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Editorial on the Research Topic 


Novel biomarkers for predicting response to cancer immunotherapy


Immune response refers to the process by which immune cells recognize antigen molecules, activate, proliferate, differentiate and produce immune substances after being stimulated by antigens. It includes a series of physiological reactions such as antigen presentation, lymphocyte activation, immune molecule formation and immune effect. Immune response is the focus of tumor treatment and plays an important role in the research and clinical application of a variety of malignant tumors. This project summarizes the role of immune response markers in cancer therapy. The topic consisted of eight articles, including one review article and seven original research articles, contributed by multiple authors in the fields of tumor immunology and therapeutics. Our goal is to reveal the role of novel markers of tumor immune response in tumor therapy.

As a new treatment method, immunotherapy has gradually become the fourth treatment method in addition to surgery, chemotherapy and radiotherapy. However, due to the limited response rate of immunotherapy, in order to further improve the efficiency of immunotherapy, it is urgent to explore new targets of tumor immune response to achieve the purpose of precise treatment. As the only biomarker that has been confirmed to have predictive function in prospective clinical trials, PD-L1 has been approved by FDA as an immune checkpoint inhibitor (ICI) and is widely used in clinical practice. The degree and distribution of TILs in tumor and its microenvironment can be used as an important predictor of ICI response. Chong Sun et al. conclude that antibody-based PD-1-PD-L1 inhibitors can induce durable tumor responses in patients with a variety of advanced cancers (1).The degree and distribution of TILs in tumor and its microenvironment can be used as an important predictor of ICI response. Savas P et al. found that CD8+ TRM cells contribute to breast cancer immune surveillance and are a key target of immune checkpoint inhibition regulation (2). tumor mutation burden is the focus of research on tumor immune response markers in recent years. The higher the TMB of the tumor, the higher the immunogenicity of the tumor. Using systemic treatment with the Axl inhibitor bemcentinib in combination with PD-1 checkpoint blocker treatment, Huiyu Li et al. found that Axl achieves anti-PD-1-mediated growth control of STK11/LKB1 mutant NSCLC by expanding CD8+ T cells, the main executor of TCF1+PD-1+ (3).By analyzing the immunophenotype of 188 melanoma patients treated with ICB, Shen R et al. found that LAG-3 expression in peripheral blood cells could identify patients with poor prognosis after ICB, and this research result has a guiding role for immunotherapy of LAG+ immune melanoma patients (4).

Gene-expression markers are widely and equally comprehensive in assessing tumor response to ICI therapy. Jia K et al. showed that claudin-18 (CLDN18.2) positive gastric cancer (GC) has unique immune microenvironment characteristics, which makes CLDN18.2 positive GC have relatively fewer CD8/CD4 T cells expressing PD-1/PD-L1. This results in poor survival of patients receiving anti-PD-1/anti-PD-L1 therapy, indicating that CLDN18.2 may be a promising new therapeutic target (5). In addition, Shuai Wang et al. found that CD47 blockade significantly enhanced the ability of CD103+ DCs to uptake tumor DNA in the HCC microenvironment, thereby stimulating the cGAS-STING pathway and promoting the infiltration and activation of NK cells in HCC, suggesting the role of CD47 blockade in HCC treatment (6). Similarly, results of a phase I trial of an anti-CD47 monoclonal antibody (Hu5F9-G) conducted by Branimir I Sikic et al. in patients with solid tumors and Hodgkin lymphoma showed that Hu5F9-G was well tolerated in patients with solid tumors and lymphoma when administered using priming and maintenance dose regimens (7).

As a class of signaling cytokines, chemokines participate in the important process of tumor immune response by interacting with receptors to regulate immune infiltration and activation of host immune response. By analyzing the chemokine landscape and immune infiltration in metastatic melanoma samples using protein markers and RNA transcript imaging based on multiplex mass spectrometry flow cytometry, Tobias Hoch et al. found that CXCL9 and CXCL10-enriched tumor microenvironment (TME) contributes to the generation of a “hot” tumor microenvironment, It has a predictive effect on OS of melanoma patients (8).

In summary, the project “Novel markers of tumor immune response” highlights the important role of the exploration of new markers of tumor immune response in the prediction of tumor ICI treatment response, precision immune therapy, and prognosis of immunotherapy. This research direction provides great prospects for tumor immunotherapy.
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Lung adenocarcinoma (LUAD) is a primary cause of cancer-related death around the world and has a poor outcome and high incidence. Treatment options are, however, restricted. One of the most critical factors in cancer and metastasis is the N6-methyladenine (m6A) alteration on RNA. This modification could alter gene expression and even function at numerous levels, such as the stability, translocation and translation of RNA splicing. This study aimed to construct an m6A-related genes signature to accurately predict the prognosis of LUAD patients. From TCGA datasets, the LUAD patient data and m6A-related genes were retrieved. LUAD patients’ mutational features and differentially expressed genes (DEGs) were investigated. An univariate and LASSO model with m6A-related genes were constructed for the prediction of outcomes in LUAD. It was possible to develop a prognostic nomogram that could quantitatively predict LUAD patients’ overall survival chances at 1, 3, and 5 years. Research into biological processes and cell pathways was carried out using GSEA. This study found six m6A-related DEGs in LUAD patients, and three of these DEGs(HNRNPC, IGFBP3 and IGF2BP1) were linked to the clinical outcomes of LUAD patients. We found that the overall survival rate for all LUAD patients with high-risk subgroup was considerably lower. According to ROC curves, the prognostic signature demonstrated a high degree of accuracy in predicting future outcomes. In addition, we created a novel nomogram achieved great accuracy with this one as well. The researchers also found that the novel signature might favorably modulate the immune response, and high-risk scores samples were more susceptible to numerous chemotherapeutic medicines. Overall, we developed a m6A-related gene prognostic signature that effectively predicted outcomes of LUAD patients and gave an immunological perspective for creating customized therapeutics.




Keywords: immune microenvironment, prognosis, lung adenocarcinoma, m6A related genes, nomogram



Introduction

1.76 million people die from lung cancer each year, making it the most common cause of death in the world (1). Worse still, lung cancer’s incidence and death are both increasing (2). Lung adenocarcinoma (LUAD), which accounts for almost half of all kinds of lung cancer based on histology and prognosis, is on the rise, particularly in women and young adults (3). Overall LUAD survival remains dismal in spite of considerable advances in treatment modalities including surgical treatment, targeted therapy and early cancer identification (4, 5). LUAD cannot be detected early by current cytology and imaging screenings, despite their high sensitivity as cancer screening methods (6). Therefore, identifying reliable biomarkers for the prediction of the outcomes of LUAD patients is an absolute necessity.

More than 160 types of post-transcriptional chemical changes have been discovered in diverse RNAs, according to the 2017 MODOMICS report (7). N6-methyladenosine (m6A), firstly discovered in the 1970s, is the most prevalent and abundant posttranscriptional alteration found in eukaryotic mRNA, according to this research (8). Every component of the RNA metabolism is thought to be affected by M6A methylation (9, 10). Three types of enzymes control M6A modifications: “writers” (methyltransferases such as METTL3/14/16, RBM15/15B, KIAA1429 and WTAP), “readers” (YTH domain containing RNA binding proteins and heterogeneous nuclear ribonucleoproteins such as HNRNPA2B1, HNRNPC, YTHDC1 and YTHDF1/2/3) and “erasers”. (demethylases, including FTO and ALKBH5) (11–13). M6A has been linked to a wide range of malignancies, and it was believed to be a key player in tumor development and progression (14–16). M6A-related genes’ potential as new biomarkers has also piqued the interest of researchers.

In this study, we aimed to construct an m6A-related genes signature to accurately predict the prognosis of LUAD patients. Our group used bioinformatics and statistics to create a m6A-related gene prognostic signature based on data from TCGA database to reliably predict the outcomes of LUAD patients. An m6A-associated gene-based prognostic signature was discovered to have a high level of predictive power. Furthermore, a nomogram was developed to objectively predict the overall survival (OS) of LUAD patients.



Materials and Methods


Chip Data

RNA‐seq mRNA expression profiles and clinical information of TCGA‐LUAD cohorts were downloaded from TCGA platform. Pairs of normal samples were initially extracted from TCGA-LUAD cohorts using their barcodes. All datasets included consisted of 535 LUAD samples and 59 adjacent non-cancerous samples. Then, FPKM values were converted into transcripts per million (TPM) values (TPM). Analysis of numerous samples from the same patients yielded an average expression value. Supplementary Table 1 displays the clinical data of all LUAD patients. From the literature and from the m6Avar database, M6A-related genes that were linked to LUAD were collected (http://m6avar.renlab.org/) (Supplementary Table 2).



Cell Lines and Cell Transfection

All cell lines (16-HBE, NCI-H1299, NCI-H1703, NCI-H2126, NCI-H460, SPC-A1 and A549) were obtained from the Chinese Academy of Sciences (Shanghai, China). Cells were grown in RPMI 1640 nutrient solution (Gibco, USA). There was 10% FBS in all the media. All cell lines were grown in 5% CO2 at 37°C for the duration of the study.

ComiFECT transfection reagent was used for the cell transfection (Comiike, Nantong, Jiangsu, China). Silent IGF2BP1-targeting siRNAs (si-NC) and negative controls were bought from Genomeditech Co., Inc.



RT‐PCR

TRIzol® reagent (Invitrogen, Shanghai, China) was applied to extract the total RNA from LUAD cells, and 300 ng extracted RNAs were reverse transcribed into cDNA by the use of ReverTra Ace qPCR RT Kit (Toyobo, China). THUNDERBIRD SYBR® qPCR Mix (Toyobo, Japan) was used for quantitative PCR (Roche, Shanghai, China). The GAPDH was applied as an endogenous control mRNA for normalizing the expressions of targeting mRNAs. Each sample was examined three times. Data from curves was then gathered to confirm the specificity of the PCR. The relative expression fold change of miRNAs was calculated by the 2-ΔΔCt methods. Primer sequences were as follows: IGF2BP1, 5’-GCGGCCAGTTCTTGGTCAA-3’ and 5’- TTGGGCACCGAATGTTCAATC-3’; GAPDH, 5’- ACAACTTTGGTATCGTGGAAGG -3’ and 5’- GCCATCACGCCACAGTTTC -3’.



Cell Counting Kit-8 (CCK-8) Assay

Cell viabilities were examined by the use of the CCK-8 kit (FineTest, Wuhan Fine Biotech Co., Ltd, Wuhan, Hubei, China). After the transfections, 100 µL cells (5×103 cells per well) were seeded in 96-well plates. At 0, 24, 48, and 72 hours, 10µL of CCK-8 solution was added to each well. A microplate reader was applied to examine the absorbance at 450 nm after 1 hour of incubation.



Transwell Assay

NCI-H460 and NCI-H1299 cells transfected with si-IGF2BP1 and its corresponding control cells were seeded onto pre-treated Matrigel. 500 μL and 100 μl of culture medium were added into the upper and lower chambers, respectively. 24 h later, the cells were stained with 0.1% crystal violet. Subsequently, a microscope was applied to observe cell staining.



Extraction of M6A-Related Gene Matrix and Identification of Differentially Expressed Genes (DEGs)

The expressing matrix of TCGA genes was selected to extract M6A-related genes expression patterns. The DEGs were discovered through the use of the R program ‘limma’, with the log2 fold-change (log2 FC) criterion of more than 1.5 and the false discovery rate (FDR) less than 0.05.



Selection of Potential Survival-Associated Genes

With the help of the survival packages, we ran a univariate cox analysis on all of the DEGs. In accordance with this classification, DEGs with p-values less than 0.05 were designated prognostic-associated genes and identified as candidate genes for further investigation as a result of the classification process.



Developments of a Prognostic Model

We employed LASSO to create a better risk score model in order to better forecast m6A genes and LUAD. In the next step, we used R’s survival and glmnet packages to perform LASSO assays on TCGA’s candidate genes. Finally, the genes and their coefficients were figured out. On the basis of the established prognostic model, LUAD patients were categorized into high-risk (median) and low-risk (median) groups. The OS differences were compared using Kaplan-Meier assays and the log-rank tests. The “survivalROC” packages were used to produce the time-dependent ROC curve, which was then used to test the predicted accuracy of the prognostic risk score mode of operation (17).



Cluster Analysis and Principal Component Analysis

The cluster analysis was used to construct a principal component analysis (PCA). In addition, clinical data were retrieved from LUAD specimens for further analysis. In the following step, the R software was used to conduct a correlation analysis between clinical features and clustering results. Once everything was finished up, the heatmap was constructed using the R computer language’s ggplots package.



GSVA

R package “GSVA” was used to run GSVA on the gene profile in order to compare the differences in biological processes between low- and high-risk groupings of the risk score (18). It was possible to utilize the GSVA approach, which is non-parametric and unsupervised, to evaluate pathway changes or biological processes when an expression matrix sample was provided as input. “c2.cp.kegg v7.1 symbols” gene sets were utilized as the reference gene sets in this study.



Developments of a Novel Nomogram

The “rms” package in R was used to create a nomogram that included age, gender, pathological stage, and a predictive risk score model based on the TCGA cohort. The nomogram’s accuracy was predicted. To test whether the model could be utilized as an independent indicator for predicting LUAD in LUAD, multivariate Cox regression was performed. Following the online ROC curves, the nomogram’s AUC was determined to indicate the nomogram’s prognostic value.



Tumor-Infiltrating Immune Cells (TICs) Profile

On 535 tumor and non-tumor samples, the CIBERSORT method was used to compute the relative amounts of 22 TICs in each LUAD sample; samples with P 0.05 were used for further investigation (19).



Evaluation of Drug Sensitivity

The 50% inhibitory concentration was known as the IC50. An R program called “pRRophetic” was used to determine the IC50 of 138 medications by using its dependencies such as “car,” “ridge preprocessCore,” “genefilter, and sva.” (20). The “ggplot2” R package was used to generate the boxplot.



Functional Enrichment Analysis

ClusterProfiler, a R program, was used to perform pathway enrichment analyses for patients in the high- and low-risk groups using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) (21). In terms of statistical significance, GO keywords and KEGG pathways with P values less than 0.05 were found.



Statistical Analysis

R (version 3.6.1; R Foundation for Statistical Computing, Vienna, Austria) software was used to conduct statistical analysis. For the data matrix and all of the data processing, Perl was utilized. The “limma” R package was used to identify m6A-related genes that differed in expression. R packages “survival” and “survminer” were used to perform Cox regression and survival analysis. Using Kaplan-Meier analysis, we looked at the variations in survival rates between the two risk categories. LUAD’s OS was predicted using an independent set of indicators found through a Cox regression study. The prognostic risk score mode and nomogram were tested for their predictive power using ROC curves. P 0.05 with a two-tailed test was deemed significant.




Results


Identification of the m6A-Related DEGs in LUAD

Firstly, we downloaded the names of m6A-related genes, and then performed limma using TCGA datasets. The results showed that six m6A-related DEGs were identified between LUAD specimens and non-tumor specimens (Figures 1A, B). In addition, all seven genes were distinctly increased in LUAD specimens compared with non-tumor specimens, including IGFBP2, IGFBP3, IGF2BP1, YTHDF1, HNRNPC and LRPPRC (Figure 1C). Our findings suggested that the seven genes may be functional regulator in progression of LUAD.




Figure 1 | The identification of m6A-related DEGs in LUAD. (A, B) Heat Map and Volcanic map of m6A-related DEGs between LUAD and control samples with log2 FC>1.5 and p<0.05. (C) All 6 m6A-related DEGs were distinctly increased in LUAD specimens compared with non-tumor specimens.





Construction and Evaluation of an m6A-Related Genes Prognostic Signature

In TCGA datasets, we performed univariate assays using the six m6A-related DEGs to develop a prognostic signature for LUAD patients. DEG expression was found to be substantially linked with LUAD patient outcome (Figure 2). An overview of three m6A-related DEGs associated with poor prognosis was provided. The somatic mutation profile m6A-related gene alterations were found in 21 out of 561 LUAD samples, or a frequency of 3.74 percent, as shown in Figure 3A. For the sake of avoiding overfitting, LASSO assays were applied to exclude these strongly linked predictive DEGs, and three m6A-related genes were discovered. (Figures 3B, C). The risk score of each sample was calculated by the use of the following: risk score = (0.0310199095911482) ×HNRNPC+(0.00708641474163214) ×IGFBP3 +(0.102677930685888) ×IGF2BP1. In order to separate LUAD samples completely, the risk score model was employed (low or high risk) (Figures 3D, E).




Figure 2 | Forrest plot of 3 m6A-related DEGs related with prognosis by univariate Cox proportional hazards regression analysis.






Figure 3 | Developments of prognostic model. (A) The mutation frequency of 3 m6A-related DEGs in LUAD patients from TCGA datasets. (B) LASSO coefficients of the 3 m6A-related DEGs. (C) Identifying genes for the creation of a model for predicting prognosis. (D) Principal component assays using m6A-related DEGs in LUAD. (E) Tumors and normal samples in the TCGA cohort can be distinguished using principal component analysis.





The Prognostic Value of Novel Risk Model in LUAD Patients

Prognostic risk-related signatures for LUAD patients were classified to low- and high-risk groups based on the median value of their risk scores in TCGA datasets (Figures 4A, B). Patients in the high-risk group had a considerably lower overall survival rate than those in the low-risk group, according to survival tests (Figure 4C). The risk score and stage of LUAD patients were found to be strongly linked with their OS in a univariate study (Figure 4D). More interestingly, both risk score and clinical stage were independent predictors of OS in multivariate assays, whereas risk score and stage were only linked with OS in the univariate study (Figure 4E). The overall predictive power of the risk model for overall survival in TCGA datasets was tested using a time-dependent ROC. AUC findings verified the diagnostic usefulness of the tests and we observed that ROC assays may predict a highest accuracy at 1 year (Figures 4F, G). In addition, we explored the association between risk score and clinical factors in LUAD patients. We did not observe a distinct difference between risk score and gender and age (Figures 5A, B). However, we found that LUAD patients with advanced stages showed a higher value of risk score (Figure 5C). Our results revealed that the risk model could be used as a novel prognostic biomarker for LUAD patients.




Figure 4 | ROC analysis, risk score analysis, and survival analysis for LUAD’s three-gene signature are discussed. (A) Patients’ long-term survival rates in low- and high-risk groups (B) Distributions of risk scores. (C) Based on the entire TCGA cohort, the Kaplan-Meier curves of OS between low-risk and high-risk groups (D, E) Univariate and multivariate assays for the signature established by TCGA datasets. (F) ROC assays for different clinical factors and risk score. (G) Test results showed that the signature performed as expected in TCGA datasets.






Figure 5 | The relationships of risk score and clinical factors, including (A) gender, (B) age, and (C) Stage.





A Nomogram Predicting Survivals

We developed a nomogram for predicting OS in LUAD samples using a predictive risk score model that took into account factors such as gender, age, and clinical stage (Figure 6A). The nomogram’s ability to reliably predict the OS of LUAD patients was demonstrated by the calibration curves at one year, three years, and five years, as shown in Figure 6B. Multiple Cox regression analyses showed that the prognostic risk score model and the ages as well as the clinical-pathological stages were independent predictors of outcome (Figures 6C, D). The nomogram (AUC = 0.727) showed a superior predictive value than a single indicator (Figure 6E).




Figure 6 | The ability of a risk score and clinical pathological factors to predict the outcome of individuals with LUAD. (A) A nomogram that predicts the survival rate of patients with LUAD. (B) The calibration plots of the nomogram. (C) Univariate Cox regression analysis of the nomogram. (D) Multivariate assays of the nomogram. (E) ROC curves for clinical pathological features and risk score measurements.





Assays of the Immune Microenvironment

Tumor immune cell infiltration is the movement of immune cells into tumor tissue from the circulation (22). Clinical outcomes are strongly linked to the presence of immune cells in tumors, which makes them ideal targets for new cancer treatments (23, 24). Further evidence that the immune microenvironment correlates with risk score was obtained by examining the percentage of tumor-infiltrating immune subsets using the CIBERSORT algorithm and constructing 21 different immune cell profiles in LUAD samples (Figures 7A, B). Heat map and Histogram showed the expressing pattern of tumor-infiltrating immune cells in LUAD samples and normal lung samples (Figures 7C, D). Patients in the high-risk group had higher ratios of T cells CD8, T cells CD4 memory resting, Monocytes, Macrophages M0 and Macrophages M1 and than those in the low-risk group. However, patients in the low-risk group had higher ratios of T cells CD4 memory activated, Macrophages M2, Dendritic cells resting, Dendritic cells activated and Mast cells resting (Figure 8A). Moreover, HLA, Type_II_IFN_Reponse and MHC_class_I were also activated in the low-risk group (Figure 8B).




Figure 7 | Tumor TICs profiles and association studies. (A) The percentage of 22 different types of TICs in LUAD specimens was depicted in a bar graph. (B) Barplot showing the proportion of 22 kinds of TICs in LUAD specimens. (C) The levels of 22 kinds of TICs in LUAD samples and normal samples. (D) Several types of TICs were observed to be increased in LUAD specimens.






Figure 8 | Risk score and fraction of TICs are correlated. (A) The variation in immune infiltration between high- and low-risk scores. (B) Patients with a high-risk score have a known function in immune regulation that differs from those with a low-risk score. *p<0.05, **p<0.01, ***p<0.001.





Response to Chemotherapy Response

The correlation between chemoresistance and risk score was investigated since risk score was related to a bad outcome. As shown in Figure 9 and Supplementary Table 1, we discovered that certain chemotherapy medicines had a greater sensitivity to high-risk score samples.




Figure 9 | The association between risk score and chemosensitivity.





Gene Set Variation Analysis (GSVA)

It was done by using “c2.cp.kegg.v7.2” gene sets downloaded from the Molecular Signatures Database (MSigDB) to study the biological behavior of two groups. The high-risk score was found to have a higher concentration of tumor-related pathways (Figure 10).




Figure 10 | Map of GSVA enrichment between low- and high-risk score categories.





Functional Correlation Analysis

We then compared the expressing patterns of the low and high-risk groups. To understand the function of dysregulated genes, DO pathway enrichment studies were performed. The results indicated that diseases enriched by the dysregulated genes were mainly associated with lung disease, non-small cell lung carcinoma, cell type benign neoplasm, urinary system cancer and obstructive lung disease (Figure 11A and Supplementary Table 3). GO assays revealed that the dysregulated genes were mainly enriched in humoral immune response, defense response to bacterium, hormone metabolic process, apical part of cell, apical plasma membrane, secretory granule lumen, receptor ligand activity and enzyme inhibitor activity (Figure 11B and Supplementary Table 4). KEGG assays indicated that the dysregulated genes were mainly enriched in Alcoholism (Figure 11C).




Figure 11 | Biological processes were identified by functional enrichment analysis. (A) Disease ontology enrichment analysis, (B) GO assays and (C) KEGG assays of DEGs between high-risk group and low-risk group.





The Oncogenic Roles of IGF2BP1 in LUAD Growth

To study the function of IGF2BP1 in LUAD, we firstly performed RT-PCR to examine its expression in LUAD cell lines. As shown in Figure 12A, we found that IGF2BP1 expression was distinctly increased in LUAD cells, including NCI-H1299, NCI-H1703, NCI-H2126, NCI-H460, SPC-A1 and A549, compared with 16-HBE. Moreover, we decreased IGF2BP1 expression in NCI-H460 and NCI-H1299 cells using siRNA, and RT-PCR confirmed the transfection efficiency (Figure 12B). In addition, CCK-8 assays confirmed that silence of IGF2BP1 distinctly inhibited the proliferation of NCI-H460 and NCI-H1299 cells (Figures 12C, D). Finally, we also observed that knockdown of IGF2BP1 distinctly inhibited the migration of NCI-H460 and NCI-H1299 cells (Figure 12E).




Figure 12 | The expressions of IGF2BP1 in LUAD cells and its function. (A) RT-PCR for the expression of IGF2BP1 in six LUAD cells and 16-HBE cells. (B) qRT-PCR analysis of IGF2BP1 expression after transfection of si-IGF2BP1. (C, D) CCK-8 assays were used to explore the function of IGF2BP1 silence on NCI-H460 and NCI-H1299 cells. (E) Transwell assays were used to determine the invasive ability of LUAD cells. **p<0.01. The experiments were repeated three times, and each experiment was triplicated.






Discussion

Prognostic markers and therapeutic targets have been regularly discovered thanks to advances in high-throughput sequencing technologies over the past few decades (25, 26). As a result, we now know more about cancer. Reliable tumor immunotherapy response and prognostic biomarkers based on the intrinsic milieu of tumorgenesis are still extremely rare in LUAD (27, 28). Research into the mechanisms of action of these compounds is essential for their potential medicinal application. In eukaryotic cells, m6A is by far the most common RNA modification found within the RNA itself (10). RNA methylation in the m6A region appears to have an important role in cancer development, according to newly discovered data (29, 30).

Many M6A-related genes have recently been linked to the progression of various cancers. For instance, colorectal cancer metastatic tissues with increased METTL3 expression were related with a worse prognosis. Through a m6A-IGF2BP2-dependent pathway in colorectal cancer cells, METTL3 knockdown significantly decreased in vitro cell self-renewal, frequency of the stem cell population, and migration, as well as colorectal carcinoma tumorigenesis and metastasis (31). Chen et al. reported that hepatocellular carcinoma patients with high WTAP expression displayed a worse outcome, and WTAP expression could be an independent predictor of survival. WTAP increased hepatocellular carcinoma cell proliferation and tumor growth in vitro and in vivo via the m6A-HuR-dependent epigenetic silencing of ETS1 in vitro and in vivo (32). Importantly, Wang and his group reported that increasing the cisplatin response by overexpressing IGFBP3 promoted apoptosis and confirmed that suppression is caused in part by inhibiting IGF1 signaling in vitro (33). These findings indicated the critical roles of M6A-related genes in the progression of various cancers. In this study, we analyzed TCGA datasets and identified six dysregulated M6A-related genes in LUAD. The results of Univariate indicated that only three M6A-related genes were survival-related genes, including HNRNPC, IGFBP3 and IGF2BP1. HNRNPC, IGFBP3, and IGF2BP1 were created as a three-gene prognostic signature that performed well in predicting the survivals of patients. With the addition of a few selected clinical and pathological parameters, the predictive power of this prognostic risk score model was significantly enhanced. Then, we chose IGF2BP1 to study its potential function. The results indicated that diseases enriched by the genes involved in the expression of GF2BP1 were mainly associated with lung disease, non-small cell lung carcinoma, cell type benign neoplasm, urinary system cancer and obstructive lung disease, suggesting that GF2BP1 may play an important role in the progression of LUAD. Then, functional assays revealed that IGF2BP1 knockdown suppressed the proliferation and invasion of LUAD cells, which may explain the reason that IGF2BP1 was associated with poor prognosis of LUAD patients.

To better understand carcinogenesis and cancer progression, researchers are increasingly focused on the tumor environment (TME), which has risen to prominence as a research hotspot in recent years (34, 35). In addition, emerging data suggests that tumor-infiltrating immune cells (TICs) and stromal components are strongly linked to the development of LUAD (36, 37). Carcinogenesis and development of cancer were greatly influenced by the tumor microenvironment, particularly the immunological component. It has been found that shifting the TME from a tumor-friendly to a tumor-suppressive state can benefit cancer treatment (38, 39). As a result, identifying the prospective therapeutic targets that contribute to the aforementioned process is an absolute necessity. In this study, we observed that high-risk score patients were enriched with inhibitory immunity cells. HLA and MHC class I activation, as well as inflammatory-promoting activity, were seen in patients with a high-risk score, indicating that individuals with a high-risk score can benefit from immunotherapy. On the other hand, to better understand the relevance of the predictive risk score model in LUAD, the variations in patients’ responses to pharmacological therapy between low- and high-risk groups were studied. According to the preceding definitions, patients with high-risk scores showed a considerable stroma activation status, indicating chemoresistance.

Several issues remained in the current study. First, the number of patients was quite small. Second, the prognostic model has to be tested on a large number of different datasets in order to ensure its robustness. Third, some possible risk variables, including radiation and pathological characteristics, were not included in our nomogram. Finally, these prognostic M6A-related genes in LUAD need additional investigation to understand their function and processes.



Conclusion

A predictive signature based on three M6A-related genes was created to predict the overall survival of LUAD patients. Our developed signature of three M6A-related genes gives higher clinical utility for predicting the prognosis of LUAD patients compared to the usual TNM staging approach. Our findings will lead to the developments of individualized cancer chemotherapy and immunotherapy in the future.
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Angiopoietin-2 (Ang2), a member of the angiopoietin family, is widely involved in the process of vascular physiology, bone physiology, adipose tissue physiology and the occurrence and development of inflammation, cardiac hypertrophy, rheumatoid, tumor and other diseases under pathological conditions. Proliferation and metastasis of cancer largely depend on angiogenesis. Therefore, anti-angiogenesis has become the target of tumor therapy. Due to the Ang2 plays a key role in promoting angiogenesis and stability in vascular physiology, the imbalance of its expression is an important condition for the occurrence and development of cancer. It has been proved that blocking Ang2 can inhibit the growth, invasion and metastasis of cancer cells. In recent years, research has been constantly supplemented. We focus on the mechanisms that regulate the expression of Ang2 mRNA and protein levels in different cancers, contributing to a better understanding of how Ang2 exerts different effects in different cancers and stages, as well as facilitating more specific targeting of relevant molecules in cancer therapy. At the same time, the importance of Ang2 in cancer growth, metastasis, prognosis and combination therapy is pointed out. And finally, we will discuss the current investigations and future challenges of combining Ang2 inhibition with chemotherapy, immunotherapy, and radiotherapy to increase its efficacy in cancer patients. This review provides a theoretical reference for the development of new targets and effective combination therapy strategies for cancer treatment in the future.
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Introduction

Tumor cells have the characteristics of infinite proliferation, which will cause most tumor cells to be in hypoxia and nutrient-deficient microenvironment. At this time, the tumor will produce a large number of new blood vessels to provide nutrients and oxygen through the use of blood flow (Figure 1) (1–4). It can be seen that the process of new blood vessel formation is necessary for continued tumor growth and progression. antiangiogenic drugs such as bevacizumab and sorafenib are widely used in clinical practice (5, 6). By inhibiting the formation of cancer blood vessels, the blood supply of cancer cells is insufficient, which cannot meet the needs of growth and metastasis, thereby inhibiting the progression of cancer (5, 6). However, the efficacy of these drugs is limited, and their side effects include bleeding, thrombosis, etc. and drug resistance frequently occurs, therefore the discovery of new antiangiogenic targets has become an urgent problem to be solved (7–10). Angiogenesis is coordinated by pro-angiogenic and anti-angiogenic factors, and dysregulation can lead to pathological angiogenesis (8). Ang2 is the ligand of tyrosine-protein kinase receptor Tie-2, which is highly expressed in lung cancer, gastric cancer, colorectal cancer, glioma and other cancers, and also leads to the occurrence and development of cancer by promoting the abnormalization of blood vessels (Figure 1) (11–15). Studies have shown that Ang2 is not only a necessary condition for the angiogenesis of cancer cells, but also an indicator of its metastasis, invasion and poor prognosis (12, 15–18). In recent years, Ang2-related inhibitors have been continuously developed (Table 1), with the potential for anti-angiogenic and anti-tumor activities (25–29). At present, the combination of anti-angiogenesis therapy with chemotherapy, targeted therapy or immunotherapy has been approved for clinical application and has greatly improved the survival rates of cancer patients (5, 30, 31). Therefore, the prospect of Ang2-targeted combination therapy for cancer treatment is bright. This review mainly discusses the role of Ang2 in various cancers and points out possible potential combination treatment options.




Figure 1 | Schematic diagram of the effect of Ang2 dysregulation on cancer cells: The increase of Ang2 in cancer leads to vascular instability, increases leakiness of the vessels, limits immune cell trafficking, and finally promotes the proliferation, invasion and metastasis of cancer.




Table 1 | Targeted inhibition of ang2 in cancer therapy.





Dysregulated Ang2 and Its Role in Cancers


Gastric Cancer

The symptoms of gastric cancer in the early stage are not obvious, and most patients are already in the middle and late stages when they first visit the doctor, with a very poor prognosis and high mortality (32–34). Further study on the molecular mechanism of growth, invasion and metastasis of gastric cancer provides a theoretical basis for effective treatment in the future. In recent years, antiangiogenic therapy for gastric cancer has been continuously developed, and many targeted angiogenesis inhibitors are in clinical trials (32, 34, 35).

The occurrence and development of gastric cancer are closely related to the regulation of angiogenesis by microRNA (miRNA) (36, 37). MicroRNAs (miRNAs) are important cancer regulators that function as oncogenes or tumor suppressor genes (37). Studies have shown that miRNAs are involved in the regulation of angiogenesis by regulating the expression of Ang2, and are targets of many cancer treatments (38).

In human umbilical vein endothelial cells and mouse lymph node endothelial cells, miRNA-542-3p inhibits the translation of Ang2 mRNA (37). Researchers added miR-542-3p to a tumor-bearing mice to reduce angiogenesis, tumor growth and metastasis, suggesting that miR-542-3p inhibits tumor progression by weakening the angiogenic activity of Ang2 (37). MiR-218, as a tumor suppressor, inhibits the proliferation and invasion of gastric cancer cells by reducing Ang2 in gastric cancer (39). It is reported that miR-145-5p is low expressed in gastric cancer cells, but Ang2 is highly expressed (40). Further studies have proved that Ang2 is the target of miR-145-5p (40). When miR-145-5p was overexpressed in gastric cancer cells, the expression of Ang2 was significantly down-regulated and inhibiting NOD-LIKE-RECEPTOR signaling pathway which therefore inhibits the proliferation, invasion and metastasis of cancer cells (40). In addition, studies have shown that LINC00184 (the competing endogenous RNA (ceRNA))directly binds to miR-145 and inhibits its expression, to promote the expression of Ang2 and induce the epithelial-mesenchymal transition (EMT) characteristics of gastric cancer cells, and improve the carcinogenesis mediated by Ang2 (41). Dopamine and cAMP-regulated phosphoprotein Mr-32000 (DARPP-32) can induce the expression of Ang2 in gastric cancer cells by regulating signal transducer and activator of transcription 3 (STAT3), promoting angiogenesis and mediating the occurrence and development of gastric cancer (42). Therefore, DARPP-32-STAT3 blocking may prevent the occurrence and development of gastric cancer (42).

From the above discussion, it can be seen that the expression of Ang2 in gastric cancer is regulated not only by miRNA, but also by ceRNA and DARPP-32. In general, all of these have the potential to mediate the proliferation, metastasis and invasion of gastric cancer cells by affecting their blood supply, indicating the feasibility of targeting Ang2 in the treatment of gastric cancer.



Lung Cancer

Lung cancer, as a disease with a high incidence in the world, has a very complex pathogenesis and mechanism and lacks clear diagnostic indicators and means at the early stage (43–45). Most patients are already at stage III or IV when diagnosed, and the survival rate is very low (46). Therefore, new biomarkers can help to screen lung cancer for early diagnosis and treatment. Ang2 not only participates in tumor angiogenesis but also plays a role in the immune environment of some tumors. Studies have shown that Ang2, Tie2 and Myeloid-derived suppressor cells (MDSC) are involved in the immune escape of non-small cell carcinoma, the collection of clinical data shows that the high expression of ANGPT2/TIE2 + monocytic-MDSC in non-small cell carcinoma is closely related to its poor prognosis (47). Recent meta-data analysis showed that serum Ang2 expression in patients with lung cancer was significantly correlated with the progression and prognosis of lung cancer, and patients with high serum Ang2 expression had a poor prognosis (48). In addition, the abnormal expression of Ang2 is not only related to the stage of lung cancer but also closely related to its invasion, migration and prognosis. After Ang2 interference, the biological characteristics and EMT of lung cancer cells are inhibited, suggesting that Ang2 may be a novel molecular targeted therapy for lung cancer (49, 50). This may solve the current problem of metastatic treatment of lung cancer. After the operation of non-small cell carcinoma, the expression level of Ang2 in the serum of patients was detected to be increased, indicating that the angiogenesis capacity was also increased, which could not only increase the pre-repair of postoperative wound but also promote the distant metastasis and recurrence of cancer (51). This may also be one of the reasons for postoperative recurrence of non-small cell carcinoma. Interestingly, the expression of Ang2 mRNA and protein levels was significantly correlated with the progression and clinical outcome of lung adenocarcinoma. However, this phenomenon was not observed in squamous cell carcinoma (52). It further illustrates the complexity of the regulatory mechanism of Ang2 in cancer.

Lung cancer patients have a high probability of brain metastasis and poor prognosis (53). Exploring the regulatory mechanism of brain metastasis is helpful to identify new therapeutic targets. Studies have shown that the overexpression of a disintegrin and metalloproteinase 9 (ADAM9) can promote the brain metastasis of lung cancer cells, further studies have shown that ADAM9 can promote the vascular remodeling of lung cancer cells and brain metastasis by increasing the expression of vascular endothelial growth factor A (VEGFA), Ang2 and tissue plasminogen activator (PLAT) (54). These findings suggest that targeted inhibition of ADAM9, VEGFA, and Ang2 may be a new effective therapeutic strategy for lung cancer brain metastasis. ADAM9 regulates the expression of angiogenic factor Ang2, thereby controlling vascular remodeling and angiogenesis to regulate lung cancer brain metastasis (54).

VEGFA and ANGPT2 are the targets of anti-angiogenesis therapy, and whether the combined inhibition of ADAM9 with bispecific antibody (A2V CrossMab) against both Ang-2 and VEGF can reduce the morbidity and mortality of lung cancer brain metastasis has not been studied. We look forward to more research on multi-target therapy.



Glioma

Glioma, as an angiogenesis-dependent tumor, is the most common malignant tumor of the central nervous system. It has strong invasiveness, poor prognosis and easy recurrence after operation (55–57). There is great room for progress in the treatment strategy of glioma. At present, radiotherapy, chemotherapy, surgical treatment and immunotherapy have not solve the key event of high mortality of glioma patients (58). It is necessary to further explore new targets and treatment strategies.

Ang-2 is highly expressed in glioblastoma and is involved in a series of processes such as glioma development, invasion, prognosis and treatment resistance (56, 59–61). Rhythm gene BMAL1 (brain and muscle Arnt like 1) is considered to be a tumor-promoting factor in glioma and plays a key role in the proliferation and migration of glioma cells (59). Studies have shown that BMAL1 is highly expressed in gliomas, and regulates the expression of Ang2 and VEGF by regulating HIF-1a under hypoxia, to participate in the formation of tumor microvessels and peritumoral edema (55). Strangely, when BMAL1 was knocked out, the expression of Ang2 did not change (55). This further indicates the complexity of Ang2 expression regulation. As previous studies have shown, it may be environment-dependent (62). Some studies have shown that the edema of glioblastoma can be alleviated by dexamethasone, and it is suggested that dexamethasone may alleviate brain edema and slow down the growth of gliomas by inhibiting the expression of Ang2 (63). In oligodendroglioma, it was found that under hypoxia, Insulin Gene Enhancer Protein (ISL2) induces angiogenesis by enhancing the expression of Ang2 to promote the growth, malignant transformation and invasion of oligodendroglioma (13, 56). These studies suggest that blocking Ang2-induced angiogenesis through targeted inhibition of ISL2 may be one of the effective strategies for the treatment of oligodendroglioma in the future (13). As an antiangiogenic therapy for glioblastoma, bevacizumab is commonly used, but its drug resistance often occurs. Ang2 is highly expressed in these drug-resistant gliomas (64). It is proposed that the combination of VEGF blocking and Ang-2 inhibition may overcome the resistance of bevacizumab to glioma treatment, suggesting that Ang2 may be a therapeutic target for bevacizumab resistant gliomas (64).

In short, the study on the regulation and expression mechanism of Ang2 in glioma will be beneficial to the future targeted treatment of glioma patients to improve their survival rate and prognosis.



Colorectal Cancer

Colorectal cancer is considered to be the second most common cancer in the world and the third most common cause of cancer-related death. It has a high risk of recurrence and poor prognosis (65). Although the treatment of colorectal cancer has made progress with the continuous development of immunotherapy and gene-targeted therapy in recent years, the problems of metastatic diseases and drug resistance have not been solved (66). This highlights the necessity to develop new treatment strategies.

Recent studies have reported that RAS-ERK1/2 signaling induces the upregulation of Ang2 and c-x-c motif chemokine receptor 4 (CXCR4) in KRAS-mutated colorectal cancer cells, resulting in liver metastasis (67). The use of ERK inhibitors can downregulate Ang2 and CXCR4 to control the liver metastasis in colon cancer (67). It can be seen that Ang2 plays a key role in liver metastasis of colorectal cancer. Targeted inhibition of Ang2 or RAS-ERK1/2 axis can prevent and treat patients with liver metastasis of colorectal cancer (67). Interestingly, there is also evidence that Ang2 gene deletion may aggravate the progression of liver metastasis in mice (68). On the one hand, Ang2 deletion leads to enhanced bone marrow cell recruitment of granulocyte colony-stimulating factor (G-CSF), which is conducive to more aggressive tumor growth and neoangiogenesis during liver colonization. On the other hand, it is the increase of compensatory VEGF caused by Ang2 deletion, which induces angiogenesis and promotes liver metastases (68). The reasons for the different results of these two studies may be the types of colorectal cancers studied are different, one is KRAS mutated, and the other is common undetected mutations. But both studies suggest that the role of Ang2 depends on the blood vessels of specific organs, as these changes in Ang2 expression were not observed in colorectal cancer lung metastases (67, 68). In addition, according to clinical studies, serum Ang2 levels in patients with colorectal cancer are associated with disease progression. Ang2 was significantly higher in colorectal cancer with peritoneal carcinomatosis than without peritoneal carcinomatosis and was negatively correlated with the survival rate of those patients (16). Additionally, Ang2 is an important predictor of mortality in patients with incurable stage IV colorectal cancer (12). Therefore, it may be a useful prognostic biomarker for colorectal cancer patients (12, 17).

In general, Ang2 is closely related to the occurrence, metastasis, and prognosis of colorectal cancer. Targeting Ang2 or regulating the signaling pathway or factors

of Ang2 in colorectal cancer may effectively inhibit the development of colorectal cancer.



Breast Cancer

Breast cancer is not only one of the most common malignant tumors in women but also one of the most common causes of death in women (69, 70). At present, there is no effective solution to the distant metastasis, recurrence and treatment resistance of breast cancer.

Clinical studies have shown that Ang2 can not only be used as a diagnostic indicator for the detection of early breast cancer, but also as an evaluation factor for the prognosis of breast cancer (71). In estrogen-deficient conditions, Ang2 promotes survival of estrogen receptor-positive  (ER+)breast cancer through integrin 1 (72). More importantly, 2 is highly expressed in the recurrence and metastasis of  (ER+) breast cancer patients treated with estrogen antagonists (72). In addition, in estrogen-deficient bone marrow endothelial niche, knockout Ang2 can attenuate tumor cell proliferation. Further research shows that estrogen regulates the proliferation of ER(+) breast cancers by regulating the expression of Ang2 in the bone marrow endothelial niche (72). These experimental results suggest that Ang2 may be a key target for preventing metastatic recurrence of breast cancer in endocrine therapy. At the same time, whether the combined use of estrogen antagonists and Ang2 antagonists can improve the survival rate of patients and reduce metastasis and recurrence requires a lot of research in the future.



Pancreatic Cancer

Pancreatic cancer is one of the most difficult cancers to treat and the worst prognosis in the world (73). We look forward to more research to explore the pathogenesis of pancreatic cancer and effective treatment options. In recent years, some scholars have proposed that miR-145, as a tumor suppressor of pancreatic cancer, inhibits the angiogenesis, growth and invasion of cancer cells by directly inhibiting the expression of Ang2 (74). It suggests that the inhibition of Ang2 expression by miR-145 indirect targeting may be an effective treatment for pancreatic cancer (74).

Ang2 in both pancreatic cancer and gastric cancer is regulated by miRNA, which mediates the occurrence and development of cancer, further indicating the importance of miRNA in Ang2 regulation.



Other Cancers

In cerebral cavernous malformation (CCM), CCM3 (also known as PDCD10) gene mutation promotes the progression of CCM (75). The study further showed that CCM3 reduced the secretion of Ang2 and prevented the development of CCM by inhibiting the UNC13B/VAMP3-dependent exocytosis of Ang2 in brain endothelial cells (ECs) (75). On the contrary, when CCM3 is mutated, Ang2 secreted by brain endothelial cells increases, thus accelerating the progress of CCM (75). In conclusion, the Ang2 secretion regulated by CCM3 in endothelial cells may be a new therapeutic target for cavernous malformation.

Kaposi’s sarcoma (KS) is a vascular malignancy associated with Kaposi sarcoma-associated herpesvirus (KSHV) (76). Studies have shown that KSHV contributes to tumor growth by inducing ECs to release Ang2 to promote angiogenesis and inflammatory cell infiltration (77). Ang2 was detected to be highly expressed in KS, and studies further demonstrated that knockdown of Ang2 or use of Ang2 inhibitors AMG-386 and L1-10 blocked angiogenesis and tumor growth in the KS tumor model (77, 78). These findings provide a theoretical basis for the effective combination therapy of KS in the future.

Connective tissue growth factor (CTGF) is a cysteine-rich protein. In osteosarcoma cells, it has been found that overexpression of CTGF can promote the expression of Ang2 and induce angiogenesis of osteosarcoma, providing sufficient blood supply to cancer cells and promoting their metastasis (79).

α-Tocopheryl succinate (TS), an anticancer substance, inhibits tumor angiogenesis by reducing the expression of Ang2 and promoting vascular stabilization in mouse melanoma cells (80). In addition, the detection of Ang2 in melanoma patients showed that the expression of Ang2 in metastatic patients was higher than that in primary tumors (81).

Serum Ang2 is increased in multiple myeloma (MM) patients, especially in advanced patients, and is associated with disease progression (82, 83). It is suggested that Ang2 may be used as a prognostic indicator and a potential therapeutic target for multiple myeloma.

Of course, in addition to the malignant tumors discussed above, whether Ang2 still plays a different role in other tumors needs further exploration and research.




Targeting Ang2 for Cancer Treatment

The expression of Ang2 is regulated by miRNA, ceRNA and DARPP-32 in gastric cancer, which affects the occurrence and development of gastric cancer. Of course, in addition to the above, whether there will be other factors regulating Ang2 needs further research in the future. In general, targeting miR-542-3p, miR-145-5p, miR-218 LINC00184 and DARPP-32 to inhibit the expression of Ang2 in gastric cancer may be a new strategy for the treatment of gastric cancer, which requires a lot of research in the future. In brain metastasis of lung cancer, Ang2 regulated by ADAM9 plays an important role. Indirect inhibition of Ang2 expression by targeted inhibition of ADAM9 may prevent brain metastasis of lung cancer. In glioma, targeting BMAL1 or ISL2 to regulate the expression of Ang2 may be an effective treatment for glioma in the future. Similarly, the RAS-ERK1/2 signaling pathway in colorectal cancer, estrogen in breast cancer, miR-145 in pancreatic cancer and CCM3, KSHV, CGSF, and TS in other tumors may all be therapeutic targets.

According to the above discussion, there is no doubt that the expression of Ang2 in cancer is regulated by various factors (Table 2). We fully introduced the regulatory mechanism of Ang2 expression in different cancers and proposed potential targets to inhibit the occurrence and development of cancers by controlling Ang2 expression (Figure 2).


Table 2 | Dysregulated Ang2 in cancer.






Figure 2 | Overview of factors or signal pathways that regulate Ang2 expression in various cancers: These factors or signaling pathways regulate Ang2 expression to mediate the occurrence and development of cancers, which may be potential targets for cancer treatment. Green arrows indicate positive effects. Red perpendicular bars indicate negative effects.





Progress of Targeted Inhibition Ang2 Combined With Other Therapies in Cancer Treatment


Chemotherapy

Chemotherapy combined with anti-angiogenic therapy is constantly being developed and has been applied to colon cancer, gastric cancer and other cancers (5, 34). It is reported that the treatment effect of patients can be improved by adding bevacizumab to the chemotherapy regimen of metastatic colorectal cancer (such as 5-FU and irinotecan) to inhibit vascular endothelial growth factor (VEGF) (84).

However, after receiving bevacizumab anti-angiogenesis treatment, patients will develop drug resistance, and the increased expression of Ang2 is closely related to patients’ anti-bevacizumab resistance (84). Further studies have shown that high Ang-2 levels are associated with adverse clinical outcomes in patients with colorectal cancer treated with bevacizumab. Inhibition of Ang2 will increase resistance to VEGF signal-targeted therapy (84). Therefore, a bispecific antibody (CrossMab), that is, the combined inhibition of VEGF and Ang2, was proposed, which is currently considered to improve anti-angiogenic therapy (22). In addition, a bispecific antibody targeting VEGF and Ang-2 (CrossMab) in combination with chemotherapy was also evaluated in a model of drug-resistant colorectal cancer. The results showed that the bispecific antibody (CrossMab) combined with chemotherapy including 5-FU and irinotecan exhibited better therapeutic effect and addressed the limitations of single antiangiogenic therapy and chemotherapy (84). More surprisingly, studies have shown that bispecific antibody (A2V) combined with Ang2 and VEGFA blockade is more effective than monotherapy in renal cell carcinoma, metastatic breast cancer, and pancreatic neuroendocrine tumors (84–86).

MEDI3617, a selective Ang2 inhibitor, neutralizes Ang2 by blocking the interaction between Ang2 and Tie2 receptors and inhibits angiogenesis and tumor growth (26). Treating mice with MEDI3617 can inhibit angiogenesis in mouse tumor models. The combination of MEDI3617 with chemotherapy or bevacizumab leads to delayed tumor growth (26). In human tumor xenograft models, the application of Ang2 inhibitor combined with paclitaxel or carboplatin in advanced solid tumors is currently in phase I clinical trial (27). Overall, these clinical findings suggest that Ang2 as an anti-angiogenesis therapeutic target, combined with chemotherapy plays a synergistic role in the treatment of cancer.



Immunotherapy

Ang2 reduces the ability of the immune system (mainly T cells) to recognize and attack tumors by acting on immune cells (9, 87, 88). In addition, Ang2 can prevent immune cells from infiltrating into the tumor by destroying the stability of tumor blood vessels, leading to vascular abnormalities and destroying blood flow (Figure 1) (9, 87, 88). Since Ang2 has immunomodulatory effect, its importance in immunotherapy can’t be ignored. Immunotherapy, as a treatment for cancer, has emerged in recent years, but it will also be ineffective in some tumors. Research is also constantly adding how to better improve immunotherapy. Studies have shown that anti-angiogenesis therapy can improve the effect of immunotherapy (7, 89–93). Targeted inhibition of VEGF and Ang2 reduces angiogenesis and normalizes abnormal vasculature (92). More importantly, it can improve tumor immune response and patient prognosis (92). In the mouse model of glioblastoma, the combination of dual anti-angiogenesis and PD-1 checkpoint therapy significantly prolonged the survival time and normalized the vascular system of glioblastoma mice compared with anti-angiogenesis therapy alone (61). At the same time, the increase of T cells not only reduced immunosuppression but also induced stronger antitumor immune response and reduced glioma edema (61). Combined therapy not only eliminates the side effects of single antiangiogenic therapy but also enhances antitumor immunity through the synergistic effect of VEGF/Ang2 and PD-1 blockers (61, 86, 94). In addition, recent clinical trials have proved that MEDI3617 combined with tremelimumab (an IgG2 monoclonal antibody blocking cytotoxic T-lymphocyte-associated protein - (CTLA-4)) is safe in the treatment of patients with advanced melanoma, which significantly reducing the toxicity and side effects of single treatment (25). These studies provide strong support for co-targeting of angiogenesis and immune checkpoints in cancer therapy.



Radiotherapy

The effects of ionizing radiation on angiogenesis are complex, mainly depending on the dose of radiation (95). After locally advanced rectal cancer patients underwent low-dose ionizing radiation therapy at a dose below 0.8 Gy (called LDIR), the endothelial cell ECs around the tumor were activated, thereby up-regulating the expression of several pro-angiogenic genes such as Ang2, VEGFR1, VEGFR2, Induction of peritumoral angiogenesis (96, 97). In the early days, some scholars proposed the combined use of radiation and anti-angiogenic agents to treat cancer (98, 99). Studies have confirmed that the combination of antiangiogenic therapy and radiotherapy in head and neck squamous cell carcinomas (HNSCC) and nasopharyngeal carcinoma can not only overcome the side effects of separate treatment but also improve the curative effect (14, 100, 101). Interestingly, recent studies have shown that overexpression of Ang2 in mouse glioma models combined with radiochemotherapy can prevent the recurrence of glioblastoma (60). Therefore, the role of Ang2 in cancer treatment needs to be further explored to play a more accurate targeted therapy.

In general, targeting Ang2 inhibits the formation of blood vessels in cancer cells, resulting in insufficient blood supply to cancer cells, unable to meet the needs of growth and metastasis, thereby inhibiting cancer progression, while also increasing the sensitivity of radiotherapy and improving efficacy (14). However, there are many problems in the combined use of anti-angiogenic therapy and radiotherapy, such as the order of use of the two, the dose and time of radiation, the amount of vascular inhibitor, the route of administration, etc. These problems require a lot of clinical trials to study.




Conclusion

Antiangiogenic therapy is one of the important means of tumor treatment at present (102) It does not only block the nutrition and oxygen required by tumor cells but also normalize abnormal blood vessels and increase the sensitivity of radiotherapy and chemotherapy (9, 92). Bevacizumab, erlotinib, apatinib and other drugs are widely used in clinic, especially in combination with chemotherapy drugs, which significantly improves the curative effect in the treatment of colorectal cancer, small cell lung cancer and other cancers, but its side effects and drug resistance have not been solved (103–105). In recent years, Ang2 has become a new target of anti-angiogenesis therapy. In addition, Ang2 inhibition combined with chemotherapy, radiotherapy and immunotherapy has been proved to improve the effect of tumor treatment and overcome the limitations of single treatment. But there are still a lot of problems to be solved. For example, the sequence, duration, route of administration and dosage of the combination therapy. The expression of Ang2 is regulated by different mechanisms in different tumors, and even in different types of the same tumor. A better understanding of the mechanism of high Ang2 expression in cancer and the vascular changes mediated by it will help to address problems with current anti-angiogenesis in cancer therapy. Here, we mainly introduced that the expression of Ang2 in lung cancer, gastric cancer, glioma, colorectal cancer, breast cancer and other cancers is regulated by relevant signal pathways or factors, and proposed the possibility of targeting the inhibition of Ang2 with the signal pathways or factors that regulate the expression of Ang2. Therefore, in the future, we should further explore the role of Ang2 in cancer to maximize the efficacy for cancer patients. In addition, the optimal combination of targeting the inhibition of Ang2 with chemotherapy, radiotherapy, and immunotherapy would require a concerted effort.

Ang2 is not only involved in the pathology of many diseases, but also related to anti- angiogenesis and drug resistance, making it an ideal target. However, the mechanism of Ang2 in different cancers, even in different stages of the same cancer, needs further study.
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Cancer-associated fibroblasts (CAFs) are a major contributor to tumor stromal crosstalk in the tumor microenvironment (TME) and boost tumor progression by promoting angiogenesis and lymphangiogenesis. This study aimed to identify prognostic genes associated with CAFs that lead to high morbidity and mortality in ovarian cancer (OC) patients. We performed bioinformatics analysis in 16 multicenter studies (2,742 patients) and identified CAF-associated hub genes using the weighted gene co-expression network analysis (WGCNA). A machine learning methodology was used to identify COL16A1, COL5A2, GREM1, LUM, SRPX, and TIMP3 and construct a prognostic signature. Subsequently, a series of bioinformatics algorithms indicated risk stratification based on the above signature, suggesting that high-risk patients have a worse prognosis, weaker immune response, and lower tumor mutational burden (TMB) status but may be more sensitive to routine chemotherapeutic agents. Finally, we characterized prognostic markers using cell lines, immunohistochemistry, and single-cell sequencing. In conclusion, these results suggest that the CAF-related signature may be a novel pretreatment guide for anti-CAFs, and prognostic markers in CAFs may be potential therapeutic targets to inhibit OC progression.
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Introduction

Cancer-associated fibroblasts (CAFs) play a key role in the tumor microenvironment (TME) and influence tumor progression and metastasis through multiple pathways, including remodeling of the extracellular matrix (ECM), producing growth factors, and promoting angiogenesis (1). Meanwhile, ovarian cancer (OC) is a heterogeneous disease characterized by a propensity for peritoneal spread. Due to the complex interconnected signaling network and the unique peritoneal TME, cancer cells can interact with CAFs, adipocytes, immune cells, and chemokines (2). As a result, tumor migration and immune evasion frequently occur in OC patients, and immunotherapy has little effect (3).

The ECM is composed and reconstituted by CAFs, a barrier that supports tumor cell invasion and inhibits infiltration of antitumor immune cells, thus leading to immune evasion and chemoresistance (4, 5). Several researchers have explored different CAF subgroups with varying CAF marker expressions, such as alpha-smooth muscle actin (α-SMA), fibronectin attachment protein (FAP), and pelleted growth factor receptor (PDGFR) (6, 7). For example, in oral cancer, WNT2+ CAFs were negatively correlated with CD8+ T-cell activity (8). In pancreatic cancer, knocking down α-SMA+ CAFs unexpectedly enhanced tumor infiltration and increased Regulatory T cells (Tregs) abundance, leading to enhanced disease progression and reduced survival rates in mice (9). In breast and colon cancer, DNA-based vaccines targeting FAP induced the killing of CAFs by CD8+ T cells (10). Therefore, targeting the CAF-mediated immunosuppressive stromal microenvironment in combination with immunotherapy is expected to improve immune checkpoint inhibitor (ICI) response (11).

Weighted gene co-expression network analysis (WGCNA) is a systematic bioinformatics algorithm that enables the integration of highly correlated genes into several modules (12). This is a novel method to explore the relationship between numerous genes and clinical phenotypes. WGCNA has been applied to identify CAF markers, such as in gastric cancer (13), bladder cancer (14), and renal cell carcinoma (15). However, to date, CAFs have not been analyzed by WGCNA in large-sample multicenter OC cohorts. In this study, we integrated 16 multicenter studies that included 2,742 patients with complete follow-up information for bioinformatics analysis. We explored the hub modules most relevant for CAF infiltration and identified COL16A1, COL5A2, GREM1, LUM, SRPX, and TIMP3 as prognostic CAF markers. Subsequently, CAF signatures capable of predicting prognosis and treatment response were constructed, and the predictive ability was validated in multiple cohorts. In addition, we characterized markers using cell lines, immunohistochemistry, and single-cell sequencing. In conclusion, our results imply that the CAF signature may be a novel anti-CAF therapeutic approach in OC.



Methods


Datasets and Data Preprocessing

The fragments per kilobase of transcript per million mapped reads (FPKM) format RNA sequencing (RNA-seq) data with complete follow-up information of 372 samples were downloaded from The Cancer Genome Atlas (TCGA) database (16). Except for the samples without survival follow-up information, we still retained the samples with other clinical information missing. The somatic mutation data were also acquired from TCGA database. The tumor mutational burden (TMB) value of each sample was calculated via the tmb algorithm in the “maftools” package (17). We performed log2 [transcripts per million (TPM) + 1] transformation on the above raw data (18). In the Gene Expression Omnibus (GEO) database (19), we integrated the multiple datasets (RNA-seq or microarray) based on the GPL570 platform (GSE19829, GSE18520, GSE9891, GSE26193, GSE30161, and GSE63885; n = 597), GPL96 platform (GSE3149, GSE23554, GSE26712, and GSE14764; n = 409), GPL7759 platform (GSE13876, n = 415), GPL2986 platform (GSE49997, n = 194), and GPL14951 platform (GSE140082, n = 380). In addition, we downloaded anti-programmed death-1 (PD-1) dataset (IMvigor, n = 348) and anti-PD-L1 dataset (GSE78220, n = 27) based on immunotherapy. Cell line RNA-seq data from 47 fibroblast origins and 37 OC origins were acquired from the Cancer Cell Line Encyclopedia (CCLE) database (20). Immunohistochemical (IHC) staining images in OC tissues were downloaded from the Human Protein Atlas (HPA) database (21). Batch effects from meta-cohorts (GPL570 or GPL96) were corrected using the ComBat algorithm in the “sva” package (22). CAF markers were collected from previous references (23).

In conclusion, we integrated 16 multicenter studies and included 2,742 patients with complete follow-up information for our bioinformatics analysis.



Cancer-Associated Fibroblasts and Stromal Analysis

CAF abundances and stromal scores were computed using four methods: Estimate the Proportion of Immune and Cancer cells (EPIC) algorithm (24), xCell algorithm (25), microenvironment cell populations-counter (MCP-counter) algorithm (26), and Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) algorithm (27). We used “IOBR” package to invoke the above algorithm (28). The CAF abundances calculated by EPIC and MCP-counter were defined as phenotypic data for subsequent WGCNA. The data calculated by other algorithms were used for validation.



Weighted Gene Co-Expression Network Analysis

The “WGCNA” package (12) screened hub genes that were significantly associated with CAF scores. The expression profiles of the top 25% of the variance in the GPL570 meta-cohort and TCGA-OV cohort first were as the input. Then, according to our previous study (29), a soft threshold was determined, an adjacency matrix was clustered, and a hub module was determined. The strongest positive correlation was selected for further analysis by calculating the Pearson correlation coefficient between the modules and CAF scores. Then, we measured gene significance (GS) for each gene’s traits and module membership (MM) in the hub module. Finally, genes in the module were screened as potential CAF-related genes using MM >0.6 and GS >0.6 as thresholds.



Enrichment Analysis

The h.all.v7.4.symbols gene set was downloaded from the MSigDB database (30) for enrichment analysis in “GSVA” package (31). The adj.P value <0.05 was considered statistically significant. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted using “clusterProfiler” package (32). The adj.P-value <0.05 and adj.q-value <0.05 were considered statistically significant.



Construction and Validation of the Cancer-Associated Fibroblast Signature

The GPL570 meta-cohort with a larger sample size was used as the training cohort, and other cohorts were used as the validation cohort. Univariate Cox regression analysis was performed on common hub genes in 16 multicenter studies (P-value <0.05). In the least absolute shrinkage and selection operator (LASSO) regression analysis (33), 1,000 iterations were performed to reduce the genes, and subsequently, the above genes were subjected to multivariate Cox regression analysis to obtain the coefficients. CAF risk score was derived using the same formula as in our previous study (34, 35). The OC patients in each cohort were divided into high-risk and low-risk groups, and the cutoff value for each cohort was used as the threshold.



Chemotherapy Response Predictions

The “pRRophetic” package (36) was used to calculate IC50 value (bleomycin, cisplatin, docetaxel, gemcitabine, doxorubicin, and etoposide) of different samples based on gene expression.



Single-Cell Sequencing Analysis

We analyzed single-cell RNA-sequencing (scRNA-seq) data (GSE118828) from OC tissues based on the Tumor Immune Single Cell Hub (TISCH) database (37), and the whole cells were annotated into six clusters: fibroblasts, myofibroblasts, endothelial, malignant, monocyte or macrophage (Mono/Macro), and conventional CD4 T cell (CD4Tconv).



Immunofluorescence Staining

In total, two formalin-fixed paraffin-embedded (FFPE) tissue (primary tumors and recurrent tumors) blocks were selected from the Zhongda Hospital Southeast University. Immunofluorescence staining was also done by a commercial entity (Servicebio, Wuhan, Hubei, China). According to the company, detailed methods are available in a previous publication (38). Antibody staining order always remains the same, all slices with 4,6-diamidino-2-phenylindole (DAPI) (Servicebio, G1012) finally after dyeing. Monoclonal antibodies in immunofluorescence panels were CD8 (Servicebio, GB13068-2, 1:500), Foxp3 (Servicebio, GB112325, 1:3,000), and α-SMA (Servicebio, GB13044, 1:1,000). Slices were placed under a scanner to collect images, and image data were obtained using CaseViewer software.



Statistical Analysis

All statistical analyses were performed using the R software (v.4.0.1). The Wilcoxon test was applied for pairwise comparisons. The Kaplan–Meier analysis with the log-rank test was adopted for overall survival comparisons. More detailed statistical methods for transcriptome data processing are covered in the above section. P < 0.05 was considered statistically significant.




Results


Cancer-Associated Fibroblasts and Stromal Score Could Be Considered Prognostic Markers for Ovarian Cancer

We integrated the multidatasets based on the GPL570 platform (GSE19829, GSE18520, GSE9891, GSE26193, GSE30161, and GSE63885), and the Uniform Manifold Approximation and Projection (UMAP) analysis showed the distribution of each dataset before and after removal of batch effect (Figures 1A, B). The expression density plot also revealed that the batch effect of the GPL570 meta-cohort was well removed (Figures 1C, D). Finally, we normalized the expression profiles of 597 samples with complete follow-up information (Figure 1E). Previous references have reported the ability of CAFs to recruit immunosuppressive cells, so we performed immunofluorescence staining using immunofluorescence in patients with primary tumors and in patients with recurrent tumors (39). Interestingly, there was a recruitment of Treg cells (green) around the CAF cells (pink) in patients with primary tumors (Figure 2A), especially in the recurrent samples, where a larger number of Treg cells clustered to the prominent part of the CAF cells (Figure 2B). CD8+ cells (red) were rarely seen around CAF cells in both samples. Subsequently, the CAF infiltration score was predicted by EPIC, xCell, and MCP-counter algorithms based on the GPL570 meta-cohort (n = 597) and TCGA-OV cohort (n = 372), and the stromal score was calculated by ESTIMATE algorithm. We divided all samples into a high CAF/stromal score group and a low CAF/stromal group according to the cutoff values of the scores calculated by the four bioinformatics algorithms. In the GPL570 meta-cohort, the results showed that higher CAF infiltration and stromal score were significantly associated with poorer overall survival (OS) in OC patients (Figure 2C). Similarly, it could also be used as a predictive biomarker in TCGA-OV cohort (Figure 2D). Our study defined the CAF abundances calculated by EPIC and MCP-counter as phenotypic data for subsequent WGCNA. The data calculated by other algorithms were used for validation.




Figure 1 | Normalization process based on the GPL570 platform dataset. (A) UMAP plot of the six datasets before normalization. (B) UMAP plot of the six datasets after normalization. (C) Expression density plot of the six datasets before normalization. (D) Expression density plot of the six datasets after normalization. (E) Expression distribution plots for the six datasets after normalization.  UMAP, Uniform Manifold Approximation and Projection.






Figure 2 | CAFs spatially associate with Treg cells and survival analysis-based CAFs and stromal score. (A) Immunofluorescence staining of the original ovarian tissue samples. (B) Immunofluorescence staining results of recurrent ovarian tissue samples. (C) The Kaplan–Meier analysis of GPL570 meta-cohort, including CAF_EPIC (i), Fibroblasts_MCPcounter (ii), Fibroblasts_xCell (iii), and StromalScore_estimate (iv). (D) The Kaplan–Meier analysis of TCGA-OV cohort, including CAF_EPIC (i), Fibroblasts_MCPcounter (ii), Fibroblasts_xCell (iii), and StromalScore_estimate (iv). CAFs, Cancer-Associated Fibroblasts; Tregs, Regulatory T cells.





Co-Expression Network of Cancer-Associated Fibroblast Scores

WGCNA was performed using the expression profiles of the top 25% of variance in the GPL570 meta-cohort and TCGA-OV cohort. The soft threshold power in the GPL570 meta-cohort was 3 (Figure 3A); similarly, the threshold for TCGA-OV cohort was also 3 (Figure 3B). Subsequently, dynamic module identification was performed in the different cohorts, with the number of genes per module not less than 50 (Figures 3C, D). For the GPL570 meta-cohort, 9 co-expression modules were clustered, with the brown module having the strongest positive correlation with CAFs_EPIC score (Cor = 0.88, P = 3e-208) and Fibroblasts_MCPcounter score (Cor = 0.9, P = 5e-234) (Figure 3E). For TCGA-OV cohort, the 9 co-expression modules were clustered, with the blue module having the strongest positive correlation with CAFs_EPIC score (Cor = 0.76, P = 2e-71) and Fibroblasts_MCPcounter score (Cor = 0.92, P = 3e-157) (Figure 3F). In the brown module, positive correlations between CAFs_EPIC score (Cor = 0.96) and Fibroblasts_MCPcounter score (Cor = 0.97) were observed between MM and GS (Figure 3G); in the black module, positive correlations between CAFs_EPIC score (Cor = 0.87) and Fibroblasts_MCPcounter score (Cor = 0.97) were also observed between MM and GS (Figure 3H). Finally, 120 genes in the brown module and 160 genes in the blue module were screened as potential CAF-related genes using MM > 0.6 and GS > 0.6 as thresholds.




Figure 3 | WGCNA in the GPL570 meta-cohort and TCGA-OV cohort. (A) Scale independence and mean connectivity in the GPL570 meta-cohort. (B) Scale independence and mean connectivity in TCGA-OV cohort. (C) Gene dendrogram and modules before merging in the GPL570 meta-cohort. (D) Gene dendrogram and modules before merging in TCGA-OV cohort. (E) Pearson correlation analysis of merged modules and CAF score in the GPL570 meta-cohort. (F) Pearson correlation analysis of merged modules and CAF score in TCGA-OV cohort. (G) Scatterplot of MM and GS from the brown module in the GPL570 meta-cohort, including CAFs_EPIC (i) and Fibroblasts_MCPcounter (ii). (H) Scatterplot of MM and GS from the blue module in TCGA-OV cohort, including CAFs_EPIC (i) and Fibroblasts_MCPcounter (ii).  WGCNA, Weighted Gene Co-expression Network Analysis; CAFs, Cancer-Associated Fibroblasts; GS, Gene Significance; MM, Module Membership.





Functional Analyses of Cancer-Associated Fibroblast-Related Genes

The above CAF-related genes were overlapped and screened to 95 hub genes (Figure 4A). Regulation of small GTPase-mediated signal transduction, extracellular matrix, collagen-containing extracellular matrix, and metallopeptidase activity were the main enriched GO terms (Figure 4B). Fatty acid degradation, glycolysis/gluconeogenesis, regulation of lipolysis in adipocytes, peroxisome proliferator activated receptor (PPAR) signaling pathway, vascular smooth muscle contraction, and cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) signaling pathway were the mainly enriched KEGG pathways (Figure 4C).




Figure 4 | Functional analyses and construction of the CAF-based signature. (A) The hub CAF-related genes were overlapped in the brown module and the blue module. (B) GO enrichment analysis. (C) KEGG enrichment analysis. (D) Univariate Cox regression analysis of common hub genes (P < 0.001). (E) LASSO regression analysis. (F) Kaplan–Meier analysis of different cohorts. On the left is GPL570 meta-cohort; on the right is TCGA-OV cohort. CAFs, Cancer-Associated Fibroblasts; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; LASSO, Least Absolute Shrinkage and Selection Operator.





Construction of the Cancer-Associated Fibroblast-Based Signature

The GPL570 meta-cohort with a larger sample size was used as the training cohort, and TCGA-OV cohort was used as the validation group. Univariate Cox regression analysis was performed on common hub genes in the training cohort (Figure S1), with OS and survival time as dependent variables, and 63 prognostic genes (P < 0.05) were screened, and only some with P < 0.001 were shown in Figure 4D. The 63 prognostic genes were subjected to LASSO regression analysis to determine the minimum λ value (Figure 4E). Finally, 6 genes were identified for the CAF-based signature: CAF risk score = COL16A1 expression * 0.0924 + COL5A2 expression * -0.0031 + GREM1 expression * 0.0847 + LUM expression * 0.0069 + SRPX expression * 0.0649 + TIMP3 expression * 0.0425. The OC patients in each cohort were divided into high-risk and low-risk groups, and the cutoff for each cohort was used as the threshold value (GPL570 meta-cohort = 1.257016302; TCGA-OV cohort = 0.415034301). Kaplan–Meier curves showed that patients in the high-risk group had worse OS than that of those in the low-risk group (Figure 4F). These results suggested that the CAF signature was the hub prognostic marker for OC patients.



Cancer-Associated Fibroblast-Based Signature Genes Were Correlated With Cancer-Associated Fibroblast Markers

Spearman correlation analyses were performed between the CAF risk score and the CAF score predicted by the other methods (xCell, EPIC, ESTIMATE, and MCP-counter). Subsequently, we observed a strong and positive correlation between risk scores and CAF infiltration and stromal score in both GPL570 meta-cohort (Figure 5A) and TCGA-OV cohort (Figure 5B). Moreover, CAF marker genes from previous references had a higher expression in the high-risk group (Figures 5C, D). In addition, the expression levels of 6 genes in the signature also were highly and positively correlated with CAF marker expression (Figures 5E, F).




Figure 5 | Genes involved in the signature were correlated with CAF markers. (A) Correlation analysis of CAF score, stromal score, and risk score in the GPL570 meta-cohort. (B) Correlation analysis of CAF score, stromal score, and risk score in TCGA-OV cohort. (C) Heatmaps of expression of CAF markers in different risk groups (GPL570 meta-cohort). (D) Heatmaps of expression of CAF markers in different risk groups (TCGA-OV cohort). (E) Correlation analysis of genes involved in signature and CAF markers (GPL570 meta-cohort). (F) Correlation analysis of genes involved in signature and CAF markers (TCGA-OV cohort).  CAFs, Cancer-Associated Fibroblasts.





Multidimensional Validation in Multicenter Studies

To further validate the prognostic value of the CAF-based signature, we integrated the GPL96 meta-cohort (GSE3149, GSE23554, GSE26712, and GSE14764) according to the method described above, which included a total of 409 patients (Figure S2). Meanwhile, the datasets based on GPL7759 (GSE13876, n = 415), GPL2986 (GSE49997, n = 194), and GPL14951 (GSE140082, n = 380) platforms were downloaded for external validation. The risk scores of each cohort were calculated with the same formula and stratified by their respective cutoff values (GPL96 meta-cohort = 0.976888643; GPL7759 cohort = 3.088372669; GPL2986 cohort = 0.147731773; GPL14951 cohort = 2.479072527). Unsurprisingly, risk score stratified patients by survival risk in multicenter studies, and OS was shorter in the high-risk group, such as in the GPL96 meta-cohort (Figure 6A, P = 0.004), GPL7759 cohort (Figure 6B, P = 0.006), GPL2986 cohort (Figure 6C, P < 0.001), and GPL14951 cohort (Figure 6C, P = 0.002).




Figure 6 | Multidimensional validation for risk score. (A) Kaplan–Meier analysis in the GPL96 meta-cohort. (B) Kaplan–Meier analysis in the GPL7759 cohort. (C) Kaplan–Meier analysis in the GPL2986 cohort. (D) Kaplan–Meier analysis in the GPL14951 cohort. (E) Histogram of anti-PD-L1 response distribution in different risk groups. (F) Box plot of risk score in different anti-PD-L1 response groups. (G) Kaplan–Meier analysis in the anti-PD-L1 cohort. (H) Histogram of anti-PD-1 response distribution in different risk groups. (I) Box plot of risk score in different anti-PD-1 response groups. (J) Kaplan–Meier analysis in the anti-PD-1 cohort. PD-1, Programmed Death-1; PD-L1, Programmed Cell Death 1 Ligand.





Cancer-Associated Fibroblast-Based Signature in the Role of Immunotherapy

Immunotherapy represented by PD-L1 and PD-1 blockade has undoubtedly become a breakthrough in cancer treatment, so we investigated whether the CAF-based signature could predict response to anti-PD-1 and anti-PD-L1 based on two immunotherapy cohorts. In the anti-PD-L1 cohort (IMvigor210), the high-risk group had a higher percentage of stable disease (SD)/progressive disease (PD). In contrast, more patients in the low-risk group were in complete response (CR)/partial response (PR) (Figure 6E). Moreover, patients with a low risk score exhibited a markedly prolonged survival (Figure 6F). In the anti-PD-1 cohort (GSE78220), the significant therapeutic advantages and clinical response in patients with a low score also were confirmed (Figures 6H, I). However, due to the small sample size of the anti-PD-1 cohort, there was no significant difference in survival time between different groups (Figure 6J).



Correlation Between the Cancer-Associated Fibroblast-Based Signature and Somatic Variation

Preclinical research has shown that patients with higher TMB are associated with enhanced immunotherapy response and lasting clinical benefits when treated with immune checkpoint blockade. Therefore, we investigated the discriminatory ability of the CAF-based signature in the somatic mutation data of TCGA-OV cohort. Firstly, we screened the most differentially mutated genes in different risk groups, including KMT2C, WDFY3, CACNA1S, etc. (Figure 7A(i)). We found no significant differences between the two groups in CAF marker mutations, but TNC (15.0%) and COL3A1 (11.7%) exhibited a higher frequency of mutations in the whole TCGA-OC cohort (Figure 7A(ii)). Subsequently, we observed that TMB values were higher in the low-risk group than those in the high-risk group (Figure 7B). However, Spearman analysis showed no statistically significant correlation between CAF risk score and TMB values (Figure 7C). However, TMB values were negatively correlated with stromal score and CAF-activating factors transforming growth factor beta (TGF-β), suggesting that higher TMB might have intense tumor-killing effects via modulating a fibroblast-weak TME (40) (Figure 7D).




Figure 7 | Functional analyses and construction of the CAF-based signature. (A) (i) Differentially mutated genes in different risk groups. (ii) CAF marker mutations in different risk groups. (B) TMB values in different risk groups. (C) Spearman analysis between CAF risk score and TMB values. (D) Correlation analysis between TMB values, stromal/CAF scores, and CAF-activating factors. CAFs, Cancer-Associated Fibroblasts; TMB, Tumor Mutational Burden.





GSEA of the Cancer-Associated Fibroblast-Based Signature

Gene Set Enrichment Analysis (GSEA) was performed in two datasets (GPL570 meta-cohort and TCGA-OV cohort) to explore the pathways involved in different risk groups. Allograft rejection, apical junction, and epithelial–mesenchymal transition were significantly enriched (Figures 8A, B). The ssGSEA score also showed that the CAF risk score was positively correlated with TNFA signaling via nuclear factor-kappaB (NF-kappaB), hypoxia, and Wnt beta catenin signaling pathway (Figures 8C, D).




Figure 8 | GSEA in cancer hallmark gene set. (A) GSEA plot in the GPL570 meta-cohort. (B) GSEA plot in TCGA-OV cohort. (C) Correlation analysis between risk score and TNF signaling (i), hypoxia (ii), EMT (iii) in the GPL570 meta-cohort. (D) Correlation analysis between risk score and TNF signaling (i), hypoxia (ii), and EMT (iii) in TCGA-OV cohort. GSEA, Gene Set Enrichment Analysis; TNF, Tumor Necrosis Factor; EMT, Epithelial to Mesenchymal Transition.





Sensitivity of Chemotherapy Between Different Risk Groups

Maintenance therapy and chemotherapy after debulking surgery for OC patients are crucial, and the mutation of the Breast Cancer Susceptibility Genes (BRCA) is relevant to the efficacy of olaparib. Therefore, we explored the distribution of mutations in the BRCA under different risk groups. BRCA1 may be more distributed in the high-risk group, but there was no significant difference in BRCA2. Interestingly, the combined BRCA mutation status and risk score allowed for better survival prediction (Figures 9A, B). In addition, Wilcoxon analysis revealed significant differences in IC50 values between different risk groups. Among them, high-risk patients may be more sensitive to bleomycin (Figure 9C), cisplatin (Figure 9D), docetaxel (Figure 9E), and gemcitabine (Figure 9H). Still, the IC50 values of doxorubicin (Figure 9F) and etoposide (Figure 9G) were not significantly different between groups.




Figure 9 | Sensitivity of chemotherapy between different risk groups. (A) Histogram of BRCA1 state distribution and Kaplan–Meier analysis of integrated groupings. (B) Histogram of BRCA2 state distribution and Kaplan–Meier analysis of integrated groupings. IC50 values between different risk groups, including bleomycin (C), cisplatin (D), docetaxel (E), doxorubicin (F), etoposide (G), and gemcitabine (H).





Validation in Cell Lines, scRNA-Seq, and Immunohistochemistry

To validate that the CAF-related genes involved in the signature were the primary origins in CAFs, we performed a multidimensional validation, including cell lines, single-cell sequencing, and immunohistochemistry. We collected cell line RNA-seq data from 47 fibroblast origins and 37 OC origins. We found that all six genes (COL16A1, COL5A2, GREM1, LUM, SRPX, and TIMP3) were overexpressed in fibroblasts by the “limma” package (Figure 10A) and Wilcoxon test (Figure 10B). Meanwhile, we annotated the scRNA-seq into 6 clusters: fibroblasts, myofibroblasts, endothelial, malignant, Mono/Macro, and CD4Tconv (Figure 10C). The differential analysis results showed that most CAF-related genes were highly expressed in fibroblasts or myofibroblasts, while lower expression was observed in malignant (Figure 10D). Moreover, the single-cell GSEA was consistent with the bulk-RNA GSEA, showing significant enrichment of upregulated genes of fibroblasts in the EMT pathway (Figure 10E). We analyzed IHC images from the HPA database, and the section showed that GREM1 and LUM proteins were deeply stained in the stroma (Figure 10F). Unfortunately, the other four genes did not have corresponding IHC images in the HPA database. These verifications implied that these six genes might be CAF-specific markers.




Figure 10 | Multidimensional expression validation. (A) Heatmap of gene expression in different cell lines based on “limma” package. (B) Wilcoxon test of gene expression in different cell lines. (C) Major cell type in single-cell seq. (D) Differential distribution of gene expression at the single-cell level. (E) GSEA of upregulated genes in different cell types. (F) IHC images of OC tissues from the HPA database. GSEA, Gene Set Enrichment Analysis; OC, Ovarian cancer; IHC, Immunohistochemistry; HPA, Human Protein Atlas.






Discussion

The CAF is regarded as an essential factor in promoting tumor progression by interacting with cancer cells in the TME (1). Meanwhile, for a specific mesenchymal subtype of OC, it is characterized by frequent generation of desmoplastic stroma (41). The generation of desmoplastic stroma is associated with a lower OS and resistance to platinum (42). Consistently, we observed that higher CAF and stromal scores were associated with poorer OS in OC patients and represented a poorer immunotherapy response. This is the first study with a large sample and using WGCNA as a starting point for exploring markers associated with CAFs. A 6-gene prognostic (COL16A1, COL5A2, GREM1, LUM, SRPX, and TIMP3) signature was constructed and validated using Cox and LASSO regression algorithms. With the cutoff value as a threshold, we observed that patients with a high CAF risk score were more sensitive to numerous chemotherapeutic agents. Furthermore, we revealed that lower risk scores were associated with improved immunotherapy outcomes and higher TMB value. Based on our results, we propose an alternative mechanism by which higher TMB may also enhance tumor killing by modulating the microenvironment of stromal fibroblasts, similar to previous findings. It reported that cancer cells with high levels of somatic mutation are more easily recognized by the immune system (43). However, we need more in vitro and in vivo experiments to elucidate the above crosstalk in the future.

Compared to the traditional differential gene expression (DEG) approach for screening hub CAF markers (44), we used different bioinformatics algorithms to assess the abundance of CAFs and biomarkers in each OC sample to ensure the robustness (EPIC and MCP-counter for WGCNA network construction; xCell and ESTIMATE for correlation validation). Similarly, to ensure the robustness of the prognostic signature, different cohorts were used for construction and validation (GPL570 meta-cohort for construction; TCGA-OV cohort, GPL96 meta-cohort, GPL7759 cohort, GPL2986 cohort, GPL14951 cohort, IMvigor210 cohort, and GSE78220 cohort for validation). With the above approach, we confirmed that our model closely correlated with CAF infiltration and CAF markers from references. Meanwhile, to differentiate identified genes from tumor cells to highlight gene heterogeneity in CAFs, we confirmed significantly higher expression in fibroblast cell lines, higher staining of proteins in the stroma, and higher mRNA expression of the CAFs at the single-cell level.

For the six genes involved in the risk signature, the relevant references have reported on the role in tumor cells and TME. COL16A1 was indicated in the study of Pan and Ma (45) to be involved in a risk model and could be considered a prognostic marker in OC patients. Renner et al. (46) sought to determine the ECM composition of benign fallopian tubes and the changes associated with tubal intraepithelial carcinomas and identified seven proteins that had not been identified in previous studies (COL2A1, COL4A5, COL16A1, elastin, LAMA5, annexin A2, and PAI1). Interestingly, they suggested that the seven proteins mentioned above accompany tubal intraepithelial carcinoma formation and cause ECM changes. Head and neck squamous cell carcinoma (HNSCC) cell lines were cocultured with their patient-matched CAFs in 2D and 3D in vitro models, and GREM1 was upregulated (47). In addition, related studies have also found that GREM1 binds to miR-205-5p (48) or miR-206 (49) to regulate metastasis of cervical cancer and non-small cell carcinoma. As part of the ECM, collagen family proteins, together with elastins, fibronectins, and laminins, play a key role in tissue organization, tissue resistance, and its primary shape. The collagen family, including COL5A2, is overexpressed in various types of epithelial cancers and is associated with poorer OS. Furthermore, inhibition of gene expression decreases cell proliferation and invasion (50, 51). SRPX, also known as SRPX1 (52), ETX1 (53), and DRS (54), is a suppressor that has been found to be downregulated in a range of human tumor cells and tissues. Unlike other soluble members of the Tissue Inhibition of Matrix Metalloproteinase (TIMP) family, TIMP3 is tightly sequestered in the ECM. TIMP-3 is also the only TIMP capable of inhibiting tumor necrosis factor alpha (TNF-α), ADAMTS4, and ADAMTS5, as well as syndecan sheddase (55). Nevertheless, functional validation about the six genes involved in the risk signature in the CAFs of OC is not much, which requires us to conduct further experiments on the six CAF markers in the future.

In conclusion, the CAF risk score can be used in clinical practice to comprehensively evaluate the corresponding cellular infiltration of CAFs in patients to further define the immunophenotype. We have also demonstrated that risk score can be used to assess the clinicopathological characteristics of patients. Similarly, risk score also can be used as a biomarker to predict survival and the efficacy of adjuvant chemotherapy and the response to anti-PD-1/PD-L1 immunotherapy. More importantly, this study may help to leverage the future development of new drug combination strategies or new immunotherapeutic agents. Our findings provide new ideas to facilitate future individualized cancer immunotherapy.
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Rheumatoid arthritis (RA) is a chronic, heterogeneous autoimmune disease. Its high disability rate has a serious impact on society and individuals, but there is still a lack of effective and reliable diagnostic markers and therapeutic targets for RA. In this study, we integrated RA patient information from three GEO databases for differential gene expression analysis. Additionally, we also obtained pan-cancer-related genes from the TCGA and GTEx databases. For RA-related differential genes, we performed functional enrichment analysis and constructed a weighted gene co-expression network (WGCNA). Then, we obtained 490 key genes by intersecting the significant module genes selected by WGCNA and the differential genes. After using the RanddomForest, SVM-REF, and LASSO three algorithms to analyze these key genes and take the intersection, based on the four core genes (BTN3A2, CYFIP2, ST8SIA1, and TYMS) that we found, we constructed an RA diagnosis. The nomogram model showed good reliability and validity after evaluation, and the ROC curves of the four genes showed that these four genes played an important role in the pathogenesis of RA. After further gene correlation analysis, immune infiltration analysis, and mouse gene expression validation, we finally selected CYFIP2 as the cut-in gene for pan-cancer analysis. The results of the pan-cancer analysis showed that CYFIP2 was closely related to the prognosis of patients with various tumors, the degree of immune cell infiltration, as well as TMB, MSI, and other indicators, suggesting that this gene may be a potential intervention target for human diseases including RA and tumors.
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Introduction

RA is a chronic, symmetrical, autoimmune disease that is aggressive and involves multiple joints in the body. The worldwide prevalence is approximately 5 per 1,000 and the incidence in women is usually 2 to 3 times higher than in men (1). RA is characterized by painful, morning stiffness, which leads to joint erosion and destruction, producing limb deformities. Some patients with RA may or subsequently develop manifestations involving organs other than joints, such as rheumatoid nodules in the skin, pericarditis, and interstitial lung lesions (2), making RA a multisystem disease. The diagnosis of RA is mainly based on clinical symptoms, signs, and laboratory and imaging tests. Therefore, it is easy to miss the diagnosis of early, atypical, or inactive RA. Recently, large-scale genome-wide association studies (GWAS) and meta-analyses have revealed common disease-associated variants in the population, and there is an increasing number of studies on genes and susceptibility to RA, increasing the possibilities for early diagnosis and clinical treatment of RA (3).

The etiology and pathogenesis of RA are complex, and the immune response occurs under the combined effect of multiple factors influenced by genetics, infection, and environment, causing synovitis. Studies have shown that the abnormal morphology and gene expression patterns of RA synovial fibroblasts (RASF) and macrophages (RASM) are key factors in the development of RA (4, 5). B cells secrete proteins such as rheumatoid factor (RF), anti-citrullinated protein antibodies (ACPA), and pro-inflammatory cytokines to form immune complexes with self-antigens to support RA (6).T cells differentiate into TH1, TH17, or Tfh and release lymphokines. In RA, the main function of T cells is to activate macrophages and fibroblasts, which differentiate into tissue-damaging cells (7). However, the mechanisms of gene and protein expression in the synovium associated with the pathogenesis of RA have not been elucidated.

The main treatments for RA are anti-inflammatory drugs, analgesic drugs, and DMARDs.The first two can only relieve the symptoms of RA but do not stop the further development of RA. Since the immune response is the main pathogenesis of RA, disease-modifying antirheumatic drugs (DMARDs) have become the primary choice for RA. Although DMARDs have shown good efficacy in reducing RA, there is still a possibility of treatment failure with DMARDs for some patients (8). In the last decade, biologics have continued to enter clinical trials, and these drugs specifically target immune cells for immunomodulation and are used in conjunction with DMARDs for the treatment of RA (9). Whether DMARDs are used alone or in combination with new biologic agents, the optimal therapeutic options for RA are still under further investigation. Therefore, there is an urgent need to explore the signature genes that are closely related to the development of RA in order to provide better options for early diagnosis and treatment of RA.

In this article, we used the R tool and the limma package to statistically analyze the four data sets and analyze the differential expression of mRNAs. The WGCNA R package was then used to calculate the association of gene significance (GS) and module membership (MM), analyze the correlation between modules to construct a weighted gene co-expression network, and merge DEGs with key module genes for functional analysis. The feature genes were also identified by the algorithm, and LASSO regression analysis was performed to narrow down the range of feature genes. To further validate the selected signature genes, we used GSEA analysis, interaction analysis, ROC analysis, and studied the level of immune cell infiltration in the RA group, and finally calculated the relationship between signature genes and immunity. For further selection, by integrating multiple datasets, we aimed to screen the signature genes that play a key role in the development of RA and various cancers. Combining with the immune infiltration analysis and in vivo experiment, CYFIP2 was filtered out and verified via pan-cancer analysis, which illustrated a strong correlation with various tumors.



Material and Methods


Data Processing and Download of the RA Dataset

GSE1919 (10), GSE55457 (11), GSE48780 (12), and GSE55235 (11) were downloaded from the Gene expression omnibus (Geo, https://www.ncbi.nlm.nih.gov/geo/) database, and information on these datasets is supplied in Table 1. “Limma” software was used to investigate mRNA expression differences (13). To account for false-positive results, adjusted P-values were examined in GEO. The R package ggord was used to depict the threshold mRNA differential expression screen, which was specified as “Adjusted P <0.05 and log2 (fold change) >0.5 or log2 (fold change)<−0.5.” The R package pheatmap was used to create the expression heat maps. From the InnateDB database, a total of 2,308 immune genes involved in the innate immune response were obtained. The Cancer Genome Atlas provided RNA sequencing and clinical data for 33 different cancer types (TCGA). The GTEx database was used to collect normal tissue expression data, while the CCLE database was used to obtain the gene expression for several cancer cell lines.


Table 1 | Information on microarray datasets obtained from Gene Expression Omnibus.





Enhancement of Functionality

The data were evaluated using functional enrichment to confirm the possible functionalities of prospective targets. Gene ontology (GO) is a popular technique for assigning functions to genes, particularly molecular functions (MF), biological pathways (BP), and cellular components (CC). KEGG enrichment analysis can be used to analyze gene functions as well as related high-level genomic functional information. The “GOplot” package and the “cluster profiler” in R were used to examine the GO function of prospective mRNAs and to enhance KEGG pathways to better understand the carcinogenic role of target genes (14).



Co-Expression Networks are Built

The WGCNA method aids in the investigation of gene set expression. Through the following main phases, the WGCNA R package was used at various stages for the development and modularization of various gene networks. To determine if there were any significant outliers, the samples were placed in clusters. Following that, automated networks were used to create co-expression networks. The modules used hierarchical clustering and dynamic tree cutting function detection. Module membership (MM) and gene significance (GS) were estimated to connect modules with clinical characteristics. Hub modules were designated as those with the highest Pearson module membership correlation (MM) and a p absolute value of 0.05. High module connection and clinical importance were denoted by MM >0.8 and GS >0.2, respectively. The gene information for the corresponding module was advanced for further investigation (15).



Identification of Distinct Genes

The above genes were used to isolate the feature genes that were used to diagnose RA. SVM is a regression or classification-supervised machine learning technique that requires a training set with labels (16). SVM-RFE is a machine learning technique that trains a subset of features from different categories to shrink the feature set and find the most predictive features. To compute and choose linear models and keep the valuable variables, the “glmnet” package in R was used to perform minimum absolute shrinkage and selection operator (LASSO) regression. The binomial distribution variables were then used in the LASSO classification, coupled with one standard error lambda value for the minimum criterion (1−SE criterion) used to build the model, which has good performance but only 10 cross-validation variables. RandomForest was used to rank the genes, and their relative value above 0.25 was recognized as a typical chance cause (17). The intersection was then used to pick the most significant feature genes in this study using LASSO logistic regression, SVM-RFE, and RandomForest.



PPI (Protein–Protein Interaction) Network Construction

GeneMANIA (http://www.genemania.org) is a website for building protein–protein interaction (PPI) networks, which can be used to generate gene function predictions and locate genes with comparable effects. Physical interaction, co-expression, co-localization, gene enrichment analysis, genetic interaction, and site prediction are some of the bioinformatics methods used by the network integration algorithm. GeneMANIA was used to analyze PPI networks of signature genes in this study.



Diagnostic Column Line Graph Construction and Validation

We created a column line graph model to predict the recurrence of RA using the “rms” program. The “score” is the score of the relevant item below, and the “total score” is the sum of all the elements above. The predictive power of the line graph model was then assessed using calibration curves. Finally, decision curve analysis and clinical impact curves were used to assess the clinical utility of the model.



Curve Analysis of Receiver Operating Characteristics (ROC)

We used the P ROC function in the R package to create Receiver Operating Characteristic (ROC) curves to determine the area under the curve (AUC) for screening signature genes and evaluating their diagnostic value (18).



Immune Infiltration Analysis by ssGSEA

To investigate the various levels of infiltration of immune cell types between RA tissue and normal tissue. To analyze the association between immune cells and distinctive genes, the “corrplot” package was used to obtain the Spearman rank correlation coefficient.



Analysis of Prognosis

Using deep forest plots, the “foresrplot” R program was used to perform univariate cox regression analysis and display p-values, HRs, and 95% CIs.



Analysis of Immune Infiltration

We used TIMER, XCELL, QUANTISEQ, MCPCOUNTER, and EPIC algorithms to explore the relationship between AXIN1 expression and immune invasion in all TCGA tumors.



For Systematic Collagen-Induced Arthritis (CIA) Mouse Setup, HE Staining, and IHC

The Animal Care & Ethics Committee of Jinan University’s First Hospital approved all animal care and experimental operations. We also followed the Guide for the Care and Use of Laboratory Animals that was established by the National Institutes of Health. The ARRIVE criteria were followed for reporting animal experiments (19, 20). Mice (n = 22) were given 200 g of bovine type II collagen (Sigma, St. Louis, MO, USA), diluted in acetic acid, and emulsified at a 1:1 ratio (vol/vol) in Forster’s complete adjuvant intradermally at the tail vein. Mice were booster-immunized three weeks after the initial immunization with a 1:1 ratio (vol/vol) intraperitoneal injection of bovine type II collagen emulsified in incomplete Freund’s adjuvant. From days 32 to 41 after the initial immunization, episodes of illness characterized by erythema and/or paw edema were seen. As previously described (21), mice were checked daily for indications of arthritis, and the severity of arthritis was graded on a scale of 0 to 3. The arthritis scores of the mice were determined for all four paws. The dimensions of the ankle joints were measured with 0.01 mm accuracy with vernier calipers. All mice were given 110 mg/kg ketamine and 4.8 mg/kg xylazine before having their hind limbs amputated and fixed in 10% neutral buffered formalin. Tissues were decalcified in 8% formic acid and paraffin-embedded. Hematoxylin and eosin were used to stain 3 mm sections (H&E). A previously established scoring system was used to calculate inflammation rates (21).



Immunohistochemistry

For immunohistochemistry, synovial tissue sections were stripped and then incubated with 5% serum in PBS for 2 h to block nonspecific binding and with 3% H2O2 for 10 min to block endogenous peroxidase activity. The expression of CYFIP2 and ST8SIA1 was determined by staining with polyclonal rabbit anti‐mouse CYFIP2 and ST8SIA1 antibodies overnight at 4°C. As controls, irrelevant isotype-matched antibodies were used. A polyclonal goat anti-rabbit antibody was detected with diaminobenzidine using goat anti-rabbit antibodies labeled with HRP.



Data and Statistical Analysis

Data collection and analysis complied with pharmacology’s recommendations for experimental design and analysis (22). The in vitro experiments were conducted with a minimum of five independent experiments. Therefore, the results were expressed as mean + SEM. Blinding was used in the experimental procedures or treatment and data analysis. We normalized immunoblots, glucose uptake, and mRNA expression for quantitative analysis to reduce baseline variations between independent experiments. Comparing the two groups was done using Student’s t-test. The one-way ANOVA was applied to three or more different groups. If F exceeded 0.05 and the variance in homogeneity was not significant, all results were discarded. Two post hoc tests were applied: Dunnett’s post hoc test on each group compared with the control group or Sidak’s post hoc test on multiple groups compared together. To analyze the data normalization, a non-parametric statistical analysis was performed. Data with non-parametric characteristics were analyzed with the Kruskal-Wallis test or Wilcoxon test two-sample. The statistical analyses of the data were conducted using SPSS 13.0 software. A P-value of less than 0.05 was considered significant.




Results


DEG Screening and Data Preprocessing

The data are standardized in a box plot, where different colors represent different data sets, rows represent samples, and columns represent gene expression values in samples (Figure 1A). Figure 1B depicts the PCA results of multiple data sets before batch removal are displayed, where different colors represent different data sets. As shown in the diagram, three data sets are separated separately without any intersection. Figure 1C shows the PCA result diagram after batch removal. As shown in the diagram, the intersection of three data sets can be used as a batch of data for subsequent analysis. Under the criteria of P-adjustment <0.05 and log2 fold-change (FC) | >0.5, 891 genes were identified as DEGs, with 427 genes up-regulated and 464 genes down-regulated. Figure 1D shows volcano plots of DEGs as well as a heat map of the top 50 genes (Figure 1E).




Figure 1 | Data preprocessing for DEG. (A) Box plots of raw data normalized between samples. (B, C) PCA of RA and control samples. (D) Volcano plot of DEG. (E) Heat map of DEG.





DEGs Functional Enrichment Analysis

All DEGs were functionally enriched, and 15 GO keywords were exhibited in the GOCircle plot according to p <0.05 (Supplementary Figure 1A, Supplementary Table1). The findings revealed that the biological process (BP) enrichment was primarily connected to the positive cell–cell adhesion regulation, T-cell activation, lymphocyte differentiation, and cell–cell adhesion regulation. Enriched molecular function (MF) is related to cytokine receptor binding, cytokine binding, and cytokine receptor activity. Cellular component (CC) enrichment is related to the external side of the plasma membrane, membrane raft, and membrane microdomain. Hematopoietic cell lineage, Human T-cell leukemia virus 1 infection, Th1 and Th2 cell differentiation, and the chemokine signaling pathway were linked in KEGG analysis (Supplementary Figure 1B, Supplementary Table 2).



Weighted Gene Co-Expression Network Construction

The GSE1919 and GSE55457 datasets were retrieved from the GEO data, and 15 normal samples and 18 RA samples were preferred to cluster the samples and exclude the obviously aberrant samples by setting a threshold, as shown in Figure 2A. Then, as shown in Figure 2B, we set the soft threshold to 7 when R2 >0.9 and the average connectivity is high. After merging the strongly associated modules using a 0.25 clustering height limit (Figure 2C), 24 modules were identified for further study. The primed and merged modules were eventually displayed under the clustering tree (Figure 2D). The correlation between modules was examined next, and the results revealed that there was no significant association between them (Figure 2E). The reliability of module delineation was demonstrated by transcription correlation analysis within modules, which revealed no substantial linkage between modules (Figure 2F). The frontal correlations between ME values and clinical features were used to investigate the link between modules and clinical symptoms. The blue module was positively correlated with normal (r = 0.79, p = 5e−08) and negatively linked with RA (r = −0.79, p = 5e−0.8), while the turquoise module was negatively connected with normal (r = 0.8, p = 3e−08) and positively correlated with RA (r = −0.8, p = 3e−08) (Figure 2G). Clinically meaningful modules were identified. The results showed that blue and turquoise modules were highly linked with RA in the control MM versus GS scatter plot (Figure 2H) and the RA MM versus GS scatterplot (Figure 2I). All the genes in the two modules were examined further.




Figure 2 | Construction of WGCNA co–expression network. (A) Sample clustering dendrogram with tree leaves corresponding to individual samples. (B) Soft threshold β = 7 and scale–free topological fit index (R2). (C) Clustered dendrograms were cut at a height of 0.25 to detect and combine similar modules. (D) Shows the original and combined modules under the clustering tree. (E) Collinear heat map of module feature genes. Red color indicates a high correlation, blue color indicates opposite results. (F) Clustering dendrogram of module feature genes. (G) Heat map of module–trait correlations. Red represents positive correlations and blue represent negative correlations. (H) MM vs. GS scatter plot of control. (I) MM vs. GS scatter plot of RA.





DEGs and Functional Analysis of Critical Module Genes

After overlapping critical module genes and DEG genes using a Venn diagram, we discovered 490 overlapping genes (Figure 3A). We performed functional analysis to learn more about the biological functions of the DEG genes in the modules. The results of DO analysis revealed that these DEGs were linked to lymphoblastic leukemia, hepatitis, germ cell cancer, and hematopoietic system disease (Figure 3B). GO enrichment analysis showed that module DEG genes have T-cell activation, regulation of cell-cell adhesion, positive regulation of cell activation, the external side of the plasma membrane, membrane raft, membrane microdomain, cytokine receptor binding, antigen binding, and immune receptor activity (Figure 3C). KEGG analysis was associated with cytokine–cytokine receptor interaction, chemokine signaling pathway, and human immunodeficiency virus type 1 infection (Figure 3D).




Figure 3 | Functional analysis of key module genes merged with DEGs. (A) Venn diagram of key module genes versus DEGs. (B) DO analysis. (C) GO analysis. (D) KEGG analysis.





Selection of Feature Genes

We used three machine algorithms to identify feature genes: SVM-RFE (Supplementary Table 3) (Figures 4A, B); LASSO regression analysis to select 19 predicted genes from statistically significant univariate variables (Figure 4C) (Supplementary Table 4); and RandomForest combined with feature selection to determine the relationship between error rate, number of classification trees (Figures 4D, E) (Supplementary Table 5) and 31 genes with relative importance. We used a Venn diagram to find four genes that overlapped using the intersection of the three methods discussed above (Figure 4F).




Figure 4 | Feature gene selection. (A,B) Biomarker signature gene expression validation by support vector machine recursive feature elimination (SVM–RFE) algorithm selection. (C) Adjustment of feature selection in the minimum absolute shrinkage and selection operator model (lasso). (D) randomForest error rate versus the number of classification trees. (E) The top 20 relatively important genes. (F) Three algorithmic Venn diagram screening genes.





Validation of Specific Gene Expression

We confirmed the expression of these four genes in RA using GSE1919 and GSE55447 data and found that BTN3A2, CYFIP2, ST8SIA1, and TYMS were all substantially elevated in RA (Supplementary Figure 2A). Additionally, validation datasets (GSE48780 and GSE55235) indicated that BTN3A2, CYFIP2, ST8SIA1, and TYMS were substantially expressed in RA (Supplementary Figure 2B). Gene correlations were also examined, as shown in Figure 5, BTN3A2, ST8SIA1, TYMS, and CYFIP2 were positively correlated, indicating that the four genes had a significant functional similarity.




Figure 5 | Correlation between trait genes.





Analysis of the Feature Genes Using GSEA

To better understand the role of signature genes in RA, we used GSEA to classify RA tissues into two categories based on the median expression of signature genes. Nucleotide metabolism, primary immunodeficiency, pyrimidine metabolism, and retinol metabolism were significantly enriched in the high BTN3A2 subgroup, whereas aldosterone-regulated sodium reabsorption, and HIF-1 signaling pathway, nitrogen metabolism, and renal cell carcinoma were significantly enriched in the low BTN3A2 subgroup (Supplementary Figure 3A). Cocaine addiction, glycerolipid hematopoietic cell lineage,i immune network for production, and primary immunodeficiency were significantly enriched in the high CYFIP2 subgroup, whereas allograft rejection, the intestinal immune network for IgA production, nicotinate and nicotinamide metabolism, and primary immunodeficiency were significantly enriched in the low CYFIP2 subgroup (Supplementary Figure 3B). Ferroptosis, linoleic acid metabolism, nitrogen hematopoietic cell lineage, intestinal immune network for IgA production, primary immunodeficiency, Th1 and Th2 cell differentiation were significantly enriched in the high ST8SIA1 subgroup, while ferroptosis, linoleic acid metabolism, nitrogen hematopoietic cell lineage, intestinal immune network for IgA production, primary immunodeficiency, Th1 and (Supplementary Figure 3C). The high TYMS subgroup was highly enriched in immunodeficiency, Th1 and Th2 cell differentiation, whereas the low TYMS subgroup was significantly enriched in ABC transporters, circadian rhythm, glycolysis/gluconeogenesis, and proximal tubule bicarbonate reclamation (Supplementry Figure 3D).



Trait Gene Interaction Analysis

We used the GeneMANIA database to create a PPI network for the signature genes (Figure 6A). To further investigate the function of the signature genes, GO/KEGG analysis was performed on 20 genes. Actin polymerization or depolymerization, Rac protein signal transduction, and control of Arp2/3 complex-mediated actin nucleation were the most abundant biological processes in this dataset. The cell leading edge, lamellipodium, and filopodium were the most abundant cellular components (CC). Furthermore, Rho GTPase binding, Ras GTPase binding, small GTPase binding, and Rac GTPase binding were connected to the enriched molecular functions (MF) (Figure 6B). The main enriched pathways, according to KEGG analysis, were the regulation of the actin cytoskeleton, pathogenic Escherichia coli infection, and Salmonella infection (Figure 6C).




Figure 6 | Interaction analysis of feature genes. (A) Characterized gene co–expression network. (B) GO analysis of co–expressed genes. (C) Co–expressed gene KEGG analysis.





Modeling and Testing of a RA Diagnostic Column Line Graph

We built RA diagnostic column line graph models for the signature genes (BTN3A2, CYFIP2, ST8SIA1, and TYMS) using the Rms package (Figure 7A) and evaluated their predictive power using calibration curves. The calibration curves revealed that the difference between the real and predicted RA risks was very minimal, indicating that the column line graph model RA is quite accurate (Figure 7B). The correctness of the model may also be confirmed using the ROC curve analysis (Figure 7C). The “column line graph” curve is higher than the gray line in decision curve analysis (DCA), and the “BTN3A2, CYFIP2, ST8SIA1, and TYMS” curve implies that patients can benefit from the column line graph model at a high-risk threshold of 0 to 1. The column line graph model provided a greater clinical benefit than the “BTN3A2, CYFIP2, ST8SIA1, and TYMS” curve (Figure 7D). Validation in the validation set (GSE48780 and GSE55235) also confirmed these findings (Figures 7E, F). To further validate the diagnostic value of BTN3A2, CYFIP2, ST8SIA1, and TYMS, we used receiver operating characteristic (ROC) analysis. BTN3A2 (AUC: 0.841), CYFIP2 (AUC: 0.928), ST8SIA1 (AUC: 0.889), and TYMS (AUC: 0.844) were found to have similar AUC values (Figure 7G). The validation datasets (GSE48780 and GSE55235) also corroborated the following findings: TYMS (AUC: 741), BTN3A2 (AUC: 0.858), CYFIP2 (AUC: 0.867), ST8SIA1 (AUC: 0.744) (Figure 7H). These findings imply that all major genes are involved in RA.




Figure 7 | Construction and validation of the RA diagnostic column line graph model. (A) Column line graphs are used to predict the occurrence of RA. (B) ROC curves to assess the clinical value of the column line graph model. (C) Calibration curves to assess the predictive power of the column line graph model. (D) DCA curves to assess the clinical value of the column line graph model. (E, F) Validation set to verify ROC and DCA curves. (G) ROC curves of the feature genes in the training set. (H) ROC curves of the feature genes in the validation set.





Immunological Infiltration in the RA Group and Healthy Controls Using ssGSEA Analysis of Immune Correlation

The immune infiltration association between RA patients and healthy controls was investigated further using ssGSEA. The results showed that immune cell infiltration in mast cells and RA was lower than in the control group after excluding the non-statistical significant ones, and that immune cell infiltration and immune-related pathways in the rest of the RA group were higher than those in the control group (Figure 8A). We know that CYFIP2 was associated with aDCs, CCR, CD8+ T cells, check point, cytolytic activity, DCs, inflammation promoting, MHC class I, neutrophils, T-cell co-inhibition, T-cell co-stimulation, Tfh, Th1 cells, Th2 cells, TIL, and Type I IFN response and significantly positively correlated using the “corrplot” package to calculate the correlation between signature genes. BTN3A2 was negatively correlated with APC co-stimulation. CD8+ T cells, cytolytic activity, iDCs, inflammation promoting, Tfh, TIL, and Type I IFN response all had strong positive correlations with ST8SIA1 (Figure 8B). These characteristic genes may modulate the immune processes during the progression of RA.




Figure 8 | Correlation between RA and immunity. (A) Comparison of ssGSEA scores of immune cells and immune pathways between RA group and healthy controls. (B) Correlation between characteristic genes and immunity. *p < 0.05, **p < 0.01, ***p < 0.001. NS, no significance.





Increased Expression of CYFIP2 and ST8SIA1 in Synovial Tissues of CIA Mice

To verify the expression of CYFIP2 and ST8SIA1 in RA synovium, we treated mouse synovium with IHC and found that CYFIP2 and ST8SIA1CIA mice were highly expressed in the synovium (Figure 9).




Figure 9 | Expression of CYFIP2 and ST8SIA1 in the synovial membrane of CIA mice. (A, B) Immunohistochemical analysis of CYFIP2 expression in normal mouse synovium, ((A) original magnification ×40, (B) original magnification ×100). (C, D) Immunohistochemical analysis of CYFIP2 expression in the synovial membrane of CIA mice, ((C) original magnification ×40, (D) original magnification ×100). (E, F) Immunohistochemical analysis of ST8SIA1 expression in normal mouse synovium, ((E) original magnification ×40, (F) original magnification ×100). (G, H) Immunohistochemical analysis of ST8SIA1 expression in the synovial membrane of CIA mice, (G) original magnification ×40, (H) original magnification ×100).





Pan-Cancer CYFIP2 Expression

Immunity genes were retrieved from the InnateDB database, and four signature genes were crossed to produce two overlapping genes (CYFIP2, ST8SIA1). We took the CYFIP2 gene to the next level of analysis after combining the ssGSEA results. Since the immune response is crucial not only in RA but also in cancer, we used overlapping immune genes to see if there is any link between the two diseases. CYFIP2 was identified to be highly expressed in BRCA, CHOL, HNSC, PRAD, THCA, and low expressed in BLCA, BRCA, COAD, ESCA, GBM, KICH, KIRC, KIRP, LUAD, LUSC, and PAAD in the TCGA data (Figure 10A). We also downloaded normal tissue data from the GTEx database and discovered that CYFIP2 was strongly expressed in BRCA, CHOL, COAD, DLBC, ESCA, HNSC, OV, PAAD, PCPG, PRAD, READ, SKCM, TGCT, THCA, and THYM, whereas it was weakly expressed in BLCA, CESC, GBM, KICH, KIRC, KIRP, LGG, LIHC, and LUAD (Figure 10B). As demonstrated in the data, CYFIP2 was expressed in the cell lines (Figure 10C).




Figure 10 | CYFIP2 expression. (A) Venn diagram between immunogene and hub genes. (B) Pan–cancer expression levels of CYFIP2 in the TCGA dataset. (C) Pan–cancer expression levels of CYFIP2 in the TCGA and GTEx datasets. (D) Expression of CYFIP2 in various cell lines. *p <0.05, **p <0.01, ***p <0.001. NS, no significance.





CYFIP2’s Prognostic Value in Pan-Cancer

We looked into the relationship between CYFIP2 expression and pan-cancer patient prognosis, including overall survival (OS), disease-specific survival (DSS), and progression-free survival (PFS). In the OS analysis, cox regression of 33 tumors revealed that CYFIP2 expression was substantially linked with OS in six cancers: KIRC, LGG, PAAD, SKCM, and THYM as protective factors, and UCEC as a risk factor (Figure 11A). In the PFS study, cox regression of 33 tumors revealed that CYFIP2 expression was substantially linked with PFS in 6 malignancies, with protective factors in BRCA, HNSC, KIRC, LGG, and PAAD and risk factors in UCEC (Figure 11B). In the DSS analysis, Cox regression of 33 tumors revealed that CYFIP2 expression was substantially linked with DSS in 5 cancers: BLCA, KIRC, LGG, and PAAD were protective factors, whereas UCEC was a risk factor (Figure 11C).




Figure 11 | Correlation of CYFIP2 with prognosis in pan–cancer. (A) Cox regression model analysis of the correlation between CYFIP2 expression and OS in various tumors. (B) Cox regression model analysis of the correlation between CYFIP2 expression and PFS in various tumors. (C) Correlation analysis of CYFIP2 expression with DSS in various tumors by Cox regression model.





Analysis of Immune Infiltration

To learn more about the role of CYFIP2 in tumor immune response, the connection between CYFIP2 expression and different levels of immune cell infiltration was calculated using the TIMER database. According to the findings, T-cell CD8+ in 18 tumors, T-cell CD4+ in 20 tumors, neutrophils in 23 tumors, myeloid dendritic cells in 19 tumors, myeloid dendritic cells in 12 tumors, and B cells in 23 malignancies were shown to be strongly connected. HNSC, LUSC, PAAD, SKCM, STAD, THCA, and THYM showed substantial positive correlations, while KICH and LGG showed significant negative correlations (Figure 12A). The connection between CYFIP2 levels and invading immune cells was also demonstrated using the xCELL algorithm (Figure 12B), the QUANTISEQ algorithm (Figure 12C), the MCPCOUNTER algorithm (Figure 12D), and the EPIC algorithm (Figure 12E). The estimated scores of the stromal score and immune score were calculated using the ESTIMATE algorithm, and the findings revealed that the immune score was related to 13 cancers, while the stromal score was related to 16 tumors. The immunological scores were most closely linked to HNSC (R = 0.64), LGG (R = −0.59), and STAD (R = 0.5) among them. HNSC (R = 0.42), LGG (R = −0.45), and UVM (R = 0.48) had the strongest correlations with the stromal score. CYFIP2 levels and immunological checkpoints were shown to be highly associated in a range of cancers, with mostly positive correlations in UVM and mostly negative correlations in BLCA, BRCA, COAD, HNSC, and PRAD, which were mostly negatively connected in UVM.




Figure 12 | CYFIP2’s role in tumor immune response. (A) EPIC_Immu_score. (B) XCELL_Immu_score. (C) QUANTISEQ_Immu_score. (D) MCPCOUNTER_Immu_score. (E) TIMER_Immu_score. *p < 0.05, **p < 0.01, ***p < 0.001.





MSI and TMB Analyses

In the TMB study, CYFIP2 was found to be negatively linked with BRCA, COAD, KIRC, LGG, LIHC, LUAD, PAAD, SARC, STAD, THYM, UCEC, and UVM. CYFIP2 was positively and adversely linked with COAD, DLBC, KICH, SARC, and STAD in the MSI analysis (Supplementary Figure 3).




Discussion

Rheumatoid arthritis (RA), a common systematic autoimmune disease, has gained increasing attention around the world recently. The main symptoms of RA include musculoskeletal pain, swollen joints, and stiffness, which can severely impair motor function and quality of life (2). Usually, RA is characterized by inflammation of the tendon, resulting in the destruction of cartilage and bone (23). Clinical data have demonstrated that women, smokers, and patients with a family history are susceptible populations (23), which could not help raise the hypothesis that genes may play a critical role in the pathogenesis. Growing evidence has pointed out that RA is a multi-gene disorder with a substantial genetic component and approximately 60% heritability (3). However, the current common RA symptomatic therapy strategy is conventional disease-modifying antirheumatic drugs (DMARDs), mainly including methotrexate (MTX) and leflunomide (LEF), which are used to reduce inflammation and prevent disease progression (24). The extensive use of DMARDs in worldwide clinical treatment has also made drug-resistance become an issue recently, and new therapy approaches are urgently needed. Therefore, exploring novel genetic targets would provide us with a new insight into RA therapy and treatment strategies.

Recent decades have witnessed the rapid development of molecular research and bioinformatics techniques. By enrichment analysis through molecular function, biological processes, and cellular components, molecular biology could provide us with a comprehensive and further investigation of how gene variation and co-expression influence protein function and disease progression. Meanwhile, the emerging weighted gene co-expression network analysis (WGCNA) has gradually been used in the association between diseases along with related phenotypes and clusters (modules) of highly corrected genes (15). Several studies have illustrated the effects of the hub gene and underlying molecular mechanisms in RA patients through WGCNA analysis (25, 26). While comprehensive immune infiltration and related pathways are still deficient.

Given these, we developed a comprehensive and in-depth evaluation system to analyze and verify hub genes and molecular pathways involved in RA patients through bioinformatics, especially WGCNA and protein–protein interaction (PPI) techniques, aiming to broaden the horizons into physiopathology and molecular mechanisms of RA and provide novel therapeutic targets for clinical treatment.

In this study, we screened 891 differentially expressed genes (DEGs) and found 427 genes were upregulated and 464 were downregulated. Subsequent GO enrichment analysis showed all DEGs mainly associated with cell–cell adhesion, components of the plasma membrane, and cytokine receptor activity, while KEGG enrichment analysis showed some correlation with hematopoietic and T cells, along with chemokine signaling pathways. WGCNA analysis showed 33 cluster samples and 24 modules. No significant correlation verified the reliability of dividing parts. Critical machine algorithms and LAASO regression analysis found 4 hub genes, then validation datasets confirmed that BTN3A2, CYFIP2, ST8SIA1, and TYMS were highly expressed in RA, and the first three genes were highly similar in biological function.

Several research reported a certain association between the 4 hub genes and the process of RA to a certain extent. An article by Horsburgh et al. illustrated that CpG-specific methylation at RA might become a marker of treatment response. Most notably, one of the CpG sites in the BTN3A2 genes was strongly associated with treatment response (27). Actually, as a crucial mediator in immune activation, butyrophilin subfamily 3 member A2 (BTN3A2) was widely investigated in cancer initiation and development, revealing a tight link between immune infiltration and cancer development, especially in breast cancer (BRCA) and ovarian cancer (OV) (28). From a molecular aspect, there was also evidence demonstrated that epithelial BTN3A2 expression was significantly associated with a higher density of infiltration T cells, particularly CD4+ cells (29), which was similar to our enriched outcome at some level. However, the exact prognostic value of BTN3A2 in RA patients still warrants further investigation. Meanwhile, as for the gene CYFIP2, there is also a lack of research about it in the field of RA. A meta-analysis unearthed that CYFIP2 was upregulated and validated in peripheral blood mononuclear cell samples of RA patients, creating a novel gene signature in RA diagnostic and therapeutic interventions (30). An investigation focused on the downregulation of CYFIP2 in clear cell renal cell carcinoma (ccRCC) revealed that several immune markers were critically correlated with CYFIP2 expression, especially with CD4+ cells and CD8+ cells, which could act as a tumor suppressor gene in ccRCC and create a novel strategy in clinical treatment (31). Except for RCC, current research about CYFIP2 was mainly concentrated on neurons and encephalopathy (32, 33), and more attention should be paid to RA. Similar to CYFIP2, most research about ST8SIA1 mainly focused on cancer, revealing that ST8SIA1 regulated tumor growth and metastasis by activating the FAK/AKT/mTOR signaling pathway in breast cancer (34, 35), or inhibited the progression and invasion of bladder cancer cells by suppressing the JAK/STAT signaling pathway (36). However, no evidence was found in the RA research.

Unlike the above three genes, there is already adequate literature about TYMS in RA research. Thymidylate synthase (TYMS) is an important enzyme in the de novo pyrimidine pathway responsible for DNA replication (37). To predict the response or toxicity of MTX in patients with RA, a study by Bae et al. conducted a meta-analysis that demonstrated no association between the TYMS polymorphism and non-responsiveness to or toxicity of MTX therapy (38). Another investigation pointed out that polymorphic variations in the TYMS genes indicated a better clinical response to combined DMARD regimens containing MTX (39), and Lima et al. revealed similar results (40). This contrary research means further, more comprehensive and in-depth investigation is warranted to make certain the association between TYMS and MTX.

To illustrate the action of hub genes in RA one step further, we conducted a GSEA analysis, and the results showed that the primary immunodeficiency was significantly enriched in the high-expression subgroup of all 4 hub genes, and the intestinal immune network for IgA was enriched in CYFIP2 high-expression and ST8SIA1 high-expression subgroups, while hematopoietic cell lineage, Th1 and Th2 cell differentiation were enriched in ST8SIA1 high-expression and TYMS high-expression subgroups at the same time. Subsequent ROC analysis showed that all hub genes played a critical role in RA, indicating a potential diagnostic value in clinical treatment.

Finally, further immune infiltration analysis showed the mast cells in the RA group were higher than those in the control group. Mast cells could stimulate osteoclast differentiation in monocytes and then stimulate osteoclastogenesis, which is a mechanism of inflammatory and tissue destruction effects in RA patients (41). The association between hub genes and immune cells was mainly concentrated on CD8+ T cells, inflammation promoting, Tfh, TIL, and type 1 IFN response, which agreed with previous studies (42, 43).

To further explore the core genes among the four key genes, we chose to download immune genes from the InnateDB database and found two overlapping genes (CYFIP2 and ST8SIA1) at the intersection of the four characteristic genes. After in vitro validation using RA mice, it was found that the expression levels of both genes were increased, which further confirmed our previous research inferences. Combined with ssGSEA analysis, CYFIP2 was highly correlated with more immune cells and immune response processes compared with ST8SIA1. Therefore, we used CYFIP2 as the target gene for further analysis.

Interestingly, some existing studies point to a relationship between RA and a variety of cancers. On the one hand, RA has been pointed out to have a relationship with the risk of cancer, including lung cancer (44), lymphoma (45), and breast cancer (46, 47), on the other hand, immunosuppressive agents used in RA treatment have also been shown to increase cardiovascular disease and important factors in cancer risk (48, 49). Therefore, we further explored the role of the hub gene found in RA, CYFIP2, in pan–cancer.

In our study, CYFIP2 was a prognostic protective factor for KIRC, LGG, and PAAD, and a risk factor for UCEC, but there is still a lack of relevant studies to prove it. From the overall situation of the current research, CYFIP2 has been studied more in digestive system cancers. For example, the study by Mongroo et al. (50). showed that CYFIP2 is highly expressed in IMP–1 knockdown colon cancer cell lines. This high expression is very important. It may be an important part of preventing CRC tumor cell death, similarly, Vandamme T et al. also found the up–regulation of CYFIP2 in pancreatic cancer (51). In addition, CYFIP2 has also been found to affect lymphoma progression after undergoing epigenetic modifications (52). These studies have fully demonstrated that CYFIP2 plays an important role in human diseases. In addition, pan–cancer–based immune cell infiltration analysis also revealed that CYFIP2 is closely related to T–cell CD8+, T–cell CD4+ and neutrophils. These high infiltrating fractions of cells are consistent with the results we obtained in RA.

Even though this is a comprehensive and novel evaluation system to explore hub genes and related signaling pathways in RA patients, even in pan–cancer, there were also several limitations in our study. Firstly, although we performed validation of gene expression in mice, due to the innate restrictions of bioinformatics techniques, more experiments in vivo or in vitro via human samples are warranted to confirm our results. Secondly, because our data are from a database, some aspects like sex, age, and complications are not considered in our research, and further clinical investigation is needed.


Conclusion

To explore specific hub genes for the association between immune infiltration and RA as well as pan–cancer, we conducted a comprehensive and in–depth analysis to analyze related genes and pathways. The 2 hub genes (CYFIP2 and ST8SIA1) we discovered would broaden our insights into molecular mechanisms and bring more potential therapeutic targets for clinical treatment, which also needs more research to verify and develop. For further pan–cancer analysis, CYFIP2 was considered the most potential target both in RA and 33 kinds of tumors, which may shed the hoping light on the therapy of human immune–related diseases and even cancer.
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Background

Nowadays, immune checkpoint inhibitors (ICIs) have become one of the essential immunotherapies for cancer patients. However, the impact of antibiotic (ATB) use on cancer patients treated with ICIs remains controversial.



Methods

Our research included retrospective studies and a randomized clinical trial (RCT) with cancer patients treated with ICIs and ATB, from the public database of PubMed, Web of Science, Embase, Cochrane, clinical trials, and JAMA. The survival outcomes included progression-free survival (PFS) and overall survival (OS). Meanwhile, hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated, and subgroup analyses were performed to determine the concrete association between ATB use and the prognosis of cancer patients treated in ICIs.



Results

Our results revealed that ATB use was associated with poor survival outcomes, including OS (HR: 1.94, 95% CI: 1.68–2.25, p <0.001) and PFS (HR: 1.83, 95% CI: 1.53–2.19, p <0.001). The subgroup analysis learned about the association between ATB use and the prognosis of cancer patients with ICI treatment, including 5 cancer types, 3 kinds of ICI, 5 different ATP windows, broad-spectrum ATB class, and ECOG score. ATB treatment was associated with poor OS of non-small-cell lung cancer (NSCLC), renal cell carcinoma (RCC), esophageal cancer (EC), and melanoma (MEL) in patients treated in ICIs, while non-small-cell lung cancer (NSCLC) and renal cell carcinoma (RCC) were associated with poor PFS. Meanwhile, it was strongly related to the ICI type and ATB window. Furthermore, it is firstly mentioned that the use of broad-spectrum ATB class was strongly associated with poor PFS.



Conclusion

In conclusion, our meta-analysis indicated that ATB use was significantly associated with poor OS and PFS of cancer patients treated with ICI immunotherapy, especially for patients with ATB use in the period of (−60 days; +30 days) near the initiation of ICI treatment. Also, different cancer types and the ICI type can also impact the survival outcome. This first reveals the strong relationship between the broad-spectrum ATB class and poor PFS. Still, more studies are needed for further study.
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Introduction

Working via the anti-tumor immune response, immune checkpoint inhibitors (ICIs) have proved a promising therapeutic treatment in the clinic, which was designed to interfere with inhibitory pathways that naturally constrain T cell reactivity (1). ICIs reinvigorate anti-tumor immune responses by disrupting co-inhibitory T-cell signaling (2). In the last decade, ICIs have caused a major paradigm shift in cancer therapy. It has been approved for various cancers and has improved the survival outcome for many patients (3). However, although ICIs did improve the survival outcome of cancer treatment, the efficacy of the ICI drugs is still limited due to refractiveness, and there are still some uncertain points regarding ICI therapy (4). Additionally, the use of ICIs can induce unique side effects called immune-related adverse events, which can vary a lot in different individuals (5). Some patients exhibit an atypical treatment response pattern with new or enlarging lesions, which needs further observation to determine the process (6). The side effects of ICI therapy involve various organs and systems, including the thyroid and pituitary glands, skin, and digestive system and respiratory system, which can markedly affect the physiological function of organs and the quality of life of patients, even causing fatal consequences in some extreme cases (7). Thus, it is urgent and necessary to find the novel biomarkers to select the patients who can most benefit from the drugs that are in need of being identified.

Antibiotic (ATB) therapy has produced indispensable advances for patients with cancer, populations who are more easily get infected by bacterial because of treatment-related immune suppression. The derangement of the gut microbiota environment has been increasingly well-characterized because of the existence of tumor-specific immune tolerogenesis (8). However, the association between ATB use and the prognosis of cancer patients in ICI treatment remains controversial. Some studies have reported that antibiotic use can result in reduced efficacy of immune checkpoint inhibitors, which can be the consequence of dysbiosis of the intestinal microbiome, a main determinant of the cancer-immune set point of patients (9). Meanwhile, the perturbation of the gut microbiota has been indicated as a possible mechanism to explain the adverse effects attributed to antibiotic exposure in the context of ICI therapy (10). Some studies have found that exposure to antibiotic therapy can influence the probability of response to ICI and predict worse patient survival across malignancies (11). However, ATB use can eliminate the infection and improve the quality of infected patients. Therefore, it is necessary to determine whether ATB use affects the efficacy of ICI treatment and the prognosis of cancer patients.

To learn about the specific association between ATB use and ICI treatment of cancer patients and provide potential reference to clinic performance, the current meta-analysis was performed to clarify if ATB use will impact the survival outcome of cancer patients treated in ICIs, and whether any clinical factors could be used to predict the response of patients to ICIs.



Materials and methods


Literature searching strategy

Our meta-analysis protocol was submitted to the International Prospective Register of Systematic Reviews (PROSPERO CRD 42022330156), and this research followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Electronic databases including PubMed, Web of Science, Embase, Cochrane Library, and Clinical Trials were searched using MeSH words obtained from the National Center for Biotechnology Information (NCBI). Furthermore, the reference lists of eligible reports were also searched to identify potentially relevant studies (“Antibiotics, Antitubercular” AND “Antibiotics, Antineoplastic” AND “Anti-Bacterial Agents”) AND (“Immune Checkpoint Inhibitors” OR “Immune Checkpoint Inhibitors” (Pharmacological Action) OR “Immune Checkpoint Proteins”) were used as the search query.



Inclusion and exclusion criteria

These criteria were developed by all the authors. Inclusion criteria: (I) publications studied the ATB use in cancer patients with ICI treatment; (II) patients were divided into different groups, according to whether they were treated with ATB; (III) the studies should include standard and sufficient data; (IV) research data must be obtained independently by relative organizations; and (V) the publication language was English. Exclusion criteria: (I) duplicate publications and data; (II) relevant research data in the literature comes from public databases; (III) literature types are reviews, case reports, meeting abstracts, and basic experimental research literature; and (IV) literature language is not English.



Data extracting and quality assessment

From each of the included literature, the following data were collected: the name of author, publication year, country or area, the number of patients, study design, cancer type, ICI treatment, antibiotic treatment information (ATB window and drug type), median OS, median PFS, survival outcome (OS and PFS). Meanwhile, to learn about the concrete relationships between ATB treatment and clinical features of ICI-treated cancer patients, the baseline characteristics of patients, including gender, ICI line, cancer stage grade, and lung cancer, were also recorded. These data were reported in a standardized data extraction spreadsheet for further analysis. The quality assessment of eligible studies was done independently using the Newcastle–Ottawa scale.



Statistical analysis

The meta-analysis was conducted to calculate the pooled HRs with corresponding 95% Confidential Intervals (CIs) by using Review Manager 5.4 software for Mac. To avoid the potential heterogeneity affection, a random-effects model was chosen to analyze the survival outcome. Moreover, the dichotomous and generic inverse variance method models were adopted to analyze the extracted data. Statistical heterogeneity was assessed using the χ2 test and the I2 test, and publication bias was assessed by funnel plots. Statistical significance was considered in this study when p <0.05.




Results


Study selection

The initial literature search identified 772 reports, including 409 reports from PubMed, 188 reports from the Web of Science, 103 reports from the Embase database, 24 from the Cochrane database, 30 from clinical trials, and 18 from the JAMA database. After removing duplicate reports, 678 pieces of literature were considered potentially eligible. Finally, according to the above including and excluding criteria, 45 articles were selected, including 12,493 patients. The survival outcomes were composed of progress-free survival outcomes (PFS) and overall survival (OS). The study selection flowchart isshown in Figure 1.




Figure 1 | Flow diagram of the study search and selection in this meta-analysis.





Baseline characteristics of included studies

The eligible studies included 12,493 patients and 13 kinds of cancer types: lung cancer, head and neck cancers, renal cell carcinoma, acute myelocytic leukemia, melanoma, urothelial carcinoma, esophageal squamous cell carcinoma, liver cancer, porocarcinoma, digestive tract carcinoma, Hodgkin’s lymphoma, cervical cancer, and cholangiocarcinoma. The publication year ranged from 2017 to 2022, and the studies were performed in 17 different areas. Among all the studies, five of them used randomized controlled trial (RCT) designs, while other studies were retrospective. Seventeen of the studies used only one kind of ICI, including PD-1 (programmed cell death protein 1) inhibitor, PD-L1 (programmed cell death 1 ligand 1) inhibitor, and CTLA-4 (cytotoxic T-lymphocyte-associated protein 4) inhibitor (PD-1 inhibitors: n = 12; PD-L1 inhibitors: n = 4; CTLA-4 inhibitors: n = 1). While four of them were not definite, the ICI therapy and the other research used a combination of different ICI treatments for at least two of them. The detailed information is shown in Table 1.


Table 1 | Basic characteristics of the studies included in the meta-analysis (n = 45).





Analysis of ATB use and clinic features

In this study, we performed a meta-analysis between ATB use and clinic features, including ECOG score (≤), PD-L1 expression (<1%), non-small-cell lung cancer (NSCLC) patients, gender (male) and ICI therapy line (0–1 prior), which were shown in Supplementary Material. However, we did not observe a clear significant association of these factors (p >0.05), except for the ECOG score (≤1). Among all the eligible studies, 20 studies were chosen to analyze the relationship between ATB use in ICI treatment and ECOG scores. The results showed that the cancer patients with ATB use in the clinic were associated with a lower ECOG score (≤1) in importance significance (HR: 0.69, 95% CI: 0.49–0.98, p = 0.04).



The association between ATB use and survival outcomes (OS + PFS)

Thirty-seven studies were selected to analyze overall survival (OS). The results revealed that ATB use was strongly associated with the increased risk of poor OS (HR: 1.94, 95% CI: 1.68–2.25, p <0.00001), shown in Figure 2A. However, a clear heterogeneity was observed in this analysis (I2 = 84%). Moreover, 31 studies were selected to perform progression-free survival (PFS). The results shown in Figure 2B indicated that ATB use was significantly associated with worse PFS (HR: 1.83, 95% CI: 1.53–2.19, p <0.00001), but also with an obvious heterogeneity (I2 = 86%).




Figure 2 | The forest plot showing the relationship between ATB use and OS, PFS in cancer patients treated with ICIs. Overall survival (OS), progress-free survival (PFS); CI, confidential interval; Random, random-effects model; The random-effects model was adopted. (A) Overall survival (OS). (B) Progress-free survival (PFS). (A) Relationship between ATB use and OS in cancer patients treated with ICIs. (B) Relationship between ATB use and PFS in cancer patients treated with ICIs.





Sensitivity analysis

For further verification to identify the association between ATB use and the survival outcomes (OS + PFS) in ICI-treated cancer patients, we performed the same analysis in randomized controlled trial studies as the sensitivity analysis. Three RCT studies were selected. It revealed a similar result as above, that in cancer patients treated with ICIs, ATB use was significantly related to poor OS (HR: 3.13, 95% CI: 1.25–7.84, p <0.001, I2 = 90%) and poor PFS (HR: 2.54, 95% CI: 1.38–4.68, p <0.001, I2 = 70%) (Figure 3).




Figure 3 | The forest plot showing the relationship between ATB use and OS, PFS in cancer patients treated with ICIs, based on randomized controlled trial (RCT). Overall survival (OS), progress-free survival (PFS); CI, confidential interval; Random, random-effects model. The random-effects model was adopted. (A) Overall survival (OS). (B) progress-free survival (PFS).





In NSCLC, RCC, HCC, EC, and MEL, how does the ATB use impact the prognosis (OS + PFS) in patients treated in ICIs?

For cancer types, we chose NSCLC, RCC, HCC, EC, and MEL to observe. In the OS sub-group analysis, seventeen studies were selected for NSCLC, two studies were selected for RCC, two studies were selected for HCC, three studies were selected for EC, and four studies were selected for MEL. NSCLC (HR: 2.09, 95% CI: 1.69–2.58), RCC (HR: 1.81, 95% CI: 1.14–2.87), EC (HR: 2.80, 95% CI: 1.08–7.25), and MEL (HR: 1.94, 95% CI: 1.41–2.67) were shown to be strongly associated with poor OS. However, no significant relationship was observed for HCC. Moreover, four different cancer types were included in the PFS subgroup analysis, including NSCLC, RCC, HCC, and EC, which indicated that NSCLC (HR: 1.81, 95% CI: 1.47–2.24) and RCC (HR: 3.14, 95% CI: 2.16–4.58) cancer types were associated with poor PFS with a strong effect and HCC, whereas EC was not significantly related (Figure 4).




Figure 4 | The subgroup analysis between ATB use and cancer prognosis (OS + PFS) of RCC and NSCLC cancer patients treated with ICIs. (A) The relationship between ATB use and OS of NSCLC patients treated with ICIs. (B) The relationship between ATB use and PFS of RCC patients treated with ICIs. (C) The relationship between ATB use and OS of esophagus cancer patients treated with ICIs. (D) The relationship between ATB use and OS of melanoma patients treated with ICIs. (E) The relationship between ATB use and PFS of NSCLC patients treated with ICIs. (F) The relationship between ATB use and PFS of RCC patients treated with ICIs.





In cancer patients treated in PD-1 or PD-L1 ICI type, how does the ATB use impact the prognosis (OS + PFS)?

PD-1 inhibitor, PD-L1 inhibitor, and the combination of PD-1 inhibitor and PD-L1 inhibitor were selected to do the sub-analysis for ICI type. The results showed that all the three types showed a stronger effect on OS (PD-1 inhibitor: HR: 2.20, 95% CI: 1.87–2.60, p <0.00001, I2 = 25%; PD-L1 inhibitor: HR: 1.47, 95% CI: 1.19–1.82; combination of PD-1 inhibitor and PD-L1 inhibitor: HR: 2.30, 95% CI: 1.41–3.75). Meanwhile, the same inhibitor types were observed in the PFS sub-analysis, and only the PD-1 inhibitor (HR: 2.32, 95% CI: 1.83–2.95) and the combination of PD-1 inhibitor and PD-L1 inhibitor (HR: 1.81, 95% CI: 1.20–2.73) showed a significant relationship with PFS (Figure 5).




Figure 5 | The subgroup analysis between ATB use and different immune checkpoint inhibitors of cancer patients treated with ICIs. (A) The association between ATB use and OS in cancer patients treated with the combination of PD-1 inhibitor and PD-L1 inhibitor. (B) The association between ATB use and OS in cancer patients treated with PD-1 inhibitor. (C) The association between ATB use and OS in cancer patients treated with PD-L1 inhibitor. (D) The association between ATB use and PFS in cancer patients treated with the combination of PD-1 inhibitor and PD-L1 inhibitor. (E) The association between ATB use and PFS in cancer patients treated with PD-1 inhibitor.





What is the relationship between ATB use and survival outcome (OS + PFS) of patients according to different ATB windows?

The selected ATB window included (−60 days, +30 days), (−60 days, 0 day), (−30 days, 30 days), (−30 days, 0 day), (0 day, +30 days) for OS subgroup analysis and (−60 days, +30 days), (−60 days, 0 day), (−30 days, 30 days), (0 day, +30 days) were selected for PFS subgroup analysis. All of these groups were shown to be significantly associated with poor survival outcomes. We also performed the PFS subgroup analysis for using ATB treatment during ICI treatment, and no significant relation was observed (Figure 6).




Figure 6 | In different ATB windows, the subgroup analysis between ATB use and OS of cancer patients treated with ICIs. (A) ATB window (−30 days, 0 day); (B) ATB window (−30 days, 30 days); (C) ATB window (−60 days, 0 days); (D) ATB window (−60 days, 30 days); and (E) ATB window (0 days, 30 day).





In broad-spectrum ATB class, the relationship of ATB use and PFS

The analysis between the use of broad-spectrum ATB class and PFS of ICI treated cancer patients was also performed, as shown in Figure 7, which was the first mentioned in this research. The result, with no heterogeneity (I2 = 0), revealed that this class was strongly related to poor PFS (HR: 1.86, 95% CI: 1.44–2.41) Figure 8.




Figure 7 | In different ATB window, the subgroup analysis between ATB use and PFS of cancer patients treated with ICIs. (A) ATB window (-30 days, 30 day); (B) ATB window (-60 days, 0 days); (C) ATB window (-60 days, 30 days); (D) ATB window (0 days, 30 days).






Figure 8 | In broad-spectrum ATB class, the subgroup analysis between ATB use and PFS of cancer patients treated with ICIs.





ECOG score and OS

No significant difference was observed between higher ECOG score and OS, compared with lower ECOG score (≤1) (HR: 0.49, 95% CI: 0.09–2.76, p = 0.42).



Assessment of publication bias

The publication bias for this research was evaluated by funnel plots, which were collected and shown in the Supplementary Material. There was no obvious publication bias in this research. Newcastle-Ottawa scale scores from 6 to 9 (Table 2). The heterogeneity value also indicated a low publication bias (Table 3).


Table 2 | Basic characteristics of the studies included in the meta-analysis (n = 51).




Table 3 | Subgroup analysis of ECOG, cancer type, ICI type, and ATB window based on OS (overall survival) and PFS (progress-free survival).






Discussion

This research is the most comprehensive study on the effect of antibiotic use on the clinical features and survival outcomes of cancer patients treated with ICIs, compared with previous meta-analysis until now. In this meta-analysis, from 45 studies with 12,493 patients, the effects of ATB use on OS, PFS, and clinical features were included to study the impacts of ATB use on cancer patients treated with ICI therapy, with RCT analysis as verification. Based on OS analysis and PFS analysis, we performed several subgroup analyses from 5 aspects, cancer type (NSCLC, RCC, HCC, EC, and MEL), ICI therapy type (PD-1, PD-L1), ATB window (−60 days, +30 days), ATB class (broad-spectrum ATB class) and ECOG score (2–5 vs 0–1).

Our findings revealed that the ATB use was related with worse OS and PFS, which was similar with previous study (6). ATB treatment is commonly performed in clinic for cancer patients, who are more susceptible to getting infected, but the ATBs can alter the composition and diversity of the gut microbiota. Therefore, ATB use can significantly impact the efficacy of ICIs. In subgroup analysis, for various cancer types, we analyzed non-small-cell lung cancer (NSCLC), renal cell carcinoma (RCC), hepatocellular carcinoma (HCC), esophageal cancer (EC), and melanoma (MEL). All of the five cancer types were shown to be at a higher risk of poor OS except HCC, while only NSCLC and RCC were shown to be at a higher risk of poor PFS. Among all the five types, EC was at the highest risk (HR = 2.8) in OS analysis, and RCC was at the highest risk in PFS analysis, even higher than 3 (HR = 3.14). Interestingly, in PFS analysis, no significant association was observed between EC and PFS of cancer patients treated in ICIs (p = 0.06), with only three eligible studies and high heterogeneity, which could be a focus of future research. HCC was shown not to be significantly associated with both OS and PFS, but with only two studies, which needs more studies for further verification. Various cancer types have different impacts on the human body. For the gut environment, a favorable gut microbiota can enhance antigen presentation and T-cell function related to the systemic and anti-tumor immune response, which was demonstrated in a mouse experiment (7). The diversity of gut microbiota increases from infancy to adulthood and decreases in the elderly, with metabolic, defensive, and trophic functions (56). Induction and regulation of the adaptive immune system is one of the essential aspects of the gut microbiota trophic function, and intestinal immunity is the largest and most complex part of the overall immune system of the human body, with at least 80% of all antibodies produced in the intestinal mucosa for adults (57). Thus, ATB use may reduce the efficacy of ICI immunotherapy through altering the diversity and composition of the gut microbiota, which still needs more evidence to prove.

For ICI therapy type, we selected PD-1 inhibitor type, PD-L1 inhibitor type, and the combination of both PD-1 inhibitor and PD-L1 inhibitor. The results revealed that the PD-1 inhibitor and the combination were strongly associated with a higher risk of poorer prognosis, while PD-L1 was shown to be out of meaningful relationship with PFS. Interestingly, we found that the HR value of the combination was quite lower than the HR value of the PD-1 inhibitor alone, which may indicate that the PD-L1 inhibitor matters a lot in this process. Rounis and his team analyzed 66 patients who received PD-1 inhibitors or PD-L1 inhibitors and found that ATB administration did not affect the survival outcome of ICI patients, but prolonged ATB use was related to poor survival (58). This contradiction may be attributed to different varieties, such as the amount of study population, cancer type, and ATB type. In our research, it was indicated that different ATB windows had effects on the survival outcome of ICI patients, when the ATB window was in the period between 60 days before ICI initiation and 30 days after ICI initiation. Especially when ATB window was (−30 days,0 day) of ICI initiation, the risk was the highest in OS analysis (HR = 2.61), with no heterogeneity (I2 = 0). When ATB window was (0 day, +30 days) of ICI initiation, the risk was the highest in the PFS analysis (HR = 2.38). Some studies have already revealed that the short-term decrease in bacterial richness after treatment in ATB (59). Meanwhile, the status of gut microbiota can recover to a baseline within 3 months after ATB discontinuation (60). So, using ATB treatment is essential, which can significantly influence the survival outcome of cancer patients on ICI therapy. Also, we also found the relationship of clinic feature, it was revealed that patients with a lower ECOG score (≤1) were more pretended to undergo ATB treatment. While the other aspects (PD-1 inhibitor type, NSCLC, gender type, cancer stage, and ICI line therapy) were observed to have no significant association.

Until now, the concrete mechanisms of how the use of antibiotics can impact the ICI therapy efficiency for cancer patients are still unknown, but some studies have shown that it may also be associated with the tumor microenvironment (61). An intact commensal microbiota is necessary for cancer therapy, which can mediate therapy effects through modulating the myeloid-derived cell functions in the tumor microenvironment. For example, in one experiment with ATB-treated mice, the tumor-infiltrating myeloid-derived cells responded poorly to the therapy, leading to lower cytokine production and tumor necrosis after CpG-oligonucleotide treatment, and it also showed deficient production of reactive oxygen species (ROS) and cytotoxicity after chemotherapy (62). Another research has indicated that ATB may change the equilibrium of commensal bacteria, conducive for ICB efficacy, which may result in possible resistance to ICIs (63). Meanwhile, the local microbiota was demonstrated to make up an important part of the tumor microenvironment in many types of cancer, which may be affected by ATB use (64). Many researchers have proved that local bacterial dysbiosis can cause a pro-inflammatory immune response and thereby promote cancer growth (65).

Compared with the previous meta-analysis, our research is the most comprehensive, which included the largest number of studies, the largest population, and studied the most comprehensive aspects of subgroup analysis. Yu et al. (66) and Jiang et al. (67) performed a similar meta-analysis, although their subgroup was not as comprehensive as ours. Lurienne et al. (68) and Chen et al. (69) only included NSCLC patients with great limitations. The research by Elkrief (70) missed relative statistical analysis. However, there are still several limitations to our current study. First, the heterogeneity of the included research cannot be ignored. Different responses to drugs, different intervals of administration, and different individual cancer status can result in high heterogeneity. Second, the included studies did not provide enough details. Although we recorded the baseline characteristics of the population and performed the subgroup analysis, some concrete aspects are still unclear, such as infection type and infection site. The subgroup analysis for the ICI type lacked CTLA-4 inhibitor, which was inadequate. Thirdly, most of the studies were retrospective, and only five of the studies contained randomized controlled trials.



Conclusion

In this research, it was revealed that ATB use was strongly associated with worse OS and PFS in cancer patients treated with ICI immunotherapy, especially during the period between 60 days before ICI initiation and 30 days after ICI initiation, which indicated that ATBs should be used cautiously and strictly to avoid a worse survival outcome. The immunotherapy inhibitor type and ATB class can also impact the prognosis. Moreover, it was found that different cancer types are also essentially associated with a survival outcome, including NSCLC, RCC, EC, and MEL. Still, more studies are needed to find the concrete mechanism between ATB use and ICIs and further improve the clinical treatment.
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N7-Methylguanosine (m7G) modifications are a common type of posttranscriptional RNA modifications. Its function in the tumor microenvironment (TME) has garnered widespread focus in the past few years. Long non-coding RNAs (lncRNAs) played an essential part in tumor development and are closely associated with the tumor immune microenvironment. In this study, we employed a comprehensive bioinformatics approach to develop an m7G-associated lncRNA prognostic model based on the colon adenocarcinoma (COAD) database from The Cancer Genome Atlas (TCGA) database. Pearson’s correlation analysis was performed to identify m7G-related lncRNAs. Differential gene expression analysis was used to screen lncRNAs. Then, we gained 88 differentially expressed m7G-related lncRNAs. Univariate Cox analysis and Lasso regression analysis were performed to build an eight-m7G-related-lncRNA (ELFN1-AS1, GABPB1-AS1, SNHG7, GS1-124K5.4, ZEB1-AS1, PCAT6, C1RL-AS1, MCM3AP-AS1) risk model. Consensus clustering analysis was applied to identify the m7G-related lncRNA subtypes. We also verified the risk prediction effect of a gene signature in the GSE17536 test set (177 patients). A nomogram was constructed to predict overall survival rates. Furthermore, we analyzed differentially expressed genes (DEGs) between high-risk and low-risk groups. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted with the analyzed DEGs. At last, single-sample gene set enrichment analysis (ssGSEA), CIBERSORT, MCP-COUNTER, and Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithms were utilized to discover the relationship between the risk model and the TME. Consequently, the m7G-related lncRNA risk model for COAD patients could be a viable prognostic tool and treatment target.
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Introduction

Colon carcinoma is a frequently diagnosed malignant tumor worldwide, accounting for 10% of all cancer cases worldwide. Colon cancer ranks third among all carcinomas in terms of mortality, and the incidence ratio ranked third in all carcinomas (1). According to world epidemiological data, approximately 1.9 million new cases of colorectal cancer were diagnosed, with 935,000 deaths, in the proportion of around 1/10 of all (2). In China, the incidence rate and mortality rate of colon cancer have been increasing in recent decades. In recent years, great improvements have been made in surgical techniques, chemotherapy, and molecular targeted therapy, leading to an increased survival rate in patients with localized colon cancer (3). Surgery remains to be considered the main treatment modality for those diagnosed with early colon carcinoma (stage I and II) (4); surgery, neoadjuvant radiotherapy, and adjuvant chemotherapy are mainly for those with stage III/IV or stage II which is high risk (5). However, colorectal mortality and the number of deaths from colon cancer per year are still high (6), the potential molecular mechanisms of colon cancer has not been clear (7), and molecular biomarkers for evaluating the survival of this cancer and risk models for evaluating prognosis are still lacking. Therefore, it is imperative to develop a novel model for evaluating the prognosis of patients with colon cancer in order to further ameliorate their prognosis (8).

N5-Methylcytidine (m5C), N6-methyladenosine (m6A), and m7G are some of the common RNA modifications (9). Studies on m5C and m6A research are relatively more than those on m7G, with detailed research on their mechanisms. In recent years, a number of studies on m7G have gradually increased, thus making m7G modifications the next research hotspot of RNA modification. According to extant literature findings (10), tRNA guanine N7 methyltransferase, which belongs to the S-adenosylmethionine (SAM)-dependent RNA methyltransferase family, catalyzes m7G modification. In addition, m7G is also involved in many RNA metabolic processes in the human body, including transcription, mRNA splicing, and translation (11).

As is known to all, long non-encoding RNA (lncRNA) modulates gene transcription and posttranscriptional modification, whose expression is important in human carcinogenesis. According to the recent report, several cancer-related lncRNAs, such as lncRNA MALAT1 in prostate cancer, lncRNA HOTAIR and lncRNA ANRI (12)in cervical cancer, and lncRNA zinc finger protein (ZNF) in gastric cancer, have recently been discovered and their biological involvement in carcinogenesis verified (13). At present, m7G-related lncRNA has not been reported in the literature. Moreover, lncRNA expression is often maladjusted in various cancers and can predict prognosis (14). Therefore, we constructed an m7G-related lncRNA model and investigated its correlation with colon cancer prognosis.

The components of the TME are important for tumor development and metastasis (15). Adipocytes, fibroblasts, immunological cells, tumor-associated macrophages (TAMs), and muscle endothelial cells are primarily found in the TME, all of which mediate paracrine signals to the surrounding (16). The TME, which affects tumor growth, includes immune cells (17). The tumor immune microenvironment (TIME) plays an essential role in tumor-immune interaction which could respond to treatment directly (18). Tumor-infiltrating immune cells are also significant in tumor growth, in immunotherapy response, and in predicting patient survival (19).

In our study, we built and validated an eight-m7G-related-lncRNA prognostic risk model. The prognosis of patients was predicted via the Kaplan–Meier (KM) chart, receiver operating characteristic (ROC) curve, univariate and multivariate Cox analysis, and nomogram. Through the enrichment analysis of high and low risks, the relevant functions and pathways are obtained. Lastly, we investigated the association with both risk score and immune infiltration using the results of enrichment analysis. The flowchart is displayed in Figure 1.




Figure 1 | The flowchart of the overall study design.





Materials and methods


Data collection and analysis

Information of 459 patients was obtained on TCGA website (https://portal.gdc.cancer.gov/repository). Then, we used Perl software to reannotate the Ensemble Genes ID by aligning to gencode.v22 (www.gencodegenes.org/human/release_22.html). A total of 19,712 mRNAs and 14,805 lncRNAs were identified in the COAD dataset. Twenty-seven m7G-related genes were gained by searching the keyword “7-methylguanosine” on the official website of GSEA (http://www.gsea-msigdb.org/gsea/msigdb/search.jsp) and referring to a relevant review (20). Then, using R language software, the expression matrix of m7G-related genes was obtained, and the differential expression analysis was carried out with limma package to obtain 21 meaningful (P < 0.05) m7G-related DEGs. Finally, the visualization results of box diagram, vioplot, and heat diagram were made using the R software package (pheatmap, reshape2, ggpubr, vioplot).



Construction of a protein–protein interaction network

The protein–protein interaction (PPI) network was created utilizing the online STRING website (cn.string-db.org). The 21 m7G-related DEGs were input into the gene list, homo sapiens were selected, and the medium confidence was set to 0.400. Then, we hid the disconnected nodes of the network and adjusted the position of each node. The barplot package was used to visualize the number of node connection genes, and the counts of connections ≥8 were defined as the hub gene.



Differentially expressed M7G-related lncRNAs

The lncRNAs gained from the COAD database were filtered out, and the differential expression analysis was carried out with the limma package, obtaining 4,745 m7G-related differentially expressed lncRNAs with significance (P < 0.05, | FC | > 1.5). Through the correlation analysis between m7G-related differential genes and the lncRNA expression level in COAD samples, the lncRNAs related to m7G were identified. Based on the correlation coefficient >0.30 as well as P < 0.05, 1,020 lncRNAs related to m7G were identified. Then, we downloaded the GSE17536 database on the official website of GEO (www.ncbi.nlm.nih. gov/geo/), obtaining the expression matrix and clinical information with the R software package (GEOquery). Reannotation with the GPL570 annotation file was performed to obtain the expression matrix of each symbol. Intersection with the lncRNAs annotated by TCGA was done, finding 1,240 identical lncRNAs. Finally, 88 differentially expressed m7G-related lncRNAs were obtained by intersecting the three types of lncRNAs.



Construction of the prognostic m7G-related lncRNA risk model

Univariate Cox analysis was performed to obtain 11 prognosis-related lncRNAs (P < 0.05) from these 88 differentially expressed m7G-related lncRNAs in order to check their prognostic significance. In addition, through 1,000-fold cross-validation, the Lasso Cox regression method was used to identify the ideal penalty parameter lambda and the relevant coefficient criterion based on the minimal criterion. Thus, an eight-lncRNA prognostic risk model was built. Then, we obtained the risk score by the following formula: risk score = coef (lncRNAn)*expr (lncRNAn). In the COAD database and GSE17536 dataset, this method was used to compute the risk score of each patient.



Cluster analysis

Cluster analysis was performed on 452 samples of the COAD data set based on eight lncRNAs in the prognosis model using “ConensusClusterPlus” software package to determine m7G-related molecular subtypes. The number k of clusters was set to 2 to 10, and the “ConensusClusterPlus” program calculated the average contour width of the common member matrix. KM analysis was plotted to estimate the prognosis among different groups, and log-rank test was utilized.



Validation of the prognostic risk model

We unified the expression amount, survival time, survival status, risk score, and risk level of the eight lncRNAs in each TCGA sample (n = 452) into a table as the training set. The eight lncRNAs in GSE17536 (n = 177) were used as the test set. The prognostic significance of the training set was verified using the test set. A KM plot was utilized to analyze the risk prognosis, and the log-rank test was performed. Moreover, the ROC curve was also drawn using the timeROC program. Then, we utilized the pheatmap package to draw the risk curve, survival state diagram, and risk heat map. The Rtsne and ggplot2 packages were employed for t-SNE as well as principal component analysis (PCA). Finally, the risk score was combined with the clinical characters (age, gender, TNM stage, and grade) of the two data sets for univariate and multivariate Cox analyses, then visualized it with a forest map.



Nomogram construction and calibration

We further analyzed the clinical characteristics (age, TNM stage, and risk score) that were meaningful (P < 0.05) by univariate Cox analysis to study their clinical value in predicting patient survival. We applied the “RMS” tool to create a nomogram that predicted the 1-, 3-, and 5-year survival rates of COAD patients. We also plotted the calibration curves in the same calibration chart to assess the accuracy of the nomogram. Finally, the decision curve analysis (DCA) curve was drawn using the ggDCA program, which was also utilized to assess the prediction ability of the nomogram and other clinical parameters.



Gene set enrichment analysis

The link between risk group and Gene Ontology (GO) was investigated using gene set enrichment analysis (GSEA) after TCGA samples were separated into high- and low-risk score groups. For each analysis, 1,000 gene set permutations were done. The enrichment function was chosen based on the following criteria: the gene collection was enriched and evaluated using the clusterProfiler software with a false discovery rate (FDR) of 0.25 and a NOM p value of 0.05. The top five functions enriched by two groups were visualized with an enrichment lot to obtain multiple GSEA diagrams. After that, differential expression analysis of two groups was performed to find DEGs between the two groups. GO and KEGG with the clusterProfiler package were performed to enrich and analyze the DEGs. Then, utilizing the enrichplot and ggplot2 packages, the enrichment results were shown as a barplot, bubble diagram, chord diagram, and cluster circle diagram.



Association with immune cells and function

Single-sample GSEA (ssGSEA) was applied to examine the differences in immune cell activity, immunological function, and immune route between two groups in the training set and depicted it with a boxplot. The marker genes of different kinds of immune cells could be found in the previous literature (21). The immune score, stromal score, estimated score, and tumor purity were determined using the ESTIMATE program and visualized using a heat map and violin plot. To acquire the composition of invading immune cells in each sample in the training set, the CIBERSORT package was filtered (P 0.05), and the risk score and immune cells were assessed using Pearson correlation. From COAD expression data, the likely MCPcounter package was run to estimate the abundance of immune and non-immune stromal cells, and a violin diagram was drawn to depict the abundance difference between the two groups.



RNA extraction and qRT-PCR

In order to further confirm the differential expression of the eight lncRNAs, we extracted RNA from fresh frozen tissues with TRIzol reagent (Takara, Japan) and detected the expression level of the eight lncRNAs by qRT-PCR. The cDNA was produced utilizing the PrimeScript RT Master Mix (Takara, Japan) and the designed primers (RiboBio, China). The related GAPDH mRNA expression was identified as an internal control. We collected 24 pairs of fresh colon cancer and adjacent tissues from the Colorectal Center of Jiangsu Provincial People’s Hospital from 2020 to 2021. 2−ΔΔ CT was used to represent the expression. The primer sequences are displayed in Supplementary Table 1. Each PCR reaction was carried out three times.



Statistical analysis

Statistical analysis was performed using R version 4.1.2. The “WilcoxTest” function in the limma package was used to calculate the difference between two preselected groups or paired samples. The correlation between two parameters was evaluated via Pearson correlation analysis. The expression matrices of COAD and GSE17536 were batch corrected with the sva package. The survival package was used for KM, univariate, and multivariate Cox regression analyses to calculate the risk ratio, P value, and risk confidence interval. The P value of KM survival curves was calculated by the log-rank test. The glmnet package was used to calculate the optimal penalty parameter lambda and the related coefficient criterion of the Lasso Cox regression algorithm. P < 0.05 was regarded as statistical significance.




Results


Identification of differentially expressed m7G-related lncRNAs in COAD patients

Initially, we obtained 27 m7G-related genes from the official website of GSEA and previous reviews. Combined with the mRNA expression matrix of TCGA, we obtained the expression of these 27 genes in 521 COAD samples. There were 41 paracancerous samples and 480 tumor samples in 521 samples. The difference in expression between tumor samples and normal samples was evaluated. The Wilcox test (P < 0.05) was used to test. We found that among the 27 m7G-related genes, the expressions of METTL1, WDR4, NSUN2, DCPS, NUDT3, NUDT4, AGO2, EIF4E, EIF4E1B, GEMIN5, LARP1, NCBP1, NCBP2, EIF3D, and EIF4A1 increased, the expressions of NUDT10, NUDT11, NUDT16, CYPIP1, EIF4E3, and EIF4G3 decreased, and there was no difference in the expressions of DCP2, EIF4E2, IFIT5, LSM1, NCBP2L, and SNUPN. Then we visualized the 27 genes with a violin map (Figure 2A) and made a heat map of 21 differentially expressed genes (Figure 2B). Then we used the online website STRING, input the 21 genes into the gene list, and selected Homo sapiens. The medium confidence was set to 0.400. The disconnected nodes of the network were hidden, and the position of each node was adjusted. Then we exported a PPI network diagram (Figure 2C) and TSV file. We utilized the barplot package to visualize the number of node connection genes (Figure 2D) and defined the genes whose counts of connections ≥8 as hub genes. The following hub genes were EIF4E, EIF4A1, EIF4E1B, NCBP1, NCBP2, EIF4E3, and EIF4G3. We also visualized the expression of 21 genes with the corrplot package (Figure 2E). Moreover, we removed the normal samples from the lncRNA expression matrix, extracted lncRNAs whose expression was >0.5, and then conducted Pearson correlation analysis based on these 21 genes to screen (|cor| > 0.3, P < 0.05) 1,020 m7G-related lncRNAs. Additionally, 14,805 lncRNAs of TCGA were analyzed for differential expression based on tumor samples and adjacent samples (P < 0.05, | FC | > 1.5). We also obtained the expression matrix of GSE17536 and found 1,240 same lncRNAs as TCGA. Finally, 1,020 m7G-related lncRNAs (cor-lncRNA), 4,745 differentially expressed lncRNAs (diff-lncRNA), and 1,240 identical lncRNAs (GSE17536 lncRNA) were intersected to obtain 88 differentially expressed m7G-related lncRNAs, which were visualized by a Venn diagram (Figure 3A).




Figure 2 | Differentially expressed m7G-related genes. (A) Violin plot showing the differential expression of 27 m7G-related genes between tumor and normal tissues from the COAD. (B) Heat map of 21 differentially expressed m7G-related genes between tumor and normal tissues (P < 0.05).The PPI network (C) and number of interaction nodes (D) of 21 differentially expressed m7G-related genes. (E) Pearson correlation analysis of 21 differentially expressed m7G-related genes. The red color represents a positive correlation; the blue color represents a negative correlation. *P < 0.05, **P < 0.01, and ***P < 0.001.






Figure 3 | Construction of the prognostic m7G-related lncRNAs risk model. (A) Venn diagram of cor-lncRNA, diff-lncRNA, and GSE17536lncRNA. (B) Forest map of 11 prognostic m7G-related lncRNAs by univariate Cox analysis (P < 0.05). (C) The correlation between 21 differentially expressed m7G-related genes and 11 prognostic m7G-related lncRNAs. The red color represents a positive correlation; the blue color represents a negative correlation. *P < 0.05, **P < 0.01, and ***P < 0.001. (D) 1,000 cross-validation to determine the optimal penalty parameter lambda (λ). (E) Lasso regression of the 11 m7G-related lncRNAs. (F) The Sankey diagram displayed the relationship between the m7G regulators mRNA expression and the m7G-related lncRNAs.





Construction of a risk model for COAD patients

Initially, we obtained 27 m7G-related genes from the official website of GSEA and previous reviews. Combined with the mRNA expression matrix of TCGA, we obtained the expression of these 27 genes in 521 COAD samples. There were 41 paracancerous samples and 480 tumor samples in 521 samples. The differential expression between tumor samples and normal samples was analyzed and tested by Wilcox test (P < 0.05). We found that among the 27 m7G-related genes, the expressions of METTL1, WDR4, NSUN2, DCPS, NUDT3, NUDT4, AGO2, EIF4E, EIF4E1B, GEMIN5, LARP1, NCBP1, NCBP2, EIF3D, and EIF4A1 increased, the expressions of NUDT10, NUDT11, NUDT16, CYPIP1, EIF4E3, and EIF4G3 decreased, and there was no difference in the expressions of DCP2, EIF4E2, IFIT5, LSM1, NCBP2L, and SNUPN. Then we visualized the 27 genes with a violin map (Figure 2A) and made a heat map of 21 differentially expressed genes (Figure 2B). Then we used the online website STRING, input the 21 genes into the gene list, and selected human sapiens. The medium confidence was set to 0.400. The disconnected nodes of the network were hidden, and the position of each node was adjusted. Then we exported a PPI network diagram (Figure 2C) and TSV file. We utilized the barplot package to visualize the number of node connection genes (Figure 2D) and defined the genes whose counts of connections ≥8 as hub genes. The hub genes were EIF4E, EIF4A1, EIF4E1B, NCBP1, NCBP2, EIF4E3, and EIF4G3. Firstly, the expression matrices of 1,240 identical lncRNAs of TCGA and GSE17536 were obtained respectively, and then the sva package was used for batch correction. We combined the 88 differentially expressed m7G-related lncRNAs with the batch-corrected database to obtain the expression of these 88 lncRNAs in TCGA and GSE17536. Then, we downloaded the clinical data of TCGA and GSE17536, removed the paracancerous samples, and combined them with the expression samples. Finally, 452 TCGA samples and 177 GSE17536 samples with both clinical data (overall survival time and event) and expression were obtained. To discover the prognostic significance of these 88 differentially expressed m7G-associated lncRNAs, univariate Cox analysis (P < 0.05) was used for obtaining 11 prognosis-related lncRNAs (ELFN1-AS1, GABPB1-AS1, SNHG7, PTOV1-AS2, LINC01138, GS1-124K5.4, ZEB1-AS1, PCAT6, SNHG15, C1RL-AS1, MCM3AP-AS1). The 11 lncRNAs were visualized by a forest map (Figure 3B). Additionally, the correlation of 11 lncRNAs and 21 DEGs was analyzed, and the correlation diagram (Figure 3C) was drawn with the corrplot package. Moreover, we performed Lasso regression analysis on these 11 lncRNAs (Figures 3D, E). We determined the optimal penalty parameter lambda and calculated the corresponding coefficient criterion based on the minimum criterion through 1,000-fold cross-validation. Thus, an eight-lncRNA (ELFN1-AS1, GABPB1-AS1, SNHG7, GS1-124K5.4, ZEB1-AS1, PCAT6, C1RL-AS1, MCM3AP-AS1) prognostic risk model was constructed. The following formula was used to determine the risk score: risk score = (0.1248634928618*ELFN1-AS1 expression) + (0.138884459768606*GABPB1-AS1 expression)+(0.271466216016284*SNHG7 expression) + (0.0620449890746169*GS1-124K5.4 expression)+(0.643398387399806*ZEB1-AS1 expression) + (0.344100469251062*PCAT6 expression)+(0.0756308955064826*C1RL-AS1 expression) + (0.170192664397879 *MCM3AP-AS1 expression). Then we analyzed the correlation of the eight lncRNAs and made the correlation circle diagram (Supplementary Figure 1). Meanwhile, a differential expression box plot was made in combination with the lncRNA expression matrix of TCGA (Supplementary Figure 2A). Furthermore, the expression levels of these eight lncRNAs in 24 frozen paired tissues were tested by qRT-PCR. It was found that they were upregulated in different degrees in tumor tissues (Supplementary Figure 2B). Lastly, the correlation between the eight lncRNAs and the target genes was represented by a Sankey diagram (Figure 3F). Positive stands for positive correlation and negative stands for negative correlation.



Identification of m7G-associated clusters and prognostic analysis between clusters

Firstly, we made a further cluster analysis of eight lncRNAs based on the risk model. Cluster analysis was performed on 452 samples of the COAD data set using the “ConsensusClusterPlus” package to determine m7G-associated molecular subtypes. The number k of clusters was selected from 2 to 10 (Figure 4B), and the “ConsensusClusterPlus” program calculated the average contour width of the matrix (Figure 4A). After careful selection, the best K value was 3 and the samples were divided into three clusters. At last, we analyzed the survival of three clusters and plotted the KM curve (Figure 4C). The corresponding p value obtained by the log-rank test was 0.007. There were significant differences in survival among the three subgroups. with cluster1 having a worse prognosis than clusters 2 and 3.




Figure 4 | Identification of m7G-associated clusters and prognostic analysis between clusters. (A) The consensus matrix (k = 3) of 452 COAD samples by Consensus Cluster analysis. (B) The relative change in area under the CDF curve for k = 2–10. The KM plot showing overall survival in three clusters (C), training set (D), and test set (F).The ROC curve of the training set (D) and test set (F). The 1-, 3-, and 5-year ROC analyses of risk score in the training set (E) and test set (G).





Validation using the GSE17536 set

Initially, we identified TCGA database (n = 452) as the training set and the GSE17536 database as the test set for verification. We plotted the KM curve (Figures 4D, F) and ROC curve (Figures 4E, G) of the training set and the test set. The P value of the training set (P < 0.001) and test set (P = 0.018) was obtained by the log-rank test. The HR of the training set was 2.876 and 95% CI: 1.935–4.275, while the HR of the test set was 1.774 and 95% CI: 1.121–2.808. The risk score’s area under the ROC curve (AUC) value was examined to determine its specificity and sensitivity in predicting patient prognosis in the two data sets. In the training set, the AUC values for the 1-, 3-, and 5-year risk scores were 0.671, 0717, and 0.692, whereas the AUC values in the test set were 0.679, 0.617, and 0.648. The risk score and survival status of COAD patients (Figure 5A) and GSE17536 patients (Figure 5B) were displayed using a risk curve, scatter plot, and risk heat map. We also made an expression heat map of clinicopathological features (TMN stage, stage, age, gender), clusters, and risk score based on TCGA database (Figure 5C). Additionally, the Rtsne package and ggplot2 package were used for t-SNE analysis of the training set (Figure 5E)and test set (Figure 5G). The scatterplot3d package was used to make 3D images of PCA analysis of the training set (Figure 5D) and test set (Figure 5F). It was demonstrated that the two groups of the training set and test set were heterogeneous. Moreover, we further subdivided each clinicopathological feature (TMN stage, stage, age, gender) and analyzed the survival of the risk scores of each subgroup (Figure 6A). The KM curve showed that the subgroups with significant survival (P < 0.05) in two groups are the younger (age less than 65)or older (age greater than 65)patients, male or female, stage III–IV groups, T III–IV groups, N0 or N I–II groups, and M0 (patients without any metastasis) groups. Subsequently, we utilized univariate and multivariate Cox regression analyses to see if the risk scores obtained by the two risk models may well be employed as an independent COAD prognostic signature. Univariate Cox regression analysis showed that age (HR: 1.027, 95% CI: 1.007–1.047, P = 0.009), T stage (HR: 2.975, 95% CI: 1.929–4.589, P < 0.001), N stage (HR: 2.045, 95% CI: 1.580–2.646, P < 0.001), M stage (HR: 4.375, 95% CI: 2.778–6.890, P < 0.001), and the risk score (HR: 3.373, 95% CI: 2.196–5.180, P < 0.001) in the training set were significantly positively associated with OS (Figure 6B). The grade (HR: 2.004, 95% CI: 1.249–3.216, P = 0.004) and risk score (HR: 4.413, 95% CI: 2.127–9.156, P < 0.001) of the test set were significantly positively correlated with OS (Figure 6D). Multivariate analysis of significant factors in univariate analysis showed that age (HR: 1.038, 95% CI: 1.017–1.058, P < 0.001), T stage (HR: 1.982, 95% CI: (1.213–3.237, P = 0.006), N stage (HR: 1.399, 95% CI: 1.040–1.881, P < 0.001), M stage (HR: 2.589, 95% CI: 1.501–4.467, P < 0.001), and risk score (HR: 2.948, 95% CI: 1.801–4.826, P < 0.001) were significantly associated with OS in COAD (Figure 6C), whereas the grade (HR: 2.135, 95% CI: 1.311–3.475, P = 0.002) and risk score (HR: 4.538, 95% CI: 2.187–9.418, P < 0.001) of the GSE17536 dataset were significantly positively correlated with OS (Figure 6E), suggesting that these two parameters can be used as independent prognostic factors. The risk score was found to be a useful independent predictor of outcome, outperforming other clinicopathological characteristics such as TMN stage, stage, age, sex, and grade.




Figure 5 | Validation of the prognostic risk model. Scatter plot revealing the risk score distribution of high risk and low risk and the relationship between survival time and risk score based on the training set (A) and test set (B). Heat map displaying the differential expression of the eight prognostic m7G-related lncRNAs in the high- or low-risk group. (C) Heat map showing clinicopathological features (TMN stage, stage, age, gender) and differences in the expression of eight lncRNAs in the high- and low-risk groups. *P < 0.05, **P < 0.01, and ***P < 0.001. The 3D scatter plot of PCA results of the training set (D) and test set (F).The t-SNE analysis of the training set (E) and test set (G).






Figure 6 | Survival analysis and construction of a nomogram. (A) Survival analysis in subgroups including gender, age, and tumor stages. Univariate Cox regression analysis revealing the association between patients’ overall survival and clinicopathological parameters along with m7G-related lncRNA risk scores in the training set (B) and test set (D). Multivariate Cox regression analysis uncovering independent prognostic factors in the training set (C) and test set (E). (F) Nomogram depending on the m7G-related lncRNA risk score and other clinicopathologic feature predicting the 1-, 3-, and 5-year overall survival for COAD patients. (G) Calibration curves illustrating the consistency between predicted and observed 1-, 3-, and 5-year overall survival rates in COAD patients based on the nomogram.





Formulation and examination of a nomogram

First of all, we created a nomogram comprising clinical characteristics of TMN stage, age, and risk score depending on the outcomes of univariate and multivariate Cox analyses (Figure 6F). We obtained the total score of a patient according to his clinical information, which could be used for assessing the prognosis of patients. Next, we also plotted the calibration curves (Figure 6G). The higher the number of curves of the three calibration curves close to the standard curve, the more accurate the prediction of the nomogram was. In addition, we performed the DCA (Figure 7A). The benefits of the nomogram were much higher than those of the extreme curves, according to the image results. The nomogram curve was higher than other clinical features (age, TNM stage) and risk score curve, indicating that the nomogram was more reliable in predicting survival rate. Finally, we made the ROC curve (Figure 7B) of multiple clinical factors (age, TNM stage, risk, and nomogram) and calculated the area under the ROC curve (AUC). We found that the AUC values of risk, nomogram, age, and TNM stage were 0.668, 0790, 0.606, 0.642, 0.683, and 0.666, respectively. When the AUC values of the nomogram and other clinical factors were compared, the nomogram was found to have a significantly higher AUC value, implying that the nomogram was a good prognostic predictor.




Figure 7 | Gene set enrichment analysis. DCA curve (A) and ROC curve (B) of the nomogram, risk, and other clinicopathologic feature in COAD. (C) GSEA results illustrating 10 significant enrichment of GO in low-risk and high-risk groups. The results of GO enrichment analysis of the differentially expressed genes shown by barplot (D), bubble chart (E), and chord diagram (F).





Gene set enrichment analysis

First of all, the COAD samples (n = 452) were divided into high- and low-risk groups. The connection between GO and risk group was investigated using GSEA. The following conditions were used to filter the enrichment function: NOM P < 0.05, FDR < 0.25. The top five functions enriched in the high-risk group were GOBP_NEGATIVE_REGULATION_OF_PLATELET_DERIVED_GROWTH_FACTOR_RECEPTOR_SIGNALING_PATHWAY, GOBP_NEUROPEPTIDE_SIGNALING_PATHWAY, GOBP_REVERSE_CHOLESTEROL_TRANSPORT, GOMF_DNA_BINDING_TRANSCRIPTION_REPRESSOR_ACTIVITY, and GOMF_RNA_BINDING_INVOLVED_IN_POSTTRANSCRIPTIONAL_GENE_SILENCING, and those enriched in the low-risk group were GOBP_ADAPTIVE_IMMUNE_RESPONSE, GOBP_HUMORAL_IMMUNE_RESPONSE, GOBP_IMMUNE_RESPONSE_REGULATING_SIGNALING_PATHWAY, GOBP_RESPONSE_TO_BACTERIUM, and GOCC_IMMUNOGLOBULIN_COMPLEX groups which were visualized with an enrichment lot to obtain multiple GSEA diagrams (Figure 7C). The high-risk group was shown to be mostly linked to DNA transcription and RNA posttranscriptional modification, while the low-risk group was mostly linked to immunological infiltration. Next, we used the sva package to batch correct the same 16,397 mRNAs of TCGA and GSE17536, obtaining the corrected expression matrix. Then we used differential expression analysis to find 67 genes that were differentially expressed between the two groups (P<0.05, | FC | > 1.5). Then, we ran GO and KEGG enrichment analyses. The top 10 molecular functions (MF), biological process (BP), and cellular components (CC) according to their enrichment score were visualized by the barplot (Figure 7D), bubble diagram (Figure 7E), and chord diagram (Figure 7F). The DEGs were mainly enriched in “antimicrobial humoral immune response mediated by antimicrobial peptide”, “antimicrobial humoral response”, “humoral immune response”, “response to molecule of bacterial origin”, “response to lipopolysaccharide”, “cellular response to lipopolysaccharide”, “cellular response to molecule of bacterial origin”, “neutrophil chemotaxis”, and other functions by differentially expressed genes. The top 30 KEGG pathways were visualized by the barplot (Supplementary Figure 3A), bubble diagram (Supplementary Figure 3B), and cluster circle diagram (Supplementary Figure 3C). The DEGs enriched in “IL-17 signaling pathway”, “rheumatoid arthritis”, “viral protein interaction with cytokine and cytokine receptor”, “toll-like receptor signaling pathway”, “influenza A”, “legionellosis”, “cytokine-cytokine receptor interaction” and “pertussis” were mainly activated.



Immune infiltration analysis of the risk model

The results of the GSEA showed that the low-risk category was mostly associated with immunological infiltration, according to GSEA outcomes. As a result, we discovered the association in risk score and the immune infiltration microenvironment. To begin, the infiltration of 16 immune cells and the scores of 13 immunological functions were analyzed utilizing the ssGSEA method. In comparison to the high-risk group, the low-risk group had stronger immune cell infiltration (Figure 8A) and more immune-related functions or pathways (Figure 8B). Secondly, COAD samples with a CIBERSORT output p value less than 0.05 were screened using the CIBERSORT algorithm for research. A bar graph was used for illustrating the percentage of 22 immune cells in 220 samples (Supplementary Figure 4). Only neutrophils and dendritic cells resting were negatively connected (P < 0.05) in the correlation analysis between these 22 immune cells and risk score (Figure 8C). In addition, based on COAD expression data, the MCPcounter software was applied to calculate the content of 10 categories of immune and stromal cells, and the violin diagram (Figure 8D) was created to demonstrate the abundance difference between the two groups. The low-risk group had considerably more cytotoxic lymphocytes, monocytic lineage, myeloid dendritic cells, and natural killer cells (NK cells) than the high-risk group (P < 0.05). Moreover, we obtained the immune score, stromal score, estimated score, and tumor purity of every patient using the ESTIMATE algorithm according to the proportion of immune and stromal cells in the TME. Then, based on the immune score, interstitial score, estimated score, tumor purity, cluster, and risk group, the score heat map of 29 immune cells and functions obtained by ssGSEA was made (Figure 8E). Furthermore, we detected the expression differences of 24 major histocompatibility complex (MHC) molecules in two groups and visualized them with a box diagram (Figure 8F). We discovered that the expression in the low-risk group was significantly greater than in the high-risk group. Finally, we examined the expression differences of 10 common immune checkpoint molecules (PDCD1, CD274, PDCD1LG2, CTLA4, LAG3, SIGLEC7, HAVCR2, LILRB2, VSIR, and FCGR3A) in two groups and made a box plot (Supplementary Figure 5). We discovered that CD274, PDCD1LG2, LAG3, SIGLEC7, HAVCR2, LILRB2, and FCGR3A were significantly overexpressed in the low-risk group.




Figure 8 | Immune infiltration analysis of the prognostic m7G-related lncRNA risk model. The infiltrating levels of 16 immune cell types (A) and 13 immune functions (B) in high-risk and low-risk groups estimated by ssGSEA. (C) The correlation of immune score and risk score calculated by CIBERSORT. (D) The violin diagram revealing the abundance of 10 types of immune and stromal cells between two groups via MCPcounter. (E) Heat map of 29 immune cells and functions displaying the difference of the immune score, stromal score, estimated score, and tumor purity in two groups through ESTIMATE. (F) Box plot of 24 MHC molecules’ expression level in two groups. ns, not significant, *P < 0.05, **P < 0.01, and ***P < 0.001.






Discussion

As everyone knows, colon cancer is one of the most common digestive tract carcinomas, with high malignancy and invasiveness, as well as a high incidence and fatality rate (22). As a result, researching prognostic markers in colon cancer is crucial (23). lncRNA is also important in the genesis and progression of colon cancer. For instance, the lncRNA MALAT1, which is upregulated in colon carcinoma, may accelerate colon cancer cell growth (24). CCAT1 and CCAT2 have also been reported to be closely related to colorectal cancer (25). According to the existing literature reports, the number of prognostic models constructed by using the public database COAD is increasing. For instance, m6A-associated lncRNAs are potential prognostic biomarkers of colon cancer (26), prognostic risk model of pyroptosis-associated lncRNAs (27), and establishment and validation of the ferroptosis-related lncRNA prognostic signature (28). In addition, RNA modification is involved in the biosynthesis, metabolism, and structural stability of RNA molecules, which is highly related to tumors (29). Overall, this is the first study in colon cancer to develop an m7G-related lncRNA risk model for predicting patient prognosis. Furthermore, this prognostic model is strongly correlated with clinicopathological factors, immune cells, and immune-related functions. Consequently, it could be utilized to guide immune targeted therapy and predict patient survival.

In our research, the prognostic model we constructed included eight lncRNAs, namely, ELFN1-AS1, GABPB1-AS1, SNHG7, GS1-124K5.4, ZEB1-AS1, PCAT6, C1RL-AS1, and MCM3AP-AS1. ELFN1-AS1 may improve colon cancer cell growth and migration while activating ERK and the epithelial–mesenchymal transition (EMT) pathway (30). Small nuclear RNA host gene 7 (SNHG7) is highly expressed in gastric and thyroid cancer and is associated with tumor stage and overall survival (31, 32). By overexpressing zinc finger enhancer-binding protein (ZEB1), ZEB1-AS1 was able to accelerate osteosarcoma and prostate cancer progression (33, 34). In addition, prostate cancer-associated transcript 6 (PCAT6) could promote the oncogenesis and angiogenesis of triple-negative breast cancer by regulating VEGFR2 (35). AKT/β-catenin/c-Myc pathway was activated by C1RL-AS1 to promote the cancerous behavior in stomach adenocarcinoma cells (36). Moreover, by affecting the miR-194-5p/FOXA1 axis, MCM3AP-AS1 has been shown to increase hepatocellular cancer growth (37). However, there are few reports concerning GABPB1-AS1 and GS1-124K5.4 in tumors. In summary, these lncRNAs were critical in the tumorigenesis and progression of tumors. Therefore, using lncRNA to construct our prognostic model seemed feasible and convincing.

Next, based on the GSEA outcomes of two groups, the high-risk group was mainly related to RNA modification, whereas the low-risk group was primarily enriched in immune cells and function. Based on the existing research, we have found some lncRNAs that could be identified as immunomodulatory factors, including lncRNA-COX2, THRIL, lncRNA-EPS, and MORRBID (38). Colon cancer was infiltrated by various immune cells, including tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), CD8T cells, and cancer-associated fibroblasts (CAFs) (39). In our study, the risk score of lncRNAs was associated with immune cells including neutrophils, resting dendritic cells, cytotoxic lymphocytes, monocytic lineage, myeloid dendritic cells, and NK cells. Their abundance was much greater in the low-risk group than in the high-risk group. Moreover, we also used R programs like ESTIMATE and ssGSEA to assess the level of immunological infiltration. To summarize, the tumor immune infiltration microenvironment was found to be strongly associated with our risk model.

Of course, our research also have many deficiencies. First of all, the AUC values of the 1-, 3-, and 5-year risk scores of the training set and test set were basically <0.7. The accuracy for prediction was not very high; thus, the risk model needed to be improved. For example, we could set more strict screening criteria of FC value and P value in differential expression analysis. In univariate Cox analysis, the threshold of P could be set to 0.001, filtering out better prognostic lncRNAs. Secondly, the validation training set was only verified by the retrospective data of GEO. We should also verify its long-term clinical value through more prospective studies. Additionally, we also discovered the association among risk score and immune cells, immune function, immune score, and MHC molecules. Referring to a recent study, the greater the tumor mutation load, the worse the prognosis of patients (40). Immune infiltration in tumors was an important prognostic marker of immunotherapeutic response (41). Therefore, it is important to study the relationship between tumor mutation burden and the response of immunotherapy. Last but not least, the eight lncRNAs in the model needed further experimental verification in vivo and in vitro to test their role in the tumorigenesis and progression of colon cancer.



Conclusion

According to the transcriptome expression matrix and clinical data of TCGA, we created a prognostic risk model consisting of eight m7G-related lncRNAs for COAD patients. Next, we also verified the prognostic model according to the expression matrix and clinical data of the GSE17536 dataset. This predictive risk model was shown to have independent prognostic significance and could effectively predict the OS rate for COAD patients. Furthermore, our research has provided a deeper understanding of the association between this prognostic model and the tumor-immune microenvironment. Finally, the m7G-related lncRNA risk model may help us identify possible COAD signatures or therapeutic targets.
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Background

Chimeric antigen receptor-engineered T cell (CAR-T) therapy has shown promising potential for anti-cancer treatment. However, for pancreatic ductal adenocarcinoma (PDAC), the lack of infiltrative ability of these CAR-T cells leads to sub-optimal treatment outcome.



Methods

Chemokine (C-C motif) ligand 19 (CCL19), the expression of which is regulated by the nuclear factor of activated T cell pathway, was transfected into targeting mesothelin CAR-T cells (mesoCAR-N19) using NFAT regulating element. It was expressed in activated CAR-T cells by OKT3 or mesothelin+ tumor cells but not in inactive cells. The migratory ability of these CAR-T cells was then measured. Subsequently, functional identification of these CAR-T cells was performed in vivo. In addition, the tumor lytic activity and proliferation of the CAR-T cells were measured in vitro. The degree of CAR-T cell infiltration and distribution into the PDAC tumors was examined using the immunohistochemical staining of hCD3 and the detection of CAR gene copy number by quantitative PCR. Finally, the functional assessment of chemokine (C-C motif) receptor 7 knock-out was performed in the CAR-T cells.



Results

Through in vitro Transwell assays, it was demonstrated that mesoCAR-N19 can be specifically expressed in CAR-T cells activated by tumor cells compared with conventional mesothelin CAR-T (mesoCAR) cells. We also observed that upregulating the expression of CCL19 can increase the recruitment of additional T cells. In vivo studies subsequently revealed that this highly specific recruitment of T cell infiltration is associated with enhanced tumor-suppressive activities downstream.



Conclusion

Induced expression of CCL19 can promote the anti-tumor ability of CAR-T cells by increasing their infiltrative ability. This study potentially uncovered novel method of activating CAR-T cells to enhance their infiltrative capacities, which offers a novel direction for PDAC treatment.





Keywords: pancreatic ductal adenocarcinoma, mesothelin, nuclear factor of the activated T cell (NFAT), chemokine (C-C motif) ligand 19 (CCL19), chimeric antigen receptor-engineered T cell (CAR-T)



Introduction

Pancreatic cancer (PC) is considered to be a highly aggressive malignancy that has a poor prognosis, the 5-year survival rate of which is <10% (Data collected in 2016) (1). The majority of PC cases are of the pancreatic ductal adenocarcinoma (PDAC) subtype (2). Typical treatment methods for PDAC, such as radiotherapy and chemotherapy, are unable to significantly improve patient survival (1, 2). Therefore, development of more precise and effective treatment strategies, including those of immunotherapy and adaptive immune cell therapy, is in urgent demand (3, 4).

Over the past decade, chimeric antigen receptor-modified T-cell (CAR-T) therapy has been proposed to be a potential treatment method for various malignancies such as NHL. Briefly, CAR is a fusion protein that contains an antigen-recognizing domain [single-chain variable fragment (scFv)], a hinge and transmembrane domain and several signaling domains (5). For the treatment of hematological malignancies, CAR-T has yielded highly satisfactory therapeutic effects. In diffuse large B-cell lymphoma (6, 7), the objective response rate (ORR) of CAR-T therapy can reach over 60%, whereas for multiple myeloma, the ORR of CAR-T therapy has been shown to reach over 90% (8, 9). However, in solid tumor treatment, CAR-T treatment has not been as effective (10, 11). For the treatment of hepatocellular carcinoma (12, 13), malignant glioma (14, 15) and ovarian cancer (16), CAR-T therapy has not resulted in efficacies comparable to that of leukemia. This discrepancy has been reported to be attributed to several factors. The degree of infiltration by these CAR-T cells has been observed to be poor (15, 17). In addition, the heterogeneity of the tumor tissues served as another obstacle (18, 19).The chemotaxis of CAR-T cells has not been as efficient in these solid tumors, which was inhibited further by the tumor microenvironment (17, 20–22). PC has a number of viable biomarkers with high levels of specificity, including mesothelin (23, 24) and HER2 (25, 26). However, for advanced PC, CAR-T therapy has been able to result in tumor suppression at the primary lesion due to poor infiltration and chemotaxis (16, 27).

To address this form of CAR-T cell tropism, memory T cell infiltration was increased by overexpressing the chemokine (C-C motif) ligand 19 (CCL19) in CAR-T cells (28). CCL19 is a chemokine ligand for chemokine (C-C motif) receptor 7 (CCR7), which is highly expressed on memory T cells and mature antigen-presenting cells (29). Physiologically CCL19 is expressed in the T zones in the lymph node, which enables mature fibroblasts to recruit memory T cells and mature antigen-presenting cells to activate T cells (30). Therefore, if CCL19 expression is chronically upregulated by CAR-T, then chemotaxis may become inefficient, since these CAR-T would then also home towards other tissues non-specifically instead of exclusively to the tumor tissues.

In this study, we conditionally expressed CCL19 in CAR-T cells targeting mesothelin using the nuclear factor of the activated T cell (NFAT) signaling pathway. After the CAR-T cells reach the tumor tissue and are activated by the antigen, the NFAT signaling pathway is then activated and triggers CCL19 expression. Subsequently, CCL19 expression is restricted inside the tumor tissue, which then promotes memory CAR-T infiltration into the tumor tissue.



Materials and methods


Cell culture

Briefly, 293T cells (cat. no. CRL-3216) were obtained from American Type Culture Collection (ATCC) and cultured with Dulbecco’s Modified Eagle’s Medium (DMEM; cat. no. 11995-065; Gibco; Thermo Fisher Scientific, Inc.) supplemented with 10% fetal bovine serum (FBS; cat. no. 10099-141; Gibco; Thermo Fisher Scientific, Inc.). BXPC-3 (CRL-1687, ATCC) and AsPC-1 (CRL-1682, ATCC) cells were obtained from ATCC and cultured in RPMI-1640 medium (cat. no. 11875093; Gibco; Thermo Fisher Scientific, Inc.) supplemented with 10% FBS. Human T cells were obtained from Allcells (cat. no. PB009-CD3-F). Both of the cells were cultured in 5% CO2 at 37°C.



Lentivirus preparation

The CAR and its promotor were designed as shown in Figure 1A. The genes and their promoters were fully synthesized and inserted into the lentiviral plasmid vector pLVX-IRES-GFP. For lentivirus particle packaging, this core lentiviral plasmid and two helper plasmids, pMD2.G and psPAX-2 were co-transfected into 293T cells using Lipofectamine 3000 (cat. no. L3000008;ThermoFisher Scientific, Inc.) transfection reagent. After 48 h, the supernatant was harvested and the lentivirus was concentrated according to the protocols of Lenti-X Concentrator (cat. no. 631232; Takara Bio, Inc.).




Figure 1 | Characterization of chimeric antigen receptor T (CAR-T) cells: (A) Schematic diagram of the CAR structure; (B) Detection of CAR protein transfection efficiency by flow cytometry and (C) statistics performed on five donor-derived cells; (D) Detection of C-C motif chemokine receptor 7 positivity by flow cytometry. Error bars represent the mean ± standard deviation (n = 5). ****P<0.0001. ns, no significant.





CAR-T cell preparation

Human T-cells were activated by the Dynabeads™ Human T-Activator CD3/CD28 (cat. no. 11161D; Thermo Fisher Scientific, Inc.) and cultured for 24 h. Subsequently, the lentivirus was added with a multiplicity of infection of 2. The cells were cultured with X-VIVO-15 (Lonza Group, Ltd.) with 100 IU/ml interleukin (IL)-2 (cat. no. 200-02; PeproTech China). The medium was changed every 2 days and the cells were cultured for 10 days after activation.



ELISA

To stimulate mesothelin CAR-T (mesoCAR) cells into expressing CCL19 in mesoCAR-N19 cells, we activated mesoCAR-N19 CAR-T cells using PHA (sigma, 11249738001) or tumor cells. The PHA-L concentration was kept at a 500-fold dilution, whereas the ratio of CAR-T cells to tumor cells in the co-culture was 1:1. The co-culture stimulation time with tumor cells or PHA-L was 6 h at 37°C. The cell supernatant was then collected afterwards and assayed using the Human CCL19/MIP-3βDoust ELISA (cat. no. DY361; R&D systems, Inc.) according to the manufacturer’s protocols. For the mouse plasma samples, blood samples were collected through the eye socket and centrifuged at 500 ×g for 10 min at room temperature, after which the supernatant was collected and assayed using the Human CCL19/MIP-3βDuoSet ELISA according to the manufacturers’ protocols.



Flow cytometry

In total, 1×106 cells were placed in a tube and centrifuged at 500 ×g for 5 min at room temperature, before the supernatant was discarded. The cells were then resuspended with phosphate-buffered saline (PBS) containing 2% bovine serum albumin, after which 1 μg antibody was added to the tube, followed by incubation for 30 min at 4˚C. To this solution, 1 ml PBS solution was added before the mixture was centrifuged at 500 ×g for 5 min at room temperature. The supernatant was then discarded and the cells were resuspended with 200 μl PBS before flow cytometry (CantoII, BD). The antibodies used were as follows: CCR7 (cat. no. 557734; BD Biosciences), CCL19 (cat. no. 566523; BD Biosciences), mesothelin (cat. no. 530203; Biolegend, Inc.), streptavidin (cat. no. 554067; BD Biosciences) and protein L (cat. no. RPL-P81Q7).



Cytotoxicity

CAR-T cells and target or non-target cells were first mixed in a graded ratio, whilst equivalent densities of either CAR-T cells alone or tumor cells alone were used as corresponding controls. After co-culturing for 4 h at 37°C, the 96-well plates were centrifuged at 500 ×g for 5 min at room temperature before 50 μl of this supernatant solution was subjected to lactate dehydrogenase quantification using the CytoTox 96® Non-Radioactive Cytotoxicity Assay (cat. no. G1780; Promega Corporation). After reading the optical density value at 490 nm using a microplate reader, the cytotoxicity was calculated according to the following equation: Cytotoxicity (%) = (Experimental group - T-cell only - tumor only-3 × medium control)/tumormax-tumorauto.



Transwell assays

We used Transwell plates (cat. no. 3414; Corning, Inc.) for the present study. Carboxyfluoresceinsuccinimidyl ester (CFSE)-labeled or unlabeled CAR-T cells were added to the upper chamber (1×105 cells/well) in RPMI 1640 medium. By contrast, the lower chamber contained pre-coated immobilized OKT3 (5 μg/ml) or AsPC-1 cells (1×105 cells) in RPMI 1640 medium supplement 2% FBS. The concentration of CCL19 was 10 ng/ml.



Cytokine assay

For the detection of cytokines released after CAR-T cell co-culturing with AsPC-1 cells, we mixed CAR-T cells with BxPC-3 or AsPC-1 cells for 18 h in RPMI 1640 medium supplement 2% FBS. After this, the supernatant was collected before six types of cytokines were tested using the Human Th1/Th2 Cytometric Bead Array (CBA) Kit (cat. no. 551809; BD Biosciences). Cytokine detection were performed by flow cytometry (BD FACSCanto™ II; BD Biosciences) and analyzed by the Flowjo software.



CFSE assay

The cells were labeled with the CellTrace™ CFSE Cell Proliferation Kit (cat. no. 65-0850-84; ThermoFisher Scientific, Inc.) according to the manufacturer’s protocols. After labeling, the CAR-T cells were co-cultured with Aspc-1 tumor cells at a 1:1 ratio for 2 days at 37°C, followed by staining of the cells with an anti-human CD3 antibody (Biolegend, 300311) and analyses by Flow cytometry.



Cas9/CRISPR gene editing

The T cells were activated and transduced with lentivirus as previously described. In total, 2×106 CAR-T cells were electroporated, 50pM CAS9 protein (Novoprotein, E365) and 300 pM single guide (sg) RNA were incubated together for 10 min at 25˚C to obtain Cas9/sgRNA ribonucleoprotein. CAR-T cells were resuspended in 20 μlP3 Buffer(Lonza Group, Ltd.), combined with RNP and electroporated using a 4D-Nucleofector™(Lonza Group, Ltd.) with pulse code E0115. Next, CAR-T cells were cultured with T cell medium as previously described for 4-5 days. The sgRNA targeting sequence in the CCR7 gene was 5′-CGCAACTTTGAGCGCAACA-3’ (CRISPRD HSPD0000007879).



Mouse experiments

Nod Scidγ mice aged 6 weeks were purchased from Shanghai Model Organisms Center, Inc, All mice were female. To obtain the pancreatic tumor xenograft model, 2×106AsPC-1 cells in 100 μl PBS were injected into the right flank of mice with Matrigel (Corning, Inc.). When the mean tumor volumes reached 300 mm3, we injected 2×106 CAR-T or 5×105 CAR-T cells suspended in 200 μl PBS, into the mice by tail vein injection before changes in tumor volume were observed every 7 days. The tumor volumes were monitored by caliper measurement and the volumes were calculated as follows: Volume = (length × width2)/2.

For in vivo imaging experiments, 2×106 AsPC-1-lucferase cells suspended in100 μl PBS were injected into the right flank of mice with Matrigel (Corning, Inc.).After CAR-T treatment, the images of mice were captured using IVIS®Lumina SeriesIII (PerkinElmer, Inc.) after luciferin (In vivo grade) treatment. The mice were sacrificed with an overdose of 10% pentobarbital sodium (100 mg/kg; intraperitoneal injection) and death was confirmed by the disappearance of heartbeat. The mouse experiments were approved by the Animal Research and Care Committee of Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University (Fuzhou, China) and performed in accordance with the NIH guidelines for Laboratory Animals and established Institutional Animal Use and Care protocols at the Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University.



IHC staining and quantitative PCR

Immunohistochemistry was performed on paraformaldehyde-fixed and paraffin-embedded samples. The tumors were excised using a microtome and stained according to standard procedures. The sections were stained with an anti-human CD3 antibody (cat. no. ab16669; Abcam) and then with HRP-conjugated Goat Anti-Rabbit IgG (cat. no. ab6721; Abcam).

For qPCR, the genomic DNA was extracted by using the TIANamp Genomic DNA Kit (cat. no. DP304; Tiangen Biotech Co., Ltd.). qPCR assay was performed according to standard procedures. The primer and probe sequences were as follows: Forward, 5’- CTGGCTGCAGTACGTGATTC-3’ and reverse, 5’-GGCCTCGAACTCTCCCACC-3’ and probe, 5’ fluorescein amidites-GATCCCGAGCTTCGGGTTGGAAGT-TAMRA 3’.



Statistical analysis

The statistical analysis was performed with using the GraphPad Prism software 9.2 (GraphPad Software, Inc.). One-way ANOVA and two-way ANOVA with Bonferroni post hoc test or t-tests unpaired were performed for different conditions. Statistical significance was represented by the following P-values: ****P<0.0001,***P<0.001, **P<0.01 and *P<0.05 or no statistical significance (ns).




Results


CAR-T preparation and phenotype

The lentiviral structures are shown in Figure 1A. In brief, the targeting mesothelin CAR (mesoCAR) construct was generated using a tandem construct encoding SS1 ScFv domain that was fused using the CD8 hinge and the 4-1BB and CD3ζ intracellular signaling regions. In addition, the co-expression system of CCL19 and mesoCAR was created by fusing the mesoCAR with human CCL19 cDNA using a 2A peptide to produce the mesoCAR-CCL19 construct. The conditional NFAT signaling-inducible expression of CCL19 was controlled by an NFAT-binding motif linked to a minimal IL-2 promoter (mesoCAR-N19). The expression of CAR in these CAR-T cells is shown in Figures 1B, C. When compared with that in mesoCAR, the transfection efficiency of CAR in mesoCAR-CCL19 and mesoCAR-N19 cells was significantly lower. This difference may have been caused by the larger gene insertions that took place in themesoCAR-CCL19 and mesoCAR-N19 constructs. However, there was no memory phenotypic difference among the three CAR-T cell subtypes (Figure 1D).



CCL19 expression

Next, we detected CCL19 levels in the supernatant. As shown in Figure 2A, CCL19 secretion could not be detected in the untransfected (NT-T) or mesoCAR cells. However, unlike mesoCAR-CCL19 cells, which showed markedly increased CCL19 secretion, CCL19 could only be weakly detected in the supernatant of mesoCAR-N19 cells. This difference could be attributed to the hypothesis that the NFAT promoter is inactive. Therefore, we measured the levels of CCL19 secreted by the CAR-T cells with and without PHA-L treatment for 6 h. As shown in Figure 2B, CCL19 secretion was significantly higher in the mesoCAR-N19 group stimulated with PHA compared with those in mesoCAR-N19 not stimulated with PHA. By contrast, CCL19 secretion in the mesoCAR-CCL19 cells was not significantly different between the PHA-treated and untreated groups. Subsequently, we investigated whether CCL19 expression in the mesoCAR-N19 cells can be induced by mesothelin-positive or negative tumor cells. Mesothelin expression levels were measured using flow cytometry (Figure 2C). Mesothelin expression was detected in AsPC-1 cells at high levels but not in BxPC-3. After co-culturing with AsPC-1 or BxPC-3 for 6 h, we collected the culture supernatant before measuring the CCL19 content using ELISA (Figure 2D). In the mesoCAR-N19 cells, CCL19 secretion could be induced by AsPC-1 but not by BxPC-3 cells. To investigate the CAR-T CCL19secretion kinetics, we next co-cultured the CAR-T cells with mesothelin-positive AsPC-1cells and sampled them for CCL19 secretion at multiple time points using flow cytometric analysis. As shown in Figure 2E, CCL19 secretion started at 2 h after co-culturing, before the highest levels of secretion were maintained for 24 h and gradually declining after 24 h. The decrease may have been due to the complete clearance of the tumor cells. By contrast, mesoCAR-CCL19 cells consistently released high levels of CCL19, which only decreased slightly after 24 h. This was most likely due to the deteriorating culture conditions. To investigate the correlation between mesothelin expression and CCL19 secretion, we constructed eight cell lines with differential mesothelin expression levels based on the BxPC-3 cell line. CAR-T cells were then co-cultured with these tumor cells for 16 h, before the concentration of CCL19 secreted into the supernatant was detected. In the mesoCAR-N19 group, CCL19 secretion showed a positive correlation with the levels of mesothelin expression, but not mesoCAR-CCL19 group (Figure 2F). Altogether, these results suggest that NFAT signaling-regulated CCL19 can be induced by tumor cell-surface mesothelin in vitro.




Figure 2 | Identification of C-C motif chemokine ligand 19 (CCL19) expression. (A) Resting CCL19 secretion level measured by ELISA; (B) Detection of CCL19 secretion in chimeric antigen receptor T (CAR-T) cells before and after activation with PHA-L by ELISA; (C) Detection of mesothelin expression in the cancer cell lines; (D) Detection of CCL19 expression in CAR-T cells after co-culturing with AsPC-1 cells by ELISA; (E) Expression of CCL19 at different time points after co-culturing with AsPC-1 cells as detected by flow cytometry; (F) Correlation analysis of mesothelin expression and CCL19 secretion. Error bars represent the mean ± standard deviation (n = 6). ***P<0.001; ns, no significance.





Chemotaxis of CCL19

CCR7 is a known receptor for CCL19 that is expressed on the surfaces of memory T cells and can mediate T cell chemotaxis toward areas of high CCL19 concentrations. Therefore, to assess ifCCL19 can recruit memory CAR-T cells, we performed a Transwell assay. The experimental schematic is shown in Figure 3A. In a 6.5-µm Transwell plate, serum-free RPMI 1640 culture medium containing a gradient concentration of CCL19 was added to the lower chamber, whereas CAR-T cells suspended in serum-free RPMI1640 media were added into the upper chamber. After 4 h, cells in the lower chamber were counted and collected for flow cytometry analysis. The results are presented in Figures 3B, C. There was no significant difference in the number of migratory cells in the lower chamber, since the proportion of the memory T cell population was similar in the groups. The CCR7 expression-positivity rate of the recruited cells in the lower chamber was significantly higher compared with that of the pre-experimental period in all the groups. Next, we assessed whether CCL19 secreted by the CAR-T cells serves a recruitment function. Since the mesoCAR-N19 cells can only release CCL19 in the activated state, we constructed two activation models, namely the coated OKT3 antibody model and the tumor cell stimulation model. The experimental models are shown in Figures 3D, G. A total of 8 h before the start of the experiment, we replaced the CAR-T cell culture medium with a RPMI 1640 medium without 2% FBS to avoid residual CCL19. The CAR-T cells to be added to the upper chambers were then stained with CFSE before the lower chamber was treated with coated OKT3 antibodies or mesothelin-positive tumor cells. An equivalent number of unlabeled CAR-T cells were added directly to the lower chamber whereas an equivalent number of CFSE-labeled CAR-T cells were added to the upper chamber. In total, 6 h later, cells from the lower chamber were collected for flow cytometry analysis and the number of CFSE-positive cells was counted. The results are presented in Figures 3E, H. MesoCAR-N19 cells demonstrated a potent chemoattractant ability compared with control group and mesoCAR-CCL19 group in both models tested, namely with OKT3 antibodies and with mesothelin-positive tumor cells, whilst cells in the other groups did not show significant recruitment ability relative to the inactivated state. In particular, mesoCAR-CCL19 cells, which chronically express CCL19, did not increase recruitment capacity. This may be due to the absence of a CCL19 gradient between the upper and lower chambers. Therefore, we collected the supernatants from the upper and lower chambers for ELISA, the results of which are depicted in Figures 3F, I. Only mesoCAR-N19 cells demonstrated a CCL19 concentration difference. In the mesoCAR-CCL19 group, despite the higher CCL19 concentrations, there was no significant difference in the concentrations between the upper and lower chambers. These findings suggest that mesoCAR-N19 cells can effectively release CCL19 in sites of activation to recruit other T cells.




Figure 3 | Migratory ability of the chimeric antigen receptor T (CAR-T) cells. (A) Schematic diagram of the experimental principle; (B) CAR-T cell migration and quantification; (C) C-C motif chemokine receptor 7 expression on cells undergoing migration detected by flow cytometry; (D) Schematic diagram of the experimental principle; (E) CAR-T cell migration and quantification; (F) Detection of C-C motif chemokine ligand 19 (CCL19) concentration in the upper and lower chambers by ELISA; (G) Schematic diagram of the experimental principle; (H) CAR-T cell migration and quantification; (I) Detection of CCL19 concentration in the upper and lower chambers by ELISA. Migration efficiency was calculated as cells undergoing migration/total number of cells in the upper chamber. Error bars represent the mean ± standard deviation (n = 6). **P<0.01; ***P<0.001; ns, no significance.





In vivo tumor suppression

To evaluate the potential tumor-suppressive efficiency of mesoCAR-N19 cells, we used the AsPC-1 cell line xenograft mouse model (Figure 4A). Changes in tumor volume were shown in Figure 4B. We found that the tumor suppression efficiency of mesoCAR-N19 cells was significantly higher compared with that of mesoCAR and mesoCAR-CCL19 cells in the initial stage (Figure 4B). The plasma CCL19 profile in the mice is shown in Figure 4C. Significantly higher levels of CCL19 secretion could be detected in both the mesoCAR-CCL19 and mesoCAR-N19 groups but not in the control or mesoCAR groups. CCL19 secretion in the mesoCAR-CCL19 group was significantly higher compared with that in the mesoCAR-N19 group, which maybe because mesoCAR-N19 tended to be only activated in the tumor tissue site. After tumor recession, traceable quantities of CCL19 expression could be detected in serum in the mesoCAR-CCL19 group but not in the mesoCAR-N19 group, although the presence of CD3-positive T cells could be detected in peripheral blood by flow cytometry in both of these CAR-T groups (Figure 4D). In addition, in peripheral blood, the CD3-positivity rates in the mesoCAR-CCL19 and mesoCAR-N19 groups were significantly higher compared with that in the mesoCAR group. This may be caused by the mesoCAR-CCL19 and mesoCAR-N19 cells exhibiting superior CAR-T cell recruitment capabilities compared with those of mesoCAR cells due to the expression of CCL19. As a result, after these CAR-T cells were activated and proliferate, the number of CAR-T cells in the bloodstream would be higher compared with that of mesoCAR. To further compare the tumor suppressive effects of mesoCAR-N19 and mesoCAR-CCL19 CAR-T cells in vivo, we reduced the number of CAR-T cells injected to 5×105. MesoCAR-N19 cells showed significantly more potentoncolytic effects compared with those by mesoCAR-CCL19 cells (Figures 4E, F). In addition, the mesoCAR-N19 cells significantly prolonged the survival of mice compared with that in mice injected with NT-T and mesoCAR-CCL19 cells (Figure 4G). These results suggest that mesoCAR-N19 cells confer superior tumor suppressive effects compared with conventional CARs.




Figure 4 | Analysis of chimeric antigen receptor T (CAR-T) cell function in vivo. (A) Schematic diagram of the experimental design; (B)Tumor volume measurements; (C) Changes in C-C motif chemokine ligand 19 levels in the mouse plasma as measured using ELISA; (D) Detection of CD3-positve cells using flow cytometry on day 40. (E) Images of tumors after CAR-T treatment; (F) Bioluminescence images and luminescence curve; (G) Mouse survival presented as Kaplan-Meier curves. In (B, C), the error bars represent the mean ± SD whereas in (F) the error bars represent the means± standard error of the mean (n =6). **p<0.01





Assessment of the impact of CCL19 on CAR-T function

In vivo experiments have shown that CAR-T expressing CCL19 can consistently and conditionally exert beneficial tumor-suppressive effects. Therefore, we next attempted to investigate if CCL19 is able to regulate the physiology of CAR-T itself. We assessed the killing activity of mesoCAR cells in the presence or absence of CCL19 at a final concentration of 50 ng/ml against mesothelin-positive cell lines. The presence of CCL19 in mesoCAR cells did not affect their mesothelin-positive tumor cell Aspc-1 killing activity over 4 h (Figure 5A). Subsequently, we tested the killing activity of the three CAR-TS against AsPC-1 cells over a 4-h period. There was no significant difference among the three CAR-T groups without CCL19 supplement (Figure 5B). In addition, cytokine release was measured. The type and quantity of cytokine released from each group of CAR-T cells are shown in Figures 5C–H. There was no significant difference in the effects of CCL19 on three group CAR-T cells. In addition, CCL19 did not significantly enhance the proliferative ability of the CAR-T cells that did not encounter the tumor cells, where there was no significant difference in the proliferation rate among the groups (Figure 6A). We next labeled CAR-T cells with CFSE before co-culturing them with mesothelin-positive tumor cells for 2 days to estimate the rate of CAR-T cell division (Figure 6B). The results showed that neither the addition of CCL19 nor the overexpression of CCL19 could increase the rate of T cell division (Figures 6C, D). These results suggest that CCL19 itself cannot increase the killing activity of CAR-T on the tumor cells. Therefore, the potent tumor-suppressive effects of CAR-T cells expressing CCL19 are unlikely to be directly derived from CCL19.




Figure 5 | Chimeric antigen receptor T (CAR-T) cell activity assays in vitro. (A) Killing activity assay of the mesothelin CAR-T cells with different concentrations of C-C motif chemokine ligand 19 on AsPC-1 cells by LDH assay; (B) Killing activity of CAR-T cells on theAsPC-1 cell line without CCL19; Secretion of (C) interleukin (IL)-2, (D) IL-4, (E) IL-6, (F) IL-10, (G) tumor necrosis factor-α and (H) interferon-γafter co-culturing the CAR-T cells with tumor cells, respectively (n = 3).






Figure 6 | Chimeric antigen receptor T (CAR-T) cell proliferation in vitro. (A) The proliferation curve of CAR-T cells in in vitro culture by cell count; (B) Schematic diagram of the principle of carboxyfluoresceinsuccinimidyl amino ester(CFSE) staining; (C) Flow cytometry detection of CFSE fluorescence; (D) Cell division generation statistics summarized from CFSE staining results. n = 6.





Effect of CCL19 on the distribution of T cells in vivo

The AsPC-1 tumor xenograft mouse model was used to assess the distribution of T cells. When the tumor volume reached ~300 mm3, we injected the CAR-T cells through the tail vein. Days later, we extracted the mouse liver, lung and tumor tissues to determine their mass before dividing them into two groups. One group was used for the immunohistochemical study of CD3 cell infiltration, whereas the other was used for analyzing the copy number of the CAR gene after genome extraction (Figure 6A). Both groups of CAR-T cells expressing CCL19 showed rapid infiltration in the tumor tissues. Specifically, mesoCAR-N19 cells exhibited significantly higher degrees of tumor infiltration compared with those in the other groups. By contrast, in the lung and liver tissues, mesoCAR exhibited higher levels of residency. MesoCAR-N19 also demonstrated a greater ability to specifically infiltrate the tumor tissues compared with that by mesoCAR-CCL19 cells (Figures 7A–D).




Figure 7 | Chimeric antigen receptor (CAR) T (CAR-T) cell infiltration and distribution. (A) Schematic diagram of experimental design; (B) Immunohistochemical staining of hCD3 and (C) quantification; (D) Detection of CAR gene copy numbers by quantitative PCR. Error bars represent the mean ± standard deviation (n = 6).*P<0.05; **P<0.01; ***P<0.001; ns, no significance.



To verify that the stronger tumor suppressive effects of mesoCAR-N19 cells was mediated through enhanced tumor homing, the CCR7 expression was knocked down in the CAR-T cells by Cas9/CRISPR before the CAR+CCR7- cells were sorted (CCL19-KO and N19-KO). CCR7 expression was first measured by flow cytometry (Figure 8A). After the CCR7 expression was knocked out, it could not be detected in cell surface by flow cytometry. The killing activity by CAR-T cells (mesoCAR-CCL19, mesoCAR-N19, CCL19-KO and N19-KO) of AsPC-1 cells was assessed. As Figure 8B shows, the capacity of cell killing was not significantly different among the CAR-T cell groups. After CCR7expression was knocked out, the migratory capacity of the CAR-T cells (mesoCAR-CCL19, mesoCAR-N19, CCL19-KO and N19-KO) were evaluated (Figure 3E). As Figure 8C shows, activated N19-KO cells by OKT3 in the lower chamber could not improve the migration rate of CAR-T cells in the upper chamber.




Figure 8 | Functional assessment of C-C motif chemokine receptor 7 (CCR7) knockout in chimeric antigen receptor T (CAR-T) cells. (A) CCR7 expressing detection on surface of wild type or CCR7 knockout CAR-T cells; (B) Tumor cell lysis assessment in vitro at 5 ET ratio(n = 6); (C) Migratory capacity estimation using Transwell assays (n = 6); (D) Tumor suppression curve; (E) Mouse survival presented as Kaplan-Meier curves (n =6). Error bars represent the mean ± standard deviation (n = 6). **P<0.01;***P<0.001; ns, no significance.



Furthermore, in vivo tumor experiments were performed. Briefly, AsPC-1 cells were injected subcutaneously. After the mean tumor volume reached >300 mm3, 5×105 CAR-T cells were injected intravenously and tumor volume was measured once a week. As Figure 8D shows, the tumor suppressive activity of N19-KO cells was significantly weaker compared with that of mesoCAR-N19 cells but had no significant difference with that of CCL19-KO cells. These observations suggest that mesoCAR-N19 cells can attract additional CAR-T cells to the tumor to facilitate suppression by enhancing infiltration into the tumor tissues.




Discussion

In this study, we designed a CAR-T targeting mesothelinco-expressing CCL19 downstream of an inducible expression system regulated by NFAT signaling. Furthermore, we compared the infiltrative capabilities and killing abilities of these CAR-T cells with those of the mesoCAR-T cells without CCL19 expression in addition to those of chronically CCL19-expressing CAR-T cells as controls. Both types of CAR-Ts overexpressing CCL19 (mesoCAR-CCL9 and mesoCAR-N19) exhibited higher tumor infiltration abilities when compared with those by conventional CAR-T (mesoCAR-T). However, mesoCAR-N19 cells had higher tumor-specific infiltration ability and superior killing effects on the tumor compared with those by mesoCAR-CCL9 cells.

For the treatment of solid tumors with CAR-T cell therapy, the level of CAR-T cell infiltration is critical for determining the therapeutic outcome (10, 17). However, CAR-T infiltration into solid tumors has been poor owing to the lack of effective chemokines for inducing CAR-T tropism in the tumor tissues (31). Inducing the expression of chemokines in CAR-T cells to promote additional CAR-T cell infiltration has been proposed to be a feasible approach. It has been previously shown that overexpressing CCL19 in CAR-T cells can promote the infiltration of CAR-T cells and other immune cell types such as dendritic cell to enhance therapeutic effects (28, 32). However, at the initial stages following CAR-T cell transfusion, the destination of CAR-T cells is not tumor-specific. In particular, after intravenous administration, CAR-T cells were found to preferentially enter the pulmonary circulation before homing to various secondary lymph nodes throughout the body (33). Therefore, if the CAR-T cells were programmed to chronically overexpress CCL19, it would not be able to efficiently recruit other CAR-T cells or immune cells to specifically infiltrate the tumor tissue. Therefore, use of an inducible signaling pathway, namely the NFAT signaling pathway which is necessary signaling for T cell activated, to regulate CCL19 expression was attempted for the present study. The rationale is that only CAR-T cells that have successfully infiltrated into the tumor tissues can be activated by the tumor cells and release CCL19 to recruit other immune cells for infiltration. A similar experimental design has been previously applied to CAR-T cells expressing IL-12 (34). Since mesothelin is also weakly expressed in the normal tissues, such as the peritoneum and pericardium, off-target toxicity has been observed in previous clinical studies testing mesothelin CAR-T cells (35). If CAR-T or other immune cells can be specifically recruited to the tumor tissues, then this off-target toxicity can theoretically be alleviated.

CCL19 is mainly expressed in cells in the lymph node and is used to recruit memory T cells and mature antigen-presenting cells. In terms of CAR-T cells, it has been proposed that cells with a memory phenotype tend to have a high proliferative capacities and resistance to depletion in vivo. Therefore, there is frequently an association between the size of the memory cell population and beneficial therapeutic effects in hematoma treatment (36). In the case of solid tumors, since memory CAR-T cells express CCR7, they may tend to home to lymph nodes but fail to infiltrate into the tumor tissue in vivo. Therefore, in the present study, conditionally-expressed CCL19 could facilitate the recruitment of CAR-T cells. In particular, memory CAR-T cells may infiltrate into sites with high CCL19 concentration to augment the suppressive effects in the tumor.

In addition, another factor limiting the use of CAR-T cells in the clinic is the time required for CAR-T cell preparation. This process typically takes 17 days, which is dominated by the expansion of CAR-T cells required to obtain clinically sufficient doses (37). For solid tumors, the general dose of CAR-T cells needs to be higher compared with that for lymphomas, which is mainly due to insufficient CAR-T infiltration. In the present study, inducing the expression of CCL19 effectively directed the chemotactic CAR-T cells to specifically infiltrate the PC tumor tissue. This infiltration can potentially lower the CAR-T dose required in the clinical setting. The reduction in the preparation cost may also improve the therapeutic effects because of the shortened time period required for CAR-T cell division and differentiation.

In summary, the NFAT-regulated expression of CCL19 in mesothelin-targeting CAR-T cells in the present study was able to effectively lyse the PC tumor cells. Furthermore, these cells can precisely release CCL19 in the tumor tissues to recruit additional memory T cells, including memory CAR-T cells, to infiltrate inside the PC tumor tissues for enhancing the tumor suppressive effects.



Data availability statement

The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding author/s.



Ethics statement

The animal study was reviewed and approved by Ethics committee of Fujian Provincial Hospital.



Author contributions

Conception and design: LH, YT and SC. Experiments: JH, ZW and CyL. Acquisition and analysis of data: JH, ZW, CyL, ZC, FK and CfL. Interpretation of data: TL and LH. All authors contributed to the article and approved the submitted version.



Funding

The present study was supported by the National Natural Science Foundation of China (#82173250 to SC), Joint Funds for the innovation of science and technology, Fujian Province (#2018Y9098 to SC), High-level hospital foster grants from Fujian Provincial Hospital (#2019HSJJ13 to SC), Education and Scientific Research Foundation of Fujian Province (#2060402 to SC), Fujian Provincial Health and Family Planning Research Medical Inovation Project (#2019-cx-3 to SC), Fujian Medical Innovation Project (#2020CXA001 to YT) and Fujian Natural Science Foundation (#2020J011097 to YT), Fujian Province Health and Middle-aged and Young Scientific Research Major Project (#2021ZQNZD001 TOSC).



Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



References

1. Ansari, D, Tingstedt, B, Andersson, B, Holmquist, F, Sturesson, C, Williamsson, C, et al. Pancreatic cancer: yesterday, today and tomorrow. Future Oncol (2016) 12:1929–46. doi: 10.2217/fon-2016-0010

2. Goral, V. Pancreatic cancer: Pathogenesis and diagnosis. Asian Pac J Cancer Prev (2015) 16:5619–24. doi: 10.7314/APJCP.2015.16.14.5619

3. Gupta, R, Amanam, I, and Chung, V. Current and future therapies for advanced pancreatic cancer. J Surg Oncol (2017) 116:25–34. doi: 10.1002/jso.24623

4. Ilic, M, and Ilic, I. Epidemiology of pancreatic cancer. World J Gastroenterol (2016) 22:9694–705. doi: 10.3748/wjg.v22.i44.9694

5. Feins, S, Kong, W, Williams, EF, Milone, MC, and Fraietta, JA. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am J Hematol (2019) 94:S3–9. doi: 10.1002/ajh.25418

6. Neelapu, SS, Locke, FL, Bartlett, NL, Lekakis, LJ, Miklos, DB, Jacobson, CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory Large b-cell lymphoma. N Engl J Med (2017) 377:2531–44. doi: 10.1056/NEJMoa1707447

7. Wang, M, Munoz, J, Goy, A, Locke, FL, Jacobson, CA, Hill, BT, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med (2020) 382:1331–42. doi: 10.1056/NEJMoa1914347

8. Cohen, AD, Garfall, AL, Stadtmauer, EA, Melenhorst, JJ, Lacey, SF, Lancaster, E, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Invest (2019) 129:2210–21. doi: 10.1172/JCI126397

9. Raje, N, Berdeja, J, Lin, Y, Siegel, D, Jagannath, S, Madduri, D, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med (2019) 380:1726–37. doi: 10.1056/NEJMoa1817226

10. Martinez, M, and Moon, EK. CAR T cells for solid tumors: New strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol (2019) 10:128. doi: 10.3389/fimmu.2019.00128

11. Newick, K, O'Brien, S, Moon, E, and Albelda, SM. CAR T cell therapy for solid tumors. Annu Rev Med (2017) 68:139–52. doi: 10.1146/annurev-med-062315-120245

12. Dai, H, Tong, C, Shi, D, Chen, M, Guo, Y, Chen, D, et al. Efficacy and biomarker analysis of CD133-directed CAR T cells in advanced hepatocellular carcinoma: a single-arm, open-label, phase II trial. Oncoimmunology (2020) 9:1846926. doi: 10.1080/2162402X.2020.1846926

13. Shi, D, Shi, Y, Kaseb, AO, Qi, X, Zhang, Y, Chi, J, et al. Chimeric antigen receptor-Glypican-3 T-cell therapy for advanced hepatocellular carcinoma: Results of phase I trials. Clin Cancer Res (2020) 26:3979–89. doi: 10.1158/1078-0432.CCR-19-3259

14. Brown, CE, Badie, B, Barish, ME, Weng, L, Ostberg, JR, Chang, WC, et al. Bioactivity and safety of IL13Ralpha2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res (2015) 21:4062–72. doi: 10.1158/1078-0432.CCR-15-0428

15. O'Rourke, DM, Nasrallah, MP, Desai, A, Melenhorst, JJ, Mansfield, K, Morrissette, JJD, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med (2017) 9:eaaa0984. doi: 10.1126/scitranslmed.aaa0984

16. Beatty, GL, O'Hara, MH, Lacey, SF, Torigian, DA, Nazimuddin, F, Chen, F, et al. Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial. Gastroenterology (2018) 155:29–32. doi: 10.1053/j.gastro.2018.03.029

17. Rodriguez-Garcia, A, Palazon, A, Noguera-Ortega, E, Powell, DJ Jr., and Guedan, S. CAR-T cells hit the tumor microenvironment: Strategies to overcome tumor escape. Front Immunol (2020) 11:1109. doi: 10.3389/fimmu.2020.01109

18. Kailayangiri, S, Altvater, B, Wiebel, M, Jamitzky, S, and Rossig, C. Overcoming heterogeneity of antigen expression for effective CAR T cell targeting of cancers. Cancers (Basel) (2020) 12:1075. doi: 10.3390/cancers12051075

19. Majzner, RG, and Mackall, CL. Tumor antigen escape from CAR T-cell therapy. Cancer Discov (2018) 8:1219–26. doi: 10.1158/2159-8290.CD-18-0442

20. Poorebrahim, M, Melief, J, Pico de Coana, Y, LW, S, Cid-Arregui, A, and Kiessling, R. Counteracting CAR T cell dysfunction. Oncogene (2021) 40:421–35. doi: 10.1038/s41388-020-01501-x

21. Ramakrishna, S, Barsan, V, and Mackall, C. Prospects and challenges for use of CAR T cell therapies in solid tumors. Expert Opin Biol Ther (2020) 20:503–16. doi: 10.1080/14712598.2020.1738378

22. Saka, D, Gokalp, M, Piyade, B, Cevik, NC, Arik Sever, E, Unutmaz, D, et al. Mechanisms of T-cell exhaustion in pancreatic cancer. Cancers (Basel) (2020) 12(8). doi: 10.3390/cancers12082274

23. Hassan, R, and Ho, M. Mesothelin targeted cancer immunotherapy. Eur J Cancer (2008) 44:46–53. doi: 10.1016/j.ejca.2007.08.028

24. Le, K, Wang, J, Zhang, T, Guo, Y, Chang, H, Wang, S, et al. Overexpression of mesothelin in pancreatic ductal adenocarcinoma (PDAC). Int J Med Sci (2020) 17:422–7. doi: 10.7150/ijms.39012

25. Chou, A, Waddell, N, Cowley, MJ, Gill, AJ, Chang, DK, Patch, AM, et al. Clinical and molecular characterization of HER2 amplified-pancreatic cancer. Genome Med (2013) 5:78. doi: 10.1186/gm482

26. Feng, K, Liu, Y, Guo, Y, Qiu, J, Wu, Z, Dai, H, et al. Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers. Protein Cell (2018) 9:838–47. doi: 10.1007/s13238-017-0440-4

27. Beatty, GL, Haas, AR, Maus, MV, Torigian, DA, Soulen, MC, Plesa, G, et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res (2014) 2:112–20. doi: 10.1158/2326-6066.CIR-13-0170

28. Adachi, K, Kano, Y, Nagai, T, Okuyama, N, Sakoda, Y, and Tamada, K. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat Biotechnol (2018) 36:346–51. doi: 10.1038/nbt.4086

29. Forster, R, Davalos-Misslitz, AC, and Rot, A. CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol (2008) 8:362–71. doi: 10.1038/nri2297

30. Yan, Y, Chen, R, Wang, X, Hu, K, Huang, L, Lu, M, et al. CCL19 and CCR7 expression, signaling pathways, and adjuvant functions in viral infection and prevention. Front Cell Dev Biol (2019) 7:212. doi: 10.3389/fcell.2019.00212

31. Mollica Poeta, V, Massara, M, Capucetti, A, and Bonecchi, R. Chemokines and chemokine receptors: New targets for cancer immunotherapy. Front Immunol (2019) 10:379. doi: 10.3389/fimmu.2019.00379

32. Tokunaga, Y, Sasaki, T, Goto, S, Adachi, K, Sakoda, Y, and Tamada, K. Enhanced anti-tumor responses of tumor antigen-specific TCR-T cells genetically engineered to produce IL-7 and CCL19. Mol Cancer Ther (2022) 21:138–48. doi: 10.1158/1535-7163.MCT-21-0400

33. Adusumilli, PS, Cherkassky, L, Villena-Vargas, J, Colovos, C, Servais, E, Plotkin, J, et al. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci Transl Med (2014) 6:261ra151. doi: 10.1126/scitranslmed.3010162

34. Zhang, L, Kerkar, SP, Yu, Z, Zheng, Z, Yang, S, Restifo, NP, et al. Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Mol Ther (2011) 19:751–9. doi: 10.1038/mt.2010.313

35. Tanyi, JL, Stashwick, C, Plesa, G, Morgan, MA, Porter, D, Maus, MV, et al. Possible compartmental cytokine release syndrome in a patient with recurrent ovarian cancer after treatment with mesothelin-targeted CAR-T cells. J Immunother (2017) 40:104–7. doi: 10.1097/CJI.0000000000000160

36. Fraietta, JA, Lacey, SF, Orlando, EJ, Pruteanu-Malinici, I, Gohil, M, Lundh, S, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med (2018) 24:563–71. doi: 10.1038/s41591-018-0010-1

37. Vormittag, P, Gunn, R, Ghorashian, S, and Veraitch, FS. A guide to manufacturing CAR T cell therapies. Curr Opin Biotechnol (2018) 53:164–81. doi: 10.1016/j.copbio.2018.01.025



Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Hu, Wang, Liao, Chen, Kang, Lin, Lin, Huang, Tian and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 08 August 2022

doi: 10.3389/fimmu.2022.950134

[image: image2]


Dynamics of PD-1 expression are associated with treatment efficacy and prognosis in patients with intermediate/high-risk myelodysplastic syndromes under hypomethylating treatment


Suxia Geng †, Ruohao Xu †, Xin Huang, Minming Li, Chengxin Deng, Peilong Lai, Yulian Wang, Ping Wu, Xiaomei Chen, Jianyu Weng * and Xin Du *


Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China




Edited by: 

Jinghua Pan, Jinan University, China

Reviewed by: 

Jing-dong Zhou, Jiangsu University Affiliated People’s Hospital, China

Qi Shen, The First Affiliated Hospital of South University of Science and Technology of China, China

*Correspondence: 

Xin Du
 xind_gdph2020@163.com
 miyadu@hotmail.com 

Jianyu Weng
 wengjianyu1969@163.com



†These authors have contributed equally to this work


Specialty section: 
 This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Immunology


Received: 22 May 2022

Accepted: 14 July 2022

Published: 08 August 2022

Citation:
Geng S, Xu R, Huang X, Li M, Deng C, Lai P, Wang Y, Wu P, Chen X, Weng J and Du X (2022) Dynamics of PD-1 expression are associated with treatment efficacy and prognosis in patients with intermediate/high-risk myelodysplastic syndromes under hypomethylating treatment. Front. Immunol. 13:950134. doi: 10.3389/fimmu.2022.950134



Hypomethylating agents (HMAs) are widely used in patients with higher-risk MDS not eligible for stem cell transplantation. However, the general response rate by HMAs is lesser than 50% in MDS patients, while the relapse rate is high. Emerging evidence indicates that demethylating effects committed by HMAs may facilitate the up-regulation of a range of immune checkpoints or cancer suppressor genes in patients with MDS, among which the programmed death protein 1 (PD-1) and its ligands are demonstrated to be prominent and may contribute to treatment failure and early relapse. Although results from preliminary studies with a limited number of enrolled patients indicate that combined administration of PD-1 inhibitor may yield extra therapeutic benefit in some MDS patients, identifications of this subgroup of patients and optimal timing for the anti-PD-1 intervention remain significant challenges. Dynamics of immune checkpoints and associated predictive values during HMA-treatment cycles remained poorly investigated. In this present study, expression levels of immune checkpoints PD-1 and its ligands PD-L1 and PD-L2 were retrospectively analyzed by quantitative PCR (Q-PCR) in a total of 135 myelodysplastic syndromes (MDS) cohort with higher-risk stratification. The prognostic value of dynamics of these immune checkpoints during HMA cycles was validated in two independent prospective cohorts in our center (NCT01599325 and NCT01751867). Our data revealed that PD-1 expression was significantly higher than that in younger MDS patients (age ≤ 60) and MDS with lower IPSS risk stratification (intermediate risk-1). A significantly up-regulated expression of PD-1 was seen during the first four HMA treatment cycles in MDS patients, while similar observation was not seen concerning the expression of PD-L1 or PD-L2. By utilizing binary logistic regression and receiver operating characteristic (ROC) models, we further identified that higher or equal to 75.9 PD-1 expressions after 2 cycles of HMA treatment is an independent negative prognostic factor in predicting acute myeloid leukemia (AML) transformation and survival. Collectively, our data provide rationales for monitoring the expression of PD-1 during HMA treatment cycles, a higher than 75.9 PD-1 expression may identify patients who will potentially benefit from the combined therapy of HMA and PD-1 inhibitors.
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Introduction

Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic stem cell diseases characterized by bone marrow failure, dysplasia of myeloid cell linage, and a high risk of acute myeloid leukemia (AML) transformation (1). Hypomethylating agents (HMAs) such as decitabine and azacitidine are the current standard of care for patients with higher-risk MDS (1). Despite prolonged survival achieved when patients respond to HMA, the overall response rate (ORR) remains low, and the duration of response is often transient (2). According to the revised prognostic scoring system of MDS (IPSS-R), median overall survival (OS) ranges from 3.0 years for the intermediate-risk group to 0.8 years for the very high-risk group in MDS, with progression to AML accounting for almost half of deaths (3).

The pathogenesis of MDS remains poorly understood. Studies have revealed the involvement of both hematopoietic cell-intrinsic events (such as age-related mutations) and extrinsic alternations (such as immune deregulation and proinflammatory microenvironment) (4–6). More recently, emerging evidence emphasizes an immune evasion mechanism in the pathogenesis of MDS. Dysfunctional T cells may contribute to the disease progression of MDS and be preferentially associated with a higher risk of AML transformation (7, 8). Negative immune regulatory factors have been proposed to contribute to a protective microenvironment for malignant cells and are associated with a higher risk of AML transformation (9–11).

Immune checkpoint proteins, expressed on different cell subsets with the ability to initiate immune responses either by their activation or inhibition, have been considered a vital part of immune evasion in multiple cancers. The programmed death protein 1 (PD-1) immune checkpoint is considered one of the central mediators of immune tolerance in multiple tumors (12). PD-1 binds two ligands, programmed death-ligand 1 (PD-L1) and PD-L2. PD-L1 is the primary ligand expressed on T and primary B cells, which induces co-inhibitory signals in activated T cells. Furthermore, PD-L1 is expressed in multiple tumor types that deliver negative signals, inhibiting anti-tumor immunity (4). PD-L2 expression is mainly restricted to antigen-presenting cells, such as dendritic cells and macrophages (13). The combined therapy of HMA with PD-1 inhibitors may be of potential therapeutic value in treating patients with higher-risk or relapsed/refractory MDS. Yet another important consideration in the design of an HMA-based combination is the timing of administration of checkpoint inhibitors (14). Evaluation of dynamics of immune checkpoint proteins during HMA treatment cycles may provide rational intervention time points for the combined use of PD-1 inhibitors. However, studies on the dynamics of these checkpoint markers in MDS patients treated with HMA are still limited (15).

To evaluate the dynamics and prognostic value of immune checkpoints PD-1, PD-L1, and PD-L2 in HMA treatment cycles, a total of 135 patients with intermediate/high-risk MDS were enrolled and retrospectively investigated in this present study. Our data identified elevated expression of PD-1 post-HMA treatment may serve as a prognostic marker for inferior survival and AML transformation. Inhibition of the post-HMA elevation of PD-1 may be of potential benefit in higher-risk MDS.



Materials and methods


Patients

One hundred thirty-five newly diagnosed and treatment-naïve MDS patients, including 93 males and 42 females, were enrolled in the Guangdong Provincial People’s Hospital from April 2008 to March 2016. For the evaluation of baseline PD-1, PD-L1, and PD-2, expression levels of these immune checkpoints were analyzed in a 102-patient cohort (baseline cohort) under untreated conditions. An additional age- and risk-matched 33-patient cohort from 2 prospective trials serve as the validation cohort to investigate the dynamics and predictive value of the immune checkpoint factors during HMA cycles (16). Treatments for these patients are azacitidine 75mg/m2/day subcutaneously (SC) for 7 days every 28 days (NCT01599325, n=16) and decitabine 15mg/m2 as a continuous intravenous infusion within 3 hours, repeated every 8 hours for 3 consecutive days (NCT01751867, n=17). Written informed consent was obtained from all patients. The present retrospective study was approved by the Institutional Ethics Committee of Guangdong Provincial People’s Hospital. Diagnoses were conducted according to the French-American-British classification and re-classified according to the 2016 edition of WHO classification of myeloid neoplasms and acute leukemia. The median age of the enrolled patients was 60 (15-84) years. All patients were classified as the intermediate/high-risk group according to the international prognostic scoring system (IPSS) (17). As the revised edition of the international scoring system (IPSS-R) has re-classified the prognosis of MDS into 5 prognosis-based stratifications (18), we re-calculated the scores of MDS patients according to each edition of IPSS systems and compared risk-based stratifications. Results revealed that the utilization of IPSS-R did not significantly change the intermediate/high-risk entity of these enrolled MDS patients (Supplemental Table 1). Thus, the IPSS- stratifications were kept and utilized in the subsequent risk-based analysis. Karyotypes were classified according to the new comprehensive cytogenetic scoring system for primary MDS and oligoblastic acute myeloid leukemia (19). All baseline characteristics, including sex ratio, median age, bone marrow (BM) blast percentage, WHO classification, and IPSS risk stratification, remained similar between the baseline and the validation cohort (Table 1).


Table 1 | Baseline characteristics of enrolled patients.





RNA extraction and cDNA synthesis

Whole bone marrow mononuclear cells (MNCs) were collected from patients at the time points of pre-treatment, after the 2nd (C2), the 4th HMA cycle (C4), and the 6th HMA treatment cycle (C6). Total RNA was extracted with TRIzol (Life Technologies) according to the manufacturer’s recommendations. The quality of extracted RNA was analyzed using a 0.8% agarose gel stained with Goldview. RNA (~1μg) was synthesized into the first single-strand cDNA with random hexamer primers using the PrimeScript™ RT Reagent Kit (TaKaRa) for subsequent quantitative PCR assays.



Quantitative PCR (Q-PCR)

Quantification of PD-1, PD-L1, and PD-L2 transcripts was performed by real-time PCR (TaqMan) with the ABI 7500 Sequence Detection System (Applied Biosystems, Foster City, CA) as previously described (20). The internal control gene ABL1 was used for normalization of the Q-PCR results to compensate for variations in the quality and quantity of RNA and cDNA (21). PD-1, PD-L1, and PD-L2 Q-PCR primers and probes were designed by Primer Express software and synthesized by Life Technologies (Supplemental Table 2). The amplification efficiency of the primers and probes was determined. ABL1 plasmids standard (1×106, 1×105, 1×104, 1×103, and 1×102 copies/μl) were made. The amplification efficiency of the target genes was close to that of the ABL1 reference gene; thus, they shared a set of standards.

Q-PCR reactions for the cDNA samples, DNA standards, and water as negative control were conducted in a total volume of 20 μL, including 10 μL 2× FastStart Universal Probe Master (ROX) (Roche, Mannheim, Germany), 300 nM of each primer, and 200 nM probe. The thermal cycler parameters were as follows: 2 minutes at 50°C, 10 minutes at 95°C, and 45 cycles of 95°C for 15 seconds and 62°C for 1 minute. The expression levels of the target genes are indicated as “(copy number of the target gene/copy number of the internal reference*100) %” with comparisons between different samples. All PCR assays were performed in duplicate and reported as means.



Flow cytometry

Cell surface staining for flow cytometry was performed using the following antibodies: CD3-AF700 (clone UCHT1, BD), CD4-APC-H7 (clone RPA-T4, BD), CD8-APC-H7 (clone SK1, BD) and PD-1-BV421 (clone EH12.2H7, Biolegend). Isotype-matched antibodies, labeled with the proper fluorochromes, were used as negative controls. Cells were analyzed using a BD Fortessa flow cytometer (BD Biosciences), and data analysis was performed with Flowjo 10.6 software as previously described (22).



Targeted gene sequencing

Targeted gene sequencing of a 13-gene panel of hotspot mutations was performed using whole bone marrow mononuclear cells (MNCs) at diagnosis. These hot mutations including TET2, TP53, DNMT3A, and ASXL1 were listed. (Supplemental Table 3).



Statistical analysis

All data were analyzed using SPSS software (version 19.0; IBM Corp.) and presented with mean ± SEM. Differences in PD-1, PD-L1, and PD-L2 expression between two groups were analyzed using Student’s t-test or Mann-Whitney u-test. Differences among multiple groups were determined by one-way or two-way ANOVA followed by Tukey’s post hoc test. For comparisons between paired samples, paired t-test was applied. Spearman correlation analysis was used to analyze correlations. The Wilcoxon signed-rank test was used to compare data between two paired groups. Receiver operating characteristic (ROC) curves were used to evaluate factors’ sensitivity and specificity in predicting AML transformation events. A binary logistic regression model was used to investigate the predictive value of factors in predicting AML transformation events. A p-value lower than 0.05 was considered statistically significant.




Results


Baseline and subgroup expression of PD-1, PD-L1, and PD-L2 in MDS

Of 135 enrolled patients in this study, 58 patients (58/135, 43.0%) were diagnosed with refractory anemia with excess blast 1 (MDS-EB1), 37 patients (37/135, 27.4%) with MDS-EB2, and 40 patients (40/135, 29.6%) with MDS with multilineage dysplasia (MDS-MLD). The median age of enrolled patients was 60 (15-84) years. All patients were assessed and were classified into the intermediate/high-risk group according to the international prognostic scoring system (IPSS) (17). To test the reliability of the Q-PCR method in investigating checkpoint expression in BM, paired Q-PCR and flow cytometry assays for PD-1 were performed using MNC samples at diagnosis from nine patients with MDS. A median of 11.69% (7.22%-20.25%) MNCs were positive for PD-1 expression by flow cytometry (FCM) assays (Figure 1A), while the median Q-PCR expression for PD-1 in these samples was 29.72 (5.06-47.88). Pearson’s correlation analysis indicated that PD-1 expression levels by FCM assays correlated with those from Q-PCR assays (R = 0.6181, P = 0.007) (Figure 1B). Thus, these results confirmed the feasibility of the Q-PCR method in evaluating immune checkpoint expression in MNC samples. For mutation profiling, targeted gene sequencing of a 13-gene panel of hotspot mutations was performed using whole bone marrow mononuclear cells (MNCs) at diagnosis. These hot mutations including TET2, TP53, DNMT3A, and ASXL1 were listed. (Supplemental Table 3). Generally, a high frequency of hotspot mutations was detected in 92.3% (48/58) patients, with the most frequent mutations seen in SF3B1 (21.2%), SRSF2 (19.2), TET2 (19.2%), and ASXL1 (17.3%) (Figure 1C). By profiling the expression levels of PD-1, PD-L1, and PD-L2 in MNCs from MDS and normal individuals, a significantly elevated expression of PD-1 was seen in MDS samples compared with normal samples (58.77 ± 3.820 vs. 31.95 ± 3.692, P = 0.007) (Figure 1D). In contrast, the expression of PD-L1 and PD-L2 in MDS patients was not significantly different from healthy individuals (Figures 1E, F).




Figure 1 | Baseline expression of PD-1, PD-L1, PD-L2, and mutational characteristics of MDS patients. (A) FCM detection for the expression of PD-1 protein in each gated cell subset in BM-MNC samples from patients with MDS (n=9). (B) Pearson analysis between the PD-1 gene expression (qPCR value) and protein levels in patients with MDS (n=9, R = 0.6181, P = 0.007). (C) Mutational profile of a 13-gene panel of hotspot mutations (Supplemental Table 3) in MDS patients (n=52). (D) Normalized baseline expression of PD-1 in the bone marrow samples from normal individuals (n=23) and MDS patients (n=102). (E) Normalized baseline expression of PD-L1 in the bone marrow samples from normal individuals (n=23) and MDS patients (n=102). (F) Normalized baseline expression of PD-L2 in the bone marrow samples from normal individuals (n=18) and MDS patients (n=102). Results were presented as mean ± SEM of independent cases. *P < 0.05. **P < 0.01. ***P < 0.001.



Next, PD-1, PD-L1, and PD-L2 expression levels in MDS subgroups were investigated. BM samples from both the young MDS cohort (age ≤ 60 years) and older MDS cohort (age > 60 years) displayed significantly higher PD-1 expression than that in the normal cohort, while those young MDS patients were associated with a slightly higher PD-1 expression than in older MDS patients (64.49 ± 5.592 vs. 52.91 ± 5.147, P = 0.13) (Figure 2A). Expression levels of PD-L1 and PD-L2 remained similar across age-based subgroups in the MDS cohorts (Figures 2B, C). For expression levels of these immune checkpoints in IPSS-based MDS subgroups, PD-1 expression was significantly higher in the intermediate-1 risk MDS than that in normal samples (59.17 ± 7.484 vs. 31.95 ± 3.692, P = 0.02), and slightly higher in the intermediate-2 (48.38 ± 5.862 vs. 31.95 ± 3.692, P = 0.06) and high-risk group (50.67 ± 12.91 vs. 31.95 ± 3.692, P = 0.12) (Figure 2D). Expression levels of PD-L1 and PD-L2 were not significantly up-regulated in MDS patients with intermediate-1 or intermediate-2 risk groups. Interestingly, a trend of lower expression of PD-L1 (23.35 ± 10.84 vs. 31.95 ± 3.692, P = 0.11) and PD-L2 (3.523 ± 0.479 vs. 7.847 ± 2.286, P = 0.08) were seen in those BM samples from MDS patients from the high-risk group.




Figure 2 | Baseline expression of PD-1, PD-L1, and PD-L2 in age-based and risk-based MDS subgroups (A–C) Normalized baseline expression levels of PD-1, PD-L1, and PD-L2 in healthy individuals, young MDS (age ≤ 60 years), and older MDS (age>60 years). (D–F) Normalized baseline expression levels of PD-1, PD-L1, and PD-L2 in healthy individuals and patients with intermediate-1, intermediate-2, and high-risk stratification. Results were presented as mean ± SEM of independent cases. *P < 0.05. ***P < 0.001.





Dynamics of PD-1, PD-L1, and PD-L2 expression in HMA treatment cycles

To elucidate the dynamics of PD-1, PD-L1, and PD-L2 expression and potential predictive value during HMA treatment cycles, expression levels of these immune checkpoints at timepoints of pre-treatment (baseline), after the 2nd cycle (C2), 4th cycle (C4) and 6th cycle (C6) of HMA treatment were analyzed. Furthermore, treatment response and survival data were extracted and analyzed in an additional 33-patient cohort of intermediate/high-risk MDS from two clinical trials (NCT01599325 and NCT01751867). In the validation cohort, 51.5% of patients (17/33) were treated with decitabine, while 48.5% (16/33) received azacitidine. HMA dosages and treatment schedules could be seen in our previous report (16). The median number of treatment cycles was 12 (3-21), and 57.6% of patients (19/33) acquired at least 1 clinical response to HMA (CR/mCR/HI) according to the IWG 2006 criteria (23).

Compared with the expression at pre-treatment condition, PD-1 levels significantly increased after the first 2 cycle (C2) of HMA treatment (66.38 ± 7.709 vs. 42.74 ± 7.405, P = 0.03), then gradually decreased after the 4th (47.58 ± 7.408 vs. 61.23 ± 9.304, P = 0.05) and 6th (47.58 ± 7.408 vs. 42.74 ± 7.405, P = 0.65) HMA cycles (Figure 3A). Similar trends of up/down-regulated PD-L1 and PD-L2 were also seen in these MDS patients, while these differences did not reach statistical significance during HMA treatment cycles (Figures 3B, C). To investigate whether PD-1, PD-L1, and PD-L2 dynamics were associated with treatment efficacies, MDS patients were classified as HMA responders or HMA non-responders according to the IWG 2006 criteria (23). Expression of these markers at time points of pre-treatment (baseline), C2, C4, and C6 were analyzed and compared between the two groups (Figures 3D–F). Generally, the expression of PD-1, PD-L1, and PD-L2 fluctuated through treatment cycles. Expression of PD-1 increased in most HMA non-responders after the 2nd treatment (12/14, 85.7%) and remained higher than that in those HMA responders (78.58 ± 8.302 vs. 55.28 ± 6.340, P = 0.06). After the 4th cycle of HMA treatment, PD-1 expression decreased in most HMA responders (13/19, 68.4%), while the PD-1 expression remained at elevated levels in half of the HMA non-responders (7/14, 50.0%) (Figure 3D). However, no difference was observed concerning the expression of PD-L1 or PD-L2 between HMA responders and non-responders through HMA cycles (Figures 3E, F).




Figure 3 | Dynamics of PD-1, PD-L1, and PD-L2 expression in HMA treatment cycles. (A–C) Pre-treatment and post-treatment expression of PD-1, PD-L1, and PD-L2 in HMA treatment cycles in MDS patients who received at least 2-cycle of HMA treatment. (D–F) Dynamic expression of PD-1, PD-L1, and PD-L2 in HMA treatment cycles in HMA responders and HMA non-responders. (G–I) Dynamic expression of PD-1, PD-L1, and PD-L2 in HMA treatment cycles in MDS patients with or without AML transformation event. Results were presented as mean ± SEM of independent cases.





PD-1 dynamics in HMA treatment cycles were associated with the risk of AML transformation

Patients with higher-risk MDS faced a higher risk of AML transformation (1, 18). In this study, 17 patients progressed to AML in the validation cohort (17/33, 51.5%), with a median leukemia-free survival (LFS) of 24.0 months. Subgroup analysis was performed in patients with AML transformation (AML-t, n=17) and patients without AML transformation (MDS, n=16). Expression of these markers at time points of baseline, C2, C4, and C6 was analyzed. The median expression of PD-1 significantly increased at C2 (76.39 ± 16.419 vs. 46.12 ± 12.315, P = 0.04) and C4 (71.22 ± 24.915 vs. 46.12 ± 12.315, P = 0.05) than the baseline PD-1 expression in the AML-t subgroup, then decreased at C6. By utilizing paired t-test analysis between subgroups, the AML-t group displayed significantly higher expression levels of PD-1 at C2 (81.92 ± 17.482 vs. 54.21 ± 14.315, P = 0.03) and C4 (74.31 ± 21.294 vs. 43.987 ± 11.411, P = 0.05) than the that in the non-transformed group (Figure 3G). No correlation was seen between the incidence of AML transformation and the expression of PD-L1 or PD-L2 in the HMA treatment cycles (Figures 3H, I). These data indicated a potential prognostic value of post-HMA dynamics of PD-1 expression in predicting AML transformation events in higher-risk MDS patients.



Up-regulated PD-1 after the 2nd treatment cycle predicts long-term survival after HMA treatment

Next, receiver operating characteristic (ROC) models were further utilized to validate the sensitivity and specificity of expression levels of immune checkpoints in predicting AML transformation events. By enrolling expression levels of these checkpoints at baseline, C2, and C4, the specificity and sensitivity of each factor in predicting AML transformation events were calculated and displayed. Generally, most checkpoints failed to display values predicting AML transformation events (Figures 4A, B). However, PD-1 expressions at C2 were associated with a significant value to predicted AML transformation, which yielded an area under the ROC curve (AUC) of 0.747 (0.520-0.895), with a cut-off value of 75.9 and a sensitivity/specificity ratio of 0.72/0.77 (P < 0.05) (Figure 4B). By using the calculated PD-1 cut-off value of 75.9 at C2 as a factor and re-classifying MDS patients into high PD-1 expression group (≥75.9, n=17) and low PD-1 expression group (<75.9, n=16), a binary logistic regression analysis enrolling PD-1 C2 expression, ORR, gender cytogenetics, and age was performed. Generally, high PD-1 expression at C2 was significantly associated with a higher risk of AML transformation (HR:6.919; 95%CI:1.213-39.47, P=0.03). Meanwhile, abnormal cytogenetics also predicted the AML transformation events in the present MDS cohort (HR: 6.863; 95%CI: 0.895-52.607, P=0.06), while the factors of ORR events (HR: 1.045; 95%CI: 0.169-6.447, P=0.962), female gender (HR: 1.151; 95%CI: 0.047-1.341, P=0.896) and elder age (HR: 1.191; 95%CI: 0.130-4.101, P=0.845) did not reach a statistic significance in the logistic regression model (Figure 4C).




Figure 4 | Assessment of objective cut-off and prognostic value of PD-1, PD-L1, and PD-L2 expression in HMA treatment cycles. (A, B) Receiver operating characteristic (ROC) curves and statistics of PD-1, PD-L1, and PD-L2 expression at time points predict AML transformation. (C) Binary logistic regression analysis for factors to predict AML transformation in MDS patients treated with HMA.



To further validate the long-term prognostic value of PD-1 after the 2nd HMA treatment cycle, a univariate survival analysis was performed between the high PD-1 expression group and the low PD-1 expression group. Four patients were still alive at the last follow-up, with a median follow-up of 23.4 months in the whole cohort. Median leukemia-free survival (LFS) was 27.0 months in the low PD-1 group, whereas in the high PD-1 group was 18.0 months (HR: 2.25; 95%CI: 1.04-6.45; log-rank test, P=0.05) (Figure 5A). For overall survival, 2-year OS in the low PD-1 group was 93.8% (15/16), whereas in the high PD-1 group was 88.2% (15/17). Those MDS patients in the low PD-1 group were associated with significantly longer estimated OS than that in the high PD-1 group (38.0 vs. 20.0 months; HR:2.590; 95%CI: 1.13-5.92, P = 0.02) (Figure 5B).




Figure 5 | Univariate survival analysis of LFS and OS by the post-treatment PD-1 expression. (A) LFS by PD-1 expression at C2 in MDS patients treated with HMA. (B) OS by PD-1 expression at C2 in MDS patients treated with HMA.






Discussion

The treatment response/resistance mechanisms after HMA cycles were not fully understood until now. Existing data indicated that dysregulated gnomic-wide methylation is closely involved in the development and progression of MDS (24). Thus, demethylation and reactivation of silenced tumor-suppressing genes are initially considered pivotal mechanisms during the treatment cycles of HMA and other HMA-based treatment schemes (25, 26). With emerging evidence indicating a wider range of cellular/molecular regulations by HMAs, induced expression of tumor antigens (27) and enhancement of effective T cells (28) may represent parallel mechanisms. However, despite prolonged survival in patients who have responded to HMA, the overall response rate (ORR) to HMAs remains low (~50%), and the duration of treatment response is often transient (2). Loss of response frequently happens within 2 years after the first administration of HMAs, with no standard-of-care options for patients after treatment failure. Expected survival for these patients remains dismal (29).

On the other hand, emerging evidence indicates a “side-effect” of HMAs underlying treatment failure and disease progression. Based on updated concepts, HMAs demethylate a range of immune checkpoints with negative prognostic values in multiple cancers (30–32). Enhanced expression of PD-1, PD-L1, PD-L2, CTLA-4, and other immune checkpoints after HMA treatment potentially contributes to an immunosuppressive bone marrow/peripheral environment in MDS patients (15, 33). Moreover, a recent study by Liu, Y.C., et al. revealed that HMAs strikingly enhance the expression of SALL4 (a well-described oncogene) by demethylation in its CpG island within the 5’ untranslated region in a group of MDS. This demethylating effect on SALL4 was then confirmed to associate with an inferior clinical outcome (34–36).

In this context, many combined therapies using HMA with novel drugs were designed for long-term synergistic effects and prolonged survival in treating MDS (26, 37). These combinations included HMA plus immune checkpoint inhibitors (anti-PD-1/PD-L1) (38, 39), HMA plus histone deacetylase inhibitors (HDACi) (40, 41), and HMA plus immunosuppressive agent (lenalidomide) (42, 43) and others. Combining HMA with immune checkpoint inhibitors is designed primarily to sensitize the antitumoral immune response of these therapies. However, although some HMA-based combined therapies have demonstrated a favorable response rate in patients with higher-risk MDS, survival benefit was not achieved in these trials. At the same time, non-neglectable toxicities were frequently noted (38, 39). A recent head-to-head study by Zeidan, A.M., et al. revealed the combination of azacitidine plus durvalumab (a PD-L1 inhibitor) leads to up to 89.5% grade 3-4 hematologic adverse events (AEs) in higher-risk MDS, while the incidence of grade 3-4 AEs remains 68.3% in patients treated with single azacitidine (39). Thus, a more rationally designed medication timing and dosage of these combinations will be especially important. Evaluation of baseline and dynamic expression of immune checkpoints during HMA treatment cycles may provide evidence for patient selection and rational timing for an anti-PD-1 intervention. However, the dynamics of immune checkpoints in HMA treatment cycles remain largely uninvestigated in patients with MDS (15), especially in those patients with higher IPSS stratification.

In previous studies, Yang et al. showed that the mRNA expression of PD-1, PD-L1, and PD-L2 was increased in CD34+ cells and peripheral blood mononuclear cells from MDS patients (15). Kondo et al. found that PD-1 expression on CD3+, CD4+, and CD8+ T cells was significantly increased in MDS patients (44). Similar to these reports, our data revealed a significantly elevated baseline expression of PD-1 in the bone marrow of patients with MDS (Figure 1A). However, expression levels of PD-L1 and PD-L2 in the MDS cohort remained similar to the normal individuals (Figures 1E, F). In contrast with the observation from Yang et al. (15), our result showed that PD-1 expression was slightly higher in high-risk MDS patients of younger age (Figure 2A), and the expression level of PD-L1 and PD-L2 remained similar between age-based MDS subgroups (Figures 2B, C).

Interestingly, although the expression levels of PD-1 in MDS were generally upregulated, it seemed that there were discrepant expression levels of immune checkpoints within risk-based subgroups in higher-risk MDS. Patients with intermediate-1 risk stratification always displayed with highest median expression levels of PD-1, PD-L1, and PD-L2. In contrast, the expression levels decreased when the IPSS risk score increased and remained lowest in the high-risk MDS (Figures 2D–F). A recent study has revealed time- and dose-dependent upregulation of immune checkpoints in CD34+ cells in vitro (15). Similar to this observation, our data indicated a post-HMA up-regulation of PD-1, PD-L1, and PD-L2 in MDS patients. Median expression of PD-1 was significantly up-regulated after 2 cycles of HMA treatment, then gradually decreased during continuous HMA treatment (Figure 3A). The potential mechanism of these immune checkpoints’ up-regulation may be attributed to the demethylation effect by HMA on the transcripts (15, 33). In contrast, the mechanism of decrease of these markers after continuous administration of HMA remains unknown.

Next, clinical correlations between dynamics of immune checkpoints and clinical outcomes were seen by monitoring the expression of PD-1, PD-L1, and PD-L2 in each MDS patient. Unlike the previous studies, which reported a clinical correlation of baseline expression of PD-1 in MDS patients (15), our data indicated that only the upregulation of PD-1 after the 2nd cycle of HMA treatment was associated with inferior ORR in higher-risk MDS patients. At the same time, similar observations were not seen concerning the baseline expression of PD-1 (Figure 3D). For long-term survival, MDS patients with intermediate/high-risk stratification faced a higher risk of AML transformation and AML-related mortality (3). Our data indicated that those MDS patients who eventually progressed to AML displayed a significantly higher PD-1 expression of PD-1 after the 2nd cycle of HMA treatment (Figure 3G). To further elucidate the predictive value of PD-1, PD-L1, and PD-L2 at each timepoint in HMA treatment cycles, receiver operating characteristic (ROC) curves were used to evaluate the potential sensitivity and specificity of factors in predicting AML transformation event. Similar to the results above, the baseline expression of PD-1, PD-L1 and PD-L2 was not associated with a significant value in predicting AML transformation events. Only the PD-1 expression after the 2nd HMA treatment was associated with significant specificity and sensitivity in predicting AML transformation (Figure 4B). The optimal cut-off of the PD-1 expression after the 2nd HMA treatment cycle was compromised at 75.9, with a sensitivity/specificity of 0.72/0.77. An additional binary logistic regression model further validated the prognostic value of the 75.9 cut-off of PD-1 (Figure 4C). At last, by binarily grouping MDS patients into the low PD-1 group and high PD-1 group using this calculated cut-off, significant inferior LFS and OS were confirmed in the high PD-1 group (Figure 5).

In summary, this present study identified discrepant expression profiles of immune checkpoints in age- and risk-based MDS subgroups. Our data provide detailed dynamics of up-regulation of PD-1 after HMA treatment and further identified the ≥75.9 PD-1 expression as an independent negative prognostic factor in higher-risk MDS patients. At last, evaluation of the bone marrow PD-1 expression after the 2nd cycle of HMA treatment may identify patients who will benefit from the combined therapy of HMA and PD-1 inhibitors.
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Background

Poor immunogenicity and extensive immunosuppressive T-cell infiltration in the tumor immune microenvironment (TIME) have been identified as potential barriers to immunotherapy success in “immune-cold” breast cancers. Thus, it is crucial to identify biomarkers that can predict immunotherapy efficacy. Protein tyrosine phosphatase receptor type O (PTPRO) regulates multiple kinases and pathways and has been implied to play a regulatory role in immune cell infiltration in various cancers.



Methods

ESTIMATE and single-sample gene set enrichment analysis (ssGSEA) were performed to uncover the TIME landscape. The correlation analysis of PTPRO and immune infiltration was performed to characterize the immune features of PTPRO. Univariate and multivariate Cox analyses were applied to determine the prognostic value of various variables and construct the PTPRO-related CD8+ T-cell signatures (PTSs). The Kaplan–Meier curve and the receiver operating characteristic (ROC) curve were used to estimate the performance of PTS in assessing prognosis and immunotherapy response in multiple validation datasets.



Results

High PTPRO expression was related to high infiltration levels of CD8+ T cells, as well as macrophages, activated dendritic cells (aDCs), tumor-infiltrating lymphocytes (TILs), and Th1 cells. Given the critical role of CD8+ T cells in the TIME, we focused on the impact of PTPRO expression on CD8+ T-cell infiltration. The prognostic PTS was then constructed using the TCGA training dataset. Further analysis showed that the PTS exhibited favorable prognostic performance in multiple validation datasets. Of note, the PTS could accurately predict the response to immune checkpoint inhibitors (ICIs).



Conclusion

PTPRO significantly impacts CD8+ T-cell infiltration in breast cancer, suggesting a potential role of immunomodulation. PTPRO-based PTS provides a new immune cell paradigm for prognosis, which is valuable for immunotherapy decisions in cancer patients.





Keywords: breast cancer, PTPRO, prognosis, immune cell, TILs, immunotherapy response indicator, PTPRO-related CD8+ T-cell marker genes signature



Introduction

Immunotherapy emerged as a new promising therapeutic approach for breast cancer, especially in triple-negative breast cancer (TNBC), and has been approved in combination with chemotherapy, radiation, and targeted therapeutics (1, 2). However, most types of cancers are recognized as “cold” tumors characterized by poor immunogenicity and T-cell dysfunction in the tumor immune microenvironment (TIME), which have been considered obstacles to immunotherapy efficacy. TNBC is more responsive to immunotherapy than other breast cancer subtypes as it has more tumor-infiltrating lymphocytes (TILs), higher expression of programmed cell death ligand-1 (PD-L1) on tumor and immune cells, and a higher number of non-synonymous mutations (3, 4). Although TNBC has a greater response rate to immune checkpoint inhibitors (ICIs) than other breast cancer subtypes, monotherapy response rates remain extremely low, with only 5% of unselected patients responding and 23% of PD-L1-positive patients responding (5, 6). Currently, three validated biomarkers (mismatch repair deficiency, PD-L1, and TILs) have been adopted for selecting patients and predicting clinical benefit from single-agent ICIs (2, 7). However, the coordination between cancer cells and the immune system in breast cancer is a dynamic, evolving, and complex biological process, which needs to discover more comprehensive immune-related biomarkers (2). Therefore, identifying effective indicators of immunotherapy response is critical for immunotherapy in breast cancers.

Tumor-infiltrating CD8+ T cells are associated with the clinical benefit of ICI therapy in many cancers (8). However, given that CD8+ T cells become dysfunction states (tolerance, ignorance, anergy, and exhaustion, respectively) during cancer development, most patients are unable to maintain a long-term response to immunotherapy (9). Currently, there is not any effective indicator to predict which patients will respond, even though much effort has been made. The mechanisms that determine clinical response to immunotherapy remain largely unknown. Emerging technologies (such as spatially resolved transcriptomics, bulk and single-cell transcriptomics, single-nucleus RNA-seq, and epigenetic profiling) have allowed us to initially characterize the features of CD8+ T-cell heterogeneity and the regulatory mechanisms of CD8+ T-cell differentiation and dysfunction (9, 10). More recently, CD8+ tissue-resident memory T (TRM) cells were revealed by single-cell RNA sequencing (scRNA-seq) on breast cancer T cells (11). These T-cell subsets are characterized by high expression levels of immune checkpoint molecules and effector proteins and contribute to patient prognosis and response to anti-PD-1 therapy in TNBC (11, 12). The scRNA-seq has provided important insights into the features of TRM cells, and hence can aid in the development of effective immunotherapy targeting T cells; however, the molecular basis of T-cell dysfunction states in breast cancer remains elusive (11). It is necessary to refine the indicators that allow for the identification of CD8+ T-cell phenotypes and to explore the regulatory mechanisms of CD8+ T cells, especially in other breast cancer subtypes except for TNBC (11, 13, 14).

The protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of specific target protein tyrosine kinases (PTKs) as a common means of regulating cellular signal transduction and play an important regulatory role in immune cell signaling (15, 16). Protein tyrosine phosphatase receptor type O (PTPRO), a member of the PTP family, has been reported that it can function as a tumor suppressor and prognostic factor in various cancers (16–19). Furthermore, downregulation of PTPRO by aberrant hypermethylation in various cancer types, including lung cancer, hepatocellular carcinoma (HCC), breast cancer, esophageal cancer, and leukemia, suggests that it may be a therapeutic candidate for epigenetic therapy (20–24). Additionally, given the regulatory functions of PTPRO in immune cells, we and other groups have begun to focus on the roles of PTPRO in tumor immunity (16). Our recent study indicated that tumor-derived exosomal PTPRO could ameliorate the immunosuppressive tumor microenvironment (ITM) and inhibit breast tumor cell metastasis by resetting tumor-associated macrophages (TAMs) (25). We also found that PTPRO could predict patient prognosis and be significantly associated with the immune infiltrate of clear cell renal cell carcinoma (ccRCC) (26). Another study further confirmed that PTPRO is a therapeutic target and promotes the infiltration of immune cells including CD8+ T cells, macrophages, dendritic cells, and neutrophils in pancreatic cancer (27). However, little is known about PTPRO’s role in the immunotherapy response in breast cancer. In this study, we provide evidence that PTPRO as a potential immune indicator and PTPRO-related CD8+ T-cell signatures (PTSs) can be used to predict prognosis and immunotherapy response in breast cancer patients.



Materials and methods


Data collection and reprocessing

The RNA-seq data contained 130 patient samples (from the series GSE65194), and 251 patient samples (from the series GSE3494) were obtained from the Gene Expression Omnibus (GEO) database. ScRNA-seq profiling of two primary TNBCs was obtained from GSE110686. The Cancer Genome Atlas (TCGA) breast cancer RNA-seq profiling [in the form of fragments per kilobase million (FPKM)], mutation data, and corresponding clinicopathological data were obtained from TCGA database. RNA-seq expression data of 3,273 breast cancer samples (GSE96058) in the form of log2 (FPKM + 0.1) and corresponding clinicopathological characteristics were obtained from the GEO database. RNA-seq profiling of 1,904 breast cancer samples (METABRIC) and corresponding clinicopathological characteristics were derived from the cBioPortal. The profiling in the form of FPKM or log2 (FPKM + 0.1) was converted into transcripts per kilobase million (TPM) values and was further log2-transformed [log2 (TPM + 0.1)] (28).



Associations between PTPRO and the infiltration of immune cells

The “ESTIMATE” R package was utilized to calculate the immune scores, stromal scores, and ESTIMATE scores, respectively, which can be used to evaluate the abundance of immune cells and stromal cells in the breast cancer microenvironment. The infiltration and function of immune cells were quantified by single-sample gene set enrichment analysis (ssGSEA) via the “gsva” R package. Among the GSE65194 and GSE3494 datasets with complete gene expression data, samples based on PTPRO expression were divided into high (upper 50%) and low (lower 50%) expression groups, respectively.



Patients

Breast cancer patients (n = 30) were obtained from the Cancer Hospital affiliated to Shantou University Medical College, undergoing surgical treatment at the Department of Surgery, during the period from 2010 to 2013. All patients received primary treatment by surgery followed by adjuvant radiotherapy, chemotherapy, or hormone therapy. The mean age of the patients was 50 years (range: 20–75 years). The clinical research protocols of this study were reviewed and approved by the Ethics Committee of Shantou University Medical College (IRB serial number: #04-070). Written informed consent was obtained from the patients in accordance with the principles expressed in the Declaration of Helsinki.



Immunohistochemical analysis

Immunohistochemistry (IHC) staining was performed as previously described (18, 19). In brief, 4-µm sections from representative breast cancer tumor tissue were cut from formalin-fixed paraffin-embedded specimens and underwent deparaffinization, rehydration, endogenous peroxidase blocking, and antigen retrieval. The following primary antibodies were used: PTPRO (Cat# sc-365654, Santa Cruz, CA, USA), and CD8 (Cat# ab101500, Abcam, Cambridge, UK). Furthermore, the primary antibodies were incubated at 4°C overnight. Then, the sections were incubated with horseradish peroxidase (HRP)-conjugated secondary antibodies at room temperature for 1 h, followed by color development with 3,3′-diaminobenzidine (DAB) substrate kit (DAKO, Glostrup, Denmark). The nuclei were counterstained with hematoxylin.

The percentage of PTPRO expression in the tumor cells was scored using the following scales: 0, negative; 1, ≤10%; 2, 11%–50%; 3, 51%–75%; and 4, >75%. The intensity of staining was scored using the following scales: 1, weak staining; 2, moderate staining; and 3, strong staining. The percentage (P) and intensity (I) of the cytoplasm or membrane expression were multiplied to generate a numerical score (S = P*I), which was modified from previous studies (19).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847608



Identification of PTPRO-related CD8+ T-cell marker genes

The “Seurat” and “SingleR” packages were used to analyze the scRNA-seq data (29). Cells with a number of detectable genes less than 200 and genes detected less than 3 cells were moved. We performed principal component analysis (PCA) with 1,500 variable genes to cluster the single cells followed by t-distributed stochastic neighbor embedding (t-SNE) with the first 20 PCA components using the RunPCA and RunTSNE functions, respectively. The “SingleR” R package was utilized for cell-type annotation, which works by comparing the transcriptome of every single cell with reference datasets. Absolute log2 fold change > 0.5 and an adjusted P < 0.05 were used to define the marker genes. After that, expression correlation assays between PTPRO with CD8+ T-cell marker genes were conducted using Spearman’s coefficient correlation among the TCGA dataset.



Construction and validation of a prognostic signature in breast cancer

The cases from the TCGA breast cancer datasets were included for the construction of the prognostic model. Univariate Cox analysis of overall survival (OS) was complemented to screen PTPRO-related CD8+ T-cell marker genes with prognostic values. The multivariate Cox proportional hazards model was established using statistically significant genes from the univariate Cox analysis. The independent prognostic factors were evaluated by the multivariate Cox proportional hazard regression model. The risk scores of the patients were established as follows: risk score = β1 x1 + β2 x2 +… + βixi. In this formula, xi was the expression value of each gene obtained from the prognostic model, while βi was the corresponding coefficient. The Kaplan–Meier method was used for survival analysis, and the samples were divided into high and low groups according to the median value of the risk score. The prognostic model’s prediction capability was quantified by the receiver operating characteristic (ROC) curve using the R-package “timeROC” (30).



Construction of the nomogram

Based on the results of the multivariable Cox regression analysis, a nomogram integrating clinicopathological parameters (including age, stage, TNM stage, and risk score) was developed through the R package “rms.” All of these points are added up for each individual to generate a total point, which can predict the 1-, 3-, and 5-year survival probability of breast cancer patients. The calibration curve was plotted to evaluate the nomogram’s discrimination. The predictive accuracy of the nomogram was quantified by the concordance index (C-index).



Genomic and clinical datasets with anti‐PD‐L1 therapy

A urothelial carcinoma cohort (298 cases with complete clinical characteristics) that received the anti‐PD‐L1 therapy from the IMvigor210 cohort was used to analyze and explore the predictive accuracy of the prognostic signature (31). RNA-seq profiling and the corresponding clinicopathological characteristics were obtained from the Creative Commons 3.0 License. The count value was transformed into the log2 (TPM + 1) value.



Statistical analysis

Student’s t-tests were used to compare the normal distributions between two groups, and the Wilcoxon rank-sum test was performed to compare the non-normal distributions between two groups. The prognostic factors were evaluated via the univariate and multivariate Cox regression models, and further construction of the prognostic model was established through the “survival” and “survminer” R packages. The multivariable analysis model was constructed with variables with a P-value < 0.15 in the univariable analysis (32). Then, in the multivariate model, 11 candidate genes (P-value < 0.15) were selected because correlations can play an important role to build better prognostic models (33). In the TCGA, METABRIC, GSE96058, and IMvigor210 datasets, patients were grouped according to high or low risk based on median risk scores (34). Survival analysis was measured using the Kaplan–Meier method. Then, the log-rank test was performed to analyze the significance of disparity. The “timeROC” R package was performed to evaluate the accuracy of the prognostic model. The “ClusterProfiler,” “org.Hs.eg.db,” and “enrichplot” R packages were utilized for the GSEA analysis. The statistical analysis was performed using R software (version 4.1.0). P-value <0.05 was considered to be statistically significant.




Results


The role of PTPRO on breast cancer tumor microenvironment

As shown in Figure 1, the TCGA cohort was used as the training cohort, with 1,034 patients having a survival time of more than 30 days included. The METABRIC and GSE96058 cohorts were viewed as the external validation cohorts, consisting of 1,904 and 3,069 patients with survival data, respectively. To investigate the influence of PTPRO on the TIME, we explored the correlation between PTPRO expression and immune cell distribution. Through ESTIMATE, we found that samples with low PTPRO had significantly lower immune scores than the high PTPRO samples (Supplementary Figure S1A, GSE65194; Supplementary Figure S1B, GSE3494). We further evaluated the correlation between PTPRO and immune status and found that the enrichment scores for 16 immune cell types and 13 immune-related pathways were lower in the PTPRO-low group than in the PTPRO-high group, indicating that patients in the PTPRO-high group may have better immune status and immune function (Figure 2A, Supplementary Figure S1C, GSE65194; Figure 2B, Supplementary Figure S1D, GSE3494). Notably, in two GEO cohorts, five immune cell types, namely, CD8+ T cells, macrophages, activated dendritic cells (aDCs), TILs, and Th1, were found to be significantly more abundant in the PTPRO-high group (Figure 2C). It is well known that CD8+ T cells are the central subpopulation of cytotoxic T cells, which are primarily responsible for eliminating tumor cells (35). Given the importance of CD8+ T-cell infiltration in the TIME, the relationship between CD8+ T-cell infiltration levels and PTPRO expression was further investigated. The results showed that PTPRO expression was significantly positively related to CD8+ T-cell infiltration levels in the TISIDB database (Figure 2D). Furthermore, we performed the IHC staining assay to analyze PTPRO and CD8 expression in 30 human breast cancer tissues (Figure 2E). Tumor infiltration of CD8+ T cells was significantly higher in tumors with higher PTPRO expression than in tumors with low PTPRO expression (r = 0.914; P < 0.001) (Supplementary Figure S1E). Collectively, these results suggest that PTPRO plays an essential role in mediating the reprogramming of TIME, thereby suppressing tumor progression.




Figure 1 | The flowchart of signature construction and verification.






Figure 2 | Characterization of protein tyrosine phosphatase receptor type O (PTPRO) in breast cancer tumor microenvironment. Comparison of the ssGSEA scores between the PTPRO-high group and the PTPRO-low group in the GSE65194 (A) and GSE3494 (B) cohorts. (C) Overlapped immune cell types correlated with PTPRO expression in the two cohorts. (D) The dot plots displayed the correlations between PTPRO expression and the infiltration pattern of CD8+ T cells in TISIDB. (E) Representative IHC staining indicates higher PTPRO levels correlated with increased CD8+ T-cell infiltrates in human breast cancer. Scale bars: 100 μm (left panel), 50 μm (right panel). ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001 by Student’s t-test.





Construction of prognostic PTPRO-related PTS

Given that TIME’s immune profile, including CD8+ T-cell-related genes, has been shown to correlate with prognosis (36, 37), and based on PTPRO’s regulatory role in promoting CD8+ T-cell infiltration, we further investigated the association between CD8+ T-cell-related genes and PTPRO. By analyzing the scRNA-seq data from the GSE110686 cohort, 127 CD8+ T-cell marker genes were confirmed (Figure 3A, Supplementary Figure S2A). Among them, 56 CD8+ T-cell-related genes were subsequently identified to be significantly associated with PTPRO (filtering thresholds were set as R > 0.3, P < 0.05) in the TCGA dataset (Supplementary Table 1). Next, the TCGA breast cancer dataset was used as the training cohort to evaluate the prognostic value of the above 56 genes. A total of 31 genes (SRGN, SERPINB9, ICOS, CD74, TNFRSF1B, CXCR6, BIRC3, TIGIT, CTLA4, APOBEC3G, TRAC, CD69, SIRPG, GZMA, CD52, CST7, RGS1, CD8A, GZMK, SPOCK2, ZNF683, GBP2, CCL5, HCST, NKG7, KLRB1, CTSW, CD8B, TRGC2, PGAM1, and PIM2) were found to contribute to the OS as revealed by the univariate Cox proportion hazards regression analysis (Supplementary Figure S2B). A multivariate Cox regression analysis revealed that 11 candidate genes were determined and subsequently used to create a prognostic signature (i.e., PTS) (Figure 3B). The PTS risk score for predicting prognosis was calculated using the formula: PTS risk score = TNFRSF1B expression × (0.5385) + BIRC3 expression × (−0.2625) + TIGIT expression × (0.2949) + APOBEC3G expression × (−0.2651) + CD69 expression × (0.3853) + RGS1 expression × (−0.1672) + CCL5 expression × (−0.3752) + NKG7 expression × (0.4308) + KLRB1 expression × (−0.6283) + CTSW expression × (−0.2624) + PGAM1 expression × (0.2686) (Supplementary Table 2).




Figure 3 | Construction of the PTPRO-related CD8+ T-cell signature (PTS) in the training set. (A) t-SNE plot depicted various cell types. (B) The prognostic signature was developed by multivariate analysis of candidate genes that were associated with the overall survival (OS) of breast cancer patients in the training set. (C) Breast cancer patients in the training set were divided into high-risk and low-risk groups based on the median value of the risk score. (D) Breast cancer patients’ survival status and risk score distribution in the training set. (E) Kaplan–Meier curve analysis of OS between the high-risk and low-risk groups in the training set. (F) ROC curves of the risk score to predict the 1-, 3-, and 5-year OS in the training set.



The corresponding PTS risk scores were calculated for each breast cancer patient in the training cohort (Figure 3C). The median value of the PTS risk score was used as the cutoff value to divide patients into low-risk (n = 517) and high-risk (n = 517) groups. The distribution of PTS risk score and patient survival status revealed that patients with high risk died sooner than those with low risk (Figure 3D). Consistently, patients with high risk had a significantly shorter OS than patients with low risk (P < 0.001, Figure 3E). ROC analysis was performed to interpret the predictive performance of PTS risk score, and the results showed that the AUCs for 1-, 3-, and 5-year OS were 0.700, 0.713, and 0.688, respectively (Figure 3F). Furthermore, GSEA showed that immune-related gene sets were enriched in patients with low-risk score (Supplementary Figure S2C). Therefore, our findings suggest that PTS risk score has a high specificity and sensitivity for predicting the OS of breast cancer patients.



Validation of the prognostic value of PTS risk score

To evaluate the robustness of the PTS, we tested its predictive power in two independent validation cohorts from the METABRIC and GSE96058 datasets. Risk scores were calculated for patients in two cohorts using the same formula generated in the training cohort (Figures 4A, B). Similar to the training cohort, patients with high risk died sooner than those with low risk (Figures 4C, D). Patients were then separately classified into high-risk groups (METABRIC, n = 951; GSE96058, n = 1,534) and low-risk groups (METABRIC, n = 952; GSE96058, n = 1,535) based on the median values of the risk score. Patients in the low-risk group had a significantly better OS than those with high risk (METABRIC, P < 0.001; GSE96058, P < 0.001) (Figures 4E, F). Moreover, the AUCs for 1-, 3-, and 5-year OS of this classifier were 0.647, 0.523, and 0.532 in METABRIC and 0.633, 0.633, and 0.616 in GSE96058, respectively (Figures 4G, H), further confirming the prognostic role of the PTS.




Figure 4 | Validation of the prognostic value of risk score in independent cohorts. Breast cancer patients in the training set were separated into high-risk and low-risk groups based on the median value of risk score in the METABRIC cohort (A) and the GSE96058 cohort (B). Breast cancer patients’ survival status and risk score distribution in the METABRIC cohort (C) and the GSE96058 cohort (D). Kaplan–Meier curves of OS between the high-risk and low-risk groups in the METABRIC cohort (E) and the GSE96058 cohort (F). ROC curves showed the performance of risk score in predicting the 1-, 3-, and 5-year OS in the METABRIC cohort (G) and the GSE96058 cohort (H).





Independence of the PTS risk score from other clinical characteristics

In order to better understand the utility of the PTS in predicting the OS of breast cancer patients, the risk score and clinical features were integrated into the univariate and multivariate analyses (Figure 5). The multivariate analysis revealed that low-risk score remained significantly associated with favorable OS even after adjusting for other clinical characteristics. The risk score for OS was 1.891 (95% CI = 1.547–2.312, P < 0.001; Figure 5A) in the TCGA training set, 2.122 (95% CI = 1.296–3.475, P = 0.003; Figure 5B) in the METABRIC validation set, and 1.289 (95% CI = 1.076–1.544, P = 0.006; Figure 5C) in the GSE96058 validation set. Together, these data strongly demonstrate that the prognostic signature derived from PTPRO-associated immunomodulators was an independent predictor of OS in breast cancer patients.




Figure 5 | The prognostic values of PTS risk score in breast cancer. Univariate and multivariate Cox regression analyses of the PTS risk score in the TCGA training dataset (A), METABRIC validation dataset (B), and GSE96058 validation dataset (C) regarding OS.





Construction and evaluation of a prognostic nomogram

Based on the findings of multivariate analysis, we constructed a nomogram model employing clinical factors, such as risk score, age, and stage. By calculating the score of the aforementioned variables for each patient, we can predict the individuals’ 1-, 3-, and 5-year OS probability (Supplementary Figure S3A). The calibration curves further revealed that the nomogram performed well in predicting breast cancer patients’ survival (Supplementary Figures S3B–D). The C-index of the nomogram was 0.747, which shows that it has a good capacity for discrimination.



The prognostic value of PTS in patients with anti-PD-L1 therapy

To investigate the potential clinical efficacy of PTS in immunotherapy, we examined the distribution of checkpoint-related genes (LAG3, HAVCR2, PDCD1LG1, IDO1, TIGIT, PDCD1, PD-L1, and CTLA-4) and tumor mutation burden (TMB) in different PTS subgroups and found that LAG3, PDCD1LG1, IDO1, TIGIT, PDCD1, PD-L1, and CTLA-4 were upregulated in patients with low risk in the TCGA training set (Supplementary Figure S4A), while TMB was higher in patients with high risk (Supplementary Figure S4B). Furthermore, we evaluated the predictive value of TMB by ROC analysis in the IMvigor210 cohort (urothelial carcinoma dataset), and we did observe that TMB does not outperform at a predictive advantage (Supplementary Figure S4C). Since anti-PD-L1 immunotherapy has emerged as a promising anticancer treatment (38), we next investigated the prognostic value of the risk score for immunotherapy in the IMvigor210 cohort of patients treated with anti-PD-L1. Patients with high risk who received atezolizumab had significantly shorter OS than patients with low risk (Figure 6A). Moreover, the AUCs for the 8-, 16-, and 24-month OS of this classifier were 0.597, 0.612, and 0.834 in the IMvigor210 cohort (Figure 6B), respectively. Patients with low risk had better immunotherapeutic responses (Figures 6C, D). Therefore, rather than TMB, the predictive value of PTS in immunotherapy may benefit from the upregulation of the checkpoint-related genes.




Figure 6 | The prognostic value of PTS in patients with anti-PD-L1 therapy. (A) Kaplan–Meier curves of OS between the high-risk and low-risk groups in the IMvigor210 cohort. (B) ROC curves showed the performance of the risk score in predicting the 8-, 16-, and 24-month OS in the IMvigor210 cohort. (C, D) Risk score in patients with different responses to PD-1 treatment [complete response (CR), progressive disease (PD), partial response (PR), and stable disease (SD)].






Discussion

Here, we found that phosphatase PTPRO exhibits potential as an immune modulator, and PTPRO-based PTS is an independent prognostic indicator for prognosis and associated with immunotherapeutic responses. We first used ESTIMATE and ssGSEA to determine whether PTPRO expression is associated with the levels of CD8+ T-cell infiltration in breast cancer immune infiltrates. Then, using scRNA-seq data, we identified 56 CD8+ T-cell-related genes that were significantly associated with PTPRO. Furthermore, 11 candidate genes (TNFRSF1B, BIRC3, TIGIT, APOBEC3G, CD69, RGS1, CCL5, NKG7, KLRB1, CTSW, and PGAM1) were identified and used to build the risk model. Finally, the PTS-based risk score was used to predict prognosis and immunotherapeutic response, and it performed well in multiple validation datasets.

CD8+ T cells are one of the major effector cells in immunotherapy. However, when T cells are exposed to cancer antigens repeatedly, they differentiate into dysfunctional states (39, 40). Furthermore, T-cell receptor (TCR)-mediated signaling pathways are required for the establishment and progression of T-cell dysfunction (39, 40). Earlier studies have already proven that coordinated interactions between PTKs and PTPs play a key role in TCR-mediated signaling and then affect immune responses (41). Additionally, PD-L1-mediated immunosuppression is controlled largely by the activation of EGFR, MEK/ERK, NF-κB, PI3K/Akt, COX2/mPGES1/PGE2, JAK/STAT1, or JAK/STAT3 pathways, some of which are regulated by PTPRO (16, 42, 43). Therefore, our previous and other findings suggest that PTPRO, as an immunosuppressor, regulates immune infiltrates, shedding new light on immunotherapy (26, 27, 44). In this study, 11 PTPRO-related CD8+ T-cell marker genes were chosen to construct a PTPRO-based risk score. Our results showed that patients with low-risk scores had a significantly longer OS than those with high-risk scores in the METABRIC and GSE96058 datasets. Moreover, we established a prognostic nomogram based on the risk score and several important clinical variables for predicting individuals’ survival probability. The calibration curves revealed a higher consistency between the actual and predicted values for 1-, 3-, and 5-year OS.

We also investigated the prognostic value of risk score in anti-PD-L1 therapy to see if it can accurately predict the potential clinical efficacy of immunotherapy. We found that checkpoint-related genes (LAG3, PDCD1LG1, IDO1, TIGIT, PDCD1, PD-L1, and CTLA-4) were upregulated in patients with low risk in the TCGA training set. High TMB is associated with longer survival in patients treated with ICIs in multiple cancer types (45). We found that patients in the high-risk group had higher TMB levels in this study. Furthermore, in the IMvigor210 cohort, TMB had a poor predictive value. According to a recent study, high TMB only predicts PD-L1 blockade responsiveness in approximately 25% of several cancer types where high TMB correlates with CD8+ T-cell infiltration of the tumor (46). Numerous studies have shown that high TMB does not correlate with CD8+ T-cell infiltration and overall response rates (ORR) to ICIs in glioma, TNBC and prostate cancer (47). Due to the lack of broad ICI approval, a biomarker to optimize patient selection is most urgently needed. Furthermore, we found that the predictive value of risk score in immunotherapy response was validated in the IMvigor210 cohort, that is, a high-risk score predicted poorer survival and a poor response to immunotherapy. As a result of our findings, the predictive value of PTS in immunotherapy may benefit from increased expression of checkpoint-related genes rather than TMB. With technological advancements, a large number of high-dimensional databases and bioinformatics tools will emerge in the future, and PTPRO-based PTS warrants further extension and investigation. Furthermore, this is a retrospective study based on omics data, which requires additional experimental validation, particularly the regulatory effect of PTPRO on CD8+ T-cell markers or immune infiltration.

In summary, we found that PTPRO may play a role in antitumor immunity regulation. The immune indicator PTPRO-based PTS-related risk score can pre-evaluate the response to immunotherapy. We conclude that patients with low-risk breast cancer, as defined by high CD8+ T-cell infiltration and elevated expression of checkpoint-related genes, should have a better prognosis and clinical benefit from either monotherapy or combined immunotherapy.
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Background

Glutamine (Gln) metabolism has been reported to play an essential role in cancer. However, a comprehensive analysis of its role in lung adenocarcinoma is still unavailable. This study established a novel system of quantification of Gln metabolism to predict the prognosis and immunotherapy efficacy in lung cancer. Further, the Gln metabolism in tumor microenvironment (TME) was characterized and the Gln metabolism-related genes were identified for targeted therapy.



Methods

We comprehensively evaluated the patterns of Gln metabolism in 513 patients diagnosed with lung adenocarcinoma (LUAD) based on 73 Gln metabolism-related genes. Based on differentially expressed genes (DEGs), a risk model was constructed using Cox regression and Lasso regression analysis. The prognostic efficacy of the model was validated using an individual LUAD cohort form Shandong Provincial Hospital, an integrated LUAD cohort from GEO and pan-cancer cohorts from TCGA databases. Five independent immunotherapy cohorts were used to validate the model performance in predicting immunotherapy efficacy. Next, a series of single-cell sequencing analyses were used to characterize Gln metabolism in TME. Finally, single-cell sequencing analysis, transcriptome sequencing, and a series of in vitro experiments were used to explore the role of EPHB2 in LUAD.



Results

Patients with LUAD were eventually divided into low- and high-risk groups. Patients in low-risk group were characterized by low levels of Gln metabolism, survival advantage, “hot” immune phenotype and benefit from immunotherapy. Compared with other cells, tumor cells in TME exhibited the most active Gln metabolism. Among immune cells, tumor-infiltrating T cells exhibited the most active levels of Gln metabolism, especially CD8 T cell exhaustion and Treg suppression. EPHB2, a key gene in the model, was shown to promote LUAD cell proliferation, invasion and migration, and regulated the Gln metabolic pathway. Finally, we found that EPHB2 was highly expressed in macrophages, especially M2 macrophages. It may be involved in the M2 polarization of macrophages and mediate the negative regulation of M2 macrophages in NK cells.



Conclusion

This study revealed that the Gln metabolism-based model played a significant role in predicting prognosis and immunotherapy efficacy in lung cancer. We further characterized the Gln metabolism of TME and investigated the Gln metabolism-related gene EPHB2 to provide a theoretical framework for anti-tumor strategy targeting Gln metabolism.
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Introduction

Lung cancer remains the leading cause of cancer-related death worldwide (1). Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancers, with lung adenocarcinoma (LUAD) constituting half of all cases of NSCLC (2). Notwithstanding the advances in treatment strategies, the five-year survival rate of patients with LUAD remains limited. In recent years, immunotherapy showed significant efficacy in LUAD, while drug resistance and recurrence due to tumor heterogeneity still limit the efficacy of immunotherapy (3, 4). Therefore, it is essential to comprehensively investigate the mechanisms underlying the differential response to immunotherapy and develop tools to predict prognosis and immunotherapy efficacy.

Recent investigations revealed that oncogenic transformation induces a well-characterized metabolic phenotype in tumor cells, which in turn affects the tumor environment (TME) (5). TME is composed of distinct cell populations in a complex matrix, which is characterized by inefficiencies of oxygen and nutrition delivery due to limited or poorly differentiated vasculature. In order to meet the energy demands, rapidly proliferating cancer cells compete with immune cells for nutrients required to manifest anti-tumor effects, thus creating an immune suppressive environment. In this harsh TME, infiltrating immune cells are forced to undergo relevant metabolic adaptations, which in turn disrupt the anti-tumor effects of immune cells (6, 7). Therefore, therapeutic strategies that target tumor metabolism and thus modulate or improve immune cell metabolism to enhance inflammation are extremely promising. However, tumor cells share a large number of metabolic pathways with inflammatory immune cells, which makes metabolic blocking strategies often counterproductive (8). Therefore, targeting the appropriate metabolic pathway to block tumor metabolism and activate inflammatory immunity is essential to improve immunotherapy. Targeting Gln metabolism is one of the optimal choices available.

As the most abundant amino acid in circulation, glutamine (Gln) is rapidly consumed by cultured tumor cells (9). Gln is commonly used to maintain TCA flux in cellular aerobic glycolysis, or as a source of citrate for lipid synthesis in reductive carboxylation. Besides, glutaminolysis also promotes survival of proliferating cells by suppressing oxidative stress and maintaining the integrity of mitochondrial membrane (10). Gln is an energy source required by both tumor and immune cells. However, inflammatory antitumor immune cells do not appear to rely on or even reject Gln metabolism, which is particularly evident in macrophages (11, 12). Compared with naïve macrophages, M2 macrophages exhibit strong dependence on Gln, while pro-inflammatory M1 macrophages can be induced by suppressed Gln metabolism. Therefore, Gln metabolism represents a potential target to convert tumor-associated macrophages (TAMs) from M2 to M1 phenotype, thereby enhancing the anti-tumor inflammatory immune response (13). In addition, Gln metabolism is also involved in the differentiation of Th1 cells and the activation of effector T cells (13, 14). These findings suggest that targeting Gln metabolism can potentially remodel TME and improve immunotherapy efficacy. In fact, recent studies reported that extensive blockade of Gln metabolism significantly improves the anti-tumor effect of anti-PD-1, accompanied by enhanced cytotoxic function of effector T cells due to metabolic reprogramming (15). In LUAD, although targeting Gln metabolism in combination with immunotherapy is extremely promising, the landscape of Gln metabolism in TME is still not fully known. Therefore, we performed this study for a systematic analysis of Gln metabolism and immunotherapy in LUAD.

Our study comprehensively evaluated the expression of Gln metabolism-related genes. Based on these genes, 514 patients with LUAD from The Cancer Genome Atlas (TCGA) were clustered using a consensus clustering algorithm and eventually a scoring system was constructed for predicting overall survival (OS) and immunotherapy efficacy. An integrated Gene-Expression Omnibus (GEO) cohort including 719 patients with LUAD and 32 cohorts of pan-cancer from TCGA were used to validate the predictive performance of the risk model. Five independent immunotherapy cohorts were identified to validate the predictive performance for immunotherapy efficacy. Multiple single-cell sequencing data were used to describe the Gln metabolism landscape of various cell types in TME. Finally, using in vitro experiments based on second-generation sequencing and public single-cell sequencing analysis, we investigated the regulation of biological behavior and signaling pathways of LUAD cells by EPHB2, a key gene related to Gln metabolism, which is also significantly enriched and plays an essential role in M2 macrophages.



Materials and methods


Data source and preprocessing

Public gene expression data (fragments per kilobase million, FPKM) and full clinical annotations were respectively retrieved from TCGA (https://cancergenome.nih.gov/) and GEO (https://www.ncbi.nlm.nih.gov/geo/) databases. The FPKM values of LUAD were transformed into transcripts per kilobase million (TPM). The training cohort included 513 patients with LUAD from TCGA while 6 eligible LUAD cohorts (GSE13213, GSE37745, GSE31210, GSE3141, GSE30219, GSE50081) from GEO dataset represented the validating cohort of our study, which consisted of 719 patients with LUAD. Pan-cancer gene expression data were extracted from TCGA for further validation.

An individual cohort with 33 LUAD specimens from Shandong Provincial Hospital was set as a validating cohort. Besides, 22 tumor specimens and 11 normal specimens from Shandong Provincial Hospital were used to perform differential expression analysis and survival analysis of EPHB2.



Consensus molecular clustering based on Gln metabolism-related genes

73 Gln metabolism-related genes were extracted from Molecular Signatures Database (MSigDB, http://www.gsea-msigdb.org/gsea/msigdb/index.jsp). These genes are listed in Supplementary Materials. A consensus clustering algorithm was used to classify LUAD cohorts into distinct GlnClusters and test the corresponding stability based on survival-related Gln genes. ConsensuClusterPlus package was used to perform the above steps and 1000 repetitions were conducted to guarantee the corresponding stability.



Identification of DEGs and construction of geneClusters

Differentially expressed genes (DEGs) among 3 GlnClusters were identified using “limma” package in R with an adjusted P value< 0.001 and a |logFC|>1. Survival-related DEGs were identified via univariate cox regression analysis, and patients with LUAD were classified into distinct geneClusters based on selected DEGs using R package “ConsensuClusterPlus”.



Construction and validation of a prognostic risk model

Survival-related DEGs were sequentially subjected to Lasso Cox regression analysis and multivariate Cox regression analysis. Ten genes were finally identified and involved in the construction of the prognostic risk model, including EPHB2, CAV2, RTN2, SCPEP1, UNC5D, FURIN, PITPNC1, CH25H, RGS20 and TSPAN11. The risk score was calculated following the formula:

	

Coefi and Expi denote the risk coefficient and gene expression, respectively. Based on the median risk score of training cohort, patients from training and validating cohorts were divided into low-risk and high-risk groups, respectively. Kaplan–Meier survival analysis was followed by the generation of receiver operating characteristic (ROC) curves involving low- and high-risk groups.



Enrichment analysis and functional annotation

Gene Set Variation Analysis (GSVA) enrichment was performed to explore the heterogeneity of various biological processes using “GSVA” package. Hallmark gene sets “h.all.v7.4.symbols.gmt” extracted from MSigDB database were used for GSVA. R package “ClusterProfiler” was applied to perform functional annotation. Single sample gene set enrichment analysis (ssGSEA) was performed to calculate the score of Gln metabolism based on 73 previously extracted Gln metabolism-related genes.



Mutation and drug susceptibility analysis

The mutation annotation format (MAF) from the TCGA database was generated using R package “maftools” and the somatic mutations of LUAD in low- and high-risk groups were plotted. The tumor mutation burden (TMB) of each patient with LUAD in the TCGA cohort was also calculated. Drug sensitivity analysis was performed with R package “pRRophetic”. A parliament plot was developed to demonstrate drug sensitivity of low- and high-risk groups using the website HIPLOT (https://hiplot.com.cn/).



TME landscape analyses

Single sample gene set enrichment analysis (ssGSEA) was performed to calculate and compare the enrichment scores of infiltrating immune cells and immune function (16, 17). Immune score, ESTIMATE score and stromal score were calculated using the ESTIMATE algorithm (18). Data of T cell dysfunction, T cell exclusion and TIDE scores were obtained from TIDE website (http://tide.dfci.harvard.edu/). A correlation heatmap of 10 genes in the risk model and 4 panels of immune function were also downloaded from the TIDE website (19). Immunophenoscore (IPS) of patients in TCGA was obtained from The Cancer Immunome Atlas (https://tcia.at/).



Immunotherapy datasets

Five immunotherapeutic cohorts were used to validate the prediction of immunotherapy efficacy using the risk model: melanoma treated with adoptive T cell therapy (ACT) (GSE100797) (20); melanoma treated with pembrolizumab, an anti-PD-1 antibody (GSE78220) (21); melanoma treated with anti-CTLA4 and anti-PD1 therapy (GSE91061) (22); NSCLC treated with nivolumab or pembrolizumab, an anti-PD-1 antibody (GSE126044) (23); and advanced urothelial cancer treated with atezolizumab, an anti-PD-L1 antibody (IMvigor210 cohort) (24). The response and benefit of TCGA cohort were calculated based on the TIDE website (http://tide.dfci.harvard.edu/) by integrating TIDE score, INFG, MSI score, CD274, Merck18, CD8, MDSC, CAF and TAM M2.



Establishment and validation of a nomogram scoring system

A predictive nomogram was constructed using R package “rms”, which consisted of risk, age and stage. The total score of each patient was calculated based on each variable matched score. The calibration plot was used to assess the predictive value between the predicted 1-, 3-, and 5-year OS rates and the actual results observed. Time-dependent ROC curves were plotted to assess the prediction of 1-, 3-, and 5-year OS by the nomogram.



Single-cell RNA-seq analysis and online website analysis

GSE111907 was used to evaluate the degree of Gln metabolism in malignant, pan-immune cells, endothelial and fibroblast cells. GSE117570, GSE131907, GSE99254 and GSE127465 were analyzed in the website scTIME Portal (http://sctime.sklehabc.com/unicellular/home) (25). The degree of Gln metabolism was calculated using ssGSEA based on 73 identified Gln metabolism-related genes.

The differential expression analysis of 10 pan-cancer genes was performed online at Gene Expression Profiling Interactive Analysis (GEPIA, http://gepia.cancer-pku.cn/).



Transcriptome sequencing

Transcriptome sequencing was performed in EPHB2-siRNA treated PC-9 cells using the Illumina NovaSeq platform with Annoroad Gene Technology. The differentially expressed genes were identified with FC > 2 and P< 0.05.



RNA extracting and real-time PCR

Following manufacturer’s protocol, the total RNA of LUAD specimens or cells was extracted using the AG RNAex Pro Reagent (Accurate Biotechnology (Hunan) Co., Ltd China). The cDNA was synthesized after reverse transcription using Evo M-MLVRT Master Mix kit (Accurate Biotechnology (Hunan) Co., Ltd China). The relative gene expression was detected using the SYBR Premix Ex Tap kit (Accurate Biotechnology (Hunan)Co.,Ltd China) and normalized to the expression using 18S. The primers are listed in Supplementary Table 1.



Cell culture and reagents

Human PC-9, A549 and THP-1 cell lines were purchased from Procell Life Science & Technology Co., Ltd. PC-9 and THP-1 cells were maintained in RPMI 1640 (Gibco) supplemented with 10% FBS, and A549 cells were maintained in F12K (Gibco) supplemented with 10% FBS. The cell lines were cultured at 37°C in a humidified incubator containing 5% CO2.



EPHB2 knockdown

PC-9 cells were plated at a density of 3*105 per 60 mm dish. After 24 h culture, the medium was changed to fresh medium. The PC-9 cells were transfected with EPHB2-short interfering RNAs (siRNAs) or control-siRNA purchased from TransheepBio (Shanghai, China), accompanied by jetPRIME® transfection reagent (PolyPlus transfection, Illkirch, France). The transfected cells were cultured for at least 24 h in 10% FBS RPMI 1640 medium. The sequences of the EPHB2 siRNA were as follows: 5’GGGAAAUACAAGGAAUAUU3’ (si1), 5’CGCUUUCUAGAGGACGAUA3’ (si2), 5’GGAGUUUGCCAAGGAAAUU3’ (si3) and 5’GAUGAUGAUGGAGGACAUU3’ (si4).



Proliferation assay

Cells were seeded in 96-well plates at a density of 1500 cells per well. After at least 6 hours, the first dish was fixed with 10% cold trichloroacetic acid for at least 24 hours, and the other plates were fixed every 24 hours. After washing and drying, the plates were stained with Sulforhodamine B sodium salt (SRB) (Sigma, USA) for 20 minutes and washed with 1% (vol/vol) acetic acid. After drying, 150 µL of 10 mmol/L Tris was added and the absorbance was measured using the microplate reader (Thermo Fisher, USA) at 562 nm. The results were analyzed with GraphPad Prism 8.0.2.



Colony formation assay

Cells were seeded in 6-well plates at a density of 500 cells per well and cultured at 37°C for two weeks. Subsequently, the plates were washed with phosphate-buffered saline (PBS) and fixed with 4% paraformaldehyde for 30 minutes. Finally, 0.1% crystal violet was used to stain the plates. The colonies were counted with ImageJ software (Wayne Rasband, National Institutes of Health, USA).



Wound healing assay

Cells were seeded in 12-well plates and monolayers were scratched with a pipette tip until 95% confluence. The cells were subsequently photographed every 12 hours and the migrated areas were calculated using ImageJ software.



Transwell assay

Cells (4×104) were seeded in the upper chamber in RPMI 1640 without FBS. The lower chamber was filled with 600 µL of RPMI 1640 medium containing 20% FBS. After 24 hours of incubation, the cells were fixed and stained with crystal violet. The cells in the upper chamber were removed, the migrated cells were photographed and counted with ImageJ software.



THP-1 polarization

THP-1 cells were seed into 6-well plates and treat with PMA (Sigma-Aldrich, St. Louis, MO, USA) for 48 h. Then cells were treated with IL-4 (20 ng/ml; PeproTech) for 24h to induce M2-phenotype polarization.



Immunofluorescence (IF)

IF assay was implemented according to the methods described previously (26). The primary antibodies included EPHB2 (1:100, 2D12C6, Santa Cruz Biotechnology) and CD206 (1:100,24595, Cell Signaling Technology).



Western blot analysis

Protein samples were dissolved in lithium dodecyl sulfate (LDS) sample buffer (Invitrogen). Equivalent amounts of total protein extract were separated on 10% SDS-PAGE gels (90 V for 30 min and 120 V for 60 min) and transferred to polyvinylidene fluoride membranes. The transfer was carried out at 100 V for 2 h using a Bio-Rad transfer apparatus. Membranes were then blocked for 1 h at room temperature in 5% BSA solution. Appropriate primary antibody was incubated overnight at 4°C. The primary antibodies were listed as followed: Akt, p-Akt (Ser473), ERK1/2 and p-ERK1/2 (Thr202/Tyr204) (Cell Signaling Technology, USA: 1:1000); GAPDH and EPHB2 (Santa Cruz, USA: 1:1000).



Statistical analysis

The statistical analysis of this study was performed using R-4.1.2 software. For quantitative data, the statistical significance of normally distributed variables was estimated by the Student’s t-test, and non-normally distributed variables were analyzed using the Wilcoxon rank sum test. Comparisons between more than two groups were made using the Kruskal-Wallis test and one-way analysis of variance as non-parametric and parametric methods, respectively. Kaplan-Meier survival analysis was performed with the R package “Survminer”. Statistical significance was set as P< 0.05.




Results


Landscape of genetic variation of Gln metabolism-related genes in LUAD

The overall design of our study is shown in the flow chart (Figure 1). Seventy-three Gln metabolism genes were identified from MSigDB and published articles. Based on univariate Cox regression analysis, 21 survival-related Gln metabolism genes were selected for further analyses (Figure 2A). A waterfall chart was plotted to show the somatic mutations of the 21 genes and the highest rate of somatic mutations in CPS1 (Figure 2B). The location of copy number variations (CNV) on chromosomes is shown in Figure 2C. The frequency of CNV amplification and deletion is displayed in Figure 2D. Differential expression analysis revealed that 13 genes were significantly upregulated in tumor, while 4 genes were downregulated (Figure 2E). The correlation network showed expression correlation between the 21 survival-related genes (Figure 2F).




Figure 1 | Analysis workflow of this study.






Figure 2 | Genetic and transcriptional alterations of Gln metabolism regulators in LUAD. (A) Prognosis-related Gln metabolism regulators after uniCox regression analysis. (B) 119 of the 561 LUAD patients showed genetic alterations of prognosis-related Gln metabolism regulators. (C) The location of CNV alterations of prognosis-related Gln metabolism regulators on chromosomes. (D) CNV mutation was widespread in 21 prognosis-related Gln metabolism regulators. The column represented the alteration frequency. Deletion, green dot; Amplification, pink dot. (E) Differential mRNA expression of prognosis-related Gln metabolism regulators between normal and tumor samples (*P < 0.05; **P < 0.01; ***P < 0.001). (F) Correlation network between prognosis-related Gln metabolism regulators.





Construction of distinct GlnClusters

Based on survival-related Gln metabolism genes, 513 patients with LUAD from TCGA were stratified into 4 distinct patterns, which were defined as GlnClusters (Figure 3A). PCA revealed significant differences in Gln metabolism genes between the 4 clusters (Figure 3B). Survival analysis revealed improved prognosis of patients in cluster C4 and poor overall survival in cluster C1 (Figure 3C). Most of the Gln metabolism genes were significantly upregulated in clusters C1 and C2, followed by cluster C3, which implied relatively active Gln metabolism. Alternatively, cluster C4 showed reduced Gln metabolism with widespread low expression of Gln metabolism-related genes (Figure 3D).




Figure 3 | Distinct Gln metabolism-related patterns. (A) Consensus clustering matrix for k = 4. (B) Principal component analysis (PCA) for the transcriptome profiles of four clusters. (C) Survival analyses for four different clusters based on 513 LUAD patients from TCGA. (D) Heatmap of prognosis-related Gln metabolism regulators in four clusters. (E) The abundance of tumor infiltrating immune cells in four clusters. (F) The difference of immune functions between four clusters. "*” means that p < 0.05;  “**” means that p < 0.01; "“***” means that p < 0.001; ns, no significance.



We also analyzed the infiltrating immune cells and immune-related functions in different clusters. Interestingly, the abundance of most infiltrating immune cells gradually increased from clusters C1 to C4, which was inversely proportional to the Gln metabolic activity, including various DCs (aDCs, DCs, iDCs and pDCs), mast cells, neutrophils, T helper cells and TILs (Figure 3E). Simultaneously, APC co-stimulation, HLA, T cell co-stimulation and type II IFN response showed trends suggesting highly active antigen presentation and antitumor immunity (Figure 3F).



Construction of geneClusters based on DEGs

The 237 DEGs among 4 GlnClusters were screened out (P value< 0.001, |logFC|>1) and intersected with GEO validating cohort. Univariate Cox regression analysis of these DEGs was performed and 35 survival-related DEGs were identified for further analysis (Figure 4A). Based on the 35 DEGs, 513 patients were divided into 3 geneClusters. Compared with geneClusters B and C, the geneCluster A exhibited significant survival disadvantage (Figure 4B). PCA analysis revealed obvious differences in dimensions between distinct geneClusters (Figure 4C). A heatmap illustrated that the DEGs were significantly different between distinct geneClusters, and most DEGs were upregulated in geneCluster A (Figure 4D). Corresponding to the survival disadvantage, geneCluster A also exhibited a lower abundance of most infiltrating immune cells and immune functions (Figures 4E, F). In summary, geneCluster A can be defined as immune “cold” phenotype.




Figure 4 | Construction of gene clusters based on DEGs. (A) Univariate cox regression analysis of DEGs. (B) Survival analyses for the three gene clusters based on the prognosis-related DEGs. (C) PCA for the transcriptome profiles of three gene clusters. (D) Expression of prognosis-related DEGs in three gene clusters. (E) The abundance of tumor infiltrating immune cells in three gene clusters. (F) The difference of immune functions between three gene clusters.  “**” means that p < 0.01; "“***” means that p < 0.001; ns, no significance.





Development and validation of a risk model

To construct a more convenient scoring model for clinical prediction, we performed Lasso regression analysis of the identified 35 survival-related DEGs and 18 Gln metabolism-related genes remained based on the minimum partial likelihood deviance (Figure 5A). Subsequently, we performed multivariate Cox regression analysis of the 18 genes based on Akaike information criterion (AIC) value and 10 Gln metabolism-related genes were finally obtained, including EPHB2, CAV2, RTN2, SCPEP1, UNC5D, FURIN, PITPNC1, CH25H, RGS20 and TSPAN11 (Figure 5B). Based on the results of multivariate Cox regression analysis, a risk model was constructed based on the formula:




Figure 5 | Construction and validation of a prognostic risk model. (A, B) Lasso regression analysis of prognosis-related DEGs. (C) Multivariate Cox regression analysis. (D) Survival analyses for low- and high-risk group in training cohort. (E) ROC curves of predicting prognosis in training cohort. (F) Survival analyses for low- and high-risk group in GEO validating cohort. (G) ROC curves of predicting prognosis in GEO validating cohort. (H) Survival analyses for low- and high-risk group in individual validating cohort. (I) ROC curves of predicting prognosis in individual validating cohort. (J) Alluvial diagram showing the relationships of survival status, Gln clusters, gene clusters and risk score. (K) The distribution of risk score in different clusters. (L) The distribution of risk score in different gene clusters. "*” means that p < 0.05;  “**” means that p < 0.01.



	

Coefi and Expi denote the risk coefficient and gene expression, respectively.

Based on the median of risk score in training cohort, patients with LUAD from training (TCGA) and validating (integrated GEO) cohorts were divided into low- and high-risk groups, respectively. A heatmap demonstrated a high abundance of Gln metabolism-related genes in the low-risk group, suggesting the activation of Gln metabolism (Figure 5C). The Kaplan–Meier survival curves demonstrated a significant survival advantage of patients in the low-risk group compared with patients in the high-risk group in training (Figure 5D) and validating cohorts (Figure 5F), respectively. The area under the ROC curves (AUCs) were 0.714, 0.705 and 0.685 in TCGA training cohort and 0.701, 0.674 and 0.662 in GEO validating cohort for predicting 1-, 3-, 5-year survival times, respectively, which revealed the excellent performance of the model in predicting overall survival of patients with LUAD (Figures 5E,G). Besides, an individual validating cohort with 33 LUAD patients from Shandong Province Hospital was used to validate the risk model. Consistently, patients in the low-risk group revealed a significant survival advantage, compared with high-risk group (Figure 5H). The ROC curves indicate the excellent performance of the risk score in predicting prognosis (Figure 5I). Figure 5J illustrates the distribution of patients diagnosed with LUAD in four GlnClusters, three geneClusters and two risk groups. Compared with GlnClusters C1, C2 and C3, patients in GlnCluster C4 exhibited significantly lower risk scores (Figure 5K). Patients in geneCluster A exhibited the highest risk scores, while patients in geneCluster B showed the lowest risk score (Figure 5L).

The distribution of risk scores (Supplementary Figures 1A, B), survival status (Supplementary Figures 1C, D) and gene expression (Supplementary Figures 1E, F) in training and validating cohorts are presented. PCA revealed discernible dimensions between high- and low-risk groups in training and validating cohorts, respectively (Supplementary Figures 1G, H).



TMB and drug susceptibility analysis

To investigate the correlation between risk score and TMB, Spearman correlation analysis was performed and significant positive correlation was found between risk score and TMB (R = 0.22, P< 0.001, Figure 6A). Patients in high-risk group had higher levels of TMB than in low-risk group (Figure 6B). After integrating TMB scores, patients with LUAD from TCGA were divided into four groups. Survival analysis revealed that patients with high TMB and low risk exhibited significant survival advantage, followed by the group with high TMB + low risk and low TMB + high risk, sequentially. The group with low TMB and high risk showed significant survival disadvantage (Figure 6C). The variation in the distribution of somatic mutations between low- and high-risk groups was investigated in the TCGA-LUAD cohort. Patients in high-risk group displayed significantly higher frequencies of somatic mutations compared with patients with low risk scores, especially in TP53 (53% vs 34%), TTN (49% vs 32%), MUC16 (43% vs 35%), RYR2 (40% vs 27%), CSMD3 (41% vs 26%) and LRP1B (36% vs 21%) (Figures 6D, E). We further performed drug sensitivity analysis to predict IC50 of 136 chemotherapy drugs (Figure 6F). Our results revealed that 84 drugs had lower IC50 values in the high-risk group, indicating sensitivity. Alternatively, patients in low-risk group were sensitive to 18 drugs. Together, these results provide a standard of reference for treatment stratification of patients with LUAD.




Figure 6 | TMB and drug susceptibility analysis. (A) Correlation analysis between risk score and TMB. (B) Difference between low and high-risk group. (C) Kaplan–Meier curves show overall survival differences stratified by TMB and risk score (p < 0.001). Visualization of gene mutations in high-risk group (D) and low-risk group (E). (F) Drug sensitivity analyses between low-and high-risk groups. Green, sensitive to patients with low risk scores; Red, sensitive to patients with high risk scores; Blue, no sense.





Distribution of Gln metabolism and risk scores

To determine the correlation between risk score and clinical characteristics, we evaluated the differences in risk score among different subgroups based on survival status, stage and TNM stage. Patients in alive, stage I, stage T1 and stage N0 exhibited lower risk scores compared with other groups, while there was no difference in risk score across M stages (Figures 7A–E). To further investigate the distribution of Gln metabolism, we performed ssGSEA to calculate the value of Gln metabolism based on 73 Gln-related genes identified. Similar to the risk score, dead patients had higher levels of Gln metabolism (Figure 7F). In addition, the level of Gln metabolism was significantly and positively correlated with stages T, N and M, with higher stage implying higher Gln metabolism (Figures 7G–J). We next analyzed the differences in Gln metabolism between low- and high-risk groups. The heatmap revealed significant upregulation of prognostic Gln metabolism-related genes in the high-risk group (Figure 7K). Consistently, patients with higher risk scores revealed higher levels of Gln metabolism (Figure 7L). In conclusion, Gln metabolism and risk scores were significantly correlated, and both were positively associated with malignant progression of LUAD.




Figure 7 | Association between Gln metabolism, risk scores and clinical characteristics. Difference of risk score between different survival status (A), stages (B), T stages (C), N stages (D), and M stages (E). Level of Gln metabolism in different survival status (F), stages (G), T stages (H), N stages (I), and M stages (J). (K) Expression of Gln metabolism regulators between low- and high-risk groups. (L) Difference of Gln metabolism level between low- and high-risk groups. " **” means that p < 0.01.





Evaluation of TME and prediction of immunotherapy efficacy in high- and low-risk groups

To further investigate the functional characteristics, we performed GSVA enrichment analysis of the two groups (Figure 8A). The results showed that bile acid metabolism was significantly upregulated in the low-risk group. Alternatively, the KRAS signaling pathway was inhibited in the low-risk group. In addition, various carcinogenic pathways were activated in the high-risk group, suggesting a possible positive correlation with Gln metabolism, such as TGF-β signaling, hypoxia, glycolysis, EMT, PI3K-AKT-MTOR signaling, DNA repair, MYC signaling and E2F targets.




Figure 8 | Characteristic of TME between low- and high-risk group. (A) GSVA enrichment analyses based on the Hallmarker gene sets showed the states of biological processes in low- and high- risk groups. (B) The abundance of tumor infiltrating immune cells in low- and high-risk groups. (C) The difference of immune functions between low- and high-risk groups. (D) Correlation between risk score and tumor-related functions. (E) Differences of ESTIMATE score, stromal score and immune score between low- and high- risk score. (F) Differences of T cell dysfunction, exclusion and TIDE in low- and high-risk score. (G) Enrichment of 10 selected genes in T cell dysfunction level, ICB response outcome, phenotypes in genetic screens and cell types promoting T cell exclusion. Difference of IPS with CTLA4- and PD-1- (H), CTLA4- and PD-1+ (I), CTLA4+ and PD-1 (J) and CTLA4+ and PD-1+ (K) between low- and high-risk group. "*” means that p < 0.05;  “**” means that p < 0.01; "“***” means that p < 0.001; ns, no significance.



To further explore the correlation between risk score and TME, we analyzed the differential abundance of immune-infiltrating cells and immune function to characterize the landscape of TME. Various immune cells involved in antigen presentation, processing and tumor killing were present at higher levels of abundance in the low-risk group, such as aDCs, B cells, DCs, iDCs, NK cells, T helper cells, Th1 cells and TIL (Figure 8B). Correspondingly, the low-risk group also showed active signaling of antigen recognition, processing and presentation, and antitumor effects, including APC co-stimulation, HLA, T cell co-stimulation and type II IFN response (Figure 8C). Besides, the low-risk group showed a higher expression of immune checkpoints, revealing possible benefit from immune checkpoint inhibitor (ICI) therapy. The risk score was also positively correlated with other carcinogenic pathways, such as nucleotide excision repair, DNA damage repair, mismatch repair and DNA replication (Figure 8D). A low risk score was also significantly correlated with a high immune score and ESTIMATE score, indicating increased abundance of infiltrating immune cells (Figure 8E). In summary, the low-risk group can be defined as a “hot” immune phenotype, associated with highly infiltrated antitumor immune cells and upregulated antitumor pathways.

To further investigate the correlation between risk score and efficacy of immunotherapy, we calculated the TIDE score. Patients with a low risk exhibited higher levels of T cell dysfunction and a lower level of T cell exclusion and TIDE score (Figure 8F). We further evaluated the association between the expression of each gene and several immunotherapy-related features, including T cell dysfunction, ICB response outcome, phenotypes in genetic screens and cell types promoting T cell exclusion (Figure 8G). Higher IPS was also exhibited by patients in the low-risk group compared with those in the high-risk group, which indicated that patients with a low-risk score were more sensitive to immunotherapy (Figures 8H–K). To fully validate the accuracy of risk score in predicting the efficacy of immunotherapy, multiple independent immunotherapy cohorts in the published literature were used to validate immunotherapy efficacy and prognosis. Melanoma treated with adoptive T cell therapy (ACT) (Figures 9A–C), melanoma treated with pembrolizumab, an anti-PD-1 antibody (Figures 9D–F), melanoma treated with anti-CTLA4 and ant-PD1 therapy (Figures 9G–I), NSCLC treated with nivolumab or pembrolizumab, an anti-PD-1 antibody (Figures 9J–L), advanced urothelial cancer treated with atezolizumab, an anti-PD-L1 antibody (Figures 9M–O) were used to validate the performance of risk score in predicting prognosis and efficacy of immunotherapy. Patients with a low-risk score were more sensitive to immunotherapy (Figures 9A, D, G , J, M). Further, patients in the low-risk group had a significant survival advantage compared with those in the high-risk group (Figures 9B, E, H, K, N), and the predictive performance was tested using ROC curves (Figures 9C, F, I, L, O). The response to anti-PD1 and anti-CTLA4 therapy was calculated using the TIDE website based on TCGA cohort (Figures 9P–S). Patients in the low-risk group were established as responders to immunotherapy (Figures 9P, Q). By contrast, patients in the high-risk group were shown to be less likely to benefit from anti-PD1 and anti-CTLA4 immunotherapy (Figures 9R, S).




Figure 9 | Prediction of immunotherapy efficacy by the risk model. Response to ACT (A), survival analyses (B) and ROC curves of predicting prognosis (C) between low- and high-risk groups in melanoma cohort (GSE100797). Response to anti-PD-1 therapy (D), survival analyses (E) and ROC curves of predicting prognosis (F) between low- and high-risk groups in melanoma cohort (GSE78220). Response to anti-CTLA4 and ant-PD1 therapy (G), survival analyses (H) and ROC curves of predicting prognosis (I) between low- and high-risk groups in melanoma cohort (GSE91061). Response to anti-PD-1 therapy (J), survival analyses (K) and ROC curves of predicting prognosis (L) between low- and high-risk groups in NSCLC cohort (GSE126044). Response to anti-PD-L1 therapy (M), survival analyses (N) and ROC curves of predicting prognosis (O) between low- and high-risk groups in advanced urothelial cancer cohort (IMvigor210 cohort). (P) Difference of responder between low- and high-risk group of LUAD in TCGA. (Q) Difference of risk score between responder and non-responder of LUAD in TCGA. (R) Difference of benefits between low- and high-risk group of LUAD in TCGA. (S) Difference of risk score between benefit and no benefit of LUAD in TCGA.





Prognostic validation of risk score in pan-cancer

To further validate the performance of risk score in predicting prognosis of other tumors, we performed a survival analysis of patients in the high- and low-risk groups involving 32 types of tumors in TCGA other than LUAD (Figure 10A). Patients in the low-risk group had a significant survival advantage in 22 tumors, including bladder urothelial carcinoma (BCLA, p = 0.001), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC, p = 0.004), cholangiocarcinoma (CHOL, p = 0.017), colon adenocarcinoma (COAD, p = 0.001), lymphoid neoplasm diffuse large B-cell lymphoma (DLBC, p = 0.02), glioblastoma multiforme (GBM, p = 0.003), head and neck squamous cell carcinoma (HNSC, p< 0.001), kidney renal clear cell carcinoma (KIRC, p< 0.001), kidney renal papillary cell carcinoma (KIRP, p< 0.001), acute myeloid leukemia (AML, p = 0.007), brain lower grade glioma (LGG, p< 0.001), liver hepatocellular carcinoma (LIHC, p<0.001), mesothelioma (MESO, p = 0.005), pancreatic adenocarcinoma (PAAD, p< 0.001), pheochromocytoma (PCPG, p = 0.013), sarcoma (SARC, p = 0.002), skin cutaneous melanoma (SKCM, p< 0.001), thyroid carcinoma (THCA, p = 0.003), thymoma (THYM, p = 0.022), uterine corpus endometrial carcinoma (UCEC, p< 0.001), uterine carcinosarcoma (UCS, p = 0.017) and uveal melanoma (UVM, p< 0.001). The ROC curves were performed to evaluate the prognostic performance of pan-cancer risk scores (Supplementary Figure 2). The AUC values are presented in Figure 10B.




Figure 10 | Prognostic validation of risk score in pan-cancer. (A) Survival analyses between low- and high-risk group in 32 pan-caner cohorts of TCGA. (B) Corresponding AUC values in 32 pan-cancer cohorts.





Development of a nomogram to predict survival

Considering the inconvenience of risk score in predicting OS in patients with LUAD, a nomogram was developed to predict 1-, 3-, and 5-year OS rates by integrating the risk score, age and clinicopathological parameters (Figure 11A). The performance of the constructed nomogram in TCGA-LUAD cohort was comparable to an ideal model (Figure 11B). We further constructed ROC curves to evaluate the performance of nomogram, risk, stage and age in predicting 1-, 3- and 5-year OS (Figures 11C–E). The nomogram always showed the best performance in predicting the 1-, 3- and 5-year OS rates, followed by risk and stage.




Figure 11 | Construction of a nomogram. (A) Construction of a nomogram based on risk, age and stage. (B) Calibration curves of the nomogram in predicting OS of TCGA-LUAD patients. ROC curves of the nomogram, risk, stage and age in predicting 1 year- (C), 3 years- (D) and 5 years- (E) OS of TCGA-LUAD patients.





Analysis of Gln metabolism at the level of single cell

To investigate the differences in Gln metabolic activity of various cell types in LUAD, we performed an in-depth analysis of public single-cell sequencing data of lung cancer. We developed a heatmap to present the expression of Gln metabolism-related genes in four types of major cells that constitute the TME, including flow-sorted malignant cells, endothelial cells, immune cells and fibroblasts (Figure 12A). Gln metabolism-related genes were most significantly upregulated in malignant cells, followed by fibroblasts, while the lowest expression of Gln metabolism was observed in immune cells (Figure 12A). The ssGSEA revealed the highest level of Gln metabolism in malignant cells, and the least activity of Gln metabolism in infiltrating immune cells (Figure 12B).




Figure 12 | Characteristic of Gln metabolism in TME. (A) Expression of identified Gln metabolism regulators in malignant cells, endothelial cells, fibroblasts and pan-immune cells. (B) Difference of Gln metabolism levels in malignant cells, endothelial cells, fibroblasts and pan-immune cells. (C) The distribution of immune cell clusters in UMAP plot of GSE131907. (D) Cell type fraction of each sample in GSE131907. (E) Expression of key Gln metabolism regulators in immune cells of GSE131907. (F) The distribution of immune cell clusters in UMAP plot of GSE117570. (G) Cell type fraction of each sample in GSE117570. (H) Expression of key Gln metabolism regulators in immune cells of GSE117570. (I) The distribution of T cell clusters in UMAP plot. (J) Level of Gln metabolism in 16 distinct T cells. “**” means that p < 0.01; "“***” means that p < 0.001; ****” means that p < 0.0001; no significance.



To further investigate the differences in Gln metabolism of infiltrating immune cells in the TME, 208506 lung adenocarcinoma cells from 58 specimens were clustered and defined into 10 cell types, including B lymphocytes, endothelial cells, epithelial cells, fibroblasts, mast cells, myeloid cells, NK cells, oligodendrocytes, T lymphocytes, and undetermined cells (Figure 12C). Cell type fraction of each sample is presented in Figure 12D. A heatmap was plotted to show the expression of key regulators of Gln metabolism (Figure 12E). Compared with other cells, T lymphocytes exhibited the most active Gln metabolism. To further validate our findings, 9705 NSCLC cells from GSE117570 were also clustered and defined (Figure 12F). Cell composition is presented in Figure 12G. Consistently, the key regulators of Gln metabolism were significantly overexpressed in a variety of T cells, revealing a relatively active Gln metabolism in infiltrating T cells (Figure 12H). Subsequently, we used single-cell sequencing data of T cells (GSE99254) to investigate the heterogeneity of Gln metabolism in various types of T cells in NSCLC (Figure 12I). Based on ssGSEA, exhausted CD8 T cells (C6-LAYN) and suppressive Tregs (C9-CTLA4) were shown to express the most active Gln metabolism compared with other T cells (Figure 12J). Interestingly, exhausted CD8 T cells and suppressive Tregs are also key target cells for immune checkpoint inhibitor (ICI) therapy.



EPHB2 affects the biological behaviors of LUAD cells in vitro

We performed differential expression analysis of the 10 genes in pan-cancer risk score (Supplementary Figure 3). Among the 10 genes, EPHB2 showed the most significant difference between normal and tumor cells of all cancers and was significantly overexpressed in tumors. However, the biological role of EPHB2 in LUAD was rarely studied. We subsequent performed a series of experiments to elucidate the role of EPHB2 in LUAD.

The expression of EPHB2 in 22 LUAD specimens and 11 normal specimens was detected and EPHB2 was highly expressed in LUAD specimens (Figure 13A). Patients with high expression of EPHB2 showed worse overall survivals compared with low EPHB2 group (Figure 13B).




Figure 13 | EPHB2 affects the biological behaviors of LUAD cells in vitro. (A) Expression of EPHB2 in normal and tumor specimens. (B) Survival analyses between low and high EPHB2 groups in LUAD cohorts. Expression of EPHB2 with treatment of Gln-replete and Gln-deprived in A549 cell line (C) and PC-9 cell line (D). (E) QRT-PCR was performed to detect the efficiency of EPHB2-siRNA transfection. (F) Growth curves of PC-9 cells treated with EPHB2 knockdown was developed using SRB assay. (G) Colony formation assay was conducted to detect the proliferation of PC-9 cells. (H) Transwell assay was performed to detect the invasion of PC-9 cells with treatment of EPHB2 knockdown. (I) The cell migration of EPHB2 knockdown was detected by wound healing assay in PC-9 cells. (J) Expression of PD-L1 with treatment of Gln-replete medium, Gln-deprived medium for 12h and Gln-deprived medium for 24h. (K) A volcano map to exhibit differential expressed genes between normal and EPHB2 knockdown treated PC-9 cells. (L) GO and KEGG enrichment analysis between normal and EPHB2 knockdown treated PC-9 cells after sequencing. (M) GAPDH, EPHB2, AKT, P-AKT (Ser473), ERK1/2, P-ERK1/2 (Thr202/Tyr204) were detected by western blotting in EPHB2 knockdown treated PC-9 cells. (N) Expression of key Gln metabolism regulators in normal and si-EPHB2 treated PC-9 cells. "*” means that p < 0.05;  “**” means that p < 0.01; "“***” means that p < 0.001.



To validate the association between EPHB2 and Gln metabolism, we used Gln-deprived/replete medium to culture A549 and PC-9 cells. The expression of EPHB2 was significantly downregulated by Gln-deprived medium in A549 and PC9 (Figures 13C, D). We further designed siRNA for EPHB2 knockdown and transfected siRNA into PC9 cells. The siRNA-1 and siRNA-4 were selected for further investigation due to the greater than 70% transfection efficiency (Figure 13E). The SRB assay was performed to test the cell proliferation, and the knockdown of EPHB2 significantly inhibited the proliferation of PC9 cells (Figure 13F). The number of cell clones was decreased in PC9 cells with EPHB2 knockdown (Figure 13G). Transwell assay was performed to investigate the cell invasion: EPHB2 knockdown significantly reduced the invasion of PC9 cells (Figure 13H). EPHB2 knockdown also promoted migration of PC9 cells in wound healing assay (Figure 13I). In conclusion, knockdown of EPHB2 significantly inhibited cell proliferation, migration and invasion. In addition, surprisingly, the removal of Gln significantly upregulated the PD-L1 expression of PC9 cells, which may indicate the potential therapeutic role of combining Gln metabolism inhibitors with PD-L1 inhibitors (Figure 13J).

To explore the regulation of downstream signaling by EPHB2, we knocked down EPHB2 in PC9 cells, followed by transcriptome sequencing, which revealed 565 DEGs, which were screened out with FC > 2 and P< 0.05, including 296 upregulated genes and 269 downregulated genes (Figure 13K). GO and KEGG enrichment analysis was performed to identified regulated pathways (Figure 13L). EPHB2 was mainly associated with cell communication, cellular metabolic process, regulation of immune, regulation of cell death, cytokine-mediated signaling pathway, response to amino acids, TNF signaling pathway, MAPK pathway and regulation of IL-1β and IL-8 production (Figure 13L). Simultaneously, AKT pathway and ERK pathway were verified to be down-regulated when EPHB2 was knocked out, suggesting that EPHB2 is involved in the regulation of these pathways (Figure 13M). Besides, 11 key Gln metabolism-related genes were downregulated after treating with EPHB2 knockdown (Figure 13N). In particular, the key regulators of Gln metabolism, SLC7A7, GLS, ALDH5A1 and GLUL were significantly downregulated, which indicated significant correlation between EPHB2 and Gln metabolism.



Effect of EPHB2 on infiltrating immune cells of TME

To investigate the expression and role of EPHB2 in immune cells, we selected single cell sequencing data of NSCLCs (GSE127465) for further analysis by clustering and defining 53215 cells into 21 types using algorithm Uniform Manifold Approximation and Projection (UMAP) (Figure 14A). EPHB2 was found to be mainly enriched in M0 and M2 macrophages, especially in M2 macrophages, suggesting that EPHB2 may function mainly in macrophages (Figure 14B). The cell type fraction of each sample is shown in Figure 14C, with M2 constituting almost the highest proportion. We further analyzed the correlation between EPHB2 expression in M0/M2 and the composition of infiltrating immune cells. The expression of EPHB2 in M0 macrophages was significantly and positively correlated with abundance of infiltrating M2 macrophages, which indicated that EPHB2 may be involved in the polarization of M2 macrophages (Figure 14D). Besides, the expression of EPHB2 in M2 macrophages was negatively correlated with the abundance of activated NK cells and resting NK cells (Figures 14E, F). These results suggest that EPHB2 may be associated with cell communication between M2 macrophages and NK cells. The interaction network of infiltrating immune cells showed that M2 macrophages exhibited the most extensive interactions with other immune cells (Figure 14G). The ligand-receptor interaction between M2 macrophages and activated NK cells is presented in Figure 14H. Similarly, the ligand-receptor interaction between M2 macrophages and resting NK cells was also investigated (Figure 14I). To verify the distribution of EPHB2 in macrophages M0 and M2, we induced THP-1 cells into macrophages M0 and M2, and detected the expression of EPHB2 by qPCR (Figure 14J). Compared with M0 macrophages, M2 macrophages showed a significant upregulation of EPHB2, accompanied by significant upregulation of the markers of M2. We further used Gln-deprived medium to culture M0 and M2 macrophages and found that Gln deprivation significantly downregulated EPHB2 expression in M0 macrophages, but did not affect the expression in M2 macrophages (Figure 14K). Besides, we also found that EPHB2 was significantly co-expressed with the M2 macrophage marker CD206 in LUAD tissues via immunofluorescence (Figure 14L). These results suggest that EPHB2 also plays a huge role in macrophages.




Figure 14 | Effect of EPHB2 on infiltrating immune cells of TME. (A) The distribution of immune cell clusters in UMAP plot. (B) The expression of EPHB2 in distinct clusters of immune cells. (C) Cell type fraction of each sample. (D) Correlation analysis between expression of EPHB2 in macrophages M0 and composition of infiltrating macrophages M2. Correlation analysis between expression of EPHB2 in macrophages M2 and composition of infiltrating activated NK cells (E) and resting NK cells (F). (G) Correlation network between tumor infiltrating immune cells. (H) The ligand-receptor interaction between macrophages M2 and activated NK cells. (I) The ligand-receptor interaction between macrophages M2 and resting NK cells. (J) Expression of EPHB2 and macrophages M2 markers in macrophages M0 and M2. (K) Expression of EPHB2 in normal macrophages M0, M2 and Gln-deprived macrophages M0, M2. (L) Co-localization between EPHB2 and CD206 detected by IF in LUAD specimen.  “**” means that p < 0.01; "“***” means that p < 0.001; ns, no significance.






Discussion

Although targeting cancer metabolism to enhance immunotherapy responsiveness is highly promising, the heterogeneity and crosstalk of metabolic pathways between cancer cells and immune cells in TME lead to disruption of normal metabolic pathways in immune cells by strategies to inhibit/alter cancer metabolism (27). Therefore, it is critical to target the appropriate metabolic pathways and molecules to kill tumors without interfering with or even promoting anti-tumor immunity. However, recent studies have shown that JHU083, a broad-spectrum inhibitor of Gln metabolism, effectively kills tumor cells while activating the anti-tumor effects of CD8+ T cells, thereby significantly enhancing the efficacy of anti-PD-1 immunotherapy (15). Meanwhile, another study reported that targeting Gln metabolism increased antitumor immunity in mouse models by upregulating mitochondrial metabolism of CTLs in NSCLC (28, 29). These studies make Gln metabolism an ideal target for improving tumor immunotherapy, but related multi-omics systematic studies are still extremely rare in LUAD and even in other tumors.

Herein, we first defined four patterns based on prognosis-related regulators of Gln metabolism. The four clusters exhibited significantly different prognostic features, Gln metabolism and TME. The immune phenotype gradually changes from “cold” to “hot” sequentially, from clusters C1 to C4, accompanied by an upregulation of the abundance of infiltrating immune cells and activation of the anti-tumor immune pathway. Notably, the “hot” immune phenotype in different clusters is often associated with a survival advantage and low levels of Gln metabolism. Gln is a common metabolic substrate in tumor and immune cells (9), and therefore tumor cells can reduce the anti-tumor effect of Gln-dependent immune cells, such as T cells and DCs, by competing for and depleting Gln. Gln metabolism was shown to mediate the activation of DCs, and coincidentally, low levels of Gln metabolism and highly enriched DCs were present concurrently in cluster C4, followed by upregulation of APC co-stimulation and HLA. These suggest activation of the antigen presenting pathway, which may contribute to the significant upregulation of TIL and T cell co-stimulation in cluster C4. Based on DEGs, patients with LUAD were further classified into three geneClusters. Similar to the previous clusters, the immune phenotype also showed a transition from “cold” to “hot” from geneClusters A to C, and exhibited a similar TME landscape. In addition to DCs, various helper T cells exhibited significant differences, including Th1 and Th2 cells. Studies have shown that Gln deficiency alters Th1 differentiation and converts CD4+ T cells to a Treg phenotype (30). In addition, genetic deletion of the Gln transporter protein ASCT2 impaired Th1 production and function (31). In the group with low Gln metabolism, CD4+ T cells may acquire additional Gln and thus promote Th1 cell differentiation and activation. Th1 mediates anti-tumor immunity mainly by expressing CD40L and secreting cytokines such as INFγ and IL-2 to recruit and activate macrophages and cytotoxic T cells, which may be involved in the upregulation of TIL, macrophages and type II IFN response in geneCluster C (32). In addition, we found that low Gln metabolism in tumors may drive the Th1/Th2 balance toward Th1, which favored anti-tumor immunity (33).

Based on prognosis-related DEGs, we developed a risk score and divided patients with LUAD into low- and high-risk groups. Similarly, the low-risk group was defined as “hot” immunophenotype, corresponding to a survival advantage and lower levels of Gln metabolism, while the high-risk group showed the opposite effect. In the low-risk group, the low levels of tumor Gln metabolism may imply a weaker competitive depletion of Gln, thus allowing immune cells to acquire further Gln and activate anti-tumor effects, which may explain the upregulation of anti-tumor immune cells or pathways such as DCs, TIL, Th1 cells, NK cells, APC co-stimulation, T-cell co-stimulation and type II IFN response. “Hot” immune phenotype was shown to benefit strongly from immunotherapy, which was also validated by the levels of immune checkpoints, TIDE, IPS and immunotherapy cohorts. Patients in low-risk group benefited significantly from immunotherapy, especially following ACT therapy of melanoma cohort and anti-PD-1 antibody treatment of NSCLC cohort. Deletion of glutaminase enhanced the effector differentiation of CAR-T cells (34). Alternatively, no further studies are available to demonstrate that Gln metabolic blockade improves the efficacy of ACT therapy. Although extensive blockade of Gln metabolism has been shown to significantly enhance the efficacy of anti-PD-1 therapy, corresponding studies in LUAD are still lacking. Therefore, the constructed risk model not only facilitates the differentiation of the efficacy of immunotherapy, but also provides an important reference for Gln blockade combined with immunotherapy. In addition, the risk model was used to significantly differentiate patient prognosis in 23 different cancers, indicating the generalizability of the model.

Gln metabolism was shown to be involved in multiple cancer progression as shown in our study. Gln metabolism was significantly and positively correlated with TNM and stage (Figures 7G–J). We performed single-cell sequencing analysis to describe the landscape of Gln metabolism in TME. Consistent with previous results, tumor cells exhibited significantly activated Gln metabolism compared with immune cells or fibroblasts. However, in two independent single-cell sequencing analyses of LUAD, T cells exhibited relatively higher active Gln metabolism compared with other immune cells. Although Gln metabolism has been reported to be involved in T cell differentiation and activation, the landscape of Gln metabolism in tumor-infiltrating T cells remains elusive (30). Therefore, we further extracted and analyzed single-cell sequencing data targeting lung cancer-infiltrating T cells. Surprisingly, exhausted CD8 T cells and suppressive Tregs exhibited the most active Gln metabolism compared with other 14 types of T cells, and represent key target cells in anti-PD1 and anti-CTLA4 immunotherapy, respectively (35, 36). These results suggest the feasibility of utilizing Gln metabolism inhibitors combined with immunotherapy. Indeed, due to the robust plasticity of T cell metabolism, the blockade of Gln metabolism increases T cell proliferative capacity and anticancer activity, in addition to preventing exhaustion via T cell metabolic reprogramming (15).

To further characterize the genes used in the model, we performed differential pan-cancer analysis, showing that EPHB2 is most differentially and highly expressed in the vast majority of tumors (Supplementary Figure 3). EphB2 is a significant member of the Eph receptor family, which has been verified to regulate the malignant progression of various tumors through different signaling pathways. In hepatocellular carcinoma, EPHB2 enhances cancer stem cell properties and drive sorafenib resistance by activating SRC/AKT/GSK3β/β-catenin signaling cascade. Moreover, EPHB2 mediated malignant progression of medulloblastoma by regulating ERK, P38 and mTOR pathway (37, 38). Although studies have shown that EPHB2 is involved in the malignant progression of various cancers, its role in LUAD has yet to be investigated (37). In the present study, we found that EPHB2 was closely associated with malignant progression of LUAD, promoting proliferation, invasion and migration of LUAD cells. Simultaneously, EPHB2 has been verified to be involved in the regulation of AKT pathway and ERK pathway, which may be the potential mechanism for promoting the malignant progression of LUAD by EPHB2. Interestingly, Gln deprivation significantly downregulated EPHB2 expression, and knockdown of EPHB2 in turn downregulated key regulators of Gln metabolism, such as GLS, GLUL, SLC7A7 and GLUD1. Meanwhile, the results of enrichment analysis after transcriptome sequencing showed that EPHB2 was associated with cellular metabolic regulation and response to amino acid stimulus. Therefore, we speculate that EPHB2 may be involved in the Gln metabolic pathway, which has yet to be reported.

Based on transcriptome sequencing analysis, EPHB2 was also significantly associated with cell communication and immune regulation. Although previous studies reported that EPHB2 promoted monocyte activation and T-cell migration, studies investigating the regulation of tumor immunity by EPHB2 are still unavailable (39, 40). In our study, we found that EPHB2 was mainly enriched in macrophages, especially in M2 types. EPHB2 expression in M0 macrophages enhanced the levels of M2 macrophages, and the expression of EPHB2 in M2 macrophages reduced the composition of activated and resting NK cells (Figure 14). These results suggest that EPHB2 may promote M2-like polarization and also mediate the interactions between M2 macrophages and NK cells, which in turn suppress NK cell infiltration or proliferation. Previous studies revealed that the expression of EPHB2 was significantly correlated with trans-differentiation of monocytes into macrophages by upregulating CCL2 and IL-8 (40). However, no previous study explored the function of EPHB2 in M2 macrophages, which was precisely the focus of our study. Previous research revealed that Gln metabolism positively regulated M2-like polarization of macrophage, which may be the potential mechanism of regulating M2-like polarization by EPHB2 (13).

However, our study did not elucidate the mechanism of EPHB2 in LUAD cells and M2 macrophages, which will be addressed in future studies.

In conclusion, based on the regulators of Gln metabolism, we finally constructed a Gln metabolism-related risk model to accurately predict the prognosis of patients with LUAD and even multiple cancers as well as the efficacy of multiple immunotherapies. In addition, we described the Gln metabolism of cells in TME at the single-cell level. Finally, EPHB2, a Gln metabolism-related molecule in the model was shown to promote the malignant progression of LUAD cells and also play an essential role in M2 macrophages.
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Background

Cellular senescence is a key element in the occurrence and progression of a variety of tumors. As a result, cellular senescence-related markers can be categorized based on the prognosis status of patients. Due to the heterogeneity and the complexity of the tumor microenvironment (TME), the long-term effectiveness of low-grade glioma (LGG) treatment remains a clinical challenge. Consequently, developing and refining effective treatment approaches to aid with LGG management is critical.



Methods

Based on the expressions of cell senescence-related genes (CSRGs) acquired from the cellAge database, consensus clustering was utilized to identify stable molecular subtypes. Clinical features, immune infiltration, route modifications, and genetic changes of various subtypes were also assessed. Following that, the least absolute shrinkage and selection operator (LASSO) regression and univariate Cox regression analysis were used for developing the cell senescence-related risk score (CSRS) model. Finally, a correlation study of the CSRS model with molecular, immunological, and immunotherapy parameters was performed.



Results

C1, C2, and C3, are the three senescence-related subtypes that were identified. Patients belonging to the C1 subtype had poor prognoses and a substantial proportion of them was in the grade G3. The differentially expressed genes (DEGs) among the three subtypes were used to develop the CSRS model. In both the training and independent validation cohort, the model had a high area under the receiver operating characteristic (ROC) curve in predicting the overall survival (OS) of patients. As a result, this model can predict clinical features and responses to immunotherapy in a variety of patients and it is a potential independent prognostic factor for LGG.



Conclusion

This research discovered three LGG subtypes related to cell senescence and created a CSRS model for six genes. Cell senescence was highly associated with unfavorable prognosis in LGG. The CSRS model can be used to predict the prognosis of patients and identify patients who would benefit from immunotherapy.
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Introduction

Low-grade glioma (LGG) is a common central nervous system tumor that typically consists of World Health Organization grades II and III and is less malignant than glioblastoma (GBM) (1). LGG has recently been shown to have molecular traits that can help with diagnosis and treatment. IDH1, IDH2, TP53, EGFR, and ATRX mutations, 1p/19q co-deletion, and MGMT promoter methylation are all known prognostic markers for LGG patients. These genetic characteristics, on the other hand, are unable to accurately predict survival outcomes. Despite advancements in LGG therapies such as surgical resection, adjuvant chemotherapy, postoperative radiation, and immunotherapy (2), patients with LGG still have a low overall survival rate. Therefore, studying the underlying molecular mechanisms of LGG initiation and progression for identifying effective biomarkers is crucial to optimizing LGG diagnosis and treatment regimes.

Cell senescence is a sustained proliferative arrest hallmarked by changes in cell shape, gene expression, heterochromatin formation, and metabolic activity caused by excessive stress-inducing stimuli (3). Following the identification of various cell senescence-related markers, cellular senescence has been detected in several malignancies in recent years. Cell senescence serves two purposes. On the one hand, because their proliferative capacity is reduced, senescent tumor cells can impede carcinogenesis (4). Furthermore, tumorigenic Ras expression is linked to the presence of senescent cells in diverse cancer lesions (5). In precancerous lesions, inactivation of tumor suppressors promotes cell senescence. Moreover, VO-OHpic, a phosphate and tension homology deleted on chromosome ten (PTEN) inhibitor, also promotes cell senescence and reduces carcinogenesis (6). On the other hand, senescent cells often have oncogenic properties. The senescence-associated secretory phenotype (SASP) has been observed, and it can affect the tumor microenvironment in both the autocrine environment and paracrine manner. In mammary epithelial cells, senescent human fibroblasts can induce the formation of precancerous and malignant mammary epithelial cells (7). The CXCR2 ligands GRO- and IL-8 can drive malignant melanocytes to develop by expressing high levels of CXC chemokine receptor 2 (CXCR2) (8, 9). Senescent stromal cells can aid cancer cell metastasis by promoting epithelial-mesenchymal transition (EMT) (10). As a result, cell senescence is important for tumor progression, tumor pathway modulation, and immunotherapeutic responses. As a result, identifying cell senescence-related genetic traits can aid in a more thorough investigation of the mechanisms underlying the link between LGG progression and cellular senescence. Several systems biology approaches are currently available for identifying biomarkers and constructing genetic signatures linked to the prognosis of patients with LGG. Tan et al. looked at immune-related genes in LGG and discovered six genetic markers that could help diagnose LGG and predict patient prognoses (11). Bai et al. examined N6-adenosine methylation (m6A) methylation-regulated genes in LGG and built a prognostic model based on their findings, to improve prognosis prediction accuracy in LGG patients (12). Using Cox regression analysis, Liu et al. created a ten-gene signature for LGG (13). Young people with LGG, on the other hand, have a terrible prognosis. As a result, more stable prognostic models, as well as particular markers, must be investigated.

In this research, we studied stable molecular subtypes according to cell senescence-related genes (CSRGs) by constant clustering and carried out a comparison of pathway and immune features among subtypes. Afterward, differential expression analysis and LASSO were used to find prognosis-related CSRGs. Moreover, we made a cell senescence-related risk score (CSRS) model that can help in the treatment of LGG and aid in developing personalized treatment strategies for affected people.



Materials and methods


Data collection and pre-processing

The LGG dataset (TCGA–LGG) was gathered from The Cancer Genome Atlas and comprised RNA sequencing (RNA-seq) data and clinical information from 506 samples (TCGA). The Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/) was also retrieved to obtain “mRNAseq 693 (batch1)” and “mRNAseq 325 (batch2).” By combining two batches of RNA-seq data, a total of 408 LGG samples (CGGA cohort) were included in this study. Following that, the TCGA–LGG and CGGA cohorts were employed as the training and validation sets, respectively. In addition, the cellAge database (https://genomics.senescence.info/cells/) yielded 279 CSRGs.



Molecular typing of CSRGs

To classify data into distinct kinds, consistency matrices were created using the ConsensusClusterPlus R package’s consistency clustering function (14). The samples’ molecular subtypes were determined using CSRG expression data. Then, using the “km” method and “canberra” as the metric distance, 500 bootstraps were run, with each bootstrapping operation involving 80 percent of the patients in the training set. To establish the molecular subtypes of the samples, the number of clusters was varied from 2 to 10, with the ideal number established by computing the consistency matrix and the consistency cumulative distribution function.



Lasso Cox regression analysis

A shrinkage estimation algorithm is the Lasso method. It constructs a penalty function that decreases some coefficients while setting others to zero, resulting in a more refined model. As a result, it preserves the benefit of subset shrinking and is a biassed estimator for multicollinear data. As a result, it is possible to pick variables while estimating parameters, allowing it to better tackle the multicollinearity problem in regression analysis. The Lasso Cox regression was carried out in this work with the help of the R package glmnet (15).



Construction and evaluation of the CSRS model

The coxph function in the survival R package (https://mran.microsoft.com/web/packages/survival/index.html) was used to perform a univariate Cox analysis of CSRGs in the TCGA–LGG and CGGA cohorts, yielding two sets of CSRGs closely linked to the prognosis of LGG patients, and the overlapping genes were chosen for further analysis with the criterion of P value less than 0.05. Then, across the three categories previously identified, differently expressed CSRGs were discovered. Lasso regression was used to minimize the number of genes to produce prognosis-related CSRGs. The MASS package’s stepAIC was applied to further compress the number of prognostic CSRGs. StepAIC starts with the most complicated model and removes one variable at a time to reduce the AIC, with a smaller AIC value indicating a better model that achieves a sufficient fit with fewer parameters. In addition, each patient’s CSRS was calculated using the following equation: CSRS=Σβi×Expi, where Expi is the level of gene expression of prognosis-related CSRGs and β is the Cox regression coefficient of corresponding genes. CSRS score was converted to z-score. We set z-score = 0 as a cut-off to classify samples into high- (z-score > 0) and low-risk (z-score < 0) groups. Furthermore, the Kaplan–Meier (KM) algorithm was utilized for plotting the survival curves for subsequent prognostic studies. Finally, we used a log-rank test for determining the value of differences.



Single-sample gene set enrichment analysis

The R package GSVA (16) was used to perform a single-sample gene set enrichment analysis (ssGESA) on the gene expression profiles corresponding to LGG samples in the TCGA–LGG cohort to examine the association between CSRS and biological functions in various samples. The scores of each sample on various functions were then measured (i.e., ssGSEA scores for each sample corresponding to each function). Finally, we calculated the correlations between these functions and CSRS.



Patient response to different immunotherapies and drugs

To predict the clinical responsiveness of patients in the high- and low-CSRS groups to immune checkpoint inhibitors, the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was utilized (17). The TIDE algorithm probed into the M2 subtype of cancer-associated fibroblast (CAF), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages as three cell types that reduced T-cell infiltration in cancers (TAMs). To avoid immune evasion, this algorithm used two different mechanisms: a malfunction score for tumor-infiltrating cytotoxic T cells (CTLs) and an exclusion score for the immunosuppressive factor CTL. Immune escape is more likely with a higher TIDE prediction score, implying that patients are less likely to benefit from immunotherapy. Moreover, we measured the half-maximal inhibitory concentration (IC50) of the drug using the pRRophetic R package (18) to observe the sensitivity of patients in the high- and low-CSRS groups to different chemotherapeutic agents and targeted drugs.



Gene set enrichment analysis

In distinct biological processes, GSEA can reveal pathways of various molecular subtypes. GSEA was used in this investigation with all candidate gene sets from the Hallmark database (19), and FDR<0.05 was set as the criterion of substantial enrichment.



Cell abundance in TME

The relative abundance of 22 immune cells in LGG was quantified using the CIBERSORT algorithm (20)(https://cibersort.stanford.edu/). The fraction of immune cells was also determined with the help of the Estimation of STromal and Immune cells in MAlignant Tumours Using Expression Data (ESTIMATE) software (21).



Statistical analysis

R (https://www.r-project.org/, version 3.6.3) was used for all statistical studies and data visualization. P < 0.05 represented a significant difference, and all estimated P-values were two-tailed.




Results


Identification of three cell senescence-related molecular subtypes of LGG

Initially, we carried out a univariate cox analysis (P < 0.05) on CSRGs from both TCGA–LGG and CGGA datasets to get 115 genes strongly linked to LGG patients’ prognoses. Afterward, by consistent clustering, we grouped 506 LGG samples. Cluster number was optimized using the cumulative distribution function (CDF), and the CDF delta area curve suggested that the outcomes of clustering were stable when the number of clusters was 3 (Figures 1A, B). Consequently, the number (k) was selected as three to get three molecular subtypes (Figure 1C). We further studied the prognostic features of these three molecular subtypes. We observed a remarkable difference in patient prognosis between the three molecular subtypes in the TCGA–LGG cohort (Figure 1D), the best prognosis was observed in patients of the C3 subtype and patients of the C1 subtype showed the worst prognosis. Moreover, the mortality of patients in the C1 subtype was greatly enhanced in comparison with those in the C3 subtype (Figure 1E). Afterward, using the same strategy, molecular typing was carried out on samples in the CGGA cohort and we observed similar a remarkable difference in the prognosis of patients belonging to these three molecular subtypes (Figures 1F, G), which aligned with the outcomes from the TCGA–LGG training set. Then, a comparison was done between the CSRSs in the various molecular subtypes in the TCGA–LGG and CGGA cohorts (Figures 1H, I). Remarkable differences were observed in CSRSs of various molecular subtypes, the lowest CSRS was observed in the C1 subtype and the highest in the C3 subtype.




Figure 1 | LGG subtypes sorted by CSRGs found in the TCGA–LGG and CGGA cohorts. (A) CDF curves of TCGA–LGG cohort samples. CDF curves for consensus scores (based on different numbers of subtype, k = 2 – 10) are illustrated using various colors; (B) CDF Delta area curves for samples in the TCGA–LGG cohort; (C) Clustering plot of consensus scores for samples in the TCGA–LGG cohort at k = 3; (D) KM curves indicating prognostic differences between the three molecular subtypes in the LGG cohort; (E) Differences in survival status of patients from different subtypes in the TCGA–LGG cohort; (F) KM curves indicating prognostic differences between the three molecular subtypes in the CGGA cohort; (G) Differences in survival status of patients from different subtypes in the CGGA cohort. (H) Differences in CSRS between the three molecular subtypes in the TCGA–LGG cohort; (I) Differences in CSRSs between the three molecular subtypes in the CGGA cohort. Significance was measured by variance analysis (*P < 0.05; ***P < 0.001; ****P < 0.0001).





Differences in clinicopathological characteristics among three molecular subtypes

The TCGA dataset was used for comparing the differences in clinical features among the three subgroups. There was no discernible gender difference between the three categories. However, the C1 subtype had a higher number of patients in the G3 grade, whereas the C2 and C3 subtypes had a higher proportion of patients in the G2 grade. In terms of IDH mutations, the C2 and C3 subtypes had the highest frequency of patients with mutations. Furthermore, the C3 subtype had a considerably larger number of individuals with 1p19q co-deletion than the C1 and C2 subtypes. Individuals with the C2 and C3 subtypes also had considerably more MGMT promoter methylation events than patients with the C1 subtype (Figure S1A). Patients who experienced both IDH mutations and 1p19q co-deletion also had the greatest prognosis, with a median OS of 8 years. Patients with an IDH mutation but no 1p/19q deletion (astrocytoma) had a median survival time of 6.4 years. Furthermore, patients with IDH wild-type LGG had a median OS of 1.7 years, which was comparable to those with IDH wild-type glioblastoma and commensurate with the prognosis of patients with the C3 subtype. In the CGGA cohort, differences in age, gender, grade, IDH mutation, 1p19q co-deletion, and MGMT promoter methylation were compared (Figure S1B). In the CGGA cohort, differences in age and gender were not significant.



Differences in mutational characteristics among three molecular subtypes

We analyzed the mutational profiles of various molecular subtypes further for revealing the possible underlying mechanisms used in the classification of cell senescence-related subtypes. In this report, data on the molecular properties in the TCGA–LGG cohort was retrieved from previous research on pan-cancer (22). The cellular senescence subtypes were linked with measures of DNA damage, such as the fraction of genome altered, homologous recombination defects, aneuploidy, tumor mutation burden, and the number of segments. Moreover, patients of the C3 subtype had lower scores of aneuploidies, number of segments, fraction altered, homologous recombination defects, and tumor mutation burden (Figure 2A). Additionally, further molecular subtypes were provided in the above study. Therefore, these six molecular subtypes were compared with our three molecular subtypes (Figure 2B). More “Codel” molecular subtypes were discovered in the C3 subtype and more “G-CIMP-high” molecular subtypes in the C2 subtype. Furthermore, LGG was sorted into six molecular subtypes based on 160 different immune signatures in the above study, the best prognosis was observed in patients of immunoassay subtype C3 and the worst prognosis was seen in subtypes C4 and C6. Hence, a comparison of these six immuno-molecular subtypes was carried out with the three molecular subtypes. We defined and observed that the C4 subtype of the immuno-molecular subtypes occupied more of the C1 subtypes (Figure 2C). Additionally, the connection between gene mutations and molecular subtypes was studied and a strong correlation was identified. In LGG, ATRX, CIC, IDH1, TP53, and TTN genes went through numerous somatic mutations. The IDH1 gene among them had a higher frequency of mutations in C2 and C3 subtypes, and patients with IDH1/2 mutations showed a better prognosis. Moreover, the TP53 gene had the highest mutation frequency in the C subtype, followed by the C1 subtype (Figure 2D).




Figure 2 | Comparison of genomic alterations among the three molecular subtypes. (A) Differences in fraction altered, the number of segments, homologous recombination defects, aneuploidy score, and tumor mutation burden in the molecular subtypes in the TCGA–LGG cohort; (B) Comparison of the three molecular subtypes with immuno-molecular subtypes; (C) Comparison of the three molecular subtypes with other molecular subtypes; (D) Somatic mutations in the three molecular subtypes. (ns, no significance. *P < 0.05, ***P < 0.001, ****P < 0.0001).





Differences in immune characteristics among three molecular subtypes

To better understand the differences in the immunological milieu of patients belonging to distinct molecular subtypes, the degree of immune cell infiltration of patients in the TCGA–LGG cohort was measured using the expression levels of genes in immune cells. CIBERSORT was used to calculate the relative abundance of 22 immune cell types (Figure 3A), and most immune cell subtypes differed significantly. Immune cell infiltration was measured using ESTIMATE (Figure 3B), and patients belonging to the C1 subtype had a considerably higher “ImmuneScore” and immune cell infiltration degree than patients belonging to other subtypes. Finally, the immune infiltration degree of samples in the CGGA cohort was examined (Figures 3C, D), and a similar phenomenon was observed as in the TCGA cohort. Moreover, EPIC analysis also displayed the similar result with CIBERSORT analysis (Figures 3E, F)




Figure 3 | Proportions of immune cell components in the two LGG cohorts. (A) Differences in 22 immune cell scores among different molecular subtypes in the TCGA–LGG cohort; (B) Differences in ESTIMATE immune infiltration in various molecular subtypes in the TCGA–LGG cohort; (C) Differences in 22 immune cell scores in various molecular subtypes in the CGGA cohort; (D) Differences in ESTIMATE immune infiltration among various molecular subtypes in the CGGA cohort. (E, F) EPIC analysis for the estimated proportion of immune cells in TCGA-LGG (E) and CGGA (F) cohorts. (ns, no significance. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).





Pathway analysis of different molecular subtypes

We performed GSEA on all candidate gene sets from the Hallmark database (19) to find out the differentially activated pathways (DAPs) in different molecular subtypes. The C1 subtype was considerably enriched in 27 DAPs in the TCGA cohort, while 35 DAPs were significantly enriched in the CGGA cohort (Figures 4A, B). In addition, in different LGG cohorts, aberrant routes between C1 and C3 subtypes were compared (Figure 4B). Immune-related pathways such as interferon-gamma, interferon-alpha, allograft rejection, and inflammatory response were the most common DAPs. E2F targets, G2M checkpoint, and Myc targets v1 were also active, as were some cell cycle-related pathways (Figure 4C). Following that, DAPs between C1 and C2, C1 and C3 subtypes, and C2 and C3 subtypes in different TCGA–LGG cohorts were compared (Figure 4D). Immunomodulatory pathways, cell cycle-related pathways, and numerous critical tumor-related pathways, including P53, hypoxia, and EMT, were all active in patients with the C1 subtype. As a result, CSRGs might have an important role in both the immunosuppressive and malignant microenvironments (TME).




Figure 4 | Comparative analysis of pathways between the three different molecular subtypes. (A) GSEA outcomes of C1 vs C3 in the TCGA–LGG cohort; (B) Bubble plots of GSEA outcomes of C1 vs C3 in two LGG cohorts; (C) Bubble plots of comparative outcomes between various molecular subtypes in the TCGA–LGG cohort; (D) Radar plot of consistently activated pathways in the TCGA–LGG cohort (C1 vs C2 and C2 vs C3).





Identification of DEGs associated with cell senescence-related subtypes

CSRGs were used to identify three separate molecular subtypes that were significant in the univariate analysis. Following that, with the criterion of FDR < 0.05 and |log2FC| > 1, the limma package was utilized for calculating the differentially expressed CSRGs (DECSRGs) across C1 and non-C1, C2, and non-C2, and C3 and non-C3 molecular subtypes. By looking for DECSRGs in different molecular subtypes, a total of 21 genes were discovered. For gene number reduction in the risk model, Lasso regression was employed to compress these 21 CSRGS even more. The number of independent variables whose coefficients tended to zero gradually rose as the lambda increased, as illustrated in Figure S2A, and the number of independent variables whose coefficients tended to zero gradually increased as the lambda increased. The confidence intervals under each lambda were assessed after the model was built using 10-fold cross-validation (Figure S2B). When lambda = 0.0317, the model was at its best. As a result, the target genes for the subsequent analyses were chosen from a list of eight genes with lambda = 0.0317. We also used the Akaike information criterion (AIC) to run a stepwise multivariate regression analysis based on these eight genes. AIC considers the model’s statistical fit as well as the number of parameters required to fit it. The MASS package’s stepAIC technique starts with the most complicated model and removes one variable at a time to reduce the AIC, with a smaller AIC value indicating a better model that achieves a sufficient fit with fewer parameters. Finally, six genes were identified as prognosis-related CSRGs: thymosin beta 4 (TMSB4X), cyclin-dependent kinase 6 (CDK6), forkhead box M1 (FOXM1), insulin-like growth factor-binding protein-5 (IGFBP5), integrin beta 4 (ITGB4), and IGFBP3 (Figure S2C).



Construction and validation of the clinical prognostic model

We used the expression levels and coefficients of six CSRGs to develop a prognostic model related to cellular senescence. Each sample’s CSRS was measured and normalized based on the CSRS calculation equation. Afterward, the samples were sorted into high- and low-risk (CSRS) groups as per the normalized cutoff value (0). The CSRS distribution of patients in the TCGA–LGG cohort is illustrated in Figure 5A. The mortality rate of patients in the high-risk group was high with a shorter survival time. Consequently, the worse prognosis of patients was related to high CSRSs. Furthermore, six genes had greatly increased expression levels with increasing CSRSs. Furthermore, ROC analysis for prognostic classification was done with the help of R package timeROC (23) and quantified the one-, three-, and five-year prognostic predictive effectiveness (Figure 5B), and the model had high AUC values (one-, three-, and five-year AUC values of 0.87, 0.84, and 0.75, respectively). Finally, the KM curve indicated a significant difference in survival between patients in the high- and low-CSRS groups (P < 0.0001), showing that the overall survival of patients having higher CSRSs was worse in the training cohort (Figure 5C). In addition, a validation analysis was done in the CCGA cohort to confirm the strength of the CSRS model. The CSRSs of patients in the CCGA cohort were identified similarly and the analysis outcomes are demonstrated in Figures 5D, E. Similar outcomes were seen in the validation cohort, patients with high CSRSs had a poor prognosis, and patients with low CSRSs had a better prognosis (P < 0.0001).




Figure 5 | The creation and validation of the clinical prognostic model. (A) CSRS, survival time, survival status, and CSRG expression in the TCGA–LGG dataset; (B) ROC curves and AUC of CSRS in the TCGA–LGG dataset; (C) KM survival curves of CSRS in the TCGA–LGG dataset; (D, E) ROC curves and KM survival curves of CSRS in the CGGA cohort.





CSRS distribution in different clinicopathological characteristics and patient prognosis

The CSRS distribution in the TCGA–LGG cohort was examined amongst different groups. Grade, IDH Mutation, IDH/codel subtype, and MGMT promoter methylation all showed significant differences in CSRS score in both two cohorts (Figures S3A, B). We also looked at the differences in CSRS between molecular subtypes, finding that patients with the C1 and C3 subtypes had the highest and lowest CSRS, respectively. The prognostic difference between our established high- and low-risk categories in the TCGA–LGG cohort was also evaluated, with the results indicating that our risk groupings were reliable (Figure S3C).



Differences in immune/pathway characteristics between different SRS groups

To better understand the changes in the immunological milieu, researchers analyzed the relative abundance of 22 immune cells in the TCGA–LGG cohort’s high- and low-CSRS groups (Figure 6A). The relative abundance of immune cells in the two groups differed significantly. ESTIMATE was also used to measure immune cell infiltration (Figure 6B). Patients with a high CSRS had considerably greater “ImmuneScore” and levels of immune cell infiltration than those with a low CSRS. Similar findings were also reported in the CGGA cohort (Figures 6C, D). The link between CSRS and 22 immune cells was then investigated (Figure 6E). CSRS was found to have a remarkable association with B cell naive, plasma cells, naive CD 4 T cells, M0 macrophages, and M1 macrophages. Moreover, we performed ssGSEA for calculating the correlation coefficient of these pathways with CSRS (Figure 6F) and filter out the pathways with a correlation coefficient greater than 0.6. Most of these pathways, like the p53 signaling pathway, JAK-STAT signaling pathway, and ECM receptor interaction had a positive relationship with CSRS. Moreover, a major positive correlation was observed between CSRS and necroptotic score (P = 1.35e-33, R = 0.5) (Figure 6G). Finally, the link between the age of the patients and CSRS was measured and a major positive association was observed between CSRS and age (P =0.013, R = 0.11) (Figure 6H).




Figure 6 | Differences in immune/pathway properties between different CSRS groups. (A) Proportion of immune cells in the TCGA–LGG cohort; (B) Proportion of immune cells in the CGGA cohort; (C) Proportion of immune cells in the TCGA–LGG cohort measured using the ESTIMATE software; (D) Proportion of immune cells in the CGGA cohort calculated using the ESTIMATE software; (E) Correlation analysis of 22 immune cells with cellular CSRS in the TCGA–LGG cohort; (F) Correlation analysis outcomes of KEGG pathways with a correlation coefficient greater than 0.6 with CSRS; (G) Correlation analysis of CSRS with prognosis-related CSRS in the TCGA–LGG cohort; (H) Correlation analysis of age with prognosis-related CSRS in the TCGA–LGG cohort. (ns, no significance. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).





Differences in immunotherapy/chemotherapy efficacy between different CSRS groups

The differences in immunotherapy sensitivity across patients in different CSRS groups in the TCGA–LGG cohort were investigated further. The difference in immune checkpoint expression between the two CSRS groups was first compared (Figure 7A). The expression of most immune checkpoint genes differed between the two CSRS groups. Immune checkpoint gene expression was found to be considerably higher in the high-CSRS groups than in the low-CSRS groups. Following that, the immunotherapy efficacy differences between the two CSRS groups were compared. The TIDE program was used to evaluate the clinical effects of immunotherapy on the two categories of patients. No significant differences in MDSC, dysfunction, exclusion, or TIDE scores were found in the TCGA–LGG cohort, as illustrated in Figure 7B. The response of patients in the two CSRS groups in the TCGA–LGG cohort to traditional chemotherapy medications such as Temozolomide, Bleomycin, Cisplatin, Cyclopamine, and Bleomycin, as well as targeted therapies such as A-443654, AZD6482, and GDC0941, was also studied. Cisplatin, A-443654, and Bleomycin were more sensitive in the high-CSRS group, whereas AZD6482, Cyclopamine, and GDC0941 were more sensitive in the low-CSRS group (Figure 7C).




Figure 7 | Differences in immunotherapy/chemotherapy effectiveness among two different CSRS groups. (A) Differentially expressed immune checkpoints between two CSRS groups in the TCGA–LGG cohort; (B) Differences in TIDE analysis outcomes among two CSRS groups in the TCGA–LGG cohort; (C) Box plots of the estimatedIC50 for Temozolomide, Bleomycin, Cisplatin, Cyclopamine, A-443654, AZD6482, GDC0941, and Bleomycin in TCGA–LGG cohort. (ns, no significance. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).





CSRS–nomogram improves the accuracy of patient prognosis and survival prediction

Univariate and multivariate Cox regression analyses of CSRS and clinicopathological features in the TCGA–LGG cohort revealed that CSRS was the most important prognostic predictor, with age being an independent prognostic factor (Figures 8A, B). Following that, a nomogram including CSRS and age was created (Figure 8C). The most significant impact on survival prediction was CSRS. The calibration curve was used to further assess the model’s prediction accuracy (Figure 8D). Furthermore, the one-, three-, and five-year prediction calibration curves nearly coincided with the standard curve, indicating that the nomogram performed well in terms of prediction. Furthermore, decision curve analysis (DCA) was used to verify the model’s robustness, and both CSRS and nomogram yielded much more advantages than the extreme curves. Furthermore, when compared to age, both the nomogram and the CSRS had a better ability to predict prognosis (Figures 8E, F).




Figure 8 | Developing the nomogram according to CSRS. (A, B) Univariate and multivariate Cox analysis of CSRS and clinicopathological properties; (C) Constructing a Nomogram model; (D) One-, three-, and five-year calibration curves for the nomogram; (E) Decision curve for the nomogram; (F) Prognosis-related AUC predicted by different clinical variable ***P < 0.001.






Discussion

In clinical practice, the long-term efficacy of LGG therapy has been a significant issue due to the instability of LGG and the complexity of TME. Therefore, we need to develop and optimize the appropriate therapeutic interventions urgently. With the development of microarray technology and RNA-seq, many research studies have used gene expression profiles to categorize tumors. Predictive models according to gene expression profiles using mathematical and statistical modeling techniques have tremendous clinical potential. Cells undergo different types of senescence depending on the type of stress and/or stimulus, including stress-induced premature senescence (SIPS), oncogene-induced senescence (OIS), replicative senescence (RS), paracrine senescence (PS), treatment-induced senescence (TIS) and epigenetics-induced senescence (EIS) (24). Senescent cells collect in various organs and tissues with different physiological and pathological functions (25). Many preclinical studies prove that chemotherapy and radiotherapy cause senescent cells to accumulate in normal tissues as well as tumors. Though, senescent cells in tumors can partially stimulate metastasis, tumor recurrence, and resistance to therapy by expressing a secretory phenotype linked with aging. Moreover, senescent cells in normal tissues can worsen the side effects caused as a result of certain chemotherapies or radiation. Therefore, cellular senescence can be an important target for the treatment of cancer due to its several roles (26).

506 and 408 LGG samples were acquired from TCGA and CGGA, respectively, for this study. Based on the expression of 115 prognosis-related CSRGs, HCC samples from each cohort were divided into three subtypes, with significant differences in OS between the three subtypes. The clinicopathological, genetic, route, and immunological aspects of the three subgroups were then compared. The C1 subtype had a worse prognosis, had the largest prevalence of TP53 gene alterations, and had a significant degree of immune cell infiltration, with a large proportion of them in the G3 stage. Immunomodulatory and cell cycle pathways were also active in these patients. As a result, CSRGs may be important in the immunosuppressive microenvironment and TME. Finally, differential analysis of and LASSO found a total of six prognosis-related CSRGs, including TMSB4X, CDK6, FOXM1, IGFBP5, ITGB4, and IGFBP3.

CDK6 is a major component of the cell cycle that drives the transition from the G1 to the S phase by phosphorylating and inactivating the retinoblastoma protein (27). Activation of the YAP–CDK6 pathway may slow down the aging of the brain as well as the resulting neurodegenerative diseases (28). Dysregulated CDK6 promotes the senescence bypass during tumorigenesis and progression and its inhibition restores the senescence response in tumor cells (29). Akt/Fox M1 signaling pathway-mediated MYBL2 upregulation promotes the progression of human glioma (30) and is a probable candidate gene for molecular targeted therapy and a biomarker for glioma-related radiation therapy. In breast cancer, FOXM1 has a role in response to DNA damage, genotoxic drug resistance, and DNA damage-induced senescence (31). IGFBP-5 is elevated during cellular senescence in response to the tumor suppressor p53 activation; this mechanism mediates interleukin-6/gp130-induced PS of human fibroblasts, irradiation-induced PS of human endothelial cells, and RS of human endothelial cells independent of IGF-I and IGF-II (32). ITGB4 is a structural adhesion molecule and clears airway epithelial cells by activating the p53 pathway in vitro and in vivo, and its deficiency results in senescence (33). Interfering with the NTN4-ITGB4 connection or using inhibitors of the AKT pathway concurrently with temozolomide may protect against temozolomide-induced senescence in glioblastoma and improve therapeutic efficiency (34). IGFBP3 is a hypoxia-inducible gene that regulates multiple cellular processes, such as senescence, apoptosis, cell proliferation, and EMT (35). Domenico et al. identified IGFBP-3 as one of the genes linked with senescence genes in human gliomas (36). Though the link between the progression of TMSB4X and LGG was not reported, and it is required to explore in detail.

Based on prognosis-related SCRGs, a clinical prognostic CSRS model was developed in this work. The model exhibited great robustness and sustained prediction accuracy in independent datasets, regardless of clinicopathological features. Furthermore, this model exhibited a high prediction accuracy and excellent survival prediction power, demonstrating significant efficacy in predicting the OS of LGG patients and describing the clinical characteristics of distinct individuals. The CSRS algorithm assigned each sample a unique risk score and divided patients into different risk groups. Patients in the high-CSRS group had a worse prognosis than those in the low-CSRS group, confirming our hypothesis. Furthermore, in the TCGA–LGG and CGGA cohorts, significant differences in the distribution of CSRS were detected amongst clinicopathological feature groupings. Patients in the high-CSRS group had a considerably higher “ImmuneScore” than those in the low-CSRS group, and the expression of most immune cells differed significantly between the two groups. Cisplatin, A-443654, and Bleomycin sensitivity were also higher in the high-CSRS group.



Conclusion

The identification of three cell senescence-related molecular subtypes helped to understand the crosstalk between cell senescence and LGG development. Cell senescence had an association with activated tumor-related pathways and immune infiltration. Cell senescence was highly associated with unfavorable prognosis, which may contribute to LGG development. High cell senescence score was significantly correlated with poor prognosis and high CSRS score. In addition, the CSRS model, a classifier, was constructed and verified. This model exhibited great robustness and stable prediction performance in independent datasets, regardless of clinicopathological features. Furthermore, this model exhibited a high prediction accuracy and significant survival prediction power, which aids in prognosis prediction and the selection of optimal treatment for patients. Overall, the synergistic effect of pro-and anti-aging therapies in cancer can be used to design novel therapeutic techniques.
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Pancreatic adenosquamous carcinoma (ASPC) is a rare subtype of pancreatic cancer with lethal malignancy, and few studies have focused on the heterogeneity of ASPC. Here, we performed a single-cell sequencing procedure on pancreatic tumor tissue from an ASPC patient and a patient with high-grade intraductal papillary mucinous neoplasm (IPMN). Through the combined analysis of single-cell sequencing data from five pancreatic ductal adenocarcinoma (PDAC) patients, one IPMN patient, and one ASPC patient in a public database, we identified 11 main types of cells, including macrophages, B cells, cancer stem cells, ductal cells, fibroblasts, endo/stellate cells, neutrophils, acinar cells, T cells, natural killer (NK) cells, dendritic cells, and mast cells. Then, the different characteristics and differentiation paths of the immune microenvironment among IPMN, ASPC, and PDAC in macrophages, T cells, and cancer-associated fibroblasts (CAFs) were identified through multiple bioinformatics analyses. Two novel special cancer-associated fibroblasts were identified as nCAFs and imCAFs. Then, cancer cells in duct cells were identified using the infercnv software. Two ASPC-specific subgroups of cancer cells with squamous cell features were identified. Finally, the identified specific CAFs and cancer cells were mapped to TCGA-PAAD cohort through the cibersoftx software. All of these identified subgroups were calculated to have a significant prognostic value in pancreatic cancer patients. These findings will promote the clinical application of single-cell sequencing data of pancreatic cancer and deepen our understanding of ASPC.
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Introduction

Pancreatic cancer is one of the most malignant solid tumors. In 2018, it affected 450,000 people worldwide, and there were more than 40,000 related deaths. The overall 5-year survival rate of pancreatic cancer is less than 3.5%, indicating that it is a serious threat to the lives and health of patients worldwide (1). The major subtype of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC) (2). Pancreatic adenosquamous carcinoma (ASPC) is a rare subtype of malignant pancreatic tumor that accounts for 0.6%–4% of pancreatic exocrine tumors, with a reported incidence of 0.38%–10%. The mortality rate of pancreatic adenosquamous carcinoma is significantly higher than that of pancreatic ductal adenocarcinoma, and the prognosis of patients is extremely poor, with a median survival of only 4.4–13.1 months, and only a few patients survived for more than 1 year (3).

The histopathological characteristics of ASPC include the mixed presence of adenocarcinoma and squamous cell carcinoma tissues, and the squamous cell carcinoma component accounts for at least 30% of the total tissues (4). Squamous cell carcinoma tissues are mostly located in the center of the tumor and are prone to liquefaction necrosis in the early stage of ASPC. After collecting and analyzing 1,745 ASPC cases, Caitlin et al. reported that the proportion of squamous cell carcinoma in tumor tissue is not significantly correlated with the overall survival of patients (5). A series of studies illustrated that compared with PDAC, ASPC tumors are likely to have large diameters, occurring in the body part or tail part of the pancreas (4, 6). Lymph node or other organ metastasis and tumor embolus formation can occur at an early stage, along with liver metastasis and portal vein invasion.

Due to the low morbidity of ASPC, studies on this subtype are rare, and many aspects remain unclear. The most controversial aspect is the origin of ASPC. Pancreatic epithelial tissue does not contain a squamous component, and the origin of ASPC could be complicated. There are several hypotheses about the initial origin of ASPC. 1) A widely accepted hypothesis posits that after chronic inflammatory stimulation or biliary duct obstruction, pancreatic duct columnar epithelium cells undergo metaplasia to the squamous-like epithelium and then evolve into ASPC (7). 2) Tissue collision theory suggests that two histologically different tumor cells, i.e., columnar-like and squamous-like tumors, appear independently in the pancreas and peripheral tissue and subsequently form ASPC (8). 3) After carcinogen stimulation, pancreatic stem cells differentiate separately to form adenocarcinoma or squamous cell carcinoma, and then, these two components combine into ASPC (9). Studies focusing on the ASPC tumor microenvironment using single-cell sequencing analysis are also rare, and there is only one study related to ASPC. Xin et al. reported single-cell sequencing results from one ASPC sample, demonstrating that epidermal growth factor receptor (EGFR)-associated ligand–receptor pairs are activated in ductal-stromal cell communications (10). However, their study lacked a depiction of the ASPC tumor microenvironment and a comparison between PDAC and ASPC.

Moreover, intraductal papillary mucinous neoplasm (IPMN) is a papillary cystic tumor that originates from the main and or branch pancreatic ducts with the capability of secreting mucus. It has been recognized as a classical precancerous lesion in pancreatic cancer with a canceration rate of about 30% (11). Some studies illustrated that ASPC could originate from IPMN (12). However, the evolution path between IPMN and PDAC or ASPC is yet to be elucidated.

In the current study, single-cell sequencing was performed on pancreatic tumor tissue from an ASPC patient and a patient with high-grade intraductal papillary mucinous neoplasm. A combined analysis was conducted of single-cell sequencing data from five PDAC patients, one high-grade IPMN patient, and one ASPC patient, which were obtained from a public database. Eleven main types of cells, including macrophages, B cells, cancer stem cells, ductal cells, fibroblasts, endo/stellate cells, neutrophils, acinar cells, T cells, natural killer (NK) cells, dendritic cells (DCs), and mast cells, were identified. Then, the different characteristics and differentiation paths of the immune microenvironment among IPMN, ASPC, and PDAC in macrophages, T cells, and cancer-associated fibroblasts (CAFs) were identified through multiple bioinformatics analyses. Two novel special cancer-associated fibroblasts were identified as nCAFs and imCAFs. Then, cancer cells in duct cells were identified using infercnv software. Two ASPC-specific subgroups of cancer cells with squamous cell features were identified. Finally, the identified specific CAFs and cancer cells were mapped to TCGA-PAAD cohort through the cibersoftx software. All of these identified subgroups were calculated to have a significant prognostic value in pancreatic cancer patients. These findings will promote the clinical application of single-cell sequencing data of pancreatic cancer and deepen our understanding of ASPC.



Materials and methods


Patients and involved samples

Between January 2020 and March 2021, one ASPC pancreatic sample and one IPMN pancreatic sample were harvested in Changhai Hospital, Shanghai, during Whipple surgery. The diagnosis of IPMN and ASPC was made according to the intraoperative pathological diagnosis. Written informed consent was acquired from all patients. The Ethics Committee of Changhai Hospital, Shanghai, approved the current study. Another two pancreatic cancer cohorts were acquired from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/), including GSE155698 and GSE165399. First, five PDAC samples (PDAC1–PDAC5) from GSE155698 were acquired (13). Then, one ASPC sample and one IPMN sample were acquired from GSE165399 (10).



Single-cell sequencing procedure

Chromium Single Cell 3′ Reagent v3 kits were used to prepare libraries according to the manufacturer’s protocol. Single-cell suspensions were loaded onto the Chromium Single Cell Controller Instrument (10x Genomics, Pleasanton, CA, USA) to generate single-cell gel beads in emulsions (GEMs). After the generation of GEMs, reverse transcription reactions were performed. Then, cDNA was amplified, fragmented, end-repaired, A-tailed, index adapter ligated, and subjected to library amplification. Every library was sequenced on a NovaSeq 6000 platform (Illumina, San Diego, CA, USA), and 150-bp paired-end reads were generated. The Cell Ranger software pipeline (version 3.1.0) provided by 10x Genomics was used to demultiplex cellular barcodes, map reads to the genome and transcriptome using the STAR aligner, and downsample reads as required to generate normalized aggregate data across samples, producing a matrix of gene counts versus cells.



Quality control and data correction

Quality control and data correction for single-cell samples were based on the number of detected genes, the number of detected molecules, and the percentage of mitochondrial, ribosomal, and hemoglobin genes from each single-cell sample. In detail, for all of the datasets, including our local datasets GSE155698 and GSE165399, samples with fewer than 1,000 genes, more than 3,000 genes, fewer than 200 molecules, more than 1% mitochondrial genes, and more than 2% ribosomal genes were removed. The remaining data in the three datasets were later used to produce a combined dataset.



Removal of batch effect, integration, dimensionality reduction, clustering and visualization, and cluster annotation

After quality control, Seurat R package v4.0.2 was used to process the data (14). Harmony, an integration algorithm, was used to integrate the abovementioned three datasets and perform dimensionality reduction (15). Then, the NormalizeData() function was used to normalize the count data in the RNA assay by the LogNormalize method. With the help of the sharing nearest neighbor (SNN) modularity optimization-based clustering algorithm and Uniform Manifold Approximation and Projection (UMAP) algorithm, all cells were expressed in two-dimensional coordinates for visualization.



Calculation and display of differentially expressed genes

The FindAllMarkers() and FindMarkers() functions of the scran package were used to perform the Wilcoxon test between pairs of cell clusters to find the genes specifically expressed in each cluster. According to the calculation results, the ggplot2 and heatmap packages were used to visually display the heat, violin, and bubble maps.



Identification of significantly related pathways in different neutrophil cell types

To assess whether the gene set is enriched in a neutrophil cell subpopulation, the ‘irGSEA’ package (https://github.com/chuiqin/irGSEA/) in R software was used. This package was used to score individual cells using multiple gene set enrichment methods and generate a multiple gene set enrichment score matrix. Then, the Wilcoxon test was used to calculate the differentially expressed gene sets of each cell subpopulation in the enrichment fraction matrix of each gene set. Some specific enriched pathways were marked and visualized in single plots.



Pseudotime analysis

Monocle2 (http://cole-trapnell-lab.github.io/monocle-release) was used to execute the single-cell trajectory analysis utilizing DDR-Tree and default parameters. Marker genes of the Seurat (version 4.0.2) clustering result and raw expression counts of the cell passed filtering were selected. On the basis of pseudotemporal analysis, the branch expression analysis model (BEAM Analysis) was used to analyze branch fate-determining genes.



Analysis of cell differentiation trajectory

Monocle2 was used to order cells along the trajectories based on the pseudotime in the mesenchyme cells. The expression matrix of the mesenchymal cells derived from the Seurat object was submitted to Monocle3. The new_cell_data_set() function was used to create a cds object and perform dimensionality reduction, cell clustering, and differentiation trajectory inference.



Chromosome copy number variation analysis

The inferCNV (V1.6.0) method with recommended parameters for 10x data was used to illustrate the diverse patterns of chromosome copy number variation in tumor cell clusters. The macrophage cells were used as the reference.



The cancer genome atlas pancreatic cancer data acquisition

Pancreatic cancer sequencing data from The Cancer Genome Atlas (TCGA-PAAD) database were screened. The standardized RNA-sequence counts and clinical files were downloaded from TCGA data portal on 18 March 2022. A total of 180 samples with complete clinical follow-up information were obtained.



Subtypes from single-cell sequencing estimation in TCGA-PAAD bulk sequencing data and Kaplan–Meier survival curve analysis

The downloaded TCGA data and subtype matrix acquired from Seurat analysis were uploaded to cibersoftx (https://cibersortx.stanford.edu/runcibersortx.php). The relative enrichment score of target subtypes in TCGA data was acquired through cibersoftx deconvolution analysis. The enrichment score of each sample in TCGA-PAAD was combined with their prognostic data (survival times). For the integrated dataset, Kaplan–Meier survival curves of different subtype gene sets in the dataset were drawn with the best cutoff using the Survival package. The OS rate from diagnosis to death or the last follow-up was calculated.




Results


Cell clustering of the landscape combined with intraductal papillary mucinous neoplasm, pancreatic ductal adenocarcinoma, and pancreatic adenosquamous carcinoma

After quality filtration, 45,238 cells were obtained for subsequent analysis; 0.05 was chosen to display the subgroup in the initial analysis (Figures 1A, B). The cells were catalogued into distinct cell lineages annotated with canonical marker gene expression (Figure 1C). As a result, macrophages, T$NK cells, B cells, cancer stem cells, ductal cells, fibroblasts, endo/stellate cells, neutrophils, acinar cells, dendritic cells, and mast cells were identified (Figure 1D). The highly expressed genes in each cluster are shown in Figure 1E. In summary, there are a greatly increased proportion of cancer stem cells and duct cells in ASPC tissue, indicating that the phenotype of ASPC cancer cells is more malignant than that of PDAC cells. The proportion of B cells, NK cells, and T cells in ASPC tissue was significantly less than that in PDAC tissue, revealing that the infiltration of immune cells could be difficult in ASPC (Figure 1F).




Figure 1 | (A) Cluster tree of subgroup amounts at different resolution ratios. (B) UMAP cluster plot shows the divided subgroup before annotation. (C) Annotation of each subgroup with markers. (D) UMAP cluster plot shows the divided subgroup after annotation. (E) Heatmap shows the significantly expressed genes in each cluster. (F) Bar graph of the proportion of each identified subgroup in each sample or group. UMAP, Uniform Manifold Approximation and Projection.





M2-like macrophages tend to progress in the tumor microenvironment of pancreatic adenosquamous carcinoma

The cluster tree plot shows different resolution ratios, and 0.5 was chosen for subsequent analysis (Figures 2A, B). To make the correct annotation, the marker genes of the macrophage subgroup were based on a previous study on the definition of macrophage subtypes from Zhang et al. (16). C1QB and C1QC were used to identify C1QC+ TAMs. SPP1, CXCL2, and INHBA were used to identify INHBA+ monocytes. According to Zhang’s study, these two kinds of macrophages are defined as M2 macrophages and are related to immune inactivation in the tumor microenvironment. FCN1 and S100A8 were used to identify FCN+ monocytes. This kind of macrophage represents an initial stage of macrophage chemotaxis from peripheral blood to the pancreatic tumor region. S100A8 and S100A12 were used to identify a subgroup related to M1 macrophages with antitumor activation. CD1C was used to identify conventional DCs (cDCs), and RACK1 and MAZB1 were used to identify plasmacytoid DCs (pDCs) (Figures 2C, D). As shown in the bar plot, M1-like macrophages show a significant decrease in ASPC compared to PDAC. Additionally, M2-related macrophages, including INHBA+ monocytes and C1QC+ tumor-associated macrophages, were significantly increased in ASPCs, followed by a reduction in juvenile macrophages in the tumor microenvironment (FCN+ monocytes) (Figures 2E, F). C1QC+ tumor-associated macrophages and INHBA+ monocytes showed a significant reduction in inflammation-related pathways, including the interferon alpha pathway, IL-6 pathway, and interferon gamma pathway (Figure 2G). Pseudotime analysis confirmed that FCN+ monocytes are the initial stage of all macrophages. Then, the monocytes could transfer to M1-like macrophages. Finally, during survival in the tumor microenvironment, macrophages tended to differentiate into two subtypes of M2 macrophages, INHBA+ monocytes and C1QC+ tumor-associated macrophages (Figure 2H).




Figure 2 | (A) Cluster tree of subgroup amounts at different resolution ratios. (B) UMAP cluster plot shows the divided subgroup before annotation. (C) Expression of each marker in each subgroup. (D) UMAP cluster plot shows the divided subgroup after annotation. (E) Bar graph of the proportion of each identified subgroup in each sample. (F) Bar graph of the proportion of each identified subgroup in each group. (G) GSVA plot showing the differentially enriched pathways in each identified subgroup. (H, I) Pseudotime analysis of these annotated groups. UMAP, Uniform Manifold Approximation and Projection; GSVA, gene set variation analysis.





T cells in pancreatic adenosquamous carcinoma tissue show a widely inactivated phenotype compared to pancreatic ductal adenocarcinoma

The cluster tree plot shows different resolution ratios, and 0.2 was chosen for subsequent analysis (Figures 3A, B). As shown in Figure S1 and Figures 2C, D, groups 0 and 3 were identified as naïve CD8+ T cells (XCL1 and XCL2). Group 1 was identified as CD4+ central memory T cells (CD4+ Tcm, CCR7 CD40LG). Groups 2 and 4 were identified as NK (natural killer) cells (NKG7). Group 5 was identified as Treg (Foxp3). Group 7 was identified as NKT cells because of the double-positive expression of CD3 and NKG7. However, group 6 could not be defined, and the reason may be the sequencing error and unidentified double cells. The proportion of naïve CD8+ T cells showed a great increase in ASPC tissue, and CD4+ TCM cells were increased in PDAC tissue, followed by an ascending proportion of NKT cells (Figure 3E). Gene set variation analysis (GSVA) shows that NK cells and CD4+ CTM cells have a wide activation of pathways. In contrast, naïve CD8+ T cells were widely inactive (Figure 3F). Interestingly, CD8+ naïve T cells were enriched in the epithelial–mesenchymal transition pathway, indicating that CD8+ naïve T cells could promote a malignant phenotype in pancreatic cancer (Figure 3G). Pseudotime analysis indicated that the transition between IPMN and ASPC in T cells and NK cells could be minor, and the T cells and NK cells in PDAC could be different from ASPC and IPMN.




Figure 3 | (A) Cluster tree of lymphocyte subgroup amounts at different resolution ratios. (B) UMAP cluster plot shows the divided subgroup before annotation. (C) Heatmap shows the significantly expressed genes in each cluster. (D) UMAP cluster plot shows the divided subgroup after annotation. (E) Bar graph of the proportion of each identified subgroup in each group. (F) Histogram showing the number of different enriched pathways in each identified subgroup. (G) GSVA plot showing the terms of different enriched pathways in each identified subgroup. (H, I) Pseudotime analysis of these annotated groups in ASPC, IPMN, and PDAC. UMAP, Uniform Manifold Approximation and Projection; GSVA, gene set variation analysis; ASPC, pancreatic adenosquamous carcinoma; IPMN, intraductal papillary mucinous neoplasm; PDAC, pancreatic ductal adenocarcinoma.





Two novel subtypes of cancer-associated fibroblasts are identified with inactivation or full activation phenotype

The cluster tree plot shows different resolution ratios, and 0.5 was chosen for subsequent analysis (Figures 3A, B). The whole CAF cells were divided into eight groups. According to the classical definition of CAF subtypes (17), the main subtypes of CAFs are myofibroblastic CAFs (myCAFs) and inflammatory CAFs (iCAFs). MyCAFs mainly perform fibrogenesis, and ATCA2 and TGFB1 are the marker genes of myCAFs. ICAFs have more competence to react to inflammatory responses and produce a large series of inflammatory cytokines. The marker genes of iCAFs that were selected in this study were CXCL14, IGF1, IL6, CXCL5, and IGHG1. As shown in Figure 4C, according to the expression of myCAFs and iCAFs, four CAF subtypes were identified, including two common CAF and two novel CAF subtypes. For two common CAF subtypes, groups 1, 3, 4, and 5 were iCAFs, and group 6 was a myCAF. For two novel CAF subtypes, group 2 was identified as imCAFs because gene markers from both iCAFs and myCAFs were activated, and groups 0 and 7 were identified as nCAFs because gene markers from both iCAFs and myCAFs were inactivated (Figures 4C, D). Then, a significant increase in imCAFs in PDAC compared to ASPC was observed (Figure 4E). Additionally, in line with the definition of each kind of CAF, the amount of activated pathways in GSVA showed an ascendant tendency from non-reactive CAFs to imCAFs (Figure 4F). Moreover, nCAFs showed a wide range of downregulated inflammatory pathways, and imCAFs were active in multiple inflammatory pathways (Figures 4G-I). These results reveal different characteristics of CAF subtypes, and nCAF could be insensitive to chemotherapy and targeted therapy. Finally, pseudotime analysis revealed the evolutionary characteristics of CAFs (Figure 4J). ICAFs could be the initial phenotype of CAFs, and the microenvironment of PDAC is enriched with non-reactive CAFs compared with ASPCs.




Figure 4 | (A) Cluster tree of lymphocyte subgroup amounts at different resolution ratios. (B) UMAP cluster plot shows the divided subgroup before annotation. (C) Expression of each marker in each subgroup. (D) UMAP cluster plot shows the divided subgroup after annotation. (E) Bar graph of the proportion of each identified subgroup in each group. (F) Histogram showing the number of different enriched pathways in each identified subgroup. (G) GSVA plot showing the terms of different enriched pathways in each identified subgroup. (H) Gene set score of the interferon-α pathway. (I) Gene set score of the response to the inflammatory pathway. (J) Pseudotime analysis of these annotated groups in ASPC, IPMN, and PDAC. UMAP, Uniform Manifold Approximation and Projection; GSVA, gene set variation analysis; ASPC, pancreatic adenosquamous carcinoma; IPMN, intraductal papillary mucinous neoplasm; PDAC, pancreatic ductal adenocarcinoma.





Cancer cells have different characteristics between pancreatic adenosquamous carcinoma and pancreatic ductal adenocarcinoma

Then, the heterogeneity of cancer cells among IPMN, ASPC, and PDAC was identified and portrayed. To identify and confirm cancer cells in duct cells and cancer stem cells, the infercnv procedure was performed. Macrophages were chosen as the normal cell control, and these three types of cells were divided into 14 groups (Figures 5A, B). The UMAP plot shows the different distributions between PDAC and ASPC (Figure 5C). According to the infercnv plot, subgroups 5, 6, and 8 were identified as normal ductal cells and were excluded from our subsequent studies. Then, by staining for squamous epithelium markers (including KRT5, KRT6A, SFN, and KRT14) and columnar epithelium markers (including EPCAM and KRT8), groups 3, 7, and 10 were identified as squamous cancer cells, and groups 5, 6, and 8 were identified as adenocarcinoma cells (Figures 5D, E). The different proportions of subgroups among IPMN, PDAC, and ASPC confirmed that groups 3, 7, and 10 were significantly enriched in the ASPC group and ASPC samples (Figures 5F, G).




Figure 5 | (A) UMAP plot of cancer stem cells, ductal cells, and macrophages. (B) UMAP plot of subgroups in cancer stem cells, ductal cells, and macrophages. (C) UMAP plot of cancer stem cells, ductal cells, and macrophages among ASPC, IPMN, and PDAC. (D) Infercnv plot identified malignant cells in duct cells and cancer stem cells. (E) Expression of squamous and columnar epithelium markers in the subgroups. (F) Bar graph of the proportion of each identified subgroup in each group. (G,H) Bar graph of the proportion of each identified subgroup in each sample. (I–K) Pseudotime analysis of these annotated groups in ASPC, IPMN, and PDAC. UMAP, Uniform Manifold Approximation and Projection; ASPC, pancreatic adenosquamous carcinoma; IPMN, intraductal papillary mucinous neoplasm; PDAC, pancreatic ductal adenocarcinoma.



According to the GSVA results, proliferation-related pathways, including the G2M checkpoint pathway and mitotic pathway, were enriched in group 7, indicating that group 7 could be the promoter of ASPC carcinogenesis. Cancer-related pathways, including the epithelial–mesenchymal transition pathway and angiogenesis, were enriched in group 1, indicating that group 1 plays a pivotal role in PDAC development (Figure 5H). Pseudotime analysis shows that the differentiation paths in PDAC and ASPC are different. Both of them could develop from IPMN, and then the paths of ASPC and PDAC are divided. Finally, ASPC could be divided into two subtypes. One subtype contained less adenocarcinoma than the other (Figures 5I-K).



The identified subgroup of PACS in cancer cells and cancer-associated fibroblasts has great prognostic value in pancreatic cancer patients

Finally, the prognostic value of our identified subgroup in cancer cells and CAFs was explored. As described in the Materials and Methods section, the seurat matrix of each subgroup was extracted and uploaded to the cibersoftx software. Then, the count matrix of bulk RNA sequencing data acquired from TCGA-PAAD was also uploaded to the cibersoftx software. The estimated proportion of each subgroup was calculated in TCGA data by a deconvolution algorithm. Combined with survival outcomes, high expression of ASPC-specific cancer cell subtypes (combined expression of groups 3, 7, and 10) or identified nCAF subgroup in pancreatic cancer patients was correlated with poor clinical outcomes (Figures 6A, E). High expression of the identified iCAF subgroup, myCAF subgroup, or imCAF subgroup was associated with favorable clinical outcomes (Figures 6B-D).




Figure 6 | The Kaplan–Meier plot shows that the previously identified subgroups had significant prognostic value in patients. (A) ASPC-specific cancer cell subtypes (combined expression of groups 3, 7, and 10). (B) Identified iCAF subgroup. (C) Identified myCAF subgroup. (D) Identified imCAF subgroup. (E) Identified nCAF subgroup. ASPC, pancreatic adenosquamous carcinoma; iCAF, inflammatory cancer-associated fibroblast; myCAF, myofibroblastic cancer-associated fibroblast.






Discussion

As described in the Introduction, pancreatic cancer is a common kind of malignant tumor with high morbidity and mortality worldwide. The main kind of pancreatic cancer is PDAC, which accounts for nearly 80% of the morbidity of pancreatic cancer (1). Additionally, pancreatic cystic tumors are considered to be the precursors of pancreatic cancer, among which the most common is IPMN. Most IPMNs are low-grade heteroplastic hyperplasia, but some IPMNs are malignant and can develop into pancreatic adenocarcinoma with a worse prognosis (18). Bernard et al. (19) performed single-cell RNA sequencing on 5,403 cells from two low-grade IPMN, two high-grade IPMN, and two pancreatic cancer specimens and analyzed the heterogeneity changes in epithelial cells and the tumor microenvironment during cancer development. They reported that both oncogenic gene expression and tumor suppressor gene expression were unregulated in low-grade IPMN. However, the expression of these tumor suppressor genes disappeared in high-grade IPMN and PDAC. Additionally, they also reported that during the process of high-grade IPMN progression to PDAC, iCAFs are upregulated and often accompanied by the formation of an immune escape microenvironment. Some studies have focused on the investigation of heterogeneous PDAC compared to normal pancreatic tissue. Peng et al. used single-cell transcriptome sequencing to explore the internal heterogeneity of pancreatic cancer and regulators in the progression of PDAC. This study reports two types of ductal cell subsets with different malignant gene expression profiles, including the ductal cell subsets with unique proliferative characteristics. In addition, this study demonstrated the role of abnormal pathways such as Wnt and Notch in pancreatic cancer and identified new genes such as EGLN3, MMP9, and FOS KLF5 and other transcription factors involved in carcinogenesis (20). In our current research, some new phenotypes and characteristics were identified between high-grade IPMN and PDAC. PDAC tissues exhibit an inflammatory phenotype in the tumor microenvironment, especially in macrophages, and the epithelial–mesenchymal transition pathway is enriched in PDAC-related cancer cells.

The most interesting finding in our current analysis is the exploration of heterogeneity between ASPC and PDAC. In fact, our current study is not the first to focus on the single-cell pattern of ASPC. Xin et al. reported single-cell sequencing results from one ASPC sample, demonstrating that EGFR-associated ligand–receptor pairs are activated in ductal-stromal cell communications (10). However, their study has some questions that need to be explored. First, their study lacked a depiction of the ASPC tumor microenvironment, and the sample size was too short in this study to draw a concrete conclusion. Second, as described in the Introduction, the origin of ASPC has yet to be fully clarified, and some studies have illustrated the potential correlation between PDAC and ASPC (7, 8). Based on differential transcription factor expression of samples with >40% cellularity from resectable primary pancreatic cancer, Bailey et al. described four subtypes using machine learning methods, including squamous, pancreatic progenitor, immunogenic, and aberrantly differentiated endocrine exocrine. Among them, the squamous subtype has notable pan-squamous features, including a significant association with ASPC histology (21). These findings illustrated that ASPC has a potential relationship with squamous-like PDAC. However, both ASPC and PDAC samples were not included in their study simultaneously. In our study, we performed single-cell sequencing in one ASPC tissue and one high-grade IPMN tissue. Then, we involved the ASPC and IPMN samples from the study of Xin et al. (10) and five PDAC samples from the study of Steele et al. (13). The immune-related microenvironment is different between PDAC and ASPC. Specifically, M1-like macrophages show a significant decrease in ASPC compared to PDAC. M2-related macrophages, including INHBA+ monocytes and C1QC+ tumor-associated macrophages, were significantly increased in ASPC, following a reduction in juvenile macrophages in the tumor microenvironment (FCN+ monocytes). However, the proportion of naïve CD8+ T cells shows a great increase in ASPC tissue, and CD4+ TCM cells are increased in PDAC tissue, followed by an ascending proportion of NKT cells. These results indicate the complex heterogeneity of the immune-related microenvironment in ASPC and PDAC.

Another interesting finding in our research is that we identified two novel subtypes of CAFs. According to the classical definition of CAF subtypes (17), the main subtypes of CAFs are myCAFs and iCAFs. MyCAFs mainly perform fibrogenesis. ICAFs have more competence to react to inflammatory responses and produce a large series of inflammatory cytokines. However, in our current study, we identified two novel CAFs. One subtype is named ‘imCAF’ because this subgroup expresses both fibrogenesis-related genes and genes related to inflammatory cytokines. Another subtype is named ‘nCAF’ because this subgroup expressed neither fibrogenesis-related genes nor genes related to inflammatory cytokines. Then, we observed a significant increase in imCAFs in PDAC compared to ASPC, indicating that PDAC could have better chemoreactivity than ASPC.

Our study also analyzed the origin of ASPC at single-cell resolution. There are several hypotheses about the initial origin of ASPC: 1) after chronic inflammatory stimulation or biliary duct obstruction, pancreatic duct columnar epithelium cells undergo metaplasia to the squamous-like epithelium and then evolve into ASPC, and this hypothesis is widely accepted by scholars worldwide (7). 2) Tissue collision theory: two histologically different tumor cells, columnar-like and squamous-like tumors, appear independently in the pancreas and peripheral tissue and subsequently form ASPC (8). 3) After carcinogen stimulation, pancreatic stem cells differentiate separately to form adenocarcinoma or squamous cell carcinoma, and then, these two components combine into ASPC (9). By comparing the potential differentiation path between IPMN to PDAC and IPMN to ASPC, our analysis strongly supported the first hypothesis because we observed an early separation of the differentiation path between IPMN to PDAC and IPMN to ASPC. This finding could deepen our understanding of carcinogenesis in ASPC.

However, this study also has some limitations. Firstly, the results in this study are based on bioinformatics analysis of our clinical samples without immunofluorescence validation. Further validation in immunofluorescence could strengthen our findings. Secondly, the number of enrolled samples is small. More samples are needed for further research.



Conclusion

In conclusion, we examined the microenvironmental changes among IPMN, PDAC, and ASPC during ASPC progression from a single-cell perspective.

Two novel special cancer-associated fibroblasts were identified as nCAFs and imCAFs. Then, two ASPC-specific subgroups of cancer cells with squamous cell features were identified. Finally, the identified specific CAFs and cancer cells were mapped to TCGA-PAAD cohort through the cibersoftx software. All of these identified subgroups were calculated to have a significant prognostic value in pancreatic cancer patients. These findings provide valuable information to understand the critical microenvironment underlying PDAC and ASPC and demonstrate potential therapeutic targets for pancreatic cancer.
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Background

Esophagogastric junction adenocarcinoma (EGJA) is a special malignant tumor with unknown biological behavior. PD-1 checkpoint inhibitors have been recommended as first-line treatment for advanced EGJA patients. However, the biomarkers for predicting immunotherapy response remain controversial.



Methods

We identified stromal immune-related genes (SIRGs) by ESTIMATE from the TCGA-EGJA dataset and constructed a signature score. In addition, survival analysis was performed in both the TCGA cohort and GEO cohort. Subsequently, we explored the differences in tumor-infiltrating immune cells, immune subtypes, immune-related functions, tumor mutation burden (TMB), immune checkpoint gene expression, immunophenoscore (IPS) between the high SIRGs score and low SIRGs score groups. Finally, two validation cohorts of patients who had accepted immunotherapy was used to verify the value of SIRGs score in predicting immunotherapy response.



Results

Eight of the SIRGs were selected by LASSO regression to construct a signature score (SIRGs score). Univariate and multivariate analyses in the TCGA and GEO cohort suggested that SIRGs score was an independent risk factor for the overall survival (OS) and it could increase the accuracy of clinical prediction models for survival. However, in the high SIRGs score group, patients had more immune cell infiltration, more active immune-related functions, higher immune checkpoint gene expression and higher IPS-PD1 and IPS-PD1-CTLA4 scores, which indicate a better response to immunotherapy. The external validation illustrated that high SIRGs score was significantly associated with immunotherapy response and immune checkpoint inhibitors (ICIs) can improve OS in patients with high SIRGs score.



Conclusion

The SIRGs score may be a predictor of the prognosis and immune-therapy response for esophagogastric junction adenocarcinoma.
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Introduction

Esophagogastric junction carcinoma is a kind of malignant tumor with a special location and unknown biological behaviors (1). Compared with distal gastric cancer (GC), esophagogastric junctional adenocarcinoma (EGJA) has lower differentiation and higher malignancy (2, 3). Unfortunately, most EGJA patients in China are in an advanced stage when diagnosed, with poor chemosensitivity and poor prognosis, with a 5-year survival rate of 14% ~ 22% (4). Therefore, it is very important to explore new treatment methods other than surgery, chemotherapy and radiotherapy for EGJA.

Immunotherapy is widely used in digestive tract malignancies, especially gastric cancer and esophageal cancer (5–7). However, at present, there are obvious differences in the understanding of this tumor between Europe, America and East Asia (8). In clinical studies in Europe, EGJA is often classified as esophageal cancer (9, 10), while in Asia, it is classified as gastric cancer (11). Although several biomarkers have been shown to predict the efficacy of the PD-1 inhibitor, none of them have been accurate enough (12). As a new therapeutic strategy, treatment aimed at the tumor microenvironment (TME) has attracted public attention (13). The TME is composed of a variety of cell types, including the matrix, blood vessels, secretory factors, surrounding matrix and the internal environment of tumor cells. It plays an important role in the occurrence, development and invasion of tumors (14, 15). As the TME is mainly determined by the genomic landscape of tumors (16), some algorithms, such as Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) and Tumor IMmune Estimation Resource (TIMER) methods (17, 18), have been developed to predict tumor purity and estimate the abundance of tumor-infiltrating immune cells based on the gene expression profile. Many studies have applied these big-data-based algorithms to various tumors, including cutaneous melanoma (19), prostate cancer (20), glioblastoma (21), and breast cancer (22), and validated their effectiveness; however, their utility in EGJA has not been investigated.

In our study, we employed the ESTIMATE algorithm to handle the RNA dataset downloaded from the TCGA database. We calculated the immune and stromal scores to identify the SIRGs to construct a signature for predicting the immunotherapy efficacy in EGJA.



Materials and methods


Gene expression datasets

We downloaded the transcriptome expression profiles and the clinicopathological data from the TCGA database. We calculated immune and stromal scores for each sample. Validation data were downloaded from the GEO database, including GSE66229 and GSE84437. Both of these groups of patients had the following clinicopathological characteristics: sex, age, tumor staging, etc.



Differential expression analysis

We divided the patients into a high/low immune score group and a high/low stromal score group, which were evaluated by the ESTIMATE algorithm. Then, we identified differentially expressed genes (DEGs) by the “limma” package of R (4.1.0) in different immunoscore groups. A false discovery rate (FDR) <0.05 and a |log2-fold change |> 1 were screening criteria. The stromal-related DEGs were confirmed by the same methods. The genes that were co-upregulated/downregulated by the immune group and stromal group were selected as stromal-immune related genes (SIRGs).



Pathway and function enrichment analysis

We used R software to explore the specific molecular mechanisms through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses for SIRGs using the “clusterProfiler” package.



Survival analysis and construction of the SIRGs prognostic signature and SIRGs score-based nomogram

We used univariate Cox regression analysis to identify prognostic SIRGs. The SIRGs with p<0.05 were included in least absolute shrinkage and selection operator (LASSO) analysis to avoid overfitting (glmnet package). After screening by LASSO analysis, 8 selected IRGSs were used to construct a signature: SIRGs score = level of gene a * coefficient a + level of gene b * coefficient b + level of gene c * coefficient c + …… + level of gene n * coefficient. All EGJA patients were classified into high SIRGs group and low SIRGs group according to median SIRGs scores. Kaplan-Meier analysis and multivariate Cox regression were conducted to evaluate the efficiency of the SIRGs score in predicting prognosis (survival package).

In addition, SIRGs scores and clinical characteristics were included to construct a nomogram using the “RMS” package. Discrimination was verified by the Harrell concordance index (C-index) and area under the ROC curves (AUCs).



Gene set enrichment analysis (GSEA) and single-sample GSEA (ssGSEA)

GSEA was carried out in high and low SIRGs groups by the package “org.Hs.eg.db” (23). To compare the state of immune function between high and low SIRGs group’s patients, ssGSEA was used to evaluate the 29 immune signature gene sets in each EGJA patient by the package “GSVA” (24, 25).



TME-associated analysis

We calculated 22 types of infiltrating immune cells, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells and so on, by using the R script from CIBERSORT. Then, we divided these 110 EGJA patients into 4 immune subtypes according to the characteristics of immune cell infiltration by unsupervised clustering.



Tumor mutation burden (TMB) analysis

The mutation data was downloaded from TCGA (https://portal.gdc.cancer.gov/). The TMB score for each patient was calculated and analyzed using the “maftools” package. We exclude 3 patients without mutation data before TMB analysis.



Predicting patient response to immunotherapy

We compared the expression of immune checkpoints and their ligands in different SIRGs score groups. The immunophenoscore (IPS) was obtained without bias by analyzing the expression of four categories of immunogenicity-determining genes: effector cells, immunosuppressive cells, MHC molecules, and immunomodulators. IPS was calculated on a range of 0–10 according to z scores representing gene expression in cell types. IPS was positively associated with the immunotherapeutic response. We downloaded the IPS for EGJA patients from the Cancer Immunome Atlas (TCIA, https://tcia.at/home).



Statistical analysis

Clinicopathological factors associated with prognosis were determined by univariate and multivariate Cox regression. Kaplan–Meier survival curves were drawn by the package “survminer”, and differences in survival between the two groups were determined using the log-rank test. Statistical significance was set at two-sided p<0.05. Data were analyzed using SPSS v.22.0 (SPSS, Inc., Chicago, IL, USA) and R version 4.1.0.




Results


Identification of SIRGs by immunoscore and stromalscore

The clinicopathological characteristics of 110 EGJA patients from the TCGA database are shown in Table 1. The ESTIMATE algorithm is applied for inferring the infiltration of immune cells and stromal cells in the microenvironment, and the results were revealed by immunescore and stromalscore. We separated the patients into the high-immunoscore group and the low-immunoscore group based on the median immunoscore. For comparison, there were 981 upregulated genes and 144 downregulated genes in the high immunescore EGJA patients (Figure 1A). Additionally, we divided these patients into high-stromalscore and low-stromalscore groups according to the median stromalscores. There were 1359 upregulated genes and 108 downregulated genes in the high-stromalscore EGJA patients (Figure 1B). As shown in the Venn diagram (Figure 1C), we defined overlapping genes that were up- or downregulated in the stromal and immune groups as stromal-immune related genes (SIRGs). We further used GO and KEGG pathway enrichment to analyze these SIRGs. The results demonstrated that immune response, plasma membrane, MHC class II receptor activity and another immune-related gene ontology were enriched (Figure 1D, E). The tumor-related stromal cell may participate in tumor progression, metastasis and chemotherapy response to further influence prognosis (26). We also found that the stromalscore was correlated with T stage and TNM stage, and EGJA patients in the high stromalscore group had higher T stage and TNM stage (Figure 1F). Survival analysis showed that EGJA patients with high stromalscore had a poorer prognosis than those with low stromalscore (p=0.037), which are consistent with the results of other researches (27–29). However, there was no significant survival difference between high immunescore patients and low immunoscore patients (Figure 1G, p=0.279).


Table 1 | Clinical characteristics of EGJA and GC patients.






Figure 1 | Identification SIRGs and enrichment analyses. (A) Volcano plot of DEGs in immunescore; (B) Volcano plot of DEGs in stromalscore; (C) Venn plot to identify SIRGs; (D) GO enrichment analysis; (E) KEGG pathway enrichment analysis; (F) The relationship between stromalscore and TNM stage; (G) Kaplan-Meier analysis in different groups.





Survival analysis of SIRGs and gene set enrichment analysis (GSEA)

We further explored the prognostic value of these 617 SIRGs. Univariate Cox analysis showed that 122 of them were associated with the prognosis of the EGJA patients, as shown in Supplementary S1. To avoid overfitting, a further LASSO analysis identified that 8 of 122 genes were core prognostic factors for EGJA patients (Figures 2A, B). We further used multivariate Cox proportional hazards regression analysis to construct a predictive model: SIRGs score=(0.1582*CFP)+(-0.06340*ZDHHC11) +(0.05201*ASB5)+(0.09763*LILRA4)+(0.002203*FRZB)+(0.004185*PTGDR)+(0.5599*LRRC55)+(0.1443*FCN1). The contribution of 8 core SIRGs on the overall survival are shown in Figure 2C. CFP (p<0.001), ASB5 (p=0.008), LILRA4 (p=0.001), FRZB (p=0.002), PTGDR (p=0.001), LRRC55 (p<0.001) and FCN1 (p<0.001) were prognostic risk factors for the EGJA patients. Among them, only ZDHHCC11(p=0.030) was a prognostic protective factor. These 8 SIRGs of Kaplan–Meier survival curves are show in Supplementary S2.




Figure 2 | Construction of SIRGs score by LASSO analysis. (A, B) The LASSO Cox analysis identified that eight core SIRGs were associated with the prognosis of EGJA patients; (C) Forest plot of hazard ratios for eight core prognostic SIRGs; (D, E) GSEA analysis in high SIRGs score group; (F, G) GSEA analysis in high SIRGs score group.



Furthermore, GO- and KEGG-related GSEA in the high SIRGs score group revealed that activation of multiple immune responses was enriched in GO biological processes (GOBP) and that cell adhesion molecules, chemokine signaling pathways and cytokine–cytokine receptor interactions were enriched in KEGG pathways (Figures 2D, E). In the low SIRGs score group, the GSEA enrichment focused on cornification, epidermal cell differentiation and epidermal development in GOBP and cell cycle, glutathione metabolism and olfactory transduction in KEGG (Figures 2F, G).

We calculated the SIRGs score of the 110 EGJA patients by this formula and ranked the SIRGs score (Figure 3A). The dot plot in Figure 3B shows the distribution of SIRGs score and overall survival time. Then, we divided them into a high SIRGs score group and a low SIRGs score group according to the median value. The heatmap in Figure 3C illustrates the expression patterns of 8 SIRGs in the low and high SIRGs score groups. Kaplan–Meier analysis showed that the prognosis of the low SIRGs score group was better than that of the high SIRGs score group (Figure 3D, p=0.009).




Figure 3 | Survival analysis of SIRGs score in TCGA cohort and GEO cohort. (A, E) The rank of SIRGs scores; (B, F) The distribution of SIRGs score and overall survival time; (C, G) The heatmap of expression patterns of 8 SIRGs in low- and high-SIRGs score group; (D, H) Survival curves of different SIRGs score group.



We used the GEO gastric cancer database to validate this formula. A total of 733 gastric cancer patients from GSE66229 and GSE84437 were involved to calculate the SIRGs score. We also divided these patients into a GEO high SIRGs score group and a GEO low SIRGs score group. There were 367 and 366 patients in these two groups, respectively. We also ranked the SIRGs score, and the results are shown in Figure 3E. The distribution of SIRGs score and overall survival time were exhibited in Figure 3F. The expression patterns of 8 SIRGs showed as heatmap in Figure 3G. Kaplan–Meier analysis showed that the prognosis of the GEO low SIRGs score group was better than that of the GEO high SIRGs score group (Figure 3H, p=0.006). The median survival of these two groups was 67 months and 120 months, respectively.



SIRGS-score-based nomogram model to predict the prognosis of EGJA patients

Univariate and multivariate Cox analyses indicated that age and SIRGs score were independent prognostic factors for the TCGA-EGJA patients (Figures 4A, B) and GEO-GC patients (Table 2). However, TNM stage is widely considered a prognostic factor. Therefore, we also included TNM stage in the nomogram model (Figure 4C). The C-index of this model was 0.798. The AUCs of the 1-year and 3-year OS for the nomogram were 0.798 and 0.740, respectively. The prognostic test efficacy of the nomogram model containing the SIRGs score was better than that of the TNM staging (0.553 and 0.558) or the SIRGs score alone (0.756 and 0.654) (Figures 4D, E).




Figure 4 | Establishment SIRGs score-based nomogram for predicting EGJA patients’ prognosis. (A) Forest plot presenting univariate Cox regression analysis result; (B) Forest plot presenting multivariate Cox regression analysis result; (C) SIRGs score-based nomogram; (D) AUC values of ROC predicted 1-year OS rates of Nomogram, SIRGs score and TNM stage; (E) AUC values of ROC predicted 3-year OS rates of Nomogram, SIRGs score and TNM stage.




Table 2 | Univariate and multivariate Cox regression analyses of overall survival for 733GC patients in the GEO cohort.





Exploring the role of SIRGs in tumor immune cell infiltration, immune typing and immune function

The effect of immunotherapy for malignant tumors is often closely related to the tumor microenvironment. Tumor-infiltrating immune cells play essential roles in the TME. We further calculated the 22 types of tumor-infiltrating immune cells in 110 EGJA patients by CIBERSORT (30) (Figure 5A). The relationships of 22 types of infiltrating immune cells to each other are presented in the correlation matrix (Figure 5B). Then, these patients were divided into four immune types by unsupervised clustering algorithms according to infiltrating immune cells (Figure 5C). Moreover, in category D, we found that CD8+ T cells increased significantly, as did activated CD4+ T cells and NK cells (Figure 5D). Both stromal score and immunoscore were also significantly increased in category D (Figure 5D). We explored the distribution of these 4 categories in different SIRGs score groups. We found that in the high SIRGs score group, the proportion of type D accounted for 45%, which was much higher than that of the low SIRGs score group (Figure 5E, p=0.001). Subsequently, we explored the immune states between the high- and low SIRGs score groups by calculating the enrichment scores with ssGSEA. In total, 29 immune signature gene sets associated with immune status were analyzed. As Figure 5F shows, all 29 immune-state scores were higher in the high SIRGs score group, which suggested that those patients’ immune functions were more active.




Figure 5 | The difference TME in low- and high-SIRGs score group. (A) Relative proportion of immune infiltration in each EGJA patients; (B) The relationship in different immune infiltration cells; (C) Identify four immune subtypes by unsupervised clustering according to the immune infiltration state; (D) The difference infiltration immune cells in four immune subtypes; (E) The distribution of four immune subtypes in low- and high-SIRGs score group; (F) Immune-related functions analysis in in low- and high-SIRGs score group. *p<0.05, **p<0.01, ***p<0.001, ns, not significant.





The relationship between SIRGs score and tumor mutation burden (TMB)

As EGJA is a disease that features highly somatic alterations, we further detected the relationship between the SIRGs score and the TMB. The top 30 mutated genes in the high and low SIRGs score groups are shown in Figures 6A, B. We found that the mutations of ARID1A, ADAMTS1 and CSMD3 were high in the high SIRGs score group and rarely demonstrated in the low SIRGs group (Figures 6C, D). Moreover, the distribution of the SIRGs score was balanced in the high- and low-TMB groups (Figure 6E). Similarly, the OS showed no differences in the TMB groups (Figure 6F).




Figure 6 | The mutation profile and TMB in low- and high-SIRGs score group. (A) Mutation profile of EGJA patients in high SIRGs score groups; (B) Mutation profile of EGJA patients in low SIRGs score groups; (C) The summary of mutation in high SIRGs score groups; (D) The summary of mutation in low SIRGs score groups; (E) The distribution of TMB in low- and high-SIRGs score group; (F) The association of TMB and OS.





The SIRGs score could be a predictive biomarker for immunotherapy

Our next step was to test whether the SIRGs score can be used as a biological target to predict the effectiveness of immunotherapy. We first examined the expression of immune checkpoints. The results showed that the expression of PDL1, CTLA4, HAVCR2 LAG3, TIGIT, and PD1 in the high SIRGs score group was increased significantly (Figures 7A–F). The IPS plays an essential role in evaluating the response to immune checkpoint inhibitors (ICIs) therapy. The IPS-PD1 and IPS-PD1-CTLA4 scores were higher in the high SIRGs score group (Figure 7G). Therefore, the above results indicate that EGJA patients with high SIRGs score may be more sensitive to immunotherapy. More importantly, we included 281 advanced clear cell renal cell carcinoma patients and 85 melanoma patients receiving immunotherapy for validation. In advanced clear cell renal cell carcinoma validation cohort, 29.0% of patients achieved complete response (CR) or partial response (PR) in the high SIRGs group (Figure 7H, p=0.030), which significantly improved the high SIRGs score patients’ OS (Figure 7I, P=0.048). In other words, patients in the low SIRGs group were not sensitive to immunotherapy, with only 14% CR/PR patients. Therefore, in the immunotherapy cohort, the low SIRGs patients’ prognosis was worse. Similarly, in melanoma cohorts (GSE78220 and GSE91061), 43.8% of patients with high SIRGs score reached CR/PR, with only 22.2% CR/PR patients in low SIRGs group (p=0.036, Figure 7J). The Kaplan–Meier survival analysis illustrated that there was a trend of better OS in high SIRGs group (p=0.063, Figure 7K).




Figure 7 | The estimation and validation of two SIRGs score groups in immunotherapy response. (A-F) The different expression of six immune checkpoint molecules (CD274, CTLA4, HAVCR2, LAG3, TIGIT, PDCD1) in different SIRGs score groups; (G) The association between IPS and SIRGs score; (H) The different immunotherapy response between two SIRGs score groups in advanced clear cell renal cell carcinoma cohort; (I) The association between SIRGs score and OS in advanced clear cell renal cell carcinoma cohort; (J) The different immunotherapy response between two SIRGs score groups in melanoma cohort; (K) The association between SIRGs score and OS in melanoma a cohort.






Discussion

EGJA is a malignant tumor in a special location. Different countries and regions have different treatment principles. Some studies in Europe and the United States have combined EGJA with esophageal cancer for research (31). While in Asia, clinical trials mostly combine EGJA and gastric cancer (32). Therefore, the biological characteristics of EGJA need to be further studied. However, immunotherapy has shown promising results in both esophageal cancer and gastric cancer (5). However, not all EGJA patients can benefit from immunotherapy. At present, there is still no good indicator to evaluate whether patients can benefit from immunotherapy before treatment, especially patients with EGJA. Studies have shown that the prognosis of gastric cancer patients and the effect of immunotherapy are related to the tumor immune microenvironment (13, 33). The stromal and immune cells crosstalk with cancer cells in tumor microenvironment. In the past, few researches fully considered the overall landscape of the infiltrating stromal and immune cells at the same time in tumor microenvironment. Therefore, we hope to construct a signature through stromal-immune related genes to predict the survival and immunotherapeutic effect of EGJA patients.

The ESTIMATE score is used to infer the infiltration of immune cells and stromal cells in the microenvironment of solid tumor tissues through the transcriptome data of tumor samples (17). Therefore, the SIRGs determined by ESTIMATE may be an important factor affecting the immune microenvironment. After calculating the stromal score and immune score of EGJA patients from TCGA, we identified 618 SIRGs. The results of KEGG and GO enrichment analyses suggested that the enriched pathways and functions are related to immunity, implying that the imbalance of these genes may cause changes in the immune microenvironment. Subsequently, we selected 122 SIRGs closely related to prognosis for LASSO regression and obtained the following 8 core genes: CFP, ZDHHC11, ASB5, LILRA4, FRZB, PTGDR, LRRC55 and FCN1. Then, we constructed the signature named SIRGs score through Cox regression analysis. Among them, CFP is a tumor prognostic marker associated with immune infiltration in gastric and lung cancer (34). ZDHHC11 can regulate the innate immune response to DNA viruses (35).

Further survival analysis confirmed that the SIRGs score can effectively predict the prognosis of this group of EGJA patients as an independent prognostic factor. As some studies have reported, the prognosis of EGJA was similar to that of GC, so to evaluate the postoperative prognosis of EGJA, they should be considered a part of GC instead of esophageal cancer (EC) (36, 37). In order to acquire sufficient cases to validate the SIRGs in predicting prognosis, we selected 733 GC patients as validation cohort. The results suggested that this score was also verified in gastric cancer data from GEO. Therefore, we can more effectively predict the prognosis of EGJA patients by TNM staging combined with the SIRGs score. These results suggest that this SIRGs score may be closely related to the biological behavior of the tumor itself and plays a unique role by changing the composition of the tumor microenvironment.

To further evaluate the relationship between the SIRGs score and the immune microenvironment, we used CIBERSORT to evaluate the infiltration abundance of 22 immune cells in the immune microenvironment of EGJA patients. Then, we divided them into four subtypes by unsupervised clustering. In theory, patients with more infiltrated and activated immune cells in the TME may have better immunotherapeutic effects (38). In subtype D, the infiltration of CD8+ T cells was more obvious than that of the other three subtypes, and activated CD4+ T cells and NK cells were also significantly increased. The immune and stromal scores were also higher in type D, suggesting that immune therapy may be more sensitive. In contrast, type C has fewer infiltrated CD8+ T cells and other immune cells and lower immune and stromal scores, which often indicates that the effect of immunotherapy is worse. Further analysis found that there were significant differences between high SIRGs score and low SIRGs score patients in the distribution of types C and D. High SIRGs score patients were mainly concentrated in subtype D, while low SIRGs score patients were mainly concentrated in subtype C. In addition, ssGSEA of immune-related functions showed that almost all immune-related functions in the high SIRGs score group were more active than those in the low SIRGs score group. Given the above, high SIRGs score patients with a “hot” immune microenvironment tend to have a relatively higher response rate to immunotherapy. However, we also found that the prognosis of EGJA patients with more obvious immune infiltration and more active immune function was worse. We speculate that this is due to the immune escape of tumor cells. Tumor cells and the TME are interdependent and antagonistic (39). The immunosuppressive tumor microenvironment is defined as the immunosuppressive part of the TME. Immune cells in the TME can always recognize and remove tumor cells in time. Immune escape means that tumor cells can avoid the recognition and attack of the immune system through various mechanisms to continue to grow and proliferate in the body (40). The immunosuppressive microenvironment consists of various immunosuppressive cells, immunosuppressive cytokines and various immune checkpoint molecules, which play an important role in tumor cell immune escape (41). As Figure 5D shows, gamma delta T cells, as a kind of immunosuppressive cell (42), were also upregulated in the TME of high SIRGs score patients. Current studies suggest that the upregulated expression of PD-L1 and CTLA4 on the surface of tumor cells plays a key role in the ability of tumor cells to escape from the host immune system. Therefore, we further compared the expression of immune checkpoint genes in tumor tissues of the high SIRGs score group and the low SIRGs score group and found that PD-L1, CTLA-4, HAVCR2, LAG3, TIGIT and PDCD1 were also up-regulated in the high SIRGs score group. Therefore, even if these patients had more obvious immune cell infiltration and the prognosis was still worse due to immune escape of the tumor, such patients might achieve better results after receiving immune checkpoint blockade treatment. Pornpimol Charoentong et al. used a random forest approach to identify determinants of immunogenicity and developed an immunophenoscore (IPS) based on the infiltration of immune subsets and the expression of immunomodulatory molecules (43). The IPS is a robust method for predicting anti-CTLA-4 and anti-PD-1 immunotherapy. It has been validated in independent cohorts. Furthermore, we investigated the relationship between IPS and different SIRGs score in EGJA patients. The results showed that the IPS-PD1 and IPS-PD1-CTLA4 scores were higher in the high SIRGs score group, indicating that they were more able to benefit from anti-PD-1 or anti-PD-1 plus anti-CTLA4 immunotherapy. The important role of PD-1/PD-L1 inhibitors in the therapy of some refractory tumors has been confirmed. However, in our study, IPS-PD1-CTLA4 scores also significantly improved in the high SIRGs group, suggesting that the SIRGs score may be able to identify EGJA patients who can benefit from PD-1/PD-L1 + CTLA4 inhibitor treatment. Checkmate 142, a phase II randomized controlled trial, demonstrated that nivolumab plus low-dose ipilimumab can significantly improve the disease control rate in metastatic colorectal cancer. However, the results regarding nivolumab in combination with ipilimumab in advanced GC or EGJA from Checkmate649 have not yet been published. The SIRGs score in our study may have predictive value to some extent.

To further confirm the efficacy of the SIRGs score, we selected two external cohorts of patients receiving immunotherapy for verification (44). In the advanced clear cell renal cell carcinoma cohort, 29% percent of the 31 patients in the high SIRGs group achieved complete response/partial response (CR/PR), while only 14% percent of 250 patients achieved CR/PR in the low SIRGs score group, and the p value of the chi-square test was 0.030. Kaplan–Meier survival curves revealed that the OS of high SIRGs score patients was better than that of low SIRGs score patients, with log-rank p=0.048, implying that immunotherapy may reverse the poor prognosis of high SIRGs score patients. The similar results were found in melanoma cohorts (GSE78220 and GSE91061). It was demonstrated that patients with high SIRGs score can significantly benefit from immunotherapy (p=0.036). Although the difference of Kaplan–Meier survival curves did not reach statistical significance (p=0.063), there was a trend towards better OS with immunotherapy in high SIRGs group. The deficiency may be attributed to insufficient sample in this cohort.

However, our research still has some limitations. First, we focused on one kind of malignant tumor at a specific site, so the overall number of cases and sequencing data are very limited. Second, the current obtainable cohort based on high-throughput sequencing to explore the efficacy of immunotherapy is very limited. We could only select another type of tumor for validation but not EGJA patients, and the number of cases in the validation group was also small. We should use EGJA cohort with immunotherapy for further verification in the future. Third, there is still a lack of some basic experiments to further explore the roles of these eight genes in changing the tumor microenvironment, which needs further research and exploration. Finally, in order to identify the cut-off value of SIRGs for distinguishing between high and low SIRGs group patients, we need include a large number of EGJA patients with immunotherapy for analysis in the future.



Conclusion

In conclusion, the SIRGs score we constructed can effectively predict the prognosis of EGJA patients and prompt the tumor microenvironment of patients, providing a predictive role for the use of immunotherapy.
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Background

Gastric cancer (GC) is an important disease and the fifth most common malignancy worldwide. Autophagy is an important process for the turnover of intracellular substances. Autophagy-related genes (ARGs) are crucial in cancer. Accumulating evidence indicates the clinicopathological significance of the tumor microenvironment (TME) in predicting prognosis and treatment efficacy.



Methods

Clinical and gene expression data of GC were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. A total of 22 genes with differences in expression and prognosis were screened from 232 ARGs. Three autophagy patterns were identified using an unsupervised clustering algorithm and scored using principal component analysis to predict the value of autophagy in the prognosis of GC patients. Finally, the relationship between autophagy and ferroptosis was validated in gastric cancer cells.



Results

The expression of ARGs showed obvious heterogeneity in GC patients. Three autophagy patterns were identified and used to predict the overall survival of GC patients. These three patterns were well-matched with the immunophenotype. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses showed that the biological functions of the three autophagy patterns were different. A scoring system was then set up to quantify the autophagy model and further evaluate the response of the patients to the immunotherapy. Patients with high autophagy scores had a more severe tumor mutation burden and better prognosis. High autophagy scores were accompanied by high microsatellite instability. Patients with high autophagy scores had significantly higher PD-L1 expression and increased survival. The experimental results confirmed that the expression of ferroptosis genes was positively correlated with the expression of autophagy genes in different autophagy clusters, and inhibition of autophagy dramatically reversed the decrease in ferroptotic cell death and lipid accumulation.



Conclusions

Autophagy patterns are involved in TME diversity and complexity. Autophagy score can be used as an independent prognostic biomarker in GC patients and to predict the effect of immunotherapy and ferroptosis-based therapy. This might benefit individualized treatment for GC.





Keywords: autophagy, gastric cancer, tumor microenvironment, microsatellite instability, prognosis, ferroptosis



Introduction

Gastric cancer (GC) is the fifth most common cancer worldwide and the third most common cause of cancer-related death. The estimated number of GC cases exceeds one million annually (1). The most important GC risk factor is Helicobacter pylori infection; age and a diet high in salt intake are also associated with GC (2–5). GC is usually diagnosed by endoscopy. Surgery or endoscopic resection remains a powerful treatment option (6). GC is mostly found in late stages. Tumor heterogeneity and immune response are due to abnormalities in the tumor microenvironment (TME). Therefore, the prognosis of patients cannot be guaranteed. Although several different molecular classification systems for GC have been proposed in the past decade (7, 8), effective precision treatment strategies still need to be explored.

Autophagy is the process of transporting damaged, denatured, or senescent proteins and organelles in cells to lysosomes for digestion and degradation. Autophagy plays a key role in regulating organismal development and maintaining homeostasis and quality control of proteins and organelles (9). Under normal physiological conditions, autophagy helps cells maintain their homeostatic state (10). During stress, autophagy prevents the accumulation of toxic or carcinogenic proteins and inhibits carcinogenesis. Once a tumor is formed, autophagy provides abundant nutrients for cancer cells and promotes tumor growth (11). Additionally, autophagy is increasingly investigated as a molecular target for cancer therapy. Our recent study demonstrated that excess autophagy results in autophagic cell death (12). However, autophagy plays two roles in tumorigenesis and development. The impact of autophagy on cancer depends on a variety of factors, such as TME, cancer type and stage, and genetic background (13). This reflects the intricate regulatory relationship of autophagy in tumors, which needs to be further clarified through more extensive studies. Ferroptosis is a regulated form of cell death that is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy (14). In recent years, research on ferroptosis in cancer has grown rapidly, providing prospects for its application in cancer therapy (15). The interaction between ferroptosis and tumor-related signaling pathways has potential applications in systemic therapy, radiotherapy, and immunotherapy. Targeting GC cells by stimulating ferroptosis through various targets has become a potential therapeutic strategy for gastric cancer (16). In addition, the sensitivity of tumors to ferroptosis therapy has become an important condition for judging the prognosis of patients (15).

The TME is an important component of tumor tissues, including various immune cells, stromal cells, and extracellular components. The composition of resident cell types within the TME and their associated inflammatory pathways differ among cancer patients. These changes correlate with clinical outcomes in various malignancies, including gastric, lung, and breast cancers (17). As malignant tumors develop, they interact with the metabolites of TME, and autophagy is activated in this process to provide nutrients to the tumor (18). Growing evidence indicates the clinicopathological significance of TME in predicting tumor treatment and its prognostic effects (19, 20). Currently, due to technical limitations, only a single autophagy-related gene (ARG) is evaluated in most tumor studies. The characteristics of antitumor mechanisms are by no means explained by one gene, but rather reflect the highly coordinated interaction of numerous genes. Therefore, a comprehensive understanding of the TME mediated by multiple ARGs is required.

In the present study, we identified the role of ARGs in GC progression and predicted the overall survival (OS) of GC patients using a combined analysis of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Importantly, we report a potential role of cell autophagy patterns in assessing tumor TME, providing important insights for understanding the underlying mechanisms of gastric carcinogenesis and predicting response to immunotherapy and ferroptosis-based therapy.



Materials and methods


Data sources

RNA sequencing transcriptome profiling and clinical data of samples, including 343 GC and 30 normal control samples, were downloaded from TCGA database (available online: https://portal.gdc.cancer.gov/). Moreover, GSE84437 (433 samples) with clinical information of stomach adenocarcinoma was downloaded from the GEO database (available online: https://www.ncbi.nlm.nih.gov/geo/). A total of 232 ARGs were obtained from the Human Autophagy Database (available online: http://www.autophagy.lu/index.html). One hundred twenty-one ferroptosis-verified driver genes were obtained from the FerrDb database (available online: http://www.datjar.com:40013/bt2104/), as described previously (21).



Mutation analysis of ARGs

Mutation frequencies and oncoplot waterfall plots of ARGs in gastric cancer patients were generated by the “maftools” package. The locations of copy number variation (CNV) alterations in ARGs on 23 chromosomes were mapped using the “RCircos” package in R software.



Identification and functional annotation of differentially expressed genes

Differentially expressed genes (DEGs) between the different autophagy clusters were identified using the “limma” package in R with an adjusted p-value of <0.001. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Ontology (GO), including biological process (BP), cellular component (CC), and molecular function (MF) categories, were performed with the “ggplot2” package in R software to further explore the potential functions of autophagy-related DEGs (22).



Immune infiltration, tumor mutation burden, and microsatellite instability analysis

We used the ssGSEA (single-sample gene-set enrichment analysis) algorithm to quantify the relative abundance of each cell infiltration in the gastric cancer TME. Correlations between prognostic ARGs and immune filtering were analyzed using a TME-filtered immune cell gene set with diverse human immune cell subtypes, including activated CD8 T cells, activated dendritic cells, giant natural killer T cells, and regulatory T cells. In tumor mutation burden (TMB) and microsatellite instability (MSI) analyses, Spearman correlation analysis was used to calculate the correlation between high- and low-autophagy score groups. MSI status was classified as microsatellite stable (MSS), MSI-low (MSI-L, one marker unstable), and MSI-high (MSI-H, over two markers unstable).



The establishment of an autophagy scoring model and prognostic analysis

Principal component analysis (PCA) was used to evaluate the autophagy gene signature of each gastric cancer patient, which we termed as autophagy score. Patients were divided into the high-score group and low-score group based on the maximally selected rank statistics determined by the “survminer” R package. We used Kaplan–Meier survival curves to identify the ability of the model to distinguish different clusters of patients to determine the efficiency of the model.



Cell viability assay

BGC823 cells were seeded into 96-well plates in DMEM (Gibco, Carlsbad, CA, USA), supplemented with 10% fetal bovine serum (Gibco, USA), 100 U/ml penicillin, and 100 μg/ml streptomycin at a density of 2 × 104 cells/well. Cells were treated with bafilomycin A1 (BafA1, 40 nm), chloroquine (CQ, 25 µM), and 3-methyladenine (3MA, 2 mM) in the presence or absence of erastin for 36 h. Then, 10 μl of Cell Counting Kit-8 (Beyotime) reagent was added to each well and incubated for 2 h at 37°C. The absorbency was measured at 450 nm using a plate reader, and the percentage viability was calculated.



BODIPY staining

BGC823 cells in culture were collected in a chamber confocal dish and incubated with boron dipyromethene (BODIPY 581/591) (Thermo Fisher Scientific) at a concentration of 5 μM, and nuclei were counterstained with DAPI for 10 min. Quantification of lipid bodies was performed using ImageJ.



Ethics statement

Ethical approval was not required, as there is no patient recruitment and absence of animal trials for this study.



Statistical analyses

The correlation coefficient between TME and ARG expression in filtered immune cells was calculated by Spearman and differential expression analyses. Continuous variables were compared between two groups through the Wilcoxon rank-sum test. Classified variables were compared between two groups by chi-square test. One-way ANOVA and Kruskal–Wallis test were used to conduct difference comparisons of three or more groups. The R package of “survminer” was used to determine the cutoff point for each dataset subgroup. The survival curves for the prognostic analysis were generated via the Kaplan–Meier method, and log-rank tests were utilized to identify the significance of differences. The waterfall function of the maftools package was used to present the mutation landscape in patients with high and low autophagy scores in TCGA-STAD cohort. All statistical analyses were performed using R version 4.1.0. Statistical significance was set at p < 0.05.




Results


Defining expression of ARGs in GC

A total of 232 ARGs were obtained from the Human Autophagy database. A heatmap involving TCGA-STAD cohort revealed differences in the expression profiles of 148 ARGs in normal and tumor tissues (Figure 1A). Univariate Cox regression analysis of these DEGs revealed that 22 ARGs were significantly associated with TCGA-STAD prognosis (Supplementary Table 1). Figure 1B presents the incidence of somatic mutations in the 22 ARGs in GC. The TP53 gene displayed the highest mutation frequency (44%), followed by the DAPK1 and CASP8 genes, among the 22 ARGs. We considered the relationship between TP53 mutations and ARG expression, in light of the highest mutation frequency in TP53. The expression levels of eight ARGs were significantly correlated with TP53 mutation status (Figure S1). We then investigated somatic copy number alterations in these ARGs. Copy number changes were evident in all 22 ARGs. More than half of the 22 ARGs had copy number amplification, while CNV deletion frequencies, such as BAG3 and PINK1, were widespread (Figure 1C). Figure 1D shows the location of CNV alterations in these ARGs on the chromosomes. We further compared the mRNA expression levels between GC and normal tissues. The expression of 13 ARGs was increased, while the expression of nine ARGs was decreased in tumors compared with normal tissues in GC (Figure 1E). More specifically, compared to normal tissues, the expression of CNV-increased autophagy modulators in GC tissues (such as CASP8 and CXCR4) was significantly increased. Conversely, the expression of CNV-deficient autophagy modulators of GC tissues (such as BNIP3 and EEF2) was reduced, suggesting that CNV variation may be a cause for the regulation of ARG expression. Additionally, the expression levels of 22 ARGs were associated with survival in GC patients (Figure S2), suggesting that ARGs were involved in the development of GC and had the potential to predict patient prognosis.




Figure 1 | Landscape of genetic and expression variation of ARGs in gastric cancer. (A) mRNA expression profiles of 148 differentially expressed ARGs in TCGA-STAD cohort. (B) The mutation frequency of ARGs in gastric cancer patients of TCGA-STAD cohort. The upper bar graph shows TMB; the right bar graph shows the proportion of each variant type. (C) The CNV variation frequency of each ARG based on CNV variation. (D) The location of CNV alteration of ARGs on 23 chromosomes. (E) Expression distributions of ARGs between normal (green) and tumor (red) tissues. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.





Identification of the autophagy clusters

We created a queue using the GEO and TCGA datasets along with OS data and clinical information to construct a more precise autophagy cluster with prognostic significance. The autophagy network diagram showed that the expression of most ARGs was positively correlated, with some genes being negatively correlated (Figure 2A). Subsequently, we identified three different regulation patterns using the unsupervised clustering method (Figure S3). The survival advantage of clusters B and C was higher than that of cluster A (Figure 2B).




Figure 2 | The clinicopathological and biological characteristics of three autophagy clusters. (A) Interaction network diagram between the ARGs. (B) Survival analysis for the three autophagy clusters in gastric cancer patients. (C) The differences between functional pathways in autophagy clusters by GSVA. Blue represents the autophagy cluster A, and orange represents the autophagy cluster B. (D) The differences between functional pathways in autophagy clusters by GSVA. Orange represents the autophagy cluster B, and red represents the autophagy cluster C.





Infiltration characteristics of TME cells under different autophagy modification patterns

To explore the differences in biological behavior among these three patterns, we performed GSVA enrichment analysis (Figures 2C, D). Autophagy cluster A was markedly enriched in stromal and carcinogenic activation pathways, such as TGFβ signaling pathway, ECM receptor interaction, cell adhesion, and MAPK signaling pathways. Autophagy cluster B was significantly associated with biological metabolism. Autophagy cluster C presented enrichment pathways associated with immune full activation, including the activation of chemokine signaling, JAK-STAT signaling, T-cell receptor signaling, and Toll-like receptor signaling pathways. Subsequent analysis of TME cell infiltration showed that autophagy cluster C was remarkably rich in innate immune cell infiltration, including natural killer cells, macrophages, MDSCs, monocytes, and immature B cells. The three autophagy modification patterns showed significantly different infiltration characteristics of TME cells (Figure 3A). PCA revealed significant differences in the autophagy modification profiles between the three subtypes (Figure 3B). Comparison of the clinicopathological features of GC revealed significant differences in the expression of ARGs and clinicopathological characteristics (Figure 3C). Among these autophagy-related DEGs, the intersection of the three autophagy clusters A, B, and C confirmed 1,337 DEGs (Figure 3D). To clarify the function of these DEGs, pathways were analyzed using GO and KEGG databases. The 1,137 DEGs were mainly involved in T-cell activation, positive regulation of cell adhesion, extracellular matrix organization, extracellular structure organization, and collagen-containing extracellular matrix (Figure 3E and S4A). Moreover, KEGG pathway analysis suggested that these DEGs were mainly involved in cell adhesion molecules, cytokine–cytokine receptor interactions, cell adhesion molecules, chemokine signaling pathways, and focal adhesion (Figures S4B, C). Then, 632 differentially expressed and prognostic genes were screened out from the three autophagy clusters and used for the subsequent analysis.




Figure 3 | Immune cell infiltration and transcriptome features among the three autophagy clusters. (A) The differences in immune cell infiltration among three autophagy clusters. (B) The scatter plot of principal component analysis. (C) Clinicopathological features and expression levels of 22 ARGs in three autophagy clusters. (D) Venn diagram showing overlapping genes in three autophagy clusters. (E) GO enrichment analysis of the overlapping genes. ∗∗∗p < 0.001.





Construction of autophagy gene signature and functional annotation

Consistent with the clustering grouping of autophagy modification patterns, the unsupervised clustering algorithm also divided the patients into three distinct autophagy modification genomic phenotypes depending on the 632 prognostic genes (gene clusters 1, 2, and 3; Figure S5). The heat map of the genetic modification patterns revealed that most genes were expressed at low levels in gene cluster B and were highly expressed in gene cluster C (Figure 4A). The findings indicate the presence of three distinct autophagy modification patterns in GC. Kaplan–Meier curves showed that patients with gene cluster 3 had the worst prognosis, whereas patients in cluster 2 showed a favorable prognosis (Figure 4B). The three autophagy gene clusters showed significant differences in the expression of ARGs, consistent with the three autophagy clusters (Figure 4C). Considering the individual heterogeneity and complexity of autophagy, we developed an autophagy score based on principal component analysis to quantify autophagy modification patterns in individual GC patients. Then, we divided the patients into high-score group and low-score group. An alluvial diagram was used to visualize the flow of the autophagy score fraction construction (Figure 4D). We then conducted immune correlation analysis. The autophagy score was significantly positively correlated with CD4 T immune cells and neutrophils and negatively correlated with activated B immune cells and macrophages (Figure 4E). Differences were evident in autophagy scores among the autophagy clusters and also among the three gene clusters. Autophagy cluster A showed the lowest score compared with the other clusters (Figure 4F). Simultaneously, compared with the other clusters, autophagy gene cluster 2 had the highest autophagy score and autophagy gene cluster 3 had the lowest score (Figure 4G).




Figure 4 | Construction of the autophagy score. (A) Heatmap of relationships between clinicopathological features and autophagy gene clusters. (B) Kaplan–Meier survival curves of different autophagy gene clusters. (C) The differential expression of ARGs among different gene clusters. (D) Alluvial diagram showing genotype distributions in different gene clusters and survival outcomes. (E) The correlation analysis between the autophagy score and immune cells; red indicates positive correlation, and blue indicates negative correlation. (F) Differences in autophagy score among three autophagy clusters. (G) Differences in autophagy score among three gene clusters. ∗∗p < 0.01; ∗∗∗p < 0.001.





Autophagy molecular subtypes and prognosis

Next, we tried to further determine the value of autophagy score in predicting the prognosis of GC patients. The prognosis of patients in the low autophagy score group was poorer than that of patients in the high autophagy score group (Figure 5A). In addition, Spearman correlation analysis demonstrated that the autophagy score was positively associated with TMB, which reflects the total number of mutations carried by tumor cells and is related to tumor recognition by immune cells (Figure 5B). We explored the association of TMB with different autophagy scores. TMB in the high autophagy score group was greater, indicating a better response to immunotherapy (Figure 5C). Survival analysis of TMB in GC revealed that the prognosis of the high-TMB group was better than that of the low-TMB group (Figure 5D). As expected, the TMB survival curve combined with the autophagy score showed that patients in the high tumor mutation group and high autophagy score group had the best prognosis (Figure 5E). As shown in Figures 5F, G, the high autophagy score group had a higher TMB frequency than the low autophagy score group (total genes rate 97.37% versus 83.87%). These results indicate the value of the autophagy score in predicting the prognosis of GC patients and reflect the effect of immunotherapy to a certain extent.




Figure 5 | The relationship between autophagy score and tumor somatic mutation. (A) Survival analysis of the patients with high autophagy scores and low autophagy scores. (B) Spearman correlation analysis of the autophagy score and TMB. (C) TMB in different autophagy score groups. (D) Survival analysis of low or high TMB in gastric cancer patients. (E) Survival analysis of TMB combined with autophagy score in gastric cancer patients. (F) The waterfall plot of somatic mutation features established with high autophagy score. (G) The waterfall plot of somatic mutation features established with low autophagy score.





Role of autophagy score in GC immunotherapy and chemotherapy

Immunotherapy can increase the survival rate of patients with multiple types of tumors. Therefore, it is important to determine which patients could respond better to immunotherapy. Survival analysis revealed that death of GC patients occurred mainly in the low autophagy score group (Figure 6A). Moreover, the autophagy score was lower in patients who died of GC (Figure 6B). Stratified analysis of the autophagy score for the GC patients showed that the high autophagy score group had a better prognosis than the low autophagy score group of T1–2 and T3–4 (Figures 6C, D). MSI has been associated with the development of tumors. MSI-high (MSI-H) patients are more sensitive to immunotherapy (23). In the present study, the high autophagy score was accompanied by the MSI-H state, while a low autophagy score was accompanied by a microsatellite stable state (Figures 6E, F). Immunotherapy targeting PD1 and PD-L1 has improved survival in cancer (24). In this study, GC patients with high autophagy scores displayed significantly high PD-L1 expression, suggesting a potential benefit of anti-PD-L1 immunotherapy (Figures 6G, H).




Figure 6 | The role of autophagy score in immunotherapy and chemotherapy. (A, B) Stratified analysis of autophagy scores in gastric cancer patients according to survival status. (C, D) Stratified analysis of autophagy scores in gastric patients according to the T stage. (E) Relationships between autophagy score and MSI. (F) Stratified analysis of autophagy scores in gastric patients according to MSI. (G, H) Expression levels of PD-L1 and PD1 in two distinct groups.





Ferroptosis in different autophagy subtypes in GC patients

Ferroptosis, a novel form of regulated cell death, is associated with iron accumulation and lipid peroxidation (25, 26). Our recent studies demonstrated that achieving ferroptosis via ferroptosis-inducing drugs is emerging as a new alternative therapy modality (27–29). Moreover, in our previous study, autophagy accelerates the degradation of ferritin, increases the unstable iron pool, promotes the accumulation of cellular reactive oxygen species, and ultimately leads to ferroptosis (30). Therefore, we extracted 121 ferroptosis-verified driver genes from the FerrDb database and analyzed the association of these genes in our established autophagy model in GC patients. As expected, in GC patients, these ferroptosis-verified driver genes showed differential expression in different autophagy clusters (Figure 7A). Surprisingly, the heat map showed that ferroptosis-verified driver genes were reduced in gene cluster B and highly expressed in gene cluster C, which was consistent with the expression level of ARG (Figures 4A and 7B). In addition, three gene clusters showed significant differences in the expression of ferroptosis-verified driver genes (Figure 7C). We can conclude that the expression of genes related to ferroptosis was positively correlated with the expression of ARGs.




Figure 7 | Expression levels of ferroptosis-verified driver genes in different autophagy patterns. (A) Clinicopathological features and expression levels of 121 ferroptosis-verified driver genes in three autophagy clusters. (B) Clinicopathological features and expression levels of 121 ferroptosis-verified driver genes in three autophagy gene clusters. (C) The differential expression of ferroptosis-verified driver genes among different gene clusters. *p<0.05, **p<0.01, ***<p.0.001.





Validation of functional phenotypes in GC cell lines

We wonder whether the autophagy cluster model could predict the sensitivity to ferroptosis-inducing therapy. BGC823 cells were induced to undergo ferroptosis with erastin in vitro. Of note, a significant reduction in cell viability by erastin treatment was observed, but cell viability was significantly reversed by different autophagy inhibitors, including BafA1, CQ, and 3MA (Figure 8A). We also detected the generation of lipid reactive oxygen species (ROS) by BODIPY, a classical ferroptosis maker (16). The fluorescence results showed a large amount of lipid ROS accumulation in BGC823 cells under the treatment of erastin, while the presence of autophagy inhibitors dramatically ameliorated the accumulation of lipid ROS (Figures 8B, C). These results suggest that detection of autophagy typing can predict tumor susceptibility to ferroptosis therapy.




Figure 8 | Inhibition of autophagy blocks erastin-induced ferroptosis. (A) Cell viability of BGC823 cells with the treatment of erastin in the presence or absence of autophagy inhibitors. (B, C) Representative BODIPY fluorescence images with indicated treatment and respective quantification. Scale bars = 10 μm. Data represent mean ± SEM. ***p < 0.001 vs. erastin-treated cells.






Discussion

Growing evidence suggests that autophagy plays an integral role in inflammation, innate immunity, and antitumor activity by degrading damaged organelles and excess proteins (31, 32). Autophagy has various roles in various cancers. Historically, the role of autophagy in tumorigenesis may have been misunderstood. The clinical use of autophagy inhibitors may not have a positive effect on cancer patients but may promote tumorigenesis (33). Little is known about the phenomenon of autophagy in GC cells, and the mechanism between autophagy and GC remains controversial. However, studies in animal models have shown that the inhibitory effect of autophagy on tumors may be greater than its facilitation in cells with impaired apoptotic machinery (34). In this study, we identified 22 ARGs and classified them into three clusters. Moreover, combining the filtering properties of TME cells in different clusters of ARGs generated data that improve the understanding of TME antitumor immune responses in GC.

We observed that the three clusters of autophagy patterns were significantly correlated with immune activation and other pathways. Cluster A was characterized by immunosuppression, corresponding to the immune desert phenotype. Cluster B was characterized by the activation of innate immunity and matrix, corresponding to an immune-excluded phenotype. Cluster C was characterized by the activation of adaptive immunity, corresponding to the immune inflammatory phenotype. The latter phenotype corresponds to the “hot tumor”, in which CD4 and CD8 T cells are expressed in the tumor parenchyma. The immune-excluded phenotype has abundant immune cells that do not penetrate the parenchyma of these tumors but which remain in the matrix surrounding the tumor cells. The immune desert phenotype corresponds to the “cold tumor”, with no T cells in the tumor parenchyma or stroma (35, 36). Our results were consistent with these definitions, confirming that different patterns of autophagy are important in shaping the antitumor immune response in different TME landscapes. Cluster C featured the activation of chemokines, T-cell receptors, and Toll-like receptor signaling pathways. All these pathways contribute to the involvement of cluster C in immune inflammation typing. Therefore, it was not surprising that cluster C activated innate immunity and resulted in a better survival curve.

Similar to the clustering results of the three modes of autophagy, three gene clusters were identified based on the DEGs among the three autophagy clusters, which were also significantly associated with stroma and immune activation. This confirmed that autophagy is involved in the composition and structure of the TME landscape. Therefore, analysis of autophagy patterns will help understand the characteristics of TME cell infiltration. In this study, we established a scoring system to assess autophagy patterns in patients with GC. Autophagy scores were higher for the autophagy patterns of the immune-excluded phenotype. The autophagy score was significantly positively correlated with CD4 T immune cells, neutrophils, and macrophages, suggesting that the autophagy score could be used to assess tumor autophagy patterns and immunophenotypes. In addition, the gene mutation frequency in the high autophagy score group was higher than the total gene mutation frequency in the low autophagy score group. Patients in the high autophagy score group also had better survival rates across the different cancer stages. Furthermore, we found that autophagy patterns influenced the therapeutic effect of the immune checkpoint blockade. The autophagy score was markedly correlated with MSI status and PD-L1 expression, which might be a more effective predictor of immunotherapy.

Previous studies have demonstrated that Beclin1, LC3, and P62/SQSTM1 are autophagy-related markers with prognostic values in GC (37–39). Compared with normal mucosal epithelial cells, the expression of BNIP3 is increased in malignant gastric epithelial cells than in normal mucosal epithelial cells, suggesting that BNIP3 expression may play a role in GC development (40). However, the molecular mechanisms of many other ARGs in GC are not yet fully understood. Therefore, considering ARGs as a whole to construct a tumor prediction model will be an effective method to study autophagy and tumor development. Assessing tumor-driver mutations is a key basis for cancer diagnosis and treatment (41). We observed that patients with high autophagy scores had significantly higher frequencies of TTN, MUC16, and ARID1A mutations than patients with low autophagy scores. Moreover, the TTN mutation spectrum serves as a predictor of MSI-H and the mutational load in the TTN also represents a high TMB state (42). In the present study, the proportion of patients with MSI-H was higher in those with high autophagy scores. This suggests a complex interplay between autophagy patterns and immune genes in TMB.

The concept of ferroptosis-suppressing tumors has become widely accepted, with FDA-approved drugs identified as ferroptosis inducers and the potential of ferroptosis as a new promising approach to killing therapy-resistant cancers (43). Past studies have emphasized that the regulation of ferroptosis is autophagy-dependent and involves multiple autophagy-related molecular factors in the process of ferroptosis (44). Our results found that the expression of ferroptosis genes was positively correlated with the expression of autophagy genes in GC patients. Furthermore, inhibition of autophagy significantly reversed the decline in cell viability and lipid accumulation caused by ferroptosis. Therefore, we have reason to believe that our established autophagy analysis can predict the sensitivity of GC patients to ferroptosis treatment.

This study has some limitations that need to be acknowledged. As all analyses were based on data from public databases, extensive in vivo and in vitro experiments are still required to support our findings. Thus, further studies should be performed to prove the relationship between autophagy and GC in the future.

In conclusion, we performed comprehensive and systematic bioinformatics analyses of GC patients and identified 22 ARGs to analyze their application in GC. The findings establish an autophagy scoring system for GC patients. Our findings concerning the association between autophagy score and clinicopathological features indicate that the autophagy score could serve as an independent prognostic biomarker in GC patients. The autophagy score can also predict the effect of immunotherapy and ferroptosis-based treatment in GC patients, providing new insights for guiding the precise treatment of such patients.
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Background

The SCF (Skp1-cullin-F-box proteins) complex is the largest family of E3 ubiquitin ligases that mediate multiple specific substrate proteins degradation. Two ring-finger family members RBX1/ROC1 and RBX2/RNF7/SAG are small molecular proteins necessary for ubiquitin ligation activity of the multimeric SCF complex. Accumulating evidence indicated the involvement of RBX proteins in the pathogenesis and development of cancers, but no research using pan-cancer analysis for evaluating their difference has been directed previously.



Methods

We investigated RBX1/2 expression patterns and the association with clinicopathological features, and survivals of cancer patients obtained from the TCGA pan-cancer data. The binding energies of RBX1/2-CUL1 complexes were preliminarily calculated by using molecular dynamics simulations. Meanwhile, we assessed their immune infiltration level across numerous databases, including TISIDB and Timer database.



Results

High expression levels of RBX1/2 were observed in most cancer types and correlated with poor prognosis of patients analyzed. Nonetheless, exceptions were observed: RBX2 expression in KICH was higher than normal renal tissues and played a detrimental role in KICH. The expression of RBX1 was not associated with the prognostic risk of KICH. Moreover, the combination of RBX1 and CUL1 expression is more stable than that of RBX2 and CUL1. RBX1/2 expression showed their own specific characteristics in tumor pathological stages and grades, copy number variation and immune components.



Conclusions

These findings not only indicated that the difference of RBX1/2 might result in varying degrees of tumor progression, but also suggested that they might serve as biomarkers for immune infiltration in cancers, shedding new light on therapeutics of cancers.
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Introduction

The ubiquitin–proteasome system (UPS) is the major proteolytic system that degrades accumulated or misfolded proteins for cellular homeostasis (1, 2). It operates through the presentation of ubiquitin to the substrate proteins using a covalent modification pattern, which involves a series of multienzymes, i.e., Ubiquitin (Ub)-activating enzyme (E1), Ub-conjugating enzyme (E2) and Ub ligase (E3) (3). Among the three enzymes, the E3 ubiquitin ligases play a pivotal role in determining specificity of substrate proteolysis (4, 5). Based on the structural characteristics, E3 enzyme can be divided into four categories: RING E3s, HECT E3s, U-box E3s and RBR E3s (4). The SCF multisubunit complex, the most common RING E3s composing of a scaffold protein cullin1, a Ring protein (RBX1 or RBX2), an adaptor protein and a substrate receptor protein, is the largest family of E3s that promote the degradation of about 20% of UPS-regulated proteins (6, 7).

RBX1/2 usually ubiquitously expressed in human tissues, such as heart, colon, skeletal muscle, and testes (8, 9). RBX proteins can promote ubiquitin transfer from the E2 to the substrates and further enhances cullins activity, therefore, they constitute the catalytic cores of SCF complexes (10). Previous studies have confirmed that RBX proteins were found to be functionally non-redundant. Deletion of RBX1 in mice results in early embryo death (E7.5) due to proliferation failure in a wild-type RBX2 background, whereas inactivation of RBX2 causes late embryo death (E11.5-12.5) associated with cardiovascular defects (11, 12). Although both RBX proteins are highly conservative at protein level, share similar ring finger domain structure, their effect on the regulation of substrate degradation may vary (11). RBX1 mainly mediates proteolysis, including cell cycle regulators (e.g., cell cycle inhibitor p21/p27/p53/p57, and cyclin A/D/E), transcription factors (e.g., E2F1, FOXO1, myc, and c-Jun), DNA replication factor CDT1, and others. RBX2 promotes ubiquitination and degradation of a number of protein substrates, including c-Jun, DEPTOR, HIF-1α, IκBα, NF1, NOXA, p27 and procaspase-3, to degrade different substrates causing various phenotypes (13–16).

To be specific in cancers, RBX1 was shown to be highly expressed in bladder, gastric, prostate and renal cancer (17–19). Notably, RBX2, is rarely expressed in normal tissues, but highly expressed in lung, liver, gastric and renal cancer (20–22). Previous studies on the Ring finger family have focused on the oncogenic function and degradation ability of RBX1 and RBX2 in specific tumors, respectively, which provides a limited understanding of their role in SCF E3s. However, the difference of RBX members in pan-cancer has not been described. To explore the effect of RBX1/2 on the overall picture of SCF complex and in the tumor evolution, we comprehensively analyzed their difference in pan-cancer using the TCGA database in the present study. Their diversities were reflected in the following aspects including mRNA level, protein level, pathological features, prognosis and copy number variation, immune infiltration level.



Materials and methods


Evaluation the two cullin1-based complexes by binding free energy simulations

The CUL1-RBX1 and CUL1-RBX2 complexes were obtained from the Protein Data Bank (RCSB PDB www.rcsb.org) database (23). The molecular dynamic simulation for the CUL1-RBX1/2 complex used PDB ID: 1LDJ and 7 ONI as the templates. A molecular dynamic simulation was performed for the two complexes in a water environment (310 K temperature) with the force field charmm36-feb2021.ff using GROMACS software (24). The binding affinity was calculated using g_mmpbsa and the PyMOL software was used for visualization (25).



The cancer genome atlas pan-cancer data

We used the UCSC Xena (https://xenabrowser.net/) to download TCGA pan-cancer data, including survival data, clinical data, stemness score (RNA based) and immune subtype (26). RBX1/2 expression was integrated by Perl software. We used the Wilcox test to assess the difference between normal and tumor tissues. P value less than 0.05 is considered as difference. A heatmap and box plot were illustrated by the R-package “ggpubr” and “pheatmap”, respectively. Furthermore, Correlation analysis among Ring finger family genes was performed by R-package “corrplot”.



Clinicopathologic features and survival analysis of expression of Ring finger members

UALCAN was used to analyze the RBX-proteins expression in several cancers, including BRAC, OV, UCEC and PAAD (27). ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001. Additionally, we obtained box plots of the RBX1/2 expression in different pathological grades and stages via the TISIDB database (28) (http://cis.hku.hk/TISIDB/index.php). Survival analysis of RBX1/2 was used for the “survival” and “survminer” R package. A difference of p less than 0.05 was statistically significant. Meanwhile, we downloaded the TCGA pan-cancer mRNA expression and survival data to conduct the Cox analysis for illustrating the association between RBX1/2 expression and the survival of patients.



RBX1/2 CNV profile in pan-cancer based on GSCA

Gene Set Cancer Analysis (GSCA) platform is a web server that integrated multiomics data based on TCGA database (29) (http://bioinfo.life.hust.edu.cn/web/GSCA/). Based on CNV module, the proportion of RBX1/2 heterozygous/homozygous and amplification/deletion, Spearman correlation between RBX1/2 mRNA expression and CNV, and the survival difference between their CNV and wild type were displayed in pan-cancer.



Correlation analysis of Ring finger family gene expression with immune components in pan-cancer

The correlation between Ring finger family expression and immune subtypes of different cancer types were explored via the TISIDB database. Furthermore, we selected four types of cancers (COAD, GBM, LIHC, LUAD) to analyze the relationship between RBX1/2 and immune infiltration using Timer database (30)(https://cistrome.shinyapps.io/timer/). Moreover, the associations of RBX1/2 levels with 47 common immune checkpoint genes selected were also evaluated. R software was used to calculate the correlation between RBX1/2 expression and TMB/MSI and the Fmsb R package was used for visualization. Then, we performed the tumor microenvironment analysis for obtaining the estimate score profile by using the “estimate” R package, and the Spearman correlation test for conducting the correlation analysis between RBX1/2 expression and immune score, estimate score, stromal score, DNAss, RNAss and tumor purity in pan-cancer.



Cell culture

All human breast cancer cell lines (MDA-231, BT-474, MCF-7) and normal breast epithelial cell (MCF-10A), lung cancer cell lines (H1975, A549, PC9) and normal lung epithelial cell (BEAS-2B), colorectal cancer cell lines (HCT116, SW480, SW620) and normal colon epithelial cell (HCoEpic), renal cancer cell lines (Caki-1, 786-O, 769-P) and normal renal tubular epithelial cell (HK-2) were purchased from the American Type Tissue Collection (ATCC) and cultured according to the manufacturer’s instructions.



qRT-PCR analysis

cDNA reverse transcription and fluorescence quantitative PCR amplification were performed using SPARKscript IISYBR Green qRT-PCR Kit (Shandong Sparkjade Biotechnology Co., Ltd.) as previously reported (31). The primers used were as follows: RBX1 forward, 5′-TTGTGGTTGATAACTGTGCCAT -3′,

	RBX1 reverse, 5′-GACGCCTGGTTAGCTTGACAT -3′;

	RBX2 forward, 5′-TGGAAGACGGAGAGGAAACCT -3′,

	RBX2 reverse, 5′-TGAGGGAGAACATCTTGTCGC -3′

	β-Actin forward, 5′- CGTGCGTGACATTAAGGAGAAG -3′,

	β-Actin reverse, 5′- GGAAGGAAGGCTGGAAGAGTG -3′;.



All genes were normalized to β-actin, and the 2−ΔΔCt method was applied to evaluate the relative levels of genes. The comparison between the experimental group and the normal group was performed using the Dunnett’s t test. P less than 0.05 was considered statistically significant.




Results


Molecular dynamics simulations and free energy calculations of the CUL1-RBX1 and CUL1-RBX2 complexes

The SCF complexes are Ring-type E3s that composited of cullin1, SKP1, RBX1/2 and a member of the F-box protein family. Although the abundance of SCF is increased by the variety of F-box proteins, they share the two ring components RBX1 and RBX2 (32–34). RBX1 is constitutively expressed and induced upon mitogen, whereas RBX2 is stress-inducible and induced upon UV, TPA or ROS (14). In this study, we separately calculated the binding affinity of CUL1-RBX1 and CUL1-RBX2 complexes to rough compare stability of SCF complex formed by RBX1/2. The binding energy calculated by the former was -262.59 kJ/mol and the latter was -146.8 kJ/mol (Supplementary Figures 1A, B). The result displayed the combination of RBX1 and CUL1 may be more stable than that of RBX2 and CUL1, suggesting that RBX1 is more likely to form stable SCF complexes to degrade more substrates.



Expression of RBX1/2 in various types of cancers and association with pathological characteristics

We performed a scale analysis of the expression of RBX1/2 from the TCGA database and found that they are highly expressed in most cancers. However, there were a few apparent exceptions in the 18 types of cancers, a lower RBX1 expression was detected in KICH compare to the matches normal tissues, whereas RBX2 was under expressed in COAD and READ in addition to KICH (Figure 1A). To validate the differences of RBX1/2 expression, we analysed transcriptional expression of these both genes in various tumor cell lines of four common types of cancer (breast, lung, colorectal and renal cancer) and normal cells. Except for the expression of RBX1 in lung cancer and RBX2 in COAD, the experimental results are basically consistent with the bioinformatics analysis (Supplementary Figure 2).




Figure 1 | The mRNA expression patterns of RBX1/2 in cancers. (A) Comparison of RBX1/2 expression between tumor and normal samples. (B) Heatmap showing the difference of RBX1/2 gene expression in 18 cancer types from TCGA database. The red and green indicate the high or low expression, respectively. (C) Boxplot illustrating the distribution of RBX1/2 gene expression in various cancer. (D) The correlation between RBX1 and RBX2. The blue dot indicated the positive correlation. *P < 0.05, **P < 0.01, ***P < 0.001.



Further analysis revealed that there were significant difference of Ring finger genes expression comparing primary tumor to adjacent normal tissues, for example, RBX2 expression in COAD tissues was lower than adjacent non-COAD tissues, while RBX1 was in the opposite situation. The difference of RBX2 expression between LUSC and adjacent tissues was much more obvious than that of RBX1 (Figure 1B). Meanwhile, the overall expression level of RBX2 was higher than that of RBX1 in pan-cancer (Figure 1C). We also analyzed that RBX1 and RBX2 are the two genes with significant positive correlation (Correlation coefficient = 0.49, Figure 1D).

We investigated the RBX-proteins expression levels in BRCA, OV, UCEC and PAAD (Figure 2A). The results showed RBX2 expression in BRCA and OV was lower than in normal tissues, while RBX1 expression had no significant difference on the above tumors. Moreover, there was no difference on RBX2 expression in PAAD, however, RBX1 expression was higher in matched normal tissues. Another interesting phenomenon that RBX-proteins expression in UCEC was exact opposite and statistically significant was also illustrated. We showed RBX1/2 expression with pathological grades of KIRC, LIHC, LGG and UCEC using TISIDB database (Figure 2B), revealing that there were no differences in the association between RBX1 expression and clinical grades in LIHC and UCEC, whereas RBX2 expression has statistical significance in association with pathological grade of KIRC, LIHC and UCEC. We also observed the significant correlation between RBX1/2 expression and the pathological stages of several cancers including KIRC, KIRP, LIHC and PAAD (Figure 2C). The expression of RBX1 was not related to the stage of LIHC and PAAD, while RBX2 was in the opposite situation. Moreover, the association with RBX1/2 expression and KIRP stages was completely opposite, RBX1 was significantly correlated with the stages of KIRP. In conclusion, different expression patterns of RBX1/2 in various cancer types may lead to different characterization of tumors.




Figure 2 | RBX1/2 expression based on tumor types and individual pathological grades and stages. (A) RBX-proteins expression in BRCA, OV, UCEC and PAAD. ns is considered as no statistical difference, **P < 0.01, ***P < 0.001. Up or down arrow represented the expression of tumor samples more or less than the corresponding normal samples, respectively. (B) The expression levels of RBX1/2 were analyzed by tumor pathological grades (grade1, grade2, grade3, grade4) of KIRC, LIHC, LGG and UCEC. P value less than 0.05 is considered as difference. (C) The expression levels of RBX1/2 were analyzed by tumor pathological stages (stage I, stage II, stage III, and stage IV) of KIRC, KIRP, LIHC and PAAD. P value less than 0.05 is considered as difference.





Prognostic value of RBX1/2 across cancer types

The survival analysis of TCGA database presented a correlation between Ring finger family gene expression and prognosis in several cancers, showing that higher RBX1 expression was associated with poor OS in ACC (P<0.001), KIRC (P=0.011), LIHC (P=0.008), and UVM (P<0.001) (Figure 3A), whereas higher RBX2 expression was linked to poor prognosis in KICH (P=0.025), KIRC (P=0.001), LAML (P=0.026), LGG (P=0.043), LIHC (P=0.005) and PAAD (P=0.038) (Figure 3B). Interestingly, RBX1 had a protective role in OV (P=0.002), PCPG (P=0.014), suggesting RBX1 may exert tumor suppressor effect in OV and PCPG (Figure 3A).




Figure 3 | Kaplan-Meier survival curves comparison of high and low expression of Ring finger family gene in pan-cancer. (A) OS survival curves of RBX1 in different cancers: ACC, p<0.001; KIRC, p=0.011; LIHC, p=0.008; UVM, p<0.001; OV, p=0.002; PCPG, p=0.014. (B) OS survival curves of RBX2 in different cancers: KICH, p=0.025; KIRC, p=0.001; LAML, p=0.026; LGG, p=0.043; LIHC, p=0.005; PAAD, p=0.038.



We further investigated prognosis risk of the Ring finger family genes in pan-cancer by COX analysis (Figure 4). Our results indicated that RBX1 played a detrimental role in ACC, KIRC, LIHC and UVM (HR>1, P<0.05). On the other hand, RBX1 had a protective role in LGG, PCPG and CESC (HR<1, P<0.05). RBX2 acted as a detrimental prognostic factor in ACC, KICH, KIRC, LIHC and PAAD (HR>1, P<0.05). In contrast, RBX2 was a protective prognostic factor in CESC (HR<1, P<0.05). We have enumerated three tumors of the highest incidence (breast, colorectal and lung cancer) to perform comprehensive prognosis analysis with RBX1/2 expression by the PrognoScan database (35) (Table 1). RBX1 and RBX2 were the high-risk genes in breast cancer (RFS). Notably, RBX2 acted as a detrimental prognostic factor in colorectal cancer (OS, DFS) and lung cancer (OS, RFS). However, RBX1 had no significant relation with the prognosis in above cancers. The difference between RBX1 and RBX2 may lead to different tumor outcomes.




Figure 4 | Association of RBX1/2 gene expression with patient’s overall survival for different cancer types. The forest plots with the hazard ratios and 95% confidence intervals for overall survival for different cancer types showing the survival advantage and disadvantage with the increased gene expression of RBX1/2. The univariate Cox proportional hazard regression models were used for the association tests.




Table 1 | Ring finger family gene expression was related to the prognosis of different cancers in PrognoScan.





RBX1/2 CNV profile in pan-cancer based on GSCA analysis

We summarized RBX1/2 CNV landscape in 33 cancer types by using the GSCA database, respectively (Figure 5). The highest heterozygous amplification ratio (45.71%) for RBX1 was found in LUSC, whereas the heterozygous amplification ratio of RBX2 presented a higher level of state in several cancers (>50%) including CESC, HNSC, LUSC and OV. Furthermore, a relatively higher heterozygous deletion ratio (>50%) for RBX1 was found in MESO, OV and UCS. However, RBX2 showed a heterozygous deletion ratio of more than 50% only in PCPG. The homozygous amplification of RBX2, had a significant proportion in some specific cancers containing CESC, ESCA, HNSC, LUSC and OV, for example, RBX2 homozygous amplification in LUSC was accounted for about 20% (Figure 5A). We also explored the association between RBX1/2 CNV and their mRNA expression (Figure 5B). Except for CHOL, DLBC, KICH, KIRC, LAML, PRAD, READ, THYM and UVM, the rest 24 cancer types were statistically significant for the correlation between RBX1 CNV and its mRNA expression. In addition to DLBC, LAML and THCA, RBX2 CNV had also a statistical significance with its mRNA expression in most cancers (Figure 5B). Subsequently, the profile of survival between the two members associated gene set CNV groups in the selected cancers was also summarized. The results suggested that wide type RBX1 had all statistical significance on OS, PFS, DFS and DFI in UCEC and KIRP. However, wide type RBX2 had all statistical significance on above four survival indicators only in UCEC (Figure 5C).




Figure 5 | The CNV landscape of RBX1/2 in pan-cancer based on GSCA. (A) The deletion/amplification of heterozygous/homozygous CNV for RBX1/2 in pan-cancer. (B) Correlation between CNV and RBX1/2 mRNA expression in various cancers. (C) The profile of survival between RBX1/2 associated gene set CNV groups in various cancer types. CNV, copy number variation; GSCA, Gene Set Cancer Analysis; Hete Amp, Heterozygous Amplification; Homo Amp, Homozygous Amplification; Hete Del, Heterozygous Deletion; Homo Del, Homozygous Deletion; OS, overall survival; PFS, progression-free survival; DSS, disease specific survival; DFI, disease-free interval.





RBX1/2 expression is related to immune subtypes in cancers

Previous studies determined that RBX1 and RBX2 were involved in immunomodulatory processes (19, 36), therefore, we compared the relationships between RBX1/2 expression and immune subtypes through the TISIDB database (Figure 6). Immune subtypes were classified into six types, including C1 (wound healing), C2 (IFN-gamma dominant), C3 (inflammatory), C4 (lymphocyte depleted), C5 (immunologically quiet) and C6 (TGF-b dominant). Our analyses showed that RBX1 expression in the immune subtypes of BLCA, UCEC and UVM had no statistical significance, while RBX2 expression in above three cancers was closely related with those immune subtypes. Conversely, RBX2 expression had no correlation with the COAD immune subtypes. Of interest, taking KIRC as the example, RBX1 showed high expression in C2 and C6 types, however, RBX2 expression on C1 immune subtype was the highest in KIRC. Furthermore, we investigated the association with RBX1/2 expression and immune subtypes in the TCGA pan-cancer data, illustrating that the expression of RBX1 was lowest in the C3 immune subtype, while RBX2 was lowest in the C5 immune subtype (Supplementary Figure 3). Based on the above results, we concluded that RBX1/2 expression differs in immune subtypes of various tumor cancers.




Figure 6 | The relationship between RBX1/2 expression and pan-cancer immune subtypes. (A) Correlation of RBX1 expression and immune subtypes in BRCA, COAD, LIHC, LUAD, KIRC, STAD, UCEC and UVM. (B) Correlation of RBX2 expression and immune subtypes in BRCA, COAD, LIHC, LUAD, KIRC, STAD, UCEC and UVM. P value less than 0.05 is considered as difference.





Association between RBX1/2 mRNA expression and immune infiltration in pan-cancer

Studies indicated that RBX1 expression are associated with the immune suppressive function of Treg cells, and T-cell deficiency, and RBX2 could trigger a series of immune responses, suggesting they may play important roles in regulating immune cells (37, 38). We found a strong correlation between RBX1/2 expression and the levels of immune infiltration in COAD, GBM, LIHC and LUAD by analysis of the TIMER database (Figure 7). The expression of RBX1 was in connection with the infiltration of B cell, CD4+ T cells and neutrophils in above four cancers (Figure 7A). With regard to RBX2, the infiltration of CD8+ T cells and macrophages have a positive correlation with RBX2 in COAD and LIHC (Figure 7B). We also conducted the co-expression analysis to further explore the association between RBX1/2 expression and immune checkpoints in pan-cancer using the TCGA database. As shown in Figure 8A, RBX1 was positively correlated with these immune markers in SARC, TCGT and UVM, whereas the positive association between RBX2 mRNA and immune checkpoints existed in LGG and LIHC (Figure 9A). Interestingly, we found that RBX1 was positively correlated with the expression levels of PD1 (PDCD1) and CTLA-4 in BRCA, KIRP, LIHC, SARC, TCGT, THCA and UVM (Figure 8A). RBX2 had a closely tie with the expression level of PD-L1 (CD274) in BLCA, COAD, HNSC, KIRC, LAML, LIHC, OV, PCPG, PRAD, SKCM, TGCT and THCA (Figure 9A). These results indicated that RBX1/2 might regulate different immune response in various cancer types.




Figure 7 | Correlation of RBX1/2 expression with immune infiltration level in COAD, GBM, LIHC and LUAD. (A) RBX1 expression is related with the level of immune infiltration in the above four cancers. (B) RBX2 expression is related with the level of immune infiltration in the above four cancers. P value less than 0.05 is considered as difference.






Figure 8 | The relationship between RBX1 and immune checkpoints, TMB and MSI based on TCGA database. (A) Heatmap illustrating the relationship between RBX1 and known immune checkpoints. The top left triangle represents the P-value, and the bottom right triangle represents the correlation coefficient. Correlation between RBX1 and TMB (B) and MSI (C). *P < 0.05, **P < 0.01, and ***P < 0.001.






Figure 9 | The relationship between RBX2 and immune checkpoints, TMB and MSI based on TCGA database. (A) Heatmap illustrating the relationship between RBX2 and known immune checkpoints. The top left triangle represents the P-value, and the bottom right triangle represents the correlation coefficient. Correlation between RBX2 and TMB (B) and MSI (C). *P < 0.05, **P < 0.01, and ***P < 0.001.





RBX1/2 expression is related to tumor mutational burden, microsatellite instability and tumor microenvironment

Further analysis found that RBX1 expression was positively correlated with TMB in ACC, BRCA, STAD and UCEC, but negatively correlated with ESCA, THCA and THYM, as seen in Figure 8B. However, RBX2 expression had no relation with TMB in ACC, ESCA, THCA and THYM (Figure 9B). We also found that the RBX1 had a positive association with MSI in BRCA, DLBC, HNSC, KIRC, KIRP, LGG, LIHC, PRAD, SARC, SKCM, STAD and THCA, but had a negative association with CESC, LUSC and TGCT, as seen in Figure 8C. Similarly, correlation analysis between RBX2 expression and MSI was also performed (Figure 9C). In HNSC, KIRC, LIHC, PRAD, READ, SKCM, STAD, THCA and UCEC, RBX2 expression was positively related to MSI, whereas the expression of RBX2 has a negative relationship with GBM (Figure 9C).

To obtain a more comprehensive analysis of the relationship between Ring finger family and immune components, we applied the estimate algorithm to evaluate the stromal and immune scores in 33 cancer types. RBX1/2 existed statistically significance in stromal, immune, and estimate scores (Supplementary Figures 4A-C). Besides, they had a significantly positive or negative correlation with DNAss, RNAss and tumor purity in pan-cancer (Supplementary Figures 4D-F). These results suggested RBX1/2 may be involved in different immune processes in various cancer types.




Discussion

Previous studies have systematically provided a comprehensive overview on the alterations of SCF E3 ubiquitin ligases in the pathogenesis and development of cancers (39, 40). RBX1/2 were overexpressed in a number of primary cancer tissues, including carcinoma of lung, liver, breast, colon, and renal. Sun Y et al. has demonstrated that inactivation of either RBX1 or RBX2 inhibits carcinogenesis via various mechanisms, including apoptosis and senescence (17, 41, 42). However, two other studies found that only RBX2 overexpression was correlated with the poor prognosis in lung cancer (21); as well as high RBX1 expression was related to poor survival only in KIRC patients and high RBX2 expression had a close relation with poor prognosis in all three types of RCC (22, 43). At present, the comparison of Ring finger family in the same cancer is rare. The underlying mechanisms by which they contribute to different outcomes in cancer patients remains largely unknown. Therefore, we focused on their differences in mRNA level, protein level, pathological parameters, prognosis and etc. by the pan-cancer analysis in this study Supplementary Table 1. Our result showed that RBX1/2 reflected their characteristics respectively in the observation indicators mentioned, for example, RBX2 expression is more differentially expressed than RBX1 in LUSC, which may be one of the reasons that only RBX2 expression is associated with lung cancer prognosis.

Accumulating evidence suggests that the E3s dysfunction can contribute to adverse immune response (44–46). Previously, several studies have observed that RBX1 can promote ubiquitin degradation of HBx-induced PD-L1 protein in HCC cells (47). Meanwhile, RBX2-dependent neddylation played a significant role in the regulation of T-cell responses (38). Thus, there is a dire need for exploring the relationship of RBX1/2 expression and immune components. Using bioinformatics methods, we elucidated the immunological role of the Ring finger family across cancers and provided in first time the gene expression and genetic alteration of RBX1/2 in the regulation of different immune components including their association with PD-L1 expression. This result showed RBX1/2 may be attractive biomarkers of immunotherapy efficacy.

We investigated and integrated information based on bioinformatics and public databases, however, there were still some limitations in the present study. First, whether the Ring finger family is harmful or beneficial remains contradictory because of some conflicting findings from different databases. Second, despite the finding that they were closely associated with immune infiltration and prognosis, we were unable to determine whether these two molecules affected patient survival through immune infiltration. Finally, whether differences in RBX-proteins are a decisive factor in the stability of the SCF complex in pan-cancer needs to be further clarified.

In summary, our results revealed that the important role of Ring finger members in the SCF complex, and the expression profile of RBX1/2 in pan-cancer. Moreover, strong correlations between RBX1/2 and disease prognosis and immune components were proved in the present study. Clinical immune markers, such as PD-1, CTLA-4 and PD-L1, have been confirmed to be closely associated with Ring finger family in a variety of cancers. These findings may provide insights for further investigation of the Ring finger family genes as potential targets in pan-cancer.
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Single-cell omics is the profiling of individual cells through sequencing and other technologies including high-throughput analysis for single-cell resolution, cell classification, and identification as well as time series analyses. Unlike multicellular studies, single-cell omics overcomes the problem of cellular heterogeneity. It provides new methods and perspectives for in-depth analyses of the behavior and mechanism of individual cells in the cell population and their relationship with the body, and plays an important role in basic research and precision medicine. Single-cell sequencing technologies mainly include single-cell transcriptome sequencing, single-cell assay for transposase accessible chromatin with high-throughput sequencing, single-cell immune profiling (single-cell T-cell receptor [TCR]/B-cell receptor [BCR] sequencing), and single-cell transcriptomics. Single-cell TCR/BCR sequencing can be used to obtain a large amount of single-cell gene expression and immunomics data at one time, and combined with transcriptome sequencing and TCR/BCR diversity data, can resolve immune cell heterogeneity. This paper summarizes the progress in applying single-cell TCR/BCR sequencing technology to the tumor immune microenvironment, autoimmune diseases, infectious diseases, immunotherapy, and chronic inflammatory diseases, and discusses its shortcomings and prospects for future application.
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Introduction

The immune repertoire (IR) refers to the sum of B and T lymphocytes with functional diversity in an individual’s circulatory system at any point in time (1). T and B cells mediate the cellular and humoral immune responses of the body, and recognize and bind antigens through T-cell receptors (TCRs) and B-cell receptors (BCRs) on their respective surfaces to clear pathogens or tumor cells in vivo (2). IR sequencing (IR-seq) targets T and B lymphocytes. Multiplex PCR or 5’-rapid amplification of cDNA (complementary Deoxyribonucleic acid) ends was used to amplify the complementarity-determining region (CDR) that determines the diversity of TCR or BCR, combined with high-throughput sequencing technology, to comprehensively assess the diversity of the immune system and explore the relationship between the IR and disease (3). IR-seq technology mainly includes single-cell TCR and BCR sequencing; a schematic illustration is shown in Figure 1.




Figure 1 | Schematic diagram of single-cell TCR/BCR sequencing technology.



Single-cell TCR sequencing by high-throughput sequencing technologies allows detection of the target after amplification and recognition of surface T-cell antigen, analysis of its diversity, and before and after T-cell antigen recognition, can reflect the body’s physiological and pathological conditions by detecting changes in T-cell mediated immune responses. Single-cell TCR sequencing can be used to study the transcription and interrelationships of different T-cell clones, thus revealing deeper T-cell functional specificity (4). Single-cell TCR sequencing detects the heavy and light BCR chains after targeted amplification by high-throughput sequencing technology, and comprehensively analyzes the rearranged base sequences of the BCR gene and abundance of each sequence. It is used to study the transcription and interrelationship of different B-cell clones, suggesting a deeper level of B-cell functional specificity, and thus explaining humoral immune response tolerance and high-frequency mutations in B-cell response recognition antigen-related abnormalities (5).

Single-cell TCR/BCR sequencing technology has the technical advantages of high throughput, high resolution, and comprehensive information, and has been comprehensively applied research of the tumor immune microenvironment, autoimmune diseases, infectious diseases, immunotherapy, chronic inflammation, and other diseases.



Tumor immune microenvironment

Normal karyotype acute myeloid leukemia (NK-AML) is a highly heterogeneous malignancy that exists in a complex immune microenvironment. Understanding tumor-infiltrating T cells is critical for advancing immunotherapy and improving outcomes in patients with this disease. In one study, single-cell sequencing was performed on bone marrow cells from 5 patients with NK-AML (M4/M5) and 1 normal donor. The results showed that mucosa-associated constant T cells (MAITs) were preferentially enriched and likely to be clonally amplified in the NK-AML patients, providing valuable insights into the immune microenvironment of NK-AML (6). In another study, single-cell sequencing was used to analyze 45,000 immune cells from 8 breast cancer patients, as well as matched normal breast tissue, blood, and lymph nodes. The results showed that there was a continuous activation model in T cells and a macrophage polarization model that did not conform to cancer. Understanding immune cell phenotypes in the tumor microenvironment is of great significance in revealing the mechanisms of cancer progression and immunotherapy response (7). In patients with early-stage breast cancer, the degree of tumor-infiltrating lymphocytes (TILs) was associated with the response to chemotherapy and overall survival. Eighteen patients with early-stage breast cancer were treated preoperatively with cryoablation, single-dose anti-CTLA-4(cytotoxic T lymphocyte-associated protein), or cryoablation plus ipilimumab. Single-cell sequencing results showed that in basal tumor tissue, T-cell density as measured by TCR sequencing was associated with TIL degree score as measured by hematoxylin and eosin (H&E) staining. This provides a new direction for further research using TCR sequencing as a biomarker of T-cell response to treatment and cry immunotherapy for early-stage breast cancer (8). Severe immune-related adverse events (irAEs) occur in up to 60% of melanoma patients treated with immune checkpoint inhibitors (ICIs). TCR sequencing has been used to examine the T-cell repertoire in peripheral blood samples from melanoma patients receiving antitumor therapy. The results showed that the abundance of CD4 memory T cells is associated with the development of severe irAEs; thus, the distribution of related circulating T-cell characteristics induced by ICIs is of great significance for improving clinical diagnosis and management (9). In one study, single-cell RNA combined with TCR sequencing was used to detect “tumor-matched” (TM) CD8+ T cells in the blood of patients with melanoma, using TCR as a molecular barcode. The results showed that TM cells showed higher activation compared to mismatched T cells in the blood and were less depleted than matched cells in the tumor, which has great potential for monitoring anti-tumor CD8+ T cell responses in the blood (10). The detection of TILs is the key to developing immunotherapy and predicting its clinical response in cancer. TCR sequencing analysis of 5,063 T cells isolated from the peripheral blood, tumors, and nearby normal tissues of 6 patients with hepatocellular carcinoma (HCC) showed that depleted CD8+ T cells and regulatory T cells (Tregs) were preferentially enriched and clonally amplified in HCC. The expression of layilin was upregulated in activated CD8+ T cells and Tregs and inhibited CD8+ T-cell function in vitro (11). In exhausted T cells and Tregs of liver cancer tissue, its TCRs are reused. The proportion of T cells containing the same TCR is higher in HCC tissues than in peripheral blood and normal tissues, suggesting that clone amplification occurs in exhausted T cells and Tregs in HCC tissues (12). CD4+ T cells have tumor-specific states, and multiple cytotoxic CD4+ T cells have been cloned and amplified. These CD4+ T cells kill autologous tumors in a major histocompatibility complex (MHC) class II-dependent manner and are inhibited by Tregs. In addition, the gene expression profile of cytotoxic CD4+ T cells in tumor tissues is associated with the clinical response of metastatic bladder cancer patients treated with anti- programmed death-ligand 1 therapy (13). The number of cytotoxic T cells and clonicity of the TCR are decreased in patients with squamous cell carcinoma after organ transplantation. Phenotypic function identification of T cells with these TCRs can promote the personalized treatment of skin squamous cell carcinoma with strong immunity (14). Tumor cells from nasopharyngeal carcinoma (NPC) patients show a high degree of intratumor and intertumor heterogeneity, and are characterized by T-cell clones and extended distribution of individual tumors, providing insights into the mechanisms by which immune cells clear tumors and improving NPC targeting and immunotherapy (15). CD8+ TILs and their TCR libraries may be the basis of antitumor immune responses in different hosts, which may have important implications for the development of personalized immunotherapies for cancer (16). T-cell large granular lymphocytic leukemia (T-LGLL) is a lymph proliferative disease characterized by the clonal expansion of terminal differentiation effector and memory cytotoxic T lymphocytes (CTLs). Abnormalities in cell survival and apoptotic gene programming and significant downregulation of CD8+T cell apoptotic genes are prominent features of T-LGLL cells (17). The studies on single-cell TCR/BCR sequencing technology applied to tumors are summarized in Table 1.


Table 1 | Summary of the application of single-cell TCR/BCR sequencing technology in tumor research.





Infectious diseases

A total of 41,718 CD3+ T cells have been identified in tuberculosis pleural effusion (TPE), and no difference in distribution has been observed in the CDR3 of CD4+ and CD8+ T cells. The hydrophobicity of CDR3 is changed in CD8+ T cells, and T cell receptor beta variable 4-1 (TRBV4-1) is preferentially expressed in TPE; the CD4+ T cell subpopulation may be important for protective immunity against tuberculosis (18). Previously, CD4+ T cells reactivated by cytomegalovirus (CMV) structural protein pp65 were isolated from human peripheral blood with significant heterogeneity and potential function. Tregs were the largest population of these reactivated cells. CD4+ CTL1 and CD4+ CTL2 cells reactivated by CMV were cloned and amplified; they share a large TCR library. This study provides clues regarding the function and interaction of CD4+ T-cell subsets during CMV infection (19). The dynamics and diversity of T-cell immune libraries in human immunodeficiency virus-negative pneumocystis pneumonia remain unclear. Single-cell sequencing in the lung tissues of mice infected with pneumocystis showed a decrease in TCR diversity of CD4+ T cells and an increase in CD8+ T cell diversity in mice infected with pneumocystis, providing clues to the mechanism of the host’s adaptive immune response to pneumocystis (20). Different T cell clones have been amplified in COVID-19 patients. Further analyses of the VJ gene(V-variable,J-joining) mix have revealed that among COVID-19 patients, 6 VJ pairs are significantly increased and 139 pairs are significantly reduced. These results contribute to further elucidating the mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2)-induced immune responses (21). BCR diversity is significantly reduced in COVID-19 patients, and the CDR3 sequence of the BCR heavy chain is similar to that of healthy controls. Among all cloned BCRs, IgG isotypes have the most frequent class-switching recombination events and the highest rate of somatic super mutation, especially IgG3. This has important implications for elucidating the immune response mechanism of SARS-COV-2 infection (22). A characterization of peripheral blood T and B cell variation in COVID-19 patients shows that humoral immune response and T cell immune memory were positively correlated with disease severity (23). Asymptomatic COVID-19 patients showed an increase in CD56briCD16- natural killer (NK) cells and upregulation of interferon -γ in effector CD4+, CD8+ T cells and NK cells. They showed more robust TCR clone amplification, especially in effector CD4+ T cells, but lacked intense BCR clone amplification compared to moderate patients (24). The germinal center (GC) B-cell subsets and organ specificity of lymph nodes and spleen cells infected with influenza virus continue to differ during the response process, and there is significant clone overlap in GC-derived plasma cells. This provides important clues to understanding the mechanisms of immune responses against viruses (25). Cutaneous erythema migrants (EM) is the first sign of a tick-borne infection called Lyme disease. T cells and innate immune cells predominate in EM lesions and promote the response. B-cell cloning and amplification in the skin of EM patients and the expression of MHC class II genes in EM-associated B cells are upregulated. This provides a direction for revealing the mechanism of immune responses in borrelia infection (26). The application of single-cell TCR/BCR sequencing technology to infectious disease research is summarized in Table 2.


Table 2 | Summary of the application of single-cell TCR/BCR sequencing technology in infectious diseases.





Autoimmune diseases

T helper type 1 (Th1) and Th17 cells activated in the peripheral blood of patients with primary Sjogren’s syndrome (pSS) express TCRβ variables (TRBV) 3-1/connector (J) 1-2 (CLFLSMSACVW) and TRBV20-1/J1-1 (SVGSTAIPP * T). TCRα variable 8-2/J5 (VVSDTVLETAGE) is expressed by the Th1 cells of pSS patients, and a CDR3α-specific motif (LSTD * E) was found in Th1/Th17 cells. This provides clues to elucidating the pathogenesis of pSS (27). CD8+ and CD4+ T cells are activated in the peripheral blood of patients with adenosine deaminase 2 deficiency, and T cells show significant cell-cell interaction with monocytes, which promote the upregulation of signal transducer and activator of transcription 1 (STAT1) expression in T cells (28). Immune cells, T cells, and B cells play an important role in the pathogenesis of systemic lupus erythematous (SLE). Sixteen immune cell types are present in the peripheral blood of SLE patients, and TCR and BCR types are increased, providing new approaches for the diagnosis and treatment of SLE (29). Orbital disease, the most serious manifestation of Graves’ hyperthyroidism (GH), is an autoimmune-mediated inflammatory disease with typically a low therapeutic effect. The CD4+ CTL population in the peripheral blood of patients with GH has clonal amplification. Their strong cytotoxic response to auto antigens and orbital localization are potentially associated with disease recurrence (30). Somatic mutations in clonally amplified CD8+ lymphocyte populations in patients with rheumatoid arthritis (RA) and unique TCRβ characteristics have been detected in patients with invasive destructive RA, who express high levels of tumor necrosis factor superfamily member 14 cytokines. The specific characterization of TCRβ in CD8+ T lymphocytes may help improve treatment regimens for patients with drug-resistant RA (31). In autoimmune hepatitis, the presence of autoantibodies against soluble liver antigen (SLA) is associated with reduced overall survival, but the associated auto reactive CD4 T cells have not been characterized. SLA-specific CD4T cells have been tracked in peripheral blood by single-cell sequencing. The results showed that: autoreactive SLA-specific CD4 T cells have memory PD-1+CXCR5-CCR6-CD27+ phenotype, and autoreactive TCR clones mainly exist in memory PD-1+CXCR5-CD4 T cells and induce B-cell differentiation through interleukin 21 (32). The application of single-cell TCR/BCR sequencing technology to autoimmune diseases is summarized in Table 3.


Table 3 | Summary of studies on the application of single-cell TCR/BCR sequencing technology in autoimmune diseases.





Chronic inflammatory diseases

Although various pro- and anti-inflammatory T-cell subsets have been observed in human atherosclerotic plaques, the main question of T-cell immunity remains unanswered. T-cell transcriptome and TCR maps of three important tissues associated with atherosclerosis have been provided by single step-cell sequencing. This approach is expected to address major questions about atherosclerosis autoimmunity (33). Single-cell sequencing of pancreatic immune cells isolated from hereditary and idiopathic chronic pancreatitis (CP) patients undergoing total pancreatectomy has revealed reduced T-cell clonicity in hereditary CP, and C-C motif chemokine receptor 6 (CCR6) ligand (CCL20) expression is significantly upregulated in monocytes of hereditary CP. The CCR6-CCL20 signaling pathway may be used as a potential therapeutic target for human inherited CP (34). The detection of TCR+ macrophages, proliferative macrophages, and natural killer dendritic cells in peritoneal fluid of endometriosis by single-cell sequencing suggests that immune dysfunction occurs in the peritoneal fluid of endometriosis and provides a valuable tool for the future development of immunotherapy (35).

A new fibrotic subpopulation of CD8 T (CCL5 +, CCL4 +) and CD4 T (MT-CO1 +) cells infiltrate the fibrotic liver, characterized by the abnormal activation or inactivation and a marked decline in TCR clones, along with the reduced use of VJ and VDJ fragments. The pattern and dynamics of these individual immune cells in liver fibrosis contribute to elucidating the protective mechanism of TCR in the chronic liver injury response (36). The TCRα chain is significantly enriched in the blood of patients with Crohn’s disease (CD), particularly in CD8+ T cell populations, whereas the potential effects of Crohn’s associated invariant T-cell subpopulations on CD remains to be elucidated (37). A total of 1650 glutamic acid decarboxylase 65-kilodalton isoform (GAD65)-specific CD4(+) T cells were isolated and 1003 different TCRs were identified in the peripheral blood of 6 patients and 10 patients with type 1 diabetes mellitus who were positive for islet autoantibodies. The TRBV5.1 gene was most highly expressed in the GAD65 557I tetramer (+) cells, and these findings provide strong support for revealing the pathogenesis of type 1 diabetes (38). Mutations in the transcriptional regulator STAT3 lead to neonatal type 1 diabetes. Paired single-cell TCR and RNA sequencing has shown that STAT3 gain of function (GOF) drives significant proliferation of terminal depletion-resistant effector CD8+ cells. A single-cell assay for transposase accessible chromatin with high-throughput sequencing showed that these effector T cells are epigenetic and have different chromatin structure induced by STAT3-GOF, CD8+T cells react with known antigen islet-specific glucose-6-phosphatase catalytic subunit-related protein, STAT3 mutations contribute to type 1 diabetes through deficiency of CD8+ T cell tolerance (39). A large number of CD8+ T cells continued to progress from central memory to terminal effect in the peripheral blood of patients with Parkinson’s disease (PD), and cytotoxic CD4+ T cells (CD4 CTLS) were significantly amplified from Th1 cells, providing valuable insights and rich resources for understanding adaptive immune responses in PD patients (40). Another single-cell sequencing showed that the memory B cells of PD patients were significantly increased and the naive B cells were significantly decreased. The memory B cell population upregulated the expression of MHC II genes (HLA-DRB5, HLA-DQA2, and HLA-DPB1) and transcription factor activator protein 1, and the antigen presentation ability of B cells of PD patients was enhanced. The results provide new insights into humoral immune responses in the pathogenesis of PD (41). The studies on the application of single-cell TCR/BCR sequencing technology to chronic inflammatory diseases are summarized in Table 4.


Table 4 | Summary of studies on the application of single-cell TCR/BCR sequencing technology in chronic diseases.





Discussion

Immune library sequencing (single-cell TCR/BCR sequencing) can solve the following problems: identify the sequence composition and diversity of the immune repertoire; explore gene expression and discover new biomarkers; and analyze clonotype composition within/between samples (e.g., proliferative cloning, clonotype overlap between cell types, clonotype diversity) and clonotype composition between samples (e.g., clonotype overlap between different samples of the same organism). Single-cell immunosequencing can simultaneously detect thousands of cells in a single experiment, and the 5’-end mRNA expression profile as well as TCR and BCR information can be obtained simultaneously in a sample. Combined with gene expression profiles and V(D)J data, factors influencing immune responses in complex tissue samples are analyzed. However, single-cell TCR/BCR sequencing technology also has the following shortcomings. 1) Stringent sample requirements: the initial number of cells in a single sample should be 105 to 106, and the number of living cells should be more than 80%, and it is recommended to be more than 90%. 2) At present, the proportion of T cells or B cells in tissue samples is not very large. If they are not separated from tissues, the TCR or BCR data will be less abundant.

The development of single-cell sequencing technology has promoted the development and maturity of immunobank sequencing technology. The increasing amount of immunobank data requires efficient analysis technology to realize the rapid and accurate analysis of high-throughput data so that cell heterogeneity in complex immune systems can be explored in a more in-depth and detailed manner. In addition, immunomics research can promote the development of cancer immunotherapy. Exploring early cancer screening from immunomics data is of great significance for cancer treatment, and the richness of the immune library between groups and individuals can directly reflect the body’s immune system. Generally, the more subtypes of TCR/BCR, the stronger the organism’s ability to identify pathogens, and the less susceptible it is to diseases. However, beyond a certain limit, it is also prone to cause autoimmune diseases. In addition, the body’s immune library is not invariable and its diversity is constantly changing with age, environment, drug use, diseases, and other factors. Therefore, the application of immunobank sequencing technology in clinical diagnosis and treatment is helpful for immune monitoring between groups or individuals, exploring the relationship between related diseases (e.g., tumor, disease infection, treatment, and autoimmune diseases) and immune responses, monitoring the effect of immunotherapy, and studying the molecular mechanisms of disease onset and progression.
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Breast cancer (BC) is now the most frequent and lethal cancer among women. Cuproptosis is a newly identified programmed cell death process that has been connected to tumor therapeutic sensitivity, patient outcomes, and the genesis of cancer. Cuproptosis-related genes (CRGs) are involved in breast cancer, although their roles and potential mechanisms are still unclear. First, we examined the effect of gene mutations and copy number changes on overall survival in 1168 breast cancer samples. Breast cancer patients were split into two molecular categories as determined by the variation in CRG based on clinicopathological traits, overall survival, and cell-infiltrating traits in tumor microenvironments. In addition, we created and validated a CRG score to calculate breast cancer patients' OS. Finally, we created a comprehensive nomogram for the clinical use of the CRG score. Patients whose CRG scores were low showed increased odds of developing OS, a larger mutation load, and immunological activation than those with high CRG scores. The CRG score, the cancer stem cell index, and the responsiveness to chemotherapy or targeted therapies were also shown to be statistically significantly correlated. Our thorough examination of CRGs in breast cancer patients demonstrated that they may be useful predictors of prognosis, clinical characteristics, and tumor microenvironment. These findings provide fresh insight into CRGs in breast cancer and might inspire brand-new approaches to both diagnosing and treating patients there.
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Introduction

There is a rapidly increasing incidence rate of breast cancer in women, which ranks first in terms of incidence and second in terms of mortality. The latest epidemiological statistics indicate that breast cancer accounts for approximately 30% of all new tumors in women (1, 2). With the continuous development of new targets and drugs for the treatment of breast cancer and the success of clinical trials involving new treatment protocols, the treatment and prognosis of breast cancer have advanced greatly (3–5). However, patients with advanced or high-risk conditions continue to have poor treatment outcomes and prognoses (6, 7).  Early detection and rapid treatment would be very beneficial for patients with breast cancer, as they would increase their prognosis (8). In order to detect, diagnose, and treat breast cancer early, it is necessary to identify markers of the disease that are clinically very sensitive. Additionally, it is important to create more potent prognostic models.

Cuproptosis, a recently identified kind of programmed cell death, initiates an uncommon method of cell death, that is essential for several biological functions, such as mitochondrial metabolism (9). According to many studies, high copper levels in the blood and tissues of cancer patients may be a sign of a bad prognosis (10, 11). As a catalytic cofactor or structural component for cuproenzymes, copper is an essential metal ion in the majority of aerobic organisms and participates in a number of crucial biological processes (12). Tetrathiomolybdate, a copper ionophores and copper chelators used in anticancer therapy, has been linked to enhanced survival in advanced breast cancer (13–15). Previous studies have demonstrated that the serum copper level can potentially predict the prognosis of patients with BC (16). The discovery of many cuproptosis-related genes may provide fresh perspectives on treatment approaches and the prognosis of breast cancer patients.

Recent studies have indicated that cuproptosis may play a role in the occurrence, development and prognosis of a wide variety of cancers, suggesting that it could be used as a potential biological target in the diagnosis or treatment of these diseases (17–19). Until now, there have been no studies examining the role of cuproptosis in breast cancer and its tumor microenvironment; therefore, our study is the first to investigate the relationship between cuproptosis and breast cancer and its microenvironment. Using the algorithms CIBERSORT and ESTIMATE, the expression landscape of CRGs has been rigorously assessed and detailed immunological profiles have been produced. First, based on the levels of CRGs expression, we divided 1168 patients with breast cancer into two groups based on their molecular characteristics. The patients were divided into four gene subtypes based on the differentially expressed genes found for the two subtypes of cuproptosis. In the end, we created the CRG score method to forecast patients' outcomes by successfully predicting their overall survival from breast cancer. In conclusion, this study revealed that cuproptosis may serve as a new target for the diagnosis and (or) treatment of breast cancer, and that it thus provides a new research direction and/or idea and/or idea for the diagnosis and (or) treatment of breast cancer. 



Materials and methods


Collections of data

Based on data from The Cancer Genome Atlas (https://portal.gdc.cancer.gov/), information on RNA-sequencing raw data of 1110 cancerous breast samples as well as 112 normal human breast samples that included therapeutically information, somatic mutation data and CNV data files, was obtained. It was necessary to download processed gene expression datasets, clinical samples collected from breast cancer patients (n=58), as well as normal breast tissue (n=4) from the Gene Expression Omnibus profile database (https://www.ncbi.nlm.nih.gov/geo/) (ID: GSE61304). These raw data were first standardized to fragments per kilobase million expression levels prior to comparison and figuring out the expression of CRGs. After that, CRG expression was determined using the limma program (20). We integrated the data once the data cleaning procedure was finished to get them ready for analysis. The study that followed did not include patients for whom there was inadequate data on their survival.



Analysis of CRGs using consensus clustering

19 CRGs made up the signature that we were able to collect from earlier publications (9, 21–25), the list of genes is in Table S1. We were able to classify individuals into discrete molecular clusters based on their CRG expression using the ConsensusClusterPlus R program (26). Through the use of unsupervised clustering, this was done. The clinical usefulness of CRGs in breast cancer was investigated using the Kaplan-Meier approach in a Kaplan-Meier study. We used the survival and survminer packages in R to examine the curves of survival as well as display the results. After that, the ggplot2 software was used to do a principal component analysis. The two subtypes' biological processes were maintained by using the Gene Set Variation Analysis tool (27). Malignant Tumour tissues employing expression  (28) and CIBERSORT (29) were also utilized to represent the percentage of immune and stromal cells in patients with breast cancer. The extent to which each immune cell within each sample carried an enrichment score was also assessed using an analysis of gene set enrichment on a single sample (30).



Correlations between the subtypes and clinical features, and functional annotations

We associated the two cuproptosis-related subtypes with the primary clinical and pathological parameters of breast cancer patients, including their age, T phase, and N phase, as well as their prognosis, as part of our inquiry into the possible clinical functions of the two cuproptosis-related subtypes. Additionally, Kaplan-Meier survival analysis technique was utilized to look at differences in overall survival that were verified amongst the various subtypes. We discovered the differentially expressed genes between the cuproptosis-related subgroup using the limma R program. These genes required to possess an adjusted p-value < 0.05 and a fold change > 1.5. To clarify the pathways that were considerably enriched, gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were also conducted. To further explore the hidden roles among the DEGs, the data were displayed using the ClusterProfiler program (31).



Creating and confirming the predictive CRG score

By computing the overall value of risk, the value of CRG was established in order to identify the cuproptosis patterns in specific patients. For a more thorough analysis, we utilized unsupervised consensus clustering to separate the breast cancer patients into four different subtype groups (cuproptosis-related gene subtype A-D). The train sets were then utilized to generate a CRG score for prognosis. A percentage of 1:1 was applied to all patient datasets in order to divide them into train and test sets. The glmnet package in R was used to perform least-squares regressions and selection operator regressions in order to minimize the possibility of overfitting the model (32). For the purposes of predicting the OS of the patients in the training set, a multivariate Cox regression with proportional hazards analysis was also utilized. Both the train set and the test set were split into groups of high-risk and low-risk based on their risk ratings. In each set, Kaplan-Meier analyses of survival and ROC curves were conducted.



Clinical correlations and CRG-related prognostic model subgroup analyses

The relationships between the CRG score and the clinically significant parameters, including age, T and N stage, were examined using chi-square tests. On both the train and test sets, univariable and multivariable analyses were conducted to see if the CRG score was influenced by any other easily accessible clinicopathological characteristics. Age, tumor grade, T and N stage were also taken into account in subgroup studies to see whether the CRG score still had the same predictive value it did in our model earlier.



Creation and verification of a nomogram

A nomogram was created using the rms program to predict overall survival based on clinically significant characteristics and the CRG score. Each clinicopathologically significant characteristic was given a score using the nomogram model, and the overall score was obtained by summing all the individual scores. By contrasting the area under the time-dependent ROC curves of survival rates after one, three, and five years, the nomogram's accuracy in predicting survival rates was also validated. Additionally, model calibration was performed to compare the predicted likelihood of survival outcomes across the 1-, 3-, and 5-year periods with the actual survival occurrences.



Immune state and CSC index in high-risk and low-risk populations compared

To calculate the total number of tumor-infiltrating immune cells and subgroups of immune cells in each sample, we utilized the CIBERSORT method for comparison of 23 immune cells infiltrating the tumors between the high-risk and low-risk groups. This was done to assess how many immune cells altogether had invaded the tumor. The gene groups connected with 23 levels of immune cell infiltration were also found using the CRG score. Additionally, we looked at the connections between the CRG risk score and the cancer stem cell.



Analysis of drug susceptibility to mutations

Depending on whether a sample was deemed high-risk or low-risk, its tumor mutation burden was assessed for each. Additionally, we used the maftools program to do a somatic variant analysis on patients with breast cancer in order to look at and analyse the somatic mutation data (33). Using the pRRophetic software, we calculated the semi-inhibitory concentrations (IC50) of frequently prescribed medications in breast cancer patients depending on their risk levels (34).



Analyses of statistics

The R-based statistical analysis was conducted with a significance threshold of p 0.05 (version 4.0.2). 




Results


19 CRGs in breast cancer: Expression, genetic variants, and prognostic values

On the TCGA dataset, 1110 breast cancer patients' expression levels of 19 cuproptosis-related genes were examined, along with 112 normal human breast tissues (Figure 1A). In the meanwhile, gene mutation analyses revealed that 55 out of the 976 samples (5.64%) had CRGs mutations, with ATP7A having the greatest gene mutation rates (Figure 1B). The majority of CRGs were accumulated on copy number loss or deletion, according to an examination of copy number variations (Figure 1C), and all 19 CRGs had frequent copy number alterations (Figure 1D). Additionally, it was discovered via research of the impact of gene expression patterns on overall survival in breast cancer that those expressing high levels of ATP7A, DBT, DLAT, DLD, GLS, PDHA1, and SLC31A1 had a bad prognosis. A higher level of ATP7B, LIPT1, and NLRP3 expression is linked to improved OS (Figure 1E–N, and Table S2). The findings suggested that CNV alterations could modify the way CRGs are expressed. Additionally, a relationship between CRG expression levels and breast cancer prognostic variables was discovered, pointing to a potential involvement for CRGs in breast cancer. The biomarkers might be used as therapeutic targets or prediction biomarkers for breast cancer.




Figure 1 | The analysis of 19 CRGs' expression and association in the TCGA cohort. (A) The expression of the 19 CRGs in BC tissues and healthy breast tissues (*p < 0.05; ***p < 0.001). (B) Data on the frequency of CRG mutations for 976 BC patients. (C) The sites of CNV variation in CRGs on the 23 chromosomes. (D) The distributions of CNV gain, loss, and non-CNV among CRGs. (E–N) The association between 10 CRGs and overall survival in British Columbia.





Subtypes of cuproptosis are identified in breast cancer

The correlation network picture showed the 19 CRGs' strong association with one another (Figure 2A). The cohort was subdivided into two groups, group A (n = 534) and group B (n = 605), based on a consensus cluster analysis of the 1168 breast cancer samples, which showed that a cluster of κ = 2 had the largest intragroup and lowest intergroup differences (Figure 2B, and Figure S1). Differences in the transcription patterns of the two subtypes of cuproptosis were found using PCA (Figure 2C). Subtype B has a better prognosis than subtype A, according to Kaplan-Meier survival calculations (p = 0.001; Figure 2D). A heatmap was created as a consequence of the relationship between features of clinical significance and patterns of CRG expression (Figure 2E). The bulk of CRGs expressed themselves more strongly in subtype A, whereas late-phase breast cancer was represented in subtype B.




Figure 2 | Biological and clinicopathological characteristics of CRG subtypes. (A) The interactions between CRGs in BC (the red and blue strings denote positive and negative correlation, respectively; the intensity of the correlation is indicated by the color shades). (B) The consensus matrix's heatmap of two clusters (κ = 2). (C) A considerable transcriptome divergence between the two subtypes is seen by PCA analysis. (D) Subtype-specific Kaplan-Meier OS curves. (E) CRG expression levels and clinicopathological traits vary across subtypes.





Analyses of TME infiltration and functional enrichment in distinct subtypes

We used gene set variation analysis enrichment analysis to look at the two subtypes' possible effects on biological behavior (Figure 3A). Compared to subtype B, subtype A had an enrichment in the pathways linked to immunological activation. According to a GSVA enrichment study, subtype A is considerably enriched in metabolic-activated pathways, such as the folate utilization of one carbon pool, lysine degradation, the citrate cycle, RNA metabolism, arachidonic acid metabolism, and N-glycan biosynthesis. In each breast cancer sample, we used the CIBERSORT method to assess the associations between two subtypes as well as the 23 other subtypes of immune cells in order to learn more about how CRGs work in the tumor microenvironment. According to our research, there are significant variations between the two subtypes in the quantity of immune cells that infiltrate (Figure 3B). As compared to subtype B, CD4 T cells, type 2 T helper cells, regulation T cells, gamma delta T cells, immature dendritic cells, and immature B cells were found to be more prevalent in subtype A. Subtype A, on the other hand, exhibited considerably reduced levels of neutrophil, eosinophil, mast cell, and CD56 dim natural killer cell infiltration. Then, we did a functional enrichment analysis to look into the two cuproptosis subtypes' possible biological roles after using the limma algorithm to identify 591 DEGs linked to them (Figure S2 and Table S3). It was discovered that CRGs were mainly engaged in membrane protein targeting, membrane protein localization establishment, and pathway analysis using GO and KEGG (Figures 3C, D, and Figure S3).




Figure 3 | Cuproptosis subtypes linked to TME invasion. (A) GSVA of two cuproptosis subtype-related cellular pathways (Red means activated and blue means inhibited). (B) Correlations between immune cell infiltration levels in the two subtypes associated with cuproptosis. (C, D) DEG enrichment studies across two cuproptosis-related subgroups using GO and KEGG. *p < 0.05, **p < 0.01, ***p < 0.001.





Gene subtypes are identified using DEGs

Using a consensus clustering technique, 1139 breast cancer patients were categorized into four molecular genetic categories based on prognostic genes. Subtypes A (n = 350), B (n = 502), C (n = 165), and D (n = 122) were found when κ = 4 indicated that the breast cancer instances may be separated into four subclasses (Figure 4A and Figure S4). Additionally, the relationship between the clinical traits of breast cancer patients and the gene subtypes was investigated (Figure 4B). The genetic subtype D patients had the lowest OS, while patients with genetic cluster C had the greatest OS, according to Kaplan-Meier curves (p < 0.001; Figure 4C). The four cuproptosis gene subtypes' expression of CRGs varied greatly, as expected by the cuproptosis patterns (Figure 4D).




Figure 4 | DEGs are used to identify gene subtypes. (A) Heatmap of the consensus matrix defining four clusters ( κ = 4). (B) Differences in clinicopathologic characteristics among the four gene subtypes. (C) The four gene subtypes' Kaplan-Meier OS curves. (D) Variations in the expression of ten CRGs across four gene subtypes. **p < 0.01, ***p < 0.001.





Creating and confirming the predictive CRG score

Based on DEGs related to subtypes, a LASSO-Cox regression model was developed to provide a predictive CRG score for each patient. Figure 5A illustrates the proportion of patients among the two CRG score groups, the two cuproptosis subtypes, and the four gene subtypes. There was a statistically significant variation in CRG scores across cuproptosis subtypes. Subtype B had a much higher CRG score than subtype A. Figure 5B displays the risk score distributions for the two CRG subtypes. The highest CRG scores were for subtype D, while the lowest were for subtype C (Figure 5C).




Figure 5 | The CRG score was created in the TCGA and GSE61304 cohorts. (A) The subtype distributions among groups, CRG scores and survival outcomes. (B) Variations in CRG scores among cuproptosis subtypes. (C) Variations in PRG scores among different gene subtypes. (D) CRG regression using LASSO. (E) Cross-validation of LASSO regression parameter selection. (F) CRG score differences in ten CRGs. *p < 0.05, ***p < 0.001.



Then, using R's caret package, patients were randomly assigned to training groups (n = 570) as well as testing groups (n = 569) at a ratio of 1:1 (Tables S4, S5). Using LASSO and multivariate Cox analysis, 22 OS-related genes were selected using the least partial likelihood deviation from 591 cuproptosis subtype-related prognostic DEGs (Figures 5D, E, and Table S6). Based on a Cox regression analysis involving several variables, Akaike information criteria value of 22 OS-associated genes was utilized to identify six genes (PGK1, RPL14, PRDX1, PSME1, MAL2, and SURF4) (Table S7). These findings led to the following formula being chosen as the risk score formula: The risk score is calculated as follows: (0.00375* PGK1 expression) + (-0.00930*RPL14 expression) + (0.00278*PRDX1 expression) + (-0.00668*PSME1 expression) + (0.00147*MAL2 expression) + (0.00672*SURF4 expression). 13 out of 17 hallmark genes showed a significant variation in their expression of genes between high-risk individuals and low-risk individuals (Figure 5F). Based on their risk ratings, each theme was split into high- and low-risk patient groups, and the median scores were calculated for the training and test sets. According to their values of risk, patients were split into two groups: those at low risk and those at high risk (Figure 6). In terms of survival rates and circumstances, there were significant differences among the two groups based on Kaplan-Meier curves. Patient survival rates and the distribution of CRG scores were analyzed independently for the train and test sets.




Figure 6 | The patient survival status and CRG score distribution vary between the train and test sets. (A, C, E) The patient survival status and CRG score distribution in the train set. (B, D, F) The patient survival status and CRG score distribution in the test set.





Creating a nomogram to forecast survival

Using the data gathered, we created a nomogram using the rms program to forecast the life expectancy of breast cancer patients at the lifetime of 1, 3, and 5 (Figure 7A, and Table S8). Each patient's total point values were determined based on prognostic characteristics such as their age, level of risk (low risk was indicated by a "low CRG score" and high risk was indicated by a "high CRG score"), as well as the T and N stage of their ailment. The harshness of the prognosis is directly correlated with the patient's overall score. The calibration plots showed that the nomogram performed better than an ideal model would have (Figure 7B). Additionally, ROC analysis indicated that the nomogram performed very well in terms of prediction (Figures 7C–E).




Figure 7 | Creating and evaluating a nomogram. (A) The nomogram used to calculate the survival rates of 1-, 3-, and 5-years for patients with BC. (B) Calibration curve for nomograms. (C–E) ROC curves for the train set and test set, respectively, for forecasting 1-, 3-, and 5-year OS in the cohorts. *p < 0.05, ***p < 0.001.





Relationship of TME and Mutation burden with CRG score

The CIBERSORT algorithm was used to assess the relationship between the CRG score (Figure S5) and the number of immune cells. However, the CRG score was negatively correlated with naive B cells, resting dendritic cells, resting mast cells, monocytes, activated NK cells, plasma cells, CD8 + T cells, and follicular helper T cells. A correlation was found between the CRG score and activated memory CD4 + T cells, M0 macrophages, M2 macrophages, activated mast cells, and resting NK cells (Figure 8A). Additionally, our research looked at the association between six genes and the amount of immune cells. According to our study, the six genes affect the bulk of immune cells (Figure 8B, and Table S9).




Figure 8 | Comprehensive analysis of the CRG scores in BC. (A) Correlations between immune cell types and CRG score. (B) The six genes from the proposed model are correlated with the number of immune cells. (C) CRG score and TMB spearman correlation analysis. (D, E) The somatic mutation features waterfall plot determined by high and low CRG scores. One patient was represented by each column. The correct number represented each gene's frequency of mutation, and the upper barplot displayed TMB. The proportion of each variant type was displayed in the right barplot. (F) Associates between the CSC index and the CRG score.



The TMB study revealed a significant association between anticipated TMB level and cuproptosis gene subtypes (R = 0.28, P < 0.001; Figure 8C). To give further support, we looked at the variations in somatic mutation distribution across the cohort's two CRG score groups. The top 10 most changed genes in each of the two groups were PIK3CA, TP53, TTN, CDH1, GATA3, MUC16, MAP3K1, HMCN1, and FLG. The most often mutated genes in patients with a high CRG score are TP53 (46%) and PIK3CA (28%), while PIK3CA (41%) is the most frequently mutated gene in the low-risk category (Figures 8D, E).



Drug susceptibility testing and CSC index

Additionally, it was shown that there was a link between the CRG score and the CSC index that was positive (R = 0.22, P < 0.001), suggesting that cells from breast cancer with higher cell retention gene scores demonstrated more stem cell features and less differentiation (Figure 8F). Sensitivity analysis was done on a few medications presently being used to treat breast cancer among the two groups. For patients with high CRG scores, it was found that the IC50 values of drugs including paclitaxel, vinblastine, bleomycin, AUY922, ATRA, and AZD6244, among others, were considerably higher. It is evident from these results that CRGs are essential for the sensitivity of drugs (Figures 9A–F).




Figure 9 | Relationships between the CRG score and susceptibility to chemotherapy or targeted therapies for BC. (A) paclitaxel. (B) Vinblastine. (C) Bleomycin. (D) AUY922. (E) ATRA. (F) AZD6244.






Discussion

Breast cancer is a potentially deadly illness that places a heavy burden on people worldwide (1–3). It is vital to first identify people who are more likely to get the illness, and then find measures to lower that risk, in order to decrease the prevalence of breast cancer (35, 36). If more study is done on innovative processes and treatments, a higher proportion of patients will be cured (37). We are aware of very little research that have looked at potential connections between CRGs and breast cancer in the past. Our research showed that when compared to normal tissues, breast cancer tissues expressed the majority of CRGs at varying levels. Furthermore, cuproptosis may have prognostic or predictive value in patients with breast cancer in accordance with the level of expression of these genes in these individuals.

Several studies have connected copper to human cancer tumor cell development, proliferation, and carcinogenesis (21–25, 38–41). However, additional investigation is needed to pinpoint the specific pathways, which include tumor initiator cells, growth, and metastatic spread, and to demonstrate causal linkages between copper and human cancer. It has not yet been completely determined how important these effects and immune infiltration characteristics caused by several CRGs are. Our research showed that both genetic and transcriptional alterations occurred in CRGs in breast cancer. On the basis of CRGs, our study identified two distinct molecular subtypes. Patients with subtype A had more severe clinical characteristics and shorter OS compared to those with subtype B. Individuals with high expression of ATP7A, DBT, DLAT, DLD, GLS, PDHA1, and SLC31A1 have a bad prognosis, while those with high expression of ATP7B, LIPT1 and NLRP3 have a favorable prognosis. The effect of gene expression patterns on overall survival in breast cancer was also studied. Additionally, we contrasted variations in the traits and immunologically-related biochemical pathways of the two TME subtypes. As a result of the activation of CD4 T cells, eosinophils, gamma delta T cells, regulatory T cells, mast cells, active dendritic cells, neutrophils, type 2 T helper cells, CD56 dim natural killer cells, immature dendritic cells, and immature B cells, the immunological activation of the breast cancer subtypes was also substantial. Then, four gene subtypes were determined using the DEGs between the two cuproptosis subtypes. In addition, we developed the prognostic CRG score and demonstrated its tendency for prediction. In comparison with patients with low-risk CRG values and those with high-risk CRG values, there were significant variations in overall survival, clinical traits, mutations, TME, CSC index, and medication resistance. Finally, to improve performance and make the CRG score simpler to use, we developed a nomogram that was derived from patient characteristics and the CRG score. The prognostic model may encourage beneficial understandings of the molecular basis of breast cancer as well as fresh approaches to cancer treatment.

Recent studies have revealed that cuproptosis plays an important role in human tumor. Bian Z, et al. examined the genetic alterations of cuproptosis-associated genes in clear cell renal cell carcinoma (17). Han J, et al. investigated the prognostic role of cuproptosis-related long non-coding RNAs in soft tissue sarcoma and its correlation with the tumor microenvironment (18). According to Zhang Z, et al., cuproptosis-related genes are useful for clinical prediction of prognosis and treatment guidance in hepatocellular carcinoma (42). The relationship between cuproptosis and breast cancer and its microenvironment has not previously been studied; thus, our study serves as the first to examine this relationship. Our study shows that copper death-related genes are differentially expressed in breast cancer and are associated with OS in patients with breast cancer, which may assist in predicting the prognosis for breast cancer patients. Copper has been shown to play an important role in tumor development and can be used to predict the prognosis and treatment of tumors (13–16). Patients with different cuproptosis-related0 subtypes exhibit different characteristics and tumor microenvironment, and patients in high and low risk groups differ in their sensitivity to treatment. Consequently, we speculate that different treatment approaches for different subtypes of patients may produce better outcomes, however, this hypothesis requires further validation in vivo and in vitro.

As is well known, the tumor microenvironment is made up of both the tumor cells and the cells that surround them, such as lymphocytes, tumor infiltrating immune cells, and the tumor vasculature (41–43). There is strong evidence to back up the idea that TME is essential for tumor formation, progression, and therapy resistance (44–46). In the present investigation, we found that the TME features as well as the abundances of 23 TIICs were substantially varied across the two distinct molecular subtypes and the various CRG scores. This result suggests that CRGs are essential to the growth of breast cancer. When TIICs are found in tumor tissues, breast cancer patients have a better prognosis. Activated CD4 T cells, type 2 T helper cells, gamma delta T cells, regulatory T cells, immature dendritic cells, immature B cells, and activated dendritic cells were more prevalent in Type A subtypes than Type B subtypes, according to the findings of our study. It was discovered that subtype B had much reduced numbers of eosinophils, mast cells, neutrophils, and CD56 dim natural killer cells infiltration. Given the success of immunotherapy in breast cancer, research on the tumor microenvironment and immune cell infiltration can help discover new directions and mechanisms of immunotherapy for breast cancer.

This study has the following contributions. First of all, this research is the first of its kind to identify subtypes associated with cuproptosis and create a predictive model based on CRGs in breast cancer. Because cuproptosis differs from other recognized methods of cell death, it may provide new therapeutic possibilities for treating cancer (47, 48). Second, a variety of different techniques and databases were employed. As a means of improving the reliability of our findings, we also defined subtypes associated with cuproptosis and created a predictive model for use in screening and testing processes.

There are several restrictions on our research. First, the studies solely used data from public sources; additional validations using more accurate clinical data are required. Additionally, it was not feasible to analyze data for several critical clinical factors (surgery, chemoradiotherapy, and radiation therapy), which would have had an impact on the immune response and drug susceptibility prognosis. Since the prognostic signature was created and verified using data from publicly available sources, more experimental investigations as well as extensive prospective studies are required to corroborate our results. 



Conclusion

In this study, we systematically analyzed the role of cuproptosis-related genes in breast cancer prognosis and correlation with tumor microenvironment and clinical features, and constructed a better prognostic prediction model. We also explored the effectiveness of CRGs as biomarkers of response to therapy. In conclusion, our study reveals the clinical importance of CRGs, which provides a valuable basis for further studies on the diagnosis or personalized treatment of breast cancer patients.
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Background

Iron-sulfur cluster assembly 1 (ISCA1) has a significant effect on respiratory complexes and energy metabolism. Although there is some evidence that ISCA1 gene expression impacts energy metabolism and consequently has a role in tumorigenesis and cancer metastasis in different types of malignancies, no systematic pan-cancer study of the ISCA1 has been conducted. As a result, we sought to investigate ISCA1’s predictive value in 33 cancer types as well as its possible immunological function.



Methods

We included the pan-cancer expression profile dataset and clinical data from the public database. Firstly, the single-sample Gene Set Enrichment Analysis (ssGSEa) approach was employed for analyzing the immune link in pan-cancer, while the limma package was utilized for analyzing the differential expression in cancer species. Subsequently, ciberport, MCP-counter, TIMER2, quanTIseq, and xCELL were employed for analyzing bladder cancer (BLCA)’s immune infiltration. Least absolute shrinkage and selection operator (Lasso) were employed for choosing the best gene to develop the immune risk scoring model.



Results

ISCA1 gene expression was positively related to four immune signatures (chemokine, immunostimulator, MHC, and receptor) in BLCA. Samples of BLCA were sorted into two groups by the best cut-off of ISCA1 expression degree. The group with a high level of ISCA1 expression had a higher risk, suggesting that the ISCA1 gene was a risk factor in BLCA, and its high expression resulted in a poorer prognosis. Additionally, it was noted that ISCA1 was positively linked with these immune checkpoints. Moreover, there was a considerable positive link between ISCA1 and different immune properties in subgroups with different immune checkpoint inhibiting responses. Finally, an immune risk scoring model was made and it showed a better score in comparison to that of TIDE.



Conclusion

ISCA1 can be a prognostic marker for a variety of cancers, particularly BLCA. Its high level of expression has a deleterious impact on the prognosis of BLCA patients. This strongly shows that ISCA1 is a significant prognostic factor for BLCA and that it could be used as a new prognostic detection target and treatment approach.





Keywords: pan-cancer, ISCA1, BLCA, GSEA, immune microenvironment, prognostic analysis



Introduction

Cancer is the primary cause of mortality and a major setback to improving the quality of life all over the globe. There is no ultimate treatment for it as of the present day (1). Recently, cancer immunotherapy, particularly immune checkpoint blocking therapy has become a prominent cancer treatment approach (2). New immunotherapy targets can be found through pan-cancer expression analysis of genes and examination of their linkage with clinical prognosis and the associated signal pathways, thanks to the ongoing development and improvement of public databases like The Cancer Genome Atlas (TCGA) (3).

Mitochondria have become important pharmacological targets due to their essential role in cellular growth and apoptosis (4). Mitochondria in tumor tissues can transform metabolic phenotypes to cope with the high energy demand and macromolecule synthesis (5, 6). Additionally, mitochondria can interact with the tumor microenvironment, and signals from fibroblasts related to cancer have an impact on them (7). ISCA1 variant has been linked to mitochondrial malfunction (8), mainly because ISCA1 regulates the expression of essential proteins in the mitochondrial respiratory chain complex, having a significant impact on it as well as energy metabolism. ISCA1 is an evolutionarily conserved type A ISC protein involved in Fe-S synthesis. Knockdown investigations in HeLa cells of two type A proteins, ISCA1 and ISCA2, reveal that these two proteins may have a function in the increased synthesis of mitochondrial Fe4S4 in humans (9). Using recombinant human ISCA1 and ISCA2, recent in vitro biochemical experiments have confirmed cluster transfer and protein-protein interaction between human glutaredoxin GLRX5 and ISCA1 or ISCA2 (10).

Although, some research has been done on the role of ISCA1 in malignancies. Only relevant research has revealed that Integrin Subunit Beta 3 (ITGB3) affects energy metabolism through the expression of the ISCA1 gene, which has a role in breast cancer bone metastases (11). As a result, the possible role of ISCA1 in a range of malignancies has to be investigated in detail. The expression level of ISCA1 in different forms of cancer and its connection with prognosis were studied using two databases: TCGA and Gene Expression Omnibus (GEO). It also discussed the association between ISCA1 expression and immunity in 33 tumors. Following that, it was discovered that bladder cancer (BLCA) had the strongest link to immunity. The researchers next looked into the possible links between ISCA1 and mutation analysis, DNA methylation, tumor mutational burden (TMB), immunological infiltration, and clinical response. In addition, the biological function of ISCA1 in malignancies was investigated using protein-protein interaction (PPI) analyses between immune-linked differential genes and ISCA1. Finally, the immunological risk score (IRS) model was developed, and its result was superior to the TIDE result. Finally, our findings indicated that ISCA1 could be a predictive factor for bladder cancer (BLCA). ISCA1 may alter tumor-infiltrating immune cells, which could be majorly involved in tumor immunity. This research could help researchers better grasp ISCA1’s involvement in tumor immunotherapy.



Methods


Data source and pretreatment

The RNA sequencing (RNA-seq) expression profile data, somatic mutation data, and survival data regarding pan-cancer (33 species) were taken from the database of UCSC Xena (https://xenabrowser.net/). The format of RNA-seq data was changed from Fragments Per Kilobase Million (FPKM) to the format of Transcripts per million (TPM), and then we did a log2 conversion. Among them, analysis and processing of the downloaded somatic mutation data were done by mutect. Finally, the copy number variations (CNV) data processed by the gistic algorithm was also provided by the UCSC Xena database (http://xena.ucsc.edu/), while the methylation data was taken from the LinkedOmics database (http://linkedomics.org).

The BLCA GEO queue was retrieved from the GEO database (https://www.ncbi.nlm.nih.gov/geo/), which has extensive survival data, such as GSE31684, GSE48075, GSE13507, GSE32894, GSE48277, and GSE69795. The BLCA samples were kept.

Afterward, we also downloaded three cohorts linked with immunotherapy, GSE78220 (melanoma), GSE135222 (NSCLC), and GSE91061 (melanoma). Following the knowledge sharing 3.0 License Agreement, the complete expression data and comprehensive clinical data of the IMvigor210 queue (BLCA immunotherapy-related queue) came from http://research-pub.Gene.com/imvigor210corebiologies/.



Analysis of tumor immune microenvironment and immune infiltration


Single sample gene set enrichment analysis

Single sample gene set enrichment analysis (ssGSEA) (12) was proposed for the first time in 2009 and was made for a single sample that could not be utilized for GSEA. The R package GSVA can be used to implement it. At present, ssGSVA is frequently utilized for assessing the extent of tumor immune cell infiltration.


Estimate

Moreover, we utilized estimate (13) for evaluating the tumor immune microenvironment scores of samples, and then a comparison of their differential distribution in different subtypes was done. Following the expression data, estimate provided scholars with tumor purity scores, the stromal cells’ level, and the immune cell infiltration level in tumor tissue.



Ciberport

Deep learning algorithms such as convolution and deconvolution are commonly known. Each sample is treated as a mixture of numerous immune cells in this procedure. The link between the components and expression of each immune cell and the final combination is fit using linear regression. The expression properties of each immune cell were retrieved using a deconvolution technique. The method of calculating immune cell infiltration known as CIBERPORT (14) is widely utilized. For estimating the abundance of immune cells, it employs the technique of linear support vector regression to deconvolute the expression matrix of immune cell subtypes.




Tumor immune estimation resource

The Tumor Immune Estimation Resource (timer) is one of the procedures for deconvolution of cell mixtures following the expression characteristics (15). Timer2 is one of the most widely utilized approaches for immune infiltration analysis in bioinformatics. MCP-counter (Microenvironment Cell Populations-counter) (16) is an R tool that uses normalized transcriptome data to quantify the absolute abundance of eight immune cells and two stromal cells in diverse tissues. The score can be used to demonstrate the degree of infiltration in the immunological milieu, but the number of cells cannot be compared. ESTIMATE can’t assess particular immune cell infiltration; it can only assess immune cell purity, tumor cell abundance, and stromal cell abundance.



QuanTIseq

The QuanTIseq (17) was utilized for quantifying both the tumor immune status according to the human RNA-seq data as well as the proportion of ten distinct types of immune cells along with other non-characterized cells in the sample by deconvolution.



Xcell

Xcell (18) is an ssGSEA-based procedure with the ability to do cell type enrichment analysis according to gene expression data of 64 types of immune and stromal cells. Since the Xcell employs expression level ranking rather than the actual value, normalization has no effect, although the input data requires a normalization format. As a result, the immune infiltration of BLCA was analyzed using CIBERPORT, MCP-counter, TIMER2, quanTIseq, and Xcell, and the connection between the expression of ISCA1 and their scores were measured.




GSEA and annotation of differentially expressed genes

The analysis difference between subtypes was done using the limma package (19), and differentially expressed genes were chosen through the | log2 (Fold Change) | >1 and False Discovery Rate (FDR) <0.05.

We enriched the differentially expressed genes among subtypes and then carried out an analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) through the WebGestaltR package (version 0.4.2) (20), and the chosen gene set was “c2 cp. kegg. v7.0. symbols. Gmt”, which had the KEGG channel. The GSEA input file consisted of the expression profile data. The threshold values of enriched pathways were p<0.05 and FDR < 0.25. Likewise, the GO function enrichment analysis of differentially expressed genes was done using the R software package WebGestaltR (threshold value was set as P < 0.05).



Univariate and multivariate cox analysis

The R-package survminer (https://cran.r-project.org/package=survminer) was employed to get the best cutoff of genes from various datasets, and the samples were sorted into high and low expression groups following the best cutoff, and afterward, we drew the KM curve. We randomly collected the BLCA cancer samples from the TCGA dataset using the ratio train:test = 7:3. Univariate analysis was done in the training data set. The R software package glmnet (21) was utilized for establishing the Lasso expression model (COX). Based on the model created in this study, the most suitable genes were chosen using single factor Cox regression, and we obtained 21 genes when the value of minimum lambda=0.04090851, which were employed for multivariate analysis. StepAIC approach was utilized for reducing gene number. The stepwise regression used the Akaike information criterion (AIC) (22), which took into account the model’s statistical fit and the number of parameters used for fitting. The stepAIC procedure in the MASS package started from the most complex model and successively eliminated a variable to lower the AIC. The smaller the value, the better the model, which suggested that the model had a sufficient fit with fewer parameters. 11 genes were obtained at the end according to this procedure.



TIDE analysis of immunotherapy effect

Through a comprehensive study of hundreds of various tumor expression profiles, the Tumor Immune Dysfunction and Exclusion (TIDE) (http://TIDE.dfci.harvard.edu/) (23) analysis can uncover biomarkers that predict the therapeutic response of immune checkpoint inhibitors/medicines. The TIDE score obtained from TIDE analysis can be used to determine the sensitivity of immunological checkpoints.



Tumor mutation burden

TMB is a quantifiable immune-response biomarker that reflects the number of mutations in tumor cells. TMB scores were calculated using a Perl script and corrected by dividing by the total length of exons.



ssGSEA

Base on genes from previous research (24) and ssGSEA analysis was used to analyze these genes to define T cell inflamed score.



Statistical analysis

The difference in clinicopathological features among the three subtypes was investigated using the Chi-square test. The expression levels of three subtypes were determined using ANOVA. The difference in the two groups was investigated using the T-test. For correlation analysis, the Pearson correlation coefficient was used. R (version 4.0.2) was used for statistical analyses. Statistical significance was defined as a P-value of < 0.05.




Results


Immune correlation of ISCA1 gene in pan-cancer

We discovered four types of genes in the literature including MHC, chemokine, immune-stimulator, and receptor (25). The Spearman correlation between these genes and the ISCA1 was measured in pan-cancer. The link between these four gene types with ISCA1 was varied in various types of cancer. It was mostly positive in uveal melanoma (UVM), BLCA, kidney papillary cell carcinoma (KIRP), etc. while thyroid carcinoma (THCA), testicular germ cell tumors (TGCT), etc. were mostly linked negatively (Figure 1A). Moreover, the link between CTLA4, PDCD1, CD86, CD274, and ISCA1 in various cancer types was measured. The outcomes revealed that these four genes were substantially positively linked with ISCA1 in BLCA (Figures 1B–E). Furthermore, ssGSEA was employed for evaluating the scores of 28 immune cell scores in various cancer types, and then their link with ISCA1 was measured. The outcomes of this analysis suggested that there was a considerable positive link between the expression of ISCA1 and 20 immune scores in BLCA (Figure 1F).




Figure 1 | Immune correlation analysis of ISCA1 gene in pan-cancer. (A) The link between ISCA1 and immunomodulators (chemokines, receptors, MHC, and immune stimulants). (B–E) The links between ISCA1 and four immune checkpoints (PDCD1, CTLA4, CD274, and LAG3), which represent the type of cancer, was examined. The Y-axis indicated Pearson correlation and the X-axis indicated -log10 (P-value). (F) Spearman correlation analysis was used to measure the link between the expression of the ISCA1 gene in 33 different types of cancer and 28 tumor-related immune cells. The color represents the correlation coefficient. An asterisk indicates a statistically significant P-value calculated using Spearman correlation analysis. (* stands for p<0.05).



Moreover, the ISCA1 gene expression in pan-cancer was observed (Figure 2). The outcomes indicated that: among the 24 tumors with para-cancerous samples, the expression of the ISCA1 gene in 15 cancer species was considerably varied in comparison to that in para-cancerous samples. Among them, the expression of the ISCA1 gene was lowered in tumor samples of 11 cancer species, including breast invasive carcinoma (BRCA), BLCA, cervical squamous cell carcinoma (CSCC), glioblastoma multiform (GBM), kidney chromophobe (KICH), endocervical adenocarcinoma (CESC), kidney renal clear cell carcinoma (KIRC), KIRP, THCA, endometrial carcinoma (UCEC), lung adenocarcinoma (LUAD), rectum adenocarcinoma (READ), etc. Moreover, the expression of cholangiocarcinoma (CHOL), head and neck squamous cell carcinoma (HNSC), liver cancer (LIHC), and stomach cancer (STAD) were enhanced in tumor samples of four cancer species.




Figure 2 | The expression of the ISCA1 gene in pan-cancer is varied from that in adjacent cancer. Blue represents significantly low expression in tumor, and red represents significantly high expression in tumor (* represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents p < 0.0001, ns represents p > 0.05).





SNV, CNV, and methylation analysis in BLCA

Based on the above analysis of pan-cancer, the ISCA1 gene had a considerable positive link with four types of genes in BLCA: immune-stimulator, MHC, chemokine, and receptor. In BLCA, the ISCA1 gene was positively linked with CTLA4, PDCD1, CD86, CD274, and immune score. Using the difference analysis, it was discovered that the expression of the ISCA1 gene in BLCA tumor samples was decreased in comparison to that in adjacent samples. Furthermore, the survival analysis highlighted that samples were divided into the high ISCA1 expression group and low ISCA1 expression group., so we were focused on the role of ISCA1 in BLCA.

In herein, we used the surv_cutpoint function of the SurvMiner package to find the best cutoff for grouping. BLCA samples were categorized into two groups (Figure 3A) as per the best cutoff of ISCA1 expression value. The group with high ISCA1 expression showed a poor prognosis, suggesting that ISCA1 is a risk factor in BLCA. Afterward, we mapped 10 genes with the highest mutation frequencies in the high and low expression groups. The outcomes revealed that TTN, synb1, TP53, RB1, kmt2d, arid1a, and other genes in the low expression group had lower mutation frequencies (Figure 3B). However, no major variation was observed in the TMB of high and low expression groups of ISCA1 (Figure 3C). We observed that there was a major difference in the expression of ISCA1 with CNV amplification and deletion and the normal copy number, and the expression of ISCA1 with CNV amplification was greatly enhanced, while that with CNV deletion was greatly reduced (p < 0.0001, Figure 3D). Meanwhile, no major link was seen between the methylation degree and the expression of ISCA1 (Figure 3E). Also, using limma analysis, 1672 genes, included 1505 upregulated genes and 167 downregulated genes, were screened between high ISCA1 group and low ISCA1 group (Figure S1A). KEGG pathways enrichments analysis showed that 1505 genes were enriched in 10 KEGG pathways, such as, PI3K-Akt signaling pathway, cell cycle (Figure S1B), while 167 genes were not enriched into the KEGG pathway.




Figure 3 | SNV, CNV, and methylation analysis in BLCA. (A): In BLCA, the KM curve showed that patients in high ISCA1 group had worse survival outcome compare to low ISCA1 group, both of which were borderline significant; (B): The mutation distribution of the top 10 genes with the highest frequency of mutations in the high ISCA1 expression group and low ISCA1 expression group; (C): The distribution of TMB in high ISCA1 expression groups and low ISCA1 expression group was compared; (D): The gene expression difference of ISCA1 in ISCA1 gene amplification group; (E): Correlation analysis between gene ISCA1 expression and methylation (**** represents p<0.0001, ns represents p > 0.05).





Comparative analysis of the immune status of ISCA1 groups in BLCA

In the ISCA1 expression group, the differential expression of chemokine, immune-stimulator, MHC, and receptor genes was investigated (Figures 4A–E). The expression was higher in the high expression group, and most of the four different types of genes had substantial variations.




Figure 4 | Comparative analysis of the immune status of ISCA1 group in BLCA. (A–D): The expression differences of different types of genes (chemokines, receptors, MHC, and immunostimulants) grouped by ISCA1 in BLCA; (E) Heatmap of differences in the expression of different types of genes (chemokines, receptors, MHC, and immunostimulants) grouped by ISCA1 in BLCA (* represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents p < 0.0001, ns represents p > 0.05).



The ISCA1 high expression group had a high immune score, and the distribution differences of 28 immune cell scores in the ISCA1 group were examined, revealing that 21 had major variations (Figure 5A). The immune infiltration of BLCA was next investigated, and a link was observed between ISCA1 expression and immune infiltration score. The marker genes of five cell types were studied: CD8 T cells, dendritic cells, macrophages, NK cells, and Th1 cells. In the ISCA1 high expression group, the majority of the genes were highly expressed (Figure 5B). The link between ISCA1 and immunological checkpoints was also measured. Based on the outcomes, ISCA1 and these immunological checkpoints had a substantial positive link (Figure 5C).




Figure 5 | Distribution difference of immune cell score in ISCA1 group. (A) Differences in immune cell score between high ISCA1 group and low ISCA1 group. (B) Differences in effector genes of five TIICs (cd8+t cells, NK cells, macrophages, Th1 cells, and dendritic cells) related immune cells between the high ISCA1 group and low ISCA1 group. (C) Correlation between ISCA1 and immune checkpoints. Color and value represent Spearman correlation coefficient. (X represents p>0.05) (* represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents p < 0.0001, ns represents p > 0.05).





ISCA1 prediction of clinical response and excessive progression of immune checkpoint blockade in BLCA

The link between ISCA1 expression value and pan-cancer T cell inflamed score was measured, and the outcomes indicated a major positive link (Figure 6A). Moreover, the link between ISCA1 and different immune properties (immune checkpoint, expression of immunomodulator and TIIC effector genes, and characteristics linked with immunotherapy) in subgroups with varied immune checkpoint blockade (ICB) responses were analyzed (Figure 6B). The outcomes suggested that ISCA1 had a major positive link with them.




Figure 6 | The immune characteristic analysis of ISCA. (A, B) Correlation between ISCA1 and pan-cancer T cell inflammation score, and correlation between individual genes contained in T cell inflammation characteristics. The score of T cell inflammation was positively correlated with the clinical response to cancer immunotherapy. (C) Correlation between ISCA1 and molecular subtypes and BLCA characteristics using seven different algorithms. (D) Mutation spectrum of neoadjuvant chemotherapy-related genes in low ISCA1 group and high ISCA1 group. (E) Correlation between ISCA1 and enrichment scores of several therapeutic features such as targeted therapy and radiotherapy. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, ns>0.05.



By comparing the scores of BLCA tumors and immune-related pathways, it was discovered that there were major variations in related immune pathways in the high ISCA1 group and the low ISCA1 group of BLCA tumors, the correlation between ISCA1 expression and Neuroendocrine differentiation pathway is positive in low ISCA1 group (Figure 6C). For example, the Neuroendocrine_ differentiation pathway score was higher in the high ISCA1 group, whereas the score was lower in the low ISCA1 group. ARID1A, RB1, ERBB2, FANCC, and other genes that could be linked to radiotherapy and chemotherapy were compared. It was observed that the mutation frequencies in the high and low ISCA1 groups were different (Figure 6D). ARID1A, RB1, ERBB2, ERCC2, and FANCC mutation frequencies were greater in high ISCA1 groups, for instance, missense mutation of ERCC2 was 5% in the high ISCA1 group and 4% in the low ISCA1 group. In high and low ISCA1 expression groups, the differences in three categories (EGFR network, immune inhibit oncogenic pathways, and radiotherapy predicted pathways) were compared (Figure 6E). The high ISCA1 group was mostly positively correlated in the EGFR network in the EGFR_ligands pathway, while the low ISCA1 group was mostly negatively linked.



Identification of immune-related differential genes and PPI analysis

A total of 575 up-regulated genes and 100 down-regulated genes were obtained by grouping the up-regulated and down-regulated genes of the BLCA sample species ISCA1, StromalScore, and ImmuneScore, respectively (Figures 7A, B). The GO and KEGG function enrichment of differential genes was then analyzed using WebGestaltR. Genes were discovered to be closely linked to cancer and immune pathways such as myeloid leukocyte migration, leukocyte migration, angiogenesis, Th1 and Th2 cell differentiation, and so on (Figures 7C–F).




Figure 7 | Immune-related differential gene analysis. (A) The intersection of up-regulated genes in ISCA1, StromalScore, and ImmuneScore. (B) Intersection of down-regulated genes in ISCA1, StromalScore, and ImmuneScore. (C–F) GO and KEGG enrichment analysis of differentially expressed genes in ISCA1, StromalScore, and ImmuneScore.



Using the string website, PPI found and analyzed a total of 675 differential genes. Following that, Cytoscape was used to visualize the data and the MCODE plug-in was utilized to identify significant clusters. There were three gene clusters with more than ten genes each (Mcode1, Mcode2, and Mcode3 respectively). The genes MRC1, CXCL11, CCL3, CCL4, CSF1, and FN1 were all found in Mcode1 (Figure 8A). Then, to determine their functions, WebGestaltR was utilized to do a GO and KEGG function enrichment analysis (Figures 8B–E). The findings revealed that the Mcode1 module was linked to immunological pathways such as the Toll-like receptor signaling pathway and the interaction between cytokine and cytokine receptors.




Figure 8 | Module function analysis. (A) PPI analysis diagram of module Mcode1 (the larger the circle is, the darker the color is, the greater the score of mcodes representing genes is, and the more important the genes are). (B–E) GO and KEGG functional enrichment analysis of the gene of module Mcode1.





Construction of BLCA cancer immune risk score model

After the above analysis, 675 we identified the differential genes linked with immunity, and then 172 genes linked with prognosis were provided by univariate analysis (p < 0.05). Afterward, Lasso was employed for selecting the most suited gene for developing the IRS model. Based on the minimum lambda = 0.04090851, we obtained 21 genes (Figure 9A). These genes were used for the multivariate analysis. To further decrease gene number, the stepAIC approach was employed. Finally, we got 11 genes (Figure 9B), and the risk coefficients of linked genes were obtained. The risk scores of each sample in the training and validation datasets were measured, and the best cutoff score was used to categorize them into high and low-risk groups, with their KM curves and ROC curves demonstrated separately. In the training set, the AUC value for the 1-year survival rate was 0.81, the AUC value for the 3-year survival rate was 0.75, and the AUC value for the 5-year survival rate was 0.77, whereas in the test set, the AUC value for the 1-year survival rate was 0.75, the AUC value for the 3-year survival rate was 0.72, and the AUC value for the 5-year survival rate was 0.64. (Figures 9C, D). A greater survival rate (p < 0.0001) was observed in the low-risk group in both the training and validation sets. In addition, all TCGA datasets, GSE13507 datasets, and GSE32894 datasets were used to validate our IRS model (Figure 9E–G). The aforesaid datasets’ BLCA tumor samples could also be sorted into high- and low-risk groups with differing prognoses (p < 0.0001), with the low-risk group having a greater rate of survival.




Figure 9 | Construction of IRS model of BLCA. (A) Lasso coefficient distribution of 40 prognostic RNAs in the GEO training cohort. According to the logarithm (λ) sequence plotting coefficient profile. (B) Multifactor results of genes in the final IRS model; (C) KM and ROC analysis of IRS model on GEO training dataset. (D) KM and ROC analysis of IRS model on GEO validation dataset. (E) KM and ROC analysis of IRS model on all GEO datasets. (F) KM and ROC analysis of IRS model on all TCGA datasets. (G) KM and ROC analysis of IRS model on all ICGC datasets. *P<0.05, **P<0.01.





Performance comparison between IRS and TIDE

The immunotherapy datasets IMvigor210, GSE91061, GSE78220, and GSE135222 were chosen to predict, evaluate, and compare the efficacy scores of immune therapy. Our approach was used to calculate IRS in these data, and TIDE was utilized to evaluate the effect of immunotherapy, after which the predictive effect of IRS and TIDE on treatment response was evaluated. The immunotherapy samples were separated into high and low-scoring groups following the best IRS and TIDE cut-off scores. Our IRS score was higher than the TIDE score, according to the results (Figure 10).




Figure 10 | Comparison and analysis of IRS and TIDE. (A) IRS survival curve and ROC curve of IMvigor210 dataset. (B) TIDE survival curve and ROC curve of IMvigor210 dataset. (C) ROC curve of IRS and TIDE on immunotherapy effect in imvigor210 dataset. (D) IRS survival curve and ROC curve of GSE91061 dataset. (E) TIDE survival curve and ROC curve of GSE91061 dataset. (F) ROC curve of IRS and TIDE on immunotherapy effect in GSE91061 dataset. (G) IRS survival curve and ROC curve of GSE78220 dataset. (H) TIDE survival curve and ROC curve of GSE78220 dataset. (I) ROC curve of IRS and TIDE on immunotherapy effect in GSE78220 dataset. (J) IRS survival curve and ROC curve of GSE135222 dataset. (K) TIDE survival curve and ROC curve of GSE135222 dataset. (L) ROC curve of IRS and TIDE for immunotherapy effect in GSE135222 dataset.






Discussion

Research has suggested that the ISCA1 gene is downregulated in 11 types of cancer and upregulated in 4 cancer types. Specifically, the expression of ISCA1 in BLCA was positively linked with the immune score. Therefore, BLCA is the major type of cancer for follow-up analysis and research. BLCA is a highly malignant tumor in the urinary tract. In 2018, there were nearly 549000 new cases and 200000 deaths, ranking the 10th (1). Non-muscle invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) are the two main subtypes of heterogeneous carcinoma (MIBC). The main component of BLCA in NMIBC. It is prone to recur, despite the fact that it is not lethal (26). To prevent recurrence and progression, chemotherapeutic medicines and the BCG vaccine are administered intrathecally (27). Tumor immunology has been the subject of increasing research recently. Many immune checkpoint inhibitors that have been discovered and demonstrated to produce strong and long-lasting responses in cancer patients (28–30). This is consistent with the findings of this study, demonstrating its validity. CTLA4, PDCD1, CD86, and CD274 had strong positive correlations with ISCA1 in BLCA.

Based on the clinical trials of immune checkpoint inhibitors, the in situ infiltration of TME immune cells is now considered important for the prognosis prediction of different cancer types and observation of how they react to immunotherapy (31, 32). As a result, the overall status of TME immune cell infiltration was thoroughly examined by evaluating the distribution difference of 28 immune cell scores in BLCA in the ISCA1 group. The results revealed that the ISCA1 group had significantly distinct immune cells, with the group with high ISCA1 expression having a higher immunological score. Furthermore, because macrophages are immunosuppressive cells, most of their hallmark genes were significantly expressed in the ISCA1 high expression group. The CD8+T and natural killer cells’ activation was suppressed by these immunosuppressive cells (33). Immunosuppressive cells respond to changes in other immune cells and play a key role in the tumor immunological microenvironment. Therefore, we concluded that the poor prognosis of high expression of ISCA1 can be linked to this tumor immunosuppressive microenvironment. Moreover, CTLA-4, PD-1/PD-L1, and other immune checkpoints also functioned as rheostats in regulating the immune response by preventing the initiation and immune monitoring of protective immune cells (34, 35). We observed that the expression of immune checkpoints was greatly enhanced in the high expression group of ISCA1, which suggests that ISCA1 might be helpful in predicting the effect of immune checkpoint inhibitor therapy. ISCA1 was found to be useful in immunotherapy response prediction in the TCGA-BLCA cohort using the IRS model and TIDE algorithm. All of this suggested that ISCA1 was a useful biomarker for the immunotherapy response prediction.

However, even if the data from various databases were studied and integrated, the current report still has certain limitations. First, while bioinformatics analysis supplied us with some useful information on ISCA1’s role in cancer, we still needed in vitro or in vivo biology experiments to confirm our findings and boost therapeutic use. More research on the mechanism of ISCA1’s function at the molecular and cellular levels would be beneficial. Second, although post-translational modification was important in controlling intracellular signal transduction and regulatory factor activity, no post-translational modification information for ISCA1 was found in these databases. Furthermore, whereas ISCA1 expression was linked to both immunological and clinical survival in human cancer, it was unclear whether ISCA1 affected clinical survival via the immune pathway.

Finally, the first pan-cancer investigation of ISCA1 indicated that the factor was differently expressed between tumor and normal tissues, as well as a link between ISCA1 expression and BLCA clinical outcome. Our outcomes show that the level of ISCA1 expression influences prognosis. Further research into the involvement of ISCA1 in each cancer is required. ISCA1 expression in BLCA is also linked to the invasion of different immune cells. These outcomes may help in clarifying the role of ISCA1 in tumorigenesis and development, particularly in BLCA, and give a reference for more accurate and tailored immunotherapy in the future.



Conclusion

Overall, our outcomes indicated that ISCA1 is involved in the progression of pan-cancer, particularly in BLCA. In BLCA, the high expression of ISCA1 predicted a worse prognosis, and the immune scores of some immune cells indicated a major positive link with them. Finally, an IRS model was developed, and the ISCA1-related low-risk group had a higher survival rate. In conclusion, the possibility of ISCA1 as a biomarker for predicting pan-cancer was evaluated comprehensively, and its value in BLCA was determined, which expanded our vision in immunotherapy and can provide a useful evaluation system for clinical application.
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Tumor infiltration pattern (INF) and tumor origin site were reported to significantly affect the prognosis of gastric cancer (GC), while the immune status under these contexts is not clear. In this study, we correlated the density and phenotype of tumor-infiltrating lymphocytes (TILs) with INF and the tumor origin site to reflect the biological behavior of tumors from a new perspective and also determined their effects on overall survival (OS) and other related clinicopathological features in archival samples of 147 gastric cancers with 10-year follow-up data. We found that the INFc growth pattern (an invasive growth without a distinct border) of GC lacked immune cell infiltration, particularly the cytotoxic T cells and their activated form. It is also significantly associated with an unfavorable prognosis (P < 0.001) and proximal site (P = 0.001), positive lymph node metastasis (P = 0.002), and later tumor–node–metastasis stage (P < 0.001). Moreover, the density and sub-type of TILs infiltration were significantly different in disparate differentiated areas for the tumor tissue with INFb. Compared with distal gastric cancer, proximal gastric cancers were prone to grow in an INFc pattern (P = 0.001) and infiltrated with fewer TILs, experiencing a shorter survival time (P = 0.013). Multivariate analysis showed that only the INF and the density of TILs were demonstrated to be the independent prognostic factors of OS for the GC. We concluded that GC with an aggressive growth pattern arising from proximal sites always had a weak immune response and resulted in a poor prognosis. The interaction between them and their synergistic or antagonistic effects in the development of tumors need to be further studied. This study opens up a new perspective for research on the biological behavior of the tumor.
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Introduction

Gastric cancer (GC) is one of the most common cancers worldwide for both male and female individuals (1). Many clinicopathological elements were reported to influence the patients’ survival, such as tumor–node–metastasis (TNM) stage, histopathological type, and genetic factors (2, 3). Even The Cancer Genome Atlas project has also involved GC classification by displaying four sub-types, i.e., tumors positive for Epstein–Barr virus, microsatellite unstable tumors, genomic stable tumors, and tumors with chromosomal instability, which have corresponding molecular profiles and are aimed at potential targeted therapies (4).

The tumor originating sites and growth patterns as essential pathological parameters in gastric cancer and also their clinical significance have been often described (5, 6). Tumor infiltration patterns (INFs) were classified into three according to the Japanese Classification of Gastric Carcinoma: INFa, INFb, and INFc. The INFa group exhibits expanding growth and a distinct border with the surrounding tissue and INFc is described as displaying infiltrating growth and an indistinct border with the surrounding tissue, while INFb falls between INFa and INFc (7). Their features were shown to be valuable in predicting the prognosis and recurrence pattern in advanced GC (6) and so were the primary sites of GC, for instance, the primary GC arising in the upper third of the stomach, including the cardia or gastroesophageal junction, usually addressed as proximal gastric cancer (PGC), was reported to be associated with a worse prognosis compared with distal cancers (DGC) originating from the rest of the stomach (8). Moreover, the incidence of adenocarcinoma at the antrum or distal stomach has decreased, whereas that of the proximal type has increased in most developed countries (9, 10). There are discrepancies between PGC and DGC in terms of biological behaviors and etiologic factors. PGC shows demographic and pathological features typical of Barrett’s-related esophageal adenocarcinoma and is not associated with severe forms of gastritis characterized by atrophy and/or intestinal metaplasia and/or a Helicobacter pylori infection, which was proven to be a key factor in adenocarcinomas of the distal stomach (11–13). For the anatomical structure of PGC, the serosa is partially developed, and it is prone to be diagnosed at a more advanced stage, indicating an unfavorable prognosis (14). It can be concluded that PGC possesses a more aggressive biological behavior more frequently associated with deeper gastric wall infiltration, lymph node involvement, and lymphatic vessel invasion (15). It has been noted that a GC with a different INF is reflected by its aggressive abilities. The INFc growth pattern exhibited more aggressive and more budding tumor cells, but not the INFa pattern, and the budded tumor cells harbored some stemness properties and epithelial–mesenchymal transition phenotypes (16).

Up to now, few studies focused on the contact of the tumor originating site and INF, both of which were specifically behavioral characteristics of GC and affect the patients’ prognosis. Furthermore, nearly no study has involved local immunity state with tumor originating site and INF. Nevertheless, we wonder if the histological heterogeneity of GC in INF and tumor arising sites could be more informative relative to the local immune status, i.e., GC with different INF and primary sites could underlie the privileged immunobiological behavior of the tumor cells and is of great importance to understand the influence of the tumor microenvironment on cancer development and evolution. It has been well documented that the presence of tumor-infiltrating lymphocytes (TILs) correlated to the patients’ outcomes (17, 18). Specifically, the prognosis of tumor patients could be predicated on the type, density, and location of immune cell infiltration, as the different sub-types of TILs could affect the behavior of the tumor, inhibiting or promoting neoplastic progression (19, 20). It would be reasonable to deem that the primary sites of GC and different INFs could create a particular immune microenvironment and influence a patient’s outcome. Therefore, we performed a study of 147 patients with gastric adenocarcinoma with complete 10-year follow-up data to evaluate the association of the tumor with different cancer arising sites and INF and then analyzed their corresponding immune status, which may contribute to the clinical diagnosis and treatment of gastric cancers as well as explain the biological behaviors of tumor cells comprehensively.



Materials and methods


Patients and specimens

A total of 147 primary gastric cancer patients with complete 10-year follow-up data (116 male and 31 female patients; mean age, 62.3 years) between 2001 to 2003 at the Department of Pathology of First Affiliated Hospital of Xi’an Jiaotong University were recruited. The patients underwent a curative total or subtotal gastric resection along with regional lymphatic dissection, without distant metastasis in any patient upon preoperative examination. The data collected for analysis included age, gender, Lauren classification, TNM stage, histological differentiation, tumor location, tumor size, and lymph node involvement of the patients. The detailed information is presented in Table 1 of our previous study (21). All specimens were fixed in 10% buffered formalin and embedded in paraffin wax. The maximal invasive margin was selected and sliced into 4-μm sections to conduct hematoxylin and eosin (H&E) and immunohistochemistry (IHC) staining. Five serial sections of each paraffin-embedded tumor block were cut—one for H&E to inspect the INF and four for IHC to detect the TILs.


Table 1 | Association of INF with clinicopathologic parameters.





Classification of tumor location

According to the criteria of the Japanese Gastric Cancer Association (7), the tumor location was divided into two groups, i.e., proximal gastric cancer (PGC) and distal gastric cancer (DGC), by reviewing the clinicopathological data. PGC was considered when the tumor arose in the upper third of the stomach, including the cardia or gastroesophageal junction, which is up to the crossing line between the left gastric artery and the end of the left gastroepiploic artery. The tumors below this crossing line were considered DGC.



Assessment of tumor infiltrating pattern

The INF types were determined by observing sections stained with H&E, strictly according to the Japanese Classification of Gastric Carcinoma (7). The tumor growth pattern was classified as INFa (expansive growth having a distinct border with the surrounding tissues), INFb (intermediate type between INFa and INFc), and INFc (infiltrative growth having no distinct border with the surrounding tissues) (Figure 1A). Two expert pathologists reviewed the sections to confirm the diagnosis.




Figure 1 | (A) Representative patterns of the three types of tumor infiltrating growth (INF) pattern of INFa, INFb, and INFc (×100) in the H&E staining slides. (B, C) Corresponding Kaplan–Meier survival curves for proximal gastric cancer (PGC) and distal gastric cancer as well as the different types of INF, respectively. The tumor from the PGC (P = 0.013) and infiltrating with INFc (P < 0.001) suffered a shorter overall survival. The degree of difference is expressed by the asterisk symbols: **P < 0.001 and *P < 0.05.





Assessment of differentiation differences in the same section

According to the differentiation of tumor cells in different regions of the sectioned tissue of INFb, the tumor tissue was divided into well-differentiated and poorly differentiated regions. Well-differentiated areas are those where the tumor cells were characterized by cohesive cells which form gland-like structures. Poorly differentiated areas are those where tumor cells infiltrate the stroma as a single cell or small cell cluster, leading to a population of non-cohesive, scattered tumor cells.



Immunohistochemistry

Immunohistochemical staining was carried out using the streptavidin–biotin–peroxidase method. The mouse monoclonal primary antibodies used were anti-human CD8 (DakoCytomation, Glostrup, Denmark; 1:100 dilution), anti-human granzyme B (Novocastra, Newcastle, UK; 1:100), anti-human OX40 (Novocastra; 1:30), and anti-human Foxp3 (Abcam, Cambridge, UK; 1:50) to identify the lymphocyte immunophenotype. Normal lymph node tissue was used for positive controls. Sections were deparaffinized in xylene and rehydrated in a graded series of ethanol. Endogenous peroxidase activity was blocked by 10-min incubation with 3% hydrogen peroxide in methanol. After washing in TBST, antigen retrieval was done by heat-induced epitope retrieval methods for 1 min and 30 s in citric buffer (pH 6.0), then saturated with 10% normal goat serum for15 min, and then incubated with a primary antibody at 4°C overnight. Subsequently, sections were incubated with Dako EnVision (DakoCyomation, Denmark) for 30 min at room temperature. Color development was visualized with freshly prepared diaminobenzidine (DAB)–chromogen for 5 min. The slides were counterstained with hematoxylin and mounted on coverslips. For the sake of showing a clear image of TILs and INF on one slide no matter at high or low magnification, we stained the CD8+TILs and tumor cells in one slide with the double-IHC staining. Similar to the IHC, after detecting the CD8+T cells by DAB, another incubation was performed with anti-CK (AE1 + AE3; Abcam, Cambridge, UK; prediluted) for 2 h at room temperature, followed by an application of 5-bromo-4-chloro-3-indolyl phosphate for 10 min and counterstaining with nuclear fast red for 3 min. The tumor cells were stained purple–blue, and the CD8+T cells were colored brown.



Evaluation of positive TILs

The counting of positive TILs was performed by the classical point counting method as described by Anderson (22). A 100-point ocular grid was used at ×400 magnification under a microscope (Olympus Optical Co., Ltd., Tokyo, Japan). Excluding the influence of subjective factors, the immune cell was observed in 10 fields with the most abundant positive cell distribution for each tissue sample bypassing the lymph follicle and the normal tissue on the slides. As for the limited fields of the well-differentiated and poorly differentiated areas in one slide with INFb, only five fields with the most abundant positive cells were selected. The counted fields only included cancer cell nests and surrounding tissue stroma, within the tumor tissue. The number of positive TILs was counted twice for each slide, and the mean value was calculated for each case as the final count. The cases were divided into TIL-high and TIL-low groups according to the sub-type of the TIL median for further analysis with the INF and tumor site.



Statistical analysis

SPSS 13.0 for Windows (SPSS, Chicago, IL, USA) was used for the statistical analysis. The distribution difference of the four sub-types of TIL according to the INF and tumor location as well as different regions of differentiation was analyzed by one-way ANOVA and independent-samples T-test, respectively. Correlations of the INF and TILs and tumor location, as well as other clinicopathological variables, were determined by the chi-square test. The Kaplan–Meier method was used to estimate overall survival, and survival was analyzed by the log-rank test based on INF, TILs, and tumor location. Univariate and multivariate analyses of the three factors and of the clinicopathological features were performed using the Cox proportional hazard regression model. P <0.05 was regarded as significant in all of the analyses.




Results


The relationship of INF and tumor origin site and their association with pathological parameters in gastric adenocarcinoma

The results of the correlation analysis showed that INF and tumor origin site were statistically correlated to each other (P = 0.001). Moreover, 63.16% (24/38) cases of tumors originating from the proximal site are growing with INFc pattern, and 67.89% (74/109) cases of tumors arising from the distal site are infiltrating with INFa or INFa pattern. It indicated that PGC tends to grow in a malignant infiltrative pattern (INFc), whereas DGC tends to grow in a relatively benign infiltrating pattern (INFa + INFb) (Table 1). For the relationship between INF and other pathological parameters, female patients are more prone to appear INFc (P = 0.022). Tumor from the proximal site was significantly related to tumors with INFc (P = 0.001) presence of lymph node metastasis (P = 0.002), and a higher number of positive lymph nodes were more frequent in patients with INFc tumors than in those with INFa/b tumors (P < 0.001). Additionally, tumors with INFc were significantly related to a later TNM stage (P < 0.001) and a mixed type of Lauren classification (P = 0.013). There was no significant difference in tumor differentiation and patients’ age between INFa/b and with INFc (Table 1).

The comparisons on the relationships of age, gender, tumor size, number of positive lymph nodes, and Lauren classification between PGC and DGC showed no statistical difference, while a larger tumor size (P = 0.072), a higher number of positive lymph nodes (P = 0.095), and Lauren classification (P = 0.087) tend to be associated with the tumor location. PGC was statistically associated with a later TNM stage (P < 0.001) and positive lymph node metastasis (P = 0.007) (Table 2).


Table 2 | Association of originating site of GC with clinicopathologic parameters.





The prognostic effect of INF and tumor origin site on GC patients

Log-rank test showed that GC in the proximal site experienced a much shorter survival time (P = 0.013; Figure 1B). Moreover, the prognosis of the patients with INFc tumor was significantly worse than that with INFa or INFb in all cases (P < 0.001; Figure 1C). Univariate and multivariate analyses revealed that INFc was an independent risk prognostic factor of the OS of GC patients (Table 3). Additionally, INFc (HR = 3.079, P < 0.001), positive lymph node metastasis (HR = 3.883, P = 0.004), and diffused type of Lauren classification (HR = 2.647, P = 0.006) were found to be independent risk prognostic factors for GC patients. Only a higher number of TILs (HR = 0.515, P = 0.019) was found to be a favorable prognostic factor for GC patients (Table 3).


Table 3 | Univariate and multivariate analyses of prognostic factors for survival of gastric cancer patients.





The immune status in gastric tumor originating from different sites and its prognostic value

After clarifying the relationship between INF and tumor origin site, we further analyzed the immune status of GC tissues with different INF and originating sites to better understand their current impact on GC patients’ prognosis. The CD8+ T cells possess an anti-tumor effect. The Foxp3+ regulatory cells (Tregs), playing a critical role in immune tolerance and deficiency of anti-tumor immunity, were often used as a negative antitumor parameter. Therefore, the subset of TILs in our study contained CD8+ cytotoxic T cell and Foxp3+ Treg, supplemented with their activated form (GrB+T and OX40+T). In this cohort, 38 cases were adenocarcinomas of PGC, and 109 cases were in the distal stomach. Overall, the lymphocyte infiltrates in PGC tissue were relatively less than those in the distal site of GC tissue, although without statistical significance. Compared with DGC, the total number of TILs (P = 0.033) and the GrB+T (P = 0.003) cell infiltrates were significantly attenuated in PGC (Figure 2A), and the number of CD8+T and OX40+T cells were with an obvious tendency to be infiltrated less in the PGC group (PGC vs. DGC: CD8+T, 12.447 ± 4.941 vs. 14.294 ± 5.267, P = 0.061; OX40+T, 5.658 ± 2.581 vs. 6.844 ± 3.567, P = 0.062). The infiltration of regulatory T cells (Foxp3+T) was not significantly different between the two groups. Additionally, CD8+T cells possess a numerical advantage in both DGC (P < 0.001) and PGC among the investigated sub-types of immune cells, although without statistical significance in PGC. The number of Foxp3+T was also quantitatively superior to OX40+ (P < 0.001) and GrB+T (P < 0.001) cells in DGC and PGC (Figure 2B). We further analyzed the relative percentages of activated immune cell populations (GrB+/CD8+ and OX40+/FOXP3+) in the tumor tissue from the different originating sites. The results showed that the functional Foxp3+T cell percentage was significantly higher in PGC compared with that in DGC (P = 0.009), and there was no statistical significance between PGC and DGC for the percentages of the activated immune type of CD8+T cells (Figure 2C).




Figure 2 | (A, B) Graphs showing the four sub-types of tumor-infiltrating lymphocytes (TILs) distribution in proximal gastric cancer (PGC) and distal gastric cancer (DGC). The total number of TILs (P = 0.033) and the GrB+T (P = 0.003) cell infiltrates were significantly attenuated in PGC (A). The CD8+T cells possess a numerical advantage in DGC (P < 0.001) as for the investigated sub-type of immune cells. The number of Foxp3+T cells was also quantitatively superior to OX40+T (P < 0.001) and GrB+T (P < 0.001) cells in DGC and PGC (B).The functional Treg cell (OX40+/FOXP3+) percentage was significantly higher in the PGC compared with that in DGC (P = 0.009) (C). The degree of difference is expressed by the asterisk symbols: **P < 0.001 and *P < 0.05.





The immune status in the gastric tumor of different INFs

There were 46 patients in INFa, 42 in INFb, and 59 in INFc who were among these 147 GC samples. The TILs in different INF exhibited a significant and uneven distribution (Figure 3A). In general, the number of total immune cell infiltrates was less in INFc than that in INFa (P < 0.001) or INFb (P = 0.001) pattern, whereas there was no significant difference between INFa and INFb for the number of total TILs. When the subsets of TILs were taken into consideration, the number of CD8+T (Figure 3B), GrB+T, and OX40+T cells did not show a significant difference between the cases of INFa and INFb patterns, but their infiltration in the cases of INFc was significantly less than those in the cases of INFa (CD8+T, P < 0.002; GrB+T, P = 0.001; and OX40+T, P = 0.001) and INFb (CD8+T, P = 0.011; GrB+T, P < 0.001; and OX40+T, P = 0.009) patterns. The infiltration of effector Th cells (OX40+) in cancer tissue with INFa tended to be more than that in INFc (INFa vs. INFc: 6.304 ± 2.615 vs. 5.220 ± 3.519, P = 0.083), but there was no significant difference in its distribution between INFa and INFb. As for the regulatory T cell infiltration, there was no significant difference among the three infiltrating patterns. Additionally, the number of CD8+T cells occupied a quantitatively dominant position (P = 0.001) in the INFa cases, but not in the INFb and INFc cases. The infiltration of CD8+T cells was significantly higher than the OX40+ (P < 0.001) and GrB+T cells (P < 0.001) but without advantages on Foxp3+T cells in INFc cases (Figure 3C). Moreover, the relative percentages of activated immune cell populations for the CD8+T cells (GrB+/CD8+) were significantly higher in the INFb group compared with the INFc group (P = 0.02), while OX40+/FOXP3+ did not show any statistical significance among the three INF groups (Figure 3D).




Figure 3 | (A, C) Graphs showing the four sub-types of tumor-infiltrating lymphocyte distribution in cancer tissues with different types of tumor infiltration pattern (INF). The number of total immune cell infiltrates was less in INFc than that in INFa (P < 0.001) or INFb (P = 0.001) (A). The number of CD8+T cells occupied a quantitatively dominant position (P = 0.001) in the INFa cases (C). Representative double-immunohistochemistry staining for the tumor cells (purple–blue) and CD8+T cells (brown, yellow arrow) in gastric cancer tissue with different types of INF, and the lower pictures (×400) are the corresponding enlargement of the local area (red, rectangular) for the upper pictures (×100) (B). The relative percentage of activated immune cell populations for CD8+ (GrB+/CD8+) is significantly higher in the INFb group compared with that in INFc (P = 0.02) (D). The degree of difference is expressed by the asterisk symbols: **P < 0.001 and *P < 0.05.





The TILs infiltration difference in GC tissue with differentiation differences

In gastric cancer sections of 42 cases with an infiltration pattern of INFb, there were distinct differentiation differences formed by tumor cells with different differentiation grades, which can be classified into well-differentiated and poorly differentiated areas (Figure 4A). We further analyzed the infiltration difference of the investigated sub-types of TILs in areas with different differentiation grades in the cancer tissues of INFb. The results showed that the number of Foxp3+ (P < 0.001), OX40+ (P = 0.001) and CD8+ T (P = 0.008) lymphocytes in poorly differentiated areas was significantly higher than that in the well-differentiated areas of the tumor, respectively (Figures 4B, C). Moreover, the dominance order of the four types in the well-differentiated areas was as follows: CD8+ > Foxp3+ > GrB+ > OX40+T lymphocytes, while in the poorly differentiated areas, this was as follows: Foxp3+ > CD8+ > OX40+ > GrB+ T lymphocytes (Figure 4D), although not all sub-types are significantly different from each other. These results indicated that tumor cells with different differentiation grades have various abilities to recruit different sub-types of lymphocytes, resulting in the discrepancy of the type and number of recruited lymphocytes despite being under the same immunological background.




Figure 4 | (A) The H&E staining result shows that there are significant differentiation differences regions in gastric cancer (GC) tissue with INFb growth pattern. The latter two pictures (×400) are local magnifications of the a and b (green rectangular) regions in the first picture (×100). (B) Double-immunohistochemistry staining representative image for CD8+T cells’ (brown) distribution in GC tissue with INFb. The latter two pictures (×200) are their corresponding enlargement of the local area (red rectangular) for the first pictures (×100) and represent the well and poorly differentiated region, respectively. (C, D) Graphs showing the four sub-types of tumor-infiltrating lymphocyte distributed differently according to the cancer cell differentiation in GC tissues with INFb. The degree of difference is expressed by the asterisk symbols: **P < 0.001 and *P < 0.05.






Discussion

In the process of tumor development, the biological behavior is affected by many factors; the tumor–host immune response constitutes the most important part, which dynamically affects tumor progression (23). This study firstly investigated the relationship between the TILs and tumor INF as well as the tumor origin site in GC. TILs are the major effectors encountering malignancy in the frontier; functional phenotypes of lymphocytes have profoundly facilitated the exploration of TILs subsets in situ. Various combinations of the TILs subpopulation detection panels have been reported. An international consortium was initiated with the support of the Society for Immunotherapy of Cancer to assess the prognostic value of total tumor-infiltrating T cell counts and cytotoxic tumor-infiltrating T cell counts with the consensus immunoscore assay in patients with stages I–III colon cancer, and the densities of CD3+ and cytotoxic CD8+ T cells in the tumor and the invasive margin were quantified by digital pathology (24). Foxp3+ regulatory cells (Tregs), playing a critical role in immune tolerance and deficiency of anti-tumor immunity, were often used as negative antitumor parameters (25, 26). Therefore, the panel of TILs subset in our study contained CD8+ cytotoxic T cell and Foxp3+ Treg, supplemented with activated CTLs (GrB+ T cell) and primed CD4+ T cells (OX40+ T cell, inducing cytokine production and maintaining a normal immune response).

Due to the special location and structures of the PGC, it displays the clinicopathological characteristics of both esophageal and gastric malignancies, as the esophagogastric junction was a very special transitional area from the squamous epithelium to the glandular epithelium, which is rather different from the typical glandular epithelium of the distal stomach. Different epithelial ingredients with different tumorigenesis might lead to discrepant characteristics for PGC and DGC. In line with the many results of previous research (8, 15, 27), our small sample data also indicated that PGC has more vicious biological behaviors and predicted unfavorable outcomes. In a large sample study, PGC showed a significantly higher incidence of undifferentiated cell types than DGC, and in Lauren’s classifications, PGC showed a higher proportion of diffuse-type cells, whereas DGC exhibited more intestinal-type cells, which was consistent with our study (15). A new finding in our investigation was that PGC frequently has an aggressive infiltration pattern and less number of TILs, especially for the activated anti-tumor cytotoxic lymphocytes (GrB+T). This malignant growth pattern and unfavorable immune microenvironment might inevitably lead to a stronger growth advantage. The predominance of obesity, tobacco abuse, and gastroesophageal reflux disease were reported to be associated with the occurrence of PGC (28–30), which are different from those of DGC, arguing for the different pathogenesis pathways in PGC and DGC. Indeed it is indicated that cancers of the cardia are more frequently associated with deeper gastric wall infiltration, lymph node involvement, and lymphatic vessel invasion (31), of which it is hypothesized that PGC may possess an aggressive biological behavior as the tumor with INFc type grows, all of which may be related to the differences in the pathophysiology of PGC and DGC, while the specific relationship and the mechanism between them need to be further studied.

Additionally, we found tumors with INFc that were associated with a reduced number of CD8+, GrB+T cells, and the whole TILs infiltration. Tumors in proximal sites of the stomach are prone to growing with an infiltrative pattern and infiltrating a fewer number of TILs. Despite that, except for the GrB+ T cell, the other three types of TILs and the total number of TILs were observed to have no statistical differences, but the trends of TILs distribution are obviously shown. It may be attributed to the small size of the tumor in the proximal site, as only 38 cases were PGC among the 147 cases in our study. Anyway, our analytical perspective can open up a new study trace for relative follow-up research. Although INF can be easily determined by routine H&E staining, it has not gained widespread attraction in diagnostic pathology. In the present study, we focused on the correlation between the subsets of TILs and the INF type as well as the association of tumor sites in GC. Tumors with INFc often have a smaller number of TILs compared with INFa or INFb, especially for cytotoxic T cells (CD8+) and activated cytotoxic T cells (GrB+), which are crucial components of antitumor immunity. The current paradigm in tumor immunity suggests that a large number of activated CD8+ effector T cells should be able to attack the tumor cells (32, 33). Moreover, it has been reported that Treg cells can exert an immunosuppressive function so as to limit an effective anti-tumor immune response (26). However, we did not find any significant relation between Foxp3+T cells as well as OX40+T cells and the tumor growth patterns in our study. Additionally, we also compared the immune status between INFa and INFb, while no statistical difference was observed between them, from which it might be concluded that INFa and INFb have a similar immune state. It could also reasonably explain why the investigators always put INFa and INFb into one group and compare them with INFc, but they never give any explanation in their reports. Thereby, we also put INFa and INFb in one group in the subsequent analysis. Similar results were obtained. Compared with the INFa and INFb groups, the INFc type was significantly associated with a shorter overall survival time, and it was strikingly associated with female patients, bigger tumor size, proximal tumor location, and positive lymph node metastasis—a higher number of positive lymph nodes, a much later TNM stage as well as a diffuse type of Lauren classification are suggestive of a more aggressive nature. GC with INFc plus a weak immune defense may be more likely to allow cancer cells to penetrate through the gastric wall and be shed into the surrounding tissue.

Interestingly, tumors in proximal sites were strongly associated with the growth pattern of INFc type. Meanwhile, INFc and the total number of TILs were identified as independent predictive factors for the prognosis of GC in our study. Moreover, in the tumor tissue with INFb, both well-differentiated and poorly differentiated areas exist in the same tissue section, and we found that the density and the sub-type of TILs infiltration were distributed significantly different in disparate differentiated areas, suggesting that tumor cells with different differentiation grades have distinct immunogenicity, resulting in a discrepancy in the type and number of recruited lymphocytes, and could form its special TME under the same immunological background. Despite that, the immune infiltrates are found to be heterogeneous between tumor types and patients, and their effect on prognosis varies in different cancers (34). Our findings reveal a certain relationship between INF and tumor originating site as well as TILs. As the local interactions between the TILs and tumor cells are complex, the specific mechanism and the other relationship remained to be studied in a follow-up work.



Conclusions

Our study found that GC with an aggressive growth pattern (INFc) originating from the proximal sites (PGC) was always associated with a weak immune response and resulted in a poor prognosis. It opens up a new perspective for research on the biological behavior of the tumor. However, the interaction between them and their synergistic or antagonistic effects in the development of tumors need to be further studied.
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Colorectal cancer (CRC) has a high incidence rate and poor prognosis, and the available treatment approaches have limited therapeutic benefits. Therefore, understanding the underlying mechanisms of occurrence and development is particularly crucial. Increasing attention has been paid to the pathophysiological role of cancer-associated fibroblasts (CAFs) in the heterogeneous tumour microenvironment. CAFs play a crucial role in tumorigenesis, tumour progression and treatment response. However, routine tissue sequencing cannot adequately reflect the heterogeneity of tumours. In this study, single-cell sequencing was used to examine the fibroblast population in CRC. After cluster analysis, the fibroblast population was divided into four subgroups. The distribution and role of these four subgroups in CRC were found to be different. Based on differential gene expression and lasso regression analysis of the main marker genes in these subgroups, four representative genes were obtained, namely, TCF7L1, FLNA, GPX3 and MMP11. Patients with CRC were divided into the low- and high-risk groups using the prognostic risk model established based on the expression of these four genes. The prognosis of patients in different risk groups varied significantly; patients with low-risk scores had a greater response to PDL1 inhibitors, significant clinical benefits and significantly prolonged overall survival. These effects may be attributed to inhibition of the function of T cells in the immune microenvironment and promotion of the function of tumour-associated macrophages.
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Introduction

As the third most common malignancy, colorectal cancer (CRC) causes more than 8% of all deaths worldwide each year (1, 2). Routine treatment of CRC includes surgery, radiotherapy and chemotherapy, which are invasive and may have a greater impact on the quality of life of patients (3). After comprehensive treatment, the 5-year survival rate of patients with early-stage CRC is 90%; however, treatment options for patients with advanced-stage CRC who are ineligible for surgery are limited (4). Immunotherapy may be beneficial for patients with advanced-stage CRC. Because of its strong anti-tumour activity, immunotherapy is used for treating several solid tumours, including melanoma, kidney cancer, non-small cell lung cancer and prostate cancer (5). In addition to targeted and anti-vascular therapies, immunotherapeutic strategies have gradually improved. PD-1/L1 and CTLA-4 are the main immunotherapeutic agents; however, their clinical efficacy remains unclear. Studies have shown that only patients with CRC with defective mismatch repair (dMMR) or high microsatellite instability (MSI-H) are eligible for checkpoint inhibition and may benefit from it (6, 7). Therefore, dMMR/MSI-H is considered a predictive biomarker for the application and efficacy of immunosuppressants (8). However, the efficacy of dMMR/MSI-H is only 30–40% (9), which considerably limits the application of immune checkpoint inhibitors for the treatment of colon cancer. Therefore, understanding the underlying mechanisms of the occurrence and development of CRC is necessary to screen for more effective predictors and improve the currently available treatment approaches.

In addition to the role of tumour cells, the tumour microenvironment (TME) is another major auxiliary factor in the onset and growth of tumours. Several studies have associated TME with the occurrence and growth of tumours, survival and clinical treatment sensitivity (10, 11). TME has an extremely complex system comprising stromal cells, tumour cells, various cytokines and an extracellular matrix (ECM) (12). Fibroblasts are the main cellular component of the matrix and are called cancer-associated fibroblasts (CAFs). They interact with cancer cells (13, 14) and are significantly associated with the prognosis of tumours (15). A recent study has demonstrated that CAFs play a significant role in various tumours. For example, matrix SOX2 upregulation promotes tumorigenesis by producing CAFs expressing SFRP1/2 (16), and Wnt-induced phenotypic transformation of CAFs inhibits EMT in CRC (17). However, most studies have focused only on the involvement of tumour cells in fibroblast remodelling or the effects of fibroblasts on tumour cells, and systematic analysis of tumours and TME including the whole fibroblast population is lacking.

In this study, we identified fibroblast subsets based on single-cell sequencing analysis and identified hub genes significantly related to fibroblasts by differential analysis, correlation analysis, univariate cox analysis and lasso cox analysis. Further, we analysed the roles of hub genes in tumors from various aspects by studying the mutations and immunity of these genes. Finally, we constructed a multi-gene signature and confirmed its role in predicting patient outcomes and immunotherapy predictions.



Materials and methods


Extraction and preprocessing of scRNA data

The read count expression profile data of 16 cancer tissues and 7 adjacent tissues were extracted from the single-cell sequencing dataset GSE200997 from the NCBI database Gene Expression Omnibus (GEO). First, the single-cell data were filtered by ensuring that each gene was expressed in at least three cells, and at least 250 genes were expressed per cell. The PercentageFeatureSet function was used to determine the proportion of mitochondria and rRNA and ensure that <3000 genes are expressed per cell and the Unique molecular identifier (UMI) of each cell is at least >100.

The data were standardised through log-normalisation, and highly variable genes were identified using the FindVariableFeatures function (variance-stabilising transformation was used to identify variable characteristics). Subsequently, the ScaleData function was used to scale all genes, and Principal components analysis (PCA) was used for dimensionality reduction to identify anchor points (dim = 40). The FindNeighbors and FindClusters functions (resolution = 0.2) were used to cluster the cells, and the RunTSNE function was used to reduce t-SNE dimensionality to screen for fibroblasts.



Extraction and preprocessing of the cancer genome atlas data

The clinical phenotype data of CRC were downloaded from TCGA database, and samples lacking data on survival time and survival status were removed. Samples were further filtered to ensure that the survival time in each sample was >0 days. In addition, the gene expression profile data were downloaded from TCGA database, and 431 tumour samples and 41 para-cancerous samples were selected for further analysis.

The copy number variation (CNV) of CRC samples were downloaded from TCGA database and integrated using the GISTIC2 software.

The single nucleotide variants (SNVs) data of TCGA-COAD cohort were downloaded from TCGA database and integrated using the Mutect2 software.



Extraction and preprocessing of GEO data

The GSE17536 and GSE17537 datasets were downloaded from GEO, and the probe IDs were converted to gene symbols according to the annotation files. A probe ID that corresponded to multiple genes was deleted, and the expression of several probes for a gene was averaged. Normal tissue samples were removed, and only tumour samples were retained. In addition, samples without clinical follow-up and OS data were removed to ensure that the survival time of all patients was >0 days. A total of 177 tumour samples and 21,655 genes were obtained from the GSE17536 dataset, and 55 tumour samples and 21,655 genes were obtained from the GSE17537 dataset.



Single-cell clustering dimensionality reduction

The R language Seurat package was first used to filter the single-cell data by setting each gene to be expressed in at least 3 cells, and each cell expresses at least 250 genes, calculating the proportion of mitochondria and rRNA through the PercentageFeatureSet function, and ensuring that each cell The expressed genes are less than 3000, and the UMI of each cell is at least greater than 100. Then, we normalized the data of 23 samples separately by log-normalization.The FindVariableFeatures function was used to find highly variable genes [identify variable features based on variance stabilizing transformation (“vst”)], then scaled all genes using the ScaleData function, and perform PCA dimensionality reduction to find anchors, we chose dim=40, pass The FindNeighbors and FindClusters functions cluster the cells (set Resolution=0.2), divided the subgroups, and used the RunTSNE function for TSNE dimensionality reduction,



Annotation and further segmentation of fibroblasts

The fibroblasts were screened with the four genes of ACTA2, FAP, PDGFRB and NOTCH3, and then the fibroblasts were extracted and clustered by the functions of FindNeighbors and FindClusters (setting Resolution=0.2), and the fibroblasts were further divided into 4 groups subpopulations and re-TSNE dimensionality reduction of fibroblasts using the RunTSNE function.



Identification of marker genes

The FindAllMarkers function of the Seurat package was used to identify marker genes of fibroblasts by LogFC=0.5, Minpct=0.35 (minimum expression ratio of differential genes) and identified marker genes with a corrected p<0.05.



Functional annotation of subgroups

KEGG enrichment analysis was performed on marker genes of fibroblast subpopulations using the compareCluster function of the clusterProfiler package in R language, and screening was performed with pvalue Cutoff=0.05.



Identification of malignant and non-malignant cells

Four fibroblast subpopulations were analyzed using the R language copykat package to differentiate between tumor cells/malignant cells and normal cells/non-malignant cells in each sample by changes in the cnv of the cells.

Copykat’s statistical workflow combines Bayesian methods with hierarchical clustering to calculate genomic copy number profiles of individual cells and to define clonal substructures from high-throughput 3’ scRNA-seq data. The workflow takes a gene expression matrix of Unique Molecular Identifier (UMI) counts as input to the calculation. Analysis begins with rows of gene annotations, ordered by their genomic coordinates. Freeman-Tukey transformation (FTT) was performed to stabilize variance, followed by polynomial dynamic linear modeling (DLM) to smooth out outliers in single-cell UMI counts. A subset of diploid cells with high confidence was then examined to infer baseline copy number values ​​for normal 2N cells. To do this, we pooled individual cells into several small hierarchical clusters and estimated the variance of each cluster using a Gaussian mixture model (GMM). By following strict classification criteria, the cluster with the smallest estimated variance was defined as “confident diploid cells”. Potential misclassification can occur when the data have only a few normal cells, or when tumor cells have near-diploid genomes and limited CNA events. In this context, Copykat provides a “GMM-defined” model to identify diploid normal cells one by one, where a mixture of three Gaussian models of gene expression in a single cell is assumed to represent genomic gain, loss, and neutral states. A single cell is defined as a “confident diploid cell” when the genes in the neutral state account for at least 99% of the expressed genes.



Tumour-related pathways.

As reported in a previous study, the 10 pathways related to tumours and genes associated with these pathways are shown in Supplementary Table 1. The scores of each cell for the 10 pathways were calculated via Single-sample GSEA (ssGSEA). The proportion of malignant and non-malignant cells and the MSI status in fibroblast subpopulations were compared via the chi-square test, and the scores of different fibroblast subpopulations associated with the 10 tumour-related pathways were compared via the Wilcoxon test.



Potential regulatory pathways of key genes

Using h.all.v7.5.1.symbols.gmt as a background, the enrichment scores of patients in TCGA cohort for each pathway were calculated using the GSVA package in R. Subsequently, the correlation between gene expression and pathway enrichment scores was analysed using the Hmisc package.



Construction of a risk model for predicting the response to PD-L1 inhibitor immunotherapy

The PD-L1 cohort (IMvigor210) was used to assess the relationship between risk scores and immunotherapy. The effects of PD-L1 inhibitors were different among 348 patients in the IMvigor210 cohort, which were characterised by stable disease (SD), progressive disease (PD), partial response (PR) and complete response (CR). In addition, differences between immunotherapy and chemotherapy were analysed in the IMvigor210 cohort. The risk model was used to evaluate the possible clinical outcomes of immunotherapy using the TIDE (http://tide.dfci.harvard.edu/) software. The likelihood of immune escape increased with increasing TIDE prediction scores, indicating that immunotherapy is less likely to benefit patients.




Statistical analyses

The Shapiro–Wilk test was used to compare the normality of variables between two groups. The unpaired Student’s t-test was used to determine the statistical significance of differences between normally distributed variables, and the Mann–Whitney U test was used to analyse non-normally distributed variables. The Kruskal–Wallis test and one-way ANOVA were employed as non-parametric and parametric methods, respectively, for comparing more than two groups. Spearman and distance correlation analyses were used to examine the correlation. The Kaplan–Meier method was used to compute survival rates, and the log-rank test was used to assess the significance of variations in survival curves.



Results


Identification of fibroblasts from scRNA-seq data

A total of 49,698 cells were obtained after filtering single-cell sequencing data. The PercentageFeatureSet function was used to calculate the proportion of mitochondria and rRNA, and 48,755 cells were obtained. As shown in Figure S1A, a significant correlation was observed between the number of UMI and mRNA but not between the number of UMI/mRNA and the content of mitochondrial genes. A violin diagram created before and after QC analysis is shown in Figures S1B, C.

Furthermore, the data of 23 samples were standardised via log-normalisation. A total of 16 subgroups were obtained, and the RunTSNE function was used to reduce t-SNE dimensionality. Fibroblasts were screened based on the expression of ACTA2, FAP, PDGFRB and NOTCH3. Because these four genes were mainly expressed by cells in subgroup 9, the cells were defined as fibroblasts (Figures S2A, B) and extracted for cluster analysis. These fibroblasts were further divided into four subgroups, and the RunTSNE function was used to reduce t-SNE dimensionality. The t-SNE map of the four fibroblast subpopulations and marker gene expression is shown in Figures S2C, D.

Figure 1A shows the t-SNE diagram of 23 samples, Figure 1B shows the t-SNE diagram of different tissues (cancer and adjacent tissues), Figure 1C shows the t-SNE diagram of the MSI status and Figure 1D shows the t-SNE diagram of fibroblast subsets after cluster analysis. The number of cells in each sample before and after data filtration is shown in Table 1.




Figure 1 | (A) t-SNE diagram of 23 samples; (B) Distribution of t-SNE in cancer and adjacent tissues; (C) t-SNE distribution diagram of MSI status; (D) t-SNE map of four fibroblast subpopulations after cluster analysis; (E) Dot map of the expression of the top five marker genes in the subpopulations; (F) The proportion and cell number of subpopulations in cancer and adjacent tissues; (G) KEGG enrichment analysis of the four fibroblast subpopulations; (H) Distribution of t-SNE in malignant and non-malignant cells predicted using the copykat package.




Table 1 | Counting of cell counts before and after sample filtration.



The marker genes of the four subpopulations were identified using the FindAllMarkers function (logfc = 0.5 [difference multiple], Minpct = 0.35 [minimum expression ratio of different genes] and corrected p-value < 0.05). The expression of the top five marker genes with the most prominent contribution was analysed in each subgroup (Figure 1E).

Furthermore, the proportion of the four fibroblast subpopulations was analysed in each sample (Figure 1F), and the clusterprofiler package in R was used for KEGG enrichment analysis of marker genes in each subgroup (Figure 1G).

The copykat package in R was used to screen for tumour/malignant cells and normal/non-malignant cells in each sample based on CNVs (to ensure that normal cells were not included). A total of 297 cancer cells (malignant cells) and 491 normal cells (non-malignant cells) were eventually identified (Figure 1H).



Expression of fibroblasts in tumour-related pathways

Genes involved in 10 important pathways associated with tumorigenesis and development were extracted from previous studies. Figure 2A shows the enrichment of fibroblasts in the 10 tumour-related pathways. In addition, the proportion of malignant and non-malignant cells and the MSI status in the fibroblast subpopulations were compared (Figures 2B, C), and the scores of different fibroblasts in the 10 pathways were compared (Figures 2D–G).




Figure 2 | (A) Heat map of the scores of 10 tumour-related pathways enriched in CAFs; (B) Comparison of CAF subpopulations in malignant and non-malignant cells; (C) Comparison of CAF subpopulations in terms of MSI status; (D) Comparison of the scores of 10 tumour-related pathways between malignant and non-malignant cells in the CAF_0 subgroup; (E) Comparison of the scores of 10 tumour-related pathways between malignant and non-malignant cells in the CAF_1 subgroup; (F) Comparison of the scores of 10 tumour-related pathways between malignant and non-malignant cells in the CAF_2 subgroup; (G) Comparison of the scores of 10 tumour-related pathways between malignant and non-malignant cells in the CAF_3 subgroup; (Wilcoxon test; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). ns, no significant.





Identification of key genes in fibroblasts

A total of 1424 upregulated and 1245 downregulated genes were identified in TCGA dataset using the limma package (FDR < 0.05 and |log2 (fold change)| > 1). Figure 3A shows a volcano map of differential analysis.




Figure 3 | (A) Volcano map of differential gene expression between cancer and adjacent tissues in TCGA dataset; (B) The scores of the four fibroblast subgroups were compared between cancer and adjacent tissues (Wilcoxon test); (C) KM curve of the high- and low-score groups in the CAF_0 subgroup; (D) KM curve of the high- and low-score groups in the CAF_1 subgroup; (E) KM curve of the high- and low-score groups in the CAF_2 subgroup; (F) KM curve of the high- and low-score groups in the CAF_3 subgroup. **P < 0.01, ****P < 0.0001.



Based on the results of single-cell sequencing analysis, the scores of the CAF subgroups in TCGA dataset were calculated using ssGSEA to screen for marker genes in each subgroup. The results revealed that the scores of the CAF_0 subgroup were higher in cancer tissues, whereas those of CAF_1, CAF_2 and CAF_3 subgroups were higher in paracancerous tissues (Figure 3B). Subsequently, the survminer package was used to select optimal truncation based on the total survival time, and the scores of the four fibroblast subgroups were divided into the high- and low-score groups. The KM curve revealed that the high-score group of the four subgroups had a poor prognosis (Figures 3C–F).

Furthermore, the Hmisc package was used to examine the correlation between 2669 DEGs associated with tumorigenesis and development and the scores of the four CAF subgroups. A total of 248 key genes significantly associated with the four fibroblast subpopulations were identified (p < 0.001; cor > 0.7) and subjected to univariate cox analysis using the coxph function of the survival package. The results revealed 36 genes with a high prognostic impact, which were considered prognostic risk factors (p < 0.01) (Figure 4A).




Figure 4 | (A) A total of 248 candidate DEGs were identified; (B) The locus of each independent variable changing with lambda; (C) Confidence interval under lambda; (D) Multivariate Cox regression analysis (coefficient of prognosis-related genes).



These 36 key genes were further filtered using lasso regression to decrease the number of genes used for constructing a risk model. Lasso regression is a compression estimation technique. By creating a penalty function, which causes certain coefficients to be compressed and some coefficients to be set to zero, lasso regression helps to create a more refined model. Therefore, lasso regression retains the benefit of subset contraction and is a biased estimation for analysing data with complex collinearity. It selects variables during parameter estimation and improves the method of dealing with multicollinearity in regression analysis. In this study, the R software package glmnet was used to perform lasso–Cox regression. The change in each independent variable was assessed (Figure 4B), and the number of independent variable coefficients tending to 0 was found to gradually increase with the increase in lambda. The risk model was constructed using 10-fold cross-validation, and the confidence interval of each lambda was evaluated (Figure 4C). The performance of the model was optimal at a lambda of 0.0251. The four genes obtained based on this value were selected as target genes for further analysis, and multivariate cox analysis revealed that the genes were prognostic risk factors (Figure 4D).



Mutation analysis of key genes

The SNVs of the four genes were examined in TCGA dataset, and FLNA was found to have the highest mutation frequency (Figure 5A). Subsequently, we examined the collinearity and mutual exclusiveness of these four and the top 10 genes with most mutations in CRC and found that the mutations of these four genes did not exhibit significant collinearity (Figure 5B). Furthermore, the CNVs of the four genes were analysed, and only a few samples were found to have copy number amplification/deletion (Figure 5C).




Figure 5 | (A) Waterfall diagram of SNVs in the 4 key genes; (B) Collinearity and mutual exclusion analysis of the 4 key genes and 10 genes with the most mutations in CRC; (C) CNVs in the 4 key genes; (D) Heat map of the correlation between the 4 key genes and aneuploidy scores, homologous recombination defects, fraction altered, number of segments and non-silent mutation rates.



The molecular characteristics of TCGA-COAD cohort were obtained from previous pan-cancer studies. Correlation analysis revealed that MMP11 and TCF7L1 were significantly positively correlated with aneuploidy scores, homologous recombination defects and the fraction altered (Figure 5D).



Potential regulatory pathways of key genes

The enrichment scores of each pathway in TCGA cohort were calculated using the gsva package in R, and Pearson correlation analysis between the expression of the four genes and the pathway enrichment scores was performed using the Hmisc package in R. A total of 22 significantly related pathways were identified (|cor| > 0.4 and p < 0.001). Figure 6A shows a heat map of the relationship between the 4 genes and 22 pathways. Figure 6B shows a heat map of the enrichment scores of 22 pathways.




Figure 6 | (A) Heat map of the correlation between genes and pathways; (B) Heat map of the enrichment scores of key pathways. *P< 0.05, **P < 0.01, ***P < 0.001.





Relationship between key genes and immunity

The immune scores of each sample in TCGA dataset were evaluated using the ESTIMATE algorithm and were found to have a significant positive correlation with the four genes (Figure 7A). The samples were divided into the high- and low-expression groups based on the median expression level of the four genes, and significant differences in immune scores were observed between the high- and low-expression groups (Figure 7B).




Figure 7 | (A) Heat map of the correlation between key genes and immune scores predicted using the ESTIMATE algorithm; (B) Comparison of immune scores in the high- and low-expression groups (Wilcoxon test); (C) Heat map of the correlation between key genes and immune cell scores predicted using the CIBERSORT algorithm; (D) Comparison of the scores of 22 immune cells between the high- and low-expression groups (Wilcoxon test; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). ns, no significant.



The CIBERSORT method was used to determine the immune cell scores of samples in TCGA dataset. Correlation analysis revealed that the expression of the four genes was significantly negatively correlated with T cell scores but was significantly positively correlated with macrophage-related scores (Figure 7C). The samples were divided into the high- and low-expression groups based on the median expression level of the four genes, and significant differences in some immune cell scores between the high- and low-expression groups (Figure 7D).



Construction of a risk model based on key genes

The results of multivariate Cox analysis are shown in Figure 4D. The risk scores of samples were calculated using the following formula: RiskScore = Σ βi × Expi, where i refers to the expression levels of the four key genes, and β is the multivariate Cox regression coefficient of the corresponding genes. The final formula for calculating risk scores based on the 4-gene signature is as follows:

	

TCGA cohort was used as the training dataset to determine the risk score of each sample. ROC analysis was performed to examine the efficiency of the risk model in predicting prognosis at 1–5 years using the R software package timeROC (Figure 8A). The AUC value for predicting prognosis at 4 and 5 years was 0.7. In addition, z-scores were evaluated for risk scores, and samples with risk scores of >0 were included in the high-risk group, whereas those with risk scores of <0 were included in the low-risk group. Subsequently, KM curves were plotted, and significant differences were observed between the two groups (p < 0.0001) (Figure 8B).




Figure 8 | (A) ROC curve of the risk model constructed based on 4 genes in TCGA dataset; (B) KM curve of the risk model constructed based on 4 genes in TCGA dataset; (C) ROC curve of the risk model constructed based on 4 genes in the GSE17536 dataset; (D) KM curve of the risk model constructed based on 4 genes in the GSE17536 dataset; (E) ROC curve of the risk model constructed based on 4 genes in the GSE17537 dataset; (F) KM curve of the risk model constructed based on 4 genes in the GSE17537 dataset.



The GSE17536 dataset was used to verify the robustness of the model using the abovementioned method. A risk model was constructed, and its efficiency in predicting prognosis at 1–5 years was analysed using the R software package timeROC (Figure 8C). The AUC value for predicting prognosis at 1 year was 0.7. In addition, z-scores were evaluated for risk scores, and samples with risk scores of >0 were included in the high-risk group, whereas those with risk scores of <0 were included in the low-risk group. Subsequently, KM curves were plotted, and significant differences were observed between the two groups (p < 0.05) (Figure 8D).

The GSE17537 dataset was analysed using the same method. As shown in Figures 8E, F, the AUC value for predicting prognosis at 1–4 years was >0.7, and substantial differences were observed between the high- and low-risk groups.



Combination of risk scores and clinicopathological features to improve survival prediction

Multivariate and univariate Cox regression analyses of the risk score and clinicopathological features showed that the risk score was the most significant prognostic factor (Figures 9A, B). A nomogram integrating the risk scores and other clinicopathological parameters was constructed for quantifying the risk assessment and survival probability of patients with CRC (Figure 9C). The risk score had the most influence on survival rate prediction. The predictive accuracy of the risk model was further assessed using a calibration curve (Figure 9D). The calibration curve plotted for predicting prognosis at 1, 3 and 5 years and the standard curve yielded similar results, indicating the good predictive performance of the nomogram. Additionally, decision curve analysis was performed to assess the reliability of the model, and the benefits of the nomogram and risk score were found to be considerably greater than those of the extreme curve. The performance of the nomogram and risk score in predicting survival was superior to that of other clinicopathological features (Figures 9E, F).




Figure 9 | (A, B) Univariate and multivariate Cox analyses of the risk score and clinicopathological features; (C) Nomogram model; (D) Calibration curve of the nomogram (1, 3 and 5 years); (E) Decision curve of the nomogram; (F) Compared with other clinicopathological features, the nomogram exhibited a superior capacity for survival prediction.





Prediction of the response to PD-L1 inhibitor immunotherapy via the risk model

The capability of the risk score to predict the response of patients to ICB therapy was assessed to study its association with immunotherapy. The results showed that patients with low risk scores had significant clinical benefits and prolonged OS in the anti-PD-L1 cohort (IMvigor210 cohort) (Figure 10C, p < 0.05). PD-L1 inhibitors had different effects among 348 patients in the IMvigor210 cohort, which were characterised by progressive disease (PD), stable disease (SD), partial response (PR) and complete response (CR). The risk scores of patients with SD/PD were higher than that of patients with other types of reactions (Figure 10A). Additionally, patients with low-risk scores experienced considerably superior treatment outcomes (Figure 10B). In addition, differences in survival among patients with different CRC stages in the IMvigor210 samples were analysed. The results revealed that stage I+II samples showed substantial survival differences (Figure 10D); however, stage III+IV samples did not show significant survival differences (Figure 10E).




Figure 10 | (A) Differences in immunotherapy responses and risk scores in the IMvigor210 cohort; (B) Immunotherapy response among different risk groups in the IMvigor210 cohort; (C) Prognostic differences between different risk groups in the IMvigor210 cohort; (D) Prognostic differences between different risk groups of patients with early-stage CRC in the IMvigor210 cohort; (E) Prognostic differences between different risk groups of patients with middle- and late-stage CRC in the IMvigor210 cohort; (F) Differences in immunotherapy response and different risk scores in the IMvigor210 cohort were analysed using the TIDE software; (G) Differences in TIDE scores and immunotherapy responses in the IMvigor210 cohort; (H) Correlation analysis between the risk and TIDE scores in the IMvigor210 cohort. *P< 0.05, **P < 0.01, ****P < 0.0001.



Furthermore, differences in immunotherapy and chemotherapy responses were analysed among patients in the IMvigor210 cohort. The risk model was used to assess the potential clinical impacts of immunotherapy using the TIDE (http://tide.dfci.harvard.edu/) software. The likelihood of immune escape increased with increasing TIDE prediction scores, indicating that patients were less likely to benefit from immunotherapy. With regard to immunotherapy, the risk and TIDE scores of patients unresponsive to immunotherapy were found to be higher, which also showed that the high-risk group was less likely to benefit from immunotherapy (Figures 10F, G). In addition, Pearson correlation analysis revealed a strong positive correlation between the TIDE and risk scores (Figure 10H).




Discussion

The proliferation of connective tissue is one of the key hallmarks of tumours, and the components involved in proliferation include fibroblasts, macrophages, immune cells and dense ECM (18). Fibroblasts are the main cell type in ECM, which are called CAFs. Recently, a consensus statement was issued, which stated that cancer cells with slender morphology; a lack of mutations and negative markers of epithelial cells, endothelial cells and leukocytes may be considered CAFs (19). The characteristic markers of CAFs are α-SMA and fibroblast-activating protein (FAP), and the expression of fibroblast-specific protein 1 (FSP1), platelet-derived growth factor receptor (PDGFR)-α/β and vimentin is high in CAFs. These proteins are transcribed from ACTA2, FAP, PDGFRB and NOTCH3 genes, respectively. Because morphological features are subjective and not conducive to quantification, we used ACTA2, FAP, PDGFRB and NOTCH3 genes as markers to screen for CAFs in CRC samples via single-cell sequencing. Compared with single-cell sequencing technology, the traditional transcriptome sequencing technology (bulk RNA-seq) is based on tissue samples (cell population), which reflects the average expression level of genes in the cell population. However, several studies have indicated that CAF is heterogeneous, and certain CAF subtypes stimulate tumour growth, whereas some inhibit it. For instance, in a study by Costa et al., CAF subgroup 1 created an immunosuppressive microenvironment by suppressing CD4+CD25+ T cells in breast cancer (20). Su et al. (21) reported that the new subset, CD10+GPR77+ CAFs, can facilitate the formation of tumours in patients with breast and lung cancers. Therefore, conventional sequencing technology cannot reflect the role of CAFs in tumours. In this study, cells in subgroup 9 mainly expressed ACTA2, FAP, PDGFRB and NOTCH3 and were, therefore, defined as fibroblasts. The fibroblasts of subgroup 9 were extracted, subjected to cluster analysis and further divided into four subgroups. KEGG enrichment analysis of marker genes in each subgroup revealed that the genes were mainly enriched in pathways associated with ‘ECM’ and ‘focal adhesion’, which play an important role in tumours. However, this finding does not indicate that the four CAF subgroups play the same role in tumours.

Consistent with previous studies, this study revealed that the four CAF subpopulations may play different or contradictory roles in tumours. The distribution of malignant and non-malignant cells among the CAF subpopulations was significantly different. In the CAF_0 subpopulation, the proportion of malignant cells was higher, and that of cells with MSI-H was lower. However, in the other three subpopulations, the proportion of malignant cells was lower, and that of cells with MSI-H was higher. Furthermore, single-cell sequencing was used to screen for marker genes in the CAF subgroups, and the scores of the subgroups in TCGA dataset were calculated via ssGSEA. The results showed that the scores of the CAF_0 subgroup were higher in cancer tissues, and those of CAF_1, CAF_2 and CAF_3 subgroups were higher in adjacent tissues, which was consistent with the previous results, that is, the proportion of malignant tumour cells was higher in the in CAF_0 subgroup and lower in the other three subgroups. However, no significant differences in prognosis were observed among the four subgroups, and subgroups with high gene expression had a better prognosis. This finding indicates that CAFs in the same subgroup have some heterogeneity and hence cannot adequately predict the survival of patients in different subgroups.

Several studies have shown that CAFs promote tumour progression in various ways, such as by remodelling ECM (22, 23), interfering with drug delivery (24), producing collagen in ECM and regulating the hardness of the tumour matrix (25). CAFs can secrete chemokines (26, 27) and cytokines (28), leading to lymphatic angiogenesis (29), so as to promote the endocrine function of cancer cells. In addition, they change the immune cell environment by recruiting immunosuppressive cells and inhibiting the activity of immune effector cells (30). In this study, the role of different CAF subtypes in tumorigenesis and development of CRC was examined, and the scores of 10 tumour-related pathways in 4 CAF subtypes were compared between malignant and non-malignant cells. The PI3K pathway was found to be highly expressed in malignant cells. Studies have shown that the PI3K pathway promotes tumour progression. The EphA2–PI3K signal can simulate angiogenesis induced by CAFs in gastric cancer cells (31). CAF-derived HGF promotes cell proliferation and drug resistance by upregulating the c-Met/PI3K/Akt and GRP78 signalling pathways in ovarian cancer cells (32). The results of this study are consistent with those of previous studies, suggesting that CAFs promote tumour progression through the PI3K pathway.

To decrease the heterogeneity among subgroups, the marker genes of different CAF subgroups were used to classify CAFs. After differential expression analysis, four genes were selected via lasso regression analysis, namely, TCF7L1, FLNA, GPX3 and MMP11. TCF7L1 is a member of the TCF/lymphoid enhancer (LEF) family of transcription factors, which is involved in maintaining stem cell pluripotency (33) and skin epithelial tissue homeostasis (34). Studies have shown that ectopic TCF7L1 expression impairs the growth and invasion of highly metastatic breast cancer cells (35). In addition, overexpression of TCF7L1 can induce the growth of colorectal tumour cells (36). FLNA, the most abundant and widely distributed member of the filamin family, is a non-muscle actin filament cross-linked protein (37). Some studies have shown that FLNA is associated with multiple functional non-cytoskeletal proteins and participates in several related pathways regulating cell migration and adhesion (38). FLNA acts as a pro-oncoprotein in various human malignancies, including metastatic melanoma and hepatocellular carcinoma (39, 40). However, the expression of FLNA is decreased in breast cancer, which is negatively correlated with lymph node metastasis. FLNA knockout can promote cell migration and invasion (41). In CRC, FLNA promotes chemotherapy resistance by inducing epithelial–mesenchymal transformation and the Smad2 signalling pathway (42). Therefore, the controversial role of FLNA in human malignant tumours has been reported in several studies. GPX3 is a tumour suppressor gene and the main antioxidant enzyme in plasma. It plays an important role in scavenging hydrogen peroxide and other oxygen free radicals and protecting cells from oxidative stress-induced damage (43–45). As an important member of the MMP family, MMP11 regulates a series of physiological processes and signalling events, manipulates some bioactive molecules on the cell surface, changes the biological behaviour of cells and plays an important role in TME (46, 47). In addition, studies have shown that MMP is closely related to tumorigenesis. The most important MMP is MMP11, which is overexpressed in tumours and participates in the proliferation and malignant development of tumour cells (48, 49). However, according to previous studies, CAFs can also degrade ECM by releasing MMPs and synthesising new matrix proteins to provide structural support for tumour invasion and angiogenesis (50, 51). Therefore, MMP11 can be used for the evaluation of prognosis.

The four genes identified via lasso regression were subjected to enrichment analysis, and 22 significantly related pathways were identified including those associated with ‘angiogenesis’, ‘apical junction’, ‘apoptosis’ and ‘IL2–STAT5’. The four key genes were used to establish a prognostic risk model, which had good stability and accuracy in predicting prognosis in both training and validation sets. The prognosis of patients in the high-risk group was worse. To quantify the risk assessment and survival probability of patients, the risk score was combined with other clinicopathological features, and it was found that the risk score adequately predicted clinicopathological features, especially the M stage, indicating that patients with high risk scores may be more predisposed to distant metastasis. In addition, to examine the relationship between the risk score and immunotherapy, the ability of risk score to predict the response of patients to ICB therapy was examined. Patients with low risk scores had significant clinical benefits and significantly prolonged OS in the anti-PD-L1 cohort. Furthermore, mutation analysis of the four genes in TCGA cohort revealed that FLNA had the highest mutation frequency, and there was no significant collinearity among the mutations of the four genes. Moreover, only a few samples had copy number amplification/deletion. Because the mutation frequency of the four genes is not significant, their role may be directly realised through their expression levels.

Furthermore, the correlation between the prognostic risk model and infiltrating immune cells was analysed, and a significant positive correlation was observed between the four genes and immune scores, indicating that high gene expression increased the abundance of infiltrating immune cells in ECM. Moreover, these four genes had a significant negative correlation with T cell-related scores. Therefore, CAFs labelled by these genes can promote tumour progression by inhibiting T-cell function. This result is consistent with that of previous studies. CAFs can induce immune evasion of cancer cells (52, 53) and restrict the recruitment of immune effector cells (such as CD8+ T cells) to tumour tissues by secreting different chemokines (54). In this study, a significant positive correlation was observed between the four genes and the score of macrophages, which is consistent with the finding of a previously reported study, indicating that CAF can induce M2 polarisation (55). These results suggest that the interaction between stromal cells and immune-related cells in TME promotes tumour progression.

However, this study has certain limitations. First, the results of single-cell sequencing were not verified in actual clinical samples. The screened key genes lack basic in vivo and in vitro experimental verification, and the prognostic model should be verified in actual clinical samples, which is our next research direction. In addition, there are some contradictory and unexplained results. For example, the distribution of different CAF subpopulations among malignant and normal cells is different; however, the prognosis among these populations was not different. Whether their distribution in malignant cells also plays an important role warrants further investigation and verification.

In conclusion, the fibroblast population screened via single-cell sequencing in CRC was divided into four subpopulations through cluster analysis. The distribution and role of these four subpopulations are different in CRC. In addition, by analysing the differential expression of the main marker genes in these subpopulations, four representative genes were identified via lasso regression, namely, TCF7L1, FLNA, GPX3 and MMP11. Using the prognostic risk model constructed based on the expression of these four genes, patients with CRC were divided into the high- and low-risk groups. Patients with low risk scores had significant clinical benefits from immunotherapy and had significantly prolonged OS, which may be attributed to inhibition of T-cell function in the immune microenvironment and promotion of the function of tumour-associated macrophages.
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Patients with stage III lung adenocarcinoma (LUAD) have significant survival heterogeneity, meanwhile, CD8+ T cell has a remarkable function in immunotherapy. Therefore, developing novel biomarkers based on CD8+ T cell can help evaluate the prognosis and guide the strategy of immunotherapy for patients with stage III LUAD. Thus, we abstracted twelve datasets from multiple online databases and grouped the stage III LUAD patients into training and validation sets. We then used WGCNA and CIBERSORT, while univariate Cox analysis, LASSO analysis, and multivariate Cox analysis were performed. Subsequently, a novel CD8+ T cell-related classifier including HDFRP3, ARIH1, SMAD2, and UPB1 was developed, which could divide stage III LUAD patients into high- and low-risk groups with distinct survival probability in multiple cohorts (all P < 0.05). Moreover, a robust nomogram including the traditional clinical parameters and risk signature was constructed, and t-ROC, C-index, and calibration curves confirmed its powerful predictive capacity. Besides, we detected the difference in immune cell subpopulations and evaluated the potential benefits of immunotherapy between the two risk subsets. Finally, we verified the correlation between the gene expression and CD8+ T cells included in the model by immunohistochemistry and validated the validity of the model in a real-world cohort. Overall, we constructed a robust CD8+ T cell-related risk model originally which could predict the survival rates in stage III LUAD. What’s more, this model suggested that patients in the high-risk group could benefit from immunotherapy, which has significant implications for accurately predicting the effect of immunotherapy and evaluating the prognosis for patients with stage III LUAD.
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Introduction

Lung cancer has become the first reason of all cancer-associated deaths worldwide, also in China, which accounts for nearly one million deaths each year (1), and approximately 85% cases are Non-small cell lung cancer (NSCLC) (2). What’s more, lung adenocarcinoma (LUAD) represents the most common pathological subtype in NSCLC, for which not been found specific risk factors (3). Besides, statistics show that almost 30% of NSCLC patients are diagnosed with locoregionally or locally advanced disease, which is stage III (4). Although there has shaped a comprehensive therapy pattern including surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy in recent years, the survival rate is not satisfactory especially for locally advanced LUAD (5), despite the absence of metastases. According to the tumor, node, metastasis (TNM) staging (8th edition), stage III is subclassified into stage IIIA, IIIB, and IIIC (6). For this heterogeneous group which presents a wide spectrum of clinical features including multiple statuses of lymph nodes metastasis, their 5-year overall survival (OS) rates are totally different (7). Hence, precisely distinguishing and predicting the prognosis of each subtype of stage III LUAD patients would help to formulate accurate treatment and improve the survival rate.

Immunotherapy has recently shown great efficacy for patients with stage III unresectable NSCLC, especially for those trapped in the lack of targetable mutations, who could not benefit from targeted therapy such as tyrosine kinase inhibitors (TKIs) (8, 9). As the most iconic treatment of immunotherapy, immune checkpoint blockades (ICBs) have established a solid position and could be chosen as the first-line treatment (10). Among them, monoclonal antibodies against programmed death 1(PD-1) and its ligand (PD-L1) are the most widely used ICBs in locally advanced LUAD at present, which has shown obvious survival benefits compared to traditional chemotherapy (11). Nonetheless, only canonical biomarkers like PD-L1 and tumor mutational burden (TMB) are used in clinical practice, which also has their own limitations (12). Therefore, the significance of identifying novel immune-related biomarkers is highlighted, which may help to select those patients who are most likely to benefit from ICBs.

As the indispensable part of cancer, the tumor microenvironment (TME) is essential nature in cancer progression. Alternatively, a variety of immune cell types within TME drive a fundamental environment that could respond to immunotherapy (13). Particularly, among all immune cell types, the CD8+ T cell is the most important conductor in the cancer-immunity cycle and its activation and infiltration play a crucial role in immunotherapy (14). However, some co-inhibitory molecules or receptors in the TME causing T cell exhaustion might impair their potential to fight cancer cells (15). Therefore, how to find out and confirming the biomarkers correlated to CD8+ T cell become necessary. In recent years, some works have revealed how a single intrinsic gene of LUAD cells influences CD8+ T cells in TME. For instance, knockdown of GBE1 could increase recruitment of CD8+ T lymphocytes (16), TP53-deficient LUAD cells promoted CD8+ T cells exhaustion (17), and high expression of MSH2 correlated with increased CD8+ T cells infiltration (18), whereas, these genes cannot demonstrate the whole signature and predict the various prognosis of LUAD patients. Besides, based on immune-related genes, researchers have established a few prognostic models to make predictions for the survival risk (19, 20). Nevertheless, we need to exploit a novel model containing multiple biomarkers about the heterogenous locally advanced LUAD based on as many databases as possible, which is comprehensive enough to reach a satisfying prognostic value and predict the immunotherapy response.

Based on the rapid development of bioinformatics, in this study, we aim to establish a reliable CD8+ T cell-related signature to estimate the prognostic stratification and the effect of immunotherapy in locally advanced LUAD. First, we integrated datasets about stage III LUAD, which were from multiple online databases. To identify the hub CD8+ T cell-related biomarkers, we then used weighted gene co-expression network analysis (WGCNA). Subsequently, we developed a novel CD8+ T cell-related classifier and constructed a robust nomogram to predict survival probability. Besides, the predictive performance was further validated in the multiple test sets. Moreover, we detected the difference in immune cell subpopulations and evaluated the potential benefits of immunotherapy between the two risk subsets. Finally, the valuation of this model was verified in a real-world cohort in evaluating immunotherapy efficacy. Taken together, it was expected that this CD8+ T cell-related model could contribute to predicting survival rates and accurately working out therapeutic strategies for locally advanced LUAD patients.



Materials and methods


Study population, gene expression data, and processing

The gene expression profiles and clinical parameters of primary LUAD patients from 12 public cohorts were retrospectively analyzed, including 11 microarray datasets from the Gene Expression Omnibus (GEO) and Array-Express, and 1 RNA-Seq expression profile from The Cancer Genome Atlas (TCGA). Only patients who meet the following two criteria were included: i) detailed TNM staging information includes stage IIIA and IIIB according to the 7th edition of TNM classification of malignant tumors; ii) OS information includes follow-up time and survival status. The Combat algorithm was used to eliminate the batch effects. Then, the whole set was divided into training and internal validation cohorts in a ratio of 1:1 using stratified random sampling by caret R package. Another series from TCGA was used as the external validation cohort. The studies obtained from each of the databases are summarized together with series ID in Supplementary Table S1.



Evaluation of tumor-infiltrating immune cells

We performed CIBERSORTx (https://cibersortx.stanford.edu/) to investigate the levels of 22 TIICs using the mRNA expression data of the training cohort. This online tool utilizes a deconvolution method to impute gene expression profiles and estimate the type and fractions of immune cells.



Establishing the co-expression network

We used the R package “WGCNA” (21) to construct a weight co-expression network with the 7922 gene expression values in the training cohort. The levels of 22 immune-infiltrating cells were used as sample traits. When the index of scale-free topologies was set as 0.90, a scaleless network was successfully built with an optimal soft threshold power (β = 5). Next, we divided genes with similar expression patterns into the same module (minimum size = 50) using the “dynamic tree cutting” algorithm. In addition, to select the remarkable modules, Pearson’s test was used to evaluate the relationship between the module eigengenes and the level of the 22 types of immune cells. At last, the “CD8+ T cells” subtype was chosen and further study on the CD8+ T cell-related module was conducted.



Pathway and process enrichment analysis

To determine the function of genes in the identified hub module, we employed the web tool “Metascape” (http://metascape.org) for pathway and process enrichment analysis (22). The tool displays the first 20 enriched terms as a bar graph. To further explore the relationship between these terms, terms with similarities greater than 0.3 are connected by edges and presented as a network graph.



Construction and validation of the risk model based on CD8+ T cell-related genes

Univariate Cox regression analysis was performed to estimate the hazard proportions for genes of the highest correlation with CD8+ T cells (yellow module). Then, to further screen the prognosis of CD8+ T cell-related genes with the best predictive performance, the “glmnet” R package (23) was used to perform the LASSO regression analysis with ten-fold cross-validation. Next, based on the AIC (Akaike information criterion) value on the prognosis CD8+ T cell-related genes, the bi-directional stepwise multivariate Cox regression was used for choosing the ones that minimize the AIC to obtain the best model fit. A prognostic CD8+ T cell-related risk score model of stage III LUAD patients was then established based on combining the multiplication of the multivariate Cox regression coefficient by its corresponding normalized mRNA expression value. The risk score= ∑(the multivariate Cox coefficient of CD8+ T cell-related genes × matching normalized expression level of these genes). We computed risk scores of each stage III LUAD patient and then divided them into high- and low-risk subsets according to the cutoff value of 28.401 determined via receiver operating characteristic (ROC) curve analysis using the R package “survminer”. Next, the Kaplan-Meier (KM) curve was performed to estimate the disparity in OS between low- and high-risk subsets by log-rank test. The prognostic ability of the CD8+ T cell-related classifier was explored with an analysis of the concordance index (C-index) and ROC curve. Then, we also used similar methods to verify the prognostic performance of the classifier constructed by the training cohort in the internal validation, external validation, and pooled validation cohorts.

Furthermore, based on univariate Cox regression and multivariate Cox regression analyses, we further confirmed whether the predictive performance of the CD8+ T cell-related classifier could be an independent prognostic factor compared with other clinic factors for stage III LUAD patients in multiple cohorts. At last, risk score and three traditional clinical factors were used to generate the nomogram by using “rms,” “foreign,” and “survival” R packages. C-index, time-dependent ROC (t-ROC) curve and calibration plots of the nomogram for 1-, 3-, and 5-year OS plots were applied to elucidate the accuracy of actual observed rates with the predicted survival probability. The “timeROC” R package was utilized to perform the t-ROC analyses.



Prediction for response to immunotherapy or chemo-agents

Tumor immune dysfunction and exclusion (TIDE) algorithms (24) and subclass mapping (25) were used to predict clinical response to immune checkpoints between the two risk subsets in the TCGA dataset, also named the external validation set. The chemotherapy response was predicted by employing the R package “pRRophetic version 0.5” to compute the half-maximal inhibitory concentration (IC50) of four common chemo-agents (cisplatin, gemcitabine, paclitaxel, and docetaxel) in the training set (26, 27). The comparison of IC50 of these agents between groups was performed using Wilcoxon rank-sum test.



Efficacy evaluation of immunotherapy and immunohistochemical verification for a real-world cohort

Clinicopathological features and samples of stage III NSCLC patients were collected from January 2019 to December 2021 who received immunotherapy. After the screening by exclusion criteria, twenty-eight patients were enrolled as a validation cohort from real-world for analysis (Supplementary Figure S1; Supplementary Table S2). For the evaluation of the immunotherapy efficacy, we used the Best overall response (BOR), which was defined as the best response during immunotherapy and was accessed according to RECIST1.1 (28). What’s more, all patients were followed up until May 2022, and this study was approved by the Research Ethics Committees of the First Affiliated Hospital of Xi’an Jiaotong University.

The Immunohistochemistry (IHC) was performed with a three-step method. After the dewaxing and hydrating, the tissue sections were boiled in autoclaved citric acid buffer (pH 6.0) for 20 min for antigen retrieval, and the peroxidase activity was quenched with 3% hydrogen peroxide for 15 min to avoid non-specific staining. Then, the sections were blocked for 15min followed by incubation overnight with CD8 antibody (Invitrogen, PA5-88265 at 1/100 dilution), anti-UPB1 antibody (Abcam, ab157195 at 1/100 dilution), HDGFRP3 antibody (proteintech, 12380-1-AP at 1/50 dilution), SMAD2 antibody (proteintech, 12570-1-AP at 1/500 dilution), or ARIH1 antibody (Santa, sc-390763 at 1/50 dilution) at 4°C. After that step, the sections were incubated with the secondary antibody at 37°C for 20 min. Subsequently, This step was followed by incubating with Horseradish Peroxidase for 20 min, and staining with 3,3- diaminobenzidine. At last, the sections were dehydrated and sealed after re-dyeing with hematoxylin. The IHC assays were performed by integral optical density (IOD) using Image J (29).



Statistical analysis

Software R (version 4.1.0) and GraphPad Prism (version 8.0.0) were applied to all data analyses. The Wilcoxon test and chi-square test were performed to assess the relationship between the risk score and clinical features. Survival analysis was utilized by the KM log-rank test. In the results of the CIBERSORT method, samples with P < 0.05 were retained for the next analysis. Two-tailed P < 0.05 was considered statistical significance.




Results


Gene expression profile database selection according to enrollment criteria

The study workflow design was depicted in Figure 1. As mentioned above, 12 series (288 LUAD patients in total) were selected. To combine these datasets, a combat method was first performed to eliminate batch effects, and the results before and after the batch correction were displayed by PCA plots, respectively (Supplementary Figure S2). Consequently, a merged cohort was integrated. To improve the precision and accuracy of the prognostic model, the 288 samples from the merged cohort were divided into training (n = 144) and internal validation (n = 144) sets in a ratio of 1:1 using stratified random sampling. Besides, the 74 patients from TCGA were employed as the external validation set, and a pooled set integrating the training, internal validation, and external validation sets was constructed.




Figure 1 | The workflow of the study design.





Identification of hub modules by WGCNA and enrichment analysis

To identify key modules correlated with CD8+ T cells, the mRNA gene expression profiles for 144 LUAD samples from the training cohort were extracted. Subsequently, for these LUAD samples, the different cell subtypes’ abundance was calculated by the CIBERSORT algorithm, in which seven subtypes of T cell fractions were defined as trait data for WGCNA analysis. Next, to construct the gene co-expression network of LUAD, the expression profiles of the 7921 genes were utilized. To ensure the network was scale-free, β = 5 (scale-free R2 = 0.9) was selected (Supplementary Figures S3A, B). Besides, the samples of the training cohort were clustered by the average linkage and Pearson’s correlation values. Finally, a total of 18 modules were constructed by building a hierarchical clustering tree, where the gene set was independent as the tree branch. (Supplementary Figure S3C).

According to the criteria of the hybrid dynamic tree cut, we got that the yellow module was significantly associated with T cells, such as CD8+ T cells (R2 = 0.25, P = 0.002) (Supplementary Figure S4A). To elucidate the potential function and mechanism of CD8+ T cells, we picked the yellow module as a hub module. Additionally, we got that these genes from the hub yellow module were mainly enriched in ubiquitin protein ligase binding, SMAD binding, and lymphocyte activation after GO and KEGG enrichment analysis (Supplementary Figures S4B, C).



Establishment of the prognostic CD8+ T cell risk score in the training set

There were 805 hub genes within the yellow module selected for further analysis. After univariate Cox regression analysis on these hub genes, 88 significantly prognosis-associated CD8+ T cell-related genes were identified in the training cohort. Then these significant genes entered LASSO COX regression analyses (Figures 2A, B) and multivariate Cox proportional risk regression analysis (Figure 2C). Based on these analyses, the prognostic CD8+ risk model was constructed including the four most potential prognosis-related genes (HDFRP3, ARIH1, SMAD2, and UPB1). The risk score = (1.078 × expression level of HDGFRP3+2.041 × expression level of ARIH1+3.079 × expression level of SMAD2-1.704 × expression level of UPB1) (Figure 2D). Subsequently, all LUAD patients in the training cohort were then separated into low- and high-risk groups according to the cutoff value (28.401) (Figure 3C). KM survival analysis showed that patients in the high-risk group were associated with a relatively poor OS than those in the low-risk group (log-rank P = 3.984e-09, Figure 3A), while the heatmap and survival plot showed four prognostic expression profiles and survival status between two risk groups (Figures 3D, E). Besides, univariate Cox regression analysis and multivariate Cox regression analysis demonstrated that the risk score could independently predict OS after adjusting for various clinicopathologic parameters in the training cohort (Table 1). Moreover, ROC analysis of 5-year OS was applied to examine the predictive capacity of the CD8+ risk model, thus we got the 5-year AUC of risk model was 0.709, which was markedly higher than that of age (AUC = 0.548), gender (AUC = 0.506), and stage (AUC = 0.407), indicating that it had a more robust prediction of clinical outcome than the other clinical parameters (Figure 3B).




Figure 2 | Construction of CD8+ T cell-related genes signature. (A) Ten-fold cross-validation with minimum criteria for tuning parameter selection (λ) in the LASSO model. (B) LASSO coefficients profiled the CD8+ T cell-related genes. (C) Multivariable Cox regression analysis of these CD8+ T cell-related genes adopted in the signature. (D) The coefficient of these CD8+ T cell-related genes using multivariable Cox regression analysis.






Figure 3 | KM, t-ROC and distribution analysis of the CD8+ T cell-related risk score model in the training validation set. (A) KM curve of the CD8+ T cell-related signature for OS. (B) ROC analysis of the CD8+ T cell-related signature for 5-year OS. (C) The risk plot showed the risk score in the low-risk and high-risk groups. (D) The survival plot showed different survival statuses between the two risk groups. The dotted line indicates the cutoff value. (E) The heatmap exhibited gene expression levels between two risk groups.




Table 1 | Cox regression analysis in each set.





Testing the signature in the internal validation set, external validation set, and the pooled set

The internal validation dataset, the external validation dataset, and the pooled dataset were used to predict OS and demonstrate the predictive capacity of the risk model. The risk score in each LUAD stage III patient from the internal validation cohort was calculated based on the formula. Then, we divided the internal validation cohort into a high-risk group (n = 50) and a low-risk group (n = 94) depending on the optimal risk cutoff value in the training cohort (Figure 4C). KM analysis indicated that patients in the high-risk group had a poorer prognosis compared to those in the low-risk group (log-rank P = 2.251e-04, Figure 4A). The expression profile of these four genes within our signature and survival status between two risk groups was visualized in Figures 4D, E. Moreover, The ROC curves for 5-year overall survival indicated that the risk score has the best predictive capacity of OS (AUC = 0.649) among the clinical parameters (Figure 4B).




Figure 4 | KM, t-ROC and distribution analysis of the CD8+ T cell-related risk score model in the internal validation set. (A) KM curve of the CD8+ T cell-related signature for OS. (B) ROC analysis of the CD8+ T cell-related signature for 5-year OS. (C) The risk plot showed the risk score in the low-risk and high-risk groups. (D) The survival plot showed different survival statuses between the two risk groups. The dotted line indicates the cutoff value. (E) The heatmap exhibited gene expression levels between two risk groups.



We next demonstrated the prognostic predictive capacity of the CD8+ T cell-related classifier in the external validation dataset. The optimal risk cutoff value in the training cohort was adopted to separate the external dataset into a high-risk group (n = 21) and a low-risk group (n = 53) (Figure 5C). KM analysis also revealed that high-risk patients had a poorer prognosis than those in the low-risk group (log-rank P value = 4.027e-04, Figure 5A). Besides, Figures 5D, E showed the expression profiles of these four genes and the survival status between the two risk groups. The ROC curves for 5-year OS also revealed that the risk score has the best predictive power of OS (AUC = 0.654) than the other traditional clinical parameters (Figure 5B).




Figure 5 | KM, t-ROC and distribution analysis of the CD8+ T cell-related risk score model in the external validation set. (A) KM curve of the CD8+ T cell-related signature for OS. (B) ROC analysis of the CD8+ T cell-related signature for 5-year OS. (C) The risk plot showed the risk score in the low-risk and high-risk groups. (D) The survival plot showed different survival statuses between the two risk groups. The dotted line indicates the cutoff value. (E) The heatmap exhibited gene expression levels between two risk groups.



Last, we further demonstrated the prognostic predictive capacity of the CD8+ T cell-related classifier in the pooled validation dataset using the same methods. The external dataset was separated into a high-risk group (n = 116) and a low-risk group (n = 246) (Figure 6C). KM analysis still revealed that high-risk patients had a poorer prognosis than those in the low-risk group (log-rank P value = 4.965e-13, Figure 6A), while the expression profile of these four genes within our classifier and survival status between two risk groups were visualized in Figures 6D, E. What’s more, the ROC curves for 5-year OS also revealed the same result that the risk score has the best predictive power of OS (AUC = 0.665) (Figure 6B). Besides, univariate and multivariate analysis still indicated that the classifier was significantly associated with OS after adjustment for clinical parameters in these validation sets (Table 1). Together, these findings suggested the CD8+ T cell-related classifier performed well in predicting the prognosis of stage III LUAD patients.




Figure 6 | KM, t-ROC and distribution analysis of the CD8+ T cell-related risk score model in the pooled validation set. (A) KM curve of the CD8+ T cell-related signature for OS. (B) ROC analysis of the CD8+ T cell-related signature for 5-year OS. (C) The risk plot showed the risk score in the low-risk and high-risk groups. (D) The survival plot showed different survival statuses between the two risk groups. The dotted line indicates the cutoff value. (E) The heatmap exhibited gene expression levels between two risk groups.





The relationship between the classifier built with CD8+ T cell-related genes and clinicopathological parameters

To better understand the clinical impact of the CD8+ T cell-related classifier in stage III LUAD patients, we analyzed the association of the signature with clinical variables in the training set. There was no significant association between the CD8+ T cell-related signature and TNM stage, gender, and age, apart from survival status (Figure 7A). What’s more, we further analyzed the comparison of risk scores in different subsets grouped by age, gender, TNM stage, and survival status. The risk scores were significantly different only in survival status subgroups, but not in age, stage, and gender subgroups (Figures 7B–E).




Figure 7 | The correlation between the CD8+ T cell-related signature and clinical variables. (A) The heatmap revealed the association of the CD8+ T cell-related signature and the clinical variables (age, gender, stage and survival status) in the training set. (B–E) The box plots displayed the relationship between risk score and clinical features.



We next validate the prognostic ability of our CD8+ T cell-related classifier in different subsets clustered by clinicopathological variables. In the training set, patients with high-risk scores were inclined to have decreased survival rates, in the age, gender, and TNM stage subsets (Supplementary Figures S5A-F, P < 0.005). Similar significant findings were revealed in the internal test set and the pooled test set, except in subsets of age less than 65-year and female in the internal test set (Supplementary Figures S5G–L, S6, P < 0.05). As for the external test set, we also observed that the risk scores were significantly associated with unfavorable clinical outcomes in the age, gender, patients with positive node metastasis, T3+4, and TNM stage subsets (Supplementary Figure S7, P < 0.05). These findings suggested that our CD8+ T cell-related classifier has a promising clinical application for selecting high-risk patients.



Constructing a prognostic nomogram

By integrating the CD8+ T cell-related classifier and three clinicopathological features shared in the training dataset and the other validation datasets, we developed a prognostic nomogram to predict the 1-, 3-, and 5- year OS probability of LUAD patients in the training dataset (Figure 8A). The AUC points of the nomogram for 1-, 3-, and 5-year survival predictions were 0.719, 0.629, and 0.737, respectively (Figure 8B). The C-index indicated that the nomogram had the highest predictive accuracy of survival than the other clinicopathological parameters (Figure 8C). In addition, the calibration curves also confirmed a good consistency between predicted and observed scores in terms of probabilities of 1-, 3-, and 5-year OS (Figure 8D). Similar results of calibration curves of nomogram were also found in the internal, external, and pooled validation datasets (Figures 8E–G). Together, those findings indicated that our nomogram was suitable for clinical practice.




Figure 8 | A nomogram was constructed to predict the OS. (A) A nomogram for predicting 1-, 3- and 5-year OS with risk levels and three clinical variables. (B) 1-, 3- and 5-year ROC curves of the nomogram for OS predictions. (C) The C index of the nomogram, risk signature and other clinical variables. Calibration plots of the nomogram for predicting probabilities of 1-year, 3-year, and 5-year OS of stage III LUAD patients in the training dataset (D), the internal validation dataset (E), the external validation dataset (F), and the pooled validation dataset (G).





Estimation of TIICs

Since CD8+ T cell-related classifier had closely and intrinsically connected with immune cells, which have a profound impact on predicting clinical outcomes and treatment efficacy, we further examined the difference and relationship of these immune cells with risk groups. The comparison of 22 immune cells between risk groups was displayed in a radar plot (Figure 9A). The results revealed that the abundance of CD8+ T cells was remarkably higher in the low-risk group compared with those in the high-risk group (P = 0.049). We also found the fractions of other immune cells, including Dendritic cells (DCs) resting, and Tregs were significantly increased in low-risk patients (P = 0.038, P = 0.028), whereas the expression levels of Eosinophils and T cells CD4 memory activated were obviously higher in the high-risk group (P = 0.004, P = 0.050) (Supplementary Figures S8A–E).




Figure 9 | Comparison of the fractions of immune cells, expression of immune checkpoint genes, and immunotherapy benefits between risk subsets. (A) The radar plot revealed the 22 immune cell subpopulations between different risk groups; (B) The gene expression levels of immune checkpoint genes between risk groups; (C) Different benefits from the immunotherapy between risk subsets were predicted by the TIDE algorithm; (D) The submap algorithm indicated the probability of response to ICBs. **P < 0.01; ***P < 0.001.





Prediction for efficacy of immunotherapy and chemo-agents

We also found the gene expressions of multiple immune checkpoint genes (ICGs), including CTLA-4, LAG3, PDCD1, CD96, CD244, and CSF1R, etc. were significantly increased in the high-risk group, which could be promising immunotherapy targets (Figure 9B). To predict the response to immunotherapy, the TIDE algorithm was performed within different risk subsets. The result indicated that the TIDE score in the high-risk group was significantly lower than the low-risk group (Figure 9C), suggesting the patients within high-risk subsets could benefit from the immunotherapy. A similar result was observed in the submap algorithm. The high-risk subset showed a higher probability of response to PD-1 blockades (Nominal P = 0.028) (Figure 9D).

Chemotherapy is another common therapy for stage III LUAD, while a higher IC50 value indicates resistance to the drug, otherwise, it is sensitive to the drug. The results showed that the IC50 values of cisplatin and gemcitabine decreased significantly in the high-risk subset; The IC50 values of docetaxel and paclitaxel had a decreased trend in the high-risk subset, although there was no significant difference (Supplementary Figures S9A–D); Overall, these findings suggested that the stage III LUAD patients from the high-risk subset would benefit from immunotherapy and chemotherapy.



Validation of the gene expression including in the classifier and evaluating the efficacy of immunotherapy in a real-world cohort

To verify the consistency of the model across cohorts and its validity for clinical application, a real-world cohort was constructed. 28 patients were enrolled in the cohorts, immunohistochemical detection showed that the expression of ARIH, and SMAD2 had a negative correlation with CD8 in LUAD tissues (r = -0.6282, P = 0.0003; r = -0.7263, P < 0.0001), while the expression of UPB1 had a positive correlation with CD8 (r = 0.6961, P < 0.0001), which were consistent with the results obtained based on open databases (Figure 10A, Supplementary Figure S10). For the expression of HDFRP3, unfortunately, we only got a negative trend with CD8 (r = -0.2559), but without significant statistical significance, probably due to the small sample size. To further validate whether the model could well predict the efficacy of immunotherapy for stage III LUAD patients in the real world, we calculated the risk score based on the gene-positive staining IOD/Area obtained in immunohistochemistry analysis and subsequently divided these patients into high- and low-risk groups. After the Chi-square test, all the clinicopathological factors were well balanced between the two groups (P > 0.05) (Supplementary Table S2). Furthermore, we evaluated the effectiveness of immunotherapy for each patient objectively. In the high-risk group, 2 of 19 patients reached CR during treatment, 10 patients achieved PR, 6 patients reached SD, and 1 patient reached PD, while 1 of 9 patients reached CR, 1 patient achieved PR, 6 patients achieved SD, and 1 patient achieved PD in the low-risk groups (Figure 10B). The overall response rate (ORR) was significantly higher in the high-risk group (63.16% vs 22.22%, P = 0.043) (Supplementary Table S3). However, probably due to the short follow-up time and the small number of cases, we did not observe a survival difference between the two groups (Figure 10C). Overall, we confirmed the validity of the model in a real-world cohort and its clinical applicability.




Figure 10 | Verification of gene expression including in the model and its validity in real-world cohorts. (A) Representative microphotographs of gene staining included in the model and the correlation between these genes and CD8 in stage III LUAD. (B) The recent therapeutic effect of immunotherapy between risk groups; (C) KM curves for OS between risk groups.






Discussion

The heterogeneity of stage III LUAD is not only reflected in the wide range of tumor size (T1-T4), the degree of local tumor invasion, and the involvement of ipsilateral or contralateral mediastinal lymph nodes (N0-N3) (3), but also in the diverse tumor molecular mutations in the histopathological type of LUAD. Thus, the 5-year survival rates are generally poor and have a varying range from 12% to 36% in the pathological stage (30), however, some clinical trials still cannot explain the exact reasons (31). Consequently, just the commonly used prognostic indicators, such as tumor stage and patient’s general condition, are not well appropriate for this group of patients. Besides, the ICBs such as durvalumab have shown good survival benefits in stage III NSCLC (8), but due to the obvious heterogeneity in immune features (32), the PD-L1 expression, as well as TMB, are not good predictors of immunotherapy efficacy, which is different from their application in stage IV of NSCLC (7). Because of significant role of CD8+ T cell in anti-cancer immunotherapy, hence, finding new biomarkers and constructing a CD8+ T cell-related classifier to predict the prognosis and effect of immunotherapy have a significant meaning for patients with stage III LUAD.

Therefore, in this study, we extracted all RNA level profiles of these locally advanced LUAD patients from the GEO, Array Express, and TCGA database and divided these patients into the training, internal validation, external validation, and pooled validation cohorts firstly. Then we constructed the gene co-expression network through identified a significant yellow module as a hub module that exhibited great relevance to CD8+ T cells by CIBERSORT and WGCNA analysis. Next, through univariate Cox analysis, lasso analysis, and multivariate Cox analysis, a CD8+ T cell-related signature including HDFRP3, ARIH1, SMAD2, and UPB1 was constructed. It was gratifying that this model could divide locally advanced LUAD patients into low- and high-risk groups with distinct overall survival in multiple cohorts (all P < 0.05). What’s more, in comparisons of the age, gender, and stage, the area under the ROC curve of the model was always the largest. Moreover, to make this model better applicable in the clinic, a nomogram including the traditional clinical parameters and risk signature was constructed. The ROC, C-index, and calibration curves validated its robust predictive capacity very well. Meanwhile, KM analysis revealed a significant difference in the subgroup analyses’ survival between the two risk subsets, especially in different TNM stages, suggesting the robust clinical application of our CD8+ T cell-related classifier. Finally, we confirmed that the high-risk group might benefit from immunotherapy or chemotherapy, and verified the valuation of this model in a real-world cohort, which further clarified the value of the model in predicting efficacy.

Specifically, as the protective factor included in this model, the most important function of UPBEAT1 (UPB1) is that it could directly regulate the expression of a set of peroxidases which modulates the balance of reactive oxygen species (ROS) (33). Besides, for cancer patients, UPB1 was screened as a prognostic circulating biomarker or signature for patients with hepatocellular carcinoma (34, 35), similar to clear renal cell carcinoma (36). In addition, for the treatment of specific tumors, especially the 5-fluorouracil treatment of colorectal cancer, some researchers explored the role of UPB1 in the 5-fluorouracil pathway or fluoropyrimidine-related high toxicity (37, 38). What’s more, we not only introduced UPB1 in the clinical prognostic analysis of LUAD for the first time but also found the expression of UPB1 was correlated with CD8+ T cells. In the follow-up mechanism exploration, whether UPB1 affects CD8+ T cells in LUAD by regulating the expression of ROS is a direction worth studying.

In contrast to the protective factor UPB1, we included three risk genes in the model, namely SMAD2, ARIH1, and HDGFRP3. Among them, the most important and valuable biomarker was SMAD2. As a transcription factor member of the SMADs family, SMAD2 is activated by receptors such as TGF-β mediated phosphorylation, which plays a critical role in transmitting the TGF-β superfamily from the cell surface to the nucleus in turn (39). TGF-β/SMAD signaling is considered to culminate in the suppression of tumor-specific cellular immunity, which performs functions in a variety of cells. For CD8+ T cell, Gunderson et al. found that TGF-β increased the binding of Smad2 and reduced CXCR3 expression in CD8+ T cells, thereby limiting their trafficking into tumors (40). Li et al. reported that Icaritin reduced CD8+ T cell chemotaxis by inhibiting the CXCL10/CXCR3 axis and suppressing the TGF-β/Smad2 signaling pathway in COPD (41). Furthermore, Park et al. found that TGF-β1 mediated SMAD3 to enhance PD-1 expression on antigen-specific T cells resulting in T cell suppression (42). However, the specific mechanism by which SMAD2 affects CD8+ T cells in LUAD remains unclear. Besides, SMAD2 phosphorylation was observed after activation in the Treg, which could produce the bioactive form of TGF-β (43). For cancer cells, Vimentin consequently led to metastasis and immune escape through the expression of PD-L1 in LUAD by triggering the TGF-β/SMAD2 signaling (44). In addition, ARIH1 (or HHARI) known as a ubiquitin-protein ligase, contributed to EMT induction and breast cancer progression (45, 46). However, Wu et al. found that the overexpression of ARIH1 could suppress tumor growth and promote cytotoxic T cell activation by inducing PD-L1 degradation (47). Also, a few reports indicated that high expression of HDGFRP3 (or HRP-3) promoted hepatocellular carcinomas and identified it was associated with metastasis in breast cancer (48, 49). In summary, the four genes included in the model have not yet been reported to be associated with CD8+ T cells in LUAD, which means that these biomarkers are important innovations for antitumor immunotherapy research.

Moreover, the results of GO and KEGG enrichment analysis demonstrated a meaningful finding that these genes picked from the hub yellow module were critically enriched in ubiquitin protein ligase binding, SMAD binding, and lymphocyte activation. It was gratifying that an E3 ubiquitin ligase such as ARIH1 could promote anti-tumor immunity via PD-L1 degradation, thereby affecting T cell activation, which has been mentioned above (47). This finding also strongly supports the value of such a CD8+ T cell-based predictive model proposed in this study in predicting the efficacy of immunotherapy. As for the SMAD2 normally coupled with SMAD3 mentioned above, its functions were mainly embodied through the key signaling axis containing transcription factor Forkhead box protein P1 (Foxp1) and TGF-β in the tumor immune microenvironment. For instance, Foxp1 interacted with Smad2/3 and suppressed the tumor-reactive T cells’ response to TGF-β in advanced tumors (50). Hence, the regulation of TGF-β/SMAD signaling function is important for developing new immunotherapeutic strategies by restoring the immunosuppressive TME to active status (51). For example, using the genetic method to modify antigen-specific T cells by interfering with TGF-β signaling would significantly enhance tumor treatment efficacy (52). Mesenchymal stem cells secreted TGF-β induced the differentiation of Treg cells via SMAD2 as so to inhibit colorectal cancer (53). A similar function was also reflected in the inhibition of IL-2 which was regarded as a key cytokine for T cell proliferation and activation (54). These findings also support the potential application of the model in assessing the prognosis of immunotherapy. Furthermore, it is worth further exploring whether the other genes involved in the model are associated with the phenotype of lymphocytes, especially CD8+ T cells.

The critical role of TME is beyond doubt in tumor initiation and development. Although studies have facilitated the identification of the important functions of different immune cell subtypes within TME, the CD8+ T cell is the central focus in engaging adaptive immunity for cancer control according to the cancer-immunity cycle (14, 55). Moreover, the number and functionality of CD8+ T cells after activation are prerequisites for the efficacy of immunotherapy in patients with lung cancer (56). Given our classifier constructed from CD8+ T cell-related genes, the risk score of the CD8+ T cell-related classifier was consistent with the expectation and negatively related to the abundance of CD8+ T cells, while patients within the high-risk group were associated with poor survival status. Besides, we also found other subclasses, such as resting DCs, and regulatory T cells (Tregs), were obviously decreased in the high-risk group. Owing to the unique capacity in initiation and regulation of T cell responses, DCs have been extensively explored as tools for immunotherapy, therefore it was convinced that a decrease in DCs is associated with poor prognosis (57, 58). Nevertheless, high-risk patients possessed a higher fraction of activated memory CD4+ T cells and eosinophils. Particularly, the count and percentage of eosinophils significantly increased in NSCLC patients treated with ICBs, and metastasis-entrained eosinophils could enhance lymphocyte-mediated antitumor immunity, which might somehow explain the reason why high-risk group patients could benefit from immunotherapy (59, 60). Besides, the higher expression of immune checkpoint genes in the high-risk group also could indicate the benefits of immunotherapy (61). Overall, such a risk score of CD8+ T cell-related classifier was significantly correlated with multiple immune cell subtypes, which provided important hints for revealing the interaction between immune cells and tumor cells in the TME, as well as between different immune cell subtypes.

In recent years, based on the fact that immunotherapy has benefited some patients with locally advanced or advanced NSCLC and with the rapid development of bioinformatics, more researchers turned their attention to discovering some models that integrated multi-factors to better predict the survival rates and evaluate the benefits of immunotherapy. Several studies have proposed immune prognostic models involving multiple genes that could evaluate the prognosis of patients with LUAD, however, they did not specify which types of immune cells these genes were associated with, nor did they separately analyze the patients with locally advanced LUAD (62–64). Besides, Xie et al. developed a nomogram for LUAD patients based on immune scores and concluded high score was related to better OS, but immunotherapy was not involved and external data verification was needed (65). Zhang et al. established a CD8+ T cell-associated gene signature, which could help assess prognostic risk and immunotherapy response in LUAD patients. However, they did not validate the signature with real-world samples (66). Moreover, some researchers demonstrated the tumor immune microenvironment by analyzing the targeted RNA-Seq of immune-related genes, which had prognostic value for locally advanced LUAD (67). Unfortunately, the effective value was limited by the small sample size from a single institution. Thus, these models have a few limitations and insufficient predictive power for locally advanced LUAD.

Although we have constructed a risk model and a nomogram based on this, which has good predictive efficacy in survival rates and potential application in the prediction of immunotherapy or chemotherapy efficacy in locally advanced LUAD. Nevertheless, there are also some limitations of this study. First, to incorporate more data into our research, we have selected as many data sets as possible in the GEO database, although they contained several different platforms. Thus, such a fusion of multiple data might increase the possibility of over-correction in the data processing. In addition, we have only repeatedly verified the effectiveness of the model through different open cohorts. Although we validated the model in a real-world cohort, we did not obtain particularly significant differences due to, for example, the small number of cases. Overall, further experimental validations are needed to determine whether these genes included in the model are involved in the progression of locally advanced LUAD and how they affect the phenotypes of CD8+ T cells.

In summary, based on the multiple cohorts, we have constructed a prediction model correlated to CD8+ T cell and the nomogram in patients with locally advanced LUAD. Furthermore, the overwhelming impression of our study was the better effectiveness and accuracy of the model in predicting survival rates and immunotherapy efficacy by designing multiple validation cohorts from open or real-world databases. Hence, based on CD8+ T cell-related genes in the model, if the mechanism of the relationship between the level of risk factors and the CD8+ T cell phenotypes could be explored, then such a model will be better applied to predict the prognosis of locally advanced LUAD patients on immunotherapy and enable patients to benefit from treatments.
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Background

Intercellular communication mediated by ligand-receptor interactions in tumor microenvironment (TME) has a profound impact on tumor progression. This study aimed to explore the molecular subtypes mediated by ligand-receptor (LR) pairs in triple negative breast cancer (TNBC), identify the most important LR pairs to construct a prognostic risk model, and study their effect on TNBC immunotherapy.



Methods

LR pairs subclasses of TNBC were categorized by consensus clustering based on LR Pairs in METABRIC dataset. Least absolute shrinkage and selection operator (LASSO) Cox regression and stepwise Akaike information criterion (stepAIC) were conducted to build a LR pairs score model. The relationship between LR pairs score and immune cell infiltration, stromal score and immune score associated with TME was analyzed, and the prediction of drug therapy and immunotherapy efficacy by LR pairs score was evaluated.



Results

According to the expression pattern of 145 TNBC prognostic LR pairs, the samples were divided into three subclasses with different survival outcomes, copy number variation (CNV), TME immune cell infiltration, stromal score and immune score. The LR pairs score model constructed in the METABRIC dataset was composed of four LR pairs, and its predictive significance for TNBC prognosis was verified in GSE58812 and GSE21653 cohorts. In addition, LR pairs score was negatively correlated with several immune pathways regulating immunity and immune score, and related to the sensitivity of anti-neoplastic drugs and the effect of anti-PD-L1 therapy.



Conclusion

Our study confirmed the impact of LR pairs on the molecular heterogeneity of TNBC, characterized three LR pairs subtypes with different survival outcomes and TME patterns, and proposed a LR pairs score system with predictive significance for TNBC prognosis and anti-PD-L1 therapeutic effect, which provides a potential evaluation scheme for TNBC management.





Keywords: triple negative breast cancer, ligand-receptor pairs, tumor microenvironment, drug susceptibility, immunotherapy



Introduction

Breast cancer has become the most frequently diagnosed female cancer, accounting for 11.7% of all cancer cases (1). According to the expression of molecular markers of estrogen or progesterone receptors and human epidermal growth factor receptor 2 (HER2), breast cancers are divided into three major subtypes, including hormone receptor positive/HER2 negative subtype (70%), HER2 positive subtype (15%-20%) and triple-negative subtype (tumors lacking all 3 standard molecular markers,15%) (2). Among all three breast cancer subtypes, triple negative breast cancer (TNBC) is the most invasive subtype with the worst prognosis (3). In recent years, a thesis has been put forward that dependent on various clinical, pathological, and genetic factors, triple-negative breast cancer is a separate, heterogenic subtype of breast cancer, (4). Multi-omics profiling studies have provided novel insights into the biological heterogeneity of TNBC, evolutionizing the classification of these tumors into distinct molecular subtypes based on recurrent genetic aberrations, transcriptional patterns, and tumor microenvironment features (5). Here, molecular typing together with the prediction of the prognosis of the gene profile may help to promote the study of personalized treatment.

Tumor is a heterogeneous mixture of cancer cells and non-cancer cells. Communication between these cells within the tumor is the key to tumor progression (6). Communication between these cells is achieved by ligands produced by a cell (proteins, peptides, fatty acids, steroids, gases and other low molecular weight compounds) that are either secreted by cells or present on the cell surface and therefore acts as receptors either on or inside the target cells (7). It is reported that most cells express from tens to hundreds of ligands and receptors, forming a highly connected signal network through multiple ligand-receptor pairs (8). The biological importance and availability of receptors and their corresponding ligands have designated them as particularly useful clinical targets for cancer (9). Therefore, there are broad prospects for the research of ligand-receptor pairs in the field of molecular oncology.

In this study, we analyzed 2293 LR pairs in TNBC. The molecular subtypes of the samples were subdivided by screening LR pairs significantly related to the TNBC prognosis for exploring the heterogeneity of the subtypes defined in relation to copy number variation, tumor immune components and biological pathways. A LR pair score model was constructed by least absolute shrinkage and selection operator (LASSO) COX regression to study its correlation with TNBC prognosis, tumor microenvironment (TME) and clinical treatment response.



Materials and methods


TNBC data resources

cBio Cancer Genomics Portal (cBioPortal) is an open-access resource for exploring, visualizing, and analyzing multidimensional cancer genomics and clinical data (10). The METABRIC dataset was downloaded from cBioPortal (http://cbioportal.org/) and screened for availability. Genomic variation data of 318 TNBC samples and the motif table spectrum of 298 samples were obtained. Microarray data of 107 and 83 TNBC samples from GSE58812 and GSE21653 datasets of Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) database were collected.



Acquisition and screening of ligand receptor pairs

Ligand–receptor (LR) pairs containing 2293 interactions were downloaded from literature-curated database connectomeDB2020. If the sum of gene expression in each pair of LR was equal to or greater than the median of the sum of LR gene expression in all patients, a patient was defined as having a high expression. Otherwise, the patient was defined as having a low expression. The “survival” package in R was used to analyze the correlation between each pair of LR and the survival of TNBC patients in each cohort. The statistical significance was analyzed by the Peto and Peto modification of Gehan-Wilcoxon test, and the exponential coefficient of Cox regression model was develop to calculate the risk ratio (HR). The “sump” function in the “metap” package was employed to integrate the P values of the three cohorts using Edgington’s method, and multiple test corrections based on Storey Method were performed by the “qValue” package. LR pairs with Storey’s q-value < 0.2 and HR > 1 (or HR < 1) was considered to be related to the prognosis of TNBC.



Establishment of LR subtypes using consensus clustering

Clusters were classified using “ConsensusClusterPlus” based on the expression of TNBC prognosis related LR pairs. The K-means algorithm and “1-Pearson correlation” were specified, and each sample was divided into up to k groups by the clustering algorithm. Each of the bootstraps involved 80% of the samples with 500 repeats. The heat map of consensus clustering was generated by R packet “pheatmap”. The number of clusters was decided by Consensus cumulative distribution function (CDF) plot and delta area plot, and the standard was that the consistency within the cluster was high, the coefficient of variation was low and the area under the CDF curve would not increase significantly.



Analysis of mutations and copy number variation among subtypes

Genomic data types integrated by cBioPortal include somatic mutations, copy number alterations, gene expression and DNA methylation (11). The study directly inquired and downloaded the somatic mutations and copy number alterations data from cBioPortal, and analyzed them according to the procedures used in the study by Gao et al. (12). The “maftools” software package was used to visualize mutation data. The differences of CNV genes with significant gain and loss subtypes were compared employing chi-square test.



Functional enrichment analysis

Hallmark Gene sets were retrieved and downloaded from the Molecular Signatures Database (MSigDB) (13). The GSEA analysis of LR clusters was carried out using GSEA software program, and the most significantly enriched signaling pathways were selected derived from normalized enrichment scores (NES), the standard was false discovery rate (FDR) of <0.05.



Analysis of immunity

Immune score and stromal score were calculated in R package “ESTIMATE” (14) by using expression signatures to infer the ratio of matrix to immune cells in tumor samples. A higher score pointed to a higher content in TME. The infiltration degree of 22 immune cells in TNBC was quantified by CIBERSORT algorithm (15).



Construction of risk model based on LR pairs

Important genes were screened from LR pairs related to prognosis to construct a risk model. First of all, the prognosis-related LR pairs was analyzed by LASSO penalty Cox regression analysis, which eliminated unimportant LR pairs through reducing the weight of the model parameters. The rest of the LR pairs was filtered through the stepAIC strategy in MASS package. Genes with the lowest stepAIC value were used to build LR pairs score model. The coefficient of each gene was obtained by multivariate Cox regression analysis.



The significance of LR pairs score model in predicting clinical treatment response

The relationship between LR pairs score and gene expression level in immune checkpoints was determined by Wilcoxon test, and a box diagram was generated for visualization. Tumor Immune Dysfunction and Exclusion (TIDE) (16) predicted the immune checkpoint blockade (ICB) treatment response of the samples through simulating the accurate gene signature of two immune escape mechanisms. We downloaded drug sensitivity data for approximately 1000 cancer cell lines from Genomics of Cancer Drug Sensitivity (GDSC) (http://www.cancerrxgene.org) (17), which is the largest public resource for information on drug sensitivity in cancer cells and molecular markers of drug response. We analyzed breast cell line, including a total of 50 cell lines treated with 190 drugs.Regarding the area-under-curve (AUC) values of the anti-tumor drugs in cancer cell lines as the drug response index, we used Spearman correlation analysis to calculate the correlation between drug sensitivity and LR.score, and the adjusted FDRs were calculated using the Benjamin and Hochberg method. The correlations with | Rs | > 0.2 and FDR < 0.05 were considered as statistically significant ones. Additionally, the half-maximal inhibitory concentration (IC50) values of the recommended antineoplastic drugs Paclitaxel, Veliparib, Olaparib and Talazoparib for TNBC treatment in different LR pairs score groups were compared using pRRophetic package in R.



Statistical analysis

The statistical data of this study were analyzed by R 4.0.2 software. The Kaplan-Meier survival curve and receiver operating characteristic (ROC) curves were visualized by the “survminer” package and “timeROC”, respectively. LR score and clinical parameters were included in Cox proportional hazard regression to determine independent factors for predicting the prognosis of TNBC. And the p value cutoff was set to 0.05.




Results


Screening of LR pairs related to prognosis

Outline of the process for this study was shown in Figure 1A. To screen the LR pairs related to the prognosis of TNBC, survival analysis of LR pairs was performed on METABRIC, GSE58812 and GSE21653. The prognostic significance p-values of the LR pairs resulted from the three cohorts were combined, subjected to meta-analysis, the “sump” function in the “metap” package was employed to integrate the P values of the three queuecohorts through using Edgington’s method, and multiple test corrections based on Storey Method were performed by the “qValue” package. and were subsequently adjusted for multiple testing. A total of 145 LR pairs related to prognosis of TNBC were screened, of which 44 were poor-prognosis LR pairs and 101 were good-prognosis LR pairs (Figure 1B). For all the LR pairs related to prognosis of TNBC, we also present the interaction network diagram of them. (Figure 1C) and incorporated them into KEGG for pathway further enrichment analysis. Viral protein interaction with cytokine and cytokine receptor, cytokine−cytokine receptor interaction, cell adhesion molecules (CAMs), chemokine signaling pathway, intestinal immune network for IgA production, rheumatoid arthritis, proteoglycans in cancer, malaria, neuroactive ligand−receptor interaction and hematopoietic cell lineage were the 10 most highly enriched pathways of 145 LR pairs (Figure 1D).




Figure 1 | Screening of LR pairs related to prognosis. (A) Outline of the process for this study. (B) Prognostic volcano maps of 145 LR pairs. (C) The interactive network diagram of 145 LR pairs. (D) 10 most highly enriched KEGG pathways of 145 LR pairs.





Recognition of three TNBC subtypes based on LR pairs

We examined whether the TNBC samples can be clustered into subtypes based on the diversity among their expression pattern of the prognosis-related LR pairs. Hence, the significant prognosis-related LR pairs were included as the pattern for clustering, in which the expression abundance of each LR pair was represented by the expression sum of the ligand and receptor genes. In the METARIC cohort, 298 TNBC samples were clustered by ConsensusClusterPlus. And in optimization of the number of clusters, k, the curves of the cumulative distribution function (CDF) suggested that k=3 yielded a stable clustering result (Figures 2A, B) and was therefore chosen as the final option (Figure 2C). Further analysis of the prognostic characteristics showed significant distinction in prognosis among the three subtypes. The overall survival (OS) of C1 was the most unfavorable, the OS of C3 was the longest of the three subtypes, and the OS of C2 was between the two subtypes (Figure 2D). Additionally, we applied the same molecular subtyping method on the TNBC patient cohort of GSE58812 and GSE21653, three molecular subtypes were also formed, and significant and similar difference in prognosis among the three subtypes in survival analysis were observed (Figures 2E, F).




Figure 2 | Recognition of three TNBC subtypes based on LR pairs. (A) Consensus clustering cumulative distribution function (CDF) for k = 2–9. (B) Delta area curve of consensus clustering for samples in METARIC. (C) Heatmap of sample clustering at consensus k = 3. (D) Kaplan-Meier analysis of OS among three subtypes in METARIC dataset. (E) The Kaplan-Meier curve of OS of three molecular subtypes formed in GSE58812 data set. (F) Differences of three subtypes in GSE21653 dataset on OS.





Clinical characteristics and genomic alteration of the LR pairs-based molecular subtypes

Different clinical features and genomic mutations may also be influencing factors for different prognostic outcomes. We analyzed the clinical characteristics of each subtype in the three TNBC data sets. But no significant correlation was found between the molecular subtypes and clinical variables in METARIC database, such as tumor stage, age and gender. And we noticed significant variation in the distribution of the widely accepted 5 intrinsic molecular subtypes of breast cancer (Luminal A, Luminal B, HER2-enriched, Basal-like and Claudin-low) among the three LR pairs-based subtypes, in which the claudin-low subtype samples accounted for a large proportion of the C3 subtype, and the basal subtype samples accounted for a large proportion of the C1 subtype. There was also a significant difference in mortality between C1 and C3. More than 60% of C1 samples were dead, and more than 55% of C3 samples survived (Figure 3A). In the GSE58812 cohort, the age distribution of C1 and C3 had the opposite trend. More than half of the samples in C1 were aged 60 years or older, and more than 75% of the samples were aged under 60. There were also statistically significant differences in survival status among the three subtypes (Figure 3B), but there was no significant difference in age distribution among the three subtypes in GSE21653 data set. However, the proportion of survival patients in C1 and C3 was very different, and a high proportion of survival samples were in C3 (Figure 3C). The top 10 genes with the greatest variation among the subtypes were displayed as a waterfall plot, and top 10 CNV deletion genes and CNV amplification gens in this heatmap revealed the relatively high mutation rate and mutation diversity in C1 and C2 (Figure 3D).




Figure 3 | Clinical characteristics and Genomic alteration of the LR pairs-based molecular subtypes. (A) The distribution proportion of stage, grade, age, PAM50+claudin-low molecular subtypes and survival status in each subtype of METARIC database. (B) The distribution proportion of age and survival status of each subtype in the GSE588123 cohort. (C) The distribution of age and survival status among the three subtypes in GSE21653 data sets. (D) Waterfall map of somatic mutation and CNV in three subtypes of METARIC database in we had assigned, chi-square test. A symbol "*" indicates ANOVA p < 0.05.





Functional analysis among the LR pairs-based molecular subtypes

To explore the molecular-biological differences between LR pairs-based three molecular subtypes, GSEA was carried out in three TNBC datasets studied. For the GSEA of METARIC database, it was found that compared with C3, 14 pathways in C1 had significantly increased activity, which were largely cell cycle-related signaling pathways such as MYC targets, E2F targets, G2M checkpoint and cancer-related pathways such as glycolysis, hypoxia, etc. And the activity of 11 pathway decreased significantly, which were mainly immune-related pathways such as complement, inflammatory response, interferon alpha response, allograft rejection, interferon gamma response, etc. (Figure 4A). In C1 versus C3 of three TNBC datasets, glycolysis, hypoxia and estrogen response early were significantly up-regulated, while 10 pathways, including apoptosis, TNFA signaling via NF κ B and complement, were significantly down-regulated (Figure 4B). The activity of various pathways was also compared between C1 and C2 and between C2 and C3 subtypes in the METABRIC cohort, and 6 pathways, including glycolysis, hypoxia, epithelial-mesenchymal transition, MYC targets, myogenesis, estrogen response early and late, were activated in each LR pairs-based molecular subtype (Figures 4C, D).




Figure 4 | Functional analysis among the LR pairs-based molecular subtypes. (A) Bubble chart showing results of the GSEA comparing the C1 with the C3 subtype in METABRIC cohort. (B) Bubble chart showing results of the GSEA comparing the C1 with the C3 subtype in the three cohorts. (C) Heatmap of the normalized enrichment scores (NES) of the GSEA comparing C1 versus C2, C1 versus C3, and C2 versus C3, and the vertical axis represents the different comparison, while the honrizontal axis represents names of the pathways. (D) Radar plot showing pathways coherently activated in C1 versus C2 and C2 versus C3 in the METABRIC database.





Immune cell infiltration and immune score among the LR pairs-based molecular subtypes

After running CIBERSORT, we acquired 22 immune cell estimated proportion of three LR pairs-based molecular subtypes in three TNBC cohorts. Kruskal-Wallis test showed that most of immune cells (16 cells in total) with estimated proportion difference among the three LR pairs-based molecular subtypes were in the METABRIC cohort, including naive B cells, memory B cells, CD8 T cells, naive CD4 T cells, activated CD4 memory T cells, delta gamma T cells, resting and activated NK cells, M0 macrophages, M1 macrophages, M2 macrophages, resting dendritic cells, activated dendritic cells, resting and activated mast cells, neutrophils (Figure 5A). Naive B cells, naive CD4 T cells, activated CD4 memory T cells, delta gamma T cells, activated NK cells, M0 macrophages, M1 macrophages, M2 macrophages and activated mast cells had significant differences in estimated proportion among LR pairs-based molecular subtypes of all the three TNBC cohorts (Figures 5C, E). The stromal score, immune score and ESTIMATE score calculated by ESTIMATE algorithm were compared among subtypes by Kruskal-Wallis test. The immune score showed significant differences among the three molecular subtypes in each cohort, with p values all <0.01. The immune score/ESTIMATE score among the three molecular subtypes in each cohort also showed highly significant differences, with p values all <0.0001. And in whichever of the three scores, C3 was always > C2 > C1 (Figures 5B, D, F).




Figure 5 | Immune cell infiltration and immune score among the LR pairs-based molecular subtypes. (A) The estimated proportion of 22 immune cells among the LR pairs-based molecular subtypes in METABRIC (A), GSE58812 (C), GSE21653 (E) cohort. The comparison of stromal score and immune score and ESTIMATE score among three LR pairs-based molecular subtypes in METABRIC (B), GSE58812 (D) and GSE21653 (F) cohorts calculated by ESTIMATE. P value is calculated by Kruskal-Wallis test, the asterisks represented the statistical p value, ns(no significance), p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.





Construction and evaluation of LR pairs score model

To select the LR pairs the most suitable for predicting the prognosis of TNBC, LASSO COX regression analysis was performed on 145 LR pairs in the METABRIC dataset, and 6 LR pairs were screened in the process of 10-fold cross-validation, as they presented non-zero coefficients in the fitted LASSO COX regression models (Figure S1A). Four LR pairs (CXCL9->CCR3, GPI-> AMFR, IL18->IL18R1, and PLG->F2RL1), which had both the statistical fit of the model and the number of parameters used to fit into account, were finally selected by stepwise multifactor regression analysis. The coefficients corresponding to these predictors in the resulted COX regression model were listed in Figure S1B. Based on the 4 LR pairs, an LR-pairs score model, LR-pairs score, was constructed to quantitatively analyze the LR-pairs patterns of TNBC samples. We found that the LR score of the C1 subtype was significantly higher than those of the subtypes C2 and C3 in METABRIC, GSE58812 and GSE21653 cohorts (Figures 6A, D, G). To analyze the clinical correlation of LR pairs, the TNBC samples of each cohort were divided into two groups according to LR pairs score. Patients with low LR scores in the METABRIC cohort showed a significantly favorable survival outcome (Figure 6B). The area under curve (AUC) of the time-dependent ROC curves of LR pairs score were 0.72, 0.63, 0.65, and 0.66 at 1, 3, 5, and 10 years, respectively (Figure 6C). The reliability of LR pairs score was further verified using 107 samples from GSE58812 and 83 samples from GSE21653. In both verification sets, the samples with high LR pairs score showed higher mortality and shorter survival time (Figures 6E, H). The AUC values of the LR pairs score model in the GSE58812 validation set were 0.72, 0.75, 0.67 at 3, 5, 10 years, respectively (Figure 6F). The LR pairs score model had the optimal performance on another verification cohort GSE21653, with AUC corresponding to 1, 3, and 5 years of survival of 0.90, 0.87, and 0.78, respectively (Figure 6I). Also, Univariate Cox regression model analysis in METABRIC showed that stage and age and LR pairs score were significantly correlated with the prognosis of TNBC (Figure 6J). These prognostic factors were included in the multivariate Cox regression model, and it was found that they could be regarded as independent prognostic factors of TNBC (Figure 6K).




Figure 6 | Construction and evaluation of LR pairs score model. (A) The box chart of LR pairs scores in three LR pair-based subtypes in the METABRIC cohort, Kruskal-Wallis test. (B) Kaplan–Meier estimates comparing OS of samples with distinct LR pairs score in the METABRIC cohort, Log rank test. (C) The time-dependent ROC curves showing the prognosis-predicting capacity of LR pairs score in the METABRIC cohort. (D): The box chart showing LR pairs scores in different LR pair-based subtypes in the GSE58812 cohort, Kruskal-Wallis test. (E) Kaplan–Meier analysis of the LR pairs score model in the GSE5881cohort, Log rank test. (F) The time-dependent ROC curves showing the prognosis-predicting value of LR pairs score model in the GSE58812 cohort. (G). The box chart of LR scores in different LR pair-based subtypes in the GSE21653 cohort, Kruskal-Wallis test. (H) Kaplan–Meier estimates comparing OS of samples with distinct LR pairs score in the GSE21653 cohort, Log rank test. (I) The ROC curves showing the prognosis-predicting capacity of LR score in the GSE21653 cohort. (J, K) The forest plots showing the coefficients and their confidence interval of the univariate and multivariate COX regression which included the factors of LR pairs score, patient age, stage, grade, and patient outcomes in the METABRIC. The asterisks represented the statistical p value, ns(no significance) ****p < 0.0001.





Correlation between LR pairs score and immune composition and immune-related pathways

To find out the most relevant pathway to LR pairs score, R package “GSVA” was used to obtain single sample GSEA (ssGSEA) score of samples in METABRIC with different functions, and 30 pathways significantly related to LR pairs score were obtained by Pearson correlation analysis. Among them, 2 pathways were positively correlated with LR pairs score, while 28 pathways were negatively correlated with LR pairs score. As ssGSEA scores of immune-related pathways, such as chemokine signaling pathway, antigen processing and presentation, natural killer cell mediated cytoxicity, toll like receptor signaling pathway, natural killer cell mediated cytotoxicity and T cell receptor signaling pathway, were significantly negatively correlated with LR pairs score (Figure 7A), we further analyzed the relationship between LR pairs score and tumor immune components. Half of the 22 kinds of immune cells were significantly different between high LR pairs score and low LR pairs score samples (Figure 7B). We also find high-and low-LR pairs score groups have obvious gap in ESTIMATE and immune scores, and this gap is statistically for all three scores (Figure 7C). Furthermore, the Pearson correlation analysis between LR pairs score and immune cells showed that LR pairs score was significantly negatively correlated with CD8 T cells, activated CD4 memory T cells and macrophages, but positively correlated with M0 macrophages and M2 macrophages (Figure 7D). These results indicated the association between LR pairs score and tumor immunity.




Figure 7 | Correlation between LR pairs score and immune composition and immune-related pathways. (A) Pearson correlation analyses results between ssGSEA scores of KEGG pathways and LR score in METABRIC with |r|>0.4. (B) The box chart showing the relative abundance of the 22 immune cells in high- and low-LR pairs score groups in METABRIC cohort, Wilcoxon test. (C) The box chart showing ESTIMATE immune scores of high- and low-LR pairs score groups in METABRIC cohort, Wilcoxon test. (D) Pearson correlation analysis of LR pairs score and immune cell components. The asterisks represented the statistical p value, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns(no significance).





Evaluation of the significance of LR pairs score model in the prediction of clinical treatment response

In view of the above association between LR pairs score and tumor immunity, we further analyzed the association between LR pairs score and immune checkpoint genes. In terms of expression, 18 of the 19 immune checkpoints showed differences between the two LR pairs score groups, and the high LR pairs score group had a greater response (Figure 8A). The high-LR-pairs-score group also showed significantly up-regulated T cell exclusion score and significantly down-regulated T cell dysfunction score in comparison with low-LR-pairs-score group, while TIDE score showed no significant difference between the two groups (Figure 8B). The ability of LR pairs score to predict the response to immune checkpoint inhibitors (ICI) treatment was examined in the immunotherapy cohort IMvigor210 (anti-PDL1). Compared with the samples of complete response (CR) and partial response (PR), the samples of stable disease (SD) and progressive disease (PD) had significantly higher LR pairs score (Figure 8C). The samples treated with anti-PD-L1 were divided into low LR pairs score group and high LR pairs score group. In the IMvigor210 cohort, the prognosis of samples with high LR pairs score was still significantly worse than those samples with low LR pairs score (Figure 8D). The proportion of patients with low LR pairs scores who responded actively to anti-PD-L1 treatment was significantly more than those with high LR pairs scores (Figure 8E).




Figure 8 | Evaluation of the relationship between LR pairs score model and ICI treatment. (A) The association between LR pairs score and gene expression of immune checkpoints, Wilcoxon test. (B) The correlation between LR pairs score model and exclusion score, dysfunction score and TIDE score predicted by TIDE method, Wilcoxon test. (C) LR pairs score statistical difference between complete response (CR)/partial response (PR) group and stable disease (PD)/progressive disease (PD) group in IMvigor210 cohort. (D) The survival curve of different LR pairs score groups in the IMvigor210 cohort. (E) Response to anti-PD-L1 treatment in patients with different LR pairs score in the IMvigor210 cohort, Log rank test. The asterisks represented the statistical p value, ns(no significance) **p < 0.01, ***p < 0.001, ****p < 0.0001.



The GDSC database stores treatment response data of a wide range of anti-cancer drugs, and gene expression profiles of a large collection of cancer cell lines. Through Spearman correlation analyses of the GDSC data, we found that LR pairs score was significantly correlated to treatment responses of 29 drugs as represented by area-under-curve (AUC) of the drug sensitivity curve. And 28 of the correlation pairs were positive, suggesting that a high LR pairs score in tumor was related to its resistance to these drugs (Figure 9A). Besides, the estimated IC50 values of Paclitaxel, Veliparib, Olaparib and Talazoparib in the two LR pairs score groups were compared. It was found that the IC50 values of the four drugs in the low LR pairs score group were significantly lower than those in the high LR pairs score group, indicating that the low LR pairs score group may be more sensitive to the treatment of the four drugs (Figure 9B).




Figure 9 | The relationship between LR pairs score and drug sensitivity. (A) The correlation between LR pairs score and AUC of drug-sensitive curve, Spearman correlation analysis. (B) The violin plot dispalys the differences in the estimated IC50 values of Paclitaxel, Veliparib, Olaparib, Talazoparib between distinct LR pairs score groups, wilcoxon test. The asterisks represented the statistical p value, ***p < 0.001, ****p<0.0001.






Discussion

In the progression of cancer, cancer cell-stromal cell crosstalk is orchestrated by a plethora of ligand-receptor interactions to generate a TME that favors tumor growth (18). Intercellular communication through LR pairs in the tumor microenvironment underlie the poor prognosis of multiple cancers, such as pancreatic ductal adenocarcinoma (19) and colorectal cancer (20). Increasing discoveries of receptors and ligands and their interactions has encouraged the integration of the available information on ligand-receptor interactions from many databases to facilitate research (21). ConnectomeDB2020 is a database that integrates 2293 pairs of LR interactions. In this study, we analyzed 2293 LR pairs in the database for TNBC.

Firstly, through TNBC survival analysis on 2293 LR pairs, 145 LR pairs significantly related to the prognosis of TNBC were screened. According to the expression of the 145 LR pairs, three LR pairs subclasses of TNBC were obtained employing unsupervised clustering. Among the three LR pairs subtypes, C1 had the worst prognosis, and the proportion of basal-like subtypede, the most aggressive breast cancer subtype (22), was higher in C1 than in the other two groups, and the highest proportion of deaths among the corresponding clinical features. Furthermore, C1 showed the lowest anti-tumor immune response, such as lower tumor infiltrating lymphocytes (naive B cell, CD 8 T cell, naive CD4 T cell) (23) and stromal score and immune score, and these might be the causes of poor prognosis of subtype C1.

In addition to subtyping TNBC based on 145 LR pairs, Lasso regression and Cox analysis were performed on 145 pairs of LR pairs, and 4 pairs of LR pairs were selected to construct an LR pairs score model. Its prognostic significance was confirmed in both TCGA and two GEO datasets. Compared with the samples with low LR pairs score, the samples with high LR pairs score showed significantly shorter survival time. According to previously published reports, Chemokine signaling pathway promotes the antitumor response of the immune system by recruiting immune cells (24). Antigen processing and presentation play a key role in antitumor immunity as the initiation of adaptive immune response (25). The strength of T cell receptor signaling pathway is a key determinant of T cell-mediated antitumor response (26). Natural killer cell mediated cytoxicity is an important effector mechanism of immune system against cancer (27). Activation of the toll like receptor signaling pathway can be used to enhance immune responses against malignant cells (28). In this study, LR pairs score was not only significantly negatively correlated with chemokine signaling pathway, antigen processing and presentation, T cell receptor signaling pathway, natural killer cell mediated cytoxicity, toll like receptor signaling pathway, natural killer cell mediated cytotoxicity (29) and T cell receptor signaling pathway (30) that mediate antitumor immunity, but also with stromal score and immune score and the infiltration of CD8 T cells, activated CD4 memory T cells and macrophages. Additionally, there was no significant difference in TIDE scores between high and low LR pairs scores, and immune escape may not have a significant effect on LR pairs scores. Considering all these results together, we suggested that TNBC samples with high LR pairs score maight not have strong antitumor immunity.

It is reported that different ligands expressed by cancer cells bind to cell surface receptors on immune cells, trigger inhibitory pathways (such as PD-1/PD-L1) and promote immune cells immune tolerance (31). The ability of 4-LR pairs score to predict the response to immune checkpoint inhibitors (ICI) treatment was examined in the anti-PDL1 cohort. We detected that LR pairs score in patients with disease complete response or partial response was significantly lower than that in patients with stable disease or progressive disease. And the clinical benefit from anti-PD-L1 treatment in the low LR pairs score group was significantly greater than that in the high LR pairs score group, which supported the validity of LR pairs score model in predicting anti-PD-L1 treatment.

Researchers have found that some molecular targeted anti-neoplastic drugs can prevent immunotherapy resistance in cancer. Combining these anti-neoplastic drugs with ICI immunotherapy, it can greatly improve the prognosis of patients rather than applying a single drug therapy (32). In this study, 29 pairs of LR pairs score and drug sensitivity were determined in GDSC database by Spearman correlation analysis, of which 28 pairs of drug sensitivity curves showed a significant positive correlation between AUC and LR pairs score. This indicated that they showed drug resistance related to LR pairs score, and only Wnt-C59 showed sensitivity related to LR pairs score.



Conclusion

In conclusion, according to the expression profile of LR pairs, TNBC was divided into three LR pairs subtypes, which were considerably different in prognosis, CNV, tumor infiltrating immune cells and immune score. In addition, four LR pairs were selected to construct a risk model, which could potentially predict the response of patients to targeted therapy, chemotherapy and immunotherapy.
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Background

Radiotherapy plays an important effect on the standard therapy of esophageal squamous cell carcinoma (ESCC). However, the efficacy of the therapy is limited and a few patients do not achieve satisfactory treatment results due to the existence of radiation resistance. Therefore, it is necessary to identify the potential predictive biomarkers and treatment targets for ESCC.



Methods

We performed the whole-exome sequencing to determine the germline and somatic mutations in ESCC. Functional enrichment and pathway-based protein-protein interaction analyses were used to ascertain potential regulatory networks. Cell survival and cell death after treatment with radiotherapy were determined by CCK-8 and LDH release assays in ESCC cells. The correlations of NOTCH1 and tumor immune infiltration were also analyzed in ESCC.



Results

Our results showed that 344 somatic and 65 germline differentially mutated genes were detected to be radiosensitivity-related loci. The tumor mutational burdens (TMB) or microsatellite instability (MSI) were not significantly correlated with the response to radiotherapy in ESCC patients. Pathway-based protein-protein interaction analyses implied several hub genes with most nodes (such as PIK3CA, NOTCH1, STAT3 and KDR). The in vitro studies showed that the knockdown of NOTCH1 inhibited cell survival and rendered more cell death after the treatment with radiotherapy in ESCC cells, while NOTCH1 overexpression had the opposite effects. Moreover, NOTCH1, frequently up-regulated in ESCC, was negatively correlated with activated B cell and immature dendritic cell in ESCC. High expression of NOTCH1 was accompanied with the low levels of some immunotherapy-related cells, including CD8(+) T cells and NK cells.



Conclusions

These results indicate the differences of the germline mutations and somatic mutations between the radiosensitive and radioresistence groups in ESCC and imply that NOTCH1 plays important roles in regulating the radiosensitivity of ESCC. The findings might provide the biomarkers and potential treatment targets for improving the sensitivity to radiotherapy in ESCC.





Keywords: ESCC, radiotherapy, NOTCH1, survival, immune



Introduction

Esophageal carcinoma (EsC), which is characterized by poor prognosis, high mortality rate and distinct epidemiologic pattern, is one of the most prevalent malignant tumors in the world. According to the statistical data from World Cancer Research Fund in 2018, EsC is the seventh most common cancer in men and the 13th in women (1). There are two main types of EsC. Esophageal adenocarcinoma is developed at the junction of the esophagus and stomach. Esophageal squamous cell carcinoma (ESCC), which occurs in the upper part of the esophagus, is the major subtype and accounts for the vast majority of cases (2). ESCC usually remains asymptomatic until extensive local, regional, or distant spread has occurred and ranks the sixth leading cause of cancer-related death (1). Surgical resection combined with the neoadjuvant chemoradiotherapy is considered as the standard treatment for ESCC. However, some patients have to only receive radical chemoradiotherapy because they do not meet the surgical indication. Although the chance of cure with radio-therapy is quite low, a significant portion of patients will receive palliation (3). Therefore, radiotherapy plays an important effect on the comprehensive treatment for ESCC.

Resistance is still considered as the major cause of radiation treatment failure for ESCC patients (4). Due to the existence of inherent or acquired radiation resistance, some patients failed to achieve enormous therapeutic effects, resulting in the metastasis or high recurrent rate, and ultimately death. Therefore, it is necessary to identify the critical factors involved in regulating the sensitivity of radiotherapy for ESCC, which will help to improve its efficiency. It is reported that the noncoding RNA NORAD induced by radiation facilitates radiotherapy resistance via the EEPD1/ATR/Chk1 pathway in ESCC (5). The sensitivity to concurrent chemoradiotherapy was increased by STAT3β by promoting cellular necroptosis in ESCC (6). Inhibition of carbonic anhydrase IX alters hypoxic tumor micro-environment and increases the efficacy of radiotherapy in ESCC (7). Nevertheless, the molecular mechanisms of radioresistance in ESCC have not been fully elucidated and still need to be further determined.

In the present study, whole-exome sequencing was utilized to identify mutations predicting benefits from radiation therapy in ESCC patients. We examined the germline and somatic mutations in ESCC and found several critical mutations of candidate genes potentially associated with the response to radiotherapy. Our study also showed that NOTCH1, which was mutated in the radiosensitive group, negatively regulated the response to radiotherapy in ESCC cells. The results provide some potential predictive biomarkers and therapy targets for improving the efficiency of radiotherapy in ESCC.



Materials and methods


Tissue and blood samples

We collected the formalin-fixed paraffin-embedded tumor tissues and their paired normal blood DNA from six Chinese ESCC patients. Tumor cell purity was assessed in hematoxylin and eosin (H&E) sections. At least 5 slices of 10 μm of thickness were cut from the paraffin block and tumor regions were scraped according to the assessment of tumor enriched area. For these six patients, all of them had received radical surgery to make sure none tumor tissues left pathologically. After surgery, all patients were received intensity-modulated radiation therapy (IMRT). The clinicopathologic characteristics of ESCC patients were provided in Table 1. According to the responses to radiotherapy, the ESCC patients were divided into the sensitive group (group S) and radioresistant group (group NS). Group NS indicated that no response to radiotherapy was achieved in ESCC patients, while the sensitive group (group S) meant that complete response to radiotherapy was achieved. All patients agreed and signed informed consent before recruitment to the study, and the ethical committee of Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine has approved the studies.


Table 1 | Clinicopathologic characteristics of ESCC patients who received radiotherapy.





Sequencing analysis

Whole-exome sequencing was performed by Precisiongenes Technology, Inc. following a protocol including genomic DNA extraction, DNA library construction, exome capture by SureSelect Clinical Research Exome V2 Capture Kits (Agilent, SantaClara, California, United States) and paired-end 150bp sequencing on Illumina NovaSeq 6000 (Illumina Inc). Tumor and normal library pairs were sequenced on a single flow cell. And germline-only samples were run on the other flow cell. Whole length of probe Clinical Research Exome V2 is 67.3Mb.

Raw fastq data achieved from Illumina were firstly checked quality control, removed adapters and low-quality reads with FASTP (8). Secondly, Burrows Wheller aligner (BWA) MEM algorithm was applied to align high-quality clean data onto the hg19 reference genome (GCA_000001405.1) with default options. Thirdly, Samtools was used to convert the SAM file into BAM (9). Fourthly, Picard Toolkit (https://github.com/broadinstitute/picard) was carried out to sort mapped reads according chromosome coordinate, mark PCR duplicates and fix paired-end information in BAM files.

For germline mutations, single-nucleotide polymorphisms (SNPs), small insertions and deletions (INDELs) were discovered and filtered following the Genome Analysis Toolkit (GATK, https://software.broadinstitute.org/gatk/) recommendations of DNAseq best practice guidelines (https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels-) (10).

For tumor somatic mutations, candidate single-nucleotide variants (SNVs) and INDELs were called by Mutect2. Then, an estimate of the fraction of reads due to cross-sample contamination for each tumor sample and an estimate of the allelic copy number segmentation of each tumor sample were emitted by Get Pileup Summaries and Calculate Contamination. Finally, somatic mutations were filtered by Filter Mutect Calls. Notably, Mutect2, Get Pileup Summaries, Calculate Contamination and Filter Mutect Calls are components of GATK. And the process mentioned above was referred to website (https://gatk.broadinstitute.org/hc/en-us/articles/360035894731-Somatic-short-variant-discovery-SNVs-Indels-).



Identification of differentially mutated genes

65 germline differentially mutated genes and 344 somatic differentially mutated genes were filtered from all mutation genes following the criteria that any one of the mutated genes was not in both the radiation-resistant group and the radiation-sensitive group at the same time.



Tumor mutation burden and microsatellite instability

Tumor mutation burden (TMB) is defined as the number of somatic SNVs, and INDELs per megabase of genome examined (mut/Mb) (Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden). All SNVs and INDELs in the captured region of targeted genes, including synonymous mutations, are initially counted before filtering as described below. Synonymous mutations are counted in order to reduce sampling noise. While synonymous mutations are not likely to be directly involved in creating immunogenicity, their presence is a signal of mutational processes that will also have resulted in nonsynonymous mutations and neoantigens elsewhere in the genome.

The form of genomic instability associated with defective DNA mismatch repair in tumors is to be called microsatellite instability (MSI). An algorithm for the detection of somatic microsatellite changes using paired tumor-normal sequence data was applied to all tumors, yielding a quantitative score by MSIsensor (11). Tumors deemed to have inadequate tumor content or quality (<200 × median exon coverage, <10% median exonic variant allele frequency, or no mutations with ≤20% tumor content on pathologic review) were flagged, and their MSIsensor scores were excluded from the primary analysis.



Cell culture, transfection and CCK-8 assay

We got the ESCC cell lines (KYSE-150 and TE-1) from the cell bank of the Chinese Academy of Sciences (Shanghai, China). Cells were cultured in RPMI 1640 (Hyclone, United States) supplemented with 10% fetal bovine serum (FBS, Gibco, United States) and 1% penicillin/streptomycin under a 5% CO2 atmosphere at 37°C. The lentiviruses containing the cDNA encoding NOTCH1 or NOTCH1 shRNA were purchased from Genechem (Shanghai, China) and used to infect the ESCC cells in the presence of 6 μg/ml polybrene (sigma). Cell Counting Kit-8 (CCK-8, CK04, Dojindo, Japan) was utilized to assess cell viability and proliferation. Briefly, 3×103 cells per well were seeded in 96 well microplates. At indicated time points, 10 µL of CCK-8 solution was added to each well and incubated for 2 hours at 37°C. Then, we measured the absorbance values at 450 nm by using the microplate reader.



Real-time PCR and LDH release assay

Real-time PCR (qPCR) was performed as described previously (12). The primers for NOTCH1 were listed as follows: Forward: 5’-GAGGCGTGGCAGACTATGC-3’, Reverse: 5’- CTTGTACTCCGTCAGCGTGA-3’. An LDH Cytotoxicity Assay kit for LDH release (catalog no. C0017) was purchased from Beyotime (Shanghai, China) and the experiments were performed according to the manufacturer’s instructions.



Statistical analysis

Using the cluster Profiler package (13), Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed with significantly genes. Correlation was evaluated by statistical R/Bioconductor packages. The Student’s t-test and Fisher’s exact test were utilized to estimate the significance of differences between groups. The values were represented with the mean ± standard error of the mean (SEM) from at least three independent experiments. The P value of 0.05 or less was considered statistically significant.




Results


Identification of somatic mutations in ESCC

According to the response to radiation therapy, ESCC patients were divided into two groups, radio-sensitive and radio-resistant groups. The detailed clinical information was listed in table 1. We performed the whole exome sequencing by utilizing their tumor tissues and paired blood samples. After read quality control, mapping and alignment to the hg19 reference genome, a total of 1,829 somatic variations (median, 209.5; range, 89–807; SD, 271.3) were identified in six patients (Figure 1A). The exonic (44.07%) and intronic (37.07%) region accounted for the majority of variation location (Figure 1B). The predominant nucleotide changes were C>T and T>C (Figure 1C). We analyzed somatic mutation profiles to unravel the mechanism in the radio sensitivity of ESCC (Figure 1D). The result indicated that signature Age has high weight in all six ESCC patients. And the insensitive group was enriched in signature AID/APOBEC cytidine deaminases (COSMIC Signatures version 3.2).




Figure 1 | Identification of somatic mutations profiles in ESCC. (A) The number of SNVs and InDels was acquired in each sample. (B) The statistics of variation location in the genome in ESCC. (C) The distribution of somatic mutation type in ESCC patients. (D) The mutation signature distribution based on COSMIC signature database. Group S means the radiosensitive group and group NS means the radioresistant group.





TMB, Intra-tumor Heterogeneity and MSI Comparisons between Radio-resistant and sensitive Groups

It is known to all that there are closely linkages between tumor mutational burdens (TMB) or microsatellite instability (MSI) and the immunotherapy response in the treatment of cancers. Therefore, we analyzed whether TMB, MSI and Intra-tumor Heterogeneity were related with the response to radiotherapy in ESCC. As shown in Table 2, the value of TMB ranged from 1.22 to 11.65. Although the correlation coefficient is 0.55, there was no significant difference between the two groups (p=0.26). Moreover, MSI was calculated to estimate the differences as well. A correlation coefficient of 0.29 (p=0.58) between two groups indicates no significant association of MSI with the response to radiotherapy in ESCC patients. To determine the correlation between radiosensitivity and clonality, we further analyzed the purity and copy number alterations in this study. The results showed that the correlation coefficients were -0.02 (P=0.97) and 0.18 (P=0.74), respectively. There was no obvious association between radiosensitivity and clonality in ESCC. In addition, we also studied whether age and tumor stage influenced the response to radiotherapy. The results showed that no significant differences were acquired, indicating that age and tumor stage are not critical factors in the radioresistence of ESCC.


Table 2 | Difference of TMB, MSI, and purity between radio-sensitive and radio-resistant groups.





Functional analysis of somatic differentially mutated genes

According to the criterions mentioned in the methods, 344 differentially mutated genes were filtered from all somatic mutation genes. By referring to the COSMIC cancer gene census, 33 mutated genes were retained and presented in Figure 2A. GO and KEGG enrichment analysis were performed on these mutated genes to further explore their functions and effects. As displayed in Figure 2B, biological process terms showed that the mutated genes mainly participated in histone modification, transmembrane transport, and several classic signal transduction processes of cancer in response to DNA damage. Additionally, these genes were expressed in cellular components such as cell-cell junction, cell-substrate junction, and collagen−containing extracellular matrix, which was associated with migrations and invasions. Enriched molecular function terms showed the similar results, including cell adhesion molecule binding and methyltransferase activity. The top 30 significantly enriched KEGG pathways mainly included cell cycle, MAPK, VEGF, NOTCH, and mTOR signaling pathways, whose activation or inactivation is closely correlated with cell survival, proliferation and the progression of cancer (Figure 2C).




Figure 2 | Functional analysis of somatic differentially mutated genes. (A) The oncoprint plot of 33 somatic mutations. (B, C) GO (B) and KEGG (C) enrichment analysis were performed on the differential mutant genes. Group S means the radiosensitive group and group NS means the radioresistant group.



Furthermore, we also performed the protein-protein interaction (PPI) network by utilizing the differentially mutated genes. As shown in Figure 3A, several hub genes with most nodes, such as PIK3CA, NOTCH1, STAT3 and KDR, were identified. Combined with the relative pathways, a pathway-based protein interaction was presented in Figure 3B. The mediators and pathways involved in the network were likely related with affecting the radiosensitivity in ESCC.




Figure 3 | The protein-protein interaction network in ESCC. (A, B) The protein-protein interaction network (A) by utilizing the differentially mutated genes and pathway-based protein interaction (B) were presented.





Identification of germline mutations in ESCC

Meantime, we also examined the genetic differences between the radio-sensitive and radio-resistant groups, 65 germline differentially mutated genes were found. In Figure 4A, mutation frequency was shown in blocks of different shade. Compared with the radio-sensitive group, there were more mutated genes and greater mutated rates in the radio-resistant group. After the analysis of differences between groups, spearman correlation coefficients were calculated to evaluate the within-group differences (Figure 4B). Positive coefficients (≥0.7) revealed high positive correlation within samples in the same group. To investigate functions of these germline differentially mutated genes, KEGG and GO enrichment analysis were performed. The results highlighted several pathways correlated with DNA damage repair, such as Homologous recombination, Mismatch repair and Base excision repair (Figure 4C). GO enrichment analysis showed that the germline differentially mutated genes were predominantly enriched in DNA damage checkpoint, cell cycle checkpoint, basement membrane, extracellular matrix component, and motor activity (Figure 4D). The results imply that the germline mutations might be also involved in regulating the radiosensitivity in ESCC.




Figure 4 | Identification of germline mutations in ESCC. (A) Heatmap of 65 differentially mutated genes between radio-sensitive and radio-resistant groups. (B) Spearman correlation coefficient analysis of ESCC samples. (C) Top 15 enriched KEGG pathway of differentially genes. (D) Significantly enriched GO of differentially genes. P-value of all GO terms displayed in pictures is smaller than 0.01. Group S means the radiosensitive group and group NS means the radioresistant group.





NOTCH1 negatively regulates the response to radiotherapy in ESCC

To determine the role of NOTCH1 (a hub gene of PPI in somatic mutated genes) in the radiosensitivity of ESCC, we then knocked down its expression in ESCC cells (KYSE-150 and TE-1) by shRNA and utilized qPCR to verify the knockdown efficiency (Figure 5A). As shown in Figure 5B, results of cck-8 showed that treatment with ionizing radiation (IR, 4Gy) led to the decrease of cell viability in ESCC cells. The inhibitory effects of IR on cell growth were enhanced by the knockdown of NOTCH1. Consistently, the knockdown of NOTCH1 facilitated IR-induced cell death as determined by LDH release assay (Figure 5C). Furthermore, to demonstrate the physical effects of NOTCH1 on regulating the radiosensitivity of ESCC, we also overexpressed NOTCH1 in ESCC cells (Figure 5D). Our result showed that the decrease of cell viability induced by IR was attenuated by the overexpression of NOTCH1 (Figure 5E). NOTCH1 overexpression significantly mitigated IR-induced cell death in ESCC cells (Figure 5F). These results imply that the response to radiotherapy is negatively regulated by NOTCH1 in ESCC.




Figure 5 | The response to radiotherapy is negatively regulated by NOTCH1. (A) The knockdown efficiency was verified by real-time PCR in ESCC cells. (B) Ionizing radiation (IR)-induced the decrease of cell viability was facilitated by the knockdown of NOTCH1. * indicates p < 0.05 compared with shControl group, # indicates p < 0.05 compared with IR+shControl group. (C) The promotive effects of IR on LDH release were enhanced by NOTCH1 knockdown. (D) Real-time PCR was utilized to determine the overexpression efficiency. (E) The decrease of cell viability induced by IR was attenuated by the overexpression of NOTCH1. * indicates p < 0.05 compared with Vector group, # indicates p < 0.05 compared with IR+Vector group. (F) IR-induced cell death was mitigated by NOTCH1 overexpression in ESCC cells. All data was represented as the mean ± standard error of the mean (SEM) from at least three independent experiments. Vector and shControl were utilized as the internal reference to calculated the relative values, respectively.





High expression of NOTCH1 was accompanied with the low levels of some immunotherapy-related cells

It is widely accepted that the response of tumors to radiotherapy is regulated by multifactorial. Not only intrinsic cellular radioresistance but also tumor immune microenvironment plays important roles in affecting the death of cancer cells after the treatment with radiotherapy (14, 15). To determine whether notch1 also has a regulatory effect on the immune microenvironment in ESCC, we thus analyzed the correlation of notch1 and tumor immune infiltration. As shown in Figure 6A, the results showed that the expression of NOTCH1 was not always consistent in different cancers compared with their normal tissues by using the TIMER database. We found that NOTCH1 was frequently up-regulated in some cancers including colon adenocarcinoma, kidney renal clear cell carcinoma and esophageal carcinoma, whereas the expression of NOTCH1 was significantly down-regulated in kidney renal papillary cell carcinoma and lung adenocarcinoma. The analysis results of the UALCAN database showed that the expression of NOTCH1 was significantly increased in esophageal squamous cell carcinoma (Figure 6B). To identify the prognosis values of NOTCH1 in ESCC, we then determined whether NOTCH1 was associated with the clinical outcome by utilizing the Kaplan-Meier Plotter (16). As shown in Figure 6C, D, there were no significant differences on the overall survival (OS) and recurrence free survival (RFS) between the high levels of NOTCH1 and the low levels of NOTCH1 in ESCC patients. Furthermore, we also examined the differences of immune cell based on the expression of NOTCH1 in ESCC. As shown in Figure 6E, the immune score was significantly decreased in the group with high NTOCH1 expression. Moreover, we found several immune cells, including activated B cell, activated CD8 T cell, activated dendritic cell, monocyte and CD56bright natural killer cell, were significantly enriched in the group with low NTOCH1 expression in ESCC (Figure 6F). To further explore the potential relationships between NOTCH1 expression and immune cell type, we performed the correlation analyses. Our results showed that the expression of NOTCH1 was negatively correlated with activated B cell (r=-0.2755, P=0.0175) and immature dendritic cell (r=-0.2409, P=0.0387) (Figure 6G). In addition, it is widely accepted that checkpoint inhibitors play important roles in the therapy of cancer. We then examined the relationship between NOTCH1 and the four immune checkpoint molecules. However, no significant relations were observed between NOTCH1 and the four immune checkpoint molecules in ESCC (Figure 6H). The results indicate that activated B cell and immature dendritic cell likely participate in NOTCH1-regulated the sensitivity of radiotherapy in ESCC.




Figure 6 | NOTCH1 is correlated with a few immunotherapy-related cells. (A) Expression of NOTCH1 in different types of cancers and their normal tissues. (B) NOTCH1 was significantly upregulated in esophageal cancer, especially in ESCC. C and D: There were no significant differences on the overall survival (C) and recurrence free survival (D) between the high levels of NOTCH1 and the low levels of NOTCH1 in ESCC patients. (E) The immune score was significantly decreased in the group with high NTOCH1 expression in ESCC. (F) Several immune cells, including activated B cell, activated CD8 T cell, activated dendritic cell, and CD56bright natural killer cell, were significantly enriched in the group with low NTOCH1 expression in ESCC. (G) Expression of NOTCH1 was negatively correlated with activated B cell and immature dendritic cell. (H) There were no significant relations between NOTCH1 and the four immune checkpoint molecules in ESCC. *P<0.05, **P<0.01, ***P<0.001, and ns, P>0.05.






Discussion

It is widely known that radiation therapy is an important strategy for the treatment of cancers, especially in ESCC. However, due to the existence of inherent or acquired radiation resistance, the effect of radiotherapy is far from meeting people’s expectations. Many patients with ESCC have not been significantly improved after radiotherapy. Therefore, it is necessary to determine the critical factors involved in affecting the radiosensitivity of ESCC. In the present study, we identified some somatic and germline mutations of genes and constructed the pathway-based protein interaction network by performing the whole-exome sequencing, which were potentially associated with the response to radiotherapy in ESCC. Moreover, in vitro studies showed that the inhibitory effects of IR on cell survival were negatively regulated by NOTCH1 in ESCC cells. The results provide some potentially new treatment targets for improving the sensitivity of radiation in ESCC.

One of the most important findings in this study is that some somatic mutated genes potentially associated with the radiosensitivity were identified in ESCC. The hub genes (such as STAT3, PIK3CA and NOTCH1) in protein-protein interaction network likely play important roles in the response to radiotherapy. STAT3 as a signal transducer and transcription activator mediates many cellular physiological processes, including cell proliferation, survival, angiogenesis and inflammatory response. Accumulating evidence has implicated that Stat3 plays an important role in regulating the response to radiotherapy in ESCC. Previous studies have shown that inhibition of the STAT3 signaling axis in ESCC cells increases radiosensitivity by inducing apoptosis and enhancing DNA damage after radiotherapy (17, 18). Besides, the epithelial–mesenchymal transition induced by ionizing radiation and radioresistance are attenuated by STAT3 inhibition in ESCC (19). The conclusions are in accordance with our result that mutation of STAT3 was acquired in the radiosensitive group in ESCC. PIK3CA activates AKT1 by the stimulations of receptor tyrosine kinase ligands such as EGF, insulin, IGF1, VEGFA and PDGF, leading to activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology (20). It is reported that hyper-activation of PI3K is frequently observed in ESCC tissues and selective targeting PI3Kα has been considered as a promising strategy for the ESCC therapy (21). DNA damage, G2/M arrest and apoptosis induced by radiotherapy are facilitated by PI3Kα inhibition in ESCC, the sensitivity to radiation is increased by PI3Kα inhibitors in esophageal squamous cell carcinoma (22). PIK3CA mutation is associated with a better disease-free survival and overall survival in esophageal squamous cell carcinoma (23). It is in accordance with our study that mutation of PIK3CA was acquired in the radiosensitive group. NOTCH1 functions as a receptor for membrane-bound ligands Jagged-1 (JAG1), Jagged-2 (JAG2) and Delta-1 (DLL1) to regulate cell-fate determination and deregulation of the Notch pathway participates in regulating the initiation and progression of tumors (24, 25). It is reported that inhibition of the notch1 transcriptional complex suppresses tumor growth by targeting cancer stem cells in ESCC (24). NOTCH1-induced stemness promotes the resistance to chemotherapy or radiotherapy in head and neck squamous cell carcinomas cells (26). Our results indicated that mutation of NOTCH1 was observed in the radiosensitive group in ESCC, which was consistent with a previous study (27). Moreover, we found that the knockdown of NOTCH1 facilitated the inhibitory effects of IR on the growth of ESCC cells, whereas IR-induced cell death was attenuated by the overexpression of NOTCH1. The results indicate that NOTCH1 acts as a negative regulator of radiosensitivity in ESCC. However, further studies are still needed to determine the regulatory mechanisms of the somatic mutated genes related with affecting the radiosensitivity in ESCC.

Accumulating evidence has shown that DNA damage repair has a clear role in resistance of anti-cancer radio-/chemo-therapies (28). Irradiation with sensitizer can cause potential chemical lethal damage to cells, such as single-strand breaks (SSBs), chemically altered base lesions, abasic sites, interstrand crosslinks, intrastrand crosslinks, and most consequentially, double-strand breaks (DSBs) (29). Six major pathways for DNA repair, including direct reversal, base excision repair, mismatch repair, nucleotide excision repair, homologous recombination and non-homologous end-joining, have been identified (30). Congenital DNA repair deficiency can cause the accumulation of DNA damages leading to cell death or malignant transformation into tumor cells. In our study, we found that several pathways correlated with DNA damage repair, including homologous recombination, mismatch repair and base excision repair, were addressed in the results of analyzing germline mutations. Genes (such as ABRAXAS1 and MBD4) had significantly different variant status between the radio-resistant and the radio-sensitive groups. It is reported that heterozygous germline mutations in ABRAXAS1 plays important roles in mitigating DNA damage response and inhibiting deregulated G2-M checkpoint control (31). SNP in coding regions of MBD4 Glu346Lys has been identified as a significant predictor for the risk of ESCC (32). Deficiency of MBD4 inhibits the normal apoptotic response to gamma-irradiation and DNA-damaging agents (33). Our results showed that mutations of ABRAXAS1 and MBD4 were frequently observed in the radio-resistant and the radio-sensitive groups, respectively. The findings indicate that these germline mutations likely also participate in regulating the response to radiotherapy in ESCC.

Accumulating evidence has indicated that tumor immune microenvironment plays important roles in affecting the death of cancer cells (14). Several biological responses, DNA damage repair and the changes in tumor inflammatory microenvironments, are involved in the death of cancer cell induced by radiotherapy (15). Radiotherapy, in addition to direct cytotoxic effect on tumor cells, could reprogram the immune microenvironment of tumors by regulating the release of inflammatory mediators and the infiltrating immunostimulatory cells (34). Antitumor adaptive immunity could be evoked by the treatment with radiation therapy (35). Moreover, radiotherapy in combination with immunotherapy has been performed in some clinical trials of cancers. The inhibitory effects of radiotherapy on the growth, recurrence and metastasis of cancers were significantly ameliorated by the blockade of immune checkpoints in the experimental study and clinical observations (36, 37). Previous studies have shown that Notch1 represses the infiltration of CD8(+) cytotoxic T lymphocytes and NK cells and inhibits the release of IFN-γ in melanoma (38). Notch1 positively regulates the immune suppressive cells and inhibits the recruitment of functional CD8(+) T cells. Inhibition of NOTCH1 facilitated the efficacy of immunotherapy in melanoma (39). It is reported that Notch1 is correlated with immune infiltrates in gastric cancer (40). Deleterious NOTCH Mutation leads to the increased transcription of genes related to DNA damage response and immune activation in NSCLC (41). Until now, the effects of NOTCH1 on tumor immune microenvironment in ESCC remain largely unknown. In the present study, we further examined the relationship between NOTCH1 and immune cells type in ESCC. The results showed that some immune cells, such as activated CD8 T cell, activated dendritic cell, and CD56bright natural killer cell, were significantly decreased in the group with high NTOCH1 expression in ESCC. Moreover, activated B cell and immature dendritic cell were negatively correlated with the expression of NOTCH1. However, there were no significant relations between NOTCH1 and the four immune checkpoint molecules. Although the results imply that NTOCH1 likely participate in regulating the tumor immune microenvironment in ESCC, its specific physiological roles and the corresponding regulatory mechanisms were still needed to be elaborated in further studies. Meanwhile, there are some limitations in the research, which needs to be addressed in future experiments. The sample size utilized for bioinformatics data analysis was small and the roles of NOTCH1 in the response to radiotherapy were just validated by in vitro study. We will further collect the ESCC samples to determine the effects of the key genes (especially NOTCH1) on radiosensitivity and tumor immune infiltration and perform in vivo experiments to demonstrate the regulatory mechanisms of NOTCH1 in ESCC.



Conclusions

In summary, the present study examined the differences of the germline mutations and somatic mutations between the radiosensitive and radioresistence groups in ESCC. We also identified the critical mutations of candidate genes, which were likely associated with the response to radiotherapy. The findings might provide some potential biomarkers and candidate targets for improving the efficiency of radiotherapy in ESCC.
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Background

Traditionally, patients with microsatellite stability (MSS)/microsatellite instability-Low (MSI-L)/proficient mismatch repair (p-MMR) metastatic colorectal cancer (mCRC) have had poor benefit from immunotherapy. Therefore, how to enhance the response of immunotherapy is still a challenge for MSS/MSI-L/p-MMR CRC patient.



Case presentation

We report a special case of a rectal cancer patient with programmed death-ligand 1 (PD-L1) negative expression, MSI-L/p-MMR, tumor mutational burden-low (TMB-L) and liver metastases, who partial response (PR) to immunotherapy after systemic therapy failure including chemotherapy, anti-angiogenesis therapy and stereotactic body radiation-therapy (SBRT). The computed tomography (CT) results showed that among three liver metastases had been reduction or disappearance after Tislelizumab treatment for three times. Besides, the carcinoembryonic antigen (CEA) and carbohydrate antigen 199 (CA199) decrease and maintained at a low level for 3 months. The progression-free survival (PFS) of patient has exceeded 3 months.



Conclusions

This case indicates that the patient with MSI-L/p-MMR mCRC can respond to anti-PD-1 immunotherapy after systemic therapy. And the SBRT (targeting liver metastases) may a method for increase-sensitivity of immunotherapy in CRC patients with MSI-L/p-MMR.
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Case presentation

A 49 years old man was admitted to our hospital on December 21, 2020 with the rectal cancer liver metastasis for more than 1 year. The CT results showed that a main metastatic lesion (3.4 × 2.6 cm) in the left and caudate lobe of the liver, a metastatic nodule (1.5 × 1.1 cm) in the hepatic portal and the localized common bile duct compression (Figure 1). The puncture pathology biopsy of liver metastases shows moderately differentiated tubular adenocarcinoma of colorectal origin. And the next-generation sequencing (NGS) result showed that the tumor with MSI-L (11.11%), PD-L1 negative expression and TMB-L (8.2 Muts/Mb). The serum biomarker showed CEA and CA199 at 17.68 ng/ml and 1109.89 u/ml, respectively, and normal levels of alpha-fetoprotein (AFP). The patient received a radical surgery when rectal cancer initial diagnosis in February 2018. The TNM stage was T2N0M0. Follow-up observations found that tumor liver metastases in July 2019, then, he has received six cycles of conversion therapy (CapeOX + Bevacizumab) and nine cycles of maintenance therapy (Capecitabine + Bevacizumab) until disease progression on December 21, 2020.




Figure 1 | The CT scan of the patient’s liver on Dec. 2020. The main metastatic lesion (3.4 × 2.6cm) in the left and caudate lobe of the liver (A), the metastatic nodule (1.5 × 1.1cm) in the hepatic portal (B) and the localized common bile duct compression (C).



After admission, the patient received the FOLFIRI combined with Cetuximab treatment, And each liver metastatic lesions received SBRT, the radiotherapy dose was 350 cGy/d with ten times. From December 21, 2020 to May 27, 2021, the serum biomarker showed a decrease in CEA and CA199 to 6.02 ng/ml and 85.54 u/ml, respectively. And the CT results showed that the metastatic lesion which in the left and caudate lobe of liver is reduction, the hepatic portal nodule has disappeared and the compressive bile duct has improvement. However, there’s a new metastatic lesion (2.7 × 1.7cm) in liver S5 (Figure 2). Thus, the curative effect was evaluated as progressive disease (PD) with a PFS of 5 months. So, the SBRT was aimed at the new liver’s lesion (S5) again in May 31, 2021, and the Regorafenib (third-line therapy) is added for treatment. Similarly, the CT results showed a new metastatic lesion (1.5 × 1.2cm) in liver S6 on September 03, 2021 (Figure 3). And the serum biomarker showed elevated CA199 to 11613.09 u/ml, with CEA and AFP at normal levels. Therefore, the curative effect was assessed as PD with a PFS of 3 months.




Figure 2 | Via CT to contrast the curative effect between the May 2021 and Dec 2020. The size of the metastatic lesion which in the left and caudate lobe of liver is reduction from 3.4 × 2.6cm to 2.6 × 2.1cm (A, E). The hepatic portal metastatic nodule has disappeared (B, F) and the compressive bile duct has improvement (C, G). The new metastatic lesion (2.7 × 1.7cm) in liver S5 (D, H).






Figure 3 | Via CT to contrast the curative effect between the Sep 2021 and May 2021. The size of the metastatic lesion which in the left and caudate lobe of liver is increase from 2.6 × 2.1cm to 3.3 × 2.6cm (A, D). The size of the metastatic lesion which in liver S5 is reduction from 2.7 × 1.7cm to 2.3 × 1.1cm (B, E). The new metastatic lesion (1.5 × 1.2cm) in liver S6 (C, F).



So far, the disease continued to progress rapidly after using first-, second- and third-line treatment. The patient was decided to receive the first dose of anti-PD⁃1 drug (Tislelizumab) on September 04, 2021 after obtaining the consent of the patient and his family after. Surprisingly, after three cycles, the CT results showed that the metastatic lesion which in the left and caudate lobe and S5 of liver is reduction and the lesion of S6 has disappeared (Figure 4). And the serum biomarker showed a significantly decrease in CA199 from 11613.09 u/ml to 333.39 u/ml. Therefore, the curative effect was assessed as PR with a PFS of 3 months after the anti-PD⁃1 therapy. The change of serum biomarker and timeline of treatment was shown in Figure 5.




Figure 4 | Via CT to contrast the curative effect between the Nov 2021 and Sep 2021. The size of the metastatic lesion which in the left and caudate lobe of liver is reduction from 3.3 × 2.6cm to 2.8 × 2.2cm (A, D). The size of the metastatic lesion which in liver S5 is reduction from 2.3 × 1.1cm to 2.0 × 0.9cm (B, E). The metastatic lesion in liver S6 has disappeared (C, F).






Figure 5 | The change of serum biomarker (A) and timeline of treatment (B). CEA, carcinoembryonic antigen; CA199, carbohydrate antigen 199; PD, disease progression; SBRT, stereotactic body radiation-therapy; PFS, progression-free survival.





Discussion

Worldwide, the CRC is one of the most common cancers and the third leading cause of cancer-related deaths (1). Especially, for mCRC patients, the 3-year survival rate is only about 30%, while the survival of MSS/MSI-L/p-MMR patients is even lower (2). The current primary treatment for unresectable mCRC is systemic therapy (e.g., chemotherapy, radiation therapy, targeted therapy, immunotherapy, and combinations of them) (3). Today, immunotherapy has shown significant efficacy in a variety of solid tumors, but appears to benefit only 5% of mCRC patients (those with high microsatellite instability (MSI-H)/defective mismatch repair (d-MMR)) (4). Therefore, the application of immune-therapy in mCRC patients (especially with MSS/MSI-L/p-MMR patients) remains full of challenges.

Generally, the PD-L1 positivity expression, MSI-H/d-MMR and tumor mutational burden-high (TMB-H) are considered as predictors of effective immunotherapy (5). However, it has been shown that the expression of PD-L1 is not the same in primary and metastatic sites of colorectal cancer, and even the PD-L1 status does not correlate with both PFS and Overall survival (OS) in some MSS/p-MMR CRC patients (6, 7). And the predictive effects of TMB or MSI status may not be applicable to all solid tumors (8). In addition, the status of PD-L1, TMB and MSI/MMR may not be reliable predictors due to assay methods, different cut-off value settings, etc. Interestingly, the patient is an exception to the classical prediction: PD-L1 negative expression, MSI-L/p-MMR and TMB-L, but with a partial response (PR) to immunotherapy. Therefore, in order to benefit more patients with MSS/MSI-L/p-MMR CRC from immunotherapy, it is necessary to find the reasons for the failure of classical predictors in this case and to reveal the possible factors.

More and more studies are exploring how to transform the “cold” tumor of MSS into the “hot” tumor of MSI-H. One of the most important strategies is radiation therapy (RT) combined with immunotherapy. Although, the radiofrequency ablation (RFA) is considered to be the first treatment for unresectable liver metastases, RFA has limitations for some lesions, such as its size larger than 3 cm and adjacent to important vessels or bile ducts (9). Besides, some studies has been shown that there is no significant difference in OS between the SBRT or RFA treatment for liver metastases. But, for the size larger than 2 cm tumors, SBRT improves the freedom from local progression (FFLP) more than RAF (10). Thus, as one of the important treatments for liver metastases in CRC patients, RT (especially SBRT), may have a better prospect. It has been shown that it can trigger type I IFN response and activate anti-tumor T cells, through cGAS-STING signaling pathway, and improve tumor immune microenvironment, thus synergistically enhancing anti-tumor effects (11, 12). RT is also an effective “immune booster”, and the immunotherapy tolerance in multiple progressive MSS/p-MMR CRC patients with liver metastases can be overcome even by the local immunomodulatory therapy such as SBRT (13, 14). In addition, Satoshi et al. showed that chemoradiotherapy sequenced with nivolumab was effective in treating patients with locally advanced rectal cancer with MSS (15). The study (NCT02437071) by Segal et al (16) also indicated an objective response in non-irradiated lesions after the application of RT combined with pembrolizumab in MSS/p-MMR CRC patients (although the ORR was only 9%). Likewise, regorafenib and others have similar effects. For example, a study (NCT03406871) showed a significant effect of regorafenib in combination with nivolumab in 24 MSS/p-MMR advanced CRC patients and the overall objective response rate (ORR) reached 33%, but only two patients with liver metastases (2/13) (17) Fakih et al (18)demonstrated that regorafenib combined with nivolumab achieved an ORR of 7.1% in 70 MSS mCRC patients. However, the result also showed that none of the liver metastases patients (0/47). Overall, some MSS/p-MMR advanced CRC patients are effective for combination immunotherapy. Although the exact mechanism is still unclear, based on the current findings, RT combined with immunotherapy seems to better promote the benefit of immunotherapy in MSS/p-MMR CRC patients with liver metastases. So, this may explain why the patient (with PD-L1 negative, MSS/p-MMR, TMB-L and liver metastases only) responded well to immunotherapy after systemic treatment failure. For our case, one of the most important factors may be SBRT, but this also needs and deserves more relevant studies to verify.



Conclusion

We report a novel case of PD-L1 negative expression, MSI-L/p-MMR, TMB-L and with liver metastases rectal cancer patient who obtained PR and the PFS has exceeded 3 months after immunotherapy. This case indicates that the patient with MSI-L/p-MMR mCRC can respond to anti-PD-1 immunotherapy after systemic therapy. And the SBRT (targeting liver metastases) may a method for increase-sensitivity of immunotherapy in CRC patients with MSI-L/p-MMR.
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Accurate prediction of Bacillus Calmette–Guérin (BCG) response is essential to identify bladder cancer (BCa) patients most likely to respond sustainably, but no molecular marker predicting BCG response is available in clinical routine. Therefore, we first identified that fibroblast growth factor binding protein 1 (FGFBP1) was upregulated in failures of BCG therapy, and the increased FGFBP1 had a poor outcome for BCa patients in the E-MTAB-4321 and GSE19423 datasets. These different expression genes associated with FGFBP1 expression are mainly involved in neutrophil activation, neutrophil-mediated immunity, and tumor necrosis factor-mediated signal pathways in biological processes. A significant positive correlation was observed between FGFBP1 expression and regulatory T-cell (Treg) infiltration by the Spearman correlation test in the BCG cohort (r = 0.177) and The Cancer Genome Atlas (TCGA) cohort (r = 0.176), suggesting that FGFBP1 may influence the response of BCa patients to BCG immunotherapy through immune escape. Though FGFBP1 expression was positively correlated with the expressions of PD-L1, CTLA4, and PDCD1 in TCGA cohort, a strong association between FGFBP1 and PD-L1 expression was only detected in the BCG cohort (r = 0.750). Furthermore, elevated FGFBP1 was observed in BCa cell lines and tissues in comparison to corresponding normal controls by RT-qPCR, Western blotting, and immunohistochemical staining. Increased FGFBP1 was further detected in the failures than in the responders by immunohistochemical staining. Notably, FGFBP1 is positively associated with PD-L1 expression in BCa patients with BCG treatment. To sum up, FGFBP1 in BCa tissue could be identified as a promising biomarker for the accurate prediction of BCG response in BCa.
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Introduction

Bladder cancer (BCa) is one of the most common malignancies of the urinary tract worldwide, and it is projected to continue to rise in the next decade (1). At diagnosis, ~75% of bladder cancers are confined to the mucosa [nonmuscle invasive disease (NMIBCa)]. Transurethral resection of the bladder tumor (TURBT) combined with intravesical instillations is the mainstay therapy for those with NMIBCa. However, more than 50% of these cases will recur after resection and ~10% to ~20% will invade deeper layers (2). International guidelines recommend a clinical–pathological classification of NMIBC into low-, intermediate-, and high-risk groups. Further treatments aiming to reduce the risk of recurrence and/or progression into MIBC are warranted (3).

For many years, intravesical instillation of bacillus Calmette–Guérin (BCG) has been the gold standard treatment for patients with intermediate- or high-risk diseases to reduce the risk of recurrence and possibly progression (3–5). However, in approximately half of NMIBCa patients, intravesical BCG treatment fails due to BCG intolerance, BCG refractory to treatment, and BCG relapse (5). The current guidelines recommend early radical cystectomy with urinary diversion as a preferred option for those patients who would have a negative impact on their quality of life (6). Although various clinical and molecular biomarkers have been tested to help improve the accurate prediction of BCG response, currently, no ideal molecular biomarker predicting response to BCG therapy is available in clinical routine (4).

To find and identify ideal molecular biomarkers that can predict the response to BCG treatment in BCa, we identified that fibroblast growth factor binding protein 1 (FGFBP1) was upregulated in failures of BCG therapy, and the increased FGFBP1 had a poor outcome for BCa patients based on bioinformatics. Furthermore, FGFBP1 has been suggested to be involved in immune-related functions and pathways. FGFBP1 is a secretory protein that can specifically bind to fibroblast growth factors (FGFs) immobilized in the extracellular matrix to promote its release (7, 8). It has been receiving much more attention because of its considerable role in enhancing the biological and biochemical activities of FGFs and participating in the progression of several cancers (9–11). FGFBP1 was further demonstrated to be positive for PD-L1 expression in BCa tissues with BCG treatment. Briefly, FGFBP1 could be identified as a promising biomarker that may help to predict the prognosis of BCa patients with intravesical BCG treatment.



Materials and methods


Acquisition and preprocessing of datasets

Gene expression data and clinical information of BCa samples were obtained from The Cancer Genome Atlas Urothelial Bladder Carcinoma (TCGA-BLCA), the Gene Expression Omnibus (GSE19423, GSE163899, and GSE176178), and the ArrayExpress (E-MTAB-4321) databases. For each kilobase of an exon, we determined gene expression using fragments per million reads mapped (FPKM) in all the datasets. After effective normalization, the E-MTAB-4321, GSE19423, GSE163899, and GSE176178 datasets were subsequently integrated into the BCG cohort. All the patients received transurethral resection of BCa plus adjuvant BCG intravesical instillations. These patients were classified into BCG responders and failures based on the response to BCG therapy. BCG failures were defined as patients who had a recurrence (any stage or grade) of BCa within follow-up, and BCG responders had no recurrence during follow-up. The detailed clinical information of patients in each dataset is shown in Table 1.


Table 1 | Clinical information of bladder cancer patients in BCG cohort.





Identification of prognosis-related genes

The different expression gene (DEGs) analysis between BCG responders and failures in the E-MTAB-4321dataset was performed with the “limma” package (12). A p < 0.05 and |log2 (fold change)| ≥ 2.0 were regarded as significantly different. Univariate Cox regression analysis was used to identify DEGs with prognostic values. Kaplan–Meier survival curves were plotted to determine the prognostic value of the genes and compared by using the log-rank test. The receiver operating characteristic (ROC) curve was used to evaluate the accuracy of FGFBP1 for the prediction of BCG response.



Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed in the GSE19423 and E-MTAB-4321 datasets to gain insights into the biological pathways of the high- and low-expression groups stratified by FGFBP1 expression. A false discovery rate (FDR) of <0.25 and an adjusted p < 0.05 were considered statistically significant.



Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of DEGs

The functions of DEGs were annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Gene Ontology (GO) analysis with the ‘‘Cluster Profiler’’ package (13).



Estimation of tumor-microenvironment cell infiltration

The CIBERSORT algorithm was used to investigate the relative abundance of different immune cell types (14). The correlation between FGFBP1 and PD-L1 expression was examined using the Spearman correlation coefficient.



Single-cell sequencing analysis

The Tumor Immunosingle Cell Centre (TISCH) database is used to analyze the expression of FGFBP1 at a single-cell level (15).



Tissue specimens and cell line

Studies were done with the approval of the bioethics committee of Nanfang Hospital (Guangzhou, China). All subjects were informed and gave their written consent. All tissue specimens were obtained from patients diagnosed with BCa from the Chinese Han population at Nanfang Hospital from January 2018 to April 2022. A total of 15 pairs of tumor-paired tissues and normal adjacent tissues were obtained. Of these, 10 were male cases and five were female cases, with ages ranging from 36 to 68 years old.

The human BC cell lines UM-UC-3, T24, and SW780 were cultured in DMEM medium (Gibco, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (Serana, Berlin, Germany) and 1% penicillin/streptomycin at 37°C in a humidified incubator and a 5% CO2 atmosphere. The cell lines were authenticated by short tandem repeat (STR) profiling upon receipt and were propagated for <6 months after resuscitation.



Real-time quantitative polymerase chain reaction

Real-time quantitative polymerase chain reaction (RT-qPCR) was performed as described in the previous study (16). The primer sequences used in this study are presented in Supplementary Table S1.



Western blotting

The methods were described in our previous study (16). Briefly, rabbit monoclonal primary antibodies against human FGBP1 (dilution 1:1,000; Proteintech, Chicago, IL, USA) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (dilution 1:1,000; Proteintech, Chicago, IL, USA) were used in this assay. The protein levels were normalized to those of GAPDH.



Immunohistochemical staining

There were 17 clinical BCa sections in immunohistochemistry, including 10 responders and seven failures to BCG intravesical instillations. For immunohistochemical staining, the expressions of FGFBP1 and PD-L1 in tissue were examined by an ultrasensitive streptavidin-peroxidase (S-P) technique (Zhongshan Biotechnology Co. Ltd, Beijing, China) with the standard protocol as previously shown (17). Rabbit monoclonal primary antibodies against human FGBP1 (dilution 1:400; Proteintech, Chicago, IL, USA) and PD-L1 (dilution 1:200; Abcam, USA) were employed. Polyperoxidase rabbit IgG was used as the secondary antibody (Zhongshan Biotechnology Co. Ltd, China.). Negative controls were processed in an identical manner, with the primary antibody replaced by PBS. An independent assessment of immunoreactivity was conducted by two pathologists.



Statistical analysis

R software (version 4.2.0, MathSoft, USA) was used for statistical analyses, and GraphPad Prism (version 9.0, GraphPad Software, USA) was used for graphing and analysis. Univariate Cox regression analysis was used to screen for genes with prognostic values. Survival analysis was performed by using the Kaplan–Meier method. Statistical analysis of RT-qPCR, Western blotting, and immunohistochemical staining was performed using two-tailed Student’s t-tests. p < 0.05 was regarded as statistically significant.




Results


Elevated FGFBP1 may be associated with the poor response to BCG treatment

DEGs analysis was performed on the E-MTAB-4321 dataset. Of the detected DGEs, 80 were upregulated and 147 were downregulated genes (Figure 1A). The prognostic values of those DEGs were further calculated by using univariate Cox regression analysis with p < 0.001 as the screening criterion. Finally, 11 DEGs with prognostic values were found (Figure 1B). When the median of individual gene expression values was used as the cutoff points, patients in the E-MTAB-4321 and GSE19423 datasets were divided into low- and high-expression groups, respectively, to explore the relationship between gene expression and over survival. Noticeably, only FGFBP1 was significantly associated with patient prognosis in the E-MTAB-4321 and GSE19423 datasets (p < 0.05). The expression of FGFBP1 is negatively associated with the prognosis of BCa patients (Figure 1C; Supplementary Figure S1A). In addition, the role of elevated FGFBP1 expression in predicting the response to BCG in BCa patients was further explored using ROC curves. The results showed that elevated FGFBP1 may exhibit the ability to predict the response to BCG in the E-MTAB-4321 (AUC = 0.687) and GSE19423 (AUC = 0.614) datasets (Figure 1D). Furthermore, the result was confirmed in the GSE163899 and GSE176178 datasets (Supplementary Figure S1B). These findings suggested that elevated FGFBP1 may be associated with the poor response to BCG treatment.




Figure 1 | Elevated FGFBP1 may be associated with poor BCG response. (A) Volcano plot showed DEGs between BCG responders and failures in the E-MTAB-4321dataset, with FGFBP1 significantly upregulated in failures (marked in red). (B) Univariate Cox analysis revealed 11 genes that were associated with the prognosis of BCa in the E-MTAB-4321 dataset. (C) K-M survival curves indicated that elevated FGFBP1 expression was significantly associated with poor prognosis in the E-MTAB-4321 and GSE19423 datasets. (D) The ROC curves suggested that FGFBP1 has the ability to predict response to BCG treatment.





Potential biological functions of FGFBP1

In TCGA-BLCA dataset, the median value of FGFBP1 expression was used as a cutoff for DEG analysis with an adjusted p < 0.01. As a result, 1,527 downregulated and 1,326 upregulated genes were found. The heatmap of those DEGs demonstrated the top 20 up- and downregulated genes (Figure 2A). GO and KEGG analyses were then performed on the DEGs to determine their biological functions. These DEGs associated with FGFBP1 expression were mainly involved in neutrophil activation, neutrophil-mediated immunity, and tumor necrosis factor-mediated signal pathways in biological processes. Genes associated with molecular function involve cell–cell linkage and focal adhesion. Among the cellular components, the main enrichment was the binding of small GTPases. KEGG analysis showed that DEGs were involved in 10 KEGG pathways, including the development of tumors, cellular regulation, the AMPK signaling pathway, and the p53 signaling pathway (Figure 2B). In addition, we performed a GSEA analysis in the E-MTAB-4321 and GSE19423 datasets with the median value of FGFBP1 expression as a cutoff. Both datasets were significantly enriched in the cell cycle as well as mismatch repair, suggesting a potential mechanism for FGFBP1 (Figure 2C).




Figure 2 | Potential biological functions of FGFBP1. (A) The heatmap of DEGs was defined by FGFBP1 in TCGA dataset, p < 0.05. (B) GO and KEGG analyses of DEG were performed in TCGA dataset. (C) GSEA analysis was conducted in high- and low-expression groups divided by the median value of FGFBP1 expression in the E-MTAB-4321 and GSE19432 datasets.





FGFBP1 was associated with tumor immune cell infiltration

To further explore the relationship between FGFBP1 and the tumor immune microenvironment, the extent of immune cell infiltration in each sample of the BCG cohort was calculated using the CIBERSORT algorithm. The results showed that resting CD4+ T cells had the highest level of infiltration than other tumor immune cells in both BCG responders and failures (Figure 3A). Notably, Tregs had a significantly higher degree of infiltration in failures compared with responders in the BCG cohort (p = 0.01) (Figure 3A). Furthermore, there seems to be a potential correlation between FGFBP1 and Tregs, as clarified by the weak correlation coefficient (r = 0.177, p < 0.05) (Figure 3B). A similar result was found in TCGA cohort (r = 0.176, p < 0.001) (Figure 3C). There was a significant positive correlation between FGFBP1 and Foxp3 (r = 0.138, p = 0.005) (Figure 3D), which is a surface marker of Tregs. The results also showed a significant negative correlation between FGFBP1 expression and B-cell and CD4+ T-cell infiltration (p < 0.01) (Figure 3B). This indicated that FGFBP1 may influence the response of BCa patients to BCG intravesical instillations through immune escape.




Figure 3 | FGFBP1 was associated with tumor immune cell infiltration. (A) Violin plot of tumor immune cell infiltration showed that Tregs are significantly more infiltrated in the failures than in the responders in the BCG cohort. (B) A significant positive association was observed between FGFBP1 expression and Treg infiltration in the BCG cohort. (C) FGFBP1 is positively correlated with Treg infiltration in TCGA cohort. (D) FGFBP1 is positively correlated with FOXP3 expression in TCGA cohort. *p < 0.05; **p < 0.01; and ***p < 0.001.





FGFBP1 is positively associated with PD-L1, as indicated by bioinformatic analysis

The Spearman correlation coefficient was used to investigate the correlation between FGFBP1 and immune checkpoints. FGFBP1 expression was highly positively correlated with the expression of PD-L1, CTLA4, PDCD1, PDCD1LG2, LAG3, and HVACR2 in TCGA cohort (p < 0.01) (Figure 4A). Subsequently, the findings were confirmed in TCGA cohort (Figure 4B) and the BCG cohort (Figure 4C). Interestingly, a strong correlation between FGFBP1 and PD-L1 expression was found in the BCG cohort (r = 0.750, p < 0.001) (Figure 4C).




Figure 4 | FGFBP1 is positively associated with PD-L1 indicated by bioinformatic analysis. (A) FGFBP1 was positively correlated with PD-L1, CTLA4, PDCD1, PDCD1LG2, LAG3, and HAVCR2. (B) FGFBP1 was positively associated with PD-L1 expression in TCGA cohort. (C) FGFBP1 was positively associated with PD-L1 expression in the BCG cohort.





Increased FGFBP1 is verified in BCa

We investigated the expression of FGFBP1 at the single-cell level in BCa using the TISCH database. FGFBP1 was found to be expressed mainly in BCa epithelial cells (Figure 5A). The expression of FGFBP1 was significantly elevated in BCa cell lines and BCa tissues in comparison to corresponding normal controls, as measured by RT-qPCR and Western blotting (Figures 5B–E). FGFBP1 protein was observed, apparently in the cytoplasmic compartments of cancerous cells by immunohistochemical staining (Figure 5F), which was consistent with our Western blotting results.




Figure 5 | Increased FGFBP1 is verified in BCa. (A) Expression of FGFBP1 at the single-cell level in BCa using the TISCH database. Each dot corresponds to a single cell and is colored according to the cell cluster. The color density indicated the expression of FGFBP1. (B) FGFBP1 was verified in BCa cell lines by RT-qPCR. (C) FGFBP1 was verified in BCa cell lines by Western blotting. (D) FGFBP1 was verified in BCa tissues by RT-qPCR. (E) FGFBP1 was verified in BCa tissues by Western blotting. (F) Elevated FGFBP1 was observed in BCa tissues by immunohistochemistry staining. *p < 0.05; **p < 0.01; ***p < 0.001, **** p < 0.0001.





FGFBP1 is positively correlated with PD-L1, as demonstrated in BCa

Expression of FGFBP1 was further detected by immunohistochemical staining in the BCG responders and failures. The staining of FGFBP1 protein in the failures was stronger than in the responders (Figures 6A, B). The immunohistochemical staining scores of FGFBP1 in each BCa tissue were calculated. The median score of FGFBP1 was 2.235, and we divided the cohorts into FGFBP1 high- and low-expression groups stratified by the median FGFBP1 expression. The expression level of PD-L1 was significantly higher (p < 0.001) when FGFBP1 was increased, implying that FGFBP1 may play significant antitumor immunity functions in failures (Figures 6C, D).




Figure 6 | FGFBP1 is positively correlated with PD-L1 demonstrated in BCa. (A) FGFBP1 is elevated in failure compared with responders in BCa by immunohistochemical staining. (B) The immunohistochemical staining scores of FGFBP1 are higher in failures than responders in BCa. (C) The expression level of PD-L1 was significantly higher when FGFBP1 was increased by immunohistochemical staining when the BCG cohorts were divided into FGFBP1 high- and low-expression groups stratified by the median FGFBP1 expression. (D) The immunohistochemical staining scores of PD-L1 are positively associated with FGFBP1. *p < 0.05; **p < 0.01..






Discussion

NMIBC is characterized by a high probability of recurrence and a risk of progression to muscle-invasive disease. NMIBC management requires a proper local resection followed by a risk-based treatment with intravesical agents (18). BCG intravesical adjuvant therapy has been effectively used in the management of intermediate- and high-risk NMIBC to prevent/delay tumor recurrence and/or progression (19, 20). However, 30% of those BCa patients would experience recurrence and progression into a more aggressive disease state (21). Accurate prediction of BCG response is essential to identify the patients most likely to respond sustainably, but no molecular marker predicting BCG response is available up to date.

In this study, we initially identified that BCa patients with higher FGFBP1 expression had a worse prognosis in the E-MTAB-4321 and GSE19423 datasets. Furthermore, ROC curves indicated that elevated FGFBP1 may exhibit the ability to predict the response to BCG in the E-MTAB-4321 (AUC = 0.687) and GSE19423 (AUC = 0.614) datasets. Moreover, the expression of FGFBP1 is significantly elevated in failures compared with responders to BCG treatment, as confirmed by Western blotting and immunohistochemical staining. Briefly, FGFBP1 could predict the response to BCG for BCa patients. However, the roles of higher FGFBP1 in failures have not been studied extensively.

Although the mechanism concerning BCG action is still not completely understood, one main explanation is that BCG exposure to urothelium and bladder-resident macrophages elicits an inflammatory and immune response against tumoral cells (22–26). Moreover, an intrinsic or acquired immune resistance would be the possible resistance mechanism to BCG treatment. It is known that PD-L1 overexpressed in cancer cells could let those cells evade the immune response, inducing T-cell anergy (24, 27, 28). Immunotherapy has become an increasingly promising therapeutic method for advanced BCa, with PD-L1 inhibitors being able to halt immune evasion of cancer cells by preventing PD-1 from binding to its ligand (28).

FGFBP1, belonging to the FGFBP family, is a secretory protein that can specifically bind to FGFs immobilized in the extracellular matrix and present them to their cognate receptors (8). FGFBP1 is expressed in epithelial cells in the skin, eye, ileum, and colon (8, 29–31), and plays an important role in proliferation and differentiation during embryonic development and wound healing (30, 32). Moreover, it was also found to be upregulated in various cancers than its low expression in normal adult tissues (30). Elevated FGFBP1 facilitates cancer growth and metastasis, which was demonstrated to act as an angiogenic switch molecule in cancer by enhancing FGF signaling including angiogenesis during cancer progression (33, 34). FGFBP1 was reported to be regulated by different transcription factors, including β-catenin/TCF4, C/EBP, and KLF5. Correspondingly, Wnt/β-catenin and KLF5-induced tumorigenesis and metastasis are decreased after FGFBP1 downregulation (7, 35, 36). However, the mechanisms of elevated FGFBP1 in failures of BCG treatments in BCa patients have not been known.

Chun et al. observed that a lower baseline infiltration level of Treg predicted a better response to BCG treatment (37). In our study, the CIBERSORT algorithm estimating immune cell infiltration indicated that there was a higher degree of Treg infiltration in failures compared to responders in the BCG cohort (p = 0.01). Interestingly, the expression level of FGFBP1 is positively correlated with Treg infiltration by the Spearman correlation test, suggesting a potential mechanism of action for FGFBP to BCG response in BCa patients. Furthermore, a strong correlation was observed between FGFBP1 and PD-L1 expression in the BCG cohort (r = 0.750, p < 0.001). Unexpectedly, the expression levels of FGFBP1 and PD-L1 were also found to be significantly higher in failures compared with responders by Western blotting and immunohistochemical staining analyses.

The mechanism underlying the higher FGFBP1 in failures of BCG treatment should be further explored. One possible explanation is that the increased FGFBP1 was positively associated with PD-L1 in BCa cells, which may cause BCa patients to evade the immune response when they receive BCG treatment. Another possibility might be the important role of FGFBP1 in tumor angiogenesis and cancer progression. A better understanding of the novel mechanisms may yield new knowledge for therapeutic purposes.

Several important strengths should be noted in our study. We first observed that FGFBP1 is highly expressed in BCa tissues in failures compared with responders to BCG treatment and that high expression of FGFBP1 is associated with a poor outcome for BCa patients based on the E-MTAB-4321 and GSE19423 datasets. Our bioinformatics also found that the DEGs identified by FGFBP1 were enriched in immune-related functions and pathways. Mechanistically, increased FGFBP1 may be positively associated with the upregulation of PD-L1 in a dependent manner in BCa patients with BCG treatment. Collectively, our results provide a promising biomarker for predicting response to BCG therapy in BCa patients.

Some limitations need to be taken into account when FGFBP1 is used for screening responses to BCG therapy. A limitation of the study is that FGFBP1 and PD-L1 were verified in a small number of BCa patients with BCG intravesical adjuvant therapy. The results require verification in larger sample sets, including enough follow-up time and detailed clinical information. Furthermore, increased FGFBP1 and PD-L1 were found in the BCG failure cohort on the basis of bioinformatics and experiments. The explanation may be the immune escape in failures caused by high expression of FGFBP1. However, the roles of elevated FGFBP1 in failures are needed to be further elaborated.

To sum up, the expression level of FGFBP1 is shown to be significantly upregulated in failures compared with responders. Our study thus indicates that FGFBP1 in BCa tissue may be a potential molecular biomarker for the accurate prediction of BCG response in BCa. Further research is warranted to investigate its putative mechanistic roles in the pathogenesis of BCa with intravesical BCG treatment.
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Isocitrate dehydrogenase (IDH1) is frequently mutated in glioma tissues, and this mutation mediates specific tumor-promoting mechanisms in glioma cells. We aimed to identify specific immune biomarkers for IDH1-mutation (IDH1mt) glioma. The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) were used to obtain RNA sequencing data and clinical characteristics of glioma tissues, while the stromal and immune scores of TCGA glioma tissues were determined using the ESTIMATE algorithm. Differentially expressed genes (DEGs), the protein–protein interaction(PPI) network, and least absolute shrinkage and selection operator (LASSO) and Cox regression analyses were used to select hub genes associated with stroma and immune scores and the prognoses of patients and to construct the risk model. The practicability and specificity of the risk model in both IDH1mt and IDH1-wildtype (wtIDH1) gliomas in TCGA and CGGA were evaluated. Molecular mechanisms, immunological characteristics and benefits of immune checkpoint blockade therapy in glioma tissues with IDH1mt were analyzed using GSEA, immunohistochemical staining, CIBERSORT, and T-cell dysfunction and exclusion (TIDE) analysis. The overall survival rate for IDH1mt-glioma patients with high stroma/immune scores was lower than that for those with low stroma/immune scores. A total of 222 DEGs were identified in IDH1mt glioma tissues with high stroma/immune scores. Among them, 72 genes had interactions in the PPI network, while three genes, HLA-DQA2, HOXA3, and SAA2, were selected as hub genes and used to construct risk models classifying patients into high- and low-risk score groups, followed by LASSO and Cox regression analyses. This risk model showed prognostic value in IDH1mt glioma in both TCGA and CCGA; nevertheless, the model was not suitable for wtIDH1 glioma. The risk model may act as an independent prognostic factor for IDH1mt glioma. IDH1mt glioma tissues from patients with high-risk scores showed more infiltration of M1 and CD8 T cells than those from patients with low-risk scores. Moreover, TIDE analysis showed that immune checkpoint blockade(ICB) therapy was highly beneficial for IDH1mt patients with high-risk scores. The risk model showed specific potential to predict the prognosis of IDH1mt-glioma patients, as well as guide ICB, contributing to the diagnosis and therapy of IDH1mt-glioma patients.
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Introduction

Glioma is the most common cerebral tumor with a high mortality rate (1). Several treatment approaches, including surgery and radio-chemotherapy, do not produce optimal results, and the average survival time of patients is less than 15 months (2, 3). Glioma is a highly heterogeneous tumor with multiple genetic characteristics, including isocitrate dehydrogenase (IDH1) mutation, 1p/19q-deficiency, and O-6-methylguanine-DNA methyltransferase methylation (4). Isocitrate dehydrogenase 1 is a key enzyme involved in the tricarboxylic acid cycle. In the cytoplasm and mitochondria, wild-type IDH1 (wtIDH1) oxidizes and decarboxylates isocitrate to α-ketoglutarate (α-KG), which is involved in epigenetic regulation and DNA repair in an α-KG-dependent manner (5, 6). A total of 70–80% of grade II and III gliomas and 80–90% of grade IV gliomas (also called glioblastomas) possess IDH1 mutations (IDH1mt) (7). Compared with glioma cells with wtIDH1, a hypermethylation phenotype, overactivated hypoxia signaling, and disruption of collagen maturation were observed in cells with IDH1mt (8). This difference emphasizes that different therapeutic strategies should be implemented for gliomas with wtIDH1 and IDH1mt mutations. The identification of specific biomarkers for gliomas with IDH1mt may contribute to this therapy.

Bioinformatics analysis using public databases, including The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus, is a popular method for identifying tumor biomarkers (9, 10). Various biomarkers and risk models for gliomas have been identified through bioinformatic analysis. For example, by performing bioinformatics analysis in TCGA, the thioredoxin domain containing 11 was discovered to be upregulated in glioma tissues, and its high expression indicates a poor prognosis (11). An iron metabolism-related gene signature, constructed using a bioinformatics method, demonstrates that the risk model had remarkable prognostic value for gliomas (12). Similarly, by performing weighted gene co-expression analysis, our previous study indicated that LIM homeobox 5 and T-cell leukemia homeobox 1 are involved in the recurrence of glioma (13). However, the feasibility of biomarkers and risk models identified in previous studies for each subtype of glioma is limited.

Our study aimed to construct a specific risk model for predicting the prognosis of IDH1mt-glioma tissues and investigate the internal immunological and molecular mechanisms. Our risk model may provide insights into the diagnosis and treatment of IDH1mt gliomas.



Materials and methods


Gene expression profile download and preprocessing

The gene expression profiles of glioma patients and clinical trait information were downloaded from TCGA (https://portal.gdc.cancer.gov/) and the Chinese Glioma Genome Atlas (CGGA; http://www.cgga.org.cn/), respectively. The original gene expression profile was normalized and centralized, and the probe names were annotated as gene names. Before analysis, glioma patients without IDH1mt information and survival information were excluded. As a result, 367 patients with IDH1mt and 229 patients with wtIDH1 were obtained from TCGA, while 167 patients with IDH1mt and 145 patients with wtIDH1 were obtained from the CGGA. Immune and stromal scores of IDH1mt glioma tissues in TCGA were measured using the ESTIMATE algorithm.



Differentially expressed genes analysis

The median immune and stromal scores of gliomas with IDH1mt in TCGA were used to separate the high and low groups. The EdgeR package was used to perform the differentially expressed genes (DEGs) analysis, while the threshold for considering significance was set as |logFC | ≥ 1 and adjusted P-value < 0.05. Analysis of the changes in all genes in the high- and low-immune/stromal score groups was visualized using volcano plots, while DEGs were visualized in a heatmap.



Protein–protein interaction network

The primordial protein–protein interaction (PPI) network was constructed using DEG information from the STRING database (https://cn.string-db.org/). Cytoscape software was used to adjust the primordial PPI network, and the isolated genes were removed. Genes that had a relationship with others were set as hub genes and were enrolled in further studies.



Enrichment analysis

The enriched GO terms of hub genes were analyzed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID; https://david.ncifcrf.gov/). GO analysis was conducted using three categories: biological processes (BP), cellular components (CC), and molecular functions (MF). The significance threshold was set at P < 0.05. The top five terms are presented in a bubble diagram.



Construction and verification of an immune signature

Before constructing an immune signature, we first analyzed the hub genes associated with the survival of patients with IDH1mt via univariate Cox regression analysis, and the significance threshold was set at P < 0.05. The least absolute shrinkage and selection operator (LASSO) was used to eliminate genes that shared similar genetic information by adding appropriate penalties (lambda). Utilizing the Akaike information criterion, an optimal prognostic risk model was built using a multivariate Cox regression analysis. The upper limit of the risk score was set to 10. The feasibility of the risk model in IDH1mt and wtIDH1 glioma patients in TCGA and CGGA was checked using receiver operator characteristic curve (ROC) analysis and Kaplan–Meier survival analysis. The ROC cut-off was set as the area under the curve (AUC) ≥ 0.75 and P < 0.05, while the threshold in the Kaplan–Meier survival analysis was set as P < 0.05.



Nomogram construction

Nomograms are constructed based on multifactor regression analysis by integrating multiple predictors, and graduated line segments are then used to draw on the same plane in a certain proportion (14). In this study, a nomogram was created using the “rms” package to simplify the prediction model using independent clinical prognostic factors.



Gene set enrichment analysis

To explore the signaling pathways differentially activated in high- and low-risk group IDH1mt-glioma patients in TCGA and CGGA, we analyzed the change of genes and performed GSEA analysis in R software with an adjusted P-value < 0.05.



Immune cell analysis

Using the “CIBERSORT” R package, we examined 22 immune cells infiltrating IDH1mt-glioma tissues in TCGA and CGGA. Differentially infiltrated cells in the high- and low-risk-score groups were analyzed using the unpaired t-test, with significance set as P < 0.05.



Immunohistochemical analysis

In total, 54 glioma tissues with IDH1mt were collected from the Affiliated Hospital of Guizhou Medical University with the approval of the Human Ethics Committee of Guizhou Medical University. None of the patients received any radio-chemotherapy before the operation, and written informed consent was obtained from all participants. Immunohistochemistry (IHC) staining was performed as described in our previous study (15). Primary antibodies used were as follows: HLA-DQA2 (1:200; Cat No. 42-669, ProSci, Fort Collins, CO, USA), HOXA3 (1:100; Cat No.ab230879, Abcam, Cambridge, UK), SAA2 (1:500; Cat No. CAU25292; Biomatik, Kitchener, Canada), CD8 (1:4000; Cat No. 66868-1-Ig; Proteintech, Wuhan, China), and CD86 (1:250; Cat No. ab220188, Abcam). The expression of target proteins was assessed based on the product of the intensity of staining (0, 1+, 2+, and 3+) and the percentage of positive cells, which was scored as 0 (0%), 1 (1–2 5%), 2 (26–50%), 3 (51–75%), or 4 (76–100%).



T-cell dysfunction and exclusion analysis

To predict the immune checkpoint blockade (ICB) therapy response, the gene expression profile of glioma tissues with IDH1mt was imported into the T-cell dysfunction and exclusion (TIDE; http://tide.dfci.harvard.edu/) online algorithm to obtain exclusion, dysregulation, and TIDE scores. P < 0.05 was set as the threshold for determining the difference between high- and low-risk-score groups using an unpaired t-test.




Results


Landscape in high- and low-stromal/immune-score group glioma patients with IDH1mt in TCGA

Using the ESTIMATE algorithm, stromal and immune scores were calculated in TCGA for patients with glioma and IDH1mt. The detailed scores are shown in Supplementary Table 1. The Kaplan–Meier survival analysis showed that IDH1mt-glioma patients with high stromal (Figure 1A) and immune scores (Figure 1B) exhibited shorter overall survival rates than those with low stromal and immune scores (HR = 1.679 and HR = 2.367). We then determined the change in gene expression profiles between the high- and low-stromal/immune groups in IDH1mt-glioma tissues. A total of 242 genes were upregulated in the high-stromal group IDH1mt-glioma tissues compared with those in the low-stromal group IDH1mt-glioma tissues, while 20 genes were downregulated (Figures 2A, B). Similarly, 285 genes were upregulated in the high-immune group IDH1mt-glioma tissues compared with those in the low-immune group IDH1mt-glioma tissues, while 135 genes were downregulated (Figures 2C, D). Through intersection analysis, 209 upregulated (Figure 2E) and 13 downregulated overlapping genes (Figure 2F) were identified in the high-stromal- and high-immune-score-group IDH1mt-glioma tissues.




Figure 1 | Effects of stromal and immune scores on the survival of IDH1mt-glioma patients. (A) Kaplan–Meier survival analysis showing the survival rate in high- and low-stromal-score-group IDH1mt-glioma patients. (B) Kaplan–Meier survival analysis showing the survival rate in high- and low-immune-score-group IDH1mt-glioma patients.






Figure 2 | Differentially expressed genes in high- and low-stromal/immune-score group IDH1mt-glioma tissues. (A) Volcano plot demonstrating the differential expression of genes in high- and low-stromal group of IDH1mt-glioma tissues. (B) Heatmap plot showing DEGs between high- and low-stromal group of IDH1mt-glioma tissues. (C) Volcano plot demonstrating the differential expression of genes in high- and low-immune group of IDH1mt-glioma tissues. (D) Heatmap plot showing DEGs between high- and low-immune group of IDH1mt-glioma tissues. (E) Overlapping upregulated genes between high-stromal and -immune group of IDH1mt-glioma tissues. (F) Overlapping downregulated genes between high-stromal and -immune group of IDH1mt-glioma tissues.



We then constructed a PPI network and found 72 genes that interacted with other genes (Figure 3A). These genes were set as candidate hub genes associated with stromal and immune scores in IDH1mt glioma. BP enrichment analysis demonstrated that these candidate hub genes were enriched in “immune-response-activating cell surface receptor signaling pathway”, “humoral immune response”, “response to interferon-gamma”, “cellular response to interferon gamma”, and “interferon-gamma-mediated signaling” (Figure 3B). MF enrichment analysis demonstrated that the candidate hub genes were enriched in “receptor ligand activity”, “antigen binding”, “peptide antigen binding”, “MHC class II receptor activity”, and “chemokine receptor binding” (Figure 3C). Furthermore, the enriched CC terms of candidate hub genes were “endocytic versicle membrane”, “MHC protein complex”, “MHC class II protein complex”, “luminal side of ER”, and “integral component of membrane of ER” (Figure 3D).




Figure 3 | Landscape of 222 overlapping DEGs. (A) PPI network was constructed using 222 overlapping DEGs, while isolated genes were removed. Genes in PPI network were set as candidate hub genes. (B) Biological process (BP) analysis for candidate hub genes. (C) Molecular function (MF) analysis for candidate hub genes. (D) Cellular component (CC) analysis for candidate hub genes.





Construction of immune signature for glioma patients with IDH1mt

Next, we determined whether the expression of candidate hub genes was associated with survival in patients with IDH1mt gliomas. A univariate Cox regression analysis demonstrated that among 72 candidate hub genes, 29 genes were linked to survival in IDH1mt-glioma patients (Table 1). LASSO analysis was performed to create a risk model that could predict the survival of glioma patients with IDH1mt. Five more important hub genes, including HLA-DQA2, HLA-DQB2, HOXA2, HOXA3, and SAA2, were identified and used for further analysis (Figures 4A, B). A multivariate Cox analysis also indicated that HLA-DQA2, HOXA3, and SAA2 were independent predictors of survival in glioma patients with IDH1mt (Figure 4C). Therefore, the gene expression information of HLA-DQA2, HOXA3, and SAA2 and the survival information of glioma patients with IDH1mt in TCGA were imported into R software to construct a risk model. Using computer optimization, a risk model was constructed with a risk score of 0.249 × HLA-DQA2 expression + 0.179 × HOXA3 expression + 0.227 × SAA2 expression.


Table 1 | The hazard rate of genes for glioma patients with IDH1mt.






Figure 4 | Hub genes selected to construct the risk model. (A, B) LASSO analysis for hub genes associated with the survival rate of IDH1mt-glioma patients. (C) Multivariate Cox regression analysis of HLA-DQA2, HOXA3, and SAA2. These three genes were used to construct the risk model.





Verification of applicability of risk model in glioma patients with IDH1mt in TCGA and CGGA

To verify the applicability of the risk model in glioma patients with IDH1mt, glioma patients with IDH1mt in TCGA (Figure 5A) and CGGA (Figure 5B) were divided into high- and low-risk groups according to the median risk score obtained from the TCGA cohort. The results indicated that IDH1mt glioma patients in TCGA with high-risk scores had shorter overall survival rates than those with low-risk scores (Figure 5C). ROC analysis indicated that the AUC for predicting the one- and three-year survival of IDH1mt-glioma patients in TCGA were 0.845 and 0.821, respectively (Figures 5D, E). Similarly, we found that IDH1mt-glioma patients in CGGA with high-risk scores had shorter overall survival rates than those with low-risk scores (Figure 5F), and the AUC for predicting one- and three-year survival of IDH1mt-glioma patients in CGGA were 0.794 and 0.764, respectively (Figures 5G, H). Furthermore, we found that IDH1mt-glioma patients in TCGA (Figure 5I) and CGGA (Figure 5J) with high-risk scores exhibited a higher proportion of deaths. This evidence indicates that the risk model has remarkable diagnostic value for glioma patients with IDH1mt.




Figure 5 | Verification of the applicability of the risk model in IDH1mt-glioma patients in TCGA and CGGA databases. (A, B) IDH1mt-glioma patients in TCGA and CGGA databases were divided into high- and low-risk score groups according to the median of risk scores. (C) The survival difference between high- and low-risk score group IDH1mt-glioma patients in TCGA. (D, E) The diagnostic value of risk model for one- and three-year survival in IDH1mt-glioma patients in TCGA. (F) The survival difference between high- and low-risk score group IDH1mt-glioma patients in CGGA. (G, H) The diagnostic value of risk model for one- and three-year survival in IDH1-mt glioma patients in CGGA. (I, J) Death cases in high- and low-risk score group IDH1mt-glioma patients in TCGA and CGGA (Green dots mean alive cases, red dots mean death cases).





Exploration of applicability of risk model in glioma patients with wtIDH1 in TCGA and CGGA

Glioma patients with wtIDH1 in TCGA (Figure 6A) and CGGA (Figure 6B) were divided into high- and low-risk groups according to the median risk score. wtIDH1 glioma patients in TCGA with high-risk scores had lower overall survival than those with low-risk scores (Figure 6C). However, the AUC for predicting the one- and three-year survival of wtIDH1 glioma patients in TCGA were 0.644 and 0.682, respectively (Figures 6D, E). Similarly, high-risk wtIDH1-glioma patients in CGGA had shorter overall survival rates (Figure 6F), but the AUCs of the risk model for predicting the one- and three-year survival of wtIDH1 glioma patients in CGGA were 0.570 and 0.652, respectively (Figures 6G, H). Furthermore, the percentage of deaths was not significantly different between wtIDH1 glioma patients in the high- and low-risk groups in TCGA (Figure 6I) and CGGA (Figure 6J). These results indicated that the risk model constructed using HLA-DQA2, HOXA3, and SAA2 was not suitable for predicting the survival of wtIDH1 glioma patients and may be specific for IDH1mt-glioma patients.




Figure 6 | Verification of the applicability of the risk model in wtIDH1-glioma patients in TCGA and CGGA databases. (A, B) wtIDH1-glioma patients in TCGA and CGGA databases were divided into high- and low-risk score groups according to the median of risk scores. (C) The survival difference between high- and low-risk score group wtIDH1-glioma patients in TCGA. (D, E) The diagnostic value of risk model for one- and three-year survival in wtIDH1-glioma patients in TCGA. (F) The survival difference between high- and low-risk score group wtIDH1-glioma patients in CGGA. (G, H) The diagnostic value of the risk model for one- and three-year survival in wtIDH1-glioma patients in CGGA. (I, J) Death cases in high- and low-risk score group wtIDH1-glioma patients in TCGA and CGGA (Green dots mean alive cases, red dots mean death cases).





Immune signature acts as independent prognostic factor for glioma patients with IDH1mt

We then performed a multivariate Cox regression analysis, and the immune signature constructed using HLA-DQA2, HOXA3, and SAA2 was found to act as an independent prognostic factor for glioma patients with IDH1mt, with an HR of 1.203 (Table 2). In addition, a nomogram was created based on the signature risk score and clinical characteristics (Figure 7).


Table 2 | Cox regression analysis of the immune signature.






Figure 7 | Construction of nomogram based on the signature risk score and clinical characteristics.





Exploration of pathways associated with immune signature

Gene set enrichment analysis (GSEA) was used to determine if defined pathways were enriched in high- and low-risk groups of glioma patients with IDH1mt. IDH1mt-glioma tissues with high risk in TCGA were positively associated with “M phase“ (NES=1.89, P<0.01) and “signaling by interleukins” (NES=2.24, P<0.01; Figure 8A), while those with high risk in CGGA were positively associated with “cell cycle mitotic” (NES=2.19, P<0.01) and “neutrophil degranulation” (NES=2.17, P<0.01; Figure 8B).




Figure 8 | GSEA analysis of the pathway terms enriched in high-risk score IDH1mt-glioma tissues in TCGA (A) and CGGA (B).





Immune characteristics of the immune signature

According to previous studies (16, 17), infiltrating immune cells play a critical role in the progression of IDH1mt glioma. We determined the difference in infiltration of 22 immune cells between the high- and low-risk groups of glioma tissues with IDH1mt. The CIBERSORT R package was used to convert the gene expression profile of glioma tissues with IDH1mt in TCGA (Figure 9A) and CGGA (Figure 9B) to a proportion profile of infiltrated immune cells. Compared with IDH1mt glioma tissues with low-risk scores, those with high-risk scores in TCGA exhibited a high proportion of naïve B cells, plasma cells, CD8 T cells, CD4 memory activated T cells, activated NK cells, M0 macrophages, and M1 macrophages, while the proportion of resting NK cells and activated dendritic cells was reduced (Figure 9C). In CGGA, IDH1mt-glioma tissues with high-risk scores had higher memory B cells, CD8 T cells, M1 macrophages, M2 macrophages, and resting dendritic cells and lower M0 and CD4 naïve T cells (Figure 9D). In conclusion, both TCGA and CGGA indicated a higher proportion of CD8 T cells and M1 macrophages in IDH1mt-glioma tissues with high risk compared with that in those with low risk.




Figure 9 | Immune characteristics of the three immune signatures. (A, B) The gene expression profiles of the high- and low-risk score group IDH1mt-glioma tissues in TCGA and CGGA were converted into 22 immune cell expression matrices. (C, D) Difference in immune cells between high- and low-risk score group IDH1mt-glioma tissues in TCGA and CGGA.





Detection of the expression of HLA-DQA2, HOXA3, SAA2, CD8, and CD86 in IDH1mt-glioma tissues

In total, 54 glioma tissues with IDH1mt from our research group were divided into long- (survival ≥ 15 months) and short-term groups (survival < 15 months). IHC was performed to detect the expression of HLA-DQA2, HOXA3, and SAA2 in glioma tissues, and high expression of HLA-DQA2, HOXA3, and SAA2 was observed in glioma tissues in the short-term group compared with that in the long-term group (Figures 10A, B). Similarly, we detected the expression of the M1 biomarker CD86 and the CD8 T-cell biomarker CD8 in glioma tissues using IHC. The expression of CD86 and CD8 increased in IDH1mt-glioma tissues in the short-term survival group (Figure 10C). These results suggest that M1 and CD8 T cells infiltrate more deeply into IDH1mt-glioma tissues associated with a lower probability of survival (Figure 10C). Furthermore, ROC analysis was performed to determine the diagnostic value of HLA-DQA2, HOXA3, and SAA2 in the survival of IDH1mt-glioma patients, and all showed remarkable diagnostic value (AUC = 0.832, 0.896, and 0.857) (Figures 10D–F).




Figure 10 | Expression of HLA-DQA2, HOXA3, SAA2, CD86, and CD8 in IDH1mt-glioma tissues. IDH1mt-glioma tissues were divided into long- and short-term survival groups according to the patient’s number of days of survival with the cut-off as 15 months. (A) The IHC score of HLA-DQA2, HOXA3, and SAA2 in IDH1mt-glioma tissues in long- and short-term groups. (B) Representative figures of expression of HLA-DQA2, HOXA3, and SAA2 in long- and short-term group IDH1mt-glioma tissues. (C) Expression of CD86 and CD8 in long- and short-term group IDH1mt-glioma tissues. (D–F) The diagnostic value of HLA-DQA2, HOXA3, and SAA2 for distinguishing long- and short-term survival of IDH1mt-glioma patients. **P < 0.01.





Glioma patients with IDH1mt in high-risk group exhibited high responsiveness to ICB therapy

The TIDE online algorithm was used to evaluate the responsiveness of IDH1mt-positive glioma patients in the high- and low-risk groups to ICB therapy. Lower exclusion scores were observed in IDH1mt-glioma patients with high-risk scores than in those with low-risk scores (Figure 11A), while the dysregulation score was reduced (Figure 11B). Overall, the TIDE score was significantly reduced in IDH1mt-glioma tissues with high-risk scores compared with that in those with low-risk scores (Figure 11C). Finally, the responder prediction results indicated that glioma patients with IDH1mt in the high-risk group exhibited high responsiveness to ICB therapy (Figure 11D). Based on this evidence, this risk model may be able to guide the clinical treatment of glioma patients with IDH1mt.




Figure 11 | Glioma patients with IDH1mt in high-risk group exhibit high responsiveness to ICB therapy. (A) Exclusion score of glioma patients with IDH1mt in high- and low-risk groups. (B) Dysregulation score of glioma patients with IDH1mt in high- and low-risk groups. (C) TIDE score of glioma patients with IDH1mt in high- and low-risk groups. (D) Responders and non-responders among glioma patients with IDH1mt in high- and low-risk groups. *P < 0.05; **P < 0.01.






Discussion

Among primary brain tumors, malignant gliomas are the most common and show a poor prognosis (18). One of the most common genetic lesions in gliomas is a heterozygous mutation in IDH1, which occurs in 70–80% of grade II or III gliomas and most secondary glioblastomas (7). IDH1mt induces high histone methylation, high DNA methylation, high DNA damage response, and low amino acid metabolism in glioma cells (8). Due to the specific molecular mechanisms involved in the progression of glioma with IDH1mt, some biomarkers and therapeutic drugs may not be suitable for the IDH1mt subtype. The identification of specific biomarkers for gliomas with IDH1mt may aid diagnosis and therapy.

As previous studies have indicated that dysregulation of immune microenvironments is involved in the progression of gliomas with IDH1mt (19, 20), we first calculated the stromal and immune scores in glioma tissues with IDH1mt. We found that IDH1mt-glioma patients with high stromal/immune scores had lower survival rates than those with low stromal/immune scores. We then focused on the DEGs between the high and low stromal/immune score groups of IDH1mt-glioma. In total, 222 DEGs were identified, while 29 genes interacted with others in the PPI network and were significantly associated with prognosis. Then, via LASSO and Cox regression analyses, immune signatures were constructed using HLA-DQA2, HOXA3, and SAA2, and IDH1mt-glioma patients were divided into high-risk and low-risk groups. Risk models have been constructed for gliomas and exhibited remarkable prognostic value (21, 22). However, the prognostic value of these risk models for each subtype of glioma is limited, which restricts their clinical application.

HLA-DQA2 belongs to the HLA class II alpha chain family, and its encoded protein forms a heterodimer with a class II beta chain, contributing to the present antigenic peptides (23). Previous studies indicated that HLA-DQA2 mutations were associated with the susceptibility of lung cancer (24). However, its role in glioma was still known limit. HOXA3 encodes a DNA-binding transcription factor, which involved in the embryonic development through regulating genes of morphogenesis and cell differentiation (25). Upregulated HOXA3 was observed in series of cancers, including glioma (26). SAA2 encodes a member of the serum amyloid A family of apolipoproteins, which would elevated in the tissues with inflammation (27). SAA2 encoded protein plays an important role in HDL metabolism and cholesterol homeostasis (28). Previous studies indicated that high level of SAA2 was associated with the progression of inflammatory disease, including cancer (29). In glioma, high expression of SAA2 was associated with temozolomide resistance (30). In this study, we focused on the IDH1mt subtype glioma and found that the risk model constructed using HLA-DQA2, HOXA3, and SAA2 showed remarkable prognostic value for IDH1mt glioma in both TCGA and CGGA cohorts but not for wtIDH1-glioma. Furthermore, this risk model may act as an independent prognostic factor for IDH1mt glioma. We suggest that this risk model constructed using immune-related genes may characteristically contribute to the assessment of the prognosis of IDH1mt glioma.

The tumor environment (TME) is a complex integrated system that contains cancer cells, immune cells, inflammatory cells, tumor-associated fibroblasts, and various cytokines (31, 32). Immune cells infiltrating the TME participate in the progression of glioma. For example, high number of cells are polarized to M2 phenotype in glioma tissues and have the potential to enhance the invasiveness of glioma cells by inducing angiogenesis, whereas M1 cells have the opposite effects (33). NK and CD8 T cells have the potential to induce senescence in glioma cells (34). However, the immune signature of IDH1mt glioma is limited. In this study, we found that high levels of M1 and CD8 T cells were more prevalent in IDH1mt patients with high-risk scores in both the TCGA and CGGA cohorts. Regarding the cancer-killing effects of M1 and CD8 T cells, lower survival rates were observed in IDH1mt-glioma patients with high-risk scores and high M1 and CD8 T cells infiltration. To explore the mechanism, TIDE was performed, and we found that IDH1mt-glioma patients with high-risk scores had high dysregulation scores and low exclusion scores. This evidence suggests that the TME of IDH1mt-glioma patients with high-risk scores may inhibit the functions of M1 and CD8 T cells and that they cannot exert their function, even though they show high infiltration.

ICB is a potential anti-tumor therapy that exhibits significant curative effects in a range of cancer types, including hepatocellular carcinoma (35) and breast cancer (36). By blocking immune checkpoints, deactivated cells can be reactivated to help the host kill cancer cells (37, 38). However, evidence of the benefits of ICB in gliomas with IDH1mt is limited. As evidenced that TME in IDH1mt-glioma patients in the high-risk score group can induce the inactivation of M1 cells and CD8 T cells, we furthered analyzed whether ICB had a high benefit for IDH1mt-glioma patients in the high-risk score group. Compared with those in the low-risk score group, the TIDE score and response rate of ICB were higher in the high-risk score group. This indicates that ICB may improve the prognosis of IDH1mt-glioma patients with high-risk scores.

However, there are some limitations in our present study. Compared with the samples in TCGA and CGGA, the samples from our research group is quite little. Furthermore, more experiments should be performed to determine how HLA-DQA2, HOXA3, and SAA2 affect the TME.

In conclusion, an immune signature constructed using HLA-DQA2, HOXA3, and SAA2 exhibited significant and specific prognostic value for IDH1mt glioma, while the high-risk group classified by the signature had a high benefit from ICB. This immune signature may contribute to the diagnosis and treatment of IDH1-mt gliomas.
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Dysregulation of immune cell infiltration in the tumor microenvironment contributes to the progression of osteosarcoma (OS). In the present study, we explored genes related to immune cell infiltration and constructed a risk model to predict the prognosis of and guide therapeutic strategies for OS. The gene expression profile of OS was obtained from TARGET and Gene Expression Omnibus, which were set as the discovery and verification cohorts. CIBERSORT and Kaplan survival analyses were used to analyze the effects of immune cells on the overall survival rates of OS in the discovery cohort. Differentially expressed gene (DEG) analysis and protein–protein interaction (PPI) networks were used to analyze genes associated with immune cell infiltration. Cox regression analysis was used to select key genes to construct a risk model that classified OS tissues into high- and low-risk groups. The prognostic value of the risk model for survival and metastasis was analyzed by Kaplan–Meier survival analyses, receiver operating characteristic curves, and immunohistochemical experiments. Immunological characteristics and response effects of immune checkpoint blockade (ICB) therapy in OS tissues were analyzed using the ESTIMATE and Tumor Immune Dysfunction and Exclusion algorithms, while sensitivity for both targeted and chemotherapy drugs was analyzed using the OncoPredict algorithm. It was demonstrated that the high infiltration of resting dendritic cells in OS tissues was associated with poor prognosis. A total of 225 DEGs were found between the high- and low-infiltration groups of OS tissues, while 94 genes interacted with others. Through COX analyses, among these 94 genes, four genes (including AOC3, CDK6, COL22A1, and RNASE6) were used to construct a risk model. This risk model showed a remarkable prognostic value for survival rates and metastasis in both the discovery and verification cohorts. Even though a high microsatellite instability score was observed in the high-risk group, the ICB response in the high-risk group was poor. Furthermore, using OncoPredict, we found that the high-risk group OS tissues were resistant to seven drugs and sensitive to 25 drugs. Therefore, our study indicates that the resting dendritic cell signature constructed by AOC3, CDK6, COL22A1, and RNASE6 may contribute to predicting osteosarcoma prognosis and thus therapy guidance.
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Introduction

As a primary malignant bone tumor, osteosarcoma (OS) is the leading cause of cancer-related deaths among children and adolescents (1). Currently, surgery and chemotherapy are the primary treatments for OS. Over the past 30 years, the 5-year survival rate of OS has increased to 70%. However, patients with OS still have a poor prognosis due to drug resistance, metastasis, or recurrence (2, 3). Therefore, an urgent need to identify novel biomarkers for OS that may contribute to therapy practices is apparent.

Previous studies have indicated that the dysregulation of immune cells plays a key role in the malignant activity of osteosarcoma, which also includes metastasis and drug resistance (4, 5). Sun et al. demonstrated lower infiltration of CD8-positive T cells in OS tissues and induced OS cell proliferation (6). Shao et al. demonstrated that M2 macrophages are enriched in primary osteosarcoma tissues, thus activating cancer stem cells in osteosarcoma tissues and inducing drug resistance (7). Therefore, immunotherapy (including adoptive cell therapy, vaccination, and checkpoint inhibitors) has become increasingly popular for cancer therapy in recent years (8). Anti-programmed cell death 1 (PD1) and anti-programmed cell death 1 ligand 1 (PDL1) blockade therapies have shown encouraging results in various preclinical studies (9, 10). However, differing from the success of preclinical studies, a randomized clinical trial conducted by Tawbi et al. in 2017 showed that only 5% of patients with OS had an objective response to pembrolizumab—a PD1 antibody. The authors indicated that different patients with OS have different immune microenvironment characteristics and, therefore, have different responses to immunotherapy (11). Hence, studying the immunological characteristics of OS tissues may contribute to improving immunotherapy efficiency.

In the present study, we aimed to explore genes associated with immune cell infiltration and constructed a risk model to predict the prognosis of OS and thus guide therapeutic strategies for OS. We found that high levels of resting dendritic cells were associated with poorer prognoses in OS, and the risk model (constructed using resting dendritic cell-associated genes) may have remarkable value in predicting OS prognosis and guiding therapy.



Materials and methods


Data acquisition and preprocessing

Gene expression in OS tissues was acquired from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET; https://ocg.cancer.gov/programs/target) database and Gene Expression Omnibus (GEO; accession number: GSE21257; https://www.ncbi.nlm.nih.gov/gds). For the gene expression profile in TARGET, a total of 85 tissues provided by patients had fully equipped clinical messages, including that of age, sex, and metastasis status. The gene expression of GSE21257 was supplied by Buddingh et al. (12), and 53 tissues provided by patients had fully equipped clinical messages. Prior to the analyses, we translated the probe name into gene symbols and performed batch normalization and centralization.



Immune cell analysis

CIBERSORT is an R package that calculates cell fractions from bulk tissue gene expression profiles (13). In the present study, we used CIBERSORT to calculate the number of 22 immune cells in OS. The relationship between immune cells and survival rates of patients with OS was analyzed using Kaplan–Meier survival analyses (log-rank), and p < 0.05 was set as the threshold of significance.



DEG analysis

OS tissues were divided into high- and low-infiltration groups, according to the median level. Differentially expressed genes (DEGs), between the high- and low-infiltration groups, were analyzed using the Limma package (version 3.15), while p < 0.05, and | log fold change (FC)| ≥1 were set as thresholds to select DEGs.



Protein–protein interaction (PPI) network construction and enrichment analysis

DEGs were imported into STRING (https://cn.string-db.org/), with a reliability>0.4, to establish an initial network. In this network, genes with no interactions were removed. The adjusted initial network was visualized using the Cytoscape software (version 3.6.1). Genes in the network were subjected to enrichment analysis. Analyses of biological process (BP), molecular function (MF), and KEGG pathway enrichment were performed using the DAVID database (https://david.ncifcrf.gov/tools.jsp). Terms with a p value of <0.05 were regarded as significant, and the top five terms were visualized.



Construction and verification of the risk model

Gene expression and survival data of patients with OS were imported and used to conduct a univariate COX analysis. Then, survival-associated genes (p < 0.05) were subjected to least absolute shrinkage and selection operator (LASSO) COX analysis to select more important survival-associated genes, by adding appropriate penalties (lambda). Finally (utilizing the Akaike information criterion), an optimal prognostic risk model was built, using a multivariate Cox regression analysis. The prognostic value for survival in the discovery and verification cohorts was analyzed using Kaplan–Meier survival analyses and receiver operating characteristic (ROC) curves. p < 0.05 was defined as the threshold for significance in Kaplan survival analyses, while p < 0.05 and the area under the curve (AUC) being ≥0.65 were set as cutoffs for ROC curve analyses.



Tissue collection and immunohistochemical (IHC) analysis

Written informed consent was obtained from all patients enrolled in the study. A total of 44 OS tissues were collected from the Affiliated Hospital of Guizhou Medical University (Guiyang, China), with the approval of the Human Ethics Committee of Guizhou Medical University. Of the 44 OS tissues, 18 tissues were obtained from patients with metastasis at diagnosis, while 26 tissues were obtained from patients without metastasis at diagnosis. These OS tissues were sliced into 4-μm sections and embedded in paraffin, prior to performing IHC experiments. The paraffin-embedded slices were dried at 60°C, deparaffinized by xylene, and soaked in 100%, 90%, 80%, and 70% ethyl alcohol for 10 min (in that order). Antigen retrieval was performed at 120°C in a citrate buffer (pH 6.0) for 10 minutes. After washing with PBS twice, the slices were incubated with 0.3% H2O2 and 5% bovine serum albumin reagent (Thermo Fisher Scientific, USA) for 30 min, to prevent subsequent non-specific binding. The primary antibodies used were AOC3 (1:500; Cat no. 66834-1-Ig, Proteintech, Wuhan, China), CDK6 (1:200; Cat no. 14052-1-AP, Proteintech, Wuhan, China), COL22A1 (1:250; Cat no. ab121846; Abcam, USA), and RNASE6 (1:100; Cat. ab121111; Abcam, USA), for 14 hours at 4°C. After washing twice with PBS, secondary antibodies were added and incubated for 2 h at room temperature (20°C). Finally, DAB reagent was used to visualize the antigen-antibody complex. The IHC score was determined by the product of the staining area (≤5%, 0; 6%–25%, 1; 26%–50%, 2; 51%–75%, 3; >75%, 4) and depth (none, 0; slight, 1; moderate, 2; strong, 3).



Construction of the nomogram

A nomogram is a way to visualize the results of logistic or Cox regression analyses. According to the size of the regression coefficient of all independent variables to develop a scoring standard, each value level of each independent variable is given a score. For each patient, a total score can be calculated, and the probability of the outcome time of each patient can then be calculated by the conversion function between the score and probability of the outcome (14). Information on age, sex, risk score, and metastasis status were imported and used to perform univariate and multivariate COX analyses, where these analyses were then used to construct the nomogram. The efficiency of the nomogram was set to 1 year, 3 years, and 5 years.



Tumor immune dysfunction and exclusion (TIDE) analysis

The TIDE algorithm, developed by Jiang et al., is a computational framework developed to evaluate the potential of tumor immune escape from the gene expression profiles of cancer samples (15). Therefore, the gene expression of OS tissues was downloaded into the TIDE online database (http://tide.dfci.harvard.edu/) to calculate various immune parameters, including microsatellite instability (MSI) score, PDL1 expression, and myeloid-derived suppressor cell (MDSC) levels, and to predict the response rate of immune checkpoint blockade (ICB). The differences in MSI scores between high- and low-risk scores were analyzed using unpaired t-tests, while the relationship between PDL1 expression, MDSC levels, and risk scores was analyzed by Pearson co-expression analyses. p < 0.05 was set as the level of significance.



OncoPredict for drug sensitivity analysis

The OncoPredict R package was developed by Maeser et al. (16) to predict in vivo drug responses in cancer patients. OncoPredict fits the gene expression profile of tissues to the half-maximal inhibitory concentration (IC50) of the cancer cell lines to drugs from Genomics of Drug Sensitivity in Cancer (GDSC; https://www.cancerrxgene.org/) and the gene expression profile of cancer lines from the Broad Institute Cancer Cell Line Encyclopedia (CCLE; https://portals.broadinstitute.org/ccle_legacy/home). A total of 198 drugs were calculated, and the sensitivity of the drugs (between the high- and low-risk groups) was analyzed using unpaired t-tests. p < 0.05 was set as the threshold for significance.




Results


High infiltration of resting dendritic cells was related to poorer prognoses in OS

Previous studies have indicated that dysregulated infiltration of immune cells is associated with the prognosis of patients with OS. We first transformed the gene expression matrix of osteosarcoma tissues in TARGET into the expression levels of 22 types of immune cells, using CIBERSORT (Figure 1A). We found that, among the 22 types of immune cells, a high infiltration of resting dendritic cells was associated with a poorer prognosis in patients with OS (HR = 2.18, 95% confidence interval [CI] = 1.01–4.71; Figure 1B).




Figure 1 | High infiltration of resting dendritic cells was related to poorer prognoses in OS. (A) The gene expression matrix of osteosarcoma tissues in TARGET was transformed into expression levels of 22 immune cells, through CIBERSORT. (B) The effects of the 22 immune cells on the survival rate of OS were analyzed via Kaplan survival analysis.





Genetic characterization of OS tissues with high infiltration of resting dendritic cells

We then divided the OS tissues into high- and low-infiltration groups, according to the median levels of resting dendritic cells within these tissues. DEG analysis was performed, and a total of 175 upregulated genes and 50 downregulated genes were observed in OS tissues with a high infiltration of resting dendritic cells versus those with a low infiltration of resting dendritic cells (Figures 2A, B). We then performed a PPI network analysis and found that 94 of these genes were related to others (Figure 2C). Therefore, these 94 genes were set as resting dendritic cell-associated genes, and we focused on them. GO analysis revealed that these 94 genes were enriched in “ossification” (BP term; Figure 2D), “extracellular matrix organization” (BP term; Figure 2D), “extracellular structure organization” (BP term; Figure 2D), “tissue remodeling” (BP term; Figure 2D), “bone mineralization” (BP term; Figure 2D), “matrix structural constituent” (MF term; Figure 2E), “tyrosine kinase activity” (MF term; Figure 2E), “protein kinase activity” (MF term; Figure 2E), “peptide binding” (MF term; Figure 2E), and “metalloendopeptidase activity” (MF term; Figure 2E). KEGG analysis indicated that these genes were enriched in the MAPK, PI3K-AKT, cell adhesion, Rap1, and Ras pathways (Figure 2F).




Figure 2 | Genetic characterization of OS tissues with high infiltration of resting dendritic cells. (A) Volcano plot exhibiting the upregulated and downregulated genes in OS tissues between groups with high and low infiltration of resting dendritic cells. (B) Heatmap plot exhibiting the upregulated and downregulated genes in OS tissues between groups with high and low infiltration of resting dendritic cells. (C) PPI network indicating the relationship between the 94 genes associated with the infiltration of resting dendritic cells. (D) Biological process analyses for the 94 genes associated with the infiltration of resting dendritic cells. (E) Molecular function analyses for the 94 genes associated with the infiltration of resting dendritic cells. (F) KEGG analysis for the 94 genes associated with the infiltration of resting dendritic cells.





Construction of risk model using resting dendritic cell-associated genes

First, univariate COX analyses were performed for these 94 resting dendritic cell-associated genes to calculate their prognostic value. The expression of 14 genes (SOST, MCAM, COL22A1, AOC3, CYFIP2, ISM1, PYGM, DKK1, BMP2, BAMBI, SCL36A2, EBF1, FAT3, and CYGB) was associated with a shorter overall survival rate of OS, while the expression of seven genes (CDK6, FAP, C1R, EGFR, SLC38A4, FBLN1, and RNASE6) was associated with an increased overall survival rate of OS (Figure 3A). LASSO COX analysis was then conducted, and seven genes of them (including AOC3, CDK6, COL22A1, EBF1, MCAM, RNASE6, and SLC38A4) were obtained as more important genes (Figures 3B, C). Moreover, by performing multivariate COX analyses for these seven more important genes, four genes (AOC3, CDK6, COL22A1, and RNASE6) were used to construct the risk model (risk score = 0.307745*COL22A1 expression + 0.43972*AOC3 expression – 0.44907*CDK6 expression – 0.67038*RNASE6 expression; Figure 3D). CDK6, COL22A1, and RNASE6 also had prognostic value in TARGET patients with OS, as per multivariate COX analyses (Figure 3D).




Figure 3 | Construction of a risk model. (A) Univariate COX regression analysis for the 94 genes associated with the infiltration of resting dendritic cells. (B, C) LASSO analysis for other important genes associated with the survival rate of OS. (D) The HR and p value of genes (including AOC3, CDK6, COL22A1 and RNASE6) under multivariate COX analysis are shown.





The risk model exhibited high prognostic value in the TARGET discovery cohort

The prognostic value of the risk model was first determined in the TARGET discovery cohort. Therefore, OS tissues in TARGET were divided into high- and low-risk groups, according to median risk scores (Figure 4A). A shorter overall survival rate was observed in the high-risk group than in the low-risk group (Figure 4B). ROC analysis demonstrated that the diagnostic value (AUC) of this risk model for the 1-year, 3-year, and 5-year survival rates of patients with OS in the TARGET cohort were 0.837, 0.805, and 0.842, respectively (Figures 4C–E). Moreover, high-risk groups had a higher proportion of deaths (Figure 4F). Furthermore, we found that the expression of COL22A1 and AOC3 was increased in high-risk score groups, whereas the expression of CDK6 and RNASE6 was reduced in high-risk score groups (Figure 4G). Taken together, these results indicate that the risk model exhibited a high prognostic value in the TARGET discovery cohort.




Figure 4 | The risk model exhibits high prognostic value in the TARGET discovery cohort. (A) OS tissues in TARGET were divided into low- and high-risk groups, according to median risk scores. (B) Kaplan survival analysis indicated the difference between low- and high-risk group OS tissues in TARGET. (C–E) ROC analyses of the risk model for the 1-year, 3-year, and 5-year survival rates for OS patients in TARGET. (F) Alive and death cases between low- and high-risk group OS tissues in TARGET. (G) Expression of COL22A1, CDK6, RNASE6 and AOC3 between low- and high-risk group OS tissues in TARGET.





The risk model exhibited high prognostic value in the GSE21257 verification cohort

The gene expression profile of GSE21257 was set as the verification cohort, and the tissues were divided into high- and low-risk groups according to the medium-risk score (Figure 5A). The results indicated that a lower overall survival rate was observed in the high-risk group than in the low-risk group (Figure 5B). ROC analysis demonstrated that the diagnostic value (AUC) of this risk model for the 1-year, 3-year, and 5-year survival rates of patients with OS in GSE21257 were 0.745, 0.681, and 0.703, respectively (Figures 5C–E). Moreover, the results indicated that the high-risk groups also had a higher proportion of deaths (Figure 5F). Furthermore, we found that the expression of COL22A1 and AOC3 was also elevated in the high-risk group, whereas CDK6 and RNASE6 expression was decreased in the high-risk group (Figure 5G). In conclusion, the risk model exhibited high prognostic value in the verification cohort GSE21257.




Figure 5 | The risk model exhibits high prognostic value in the GSE21257 verification cohort. (A) OS tissues in GSE21257 were divided into low- and high-risk groups according to median risk scores. (B) Kaplan survival analysis indicated the difference between low- and high-risk group OS tissues in GSE21257. (C–E) ROC analysis of the risk model for the 1-year, 3-year, and 5-year survival rates for OS patients in GSE21257. (F) Alive and death cases between low- and high-risk group OS tissues in GSE21257. (G) Expression of COL22A1, CDK6, RNASE6 and AOC3 between low- and high-risk group OS tissues in GSE21257.





The risk model had the potential to predict metastasis in patients with OS

More metastasis cases (TARGET, 35.7% and GSE21257, 87.5%) were found in the high-risk group than in the low-risk group (TARGET, 13.9% and GSE21257, 52.6%; Figure 6A). ROC analyses indicated that the diagnostic values (AUC) of the risk model for predicting metastasis were 0.741 and 0.720 for OS patients in TARGET and GSE21257, respectively (Figure 6B). Moreover, we detected the expression of AOC3, COL22A1, CDK6, and RNASE6 in OS tissues obtained from patients with metastasis (n = 18) versus those without metastasis (n = 26), using IHC. We found that the protein levels of AOC3 and COL22A1 were increased, and RNASE6 was decreased in OS tissues from patients with metastasis (Figures 6C, D). These results indicate that the risk model has the potential to predict metastasis in patients with OS.




Figure 6 | The risk model has the potential to predict metastasis in patients with OS. (A) Non-metastasis and metastasis cases between low- and high-risk group OS tissues in the TARGET and GSE21257 cohorts. (B) ROC analysis for the diagnostic value of the risk model in the prediction of OS tissue metastasis. (C, D) IHC was performed to detect the expression of COL22A1, CDK6, RNASE6 and AOC3 in non-metastasis and metastasis OS tissues (magnification 200× and 400×). *p < 0.05; **p < 0.01; ns, no significant.





The risk model can act as an independent factor for predicting OS patient prognosis

Information on age, sex, metastasis status, and risk score of all patients with OS in the TARGET and GSE21257 groups was used to conduct Cox regression analyses. Risk score and metastasis status could act as independent factors for predicting OS patient prognosis (Table 1). To further help in predicting OS patient prognosis, a nomogram was constructed (Figure 7A), which showed high prognostic value for the 1-year, 3-year, and 5-year survival rates (Figure 7B).


Table 1 | Univariate and multivariate COX regression analyses for age, gender, risk score, and metastasis status in OS tissues.






Figure 7 | Construction of the nomogram. (A) Age, gender, risk score, and metastasis was used to construct the nomogram. (B) Efficiency of the nomogram in the 1-year, 3-year, and 5-year survival rates of patients with OS.





The high-risk group patients with OS exhibited resistance to ICB

We then analyzed immunological characteristics of the high- and low-risk OS tissues. We found that microsatellite instability (MSI) scores were higher in the high-risk group than in the low-risk group (Figure 8A). The risk score was negatively associated with PDL1 expression (R = -0.37, p < 0.01; Figure 8B) and positively associated with MDSC cell levels (R = 0.24, p < 0.01; Figure 8C). Moreover, by performing TIDE analyses, we found that both exclusion and TIDE scores were higher in the high-risk groups of patients with OS than in the low-risk groups, while dysregulation scores were reduced in the high-risk groups (Figure 8D). Moreover, the proportion of non-responders to ICB therapy was higher in the high-risk group (70.7%) than in low risk group (52.5%; Figure 8E). These results indicate that the high-risk group of patients with OS exhibited resistance to ICB.




Figure 8 | The high-risk group patients with OS exhibit resistance to ICB. (A) MSI scores between high- and low-risk group OS tissues. (B) Co-expression relationships between risk scores and PDL1 expression. (C) Co-expression relationships between risk scores and MDSC levels. (D) The difference of exclusion, dysregulation, and TIDE scores between high- and low-risk group OS tissues. (E) Predication of non-responder and responder numbers after ICB in high- and low-risk group OS tissues. *p < 0.05, **p < 0.01.





Selecting suitable drugs for the high-risk group of patients with OS, via OncoPredict

To explore suitable drugs for patients with high-risk scores, we transformed the gene expression of OS tissues in the TARGET and GSE21257 groups into a drug sensitivity matrix, using the OncoPredict algorithm (Figure 9A). All scores for each sample are exhibited in Supplementary Table 1. OS tissues from high-risk group patients exhibited greater resistance to seven drugs, including those of AZD8055 (targeting drug, mTOR inhibitor), XAV939 (targeting drug, tankyrase inhibitor), AZD1332 (targeting drug, receptor tyrosine kinase inhibitor), Entospletinib (targeting drug, Syk inhibitor), ERK 2440 (targeting drug, ERK inhibitor), AZ960 (targeting drug, JAK inhibitor), and Uprosertib (targeting drug, AKT inhibitor), than those from low-risk group patients (Figure 9B). OS tissues from high-risk group patients were more sensitive to 25 drugs, including those of ABT737 (targeting drug, Bcl-2 inhibitor), BMS-345541 (targeting drug, IKK inhibitor), Navitoclax (targeting drug, Bcl-2 inhibitor), TAF1 5496 (targeting drug, TAF1 inhibitor), I-BRD9 (targeting drug, BRD9 inhibitor), Linsitinib (targeting drug, IGF-1R inhibitor), Vorinostat (targeting drug, HDAC inhibitor), Nilotinib (targeting drug, Bcr-abl inhibitor), Venetoclax (targeting drug, Bcl-2 inhibitor), VE-822 (targeting drug, ATM inhibitor), AGI-5198 (targeting drug, IDH inhibitor), Osimertinib (targeting drug, EGFR inhibitor), Daporinad (targeting drug, NMPRTase inhibitor), Tamoxifen (Chemotherapy drug), VE821 (targeting drug, ATM inhibitor), UMI-77 (targeting drug, Bcl-2 inhibitor), Dihydrorotenone (mitochondrial inhibitor), KRAS (G12C) Inhibitor-12 (targeting drug, KRAS inhibitor), AZD6738 (targeting drug, ATR inhibitor), WEHI-539 (targeting drug, BCL-XL inhibitor), Sabutoclax (targeting drug, Bcl-2 inhibitor), Lapatinib (targeting drug, EGFR/HER2 inhibitor), AZD5991 (targeting drug, MCL-1 inhibitor), LY2109761 (targeting drug, TGF-β Receptor I/II inhibitor) and NVP-ADW742 (targeting drug, IGF1R inhibitor; Figure 9C) than were OS tissues from low-risk group patients. We believe that these drugs may help in the treatment of OS patients with high-risk scores.




Figure 9 | Selecting suitable drugs for high-risk group patients with OS via OncoPredict. (A) OncoPredict was used to transform the gene expression profile of OS tissues in the TARGET and GSE21257 groups into a drug sensitivity matrix of 198 drugs. (B) Resistant drugs identified in high-risk groups in both the TARGET and GSE21257 cohorts. (C) Sensitive drugs identified in high-risk groups in the TARGET and GSE21257 cohorts.






Discussion

The effectiveness of immunotherapy in the treatment of several cancers has gained recognition in recent years. Similarly, immunotherapy is expected to be widely used in the treatment of OS. However, compared with its success in preclinical studies, the clinical effectiveness of immunotherapy is limited by different immune microenvironments in OS tissues (17). For example, Groisberget et al. demonstrated that only 26% of patients with OS yielded a partial response or experienced stable disease progression after immunotherapy (18). Regarding clinical traits assessed by Ullenhag et al., the effective rate was 30% (19). Therefore, the identification of genes associated with the immune characteristics of OS may contribute to improved diagnosis of and therapy for OS.

In the present study, we first calculated the number of immune cells in OS tissues. We found that high levels of resting dendritic cells were associated with poorer prognoses. Being the most typical type of antigen-presenting cell, dendritic cells bridge the gap between innate and adaptive immunity, which also includes antitumor T-cell activation. Dendritic cells are activated during immunoreaction. Activated dendritic cells recognize and process immune signals and present antigens to T cells, thus activating immunological cascades (20, 21). Therefore, high levels of resting dendritic cells indicate lower levels of immunoreaction. Consistent with previous studies, our results indicate that activated dendritic cells may contribute to improving OS survival rate.

We then analyzed gene expression differences between the high and low dendritic cell group OS tissues. A total of 94 key dendritic cell-associated genes were identified, and four genes associated with the survival of patients with OS (including AOC3, CDK6, COL22A1, and RNASE6) were used to construct the risk model. AOC3 encodes a cell adhesion protein that mediates lymphocyte binding to peripheral lymph node vascular endothelial cells during lymphocyte extravasation and recirculation, in an L-selectin-independent fashion (22). AOC3 is dysregulated in various cancers, with contradictory roles. In colorectal cancer, AOC3 expression is reduced in both in situ tissues and serum, and reduced AOC3 expression is related to poorer prognoses (23). In breast cancer, AOC3 is highly expressed and is positively associated with lymphatic invasion and distant metastasis (24). CDK6 is a serine/threonine-protein kinase involved in the control of the cell cycle and cell differentiation, and has the potential to promote G1/S transition (25). Oncogenic effects have been widely reported in various cancer types, including those of OS. COL22A1 encodes a collagen family member that is thought to be involved in stabilizing myotendinous junctions and strengthening skeletal muscle attachment (26). High expression of COL22A1 was observed in head and neck cancer, and was correlated with a decrease in disease-free survival (27). RNASE6 is a secreted protein with broad-spectrum antimicrobial activity against pathogenic bacteria (28). However, the role of RNASE6 in cancer is unclear. In the present study, we found that the risk model constructed by AOC3, CDK6, COL22A1, and RNASE6 showed distinct prognostic value for OS in both TARGET and GSE21257 groups, as well as for predicting metastasis. Furthermore, this risk model was found to be an independent factor for OS. We believe that this risk model may aid in OS diagnosis.

Immunological characteristics, including tumor mutation burden (TMB) and the MSI score of tumor tissues, can indicate the therapeutic effects of ICB (29, 30). Previous studies have indicated that high TMB and MSI in tumor tissues indicate beneficial effects after ICB (31). To analyze the benefit for patients with OS, we analyzed the MSI score in the high- and low-risk groups. Our results indicated that the MSI score was higher in the high-risk group, suggesting that the high-risk group patients had a greater benefit from ICB. However, after calculating other parameters, we found that the risk score was negatively associated with PDL1 expression and positively associated with MDSC levels. High exclusion and TIDE scores were observed in the OS tissues of the high-risk group, while the dysregulation score was reduced. These parameters inversely indicated that the high-risk group had a lesser benefit from ICB, while the low-risk group had a greater benefit from ICB. Combining these parameters, we speculated that, although high MSI scores would induce immune responses, the lack of activated dendritic cells ultimately prevents T cells from being activated to effectively kill tumors. Similarly, because this type of immune escape was not due to PDL1 overexpression in OS tumors in the high-risk group, some ICB strategies for targeting surface antigens of T cells were less beneficial. This supposition was consistent with some evidence from clinical traits, where supplementation of activated dendritic cells combined with ICB was more beneficial than ICB alone, in the context of OS (32, 33). Based on this evidence, we consider that the risk model provided in the present study has remarkable value in guiding ICB. Finally, we performed OncoPredict and found that the high-risk group OS tissues were resistant to seven drugs and sensitive to 25 drugs. This evidence may also contribute to guiding chemotherapy and targeted therapies for OS.

Our study has some limitations. First, whether and how the four genes (AOC3, COL22A1, CDK6, and RNASE6) affect the activation of dendritic cells has not been studied. The sensitivity of OS tissues to chemotherapy and targeted drugs also needs to be verified.

In conclusion, the signature constructed by four key genes associated with the level of dendritic cells (AOC3, COL22A1, CDK6, and RNASE6) had remarkable prognostic value for predicting prognosis and metastasis in patients with OS, as well as guiding ICB, chemotherapy, and targeted chemotherapy for OS.
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Cancer is a disease with high morbidity and mortality in the world. In the past, the main treatment methods for cancer patients were surgery, radiotherapy and chemotherapy. However, with early treatment, the recurrence rate of cancer is higher, and the drug resistance of cancer cells is faster. In recent years, with the discovery of immune escape mechanism of cancer cells, Immunotherapy, especially Immune Checkpoint Inhibitors (ICIs), has made a breakthrough in the treatment of solid tumors, significantly prolonging the overall survival time and disease-free progression in some solid tumors, and its clinical benefits are more prominent than those of traditional anti-tumor drugs, which has become the hope of cancer patients after the failure of multi-line therapy. More and more studies have shown that there is a correlation between cancer driving genes and the clinical benefits of ICIs treatment, and the therapeutic effects and adverse reactions of ICIs can be predicted by the status of driving genes. Therefore, screening potential biomarkers of people who may benefit from immunotherapy in order to maximize the therapeutic benefits is a top priority. This review systematically summarizes the cancer driving genes that may affect the clinical benefits of immune checkpoint inhibitors, and provides accurate scientific basis for clinical practice.
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Introduction

Tumor immunotherapy is a breakthrough research direction in the field of cancer therapy. It mainly inhibits and kills tumor cells by affecting the body’s immune system and enhancing anti-tumor immunity. This therapy has greatly changed the traditional tumor treatment strategy and brought more survival opportunities for patients (1, 2). Immune checkpoint inhibitors mainly include antibodies targeting cytotoxic T lymphocyte antigen-4 (CTLA-4) and antibodies targeting programmed cell death receptor-1 and its ligand (PD-1/PD-L1). CTLA-4 is a transmembrane protein, belonging to the immunoglobulin superfamily, which consists of extracellular domain, transmembrane domain and intracellular domain, and its extracellular domain is the receptor of B7 molecule (3). CTLA-4 competed with CD28 for binding to B7 ligand. Both CTLA-4 and CD28 molecules on the surface of T cells could bind to B7 ligand on the surface of antigen-presenting cell (APC), and the binding affinity of CTLA-4 was stronger than that of CD28. The binding of CD28 and B7 ligand produces synergistic stimulation signal, which can stimulate the activation of T cells and then produce the effect of killing tumor cells (4, 5). Contrary to the function of CD28, CTLA4 combined with B7 molecule to produce inhibitory signal, which blocked the effect of CD28 molecule on T cells, thus inhibiting the proliferation and activation of T cells (6). Programmed death receptor 1 (PD-1) is an important immunosuppressive molecule in CD28 superfamily, encoded by human PDCD1 gene, and its expression is enhanced under the stimulation of tumor necrosis factor. The main ligands of PD-1 are programmed death-ligand 1 (PD-L1) and PD-L2 (7). Immune checkpoint inhibitors can accurately occupy PD-1 or PD-L1 molecules, produce steric hindrance effect, hinder the binding of PD-1 and PD-L1, and restore immune responses inhibited by PD-1 pathway, including normal anti-tumor immune responses (8, 9). However, studies have shown that the inhibition rate of ICIs on solid tumors is only 10-40% (10). The results of this study show that a large number of patients do not benefit from immunotherapy. In addition, neo-antigen can also be recognized by T cells and cause immune response of tumor clearance. For example, the higher the tumor mutation burden (TMB), the neo-antigen, the higher the tumor immunogenicity and the higher the anti-tumor response of T cells. Therefore, there are individual differences in tumor types, ICIs types, susceptibility and new antigenicity of tumors, and biomarkers related to driving genes that determine the difference of clinical benefits of ICIs are the key to predict the curative effect of ICIs (11).



Driver gene-related biomarkers

PD-L1 is an important immune checkpoint, which is called programmed cell death ligand 1 (PD-L1). PD-L1 antigen binding site is located in the variable region of Fab segment in the light chain of antibody structure, which determines the target of antibody and the target cells it acts on, while the constant region Fc segment of antibody structure determines the type of antibody, which binds to Fc receptor expressed by immune cells, resulting in antigen clearance (12). In current clinical practice, the expression intensity of PD-L1 is significantly correlated with OS and PFS of cancer patients after ICI treatment. The results of KEYNOTE 024 show that (13), compared with traditional chemotherapy drugs, OS and PFS treated with pembrolizumab are better for patients with advanced NSCLC with high expression of PD-L1 (≥ 50%), and when PD-L1 expression < 50%, the efficacy of immunotherapy is equivalent to that of traditional chemotherapy drugs. This indicates that the higher the expression level of PD-L1, the better the immunotherapy effect of NSCLC. The results of KEYNOTE-042 and CheckMate 227 showed that (14), compared with chemotherapy, the ICI group improved the overall survival time (OS) [Nivolumab plus ipilimumab: risk ratio (HR) 0.82, 95% CI 0.69-0.97; Pembrolizumab: (HR) 0.81, 95% ci 0.71-0.93]; In CheckMate 012 study (1), nivolumab combined with CTLA-4i ipilimumab was used to treat advanced NSCLC, and the effective rate of patients with PD-L1 ≥ 50% was over 90%. It exists not only in NSCLC, but also in other cancers. For example, triple negative breast cancer (TNBC) has a higher level of programmed cell death ligand 1 (PD-L1) expression, which is more likely to benefit from immune checkpoint treatment than other breast cancer subtypes. In 2019, according to the results of IMPASEN130 Phase III clinical trial (15), FDA accelerated the approval of atezolizumab combined with nab-paclitaxel to treat unresectable locally advanced or metastatic PD-L1 positive TNBC. In 2020, according to the results of KEYNOTE-355 Phase III clinical trial (16), FDA accelerated the approval of PD-1 inhibitor pembrolizumab combined with chemotherapy to treat locally relapsed, unresectable and metastatic PD-L1 positive TNBC. Therefore, PD-L1 positive subsets may benefit the most from immune checkpoint inhibitor (ICI) treatment, which can affect the therapeutic effect of clinical ICI to a certain extent.


KRAS

RAS/Mitogen-activated protein kinase (MAPK) pathway plays a central role in the development of human cancer. It is highly activated in a variety of tumors, and many of its components have been identified as oncogene (17). The most common mutation of this pathway occurs in Kirsten rat sarcoma viral oncogene homologue (KRAS) (18). KRAS is a guanine nucleotide binding protein that regulates the mitogen-activated protein kinase pathway. When it is activated, it promotes downstream signal transduction and leads to cell growth and proliferation. In many cancers, KRAS mutation rate is high, such as 96% in pancreatic cancer, 52% in colorectal cancer and 32% in non-small cell lung cancer (19). KRAS mutant subtypes mainly include G12A, G12C, G12D, G12V and G13C. Up to now, although some targeted drugs are in clinical trials, they have not been approved to directly target the mutation of some subtypes of KRAS (20). At present, many studies have evaluated the influence of KRAS mutation on the curative effect of ICIs in cancer patients. A study on the prognostic characteristics and immunotherapy response of KRAS mutated non-squamous non-small cell lung cancer in East Asian population found that the disease remission rate (53.8% vs 8.3%, p = 0.030) and progression-free survival time (4.8 months vs 2.1 months, p = 0.028) of KRAS-non-G12C patients receiving ICIs treatment were higher than KRAS-non-G12C patients, and the tumor recurrence time of G12C patients (22.8 months) was shorter than that of KRAS-non-G12C patients (97.7 months, p = 0.004). For advanced NSCLC patients, there was a significant difference in OS between KRAS-G12C and KRAS-non-G12C patients (7.7 months vs 6.0 months, p = 0.018), while KRAS-G12V patients had the shortest OS (21). Another trial (22) retrospectively studied KRAS mutant non-small cell lung cancer patients treated with ICIs, suggesting mPFS (4.6 vs. 3.3 months) in KRAS mutant and non-KRAS mutant patients, but the results were not significant. Adi Kartolo et al. (23) evaluated the results of KRAS mutation in patients with advanced non-small cell lung cancer (NSCLC) with high expression of PD-L1 on treatment with first-line immune checkpoint inhibitors. The results showed that there was no significant difference in mOS between KRAS-MT and KRAS-WT patients (12.9 vs. 19.3 months, p = 0.879), and the trend of mOS deterioration in KRAS G12C patients was not significant compared with non-G12C and KRAS-WT patients (11.4 vs. 44.9, p = 0.772). In multivariate analysis, KRAS-MT status was independent of mOS (HR 0.901, 95% CI 0.417-1.946, p = 0.791). In patients with tumors with KRAS G12C variant treated with ICIs, the trend of declining survival rate is not significant. Therefore, KRAS mutation is positively correlated with the curative effect of ICIs in cancer patients, but KRAS-G12C mutation is correlated with the shorter tumor recurrence time in early NSCLC patients. Compared with KRAS-G12C, KRAS-G12V mutation is associated with shorter OS in patients with advanced NSCLC. However, it is worth noting that according to the summary analysis of ASCO FDA in 2022, the report shows that the status of KRAS has no effect on the tumor immune microenvironment of non-small cell lung cancer. The above related studies show that KRAS mutation is of great benefit to ICIs compared with KRAS WT patients. Therefore, we have reason to believe that the same driving genes may play different roles and functions in the formation of tumor immune microenvironment (TME) based on different solid tumors or genetic backgrounds.



TP53

TP53 gene was first discovered in 1979 and is the first tumor suppressor gene to be discovered (24). Solid tumors are often accompanied by inactivation of TP53 function or pathway, which is related to the increase of malignant tumors, poor survival time of patients and drug resistance. This gene is involved in many biological processes, including DNA repair, cell cycle arrest, apoptosis, autophagy, metabolism and aging (25). The mutation rate of TP53 is high in cancers, and up to 50% of cancers contain two allele mutations of TP53 gene. TP53 gene has six most significant mutation sites, five of which are G to T mutations on codon containing methylated CpG sequence, including codon 157, 158, 245, 248 and 273 (26). Therefore, understanding the tumor-specific mutation profile of TP53 gene is very important for studying TP53-related carcinogenesis. A series of clinical studies have also been conducted to observe the effect of TP53 mutation on the clinical benefits of tumor patients treated with ICIs. Patient data obtained from a cancer genome map show (27) that TP53-MT is a potential indicator of relatively good response of bladder cancer patients to ICIs, and is related to prolonged overall survival (OS) [HR = 0.65 (95% CI 0.44-0.99), p = 0.041]. Through the comprehensive analysis of multiple platforms, it was found that TP53-MT patients showed stronger tumor antigenicity and tumor antigen presentation, higher tumor mutation load, higher new antigen load and higher MHC expression. Compared with TP53-WT, TP53-MT has stronger pre-existing anti-tumor immune effects in tumors, including interferon-γ enrichment, positive regulation of TNF secretion pathway and increased expression of some immunostimulating molecules (such as CXCL9 and CXCL10). Therefore, patients with TP53-MT are more likely to benefit from ICIs than patients with wild-type P53 (TP53-WT). As we know, tumor mutation burden (TMB) is related to tumor response to immune checkpoint inhibitors, and TP53 can also be used as an indirect quantification tool of tumor mutation burden (TMB). Sandra Assoun et al. (28) used next-generation sequencing to evaluate TP53 mutation in aNSCLC patients treated with programmed death-1 (PD-1) blockers. Tumor analysis of multiple TP53 mutations showed that patients with TP53 mutations had longer median OS (18.1 months vs. 8.1 months, p = 0.004), significantly longer median progression-free survival (4.5 months vs. 1.4 months, p=0.03), and higher objective remission rate (ORR) (51.2% vs. 20.7%, p=0.01). Xiangkun Wu et al. (29)discussed the relationship between TP53 mutation and immunophenotype of muscular invasive bladder cancer (MIBC) by comprehensively analyzing TP53 gene mutation and expression. A total of 99 differentially expressed immune-related genes (DEIGs) including ORM1, PTHLH and CTSE were identified based on TP53 mutation status, and the high-risk prognostic groups with poor prognosis were identified in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. In addition, they showed lower expression of CD56 bright NK cells, CTLA4, LAG3, PDCD1, TIGIT and HAVCR2, and were more likely to respond to PD-1 and neoadjuvant chemotherapy than the low-risk prognosis group. Therefore, TIPS derived from TP53 mutation is a potential prognostic marker or therapeutic target, but additional prospective studies are needed to verify this potential marker.



STK11/KEAP1

STK11 is a key upstream activator of AMP activated protein kinase and a central metabolic sensor, which participates in the response to intracellular energy changes through different cellular processes, including regulating glucose and lipid metabolism, cell growth and homeostasis (30). This genetic mutation of tumor suppressor gene leads to Peutz-Jeghers syndrome, which is a rare disease, which is characterized by easy development into benign and malignant tumors in different organ systems (31). In the mouse model of non-small cell lung cancer, STK11 mutation is related to “cold” immunosuppressive tumor microenvironment, showing a decrease in the expression of immune inflammatory factors (CD8+ and CD4+T lymphocytes, type 1 macrophages) and PD-L1, and an increase in T cell failure markers and tumor-promoting cytokines (32). STK11 mutation is more common in non-squamous NSCLC, with STK11 mutation occurring in 8-39% of patients (33). KEAP1 is the main regulator of nuclear factor erythroid-2-related factor-2 (NRF2, also known as NFE2L2), which plays a central role in cell response to oxidative stress and regulates the expression of a large number of genes. KEAP1 functional loss mutation occurs in about 11%-27% of NSCLC. KEAP1 mutation and NFR2 mutation are mutually exclusive, and are often related to simultaneous aberrations of targeted genes (such as 6% EGFR mutation and 18% MET amplification) and non-targeted genes (such as 45% TP53 mutation) (34). The absence of KEAP1-negative regulation determines the constitutive activation of NFR2, promotes tumor survival, and may also lead to drug resistance and poor prognosis of NSCLC patients (35). Biagio Ricciuti et al. (36)studied the relationship between STK11/keap1 mutation and KRAS mutation. The results suggest that in the joint cohort study involving 1261 patients, STK11 and KEAP1 mutations were associated with significantly worse progression-free (STK11 HR = 2.04, p < 0.0001; KEAP1 HR = 2.05, p < 0.0001) and overall(STK11 HR = 2.09, p < 0.0001; KEAP1 HR = 2.24, p < 0.0001) survival to immunotherapy uniquely among KRAS mut, but not KRAS wt LUADs. Gene expression ontology and immunocyte enrichment analysis showed that STK11 or KEAP1 mutation led to different immunophenotypes in KRAS mutation, but not in KRAS wild type and lung cancer. The results indicated that KRAS mutation status affected STK11/keap1 mutation and then affected the curative effect of ICIs. Simon Papillon et al. (35) studied the correlation between STK11 and KEAP1 and adverse reactions of immune checkpoint inhibitors. By analyzing the clinical and mutation data of 2276 patients, it is suggested that STK11 or KEAP1 mutation is related to poor prognosis in multiple therapeutic classes, while STK11 mutation is related to PFS treated with anti-PD-1/anti-PD-L1 (HR = 1.05; 95% CI 0.76-1.44; P=0.785) or OS (HR=1.13; 95% CI 0.76-1.67; P = 0.540). Similarly, KEAP1 mutation was also correlated with PFS (HR = 0. 93; 95% CI 0.67-1.28; P = 0.653) or OS (HR = 0.98; 95% CI 0.66-1.45; P = 0.913), which suggests that STK11/KEAP1 mutation is a prognostic marker rather than a predictive marker for anti-PD-1/anti-PD-L1 therapy. In another study (37), the prognostic effect of ICIs on patients with non-squamous non-small cell lung cancer (NSCLC) with STK11 or KEAP1 mutation was analyzed. Univariate and multivariate analysis showed that STK11/KEAP1 mutation was an independent and important prognostic factor affecting overall survival (P < 0.05) and progression-free survival (P < 0.05). Importantly, STK11/KEAP1 mutant patients showed poorer OS than wild type patients when receiving atezolizumab (all P < 0.05). In addition, for STK11 mutant subsets, atezolizumab did not improve OS (HR = 0.669; 95% Cl 0.380-1.179; P = 0.669), while the survival of KEAP1 mutation patients who received atezolizumab was improved (HR = 0.610; 95% Cl 0.384-0.969; P = 0.036).



EGFR

Epidermal Growth Factor Receptor (EGFR) is a transmembrane glycoprotein and one of the four members of ErbB family of tyrosine kinase receptors. Activation of EGFR leads to autophosphorylation of receptor tyrosine kinase, which initiates a series of downstream signaling pathways involved in regulating cell proliferation, differentiation and survival. EGFR is abnormally activated through various mechanisms (such as receptor overexpression, mutation, ligand-dependent receptor dimerization, ligand independent activation, etc.), which is related to the occurrence of various human cancers (38). In cancer patients, while immune checkpoint inhibitors are used, EGFR status also provides a new treatment strategy for cancer patients, thus improving clinical outcomes. It is considered that the progress of tumor biology and tumor microenvironment (TME) differences in NSCLC with EGFR mutation may be a new method to enhance the curative effect of ICIs. Specific EGFR mutations affect the immunogenicity of TME and the response sensitivity to ICIs. Chen et al. (39) conducted a large-scale study on 600 EGFRm NSCLC patients in China. They reported that the OS of PD-L1 positive EGFRm NSCLC patients was worse than that of PD-L1 negative patients (median OS 15.2 vs 29.3 months, p = 0.006), although most of these patients also received EGFR TKI monotherapy in all treatment lines. Negrao et al. (40) reported that compared with patients with classical gene mutation, patients with metastatic EGFRm NSCLC benefited more from ICIs, ORR was 25% vs 0%, and disease control rate (DCR) was 50% vs 15%. Mazieres et al. (40, 41)analyzed the IMMUNOTARGET registry and compared the molecular characteristics of EGFRm patients’ response to ICIs. In this database, patients with EGFR exon 21 mutation had significantly longer PFS (2.5 months) than patients with EGFR exon 19 mutation (1.4 and 1.8 months, p < 0.001). Therefore, these studies indicate that EGFR mutation may increase the immunogenicity and immune response of ICIs. Future clinical trials should ensure that specific EGFR gene changes are reported and provide mutation subgroup data in order to further obtain evidence of this subject.



MSI-H/dMMR

The main function of MMR is to correct the errors in DNA replication and ensure the fidelity of replication process. However, the hypermethylation and frameshift mutation of promoter lead to the loss of mismatch repair protein expression, which leads to MSI-H/dMMR. Patients with MSI-H/dMMR may benefit from PD-1/PD-L1 inhibitors, and about 15% of colorectal cancer patients have MSI-H gene test results (42). ASAOKA et al. (43) reported for the first time that 16 (57%) of 25 patients with MMR were treated with Pembrolizumab, and the other 9 patients (32%) were stable (SD). In 2017, Pembrolizumab became the first anti-PD-1 drug approved in the United States, suggesting that MMR status can predict the clinical efficacy of Pembrolizumab. HAUSE et al. (44) analyzed 5930 genomes of multiple tumors by genome sequencing, and found that MSI-H existed in 14 kinds of malignant tumors. The frequency of MSI-H in colorectal cancer, gastric cancer and endometrial cancer was significantly higher than that of other tumors, but the proportion of malignant tumor patients was still small. At present, it is generally recognized that patients with gastric and colorectal malignant tumors and MSI-H/dMMR in tumor tissues have better curative effect and higher benefit rate when using PD-1/PD-L1 inhibitor.



HLA

Human leukocyte antigen (HLA) is the expression product of human major histocompatibility complex gene. HLA plays an important role in immune presentation and recognition. CD8+T cell-dependent killing requires human leukocyte antigen class I (HLA-I) molecules to present tumor antigens effectively. The loss of HLA diversity will lead to the decrease of immunotherapy response rate (45). Studies have shown that in patients with malignant melanoma and lung cancer, the A, B and C genes of HLA-I molecule are all heterozygous compared with patients with at least one gene homozygous, and the curative effect of immunotherapy is better; If all heterozygous patients have high TMB, the prognosis is better than patients with at least one gene homozygous and low TMB (46). HLA-B44 is a supersubtype of HLA, which can cross-present new antigens presented by other subtypes of HLA, which increases the diversity of HLA. Studies have shown that patients with HLA-B44 positive and high mutation level have higher survival rate (47).




Discussion

This review explored the influence of driving genes on the therapeutic effect of ICIs, but the diversity and complexity of driving genes also have certain influence on tumor microenvironment. At present, it has been found that many immunotherapy markers are related to tumor microenvironment. For example, lymphocytes, macrophages and interstitial cells in tumor immune microenvironment also express PD-L1, and the expression level of PD-L1 also has certain influence on tumor microenvironment. For example, lymphocytes, macrophages and interstitial cells in tumor immune microenvironment also express PD-L1, and the expression level of PD-L1 also has certain influence on tumor microenvironment. In lung cancer, the level of PD-L1 was significantly correlated with the site of biopsy, with the highest expression in adrenal and liver metastases and the lowest expression in bone and brain metastases. At the same time, the level of PD-L1 in lung and distant metastatic tissues is positively correlated with clinical benefit, but the level of PD-L1 in lymph node metastasis may not be correlated with clinical benefit. Similar conditions exist in other driving genes, which suggest that driving genes have different roles in different tumor microenvironments.

Based on the above research and discussion, it is not difficult to find that the state of tumor driving genes affects the therapeutic effect of ICIs. However, it is more noteworthy that the influence of driving genes on the immune microenvironment of different tumors determines the predicted value of ICIs. As shown in Meichen Gu et al. (48), KRAS/LKB1 and KRAS/TP53 common mutations produce different immune signals in lung adenocarcinoma. New data suggests that KRAS-mutated lung adenocarcinoma can exhibit enhanced PD-L1 expression and additional somatic mutations, linking the prospect of immune checkpoint blockade therapy being applied to the disease. However, the response of lung adenocarcinoma with kras mutation to this treatment is different, which is largely attributed to the heterogeneity of tumor immune environment. Recently, it has been found that lung adenocarcinoma with KRAS-mutation expresses LKB1 or TP53 mutation at the same time, and its tumor immune characteristics are usually different. Tumors with KRAS/TP53 co-mutation usually have significant up-regulation of PD-L1 expression and accumulation of tumorigenic t cells, while tumors with KRAS/LKB1 co-mutation usually have negative PD-L1 expression and few tumorigenic immune infiltration. Therefore, in addition to PD-L1 expression, detection of TP53 or LKB1 mutation will hopefully guide the clinical use of immune checkpoint blocking therapy for kras mutant lung adenocarcinoma.

Tumor formation is the result of immune escape, and ICIs can reverse immune escape and restore the body’s ability to recognize and eliminate tumor cells. Immunotherapy opens up a new model of cancer treatment. The biomarkers that predict the cancer efficacy, adverse reactions and drug resistance of ICIs play an important role in screening ICIs beneficiaries. Among them, efficacy markers PD-L1, TMB and MSI/MMR have entered the guidelines or consensus, while there are few studies on other driving gene markers of immunotherapy, such as EGFR, HLA, TP53, etc., and the exploration of more accurate biomarkers is still the focus of research. In addition, more related biomarkers and other factors affecting survival and prognosis of immunotherapy (such as tumor microenvironment, intestinal flora, DNA repair damage, etc.) need to be further explored and studied. At present, there are still few large sample trial data based on Chinese population, but with the continuous development of cancer ICIs clinical trials and the increasing number of treatment cases, it is believed that tumor markers will play an increasingly important role in predicting the efficacy, survival prediction and adverse reactions of ICIs. At the same time as the specification of biological detection technology, progress of gene diagnosis technology and medical data, the rapid development of new technologies and means such as artificial intelligence, immunotherapy of cancer will shift from illness condition as they intend and, since the future is expected to be through the detection of biomarkers to predict treatment in patients with different stages of treatment benefits and risks, In this way, precise and individualized treatment plans can be developed to enable patients to have a longer survival time and a higher quality of life. This will be our next research direction.

At the same time, it has become the focus of clinical research to explore new and different combination therapy modes and improve the immunotherapy response rate. Combination therapy can overcome the limitations of monotherapy. ICIs has elicited a lasting clinical response in some patients, which is largely dependent on effective T cell infiltration and effector T cell function in TME, while combination therapy is recommended to target multiple abnormalities in the differentiation of cancer cells and normal cells. It mainly includes decreasing TMB and enhancing tumor immunogenicity (such as in combination with chemotherapy, radiotherapy and targeted therapy), enhancing T cell transport and enhancing T cell response. The status of driver genes in cancer cells and normal cells will also provide better strategies for drug combination. In the future, with the progress of genomics, transcriptomics and immunodetection technology, the combination therapy with multiple ICIs will be a new development trend. The establishment of comprehensive biomarker evaluation system through bioinformatics and other methods can predict the efficacy of ICIs more comprehensively, thus promoting the development of tumor precision medicine.


Search strategy and selection criteria

As shown in Figure 1, the data for this review was obtained by searching PubMed with key words “cancer; Immune checkpoint inhibitors; Biomarkers; Overall survival; No disease progression “retrieved from related articles. We identified 4193 records through PubMed database search, but did not find relevant information records through other sources. Before screening, we deleted 3393 literatures, including records of review literatures (n = 3226), meta-analysis (n = 96), and case reports (n = 71). In addition, 735 references without relevant driver gene introduction were excluded. Another 38 literatures without relevant data such as OS and PFS were excluded. Finally, the review included 27 records. Only articles published in English between 2000 and 2022 are included.




Figure 1 | PRISMA Flow chart of article selection.
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Purpose

Immune checkpoint blockade agents were shown to provide a survival advantage in urothelial carcinoma, while some patients got minimal benefit or side effects. Therefore, we aimed to investigate the prognostic value of m6A methylation regulators, and developed a nomogram for predicting the response to atezolizumab in urothelial carcinoma patients.



Methods

A total of 298 advanced urothelial carcinoma patients with response data in the IMvigor210 cohort were included. Differential expressions of 23 m6A methylation regulators in different treatment outcomes were conducted. Subsequently, a gene signature was developed in the training set using the least absolute shrinkage and selection operator (LASSO) regression. Based on the multivariable logistic regression, a nomogram was constructed by incorporating the gene signature and independent clinicopathological predictors. The performance of the nomogram was assessed by its discrimination, calibration, and clinical utility with internal validation.



Results

Six m6A methylation regulators, including IGF2BP1, IGF2BP3, YTHDF2, HNRNPA2B1, FMR1, and FTO, were significantly differentially expressed between the responders and non-responders. These six regulators were also significantly correlated with the treatment outcomes. Based on the LASSO regression analysis, the gene signature consisting of two selected m6A methylation regulators (FMR1 and HNRNPA2B1) was constructed and showed favorable discrimination. The nomogram integrating the gene signature, TMB, and PD-L1 expression on immune cells, showed favorable calibration and discrimination in the training set (AUC 0.768), which was confirmed in the validation set (AUC 0.755). Decision curve analysis confirmed the potential clinical usefulness of the nomogram.



Conclusions

This study confirmed the prognostic value of FMR1 and HNRNPA2B1, and constructed a nomogram for individualized prediction of the response to atezolizumab in patients with urothelial carcinoma, which may aid in making treatment strategies.
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Introduction

Urothelial carcinoma is one of the most common cancers worldwide (1), and the bladder is the usual site of occurrence (2). Due to the high recurrence rate and complicated therapeutic strategies, bladder cancer (BCa) is considered the most expensive tumor, which has brought a heavy economic burden to patients and society (3). Notably, a considerable proportion of urothelial carcinoma patients develop metastases during follow-up after radical therapies. The prognosis for advanced urothelial carcinoma remains poor (4). Emerging immunotherapy heralds a new era for the treatment of urothelial carcinoma. For the past few years, immunotherapy for malignant tumors has achieved many encouraging breakthroughs, making it the fourth treatment technique for cancer therapy after the operation, radiation therapy, and chemotherapy (5).

Currently, blockade of immune checkpoint molecule, programmed cell death 1 (PD1), or its ligand, PD ligand 1 (PDL1), was shown to provide a survival advantage in numbers of different advanced malignancies (6, 7). Effective as it is, only a subset of patients experienced durable responses and long-term survival after anti-PD1/PDL1 therapy, and the majority of patients achieved minimal or no clinical benefit (8). For example, the effective response rate for BCa is approximately 20% (9). Meanwhile, immunotherapy may cause adverse effects, and some may even lead to serious or life-threatening consequences (10, 11). Therefore, the optimization of individualized treatment has been listed as one of the top ten challenges of immunotherapy for tumors (12). How to identify the patients who are prone to have a good response to anti-PD1/PDL1 therapy is the current focus of intense research efforts. Many biomarkers have been reported to be predictive of cancer response to immunotherapy. The immunity system extends from systems-level principles of immune cell connectivity down to mechanistic characterization of individual receptors, which could provide potential opportunities for therapeutic intervention (13). Of these, tumor mutational burden (TMB) quantifying the number of somatic mutations in the tumor, CD8+ T-cell abundance, and PDL1 expression are commonly used predictors (9, 14, 15). However, their predictive efficacy may vary in specific cancer types (9, 12).

N6-methyladenosine (m6A) modification represents one of the most common chemical modifications in eukaryotic mRNA, which is a reversible process regulated by the balanced activities of methyltransferases, binding proteins, and demethylases, also known as “writers”, “readers” and “erasers” (16). Studies have demonstrated that m6A plays an important role in mRNA splicing, localization, translation, export, degradation, and stability (17–19). In addition, substantial evidence showed that dysregulated expression and genetic changes of m6A methylation regulators were associated with multiple biological disorders including dysregulated cell proliferation, differentiation and death, developmental defects, cancer progression, damaged self-renewal capacity, and aberrant immune regulation (20–22). Moreover, m6A methylation regulators also played critical roles in the development and progression of BCa by promoting cancer cell proliferation, self-renewal of cancer stem cells and so on (23–25). Besides, m6A regulators were reported to serve as reliable biomarkers to predict the treatment response and/or prognosis in BCa (26) as well as other tumors (27–29). Nonetheless, whether m6A regulators could aid in the prediction of immunotherapy response in urothelial carcinoma remains unknown.

In the present study, we systematically analyzed the association between the expression of 23 widely reported m6A regulators and the anti-PDL1 treatment (i.e., atezolizumab) response in advanced urothelial carcinoma patients. And we developed and validated a nomogram that integrated a gene signature derived from pre-treatment expression of m6A regulators and clinical variables for individualized prediction of the response to atezolizumab treatment in patients with urothelial carcinoma.



Methods


Data acquisition

Under the Creative Commons 3.0 license, standardized RNA-sequencing data and corresponding clinicopathological data, including TMB, PD-L1 expression on immune cells (IC), and tumor cells (TC), for the IMvigor210 cohort were extracted from the IMvigor210CoreBiologies R package (http://research-pub.gene.com/IMvigor210CoreBiologies/) developed by Mariathasan et al (30). Tumor specimens were scored via immunohistochemistry for PD-L1 expression on immune cells as IC0, IC1, IC2, or IC3 if <1%, ≥1% but <5%, ≥5% but <10%, or ≥10% of immune cells were PD-L1 positive, respectively. Besides, tumor tissue samples were scored as TC0, TC1, TC2, or TC3 if <1%, ≥1% but <5%, ≥5% but <50%, or ≥50% of tumor cells were PD-L1 positive, respectively. RNA-seq count data were transformed into Transcripts Per Million (TPM). Among 348 bladder cancer patients in the IMvigor210 cohort, we excluded those patients without treatment response data. Therefore, a total of 298 patients were finally included in our study (Supplementary Table S1). A reduction of tumor volume over 10% is defined as partial response (RECIST v1.1). All patients were classified into responders (complete and partial response) and non-responders (stable and progressive disease).



Atezolizumab treatment response associated m6A methylation regulators

To explore the role of m6A methylation regulators in atezolizumab treatment, their differential expressions in different treatment outcomes were analyzed in all enrolled patients. The expressions of m6A methylation regulators were compared between the response group and non-response group using Wilcoxon’s test. To further understand the interactions among 23 m6A regulators, their expression correlations were evaluated using the correlation plot and the Spearman correlation test.



Functional enrichment annotation

Metascape (http://metascape.org) is an online analysis tool designed to provide a comprehensive gene list annotation and analysis resource for experimental biologists, including gene annotation, functional enrichment, and construction of protein-protein interaction networks (31). In this study, we used Metascape to conduct the pathway and process enrichment of the m6A methylation regulators.



Construction of the gene signature and evaluation of performance

The model construction flowchart of this study is presented in Supplementary Figure S1. All enrolled patients were randomly divided into two groups at a ratio of 7:3. As a result, 209 patients were allocated to the training set, whereas 89 patients were allocated to the independent validation set. In the training set, the univariable logistic regression analyses were used to measure the potential associations between 23 m6A regulators and the therapeutic outcomes. And the least absolute shrinkage and selection operator (LASSO) regression algorithm was performed to select treatment response-related genes with nonzero coefficients among 23 m6A regulators (32). An m6A-related gene signature was developed to evaluate the probability of treatment outcome for each patient using the gene score, which was calculated as a linear combination of the selected genes weighted by their respective coefficients. The discrimination of the gene signature was estimated by the area under the receiver operator characteristic (ROC) curve (AUC) in the training set and then validated in the validation set.



Weighted gene co-expression network analysis

We used genes in the IMvigor210 dataset that were in the top 25% of variance from responders and non-responders to construct a weighted gene co-expression network analysis (WGCNA). Detailed descriptions regarding the WGCNA are shown in Supplementary Methods. To ensure the reliability of the WGCNA result, outlier samples that were distant from other samples were removed. An appropriate power cut-off threshold was selected to generate a scale-free topology overlap matric (TOM) and average linkage hierarchical clustering was used to detect gene modules. With the Dynamic Tree-Cut algorithm, gene modules were displayed as branched of dendrogram. The significance and correlation of module eigengenes of each gene module were generated. Then, we explored whether the module that most significantly correlated to treatment response contains m6A-related genes.



Relationship of treatment outcome-related genes with immune infiltration patterns

The CIBERSORT algorithm was utilized to estimate the infiltration of 22 types of immune cells in all samples (33). Furthermore, to further investigate the role of treatment outcome-related genes in atezolizumab therapy, the relationship of those m6A methylation regulators selected in the LASSO regression analysis with different types of immune cells were analyzed.



Construction of the nomogram

After univariable logistic regression analyses, the variables with P < 0.05 in the regression analyses were included in the following multivariable analysis in the training set. Backward stepwise selection using Akaike’s Information Criterion (AIC) was used to identify the significant predictors to develop the prediction model. A variance inflation factor (VIF) was calculated to assess the collinearity diagnostics of the multivariable logistic regression. According to the results of the multivariable logistic analysis, a nomogram was then constructed. A response score for each patient was calculated based on the multivariable logistic regression formula to reflect the probability of treatment response.



Assessment of performance of the nomogram

In the training set, the AUC was used to measure the discrimination performance of the nomogram. In addition, a calibration curve was performed to estimate the calibration of the nomogram, along with the Hosmer-Lemeshow test to assess the goodness-of-fit (34).



Validation of the nomogram

The performance of the nomogram was subsequently validated in the validation set. A response score can be calculated for each patient in the validation set by using the formula constructed in the training set. The AUC was then calculated, and the calibration curve and the Hosmer-Lemeshow test were conducted.



Clinical usefulness of the nomogram

All patients were categorized into the predicted response or the predicted non-response groups according to their response scores, whose optimal cut-off point value was determined by the maximum Youden index in the training set (35). The log-rank test was performed to compare the Kaplan-Meier overall survival curves of the predicted response and the predicted non-response groups in the training and validation sets. Moreover, to determine the clinical usefulness of the nomogram, a decision curve analysis (DCA) was performed by calculating the net benefits for different threshold probabilities using the training and validation sets separately (36).



Statistical analysis

All statistical tests were conducted using R statistical software (version 4.0.4; R Foundation for Statistical Computing). R packages used in this study, detailed descriptions regarding the LASSO algorithm, and DCA are available in Supplementary Methods. A two-sided P-value < 0.05 was considered statistically significant.




Results


Patient clinical characteristics

Patient clinical characteristics in the training and validation sets are shown in Table 1. Totally, 22.8% (68/298) of patients achieved complete response/partial response after atezolizumab treatment. In addition, 189 patients (63.4%) were dead during the follow-up. The median follow-up was 10.3 months (Interquartile range, 4.4–18.8). No significant difference was found between the training and validation set regarding the clinical characteristics (Table 1).


Table 1 | Baseline characteristics of the patients.





Atezolizumab treatment response associated m6A methylation regulators

Figures 1A, B show that six m6A methylation regulatory genes (IGF2BP1, IGF2BP3, YTHDF2, HNRNPA2B1, FMR1, and FTO) expressed differentially between the responders and non-responders. The expression levels of IGF2BP1, IGF2BP3, YTHDF2, HNRNPA2B1, and FMR1 were significantly higher in the response group, while expression levels of FTO were significantly decreased in the non-response group. Among them, a significant difference in expression between bladder cancer and normal tissue in the TCGA-BLCA cohort is only detected in IGF2BP3 (Supplementary Figure S2). The correlation heatmap indicated that FMR1, YTHDF3, CBLL1, ZC3H13, METTL14, YTHDC1, KIAA1429, and LRPPRC have a strong association with others (most r2>0.4; Figure 1C).




Figure 1 | Relationship between the expression of m6A RNA methylation regulators and treatment response in urothelial carcinoma patients. (A) The heatmap shows the expression patterns of the 23 m6A methylation regulators between the response group and non-response group. (B) The violin plots exhibit the differential expression of the 23 m6A methylation regulators in the response group (red) and the non-response group (blue). (C) Spearman correlation analyses of the expression of the 23 m6A methylation regulators.  *P < 0.05, ***P < 0.001.



Supplementary Figure S3 presents the results of the functional enrichment analysis obtained from Metascape. As shown in Supplementary Figure S3A, we found that several pathways were enriched, including regulation of mRNA metabolic process, regulation of mRNA stability, mRNA metabolic process, mRNA modification, regulation of mRNA process, mRNA transport, and negative regulation of mRNA metabolic process. The network of enriched terms can be found in Supplementary Figure S3B and Table S2. Supplementary Figures S3C, D presents the protein-protein interaction network and Molecular Complex Detection (MCODE) components. Five treatment response associated m6A regulators were found in the MCODE_1 component.



Construction of the gene signature and evaluation of performance

In the univariable logistic regression analysis, ELF3, FMR1, HNRNPA2B1, HNRNPC, IGF2BP3, and KIAA1429 were associated with the therapeutic outcomes in the training set (Figure 2A). Additionally, using the LASSO regression analysis, two treatment outcome-related genes (FMR1 and HNRNPA2B1) with nonzero coefficients were selected in the training set (Figures 2B, C). Based on the LASSO logistic regression analysis, a gene signature was constructed, which can be calculated as a gene score for each patient: gene score = 0.000545 × FMR1 expression level + 0.004127 × HNRNPA2B1 expression level - 2.30373.




Figure 2 | Construction and assessment of the m6A-related gene signature. (A) Univariable logistic regression analyses evaluating the predictive ability of m6A methylation regulators for treatment response of urothelial carcinoma patients. (B) Tuning parameter (λ) selection in the LASSO model used 10-fold cross-validation via minimum criteria. Binomial deviances from the LASSO regression cross-validation procedure were plotted as a function of log(λ). The numbers along the upper x-axis represent the average number of predictors. The red dots indicate the average deviance values for each model with a given λ, and the vertical bars through the red dots show the upper and lower values of the deviances. The dotted vertical lines are drawn at the optimal values where the model provides its best fit to the data. The optimal λ value of 0.053 with log (λ) = -2.936 was chosen. (C) LASSO coefficient profiles of the 23 m6A methylation regulators. The dotted vertical line is drawn at the value selected using 10-fold cross-validation in Figure 2B, where optimal λ resulted in 2 nonzero coefficients. (D) ROC curves of the gene signature in the training and validation sets.



The gene signature showed favorable discrimination, with an AUC of 0.634 (95% confidence interval [CI] 0.535-0.733) in the training set, which was validated in the validation set with an AUC of 0.646 (95% CI 0.520-0.773; Figure 2D).



Weighted gene co-expression network analysis

There was one outlier in the sample clustering (Supplementary Figure S4), which was excluded in the subsequent WGCNA. As 4 is the lowest value that allows obtaining more than 90% similarities in topology models (Figures 3A, B), a soft threshold power of 4 was selected. Finally, a total of 15 modules was obtained using a dynamic tree-cutting method (Figure 3C). Among these modules, the turquoise module was the most significantly correlated to treatment response (Pearson correlation coefficient = 0.23 and P < 0.001, Figure 3D). Of note, two identified treatment outcome-related genes, FMR1 and HNRNPA2B1, are found in the turquoise module, indicating the important role of these two m6A regulators in the immunotherapy of bladder cancer.




Figure 3 | Weight Gene Co-expression Network Analysis. (A) Analysis of the scale-free index for various soft power thresholds. (B) Analysis of the mean connectivity of various soft power thresholds. (C) Dendrogram of the genes clustered based on a dissimilarity measure (1-TOM). (D) Average gene significances and errors in the modules associated with treatment response. The turquoise module was the most significantly correlated to treatment response. FMR1 and HNRNPA2B1 are in this module.



Patients with low expression of FMR1 and HNRNPA2B1 were more likely to have death after receiving immunotherapy in the IMvigor210 cohort (Supplementary Figure S5). Their performance in prognostic prediction is also presented in Supplementary Table S3. However, we found that expression of FMR1 and HNRNPA2B1 were not correlated with the overall survival in bladder cancer patients based on TCGA-BLCA dataset, who were not treated with immunotherapy (Supplementary Figure S6). These results suggest that these two identified genes might influence the immunotherapy response through m6A methylation, affecting the prognosis of patients with urothelial carcinoma.



Relationship of treatment outcome-related genes with immune infiltration patterns

As shown in Figure 4, FMR1 was negatively related to regulatory T cells, resting NK cells, M0 macrophages, M2 macrophages, was positively correlated with activated CD4+ memory T cells, gamma delta T cells, activated myeloid dendritic cells, and eosinophil. HNRNPA2B1 was negatively related with M0 macrophages, and was positively correlated with activated CD4+ memory T cells and activated myeloid dendritic cells. Note that FMR1 was most negatively correlated with M2 macrophages, and HNRNPA2B1 was most negatively correlated with M0 macrophages.




Figure 4 | The relationship of FMR1 and HNRNPA2B1 with different types of immune cells. (A–H) Correlation plots show the relationship between FMR1 and different types of immunocytes. (I–K) Correlation plots show the relationship between HNRNPA2B1 and different types of immunocytes.





Construction of the nomogram and assessment of performance

According to the univariate logistic regression analyses, three candidate variables were found to meet the threshold of P < 0.05, including the gene signature, IC, and TMB (Table 2). They were identified as the significant predictors of treatment outcomes in the subsequent multivariable logistic regression analysis. The VIF values ranged from 1.000 to 1.003, indicating that there was no collinearity in the collinearity diagnosis. By incorporating IC, TMB, and the gene signature, a nomogram was developed (Figure 5A) and the response score could be calculated for each patient to reflect the probability of treatment response based on the multivariable logistic regression formula. The calculating formula was as follow: response score = 1.673 × gene score + 0.481 × IC + 0.093 × TMB − 0.542. The predicted treatment response probability was calculated using 1/[1 + exp (−response score)].


Table 2 | Univariate logistic regression analysis of the gene score and clinical candidate predictors in the training set.






Figure 5 | Nomogram to predict the response of atezolizumab treatment for patients with advanced urothelial carcinoma and its performance evaluation. (A) Points were assigned for gene score, IC and TMB by drawing a line upward from the corresponding values to the “Points” line. The sum of these three points, plotted on the “Total points” line, corresponds to predictions of the treatment response. (B) ROC curves of the nomogram. (C) Calibration curves of the nomogram. The observed treatment outcome is shown compared with the nomogram using the training set and validation set, respectively. The calibration curves depict the calibration of the nomogram in terms of the agreement between the predicted treatment outcomes and the observed treatment outcomes. The 45-degree dotted gray line represents a perfect prediction, and the solid lines represent the predictive performance of the nomogram. The distance between the solid line and the ideal line represents the superior predictive accuracy of the nomogram.



In the training set, an AUC of 0.768 (95% CI, 0.678-0.858) indicated that the nomogram had good discrimination (Figure 5B). The calibration curve of the nomogram estimating the probability of an effective treatment response demonstrated good agreement (Figure 5C), and the Hosmer-Lemeshow test yielded a non-significant statistic (P = 0.256), suggesting no departure from the perfect fit. The favorable calibration and discrimination performance of the nomogram was confirmed in the validation set, with an AUC of 0.755 (95% CI 0.636-0.875; Figures 5B, C). The Hosmer-Lemeshow test also demonstrated a non-significant statistic for the nomogram (P = 0.214).



Clinical usefulness of the nomogram

After obtaining the response scores from the nomogram, the patients were classified into the predicted response and the predicted non-response groups according to the optimal cutoff value of 0.194. Notably, in the training set, patients in the predicted response group had better OS compared with those in the predicted non-response group (Figure 6A); the same was true in the validation set (Figure 6B).




Figure 6 | Clinical Usefulness of the Nomogram. (A, B) Kaplan-Meier survival curves of patients categorized into response and non-response groups in the training set (A) and validation set (B), respectively. (C, D) DCA of the nomogram in the training set (A) and validation set (B), respectively. The x-axis represents the threshold probability. The y-axis measures the net benefit. The black line depicts the net benefit of the strategy of treating no patients. The gray line depicts the net benefit of the strategy of treating all patients. The red line represents the nomogram. The net benefit was calculated by subtracting the proportion of all patients who are false positive from the proportion who are true positive, weighting by the relative harm of forgoing treatment compared with the negative consequences of unnecessary treatment. The threshold probability is where the expected benefit of treatment is equal to the expected benefit of avoiding treatment.



In the training and validation sets, the DCA suggested that using the nomogram to detect a treatment response adds more net benefit than either the treat-all or treat-none scheme for a wide range of threshold probability (Figures 6C, D).




Discussion

Anti-PD1/PDL1 treatment has been increasingly recognized as a critical strategy in urothelial carcinoma. Precise targeting of patients is of great importance to increase benefits and cost-effectiveness. In this study, we determined the associations between m6A methylation regulators and atezolizumab treatment response. Furthermore, we developed a nomogram incorporating the m6A-related gene signature and clinical variables for individualized prediction of the response to atezolizumab in patients with urothelial carcinoma. This could aid in making treatment strategies and facilitate precision medicine.

In the study, differential expression analysis showed that six m6A methylation regulators, including IGF2BP1, IGF2BP3, YTHDF2, HNRNPA2B1, FMR1, and FTO, were significantly differentially expressed between the responders and non-responders. Moreover, the expression of these six regulators was significantly correlated with the treatment outcomes. These results may preliminarily indicate that these six m6A regulators have the potential of influencing the survival of urothelial carcinoma cells. Subsequently, we identified two critical m6A methylation regulators (i.e., FMR1 and HNRNPA2B1) to develop an m6A-related gene signature for the prediction of the response to atezolizumab. The gene signature showed satisfactory discrimination with an AUC of 0.634 in the training set, which was further confirmed in the validation set with an AUC of 0.646.

Furthermore, after using multivariable logistic regression analysis to select candidate predictors, a nomogram was built by incorporating the gene signature, IC, and TMB. The nomogram demonstrated favorable calibration and discrimination in the training set (AUC 0.768) and also performed well in the validation set (AUC 0.755). Moreover, the DCA suggested that within a broad threshold probability, using the prediction tool to predict treatment response adds more benefit than the treat-all or the treat-none scheme. The presented nomogram could serve as a reliable prediction tool and inform a clinician how big the possibility is that a certain patient with advanced urothelial carcinoma would respond to atezolizumab treatment. Furthermore, this tool would aid in better risk stratification among these patients, which could allow better allocation of health resources and avoid adverse effects brought by atezolizumab on patients that would not respond well.

In our study, two treatment outcome-related m6A methylation regulators, i.e., FMR1 and HNRNPA2B1, were determined by the LASSO regression analysis. And a high expression of FMR1 and HNRNPA2B1 indicated a favorable treatment outcome. The result of the prognostic value of FMR1 is in line with previous research where the expression levels of FMR1 were positively correlated with the overall survival of testicular germ cell tumors (37). On the other hand, the finding regarding HNRNPA2B1 is contrary to other studies where high expression of HNRNPA2B1 was significantly associated with poor prognosis in osteosarcoma (38), esophageal cancer (39) and adrenocortical carcinoma (40).

FMR1 and HNRNPA2B1 were both regarded as m6A methylation reader (41–43). FMR1 plays an important role in promoting m6A-modified mRNA nuclear export (44, 45) and interacts with m6A reader YTHDF1 and YTHDF2 to maintain the stability of its mRNA targets (43, 46, 47). To our knowledge, there is a lack of studies between FMR1 and tumor immunity. In our study, FMR1 was correlated with several types of tumor-infiltrating immune cells, suggesting that FMR1 may be involved in the regulation of immune cells in the tumor microenvironment. HNRNPA2B1 mediates mRNA slicing, primary microRNA processing and facilitates nucleocytoplasmic trafficking of mRNAs (41, 48–50). Previous studies have found that high expression of HNRNPA2B1 promotes lymphatic metastasis (51)and recurrence (52)of bladder cancer. The function of HNRNPA2B1 in tumor immunity remains controversial. Some studies have shown that HNRNPA2B1 can promote tumor immunity and anti-tumor. For example, there is a significant positive correlation between HNRNPA2B1 and M1 macrophages in esophageal cancer (39), and the expression of HNRNPA2B1 is higher in M1 macrophages and T/NK cells than in other cells in glioblastoma (53). In contrast, other studies have revealed that HNRNPA2B1 inhibits tumor immunity. For example, HNRNPA2B1 is negatively correlated with the immune score, stromal score, and ESTIMATE in adrenal cortical cancer (40), as well as Th1 and Th17 in prostate cancer (54). In our study, HNRNPA2B1 was positively correlated with activated CD4+ memory T cells and activated myeloid dendritic cells, implying that HNRNPA2B1 may enhance the efficacy of immunotherapy through regulating the tumor-infiltrating immune cells. However, further experiments are needed to clarify the mechanism between these two genes and tumor immunity.

Of note, tumor mutation burden (TMB) has been found to be able to predict treatment efficacy of immune checkpoint blockade and has become a reliable biomarker for the identification of patients that will benefit from immunotherapy in many tumor types (55–57). In our study, patients with high TMB were prone to achieve a positive response. This is consistent with some previous studies which have shown that high TMB is associated with response to anti-CTLA-4 in melanoma (58, 59), and anti-PD1 in NSCLC (60). Given that high TMB is correlated with a greater likelihood of presenting cancer neoantigens on cancer cell surface (61), it is reasonable to speculate that those cancers with high TMB tend to respond to immune checkpoint blockade drugs as this greater mutation load may increase the probability of recognition by neoantigen-reactive T cells.

In addition, IC was positively correlated with an effective response in our study, which is in line with previous studies (62, 63). Webb et al. found that PD-L1 was mainly expressed by tumor-associated CD68+ macrophages rather than cancer cells, and showed a positive association with survival in high-grade serous carcinomas (62). PD-L1+ tumor-infiltrating lymphocytes densities were favorable prognostic indicators for progression-free (PFS) and overall survival (OS) (63).

Our study has several limitations. First, although m6A methylation regulatory genes have been found to have high prognostic values in the response to atezolizumab among advanced urothelial carcinoma patients, their specific mechanisms in urothelial carcinoma progression and prognosis are not yet clear and warranted to be further investigated by in vitro and in vivo experiments. Second, external validation in a larger dataset is needed to confirm the performance of the nomogram.

In summary, two critical m6A methylation regulators associated with immunotherapy in patients with advanced urothelial carcinoma were identified in our study. In addition, the presented nomogram derived from the m6A-related gene signature and clinical variables could serve as a reliable tool to predict the response to atezolizumab in advanced urothelial carcinoma. Further external validation is needed to determine the performance of the nomogram before its application in clinical practice.
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Ferroptosis and iron-metabolism have been widely reported to play an important role in cancer. Long non-coding RNAs (lncRNAs) are increasingly recognized as the crucial mediators in the regulation of ferroptosis and iron metabolism. A systematic understanding of ferroptosis and iron-metabolism related lncRNAs (FIRLs) in esophageal squamous cell carcinoma (ESCC) is essential for prognosis prediction. Herein, Pearson’s correlation analysis was carried out between ferroptosis and iron-metabolism-related genes (FIRGs) and all lncRNAs to derive the FIRLs. Based on weighted gene co-expression network exploration (WCGNA), least absolute shrinkage and selection operator (LASSO) regression and Cox regression analysis, a risk stratification system, including 3 FIRLs (LINC01068, TMEM92-AS1, AC243967.2), was established. According to Kaplan-Meier analysis, receiver operating characteristic (ROC) curve analysis, and univariate and multivariate Cox regression analyses, the risk stratification system had excellent predictive ability and clinical relevance. The validity of the established prognostic signature was further examined in TCGA (training set) and GEO (validation set) cohorts. A nomogram with enhanced precision for forecasting OS was set up on basis of the independent prognostic elements. Functional enrichment analysis revealed that three FIRLs took part in various cellular functions and signaling pathways, and the immune status was varied in the high-risk and low-risk groups. In the end, the oncogenic effects of LINC01068 was explored using in vitro researches. Overall, a risk stratification system of three FIRLs was found to have significant prognostic value for ESCC and may serve as a ferroptosis-associated therapeutic target in the clinic.
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Introduction

As a common malignant digestive system cancer, esophageal carcinoma was number 8 in morbidity and number 6 in mortality across the world (1). On basis of the National Central Cancer Registry of China (NCCR) statistics, Chinese esophageal cancer patients comprise up to 70% of all esophageal cancer cases worldwide. Esophageal adenocarcinoma and esophageal squamous cell carcinoma (ESCC) are two histopathological subtypes of esophageal cancer. In China, 90% of patients with esophageal cancer are ESCC (2, 3). Standardized surgery is the main treatment for esophageal cancer; however, surgery alone does not often lead to a radical cure for patients with locally advanced esophageal cancer (4). Studies on radiotherapy and chemotherapy, targeted therapy, and biological therapy for the treatment of esophageal cancer have continued over the years; however, the 5-year survival rate of patients with esophageal cancer is less than 20% (5, 6). Hence, new sensitive biomarkers for forecasting the survival of ESCC patients shall be identified as soon as possible.

Iron is elementary for the maintenance of normal roles and homeostasis in cells. Accordingly, an imbalance in iron metabolism is related to the occurrence, growth, and metastasis of cancers closely (7). To be notable, iron metabolism plays double roles in tumor cells (8). In the one aspect, tumor cells proliferate by more depending on iron than normal cells, which is a phenomenon of iron addiction (9). In the other aspect, as iron concentrations increase, cell death will be caused because of accumulated reactive oxygen species and lipid peroxidation outcomes, termed ferroptosis (10, 11). As a necrotic cell death modality, ferroptosis is varied from apoptosis, necrosis, and autophagy in a morphological, biochemical, and genetical way (12). Recently, ferroptosis was revealed to exert various effects on biological regulation and signal transduction paths, resulting in tumor generation and progression (13, 14). Ferroptosis and iron metabolism have also been recognized as hidden preventive or therapeutic measures to cause cancer cell death (15, 16).

Long non-coding RNAs (lncRNAs) have a molecular weight greater than 200 nucleotides. Although lncRNAs account for at least 80% of the human genome, they do not take part in protein translation (17, 18). According to recent studies, the dysregulation of specific lncRNAs is inescapably associated with the ferroptosis process of malignant cancers (19). Further, the upregulation of the lncRNA, NEAT1, was found to potentially regulate ferroptosis sensitivity in non-small cell lung cancer (20). The upregulation of the lncRNA, LINC00336, was also found to inhibit ferroptosis in lung cancer by acting as a contradictive endogenous RNA (21). Nowadays, the effect of lncRNAs on the ferroptosis process of ESCC is unknown.

In the present study, we constructed a risk stratification system, including 3 ferroptosis and iron-metabolism related lncRNAs (FIRLs), and systematically assessed the correlation of the risk stratification system with the prognosis and clinicopathological features of ESCC patients. Thereafter, we established a nomogram that incorporates the FIRL signature and clinical factors to forecast the survival of these patients. Functional enrichment analysis revealed that three FIRLs were involved in various cellular roles and signaling paths, and the immune state was varied in the high-risk and low-risk groups. In the end, the oncogenic effects of LINC01068 were explored using in vitro researches, and a new FIRL risk stratification system was developed to enhance the forecast of clinical results in patients with ESCC. To the best of our knowledge, this study firstly constructs and validates a FIRL prognostic signature for ESCC patients.



Materials and methods


Datasets and data pre-processing

The RNA-seq transcriptome information and clinical information of ESCC patients were extracted from TCGA database. LncRNAs and protein-coding genes were recognized on basis of annotation documents from the GENCODE database (22). In addition, 296 ferroptosis and iron-metabolism related genes (FIRGs) (Table S1), including ferroptosis regulators, ferroptosis markers, ferroptosis pathway, iron uptake and transport, and iron ion homeostasis, were extracted based on previous studies (23). The GSE53624 dataset, which includes RNA-seq information and related survival data of patients suffering from ESCC, was available from the Gene Expression Omnibus (GEO) database. The multi-lncRNA prognostic signature was established with the data from TCGA database as the training cohort while the predictive value of the risk score was determined with the data from GEO as the validation cohort. We performed TPM transformation on the RNA-Seq data of TCGA cohort (FPKM format) and then used the combat method in the”sva”package to remove the batch effect with GEO cohort.



Identification of FIRLs

Pearson correlation analysis was conducted using the 13,832 lncRNAs and 296 FIRGs identified (p < 0.01, correlation coefficient > 0.3). Ultimately, 1,005 FIRLs were screened for follow-up bioinformatics analysis.



Establishment of the weighted gene co-expression network analysis network

WGCNA is an integrated algorithm for clustering greatly related genes and identifying great modules or core genes related to a given phenotype (24). The present research employed the WGCNA package to set up a gene co-expression network for FIRLs. Briefly, sample clustering was performed using the mean linkage approach to identify and eliminate outlier samples. Thereafter, a suitable soft thresholding power (β = 6) was selected to realize a scale-free topology fitting indicator > 0.9. Outlier samples were eliminated using a suitable cut-off value. As the clustering performed well, a cut-line of 70 was set. Adjacency was then transformed into a topological overlap matrix (TOM) and the corresponding dissimilarity matrix (1-TOM), which was applied to make the gene clustering dendrogram with a minimum module of 50. The merging of greatly similar dynamic modules into larger modules was made at a cutline of 0.6. The associations between the modules and the immune mark were evaluated with Pearson correlation analysis. While identifying the most obvious module, the calculation of gene significance (GS) and module membership (MM) was performed. Key genes were identified as those with GS > 0.7 and MM > 0.7.



Construction of the risk stratification system

On basis of the clinical information of ESCC cases in TCGA, univariate Cox regression for FIRLs in the hub module was adopted for the identification of FIRLs associated with total survival for risk stratification system establishment. LncRNAs with a P value less than 0.01 were regarded as obvious prognostic signature. To avoid the collinearity of high-dimensional transcriptome data, the “glmnet” package was employed for least absolute shrinkage and selection operator (LASSO) regression. Finally, the best risk stratification system on basis of FIRLs was established using multivariate Cox regression. In particular, the risk score was determined for ESCC cases using the formula below: risk score = (lncRNA 1 expression × coefficient) + (lncRNA 2 expression × coefficient) + … + (lncRNA n expression × coefficient). According to the cut-off value of the risk score, ESCC patients in TCGA and GEO cohorts were fallen into high-risk or low-risk groups.



Assessment of the clinical benefit

Kaplan-Meier analysis and area under the ROC curves were used for the evaluation of the survival benefit, while independent prognostic factors for patients with ESCC were identified by performing univariate and multivariate Cox regression analyses. On basis of the median value of the risk score and the total survival among various groups were compared through Kaplan-Meier analysis with the log-rank test. Thereafter, the predictive precision of the FIRL signatures was evaluated by conducting a time-dependent ROC curve analysis with “survivalROC” R package. To confirm the value of the stratification system for evaluating the prognosis of ESCC patients, we combined clinical variables and performed univariate and multivariate Cox regression analyses in TCGA and GEO cohorts, respectively. To confirm the prognostic value of the stratification system for evaluating different clinical subtypes of ESCC patients, we combined patients from the GEO and TCGA cohorts into different clinical subtypes to explore the association between risk scores and clinical subgroups. A stratification system for predicting survival was also assessed using PCA, AUC, and decision curve analysis (DCA) curve to weigh the clinical practicability.



Visualization of the risk stratification system

Multivariate Cox regression analysis was adopted for the estimation of hazard ratios (HRs) and 95% confidence intervals (CIs). The “rms” R packages were employed to formulate a nomogram. The establishment of a prognostic nomogram included all independent prognostic elements recognized by multivariate Cox regression analysis to determine the potential 1-, 3-, and 5-OS of ESCC. The predictive ability of the nomogram was evaluated with AUC and calibration curve. A stratification system for predicting survival was also assessed using PCA, AUC, and DCA curve to weigh the clinical practicability.



Construction of a potential regulatory network and functional analysis

For exploring the hidden biological processes involving the 3 FIRLs, we identified 49 possible upstream regulated FIRGs through Pearson correlation analysis. Thereafter, gene enrichment analysis was performed with differentially expressed FIRGs using “ggplot2” and “clusterProfiler” packages in R software.



Immune landscape analysis

We used single-sample gene set enrichment analysis (ssGSEA) (25) to conduct immune landscape analysis and then calculate the scores of infiltrating immune cells to evaluate the activity of immune-related pathways.



Vitro assays

In this study, we used cell culture, transfection, CCK-8, and qRT-PCR as in vitro assays. Human normal esophageal epithelium cells (HET-1A) and ESCC cell lines (Eca109, TE-1, and KYSE-150) were purchased from the Shanghai Cell Institute Country Cell Bank. All cell were cultured in RPMI 1640 medium with 10% fetal bovine serum (FBS) and 1% Penicillin-Streptomycin, and maintained in a humidified incubator at 37°C, 5% CO2. Medium, FBS and Penicillin-Streptomycin were purchased from Corning. Guangzhou Ribobio Co., Ltd generated and annealed small-interfering RNA (si-RNA-1/2/3) oligos for LINC01068 and a general negative control. Following the manufacturer’s procedure, the transfection of each siRNA duplex into cells was made with Lipofectamine® 2000 (Invitrogen, Carlsbad, CA, USA). RNA samples from the cultured cells were extracted using the FastPure® Cell/Tissue Total RNA Isolation Kit V2 (Vazyme, Nanjing, China). The concentration and purification of RNA were detected by the Nanodrop 2000 Spectrophotometer (Thermo Scientific, USA). Cell proliferation was monitored using the CCK-8 kit (Dojindo, USA). Details of these methods are provided elsewhere (26). Meanwhile, a total of 10 tumor tissue samples and nearby normal esophageal tissue samples were obtained from ESCC patients who underwent tumor resection. In previous studies, we have cryopreserved cDNA in liquid nitrogen container. Therefore, lncRNAs expression of clinical samples was validated according to previous methods (27, 28).




Results


Identification of hub module invovled in disease progression

Based on previous literature, we collected 296 FIRGs (Table S1). For TCGA cohort, Pearson correlation analysis was performed using the 296 genes and all annotated lncRNAs. Ultimately, 1005 FIRLs were we identified (Figure 1A). The clustering of each sample was good, and only one outlier sample was eliminated (the cutting line was 500). Topological calculation was then performed with a soft threshold value of 1 to 20, and an optimal soft threshold value of 4 (Figure 1B). According to the soft threshold, the relationship matrix was finally converted into a TOM, and the related modules were classified according to the TOM. The number of genes in each module was not less than 50, and the shear height of gene modules was 0.6 (Figure 1C). By using Pearson correlation analysis to decide the correlation between the modules and clinical traits, seven modules were identified. Of note, the blue module had the strongest correlation with pathological staging and survival status. Accordingly, this module was recognized as the core module in ESCC patients (Figure 1D). Finally, the 151 FIRLs in the module were found to be associated with the occurrence of ESCC closely (Table S2).




Figure 1 | Screening of survival-related lncRNAs by WGCNA. (A) Identification of FIRLs using Pearson correlation analysis. (B) Soft power in WGCNA. (C) Clustering and merging of the co-expression modules. (D) Association heatmap of module genes and clinical features. Red means positive association, and blue refers to negative association. Correlation grows as the color darkens.





Construction of risk stratification system

To identify survival-related FIRLs, univariate Cox analyses were performed using 151 FIRLs in the blue module. Finally, 16 FIRLs were screened for subsequent analyses (Figure 2A). For further decreasing the number of genes in the signature, the subjection of 16 FIRLs to LASSO regression analysis was performed (Figures 2B, C). Thereafter, three FIRLs from LASSO were retrieved and subjected to multivariate Cox regression analysis to develop a risk stratification system (Figure 2D; Table 1). The calculation of the risk score of ESCC patients was made below: risk score = 0.5697×LINC01068 + 0.5154 × TMEM92-AS1 + 0.5964 × AC243967.2).




Figure 2 | Construction of the risk stratification system. (A) The FIRLs that significantly correlated with survival were identified by univariate analysis. (B, C) LASSO-validation. (D) Forest plot of hazard ratios showing the prognostic value of the 3 FIRLs. *P < 0.05, **P < 0.01.




Table 1 | The optimal prognostic risk stratification system of 3 lncRNAs by multivariate Cox regression analysis.





Clinical benefits of the risk stratification system

On basis of the cut-off value of risk scores, ESCC patients from the TCGA cohort were divided into two risk groups: high-risk (n = 40) and low-risk (n = 40). Using the same cut-off value, ESCC patients in the GEO cohort were fallen into high-risk (n = 31) and low-risk (n = 88) groups. As shown in Figure 3A, the AUCs of the 3 FIRL risk stratification system performed with TCGA cohort were 0.712, 0.822, and 0.883 at 1, 3, and 5 years. In addition, the 1-year survival prediction in the GEO cohort showed good results (Figure 3B). The association between the risk mark and prognosis of ESCC patients was explored with the Kaplan-Meier method and log-rank tests. Patients in the high-risk group were found to have a lower survival rate than those in the low-risk group (P < 0.001) (Figures 3C, D). Furthermore, in the prediction of median survival time, ROC curve analysis revealed that the risk mark showed better predictive performance than the other clinicopathological features (Figures 3E, F). DCA also suggested that in actual clinical applications, this risk score had a better value than traditional pathological staging (Figures 3G, H).




Figure 3 | Clinical benefits of the risk stratification system. (A, B) Time-dependent ROC curves. (C, D) Kaplan-Meier analysis of high- and low-risk patients. (E, F) ROC curve analysis revealed the prognostic accuracy of risk mark and clinicopathological coefficients. (G, H) Decision curve analysis (DCA).





Risk stratification system is an independent prognostic element for ESCC patients

For determining whether the risk score was an independent prognostic element for ESCC patients, univariate and multivariate Cox regression analyses were conducted using the clinical features and risk score. Based on the outcomes of univariate Cox regression analysis, the risk score was greatly related to OS in both TCGA and GEO cohorts (TCGA cohort: HR = 2.769, 95% CI = 1.175-7.866, p = 0.036; GEO cohort: HR = 1.443, 95% CI 1.143-1.821, p = 0.002) (Figures 4A, B). After the modification for other confounders, the risk score was still an independent predictor of OS in multivariate Cox regression analysis (TCGA cohort: HR = 3.750, 95% CI = 1.151-12.219, p = 0.028; GEO cohort: HR = 1.242, 95% CI = 1.115-1.687, p = 0.025; Figures 4C, D).




Figure 4 | Evaluation of the prognostic values of risk stratification. (A, C) Univariate and multivariate Cox regression analyses of the risk scores in TCGA. (B, D) Univariate and multivariate Cox regression analyses of the risk scores in GEO.





Subgroup analysis of the risk stratification system in the total cohort

To determine the prognostic value of the risk stratification system for ESCC patients based on different clinical characteristics, subgroups were derived on basis of age (≤65 vs. >65 years), sex (male vs. female), clinical phase (I-II vs. III-IV), T phase (T0-T2 vs. T3-T4), and N phase (N0 vs. N1-N3). The results indicated that the risk stratification system has prognostic significance between high and low risk patients for N0, I-II, and male subgroups. Patients in the high-risk group shown significantly poorer OS than patients in the low-risk group (Figures 5A–J). In sum, these results testify that the risk stratification system exerts critical roles in determining the prognosis of ESCC patients.




Figure 5 | Subgroup analysis based on different clinical characteristics of the risk stratification system. (A) age ≤ 65, (B) age > 65, (C) NO, (D) N1-N3, (E) T1-T2, (F) T3-T4, (G) stage I-II, (H) stage III-IV, (I) female, and (J) male.





Survival analysis and clinical correlation analysis of FIRLs in the risk stratification system

For further exploring the association between the risk stratification system and clinical parameters, we constructed two composite heat maps for patients from TCGA (Figure 6A) and GEO (Figure 6E) cohorts. A heat map could display the risk scores, clinicopathological parameters, and FIRL expression for each group. A survival analysis of FIRLs participating in the risk stratification system was also performed. Based on the results, AC243967.2 and LINC01068 were identified as high-risk factors for ESCC patients (high expression of AC243967.2 and LINC01068 was related to poor survival rate of ESCC patients) (P < 0.05) in TCGA cohort (Figures 6B–D). In the GEO cohort, LINC01068 was proved to be a high risk factor for ESCC (Figures 6F–H).




Figure 6 | Survival analysis and clinical correlation analysis of FIRLs in risk stratification. (A) A composite heat map containing clinical information and expression of 3 FIRLs in TCGA cohort. (B-D) Survival analysis of FIRLs participating in risk stratification in TCGA cohort. (E) A composite heat map containing clinical information and expression of 3 FIRLs in the GEO cohort. (F–H) Survival analysis of FIRLs participating in risk stratification in the GEO cohort. *P < 0.05, **P < 0.01, ***P < 0.001.





Construction and verification of nomogram based on the risk stratification system

The OS of patients with ESCC was predicted by establishing a nomogram on basis of independent predictive elements originated from a multivariate Cox risk regression model (Figure 7A). According to the prediction model calibration curve, consistent predicted and actual survival rates for the training and validation sets were revealed (Figures 7B–G).




Figure 7 | Establishment and verification of a nomogram. (A) Nomogram for forecasting the total survival (OS) of patients with ESCC at 1, 3, and 5 years. Calibration curves of nomogram for OS forecast at 1, 3, and 5 years in (B–D) TCGA and (E–G) GEO cohorts. *P < 0.05, **P < 0.01.





Regulatory network of the potential biological functions of 3 FIRLs

To explore the potential biological processes involving the three FIRLs, 49 possible upstream regulated FIRGs were identified through Pearson correlation analysis (Figure 8A). The analyses of GO functional enrichment and KEGG pathway enrichment were conducted on the 49 FIRGs. On basis of the outcomes of KEGG analysis, in addition to ferroptosis, 49 FIRGs were mainly enriched in the IL-17 signaling pathway, HIF-1 signaling pathway, VEGF signaling pathway, and TNF signaling pathway (Figure 8B). Further, GO analysis results indicated that in addition to iron death, iron metabolism, and other related processes, the 49 FIRGs were related to DNA damage response and signal transduction by p53 class mediator processes (Figures 8C–E).




Figure 8 | Analysis of the potential functions of 3 FIRLs. (A) Regulation network diagram of the 49 upstream coding FIRGs of 3 FIRLs. (B) KEGG enrichment analysis of 49 upstream FIRGs. (C–E) GO enrichment analysis of 49 upstream FIRGs.





Immunity analyses

Given that ferroptosis and iron-metabolism plays a critical role in the immune processes in human cells, especially in the tumor microenvironment, we compared the enrichment scores of 16 types of immune cells and the activity of 13 immune-related pathways between the low- and high-risk groups in both the TCGA and GEO cohorts by employing ssGSEA. In the TCGA cohort (Figure 9A), the high-risk group generally had high levels of infiltration of immune cells, especially of DCs, mast cells, pDCs, T helper (Th) cells (Tfh and Th1 cells), and tumour-infiltrating lymphocytes (TILs), than the low-risk group. In addition, patients from the high-risk group had significantly higher activity of chemotactic cytokines receptors (CCR) pathway, check-point, human leukocyte antigen (HLA) pathway, parainflammation, T cell co-inhibition, T cell co-stimulation, and type I IFN response pathway compared to patients in low-risk group (Figure 9B). When assessing the immune status in the GEO cohort, better conclusions were drawn. The infiltration level of 16 immune cells was higher in the high-risk group than in the low-risk group. Thirteen immune-related pathways showed higher activity in the high-risk group than in the low-risk group (Figures 9C, D).




Figure 9 | Comparison of the ssGSEA scores for immune cells and immune pathways. (A, B) Comparison of the enrichment scores of 16 types of immune cells and 13 immune-related pathways between low- (green box) and high-risk (red box) group in the TCGA cohort. (C, D) Comparison of the enrichment scores of 16 types of immune cells and 13 immune-related pathways between low- (green box) and high-risk (red box) group in the GEO cohort. *P < 0.05, **P < 0.01, ***P < 0.001.





In vitro assays for validation

To further validate the bioinformatics results, the expression level of LINC01068 mRNA in ESCC cell lines was detected. It was found that the expression of LINC01068 is upregulated in ESCC cell lines by comparing with the normal cell line, as shown in Figure 10A. In addition, si-LINC01068 and si-NC were transfected into Eca109 and TE-1 cells, respectively, and qRT-PCR was adopted for the detection of the expression of LINC01068. LINC01068 expression was downregulated in ESCC cell lines after transfection, as shown in Figures 10B, C. Similarly, the CCK-8 assays revealed that ESCC cell proliferation was inhibited after transfection with LINC01068, as shown in Figures 10D, E. Meanwhile, qRT-PCR was used to detect the expression of the three lncRNAs in 10 pairs of tissues (Figure S1). The results were consistent with the prediction results in public databases. Tumor tissues showed obviously higher expression levels than the normal esophageal tissues.




Figure 10 | Effects of inhibiting the expression of LINC01068 on cell proliferation. (A) The upregulation of LINC01068 was displayed in Eca109, TE-1, and KYSE-150 cells compared to HET-1A based on qRT-PCR. (B, C) The expression of LINC01068 was downregulated in TE-1 and Eca109 cells by si-RNAs. (D, E) TE-1 and Eca109 cell proliferation after measuring anti-LINC01068 siRNA transfection with CCK-8 assays. ns, not significant, **P < 0.01, ***P < 0.001.






Discussion

The transformation of next-generation sequencing has been performed for prognosis of cancer. In clinical routines, the prognosis of cancer patients cannot be adequately predicted with the conventional staging system. Biomarkers associated with tumor diagnosis and prognosis are thus urgently needed (29, 30). Due to the disturbances in iron metabolism, overmuch intracellular iron storage was caused with ferroptosis induced (31). As a hallmark of tumors, Ferroptosis is greatly related to the prognosis of cancer patients (32). Because of the significant effect of ferroptosis and iron metabolism on cancer, remarkable attention has been paid to its associated lncRNAs (33).

To the best of our knowledge, this research firstly identifies and analyzes prognostic FIRLs in ESCC in a comprehensive way. On basis of previous studies, we collected 296 FIRGs. In TCGA cohort, Pearson correlation analysis of 296 genes and all annotated lncRNAs was performed, and 1005 FIRLs were identified. Through WGCNA, 151 core FIRLs were identified in the blue module, and a risk stratification system comprising 3 FIRLs (LINC01068, TMEM92-AS1, and AC243967.2) was established by integrating LASSO regression and Cox regression analyses. The assignment of all patients to high- and low-risk groups was performed on basis of risk scores. On basis of Kaplan-Meier curve analysis, high-risk groups were related to dismal OS by comparing with low-risk groups. The ROC curve indicates the excellent performance of our risk stratification system. The AUCs of the ROC plots for one-, three-, and five-year OS in TCGA cohort were 0.712, 0.822, and 0.883. In addition, the stratification system for predicting survival was assessed by PCA, AUC, and DCA curve to weigh the clinical practicability. Based on the results, our risk signature consistently realized good predictive value by comparing with other risk prognostic signatures published for ESCC. The GEO cohort was adopted to verify the established prognostic signature. Moreover, other clinicopathological features and prognostic signatures were combined for Cox analysis, which ultimately verified that the constructed risk stratification system may be used as an independent prognostic element for ESCC patients. Herein, while establishing a nomogram, whether the nomogram was precise at predicting one-, three-, and five-year OS was determined with calibration plots. Altogether, our findings indicate that the risk stratification system could be a high-class predictor relative to the conventional clinical indicator. To determine the potential biological processes involving the 3 FIRLs, we identified 49 possible upstream regulated FIRGs through Pearson correlation analysis, and further conducted functional enrichment analysis with these genes to dig the potential biological pathways.

Tumor-related immune responses play important roles in cell infiltration and metastasis in the tumor microenvironment, whereas ferroptosis and lncRNAs play key regulatory roles in tumor-related immune responses (34, 35). Notably, the complex interplay between ferroptosis-related lncRNAs and the tumor microenvironment not only plays a pivotal role in tumor development but also has significant effects on immunotherapeutic efficacy and overall survival (36). In the TCGA cohort, by immune infiltration analysis, the high-risk group generally had high levels of infiltration of immune cells, especially of DCs, mast cells, pDCs, T helper (Th) cells (Tfh and Th1 cells), and tumour-infiltrating lymphocytes (TILs), than the low-risk group. A functional enrichment analysis indicated that patients with high-risk scores had higher activity of chemotactic cytokines receptors (CCR) pathway, check-point, human leukocyte antigen (HLA) pathway, parainflammation, T cell co-inhibition, T cell co-stimulation, and type I IFN response pathway compared to patients with low-risk scores. When assessing the immune status in the GEO cohort, better conclusions were drawn. The infiltration level of 16 immune cells was higher in the high-risk group than in the low-risk group. 13 immune-related pathways showed higher activity in the high-risk group than in the low-risk group. The above results confirm that the roles of ferroptosis-related lncRNAs in the regulation of tumor immune infiltration. Since our results link FIRLs to immune infiltration in ESCC, these ferroptosis-related lncRNAs may be targets for immunotherapy.

In the end, the association between LINC01068 and ESCC progression was determined. The inhibition of LINC01068 inhibited the cell viability and migration of Eca109 and TE-1 cells, which further verified the carcinogenic effect of LINC01068 on digestive system neoplasms.

This study had some limitations. First, the FIRL risk stratification system was constructed and validated using a public database. However, the use of prospective, multicenter, real-world data for the assessment of the clinical utility of this system would be more ideal. Second, the association between FIRLs and anti-tumor immunity was preliminarily revealed by our research. Therefore, it is necessary to further dig the hidden mechanisms. Final, the signaling pathways involved in FIRLs were only preliminarily explored. Accordingly, the specific mechanism of FIRLs in ESCC and their association with ferroptosis are not completely acknowledged. More studies are thus needed to validate our findings.

In summary, this study fills a gap regarding the use of FIRLs for the prognostic forecast of ESCC. The prognostic FIRLs derived in our research displayed robust capacity at forecasting the survival results of ESCC patients and were related to the immune landscape of the ESCC microenvironment. The risk stratification system based on FIRLs could serve as a reliable tool for forecasting the survival of patients with ESCC.
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Background

Immunotherapy has gradually become an important therapy option for lung cancer patients.



Methods

The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were responsible for all the public data.



Results

In our study, we firstly identified 22 characteristic genes of NSCLC immunotherapy response using the machine learning algorithm. Molecule subtyping was then conducted and two patient subtypes were identified Cluster1 and Cluster2. Results showed that Cluster1 patients had a lower TIDE score and were more sensitive to immunotherapy in both TCGA and combined GEO cohorts. Biological enrichment analysis showed that pathways of epithelial-mesenchymal transition (EMT), apical junction, KRAS signaling, myogenesis, G2M checkpoint, E2F targets, WNT/β-catenin signaling, hedgehog signaling, hypoxia were activated in Cluster2 patients. Genomic instability between Cluster1 and Cluster2 patients was not significantly different. Interestingly, we found that female patients were more adaptable to immunotherapy. Biological enrichment revealed that compared with female patients, pathways of MYC target, G2M checkpoints, mTORC1 signaling, MYC target, E2F target, KRAS signaling, oxidative phosphorylation, mitotic spindle and P53 pathway were activated. Meanwhile, monocytes might have a potential role in affecting NSCLC immunotherapy and underlying mechanism has been explored. Finally, we found that SEC14L3 and APCDD1L were the underlying targets affecting immunotherapy, as well as patients survival.



Conclusions

These results can provide direction and guidance for future research focused on NSCLC immunotherapy.





Keywords: lung cancer, immunotherapy, gender, monocytes, molecules



Introduction

With recent advances in biotechnology, researchers have gained a deeper understanding of tumor genomics and immunosuppressive tumor microenvironments, also leading to the change of treatment concepts for tumors (1). Nowadays, personalized precision therapy is gradually available for the treatment of tumors instead of tumor type-centered therapies (2). Annually, approximately 1.76 million people die from lung cancer, which is a serious threat to public health (3). Targeted therapies and immunotherapies based on EGFR, KRAS, and PD-L1 in individual patients have achieved promising results (4). Furthermore, researchers have classified tumor microenvironments (TME) as “immune inflammation”, “immune evasion”, and “immune desert” and adopted appropriate treatment methods according to these categories (5). Meanwhile, modern tumor treatment is gradually becoming more individualized.

For the moment, surgery, along with postoperative systemic therapy can still provide good therapeutic gain for resectable lung cancer patients (6). Nevertheless, insidious early symptoms usually lead to the challenge of early diagnosis and disease advancement has been occurred when most patients are first diagnosed (6). For advanced lung cancer, especially for those who lost surgery chance, therapy options are limited. The past decade has seen tremendous advancements in medical technology and basic biological research and therefore, cancer immunotherapy has gained public attention. The advent of immunotherapy has revolutionized lung cancer treatment and has become a vital biological therapy, among which immune checkpoint inhibitors (ICIs) indicated promising effects (7). Despite this, not all patients respond to immunotherapy well, indicating that immunotherapeutic response may vary according to the individual’s biological characteristics. An example, according to previous high-quality studies, tumor mutational burden (TMB) appears to be a promising immunotherapy biomarker. As of yet, there are no satisfactory markers for predicting lung cancer immune response. As a consequence, the identification of new and effective markers to assess lung cancer patients’ immunotherapy response is of great significance.

In our study, we comprehensively explored the underlying differences between immunotherapy responders and non-responders of non-small cell lung cancer (NSCLC). We identified characteristic genes based on machine learning and performed molecular subtyping to screen patients with different responses to immunotherapy. Two patient subtypes Cluster1 and Cluster2 were identified, among which Cluster1 patients were more adaptable to immunotherapy. Interestingly, we found that female patients were more adaptable to immunotherapy; monocytes have a potential role in affecting NSCLC immunotherapy; SEC14L3 and APCDD1L were the underlying targets affecting immunotherapy, as well as patients survival. These results can provide direction and guidance for future research focused on NSCLC immunotherapy



Methods


Assessment of data

Gene expression profiles and corresponding clinical parameters of NSCLC patients were downloaded from the public databases, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). For TCGA, the gene expression profiles were obtained from the GDC interactive interface in a “STAR-Counts” file. Then, the gene expression of transcripts per kilobase million (TPM) form was extracted. For GEO, the GSE30219, GSE37745 and GSE50081 were identified and the platforms of which were all GPL570. The ‘affy’ and ‘simpleaffy’ R packages were utilized to contextualize and normalize the raw ‘CEL’ files of microarray sequencing. The batch effects of different datasets were eliminated based on the “Sva” package. The patients with complete gene expression profiles and corresponding clinical parameter were included in this study, otherwise, were excluded. The baseline information of enrolled patients were shown in Tables S1–S4.



Immunotherapy response

Evaluation of patients’ responses to immunotherapy was realized through Tumor Immune Dysfunction and Exclusion (TIDE) website (8). The cancer type was selected as “NSCLC”. The “Previous immunotherapy” was set as “No”. Patients were assigned a TIDE score based on their normalized expression profile, of which TIDE scores > 0 were non-responders and < 0 were responders. The Submap module in the GenePattern website was used to quantify the response probability of a single sample or a subtype to immunotherapy (https://cloud.genepattern.org/gp).



Machine learning and molecular subtyping

For the identification of the characteristic genes, LASSO logistic regression and support vector machine recursive feature elimination (SVM-RFE) algorithms were utilized (9). Machine learning algorithms were utilized to select the optimized variables through dimensionality reduction. A consensus clustering analysis was performed using the ConsensusClusterPlus package and the resamplings of which was 1,000.



Biological enrichment and genomic analysis

The potential biological differences between specific groups were determined through Gene Set Enrichment Analysis (GSEA) and clueGO analysis (10). The reference gene set was the Hallmark, c2.cp.kegg.v7.5.1.symbols and c5.go.v7.5.1.symbols gene set. Somatic nonsynonymous mutations occurring per megabase in NSCLC samples were used to account for the tumor mutational burden (TMB). Copy number variation (CNV) burden was calculated using the GISTIC 2.0 and the input file was obtained from the https://gdac.broadinstitute.org/%20website, including segmented copy number profiles and genomic positions of amplified regions. The mRNAsi and EREG-mRNAsi score reflecting tumor stemness were get from the previous study (11).



Immune microenvironment quantification

Quantification of infiltration of 22 immune cells was conducted with the CIBERSORT algorithm (12).



Single cell analysis

The single-cell analysis was performed based on the TISCH website (http://tisch.comp-genomics.org/home/). Aside from providing detailed cell-type annotations, TISCH also allows for the exploration of TME across a variety of cancer types (13).



Statistical analysis

All statistical analysis was conducted using R software v4.0.0. The Mann-Whitney U test was used for non-normally distributed variables. Statistical differences between continuous variables with normal distributions were determined by the Student-T test. Kaplan-Meier (KM) survival curves were utilized to determine the prognosis difference in different groups.




Results


Identification of characteristic genes

The whole chart of this study was shown in Figure S1. Firstly, through the TIDE analysis, we divided the NSCLC patients in TCGA cohort into two groups, immunotherapy responders and non-responders, according to the calculated TIDE score (Figure 1A). Subsequently, SVM-RFE algorithm and LASSO logistic regression were utilized to screen the optimal variable on immunotherapy response (Figures 1B–D). Ultimately, 22 genes were selected as the characteristic genes of NSCLC immunotherapy response, including CLEC19A, SEC14L3, SLC27A6, APCDD1L, FGF16, CBLN2, SLC24A2, CEACAM8, KRTAP2-3, GBX1, ZDHHC22, CASR, UNC80, C1QL4, NKX3-2, IGFL3, GUCA1A, NETO1, SP7, UGT2B15, AC020922.1 and DLX2 (Figure 1E).




Figure 1 | Identification of characteristic genes of NSCLC immunotherapy. (A) TIDE algorithm was performed to evaluate the immunotherapy of NSCLC patients, of which TIDE scores > 0 were non-responders and < 0 were responders; (B, C) LASSO logistic regression; (D) SVM-RFE algorithm; (E) Two algorithms identified 34 characteristic genes.





Genotyping of NSCLC patients

Based on the identified characteristic genes, we performed genotyping using the ConsensusClusterPlus R package (Figure 2A). We found two subtypes had the best discrimination (Figure 2B and Figure S2). KM survival indicated a worse overall survival (OS) in Cluster2 patients compared to Cluster1 patients (Figure 2C, HR = 1.28, P = 0.022). Meanwhile, the patients in Cluster2 had a higher TIDE score than Cluster1 patients (Figures 2D–F). The expression of all 22 of these characteristic genes differed between Cluster1 and Cluster2 (Figure 2G). Then, we assessed the CTLA4, PD-L2, PD-1 and PD-L1 expression in Cluster1 and Cluster2 patients (Figures 2H–K). Corresponding results showed that Cluster2 patients had a higher PD-L2 expression than Cluster1 patients (Figure 2J).




Figure 2 | Molecular typing based on identified characteristic genes. (A) ConsensusClusterPlus package was used for molecular typing; (B) Two subtypes provide the best differentiation; (C) KM survival curve showed that Cluster2 patients had a worse prognosis; (D) The calculated TIDE score of TCGA patients, of which TIDE scores > 0 were non-responders and < 0 were responders; (E, F) The patients in Cluster2 had a higher TIDE score; (G) The expression level of characteristic genes in Cluster1 and Cluster2 patients, ns = P < 0.05, *** = P < 0.001; (H–K) The PD-1, PD-L1, PD-L2 and CTLA4 expression in Cluster1 and Cluster2 patients.





Cluster1 patients are more sensitive to immunotherapy

Moreover, we found an increased number of immunotherapy responders in Cluster1 patients than in Cluster2 patients (Figures 3A, B, 44.8% vs. 11.3%). Furthermore, according to the result from submap analysis, there is an increased sensitivity to PD-1 and CTLA4 therapy among Cluster1 patients (Figure 3C). Clinical features analysis indicated that the Cluster2 patients were associated with more aggressive clinical parameters, as well as a high proportion of male patients (Figure 3D). Additionally, we attempt to validate our results in GEO cohorts. GSE30219, GSE37745 and GSE50081 were selected (Figure 3E). Sva package was utilized for data combination and batch effect reduction (Figure 3F).




Figure 3 | Cluster1 and Cluster2 had different immunotherapy response. (A, B) The proportion of immunotherapy responders in Cluster1 and Cluster2 patients; (C) Submap algorithm indicated that the Cluster1 patients are sensitive to both PD-1 and CTLA4 therapy; (D) Clinical features difference in Cluster1 and Cluster2 patients; (E, F) Sva package was used for data combination and batch effect reduction of GSE30219, GSE37745 and GSE50081.





Validation in the combined GEO cohort

In the combined GEO cohort, we also calculated the TIDE score (Figure 4A). Also, an increased TIDE score was observed among Cluster2 patients, indicating a lower percentage of immunotherapy responders (Figures 4B–D, 8.2% vs. 45.6%). Meanwhile, patients in Cluster2 had a poorer prognosis than those in Cluster1, consistent with the result of TCGA (Figure 4E). Interestingly, the result of the GSE cohort also indicated a higher percentage of female patients in Cluster1 (Figure 4F). However, no significant difference was found in age and stage parameters (Figures 4G, H).




Figure 4 | Validation in the GEO cohort. (A) TIDE analysis was performed in the combined GEO cohort; (B) Cluster2 had a higher TIDE score than Cluster1; (C, D) The proportion of immunotherapy responders in Cluster1 and Cluster2 patients; (E) KM survival curve of Cluster1 and Cluster2 patients in GEO cohort; (F-H) Clinical differences between Cluster1 and Cluster2, ** = P < 0.01.





Biological and genomic features difference

Furthermore, the potential biological differences between the Cluster1 and Cluster2 patients were also explored. The result of the GSEA analysis showed that pathways of epithelial-mesenchymal transition (EMT), apical junction, KRAS signaling, myogenesis, G2M checkpoint, E2F targets, WNT/β-catenin signaling, hedgehog signaling, hypoxia were activated in Cluster2 patients (Figure 5A). Result of clueGO analysis indicated that the Cluster2 patients had a higher activity of amelogenesis, keratinization, fibrinolysis, serine-type endopeptidase inhibitor activity and iontropic glutamate receptor activity (Figure 5B). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that in the Cluster2, the terms of neuroactive ligand receptor interaction, pathways in cancer, axon guidance, focal adhesion, ECM receptor interaction were enriched in (Figure S3A). Gene ontology (GO) analysis indicated that in the Cluster2, the terms of sensory organ development, morphogenesis of an epithelium, skeletal system development, presynapse, axon development, embryonic organ development were enriched in (Figure S3B). We also investigated the genomic difference between Cluster1 and Cluster2 patients. TCGA-NSCLC patients’ copy numbers profiles were investigated, including gain/loss percentages and gistic scores (Figures 6A–D). Nonetheless, no remarkable statistical difference was noticed in CNV burden between Cluster1 and Cluster2 patients (Figures 6E–H, focal gain load level, focal loss load level, broad gain load level, broad loss load level). Tumor stemness analysis showed that the patients in Cluster1 and Cluster2 might have similar tumor stemness characteristics (Figures 6I, J). Neither the TMB nor MSI scores were significantly different (Figures 6K, L).




Figure 5 | Biological enrichment analysis. (A) GSEA analysis of Cluster2 based on the Hallmark gene set; (B) ClueGO analysis of input genes.






Figure 6 | Genomic analysis. (A-D) The copy number percentage and gistic score of TCGA-NSCLC in Cluster1 and Cluster2; (E-H) The CNV burden difference in focal gain load, focal loss load, broad gain load and broad loss load level; (I-L) The difference of TMB, MSI, mRNAsi and EREG-mRNAsi in Cluster1 and Cluster2 patients.





Female patients are more sensitive to immunotherapy

We noticed that Cluster1 patients had a higher percentage of female patients in both TCGA and GEO cohorts. Therefore, we speculated whether there is a potential difference in immunotherapy between male and female NSCLC patients. Our findings from the TCGA cohort indicated that patients who respond to immunotherapy are more likely to be female and have a lower TIDE score (Figures 7A, B, 39.7% vs. 33.4%). Also, the same conclusion was found in the combined GEO cohort (Figures 7C, D, 49.1% vs. 29.9%). Moreover, we found several immunotherapy characteristic genes were differentially expressed in female and male patients, including CBLN2, SLC24A2, CEACAM8, CASR, AC020922.1, UNC80, C1QL4, NKX3-2, IGFL3, DLX2 and GUCA1A (Figure 7E). Interestingly, a significantly increased TMB, mRNAsi and EREG-mRNAsi were noticed in male patients, but not MSI (Figures 7F–I). GSEA analysis showed that compared with female patients, pathways of MYC target, G2M checkpoints, mTORC1 signaling, MYC target, E2F target, KRAS signaling, oxidative phosphorylation, mitotic spindle and P53 pathway were activated (Figure 7J).




Figure 7 | Female patients are more sensitive to immunotherapy. (A, B) Female patients had a lower TIDE score and higher proportion of immunotherapy responders in the TCGA cohort, * = P < 0.05; (C, D) Female patients had a lower TIDE score and a higher proportion of immunotherapy responders in the GEO cohort, * = P < 0.05; (E) The expression level of characteristic genes in male and female patients, ns = P > 0.05, * = P < 0.05, *** = P < 0.001,; (F–I) The difference of TMB, MSI, mRNAsi and EREG-mRNAsi in female and male patients; (J) Biological enrichment was performed to explore the underlying difference in female and male patients.





Monocytes have a potential role in affecting NSCLC immunotherapy

Complex immune microenvironment can affect the immunotherapy of NSCLC patients. Thus, we quantified the immune microenvironment (22 immune cells) using CIBERSORT algorithm (Figure 8A). We found that the activated dendritic cells, M0 macrophages, memory B cells, follicular helper T cells, resting NK cells, monocytes, resting dendritic cells, resting mast cells, γδ T cells, activated NK cells, activated mast cells had a different infiltration pattern in immunotherapy responders and non-responders patients (Figure 8B). Additionally, the naive and memory B cells, CD8 T cells, activated mast cells, resting NK cells, regulatory T cells, γδ T cells, activated NK cells, resting dendritic cells, monocytes, activated dendritic cells, resting mast cells, follicular helper T cells had a different infiltration pattern in Cluster1 and Cluster2 patients (Figure 8C). A negative correlation was found between monocytes and the calculated TIDE score (Figure 9A, correlation = -0.220, P < 0.001). For the patients with high monocytes infiltration, pathways of adipogenesis, coagulation, fatty acid metabolism, bile acid metabolism, angiogenesis, xenobiotic metabolism, KRAS signaling, TGF-β signaling, heme metabolism and inflammatory response were activated (Figure 9B). The correlation between quantified immune cells based on the CIBERSORT algorithm was shown in Figure 9C. Among all the characteristic genes, SEC14L3 and APCDD1L were identified as prognosis-related based on the univariate Cox regression analysis (Figure 9D). SEC14L3 and APCDD1L are primarily expressed in monocytes, based on single-cell analysis (Figures 9E, F). These results revealed that monocytes have a potential role in affecting NSCLC immunotherapy and identified SEC14L3 and APCDD1L as the underlying targets.




Figure 8 | Immune infiltration. (A) The CIBERSORT algorithm was used to quantify the immune cell infiltration; (B) The immune cell infiltration level in immunotherapy responders and non-responders, ns = P > 0.05, * = P < 0.05, *** = P < 0.001; (C) The immune cell infiltration level in Cluster1 and Cluster2 patients, ns = P > 0.05, * = P < 0.05, ** = P < 0.01, *** = P < 0.001.






Figure 9 | Monocytes have a potential role in affecting NSCLC immunotherapy. (A) Monocytes was negatively correlated with TIDE score; (B) Biological enrichment analysis of monocytes; (C) Correlation of quantified immune cells; (D) Among all the characteristic genes, SEC14L3 and APCDD1L were identified as prognosis-related based on the univariate Cox regression analysis; (E, F) Single cell analysis of SEC14L3 and APCDD1L based on the TISCH website. *P < 0.05; **P < 0.01.






Discussion

In patients with NSCLC, although early diagnosis and surgical treatment have been shown to greatly improve cure rates, the prognosis remains poor (14). Among NSCLC treatments, immunotherapy is considered a promising strategy (15). Recent studies have shown that PD-1/L1 inhibitors can effectively increase survival over chemotherapy (16). However, it is hard to accurately predict how NSCLC will respond to immunotherapy (17). In addition, most patients do not respond to immunotherapy, deteriorate during treatment, or suffer severe immunotoxicity since the indications for immunotherapy are not understood (18). Therefore, to maximize the effectiveness of immunotherapy, it is necessary to identify biomarkers that are associated with immunotherapy response.

In our study, characteristic genes were identified through two machine learning algorithm, LASSO logistic and SVM-RFE regression. SVM-RFE regression can determines the best variable by deleting the SVM feature vector. Meanwhile, the A Lasso logistic regression determines variables by searching for the smallest classification error λ. Nowadays, the massive data generated by next-generation sequencing not only brings convenience for research, but also brings redundancy of data. Through dimensionality reduction, machine learning algorithm can effectively identify the characteristic variables of specific groups. In the clinical practice, detecting the expression level of identified characteristic genes through gene chip can indicate the immunotherapy response of patients, further guiding therapy option.

Based on the results of GSEA, the difference between Cluster2 and Cluster1 groups was associated with EMT, apical junction, KRAS signaling, Wnt/β-catenin signaling, Hedgehog signaling and E2F target. According to a previous study, EMT-related genes are highly accurate predictors of immune checkpoint inhibitor response in advanced NSCLC patients (19). Another study revealed that clinical benefit has been demonstrated in previously treated KRAS G12C-mutant NSCLC patients who received immunotherapy of sotolacide and adagracil (20). Further, based on the Hedgehog signaling and Wnt/β-catenin, various immunotherapies have been developed for NSCLC. Yoshiko et al. discovered that WNT/β-catenin signaling inhibitor and PD-1 blocker combination therapy improved antitumor immunity in NCSLS and suggested a mechanism-oriented combination therapy (21). For Hedgehog signaling, researchers found that targeting Hedgehog signaling could offer therapeutic benefits to patients with NSCLC (22). According to the GSEA, the Cluster1 group was associated with the xenobiotic metabolism, fatty acid metabolism, bile acid metabolism, peroxisome and reactive oxygen species pathway. Currently, the reactive oxygen species pathway is a potential target for immunotherapy of NSCLC. Additionally, it has been shown that the NRF2, which is involved in the reactive oxygen species pathway, can inhibit the immune response of NSCLC patients and promote the immune escape of tumor cells (22). In NSCLC patients, fatty acid oxidation has broad therapeutic potential. It is believed that fatty acid oxidation increases mitochondrial mass, which in turn suppresses T-cell immunity, promoting NSCLC progression (23). Our result showed that the enriched pathway above might be responsible for the prognosis and immunotherapy response difference between the patients in Cluster1 and Cluster2.

Further research discovered that female and male distributions were significantly different between Cluster1 and Cluster2. We also discovered a lower immune response rate in male NSCLC patients, while a higher immune response rate is observed in female NSCLC patients. Recent research has demonstrated that men and women respond differently to NSCLC and immunotherapy due to differences in the immune system (24). NSCLC cells may be exposed to a more effective immune surveillance mechanism when estrogen regulates the production of inflammatory cytokines from macrophages and neutrophils (25). Subsequently, immune infiltration analysis indicated a significant difference in monocyte distribution between Cluster1 and Cluster2. According to the univariate cox regression analysis, SEC14L3 and APCDD1L are risk factors for NSCLC survival. Single-cell transcriptomics of lung cancers reveals that SEC14L3 and APCDD1L were also enriched in monocyte. According to studies combining anti-angiogenic and targeted immunotherapy, immunotherapy is influenced by the tumor microenvironment, which is a potential target for developing novel immunotherapy drugs (26). As a key regulator in NSCLC progression, monocytes can drive an aggressive phenotype in NSCLC (27). In a clinical study, absolute monocyte counts in peripheral blood were found to be a good predictor of outcomes in NSCLC patients treated with immunotherapy (28). In this work, underlying targets like monocytes, SEC14L3 and APCDD1L were identified, which can be improved to be more personalized NSCLC immunotherapy in the future.

In all, our study comprehensively explored the underlying differences between immunotherapy responders and non-responders. We identified characteristic genes and performed molecular subtyping to screen patients with different responses to immunotherapy. Interestingly, we found that female patients were more sensitive to immunotherapy; monocytes have a potential role in affecting NSCLC immunotherapy; SEC14L3 and APCDD1L were the underlying targets affecting immunotherapy, as well as patients survival. These results can provide direction and guidance for future research focused on NSCLC immunotherapy. However, our study also exists some limitations. Firstly, in our analysis, White patients constituted the majority, indicating that race bias is unavoidable. It is important to pay more attention to large-scale sequencing data from Asia and Africa in the future. Secondly, the genomic data of NSCLC patients treated with immunotherapy is still not openly accessible. In practice, the response rate predicted by TIDE analysis does not fully reflect reality.
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Tumor mutation burden (TMB) is a widely recognized stratification biomarker for predicting the efficacy of immunotherapy; however, the number and universal definition of the categorizing thresholds remain debatable due to the multifaceted nature of efficacy and the imprecision of TMB measurements. We proposed a minimal joint p-value criterion from the perspective of differentiating the comprehensive therapeutic advantages, termed TMBcat, optimized TMB categorization across distinct cancer cohorts and surpassed known benchmarks. The statistical framework applies to multidimensional endpoints and is fault-tolerant to TMB measurement errors. To explore the association between TMB and various immunotherapy outcomes, we performed a retrospective analysis on 78 patients with non-small cell lung cancer and 64 patients with nasopharyngeal carcinomas who underwent anti-PD-(L)1 therapy. The stratification results of TMBcat confirmed that the relationship between TMB and immunotherapy is non-linear, i.e., treatment gains do not inherently increase with higher TMB, and the pattern varies across carcinomas. Thus, multiple TMB classification thresholds could distinguish patient prognosis flexibly. These findings were further validated in an assembled cohort of 943 patients obtained from 11 published studies. In conclusion, our work presents a general criterion and an accessible software package; together, they enable optimal TMB subgrouping. Our study has the potential to yield innovative insights into therapeutic selection and treatment strategies for patients.
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1 Introduction

Immune checkpoint inhibitors (ICI) revolutionized cancer therapy (1–4). Research findings demonstrate that tumor mutation burden (TMB) as a stratification biomarker in immuno-oncology helps predict patient prognosis (5, 6). TMB is the number of somatic mutations per megabase (mut/Mb, mainly single-nucleotide variants and short indels). These mutations result in the capacity to generate surface neoantigens that activate T lymphocytes (7), boosting tumor immunogenicity (8, 9). Positive associations between elevated TMB levels and benign ICI prognosis have occurred (10–12). The NCCN guidelines and the FDA prioritized TMB as the recommended test for patients receiving immunotherapy (13, 14).

For clinical decision-making, physicians tend to categorize TMB as a baseline to separate patients into distinct risk groups with varying therapeutic benefits (15). However, due to controversial clinical results, standardized TMB thresholds and the proper number of patient subgroups have not been definitively established. Specifically, i) the available quantile-based benchmarks (e.g., median, quartiles) fail to reflect the underlying biology of TMB and accurately locate the thresholds (16). For example, certain investigations showed that quantile-based TMB cutoffs could not clearly distinguish responders and their prospective clinical benefits (17–19). ii) The typical clinical endpoints for immuno-oncology involve objective tumor response rate (ORR) and time-to-event (TTE), with the TMB biomarker linked to both (20). Inconsistent TMB thresholds arise when statistical studies on the same cohort of patients use different endpoints, leaving clinicians uncertain (21). Instead of basing a general TMB threshold on a single endpoint that discloses only partial therapeutic benefits, a thorough assessment of the disease’s multifaceted efficacy is needed (22, 23).

Furthermore, iii) the effects of different endpoints may vary in magnitude or orientation (24). Such contradiction suggests that the connection between TMB and ICI advantages may not be uniformly distributed and may differ across carcinomas. As shown in Figures 1B, E, the associations between TMB and unidimensional outcomes have only one inflection point. When the intensities or directions of the impact of TMB on the distinct endpoints disagree, multiple TMB thresholds permit significantly diverse clinical performances in patient subgroups, either from the three-dimensional space (Figures 1A, D) or a joint perspective (Figures 1C, F). Clinicians are uncertain about the optimal number of risk groups to stratify patients. Simultaneously, several unobserved common features lead to a natural correlation between tumor response and event time, and the strength of this association varies among regimens and cancer types (25–27). Consequently, the favorable joint probabilities cannot be derived by simply multiplying the probabilities of individual endpoints, which is also a challenge in TMB categorization. Finally, iv) the imprecise nature of TMB markers is another cause of threshold disputes (16). Due to technical restrictions, the variant calling tools will never be perfectly accurate, regardless of the various TMB calculation methodologies (28, 29). TMB is inevitably subject to measurement error. In statistical models that support clinical decision-making, we must account for lessening the instability and bias arising from TMB errors in patient categorization (30).




Figure 1 | The association between TMB marker and ICI benefits. (A–C) When the TMB effects on the response endpoint and survival endpoint have different magnitudes: the association between TMB and ICI clinical benefits in space, the association between TMB and tumor response, the survival benefit in plane, and the association between TMB and joint benefit in the plane. (D–F) When the TMB effects on the response endpoint and survival endpoint point in different directions: the association between TMB and ICI clinical benefits in space, the association between TMB and tumor response, the survival benefit in the plane, the association between TMB and joint benefit in the plane.



Therefore, we present TMBcat, a generalized framework based on the minimal joint p-value criterion, which can optimize identifying the number of patient subgroups and the corresponding TMB thresholds across all cancers. The framework jointly models multidimensional endpoints while accounting for TMB measurement inaccuracies, yielding the most statistically significant TMB classification based on the minimal p-value. The optimized TMB categorization stratifies the patient population significantly and maximizes the discrepancy in clinical performance between subgroups (31). To verify the viability of TMBcat, we collected a cohort of 78 patients with non-small cell lung cancer (NSCLC) and 64 patients with nasopharyngeal carcinoma (NPC) who received ICI treatment. We applied the proposed framework to identify TMB thresholds and revealed novel correlation patterns regarding TMB metrics and immunotherapy efficacy. In some cases, the association between TMB and improved outcomes was non-linear, i.e., the positive correlation was not perfectly straight-line but followed a curved upward pattern varying across regimens or carcinomas, making it more informative to assign patients to multiple categories. Furthermore, we validated these findings in an assembled cohort of 943 patients. The results show that the proposed framework can provide innovative insights into therapeutic refinement for patients. The source code to reproduce the results can be downloaded from https://github.com/YixuanWang1120/JM_TMBcat.



2 Materials and methods


2.1 A general statistical criterion for TMB categorization

The categorization of TMB indicators facilitates the use of information regarding the relationship between ICI benefits and predictive TMB characteristics in making treatment decisions for clinicians. Therefore, TMB thresholds should distinguish patients with distinct risks. It is, therefore, necessary to establish a general statistical criterion to determine the optimal TMB thresholds and the number of patient subgroups. Our optimization objective is to achieve categorization with the minimum p-value, which maximizes the difference in the probabilities of joint ORR&TTE benefit between subgroups. By integrating multidimensional endpoints to model the joint distribution and compensate for TMB measurement errors, joint p-values can characterize patients’ clinical performances with a single metric. Meanwhile, the p-value is the only CFDA-approved metric representative of statistical significance with good interpretability and is acceptable to clinicians. An optimization target of minimizing the p-value can ultimately produce a significant TMB classification that distinguishes ICI therapeutic advantages.


2.1.1 Mixed-endpoint joint probability considering TMB errors

Given n patients, for patient i (i=1,…,n), Ri represents the status of tumor response (Ri=1,0 for complete response (CR) and partial response (PR), stable disease(SD) and progressive disease (PD), respectively) and Ti denotes the observed event time, which is the minimum of the true event time   and the censoring time Ci, that is,  .   defines the event indicator, where I(·) is the indicator function. To comprehensively characterize the therapeutic advantages of ICI for patients based on the recorded data, we merged the ORR and TTE endpoints to profile each patient’s prognosis.

For ORR endpoint, the probability of favorable tumor response for patient i is expressed as Pr(Ri = 1|TMBi). For TTE endpoint, the survival probability up to time t for patient i is  , where Si(t) denotes the survival function. Due to some shared unobserved features, different endpoints may be intimately connected in practice as they all come from the same patient. Including multiple endpoints in the analysis can, first, increase the power of statistical tests and, second, provide a more comprehensive picture of disease efficacy, for which a single measure does not offer sufficient representation. Therefore, the joint probability incorporating ORR and TTE endpoints is preferable for the comprehensive efficacy assessment for patients undergoing immunotherapy.

The derivation of joint probability   entails examining the correlation structure between various clinical outcomes; indeed, ignoring such an association can lead to higher type I and type II errors (32). The underlying dependency between tumor response and the survival process is commonly illustrated by the introduction of random effects. This study proposes a joint statistics model with increased generality in correlation capture, and via a generalized linear mixed model (GLMM) formulation for the efficient estimation of model parameters. We formed a multinomial logistic regression to engage with multicategorical tumor response and a Cox proportional hazard regression for the survival process. The random effect u on the ORR endpoint and random effect v on the TTE endpoint are set to account for intra-subject correlation, assumed to follow a multivariate normal distribution. Specifically, we extend the GLMM approach of McGilchrist (33) to facilitate efficient statistical inference.

	(1)

where T0 is a prespecified survival time,   is the maximum likelihood estimate (MLE) of the joint likelihood,   and  are the point estimates of random effects on respective endpoints obtained by the empirical Bayes method. Details on joint modeling of ORR and TTE endpoints and the solution of the joint probability is available in Section S1.1–1.2 of the Supplementary Materials; such an approach can bring the statistical alpha level closer to the nominal level and can provide additional information about the relationship.

In addition, the observations of TMB inevitably harbor measurement errors. We hypothesize the observed TMB is subject to the additive measurement error model:  , (i=1,…,n). The error term ei is independent and identically normal distributed with mean zero and variance  , and is independent of endpoints Ri, Ti, δi. Because the true TMB* is not observed, the MLE based on true data cannot be used for joint probability calculation directly from the perspective of inconsistency. To reduce the biasing effect caused by measurement errors and obtain a more robust TMB threshold, we integrated the widely applicable corrected-score with the joint model, resulting in approximately consistent estimators based on the observed data. The corrected ORR&TTE joint probability is as follows:

	(2)

where   ,   and   is the approximately consistent estimators under the corrected-joint framework. The complete process is in Section S1.3 of the Supplementary Materials.



2.1.2 Selection of the optimal thresholds

Given that k is the number of thresholds set for categorizing the predictive biomarkers TMB into k+1 intervals, let Cutk=(TMB1, … TMBk) denote the vector of k thresholds ordered from smaller to larger. When the number of distinct TMB values within the range of clinical meaningfulness is m, all possible combinations of thresholds then have up to   kinds, where   is the number of permutations of k thresholds selected from m TMB values. Then, we propose that the vector of k thresholds Cutk=(TMB1, … TMBk) that maximizes the difference in ORR&TTE joint benefit between k+1 subgroups of patients is thus the optimal thresholds. Patients are subsequently separated into k+1 subgroups based on TMB thresholds, Sj={ Rjr,Tjr,δjr,TMBjr; r=1,…,nj, j=1,…,k+1 }, where nj denotes the number of patients in subgroup j and Σjnj=n. The joint probability characterizes the positive prognosis of patients with both remission of tumor lesions and prolonged survival time, allowing for a more comprehensive evaluation of the patient’s treatment outcomes. Our optimization objective is the categorization with the minimum p-value, which maximizes the difference in the probability of the joint ORR&TTE benefit between subgroups. Thus, given the threshold vector Cutk and patient subgroups{ S1, … ,Sk+1 }, we measure the joint probability difference Dk between k+1 subgroups from the distance metric.

	(3)

Comparison of intergroup discrepancy based on the variance-based distance. First, we construct a variance-based statistical test to determine the distance between the joint probability means of two or more populations. There are two fundamental explanations for the disparity between the joint probability of various subgroups: i), between-group variations caused by the classification conditions, given as the sum of squares of the deviation between the variable means in each subgroup and the overall mean, given as the sum of squares between-group, SSb, with the degrees of freedom dfb. ii), individual differences in the joint probabilities of patients, which become within-group differences, denoted as the sum of the squares of the deviations between the variable mean in each subgroup and the variable values in that subgroup, denoted as the sum of squares within-group, SSw, with intergroup degrees of freedom dfw. Thus, the intergroup distance between joint probabilities is determined by the between-group variance and the within-group variance.

	(4)

where pjr denotes the joint ORR&TTE probability for patient r in subgroup j,   denotes the mean joint ORR&TTE probability for subgroup j, and   denotes the overall mean. When the joint probabilities of the patient population satisfy the following assumptions: independence of records; normality; equality of variances (or “homogeneity”), i.e., the variance of records in groups should be the same, then the statistic Dk follows an F-distribution with k, n – k - 1 degree of freedom. At this point, the p-value can be calculated from the F(k, n – k – 1) quantile. The test of difference is equivalent to one-way ANOVA.

When the joint probabilities of populations do not fulfill the hypothetical premise of independence, normality, and homogeneity, the nonparametric rank statistic is used to compare more than two populations. The total n patients across all k+1 groups are ranked based on the calculated joint ORR&TTE probability pi for ith patient. Tied probabilities are allocated the average of ranks they would have received if not tied. The diversity among joint probability subgroups is determined by the between-group rank variance and the within-group rank variance. The rank sum variance between groups should be close to the rank variance of the entire sample. Thus, the test statistic is:

	(5)

where RAj is the rank sum for the jth subgroup,  . When n is sufficiently large (the number of observations per subgroup exceeds 5, nj > 5), Dk follows an approximate χ2 distribution with k degree of freedom. At this point, the p-value can be calculated from the χ2(k) quantile, and the test of difference is equivalent to the Kruskal-Wallis test.

Comparison of intergroup discrepancy based on the similarity-matrix-based distance. In addition, we constructed a nonparametric test to measure the intergroup distance based on the concept of the similarity matrix. The dissimilarity between groups is measured via the distance between patients, and then whether the target grouping is meaningful is judged by testing whether the distance between groups is considerably greater than the distance within groups. An n × n similarity matrix is calculated for the joint probability of n patients, where there are various methods for measuring distances, including Euclidean distance, Mahalanobis distance, and Minkowski distance. When the joint probability is one-dimensional, we recommend the standard Euclidean distance. When the study expects to refine the joint probability to be a two-dimensional vector pi = [pRi, pTi]T, we recommend the Mahalanobis distance considering the covariance matrix V:

	(6)

The yielded similarity matrix is then translated into a rank matrix, and the distance statistic is:

	(7)

where rb denotes the mean rank of between-group dissimilarities, and rw denotes the mean rank of within-group dissimilarities. The computational complexity of the n × n similarity-matrix-based distance is O(n)2.

	(8)

As the distance metric does not obey a parametric probability distribution, we obtained the p-values by permutation test or boostrapping algorithm.

Then, the optimal threshold vector Cutk enables significant discrimination of ICI benefits between patient subgroups can be expressed as:

	(9)

To solve eq. (9), TMBcat provides a global assessment of every conceivable way of dividing a patient cohort into k+1 TMB level expressions, ultimately using the minimal p-value principle to produce the most significant thresholds Cutk. After selecting the appropriate distance metric statistic Dk based on cancer characteristics, we assessed all possible permutations of Cutk across a range of clinically meaningful values, with a total of   species. Specifically, for each possible form of Cutk, the differences statistic Dk and the corresponding p-value are calculated. We can determine the optimal Cutk by locating the minimal p, namely, the highest Dk-statistic.

	(10)

The TMBcat framework defines the distance statistic Dk as a measure of intergroup discrepancy in the comprehensive prognoses to distinguish immunotherapy patient populations. We provide various calculations of Dk depending on the features of the different carcinomas. Under immunotherapy, different tumors have different clinical manifestations as well as the focus of the therapeutic regimen, where tumor remission and survival prolongation are not equally emphasized in certain cancer types. For example, tumor response is the treatment priority in GI cancers as tumor lesion expansion has a tremendous negative impact on patient survival. However, breast cancer, thyroid carcinoma, and skin cancer, among others, are more likely to result in the prolonged survival of patients. Therefore, when assessing a patient’s ICI treatment outcome, the favorable prognostic probability may be a one-dimensional joint probability pi, which is applicable to variance-based distance, or it may be in the form of a weighted vector pi=[ω1pRi,ω2pTi]T, where Dk should be calculated by the similarity-matrix-based distance. At this point, our TMBcat is a general framework suitable for pan-cancer analysis, and the appropriate discrepancy metric statistic can be replaced based on the specific clinical characteristics of the tumor.



2.1.3 Selection of the optimal number of thresholds

We determined the optimal number of TMB thresholds based on intergroup discriminations obtained for Cutk=l and Cutk=l+1. The criterion used to assess the need for an additional optimal cut-off point is whether it would enhance the composite intergroup discrimination index. The values of Dk=l and Dk=l+1 across Cutk=l and Cutk=l+1 cannot be used directly for comparison because of the non-uniform degrees of freedom. In light of this, we based our judgment on the p-value, representing the statistical significance. When the minimal p-value may decrease by the inclusion of one patient subgroup, an additional threshold is required:

	(11)

Finally, a step-by-step tutorial on TMBcat is shown in Algorithm 1.






2.2 Cohorts assembly


2.2.1 Experimental cohorts

In this study, 64 patients with R/M NPC who have been treated with anti–PD-(L)1 or anti-CTLA-4 were retrospectively examined. Patients with R/M NPC were consecutively enrolled in two single-arm, phase I trials (NCT02721589 and NCT02593786) between March 2016 and January 2018. In addition, 78 Chinese patients with NSCLC in this study have received anti-PD-(L)1 monotherapy at Sun Yat-sen University Cancer Center between December 2015 and August 2017. The trial designs for the dosage escalation and expansion phases have been discussed before (34–36). Enrollment criteria included: i) aged 18-70; ii) Eastern Cooperative Oncology Group performance status of 0-1; iii) histologically or cytologically confirmed NSCLC or NPC with metastatic disease or locoregional recurrence; iv) failure after at least one prior line of systemic therapy; v) radiologically evaluable. Central nervous system metastases, prior malignancy, autoimmune disease, prior immunotherapy, active tuberculosis infection, pregnancy, or immunosuppressive agent treatment were exclusion criteria. The distribution of patient treatments is shown in Supplementary Table S1. Patient characteristics, library preparation, sequencing and bioinformatics procedures are available in Supplementary Materials.



2.2.2 Validation cohorts from public literature

In addition to the above 2 experimental cohorts, we assembled 11 validation cohorts of 943 different patients from publicly available databases and studies, encompassing 453 patients with melanoma (16, 21, 37–39), 407 patients with NSCLC (17, 21, 40, 41), 56 patients with renal cell carcinoma (RCC) (16), and 27 patients with bladder (17) (specific clinical characteristics are shown in Supplementary Table S2) as the validation cohorts. Briefly, all of these studies are retrospective studies of immunotherapy, and ICI agents include anti-PD-(L)1, anti-CTLA4, combination anti-CTLA4/anti-PD-(L)1, and only a few other agents. The primary efficacy information we are interested in is ORR assessed by Response Evaluation Criteria in Solid Tumors (RECIST 1.1 (42)) and progression-free survival (PFS) and/or overall survival (OS) outcomes. For TMB calculation, the mutation callings are acquired from the three sequencing platforms. Seven studies perform comprehensive genomic profiling by WES, two of which are called by the standard MC3 pipeline. The other four studies are based on currently available NGS panels for TMB estimation: F1CDx and MSK-IMPACT, which the FDA has approved as practicable diagnostic assays. The sequencing pipeline and diverse TMB thresholds are listed in Supplementary Table S2.



3 Results


3.1 Simulation study for determining TMB thresholds

To visualize how our proposed TMBcat determines the optimal TMB thresholds and numbers within a clinically meaningful range, we simulated two classification scenarios of consistent versus inconsistent direction of TMB effects on separate endpoints. Data are simulated in an oncology trial context, with underlying random effects correlated among patients’ ORR and TTE endpoints. The specific modeling process and estimation procedure are in Section S2 Simulation of the Supplementary Materials. Through simulation experiments, we illustrate the applicability of TMBcat for determining TMB categorization. Given clinical practice and computational complexity, the number of patient subgroups is generally compared within 2–5 groups, i.e., k = 1-4. The distance metric was tested with the default parametric ANOVA. Owing to the differential direction and magnitude of TMB effects on simulated ORR endpoints versus TTE endpoints, Figure 2 shows the optimal dichotomous and optimal trichotomous scenarios, respectively.




Figure 2 | Selection of the optimal thresholds. Each point in left column indicates a particular threshold division. The color intensity represents the joint p-value that depicts the between-group variability of the ORR&TTE joint benefits for patients under that threshold classification. TMB Threshold 1 (on the horizontal axis) and TMB threshold 2 (on the vertical axis) form a categorization dividing the patients into 2–3 different subgroups. The right column shows the comparative prognoses of patients under the optimal TMB categorization corresponding to the left panels. (A), The darkest-colored threshold division point, i.e., the minimum joint p-value, appears on the hypotenuse of the right triangle. At this point, k = 1 is the optimal subgroup number, and the boxed point locates the optimal TMB threshold. (B), A comparison of the joint prognostic favorable probability of patients under the optimal TMB classification, clearly indicating that one TMB threshold is sufficient to separate the population into two subgroups with distinct risks. (C), The darkest-colored threshold division point, i.e., the minimum joint p-value, appears inside the triangle. The trichotomy is significantly superior to the dichotomy scenario, and the boxed point locates the optimal TMB thresholds. (D), A comparison of the joint prognostic favorable probability of patients under the optimal TMB classification, where a clear stratification effect of the treatment consequences for the three groups of patients can be discerned.



The data are presented as a right triangular grid, with each point indicating a particular threshold division. The color intensity of each truncated point depicts the between-group variability of the ORR&TTE joint benefits for patients under that threshold classification, with darker colors indicating smaller joint p-values. Such a graphical display can shed light on the specific biological basis of the connection between TMB markers and immunotherapy. All probable TMB-high populations are represented on the horizontal axis, with the size becoming smaller from left to right. The vertical axis, which also reflects all possible TMB-low populations, illustrates how their sizes increase as the axis descends. The data along the hypotenuse represents the outcomes of a single threshold that splits the data into two subgroups. Data points away from the hypotenuse up or to the right represent results from two cut-points that define an additional TMB-median population. Greater separation from the hypotenuse results in a larger median subgroup. In Figure 2A, the boxed-out darkest-colored threshold division point, i.e., the greatest intergroup distinction, appears on the hypotenuse of the right triangle, where k = 1 is the optimal number of classifications. Thus, Figure 2B compares patients’ joint prognostic favorable probability under the optimal threshold classification, indicating clearly that one TMB threshold is sufficient to separate the population into two subgroups with different risks. As a comparison, in Figure 2C, the darkest-colored point that is boxed out appears inside the triangle, which implies that the joint p-value of the optimal TMB tri-classification is significantly smaller than the optimal TMB dichotomous joint p-value. The trichotomy is significantly superior to the dichotomy scenario. Similarly, Figure 2D compares patient subgroups under the optimal threshold division of the trichotomous categorization, from which we can discern a clear stratification effect of treatment consequences for the three groups of patients. Therefore, in this case, multiple TMB thresholds are supported.



3.2 Presence of patients with inconsistent benefiting directions on separate efficacy endpoints

Based on the proposed joint favorable probability, we can yield a comprehensive overview of the response probability and the survival risk of the patient under the mutual modulation represented by the random effects. The joint prognostic indicators can be applied to compare the ICI treatment outcomes simultaneously. For further analysis, we extracted individual patients with inconsistencies between the response indices and survival risk.

We produced Kaplan-Meier survival curves for PFS to display divergence (Figure 3). The lower green curve represents patients with a tumor status of CR/PR, whereas our compound index shows probabilistically that such a trend should not occur in this subgroup. On the opposite, the higher purple curve represents patients with a tumor status of SD/PD, whereas our joint index shows probabilistically that this group tends to possess favorable clinical outcomes. The average PFS of patients in the CR/PR subgroup is 11.409 months (CI, 9.599–13.218 months), and the mPFS of patients in the CR/PR subgroup is 9.8 months (CI, 7.741–11.859 months). In contrast, the average PFS of patients in the SD/PD subgroup is 25.589 months (CI, 15.744–35.435 months), and the mPFS of patients in the SD/PD subgroup is 18.9 months (CI, 12.115–25.685 months). The log-rank test measures the difference between two survival curves, with a significant p-value of 0.002. These results identify some clinically overlooked populations: a cohort of patients that tended to survive with tumors, i.e., the group of patients demonstrated in the purple curve (Figure 3), revealing an apparently prolonged PFS even though endowed with relatively poorer outcomes in terms of response rubrics. In addition, a cohort of patients whose tumors have resolved may experience rapid disease progression within the first year of treatment, i.e., the group of patients demonstrated in the green curve (Figure 3). These patients are from the 2 experimental sets and 11 validation sets, representing a total of 110 individuals accounting for over 10% of the surveyed cohorts. Thus, we offer a bold and novel conclusion: a subset of patients whose effects in two different efficacy endpoints may be of different magnitudes or even point in different directions. This suggests the necessity of our proposal that multiple classifications of TMB should be performed.




Figure 3 | Progression-free survival curves for selected cancer patients with opposite prognosis indices. The lower (green) Kaplan-Meier curve represents patients with CR/PR, but the multi-endpoint joint model directs to SD/PD, and the higher (purple) Kaplan-Meier curve represents patients with SD/PD. Still, the multi-endpoint joint model directs to CR/PR. The clinical benefits of ORR and PFS endpoints point in two distinct directions.



Such divergent results reflect, to some extent, the reasonableness of the proposed joint probability in providing a more comprehensive picture of disease efficacy expressed in multifaceted forms when a single endpoint cannot fully represent the complexity of a disease. This issue also reflects that the populations represented by the two curves in Figure 3 are not specific individual cases, but a small cohort that will negatively impact the whole analysis and even the stratification of patients and should receive more attention in clinical analysis.



3.3 Triple classification of patients on TMB level appears more reasonable

Owing to the presence of a subset of patients whose clinical benefits are opposite at two endpoints, further refinement of patient classification based on joint efficacy analysis is warranted. Our clinical cohorts NPC (Panel) and NSCLC were trichotomized by TMBcat, and the analysis of patient grouping results is summarized below.

Figure 4 unfolds the hierarchical results formed by analyzing two different cancer datasets utilizing the TMBcat model, performing Kaplan-Meier survival analyses for TTE and Mann-Whitney U tests for the ORR. We found that an improvement in patient’s survival time did not increase linearly with higher TMB values in the scenarios of the multi-classification. Patients in the TMB_Median group confer a poorer prognosis in both PFS and OS survival curves than in the other two TMB_Low and TMB_High groups. Patients with advanced NSCLC and NPC with low TMB might derive benefit from immunotherapy. Specifically, the mPFS of patients in the TMB_Median group is 1.67 and 2.07 months, respectively, in cases NPC and NSCLC, maintaining the lowest in the respective triple classification, while patients with NPC and NSCLC in the TMB_Low group have an mPFS of 2.57 and 2.13 months, and those in the TMB_High group have an mPFS of 2.57 and 5.97 months, respectively. Likewise, regarding the objective response, TMB_Median groups remain the worst performers, with the lowest ORR of 0.0% and 7.69%, respectively, whereas the TMB_High groups retained the highest ORRs of 16.22% and 29.63%, respectively. To interpret the origins of such non-linear trends, we considered another factor influencing tumor resistance: intra-tumoral heterogeneity (ITH). ITH is defined as a spatially or temporally uneven distribution of genomic diversification in an individual tumor (43): this is associated with a poor prognosis in solid tumors (44). Patients with low ITH may perform better in the presentation and recognition of neoantigens during immunotherapy (45). The ITH level for each patient with NSCLC was calculated, and the favorable response to immune agents in the TMB_Low subgroup could be partially explained by the lower level of ITH (Figure 4E and Supplementary Table S1). In addition, for the joint probability distribution in space (Figure 4F), we show that the smoothed distribution curve remains with multiple inflection points, which demonstrates the plausibility of our proposed multiple classifications of TMB.




Figure 4 | (A, B) Based on the mixed-endpoint analysis model, survival curves and ORR comparison for patients with NPC in the low, intermediate, and high TMB groups. (C, D) Based on the mixed-endpoint analysis model, survival curves and ORR comparison for patients with NSCLC in the low, intermediate, and high TMB groups. Patients’ improvements in survival time and response status do not increase strictly linearly with higher TMB values in the scenarios of the multi-classification. Instead, there is a trend of a minor decline followed by a considerable increase in the positive connection between TMB and treatment outcomes. (E), ITH comparison among patients with NSCLC in the low, intermediate, and high TMB groups. (F), Three-dimensional spatial diagram of the association between TMB markers and ICI benefit.



As a comparison, we grouped the clinical cohort NPC (Panel) and NSCLC based on the median TMB, a frequently-used quantile in retrospective analyses (20, 40, 41), and the comparative results of patient efficacy after stratification are shown in Figure 5. As TMBcat is optimized with a minimal joint p-value, the optimal thresholds for TMB categorization based on our proposed criterion are definitely with the smallest joint p-value among all possible threshold divisions. The joint p-values for both NPC (Panel) and NSCLC in Figure 4 are < 0.001, whereas the joint p-values for the two cohorts based on the TMB medians in Figure 5 are 0.521 and 0.061, respectively. To more objectively illustrate the advantages of TMBcat in differentiating patients, we observed the prognoses of patients under the TMB categorization from a single dimension of clinical performance. The differentiation between patient subgroups with the quantile-based TMB categorization is insignificant compared with the proposed minimum joint p-value criterion. Both the log-rank p-values and Mann-Whitney U p-values increased markedly.




Figure 5 | (A) Survival curves and ORR comparison for patients with NPC in the low and high TMB groups based on the median. (B) Survival curves and ORR comparison for patients with NSCLC in the low and high TMB groups based on the median. The quantile-based TMB subgrouping approach, compared to the minimum joint p-value criterion, failed to stratify patient efficacy significantly.



In summary, when the efficacy information on two endpoints reveals a consistent direction of benefit, i.e., patients with a higher probability of tumor response tend to have a more extended survival period, which is sufficient to dichotomize patients based on either endpoint. However, when patients display inconsistent benefits on both efficacy endpoints, we propose that it is more reasonable to triclassify patients based on TMB levels in clinical practice, which will help oncologists to screen for patients suitable for immunotherapy.



3.4 The TMB subgrouping landscape varies across pan-cancer

The potential association of TMB with sensitivity to ICIs may not be perfectly linear. We performed a pan-cancer analysis for nearly 1,000 patients with cancer in the validation group comprising four cancer types. We identified some novel correlation patterns regarding TMB metrics and immunotherapy efficacy: patients’ clinical improvement did not increase uniformly and linearly with higher TMB values in the multiclassification scenarios.

The trichotomy results emphasized that the association between TMB and ICI efficacy is non-linear (Figure 6). Patients with RCC, NSCLC, and melanoma in the TMB_Median groups display a better trend in ICI outcomes than those in TMB_Low and TMB_High groups (Figures 6B–D). The advantage of the TMB_Median groups in terms of survival time is most evident in cases RCC and NSCLC_57, where patients maintain the highest mPFS of 11.1 and 27.3 months (mPFS: 2.7 and 5.6 months for TMB_Low and TMB_High in case RCC, respectively; log-rank p=0.644; mPFS: 10.39 and 14.61 months for TMB_Low and TMB_High in case NSCLC_57, respectively; log-rank p=0.047), and the highest median overall survival (mOS) of inf, inf (mOS: 33.77 and 27.13 months for TMB_Low and TMB_High in RCC, respectively; log-rank p=0.732; mOS: 11.5 months and inf for TMB_Low and TMB_High in NSCLC_57, respectively; log-rank p=0.055; Figures 6B, C). On the other hand, when evaluating from ORR, TMB_High groups acquire the most improvement only in Bladder and NSCLC_57 cases, do the proportions of tumor response gain as the TMB value increases, ranging from 33.3% to 100.0%, and 9.38% to 66.67%, respectively (Figures 6A, C). In the other validation cases, ORRs in TMB_Median subgroups reach the peak at 80.0%, 35.71%, and 46.77% in the RCC, Melanoma_105, and Melanoma_195 sets, respectively (Figures 6B, D, E). The results for the remaining validation cohorts can be found in Supplementary Figure S2–7. In addition, similar to the previous subsection, we performed a subgrouping analysis using the TMB medians for the five validation cohorts to allow a comparison with our proposed TMBcat; the results are summarized in Figure 7. Quantile-based TMB subgroups were intuitively weaker than TMBcat in p-value comparisons, and median TMB did not distinguish the clinical benefits of patients receiving immunotherapy.




Figure 6 | The TMB subgrouping landscape analysis for various cancer types. (A), Kaplan-Meier survival analysis and ORR efficacy comparison for the Bladder cohort. (B), Kaplan-Meier survival analysis and ORR efficacy comparison for the RCC cohort. (C), Kaplan-Meier survival analysis and ORR efficacy comparison for the NSCLC 57 cohort. (D), Kaplan-Meier survival analysis and ORR efficacy comparison for the MEL 105 cohort. (E), Kaplan-Meier survival analysis and ORR efficacy comparison for the MEL 195 cohort. The trichotomy results indicate that the association between TMB index and ICI efficacy is not perfectly linear, i.e., treatment gains do not inherently increase with higher TMB, and the pattern varied across carcinomas.






Figure 7  | The median-based TMB subgrouping landscape analysis for various cancer types. (A), Kaplan-Meier survival analysis and ORR efficacy comparison for the Bladder cohort. (B), Kaplan-Meier survival analysis and ORR efficacy comparison for the RCC cohort. (C), Kaplan-Meier survival analysis and ORR efficacy comparison for the NSCLC 57 cohort. (D), Kaplan-Meier survival analysis and ORR efficacy comparison for the MEL 105 cohort. (E), Kaplan-Meier survival analysis and ORR efficacy comparison for the MEL 195 cohort. The TMB median cannot distinguish patients’ ICI prognosis and is significantly weaker than the proposed minimum joint p-value criterion in terms of statistical significance.



To avoid overestimating the performance of our model and the overfitting problem, we further partitioned the MEL_195 queue into training and testing sets. Using the TMBcat-based TMB thresholds selection method, we filtered the appropriate triple classification thresholds based on the training set and grouped the patients for comparison (Figure 8). Subsequently, the patients in the independent testing set were classified based on the screened TMB thresholds and the outcomes were analyzed (Figure 8B). As summarized by the results, patients’ efficacy had a uniform trend across the three distinct groupings. Thus, our method is generalizable and adaptable to other patient cohorts.




Figure 8  | Independent validation of the approach for comprehensively determining the threshold for positive TMB based on TMBcat. (A), The trichotomous treatment effects of patients under the TMB thresholds obtained by training with the 130 patients sampled from the MEL 195 dataset. (B), The triple categorized efficacy comparison for the testing patients under the same TMB thresholds.



To further elaborate this non-linear distribution uniformly, after filtering the panel-based cases, we assembled eight validation clusters for analysis to obtain the multi-classification profiles (Figure 9). When patients have extremely high levels of TMB, the effectiveness of immunotherapy is, at this stage, lessened. We speculate that this phenomenon may be due to the accumulation of many mutations in TMB_High patients over a long period of carcinogenesis, resulting in heavily differentiated tumors, leading to correspondingly high heterogeneity. At this time, the neo-antigenic activity brought about by high TMB is weakened by the resistance to anticancer therapy brought about by heterogeneity. In contrast, patients with relatively low TMB may be in the early stages of carcinogenesis and have not yet accumulated a sufficient number of mutations; thus, they may gain a small improvement from ICI. Per this non-linear feature, an inverted U-shaped association between patients’ TMB levels and ICI benefits can be clearly observed in melanoma and RCC (Figures 6B, D, E, Supplementary Figures S2, S4), i.e., poorer performance in patients with high TMB. In contrast, tumors of the skin and kidney typically exhibited a high degree of tumor heterogeneity. In lung cancers with low numbers of tumor clones, this correlation becomes U-shaped or linear, i.e., TMB_Low patients may possess better outcomes (Figure 6C, Supplementary Figures S5–7). This observation also coincides with the relationship between ITH and tumor resistance (44). Similarly, the comparison between the left and right columns (Figures 9) also reflects the superior grouping ability of the TMBcat (p-value: <0.001–0.13), whereas the quintile-based grouping neither portrays a non-linear distribution, and the p-value does not indicate significance (0.001–0.5).




Figure 9  | A comparison between TMBcat-based and percentile-based multi-classification. (A, B) Grouping results of ORRs and KM survival curves under multi-level division using TMBcat according to TMB levels. (C, D) Grouping results of ORRs and KM survival curves under TMB quintiles (cut-offs at 20%, 40%, 60%, and 80%, respectively). The p-values in the figures are based on the Mann-Whitney U test and log-rank test, respectively.



The results show that the association between TMB and ICI efficacy does not present a strict linear increasing trend but instead a non-linear distribution in which low TMB does not preclude response and high TMB is not a sufficient predictor. As seen from the pan-cancer results, multiple thresholds were prevalent, and the thresholds across carcinomas and protocols varied. Our multi-endpoint model provides an integrated and general approach for clinical threshold delineation. The reasons for this non-linear distribution and the underlying driving mechanism are still unclear; further exploratory clinical trials are needed.




4 Discussion

Tumor mutation burden has recently become an area of interest; high TMB is associated with a better response to ICI therapies. However, the threshold defining the TMB-high/TMB-positive patients in clinical practice is controversial, and this is exacerbated by the presence of multiple evaluation metrics and TMB inaccuracy. The existing approaches to identify the TMB threshold are merely based on a single endpoint, which may yield excessive information loss to provide statistically significant stratification results. Herein, we describe our solution for TMB threshold selection using a novel criterion named TMBcat, a generalized framework for optimally determining the TMB categorization number and thresholds based on a joint p-value. The proposed TMBcat has good scalability because it allows the modeling of the joint distribution and integrates the multidimensional clinical information of patients into a one-dimensional statistic—joint p-value, without considering the number of clinical endpoints. In practical applications, when assessing the grouping effect of all possible combinations of TMB thresholds, the number of permutations may be huge when the number of required thresholds k and the number of alternative TMB values m is large. Thus, an exhaustive search is computationally costly. In these circumstances, we reduce the size of the search space by sampling the data with reasonable segmentation and use heuristic search algorithms, such as simulated annealing, to improve computational efficiency.

In addition, our analyses revealed a novel association pattern, in which the positive correlation between TMB and ICI outcomes was non-linear. In terms of overall trends, patients do not strictly derive more clinical benefits as their TMB levels increase; indeed, TMB-low patients are not necessarily inaccessible to immunotherapy, while patients with extremely high TMB do not always experience the greatest improvements from ICI. These phenotypes may be explained by the fact that cancer patients with remarkably high TMB levels generally accumulate many mutations during their long period of carcinogenesis and that their tumors have become highly differentiated, resulting in complex heterogeneity that confers patients with poor prognoses. Moreover, patients with relatively low TMB may expect a little improvement from ICI because they are in the early stages of cancer development, and many mutations have not yet developed. This phenomenon deserves to be explored in further clinical trials aimed at identifying the patients who may genuinely benefit from treatment with ICIs, refining the therapeutic selection and tailoring the treatment strategy.

Collectively, our results shed new light on TMB multi-stratification based on a multi-endpoint joint assessment of immunotherapy benefits, suggesting that clinicians should consider multiple thresholds. Current evidence on the atypical correlation between TMB and ICI outcomes emphasizes further exploring the corresponding immunobiological mechanisms before wider clinical implementation. All data associated with this study are presented in the Supplementary Materials and Tables.



5 Conclusion

Given the fusion of cross-scale, multimodal information and scheme decision-making in immunotherapy, clinical data should be integrated to achieve a comprehensive analysis of patient outcomes. Therefore, we proposed a minimal joint p-value criterion from the perspective of differentiating the comprehensive therapeutic advantages, termed TMBcat, to optimize TMB categorization across distinct cancer cohorts; this method surpassed known benchmarks. Previous studies have typically derived only one threshold to divide the immunotherapy patient population into two subgroups, which is largely insufficient. Instead, we consider a multi-threshold categorization incorporating multiple clinical endpoints, a first-of-its-kind pan-cancer framework for TMB categorization.

Based on our proposed optimization framework, we performed our multi-endpoint analysis on 78 patients with NSCLC and 64 patients with NPC who underwent ICI treatments, as well as an assembled cohort of 943 patients included in 11 published studies. Our study identified more novel medical findings compared with the available studies. From the results, we reasonably conclude that: i) the TMB metric is closely associated with immunotherapy benefits, although this association is non-linear and varies between cancer types; ii) integrating multi-dimensional information for patients to employ multi-endpoint joint analysis can prompt a more comprehensive TMB subgrouping; iii) patients receiving immunotherapy may have different effects on different efficacy endpoints, which suggests that iv) there is more than one TMB inflection point available that permit significantly different clinical outcomes in subgroups of patients; and finally, v) the ability of our model TMBcat to provide the optimal number of subgroups in addition to the corresponding TMB thresholds may better assist physicians in treatment decision-making.
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Background

Sepsis-induced apoptosis of immune cells leads to widespread depletion of key immune effector cells. Endoplasmic reticulum (ER) stress has been implicated in the apoptotic pathway, although little is known regarding its role in sepsis-related immune cell apoptosis. The aim of this study was to develop an ER stress-related prognostic and diagnostic signature for sepsis through bioinformatics and machine learning algorithms on the basis of the differentially expressed genes (DEGs) between healthy controls and sepsis patients.



Methods

The transcriptomic datasets that include gene expression profiles of sepsis patients and healthy controls were downloaded from the GEO database. The immune-related endoplasmic reticulum stress hub genes associated with sepsis patients were identified using the new comprehensive machine learning algorithm and bioinformatics analysis which includes functional enrichment analyses, consensus clustering, weighted gene coexpression network analysis (WGCNA), and protein-protein interaction (PPI) network construction. Next, the diagnostic model was established by logistic regression and the molecular subtypes of sepsis were obtained based on the significant DEGs. Finally, the potential diagnostic markers of sepsis were screened among the significant DEGs, and validated in multiple datasets.



Results

Significant differences in the type and abundance of infiltrating immune cell populations were observed between the healthy control and sepsis patients. The immune-related ER stress genes achieved strong stability and high accuracy in predicting sepsis patients. 10 genes were screened as potential diagnostic markers for sepsis among the significant DEGs, and were further validated in multiple datasets. In addition, higher expression levels of SCAMP5 mRNA and protein were observed in PBMCs isolated from sepsis patients than healthy donors (n = 5).



Conclusions

We established a stable and accurate signature to evaluate the diagnosis of sepsis based on the machine learning algorithms and bioinformatics. SCAMP5 was preliminarily identified as a diagnostic marker of sepsis that may affect its progression by regulating ER stress.





Keywords: sepsis, immunity, endoplasmic reticulum stress, machine learning, SCAMP5



Introduction

Sepsis is associated with high morbidity and mortality rates which caused by a disproportionate inflammatory response of the host to infection (1). An estimated 48.9 million people worldwide were diagnosed with sepsis in 2017, resulting in over 11 million deaths that accounted for 20% of the global mortality rate (2). Despite advances in resuscitation strategies, ventilator management, antibiotic therapy and glucose maintenance, there is no particularly effective treatment for sepsis other than standard care and supportive treatment, and severe sepsis remains a leading cause of death (3, 4). Studies in human subjects and animal models have shown that sepsis is associated with the overactivation of innate immune effector cells, resulting in uncontrolled inflammation that leads to extensive tissue damage and organ failure in case of severe septicemia (5–7). In order to reduce sepsis-related mortality, it is very necessary to explore the biological mechanisms and potential biomarkers associated with sepsis.

Endoplasmic reticulum (ER) is the place of protein folding and post-translational modifications, and is also a critical organelle of the secretory pathway (8). Cellular stress and inflammation can lead to the accumulation of unfolded or misfolded proteins, a phenomenon also known as ER stress (9). ER arising from inflammation and the loss of dynamic balance in endoplasmic reticulum function under stress has been closely related to the progression of sepsis (10). However, the possible relationship between ER and sepsis, especially the possible role of ER stress on immune cell apoptosis during sepsis, remains unclear. To this end, we explored the role of immune cell apoptosis and ER stress on the development of sepsis, as well as their correlation to patient prognosis. Our objective was to identify the molecular subtypes of sepsis to expand the repertoire of potential diagnostic biomarkers.

The gene expression profiles of sepsis and normal blood samples were retrieved from the GEO database using R software (11), and the differentially expressed genes (DEGs) between the two groups were screened. Immune cell infiltration in the sepsis and control groups was analyzed using the CIBERSORT algorithm, and the sepsis dataset was clustered on the basis of immune checkpoint genes in order to identify key genes associated with the immune responses during sepsis. The DEGs related to sepsis and ER stress were functionally annotated by GO and KEGG pathway enrichment analyses, and weighted gene correlation network analysis (WGCNA) (12) was performed to identify co-expressed gene modules. Next, the protein-protein interaction (PPI) network of the genes intersecting the WGCNA and ER stress-related gene sets was constructed using the STRING database (13), and the clinical relevance of the hub genes was analyzed in multiple datasets. In addition, the correlation between the hub genes and immune cell infiltration levels was also examined. Finally, the potential diagnostic markers of sepsis were screened, which offers new insights for sepsis diagnosis and treatment.



Materials and methods


Data availability

All the raw data is available.

Raw data link: https://www.jianguoyun.com/p/DU2vz6oQzM3iChj1us0EIAA.

(Access Password: k6zrvo).



Identification of sepsis-related DEGs

The sepsis-related transcriptomic datasets GSE9960 and GSE57065 (14, 15) were downloaded from the GEO database using the GEO query package in R (version 4.0.3, http://r-project.org/) (16). The details of the datasets are listed in Table 1. The datasets were merged using the sva package in R, and the difference between batches was eliminated according to the data source. The samples in the merged dataset were divided into the normal (n = 41) and sepsis (n = 136) groups using ComBat in the sva package, and all samples were included in the study. After normalizing the expression data, the DEGs between the normal and sepsis samples were screened by the limma package in R (17), with logFC > 1 or < -1 and adjP value < 0.05 as the thresholds.


Table 1 | Data information.





Analysis of immune infiltrating cells in sepsis

Based on the principle linear support vector regression, we used CIBERSORT algorithm to analyze the gene expression matrix of immune cell subtypes. LM22 and CIBERSORT matrices can predict the proportion of 22 infiltrating immune cell subtypes in individual samples of a dataset (18). The infiltrating immune cell populations in the sepsis and normal samples were estimated on the basis of RNA-Seq data, and the abundance of the 22 subtypes of immune cells in the datasets was evaluated by the CIBERSORT algorithm. The differentially enriched immune cells between septic and normal samples were also identified, and their correlation with key sepsis-related genes was analyzed.



Identification of immune subtypes

Consensus Clustering is used to determine the number of possible clusters in gene expression datasets, and is routinely applied in cancer genomics research to identify molecular subtypes. The “ConsensusClusterPlus” package in R (19) was used to cluster the sepsis datasets on the basis of immune checkpoint genes (20) in order to distinguish immune subtypes and identify the key genes related to sepsis-related immunity. The number of clusters was set between 2 and 10, and the process was repeated 100 times to extract 80% of the total samples using clusterAlg = “pam”, distance = “Euclidean”. The pheatmap package in R was used to draw the clustering heat map consisting of the top 20 down-regulated and up-regulated genes.



Functional annotation of DEGs

Gene ontology (GO) is used for large-scale functional annotation of genes based on the enriched molecular functions (MF), biological processes (BP) and cellular components (CC). Subsequently, KEGG is a database of biological pathways, drugs, genomes and diseases. The clusterProfiler package in R (21) was used for KEGG pathway enrichment analyses and GO functional annotation of the intersecting sepsis-related DEGs and ER stress-related genes. P-value < 0.05 was used as the threshold for significant enrichment. Gene set enrichment analysis (GSEA) is used to evaluate the correlation of genes in a pre-defined gene set with a specific phenotype (22). The “c5.go.v7.4.symbols” with “c2.kegg.v7.4.symbols”gene sets in the MSigDB database (23) were subjected to GSEA using the clusterProfiler package (21). P-value < 0.05 was considered statistically significant (23).



Weighted Gene Correlation Network Analysis (WGCNA)

WGCNA is used to identify co-expressed gene modules, explore the relationship between gene network and phenotype, and study the core genes in the network. WGCNA was performed on the DEGs between sepsis and control datasets using the WGCNA package in R (12). The correlation coefficient between two genes was first calculated, then its weighted value was used to make the connection between the genes in a scale-free network. The hierarchical clustering tree was then constructed according to the correlation coefficients, wherein different gene modules were represented by the branches and color-coded. The “minModuleSize” was set to 50, and the module significance and correlation of mRNA expression levels with different modules were calculated. Finally, the most significant module related to the disease was identified, and the characteristic genes were extracted for subsequent analysis.



Construction of protein-protein interaction (PPI) networks

The STRING database (13) contains 2031 species, which includes 9.6 million proteins and 1380 million protein and protein interactions (PPIs) obtained from experimental data, text mining results from PubMed, other databases, and bioinformatics predictions. The PPI network of the genes intersecting the WGCNA and ER stress-related gene sets was visualized using Cytoscape software which constructed from the STRING database. Finally, the hub genes related to ER stress in sepsis were screened from this PPI network.



Construction of a diagnostic model

The minor absolute contraction and selection operator (LASSO) logistic regression method is used to screen for the most powerful prognostic predictors since it forces the absolute value of the regression coefficient to be less than the constant value, which can effectively avoid model overfitting and filter out the most important events. The sepsis-related genes were preliminarily screened by the LASSO method using glmnet package in R (24), and the diagnostic model was established by logistic regression. The odds ratio (OR) and P-value of each variable were calculated in the model, then the risk score of each sample was obtained. Diagnostic marker genes with a P-value < 0.05 and OR value that is more excellent than or less than one were selected.



Classification of sepsis subtypes

We used the “limma” package in R to screen the differentially expressed genes in the combined datasets between normal and sepsis samples. The filtering conditions were | logFC | > 2 and adj.P Value<0.05. The ConsensusClusterPlus package in R (19) was used to cluster the sepsis datasets based on the significant DEGs between sepsis and control samples to obtain molecular subtypes of sepsis.



Extraction of peripheral blood mononuclear cells (PBMCs)

The collection of blood samples from human subjects was approved by the Medical Ethics Committee of Shenzhen Hospital of Southern Medical University (ID: NYSZYYEC20200039). The clinical data is available at the China Clinical trial Registration Center (No. ChiCTR2100043761). Healthy volunteers were recruited from hospital staff and through advertisements. All sepsis patients had been admitted to the ICU of the Shenzhen Hospital of Southern Medical University. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) were used to diagnose sepsis (25). Blood samples were collected by venipuncture, and the PBMCs were separated by Ficoll-Paque density gradient centrifugation as per the manufacturer’s instructions.



Real-time quantitative PCR

RNA was extracted from cells and tissues using TRIzol (Gene Copoeia, MD, USA), and 1 µg total RNA from each sample was reverse transcribed to cDNA using specific primers and SYBR Green reaction mix (Takara Biotech). Real-time qPCR was performed on the Bio-Rad Real-Time PCR cycler. Relative gene expression levels were calculated by the 2-ΔΔct method. The primer sequences were as follows: SCAMP5 forward:  GCCCCATCAAGGTTCAGGAC, reverse: TACGTGTAATTGGGGGTGGC; GAPDH forward: TGGTATCGTGGAAGGACTC, reverse: AGTAGAGGCAGGGATGATG.



Western blotting

After proteins quantified by a BCA protein assay kit (Thermo), equal amounts of proteins (20μg) per sample were separated by 10% SDS-PAGE and transferred to a PVDF membrane (Millipore, Billerica, MA, USA). After blocking with 5% skimmed milk at room temperature for 2 h, the membranes were incubated overnight with the anti-SCAMP5 (Abcam, ab3432, 1:500) and anti-GAPDH (Abcam, ab22555, 1:1000) primary antibodies, and thereafter with the horseradish peroxidase (HRP)-conjugated secondary antibody. The images were captured using the ChemiDoc imaging system (Bio-Rad).



Statistical analysis

All statistical analyses were conducted using R (https://www.r-project.org/, 4.0.2 version). Normally distributed continuous variables between two groups were compared by the independent Student t-test, and variables with non-normal distribution were analyzed by the Mann-Whitney U test (Wilcoxon rank-sum test). The receiver operating characteristic curve (ROC) was plotted to predict binary categorical variables using the pROC package. All statistical tests were two-sided. P < 0.05 was regarded as statistically significant.




Results


Screening for DEGs between sepsis and control samples

Data set analysis and flow chart of this study (Figure 1A). The GSE9960 and GSE57065 datasets were merged and batch effects were removed. To ascertain any significant differences in the expression profiles of the two datasets, we analyzed data distribution before and after removing the batch effect through box plots. As shown in Figures 1B, D there were apparent inter- and intra-group differences before removing the batch effect, which were eliminated once the batch effect of the dataset source was removed and corrected (Figures 1C, E). The DEGs between the sepsis and control groups were then screened using limma in R, which revealed 577 DEGs, including 325 up-regulated and 330 down-regulated genes (Figures 1F, G).




Figure 1 | Data Preprocessing and identification of differentially expressed genes (DEGs). (A) Flow chart for gene set analyses. (B) Box line diagram of the merged dataset before correction. (C) Box line diagram of the combined dataset after correction. (D) PCA for sepsis and healthy control samples before batch correction with ComBat. (E) PCA for sepsis and healthy control samples after batch correction with ComBat. (F) Volcano plot showing DEGs between sepsis and control samples. (G) Heatmap showing the top 20 up- and down-regulated genes.





Analysis of immune cell infiltration

The proportion of different infiltrating immune cell types between the sepsis and control groups was evaluated using the CIBERSORT algorithm. After removing populations with a sum of immune abundance value 0, the Wilcox test algorithm was applied to 15 immune cell populations, including naïve B cells, plasma cells, memory B cells, CD8+ T cells, regulatory T cells (Tregs), CD4+ memory resting T cells, follicular helper T cells, resting NK cells, activated NK cells, M0 macrophages, M2 macrophages, monocytes,activated DCs, resting dendritic cells (DCs), resting mast cells and activated mast cells (Figure 2A).




Figure 2 | Distribution of immune cell subtypes in the merged dataset. (A) Bar plot showing percentage infiltration of 22 immune cells in each sample. (B) The top 10 hub genes according to Friends analysis. (C) The PPI network shows the interactions of the top10 genes. (D) Correlation heatmap of 22 immune cell types. (E) Violin plot showing differential infiltration of the 22 immune cell populations.



To assess the functional correlation between key genes and immune cells in sepsis, we analyzed the PPI network of the 577 DEGs, and obtained the top 10 hub genes using the MCC algorithm, and carried out with Friends analysis (Figure 2B). The protein-protein interaction (PPI) networks for the top10 hub gene (Figure 2C). The correlation between immune cells in the datasets, and the abundance of different populations in the sepsis and control samples were analyzed. As shown in Figures 2D, E, the B cells, T cells, NK cells and DCs were more abundant in the sepsis samples compared to the controls, whereas the infiltration of neutrophils was significantly lower in the sepsis samples relative to that in the control samples. These findings indicate that the samples from normal and sepsis patients demonstrated a variety of different immune contexts.



Identification of immune subtypes

Principal component analysis (PCA) of the combined dataset showed that although the control and sepsis groups were distinct, there was still some overlap among the samples (Figure 3A). Since the immune checkpoint-related genes were differentially expressed between the sepsis and control groups (Figure 3C), we clustered the 136 sepsis samples on the basis of these immune checkpoints into the immune_ A (n = 66) and immune_ B (n = 70) clusters using the ConsensusClusterPlus package in R. PCA analysis was performed again (Figure 3B), and the results showed that although a small number of samples overlapped, most pieces were significantly separated. Next, we performed the differentially expressed genes just obtained to draw the heat map (Figure 3D), and the results show that the expression difference trend of these genes is more prominent. These findings indicated that sepsis samples were clustered into immune subsets based on immune checkpoint related genes were differentially expressed.




Figure 3 | Identification of immune subtypes in sepsis. (A) PCA according to the subgroups of sepsis and healthy control samples. (B) PCA according to immunophenotyping. (C) Heatmap of immune infiltration-related genes in the normal and septic groups. (D) Heatmap of immune infiltration-related genes according to immunophenotyping. Red and blue squares indicate activation and suppression, respectively.





Functional annotation of ER stress-related genes in sepsis

To explore the involvement of ER stress in sepsis, we performed a Venn analysis of the sepsis-related DEGs and ER stress-related genes (Figure 4A), and functionally annotated the intersecting genes by GO and KEGG analyses. As shown in Figure 4B and Table 2 the genes are enriched in biological processes such as response to ER stress, negative regulation of response to ER stress, negative regulation of protein exit from the ER, cell components including platelet alpha granule lumen, platelet alpha granule, phagophore assembly site membrane, and molecular functions such as ubiquitin-like protein ligase binding, ubiquitin-protein ligase binding and protein phosphatase 2A binding. The critical functions of the DEGs include response to ER stress, ubiquitin protein ligase binding, protein processing in ER, negative regulation of protein exit from the ER and so on (Figure 4C and Table 3).




Figure 4 | GO and KEGG enrichment analysis. (A) Venn diagram showing the intersection of DEGs and ER stress-related genes in the combined dataset. (B) GO functional enrichment analysis of the intersecting genes with the top three of BP, CC and MF terms and KEGG pathways. The horizontal coordinate shows -log(p.adjust) values and the vertical coordinate shows GO terms. (C) The enrichment results are displayed on the network, and the node size represents the number of genes enriched. The red dots represent the nine genes that were enriched.




Table 2 | GO enrichment analysis of differentially expressed genes.




Table 3 | KEGG enrichment analysis of differentially expressed genes.



GSEA was next performed to determine the effect of gene expression level on sepsis. As shown in Figure 5A, the DEGs are related to biological functions such as autoimmune thyroid disease, allograft rejection, antigen processing and presentation. The top 5 functions are shown in Figure 5C. To test out the enrichment results of the gene set, we used GSVA (Gene Set Variation Analysis) analysis. The expression matrix of genes among different products is transformed into the expression matrix of gene sets among samples to evaluate whether different metabolic pathways are enriched. Finally, the results are visually displayed using the pheatmap package (Figure 5B and Table 4). We found that sample grouping can distinguish the effects of gene set enrichment analysis. These results indicate activation of endoplasmic reticulum stress-related pathways is an important biological process affecting immune cell function in sepsis.




Figure 5 | Results of GSEA and GSVA. (A) Mountain range plot showing the GSEA results of the merged dataset. Horizontal coordinate shows the gene ratio, vertical coordinate show the KEGG pathways, and the color indicates P-value. (B) Heat map showing the results of GSVA on GSEA enrichment data. Red and blue indicate activation and suppression, respectively. (C) The top 5 items of the GSEA.




Table 4 | GSEA analysis of differentially expressed genes GSE108474.





Identification of key ER stress-related genes in sepsis

Furthermore, we used the WGCNA algorithm to construct co-expression modules and identify mRNA-related modules. The key parameter of soft threshold power was set to 7 to ensure the overall connectivity of the co-expression module. Seven co-expression modules were obtained and the color-coded gene clusters are shown in Figure 6A. The purple, gray 60 and gray modules were positively correlated with mRNA (Meplum: r = 0.62, P = 9e−20; Megrey60: r = 0.17, P = 0.02; Megrey: r = 0.25, P = 8e−04), and the orange, dark blue, sky blue and orange-red modules showed negative correlation with mRNA (Meorange: r = -0.24, P = 0.002; Memidnightblue: r = -0.19, P = 0.01; Meskyblue: r = -0.56, P = 3e-15; Meorangered: r = -0.037, P = 0.6) (Figure 6B). Next, the correlation of the module membership with the sepsis samples was shown (Figures 6C–H). The purple module was most significantly correlated to sepsis (Figure 6C), and its characteristic genes with the highest correlation were intersected with ER stress-related genes. There were 70 intersecting genes in the venn diagram (Figure 7A). PPI network analysis was performed on these genes, and those with interaction scores greater than 0.4 are shown in Figure 7B. The top 20 hub genes were identified with the MCC algorithm, and are shown in (Figure 7C). In conclusion, a multi-factor network indicated complex interaction of the 20 ER stress-related hub genes in sepsis.




Figure 6 | Results of WGCNA. (A) Cluster analysis of the combined dataset. The different module clusters are color-coded. (B) Correlation between the different modules in the normal and sepsis groups. (C–H), Scatter diagrams for module membership vs. gene significance of sepsis. (C) The plum1 modules with the highest correlation. (D) The correlation between the skyblue module and the genes.(E) Display of the correlation between the grey60 module and the genes. (F) Display of the correlation between the orange module and the genes. (G) Display of the correlation between the midnightblue module and the genes. (H) Display of the correlation between the orangered4 module and the genes.






Figure 7 | Protein-protein interaction (PPI) network. (A) Venn diagram showing the intersection of the most significantly correlated genes obtained by WGCNA with ER stress-related genes. (B) PPI network of the 70 intersecting genes. (C) Top 20 hub genes in the PPI network.





Identification of sepsis subtypes and diagnostic markers

The potential diagnostic markers of sepsis were screened from the DEGs of the combined dataset using LASSO regression and logistic regression. As shown in (Figures 8A, B), there were 76 genes with OR > 1 and 85 genes with OR < 1 (and P < 0.05). The potential diagnostic markers were validated on the GSE123729 dataset by PCA, which showed that most markers distinguished sepsis from normal samples (Figures 8C, D). The differential expressions of these markers in the validation dataset are shown in the heat maps in (Figures 8E, F) and Table 5.




Figure 8 | Screening for diagnostic markers. (A, B) Lasso analysis of the combined dataset. (C, D) PCA plot and box plot of the validation set GSE123729 data after correction. (E, F) Heat map showing differential expression of diagnostic markers in the validation set obtained by one-way logistic regression analysis. Red indicates up-regulation, blue indicates down-regulation, and darker colors indicate a larger fold change.




Table 5 | Univariate logistic regression.



Fifty-seven DEGs were significantly related to sepsis, including 47 up-regulated and 10 down-regulated genes, and were used to cluster the sepsis datasets. When the number of genotypes was set to 2, the sepsis-related genes were able to classify the sepsis samples and distinguish them from the control samples (Figure 9A). The heat map of these genes in the normal and sepsis groups indicated differential expression (Figure 9B). The sepsis subtypes were then used to map the same genes again, and the difference was more pronounced (Figure 9C). The diagnostic markers with OR < 1 and OR > 1 were screened to improve accuracy, and the top 8 genes with the highest correlation are shown in (Figures 9D, E.) Together, these results indicated that the immune-related ER stress genes achieves strong stability and high accuracy in predicting sepsis patients.




Figure 9 | Identification of sepsis subtypes and diagnostic markers. (A) The number of genotype clusters in the sepsis dataset. (B) Heat map of diagnostic genes based on control and sepsis groups. (C) Heat map of diagnostic genes based on sepsis subtype. Red indicates activation and blue indicates inhibition. (D) Diagnostic markers with OR less than 1. (E) Diagnostic markers with OR more significant than 1.





Predictive value of SCAMP5

We further assessed the predictive value of the sepsis hub genes on the GSE26378 and GSE54514 datasets that included data of 39 healthy controls and 117 sepsis patients. SCAMP5 was significantly up-regulated in the sepsis samples compared to the control samples in both datasets (P < 0.05). On the other hand, while RNF175, FBXO6 and TBL2 showed a trend towards higher expression levels in the sepsis patients in GSE26378, no significant difference was observed in GSE54514 (Figures 10A, C). ROC analysis further demonstrated that SCAMP5 could accurately predict sepsis, with AUC of 0.757 in GSE26378 and 0.637 in GSE54514 (Figures 10B, D). We then tested the expression levels of SCAMP5 in the PBMCs from sepsis patients (n = 5) and healthy donors (n = 5), and found that SCAMP5 protein and mRNA were both up-regulated in the PBMCs from sepsis patients compared to healthy controls (Figures 10E, F). In addition, analysis of single-cell sequencing results in Protein Atlas database (https://www.proteinatlas.org/ENSG00000198794-SCAMP5/single+cell+type/PBMC) showed that SCAMP5 was expressed in the circulating DCs (Figure 10G). These results indicate that SCAMP5 is a potential diagnostic marker for sepsis.




Figure 10 | SCAMP5 is highly expressed in patients with sepsis and has significant diagnostic value. (A) Expression of hub genes in the control and sepsis samples in GSE26378. SCAMP5, RNF175, FBXO6 and TBL2 were significantly up-regulated in the sepsis patients (P < 0.05 by the two-sided t test. (B) ROC curve showing predictive value of SCAMP5 for sepsis in GSE26378 with AUC = 0.757. (C) Expression of hub genes in the control and sepsis samples in GSE54514. SCAMP5 and SDE2L1 were significantly up-regulated in the sepsis patients (*P < 0.05 by the two-sided t test). (D) ROC curve showing predictive value of SCAMP5 for sepsis in GSE54514 with AUC = 0.637. (E) SCAMP5 mRNA levels in the PBMCs from healthy controls and sepsis patients as determined by qRT-PCR. Mean ± SD (n = 5), **P < 0.01. (F) SCAMP5 protein levels in the PBMCs from healthy controls and sepsis patients. (G) Single-cell sequencing database results showing that SCAMP5 is expressed in the dendritic cells.






Discussion

Sepsis is a syndrome associated with a high mortality rate, and is therefore a serious public health concern worldwide. During the COVID-19 pandemic, some severe and critically ill patients exhibited multiple organ dysfunction that met the diagnostic criteria of sepsis (4). In recent years, the key role of immune cell apoptosis in sepsis-related immune dysfunction has been elucidated (26). Sepsis-induced apoptosis of immune cells not only leads to the depletion of critical immune effector cells, but also exerts an immunosuppressive effect (27). Some studies have also suggested a pathological role of ER stress in inflammatory diseases, including sepsis (28, 29). In addition, the ER stress-mediated apoptosis pathway is a potential therapeutic target in sepsis (30, 31).

Machine learning algorithms are increasingly being used to create decision models that aid in disease diagnosis and treatment (32). In the current study, we screened the DEGs between sepsis patients and healthy individuals, which can not only help identify potential diagnostic/prognostic biomarkers or therapeutic targets for sepsis from highly related gene aggregation modules, but also elucidate the molecular mechanisms underlying the pathogenesis of sepsis. We identified 577 DEGs from the combined GSE9960 and GSE57065 datasets, of which 325 were up-regulated and 330 were down-regulated in the sepsis samples relative to the controls.

In addition, we also observed significant differences in the type and abundance of infiltrating immune cell populations between the two groups, which underscores the role of immune cells in the development of sepsis. Monocytes and macrophages are instrumental to the pathophysiological process of sepsis and inflammation (33). The systemic inflammatory response elicited by the circulating innate immune cells during sepsis also influences the tissue-resident immune cells, which can compromise the functions of vital organs (34). Sepsis development is also associated with significant lymphopenia, which is characterized by decreased counts of CD8+ and CD4+ T cells, B cells and natural killer (NK) cells (35). Furthermore, burn patients with sepsis have significantly higher numbers of circulating DCs compared to burn patients without sepsis (36). In our study, B cells, NK cells, T cells and DCs were much more abundant in the sepsis samples compared to the controls, and therefore may play a crucial part in establishing the immune microenvironment about sepsis.

Our studies indicate that the immune cell dysfunction in sepsis is closely related to ER stress. Functional annotation of the sepsis-related DEGs indicated significant enrichment of biological process, molecular functions, cell components, biological pathways and diseases involving ER stress. A recent study has also revealed that there is a fascinating and novel interaction between ER stress with sepsis-associated cell death (37, 38). ER stress is also a trigger for apoptosis, except for mitochondrial apoptotic pathwaysand death receptor (39, 40). ER function is disrupted during sepsis, resulting in acute or chronic ER stress, which may initiate apoptosis in the damaged cells (41). Thus, ER stress-mediated apoptosis pathway may be a novel therapeutic target against sepsis-induced immune cell apoptosis (42).

We also screened for potential diagnostic markers for sepsis among the significant DEGs, and validated them in the GSE123729 dataset. The hub genes that can distinguish sepsis from normal samples were identified, which included SCAMP5, DNAJC18, TARDBP, SDF2L1, FBXO2, FBXO6, TBL2, RNF175, PDIA3 and HDGF. Secretory carrier membrane protein 5 (SCAMP5) is an integral membrane protein that was highly expressed in the sepsis samples compared to the controls. SCAMP5 is known to be brain specific which is involved in vesicle transport (43). Recent studies show that SCAMP5 is a candidate biomarker gene for autism and its downregulation is related to the synaptic dysfunction in autistic patients (44). Moreover, F-box protein 6 (FBXO6) is a subunit of the ubiquitin protein ligase complex, which bind to glycosylated substrates within F-box-associated domains in endoplasmic reticulum (ER) stress-associated degradation (45). Phosphorylation of TBL2 by ATM/ATM in response to DNA damage identifies TBL2 is considered to be a member of the cellular oxidative damage response network, as it phosphorylated by ATM/ATM in response to DNA damage (46). We confirmed the high expression levels of SCAMP5 mRNA and protein in PBMCs isolated from sepsis patients. Moreover, SCAMP5 was expressed in the peripheral DCs as per the single-cell sequencing results from the Protein Atlas database. Taken together, these findings suggest that SCAMP5 is a potential diagnostic marker for sepsis, and may play a vital role in its development. However, it is worth noting that the diagnosis and prediction of SCAMP5 sepsis still need further validation in clinical trials with large sample size. Meanwhile, the regulatory role of SCAMP5 in immune-related ER stress needs to be further investigated in functional and mechanistic studies.

To summarize, we developed a stable and accurate signal to evaluate the diagnosis of sepsis through integrated bioinformatics and machine learning algorithms. This prediction model can surveillance protocols and optimize decision-making for individual sepsis patients. Moreover, SCAMP5 was preliminarily identified as a key driver of sepsis that may affect its progression by regulating ER stress. The diagnostic and therapeutic potential of SCAMP5 in sepsis warrants further investigation.
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Phosphoribosyl pyrophosphate synthetase 1 (PRPS1) is the first enzyme in the de novo purine nucleotide synthesis pathway and is essential for cell development. However, the effect of PRPS1 on melanoma proliferation and metastasis remains unclear. This study aimed to investigate the regulatory mechanism of PRPS1 in the malignant progression of melanoma. Here, we found PRPS1 was upregulated in melanoma and melanoma cells. In addition, our data indicated that PRPS1 could promote the proliferation and migration and invasion of melanoma both in vitro and in vivo. PRPS1 also could inhibit melanoma cell apoptosis. Furthermore, we found NRF2 is an upstream transcription factor of PRPS1 that drive malignant progression of melanoma.
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Introduction

The maximum proliferation ability of cells is limited by the abundance of their nucleotide library and the level and activity of different rate-limiting enzymes in the nucleotide synthesis pathway (1). Compared with normal cells, tumor cells exhibit a larger nucleotide pool, higher activity of the nucleotide anabolic pathway, and lower activity of the nucleotide catabolic pathway (1). PRPS1 belongs to the phosphoribosyl pyrophosphate synthetase (PRPS) family. PRPS consists of five members, namely, PRPS1, PRPS2, and PRPS3 (PRPS1L1) with catalytic activity, and PAP39 and PAP41 without catalytic activity (2). PRPS1 can catalyze ribose-5-phosphate (R5P) to 5-phosphoribosyl-1-pyrophosphate (PRPP), which is the first rate-limiting purine nucleotide (3, 4). Additionally, PRPP is a donor of R5P for the synthesis of pyrimidine. The activity of PRPS1 is regulated by ADP and AMP negative feedback (4–6) and chemical modification (3, 6).

Previously, it was reported that the PRPS1 gene mutation could lead to deafness (7, 8), female cerebellar ataxia (9), gout (10), diabetes insipidus, and white matter disease (11). Recently, it has been reported that aberrant expression or mutation of PRPS1 is closely related to a variety of cancers, such as accelerating the proliferation of colorectal cancer (12, 13), esophageal squamous cell carcinoma (14), neuroblastoma (15) and childhood neuroblastoma (16), glioblastoma multiforme (17), promoting tumor invasion and metastasis (12, 15), changing colorectal cancer (3, 13), brain tumor initiating cells (18) and purine metabolism, and enhancing the drug sensitivity of lymphoblastic leukemia (4, 19–21) and breast cancer (22). However, it is still elusive whether PRPS1 is related to the proliferation and metastatic progression of melanoma.

In addition, melanoma cells encounter considerable oxidative stress due to endogenous factors, such as mitochondrial respiration and melanogenesis, as well as exogenous factors, such as ultraviolet radiation and melanoma (23, 24). These oxidative stresses are largely regulated by nuclear factor (erythroid-derived-2)-like 2 (NRF2) (24). Therefore, previous studies have focused on the regulation of NRF2 on oxidative stress in melanoma. Recently, studies have shown that NRF2 is not only related to oxidative stress, but also to the nucleotide metabolism. For example, NRF2 can regulate nucleotide biosynthesis and redox homeostasis thereby promoting the recurrence of dormant breast cancer (25). NRF2 up-regulates the pentose phosphate pathway (PPP) enzyme, glucose-6-phosphate dehydrogenase (G6PD) and transketase (TKT) mediated nucleotide biosynthesis, thereby promoting the malignant progression of head and neck squamous cell carcinoma (HNSCC) (26). Also, NRF2 promotes nucleotide production in non-small cell lung cancer by regulating the expression of key serine/glycine biosynthetic enzymes (27).

However, the correlation between NRF2 and PRPS has not been reported, whether in tumors or other diseases. The role of NRF2 in the regulation of PRPS1 expression has not yet been revealed. In this study, we first confirmed that PRPS1 is highly expressed in melanoma. The abnormally high expression of PRPS1 promotes the growth and metastasis of melanoma in vivo and in vitro. In addition, we found that NRF2 is a PRPS1 transcription factor that can bind to the PRPS1 promoter and upregulate the expression of PRPS1. Our findings provide a theoretical basis for PRPS1 as a potential therapeutic target for melanoma.



Materials and methods


Cell culture

Human melanoma cell lines (A875 and SK-MEL-110) were purchased from the Cell Bank of the Chinese Academy of Science. All cells were maintained in DMEM (Life Technologies, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum at 37°C in 5% CO2.



Cell transfection

A875 and SK-MEL-110 cells were transduced with PRPS1 overexpression (overexpression vector LV-PRPS1 or the corresponding control (CON335)) or PRPS1 knockdown (shRNA vector LV- PRPS1-RNAi) and the corresponding control (CON313) for 48 h. A875 and SK-MEL-110 cells were transduced with NRF2 overexpression (overexpression vector LV-PRPS1 or the corresponding control (CON335)) or NRF2 knockdown (shRNA vector LV- PRPS1-RNAi) and the corresponding control (CON313) for 48 h. The lentivirus expression vectors were purchased from Ji Kai Gene Chemical Technology Co., Ltd. (Shanghai, China). Then, the cells were selected with different concentrations of puromycin until the GFP-positive signal of the cells was not less than 95% observed under the fluorescence microscope. The transfection efficacy was determined by qPCR and western blotting.



Quantitative real-time PCR

Gene expression was evaluated by quantitative real-time PCR (qPCR). qPCR was performed according to the manufacturer’s instructions and was synthesized by real-time PCR (American Applied Biosystems) using SYBR Green (Roche, Switzerland). The PCR primer pairs used to amplify the target gene are shown in Table 1.


Table 1 | the sequence of the primers for qPCR.





Western blot

The cells were prepared in RIPA buffer (Solarbio, #R0020). A BCA™ Protein Assay kit (Applygen, #P1511) was used to determine the protein concentration. The proteins (40 μg/sample) were separated by different polyacrylamide gel electrophoresis, transferred to PVDF membranes (Millipore, #IPVH00010), and incubated with the corresponding primary antibody at 4°C overnight. Then, the membranes were incubated with the corresponding secondary antibodies at room temperature for 1 h and measured with a chemiluminescence reagent ECL kit (Advansia, #K-12045-D50).

The primary antibodies used in the experiment used were: anti-PRPS1 (Proteintech, #15549-1-AP), anti-cyclin E1 (Proteintech, 11554-1-AP), anti-CDK2 (Proteintech, 10122-1-AP), anti-P16 (Proteintech, #10883-1-AP), anti-Bax (Proteintech, 50599-2-Ig), anti-Bcl2 (Proteintech, 12789-1-AP), anti-Cleaved-caspeas3 (CST, #9664), anti-MMP2 (Abcam, ab37150), anti-MMP9 (Abcam, ab76003), anti-MMP13 (Proteintech, 18165-1-AP), anti-E-Cadherin (Proteintech, 20874-1-AP), anti-N-Cadherin (Proteintech, 22018-1-AP), anti-Vimentin (Proteintech, 10366-1-AP), anti-NRF2 (Abcam, ab89443), anti-β-actin (Bioss, bs-0061R), and Tubulin (Abcam, #ab7291). The secondary antibodies used in the experiment were anti-rabbit IgG (Abcam, #ab6721) and anti-mouse IgG (Jackson ImmunoResearch Laboratories, 115-035-003).



Immunohistochemistry

The immunohistochemical assay was performed as previously described (28) using anti-PRPS1 (Proteintech, #15549-1-AP), anti-NRF2 (Abcam, ab89443) and anti-(Proteintech, #15549-1-AP) antibodies. Tissue microarrays (MME1004i) were purchased from xi,an Taibosi Biological Technology Co., Ltd. (Xian, China). Immunohistological assessment was performed as previously described (29).



Hematoxylin and eosin staining

The lung tissue from metastatic mice was fixed in 4% paraformaldehyde for 24 h, dehydrated in different concentrations of graded ethanol, embedded and cut into 4 μm thick slices. The slices were baked at 55°C for 5 h and stained with hematoxylin (Solarbio, #G1140) and eosin (Solarbio, #G110).



CCK8 assay

A875 and SK-MEL-110 cells with PRPS1 overexpression or knockdown and the corresponding control were inoculated in 96-well plates (800 cells/well) and cultured for 0 h, 12 h, 24 h, 36 h, 48 h and 72 h. The cells were treated with 10 μl CCK-8 (APEBIO, #k1018) at 37°C for 1 hour. The absorbance was assessed by a microplate reader (Thermo Scientific, #51119200) at 450 nm. The proliferation rate (fold) = the cell absorbance at each time points minus blank hole absorbance/cell absorbance at initial time.



Colony formation assay

Stable melanoma cells were seeded into 6-well plates at a density of 500 cells/well and continuously cultured for two weeks. The cells were washed three times with PBS every three minutes. Then, the cells were fixed in 4% paraformaldehyde for 20 min, washed three times with PBS again, and stained using 3% crystal violet.



EdU assay

The cells were stained with a BeyoClick EdU Cell Proliferation kit (Beyotime, #C0075S). A fluorescence microscope (Leica, #DM4B, × 200) was used to obtain high-quality images.



Flow cytometry

Cell proliferation was assessed using flow cytometry. The cells were starved in serum-free DMEM for 24 h and then cultured in 10% FBS DMEM for 48 h. The cells were fixed in 75% ethanol for 24 h at 4°C, washed with PBS, treated with PI (Biotech, #FXP0211) for 15 min and detected by a PARTEC CyFlow Space flow cytometer.

Cell apoptosis was evaluated using flow cytometry. The cells were incubated with TNF-α+SM-164 (Beyotime, #C0006S) for 6 h. Cell apoptosis was detected using an apoptosis detection kit (Dojindo, #AD11) and a PARTEC CyFlow Space flow cytometer.



TUNEL apoptosis assay

The cells were incubated with TNF-α+SM-164 (Beyotime, #C0006S) for 6 h. A TUNEL apoptosis assay kit (Beyotime, #C1090) was used to measure cell apoptosis. Images were obtained by using a fluorescence microscope (Leica, #DM4B).



Wound healing assay

The cells were inoculated into 75 cm2 petri dishes and cultured with DMEM without serum overnight. Cells were wounded with a 20 μl pipette tip. The pictures were acquired at 0 h and 36 h after wounding using a fluorescence microscope (Leica, #DM4B). Wound closure (fold) = (the initial scratch area- the unhealed area after 36 hours of scratch)/the initial scratch area.



Transwell migration assay and Transwell invasion assay

The cells were resuspended in serum-free medium and placed in the upper chamber of a Transwell filter (Corning, #3524). For the Transwell invasion assay, the upper Transwell was coated with 1:8 diluted matrix adhesive (BD, #356234) in advance. DMEM containing 15% FBS was added to the lower chambers. After 24 h, the cells were fixed with 4% paraformaldehyde for 15 min, stained with 3% crystal violet, washed with PBS, and photographed with a fluorescence microscope (Leica, #DM4B).



Melanoma cell line xenograft model

The xenograft models were generated in 4- to 6-week-old female or male BALB/c nude mice (Department of Experimental Animals, Kunming Medical University). Animals (n=6/group) were injected with 150 µl of PBS containing 1×107 cells subcutaneously into one side of the back and tail of the mice (the back: the corresponding control group, the tail: the PRPS1-overexpression group or PRPS1-knockdown group). After 42 days, the mice were sacrificed, and the tumors were collected and weighed. According to the experimental needs, the tumor was divided into three parts, which were used for western blotting, qPCR, and immunohistochemistry. All animal experiments were approved by the Institutional Animal Care and Use Committee of Kunming Medical University.



Melanoma cell line metastatic model

Twenty-four female or male BALB/c nude mice (Department of Experimental Animals, Kunming Medical University) were randomly divided into four groups. Six mice in one group were injected with A875 cells with PRPS1 overexpression, A875 cells with PRPS1 knockdown and control cells. The mice were injected with 500 µl of PBS containing 2×107 cells via the caudal vein. Forty-two days later, the mice were sacrificed, and the lung tissues were collected and photographed. According to the experimental needs, the lung tissues were divided into three parts, which were used for western blotting and qPCR, H&E staining, and immunohistochemistry. All animal experiments were approved by the Institutional Animal Care and Use Committee of Kunming Medical University.



Luciferase assays

Plasmid transfection and luciferase activity were detected using a luciferase assay kit (Vigorous, #T002) according to the manufacturer’s protocol. PRPS1-luc and GL3-Basic-PRPS1 were purchased from QingKe Bio Technology (Wuhan, China). The Luciferase activity (fold) = (Firefly luciferase/Renilla luciferase ratio was calculated for each experimental group)/(Firefly luciferase/Renilla luciferase ratio was calculated for each the control group).



Chromatin immunoprecipitation

The ChIP assay was carried out based on a previous report (30). ChIP assays were performed using a ChIP assay kit (Abcam, #ab500) according to the manufacturer’s instructions with the indicated antibody: anti-NRF2 (Abcam, ab89443).



Statistical analysis

The data analysis was performed using GraphPad Prism 8 software. All results are expressed as the mean ± SD or mean ± standard error. P value <0.05 was regarded as statistically significant. One-way analysis of variance (ANOVA) and unpaired or paired-sample Student’s t test and mixed ANOVA were used to determine statistical significance.




Results


PRPS1 is highly expressed in melanoma and is linked to the malignant degree of melanoma

To investigate the role of PRPS1 in the proliferation and malignant progression of melanoma, we analyzed PRPS1 expression in melanoma based on the GEPIA database. In addition, we analyzed the correlation of PRPS1 with melanoma in situ and melanoma metastasis based on the UALCAN database. We found that the expression of PRPS1 was dramatically upregulated in melanoma (Figure 1A). It is worth noting that the expression of PRPS1 in metastatic melanoma patients was higher than that in primary melanoma patients (Figure 1B). Furthermore, an immunohistochemical (IHC) method was used to detect the expression of PRPS1 in melanoma tissues (melanoma in situ and metastatic melanoma) and normal nevi. The tissue specimens included 10 nevi, 76 primary melanomas and, 14 metastasis melanomas (one case of primary melanoma was not available). Representative images of the IHC staining analysis are shown in Figure 1C. Importantly, PRPS1 was highly expressed in 90.7% (68/75) of primary melanomas, 71.4% (10/14) of metastatic melanomas, and 50% (5/10) of nevus tissue samples (Figure 1D). More staining scores for PRPS1 in the tissue samples are summarized in Figure 1E. These results showed that the expression of PRPS1 was markedly increased in primary melanomas and metastatic melanomas.




Figure 1 | PRPS1 is highly expressed in melanoma and is related to the degree of malignancy of melanoma. (A) The expression of PRPS1 in normal tissue and melanoma tissue based on GEPIA database. (B) The expression of PRPS1 in normal tissue and primary melanoma and metastasis melanoma based on Ualcan database. (C) Representative images of PRPS1 expression in the melanoma tissue microarray are shown (200×). Scale bars=100μm. (D) Percentage of primary melanoma and metastasis melanoma with PRPS1-Low and PRPS1-High expression. (E) Immunohistochemistry of PRPS1 expression in the melanoma tissue microarray. (F, G) The mRNA and protein expression of PRPS1 in HEM cell and melanoma cells were analyzed by qPCR (F) and western blotting analysis (G). (H, I) The stable PRPS1 overexpression and knockdown in A875 and SK-MEL-110 cells were established. The expression of PRPS1 were measured by Q-PCR (H) and western blotting (I) analysis. The data represent three independent experiments. The data as indicated the mean ± SD and was analyzed by student’s t-test. *p < 0.05; **p < 0.01; ***p < 0.001.



Next, we detected the expression of PRPS1 in HEM, A875 and SK-MEL-110 melanoma cell lines. The mRNA and protein expression levels of PRPS1 in melanoma cell lines were higher than those in HEM cell lines (Figures 1F, G). To explore the function of PRPS1 in melanoma cells, we successfully established stable PRPS1 overexpression and knockdown in A875 and SK-MEL-110 melanoma cell lines (Figures 1H, I). The level of PRPS1 in the stably transfected A875 and SK-MEL-110 melanoma cells was measured by qPCR (Figure 1H) and western blot analysis (Figure 1I).



PRPS1 promotes the proliferation of melanoma cells in vitro

To confirm that PRPS1 drives the proliferation progression of melanoma, first MTS and cell colony formation assays and EdU staining were performed. The CCK8 results showed that stable overexpression of PRPS1 markedly promoted melanoma cell growth. In contrast, knockdown of PRPS1 reduced A875 and SK-MEL-110 melanoma cell proliferation (Figure 2A). In the plate colony formation assay, we found that the colony forming ability of melanoma cells overexpressing PRPS1 was significantly stronger than that of the control group, and the melanoma cells with PRPS1 knockdown showed the opposite results (Figure 2B). EdU staining further showed that the growth of melanoma cells overexpressing PRPS1 was significantly faster than that of the control group, but the proliferation of cells with PRPS1 knockdown was slower than that of the control group (Figure 2C). The results demonstrated that PRPS1 could promote the proliferation of melanoma cells in vitro.




Figure 2 | PRPS1 promotes melanoma cells proliferation in vitro. (A–C) The proliferation rate of A875 and SK-MEL-110 cells with PRPS1 overexpression or knock-down and the corresponding control cells were detected by MTS assay (A) and cells colony formation assay (B) and EDU method (C) scale bars = 50μm. (D–F) The effects of PRPS1 on the phase distribution of melanoma cell cycle at mRNA level, protein level and cell level were analyzed by qPCR (D), western blotting (E) and flow cytometry (F). The data represent three independent experiments. Each bar represents mean ± SD. p values were calculated using a student t-test (*p < 0.05, **p < 0.01, ***p < 0.001 vs. each control). ns mean no significant difference.



Next, RT–PCR, western blotting, and flow cytometry assays were used to analyze the effects of PRPS1 on the cell cycle phase distributions of melanoma cells. The RT–PCR results showed that compared to the control, the mRNA levels of cell cycle proteins, such as cyclin E1 and CDK2, were enhanced in PRPS1-overexpressing melanoma cells, but the mRNA level of P16 was inhibited (Figure 2D). In PRPS1 knockdown cells (Figure 2D), the opposite was true. The western blotting results showed that the protein levels of cyclins such as cyclin E1 and CDK2 were increased in PRPS1-overexpressing melanoma cells, while the level of P16 was decreased compared with the control group, while the opposite was true in PRPS1 knockdown A875 and SK-MEL-110 cells (Figure 2E). Flow cytometry confirmed that overexpression of PRPS1 increased the number of S-phase and G2-phase cells and decreased the number of G1-phase cells (Figure 2F). Conversely, in PRPS1 knockdown cells, the proportion of S phase and G2 phase cells was decreased, and the proportion of G1 phase cells was increased (Figure 2F). These findings further suggest that PRPS1 is important for the proliferation of melanoma cells.



PRPS1 inhibits apoptosis of melanoma cells

To determine the relationship between PRPS1 expression and cell apoptosis in melanoma cells. We performed cell apoptosis detection. Based on qPCR and western blotting analysis, we found that the mRNA and protein levels of the apoptosis-related factor Bcl2 were significantly increased in A875 and SK-MEL-110 melanoma cells overexpressing PRPS1. Conversely, A875 and SK-MEL-110 melanoma cells with stable knockdown of PRPS1 exhibited lower mRNA and protein levels of the apoptosis-related factors Bax and cleaved caspase-3 than the controls (Figures 3A, B). In addition, by flow cytometry analysis, we found that the percentage of early apoptosis in melanoma cells with PRPS1 overexpression was lower than that in the control group. In contrast, the early apoptosis rate of PRPS1 knockdown melanoma cells was higher than that of the control group (Figure 3C). Furthermore, TUNEL staining showed that the number of TUNEL-positive cells in PRPS1-overexpressing melanoma cells was less than that in the control group. However, the number of TUNEL-positive cells in PRPS1-knockdown melanoma cells was greater than that in the controls (Figure 3D). These findings suggest that overexpression of PRPS1 reduces the apoptosis of melanoma cells and that knockdown of PRPS1 increases the apoptosis of melanoma cells.




Figure 3 | PRPS1 inhibits melanoma cell apoptosis. (A, B) The expressions of apoptosis related factors Bcl2 and Bax and Cleaved-caspeas-3 in A875 and SK-MEL-110 and the related control cells stably transfected with PRPS1 were detected by (A) qPCR and (B) western blotting analysis. (C) The anti-apoptotic ability of SK-MEL-110 cells overexpressing or knock-down PRPS1 and the control cells were evaluated by flow cytometry. (D) TUNEL analysis was used to analyze the anti-apoptotic ability of A875 (left) and SK-MEL-110 (right) over-expression or knock-down PRPS1 and the control cells. Scale bars=75μm. The data represent three independent experiments. Each bar represents mean ± SD. p values were calculated using a student t-test (*p < 0.05, **p < 0.01, ***p < 0.001 vs. each control).





PRPS1 promotes the migration and invasion of melanoma cells

We thoroughly investigated the effect of PRPS1 on the invasion and malignant progression of melanoma. First, we conducted scratch and Transwell migration tests. We observed that the cell migration rate of PRPS1-overexpressing cells was much higher than that of the control group, but the cell migration rate of the PRPS1 knockdown group was lower than that of the control group (Figures 4A, B). Next, a Transwell invasion assay was performed to further estimate the invasion capability. In the Transwell invasion experiment, we also found that overexpression of PRPS1 promoted the invasion of melanoma cells, while knockdown of PRPS1 suppressed the invasion of melanoma cells (Figure 4C).




Figure 4 | PRPS1 advances the migration and invasion of melanoma cells. (A) Representative scratch-wound images and the data analysis of PRPS1 over-expression and knock-down melanoma A875 and SK-MEL-110 cells 0h and 24h after scratch. (B) Representative images of transwell migration of stably transformed melanoma cells after 24h of starvation (top panel). Quantification of the number of migrating cells per field (bottom panel). (C) Representative images of transwell invasion assay pictured 24h (top panel). Quantification of the number of invasion cells per field (bottom panel). (D) The expression of EMT-associated proteins in the A875 and SK-MEL-110 melanoma cells with PRPS1 overexpression or knock-down and the control cells. The data represent three independent experiments. (*p<0.05, **p<0.01, *** p<0.001, ns mean no significant difference).



Moreover, western blotting was performed to assess the expression levels of EMT-associated proteins in the stable PRPS1 overexpression and knockdown A875 and SK-MEL-110 melanoma cell lines. As Figure 4D shows, PRPS1 promoted the expression of pro-invasion proteins, such as MMP2, MMP9, N-cadherin, and vimentin, and inhibited the expression of anti-invasion proteins, such as E-cadherin, in melanoma cells. Notably, knockdown or overexpression of PRPS1 did not cause changes in the protein level of MMP13 (Figure 4D). These results suggest that PRPS1 can markedly promote melanoma cell invasion and migration.



PRPS1 drives melanoma tumor proliferation in vivo

Next, we performed animal experiments to confirm whether the abnormal expression of PRPS1 affects the progression of melanoma proliferation in vivo. We found that the implantation of PRPS1 stably overexpressing A875 cells and PRPS1 knockdown SK-MEL-110 cells and control cells in BALB/c nude mice led to the occurrence of tumors in vivo (Figures 5A, 5D). More importantly, PRPS1-overexpressing A875 cells significantly promoted tumor growth (Figure 5A). The tumors formed by PRPS1-overexpressing A875 cells were significantly earlier and faster, and larger than those in the control group (Figures 5B, C).




Figure 5 | PRPS1 promotes melanoma cells proliferation in vivo. (A–C) BALB/c nude mice were injected with SK-MEL-110 cell that were stably transfected with PRPS1 overexpression and the control. Representative images of mice with control (top) and PRPS1-overexpressing (lower) xenograft tumors (A). The tumor volume (B) and body weight (C) were measured. (n=6/group) (D–F) BALB/c nude mice were injected with A875 cell that were stably transfected with PRPS1 knockdown and the control. Representative photographs of mice with control (top) and PRPS1- knockdown (lower) xenograft tumors (D). The tumor volume (E) and body weight (F) were measured. (n=6/group) (G–J) The protein level of PRPS1 (G, H) and the cell cycle related protein (I, J) levels of tumors in each xenograft tumors group were measured by western blot analysis. The data represent three independent experiments. The data related to tumor volume were statistically analyzed by two-way ANOVA, and the other data were analyzed by unpaired-sample Student’s t test. *P < 0.05, **P < 0.01, ***P < 0.001.



In contrast, our animal experiments demonstrated that PRPS1 cell knockdown was significantly detrimental to tumor growth (Figures 5D–F). Compared with control cells, the tumors induced by injection of PRPS1 knockdown cells grew slower and weighed less (Figures 5E, F).

In addition, we further compared the expression of PRPS1 in subcutaneous tumor tissues of nude mice by western blotting. We found that the protein expression of PRPS1 in the tumors was positively correlated with the tumor volume (Figures 5G, H). We also measured the protein levels of cell cycle-related proteins in the tumors, as Figures 5I, J show that CDK2, CDK4, cyclin D1, and cyclin E1 levels were significantly upregulated or reduced in PRPS1-overexpressing or PRPS1-knockdown tumors compared to the corresponding controls. These results suggest that PRPS1 promotes melanoma growth in vivo.



PRPS1 promotes malignant melanoma tumors in vivo

To further confirm whether PRPS1 could promote tumor malignancy in vivo, we injected PRPS1-overexpressing or PRPS1-knockdown A875 cells and the corresponding control cells via the caudal vein to establish a metastatic tumor model in BALB/c nude mice. The incidence of lung metastasis in BALB/c nude mice injected with PRPS1-overexpressing A875 cells was significantly higher than that in the control group, but the incidence of lung metastasis in BALB/c nude mice injected with PRPS1-knockdown A875 cells was significantly lower than that in the control (Figures 6A, 6C). We detected the protein expression of PRPS1 in lung metastasis tumors. Notably, western blotting demonstrated that the higher the expression of PRPS1 was, the stronger the ability of melanoma cells to metastasize (Figures 6B, 6D). HE staining and IHC staining of lung tissue sections showed that BALB/c nude mice carrying A875 melanoma cells with PRPS1 overexpression had significantly increased formation of lung-specific metastases, and the expression level of PRPS1 was positively correlated with the number of tumor foci compared with BALB/c nude mice bearing control cells (Figure 6E). The opposite was true in BALB/c nude mice carrying PRPS1 knockdown A875 cells (Figure 6E). Meanwhile, we also detected the protein expression levels of cell migration- and invasion-related factors in nude mice, including MMP2, MMP9, E-cadherin, N-cadherin, and vimentin. The results demonstrated that overexpression of PRPS1 promoted the expression of EMT-related proteins, but knockdown of PRPS1 inhibited the expression of EMT-related proteins (Figures 6F, G). The above results indicate that PRPS1 promotes malignant melanoma tumors in vivo.




Figure 6 | PRPS1 promotes melanoma cells metastasis in vivo. (A–D) In vivo experimental lung metastasis assay of A875 cells stably overexpressing (A) or knocking down PRPS1 (C). The cells were injected into BALB/c nude mice via tail vein. Representative images of mice with the corresponding control (top) and PRPS1-overexpression/PRPS1-kockdown (lower) lungs metastasis. The expression of PRPS1 in PRPS1-overexpression and the control metastatic tumors (B), as well as in the PRPS1-kockdown and the corresponding control metastatic tumors were compared by western blot analysis (D). (n=6/group) (E) Morphological feature of the lung metastasis by HE staining and IHC in each metastatic tumor group. (F, G) The migration and invasion related protein levels in each metastatic tumor group were measured by western blot analysis. The data represent three independent experiments. Statistical analysis was carried out with unpaired-sample Student’s t test. *P < 0.05, **P < 0.01, ***P < 0.001.



Taken together, the results suggest that PRPS1 drastically promotes the potential for tumor proliferation, malignancy, and metastasis of melanoma in vitro and in vivo.



PRPS1 is upregulated by NRF2 and acts as a prominent determinant of melanoma proliferation and malignancy progression

We further analyzed the mechanism by which PRPS1 regulates the malignant progression of melanoma. Nuclear factor (erythroid-derived-2)-like 2 (NRF2) is a transcription factor that is known to play a pivotal role in the pentose phosphate pathway (PPP) of glioblastoma (31), breast cancer cells (32), head and neck cancer (26), human hepatoma cells (33), and colon cancer (34) and to affect cell metabolic reprogramming. PRPS1 acts as an enzyme that catalyzes R5P to PRPP, thus participating in the PPP (3, 4). Therefore, we investigated whether NRF2 affects the malignant progression of melanoma by regulating PRPS1.

First, through analysis of the GEPIA website, we found that the level of PRPS1 gene expression was positively correlated with NRF2 (PRPS1-NRF2: Pearson correlation=0.4, p=3.4e-19) (Figure 7A). Next, we detected the mRNA and protein levels of PRPS1 in A875 and SK-MEL-110 cells with NRF2 overexpression and PRPS1 knockdown. The results showed that in A875 and SK-MEL-110 cells, stable overexpression of NRF2 increased the mRNA and protein levels of PRPS1, but knockdown of NRF2 markedly reduced the mRNA and protein levels of PRPS1 (Figures 7B, C). Furthermore, PRPS1-overexpressing A875 cells and control cells were incubated with 0.05 uM or 0.1 uM bardoxolone methyl (NRF2 activator, TP-155), PRPS1-knockdown SK-MEL-110 cells and control cells were treated with 2.5 uM or 5 uM ML385 (NRF2 inhibitor), and the results reconfirmed that the protein expression of PRPS1 was decreased in the cells with NRF2 inhibition and vice versa (Figure 7D). More importantly, the increase or decrease of PRPS1 expression was positively correlated with the dose of NRF2 activator or inhibitor.




Figure 7 | NRF2 is positively correlated with PRPS1 expression in melanoma. (A) Spearman correlation analysis of PRPS1 and NRF2 mRNA expression levels was performed in melanoma and normal skin tissues through GEPIA website. (B, C) The mRNA (B) and protein (C) level of PRPS1 were analyzed in the stably NRF2 overexpression or knockdown A875 and SK-MEL-110 and that the control cells. (D–F) The stably PRPS1 overexpression A875 and the control cells were treated with TP-155 (NRF2 activator) for 24h. The stably PRPS1 knockdown SK-MEL-110 and the control cells were incubated with ML385 (NRF2 inhibitor) for 24h. The expression of PRPS1 was detected by using western blot in each group cells (D). The cell proliferation rate was detected by MTS assay (E). The rate of migration was measured by transwell assay (F). TP-155 (+): 0.05uM, TP-155 (++): 0.1uM. ML385 (+): 2.5uM, ML385 (++): 5uM. The cell migration ability was evaluated by transwell migration (F). TP-155 (+): 10nM, TP-155 (++): 25nM. ML385 (+): 1uM, ML385 (++): 2uM. (G, H) The expression of NRF2 in the xenograft tumors (G) and the lung metastases of nude mice (H) were detected by western blot analysis. Statistical analysis was carried out with unpaired-sample Student’s t test or two-way ANOVA. *P < 0.05, **P < 0.01, ***P < 0.001, ns mean no significant difference.



However, it was unclear whether NRF2 could affect the proliferation and metastasis of melanoma cells by regulating the expression level of PRPS1. We used MTS analysis to evaluate the effect of NRF2 on stable cell proliferation. As shown in Figure 7E, the NRF2 activator significantly increased the proliferation rate of PRPS1-overexpressing melanoma cells, while the NRF2 inhibitor significantly decreased the proliferation rate of PRPS1-knockdown melanoma cells. Next, we evaluated whether NRF2 could influence the effects of PRPS1 on melanoma cell metastasis. We observed that the cell migration ability was improved in stable PRPS1-overexpressing A875 cells after treatment with an NRF2 activator (Figure 7F, left). In contrast, the NRF2 inhibitor significantly suppressed the ability of PRPS1 knockdown PRPS1 SK-MEL-110 cell migration (Figure 7F, right). It is worth noting that the NRF2 activator/NRF2 inhibitor has a significant dose-response relationship in promoting/inhibiting the proliferation, invasion and migration of PRPS1 overexpression/PRPS1 knock-down melanoma cell.

We further compared the expression of NRF2 in the animal models. We found that the expression of NRF2 was positively correlated with the expression of PRPS1 in the subcutaneous tumors (Figure 7G) and the lung metastases of nude mice (Figure 7H). The levels of PRPS1 and NRF2 in the tumors were positively correlated with the melanoma tumor volumes and the degree of melanoma metastasis in each group.

In conclusion, these results demonstrate that PRPS1 promotes the proliferation, malignancy, and metastasis of melanoma, which may be related to NRF2.



NRF2 bound to PRPS1 is crucial for PRPS1 transcription

We further explored the mechanisms by which NRF2 regulates PRPS1 in melanoma cells. JASPAR database analysis showed that the transcriptional regulatory region of PRPS1 contains two NRF2 binding sites (Figure 8A). The ChIP–qPCR results showed that NRF2 was recruited to PRPS1 primer 1 (-1403-1414), which was 3.1 times that of the negative control, and PRPS1 primer 2 (1477-1487), which was 9.7 times that of the negative control in A875 melanoma cells (Figure 8B, left). In 110 melanoma cells, the abundance of NRF2 combined with PRPS1 primer 1 (1403-1414) was increased by 2.8 times and that combined with PRPS1 primer 2 (1477-1487) was increased by 7.1 times (Figure 8B, right). Furthermore, a luciferase assay showed that PRPS1-luc activity was increased in both 293T cells cotransfected with PRPS1 promoter1 wild-type/promoter2 wild-type and NRF2 overexpression plasmids (Figure 8C, left). In contrast, PRPS1-luc activity was decreased in both 293T cells cotransfected with PRPS1 position 1-mutated/position 2-mutated and NRF2 overexpression plasmids (Figure 8C, right). These results reveal that NRF2 is involved in directing PRPS1 expression in melanoma. We further investigated the relationship between PRPS1 and NRF2. We detected the protein levels of NRF2 in the nuclei and cytoplasm of A875 and SK-MEL-110 cells with overexpression or knockdown of PRPS1 and found that PRPS1 overexpression increased the NRF2 levels in the nuclei and cytoplasm and that knockdown of PRPS1 decreased the NRF2 levels in the nuclei and cytoplasm. (Figure 8D).




Figure 8 | NRF2 is a transcription factor of PRPS1-mediated malignant progression of melanoma. (A) Consensus binding sites for NRF2 on the PRPS1 promoter was analyzed by JASPAR database. (B) ChIP assay was performed to assess NRF2 in the PRPS1 promoter region in A875 and SK-MEL-110 cells. (C) 293T cells were transfected with corresponding plasmids for 48h. Luciferase dual reporter assays were performed to measure the luciferase activity of PRPS1-luc. (D) NRF2 expression in nuclei and cytoplasm of A875 and SK-MEL-110 cells overexpressing or knockdown PRPS1. (E) Proposed model of the relationship between PRPS1 and NRF2 in melanoma cells. The data represent three independent experiments. The data represent three independent experiments. Each bar represents mean ± SD. p values were calculated using a student t-test (*p < 0.05, **p < 0.01, ***p < 0.001 vs. the control).



These results indicate that the transcription factor NRF2 can bind to the PRPS1 promoter and increase the transcription of PRPS1 to advance the proliferation, migration, and invasion of melanoma (Figure 8E).




Discussion

Tumor cells, including melanoma, are highly dependent on de novo biosynthesis of purine and pyrimidine nucleotides (35, 36). The researchers found that the levels of xanthine, purine, pyrimidine, AMP, ADP, ATP, and UDP in the clonally expanded cells of metastatic lymph nodes in melanoma patients were significantly increased (37). We found that the mitochondrial oxidative phosphorylation pathway and purine biosynthesis were abnormally active in melanoma cells (unpublished data). The PPP pathway is often upregulated in cancer cell lines, enabling cancer cells to obtain a large amount of R5P for purine nucleotide and pyrimidine synthesis (1, 38, 39). We previously demonstrated that G6PD, the key enzyme of the PPP, is upregulated, and its enzyme activity is increased in melanoma, which can promote the proliferation of melanoma cells and inhibit apoptosis (40, 41).

PRPS1 catalyzes R5P to 5-phosphoribosyl-1-pyrophosphate, which is the first step of de novo nucleotide synthesis. Previous reports indicated that knockdown of PRPS1 strongly inhibited neuroblastoma cell proliferation (15). PRPS1 is upregulated by KHK-A and promotes the proliferation of esophageal squamous cells (14). CDK1 upregulates PRPS1 activity by phosphorylating PRPS1(183), so PRPS1 cell cycle-dependent phosphorylation promotes nucleotide synthesis in colon cancer (3). The lncRNA lymphocytic leukemia 1 (DLEU1), targeting miR-320b/PRPS1, promotes the proliferation, migration, and invasion and reduces the apoptosis of colorectal cancer (12). The PRPS1 mutation drove thiopurine resistance in childhood acute lymphoblastic leukemia (4, 19). In this study, our data demonstrated that PRPS1 is highly expressed in melanoma tissues and melanoma cell lines (Figure 1C-G). We also demonstrated that overexpression of PRPS1 promoted melanoma tumor proliferation, migration, and invasion in vitro and in vivo and inhibited melanoma cell apoptosis. In contrast, knockdown of PRPS1 suppressed proliferation, migration, and invasion while advancing apoptosis in melanoma (Figures 2, 6). We first showed that PRPS1 could promote the growth, migration, and invasion of melanoma and prevent melanoma cell apoptosis.

A report pointed out that c-MYC is a transcription factor of PRPS1 in neuroblastoma (18). However, another study confirmed that in c-MYC-overexpressing malignant lymphoma cells, the gene expression of PRPS2 rather than PRPS1 is strongly regulated at the translational level to regulate purine synthesis (5). However, the mechanism by which PRPS1 regulates the malignant progression of melanoma remains unclear.

Our study found that NRF2 can regulate the transcription of PRPS1 and then regulate the proliferation and metastasis of melanoma. NRF2 is considered a marker of cancer and plays a role in tumor promotion and tumor suppression in different cancers (42). Research confirmed that knockdown of NRF2 led to reduced growth of melanoma cells (43). NRF2 promotes the migration and invasion of BRAF mutant melanoma cells (44). In our study, we confirmed that NRF2 could promote the transcription of PRPS1 (Figure 7D). The ChIP and luciferase assay data indicated that NRF2 binds to the PRPS1 promoter (Figures 8B, C). In addition, after SK-MEL-110 cells with stable PRPS1 overexpression were treated with an NRF2 activator and PRPS1 knockdown PRPS1 A875 cells were incubated with an NRF2 inhibitor, we reconfirmed that abnormal PRPS1 could promote the proliferation, migration and invasion of melanoma cells through NRF2-activated transcription (Figures 7D, E).

As a transcription factor, NRF2 is also the most potent effector of the oxidative stress response (43, 45). Because melanoma shows high oxidative stress in both the intracellular and tumor microenvironments, NRF2 is involved in this process. Therefore, previous studies have paid more attention to the regulation of NRF2 on oxidative stress in melanoma. Intermittent hypoxia promoted melanoma lung metastasis through oxidative stress in a mouse model of obstructive sleep apnea (46). Mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH) inhibits melanoma migration, and invasion by suppressing NRF2 and downstream oxidative signals (47). Our study demonstrates for the first time that NRF2, as a transcription factor, can regulate the transcription of PRPS1, an important enzyme in nucleotide metabolism.



Conclusion

Our study demonstrated that PRPS1 is highly expressed in melanoma and promotes melanoma proliferation and metastasis and decreases melanoma cell apoptosis. Moreover, abnormal expression of PRPS1 occurred via NRF2-mediated upregulation. This is the first study to provide data by systematically analyzing the function and regulatory mechanism of PRPS1 in melanoma. Targeting purine nucleotide metabolism may become a new strategy for melanoma therapy.
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R: 5- -3 ATGGTGCTTGTGGGAGAT
cyclin E1 F: 5 -3 ACTCAACGTGCAAGCCTCG
R: 5'- -3": GCTCAAGAAAGTGCTGATCCC
CDK2 F: 5- -3: CCAGGAGTTACTTCTATGCCTGA
R: 5°- -3": TTCATCCAGGGGAGGTACAAC
P16 F: 5- -3: GGGTTTTCGTGGTTCACATCC
R: 5- -3": CTAGACGCTGGCTCCTCAGTA
Bax F: 5~ -3 AGACACTCGCTCAGCTTCTTG
R: 5- -3 CTTTTGCTTCAGGGTTTCATC
Bcl, F: 5- -3: GTGCCTGCTTTTAGGAGACCGA
R: 5'- -3": GAGACCACACTGCCCTGTTGATC
Caspase-3 F: 5- -3: CATGGAAGCGAATCAATGGACT
R: 5- -3": CTGTACCAGACCGAGATGTCA
NRF2 F: 5 -3 GAAAATCCATCTTCCTTCACTTG
R: 5- -3 GAGTTTGCTTGCCCATTGTAA
U6 F: 5- -3: CTCGCTTCGGCAGCACA -3’

R: 5- -3: AACGCTTCACGAATTTGCGT
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Univariate logistic regression
OR (95% CI)
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TC2
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Median (Interquartile range)
Treatment response
Complete response
Partial response
Stable disease
Progressive disease
Gene score

Median (Interquartile range)

Data are presented as No. (%) unless indicated otherwise.
P values were derived from the univariable association analyses between the training and validation set.

Training set (n = 209)

164 (78.5)
45 (21.5)

59 (28.2)
81 (38.8)
69 (33.0)

164 (78.8)
14 (6.7)
30 (14.4)

8 (5, 14]
14 (6.7)
26 (12.4)
42 (20.1)

127 (60.8)

-1.490 [-1.615, -1352]

“One patient’s PD-L1 expression on tumor cells (TC) data was not available.

TMB data were available for 161 and 73 patients in the training and validation sets, respectively.

Validation set (n = 89)

69 (77.5)
20 (22.5)

25 (28.1)
31 (34.8)
33 (37.1)

74 (83.1)
3(3.4)
12 (13.5)

8 [5,14]
11 (12.4)
17 (19.1)
21 (23.6)
40 (44.9)

-1.475 [-1.597, -1.286]
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0.662
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Disease

Primary Sjogren's syndrome
Adenosine deaminase 2
Systemic lupus erythema
Graves' hyperthyroidism (GH)
Rheumatoid arthritis

Autoimmune hepatitis

Technology

SCTCR-seq
ScRNA-seq+scTCR-seq
scTCR-seq+scBCR-seq
scRNA-seq+scTCR-Seq
scRNA-seq+scTCR-Seq
scTCR-seq

Significance

Reveal pathogenesis

Reveal pathogenesis

Provide a new approach for diagnosis and treatment of SLE
Provide potential therapeutic targets

Develop improved protocols for resistance therapy in patients

Reveal pathogenesis

Reference

@7)
(8)
(9)
(30)
G1)
(2)
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Disease

Tuberculosis
Cytomegalovirus

Pneumocystis
Pneumonia

COVID-19

Borrelia infection

Lyme disease

Technology

scTCR-seq+sc-RNA seq
scTCR-seq+sc-RNA seq
scTCR-seq+sc-RNA seq

scTCR-seq+sc-RNA seq ;scBCR-
Seq ;
scTCR-Seq+ scBCR-Seq)

scBCR-seq+sc-RNA seq
scBCR-seq+sc-RNA seq

Significance

Involve in protective immunity
Elucidate the function and interaction of CD4 * T cells

Reveal the mechanisms of host adaptive immune responses to pneumocystis

Involve in T-cell mediated viral clearance;Reveal the immune response mechanism of viral
infection

Reveal the immune response mechanism of viral infection

Reveal the immune response mechanism of borrelia Infection

Reference

(18)
(19)
(20)

(21-24)

(25)
(26)
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Disease

Acute myeloid leukemia

Breast Cancer

Melanoma

Liver Cancer
Bladder Cancer

Squamous cell carcinoma

Nasopharyngeal carcinoma
Scale-cell carcinoma of head
and neck

large granular lymphocyte
leukemia T cells

Technology

scRNA-Seq+
SCTCR-Seq

SCRNA-Seq+
scTCR-Seq

scTCRSeq+
SCRNA-Seq

scTCR-Seq
scTCR-Seq

SCRNA-Seq+
scTCR-Seq

scTCR-Seq
scRNA-Seq+
scTCR-Seq
SCRNA-Seq+
scTCR-Seq

Significance
Reveal tumor immune microenvironment
Reveal tumor immune microenvironment
Provide clues for disease diagnosis and clinical management; monitor the ability of the blood to
respond to anti-tumor CD8 * T cells
Reveal tumor immune microenvironment

Predict clinical response to anti-PD-L1 therapy

Facilitate personalized treatment of SCC

Improve targeted therapy and immunotherapy for NPC

Guide personalized cancer immunotherapy

Reveal tumor immune microenvironmen

Reference

(6)

(7,8)

(9, 10)

(11, 12)
(13)
(14)

(15)
(16)

17)
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Gene

RBX1
RBX1
RBX1
RBX1
RBX1
RBX1
RBX2
RBX2
RBX2
RBX2
RBX2
RBX2

Dataset

GSE1456
GSE7378
GSE17537
GSE17536
GSE13213
GSE31210
GSE1456
GSE7378
GSE17537
GSE17536
GSE13213
GSE31210

Cancer type

Breast cancer
Breast cancer
Colorectal cancer
Colorectal cancer
Lung cancer
Lung cancer
Breast cancer
Breast cancer
Colorectal cancer
Colorectal cancer
Lung cancer

Lung cancer

Endpoint

RFS
DFS
oS
DFS
0os
RFS
RFS
DFS
os
DFS
oS
RFS

Number

159
54
55
145
117
204
159
54
55
145
117
204

COX P-value

0.026281
0.602293
0.992477
0.707538
0.051215
0.082506
0.002736
0.046315
0.041411
0.043114
0.000608
0.000007

RFS, relapse free survival; DFS,Disease Free Survival; OS, overall survival; HR, hazard ratio; CI, Confidence Interval.

HR

1.01
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-0.01
0.19
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Characteristics Total HR(95% CI) Univariate P value Univariate HR(95% CI) Multivariate P value Multivariate

(N) analysis analysis analysis analysis
Age 138 1.009 (0.979-1.040) 0.566 - -
Gender 138 - 0.955 - -
Female 56 Reference - - -
Male 82 0.970 (0.545-1.727) 0.955 - -
Metastasis 138 = <0.001 = =
Yes 56 Reference - - -
No 82 0.173 (0.093-0.323) <0.001 0.200 (0.105-0.379) <0.001

riskScore 138 1.223 (1.146-1.305) <0.001 1.172 (1.099-1.250) <0.001
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Variables

INF

Age (years)

Gender

Tumor size (cm)
Tumor originating site
Lymphnode metastasis

No,of positive positive
lymph nodes

TNM stage

Tumor grade

Lauren classification

Density of TILs

HR: Hazard ratio, CI: Confidence interval, PGC: Proximal gastric cancer, DGC: Distal gastric cancer, INF: tumor infiltrating pattern.

Categories

INFc vs INFa+b
>60 vs <60

Male vs female

>4 vs <4

PGC vs DGC
Positive vs negative

>5 vs <5

TIA-1IB vs IA-IB

TIA-IIIC vs IA-IB

G2 vs Gl

G315 Gl

G4 vs G1

Diffuse type vs Intestinal type(IT)
Mixed type vs IT

High vs low

Univariable analysis
HR (95%CI)

4.288 (2.593, 7.092)
2.150 (1.266, 3.711)
1.286 (0.689, 2.400)
1.860 (1.152, 3.005)
1.858 (1.127, 3.064)
7.870 (3.884, 15.945)
4.243 (2.608, 6.904)

4.453 (1.488, 13.322)
12.023 (4.321, 33.458)
0.00 (0.000, 2.2E26)
0.607 (0.290, 1.271)
0.823 (0.406, 1.667)
2.196 (1.283, 3.762)
1.573 (0.825, 3.000)
0.404 (0.244, 0.671)

P

<0.001
0.008
0.430
0.011
0.015
<0.001
<0.001

0.013
0.002
0.969
0.185
0.588
0.004
0.169
<0.001

Multivariable analysis
HR (95%CI)

3.079 (1683, 5.632 )
1.484 (0.706, 3.119)
1.328 (0.555, 5.136)
2519 (0.921, 4.464)
1.331 (0.755, 2.348)
3.883 (1.545, 9.761)
0902 (0.437, 1.862)
1.546 (0.426, 5.609)
2305 (0.622, 8.542)
0.000 (0.000, +eo)
1.713 (0.697, 4.215)
1.458 (0.677, 3.140)
2647 (1.327, 5.279)
1.460 (0.697, 3.061)
0515 (0.296, 0.897)

0.009
0.297
0.631
0.202
0.323
0.004
0.781

0.508
0.211
0.978
0.241
0.335
0.006
0316
0.019
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clinicopathologic parameters No. of cases (%) Proximal GC Distal GC %2 value

Age (years)

<60 79 (53.7) 21 59 0.325
>60 68 (46.3) 18 50

Sex

Female 31 (21.1) 6 25 0.352
Male 116 (78.9) 32 84

Tumor size (cm)

<4 cm 86 (58.5) 24 62 0.072
>4 cm 61 (41.5) 14 47

Lymph nodes involvement

Negative 62 (42.2) 9 53 0.007
Positive 85 (57.8) 29 56

No, of positive Lymph nodes

<5 108 (73.5) 24 84

>5 39 (26.5) 14 25 0.095
TNM stage

IA-IB 39 (26.5) 4 35 < 0.001
ITA-TIB 40 (27.2) 6 34

[TTA-IIIC 68 (46.3) 28 40

% 0(0) 0 0

Pathological grade

Gl 3(2.0) 0 3 0.609
G2 58 (39.5) 17 41

G3 70 (47.6) 18 52

G4 16 (10.9) 3 13

Lauren classification

Intestinal type (IT) 86 (58.5) 28 58 0.087
Diffuse type (DT) 35(23.8) 6 29

Mixed type (MT) 26 (17.7) 4 22
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Clinicopathologic parameters No. of cases (%) INFc INFa+b X2 value

Tumor arising site

Proximal 38 (27.9) 24 14 0.001
Distal 109 (72.1) 35 74

Age (years)

<60 79 (53.7) 26 53 0.329
>60 68 (46.3) 33 35

Gender

Female 31 (21.1) 18 13 0.022
Male 116 (78.9) 41 75

Tumor size (cm)

<4 cm 86 (58.5) 37 49 0.231
>4 cm 61 (41.5) 22 39

Lymph nodes involvement

Negative 62 (42.2) 16 46 0.002
Positive 85 (57.8) 43 42

No,of positive Lymph nodes

<5 108 (73.5) 33 75 < 0.001
>5 39 (26.5) 26 13

TNM stage

IA-IB 39 (26.5) 5 34 <0.001
ITA-TIB 40 (27.2) 15 25

[IIA-TIIC 68 (46.3) 39 29

v 0(0) 0 0

Grade

Gl 3 (2.0) 1 2 0.958
G2 58 (39.5) 22 36

G3 70 (47.6) 29 41

G4 16 (10.9) 7 9

Lauren classification

Intestinal type (IT) 86 (58.5) 26 60 8.703
Diffuse type (DT) 35 (23.8) 18 17

Mixed type (MT) 26 (17.7) 15 11
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