estimated that over

560,000 patients were overdiagnosed over the last two decades

(Ahn et al., 2014; Vaccarella et al., 2016). The American Thyroid

Association recommended US as a routine thyroid examination

for all patients with thyroid lesions and for healthy people (Gharib

et al., 2016). However, conventional color Doppler US has limited

capacity in discriminating untypical benign and malignant

nodules. An accurate diagnosis of thyroid disease can be aided

by reliable vascular information. In recent years, contrast-

enhanced ultrasound (CEUS) has been applied for the clinical

evaluation of the thyroid nodule. However, CEUS is rather invasive

for the intravenous injection of contrast agent. Therefore, a

noninvasive functional imaging modality, with the ability of

evaluating the morphological and functional information

simultaneously, will be beneficial to the early diagnosis and

clinical management of thyroid tumors. PAT is a novel hybrid

imaging modality, which relies on sensitive tissue optical

properties. Therefore, PAT can provide important functional

information, such as the oxyhemoglobin saturation (SO2).

PAT combined with US can provide important clue in the

diagnosis of thyroid disease with reliable vascular information in
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an initial clinical study (Banaka et al., 2011). Then some thyroid

nodules studies have been conducted using costumed PAT/US

system (Dima and Ntziachristos, 2016; Yang et al., 2017; Kim

et al., 2021). A curved US array (Dima and Ntziachristos, 2016)

and linear array (Yang et al., 2017) were employed to delivery

high-fidelity performance in human thyroid in vivo, respectively.

Both studies demonstrated that it was possible to detect the

thyroid’s outline and identify vascular features. In addition, it was

found that PAT was more efficient at detecting blood vessels

compared to colored Doppler US (Figure 3). Later, multi-spectral

acquisition was used to further improve accuracy by tissue

oxygenation parameter in thyroid imaging (Kim et al., 2021).

All the single parameter analyses showed encouraging results

with statistically differentiable distributions. Furthermore, they

successfully visualized real-time PAT/US images of thyroid

nodules.

Taken together, previous clinical trials have demonstrated

that PAT with a high-quality clinical US system can provide

high-quality morphological and functional images in human

thyroid in vivo. Subsequent developments are needed to

further update the dual-modal system in several regards: 1) A

large FOV is required for efficient navigation during monitoring

and needle guidance; 2) improving the duplex probe for easier

hand-held operation; 3) To improve PAT SNR, optimized laser

delivery is needed to achieve higher spatial resolution and less

artifacts; 4) Motion artifact causing by the target and operator

movement between multiple laser pulses; 5) Analyses of MSOT

parameters and comparisons between different types of thyroid

cancer needs further study; 6) Multispectral parameters

processed and displayed in GUI in real time.

Breast imaging

In 2022, over 110,000 new cases of breast cancer will be

diagnosed in the United States, making it the most common

cancer for women worldwide (Porter, 2009; Ghoncheh et al.,

2016; Siegel et al., 2021). Conventional breast imaging

techniques, like X-ray mammography and US, primarily focus

on morphological changes of breast tissue to discriminate benign

from malignant tissue. X-ray mammography is not reliable for

women with dense breasts with ionizing radiation and US is

strongly operator dependent (Heijblom et al., 2012). The hybrid

nature of PAT breast imaging provides both structural

information and hemoglobin-related functional information

within the breast, which can aid clinical diagnosis. In

addition, since breasts have protruding geometry in the

superficial region, they are optically transparent compared to

other organs, making them ideal to image with PAT. Several

clinical studies indicate that angiogenesis begins at an early stage

of breast carcinoma in situ, with this understanding, the dual-

modal PAT/US imaging based on two different contrast

mechanisms (functional optical and anatomical US) can

achieve greater clinical performance with a merit of radiation-

free, breast-compression-free, and relatively inexpensive.

In recent years, combined PAT/US technology has

demonstrated its clinical feasibility in human breast cancer

diagnosis in vivo (Becker et al., 2018; Oraevsky et al., 2018;

Han et al., 2022) and (Goh et al., 2019) ex vivo in humans.

Advanced systems explored for real-time PAT/US breast imaging

with high temporal feature have been designed (Becker et al.,

2018; Oraevsky et al., 2018). The individual images are

reconstructed at possible rate of 25 Hz for single wavelength

imaging and the MSOT image is possible at a 5 Hz refresh rate

per multispectral image (Becker et al., 2018). MSOT/US image

was conducted to acquire functional information of breast

cancer, revealing increased signals for HbR and HbO2 in

invasive breast carcinoma (Figure 4). Another real-time PAT/

US system named Imagio™ was developed for testing in a

multicenter clinical trial termed PIONEER (Oraevsky et al.,

2018). A spatial-temporal coregistration of functional and

anatomical images is explored in clinical trials (Figure 4). In

FIGURE 3
(A) Anatomy of thyroid including cardio-vascular and respiratory system; the cross-sectional imaging plane is highlighted in green. (B) PAT and
(C) US cross-sections of the left thyroid lobe of the first volunteer. PAT: Photoacoustic tomography, US: Ultrasound; C: Carotid T: Thyroid, Tr:
Trachea, s: sternocleidomastoid muscle, m: infrahyoid muscle; axes in mm. Reprinted with permission from [Dima A., Ntziachristos V. (2016). In-vivo
handheld optoacoustic tomography of the human thyroid[J]. Photoacoustics, 4(2):65–69. doi: 10.1016/j.pacs.2016.05.003].
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this system, radiologists can evaluate the vascular pattern around

tumors, the microvascular density of lesions, and the relative

values of HbT, SO2 to adjacent tissues. While the Imagio™ lacks

the advantages of US, such as speed of sound and acoustic

attenuation measurement, further study would focus on

improvement of both PAT and US performance on this

system (Zalev et al., 2012; Oraevsky et al., 2018; Stephens

et al., 2021).

Large sample study and data set for PAT/US system is as a

bridge from trials to clinical applications. Analyses in two large

samples of PAT/US breast imaging were performed (Neuschler

et al., 2017; Kim et al., 2020), enrolling 2105 women and

2000 patients, respectively. A comparison on Breast Imaging

Reporting and Data System (BI-RADS) categories using PAT/US

versus US alone was completed (Neuschler et al., 2017). With a

similar sensitivity (US: 96% vs. PAT/US: 98.6%), the specificity of

PAT/US exceeded that of US by 14.9%. While PAT will not

replace any US functions, but provides important

complementary information for US imaging. The result

demonstrated it may be possible to improve the specificity of

breast mass assessment by using PAT/US, thereby reducing the

number of false-positive examinations and biopsies. However, it

also had limitation that led to some false-negative interpretations.

Later, another multicenter clinical trials demonstrated the

clinical feasibility with a hand-held duplex technology (Kim

et al., 2020). Complex signal processing and image

reconstruction algorithms in the software enable real-time

coregistration of PAT/US imaging.

In comparison to two-dimensional (2D) functional PAT/US

imaging, 3D functional PAT/US imaging has several advantages.

Using 3D PAT/US imaging can provide quantified results based

on 2D PAT imaging, which can better represent the overall

functional imaging features of breast tumor. To verify this, Yang

et al. explored a quantitative method to analyze characteristics of

breast tumors using 3D volumetric data obtained from a 3D

PAT/US functional imaging system (Yang et al., 2020). The

analysis of the 3D distribution of vessels could provide a more

comprehensive description of the tumor vasculature than 2D

analysis. Furthermore, 3D quantification of PAT functional

information may be able to minimize intra-observer

differences compared to previous 2D PAT/US imaging

studies. Limitations of this research include the “limited view”

problem, causing most of the reconstructed vessels to have an

orientation that tended to be parallel with the scanning direction.

Taken together, PAT/US imaging has provided meaningful

information for a radiologist to accurately diagnose malignancy.

FIGURE 4
Clinical OA/US imaging of two benign breast tumors. (A,D) show US of two breast tumors; (B) reveals a lack of angiogenesis microvasculature
within the breast tumor in OA/US image; (C) shows the majority of the tumor is normally oxygenated in OA/US image; (E, F) display another similar
breast tumor in OA/US image. OA: optoacoustic; US: ultrasound. Reprinted with permission from Oraevsky et al. (2018).
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Notably, for patients with breast cancer, PAT/US is accelerating

its clinical translation in macroscopic and microscopic imaging.

To define the role of PAT/US in clinical practice, further research

should be conducted into feature analysis and interpretation

strategies. Moreover, further technical advances of the

technology will be envisioned in the direction of quantitatively

accurate PAT/US image and the 3D PAT/US systems with large

FOV for human breast.

Skin imaging

Skin cancer is one of the most common types of cancers

affecting around one out of five people in most developed

countries (Deán-Ben and Razanskyet, 2021). The most

aggressive type of skin tumors is malignant melanomas. The

melanoma patients have a very poor prognosis if it is not

identified and treated in early stage accurately. Recently,

noninvasive imaging techniques, such as high-frequency

ultrasonography (HFUS), reflectance confocal microscopy

(RCM), and optical coherence tomography (OCT) have been

developed to improve the diagnostic sensitivity and accuracy for

skin melanoma (Heibel et al., 2020). However, those methods are

neither sufficient to measure the accurate depth of the melanoma

nor accurately estimate the real invasive depth of the tumor

(Crisan et al., 2013). PAT image is gaining great attention as a

noninvasive and nonionizing diagnostic method to visualize skin

melanomas, due to the presence of strong melanin contrast in

tumor. The spectral PAT images were also integrated to a pulse-

echo US image serving as anatomical reference. In the last couple

of years, several groups have conducted experiments of skin

melanoma in animals to confirm its feasibility using PAT

imaging system (Neuschmelting et al., 2016; Hindelang et al.,

2019).

FIGURE 5
Combined PAT/US imaging of skin cancers. PAT image of a skin melanoma acquired simultaneously with a US image. (A) Clinical photo and (B)
histopathology of melanoma on human chest, (C) PAampMAP and (B) PAunmixed MAP images along the area of red dashed box in (A); (E) US image
of melanoma; (F) PAamp/US image and (G) PAunmixed/US image along the white dashed lines in (C,D), respectively. PAT: photoacoustic
tomography; US: ultrasound; PAamp, photoacoustic amplitude; PAunmixed, photoacoustic unmixed melanoma; MAP, maximum amplitude
projection. Reprinted with permission from Park et al. (2021).
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Detection and quantification of melanoma depth have been

reported with several types of PAT/US imaging systems in vivo

(Li M et al., 2018; Wang S. L et al., 2021; Park et al., 2021). This

unique PAT/US imaging here opens unprecedented capabilities

for high-resolution skin imaging at scalable depths in vivo. A

pilot study showed six melanoma patients examined in vivo using

the 3D MSOT imaging system (Figure 5). By using a MSOT/US

system, melanoma of various sizes, locations (chest, thigh, heel,

feet, and palm) and forms (1.3–30 mm lateral diameter,

0.6–9.1 mm depth) were detected by US technology. Feeding

vessels were visualized in the melanoma using 3D PAT image,

suggesting the neovascularization in the tumor. An analysis of

those MSOT data confirmed a high correlation between the

depth of the melanoma and its histology (Park et al., 2021).

Thus, this PAT(MSOT)/US system, in particular with 3D

reconstruction, will possibly serve as an important

noninvasive imaging tool in determining the stage of skin

cancer, in deciding the excision region of the cancer in

surgery. Furthermore, it would improve the prognosis of the

skin melanoma patients in near future. However, these works

were still preliminary attempt for the diagnosis. In order to

further explore the potential of PAT/US in early diagnosis of

melanoma, more experiments in vivo are necessary with different

subtypes and stages of melanoma. Further, deep learning (DL)

and artificial intelligence (AI) algorithms can be combined to

detect the invasion depth and boundary of melanoma more

precisely.

Extremities imaging

Monitoring the microcirculation in target tissue is crucial in

assessing bone diseases, inflammation of the synovium and

peripheral vascular diseases, such as diabetic foot, synovitis,

rheumatoid arthritis, and arterial embolization in lower

extremity. However, conventional imaging modalities are

focused on diagnosis in major arteries, and are limited to

provide microvascular information in early stages of the

disease. PAT imaging reliably quantify vascular parameters

noninvasively in human extremities (Kruizinga et al., 2013; Xu

et al., 2013; Jo et al., 2017; van den Berg et al., 2017; Choi et al.,

2022). However, the localization of the PAT signal may require

another modality. A unique advantage of US is its good

localization, non-ionizing nature, and ability to penetrate soft

tissues. Given the abovementioned advantages of PAT and US

technique, PAT/US image system has potential for clinical

extremities health assessment.

To facilitate clinical use, a costumed 3D PAT/US system has

been conducted for finger imaging in a healthy human in vivo

(Oeri et al., 2017). Tomography consists of four separate and fully

automated removable curved sensors that can image all three

finger joints. This study has provided new opportunities in finger

diagnostics. However, noises (similar frequency as signals) were

observed in raw data of some arcs, yielding streaking artifacts in

reconstructed images in certain regions.

Recently, researchers challenged the use of US-guided PAT to

visualize human bones (Feng et al., 2020). The results suggested that

it can distinguish PAT signal of human cortical and trabecular bones

in vivo, as well as the surrounding soft tissue. However, this work has

not provided a quantitative assessment based on trabecular bone

PAT signal. And then, MSOT/US was applied for assessment of

17 systemic sclerosis (SSc) patients (5 out of 17 was in early phase)

with nailfold damage, 5 primary Raynaud’s phenomenon (PRP) and

9 health controls (Daoudi et al., 2021). Since MOST can

quantitatively evaluate capillary density and hemoglobin (Hb)

contents of the third fingers and US is capable of measure skin

thickness of the lesions, this hybridmethod could help to distinguish

early SSc from PRP individuals and health controls in both Hb

contents and skin thickness.

Furthermore, with the increase need of fast diagnosis devices,

POC technique has gained popularity and also been studied for

possible application in clinical settings. The feasibility of a portable

PAT/US system was evaluated for clinically evident synovitis (van

den Berg et al., 2017). The proximal interphalangeal joints of the

inflamed and non-inflamed joints of ten patients were examined and

compared with the joints of 7 healthy volunteers. PAT scan, power

Doppler US (US-PD) were performed (Figure 6). The PAT probe in

this study is sensitive to vessels and vascular networks of 0.2 mm in

size. PAT signals in inflamed joints increased significantly,

compared with contralateral non-inflamed joints and with joints

from healthy volunteers, which was highly correlated with US-PD

(Figure 7). Therefore, combined PAT with US using a compact

handheld probe is able to detect clinically manifest synovitis.

However, one of the technical limitations of this system was the

lack of shared access to high-quality PAT and US images. The short

delay between the twomay have contributed to inaccuracy caused by

the unexpected movement of the fingers. The restriction on this

setting will be addressed in future versions, resulting in almost

simultaneous access to PAT and US images.

Future applications of PAT/US system in extremities can take

advantage of its multi-spectral imaging capabilities, allowing the

estimation of the SO2 of lesion tissues. In next, quantitative

parameters acquired from MOST on different bone mineral densities

of long bones will be available. The bone and joint evaluation platform is

needed to provide both microstructural and metabolic information,

which is highly valuable for diagnosis and grading as well as monitoring

of osteoporosis therapy and other osteoarticular diseases. Furthermore,

targeted PAT/US contrast agents based onmolecularmarkers need to be

investigated, providing information about inflammation similar to

positron emission tomography.

Large blood vessels imaging

Lipids in plaques are an important marker of

atherosclerosis. Among endogenous contrast compositions,
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lipid is one of the most commonly used PAT biomarkers and

has been intensively studied. An intravascular PAT/US probe

was applied to visualize blood lipid in arteries, which was able

to successfully detect and distinguish plaque lipids in human

coronary arteries from adventitial fat ex vivo (Wu et al.,

2015). This imaging technique has demonstrated its ability

to identify features of plaque instability but come with

limitations, such as the use of contrast agents, long

examination times and poor portability. Recently, five

patients with carotid atherosclerosis, five healthy

FIGURE 6
(A) A PAT/US probe with a front-end view showing the light delivery window (dark aperture) and gray acoustic lens in medium; (B) The patient’s
hand is submerged in water and is supported by a series of braces. The sensor is mounted on amotorized 2-axis stage and positioned above the joint.
PAT: photoacoustic tomography; US: ultrasound. Reprinted with permission from [van den Berg P. J, Daoudi K., Bernelot Moens H. J., and
Steenbergen W. (2017). Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system.
Photoacoustics. 8,8–14. doi: 10.1016/j.pacs.2017.08.002].

FIGURE 7
PAT/US and US/PD images of an inflamed contra-lateral (bottom row) and non-inflamed (upper row) joint from a patient with rheumatoid
arthritis. PAT/US images in (A) show a difference in color between inflamed and non-inflamed corresponding to an increase in amplitude levels. If low
PAT amplitudes are discarded in (B), only features in the inflamed joint are seen. Figure (C) shows the corresponding US-PD images. Blue lines in PAT/
US images indicate ROIs used for PAT feature quantification in synovial space. The 0 dB level is the maximum PAT amplitude produced by an
inflamed joint. d, dermis; dv, dorsal vein; pp, proximal phalanx; pip, proximally located interphalangeal joint; mp, midline phalanxes; s, synovium; t,
extensor tendon; PAT, photoacoustic tomography; US, ultrasound; PD, powered Doppler. Reprinted with permission from [van den Berg P. J.,
Daoudi K., Bernelot Moens H. J., and SteenbergenW. (2017). Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-
of-care system. Photoacoustics. 8,8–14. doi: 10.1016/j.pacs.2017.08.002.
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volunteers and two excised plaques, were scanned with

handheld MSOT noninvasively (Karlas et al., 2021a).

Spectral unmixing allowed visualization of lipid and Hb

content within three ROIs: whole arterial cross-section,

plaque and arterial lumen. This finding introduces MSOT

as a new tool for molecular imaging of human carotid

atherosclerosis and opens new opportunities for research

and clinical evaluation of carotenoid plaques. Following

this, MSOT, US and colored Doppler imaging of the

carotid arteries in healthy individuals was performed,

along with blood flow and oxygenation measurements.

(Wu Y et al., 2021). This work demonstrates that

multimodality has the potential to provide comprehensive

information with increasing accuracy (Figure 8). However,

FIGURE 8
MSOT/US imaging of the carotid artery of a healthy volunteer and a patient, MSOT/US imaging and histology of an excised plaque. (A)US image
of the transverse section of the carotid artery of a healthy volunteer. (B) Corresponding MSOT image at 800 nm. White dashed line: skin surface. The
carotid lumen area is demarcated in red. Scale bars: 5 mm. (C)Magnification of the lumen area of the spectrally unmixed MSOT image in (B) showing
the HbT signal. (D) Same magnification showing the Lipids signal. Scale bar: 2.5 mm. (E) US image of a patient with carotid atherosclerosis. (F)
Corresponding MSOT image at 800 nm. White dashed line: skin surface. The lumen is demarcated in red and the plaque area with a yellow dashed
line. Scale bars: 5 mm. (G) Magnification of the arterial cross-section in US. (H)Magnification of the arterial cross-section of the spectrally unmixed
MSOT image in (F), showing the HbT signal. White arrow: region of increased HbT content. (I) Same magnification showing the Lipids-signal. Scale
bar: 2.5 mm. (J) Sagittal view of the excised plaque in US. (K) Same view of the plaque in corresponding unmixed HbT image. White arrow:
postoperatively attached suture. (L) Same view of the plaque in unmixed MSOT Lipids image. Scale bar: 4 mm. (M) Histological view with H&E
staining. The black circle shows a region with thrombotic and erythrocytes components. (N) Histological view with CD31-staining targeting the
neovascularization. (O) Histological view with OR-staining showing the lipid content of the plaque. MSOT: multispectral optoacoustic tomography;
US: ultrasound. Reprinted with permission from [Karlas A., Kallmayer M., Bariotakis M., Fasoula N. A., Liapis E., Hyafil F., et al. (2021). Multispectral
optoacoustic tomography of lipid and Hb contrast in human carotid atherosclerosis. Photoacoustics.23,100283. doi: 10.1016/j.pacs.2021.100283].

FIGURE 9
Images of the SLN and the needle acquired using PAT/US in vivo. (A)US image showing the lymph node and needle in vivo. (B) PAT image of the
SLN and needle in vivo. (C)Coregistered PAT/US image of the SLN (long white arrow) and needle (short white arrow). SLN: sentinel lymph node; PAT:
photoacoustic tomography; US: ultrasound. Reprinted with permission from [Garcia-Uribe A., et al. (2015). Dual-Modality Photoacoustic and
Ultrasound Imaging System for Noninvasive Sentinel Lymph Node Detection in Patients with Breast Cancer. Sci Rep.5, 15748. doi: 10.1038/
srep15748].
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lipids generated just moderate PAT signals at wavelength of

1734 nm, making PAT images at this wavelength vulnerable

to noise. To tackle this problem, noise reduction and probe

sensitivity will improve accuracy and reliability of lipid

identification.

Lymph system

Detecting regional lymph node metastasis is important in

cancer staging, as it guides patient prognosis and treatment

strategy. Sentinel lymph node biopsy (SLNB) heroine is an

accurate and less invasive alternative to axillary lymph node

dissection (Aragon et al., 2022). Since high sensitivity to dyes,

high spatial, contrast and temporal resolution, enough imaging

depth are key requirements for SLNB (Song et al., 2008; Kim

and Chang, 2018), blue dye is an ideal contrast agent for PAT

due to its strong optical absorption. Accurate identification of

sentinel lymph node (SLN) by PAT/US can enable SLN

sampling using fine needle aspiration biopsy (FNAB) for a

minimally invasive approach to axillary staging (Garcia-Uribe

et al., 2015). As a non-ionizing hybrid imaging method,

coregistered PAT/US imaging can detect SLNs and

lymphatic vessels using methylene blue dye (Figure 9).

However, 5 fps of coregistered images is not sufficient for

real-time biopsy guided by PAT/US in clinical applications.

To achieve a higher frame rate of reconstructed PAT/US

images, DAQ computer is necessary to be improved, aiming

for real-time visualization in preoperative evaluation in patients

with newly diagnosed invasive breast cancer in the future.

Molecular imaging

The biomedical PAT is based on the absorption spectra of

intrinsic absorbers present in human tissue, such as HbO2 and

HbR (Laufer et al., 2005; Pan et al., 2010), lipids (Guggenheim

et al., 2015; Kole et al., 2019), melanin (Kratkiewicz et al., 2019),

water (Xu et al., 2011), RNA and DNA (Yao et al., 2010). When

these intrinsic chromophores are not sufficient to reveal the

disease, extrinsic contrast agents can be utilized to target

different diseased biomarkers to increase molecular sensitivity

and specificity. Applications of PAT imaging in the clinical

research have shown promising results with endogenous

contrast (Wu et al., 2014; Wu et al., 2019b), including in

inflammatory bowl (Knieling et al., 2017), dermatology

(Masthoff et al., 2018) and breast cancer (Nyayapathi and Xia,

2019). For US imaging, Optison (human serum albumin stabilized

perflutren microspheres), Definity (perflutren lipid microspheres),

SonoVue (phospholipid-stabilizedmicrobubble), and Sonazoid (F-

butane encapsulated in a lipid shell) have been approved for

clinical use by the FDA (Cohen et al., 1998; Morel et al., 2000;

Halpern et al., 2002; Datta et al., 2008).

Dual-modal contrast agents for PAT/US imaging have been

studied to improve the diagnostic sensitivity and specificity. In

order to enable molecular PAT/US detection, contrast agents can

be specifically tailored to molecular targets of relevance to tumor

metastasis, including those biomarkers expressed during

lymphangiogenesis, as well as those expressed by tumors.

Studies on exogenous contrast agents for PAT/US imaging

biomedical application have been reported (Kim et al., 2010a;

Xu et al., 2010; Jeon and Kim, 2014; Paproski et al., 2016; Zhang

et al., 2016; Bayer et al., 2017; Park et al., 2017b; Chitgupi and

Lovell, 2018; Shi et al., 2021). Angiogenesis, the formation of new

blood vessels, is a hallmark of many diseases, including tumor

and inflammation. In response, those lesions can be detected by

PAT based on Hb, which is one of the major chromophores. The

treatment of the bubble surface to target specific molecules can

broaden the applications of these contrast agents using combined

PAT and US imaging. Current contrast agents for PAT/US dual-

modality include the conjugating NBs with cancer-targeting

ligands (Xu et al., 2010), Texas Red dye in poly (lactic-co-

glycolic acid) (PLGA) NBs (Kim et al., 2010c) and gold

nanotracers (Au NTs) labeled with mesenchymal stem cells

(MSCs) for monitoring disease processing (Nam et al., 2012),

encapsulated gold nanorod human serum albumin (HSA)-

shelled microbubbles (AuNR-HSA) for thermotherapy (Wang

et al., 2012), liquid perfluorocarbon (PFC) nanodroplets with

encapsulated plasmonic nanoparticles and encapsulated-ink

microbubbles for biomedical application (Jeon M., and Kim,

C., 2014). As mentioned above, most of contrast agents are

applicable in preclinical trails, only few of them have potential

opportunities towards clinical translation, such as particular

microbubbles loaded with ICG. In addition, by targeting

specific molecules on the bubble surface, these contrast agents

can be used for simultaneous PAT and US imaging, including

tumor borders, intracranial imaging, and molecular imaging of

primary and metastatic tumors in the future.

Other clinical applications

In the last few decades, through intensive study and

elaboration, PAT/US dual-modal technology can therefore

visualize the human structures or tissues extending to whole-

body from the organelles to organ range, including prostate in

vivo (Kothapalli et al., 2019; Agrawal et al., 2020), placenta ex vivo

(Xia et al., 2019; Maneas et al., 2020), bowels in vivo and ex vivo

(Knieling et al., 2017; Leng et al., 2018 Yang et al., 2019),

periodontal health in vivo (Mozaffarzadeh et al., 2021) and

spine in human cadaver (Gonzalez et al., 2021).

In prostate and some of bowels researches, intracavity PAT/

US probes were conducted in vivo. In order to image the entire

prostate and circumferential bowel wall, the FOV probes should

be designed as large as possible, which in the range of 130°–150°

at least (Agrawal et al., 2020). However, compared to the
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conventional clinical PAT/US devices, these PAT/US probes

were lack of sufficient elements within the transducers and

high performance DAQ systems. On the other hand, the

probe should be small enough to relieve the patient’s pain

during dectetion. Accordingly, these two restrictions limit the

spatial and contrast resolutions of intracavity images. The

advanced PAT/US system with higher performance intracavity

probe could solve this issue, due to its clear visualization of

microvasculature distribution in prostate (Kothapalli et al., 2019;

Agrawal et al., 2020) and bowel diseases (Knieling et al., 2017;

Leng et al., 2018; Yang et al., 2019). Furthermore, in order to

achieve better clinical results in the future, a wider FOV of multi-

modal probe with a 360° visualization, a better resolution of the

system and 3D image reconstruction are needed in the second

generation PAT/US device. Meanwhile, further study on the large

cohort, multi-center datasets of this approach is needed in

monitoring clinical efficacy.

To investigate the ability of PAT/US to image deeper tissue,

research groups have performed PAT/US imaging on ex vivo

human placentas (Xia et al., 2019; Maneas et al., 2020). It is

suggested that PAT imaging combined with US tracking could

provide a useful method for detecting the placental vasculature

during minimally invasive fetal surgery (Xia et al., 2019).

Moreover, the 3D dual-modal PAT/US imaging appears to be

promising for visualizing human placental vasculature in healthy

and twin-to-twin transfusion syndrome (TTTS) treated placentas

(Maneas et al., 2020). However, limitations of proposed method

include insufficient sensitivity in detecting vessels at all depths in

TABLE 1 Comparison of various configurations for clinical PAT/US dual-modal systems.

Transducers f0 (MHz) No. of
elements

FOV Organs/Tissues References

Intravascular, full-ring array 20–50 Single 360° coronary atherosclerosis, ex vivo Karpiouk et al. (2012)

Intravascular, full-ring array 45 — 360° Coronary artery, ex vivo Wu et al. (2014)

Handheld duplex probe — — — Breast, in vivo Neuschler et al. (2017)

Handheld, linear array 3 256 125° Breast, in vivo Becker et al. (2018)

Handheld, linear array 0.1–12 128 — Breast, in vivo Oraevsky et al. (2018)

Rotate, concave array 10 384 360° Breast, in vivo Kelly et al. (2020)

Handheld, linear array 5.8 192 3D Breast, in vivo Yang et al. (2020)

Handheld, linear array 5 256 125° Breast, ex vivo Goh et al. (2019)

Handheld, linear array 5–12 256 — Sentinel lymph node, in vivo Garcia-Uribe et al. (2015)

Handheld, curved array ~7.5 64 172° Thyroid, in vivo Dima and Ntziachristos, (2016)

Handheld, linear array 5.8 192 — Thyroid, in vivo Yang et al. (2017)

Handheld, linear array 8.5 128 — Thyroid, in vivo Kim et al. (2021)

Transrectal, linear array 5 64 ± 20° Prostate, in vivo Kothapalli et al. (2019)

Transrectal, linear array 4–8 128 135° Prostate, in vivo Agrawal et al. (2020)

Handheld, linear array, EC-12R, Alpinion — — — Melanomas, in vivo Park et al. (2021)

Handheld, linear array,CL15-7, Philips 8.9 — 180° Joint, in vivo Jo et al. (2017)

Fixed, full-ring 5 512 360° Fingers, in vivo Xia et al. (2015)

Handheld, spherical array 4 256 90° Fingers, in vivo Xu et al. (2013)

Handheld, linear probe 7.5 128 ~30° Fingers, in vivo Daoudi et al. (2021)

Fixed, curvilinear array 4–5 64–512 135°–270° Fingers, in vivo Mercep et al. (2018)

Rotated 3.5 2 ~10° Fingers, in vivo Liu and Zhang, (2016)

Fixed, linear array 14 128 — Fingers, in vivo van den Berg et al. (2017)

Fixed, arc-like array 10 768 360° Fingers, in vivo Oeri et al. (2017)

Handheld, linear array 3–12 128 — Forearm, in vivo Kim et al. (2016)

Fixed 0.5 — — Bone, in vivo Feng et al. (2020)

Handheld, linear array — — — Bowel, in vivo Knieling et al. (2017)

Endorectal probe 20 — 360° Bowel, in vivo Leng et al. (2018)

Endorectal probe 6–10 — — Bowel, in vivo Yang et al. (2019)

Handheld, linear array 10, 20.5, and 40 128 4.5 × 3.5 cm Periodontal, in vivo Mozaffarzadeh et al. (2021)

Handheld, linear array, EC-12R, Alpinion 4 128 — Spinal pedicle, ex vivo Gonzalez et al. (2021)

Handheld, linear array, SonixMDP 10 128 62° Placenta, in vivo Xia et al. (2019)

Handheld, linear array, AcousticX 9 128 3D Placenta, ex vivo Maneas et al. (2020)

PAT, photoacoustic tomography; US, ultrasound; FOV, field of view; 3D, three-dimensional; --, not mentioned.
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the placenta, and poor spatial resolution in detecting the smallest

vessels. It is one of the key challenges for the application in future

studies. Further MSOT imaging could be used to discriminate

between coagulated and non-coagulated blood based on their

different absorption spectral during the treatment of TTTS.

Another challenge application in deep tissue is utilized for a

human cadaver vertebra imaging by PAT/US guidance system.

This combined system was promising to assist surgeons with

identifying and avoiding impending bone breaches during

pedicle cannulation in spinal fusion surgeries (Gonzalez et al.,

2021). However, the research is still conducted on human

cadavers. Extensive preclinical trials are needed before it can

be used in humans in vivo.

A pilot study of simultaneous visualization of the teeth and

periodontium is of significant clinical interest for image-based

monitoring of periodontal health (Mozaffarzadeh et al., 2021). It

was found that a successful visualization periodontal anatomy

and periodontal pocket depths in humans using a dual-modal

PAT/US imaging system for the first time. This work

demonstrated that 3D PAT/US images allow for accurate

measurement and visualization of periodontal features,

including the periodontal anatomy, enamel pigmentation, and

pocket depth. Efforts are made to remove shaking artifacts from

3D PAT/US images by a specific algorithm. In spite of this, the

calculation is complicated and needs to be improved in the

future work.

Summary and future perspectives

In this review, we focus on the application and advances in

dual-modal PAT/US imaging technology in clinical translations

and discussed in details in a systematic way. We explained the

principle of PAT/US dual-modality and also discussed a variety

of existing PAT/US systems and summarized their key

characteristics in Table 1. In the next, we detail clinical

applications of current PAT/US system. Compared to

traditional PAT imaging, PAT/US detection owns several

advantages in clinical applications, such as optical

transparency, material flexibility and anti-electromagnetic

interference. Several advanced PAT/US imaging technologies

have taken another step forward for clinical translation.

However, further improvements are needed to make it more

clinically compatible.

Future work of this hybrid system may include: 1) Real-time

3D reconstruction technology would be a good future for

advanced PAT/US system, which can produce a stereo vision

of lesions for radiologists and clinicians. Thus, PAT/US imaging

systems with 3D imaging require new methods and materials for

systematic testing which can help in decision-making during

clinical translation; Furthermore, 3D printed biomodel for

simulation of anatomic angioarchitecture of lesions will

facilitate surgeon to develop and evaluate a surgical protocol;

2) An advanced PAT/US imaging reconstruction algorithm need

to be further proposed based on the previous studies (Jiang, 2015;

Wang et al., 2022) to improve lateral resolution of hybrid image,

as well as temporal resolution aiming to simultaneously

displaying structural, functional, and molecular information;

3) The miniaturization of a PAT/US dual-modal system with

significant improvements in the performance of portable laser

pump sources, high performance DAQ computers and handhold

transducer with smaller size and lighter weight; In next, POC

would refer to PAT/US examination outside the lab, such as

bedside care, in emergency departments, surgery monitoring or

ambulant first aid. It will be a widely used tool for imaging and

therefore reducing the time in clinical decision making,

emergency and medical education in the coming future. 4) To

explore other human organs researches and translations, such as

the lungs, pediatric heart, fetus, uterine, neck organs, and others.

Due to the dependent optical attenuation depth and wavelength

and unknown optical and acoustic heterogeneities limit PAT/US

imaging performance in deep tissue regions; therefore, efficient

deep tissue’s energy transfer system should be developed in next

work; 5) PAT/US dual-modal exogenous contrast agents, such as

particular microspheres loaded with ICG, have potential

opportunities in future to monitor tumor process, metastasis

in different part of human body; 6) The multifunctional

nanocomposites with dual-modal PAT/US imaging and

synergistic therapy will have great application value in

different clinical fields involving tumor, vascular plaque,

antimicrobial therapy and others in the coming future; 7)

PAT/US dual-modal system integrated with AI applications

have a broad research prospect in the diagnosis and treatment

of human diseases. The previous simulation platform has the

potential to generate large-scale application-specific training and

test datasets for AI, enhancing AI assisted PAT/US imaging

(Agrawal et al., 2019; Hariri et al., 2020; Agrawal et al.,

2021b). DL would substantially impact the advancement of

modern PAT/US imaging processing methods. Future scope

of this work involves 3D simulations and validation studies of

different organs to simulate real optical and acoustic

heterogeneity, artifacts, shadow effects, and systemic noise.

Thus, AI algorithms can be combined to detect the invasion

depth and boundary of tumors more precisely in the coming

future; 8) At last, FDA cleared PAT/US devices have a greater

potential to be a quicker way for clinical application and

translation.

We hope this review can be helpful for researchers who wish

to learn more about PAT/US dual-modal detections and to use

PAT/US dual-modal imaging in their clinical applications.
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Digital holography is an effective technology in image reconstruction as

amplitude and phase information of cells can be acquired without any

staining. In this paper, we propose a holographic technique with an

improved Gerchberg-Saxton (GS) algorithm to reconstruct cell imaging

based on phase reconstruction information. Comparative experiments are

conducted on four specific models to investigate the effectiveness of the

proposed method. The morphological parameters (such as shape, volume,

and sphericity) of abnormal erythrocytes can be obtained by reconstructing cell

hologram of urinary sediment. Notably, abnormal red blood cells can also be

detected in mussy circumstances by the proposed method, owing to the

significantly biophysical contrast (refractive index distribution and mass

density) between two different cells. Therefore, this proposed method has a

broad application prospect in cell image reconstruction and cell dynamic

detection.

KEYWORDS

computer hologram, cell image, GS algorithm, phase reconstruction, reconstruction

Introduction

In the research field of biomedical and life sciences, researchers expect to capture the

cell morphological shapes, dynamic characteristics, physiological parameters, interaction

among cells, cell reactions to medicines and drug transport information by visual

observation of biological cells in nutrient solution or under natural circumstances,

which has an important role in early diagnosis and medicine design (Dixit and Cyr,

2003). Optical microscopy, which is regarded as a conventional medical imaging tool, is

capable of magnifying images of minute object specimens with visible light. However, the

conventional optical microscope can only examine the strength of the optical wave and

achieve a two-dimensional, light intensity distribution map. Optical microscopy has

difficulty capturing the three-dimensional spatial information of specimens. In addition,
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fluorescence microscopy demonstrated great performance in

enhancing the contrast in cell images (Otuboah et al., 2019;

Wen et al., 2020). Before observation using fluorescence

microscopy, stains and dyes, such as rhoda mine, acridine

orange, green fluorescent protein or other substances, are

usually employed to mark biological cells to enhance the

contrast in different biological specimens (Kricka and Fortina,

2009). The staining pretreatment process not only increases the

complexity of cell imaging in operation but also greatly impacts

cellular activity. Therefore, with the development of biomedical

science, conventional cell imaging technologies have difficulty

meeting the requirements of the dynamic observation and

quantitative analysis of living cells (Ushenko et al., 2018;

Borovkova et al., 2019; Ushenko et al., 2019; Peyvasteh et al.,

2020).

Optical holography is a technology that adopts a

photosensitive medium to record the optical wavefront

information and that subsequently superimposes a second

wavefront, which is referred to as a diffracted wave, to

reconstruct the final image (Su et al., 2003; Wang et al.,

2014; Lucchetta et al., 2015; Deng and Li, 2017). Digital

holography is established by optical holography, dividing

the procedures into recording and reconstruction (Demoli

et al., 2019; Xia et al., 2019). Digital holography has drawn

much attention from researchers as a cell imaging technique,

owing to its advantageous characteristics of low production

cost, rapid reconstruction speed, flexible recording and

capturing of phase information of optical fields (Wang

et al., 2018; Zhong et al., 2020). Digital holography utilizes

photoelectric sensors (i.e., CCD or COMS) instead of a

photosensitive medium to record the wavefront

information, which is processed by computers. The light

transmitting process is simulated by a computer based on

diffraction propagation theory to quantitatively calculate the

amplitude and phase distribution of the recorded object.

Although existing optical instruments easily capture the

light intensity data of high-frequency optical waves, the

phase information is hard to collect or even lost in the

course of recording. Notably, the optical wave phase has

important morphological information with respect to the

specimens and may contain up to 80% information of the

imaged specimens. A phase retrieval algorithm has been

reported to promote the speed of reconstructing images of

X-rays, and this method is responsible for phase holograms in

both the visible band and the non-visible band (Hennelly and

Sheridan, 2003). Digital holographic techniques have been

reported for dynamic estimation by analyzing the specimen

shape and deformation analysis (Cui et al., 2010; Jin et al.,

2017). Recently, digital holographic techniques also had been

adopted for specific neural activity patterns (Adesnik and

Abdeladim, 2021), monitoring cell characteristic variations

in their density (Delikoyun et al., 2021), and cells migrating in

a 3D environment (Hellesvik et al., 2020).

In this paper, we proposed a holographic technique to

reconstruct cell imaging based on phase recovery information

using an improved GS algorithm. The improved GS algorithm

could optimize the initial phase based on local convergence

theorem, and accomplish the reconstructed holographic image

from contrapuntal phase information. We built four specific

models to investigate the effectiveness of the proposed method.

Comparative experiment results demonstrated that the proposed

method is able to reconstruct phase images with a high signal-to-

noise ratio, in which the edge and whole structural information

has been reserved. The proposed method is utilized to detect

abnormal red blood cells in urine sediment. Specifically, the

improved GS algorithm enhances the quality of the phase-

reconstructed holographic cell image and successfully detects

abnormal red blood cells with distinct edges from the mussy

circumstance. This method has great potential for practical

biomedical applications in monitoring cell activities.

Methods

Digital holographic instruments

In this section, Figure 1 shows the general setup of the

holographic imaging measurement system for holographic

information acquisition and object reconstruction, and the

optical holography adopts optical interference and

diffraction theories to establish the light path. The system is

composed of a laser source, beamsplitter cube, lens, reflector

and beam receiver CCD. The laser beam emitted by the laser

source is split into two orthogonal laser beams via the

beamsplitter cube, and the laser beams are expanded by a

beam expander. The outgoing beams from the beam

expander are then collimated by a convex lens, and the

beams are regarded as plane waves. One incident plane wave

is projected onto the sample object, and the other plane wave

goes through the acoustic-optic modulator as the reference

wave. The frequency of outgoing waves from the acoustic-optic

modulator has changed. Then, the light wave projected by the

sample object and reference wave transmit through different

optical paths and then become incident on the CCD sensor, on

which optical interference simultaneously occurs. The CCD

sensor acquires the holographic data, which are saved by the

computer. The digital holographic technique eliminates the

laser source and complex light path structure with respect to

optical holography. The digital holographic technique saves the

interference pattern generated on the conventional sensor plane

of optical holography as a digital image for simulation (Wang

et al., 2019). By computing the complex amplitude map of the

optical wave, the phase information or amplitude information

can be coded, and the encoding function is adopted to depict

the diffracted propagation of the object projected wave from the

holographic plane to the object plane. The digital holographic
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map is reconstructed by computer holography (Schnars and

Jüptner, 2002).

Holographic imaging algorithm

The holographic image is reconstructed in the steps of

computer holography. First, we conduct a discrete sampling

operation on the optical images to obtain a discrete digital

image. A random initial phase distribution of the input

optical field corresponding to the amplitude of the sampled

image is generated for iterative process. Second, we conduct

Fresnel or Fourier transformation on the discrete optical field

image. Third, we use an optimal encoding scheme to transform

the amplitude and phase information into the optimal

transmittance expression function. Last, the holographic image

is reconstructed through iterative calculations based on the

encoding function.

During computer holographic image reconstruction, we

simulate the holographic imaging process and optical

diffraction theory by computer calculation based on scalar

diffraction theory, which is responsible for describing optical

propagation. In computer holography, z defines the distance

between the diffractive plane and the observed plane, and

U(x, y, 0) and U(x, y, z) demonstrate the complex amplitudes

of the optical wave on the diffractive plane and observed

plane, respectively. The Fourier spectra regarding the complex

amplitudes of the optical wave, diffractive plane and observed

plane are F0(fx, fy) and Fz(fx, fy). Given that the spectrum

of the optical wave on the observed plane is known, the inverse

Fourier transformation is conducted to calculate the

amplitude on the observed plane, and the calculating

function can be expressed as follows:

U(x, y, z) � ∫
+∞

−∞
∫

+∞

−∞
Fz(f x , f y)e

j2π(f xx+f yy)df xdf y (1)

where (fx, fy) demonstrates spatial frequency of simple

harmonic plane wave and ej2π(fxx+fyy) demonstrates complex

amplitude distribution of simple harmonic plane wave in (x, y)
coordinates. Next, the correlation between F0(fx, fy) and

Fz(fx, fy) is calculated by substituting Eq. 1 into the

Helmholtz equation (Liu and Scott, 1987), which is expressed

as follows:

Fz(f x, f y) � F0(f x, f y)e
j2πλ z

�����������
1−(λf x)2−(λf y)2

√

(2)

FIGURE 1
General setup of the holographic imaging measurement system.
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Then, we obtain the following equation.

U(x, y, z) � IFFT〈FFT{U(x, y, 0)}ej
2π
λ z

�����������
1−(λf x)2−(λf y)2

√

〉 (3)

where FFT demonstrates the Fourier transformation and IFFT

demonstrates the inverse Fourier transformation.

The phase reconstruction algorithm is divided into two

categories: The first interference phase detection category

primarily includes the holographic technique and shear

interference method, and the second non-interference

detection category primarily includes the iterative method and

transport-of-intensity equation method (Teague, 1983; Deutsch

et al., 2008). The iterative method is based on the GS algorithm,

reported by Gerchberg and Saxton (Gerchberg and Saxton,

1972), which is a typical algorithm to overcome the phase

reconstruction problem. This algorithm adopts an iterative

method for phase reconstruction by evaluating the

relationship between the optical intensity distribution on the

incident plane and that on the imaging plane. The GSmethod has

a fast rate of convergence and high accuracy. In this section, we

propose an improved GS algorithm, and Figure 2 demonstrates a

FIGURE 2
Schematic of the improved algorithm calculating steps.

FIGURE 3
Original urine sediment image.

FIGURE 4
Pretreatment of image of urine sediment.
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schematic of holographic imaging with the improved GS

algorithm. We normalize the phase and then set a threshold

value of the processed phase to achieve a better reconstruction

performance. Here, the optical field display on the incident plane

using the wavefront coding technique is expressed as:

f (x, y) � ∣∣∣∣f (x, y)
∣∣∣∣eiφ(x,y) (4)

The optical field on the imaging plane using the wavefront

coding technique is expressed as:

g(u, v) � ∣∣∣∣g(u, v)∣∣∣∣eiψ(u,v) (5)

where f(x, y) and g(u, v) demonstrate the amplitude of the

optical field on the input plane and that on the imaging plane,

respectively. φ(x, y) and ψ(u, v) demonstrate the phase on the

input plane and imaging plane, respectively. The correlation

between f(x, y) and g(u, v) can be expressed as follows:

f (x, y) � FFT{g(u, v)} (6)

A random generating phase of the optical field on the incident

plane is input into the iterative operation as the initial phase, and the

phase is continuously updated by the following iterations. Then, we

normalize the phase and multiply the normalized phase by a factor

value to optimize the initial phase. We combine g(u, v) with the

amplitude on the imaging plane to obtain g′(u, v). Inverse Fourier
transformation is conducted on g′(u, v) to obtain f′(x,y). The
above steps are repeated to obtain the final phase.

Comparative experimental models

In our study, an improved GS algorithm was adopted to

reconstruct the wavefront phase map of urine sediment.

Comparative experiments were conducted to validate the

FIGURE 5
Amplitude reconstruction-based holographic image for Model 1. (A) Original greyscale image, (B) 20 iterative reconstruction images of
amplitude information, (C) 200 iterative reconstruction images of amplitude information, and (D) 2000 iterative reconstruction images of amplitude
information.
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effectiveness of the proposed method. The performance of

computer holography was analysed based on the phase and

amplitude information of the cell reconstructed holographic image.

The urine sediment image was adopted as the experimental

object. Computer holographic GS modelling is performed as

follows: First, we perform preprocessing on an original RGB cell

image, including downsampling the image with M × N pixels to

an image with 256 × 256 pixels and conducting a greyscale

operation. Second, the amplitude in each pixel was multiplied by

a randomly generated phase value. Last, the iteration operation

using the proposed method was conducted to obtain the

reconstructed holographic cell image.

In this study, four models were built to investigate the

effectiveness of the improved GS algorithm in cell holographic

imaging. For Model 1, the original GS algorithm was adopted to

obtain the amplitude information of the image, and the number of

iterations was set to 20, 200, and 2,000. Then, we compared the

amplitude of the holographic images with different iterations. For

Model 2, the GS algorithm was adopted to obtain the phase

information of the cell image. Neither Model 1 nor Model

2 was performed with phase mapping values. For Model 3,

normalization processing and phase mapping were conducted

on the amplitude and phase in Model 2, including

transforming the image into greyscale from 0 to 1 and

restricting the initial phase map value in the range of −π to π.

This strategy could avoid the impact of phase deviation on the

estimated accuracy. Then, we transformed the input image into an

image with a complex format, and a random function was

employed to generate a pair of images. The estimated phase

was continuously calculated to approximate the actual phase in

the iterative loop until the estimated phase was similar to the actual

phase. The output estimated phase wasmapped from [−π, π] to [0,
1]. The number of iterations was set to 20, 200 and 2,000 for

comparison. Since the holographic algorithm takes the negative

direction of the gradient of high-dimensional function as the

maximum value, when the initial phase is not selected properly

or the number of iterations is insufficient, the result will be very

different from the optimal value. Thus for Model 4, β factor was

introduced to restrict the initial value selection, and the phase

matrix was normalized and then multiplied by the β factor value.

The number of iterations was also set to 20, 200 and 2,000 for a

horizontal comparison.

FIGURE 6
Phase reconstruction-based holographic image for Model 2 using the conventional GS algorithm. (A) Initial random phase, (B) 20 iterative
reconstruction images of phase information, (C) 200 iterative reconstruction images of phase information, and (D) 2000 iterative reconstruction
images of phase information.
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To quantitatively estimate the impact of the phase

reconstruction, the root mean squared error (RMSE) is

employed as an indicator to assess the results. The indicator

of the RMSE is expressed as follows:

RMSE �
�������������
1
n
∑n

i�1(yi − y′i)
2

√
(7)

where n is the number of iterations, yi is the calculated phase of

each iteration, and y′
i is the phase distribution of the last iteration.

Results

In this study, the original image was a coloured image of urine

sediment with 493 × 659 pixels, as shown in Figure 3. Note that

there are several epithelial cells and abnormal red blood cells in this

image. There is a protruding cellular bleb on the membrane of the

abnormal red blood cell. In order to extract the amplitude and phase

information of the cell image, we conducted cropping and graying

arithmetic on the original cell image. After the preprocessing the

original image, a greyscale image with 256 × 256 pixels was

obtained, as shown in Figure 4.

Figure 5 demonstrates the amplitude reconstruction-based

holographic image for Model 1, which adopted the original GS

algorithm to extract amplitude information with the number of

iterations set to 20, 200 and 2,000. According to the visual

comparison, there is a slight difference among the amplitude

reconstruction-based holographic reconstructed images with

different numbers of iterations. The reconstructed cell images only

revealed a difference in brightness. Therefore, the amplitude

information showedminimal impact on the cell holographic imaging.

The GS algorithm with a random initial phase was conducted

on the preprocessed greyscale image to investigate the

performance of cell holographic imaging. The phase

reconstruction-based cell holographic images for Model 2 are

shown in Figure 6. The comparative results demonstrated that

the phase image would be fuzzy and chaotic without phase

normalization, leading to different results for each calculation.

FIGURE 7
Phase reconstruction-based holographic image for Model 3 using the improved GS algorithmwith the optimal initial phase. (A)Optimized initial
phase. (B) Twenty iterative reconstruction images of phase information. (C) 200 iterative reconstruction images of phase information. (D) 2000
iterative reconstruction images of phase information.
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Figure 7 demonstrates the phase reconstruction-based

holographic image for Model 3, which adopted an improved

GS algorithm with a random initial phase to extract phase

information with the number of iterations set to 20, 200 and

2,000. According to the cell reconstructed images with different

iterations, the comparative results suggested that as the number

of iterations increased, the edges and the entire structure of

abnormal red blood cells gradually became clearer, and the

sharpness of the images increased. Compared with the results

of Model 2, the abnormal blood red blood cells were successfully

detected, and other impure cells were removed. Specifically,

compared with the results of Model 1, the phase information

had a more important role in cell holographic imaging than

amplitude information, which only depicted the light and dark

distribution.

We conducted holographic imaging using an improved GS

algorithm with an optimal initial phase to investigate the

effectiveness of the proposed method for cell holographic

imaging. Figure 8 shows the phase reconstruction-based cell

holographic images for Model 4 with the initial phase limited

by a certain threshold value and the number of iterations set to

20, 200 and 2,000. A comparison of the cell holographic image

with different iterations reveals that the edges and the entire

structure of abnormal blood red cells became clearer as the

number of iterations increased. A comparison of the image

results of Model 3 and Model 4 reveal that the abnormal

blood red cell of Model 4 was clearer than the cell image of

Model 3, which suggested that the cell holographic image using

the proposed method showed effective performance in

holographic reconstruction and cell detection.

The root mean squared error (RMSE) was calculated to

quantitatively demonstrate the impact of phase reconstruction.

We take the logarithm of the RMSE for easy comparison. The

RMSE results support the above conclusion that the proposed

method is suitable for cell holographic reconstruction.

Model 2 is the unmapped phase original GS algorithm; the phase

peaks are disordered and small. Model 3 is the phase of the

mapped original GS algorithm; the phase peak at the red blood

FIGURE 8
Phase reconstruction-based holographic image for Model 4 using the improved GS algorithm. (A) Optimized initial phase, (B) 20 iterative
reconstruction images of phase information, (C) 200 iterative reconstruction images of phase information, and (D) 2000 iterative reconstruction
images of phase information.

Frontiers in Physiology frontiersin.org08

Jiang et al. 10.3389/fphys.2022.1040777

98

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1040777


cell in the target image is more obvious than that in Model 2.

Model 4 is the phase of the mapped improved GS algorithm.

Compared withModel 3, the phase peak at the position of the red

blood cell is slightly higher, and the performance of the phase

imaging image quality is slightly outstanding. Each model

ultimately presents a phase energy diagram with 20, 200 and

2,000 iterations.

To verify the enhancement effects of the improved GS

algorithm, the phase distributions of different models were

conducted using corresponding methods with different

iterations, as shown in Figure 9. The phase results of

Model 2 revealed that the phase distributions were

scrambled and that the peak value was small. Notably, the

phase peaks concentrated on the position of the blood red cell

in Model 3 and Model 4. More specifically, the phase peaks of

Model 4 at the position of the blood red cell were more

concentrated and higher than the phase peaks in Model 3.

These comparative results validated that the imaging quality

using the proposed method was outstanding.

Discussions

In this paper, we proposed an improved GS algorithm for cell

reconstructed imaging, which demonstrated the capability of

detecting normal red blood cells in urinary mussy

circumstances. The proposed method adopted phase mapping

and optimization to overcome the random and chaotic defects

during conventional phase reconstruction processing.

The holographic image based on amplitude reconstruction

results demonstrated that cell edges and detailed information is

difficult to extract from the amplitude information. The

comparative experimental results suggested that phase

information was more important for cell holographic imaging

than amplitude information. The amplitude information only

demonstrates the light and shade distribution of the image, but

does not associate with the content of cell characteristic

properties, while the phase information is related to cell

characteristic properties, such as edge and structure.

According to the results of Model 3 and Model 4, when the

FIGURE 9
Phase energy map using the improved GS algorithm for different models. (A) Phase energy map with 20 iterations for Model 2. (B) Phase energy
mapwith 200 iterations for Model 2. (C) Phase energymapwith 2,000 iterations for Model 2. (D) Phase energymap with 20 iterations for Model 3. (E)
Phase energy map with 200 iterations for Model 3. (F) Phase energy map with 2,000 iterations for Model 3. (G) Phase energy map with 20 iterations
for Model 4. (H) Phase energy map with 200 iterations for Model 4. (I) Phase energy map with 2,000 iterations for Model 4.
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phase was mapped in the range of −π to π, the impact of the

phase deviation on the estimation accuracy could be avoided so

that an accurate phase on the imaging plane was obtained. Phase

normalization could render subsequent data processing more

convenient and accelerate the convergence rate. As the greyscale

value has a range, the real part value and imaginary part value of

the Fourier transformation were unlimited. The mapping

method was adopted to write the two matrices (amplitude and

phase) into an image. The optimal initial phase could promote

the accuracy of phase reconstruction with a small number of

iterations. In addition, the correlation coefficient between the

complex amplitude function and the initial input complex

amplitude function after inverse transformation reduction was

taken as a threshold. Setting constraints on iteration could

decrease the iteration times of the GS algorithm and avoid the

waste of computing resources.

Cells can be considered phase objects. As many cells have a low

absorption or scattering rate of light, cell phase changes are closely

associated with the structure and other morphological parameters.

Therefore, digital holography has attracted more attention in the

field of biological cell imaging as it is capable of quantitatively

analysing biological cells and non-destructively and dynamically

observing living cells. Specifically, Kemper and Von Bally (2008)

applied digital holography technology in biomedical applications

and carried out three-dimensional reconstruction of human liver

tumour cells and red blood cells. Potcoava and Kim (2008)

conducted research on the thickness of blood vessels and retina

using digital holographic technology. Wang et al. (2016) promoted

the resolution of digital holographic imaging by combining

microspheres and image planes. Sandoz et al. (2019) adopted a

digital holographic system to estimate the biochemical change in

lipid droplets, which are responsible for lipid storage and

metabolism. Research on variations in the physicochemical

characteristics of the nucleolus in HeLa cells using a digital

holographic system has been reported (Kim et al., 2019).

Additionally, a report associated with the observation of living

diatoms in seawater using a digital holographic system was

presented (Umemura et al., 2020). In addition to quantitatively

imaging single cells, many studies have referred to cell pathology

monitoring using digital holographic techniques (Charrière et al.,

2006; Sung et al., 2009; Hsu et al., 2012).

Conclusion

In this paper, digital holographic technique could analyse cell

physiological property without staining and dyeing, which is

more suitable for the reconstruction of cell phase information,

and makes up for the shortage that the traditional optical

microscope can only provide amplitude images but is difficult

to accurately distinguish the cell edges. An improved Gerchberg-

Saxton algorithm was adopted to reconstruct the cell holographic

image in light of the phase reconstruction information.

Comparative experiments were carried out on four specific

models with different phase constraint contidions, and the cell

holographic image results clearly verified and revealed that this

proposed improved GS method achieved better performance

than the conventional GS method on the basis of phase

reconstruction data. As the phase image reveals not only the

spatial information but also the temporal statistics during the

transmission of various frequency waves, the accumulation of

phase information is able to depict the accurate shape parameters

of the recorded object. Then, validation experiments were

conducted on urine sediment images, and the reconstructed

holographic image results demonstrated that this improved

GS method was able to extract abnormal red blood cells with

sharp edges and filter out other impure objects. In conclusion, the

reconstructed holographic phase image achieved by the proposed

method had a high signal-to-noise ratio, and the method was

specific to discriminate the morphological parameters. Thus,

these results demonstrated the possibility of this proposed

holographic method in practical biomedical applications in

cell activities monitoring.
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CCT: Lightweight compact
convolutional transformer for
lung disease CT image
classification

Weiwei Sun1, Yu Pang1 and Guo Zhang1,2*
1College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications,
Chongqing, China, 2School of Medical Information and Engineering, Southwest Medical University,
Luzhou, China

Computed tomography (CT) imaging results are an important criterion for the

diagnosis of lung disease. CT images can clearly show the characteristics of lung

lesions. Early and accurate detection of lung diseases helps clinicians to

improve patient care effectively. Therefore, in this study, we used a

lightweight compact convolutional transformer (CCT) to build a prediction

model for lung disease classification using chest CT images. We added a

position offset term and changed the attention mechanism of the

transformer encoder to an axial attention mechanism module. As a result,

the classification performance of the model was improved in terms of height

and width. We show that the model effectively classifies COVID-19, community

pneumonia, and normal conditions on the CC-CCII dataset. The proposed

model outperforms other comparable models in the test set, achieving an

accuracy of 98.5% and a sensitivity of 98.6%. The results show that our method

achieves a larger field of perception on CT images, which positively affects the

classification of CT images. Thus, the method can provide adequate assistance

to clinicians.

KEYWORDS

axial attention, compact convolutional transformer, COVID-19, positional bias term,
image classification

1 Introduction

According to real-time statistics from the World Health Organization (WHO) and

Hopkins University, as of 1 August 2022, there were an estimated 570 million confirmed

COVID-19 cases worldwide, with −6.4 million deaths (Dong et al., 2020; Zhu et al., 2020).

With an increasing number of new cases recorded worldwide, COVID-19 has

considerably impacted industries. Additionally, people’s everyday lives have been

seriously affected. Therefore, the primary means of prevention and detection entail

controlling the spread of COVID-19. In clinical settings, nasopharyngeal and

oropharyngeal swabs are the main screening methods for COVID-19 (Xu et al.,

2020). However, many circumstances might cause a false negative test result (Bai

et al., 2020). For example, at the initial stage, when the virus enters the human body,
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the amount of virus present in the human body is within an

undetectable level. And different sampling times and locations

may yield insufficient viral amounts in the samples. In addition,

the laboratory equipment and the testing capabilities are poor,

and a quality management system has not been established. Thus,

these restrictions increase the risk of COVID-19 transmission

and cause patients to receive delayed treatment or a wrong

diagnosis.

The advantages of computed tomography (CT) are

noninvasiveness, high resolution, and timeliness, which help

diagnose COVID-19. CT expedites the diagnostic processes

and is an effective supplement to nucleic acid detection. CT

images can clearly find lesions, observe their size, shape, texture,

and other characteristics, and accurately segment them

(Bernheim et al., 2020; Rubin et al., 2020; Wong et al., 2020).

Analyzing the degree of pulmonary involvement and the severity

of infection helps support the follow-up clinical treatment of

patients. However, community pneumonia (CP) is also associated

with cough, sputum,malaise, and fever (Afshar et al., 2020; Zhang

et al., 2020a; Brunese et al., 2020; Han et al., 2020; Mahmud et al.,

2020; Oh et al., 2020; Ozturk et al., 2020; Calderon-Ramirez et al.,

2021; Ozyurt et al., 2021), and CT images of community

pneumonia are very similar to COVID-19. This not only

makes it more difficult to read the images (Shi et al., 2020)

but also greatly increases the workload of the doctors. Further,

manually labeling the infected area is time-consuming, and the

accuracy is subject to the doctor’s subjectivity.

Deep learning (Li et al., 2009; Li et al. 2010; Li et al. 2015;

Ardakani et al., 2020) has demonstrated excellent capabilities in

auxiliary lung diagnosis recently. It can automatically mine high-

dimensional features related to clinical outcomes from CT

images. The deep learning-based COVID-19 image

classification model has successfully assisted in patient disease

diagnosis (Esteva et al., 2017; Litjens et al., 2017; Ardila et al.,

2019; Esteva et al., 2019; Qin et al., 2019; Topol 2019; Mei et al.,

2020; Sun et al., 2022). An automatic and accurate method for

COVID-19 detection based on the ResNet50 model was

proposed (Li et al., 2020). And 4,356 chest CT images of

3,322 patients were used to distinguish between COVID-19,

CP, and non-pneumonia. The sensitivity, specificity, and area

under the curve (AUC) scores of the model were 90%, 96%, and

0.96, respectively. A method for COVID-19 detection based on

the DenseNet201 depth transfer model was proposed (Jaiswal

et al., 2020). The model was trained using the Image Net dataset

and was 96.3% accurate in classifying and recognizing chest CT

images. Further, Wu et al. integrated COVID-19 classification

and lesion segmentation into the COVID-CS network, and the

two tasks shared the same backbone network (Wu et al., 2021).

The classification test set obtained an average sensitivity and

specificity of 95.0% and 93.0%, respectively. Some researchers

built Dense Net-121 to identify the CT images of COVID-19 in a

comparative experiment to achieve self-supervised learning and

an accuracy of 85.5% (Chen et al., 2021).

However, the classification of COVID-19 still has the

following problems. At present, many algorithms (Li et al.,

2020; Wang et al., 2020; Hassani et al., 2021) can be used to

partially solve the problem of scarce COVID-19 data. But most

methods are difficult to accurately capture the essential feature

space of various categories of data in a small amount of image

data. And, most of the existing algorithms have poor

classification performance for common pneumonia and

COVID-19, which seriously affects the overall classification

performance of the algorithms. It will hurt the subsequent

research and eventually make the algorithms difficult to be

applied in the clinic.

Therefore, to increase the recognition ability of the model for

common pneumonia and COVID-19, and further improve the

accuracy and efficiency of COVID-19 image recognition, we

employ a novel method to solve the above problems in the CT

image classification of COVID-19. A new sequence pooling

approach and convolution are proposed herein, i.e., a smaller

and more compact transformer based on CCT suitable for

datasets lacking pneumonia images. First, the self-attention

mechanism in CCT is decomposed into two one-dimensional

(1D) self-attention mechanisms: height axis and width axis (Ho

et al., 2019; Huang et al., 2019). Subsequently, while the axial

attention mechanism replaces the original self-attention

mechanism, location coding is added to obtain a larger receptive

field. Finally, the position offset item is added to the position-coding

to obtain the dependence of the precise position information during

training. Herein, the addition of the axial attention mechanism

considerably improved the accuracy of COVID-19 detection on

chest CT images, achieving better performance results for both

COVID-19 model accuracy and other pneumonia screenings. The

main innovations herein are as follows. 1. A new sequence pooling

strategy and convolution are proposed along with a smaller and

more compact transformer based on CCT; this transformer is

suitable for datasets lacking pneumonia images. 2. We improved

the self-attention mechanism of the transformer encoder to an axial

attention mechanism and added a position offset term. The long-

range location dependencies of accurate location information are

obtained during training to improve the model’s classification

performance. 3. Compared to the Vision Transformer (ViT)

structure and the traditional Convolutional Neural Network

(CNN), the performance on the small COVID-19 dataset is

stronger.

2 Materials and methods

Our proposed sequence pooling method and convolution

module of the CCT model can reduce the class token and

embedding requirements. The convolution module can be

adapted to the small COVID-19 dataset. The model belongs

to the lightweight transformer structure and comprises a

convolution module, embedding, transformer encoder,
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sequence pooling, and multilayer perceptron (MLP) (Ramchoun

et al., 2017) head (Figure 1).

2.1 Improved compact convolutional
transformer model structure

We propose a patching method based on small-scale

convolutional modules in the CCT to completely preserve

local information. This method does not affect how the

transformer encoder calculates patch interactions. First, after

the input feature vector of the convolution module is normalized,

the convolution operation and the ReLU function are used for

feature extraction. Second, down-sampling through max-pooling

extracts essential information. Third, the residual structure of

ResNet50 is employed as an additional feature extraction to

prevent the transformer structure data from being unable to

be trained during the backpropagation process. Finally, the

output vector processed by the convolution module meets the

input dimension requirements of the embedding layer.

Subsequently, the 3D vector is down-sampled, and the ReLU

activation layer is performed. After convolution and flattening

operations, the vector dimension of the same size as a position

embedding layer of the improved model is obtained (Figure 2).

The CCT can adapt to training with smaller datasets by adjusting

the size of patches. The CCT introduces a patching method based on

convolution. The relationship between patches can be encoded while

restraining the local information. This method can effectively

tokenize and maintain the local spatial relationship, thereby

eliminating dependence on the class token and providing greater

model flexibility.

2.2 Transformer encoder

The transformer encoder of the CCT was consistent with that

of the ViT. Multiple encoders exist in the model, with no weight

FIGURE 1
Our compact convolutional transformer models.

FIGURE 2
CCT diagram of convolution module.
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sharing among them. Figure 3 illustrates the structure of the

encoder. Each coding layer comprises two sublayers: multihead

self-attention (MSA) and MLP. Each sublayer is preceded by

layer normalization. The input sequence was set to x; the output y

of a single coding layer was obtained. The formula is as follows:

xl−1′ � xl−1 +W −MSA(LN(xl−1)) (1)
ℓ ∈ 1, 2, . . . , L (2)

xℓ � x′
ℓ
+MLP(LN(xℓ−1)) (3)

In Eqs 2, 3, a structure similar to the residual network (He

et al., 2016) is laid out. This design retains more information,

reduces information loss, and can use a more significant

number of encoders for training. L denotes the number of

encoders.

The transformer can establish distance dependence on the

target while extracting more powerful features by multifocusing

on the global content information. The self-attention mechanism

in the encoder, given a height of h, a width of w, and a channel of

input embedded patches X ∈ Rh×w×cin , and an output formula

yo ∈ Rh×w×cout with position o � {i, j |
i ∈ {1, . . . , h}, j ∈ {1, . . . ,w}} is defined as follows:

q � WQx (4)
k � WKx (5)
v � WVx (6)

yo � ∑
p

softmax(qTo kp)vp (7)

The q, k, and v vectors in Eqs 4–6 are the query, key, and

value, respectively. WQ, WK and WV ∈ R(cin×coutn) are the weight
matrices learned during training. In Eq. 6, v is multiplied by the

input xi and the trainable matrix WV to obtain the input

eigenvector. The dot product of q and k is used to calculate

the weight of v. In Eq. 7, p � (w, h), q and k are normalized by

SoftMax and multiplied by v to obtain the attention value. In

contrast to convolution, the self-attention mechanism may

obtain nonlocal information from the entire feature

map. However, the calculation of this attention value comes at

a cost. Applying the self-attention mechanism to the visual model

architecture becomes impossible as the feature map increases.

Additionally, the self-attention layer does not use any position

information when calculating the nonlocal context. However, the

position information is vital for obtaining the structure and shape

of the target in the visual model.

Based on the abovementioned reasons, the axial attention

mechanism is divided into two 1D self-attention mechanisms:

the height and width axes. Additionally, a position code was

added to the query mechanism. The structural diagram is shown

in Figure 4. The axial attention mechanism can also match the

original self-attention mechanism dimensions. The width and

height dimensions are considered to reduce the number of

calculations and improve the calculation efficiency. The

position offset terms are set while collating the attention value

to make it more responsive to the position information. This bias

term is usually called relative position coding and can be learned

through training.

The attention model of Ramachandran et al. uses relative

position coding for queries only. This study combines the axial

attention mechanism and position coding to apply them to all

queries, keys, and values. For any given input feature map x, an

axial position-sensitive attention mechanism with position

encoding along the width-axis, the equation is as follows:

yij � ∑
p�1

p�1
softmax(qTijkiw + qTijr

q
iw + kTijr

k
iw)(viw + rviw) (8)

where rq, rk, rv ∈ RW×W, rqiw, r
k
iw, and rviw are learnable vectors

representing the position codes of queries, keys, and values. For

example, the attentionmechanisms of the height andwidth axes have

the same definition. One axial attention layer spreads information on

a specific axis, and both axial attention layers use an MSA

mechanism. After the position offset term is an introduction to

the axial attention mechanism Compared to the original self-

FIGURE 3
Encoder structure drawing.

Frontiers in Physiology frontiersin.org04

Sun et al. 10.3389/fphys.2022.1066999

106

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1066999


attention mechanism, the global receptive field acquisition feature

can be realized, thus reducing the computational complexity.

2.3 Serial pooling

Herein, the feature vector classification results are output

using sequence pooling rather than class tokens (Devlin et al.,

2018). For the L-layer transformer encoder, the output results are

collected in sequence. The model is compact as the data sequence

includes information and category information for different parts

of the input image, thereby compacting the model. Sequence

pooling outputs the sequential embedding of the latent space

generated by the transformer encoder to correlate the input data

better. The output feature mapping is defined as

T: Rb×n×d ↦ Rb×d, and the equation is given as follows:

XL � f(X0) (9)

where XL or f (X0) is the L-layer Transformer encoder, b is the

batch size, n is the sequence length, d is the embedding

dimension, and (XL) ∈ Rd×1. Using the SoftMax activation

function, the equation is given as follows:

X′
L � softmax(g(XL)T) (10)

As (XL) ∈ Rd×1, we get:

Z � X′
LXL � softmax(g(XL)T) × XL (11)

where z ∈ Rb×1×d merge the second dimension to get z ∈ Rb×d.

This output can then be used to obtain the result through a linear

classifier.

2.4 Datasets

2.4.1 Lung data COVID-19 CT-CCII
We used the classification dataset from the China

Consortium for Chest CT Imaging Research (CC-CCII)

(Zhang et al., 2020b; Zhou et al., 2021). Informed consent

from the patients was obtained, reviewed, and approved by

the Medical Ethics Committee. The dataset comprises

FIGURE 4
Axial attention.
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6752 CT scans of 4,154 participants. For our training test, we

used 5985 CT scans. Among them, the training set is 3,017, and

the test set is 2,968. The training and test set distributions were

consistent, and the ratio of COVID-19, community pneumonia,

and normal in the dataset was 1:1:1. The image size is three-

channel, 512 × 512 × 3. Figure 5 presents an example of the

dataset. Figures 5A–C show CT images of a typical patient, a

patient with COVID-19, a patient with community pneumonia

(mainly bacteria, viruses, chlamydia, and other microorganisms

causing pneumonia), respectively.

2.4.2 Dataset partitioning
To divide the dataset, the K-Fold cross-validation method

was employed. First, the dataset was divided into K sets, and each

fold training used K-1 sets as the training set to train the model

(K = 10). The remaining set was used as a validation set to test the

performance evaluation of each folded training model, and the

content of each validation set remained unrepeated. The data

augmentation methods of random rotation, horizontal flipping,

and contrast adjustment were used in training pre-processing to

improve the model’s generalization ability.

2.4.3 Experimental environment
Ubuntu18.04 was used as the operating system platform,

with Intel(R) Core (TM) i5-6500 CPU, Nvidia GeForce GTX

1080ti GPU, with 11 GB of video memory and 16 GB of RAM.

The model performance can be improved, and the training

time can be reduced with proper parameter configuration.

Stochastic gradient descent was used to train the optimizer,

and exponential decay was used to adjust the learning rate.

The initial learning rate is 0.001. Additionally, 10-fold cross-

validation was used for training with 100 epochs per fold. The

FIGURE 5
CC-CCII chest CT images. (A) Normal conditions; (B) COVID-19; (C) CP.
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details of the experimental training parameters are shown in

Table 1.

2.4.4 Evaluation indicators
To analyze the classification performance of the trained

model for COVID-19, CP, and normal, three performance

metrics were used: accuracy (Acc), sensitivity (Sens), and

AUC of the receiver operating characteristic (ROC). The mPA

is the average sum of each category’s pixel accuracies. The

formulas are as follows:

Acc � TP + TN

TP + FN + FP + TN
(12)

Sens � TP

TP + FN
(13)

mPA � 1
k + 1

∑
k

i�0

TP

TP + FN
(14)

where, TP represents the number of positive examples that are

predicted to be positive examples; FP represents the number of

negatives predicted as positives; FN represents the number of

positive classes predicted to be negative; TN represents the

number of negative classes predicted to be negative; k is the

number of categories.

Assuming that the ROC curve is formed by continuous links

of points whose coordinates are

{(x1, y1), (x1, y2), . . . , (xm, ym)}. The AUC formula is as

follows:

AUC � 1
2
∑
m−1

i�1
(xi+1 − xi) × (yi + yi+1) (15)

FLOPs � (2 × I − 1) × O (16)

where, where I and O represent the input and output neuron

numbers, respectively.

3 Results

3.1 Ablation experiment

COVID-19 pneumonia and other pneumonia lesions exhibit the

same characteristics of being in the lung area. However, the chest CT

scans contain other interfering areas. To ensure that the lung areawas

unaffected by the interference area, preprocessing was performed

during classification training to segment the lung area from the chest

CT image. Next, ablation experiments were conducted to verify the

segmentation effect of the new, improved model. The segmentation

test results are presented in Figure 6. Figure 6A shows the CT images

before segmentation, and Figure 6B shows the CT images after

segmentation in Figure 6A from left to right. The results show that

the newly proposedmethod can segment tiny lesion details, achieving

the highest segmentation performance.

We compared our model to other models to more accurately

evaluate its performance. The results are presented in Table 2. First,

the convolutional neural network was used to extract enough local

information after preprocessing the image features through the

convolution module during input. Next, the vector was input into

the improved transformer structure, and the initial self-attention

mechanism was replaced with the axial attention mechanism.

Further, a position offset term was added to improve the model

performance. Compared with the CCT model, the accuracy and

sensitivity of our improved model are increased by 1.7% and 2.3%,

respectively, and the number of floating-point operations (FLOPs) is

less than the model calculation amount of the CCT model.

Concerning the recognition speed of a single image, the

lightweight CCT single image recognition speed is the fastest, only

0.014 s. This is faster than all other models, and its recognition

accuracy has not dropped. The comparative results show that our

proposed improved method achieves the best results in screening

COVID-19 and CP.

In the medical image application of the transformer, the

input patch size parameter setting affects the model performance.

The self-attention mechanism in the transformer structure has

the advantage of obtaining global contextual connections. The

matrices of different models were used to evaluate the

performance. A total of 2968 CT images were tested. The

confusion matrix in Figure 7 shows the difference between the

actual and predicted values. The horizontal axis represents the

model prediction results, corresponding to the number of

predictions of different categories. The vertical axis represents

the ground-truth labels (normal, COVID-19, and CP). A 3 ×

3 matrix was used to compute the TP, FP, and FN values of the

multiclassification task. The numbers on the blue back-ground

are the number of correct predictions by the model. The values in

the other regions correspond to the values at which the model

predicted incorrectly, and the confusion matrix clearly shows the

number of types of model mispredictions. The results show that

the discrepancies between the chest CT images taken under

normal conditions and during pneumonia have different

presentation characteristics, leading to differences. Thus, it is

easier to make sound judgments about the model. However, a

small number of patients with mild COVID-19 or CP are

mistaken for normal owing to a lack of apparent symptoms

on chest CT images. Each model showed varying degrees of

misidentification, misidentifying both COVID-19 and CP as

TABLE 1 Training parameter settings.

Type Setting

Batch size 16

Learning rate 0.001

Optimizer SGD

Epoch 100

Ubuntu 18.04 PyToch1.6.0
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usual. This misidentification is due to certain similarities between

chest CT images of COVID-19 patients and other pneumonia

patients, such as ground-glass opacity and lung parenchyma

features. Among them, Mobilenet-v3 and our model have fewer

misidentifications. The test results in Figure 7E show

1034 COVID-19 CT images. Five and seven CT images were

wrongly identified as normal and CT, respectively. The

misdiagnosis rate is lower than in other compared models.

Our improved model achieved the highest accuracy and the

lowest misdiagnosis rate.

3.2 Real dataset model performance
comparison

(1) COVID-CT dataset

We investigated the performance of different models on the

COVID-CT dataset. Yang et al. collected 349 COVID-19 and

397 normal chest CT images in the COVID-CT dataset for

216 patients (Yang et al., 2020). However, some image data in

this dataset were marked or missing. Image quality may have

some impact on the training of the model. He et al., 2020 used

contrastive self-supervised learning for training and achieved a

model accuracy of 86%. Shalbaf et al. used 15 CNN benchmark

models for fine-tuning training with the best accuracy and

sensitivity of 84.7% and 82.2%, respectively (Gifani et al.,

2021). Table 3 shows the comparison between our method

and the methods above. The findings demonstrate that their

training programs have engaged in significant workloads and

relatively complex data preprocessing. However, our improved

method achieves the best performance results in the COVID-CT

dataset.

(2) SARS-CoV-2 CT-scan dataset

The SARS-CoV-2 CT-scan dataset comprises 2,482 chest CT

images, including 1252 COVID-19 and 1,230 non-COVID-

FIGURE 6
Example of ablation experiment comparison. (A) The CT image of the COVID-19 patient; (B) the result.

TABLE 2 Performance comparison of different models.

Modle Acc/% Sens/% AUC FLOPs (G) Time (s)

Efficientnet-b7 Tan and le., 2019 88.4 88.3 0.972 1.02 0.023

Mobilenet-v3 Howard et al., 2019 97.8 97.6 0.997 0.33 0.019

ViT (Nielsen et al., 2015) 95.7 95.6 0.992 0.73 0.017

CCT (Esteva et al., 2019) 96.8 96.3 0.993 1.03 0.015

Ours 98.5 98.6 0.999 0.91 0.014
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19 CT images. Soares et al. proposed the xDNN model and

divided the dataset into training and test sets in a 4:1 ratio (Soares

et al., 2020). After training, the accuracy and sensitivity rates of

the model were 97.38% and 95.53%, respectively, and the

essential auxiliary diagnosis ability was realized. Panwar et al.

proposed an improved VGG model and used the dataset for

training and testing, and the final sensitivity was 94.04% (Panwar

et al., 2020). The comparison results between our method and the

above methods are presented in Table 4. The results show that

our improvedmethod achieves the best performance results, with

accuracy and sensitivity values of 98.01% and 98.23%,

respectively.

FIGURE 7
Confusion matrix. (A) Efficientnet-b7; (B) Mobilenet-v3; (C) ViT; (D) CCT; (E) Ours.
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3.3 Subjective evaluation

The classification performance of our models was assessed

using a more specific evaluation. Ten lead physicians with over

5 years of clinical experience in radiology were invited to perform

independent image analysis (sharpness, resolution, invariance,

and acceptability). The scoring method of subjective evaluation is

presented in Table 5. One hundred CT images of the lesion area

were randomly selected, and 10 sets of test samples were

constructed equally.

The subjective quality evaluation results of clinicians are shown

in Table 6. The results show that our proposed lightweight CCT

achieves the best subjective quality evaluations regarding sharpness,

resolution, invariance, and acceptability. This is thanks to our

improved ViT as a network framework, using an attention

mechanism to compute from image height and width separately,

adding a position offset term to improve the model classification

performance, and our proposed method has the best performance in

maintaining edge and texture feature classification.

4 Discussion

The automatic classification and recognition of chest CT images

were improved by improving the CCT model. The self-attention

mechanism of the encoder was enhanced to a position-sensitive axial

attention mechanism. Meanwhile, the previous architecture was

expanded by adding position offset terms to the self-attention

mechanism to improve the classification ability of the ability.

Some interference areas were observed in the lung CT images of

the patients. Therefore, to keep the model from becoming infected,

when the data from the literature were employed simultaneously,

sufficient feature extraction of the model was achieved by horizontal

and vertical flipping, small angular rotations, and normalized data

amplification. Further, it improved the generalization ability of the

model to prevent overfitting.

This study CCT employs a new sequence pooling policy,

convolution, and smaller, more compact transformers than ViT.

Additionally, it compensates for the lack of medical image datasets

by eliminating class tokens and positional embedding requirements.

However, when the input dimension is large, the model operation

cost increases considerably, and global pooling does not use location

informationwhen extracting feature information, possibly leading to

information loss. Therefore, the self-attention mechanism in the

encoder was improved to an axial attention mechanism. The self-

attention mechanism was divided into two 1D self-attention

mechanisms, the high and wide axes, which were calculated from

the two dimensions of the width and height axis. Consequently, the

number of calculations and computational efficiency were

improved. Additionally, the position deviation was attached to

the query, key, and value; an accurate deviation was used to

obtain the position information, ensuring that more spatial

structural information could be obtained.

According to the results in Tables 2–4, adding the axial

attention mechanism considerably improved the accuracy of

TABLE 3 Model comparison of COVID-19 CT dataset.

Model Acc/% Sens/%

He et al., 2020 86 —

Gifani et al., 2021 84.7 82.2

Ours 87.3 86.7

TABLE 4 Model comparison of SARS-CoV-2 CT-scan dataset.

Model Acc/% Sens/% Specificity/%

Soares et al., 2020 97.38 95.53 —

Panwar et al., (2020) — 94.04 95.86

Ours 98.01 98.23 98.62

TABLE 5 Subjective quality evaluation of a scoring method.

Score Features of the
restored image

0 Severely distorted images

1 Images with severe distortion in some areas

2 Slightly distorted images

3 Difficult to spot distorted images

4 Images with better visual effects

5 Very sharp images

TABLE 6 Subjective quality evaluation of different algorithms.

Method Sharpness Resolution Invariance Acceptability

Efficientnet-b7 3.4 ± 0.35 3.6 ± 0.18 0.5 ± 0.41 3.8 ± 0.54

Mobilenet-v3 3.6 ± 0.72 3.9 ± 0.26 0.6 ± 0.55 3.9 ± 0.18

ViT 3.6 ± 0.39 4.1 ± 0.51 0.6 ± 0.89 4.1 ± 0.36

CCT 3.8 ± 0.65 4.2 ± 0.13 0.7 ± 0.21 4.1 ± 0.68

Proposed 3.9 ± 0.74 4.3 ± 0.29 0.7 ± 0.96 4.2 ± 0.71
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COVID-19 detection in chest CT images. In small datasets, the

performance was better than that of the standard transformer

structural network and comparable to that of the traditional

CNN. Although the transformer framework classification model

may be suitable for small datasets by changing the patch size or

encoder structure, some problems remain. For example, a

maximum of three categories of models were trained;

however, more categories could be used. As lung CT images

of patients with mild COVID-19 symptoms are very similar to

normal lung CT images, some of the discriminating errors from

the lung CT images of patients with mild symptoms were present

when the test set was used to validate the model. Consequently,

datasets can be added later to improve the model performance.

Although deep learning can represent a predictable information

relationship, which has good prospects for medical applications,

it is challenging in the context of data differences and other

factors in medical images.

5 Conclusion

Although transformers are generally considered to be suitable

only for large-scale or medium-scale training, this study shows that

our proposed lightweight CCT classification recognition model

works successfully on small data regimes and outperforms larger

convolutional models. The performance obtained using the

proposed model on the small COVID-19 dataset outperforms the

standard ViT structured network and is comparable to the

performance of traditional CNNs with significantly reduced

computational cost and memory constraints. Experiments show

that adding a position offset term by using the axial attention

mechanism as a Transformer encoder to compute from the

image height and width, respectively, can effectively improve the

model classification performance. Our proposed classification

method achieves the best performance with 98.5% accuracy and

98.6% sensitivity. The subjective quality assessment by physicians is

optimal proving that our method is more suitable for clinical

practice. Future studies can utilize a lightweight, compact method

for initial screening and segmentation network to segment focal

features of COVID-19 from chest CT images. We wish to

implement a user interface system for digital image processing

using a GUI. The main contents include the design of histogram

grayscale transformation, edge detection, smooth filtering, and

threshold segmentation for lung CT The main contents include

the design of histogram grayscale transformation, edge detection,

smooth filtering, and threshold segmentation for lung CT images.
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Microwave-induced
thermoacoustic imaging for the
early detection of canine
intracerebral hemorrhage

Jiawu Li1, Zhenru Wu2, Chihan Peng1, Ling Song1 and Yan Luo1*
1Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, China, 2Institute of
Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China
Hospital, Sichuan University, Chengdu, China

Purpose: This study aimed to investigate the feasibility and validation of

microwave-induced thermoacoustic imaging (TAI) for the early detection of

canine intracerebral hemorrhage.

Methods: A TAI system was used to record the thermoacoustic signal (TAS) of

canine intracerebral hemorrhage in the study. First, the difference in TAS

between deionized water, fresh ex vivo porcine blood and brain tissue was

explored. Second, the canine hemorrhagic stroke model was established, and

canine brain ultrasound examination and TAI examination were performed

before modeling and at 0.5 h, 1 h, 2 h, 3 h, 4 h, 4.5 h, 5 h and 6 h after

modeling. Finally, pathology and ultrasound were used as the reference

diagnoses to verify the accuracy of the thermoacoustic imaging data.

Results: The results showed that significant differences were observed in TASs

among deionized water, fresh ex vivo porcine blood and brain tissue. The

intensity of the thermoacoustic signal of bloodwas significantly higher than that

of ex vivo porcine brain tissue and deionized water. The intracerebral

hemorrhage model of five beagles was successfully established. Hematomas

presented hyperintensity in TAI. Considering ultrasound and pathology as

reference diagnoses, TAI can be used to visualize canine intracerebral

hemorrhage at 0.5 h, 1 h, 2 h, 3 h, 4 h, 4.5 h, 5 h and 6 h after modeling.

Conclusion: This is the first experimental study to explore the use of TAI in the

detection of intracerebral hemorrhage in large live animals (canine). The results

indicated that TAI could detect canine intracerebral hemorrhage in the early

stage and has the potential to be a rapid and noninvasive method for the

detection of intracerebral hemorrhage in humans.

KEYWORDS

microwave-induced thermoacoustic imaging, canine, intracerebral hemorrhage, early
detection, thermoacoustic signal
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Introduction

Stroke is the second leading cause of death and the third

leading cause of disability worldwide, including hemorrhagic and

ischemic strokes, and its incidence is increasing, especially in

developing countries (Kyu et al., 2018; Feigin et al., 2021).

Because the two types of stroke have different causes, their

treatments are also completely distinct. Thrombolysis is the

main treatment for ischemic stroke, and the “effective

treatment window” is very short (within 4.5 h), while

thrombolysis is strictly prohibited for hemorrhagic stroke

(Powers et al., 2019; Berge et al., 2021). However, the

proportion of patients undergoing thrombolytic therapy for

acute ischemic stroke is still very low. The principal reason is

that it is difficult to effectively distinguish ischemic stroke from

hemorrhagic stroke within 3–4.5 h of onset, which leads to the

inability to carry out timely thrombolytic therapy for patients

with ischemic stroke (Wang et al., 2011; El Khoury et al., 2012).

Therefore, it is important to quickly and accurately distinguish

hemorrhagic stroke from ischemic stroke.

At present, CT scans are the initial choice for the imaging

diagnosis of acute stroke. MRI is more sensitive than CT in the

diagnosis of ischemic foci or hematoma within 6 h after the

onset of stroke (Chalela et al., 2007), but it is not

recommended to use MRI for the early diagnosis of

suspected stroke (Powers et al., 2018). However, CT and

MRI are difficult to use for detecting intracranial

hemorrhage in prehospital conditions or even at the scene

of onset due to the large equipment needed. Researchers have

been pursuing a portable, prehospital accessible method to

accurately detect intracerebral bleeding (Mobashsher et al.,

2016; Candefjord et al., 2017; Ljungqvist et al., 2017) to reduce

the waiting time for preoperative examination and improve

the prognosis of patients with hemorrhagic stroke.

Previous studies have shown that there is an obvious contrast

between the conductivity of blood and white matter and gray

matter (Peyman et al., 2007), in which the conductivity of gray

matter, white matter and blood at a frequency of 3.0 GHz are

2.2189 S/m, 1.5106 S/m and 3.0498 S/m, respectively. The

conductivity of blood is significantly higher than that of white

matter and gray matter. Of note, in recent years, some studies

(Persson et al., 2014; Candefjord et al., 2017; Ljungqvist et al.,

2017) have used microwave imaging (MI) based on conductivity

to detect acute stroke, and the results showed that brain MI could

distinguish hemorrhagic stroke from ischemic stroke. However,

the spatial resolution of the MI system is poor. It is difficult to

meet the clinical need because the size and location of

intracerebral hematoma cannot be provided. Further

improvement of the spatial resolution of microwave imaging

may make the evaluation of intracerebral hematoma more

accurate.

Microwave-induced thermoacoustic imaging (TAI) is a

novel noninvasive imaging modality that receives ultrasonic

signals generated by the absorption of microwaves in different

biological tissues and reconstructs the image to reflect the

dielectric properties of biological tissues (Huang et al., 2012;

Zheng et al., 2018; Sun et al., 2021; Lin, 2022). It has the

advantages of the high contrast of microwave imaging and the

high resolution of ultrasound imaging. Currently, TAI

technology has attracted increasing attention based on its

unique advantages and researchers are actively developing

its huge potential role in biomedical diagnosis and even

treatment. Differences in conductivity and relative

permittivity between different tissues or normal tissues and

lesions allow TAI to distinguish them from each other. The

image resolution of TAI is determined by the detected

ultrasonic signal. Compared with MI, TAI has higher

spatial resolution due to its resolution is sub-millimeter

(Liu et al., 2022). Up to now, TAI studies in the biomedical

field have mainly involved the detection of breast cancer and

prostate cancer, joint related disease and brain imaging, etc.,

especially in the early detection of breast cancer has been

extensively studied (Liu et al., 2018; Li et al., 2019; Yuan et al.,

2019; Li et al., 2021; Zhang et al., 2022). To date, there are few

studies on TAI in brain disease. Xu et al. (Yuan and Wang,

2006) applied TAI to imaging the rhesus monkey brain

through the intact skull, and the results showed that the

brain parenchyma could be clearly visualized. Huang et al.

(2017) made the first preliminary attempt to detect the

hemorrhage phantom with the self-built TAI system in the

world and successfully imitated a simulated hemorrhage

phantom beneath an isolated human skull. The study of

Yan et al. (2019) also indicated that thermoacoustic

tomography can take images through the adult human

skull. Zhao et al. (2017) showed that thermoacoustic

tomography could visualize numerous important brain

anatomical structures in rats, and they further attempted to

detect germinal matrix hemorrhage in neonatal mice (Zhao

et al., 2020). The results showed that thermoacoustic

tomography can accurately detect a hematoma region at

different depths in the neonatal mouse brain. However, to

our knowledge, there is no relevant report on the study of

thermoacoustic imaging in detecting intracerebral

hemorrhage in large animals or humans. Therefore, the

main purpose of this study was to investigate the feasibility

and validation of thermoacoustic imaging for the rapid

detection of canine intracerebral hemorrhage.

Methods

The animal study was reviewed and approved by the Animal

Ethics Committee of West China Hospital of Sichuan University.

All applicate regulations concerning the ethical use of animals

were strictly followed during the whole experiment. In this study,

we first explored whether there was a difference in
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thermoacoustic signals among deionized water, fresh ex vivo

porcine blood and brain tissue. Second, a canine hemorrhagic

stroke model was established, and canine brain ultrasound

examination and TAI examination were performed before

modeling and at 0.5 h, 1 h, 2 h, 3 h, 4 h, 4.5 h, 5 h and 6 h

after modeling. Finally, the dogs were sacrificed by air

embolization under anesthesia, and their brains were removed

and prepared for pathological examination to further verify the

accuracy of thermoacoustic imaging.

Microwave-induced thermoacoustic
imaging system

A schematic of the TAI system utilized in this study is shown

in Figure 1. A custom-designed miniaturized microwave

generator (peak power: 60 kW, pulse width: 70–600 ns and

repetition rate: 100 Hz) (Huang et al., 2021) coupled with a

handheld dipole antenna (aperture size: 60 × 60 mm2) (Huang

et al., 2019) via a semirigid coaxial cable (1.5 m long with 1.2 dB

insertion loss) was used to evoke thermoacoustic signals. The TA

signals were detected by a 128-element hollow concave

transducer array (Wang et al., 2021), amplified and averaged

50 times to achieve a good signal-and-noise ratio, and finally

recorded by a 64-channel acquisition system with two 32-

channel data acquisition cards (5752B, NI. Inc.,

United States). A back-projection algorithm in MATLAB was

used for TA image reconstruction (Hoelen and de Mul., 2000). A

B-mode ultrasound imaging platform (iNSIGHT-37°C, SASET.

Inc., China) was also used for imaging the dog brains.

Thermoacoustic signal of deionizedwater,
fresh ex vivo porcine blood and ex vivo
porcine brain by thermoacoustic imaging

Considering the accessibility of ex vivo animal experimental

materials, porcine blood and brain tissue were used in this part of the

in vitro experiment. Fresh ex vivo porcine blood and brain tissue

were obtained from a local slaughterhouse and were wrapped in

aluminum foil to keep them fresh before experiments. In the

experiment, deionized water, ex vivo porcine blood and brain

tissue were placed into transparent plastic tubes with a diameter

of 7 mm, and both sides of the plastic tube were sealed with solid

glue. Thermoacoustic imaging was performed by placing plastic

tubes equipped with the three components side by side at the same

level. In addition, we further explored the TAI of ex vivo porcine

blood at 1 h, 2 h, 3 h, 4.5 h and 6 h by placing it into a plastic thin-

walled tubes with an internal diameter of 7 mm.

Establishment of a canine intracerebral
hemorrhage model and detection of
canine intracerebral hemorrhage by
microwave thermoacoustic imaging

Healthy beagles (n = 5, male; weight: 5–7 kg) used in the

experiment were obtained from the Sichuan Institute of Musk

Deer Breeding. All dogs were fasted the night before the

experiment. The intracerebral hemorrhage model was established

by canine autologous blood injection. The process of the intracerebral

hemorrhage model was as follows: A beagle was anesthetized by

FIGURE 1
(A) Schematic of the thermoacoustic imaging (TAI) system. (B,C) Photograph of the antenna and hollow concave transducer array, the dog brain
to be imaged, respectively.
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FIGURE 2
Thermoacoustic imaging of fresh ex vivo porcine brain, blood and deionized water. (A) Thermoacoustic image of ex vivo porcine brain, blood
and deionized water. (B) The one-dimensional distribution curve of relative thermoacoustic signal amplitude along the white dashed line shown
in (A).

FIGURE 3
The TAI of fresh ex vivo porcine blood at 1 h, 2 h, 3 h, 4.5 h and 6 h. The results showed that there was no significant change in the
thermoacoustic signals of fresh ex vivo porcine blood at 1 h, 2 h, 3 h, 4.5 h and 6 h.
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intraperitoneal injection of 3% pentobarbital sodium at a dose of

1 ml/kg (body weight) + 2ml. The dog was fixed on the operating

table in a prone position, and a clean, thick towel was used to keep it

warm. The head skin was sterilized after hair removal with a pet

shaving device. A scalpel was used to cut the scalp in a 1 cm circle

along the upper margin of the canine superciliary arch to the front of

both ears, separated the temporalis muscle layer by layer, and scraped

the periosteum. A craniotomy drill was used to drill a hole 5 mm

from the left or right side of the midline of the top of the head (3 left

side and 2 right side). During the drilling process, attention was given

to gentle movements, and the wound was washed with 0.9% normal

saline to reduce the temperature of the grinding area. The whole

grinding time was approximately 50 min. During the operation and

experiment, the state of the dog was noted at all times. If the dog

trembled, 0.1 ml sumianxin was injected into the abdominal cavity

for auxiliary anesthesia. After successful drilling, once the dog was

fully hemostatic, the skin was sutured. The skulls of all dogs were

intact at the time of TAI imaging, except for the small cranial

boreholes.

Before the intracerebral hemorrhage model was made in each

dog, ultrasound examination and TAI imaging were performed, and

then blood injection was carried out to generate the intracerebral

hemorrhage model. Five milliliters of blood were taken from the

femoral artery of the dog and placed in an anticoagulant tube. Two

milliliters of blood were drawn with 5 ml syringes. The dura was

punctured vertically, the needle was slowly inserted into the

intracranial area (the area 1.5–2 cm away from the syringe needle

was clamped with hemostatic forceps to ensure a controlled injection

depth), and autologous blood was injected slowly. The vital signs of

the dog were closely observed during blood injection. After injection,

the needle remained in the brain for 5 min and then was removed

slowly. TAI imaging and ultrasound examination were performed at

0.5 h, 1 h, 2 h, 3 h, 4 h, 4.5 h, 5 h and 6 h after modeling. The same

transducer was used during the process of TAI and ultrasound

examination, and the probe positionwas keptmotionless during each

TAI and ultrasound examination. After each ultrasound

examination, the position of the probe interface was only

switched to ensure that the images obtained by ultrasound and

TAI examination were from the same plane. All dogs remained

deeply anesthetized during the experiment. Finally, the dogs were

sacrificed by air embolization under anesthesia, and the brain was

removed and prepared for pathological examination.

Results

Comparison of thermoacoustic signals in
deionized water, fresh ex vivo porcine
blood and ex vivo porcine brains

TAI was performed on deionized water, isolated blood and

isolated brain tissue simultaneously. The results showed that there

were significant differences in microwave thermoacoustic signals

among the three groups. The intensity of the thermoacoustic signal

of blood was significantly higher than that of ex vivo porcine brain

tissue and deionized water (Figure 2). In addition, there was no

significant change in the thermoacoustic signals of fresh ex vivo

porcine blood at 1 h, 2 h, 3 h, 4.5 h and 6 h (Figure 3).

Thermoacoustic imaging and
ultrasonography of canine intracerebral
hemorrhage

The intracerebral hemorrhage model of five beagles was

successfully established, and no dogs died during the

FIGURE 4
Ultrasonography, MRI and thermoacoustic imaging after 6 h of the canine intracerebral hemorrhage modeling. This is a case of canine
intracerebral hemorrhage model with blood injected into cerebral sub-cortex. (A) Ultrasound showed the hemorrhage area as hyperechoic located
at the left cerebral sub-cortex (red circle). (B) T2WI of MRI presented hemorrhage area as hyper-intensity located at the left cerebral sub-cortex (red
arrow). (C) Thermoacoustic imaging showed a hyper-intensity of the hemorrhage area at the same location as presented at ultrasound andMRI
(white circle).
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experiment. The blood was injected in the right brain

parenchyma in two beagles and in the left brain parenchyma

in the other three beagles. The injection depth was 1.5 cm–2 cm

within the brain parenchyma in four of five beagles, and the other

one was injected into the cerebral subcortex due to a thicker

scalp. The beagle with the thicker scalp underwent further MRI

examination after 6 h of modeling (Figure 4). The time of data

collection of TAI for each examination of the canine brain was

1 minute. At 0.5 h, 1 h, 2 h, 3 h, 4 h, 4.5 h, 5 h and 6 h after

modeling, TAI and ultrasonography can be used to image

intracerebral hemorrhage in the dogs. The hematomas

presented hyperintensity in TAI. By comparing

ultrasonography and pathology, the size and location of

intracerebral hemorrhage in TAI were in line with those of

the other groups (Figure 5).

Discussion

In this study, we at first compared the thermoacoustic signal

(TAS) in deionized water, fresh ex vivo porcine blood and ex vivo

porcine brain, and the results showed that the intensity of the

TAS of blood was significantly higher than that of brain tissue

and deionized water, which is related to the apparent difference

FIGURE 5
Thermoacoustic imaging, ultrasound and pathological examination of a same canine intracerebral hemorrhage. (A–D) TAI images at 0.5 h, 1 h,
3 h and 6 h after modeling, respectively (white circle shows the hemorrhagic area). (E) Ultrasound image of canine intracerebral hemorrhage (white
circle shows the hemorrhagic area). (F) Pathological image of canine intracerebral hemorrhage.
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in conductivity between blood and brain tissues (Andreuccetti

et al., 2021). These results provide a solid theoretical basis for

further study on thermoacoustic imaging (TAI) in the detection

of intracerebral hemorrhage in living animals. Moreover, we

demonstrated, for the first time, the ability of TAI to detect

intracerebral hemorrhage in large animals by establishing a

canine hemorrhagic stroke model with ultrasound and

pathological findings as a reference diagnosis.

In previous studies, TAI has demonstrated its potential for brain

imaging in experiments on ex vivo (Yuan andWang, 2006; Yan et al.,

2019) and phantom (Huang et al., 2017) brain tissues. However, the

dielectric properties of brain tissue may change due to a long time

in vitro or preservation in formalin or mineral oil (Yuan andWang,

2006), and the experimental results may not necessarily reflect the

real status of brain imaging in vivo. Similarly, a phantom cannot

simulate the complex electromagnetic environment of real living

brain tissue. Thus, it is insufficient to prove that TAI is applicable to

living tissues differently. Recently, studies (Zhao et al., 2017; Zhao

et al., 2020) used TAI for brain imaging in living rats and

demonstrated the feasibility of TAI in detecting germinal matrix

hemorrhage in neonatal mice in vivo. These studies provide good

evidence for the application of TAI in brain imaging of living

animals. However, the brain structure of humans and rodents

has significant discrepancies, and the canine brain is more

similar to that of humans (Johnson et al., 20212020). Therefore,

we explored the application of TAI in a canine intracerebral

hemorrhage model in this study. TAI was performed by injecting

blood into the brain parenchyma at different locations in beagles in

the study, and the results showed that TAI could visualize

intracranial hematomas in all cases. However, the depth of the

hematomas in this study was only within 2 cm. Due to the small

brain size of dogs, the cerebral cortex below 2 cm reached the lateral

ventricle, so the experiment did not explore the modeling of

hematoma in the deeper part of the brain, which is a limitation

of this study. Of course, the detection of hematoma in the deeper

part still needs further study.

In this study, we used a pulsed 3.0 GHz microwave source to

transmit microwaves, which can penetrate several centimeters into

tissue, for TAI. Thus, the penetration depth and spatial resolution of

TAI for brain imaging are determined by the detected

thermoacoustic signal. It is well known that skull-induced

acoustic attenuation and scattering are the primary factors

affecting ultrasound imaging of intracerebral hemorrhage, which

also restricts the penetration depth and spatial resolution of TAI in

this research. However, for TAI with a pulse width of approximately

600 ns in our experiment, the frequency of the thermoacoustic

induced ultrasonic signal is approximately 1MHz, which can

penetrate the dog’s skull well and can provide mm-scale spatial

resolution. In sum, this study demonstrated the feasibility of TAI in

detecting hemorrhagic stroke in vivo. While the results obtained are

encouraging, improvements are still needed before we can use this

type of imaging for human brains. For example, several studies

(Venkatasubramanian et al., 2011; Chen et al., 2021) have shown

that the brain tissue around hematoma after hemorrhagic stroke will

gradually develop edema and peak at 3–4 days, while the main

purpose of this study is to explore the detection of intracerebral

hemorrhage by TAI in the early stage. Therefore, whether

perihematomal edema and the condition of the tissue 6 h after

hemorrhage affect the detection of TAI remains to be further

studied.

Conclusion

In conclusion, this is the first experimental study to explore

the use of TAI in the detection of intracerebral hemorrhage in

large live animals (canine). The results indicated that TAI could

be used to detect canine intracerebral hemorrhage and has the

potential to be a rapid and noninvasive method for the detection

of intracerebral hemorrhage in humans. In addition, with the

miniaturization of microwave sources and rapid imaging speed,

TAI is expected to be used in the future for pre-hospital detection

of human intracerebral hemorrhage.
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Registration of photoacoustic
tomography vascular images:
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automatic registration
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Qinran Yu, Yixing Liao, Kecen Liu, Zhengyan He, Yuan Zhao*,
Faqi Li* and Tianqi Shan*
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Image registration is crucial in the clinical application of photoacoustic

tomography (PAT) for vascular growth monitoring. Aiming to find an

optimized registration scheme for PAT vascular images acquired at different

times andwith varying imaging conditions, we compared and analyzed different

commonly used intensity-based and feature-based automatic registration

schemes. To further improve the registration performance, we proposed a

new scheme that combines phase correlation with these commonly used

intensity-based registration methods and compared their performances. The

objective evaluation measures: peak signal-to-noise ratio (PSNR), structural

similarity index metric (SSIM), root mean square error (RMSE), and quantitative

visual perception (jump percentage P), as well as subjective evaluation using

mean opinion score (MOS), were combined to evaluate the registration

performance. Results show that the feature-based approaches in this study

were not suitable for PAT image registration. And by adding phase correlation as

rough registration, the overall registration performance was improved

significantly. Among these methods, the proposed scheme of phase

correlation combined with mean square error (MSE) similarity measure and

regular-step-gradient-descent optimizer provides the best visual effect,

accuracy, and efficiency in PAT vascular image registration.

KEYWORDS

image registration, intensity-based registration, photoacoustic tomography, visual
perception, photoacoustic imaging, vascular

1 Introduction

Monitoring vascular growth is critical for tumor growth monitoring [1]. Traditional

imaging modalities such as magnetic resonance imaging (MRI) [2–4], ultrasound (US)

[5–10], computed tomography (CT) [11–14], etc. have been commonly applied to

evaluate the structural and functional changes of tumors and surrounding blood
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vessels in clinical practice, but these methods usually involve

contrast agents and suffer from low contrast or resolution.

Photoacoustic imaging (PAI), as a new radiation-free and

non-ionizing imaging modality, has been developing rapidly

in recent years [15]. It utilizes the different light absorptions

of tissues to provide unique optical contrasts. The different light

absorption coefficients of hemoglobin and various tissue

chromophores at different wavelengths give PAI unique

advantages in structural and functional vascular imaging

[16–22]. Numerous studies have proved the effectiveness of

PAI in vasculature imaging [23–27], which can be used to

visualize the development of single blood vessels around

growing tumors, changes in blood oxygen concentration

within tumors, and the depth growth of neovascularization

areas [28–33]. Comparing and analyzing the changes of blood

vessels around tumors at different stages, including

neovascularization and irregular changes in vascular

morphology, can offer essential knowledge for monitoring the

development and treatment of the disease, and realizing early

screening and postoperative evaluation of cancer [34–36].

To observe and compare the morphological and functional

changes of vasculatures and tissue structures through the disease

progression, images need to be collected at different times.

Therefore, to identify the differences in these images, the first

problem to be solved is image registration. Image registration as a

basic task in medical image analysis is a process of matching the

images of the same scene obtained at different times, from

different viewpoints, or by different sensors [37]. Single-mode

registration is often used to analyze changes in images taken at

different imaging periods, such as surgical effect evaluation [38,

39] and tumor growth monitoring [40–42]. MRI usually requires

the combination of T1 and T2 sequence images to obtain tissue

structure information with different contrast [43]. In

photoacoustic imaging, we often need to use different optical

wavelengths and sensors with different center frequencies to

obtain different structural and functional information of

tissues [15]. Image registration is needed before the

comparison of tissue changes. Thus, finding a good

registration scheme for PAI images taken at different times

and with different imaging conditions (e.g., with different

optical wavelengths or transducer center frequencies) is

necessary for comparative analysis of the changes in target

tissues through disease progression.

At present, the registration studies involved in photoacoustic

imaging are mostly about real-time registration or PAI image

registration with other imaging modalities [44–48], and there is

no comparative study on different registration schemes for PAI

images taken at different times with different transducers and

optical wavelengths. In this study, we tested different automatic

registration schemes using four categories of image datasets

collected under three optical wavelengths and two transducer

center frequencies. In addition, a new scheme was proposed to

further improve the registration performances. The results were

evaluated and compared by combining subjective and objective

evaluation measures. The proposed scheme provides efficient

and accurate automatic image registration for PAT vascular

imaging, which can be applied to the applications such as

vascular change monitoring, early screening, and postoperative

treatment evaluation using photoacoustic imaging.

2 Materials and methods

2.1 System overview

A circular-scanning PAT system was used for imaging (See

Figure 1). A fast-tuning OPO laser (Beijing ZK Laser Co.,Ltd.;

wavelength range: 680–980 nm; repetition frequency: 100 Hz)

was used as the excitation source. The light was coupled into a

customized optical fiber bundle (CeramOptec GmbH) for light

delivery. A digital delay pulse generator (Beijing ZK Laser

Co.,Ltd.) sent triggers to laser and data acquisition

simultaneously. The ultrasound transducer (ULSO TECH CO.,

LTD.; center frequency: 5MHz and 7.5 MHz) was mounted on a

four-dimensional motion control module (Zolix Instruments

Co., Ltd.) which consists of three linear stages and a rotator.

The photoacoustic signals were detected by transducers, and then

amplified and collected by a customized amplifier and

automotive oscilloscopes (Picoscope 5000D). Degassed water

was used as the coupling medium for PA waves. The system

control interface is developed using Labview to realize the

synchronized motor scanning and data acquisition. The image

processing module developed using MATLAB includes image

reconstrucion, processing, registration, data anaysis and other

functions.

2.2 Image processing workflow

The workflow of image processing is shown in Figure 2.

Firstly, the images were reconstructed using the delay and sum

algorithm (DAS). Furthermore, to reduce the artifacts and

background noises, preprocessing using bilateral filter and

fuzzy C-means (FCM) was applied to achieve relatively clean

background and extract target tissues. Finally, different

registration schemes were applied to the PAT images, and the

results were evaluated and compared by subjective visual

evaluation (MOS) and objective evaluation measures (PSNR,

SSIM, RMSE, jump percentage P).

2.3 Image datasets

The image data used in this study were all generated by the

self-built PAT system. The backs of the volunteers’ hands were

imaged. In the experiments, the hands were held firmly on the
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holder (at a certain angle) in the tank of degassed water and

were completely submerged (see Figure 3). The relative angle

and distance of the imaging area of the hand back to the

transducer was measured and kept consistent for the same

subject in different experiments. Laser pulses (under ANSI

limit) are diffused and incident from the top so that the light

uniformly covers the entire imaging area. The receiving

direction of the transducer is perpendicular to the incident

direction of the laser, and the target is scanned circularly. The

position of laser incidence and the position of transducer

reception are controlled and recorded by the four-

dimensional motion module to ensure the consistency of

the imaging conditions of the same target tissue. During

the imaging process, the sampling rate was 62.5MHz, and

the scanning step was 1° covering 180°. 5,000 data points were

collected at each position and were averaged 20 times. For

different sets of data, three different wavelengths (720°nm,

850°nm, and 960 nm) and transducers with different center

frequencies (5°MHz and 7.5 MHz) were used for imaging.

The experiments were approved by Chongqing medical

university.

Since the transducer we used was a flat unfocused single-

crystal transducer with a large acceptance angle, and the

signals from the same tissue could be received within a

certain range. In addition, the blood vessels we imaged

were superficial. Lights are uniformly irradiated, and one

hand was held on the holder in a certain angle. Therefore,

the problem caused by slight changes of projection angles at

different times would not occur.

In order to verify the feasibility of the scheme, we carried

out phantom experiments (See Figure 4). The silicone tubes

(inner diameter 1.5 mm, wall thickness 0.5 mm) and Y-junction

were used to simulate the vascular morphology in vivo, and

Indian ink solution with light absorption coefficient of blood

FIGURE 1
Schematics of the experimental system.

FIGURE 2
Flowchart of image processing.
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was circulated by a peristaltic pump to simulate the blood flow.

Every time the transducer completed a circular scanning, it

moved down 1 mm for another scanning, and it moved down

five 5 mm in total. The results showed the morphology of the

tubes clearly, and there was no significant difference among the

five tomographic images. In addition, to verify the change of 2D

projection caused by the change of detection angle, we tilted the

phantom 15°, which was much larger than the angle difference

that could occur in the experiments of the hand back imaging,

and then compared the results with that of the phantom placed

FIGURE 3
(A) is PAT imaging dataset acquisition experiment. (B) is a schematic diagram of imaging area of the hand.

FIGURE 4
Phantom experiments to simulate blood flow imaging. (A) is the experimental device of the phantom experiment, which simulates the flow
process of blood in the body through a peristaltic pump. (B) is the phantom of Y-shaped silicone tube. (c1) -(c5) are the first to fifth layers of the PAT
images.
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horizontally (See Figure 5). It is proved that the transducer

could receive signals from the same target within a certain range

and the change of the results due to the slight differences in the

angle can be neglected. Therefore, for superficial blood vessel

imaging, the image would not change due to the slight

difference of 3D projection angle.

To evaluate the performance and accuracy of different

registration methods, the blood vessels of the backs of human

hands were imaged. Four categories (nine groups) of datasets

collected by transducers with two center frequencies and at three

optical wavelengths were used for the registration test (see

Table 1). Image registration methods are implemented in

FIGURE 5
(A) is the scanning imaging experiment diagram under horizontal state, and (B) is the scanning imaging diagram under phantom tilt of 15°. (C,D)
are photoacoustic imaging images corresponding to (A,B) respectively.

TABLE 1 Overview of hand vascular photoacoustic image datasets.

Number of datasets Type Wavelength Transducer frequency Imaging parts

Dataset1 Single frequency single wavelength 850 nm 7.5 M Volunteer 1 right hand back

Dataset2 720 nm 7.5 M Volunteer 1 left hand back

Dataset3 960 nm 7.5 M Volunteer 2 right hand back

Dataset4 Single frequency multi-wavelength 850nm/960 nm 7.5 M Volunteer 1 right hand back

Dataset5 720nm/850 nm 7.5 M Volunteer 3 left hand back

Dataset6 Multi-frequency single wavelength 850 nm 5M/7.5 M Volunteer 2 right hand back

Dataset7 720 nm 5M/7.5 M Volunteer 1 left hand back

Dataset8 Multi-frequency multi-wavelength 720nm/850 nm 5M/7.5 M Volunteer 1 left hand back

Dataset9 850nm/960 nm 5M/7.5 M Volunteer 1 right hand back
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MATLAB, using an Intel Core i7, 10th generation with 1.61 GHz

clock speed and 16 GB RAM.

2.4 Preprocessing

The images were acquired by transducers with different

center frequencies at different wavelengths and the original

photoacoustic images had a low signal-to-background ratio

(SBR). Therefore, preprocessing is necessary to bring images

taken with different imaging conditions to a similar intensity

and improve SBR for subsequent registration. Firstly,

normalization was applied to bring the images to similar

intensity in order to simplify the computation. Then,

bilateral filter was applied to smooth and denoise the

background, as well as to preserve the edges [49], and FCM

was applied to extract the target tissue [50].

2.5 Image registration

After preprocessing the images, the reference image and

floating image were obtained. We tested four commonly used

intensity-based (see Figures 7A–D) and two feature-based

(SIFT and SURF) registration schemes. In addition, we

proposed a new scheme by adding phase correlation as

rough registration to improve the performance of these

intensity-based methods. The registration schemes were

investigated using four types of image datasets (see Table 1)

collected at three wavelengths by transducers with two central

frequencies.

2.5.1 Registration based on intensity information
The intensity-based registration method uses grayscale

information to directly calculate the similarity degree of the

image, which has the advantages of simple operation without

complex preprocessing and extensive computation. Its

registration process is to select the corresponding similarity

measure function according to the characteristics of the

images, and then by applying a specific search algorithm in

the parameter space of the chosen geometric transformation

model, the geometric transformation parameter that maximizes

the similarity is found. The image registration quality mainly

depends on the similarity measure function.

2.5.1.1 Similarity measure function

Mean square error (MSE) and mutual information (MI) are

common measure parameters in intensity-based registration

[51]. MSE usually represents the deviation between the

calculated and the actual values. In image registration, MSE is

used to evaluate the accuracy and performance of the algorithm.

The smaller MSE represents higher accuracy and better

performance of the algorithm. It is defined as Eq. 1:

MSE � 1
mn

∑
m−1

i�0
∑
n−1

j�0
[I(i, j) −K(i, j)]2 (1)

where I and K are the floating and reference images, respectively.

The m, n is the number of samples, that is, the number of pixels

corresponding to the floating image I and the reference image K.

I, j denotes any pixel. MI is an essential concept in information

theory, which describes the correlation between two systems or

how much information they contain with each other. In image

registration, the MI of the two images reflects the degree of

mutual inclusion through their entropy and joint entropy. The

mutual information of the two images can be expressed as Eq. 2:

MI(X,Y) � H(X) +H(Y) −H(X,Y) (2)

H(Y) � −∑
L−1

k�0
p(rk)logp(rk) (3)

P(rk) � h(rk)
n

� nk
n
� h(rk)
∑
k
h(rk) k � 0, 1, ..., L–1 (4)

H(X,Y) � −∑
xy

pxy(x, y)logpxy(x, y) (5)

H is the entropy of the image. For an image Y, the entropy

can be expressed as Eq. 3. Let the gray level value of image Y be

r ∈ [0, L − 1], the rk represent the gray value of level k. The p (rk)
represents the probability of gray level k, which can be expressed

as Eq. 4. The h (rk) is the histogram discrete function

representation of the image Y, nk represents the number of

pixels whose gray level value is rk in image Y. For two images

X and Y, the joint information entropy of two images can be

expressed as Eq. 5. When the similarity of two images is higher,

or the overlap part is larger, the correlation is higher and the joint

entropy is smaller, that is, the mutual information is larger.

2.5.1.2 Optimizer

The role of the optimizer is to guide each parameter of the

objective function to update the appropriate size in the correct

direction during the updating process of the iterative function, so

that the updated parameter drives the value of the objective

function to approach the global minimum continuously. The

regular step gradient descent optimizer (RSGD) and the one-

plus-one evolutionary optimizer (OPOE) are commonly used

optimizers. The regular step gradient descent optimizer follows

the gradient of image similarity measure in the extreme direction

[52]. It uses a constant step length along the gradient between

computations until the gradient change direction. Thereafter,

with each change in the gradient direction, the step size is

reduced according to the relaxation factor. The one-plus-one

evolutionary optimizer iterates to find a set of parameters that

yield the best registration result. It does this by tuning the

arguments (the parent arguments) from the last iteration. If

the new (child) parameters yield a better result, the new

parameter becomes the adjusted new parent parameter. The
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next iteration will be more aggressive. If the result of the child

parameter is not as good as that of the parent parameter, the

parent parameter remains, and the next perturbation will be less

aggressive [53].

2.5.2 Registration based on feature information
The feature-based registration method extracts the common

features from the reference image and the floating image as the

registration primitives. It then estimates the geometric

transformation model and parameter values between the

reference and floating images by establishing the

corresponding relationship between the registration primitives.

It has the advantages of low computational complexity and

strong robustness. It is suitable for registering images with

complex geometric deformation, but not for registering images

with blurred feature points or a smaller number of features.

2.5.2.1 Scale-invariant feature transform

Scale-invariant feature transform (SIFT) is proposed and

further improved by Lowe et al. [54]. It can effectively solve

the problem of image scale invariance and rotation invariance,

and has good robustness to noises and illumination changes. The

main idea of the algorithm is: firstly, the scale space of the image

is established; then, the extremum points of the image are

searched in the scale space; the feature descriptors are

established for the extremum points; the similarity matching

is carried out by the feature descriptors; the parameter estimation

of the model is transformed; and finally the registration is

completed.

2.5.2.2 Speeded up robust features

Speeded up robust features (SURF) is an improvement of

SIFT [55]. The main feature of SURF is to use the Hessian

determinant value as the feature point and respond to the Harr

wavelet transform. It uses the integral graph effectively, and the

processing speed is accelerated.

3 Evaluation

After image registration, specific evaluation measures were

used to assess the performance of the registration algorithms. The

MOS, time consumption, SSIM, PSNR, RMSE, and percentage P

of jump in quantitative visual perception were calculated and

compared to evaluate the registration performance of different

registration methods.

3.1 Subjective visual evaluation

Subjective evaluation is the most common and direct

image evaluation method [56]. Image registration must first

satisfy the qualitative visual perception. In MOS, image

quality is divided into five grades according to its merits,

and the best rating is five.

3.2 Objective and quantitative evaluation

When visually challenging to judge, objective parameters are

usually applied to evaluate the registration performance

quantitatively. In this study, the objective evaluation measures

used are computation time, RMSE, SSIM, PSNR, and jump

percentage P in quantitative visual perception.

3.2.1 Computation time
Computation time is used to measure the computing speed of

image registration. Under the same conditions, the algorithm

with less computation time is faster in image registration. There

is often a tradeoff between computation time and registration

accuracy in practical applications. Therefore, balancing these two

factors to optimize quality and efficiency is also the pursuit of

image registration algorithms.

3.2.2 Root mean square error
RMSE is usually applied to indicate the deviation between the

calculated value and the actual value. The smaller the RMSE, the

higher the accuracy and the better the algorithm’s performance.

It is represented as Eq. 6:

RMSE �
�������������������
1
n
∑
n

i�1
(
				T(p′i, θ) − pi

				)2
√

(6)

Where p’ and p represent the matching points in the image to be

registered and the reference image.

3.2.3 Structural similarity index metric
SSIM is a measure of the similarity between two images.

SSIM is designed based on the ability of the human visual system

to capture the structural features of images. The image is

evaluated by brightness, contrast, and structure. The value

ranges from 0 to 1, and the higher value represents the higher

the similarity between the two images in brightness, contrast, and

structure. In practical applications, the Gaussian function,

variance, and covariance are generally used to calculate the

mean value of images instead of traversing the pixels to

achieve higher efficiency. It can be expressed as Eq. 7:

SSIM(x, y) � (2uxuy + C1)(2σxy + C2)
(u2

x + u2
y + C1)(σ2

x + σ2y + C2)
(7)

Where, μx is the mean of x, μy is the mean of y, σ2x is the variance

of x, σ2y is the variance of y, and σxy is the covariance of x and y.

3.2.4 Peak signal-to-noise ratio
PSNR is used to measure the difference between two images,

which can compute the impact of the noises that affect the quality

Frontiers in Physics frontiersin.org07

Yu et al. 10.3389/fphy.2022.1045192

130

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1045192


of its representation between registered and reference images.

PSNR is the most commonly used objective evaluation index of

images. It is based on the error between corresponding pixels.

Thus it is the image quality evaluation based on error sensitivity.

The higher value of PSNR indicates better registration quality.

Since it doesn’t consider the visual characteristics of the human

eyes, the evaluation results are sometimes inconsistent with

visual perception. Mathematically, it is given as Eq. 8:

PSNR(X,Y) � 10 log10
⎛⎜⎜⎜⎜⎝ max(Y)
1/NM∑NM

x,y�1(X − Y)2
⎞⎟⎟⎟⎟⎠ (8)

3.2.5 Visual perception
The brightness effect and the spatial frequency masking

effect are two essential characteristics of human vision.

According to these effects, an important parameter of

visual discrimination, just noticeable difference (JND), is

derived. This parameter is used to calculate the change of

effective pixels number of an image, namely, jump

percentage P (higher p-value is better). Thus, it can

obtain quantitative evaluation results consistent with

human visual perception. The evaluation algorithm is

given in Figure 6.

4 Results

The different intensity-based (see Figure 7) and feature-

based registrations are evaluated and compared. In our

results, the feature-based registration method has a low

registration rate (SIFT 33.3% and SURF 11.1%), and poor

registration quality. This is due to the insufficient feature

points or feature pairs in the PAT images. The results

FIGURE 6
Quantitative visual perception algorithm.
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indicate that the feature-based registration in this study is

not suitable for applications like hand blood vessel PAT

images. In Figure 7, examples of registered images (dataset

9) of each registration method are shown. Although phase

correlation (CORR) cannot obtain high registration quality,

it is fast. And by applying it as a rough registration with other

methods, the overall registration performance can be

significantly improved. Therefore, we took it as a rough

registration to combine with other registration schemes

and compared the results with and without CORR. In

Figure 7, A-H refers to the eight different registration

schemes. A–D are the registration results without phase

correlation, which are MSE and regular step gradient

descent optimizer, MSE and one-plus-one evolutionary

optimizer, MI and regular step gradient descent optimizer,

MI and one-plus-one evolutionary optimizer. E-F are the

registration results of phase correlation combined with the

previous methods. In the registration images, magenta and

green represent the differences between the two images, and

the registered part is white.

4.1 Mean opinion score

Three people who did not participate in the experiment

were invited to evaluate the images. A score of 5 refers to the

best result, and the percentage of a score of 4 or above in all

datasets was used as the evaluation index. A higher

percentage indicates a better result. The MOS evaluation

results for different registration schemes are shown in

Figure 8. Before phase correlation was applied as a rough

registration, the scheme of MI with regular step gradient

descent optimizer got the best registration result, which was

33.33%. After using phase correlation as rough registration,

the overall registration quality was improved. The percentage

was increased by 14.81%–48.15%. Overall, the scheme of

phase correlation combined with MSE and regular step

gradient descent optimizer offers the best registration

results (59.26%).

4.2 Computation time

Figure 9 shows the time consumption of the eight registration

schemes with different datasets. We repeated the experiments

five times for each dataset with each registration method and

plotted the averaged time consumption, which excludes the

contingency and is representative to a certain extent. As can

be seen from Figure 9, similarity measure MSE has a faster

registration rate than MI when the optimizer is consistent. When

the similarity measure is consistent, one-plus-one evolutionary

optimizer takes less time than regular step gradient descent

FIGURE 7
Example of image registration for dataset 9. (A–H) represents different image registration algorithms.
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optimizer. Overall, whether rough registration is applied or not,

the scheme of MI with regular step gradient descent optimizer

takes longer. The scheme of MSE with one-plus-one evolutionary

optimizer, takes the shortest time. Other schemes take about the

same time.

4.3 Objective evaluation measures

The SSIM, RMSE, PSNR, and percentage of visual perception

P were calculated (see Figure 10). We compared the

performances with and without phase correlation rough

registration across all the nine groups of datasets. In addition,

we also compared the performances among the eight registration

schemes in each type of datasets. Figure 10A shows the SSIM

value of registration results using different registration schemes

in the nine groups of datasets. After introducing phase

correlation as rough registration, the total SSIM value of nine

data groups did not change significantly, which means they have

similar contrast and structural degradation. Comparing the eight

schemes, the scheme of phase correlation combined with MSE

and regular step gradient descent optimizer has good SSIM

values for each type of datasets. Figure 10B shows the RMSE

value. Overall, with rough registration, the registered image has a

better RMSE value, indicating better registration image quality.

Taken individually, phase correlation combinedMSE and regular

step gradient descent optimizer had high accuracy in most

datasets. Figure 10C represents the PSNR of the datasets. The

overall image quality is slightly improved after rough registration.

Figure 10D shows the quantified percentage of visual perception.

For each type of datasets, phase correlation combined MSE and

regular step gradient descent optimizer has a higher value of P, in

other words, it is more perceptive to the human eye. As a whole,

when the optimizer is consistent, the similarity measure MSE

FIGURE 8
MOS evaluation of different registrationmethods. (A–H) represents registration schemes. The proportion of results with a score of four or above
is shown in parentheses.

FIGURE 9
Mean computation time of 8 registration schemes in
9 groups of datasets.
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performs better than MI. That is, it has a higher value of SSIM

and PSNR, as well as a lower value of RMSE. When the similarity

measure is consistent, the regular step gradient descent optimizer

has a better performance than the one-plus-one evolutionary

optimizer, which is also reflected in a higher value of SSIM and

PSNR, and a lower value of RMSE. Moreover, this result remains

unchanged after phase correlation is introduced for rough

registration.

5 Discussion

5.1 Optical wavelength

Different endogenous contrast agents have different

absorption spectra. Hemoglobin is commonly used as an

endogenous contrast agent, which is widely used for vascular

imaging in the visible and near-infrared spectral ranges. When

the wavelength is 720 nm, the absorption coefficient of HbO2 is

less than that of HbR. When the wavelength is 850 nm, the

absorption coefficient of HbO2 is greater than that of HbR.When

the wavelength is 960 nm, more deep information can be

provided [57]. In the human body, the oxygen content of

arterial blood is higher than that of venous blood [58].

Therefore, when imaging at different wavelengths, veins and

arteries can be effectively distinguished. These wavelengths are

commonly used in vascular functional imaging [59].

5.2 Image registration

Feature-based methods are widely used in image registration.

However, our results show that sufficient feature points or feature

pairs cannot be obtained in the PAT images of hand blood

vessels, resulting in low registration efficiency. The reasons for

this could be that PAT images are lack of rich curve inflection

points and local curvature discontinuity points, which do not

meet the corner features commonly extracted in SIFT and SURF

feature extraction. Therefore, the feature-based registration

method is unsuitable for registering PAT images of a small

range of hand blood vessels.

Intensity-based registration is the primary registration

method analyzed in this study. Different similarity measures

and optimization methods turn the registration problem into an

optimization problem. The grayscale calculation in a small range

provides a fast computation while ensuring high accuracy. In our

FIGURE 10
The evaluation of 9 groups of datasets using objective measures. (A–D) represent SSIM, RMSE, PSNR, and jump percentage P, respectively.
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study, we found that among the commonly used registration

methods we tested, the mean square error similarity

measurement combined with the regular step gradient descent

optimizer has better accuracy, but it is time-consuming. In order

to improve the performance, we proposed to apply phase

correlation as a rough registration to combine with the

previous methods. Although the registration accuracy of phase

correlation is low, it has the advantage of fast registration in

simple translation. Therefore, we proposed a new scheme that

divided the registration into two parts. First, the registration of

large positions is completed by phase correlation, and then the

registration adjustment of small errors is carried out using MSE

and regular step gradient descent optimizer. The results showed a

significant improvement in the overall registration performance.

In addition, we found that all these registration methods showed

a relatively consistent variation in performance on different types

of data, which indicates that they can be applied for image

registration of all the four types of PAT data. Comparing the

eight registration schemes by combining MOS, time

consumption, and objective evaluation measures, the proposed

scheme of phase correlation combined MSE and regular

step gradient descent optimizer has stable and superior

performance.

5.3 Evaluation

Image registration must first satisfy the subjective

visualization. In this study, subjective evaluations were

conducted by different subjects to satisfy the qualitative visual

evaluation, as well as to reduce subjectivity. When the differences

are hard to identify for the visual assessment, objective evaluation

measures are often applied to analyze the registration results

quantitatively. The reasons for selecting SSIM, RMSE, and PSNR

are as follows:1) by calculating SSIM and PSNR, we can compare

the image quality of the registered images relative to reference

images, including image contrast, brightness, structural

degradation, and unwanted noise; 2) The error between the

float image and the reference image can be measured by

calculating RMSE.

Since the SSIM, PSNR, and RMSE are calculated based on

pixel intensity, it is possible that these objective measures give

results different from the subjective visual evaluation. When

subjective visual evaluation cannot be made, it is necessary to

add the measure of quantitative visual perception to reflect

human visual perception. Therefore, both subjective and

objective evaluation measures should be considered when

judging image registration performance. Meanwhile,

computation time is also worth considering. To some extent,

there is a tradeoff between the computation time and registration

accuracy. Our goal is to achieve high-quality fast registration.

Thus, the overall computation time and accuracy also need to be

considered comprehensively.

By combining the four objective measures, subjective visual

evaluation, and computation time, we evaluated the

performances of different combinations of the two most

commonly used similarity measures and optimizers for

intensity-based registration with four types of PAT datasets.

We also combined phase correlation with these registration

methods and evaluated the change in registration

performance. The results show that by adding phase

correlation, the overall performance can be greatly improved,

and by combining phase correlation with MSE and regular step

gradient descent optimizer, the registration gives better

performance in all four categories of datasets. The results

were validated using multiple sets of data for each category

and were consistent.

6 Conclusion

In this study, intensity-based and feature-based automatic

registration methods were investigated in the application of PAT

vascular imaging using four types of human hand vascular PAT

data. In addition, a new scheme with phase correlation was

proposed to improve the performance of the previous

registration methods. The feature-based registration methods

(SIFT and SURF) did not provide good performance in our

application. We had evaluated the performances of the intensity-

based schemes by applying subjective visual evaluation and four

objective evaluation measures SSIM, RMSE, PSNR, and jump

percentage P. In addition, computation time was also considered.

We found that by adding phase correlation as a rough

registration, the overall registration performance can be

significantly improved. From the results, we can conclude that

the proposed scheme combining the phase correlation rough

registration, mean square error measurement, and regular step

gradient descent optimizer gives the best overall performance.

This study provides a useful tool of image registration for clinical

applications of PAT vascular imaging, such as vascular growth

monitoring for early screening and postoperative evaluation of

cancers.
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