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Rupture Characteristics Analysis of
the 2020 Mw 7.4 Oaxaca, Mexico
Earthquake Using Teleseismic,
High-Rate GPS, and InSAR Data
Guisen Wen1, Xingxing Li1*, Yingwen Zhao1, Caijun Xu1 and Guangyu Xu2

1School of Geodesy and Geomatics, Wuhan University, Wuhan, China, 2Faculty of Geomatics, East China University of
Technology, Nanchang, China

The June 23 2020 OaxacaMw 7.4 interplate thrust earthquake struck the state of Oaxaca
in Mexico, generating strong shaking and a long-lived tsunami. This earthquake is well
recorded by the teleseismic, high-rate Global Positioning System (GPS) and
Interferometric Synthetic Aperture Radar (InSAR) data, which provides an opportunity
to understand the rupture characteristics of the Mexican subduction zone. Here, an
integrated inversion strategy involving centroid moment tensor inversion and kinematic
finite-fault inversion is used to study the rupture history of the 2020 Oaxaca earthquake.
The fault geometry and source duration time derived from the centroid moment tensor
solution are used as prior information in linear kinematic finite-fault joint inversion. The
rupture initial point and relative weight of each dataset are determined to estimate a well-
constrained rupture model. The finite-fault model shows the rupture expanded bilaterally
around the hypocenter, the peak slip is 3.5 m, the main slip was located at a depth of
15–30 km, the whole rupture lasted about 20 s, and a 95% moment rate was released at
15 s. The half-duration of the finite-fault inversion is consistent with the centroid moment
tensor inversion results (half-duration 9 s), which shows the good resolution of the
temporal information. The total scalar moment was 1.5 × 1020 Nm, equivalent to a
moment magnitude of Mw 7.4. The integrated inversion strategy used in this study is
useful since the prior information can be derived and used to constrain the rupture
process. Both the centroid moment tensor and finite-fault inversion mainly rely on identical
temporal information provided by teleseismic P waveforms. The 2020 Oaxaca earthquake
was mainly the interaction between Cocos and the North American plate, and the slow slip
events may be the key factor affecting the seismogenic zone width in the Oaxaca region.

Keywords: moment tensor, finite-fault model, joint inversion, prior information, integrated inversion strategy

1 INTRODUCTION

The June 23 2020Mw 7.4 Oaxaca, Mexico Earthquake nucleated at the southernMexican subduction
zone of the Cocos plate which is beneath the North American plate at 15:29:04 UTC. The relative
convergence rate at the Oaxaca state is ~70 mm/yr (Figure 1; DeMets et al., 2010) and the
interseismic coupling has been inferred to be high (at least 50%) (Rousset et al., 2017). The
subduction zones have accounted for most major and great earthquakes in the world because of the
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lithospheric plates sinking into the viscous fluid-like mantle
(Ruff, 1996; Wen et al., 2021). In the Mexican subduction
zone, most of the large Mexican earthquakes were Mw
7–8 and this area has a short seismic average recurrence of
30–50 yr (Singh et al., 1981, 1983). Recently, the Mexican
subduction zone experienced a series of large earthquakes, for
example, the 2012 Mw 7.4, 2017 Mw 8.2, and 2018 Mw
7.2 earthquakes (Figure 1), indicating the strong seismicity in
this region. The Oaxaca earthquake caused large surface
deformation and was well recorded by the geodetic
observations, involving Global Positioning System (GPS)
measurements and Interferometric Synthetic Aperture Radar
(InSAR) images, and global teleseismic stations which were
well distributed with a good azimuth coverage and takeoff
angle. This earthquake provides an opportunity to study the
slip behavior to better understand the dynamic mechanism and
potential seismic risk in the Mexican subduction zone.

This earthquake caused at least 10 fatalities and damage to
2,000 homes (Tracy et al., 2020), due to the devastating shaking
and landslides. Generally, the U.S. Geological Survey (USGS),
Global Centroid Moment Tensor (GCMT) group, and
GEOFOrschungsNetz (GEOFON) provide fast moment
solutions to analyze the preliminary earthquake using different
wave phases (e.g., teleseismic body wave, surface wave, or very
long-period W phase (100–1,000 s) (Duputel et al., 2012)). The
regional institution Servicio Sismológico Nacional (SSN) also
provides the epicenter location and moment tensor solution of
the 2020 Oaxaca earthquake. The hypocenter (15.803° N, 96.134°

W, and 22.6 km depth) reported by SSN is located about ~16 km
southwest of the hypocenter from the USGS (15.886° N, 96.008°

W, and 20 km), which is closer to the coast. The moment tensor
solutions reported from SSN, USGS, GCMT, and GEOFON show

that this earthquake was a thrust event with a low dip angle
(Table 1). However, moment tensor solutions are not enough to
describe all source characteristics and assess the seismic hazards.

The spatiotemporal information of an earthquake from finite-
fault inversion has been used to analyze seismic source processes
and characteristics (Olson and Apsel, 1982; Hartzell and Heaton,
1983). For the 2020 Oaxaca earthquake, the rupture models from
finite-fault inversion have been investigated (Melgar et al., 2020;
Guo et al., 2021; Wen et al., 2021). The finite-fault model from
existing studies shows that the main slip was located at depths of
15–30 km, while the fault geometry and hypocenter location are
different in their research. Melgar et al. (2020) used an average
strike of 278° and an average dip of 21° according to the
hypocentral region to inverse the rupture process. Guo et al.
(2021) used a grid search method to determine the strike and dip
angle, and finally, a strike and dip of 272° and 23°, respectively, are
used. Wen et al. (2021) used a rectangular fault dislocation model
in elastic half-space (Okada, 1985) to estimate the fault geometry
from static GPS and InSAR observations, and the derived strike,
dip, and rake angles are 264.6°, 28.8°, and 58.6°, respectively. To
some extent, near-field geodetic data could not constrain the fault
geometry well since they are located on one side of the epicenter
for megathrust earthquakes, and lack temporal information.
Therefore, the centroid moment tensor inversion, including
fault geometry and source duration time should be used to
constrain the linear kinematic finite-fault inversion. In
addition, seismic data, geodetic data, and/or tsunamis buoy
data are involved in their finite-fault joint inversion, and the
finite-fault model from existing studies shows that the main slip
was located at depths of 15–30 km, even though the fault
geometry and hypocenter location are different in their
research. However, the relative weight of each dataset, which

FIGURE 1 | Map of the epicentral region of the 2020 Oaxaca earthquake in the Mexican subduction zone; the yellow and magenta stars denote the epicentral
locations of historical earthquakes which Mw >6 since 2012 from the USGS earthquake catalogs and 2020 Oaxaca earthquake, respectively. The magenta beach balls
denote the focal mechanism of each earthquake event. The dashed black contours denote slab surface depths from the slab 2.0 model (Hayes et al., 2018) with a
contour interval of 20 km. The blue and red triangles (upper-left insets) denote the 4 high-rate GPS stations and 40 teleseismic stations with an epicenter distance of
30°‒90°. The red circles denote the Mw ≥3.5 aftershocks a month after the 2020 Oaxaca earthquake.
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is a critical challenge in joint inversion, has not been well studied.
The resolution of the finite-fault joint inversion result should be
further discussed during this earthquake.

In this study, we use an integrated strategy involving centroid
moment tensor solution and finite-fault inversion to study the
2020Mw 7.4 Oaxaca earthquake. We use the vertical-component
teleseismic P waves to invert the centroid moment tensor and
extract the fault geometry parameter (i.e. strike, dip, and rake).
The standard deviation of the fault parameter is calculated using
the jackknife re-sampling method. Compared with the existing
studies, we performed the linear kinematic joint inversion (Zhang
et al., 2012) combining the teleseismic P waves, high-rate GPS
waveforms, static GPS offsets, and InSAR data. The rupture initial
point and the relative weight of each dataset are determined by
using the grid search in this study to obtain a well-constrained
rupture model. To assess the rupture model obtained from this
event, we performed the resolution test and stability test to verify
the efficiency of the joint inversion method. Finally, we discuss
the rupture characteristics of this event through our finite-fault
model.

2 DATA PROCESSING

2.1 Teleseismic Data Processing
In this study, the broadband teleseismic records were downloaded
from the Incorporated Research Institutions for Seismology
(IRIS) website. We only selected the P waves on the vertical
components and the stations with an epicentral distance of
30°–90°. We reselected the stations with an azimuth interval of
5° to provide a good homogeneous azimuthal coverage of the
stations on the epicenter and only retained records with high
signal-to-noise ratios. Finally, 40 P waveforms were selected
(inset in Figure 1) to invert the moment tensor and finite-
fault model. The raw data were resampled to 1 Hz and
translated into displacements after removing the instrument
response. To satisfy the point source approximation, we used a
third-order Butterworth bandpass filter of 0.01–0.05 Hz on the
teleseismic P waves in centroid moment tensor inversion, and
applied a bandpass filter of 0.01–0.2 Hz in finite-fault inversion. It
is noted that we use identical teleseismic waveforms that mainly
provide temporal information of the earthquake in moment
tensor inversion and finite-fault inversion; this data
consistency contributes to avoiding possible biases in prior
information due to different observed data handling strategies.

2.2 GPS Data Processing
We collect four high-rate GPS data (1 Hz sampling rate at station
OXPE and 5 Hz sampling rate at stations OXUM, TNNP, and
TNSJ) from the University NAVSTAR Consortium (UNAVCO)
where the minimum and maximum epicentral distances are
about 45 km (OXUM) and 113 km (TNNP), respectively. The
raw observed data are processed using the precise point
positioning algorithm with ambiguity resolution (PPP-AR)
using UPD products (Li et al., 2013; Li et al., 2021). The
precise orbits and clocks with 30 s from the Center for Orbit
Determination in Europe are used for the PPP method. Finally,
we obtained the displacement position time series and rotated to
local north, east, and up coordinates (Bock et al., 2011; Li et al.,
2014). The displacement time series are resampled to 1 Hz and we
obtain the static offset after the displacement sequence converges.
The maximum offset of the OXUM station which is closest to the
epicenter is about 14 cm in horizontal and 3.8 cm in vertical
components. We applied a bandpass filter of 0.02–0.2 Hz to the
high-rate GPS displacement waveforms in finite-fault inversion.

2.3 InSAR Data Processing
We collected InSAR data from the European Space Agency (ESA)
Copernicus Sentinel-1A. Two ascending (T005A and T107A) and
one descending (T070D) orbits were selected to cover the whole
area affected by the event. The pre-event images of T005A,
T107A, and T070D were collected on 12, 19, and 22 June
2020, respectively, and the post-event scenes are from 24, 25,
and 28 June 2020, respectively. We used an open-source Jet
Propulsion Laboratory (JPL) InSAR Scientific Computing
Environment (ISCE) version 2 software (Rosen et al., 2012) to
process the SAR images from the single look complex products.
The precise orbit data were used to reduce potential orbit errors.
We use a Shuttle Radar Topography Mission (SRTM) digital
elevation model with a spatial resolution of about 30 m (Farr
et al., 2007) to remove the topographic contribution of the
interferograms. A stick, high-precision co-registration is
performed on the Sentinel-1 data to meet the co-registration
accuracy of at least 0.001 pixels. A power spectrum filter method
(Goldstein and Werner, 1998) is used to smooth the
interferograms. The interferograms are then unwrapped using
the Snaphu method (Chen and Zebker, 2000) and geocoded into
the World Geodetic System 84 coordinate system. The line-of-
sight (los) displacement images are shown in Supplementary
Figure S1. Finally, 99, 186, and 172 data points were retrieved
from the T005A, T107A, and T070D tracks, respectively, using

TABLE 1 | Comparisons of the earthquake parameter of the 2020 Oaxaca Earthquake with different studies.

Longitude (°) Latitude (°) Depth (km) Strike (°) Dip (°) Rake (°) Mw

USGS −96.008 15.886 20 271 17 70 7.37
GCMT −96.06 16.04 21.5 270 16 62 7.40
SSN −96.120 15.784 22.6 266.8 17.2 60.5 7.40
GEOFON −95.73 16.17 25 270 21 61 7.41
Melgar et al. (2020) −96.120 15.784 22.6 278 21 7.40
Guo et al. (2021) −96.22 15.87 20 272 23 7.40
Wen et al. (2021) −96.01 15.70 28.9 264.6 28.8 58.6 7.40
This study −96.10 15.70 18 276 ± 2.5 24 ± 0.6 67 ± 2.1 7.40
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the quadtree sampling algorithm (Jónsson et al., 2002) to
downsample the InSAR observations.

3 METHODS

Earthquake rupture processes inverted from finite-fault inversion
are critical to understanding source physics and assessing
hazards. Finite-fault inversion often pre-assumes a fault plane,
and this fault plane can be solved by seismic or geodetic data.
Teleseismic Pwaves are useful because of their well homogeneous
azimuthal coverage, while geodetic data are located on one side of
the epicenter for megathrust earthquakes. In addition, teleseismic
Pwaves show a good convergence with the depth since the takeoff
angles for teleseismic stations are quite small and the ray path is
straight down from the source (Wei et al., 2013). The centroid
moment rate function (or source duration time) and fault
mechanism derived from the moment tensor solution provide
prior information to the kinematic finite-fault inversion. Finite-
fault joint inversion is widely used to imagine the earthquake
processes since it is complementary to different observed data and
different resolutions (i.e., spatial and temporal resolution) (Ji
et al., 2002; Yue and Lay, 2013; Yi et al., 2017). The prior
assumptions (e.g., maximum duration of the rupture history)
should be given to constrain the inversion results. Therefore, an
integrated inversion strategy involving the centroid moment
tensor and finite-fault joint inversion is used in this study to
analyze the 2020 Oaxaca earthquake source characteristics. We
use teleseismic P waves to invert the centroid moment tensor and
extract the strike, dip, and rake of the nodal planes and the
duration of the earthquake rupture history to finite-fault joint
inversion.

3.1 Centroid Moment Tensor Inversion
The earthquake event can be treated as a point source if the
epicenter distance was large enough. The form of observation,
coefficient matrix, and unknown parameter can be expressed as

Un(k, t) � Gnp,q
′ (k, t) ·Mpq (1)

where Gnp,q
′ (k, t) is the convolution of Gnp,q(k, t)pS(t),

Gnp,q(k, t)and S(t) denote the Green’s function and
normalized source time function, respectively, Mpq denotes
the moment tensor, and p is the convolution operator. The
source time function and moment tensor are unknown
parameters that need to be solved, and the source time
function can be treated as an isosceles triangle in point source
approximation that the half-duration needs to be determined.

For a preliminary location (i.e. hypocenter from the
earthquake research institutions), we can obtain a moment
tensor solution after determining the optimum source time
function (or half-duration time). To better explain the
observed data, we attempt to find a centroid location that is
better than the preliminary location estimate. The procedure is
consistent with the W phase source inversion (Duputel et al.,
2012); we set up a 3D grid search (latitude-longitude-depth),
where each grid node is used as a potential centroid location and a

moment tensor inversion is made. The normalized misfit

(σ � ∑ (ob−syn)2∑ ob2
) is used as an objective function to choose the

optimal centroid location. The dimension of the grid is [-1° 1°] in
horizontal with an interval of 0.1°, centered on the SSN location
(longitude −96.1°, latitude 15.8°), and 2–50 km with an interval of
4 km. The difference between our procedure and W phase
inversion is that we determine the half-duration at each grid
node rather than fix the source time function. To test the stability
of this result, the jackknife re-sampling method is used to
calculate the standard deviation of the inversion results.

3.2 Finite-Fault Joint Inversion
Our finite-fault joint inversion method is based on the study by
Zhang et al. (2012). This method is a linear combination with the
seismic and geodetic data performed at the time domain which is
convenient to realize. In addition, this method only set a
maximum rupture velocity and duration time to constrain the
rupture area, indicating that each subfault is allowed to rupture
complex. We use vertical-component teleseismic P waveforms,
three components of high-rate GPS displacement waveforms,
static GPS offset, and InSAR data to invert the rupture process.
The joint inversion equation can be expressed as
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where mx and my are the time histories of slip rate amplitudes
and slip angles of all subfaults on the fault plane, λ1, λ2, λ3 are the
relative weights of waveforms data, static GPS offsets data, and
InSAR data, U1,U2,U3 are the observation data of waveform,
static GPS displacement, and InSAR, respectively, G,K ,Q are the
Green’s function of waveforms data, static GPS offsets, and
InSAR data, D and T are spatial and temporal smoothness
matrixes, which are constructed with Laplace’s equations
(Horikawa 2001; Yagi et al., 2004; Zhang et al., 2012), Z is the
matrix for minimization scalar moment constraints (Hartzell and
Iida 1990), and λI, λII, λIII are the corresponding weights of the
constraints. Green’s functions of teleseismic and high-rate GPS
waveform were calculated by using the code “QSSP” of Wang
et al. (2017) to construct the database based on the Crust
1.0 crustal velocity model (Laske et al., 2013). The static
Green’s functions (i.e. static GPS offset and InSAR) were
calculated using the Okada model (1985).

4 INVERSION AND RESULTS

4.1 Centroid Moment Tensor Solution
Figure 2A shows the locations obtained from our centroid
moment tensor solution and others reported from existing

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 9510334

Wen et al. Moment Tensor Inversion, Finite-Fault Joint Inversion, and Rupture Characteristics

87

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


research institutions (i.e. USGS, GCMT, SSN, and GEOFON).
The centroid location obtained in this study is longitude −96.1°

and latitude 15.7°, which is about 9.5 km to the south of the SSN
location (Figure 2A). The centroid depth is 18 km (Figure 2C)
and is close to the depth contour of 20 km corresponding to the
Slab 2.0 model (Hayes et al., 2018) of the megathrust. The fault
geometry parameters extracted from the moment tensor solution
are listed in Table 1. The final fault mechanism obtained from the
centroid moment tensor solution is 276° strike, 24° dip, and 67°

rake, which is consistent with the 2020 Oaxaca earthquake region
with the northwest direction and low dip angle. The standard
deviations of strike, dip, and rake angles calculated from the
jackknife re-sample method are 2.5°, 0.6°, and 2.1°, respectively
(Supplementary Figure S2). These results are acceptable
compared with the existing studies. Figure 2B shows the
normalized moment rate function, indicating that the whole
duration time is 18 s. The half duration which reaches the
peak moment rate is 9 s and slightly small than the USGS
(13.1 s) and GCMT moment tensor solution (11.9 s).

Figure 2C shows the optimal depth we obtained and its fault
mechanism with each depth from the moment tensor solution.
Figure 2D shows the normalized misfit between the observed and
synthetic data at each grid node, and the minimum misfit is
0.1663. In addition, the comparison between the observed and
synthetic data shows a good fit (Figure 3), and most correlation
coefficients are larger than 0.8. The average correlation coefficient
between the observed and synthetic waves is 0.9, which means
that the centroid moment tensor solution can explain the
observed data well.

4.2 Finite-Fault Source Model
The fault mechanism of the strike and dip obtained from our
centroid moment tensor solution is used in finite-fault inversion,
and the slip angles are estimated in the inversion. The fault plane
used is 85 km long and 110 km wide, and is discretized into
374 subfaults where each has dimensions of 5 km × 5 km. This
fault plane is large enough to cover the rupture area according to
the existing studies. We used the epicenter location reported by

FIGURE 2 | Map of the epicentral region of the 2020 Oaxaca earthquake and centroid moment tensor solution. (A) Map view of the epicentral locations, black,
yellow, red, blue, and magenta stars show the epicenters from the USGS, GCMT, GEOFON, SSN, and this study, respectively. (B) Searched normalized moment rate
function. (C) Map view of the normalized misfit between the observed and synthetic data with different centroid depths; the black beach ball denotes the focal
mechanismwith the depth and the red beach ball denotes the optimal focal mechanism when the centroid depth is selected at 18 km. (D)Normalized residual with
the different centroid epicentral locations used in our study areas.
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SSN as a rupture initiation point of the earthquake first. A total
rupture duration of 25 s is assumed, that is, the rupture window of
each subfault lies in 0–25 s. It is to be noted that the maximum
duration of the finite-fault inversion should be close to or larger
than the centroid moment rate duration to capture the rupture
history. Therefore, the centroid moment tensor inversion is

necessary to provide prior information on fault geometry and
source duration time. To stabilize the inversion, a maximum
rupture velocity and maximum duration are generally used to
limit the subfault rupture window. The cost is the possible loss of
actual source information which lies outside of the time window.
In principle, we prefer a narrow time that generates a small

FIGURE 3 | Comparisons of the 40 observed (black) and synthetic (red) teleseismic P waves data. The letters above the waves denote the station name of
teleseismic and the digit under the waveforms denotes the correlation coefficient between the observed and synthetic waves.

FIGURE 4 | (A)Normalizedmisfit plotted against different maximum rupture velocities for maximum rupture durations of 5 s (red), 10 s (green), 15 s (blue), and 20 s
(black). The black diamond marks the maximum rupture velocity of 3.6 km/s and a maximum rupture duration of 10 s for each subfault used in this study. (B) Total VR
distribution with different relative weights of static GPS and waveform data. The black triangle marks the relative weight. The static GPS and waveform are 0.8 and 1.4,
respectively, used in this study.
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enoughmisfit, and a balance should bemade between the window
width and the normalized misfit. We tested different values of
maximum rupture velocity and duration and found 3.6 km/s and
10 s to be suitable (Figure 4A).

In this study, the variance reduction (VR) (Kim and
Dreger, 2008; Zhang et al., 2012; Melgar et al., 2017) for
each type of data and the total are used as an objective
function to evaluate the inversion results and the
differences of synthetics. The variance reduction is
calculated as (Xu et al., 2022)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

VRi � ⎛⎝1 − ∑
n
(uobs(n) − usyn(n))2
∑

n
(uobs(n))2 ⎞⎠

VRTotal � ⎛⎜⎝1 − ∑3

i�1∑n
(λiuobs

i (n) − λiu
syn
i (n))2

∑3

i�1∑n
(λiuobs

i (n))2 ⎞⎟⎠
(3)

where superscript “obs” and “syn” represent observed and
synthetic data points in the inversion, respectively, n denotes
the points of data, and the subscript i and variable λi stand for
three types (waveforms, static GPS displacement, and InSAR)
data and the relative weights between them shown in Eq. 2,
respectively. The weights of smoothness are determined using the
trial-and-error method to ensure that the observed data can be
well fitted, and the source time function and slip pattern change
smoothly. We tested different combinations of the smoothness,
finally, the weights of spatial and temporal smoothness are set to
1 and the scalar moment minimization constraint is set to 4 so
that the model changes smoothly (Supplementary Figure S3). In
addition, the relative weighting of each dataset which displayed
their importance and contribution to the inversion is a challenge
for joint inversions. In this study, each type of dataset was
normalized by dividing by its vector L2 − norm (i.e.
obinv � obori�������∑ (obori)2

√ ; here, obinv is the normalized data used in

the inversion and obori is the original data), and the relative
weights of each dataset are determined using the grid search
method. The relative weight of InSAR data is set to 1 first, and the
relative weights of waveform data (teleseismic waves and high-
rate GPS waves) and static GPS offset are searched to vary from
0.1–5 to obtain an optimal total variance reduction (Kim and
Dreger, 2008; Zhang et al., 2012; Melgar et al., 2017). Figure 4B
shows the distribution of total variance reduction with the
different relative weights of waveforms and static GPS
displacement data. It is noted that we can improve the data
fitting in which the variance reduction of each dataset will be
increased when we increase the relative weight, but there is no
specific reason to justify the increase in the relative weight (Kim
and Dreger, 2008). Finally, the relative weight of static GPS,
waveforms, and InSAR data are chosen to be 0.8, 1.4, and 1
(Figure 4B), respectively, in which the total VR is 90% and the
moment magnitude is Mw 7.4. It is considered that the
hypocenter is the point of initiation of the rupture (Chu et al.,
2011; Yang et al., 2019), while the centroid is the point of mean
moment release (Melgar et al., 2012). The optimal hypocenter
location is determined by the grid search method under the
assumption that the center of each subfault is a potential

hypocenter. Figure 5 shows the variation reduction of each
subfault and the inversion result can be accepted when the
initiation point is close to the SSN results or our centroid
location (total VR large than 85%), the optimal hypocenter is
15.835° N, 96.108° W. To some extent, the rupture initiation
points mainly influence the waves’ inversion since we use a given
rupture velocity and rupture duration time to constrain the
rupture area, while the static inversion uses near-field data (i.e.
static GPS or InSAR data) and does not consider the temporal
information and have good resolution on spatial information.
Therefore, the total VR is decreased when the potential epicenter
location is far away from the real hypocenter. It is complementary
to join the seismic and geodetic data in finite-fault inversion to
constrain the spatiotemporal information on the fault plane (Ji
et al., 2002; Yue and Lay, 2013; Yi et al., 2017).

The slip distribution, source time function (STF), subfault
source time functions, and slip angle obtained from our joint
inversion results are shown in Figure 6. The total seismic
scalar moment is about 1.5 × 1020 Nm, equivalent to a
moment magnitude of Mw 7.4, consistent with the results
reported from GCMT and GFZ. The peak slip of 3.5 m is
mostly confined to the major slip area around the hypocenter,
the peak slip is slightly smaller than the USGS solution (~8 m)
and those shown by Melgar et al. (2020) and Wen et al. (2021)
(~5 m); it is mainly because the rupture area shows a greater
elliptical asperity around the epicenter. The main slip of this
model is well constrained between 15 and 30 km, and is
consistent with the existing studies (Melgar et al., 2020;
Guo et al., 2021; Wen et al., 2021; Yan et al., 2022). The
slip angle of our model shows that the 2020 Mw 7.4 Oaxaca
earthquake was a thrust slip with a minor right slip event
(Figure 6B). In our preferred model, the slip angle is

FIGURE 5 | Total VR with the model parameters in joint inversion at each
grid on the fault plane; the magenta star denotes the hypocenter location
corresponding to the maximum VR.
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decreased from the deep to shallow depth, and the slip angle
we obtained is close to 90° below the epicenter and close to 67°

above the epicenter. The whole rupture process lasted for
about 20 s (Figure 6C), and the source time function and
subfault source time functions (Figure 6D) show that the
rupture process of this earthquake is simple with a single
asperity. The moment rate reached a peak value of 2.37 ×
1019 Nm/s at 9 s, the half-duration of the finite-fault inversion
is consistent with the centroid moment tensor inversion
results (half duration 9 s), indicating the consistency of the
centroid moment tensor and finite-fault inversion.

Figure 7 shows the fitting of the teleseismic data and high-rate
GPS data. The average correlation coefficient between the observed
and synthetic waveform of teleseismic data is greater than 0.82. In
addition, the InSAR data show a good fitting that the average residual
is 0.01m (Figure 8). The VR of the waveforms (teleseismic and high-
rate GPS), static GPS, and InSAR data are 84.0, 98.2, and 95%,
respectively, indicating that the model can explain the observed data
well. Figures 9A,B show the fitting of the static GPS displacement in
horizontal and vertical components, and the OXUM station shows a
good consistency of the observed and synthetic data because of the

high signal-to-noise ratio of the observed data. In addition, to better
verify the robustness of the slip model, we make forward predictions
using the observations not included in the joint inversion. The coastal
uplift observation data 2 days after the events were collected from the
study by Ramírez-Herrera et al. (2020). The observed data show that
the maximum coastal uplift is about 0.53m near the epicenter, and
this observed data fit well with the 0.55mof the uplift reported by tide
gauge data at Huatulco (Melgar et al., 2020). We calculated the
synthetic coastal uplift using our preferred rupture model and
compared it with the observed data (Ramírez-Herrera et al.,
2020), and the VR is 89.7% and the result is shown in Figure 9C,
indicating a well-fitting with the observed data.

To better understand the rupture process of the 2020 Mw
7.4 Oaxaca earthquake, we present the snapshot form of the slip
rate distributions of this rupture model in Figure 10. The result
shows that the rupture expanded bilaterally around the
hypocenter, and that the rupture initiated at 4 s around the
hypocenter and propagated outward. The source time
functions show that the moment rate increased and decreased
rapidly, at 9 s, the moment rate reached a peak value of 2.32 ×
1019 Nm/s, corresponding to the peak slip of 1.6 m. The average

FIGURE 6 | Finite-fault results of the 2020 Oaxaca earthquake from joint inversion. (A) Surface projections of fault slip distribution; the magenta stars denote the
epicentral location. (B) Slip distribution on the fault plane, the black arrow denotes the slip direction of each subfault. (C) Source time function (STF) of this earthquake. (D)
Subfault source time functions of each subfault on the fault plane.
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FIGURE 7 | Comparisons of the observed (black) and synthetic (red) waves. (A) Denotes the 40 teleseismic P waves’ data. (B) Denotes the four high-rate GPS
waves. The letters above the waves denote the station names and the digit under the waves denotes the correlation coefficient between the observed and synthetic
waves.

FIGURE 8 | InSAR observed (left panel), synthetic (middle panel), and associated residuals (right panel). The first and second row denotes the T005A and T107A
images, respectively, and the third denotes the T070D image.
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rupture velocity calculated is about 3 km/s, consistent with the
existing studies (Melgar et al., 2020; Guo et al., 2021; Wen et al.,
2021). In the first 4 s, the rupture initiated gradually, and at 4–8 s,
the moment released rapidly and the magnitude reached Mw
7.17 at 9 s. At 8–14 s, the moment rate propagates below the
epicenter, and most moment rates are released at 14 s. The source
time function shows a symmetrical energy release pattern and the
slip distribution model shows that this earthquake was a simple
event with a single asperity.

5 DISCUSSION

5.1 Stability of the Joint Rupture Model
In this study, we also tested different datasets to examine the
coseismic slip model of the 2020 Oaxaca earthquake. The geodetic

(static GPS and InSAR) inversion result (Supplementary Figure
S3B) shows a slightly narrow rupture area than the waveforms’
(teleseismic and high-rate GPS) result (Supplementary Figure
S3A). This is mainly because the geodetic data are located on one
side of the epicenter of the megathrust earthquake, resulting in a
low resolution on the shallow and deep portions. Compared with
the geodetic data, global teleseismic data show a good azimuthal
coverage, while the teleseismic data only constrain the relative
position of fault slips compared with the hypocenter. Therefore, it
is complementary to join the seismic and geodetic data in finite
fault inversion to constrain the spatiotemporal history.

For joint inversion, the critical challenge is to determine the
relative weights between different datasets. In this study, the VR
which is influenced by the relative weight of each dataset is defined
as a function to evaluate the inversion model. We examine the
rupture model with different weights through the trial-and-error

FIGURE 9 | (A)Comparison between the observed horizontal (black) and synthetic horizontal (red) static GPS data. (B)Comparison between the observed vertical
(black) components and synthetic vertical (red) static GPS data. (C) Comparison between the observed (black) and synthetic (red) coastal uplift data from the study by
Ramírez-Herrera et al. (2020).
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method, and the rupture model changes smoothly with different
smoothness weights (Supplementary Figures S4A–D), relative
weights (Supplementary Figures S4E–H), and maximum
rupture velocity (Supplementary Figures S4I–L). It is noted
that the rupture area is slightly small than the others and close
to the result from geodetic inversion (Supplementary Figure S3B)
when the relative weights of waveform, static GPS, and InSAR data
are 0.2, 1, and 1, respectively. This is mainly because the relative
weight of each dataset is inappropriate and the weight of the
waveformdata is small, leading to the result being close to the result
from geodetic inversion. In our preferred rupture model, the
relative weight of waveforms data, static GPS, and InSAR data
are 1.4, 0.8, and 1, respectively. These weights were chosen by
considering that (1) the waveform (teleseismic and high-rate GPS)

and static deformation (static GPS and InSAR) are weighted
equally since they are normalized by dividing by its vector L2 −
norm and (2) the grid search result (Figure 4B) shows that the
maximum VR is obtained with these relative weights. The
comparison of the rupture model with different weights shows
that the results obtained in this study are credible since the main
rupture feature are consistent with existed studies and observed
data are fitting well.

5.2 Finite-Fault Model With Different Fault
Geometry
The fault mechanism obtained from existing institutions and studies
shows a slight difference from each other. We test the stability of

FIGURE 10 | Snapshots of the slip rate for the 2020 Oaxaca earthquake with a time interval of 2 s, most of the moment was released at 14 s. The magenta star
denotes the epicenter.
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inversion with different fault geometry listed in Table 1. Figure 11
shows the different slip distribution models and source time
functions. The results show that the main slip is constrained at
depths of 15–30 km, the whole rupture process lasted about 20 s, and
the main characteristics of these rupture models are consistent with
each other. The InSAR data that have dense coverage over the main
slip result in a well constrain resolution on spatial information even if
the strike and dip are varied from each other. It is mainly because the
finite-fault inversion tends to put ruptures to the locations closest to
their real positions after determining the hypocenter locations. The
source time functions also show a good consistency with each other,
indicating the efficiency of joining the seismic and geodetic data in
finite-fault inversion to constrain the spatiotemporal information on
the fault plane.

5.3 Resolution Test
Resolution tests can tell us how well the slip distribution can be
recovered through the given observation data and constraining
equations (Kim and Dreger, 2008). For a megathrust
earthquake event, the shallow slip and deep slip are
important to assess the tsunami generation and seismic
hazard. To test the resolution of our preferred model, we
use the same fault plane, datasets, Green’s functions, and
constraint equations as previously to simulate synthetic data
when we consider the fault plane has double, three, and six slip
asperities, respectively (Figure 12). The input model of each
slip patch contains 5 × 5 (25 km × 25 km) subfaults, and the
subfaults have the same slip value and slip angle of 67°. The
average rupture velocity is 3 km/s, and the maximum duration

FIGURE 11 | Surface projections of the slip distribution and source time functions. (A-G) denote the surface projections of the slip distribution used different fault plane
[i.e. fault geometry from this study, USGS (FP_USGS), GCMT (FP_GCMT), SSN (FP_SSN)], Melgar et al. (2020) (FP_Melgar et al., 2020), Guo et al. (2021) (FP_Guo et al.,
2021), andWen et al. (2021) (FP_Wen et al., 2021), respectively. Themagenta star denotes the epicentral location. (H)Source time functions derived from the results of (A-G).
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time of the source time function is 12 s for each subfault. Then,
we add 5% Gaussian noise to these synthetic waveforms. It is
noted that the residuals of static GPS and InSAR from our
preferred result are added to the synthetic static GPS and
InSAR data. In a synthetic inversion, we use a rupture velocity
of 3.2 km/s which is slightly larger than the previous value and
a maximum duration time of 20 s for each subfault, and the
rake angle of the subfaults is allowed to vary between 22° and
112°. To some extent, teleseismic data can improve the
deficiency of near-field data (i.e. GPS or InSAR) when these

data are located on one side of the epicenter of a megathrust
earthquake. We used waveform data (teleseismic P waves and
high-rate GPS displacement data) and joined all data to invert
the slip distribution model.

The inversion results show that the joint inversion can retrieve
the slip distribution well (Figures 12G–I), and the dense near-
field InSAR data can improve the spatial resolution of the slip
distribution. Figures 12D–F show that the inversion results have
poor resolution overall except for the slip near the hypocenter
since the teleseismic data have weak resolution in spatial

FIGURE 12 |Checkboard test of the inversion resolution with different slip patches and different datasets combination. (A–C) denote the input model we simulated.
(D–F) denote the inversion results used waveform data. (G–I) denote the inversion results used joint data.
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information and the near-field high-rate GPS stations are sparse.
The slip patches around the epicenter can be well retrieved
because of the density of InSAR data covering the fault plane
(Figures 12G–I). Figure 12I shows weak resolution of the slip
distribution in deep depth, and the InSAR data have diminishing
resolution with depth, consistent with the results shown by
Melgar et al. (2017). The shallow slip distribution close to the
trench can be retrieved and the resolution is decreased when they
are far from the coast. The checkboard test shows that the joint
inversion can well resolve the slip distribution and achieve an
ideal resolution near the trench.

5.4 Comparison With the Existing Rupture
Model
Several authors have analyzed the source characteristics of the
2020 Oaxaca earthquake using different datasets (e.g. Melgar
et al., 2020; Guo et al., 2021; Wen et al., 2021; Yan et al., 2022).
Usually, the results estimated from finite-fault inversion vary a
lot because of the intrinsic resolution provided by each dataset
and different inversion strategies. In the fault geometry, one of
the factors that influences the rupture model has been tested in
this study, showing slight differences and that the main
characteristics are consistent. In the existing studies, seismic
data, geodetic data, and tsunamis buoy data are involved in the
investigation of the finite-fault model. Yan et al. (2022)
summarized the rupture model from the existing studies.
Melgar et al. (2020) derived a slip model constrained within
15–30 km in depth with a high energy-to-moment ratio using
InSAR data, high-rate real-time Global Navigation Satellite
Systems (hr-GNSS) time series, and one Deep-ocean
assessment and tsunamis buoy waveform. A narrow rupture
model (17–24 km) is obtained from Guo et al. (2021) using joint
inversion of the teleseismic waveforms and GNSS static offsets.
Wen et al. (2021) developed a slip model (20–30 km) with a
higher cumulative seismic moment of 1.7 × 1020 Nm using
teleseismic waveforms, hr-GPS time series, static GPS offset,
and InSAR data. In addition, Yan et al. (2022) obtained a
rupture model (20–30 km) with a higher rupture speed and
slip magnitude using teleseismic, strong-motion, hr-GPS, static
GPS, and InSAR data. Our preferred model shows that the main
slip is concentrated at a depth of 15–30 km and the average
rupture velocity is 3 km/s. The inversion results are consistent
with each other even though the fault geometry and inversion
datasets are different. The main difference between our
preferred model and the published models is the inversion
strategy. A linear combination inversion method is used in
this study, whereas the others’ is the nonlinear inversion method
(Guo et al., 2021; Wen et al., 2021; Yan et al., 2022). In addition,
we considered the relative weight of each dataset in linear joint
inversion and obtained a well-constrained rupture model
through the grid search method. The coastal uplift data
which were not involved in joint inversion were used to
verify the robustness of the slip model, and the VR is 89.7%
between the normalized observed and synthetic data, indicating
that the rupture model obtained in this study explains the
observed data well.

5.5 Rupture Characteristics
The 2020 Oaxaca earthquake was mainly because of the
interaction between the Cocos plate and the North American
plate. The main slip in our inversion result is located at depths of
15–30 km, consistent with the existing studies (15–30 km (Melgar
et al., 2020), 17–24 km (Guo et al., 2021), and 20–30 km (Wen
et al., 2021)). A slight difference shows the non-unique inversion
results with large earthquakes (Lay et al., 2010). However, the
main rupture characteristics of this earthquake shows that the
rupture located upon 30 km contour are consistent with each
other. Deep slow slip events are observed in the Oaxaca region
and represent transient behaviors where the fault releases
accumulated stress (Graham et al., 2016; Almeida et al., 2018;
Cruz-Atienza et al., 2021). These slow slip events may release
most down-dip shear stress, limiting the rupture area and
hindering the coseismic down-dip rupture within this
earthquake.

The up-dip region is fully creeping (Byrne et al., 1988;
Hyndman et al., 1997; Chlieh et al., 2007; Hubbard et al.,
2015) and is mostly velocity strengthening with stable-sliding
(Hyndman et al., 1997; Almeida et al., 2018) than the seismogenic
zone. The creeping released the most stress and little stress, which
would accumulate that nucleated small earthquake events in the
shallowest part over the period between large earthquakes.
Additionally, few slow slip events have been found on the
shallow part of this fault (Cruz-Atienza et al., 2021; Plata-
Martinez et al., 2021); this may be one of the reasons for the
absence of the slip in the up-dip zone (Correa-Mora et al., 2009;
Graham et al., 2014, 2016; Obara and Kato, 2016; Maury et al.,
2018; Cruz-Atienza et al., 2021). We calculated Coulomb failure
stress change (Toda et al., 2005) using our rupture model, and the
friction coefficient is set to 0.6 because previous studies have
shown that thrust faults have high friction coefficients of around

FIGURE 13 | Coulomb failure stress change on the fault plane; the cyan
circle denotes the aftershock distribution amonth after earthquake origin time,
which the depth small than 20 km. The magenta star denotes the epicenter.
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0.8 (Freed et al., 2007; Xiong et al., 2010; Guo et al., 2020). The
result shows that the aftershocks located at 5–10 km are rare even
if the coseismic Coulomb stress is propagated to a shallow depth
(Figure 13). It seems that stress is released by the creeping or
slow-slip events of the shallow part.

6 CONCLUSION

In this study, we use an integrated inversion strategy to study the
2020OaxacaMw 7.4 earthquake source characteristics. The centroid
moment tensor inversion using teleseismic P waves was performed
to determine the fault geometry and source duration time. The result
shows that the 2020 Oaxaca earthquake was a thrust event in the
northwest direction and with a low dip angle, corresponding to the
strike angle of 276°, dip angle of 24°, and rake angle of 67°. Then we
obtained finite-fault joint inversion based on the fault geometry from
our moment tensor solution. The relative weight of each dataset is
determined using the grid search method to obtain a rupture model
that explains the observed data better. This inversion strategy shows
good consistency in temporal information of themoment tensor and
finite-fault inversion. A well-resolved model can be estimated
through joint inversion even if the fault geometry is different
from one another. The results from this integrated inversion
strategy show good consistency with existing studies, and the
stability of this method is discussed, indicating that this inversion
strategy can be used to analyze other megathrust earthquake source
characteristics. The 2020 Oaxaca earthquake in the Mexican
subduction zone is mainly because of the interaction between the
Cocos and the North American plate. The down-dip boundary is
limited by deep slow slip events, and the up-dip is fully creeping so
that most stress is released, resulting in a small aftershock in the
shallow depth. Considering the plate tectonics and high coupling of
theMexican subduction zone, this area still has the potential for large
earthquakes.

6.1 Data and Resources
All data in this article are available. The teleseismic waveforms are
downloaded from the Incorporated Research Institutions for
Seismology (IRIS) Data Management Center (http://ds.iris.edu/
wilber3/find_event). The Global Positioning System (GPS)
RENIX data were downloaded from the University NAVSTAR
Consortium (UNAVCO; ftp://data-out.unavco.org). The
Sentinel-1 Synthetic Aperture Radar (SAR) data were
downloaded from the European Space Agency (ESA) through
the Sentinel-1 Scientific Data Hub (Scihub; https://vertex.daac.
asf.alaska.edu). The focal mechanisms were available from the
U.S. Geological Survey (USGS; https://earthquake.usgs.gov/
earthquakes/eventpage/us6000ah9t), Global Centroid Moment

Tensor (Global CMT; https://www.globalcmt.org), and
GEOFOrschungsNetz (GEOFON; http://geofon.gfz-potsdam.
de/eqinfo/event.php?id=gfz2020mhce). Aftershock hypocenters
were available from the Servicio Sismológico Nacional (SSN;
http://www.ssn.unam.mx). Maps for this work were made
using the Generic Mapping Tools program (https://www.
generic-mapping-tools.org/).

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found as follows: the teleseismic
waveforms are downloaded from the Incorporated Research
Institutions for Seismology (IRIS) Data Management Center
(http://ds.iris.edu/wilber3/find_event). The Global Positioning
System (GPS) RENIX data are downloaded from the
University NAVSTAR Consortium (UNAVCO; ftp://data-out.
unavco.org). The Sentinel-1 Synthetic Aperture Radar (SAR) data
were downloaded from the European Space Agency (ESA)
through the Sentinel-1 Scientific Data Hub (Scihub; https://
vertex.daac.asf.alaska.edu).

AUTHOR CONTRIBUTIONS

GW and XL proposed the idea of this manuscript, designed and
performed the experiments, and wrote the paper. Data analysis
was conducted by GW, YZ, and GX. CX, YZ, and GX reviewed
the manuscript and provided suggestions for improvements. All
authors reviewed the final submitted version of the manuscript.

FUNDING

This study is financially supported by the National Natural
Science Foundation of China (Grant Nos. 41974027 and
42104008), the National Key R&D Program of China (Grant
No. 2021YFC3000504), the Hubei Province Natural Science
Foundation (Grant No. 2020CFA002), and the Sino-German
mobility program (Grant No. M-0054).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/feart.2022.951033/
full#supplementary-material

REFERENCES

Almeida, R., Lindsey, E. O., Bradley, K., Hubbard, J., Mallick, R., and Hill, E. M.
(2018). Can the Updip Limit of Frictional Locking on Megathrusts Be Detected
Geodetically? Quantifying the Effect of Stress Shadows on Near-Trench
Coupling. Geophys. Res. Lett. 45 (10), 4754–4763. doi:10.1029/2018GL077785

Bock, Y., Melgar, D., and Crowell, B. W. (2011). Real-time Strong-Motion
Broadband Displacements from Collocated GPS and Accelerometers. Bull.
Seismol. Soc. Am. 101 (6), 2904–2925. doi:10.1785/0120110007

Byrne, D. E., Davis, D. M., and Sykes, L. R. (1988). Loci and Maximum Size of
Thrust Earthquakes and the Mechanics of the Shallow Region of
Subduction Zones. Tectonics 7 (4), 833–857. doi:10.1029/
TC007i004p00833

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 95103315

Wen et al. Moment Tensor Inversion, Finite-Fault Joint Inversion, and Rupture Characteristics

1918

http://ds.iris.edu/wilber3/find_event
http://ds.iris.edu/wilber3/find_event
ftp://data-out.unavco.org
https://vertex.daac.asf.alaska.edu
https://vertex.daac.asf.alaska.edu
https://earthquake.usgs.gov/earthquakes/eventpage/us6000ah9t
https://earthquake.usgs.gov/earthquakes/eventpage/us6000ah9t
https://www.globalcmt.org/
http://geofon.gfz-potsdam.de/eqinfo/event.php?id=gfz2020mhce
http://geofon.gfz-potsdam.de/eqinfo/event.php?id=gfz2020mhce
http://www.ssn.unam.mx/
https://www.generic-mapping-tools.org/
https://www.generic-mapping-tools.org/
http://ds.iris.edu/wilber3/find_event
http://ftp://data-out.unavco.org
http://ftp://data-out.unavco.org
https://vertex.daac.asf.alaska.edu
https://vertex.daac.asf.alaska.edu
https://www.frontiersin.org/articles/10.3389/feart.2022.951033/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2022.951033/full#supplementary-material
https://doi.org/10.1029/2018GL077785
https://doi.org/10.1785/0120110007
https://doi.org/10.1029/TC007i004p00833
https://doi.org/10.1029/TC007i004p00833
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Chen, C. W., and Zebker, H. A. (2000). Network Approaches to Two-Dimensional
Phase Unwrapping: Intractability and Two New Algorithms. J. Opt. Soc. Am. A
17 (3), 401–414. doi:10.1364/josaa.17.000401

Chlieh, M., Avouac, J.-P., Hjorleifsdottir, V., Song, T.-R. A., Ji, C., Sieh, K., et al.
(2007). Coseismic Slip and Afterslip of the Great Mw 9.15 Sumatra-Andaman
Earthquake of 2004. Bull. Seismol. Soc. Am. 97 (1A), S152–S173. doi:10.1785/
0120050631

Chu, R., Wei, S., Helmberger, D. V., Zhan, Z., Zhu, L., and Kanamori, H. (2011).
Initiation of the Great Mw 9.0 Tohoku-Oki Earthquake. Earth Planet. Sci. Lett.
308 (3), 277–283. doi:10.1016/j.epsl.2011.06.031

Correa-Mora, F., DeMets, C., Cabral-Cano, E., Diaz-Molina, O., and Marquez-
Azua, B. (2009). Transient Deformation in Southern Mexico in 2006 and 2007:
Evidence for Distinct Deep-Slip Patches beneath Guerrero and Oaxaca.
Geochem. Geophys. Geosyst. 10, a–n. doi:10.1029/2008GC002211

Cruz-Atienza, V. M., Tago, J., Villafuerte, C., Wei, M., Garza-Girón, R.,
Dominguez, L. A., et al. (20212021). Short-term Interaction between Silent
and Devastating Earthquakes in Mexico. Nat. Commun. 12 (1), 1–14. doi:10.
1038/s41467-021-22326-6

DeMets, C., Gordon, R. G., and Argus, D. F. (2010). Geologically Current Plate
Motions. Geophys. J. Int. 181 (1), 1–80. doi:10.1111/j.1365-246X.2009.
04491.x

Duputel, Z., Rivera, L., Kanamori, H., and Hayes, G. (2012). W Phase Source
Inversion for Moderate to Large Earthquakes (1990-2010). Geophys. J. Int. 189
(2), 1125–1147. doi:10.1111/j.1365-246x.2012.05419.x

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., et al. (2007).
The Shuttle Radar Topography Mission. Rev. Geophys. 45 (2). doi:10.1029/
2005rg000183

Freed, A. M., Ali, S. T., and Bürgmann, R. (2007). Evolution of Stress in Southern
California for the Past 200 Years from Coseismic, Postseismic and Interseismic
Stress Changes. Geophys. J. Int. 169, 1164–1179. doi:10.1111/j.1365-246X.2007.
03391.x

Goldstein, R. M., and Werner, C. L. (1998). Radar Interferogram Filtering for
Geophysical Applications. Geophys. Res. Lett. 25, 4035–4038. doi:10.1029/
1998gl900033

Graham, S., DeMets, C., Cabral-Cano, E., Kostoglodov, V., Rousset, B.,
Walpersdorf, A., et al. (2016). Slow Slip History for the MEXICO
Subduction Zone: 2005 through 2011. Pure Appl. Geophys. 173 (10),
3445–3465. doi:10.1007/s00024-015-1211-x

Graham, S. E., DeMets, C., Cabral-Cano, E., Kostoglodov, V., Walpersdorf, A.,
Cotte, N., et al. (2014). GPS Constraints on the 2011-2012 Oaxaca Slow Slip
Event that Preceded the 2012 March 20 Ometepec Earthquake, Southern
Mexico. Geophys. J. Int. 197 (3), 1593–1607. doi:10.1093/gji/ggu019

Guo, R., Yang, H., Zhu, Y., Zheng, Y., Xu, J., Zhang, L., et al. (2021). Narrow
Rupture of the 2020 Mw 7.4 La Crucecita, Mexico, Earthquake. Seismol. Res.
Lett. 92 (3), 1891–1899. doi:10.1785/0220200328

Guo, R., Zheng, Y., and Xu, J. (2020). Stress Modulation of the Seismic Gap
between the 2008 Ms 8.0 Wenchuan Earthquake and the 2013 Ms 7.0 Lushan
Earthquake and Implications for Seismic Hazard. Geophys. J. Int. 221 (3),
2113–2125. doi:10.1093/gji/ggaa143

Hartzell, S. H., and Heaton, T. H. (1983). Inversion of Strong Ground Motion and
Teleseismic Waveform Data for the Fault Rupture History of the 1979 Imperial
Valley, California, Earthquake. Bull. Seismol. Soc. Am. 73 (6A), 1553–1583.
doi:10.1785/BSSA07306A1553

Hartzell, S., and Iida, M. (1990). Source complexity of the 1987 Whittier Narrows,
California, earthquake from the inversion of strong motion records. Journal of
Geophysical Research: Solid Earth 95 (B8), 12475–12485. doi:10.1029/
jb095ib08p12475

Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M.,
et al. (2018). Slab2, a Comprehensive Subduction Zone Geometry Model.
Science 362 (6410), 58–61. doi:10.1126/science.aat4723

Horikawa, H. (2001). Earthquake Doublet in Kagoshima, Japan: Rupture of
Asperities in a Stress Shadow. Bull. Seismol. Soc. Am. 91, 112–127. doi:10.
1785/0119990131

Hubbard, J., Barbot, S., Hill, E. M., and Tapponnier, P. (2015). Coseismic Slip
on Shallow Décollement Megathrusts: Implications for Seismic and
Tsunami Hazard. Earth-Science Rev. 141, 45–55. doi:10.1016/j.earscirev.
2014.11.003

Hyndman, R. D., Yamano, M., and Oleskevich, D. A. (19971997). The Seismogenic
Zone of Subduction Thrust Faults. Isl. Arc 6 (3), 244–260. doi:10.1111/j.1440-
1738.1997.tb00175.x

Jónsson, S., Zebker, H., Segall, P., and Amelung, F. (2002). Fault Slip Distribution of
the 1999 M W 7.1 Hector Mine, California, Earthquake, Estimated from
Satellite Radar and GPS Measurements. Bull. Seismol. Soc. Am. 92 (4),
1377–1389.

Ji, C., Wald, D. J., and Helmberger, D. V. (2002). Source Description of the
1999 Hector Mine, California, Earthquake, Part I: Wavelet Domain Inversion
Theory and Resolution Analysis. Bull. Seismol. Soc. Am. 92 (4), 1192–1207.
doi:10.1785/0120000916

Kim, A., and Dreger, D. S. (2008). Rupture Process of the 2004 Parkfield
Earthquake from Near-fault Seismic Waveform and Geodetic Records.
J. Geophys. Res. Solid Earth 113 (B7). doi:10.1029/2007jb005115

Laske, G., Masters, G., Ma, Z., and Pasyanos, M. (2013). Update on CRUST1.0—A
1-degree Global Model of Earth’s Crust. Geophys. Res. Abstr. 15, 2658.

Lay, T., Ammon, C. J., Hutko, A. R., and Kanamori, H. (2010). Effects of Kinematic
Constraints on Teleseismic Finite-Source Rupture Inversions: Great Peruvian
Earthquakes of 23 June 2001 and 15 August 2007. Bull. Seismol. Soc. Am. 100
(3), 969–994. doi:10.1785/0120090274

Li, X., Ge, M., Zhang, X., Zhang, Y., Guo, B., Wang, R., et al. (2013). Real-time
High-Rate Co-seismic Displacement from Ambiguity-Fixed Precise Point
Positioning: Application to Earthquake Early Warning. Geophys. Res. Lett.
40 (2), 295–300. doi:10.1002/grl.50138

Li, X., Guo, B., Lu, C., Ge, M., Wickert, J., and Schuh, H. (2014). Real-time GNSS
Seismology Using a Single Receiver.Geophys. J. Int. 198 (1), 72–89. doi:10.1093/
gji/ggu113

Li, X., Han, X., Li, X., Liu, G., Feng, G., Wang, B., et al. (2021). GREAT-UPD: An
Open-Source Software for Uncalibrated Phase Delay Estimation Based on
Multi-GNSS and Multi-Frequency Observations. GPS Solut. 25 (2). doi:10.
1007/s10291-020-01070-2

Maury, J., Ide, S., Cruz-Atienza, V. M., and Kostoglodov, V. (2018). Spatiotemporal
Variations in Slow Earthquakes along the Mexican Subduction Zone.
J. Geophys. Res. Solid Earth 123 (2), 1559–1575. doi:10.1002/2017JB014690

Melgar, D., Ruiz-Angulo, A., Pérez-Campos, X., Crowell, B. W., Xu, X., Cabral-
Cano, E., et al. (2020). Energetic Rupture and Tsunamigenesis during the
2020Mw 7.4 La Crucecita, Mexico Earthquake. Seismol. Res. Lett. 92, 140–150.
doi:10.1785/0220200272

Melgar, D., Bock, Y., and Crowell, B. W. (2012). Real-time Centroid Moment
Tensor Determination for Large Earthquakes from Local and Regional
Displacement Records. Geophys J. Int. 188 (2), 703–718. doi:10.1111/j.1365-
246x.2011.05297.x

Melgar, D., Ganas, A., Geng, J., Liang, C., Fielding, E. J., and Kassaras, I. (2017).
Source Characteristics of the 2015 Mw6. 5 Lefkada, Greece, Strike-slip
Earthquake. J. Geophys. Res. Solid Earth 122 (3), 2260–2273.

Obara, K., and Kato, A. (2016). Connecting Slow Earthquakes to Huge
Earthquakes. Science 353 (6296), 253–257. doi:10.1126/science.aaf1512

Okada, Y. (1985). Surface Deformation Due to Shear and Tensile Faults in a Half-
Space. Bull. Seismol. Soc. Am. 75 (4), 1135–1154. doi:10.1785/BSSA0750041135

Olson, A. H., and Apsel, R. J. (1982). Finite Faults and Inverse Theory with
Applications to the 1979 Imperial Valley Earthquake. Bull. Seismol. Soc. Am. 72
(6A), 1969–2001. doi:10.1785/BSSA07206A1969

Plata-Martinez, R., Ide, S., Shinohara, M., Garcia, E. S., Mizuno, N., Dominguez, L.
A., .Taira, T., Yamashita, Y., Toh, A., Yamada, T., Real, J., Husker, A., Cruz-
Atienza, V. M., and Ito, Y. (2021). Shallow Slow Earthquakes to Decipher
Future Catastrophic Earthquakes in the Guerrero Seismic Gap. Nat. Commun.
12 (1), 3976–3978. doi:10.1038/s41467-021-24210-9

Ramírez-Herrera, M.-T., Corona, N., Cerny, J., Castillo-Aja, R., Melgar, D., Lagos,
M., et al. (2020). Sand Deposits Reveal Great Earthquakes and Tsunamis at
Mexican Pacific Coast. Sci. Rep. 10 (1), 1–10. doi:10.1038/s41598-020-68237-2

Rosen, P. A., Gurrola, E., Sacco, G. F., and Zebker, H. (2012). The InSAR scientific
computing environmentEUSAR 2012; 9th European con. ference synthetic
aperture radar, VDE, 730-733.

Rousset, B., Campillo, M., Lasserre, C., Frank, W. B., Cotte, N., Walpersdorf, A.,
et al. (2017). A Geodetic Matched Filter Search for Slow Slip with Application to
the Mexico Subduction Zone. J. Geophys. Res. Solid Earth 122 (12), 498–510.
doi:10.1002/2017JB014448

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 95103316

Wen et al. Moment Tensor Inversion, Finite-Fault Joint Inversion, and Rupture Characteristics

2019

https://doi.org/10.1364/josaa.17.000401
https://doi.org/10.1785/0120050631
https://doi.org/10.1785/0120050631
https://doi.org/10.1016/j.epsl.2011.06.031
https://doi.org/10.1029/2008GC002211
https://doi.org/10.1038/s41467-021-22326-6
https://doi.org/10.1038/s41467-021-22326-6
https://doi.org/10.1111/j.1365-246X.2009.04491.x
https://doi.org/10.1111/j.1365-246X.2009.04491.x
https://doi.org/10.1111/j.1365-246x.2012.05419.x
https://doi.org/10.1029/2005rg000183
https://doi.org/10.1029/2005rg000183
https://doi.org/10.1111/j.1365-246X.2007.03391.x
https://doi.org/10.1111/j.1365-246X.2007.03391.x
https://doi.org/10.1029/1998gl900033
https://doi.org/10.1029/1998gl900033
https://doi.org/10.1007/s00024-015-1211-x
https://doi.org/10.1093/gji/ggu019
https://doi.org/10.1785/0220200328
https://doi.org/10.1093/gji/ggaa143
https://doi.org/10.1785/BSSA07306A1553
https://doi.org/10.1029/jb095ib08p12475
https://doi.org/10.1029/jb095ib08p12475
https://doi.org/10.1126/science.aat4723
https://doi.org/10.1785/0119990131
https://doi.org/10.1785/0119990131
https://doi.org/10.1016/j.earscirev.2014.11.003
https://doi.org/10.1016/j.earscirev.2014.11.003
https://doi.org/10.1111/j.1440-1738.1997.tb00175.x
https://doi.org/10.1111/j.1440-1738.1997.tb00175.x
https://doi.org/10.1785/0120000916
https://doi.org/10.1029/2007jb005115
https://doi.org/10.1785/0120090274
https://doi.org/10.1002/grl.50138
https://doi.org/10.1093/gji/ggu113
https://doi.org/10.1093/gji/ggu113
https://doi.org/10.1007/s10291-020-01070-2
https://doi.org/10.1007/s10291-020-01070-2
https://doi.org/10.1002/2017JB014690
https://doi.org/10.1785/0220200272
https://doi.org/10.1111/j.1365-246x.2011.05297.x
https://doi.org/10.1111/j.1365-246x.2011.05297.x
https://doi.org/10.1126/science.aaf1512
https://doi.org/10.1785/BSSA0750041135
https://doi.org/10.1785/BSSA07206A1969
https://doi.org/10.1038/s41467-021-24210-9
https://doi.org/10.1038/s41598-020-68237-2
https://doi.org/10.1002/2017JB014448
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Ruff, L. J. (1996). Large earthquakes in subduction zones: Segment interaction and
recurrence times. Subduction: Top to bottom 96, 91–104. doi:10.1029/
GM096p0091

Singh, S. K., Astiz, L., and Havskov, J. (19811981). Seismic Gaps and Recurrence
Periods of Large Earthquakes along the Mexican Subduction Zone: A
Reexamination. Bull. Seismol. Soc. Am. 71, 827–843. doi:10.1785/
bssa0710030827

Singh, S. K., Rodríguez, M., and Esteva, L. (1983). Statistics of Small Earthquakes
and Frequency of Occurrence of Large Earthquakes along the Mexican
Subduction Zone. Bull. Seismol. Soc. Am. 73, 1779–1796.

Toda, S., Stein, R. S., Richards-Dinger, K., and Bozkurt, S. (2005). Forecasting the
Evolution of Seismicity in Southern California: Animations Built on
Earthquake Stress Transfer. J. Geophys. Res. 110, B05S16. doi:10.1029/
2004JB003415

Tracy, K.-C., Ian, R., David, R., Khalid, M., David, P., Wael, H., et al. (2020).
StEER—Crucecitas, Mexico Mw 7.4 Earthquake. DesignSafe-CI: Preliminary
virtual Reconnaissance Report. doi:10.17603/ds2-k2bp-t724

Wang, R., Heimann, S., Zhang, Y., Wang, H., and Dahm, T. (2017). Complete
Synthetic Seismograms Based on a Spherical Self-Gravitating Earth Model with
an Atmosphere-Ocean-Mantle-Core Structure. Geophys. J. Int. 210 (3),
1739–1764. doi:10.1093/gji/ggx259

Wei, S., Helmberger, D., and Avouac, J.-P. (2013). Modeling the
2012 Wharton Basin Earthquakes Off-Sumatra: Complete Lithospheric
Failure. J. Geophys. Res. Solid Earth 118 (7), 3592–3609. doi:10.1002/jgrb.
50267

Wen, Y., Xiao, Z., He, P., Zang, J., Liu, Y., and Xu, C. (2021). Source Characteristics
of the 2020 Mw 7.4 Oaxaca, Mexico, Earthquake Estimated from GPS, InSAR,
and Teleseismic Waveforms. Seismol. Res. Lett. 92 (3), 1900–1912. doi:10.1785/
0220200313

Xiong, X., Shan, B., Zheng, Y., and Wang, R. (2010). Stress Transfer and its
Implication for Earthquake Hazard on the Kunlun Fault, Tibet. Tectonophysics
482, 216–225. doi:10.1016/j.tecto.2009.07.020

Xu, Y., Zhang, Y., and Xu, L. (2022). Geometry-dependent Rupture Process of
the 2015 Gorkha, Nepal, Earthquake Determined Using a Dip-Varying
Inversion Approach with Teleseismic, High-Rate GPS, Static GPS
and InSAR Data. Geophys. J. Int. 229 (2), 1408–1421. doi:10.1093/gji/
ggab519

Yagi, Y., Mikumo, T., Pacheco, J., and Reyes, G. (2004). Source Rupture Process of
the Tecoman, Colima, Mexico Earthquake of 22 January 2003, Determined by

Joint Inversion of Teleseismic Body-Wave and Near-Source Data. Bull. Seismol.
Soc. Am. 94, 1795–1807. doi:10.1785/012003095

Yan, Z., Xiong, X., Liu, C., and Xu, J. (2022). Integrated Analysis of the 2020 Mw
7.4 La Crucecita, Oaxaca, Mexico, Earthquake from Joint Inversion of Geodetic
and Seismic Observations. Bull. Seismol. Soc. Am. 112 (3), 1271–1283. doi:10.
1785/0120210276

Yang, H., Yao, S., He, B., and Newman, A. V. (2019). Earthquake Rupture
Dependence on Hypocentral Location along the Nicoya Peninsula
Subduction Megathrust. Earth Planet. Sci. Lett. 520, 10–17. doi:10.1016/j.
epsl.2019.05.030

Yi, L., Xu, C., Zhang, X., Wen, Y., Jiang, G., Li, M., et al. (2017). Joint Inversion of
GPS, InSAR and Teleseismic Data Sets for the Rupture Process of the
2015 Gorkha, Nepal, Earthquake Using a Generalized ABIC Method.
J. Asian Earth Sci. 148, 121–130. doi:10.1016/j.jseaes.2017.08.029

Yue, H., and Lay, T. (2013). Source Rupture Models for the Mw 9.0 2011 Tohoku
Earthquake from Joint Inversions of High-Rate Geodetic and Seismic Data.
Bull. Seismol. Soc. Am. 103, 1242–1255. doi:10.1785/0120120119

Zhang, Y., Feng, W. P., Chen, Y. T., Xu, L. S., Li, Z., and Forrest, D. (2012). The
2009 L’Aquila MW 6.3 Earthquake: a New Technique to Locate the Hypocentre
in the Joint Inversion of Earthquake Rupture Process. Geophys. J. Int. 191 (3),
1417–1426. doi:10.1111/j.1365-246X.2012.05694.x

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Wen, Li, Zhao, Xu and Xu. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 95103317

Wen et al. Moment Tensor Inversion, Finite-Fault Joint Inversion, and Rupture Characteristics

2120

https://doi.org/10.1029/GM096p0091
https://doi.org/10.1029/GM096p0091
https://doi.org/10.1785/bssa0710030827
https://doi.org/10.1785/bssa0710030827
https://doi.org/10.1029/2004JB003415
https://doi.org/10.1029/2004JB003415
https://doi.org/10.17603/ds2-k2bp-t724
https://doi.org/10.1093/gji/ggx259
https://doi.org/10.1002/jgrb.50267
https://doi.org/10.1002/jgrb.50267
https://doi.org/10.1785/0220200313
https://doi.org/10.1785/0220200313
https://doi.org/10.1016/j.tecto.2009.07.020
https://doi.org/10.1093/gji/ggab519
https://doi.org/10.1093/gji/ggab519
https://doi.org/10.1785/012003095
https://doi.org/10.1785/0120210276
https://doi.org/10.1785/0120210276
https://doi.org/10.1016/j.epsl.2019.05.030
https://doi.org/10.1016/j.epsl.2019.05.030
https://doi.org/10.1016/j.jseaes.2017.08.029
https://doi.org/10.1785/0120120119
https://doi.org/10.1111/j.1365-246X.2012.05694.x
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


A new scheme of wavefield
decomposed elastic
least-squares reverse time
migration

Wenhao Lv1, Qizhen Du1,2*, Li-Yun Fu1,2, Qingqing Li1,
Jianlei Zhang3 and Zhen Zou3
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Qingdao, China, 2Qingdao National Laboratory for Marine Science and Technology, Laboratory for
Marine Mineral Resources, Qingdao, China, 3R&D Center, Bureau of Geophysical Prospecting Inc.,
Zhuozhou, China

Elastic least-squares reverse time migration (ELSRTM) describes the reflectivity

of the undergroundmediamore accurately than acoustic LSRTM in theorywhile

suffering from the P- and S-waves crosstalk artifacts. We propose a new

wavefield decomposed ELSRTM scheme to alleviate these crosstalk artifacts,

which is different from conventional methods. In our new scheme, we

implement the wavenumber domain elastic wavefield vector decomposition

equivalently in the time-space domain to decompose source wavefield without

Fourier transform, but with high precision. Then we decompose adjoint

wavefield by constructing the shear component in a decoupled adjoint wave

equation. Finally, based on elastic impedance parameterization, we derive the

gradients with respect to elastic reflectivity in the wavefield-decomposed

ELSRTM. Numerical examples show that our method is feasible even when

applied to models with complex and uncorrelated P- and S-wave velocity

structures.

KEYWORDS

elastic, LSRTM, crosstalk artifacts, wavefield decomposition, decoupledwave equation

1 Introduction

The work of several scholars marked the advent of reverse time migration (RTM) in

the 1980s (Hemon, 1978; Baysal et al., 1983; McMechan, 1983; Whitmore, 1983).

Compared with other migration methods, the reverse time migration based on the

two-path wave equation has stronger amplitude preservation and higher image quality for

the complex geological structure with steep dip angle and sharp velocity changes.

However, conventional RTM assumes that seismic data is obtained by regular surface

sampling with a recording aperture as large as possible, which cannot be achieved in

practice. Without these perfect assumptions, the conventional RTM algorithm is likely to

fail even fed with accurate velocity and density models (Zhang et al., 2015).

The least square migration (LSM) (LeBras and Clayton, 1988) is a revolutionary

innovation which solves imaging problems by an inversion method: match the
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observed data with the numerical simulation data under the

Born approximation, and update the imaging results through

multiple inversion iterations (Schuster, 1993; Nemeth et al.,

1999). LSM is believed to be able to image subsurface structure

and reflections with higher resolution and better amplitude

preservation, which is beneficial to more reliable and high-

precision elastic parameter inversion and reservoir

characterization. The LSM idea can be combined with a

variety of imaging techniques. Scholars have introduced the

idea of LSM into RTM, which is called least-squares reverse

time migration (LSRTM) (Dong et al., 2012; Yao and

Jakubowicz, 2012; Dai and Schuster, 2013; Zhang et al.,

2013, 2015; Feng and Schuster, 2017; Liu and Peter, 2018;

Yang et al., 2019).

Most studies about LSRTM have been focused on acoustic

medium assumptions, the elastic characteristics of the

wavefield are treated as noise rather than an additional

source of information of the subsurface parameters (Sears

et al., 2010). However, elastic assumptions describe the

underground media more accurately than acoustic. In

addition, with PP and PS reflectivity, the identification of

fluid contacts, lithologies, fractures and hydrocarbon

reservoirs will be clear. Therefore, it is necessary to study

LSRTM based on elastic theory for land seismic data.

Considering that ELSRTM suffers from crosstalk between

P- and S-waves, wavefield decomposition methods are

usually used to suppress crosstalk artifacts.

One of the wavefield decomposition methods is based on the

Helmholtz theorem (Dellinger and Etgen, 1990; Sun and

McMechan, 2001), in a homogeneous and isotropic medium,

the elastic wavefield can be separated into a curl-free P wavefield

and a divergence-free S wavefield. However, extra complex and

computationally expensive polarity corrections are needed since

the divergence and curl operators lead to phase shift and

amplitude distortion (Yan and Sava, 2008; Du et al., 2012;

Duan and Sava, 2015).

The second strategy for wavefield decomposition is the

decoupled wave equations (Ma and Zhu, 2003; Li et al., 2007;

Zhang et al., 2007; Xiao and Leaney, 2010), which decompose

wavefields by solving the P- and S-wave separated wave

equations. In recent years, the decoupled wave equations

prevail in elastic RTM (Wang and McMechan, 2015; Du

et al., 2017; Zhou et al., 2018) and ELSRTM (Gu et al., 2018;

Qu et al., 2018; Zhong et al., 2021; Shi et al., 2021; Zhang and Gao

,2022; Liu et al., 2022) because it is easy to implement and does

not cause phase shift and amplitude distortion of decomposed

wavefields (Duan and Sava, 2015; Du et al., 2017; Gong et al.,

2018). However, if migration models are not smooth enough, the

decoupled wave equation methods may suffer.

The third wavefield decomposition method, which with clear

physical significance and higher accuracy, is the wavefields

decomposition in the wavenumber domain (Zhang

and McMechan, 2010; Du et al., 2014; Zhang et al., 2020), the

output decomposed P- and S-wavefields have the same

amplitude, phase, and physical units as the input wavefields

even in the case of inaccurate migration velocity. However,

methods in the wavenumber domain suffer from expensive

computation.

Shi et al. (2021), Zhong et al. (2021), Zhang & Gao (2022) and

Liu et al. (2022) constructed the decoupled wave equation and

applied it to both source and adjoint wavefields decomposition. It is

different in this paper: we propose a compound strategy to suppress

P- and S-wave cross-talk artifacts in an efficient way. Inspired by the

work of Zhang and McMechan (2010) in the wavenumber domain,

but avoiding taking the Fourier transform, we reconstruct the

wavenumber domain decomposition operator, and transform it

into time-space domain to decompose source wavefields. Then

we decompose the adjoint wavefields by constructing the shear

component in a decoupled adjoint wave equation. Finally, we obtain

the gradients with respect to elastic reflectivity in the wavefield-

decomposed ELSRTM. In addition, the gradients were updated

using the conjugate gradient method.

This paper is organized as follows. First, we review the

basic theory of ELSRTM including the Born approximation

for the velocity-stress elastic wave equations, the virtual

sources of the elastic demigration, the adjoint

equations and gradients of ELSRTM. Next, we introduce

an elastic wavefield vector decomposition method in the

time-space domain and a decoupled adjoint wave

equation. Then we obtain the gradients with respect to

elastic reflectivity in the decoupled P- and S-wave frame.

Finally, we use two numerical examples to demonstrate the

feasibility of the proposed wavefield decomposed ELSRTM

scheme.

2 Methodology

2.1 Basic theory of ELSRTM

In the 2D case, the elastic isotropic wave equation can be

expressed by the first-order particle velocity and stress equation

(Virieux, 1986) as

ρ
zvx
zt

� zσxx
zx

+ zτzx
zz

,

ρ
zvz
zt

� zτxz
zx

+ zσzz
zz

,

zσxx

zt
� (λ + 2μ) zvx

zx
+ λ

zvz
zz

,

zσzz

zt
� λ

zvx
zx

+ (λ + 2μ) zvz
zz

,

zτxz
zt

� μ(zvx
zz

+ zvz
zx

).

(1)

Where ρ stands for the density, λ and μ are the Lame constants of

models, vx and vz represent particle velocities in the horizontal
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and vertical respectively, σxx and σzz are the normal stresses, τxz
(or τzx) is the shear stress.

According to the perturbation theory, a

perturbation δm � [δρ, δλ, δμ]T of the background model

parameters m � [ρ, λ, μ]T will lead to wavefields

perturbation δu � [δvx, δvz, δσxx, δσzz, δτxz]T with respect

to the background wavefields u � [vx, vz, σxx, σzz, τxz]T. The
perturbed source wavefields which can be expressed as:

ρ
zδvx
zt

− zδσxx

zx
− zδτzx

zz
� fx,

ρ
zδvz
zt

− zδτxz
zx

− zδσzz
zz

� fz,

zδσxx

zt
− (λ + 2μ) zδvx

zx
− λ

zδvz
zz

� fxx,

zδσzz

zt
− λ

zδvx
zx

− (λ + 2μ) zδvz
zz

� fzz,

zδτxz
zt

− μ(zδvx
zz

+ zδvz
zx

) � fxz.

(2)

Where the virtual sources are as follows:

fx � −δρ zvx
zt

,

fz � −δρ zvz
zt

,

fxx � δλ(zvx
zx

+ zvz
zz

) + 2δμ
zvx
zx

,

fzz � δλ(zvx
zx

+ zvz
zz

) + 2δμ
zvz
zz

,

fxz � δμ(zvx
zz

+ zvz
zx

).

(3)

Equation 2 are the Born approximation for the velocity-stress

elastic wave equation in the 2D case.

Using the adjoint-state method (Liu and Tromp, 2006;

Plessix, 2006), the adjoint wave equations can be derived as:

ρ
zϕx

zt
− λ

zφzz

zx
− (λ + 2μ) zφxx

zx
− μ

zφxz

zz
� δVx − δVobs

x ,

ρ
zϕz

zt
− λ

zφxx

zz
− (λ + 2μ) zφzz

zz
− μ

zφxz

zx
� δVz − δVobs

z ,

zφxx

zt
− zϕx

zx
� 0,

zφzz

zt
− zϕz

zz
� 0,

zφxz

zt
− (zϕx

zz
+ zϕz

zx
) � 0.

(4)

Here, ϕ represents the adjoint wavefields of velocity, φ denotes

the adjoint wavefields of stress, δVi and δVobs
i , i ∈ {x, z} represent

the simulated and observed seismogram received in the horizontal

(x) and vertical (z) directions respectively.

And gradients are derived as:

zJ

zδρ
� ∫T

0
ϕx

zvx
zt

+ ϕz

zvz
zt

dt,

zJ

zδλ
� ∫T

0
−(φxx + φzz)(zvxzx

+ zvz
zz

)dt,
zJ

zδμ
� ∫T

0
−(2φxx

zvx
zx

+ 2φzz

zvz
zz

+ φxz(zvxzz
+ zvz
zx

))dt.
(5)

2.2 The elastic wavefields decomposition

2.2.1 Decomposition of source wavefields
Zhang and McMechan (2010) proposed elastic wavefield

decomposition in the wavenumber domain, which has been

FIGURE 1
Quasi Sigsbee2A model. The structure of the P- and S-wave velocity models is identical.

Frontiers in Earth Science frontiersin.org03

Lv et al. 10.3389/feart.2022.991093

2423

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.991093


used to improve elastic full waveform inversion in Ren and

Liu (2016). However, the two-dimensional forward and

inverse Fourier transforms must be repeated in each time

slice, resulting in expensive calculations. Different from

Ren and Liu (2016), in our scheme, the work of Zhang and

McMechan (2010) was introduced into the time-spatial

domain, thereby avoiding the Fourier transforms, and was

applied to ELSRTM efficiently.

The P- and S- wavefields in 2D case are decomposed in the

wavenumber domain according to the following equations given

by Zhang and McMechan (2010) as follows:

~vpx(kx, kz) � K2
x~vx(kx, kz) + KxKz~vz(kx, kz),

~vpz(kx, kz) � K2
z~vz(kx, kz) +KxKz~vx(kx, kz),

~vsx(kx, kz) � K2
z~vx(kx, kz) −KxKz~vz(kx, kz),

~vsz(kx, kz) � K2
x~vz(kx, kz) − KxKz~vx(kx, kz).

(6)

where ~vx and ~vz represent particle velocities in the wavenumber

domain,Kx� kx/k andKz � kz/k are normalized wavenumbers, in

which (kx, kz) is the wavenumber vector that defines the

direction of wave propagation in 2D case, and

k � ������
k2x + k2z

√ � ω/vpha, vpha is the phase velocity, ω denotes

angular frequency. Zhang and McMechan (2010) further

described Eq. 6 in a short form as:

~V
P � K(K · ~V),

~V
S � −K × (K ×~V). (7)

where ~V � ~V
P + ~V

S
, ~V � (~vx, ~vz), ~VP � (~vpx, ~vpz ), ~VS � (~vsx, ~vsz),

and we noticed that the operator K � Kxax +Kzaz � ~∇ /ik,

where ~∇ � ikxax + ikzaz denotes the nabla operator in the

wavenumber domain which corresponds to ∇ � z/zxax +

FIGURE 2
Migration results for the Quasi Sigsbee2A model. The true (A) PP and (B) PS reflectivity distribution without filtering processed.
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z/zzaz in the spatial domain (ax and az are defined as unit basic

vectors in the Cartesian coordinate system).

Naturally, set the intermediate results in parentheses as
~V
P
tmp � K · ~V and ~V

S
tmp � K ×~V, and note that k � ω/vpha,

more specifically:

~V
P

tmp � 1
ik
~∇ · ~V � vppha

iω
~∇ · ~V,

~V
S

tmp �
1
ik
~∇ · ~V � vspha

iω
~∇×~V. (8)

Note that iω denotes the derivative operator in the frequency

domain, which corresponds to z/zt in the time domain. Moreover,

according to the differential property of the Fourier transform,

correspondingly, in the time-space domain:

zVp
tmp

zt
� vppha∇ · V,

zVS
tmp

zt
� vspha∇× V.

(9)

where V � VP + VS, V � (vx, vz), vx and vz represent particle

velocities in the spatial domain.

In the same way as ~V
P � K ~V

P
tmp and ~V

S � −K × ~V
S
tmp, the

decomposed vector wavefields in the spatial domain are described as:

zVP

zt
� vppha∇V

P
tmp,

zVS

zt
� −vspha∇× VS

tmp.

(10)

where VP � (vpx, vpz ), and VS � (vsx, vsz).

2.2.2 Decomposition of adjoint wavefields
It is different from the decomposition of source

wavefields, since the first-order particle velocity-stress

equation is not self-adjoint, we reconstruct the adjoint

wave equations (Eq. 4) as follows to decompose adjoint

wavefields into P- and S-wave components:

ρ
zϕx

zt
� λ

zφzz

zx
+ (λ + 2μ) zφxx

zx
+ μ

zφxz

zz
+ fadj

x ,

ρ
zϕz

zt
� λ

zφxx

zz
+ (λ + 2μ) zφzz

zz
+ μ

zφxz

zx
+ fadj

z ,

ρ
zϕS

x

zt
� μ(zφxz

zz
− 2

zφzz

zx
),

ρ
zϕS

z

zt
� μ(zφxz

zx
− 2

zφxx

zz
),

ϕP
x � ϕx − ϕS

x,

ϕP
z � ϕz − ϕS

z,

zφxz

zt
� zϕx

zz
+ zϕz

zx
,

zφxx

zt
� zϕx

zx
,

zφzz

zt
� zϕz

zz
.

(11)

Where ϕPx , ϕ
P
z , ϕ

S
x, ϕ

S
z are the decoupled P- and S- adjoint

wavefields of particle velocity.

2.3 The gradient of wavefield decomposed
ELSRTM

According to the work of Feng and Schuster (2017) and Ren et al.

(2017), the reflectivity images of elastic impedances can be defined as:

Rp � δIp
Ip

, Rs � δIs
Is
, Rρ � δρ

ρ
. (12)

where Ip � ρ
�����
λ + 2μ

√
, Is � ρ

��
μ

√
, δIp and δIs are the perturbed P-

and S- impedance, and the perturbed λ and μ can be express as:

δλ � 2
ρ
(I2pRp − 2I2sRs), δμ � 2

ρ
I2sRs. (13)

Then substitute Eq. 13 into Eq. 3, the new virtual sources of

elastic demigration can be written as:

FIGURE 3
For the quasi-Sigsbee2A model, the DELSRTM image
reflectivity profiles are compared with the real reflectivity in a
single trace at 3090 m. (A) for PP comparison, (B) for PS
comparison, the dashed blue lines and solid red lines indicate
real and DELSRTM reflectivity, respectively.
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fx � −ρRρ
zvx
zt

,

fz � −ρRρ
zvz
zt

,

fxx � (2I2pRp − 4I2sRs

ρ
)(zvx

zx
+ zvz

zz
) + 4I2sRs

ρ

zvx
zx

,

fzz � (2I2pRp − 4I2sRs

ρ
)(zvx

zx
+ zvz

zz
) + 4I2sRs

ρ

zvz
zz

,

fxz � 2I2sRs

ρ
(zvx
zz

+ zvz
zx

).

(14)

Equation 15 express the gradients of elastic impedance

parameterization which are related to the Lamé parameters in Eq. 5:

zJ

zRp
� 2vpIp

zJ

zδλ
,

zJ

zRs
� −4vsIs zJ

zδλ
+ 2vsIs

zJ

zδμ
.

(15)

Then substitute Eq. 5 into Eq. 15, the new gradients based on

elastic impedance parameterization are:

zJ

zRp
� −2vpIp ∫T

0
(φxx + φzz)(zvxzx

+ zvz
zz

)dt,
zJ

zRs
� 2vsIs ∫T

0
(2φxx

zvx
zx

+ 2φzz

zvz
zz

− φxz(zvxzz
+ zvz
zx

))dt.
(16)

In P- S- decoupled elastic system, the elastic wavefields

will be replaced by separated P- or S- wavefields to derive pure

wave mode gradients, while the adjoint strains exist in the

gradients with respect to reflectivity (Eq. 16) but not

decoupled in our algorithm (Eq. 11). Ren and Liu (2015,

2016) suggested that according to the particular solutions

of portion adjoint equations, the transformation from

strains to particle velocities in the gradient equations can

be written as:

FIGURE 4
Modified marmousi2 model with uncorrelated (A) P- and (B) S-wave velocity models

Frontiers in Earth Science frontiersin.org06

Lv et al. 10.3389/feart.2022.991093

2726

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.991093


φxx �
zψx

zx
,

φzz �
zψz

zz
,

φxz �
zψx

zz
+ zψz

zx
,

ψx � ∫t

T
ϕP
xdτ + ∫t

T
ϕS
xdτ,

ψz � ∫t

T
ϕP
zdτ + ∫t

T
ϕS
zdτ.

(17)

Moreover, the gradients with respect to elastic reflectivity

in the wavefield decomposed ELSRTM frame can be

derived as:

zJ

zRp
� −2vpIp ∫T

0
(zvPx
zx

+ zvPz
zz

)(zψP
x

zx
+ zψP

z

zz
)dt,

zJ

zRs
� 2vsIs ∫T

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2
zvPx
zx

zψS
x

zx
+ 2

zvPz
zz
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(18)

3 Numerical examples

To verify the feasibility of the proposed wavefield decomposed

ELSRTM (DELSRTM), we designed two experiments based on

quasi-Sigsbee2A model and modified Marmoisi2 model,

respectively. To ensure the efficiency and stability of finite

difference, we made some modifications based on the original

FIGURE 5
The true (A) PP and (B) PS reflectivity distribution of the Modified Marmousi2 model in our numerical test. The reflectivity distribution of
uncorrelated P and S-wave velocity structures is indicated by yellow boxes.
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velocity models. In the quasi-Sigsbee2A experiment, we investigated

the accuracy of DELSRTM. In the modified Marmoisi2 experiment,

we focused on suppressing crosstalk artifacts and compared the

DELSRTM imaging results with true reflectivity. We define (Vtrue-

Vmig)/Vmig as the true reflectivity distribution, where the subscript

true and mig means true velocity model and migration velocity

model, respectively.

3.1 Quasi-Sigsbee2A model

To demonstrate the accuracy of our proposed DELSRTM,

we used a portion of the Sigsbee2A model structure (Figure 1)

and modified the velocity to meet the stability of finite

difference and cost-less calculation. The S-wave velocity is

constructed by linear calculation based on the P-wave

velocity. Moreover, the density is set to be a constant

(1.0kg/m3). The size of this model is 290(z) by 600(x),

and the spatial sampling interval is 10 m. We planned

40 sources and 600 receivers, which were 150 m apart and

10 m apart. The Ricker wavelet with a peak frequency of

30 Hz was injected into normal stress items in elastic wave

equations and received 40 shots as the observed seismic data.

Before imaging, we muted the direct waves and most of the

diving waves to reduce the interference of low-frequency

noise.

The migration results of iteration 40th for the quasi-

Sigsbee2A model are shown in Figure 2. To demonstrate the

accuracy of DELSRTM, the DELSRTM image reflectivity profiles

are compared with the real reflectivity in a single trace (Figure 3),

which located at the distance of 3090 m and cross the middle

diffraction point. Compared with true PP and PS reflectivity, we

found that without the help of filtering process, the PP- and PS-

image generated by our DELSRTM clearly reconstructed the

reflectivity distribution and all the high-speed diffraction points

converged perfectly.

FIGURE 6
Migration results for the modified marmousi2 model. No filtering processed (A) PP- and (B) PS-image which generated from proposed
DELSRTM after 40 times iteration. The images of uncorrelated P and S-wave velocity structures are indicated by yellow boxes.
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3.2 Modified Marmousi2 model

To further verify the anti-crosstalk effect of the

DELSRTM, we tested our algorithm using a modified

marmousi2 model (Figure 4) with uncorrelated P- and

S-wave velocity structures. Moreover, the density is set to

be constant (1.0kg/m3). This model is discrete into a grid of

233(z) by 662(x) with a spatial sampling interval of 20 m in

both directions. We deployed 30 P-wave sources and

662 receivers, which were uniformly deployed along the

surface with 440 and 20 m apart. We used Ricker wavelet

with a peak frequency of 40 Hz as the source signature, and

the total recording time is 2s, with a sample interval of

0.5 ms. To simulate the propagation of seismic waves

numerically in time domain, we used the high-order

staggered grid finite-difference (FD) scheme to solve the

elastic wave equation with a 5 m by 5 m discrete spatial

grid size. Before imaging, we only removed the direct

wave to ensure that the DELSRTM gradient is not

contaminated by low wave components.

Figure 6 shows the migration results after forty iterations

performed. There are a few low wave-number artifacts in the

imaging results since the residual diving waves. The energy

of artifacts suppressed some of the weak reflectivity

imaging, however, a low-cut filtering process can also

annihilate weak reflectivity imaging, which is why we

chose not to do high-pass filtering. Compared with the

true reflectivity distribution (Figure 5), migration results

for the modified marmousi2 model (Figure 6) imaging

complex structures accurately, and according to the

comparison of single trace which is located at the

distance of 5790 m in Figure 7, the proposed DELSRTM

reflectivity imaging results are close to the real one. Besides,

these yellow boxes in Figure 6 marked imaging results of

where P- and S-wave velocity models are

uncorrelated. There are few crosstalk artifacts in the

image of the marked structures. From what has been

discussed above, the P- and S-waves crosstalk

artifacts are suppressed in our new DELSRTM scheme

when applied to complex and uncorrelated elastic

structures.

4 Conclusion

We propose a new scheme of decomposed wavefield least-

squares reverse time migration, which effectively suppressed

the P- and S-waves crosstalk artifacts. Since the first-order

particle velocity-stress equation is not self-adjoint, we adopt a

compound strategy to ensure that our algorithm is robust. In

the processing of source wavefields vector decomposition, we

transform the advantages of wavenumber domain-based

wavefields vector decomposition method into time-space

domain and improve the computational efficiency with

minimal computational cost. Different from the method of

source wavefields vector decomposition, in the process of

adjoint-wavefield decomposition, we construct the shear

component which is subtracted to separate P- and S-

waves mode. The gradient of the decomposed wavefield

least-squares reverse time migration was calculated using

the separated P- and S-waves wavefields on both sides, and

crosstalk-less gradients guarantee the accuracy of reflectivity

imaging. Unlike ELSRTM, which is based on the decoupled

wave equation method, our scheme produces correct results

even when the P- and S-wave velocity models are

uncorrelated and change dramatically. In addition, the

physical significance of our new wavefield-decomposed

ELSRTM scheme is clear.
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FIGURE 7
For the modified Marmousi2 model, the DELSRTM image
reflectivity profiles compared with the real reflectivity in a single
trace at 5340 m. (A) for PP comparison, (B) for PS comparison, the
dashed blue lines and solid red lines indicate real and
DELSRTM reflectivity, respectively.
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The spatial position and dip feature of the density boundary are significant to the

study of fault and tectonic frameworks. Edge detection methods generally

attach importance to the horizontal position of the boundary, but it is difficult to

determine the dip feature expressly. A density gradient inversion method was

proposed based on the corresponding relationship among the gravity forward

field, forward kernel matrix, and model attributes. The inversion result of this

method is that the density gradient value is different from the conventional

gravity inversion. It can directly display the 3D distribution features integrated

with 3D inversion results of the density gradient in different directions. The

theoretical model means that the inversion results can not only identify the

horizontal position of the boundary but also qualitatively determine the dip

feature of faults. It has been widely applied to fault identification in the Songliao

Basin. According to the joint inversion results, the strike feature and the dip

feature can be quantitatively and qualitatively identified, respectively, making up

for the shortcomings of sparse distribution and poor lateral resolution of

existing seismic data.

KEYWORDS

gravity, 3D inversion, density gradient, dip recognition, joint inversion

Introduction

The gravity method is important in detecting the spatial distribution features of

underground density and is also an emphasized geophysical prospecting method for

regional geological research and energy mineral exploration. In addition, it plays an

important role in investigating the geological and structural features of the bedrock,

delineating the scope of the sedimentary basin, studying the fluctuation of the

sedimentary rock layer or stratigraphic density interface, as well as the volcanic

structure, crustal equilibrium, crustal, and upper mantle structure among others.

There are many processing methods for boundary recognition and 3D inversion in

gravity data processing and interpretation.
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One of the important contents of gravity interpretation is to

identify the spatial distribution features of geological body

boundaries effectively. Gravity anomalies have a high lateral

resolution, and gravity cascade belts with different scales often

correspond to the boundaries of underground fault structures

and geological bodies such as rock and ore bodies. The derivative

operation, mathematical statistics, and multi-scale detection use

gravity data to identify a geological body boundary. There are

many methods based on the derivative operation, such as the

vertical derivative method (VDR) (Hood and Mcclure, 1965;

Hood and Teskey, 1989), a total horizontal derivative method

based on x and y-direction derivatives (THDR) (Grauch and

Cordell, 1987), analytical signal amplitude method based on x-,

y-, and z-direction derivatives (ASM) (Nabighian, 1972;

Nabighian, 1984; Li, 2006), dip angle method based on the

ratio calculation of the aforementioned methods (TA) (Miller

and Singh, 1994; Wang and Li, 2004), and θ diagram method

(Theta Map) (Wijns et al., 2005), among others. The methods

based on mathematical statistics include small domain filtering

and standard deviation. Scale separation of multi-scale edge

detection methods mainly includes the wavelet multi-scale

decomposition (Hornby et al., 1999; Yang et al., 2015) and

upward continuation transformation (Holden et al., 2000; Yan

et al., 2015).

The 3D constrained gravity inversion can reduce the multi-

solution of the gravity field inversion by increasing constraint

conditions (Boulanger and Chouteau, 2001). When there is

enough prior information, the depth and structural features of

inversion results conform to the geological cognition (Camacho

et al., 2000; Bosch et al., 2006). Different solutions would be

obtained when different weighting factors and calculation

strategies are used for constraint conditions. The main

constraint methods are as follows: 1) depth constraint: it is

used to cancel the natural attenuation of the kernel function

with depth, eliminate the situation that the inversion density

distribution does not conform to the real anomaly source due to

its excessive weight near the surface, and then improve the depth

resolution (Li et al., 1996, Li et al., 1998; Commer, 2011; Liu et al.,

2013); 2) focus constraint: it can depict the boundary features of

abnormal bodies, which is convenient for later processing and

interpretation (Last et al., 1983; Portniaguine et al., 1999;

Zhdanov, 2009; Wang et al., 2022); 3) physical property

boundary constraint: to achieve more reasonable inversion

physical property distribution, the upper and lower limit

constraints of the geological physical property need to be

supplemented in the process of physical property inversion,

and the inversion density value is forced to be limited within

a certain range (Portniaguine et al., 1999; Gao et al., 2017); 4)

structural constraints: it can be used for joint constraints between

different geophysical attributes, including cross gradient

constraints (Gallardo and Meju, 2003; Fregoso and Gallardo,

2009; Gross, 2019) and summative gradient constraints

(Molodtsov et al., 2015; Colombo and Rovetta, 2018; Liu and

Zhang, 2022); 5) geostatistical constraints: regional geological

characteristics and laws and geologists’ understanding of

geological conditions can be added to the model (Shamsipour

et al., 2010; Geng et al., 2014; Geng et al., 2019a; Geng et al.,

2019b).

Random access memory and computing power are essential for

large-scale 3D gravity inversion in massive datasets and this could

lead to overall inefficiency. Researchers have studied from different

perspectives, mainly including 1) dimension reduction methods:

decreasing storage space and computation by reducing dimensions,

including random sub-domain inversion (Yao et al., 2007), wavelet

compression (Li et al., 2010), and polynomial-based inversion (Liu

et al., 2019); 2) symmetry processing method: the geometric lattice

method reduces the computational complexity by translation

invariance of the gravity field forward kernel matrix (Yao et al.,

2002). Jing et al. (2019) further realized a fast algorithm with spatial

domain calculation accuracy and frequency domain calculation

speed by the fast Fourier transform.

The actual geological body boundary is distributed and the

boundary features should be studied in a 3D space. The boundary

FIGURE 1
One-to-one correspondence between the model element
grid and measuring point grid.

FIGURE 2
Fracture model and the horizontal gradient diagram. (A)
Density model of fracture. (B) Horizontal gradient model of
fracture density.
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FIGURE 3
Normal fault fracturemodel and forwardmodeling field. (A)Model z = −200 mplane distributionmap. (B)Model I line position profile; (C)Model
II line position profile. (D) Forward gravity modeling results of the model. (E) Forward results of the horizontal gradient in the x-direction of gravity in
the model.

FIGURE 4
Gravity curves and inversion results profiles of line I and line II. (A) Gravity anomaly curve of line I. (B) Slice the inversion result of line I without
focusing constraint. (C) Slicing of line I focusing inversion results. (D) Gravity anomaly curve of line II. (E) Slice the inversion result of line II without
focusing constraint. (F) Slicing of II line focusing inversion results.
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recognition methods are mainly 2D or pseudo-3D (multi-scale)

methods; the processing method is used to reduce the dimension

after assuming 3D geological density bodies, and the processing

results often simplify the features of geological body boundaries.

The 3D gravity field inversion is a 3D method in an ideal case,

and its processing results can include all density features of

geological bodies. A new boundary recognition method, the

3D density gradient inversion method, was proposed to

improve the resolution of density boundary recognition. It

directly inverts the horizontal density gradient parameter, that

is, density boundary, and it has the advantage of flexible use for

constraint information. The principle and technology would be

explained below, and the application effect of the method would

be verified using the theoretical model and measured data.

Density gradient inversion method

Relationship between the density gradient
and gravity gradient

Assuming that the underground space is divided into

M(M � m × n × p) prism grids, where m and n are the

number of grids in the x (north) direction and y (east)

direction, respectively, and p represents the number of grids

in the z (vertical) direction,N(N � m × n)measuring points are

observed on the surface and correspond to the center of top

surfaces of prisms one by one (Figure 1).

According to the forward theory of gravity field, gravity

anomaly can be expressed as (Jing et al., 2019).

d � F−1(∑p

k�1F(~Gk) · F(~ρk)), (1≤ k≤p), (1)

where d is the gravity anomaly of the model, F is the forward fast

Fourier transform, F−1 is inverse fast Fourier Transform, ~Gk

((2m − 1) × (2n − 1)) is the prism forward kernel matrix

representing the k-th layer, ~ρk ((2m − 1) × (2n − 1)) is the

extended matrix after adding zeros to the density matrix of

the k-th layer, and ″ · ″ represents the Hadamard product,

that is, the multiplication of corresponding elements in two

matrixes of the same order.

The first m × n element in matrix ~ρk is the density matrix

element of the k-th layer in the model, and the remaining

elements in matrix ~ρk are zero values. The first m × n element

in matrix ~Gk is the gravity response value of the prism ~ρm,n,k

numbered (m, n) in the k-th density matrix at the surface

measuring point (the default starting number is 1). At this

time, the density of the prism ~ρm,n,k is set to unit density, and

the remaining elements in the matrix ~Gk are stored

symmetrically about ~Gm,n,k.

Fourier transforms Eq. 1 and multiplies it by the conversion

factor φ to obtain Eq. 2:

F(dφ) � ~φ ·∑p

k�1[F(~Gk)] · F(~ρk), (2)

where dφ is the gravity conversion field obtained by the

conversion factor φ of the gravity field, F(~dφ) � ~φ · F(~d).
When the conversion factor φ is a horizontal gradient

operator, its expression form is as follows:

~φx � iu, (3)
~φy � iv, (4)

FIGURE 5
Horizontal gravity gradient curve and density gradient inversion result profile in the x-direction of line I and line II. (A)Horizontal gravity gradient
anomaly curve of line I. (B) Slice the inversion result of line I without focusing constraint. (C) Line I focusing inversion result slice. (D)Horizontal gravity
gradient anomaly curve of line II. (E) Slice the inversion result of line II without focusing constraint. (F) Slicing of line II focusing inversion results.
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where u and v are the wavenumbers in x and y directions,

respectively, ~φx is the x-direction horizontal gradient conversion

factor, and ~φy is the y-direction horizontal gradient conversion

factor. Based on the physical meaning, the left term F(dφ) in Eq.

2 represents the horizontal gradient field of gravity in the

x-direction or y-direction. When the conversion factor ~φ is

combined with density ~ρ, Eq. 2 is as follows:

F(~dφ) � ∑p

k�1F(~Gk) · [~φ · F(~ρk)] � ∑p

k�1F(~Gk) · F(~ρφk), (5)

where ~ρφk is the conversion density distribution obtained by the

conversion factor ~φ of density distribution ~ρk.

Eq. 5 is the relationship between the 3D density gradient and

gravity gradient, in which the kernel function is the forward

kernel function of the gravity field, which is fixed, and the model

parameters can change with the type of observation field.

The model parameter is no longer density, but the horizontal

gradient of the density parameter. Generally, the conversion

factor may also be used as various conversion filters, such as

vertical gradient filters, high-order derivative filters, and

combinations of various filters. Different filters can

theoretically highlight the different features of the density

model and this is not discussed in this study.

For the case where the conversion factor is a horizontal

gradient filter, a density model of concealed fracture is set up to

visually demonstrate the difference between the density model

and the density horizontal gradient model (Figure 2A). The

horizontal gradient transformation model of the density

model is obtained by summing the horizontal derivatives of

the x and y directions of the density model (Figure 2B).

Comparing the two models, it can be seen that the density

model of concealed fracture consists of two block models and

FIGURE 6
Schematic diagram of the reverse fault fracture model. (A)Model z = -200 m plane distribution map. (B)Model line I position profile, (C)Model
line II position profile. (D) Forward gravity modeling results of the model. (E) Forward results of the horizontal gradient in the x-direction of gravity in
the model.
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one layered model. After transformation, only one inclined plate

remains in the transformed density horizontal gradient model,

and the position of the inclined plate is the key feature to identify

the fracture model. The horizontal gradient model of the density

model can highlight the boundary features of the density model,

and this is the significant theoretical foundation of the 3D density

gradient inversion.

Gravity density gradient inversion

In line with the forward-thinking of Eq. 5, the objective

function ρφ(α) of Tikhonov regularization is constructed

(Tikhonov and Arsenin, 1977).

ρφ(α) � {




D(dφ − Gρφ)




22 + α





W(ρφ − ρφ0)




22}, (6)

FIGURE 7
Gravity curves and inversion results profiles of lines I and II. (A) Gravity anomaly curve of line I. (B) Slice the inversion result of line I without
focusing constraint. (C) Slicing of line I focusing inversion results. (D) Gravity anomaly curve of line II. (E) Slice the inversion result of line II without
focusing constraint. (F) Slicing of II line focusing inversion results.

FIGURE 8
Horizontal gradient curve of gravity in the x-direction and inversion result in the profile of the density gradient on line I. (A) Horizontal gravity
gradient anomaly curve of line I. (B) Slice the inversion result of line I without focusing constraint. (C) Slicing of line I focusing inversion results. (D)
Horizontal gravity gradient anomaly curve of line II. (E) Slice the inversion result of line II without focusing constraint. (F) Slicing of line II focusing
inversion results.
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where ρφ(α) is the expected density model and α is the

regularization factor. ‖D(dφ − Gρφ)‖22 is the objective function

of the fitting difference of gravity transformation data, and the

matrix G is the sensitivity matrix (dimension isN × M), and the

elements in the matrix G corresponds to those in the matrix ~G

(dimension is (2m − 1) × (2n − 1) × p) (Yao et al., 2003).

‖W(ρφ − ρφ0)‖22 is the objective function of Tikhonov

regularization, D is the diagonal data covariance N × N

matrix (dimension is N × N), and the elements on the

diagonal line are the estimated data noise variance. ρφ0 is the

reference model and W is the model weighting matrix

(dimension is M × M), including the depth weighting matrix

and focusing weighting matrix.

Inversion calculation is used to find the minimum solution of

the objective function equation (Equation 6). The gradient at the

minimum of the objective function must be 0, and the fixed-point

iterative equation of the model ρφ in the model space is obtained

(Li et al., 2018).

ρφ � ρφ0 + (GTDTDG + αWTW)−1GTDTD(dφ − Gρφ0). (7)

The density gradient inversion results are obtained using the

iterative Eq. 7 inversion calculation. Due to that, the kernel

function of this inversion method remains unchanged, only

the observation quantity is changed, and the inversion

algorithm is consistent with the conventional inversion

algorithm. Eq. 7 can also apply an optimization algorithm of

3D gravity inversion for fast inversion calculation of massive data

(Jing et al., 2019). It should be noted that the setting of depth

weighting function parameters in inversion calculation refers to

the values in gravity gradient inversion calculation (Commer,

2011; Qin and Huang, 2016), instead of the values in gravity

inversion calculation, and the reference model matrix ρφ0 is set to

matrix zero.

Calculation process:

(1) Preparing the gravity horizontal gradient data. The gravity

data are obtained by the transformation of the 3D equivalent

source.

(2) Performing the inversion results of the density gradient in

two horizontal gradient directions and obtaining the

FIGURE 9
Horizontal gravity gradient curve and gradient inversion result profile in the x-direction of lines I and II. (A)Horizontal gradient anomaly curve of
gravity in the x-direction on line I. (B) Slice the inversion result of line I without focusing constraint. (C) Slice of line I focusing inversion results. (D) (E)
Horizontal derivative in the x-direction of Figures b and c. (F) Horizontal gradient anomaly curve of gravity in the x-direction on line II. (G) Slice the
inversion result of line II without focusing constraint. (H) Slice of II line focusing inversion results. (I) (J)Horizontal derivative in the x-direction of
images (G) and (H).
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inversion results of focusing density gradient according

to Eq. 7.

(3) Combining the inversion results of the two horizontal

gradient models to obtain the final density gradient

inversion result.

Model test

The fault zone is a significant geological feature, and the two

models, namely, normal fault and reverse fault, are designed to

check the effect of the 3D density gradient algorithm on

boundary recognition of the fault zone.

Normal fault model test

The normal fault model (Figure 3A) is made up of a

north–south strike fault zone (the bottom position of the fault

is indicated by dotted lines) and two small anomaly bodies, which

have high density in the footwall and low density in the hanging

wall. Figures 3B,C show model sections corresponding to lines I

and II in Figure 3A, respectively. The underground space is

divided into 201 × 121 × 15 prism units of 100 m × 100 m ×

100 m. The ground observation data are located in the center of

the prism plane, and the data area is the position of the dashed

box, totaling 101 × 121 observation data. The gravity forward

field (Figure 3D) and the gravity x-direction horizontal gradient

forward field (Figure 3E) of the model are taken as the basic

fields.

The 3D gravity inversion and 3D density gradient inversion

of the horizontal gravity gradient in the x-direction are applied in

model experiments as well as further focused inversion tests. To

facilitate comparison, the inversion results of the 3D density

gradient in the model test are represented in absolute values.

The observation data for 3D gravity inversion have the same

trend on lines I and II (Figures 4A,D). The anomaly features of

gravity data are high in the west and low in the east, in which line

I crosses local anomaly bodies, and there are local anomalies in

the curve. For the results of unfocused inversion (Figures 4,E), it

can be seen that there are longitudinal cascade zones in both

sections, and the dip of cascade zones is consistent with the dip of

faults (black dotted lines), and the sections of line I show local

anomaly bodies to some extent. For the results of focused

inversion (Figures 4C,E), it can be seen that the vertical

cascade belt in the inversion slice moves down as a whole and

becomes relatively gentle, and the recognition of a fault dip

becomes blurred.

The experimental results show that for the normal fault

model, the 3D gravity inversion results are in agreement with

the fault dip feature of the theoretical model. However, the

focused inversion reduces the coincidence.

FIGURE 10
Anomaly map of horizontal gravity gradient in the study area. (A) Topographic map of the study area (https://lpdaac.usgs.gov/product_search/?
collections=Terra+ASTER&status=Operational&view=list). (B) Topographic data curve at seismic line. (C) Horizontal gravity gradient in the
east–west direction. (D) Horizontal gravity gradient in the north–south direction.
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The horizontal gradient data of the gravity x-direction for

the density gradient inversion have differences in the features

of lines I and II (Figures 5A,D). The features of line II data are

simple, and its extreme value points correspond well to the

fault position, so the horizontal position of a fault can be

directly determined. The extreme value points of line I data

correspond well to the boundary of the local anomaly body

and the position of the fault. However, the amplitude of each

extreme value point is close to each other. It is difficult to

distinguish the fault zone or the boundary of the local anomaly

body directly based on the extreme value points according to

the features of the curve. From the results of unfocused

inversion (Figures 5B,E), it can be seen that the horizontal

position of the fault and the boundary position of the local

anomaly are displayed in the section of line I. Although there

is a certain indication of a fault dip, the features are not

obvious. Section II shows that the horizontal position of the

fault is relatively clear, but it does not show the features of the

fault dip. From the results of focusing inversion (Figures

5C,F), it can be seen that the profiles of line I and line II

clearly depict the fault features, which not only show the

horizontal position of the fault but also the fault dip feature,

and are close to the fault dip angle of the theoretical model.

The boundary of the local anomaly body is clearly depicted by

the section of line I.

The model test results show that for the normal fault

model, it is difficult to determine the dip feature of faults

clearly from 3D density gradient inversion based on the

x-direction, and the focus inversion based on the

x-direction can enhance the dip features of faults and

accurately depict the spatial distribution features of faults,

which means that the focus inversion based on the x-direction

can directly determine the dip of faults.

Reverse fault model test

The reverse fault model (Figure 6) is also composed of a

north–south strike fault zone and two small anomaly bodies,

which have a low density in the footwall and high density in the

FIGURE 11
Horizontal slices of 3D focusing density gradient inversion results for different vertical depths.
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hanging wall. Other parameters are consistent with normal fault

model tests. The 3D gravity inversion and horizontal density

gradient inversion in the x-direction are designed, as well as the

further focused inversion tests.

The gravity inversion data have a similar trend on lines I and

II (Figures 7A,D), and the anomaly features of gravity data are

low in the west and high in the east, where line I crosses local

anomaly bodies. In addition, there are local anomalies in the

curve. From the results of unfocused inversion (Figures 7B,E), it

can be seen that there are longitudinal cascade zones in both

section slices, but the dip of cascade zones is opposite to that of

faults (black dotted lines). The section of line I shows the local

anomaly body on the east side of the fault to some extent. As for

the results of focused inversions (Figures 7C,E), it can be seen

that the longitudinal cascade zones in the inversion slices move

down as a whole and become relatively gentle, the recognition of

fault dip becomes blurred, and the dip feature also indicates

reverse direction.

The experimental results show that for the reverse fault

model, the 3D gravity inversion and focusing inversion cannot

correctly identify the fault dip feature.

The x-direction horizontal gradient data for the density

gradient inversion (Figures 8A,D) are consistent with those of

the normal fault model, and the main difference is positive and

negative symmetries (Figures 5A,D). For the results of unfocused

inversion (Figures 8B,E), the section slices of lines I and II

indicate the fracture dip to some extent, but the features are

not obvious. The boundary of the local anomaly body in the

eastern part of the fault can be displayed by the section of line I,

but the boundary of the local anomaly body in the western part is

weaker. For the results of focusing on inversion (Figures 8D,F),

the sections of lines I and II show fracture features, and their dip

angles are very close to those of the theoretical model. The section

of line I depicts the boundary of the local anomaly body clearly,

and it shows the boundary position of the local anomaly body in

the east and west of the fault.

FIGURE 12
Comprehensive interpretation section. (A) Profile gravity anomaly curve. (B) Profile gravity horizontal gradient anomaly curve. (C) Seismic
profiles and fault interpretation maps. (D) Inversion result slice and interpretation comparison chart.
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To compare with the conventional gravity inversion

results, the horizontal gradient inversion calculation in the

x-direction is established, and the horizontal derivative in the

x-direction is obtained from the inversion density results

(Figure 9). When there is no focusing constraint, it can be

seen that the section slices of lines I and II (Figures 9B,G)

have no indication features for the dip of the fault, and the

section slices of line I have a display for the position of the

local anomaly body on the east side of the fault, and weak

display for that on the west. When the focus constraint is

added (Figures 9C,H), the inversion results show that the

cascade zone features of the section slices of lines I and II at

the fault are ambiguous. The anomaly becomes wide and flat,

and it is difficult to identify the transverse position of the

fault. However, the position of the local anomaly on the east

side of the fault is enhanced, and the local anomaly on the

west side of the fault is also enhanced to a certain extent.

The horizontal derivative in the x-direction is obtained

from the aforementioned inversion results. Compared with

the results of gravity horizontal gradient density gradient

inversion (without focusing constraint) (Figures 8B,E), the

horizontal gradient results of unfocused inversion (Figures

9D,I) have a slight advantage in depicting faults and

abnormal bodies. Compared with the results of gravity

horizontal gradient density gradient inversion (focusing

constraint) (Figures 8C,F), the horizontal gradient results

from focusing constraint inversion (Figures 9E,J) are not only

difficult to identify the features of faults and anomaly bodies

but also show messy false anomalies. As a result, the

experiments indicate that it is difficult to identify the dip

features of faults by the gravity horizontal gradient inversion.

The experimental results show that for the reverse fault

model, the horizontal position of the fault can be identified by

3D inversion based on the x-direction gravity gradient data, but it

is difficult to accurately identify a fault dip feature. The focus

inversion of the 3D density gradient based on the x-direction

gravity gradient data can enhance the dip features of faults and

depict the spatial distribution features of faults.

Application of measured data

The study area is located in the north-central part of the

Songliao Basin in China, which is an important oil production

base. The research goal was to study the fault structure in this

area. This is significant to the study of sedimentation,

deformation, hydrocarbon generation, and reservoir formation

of basin caprocks on accurately identifying the spatial

distribution features of fault structures. The gravity survey

work in this study area is relatively up-to-date, and the whole

area is covered by medium-scale gravity data. Moreover, the

surface is mainly covered by Quaternary deposits, and the terrain

is flat; therefore, the gravity anomaly caused by topographic relief

can be ignored as shown in Figures 10A,B.

Figures 10C,D show the gravity horizontal gradient

anomaly in the study area, calculated by the method of 3D

equivalent source according to the gravity anomaly data. The

structure of the study area is mainly in the north–south

direction, and there is evidence that there should be fault

zones from the seismic section data, which is a survey line

passing through gradient zones at a large angle as shown by

the black line in the figure. Figure 11 shows the inversion

results of two gradient directions calculated by the method,

and the inversion results of the density gradient in the study

area are obtained by adding and combining. The results show

that the fault development degree in this area is relatively high.

The shallow results (Figure 11A) show that the NW-trending

fault structure is dominant, middle-shallow results

(Figure 11B) show that the NS-trending fault structure is

based on the NW-trending fault structure, and middle-deep

results (Figure 11C) and deep results (Figure 11D) show that

the NNE and NNW-trending faults are dominant, and some

EW-trending faults occur.

Comparing the interpretation results of the seismic profiles

(Figure 12C), gravity anomaly curves (Figure 12A), and gravity

horizontal gradient curves (Figure 12B), it can be seen that

although the three faults (F1, F2, and F3) have different

corresponding relations with the cascade zones or extreme

value points in each curve, it is difficult to directly ascertain

the dip feature of faults according to these features.

Comparing the interpretation results of the inversion

section (Figure 12D) and the seismic section (Figure 12C),

it can be seen that there is a good corresponding relationship

between them: the dip angle of the F3 fault in the seismic

section is relatively small, and its spatial position corresponds

to the positive and negative anomaly areas in the deep part of

the inversion result slice, so it is impossible to judge the dip

feature of the fault in the inversion slice. The F2 fault

corresponds to the positive anomaly area in the inversion

result slice to some extent. Although there is some disposition

in the spatial position, the dip features indicated by the

F2 fault are similar, and they all dip westward. The

position and dip feature of the F1 fault correspond well to

the negative anomaly area in the inversion result slice, that is,

the F1 fault can be inferred directly from the inversion slice.

The experimental results show that the inversion results of

the gravity 3D density gradient can not only identify the

transverse distribution features of faults but also identify

the vertical features of faults, that is, the dip features of

faults. The positions with clear anomaly features in the

inversion results have a high degree of coincidence with the

results of seismic profile interpretation, showing that this

method can identify faults with high reliability. The gravity

inversion results based on this method can make up for the
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shortage of sparse distribution and poor lateral resolution of

existing seismic data.

Conclusion

A gravity anomaly inversion method for direct inversion of

the density gradient is proposed. The method has the following

features:

(1) The parameter of the traditional gravity inversion model

is the density attribute, and the parameter of the

inversion model is the density gradient attribute. The

density gradient model has a more direct correspondence

with the density boundary compared with the density

model.

(2) The inversion iteration equation and calculation process

of this method are almost identical to the conventional

gravity inversion method, and all kinds of constraint

weighting functions are retained. The main difference

is that gravity data are converted into gravity horizontal

gradient data, so the cost of programming calculation of

this method is minimal, and it is convenient to popularize

and apply.

(3) The method adopts a fast algorithm, which can carry out fast

inversion calculation of massive gravity data, and the

inversion results are relatively stable; hence, this method

is expected to become one of the basic methods of gravity

processing and interpretation.

(4) The method in this study can only identify the faults with a

certain scale, and the inversion results can only show the

tendency of the faults. It cannot accurately or quantitatively

identify the inclination of the faults.

This method has been successfully applied to fault

identification in the northern-central part of the Songliao

Basin. The inversion results not only show the different

variation features of a fault strike at different depths but

also can be directly applied to the identification of fault dip

features.

Notably, this study only considers the inversion of the density

gradient in two horizontal directions and can discuss the research

of the vertical gradient, high-order gradient, and different

gradient combinations.
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The connection of velocity and
impedance sensitivity kernels
with scattering-angle filtering
and its application in full
waveform inversion

Jidong Yang, Jie Xu*, Jianping Huang*, Youcai Yu and
Jiaxing Sun

Department of Geophysics, China University of Petroleum (East China), Qingdao, China

Multi-scale strategies such as starting from the low-frequency and early-arrival

part of recorded data are commonly used in full waveform inversion (FWI) to

maneuver complex nonlinearity. An alternative way is to apply appropriate

filtering and conditioning to the misfit gradient in the model domain. In

acoustic constant-density media, we prove that velocity and impedance

sensitivity kernels are equivalent to applying a high-pass and a low-pass

scattering-angle filter to a conventional single-parameter velocity (CSV)

kernel. The high-pass scattering-angle filter allows the velocity kernel to

include low-wavenumber updates (tomography component). In contrast, the

low-pass scattering-angle filter helps the impedance kernel to yield high-

wavenumber updates (migration component). The velocity model can be

updated using a hybrid gradient of two components combined with

appropriate weights. This FWI scheme is able to overcome the potential

nonlinearity and partially mitigate the cycle-skipping problem. Numerical

examples for the SEG/EAGE overthrust model and the Marmousi model

demonstrate that the hybrid gradient facilitates FWI to converge faster to the

true model even in cases when conventional CSV-based FWI fails.

KEYWORDS

full waveform inversion, sensitivity kernels, scattering-angle filtering, hybrid gradient,
migration component, tomography component

1 Introduction

Full waveform inversion (FWI) aims to estimate subsurface rock parameters by

minimizing misfits between observed and synthetic data (Lailly, 1983; Tarantola, 1984;

Mora, 1989; Pratt et al., 1998; Pratt, 1999; Pratt and Shipp, 1999). To date, global

optimization methods are still expensive in practice due to high computational costs for

forward calculations and high dimensionality of model space. Gradient-based local

optimization techniques are commonly used to update model parameters (Tromp

et al., 2005; Liu and Tromp, 2006; Plessix, 2006). Due to irregular acquisition, limited
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offset, ambient noise and lack of low-frequency signals, the

nonlinearity of FWI becomes much complicated and the

gradient-based solvers are prone to be trapped in the local

minima (Brossier et al., 2009; Virieux and Operto, 2009; Sears

et al., 2010; Vigh et al., 2010).

Multi-scale strategy is a natural way to reduce the potential

nonlinearity through data decimation and selection, which helps

FWI to mitigate the cycle-skipping problems (Bunks et al., 1995;

Pratt et al., 1996; Virieux and Operto, 2009). One

implementation of this strategy is to gradually increase

frequency bands to ensure that the phase difference between

the predicted and observed data is always less than half a period

(Pratt, 1999; Ravaut et al., 2004; Sirgue and Pratt, 2004; Brossier

et al., 2009; Fichtner et al., 2013; Xue et al., 2016). The success of

this approach requires the existence of effective low-frequency

signals in the recorded data, which can be achieved by either

acquiring broadband data or utilizing low-frequency enhanced

techniques (Xie, 2013; Li and Demanet, 2016; Wang and

Herrmann, 2016). Another implementation of multi-scale

strategy is to gradually include later arrivals by designing

particular windows in the time domain (Shipp and Singh,

2002; Sheng et al., 2006; Brossier et al., 2009; Boonyasiriwat

et al., 2010) or introducing proper damping terms in the

frequency domain (Shin et al., 2002; Brenders and Pratt, 2007;

Shin and Cha, 2008). In addition, layer-stripping and offset-

dependent windowing can also be combined with the above two

strategies to reduce the nonlinearity and improve the success

probability of FWI (Shipp and Singh, 2002; Brossier et al., 2009;

Virieux and Operto, 2009).

As analyzed by Wu and Toksöz (1987) and Mora (1989), the

resolved wavenumbers of velocity model are determined by

scattering patterns in diffraction tomography. Such works

provide insights in the model domain instead of the data

domain, such as filtering and conditioning the misfit gradient,

to reduce the potential nonlinearity in FWI (Albertin et al., 2013;

Almomin and Biondi, 2013; Tang et al., 2013; Alkhalifah, 2016).

Using the slopes of subsurface structures, Guitton et al. (2012) and

Ma et al. (2012) design a directional smoothing operator for the

gradients, which can help them to generate smooth velocitymodels

and mitigate the cycle-skipping problem. Tang et al. (2013) notice

that the FWI gradient includes tomography and migration

components. They propose to enhance the tomography part at

early stages in order to recover long-wavelength velocity

perturbations. From the standpoint of wavenumber

continuation, Alkhalifah (2015) design a scattering-angle filter

to extract different wavenumber components and prove that

even 10 Hz data can produce vertical near-zero wavenumber

components in the FWI gradients. This allows him to update

the velocity model from low-to high-wavenumbers by successively

relaxing the scattering-angle filter (Wu and Alkhalifah, 2015;

Alkhalifah, 2016; Kazei et al., 2016). Wu and Alkhalifah (2017)

split the velocity model into background and perturbation

components, integrate them directly in the wave equation and

introduce a new cheap implementation of scattering angle

enrichment, achieving the separation of the background and

perturbation components efficiently (Wu and Alkhalifah, 2017).

In this study, we parameterize the acoustic wave equation

with velocity and impedance and derive their sensitivity kernels

using the Lagrange multiplier method. For a constant-density

model, we analytically prove that the velocity and impedance

kernels are equivalent to applying a high-pass and a low-pass

scattering-angle filter to the conventional single-parameter

velocity (CSV) kernel. The high-pass scattering-angle filter

allows the velocity kernel to recover low-wavenumber

perturbations (tomography component) and can be used to

estimate macro velocity models. The low-pass scattering-angle

filter helps the impedance kernel to update high-wavenumber

perturbations (migration component) and produces high-

resolution results. Similar to Tang et al. (2013), we combine

these two components into a hybrid gradient (HG) to update the

velocity model. By emphasizing the velocity kernel at a few early

iterations and then relaxing its weights at later iterations, HG-

based FWI provides us with a way to reduce FWI nonlinearity

and partially mitigate the cycle-skipping problem. Numerical

examples for the SEG/EAGE overthrust and the Marmousi

models demonstrate that the proposed method is much more

accurate than CSV-based FWI for recovering deep low-

wavenumber velocity anomalies.

This paper is organized as follows. First, we derive the
velocity and impedance sensitivity kernels using the Lagrange
multiplier method. Next, we establish a connection between the
velocity and impedance kernels with scattering-angle filtering.
Then, we combine these two kernels into a hybrid gradient by
properly choosing weights, and apply it to FWI to recover
velocity models. Finally, two synthetic examples are used to
illustrate the performance of the proposed method.

2 Theory

2.1 Velocity and impedance sensitivity
kernels

Using velocity v(x) and impedance z(x) as model parameters,

the second-order acoustic wave equation can be written as

(Plessix and Li, 2013)

1
v x( )z x( )

z2p x, t( )
zt2

− ∇ · v x( )
z x( )∇p x, t( )( ) � f xs, t( ), (1)

where xs and x are the source and subsurface locations, f (xs, t) is

the source function, p (x, t) is the pressure wavefield, which is

subject to the initial conditions: p (x, 0) = 0 and zp (x, t)/zt=0.

To derive the adjoint wave equation and sensitivity kernels,

we use the Lagrange multiplier method. The augmented least-

squares waveform function can be formulated as (Tromp et al.,

2005; Liu and Tromp, 2006; Plessix, 2006)
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J � 1
2
∑
xr

∫T
0

p xr, t( ) − d xr, t( )[ ]2dt
−∫T

0

∫
Ω

q x, t( ) 1
v x( )z x( )

z2p x, t( )
zt2

− ∇ · v x( )
z x( )∇p x, t( )( )[ ]dx3dt,

(2)

where xr is the receiver location, q (x, t) is the Lagrange

multiplier, [0, T] denotes the record duration, Ω is the

subsurface volume of interest. Taking the variation of J in Eq.

2 and using integration by parts for the spatial derivatives of p (x,

t), we obtain

δJ � ∫T
0

∫
Ω

∑
xr

p xr, t( ) − d xr, t( )[ ]δp x, t( )δ x − xr( )dx3dt

−∫T
0

∫
Ω

δp x, t( ) 1
v x( )z x( )

z2q x, t( )
zt2

− ∇ · v x( )
z x( )∇q x, t( )( )[ ]{

−δ ln v 1
z x( )v x( )

z2p x, t( )
zt2

q x, t( ) − v x( )
z x( )∇p x, t( ) · ∇q x, t( )[ ]

−δ ln z 1
z x( )v x( )

z2p x, t( )
zt2

q x, t( ) + v x( )
z x( )∇p x, t( ) · ∇q x, t( )[ ]}dx3dt,

(3)

where δ(x) is the Dirac delta function, δp (x, t) is the perturbed

pressure wavefield. δ ln z = δz(x)/z0(x), δ ln v = δv(x)/v0(x),

where δz(x) and z0(x) are the perturbed and background

impedances respectively, δv(x) and v0(x) are the perturbed

and background velocities. Note that in (Eq. 3), we only

consider the first-order expansion for the pressure wavefield

and model parameters, which is known as the Born

approximation (Tarantola, 2005; Tromp et al., 2005; Plessix,

2006).

Provided the Lagrange multiplier q (x, t) satisfies

1
v x( )z x( )

z2q x, t( )
zt2

− ∇ · v x( )
z x( )∇q x, t( )( )

� ∑
xr

p xr, t( ) − d xr, t( )[ ]δ x − xr( ) (4)

and is subject to the final conditions

q x, T( ) � 0,
zq x, T( )

zt
� 0, (5)

(Eq. 3) can be simplified to

δJ � −∫T
0

∫
Ω

δ ln v
1

z x( )v x( )
z2p x, t( )

zt2
q x, t( ) − v x( )

z x( )∇p x, t( ) · ∇q x, t( )[ ]{
+δ ln z 1

z x( )v x( )
z2p x, t( )

zt2
q x, t( ) + v x( )

z x( )∇p x, t( ) · ∇q x, t( )[ ]}dx3dt.
(6)

This equation tells us that the change of the misfit δJ may be

caused by the changes of the model parameters δ ln z and δ ln v in

terms of the forward wavefield p (x, t) and the Lagrange

multiplier wavefield q (x, t). The adjoint wavefield is defined

as p†(x, t) = q (x, T − t) and inserted into Eq. 4 to obtain the

adjoint wave equation

1
v x( )z x( )

z2p† x, t( )
zt2

− ∇ · v x( )
z x( )∇p

† x, t( )( )
� ∑

xr

p xr, T − t( ) − d xr, T − t( )[ ]δ x − xr( ). (7)

Then, the variation of the misfit function in (Eq. 6) is reduced to

δJ � −∫
Ω

δ ln vKv + δ ln zKz( )dx3. (8)

where the velocity (Kv) and impedance (Kz) kernels are defined as

Kv x( ) � ∫T
0

1
z x( )v x( )

z2p x, t( )
zt2

p† x, T − t( ) − v x( )
z x( )∇p x, t( ) · ∇p† x, T − t( )[ ]dt,

Kz x( ) � ∫T
0

1
z x( )v x( )

z2p x, t( )
zt2

p† x, T − t( ) + v x( )
z x( )∇p x, t( ) · ∇p† x, T − t( )[ ]dt.

(9)

Note that the adjoint wave equation is exactly the same as the

forward wave (Eq. 1), except for replacing f (xs, t) by time-

reversed data residual (adjoint source).

For comparison, herein present the CSV kernel (the detailed

derivation is given in Appendix A):

Kcsv x( ) � 2∫T
0

1
z x( )v x( )

z2p x, t( )
zt2

p† x, T − t( )[ ]dt. (10)

(Eqs. 9, 10) show that the CSV kernel equal the summation of the

velocity and impedance kernels, indicating that the updates in

CSV-based FWI include both velocity and impedance

information. Zhou et al. (2015) show that due to the different

responses to the scattering angles, the velocity and impedance

kernels produce low-wavenumber (tomography) and high-

wavenumber (migration) components, respectively (Wu and

Toksöz, 1987; Mora, 1989; Alkhalifah, 2015). Therefore,

FIGURE 1
Geometry of incident and scattering waves. Red lines are the
wave paths of the forward and adjoint wavefields. k and k† denote
their propagation directions. (x, z) is the Cartesian coordinate
system and θ is the scattering angle.
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conventional CSV-based FWI simultaneously update the macro

and detail structures in velocity model building, which increases

the nonlinearity and is prone to be trapped into local minima.

One way to mitigate this problem in the model domain is to use

the wavenumber continuation strategy that combines the two

separated components with proper weights (Tang et al., 2013;

Alkhalifah, 2016).

2.3 Connection between velocity and
impedance kernels with scattering-angle
filtering in constant-density media

Douma et al. (2010) prove that the impedance kernel in

adjoint tomography is equivalent to the application of

Laplacian filtering to reverse-time migration (RTM) images.

Zhang and Sun (2009) notice that the application of the

Laplacian filtering to RTM images is equivalent to the

application of a cos2ϕ filter to angle-domain gathers, where

ϕ is the reflection angle. Such conclusions confirm that the

impedance-based imaging condition produces fewer low-

wavenumber artifacts on RTM images (Zhu et al., 2009;

Whitmore and Crawley, 2012; Pestana et al., 2014). In this

section, we extend Douma et al. (2010)’s derivation to both

velocity and impedance kernels and establish a connection

between these kernels with scattering-angle filtering.

Considering the initial and final conditions for the forward

and adjoint wavefields

p x, 0( ) � p† x, T( ) � 0, p x, T( ) � p† x, 0( ) � 0, (11)
and using integration by parts for the time derivatives, we have

the following identity

FIGURE 2
Scattering angle filters and radiation patterns for a vertically incident plane wave in a homogenous medium with v =2 km/s (A) Angle filters
for different kernels; (B) CSV radiation pattern; (C) velocity and (D) impedance radiation patterns. A unit model perturbation indicated by a green
star is located at x =2 km and z =2 km. Red dashed lines in (B), (C) and (D) denote the amplitude variations with respect to different scattering
angles.
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∫T
0

z2p x, t( )
zt2

p† x, T − t( )[ ]dt � −∫T
0

zp x, t( )
zt

dp† x, T − t( )
dt

[ ]dt
� ∫T

0

p x, t( ) z
2p† x, T − t( )

zt2
[ ]dt.

(12)

This notation simplifies the velocity and impedance kernels in

(Eq. 9) to

Kv x( ) � 1
2
v x( )
z x( )∫

T

0

1

v2 x( )
z2p x, t( )

zt2
p† x, T − t( )[

−2∇p x, t( ) · ∇p† x, T − t( ) + 1

v2 x( )p x, t( ) z
2p† x, T − t( )

z2t
]dt,

Kz x( ) � 1
2
v x( )
z x( )∫

T

0

1

v2 x( )
z2p x, t( )

zt2
p† x, T − t( )[

+2∇p x, t( ) · ∇p† x, T − t( ) + 1

v2 x( )p x, t( ) z
2p† x, T − t( )

z2t
]dt.

(13)

In isotropic acoustic media with constant density, i.e., z(x)/

v(x) = ρ0, the forward and adjoint wavefields satisfy

1

v2 x( )
z2p x, t( )

zt2
− ∇2p x, t( ) � ρ0f xs( ),

1

v2 x( )
z2p† x, t( )

zt2
− ∇2p† x, t( ) � ρ0f

† x, t( ),
(14)

where f†(x, t) is the adjoint source, that is, the right-hand side of

(Eq 7). Inserting (Eq. 14) into (Eq. 13) and replacing the time-

derivatives with the spatial-derivatives of p (x, t) and p†(x, t)

yields

Kv x( ) � 1
2ρ0

∫T
0

∇2p x, t( )p† x, T − t( ) − 2∇p x, t( ) · ∇p† x, T − t( )[
+p x, t( )∇2p† x, T − t( )]dt,

Kz x( ) � 1
2ρ0

∫T
0

∇2p x, t( )p† x, T − t( ) + 2∇p x, t( ) · ∇p† x, T − t( )[
+p x, t( )∇2p† x, T − t( )]dt.

(15)
In (Eq. 15), the terms associated with the source and the

adjoint source are neglected because they vanish for far-field

wavefields (Douma et al., 2010). Applying Fourier transform

FIGURE 3
FWI experiments for SEG/EAGE overthrust model. (A) True velocity model, (B) initial velocity model, (C) recovered velocity model using CSV-
based FWI, and (D) recovered velocity model using HG-based FWI. 40 iterations are performed in (C,D). The lowest effective frequency used in (C,D)
is 5 Hz.
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FIGURE 4
Comparisons of velocity logs for SEG/EAGE overthrust model. (A–C) are located at the midpoints of 1.25, 3.5, and 5.0 km, respectively. Black
and green lines are from true and initial models, blue and red lines are from CSV-based FWI and HG-based FWI. HG-based FWI produces more
accurate results than CSV-based method, especially at great depths with large-scale velocity anomalies.

FIGURE 5
The relationship between the weight factor lambda and iterations. λ is set to 8.0 in the first 10 iterations, and then gradually reduces to
1.0 according to the change of cosine function in subsequent iterations.
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to (Eq. 15) and because |k| � |k†| � ω/v, the kernels have the

following form:

Kv k( ) � 1
ρ0

∑
ω

|k|2 1 − k · k†

|k|2( )P k,ω( )P† k,ω( ),

Kz k( ) � 1
ρ0

∑
ω

|k|2 1 + k · k†

|k|2( )P k,ω( )P† k,ω( ).
(16)

where ω is the angular frequency, p (k, ω) and p†(k, ω) are the

forward and adjoint Fourier-domain wavefields, k and k† are the

forward and adjoint wavenumbers. Considering the relation
k·k†
|k|2 � cos θ and using the dispersion relation |k|2 = ω2/v2, (Eq.

16) can be reformulated as

Kv x( ) � 2
ρ0

∑
ω

ω2

v2 x( )P x,ω( )P† x,ω( ) 1 − cos θ( )
2

,

Kz x( ) � 2
ρ0

∑
ω

ω2

v2 x( )P x,ω( )P† x,ω( ) 1 + cos θ( )
2

.
(17)

where θ is the scattering angle (see Figure 1). Similarly, CSV

kernel in (Eq. 10) can be rewritten in the frequency

domain as

Kcsv x( ) � 2
ρ0

∑
ω

ω2

v2 x( )P x,ω( )P† x,ω( ). (18)

(Eqs. 17, 18) show that the differences between Kv and Kz

with Kcsv are the multiplication with (1 − cos θ)/2 and (1 +

cos θ)/2, which appear as band-pass filters associated with

scattering angles. Note that Kz includes both velocity and

density updates when density varies significantly in the

subsurface. Since (Eqs. 12–17) are derived based on the

assumption of constant density, Kz and Kv herein represent

the velocity perturbations within different scattering-angle

bands.

A simple experiment (Figure 2) is used to illustrate the

effects of these two scattering-angle filters. Since the sensitivity

kernels in (Eqs. 17, 18) are derived based on Born

approximation, we calculate Born modeling results using

CSV parameterization as well as velocity and impedance

parameterization (Figures 2B–D). These results are also

known as radiation patterns (Virieux and Operto, 2009;

Wang et al., 2015; Zhou et al., 2015). Figure 2A shows that

FIGURE 6
Comparison of different gradients in the first iteration for SEG/EAGE overthrust model. (A) CSV-based gradient, (B) velocity and (C) impedance
gradients, and (D) phase-encoding diagonal Gauss-NewtonHessian. (D) Is used as a preconditioner in both CSV-based and HG-based FWImethods.
The magnitude of each panel is normalized with respect to their maximum values.
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the CSV kernel has an all-pass response with respect to

scattering angles, which corresponds to a homogenous

radiation pattern (Figure 2B). This suggests that the CSV

kernel includes both large and small scattering-angle updates

(Tang et al., 2013). The velocity kernel Kv behaves like applying

a high-pass filter to the CVS kernel (red line in Figure 2A),

which emphasizes large-angle forward scattering contributions

(Figure 2C). This indicates that the tomography component in

FWI gradient is enhanced in Kv and can be used to recover

large- and intermediate-scale velocity perturbations. In

contrast, the impedance kernel Kz is a result of applying a

low-pass scattering-angle filter to the CSV kernel (green line in

Figure 2A), emphasizing the small-angle backscattering

component (Figure 2D). This high-pass scattering-angle filter

helps us to produce migration profiles and can be used to

resolve detail structures (Luo et al., 2009; Zhu et al., 2009;

Pestana et al., 2014).

2.4 Full waveform inversion with a hybrid
gradient

In the CSV-based FWI, the velocity model can be updated

using the following gradient-based scheme:

mk+1 � mk − αH−1gk (19)

where mk+1 and mk are the velocity models in the next and

current iterations, respectively; gk is the misfit gradient, which

can be computed by summing Kcsv in (Eq. 10) over sources; α is

the step length, which can be computed with a line-search

algorithm (Potra and Shi, 1995); H−1 is the Hessian inverse

and can be used to speed up convergence (Pratt et al., 1998;

Shin et al., 2001; Plessix and Mulder, 2004; Tang, 2009; Métivier

et al., 2013).

Using wavefield decomposition, Tang et al. (2013) and

Wang et al. (2016) show that the enhancement of tomography

components in the misfit gradient helps FWI to reduce

nonlinearity and mitigate the cycle-skipping problem. This

can also be implemented with a wavenumber continuity

strategy, designing an appropriate scattering-angle filter

(Wu and Alkhalifah, 2015; Alkhalifah, 2016). In the

previous section, the connection between the velocity and

impedance kernels is established by scattering-angle filtering

FIGURE 7
Convergence rates for SEG/EAGE overthrust model. (A,B) are
relative data residual and model error, respectively. Blue and red
lines are results from CSV-based FWI and the proposed HG-
based FWI.

FIGURE 8
FWI experiment for Marmousi model. (A) True velocity model
and (B) initial velocity model.
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in acoustic constant-density media. Similar to Tang et al.

(2013), we combine the velocity and impedance kernels

into a hybrid gradient:

gh � λ∑
xs

Kv xs( ) +∑
xs

Kz xs( ), (20)

where xs is the source location, Kv(xs) and Kz (xs) are the kernels

in (Eq. 9), and λ is an adjustable scalar parameter to balance the

relative weights of Kv and Kz.

Note that the large scattering-angle components in the

gradient are enhanced by setting λ greater than one in (Eq.

20) at early iterations, the large scattering-angle components in

the gradient are enhanced. This allows us to recover large- and

intermediate-scale velocity perturbations. In subsequent

iterations, reducing λ gradually to one can increase the

relative weight of Kz and use more smaller scattering-angle

contributions, which enables us to update detail structures.

We refer to this workflow as the HG-based FWI. Since we

first update large scattering-angle perturbations and then

introduce smaller scatting-angle information, HG-based FWI

provides us a possible way to reduce potential nonlinearity

during FWI iterations.

3 Numerical examples

We present two synthetic examples to illustrate the

performance of the proposed HG-based FWI scheme. The

first example is the 2D SEG/EAGE overthrust model, which

is modified by adding a 175 m thick water layer on the top of the

model. The true velocity model is shown in Figure 3A. Initial

model in Figure 3B is built by applying a 625 m × 625 m

Gaussian filter to the true model. Seismograms are calculated

using a staggered-grid finite-difference scheme with eighth-

order accuracy in space and second-order accuracy in time.

25 shots are evenly distributed on the surface with a 250 m

interval. Each shot is recorded by 250 receivers, which are

uniformly deployed on the surface with a 25 m spacing. A

FIGURE 9
Comparisons of different gradients in the first iteration for
Marmousi model. (A) CSV-based gradient, (B) velocity and (C)
impedance gradients. The magnitude of each panel is normalized
with respect to their maximum values.

FIGURE 10
Recovered Marmousi velocity model from different FWI
methods. (A,B) are CSV-based FWI and our method using data
without frequency components below 3 Hz. 40 iterations are used
in (A,B).
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Ricker wavelet with a peak frequency of 20 Hz is used as the

source function. A high-pass filter is applied to filter out low-

frequency signals below 5 Hz.

Inversion results using CSV-based FWI and our method are

shown in Figures 3, 4. 40 iterations are performed and a phase-

encoding diagonal Hessian (Figure 6D) is used as a pre-

conditioner (Tang, 2009) in both methods. In our method, λ

is set to 8.0 in the first 10 iterations, and then gradually reduces to

1.0 during the following iterations as shown in Figure 5.

Gradients calculated using different kernels at the first

iteration are shown in Figure 6. We notice that the gradient

in CSV-based FWI includes almost high-wavenumber updates,

i.e., migration components (see Figure 6A). This does not mean
there are no low-wavenumber components, but their magnitudes
are relatively small in comparison with high-wavenumber
components. As shown in Figures 6B,C, the low- and high-
pass scattering-angle filters decompose the CSV kernel into a
tomography component (Kv) and a migration component (Kz).
This favorable scale-separation property allows HG-based FWI
to update the low-wavenumber tomography component by
enhancing the weight of Kv, and to resolve detail structures by
gradually increasing the weight of Kz (see Figures 3D, 4).

Figure 7 shows the evolutions of data residuals and model

errors for these two FWI schemes. Data residuals and model

errors are defined as

r � ‖dobs − dsyn‖2
‖dobs‖2 , e � ‖mtru −mfwi‖2

‖mtru‖2 , (21)

where dobs and dsyn are the observed and synthetic data,mtru and

mfwi are the true and recovered velocity models. Relative data

residuals and model errors are calculated by normalizing r and e

by their initial values (r0 and e0). Although the data residual of

CSV-based FWI has been reduced by about 90%, it is stuck

around 10% (blue line in Figure 7A), suggesting that it is trapped

into a local minimum. This is also reflected in the corresponding

model errors in Figure 7B. With a hybrid gradient, the proposed

method recovers low-wavenumber components first and then

gradually increases high-wavenumber components, leading to a

faster convergence rate and a higher inversion accuracy in

comparison with CSV-based FWI (see Figures 4, 7).

In the second example, the Marmousi model is used to test the

robustness of the proposed method for complicated structures. True

velocity model is shown in Figure 8A. Starting model (Figure 8B) is

built by applying a 1,250 m × 1,250 m Gaussian filter to the true

model. Seismograms are generated using the same finite-difference

scheme as the previous example. Source function is a Ricker wavelet

with a peak frequency of 8 Hz. 38 shots are distributed on the surface

with a 250 m spacing. 761 receivers are deployed evenly on the

model surface with a 12.5 m interval. A dataset is built by filtering

frequency components below 3 Hz and is used for both CVS-based

FIGURE 11
Comparisons of velocity logs for Marmousi model. (A–C) are located at themidpoints of 1.8, 5.0, and 8.1 km, respectively. Black and green lines
are from true and initial models; blue and red lines are fromCSV-based FWI and the proposedmethod. The proposedmethod ismuchmore accurate
than CSV-based FWI for recovering deep low-wavenumber velocity anomalies.

Frontiers in Earth Science frontiersin.org10

Yang et al. 10.3389/feart.2022.961750

5554

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.961750


FWI and the proposedmethod. The setting of λ in HG-based FWI is

the same as the previous example. Inversion results are shown in

Figures 10A,B. Gradients for the first iteration and velocity logs are

shown in Figures 9, 11, respectively. CSV-based FWI produces

accurate results at shallow depths for both low- and high-

wavenumber perturbations, but fails to recover low-wavenumber

velocity anomalies at greater depths (see Figures 10A, 11). This is

caused by uneven subsurface scattering-angle illuminations. At

shallow depths, there is sufficient illumination for both large and

small scattering angles due to large offset-to-depth ratio (O/D). As

depth increases, O/D decreases and the CSV-based gradient is

dominated by small scattering-angle components (Figure 9A).

Although large scattering-angle components in deep areas are

very weak, they do exist as proved by Alkhalifah (2015). Instead

of using the CSV kernel, HG-based FWI combines the Kv and Kz

kernels to update velocity model (Figures 9B,C). This helps us to

recover low-wavenumber perturbations at greater depths by

enhancing the Kv kernel in FWI gradient. Then, high-

wavenumber structures are recovered by gradually reducing the

weight of the Kv kernel, producing a final high-resolution result

(Figures 10B, 11).

To better quantitatively evaluate the inversion results of these

two methods, we compare their convergence rates (Figure 12)

and predicted seismograms using final recovered models

(Figure 13). Compared with CSV-based FWI method (red line

in Figure 12), the proposed method has a faster convergence rate

and a higher inversion accuracy (blue line in Figure 12), which

also can illustrate that the proposed method has better

adaptability to complex structures.

4 Discussion

By parameterizing the acoustic wave equation using velocity

and impedance, we derive their sensitivity kernels based on the

Lagrange multiplier method. In a constant-density case, we prove

that the velocity (Kv) and impedance (Kz) kernels are equivalent

to applying a high-pass and a low-pass scattering-angle filters to

the CSV (Kcsv) kernel. Kv mainly provides low-wavenumber

updates and is helpful to recover large-scale anomalies.

Although impedance is defined as z = ρv, Kz represents high-

wavenumber velocity perturbations in constant-density media

and helps us to resolve detail structures. By choosing weights

properly, we can enhance Kv contribution in the hybrid gradient

at early iterations and then gradually increase Kz contribution in

subsequence iterations. This workflow reduces FWI nonlinearity

and partially mitigate the cycle-skipping problem.

The proposed HG-based FWI scheme is similar to the

tomography-enhanced FWI presented by Tang et al. (2013).

But there are several key differences. First, Tang et al. (2013)

use wavefield decomposition to extract the tomography and

migration components from the CSV-based gradient. There is

no clear relation between these two components with the

scattering-angle filtering. Second, in areas with complicated

structures, cross-correlations between source-side and

receiver-side upgoing waves or between source-side and

receiver-side downgoing waves might still produce certain

migration components. Third, separating upgoing and

downgoing waves requires the construction of an analytical

wavefield at every time step. This can be implemented by

either solving the wave equation twice (Shen and Albertin,

2015) or calculating a complex-valued wave equation (Zhang

and Zhang, 2009; Pestana and Revelo, 2017), thus with a higher

computational cost. Our approach only needs to modify the

gradient calculation with time- and spatial-derivatives and hence

no additional computational costs are required.

In our derivation from (Eqs. 12–18), the subsurface

density is assumed to be constant. Therefore, our method is

applicable for areas without significant density variations.

When density varies greatly, we should consider the spatial

derivation of 1/ρ in Eq. 14 and cannot obtain an analytic

relation between Kv and Kz with Kcsv. In this case, Kz includes

both velocity and density perturbations (Prieux et al., 2013;

Zhou et al., 2015), and thus cannot be combined with Kv to

FIGURE 12
Convergence rates for Marmousi model. (A,B) are relative
data residual and model error, respectively. Blue and red lines are
results from CSV-based FWI and the proposed method.
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update the velocity model. How to simultaneously invert

multi-parameters, such as velocity and density, velocity and

impedance or impedance and density, is beyond the scope of

this paper and needs further investigation.

5 Conclusion

We establish a connection between the velocity and

impedance kernels with scattering angle filtering in acoustic

constant-density media. This allows us to combine these two

kernels into a HG-based FWI workflow to update the velocity

model. By enhancing the velocity kernel contribution at early

iterations, which mainly gives tomography updates, the proposed

method enables us to recover large- and intermediate-scale

velocity anomalies. In the subsequence iterations, gradually

increasing the weight of the impedance kernel helps us to

resolve small-scale structures. This workflow provides us with

a way to reduce the potential nonlinearity of FWI and partially

mitigate the cycle-skipping problem. Synthetic examples

demonstrate that the proposed method produces an inversion

result with faster convergence and higher accuracy than CSV-

based FWI method.
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Appendix

Derivation of conventional single-parameter velocity (CSV) kernel.

The constant-density acoustic wave equation can be written as

1
v2 x( )

z2p x, t( )
zt2

− ∇2p x, t( ) � f t( )δ x − xs( ), (A − 1)

where p (x, t) is the pressure wavefield, f(t) is the source time

function, and xs denotes the source location. The augmented

misfit function can be constructed as

J � 1
2
∑
xr

∫ dsyn xr, t( ) − dobs xr, t( )[ ]2dt
−∫∫ q x, t( ) 1

v2 x( )
z2p x, t( )

zt2
− ∇2p x, t( )( )dtdx3, (A − 2)

where q is the Lagrangemultiplier, anddsyn(xr, t) � p(x, t)δ(x − xr).
Taking the variation of the augmented misfit function and neglecting
the high-order terms, we obtain

δJ � ∑
xr

∫∫ dsyn xr, t( ) − dobs xr, t( )[ ]δp x, t( )δ x − xr( )dtdx3

−∫∫ δp x, t( ) 1

v2 x( )
z2q x, t( )

zt2
− ∇2q x, t( )[ ]{

−δ ln v 2

v2 x( )
z2p x, t( )

zt2
q x, t( )[ ]}dx3dt.

(A − 3)

Therefore, the adjoint equation can be derived by setting zJ
zp � 0,

which results in

1
v2 x( )

z2q x, t( )
zt2

− ∇2q x, t( )
� ∑

xr

dsyn xr, t( ) − dobs xr, t( )[ ]δ x − xr( ).
(A − 4)

The CSV sensitivity kernel can be derived by setting zJ
z ln v � 0,

which gives

Kcsv x( ) � 2
v2 x( )∫

T

0

z2p x, t( )
zt2

q x, t( )dt. (A − 5)

Define the adjoint wavefield as p†(x, t) = q (x, T − t), the adjoint

wave equation can be rewritten as

1
v2 x( )

z2p† x, t( )
zt2

− ∇2p† x, t( ) � ∑
xr

dsyn xr, T − t( ) − dobs xr, T − t( )[ ]δ x − xr( ),

(A − 6)

and the sensitivity kernel is

Kcsv x( ) � 2
v2 x( )∫

T

0

z2p x, t( )
zt2

p† x, T − t( )dt. (A − 7)

Frontiers in Earth Science frontiersin.org15

Yang et al. 10.3389/feart.2022.961750

6059

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.961750


Fast imaging for the 3D density
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Residual Bouguer gravity anomaly inversion can be used to imaging for local

density structures or to interpret near-surface anomalous mass distribution.

The reasonable prior information is the crucial recipe for obtaining a realistic

geological inversion result, especially for the ill-posed geophysical inversion

problem. The conventional strategies introduce the prior constraints or joint

multidisciplinary information in object function as regularization, and then use

some optimization algorithm to minimize the object function. This process is

called model-driven approach and is usually time-consuming. In recent years,

the rapid development of machine learning technology has provided new

solutions for solving geophysical inversion problems. Machine learning

methods can reduce the dependence on prior information in the inversion

process through setting special training datasets, and the time consumption of

an inversion process executed by the trainedmodel can be shortened by several

orders of magnitude, which is conducive to fast inversion for the same type of

application scenarios. In this study, we were inspired by the U-net model and

develops the GV-Net (Gravity voxels inversion network) model using the

convolutional neural network for the inversion of residual gravity anomalies.

We first discussed the effects of different loss functions on the convergence

speed of model training and prediction accuracy. Then, we analyzed the

robustness of our model by changing noise levels of the datasets. At last, we

employed this model in a real scenario. The results have demonstrated that the

GV-Net model has the ability to deal with specific inverse problems by

predefined training datasets.

KEYWORDS

gravity inversion, convolutional neural network, machine learning, ore body
identification, fast inversion, bouguer gravity anomaly

1 Introduction

Gravity method as one of multidisciplinary geophysics methods is sensitive to density

distribution, which can be used to imaging for the density structure of the shallow Earth

(Wang et al., 2014; Honglei et al., 2021). In general, different sort of gravity anomaly exist

their own special geophysical meaning (Johannes and Smilde, 2009). The Bouguer gravity

anomaly can be divided into regional and residual parts according to the characteristics of
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the field sources. The regional Bouguer gravity anomalies are

controlled by large-scale structural anomalies or deep density

anomalies, such as Moho depth (Fu et al., 2014) and basement

relief. The residual Bouguer gravity anomaly, also known as local

gravity anomaly, correspondence to the distribution of residual

mass in the shallow crust. Generally, the residual Bouguer gravity

anomaly can be used in the mineral exploration or the near-

surface geological structure detection (Rosid et al., 2020; Chen

and Zhang, 2022).

Gravity inversion is a necessary procedure for retrieving

geological information from gravity anomalies. However,

similar to other geophysical inversion problems, gravity

inversion problem is usually ill-posed and the result is

inherent non-unique. For the same gravity anomaly,

infinite mathematical solutions can be found for fitting the

input anomaly within a certain tolerance. Therefore,

geoscientists usually introduce certain prior information to

constrain the inversion process for obtaining a reasonable

outcome, such as minima structure constraint, smoothness

assumption (Li and Oldenburg, 1996; Li and Oldenburg,

1998), and so on. Nevertheless, how to select the prior

constraints are generally limited by researchers’ experience,

and improper prior constrains will inevitably introduce

spurious features into the inversion results. The joint

inversion with multidisciplinary geophysical data is an

effective approach to reducing the non-uniqueness of

inversion results (Bosch et al., 2006; Lelièvre et al., 2012;

Liu et al., 2022). But this approach relies on the

relationships between different physical properties, these

are also empirical and not suitable for all geological

conditions. Additionally, in traditional inversion strategies,

the large-scale systems of linear or non-linear equations must

be solved whatever using the direct or iterative method.

Especially for regularized inversion method, the ‘trade-off’

parameter is often obtained through multiple iterations, this

process is time-consuming.

Recent development of machine learning (ML) technique

brings a new strategy for scientists to solve tough problems.

ML term first appeared in literature can be traced to the 1950s

(Turing, 1950). Nevertheless, due to the limitation of

computer performance and the high requirement of

mathematical ability for researchers, ML has not received

much attention for a long time. In the past decade,

computer performance has developed rapidly, especially

with the emergence of general ML frameworks such as

TensorFlow, PyTorch, MXNet, Keras, and Theano. Kinds of

ML frameworks make us deploy and train the ML models

simply and efficiently. At the same time, the powerful GPU

continually enhances the training efficiency of complex ML

model and makes it feasible to deal with high dimensionality

problems with a large-scale degree of freedom. ML approach

has already shown extraordinary potential and for solving the

geophysical inversion problems in numerous geoscience

scenarios.

ML is a sort of data-driven method, which has been widely

used in geosciences, including seismology (Kong et al., 2018;

Ming et al., 2019a; Ming et al., 2019b), solid Earth geoscience

(Bergen et al., 2019), hydro-geophysics (Shen, 2018),

geomorphometry (Valentine and Kalnins, 2016) and sea ice

forecasting (Andersson et al., 2021). In this study, we

introduce ML to imaging the 3D density structure in the

shallow crust. For the 3D gravity inverse problem, the input

data can be regarded as a single-channel image, and the output

can be assumed as multi-channel images, so this problem can be

FIGURE 1
Schematic of GV-Net architecture.
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applied with CNN(Convolutional Neural Network), which is a

typical ML method.

During the training process, the model updates the

parameters according to the pre-defined loss function to

fitting the mapping relationship between the observed data

and the field source parameters. The well-trained ML model

transforms the conventional inverse problem into a forward

problem, which greatly shortens the time required for model

prediction. In this study, we first proposed the GV-Net model

inspired by U-Net (Ronneberger et al., 2015) for the 3D density

structure imaging. Then we generated a large number of model-

observation data samples by a random algorithm as training

datasets artificially. Subsequently, we test the influence of two

different loss functions with respect to the model training speed,

model convergence characteristics, and model prediction

accuracy. At last, we verified that the GV-net model is noise

resistant, and we also demonstrated the practicality of the GV-net

model through a real scenario.

2 Methodology

2.1 The architecture of GV-Net

In this study, we developed the GV-Net model based on

CNN technology. Figure 1 illustrates the architecture of the

GV-Net model, which is primarily composed of four

components, namely preprocessing, encoder, decoder, and

output respectively. The activation function uses the Relu

function, and the pooling method is maximum pooling.

The detailed procedure of the GV-Net model is illustrated

in Table 1. We use PyTorch framework to construct and train

the GV-Net model.

The input data of GV-Net is a single-channel image with 64 ×

64 pixels, each pixel represents a gravity data point. Then, we

gradually increased the number of channels to 64 through the

preprocessing part, with the horizontal resolution of the data in

the preprocessing part remains unchanged. The horizontal

resolution of the data is then reduced to 8×8 in the encoder

part by three Max-pooling processes, while the number of

channels is increased to 512. In the decoder part, the number

of channels of the model is reduced to 64 by three transposed

convolution operations, and the resolution will be increased to

64×64. Finally, the output part generates the 32 channels, which

have 64×64 data points in each channel to express the density

voxel layers in the three-dimensional space implemented by a

convolution layer.

2.2 Loss function

During the CNN training, themodel parameters will be updated

according to the variation of the loss function. Therefore, selecting a

suitable loss function is critical for improving the model

performance. We chose two sorts of loss functions as candidates

to test the effect on the GV-Net model, including training speed,

convergence characteristics, and prediction accuracy.

1) Mean squared Error (MSE) function

Mean squared error (MSE) is one of the most common loss

functions used in machine learning, which has been widely

adopted in regression problems (Mitra et al., 2020; Wang

et al., 2020; He et al., 2021). MSELoss function can be

expressed as

MSELoss m̂,m( ) � 1
N

∑N
i�1

m̂i −mi( )2 (1)

wherem is the true model, m̂ is the predicted model,N is number

of elements in model m

2) Dice function

Milletari et al. (2016) proposed a loss function based on Dice

coefficient to measure the similarity of two models. The dice

coefficient can be written as

Dice m̂, m( ) � 2∑N
i�1m̂imi∑N

i�1m̂
2
i + ∑N

i�1m
2
i

(2)

Then, the Dice function can be expressed as

TABLE 1 The algorithm of GV-Net.
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DiceLoss m̂,m( ) � 1 −Dice m̂, m( ) (3)

Based on Eq. 2, when the predicted model is closer to the real

model, the Dice coefficient is closer to one, which makes the

DiceLoss closer to zero. Huang et al. (2021) use this loss function

to deal with sparsity inversion problems with binary density

distribution and got good results.

In the following sections, we refer to the GV-Net with

MSELoss function as MGV-Net and refer to the GV-Net with

DiceLoss function as DGV-Net.

2.3 Result evaluation metrics

For evaluating the prediction accuracy of GV-Net and

comparing the effect of two different loss functions, we introduce

two metrics to quantitatively evaluate the predicted result from

different aspects. The first metric is called model relative error ε,
which can be used to evaluate the predicted density source, and this

metric is expressed as follows:

ε � m̂ −m‖ ‖2
m̂‖ ‖2 + m‖ ‖2 (4)

This metric function is range from 0 to 1, as shows in Eq. 4,

which means the more accurate the model predicts, the smaller ε is.

FIGURE 2
Schematic diagram for the gravity anomaly of discretized
prism models.

FIGURE 3
Examples of random density model.
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TABLE 2 Time cost.

Training Predicting

DGV-Net 2h34min04s 0.0061(s)

MGV-Net 1h25min57s 0.0053(s)

*The computer configurations and
hyperparameters setting :

Hardware configurations :

CPU: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz

GPU: NVIDIA GeForce GTX 1080×3

Soft environment :

CUDA Version: 10.2

Python Version: 3.7.13

ML Framework: Pytorch 1.4.0

Hyperparameters setting :

Batch size: 128

Epochs: 300

Optimizer: Adma

Activation function: Relu

FIGURE 4
Loss curves and model relative errors for the training and validation datasets.
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The second metric index is to assess the gravity anomaly

generated by the predicted density model. We introduce the

mean squared of data misfit to express how the recovered gravity

fits the truegravityanomalyineachprediction,whichshows inEq.5.

�ω � 1
N

∑N
i�1

�di − di( )2 (5)

where N is the number of gravity anomaly data, di is the ith true

gravity anomaly, �di is the ith predicted gravity.

3 Training datasets

3.1 Voxel modeling

In geophysical research, it is necessary to modeling the

research object and then parameterization the characteristics

of the geophysical field source through a number of models. In

gravity field inversion, we generally use a series of regular

bodies to approximate the field source model for different

research problems, and each regular body has a specific

density. Common regular density models include sphere

model, cylinder model, and rectangular prism model.

In this study, to describe the characteristics of the stochastic

distribution of density contrast flexibly, we simulated the subsurface

structure with regularly arranged rectangle prism cells according to a

certain grid spacing, and the gravity data are measured from fixed

ground observation points. The density model and the observing

system illustrated in Figure 2. Borrowing the term pixel in two-

dimensional images, we refer to each density prism in three-

dimensional space as a voxel. The relationship between the

gravity anomaly and the density voxels can be expressed as:

d1

d2

d3

..

.

dN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

γ1,1 γ1,2 γ1,3
γ2,1 γ2,2 γ2,3
γ3,1 γ3,2 γ3,3

/
γ1,M
γ2,M
γ3,M

..

.
1 ..

.

γN,1 γN,2 γN,3 / γN,M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

m1

m2

m3

..

.

mM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

where di is the gravity datum at i th observation station,mj is the

density contrast of j th prism, γi,j is the kernel operator, N is the

number of observation points, and M is the number of voxels.

FIGURE 5
Horizontal distributed densitymodel (A) The shape of the horizontal distributed densitymodel; (B)Gravity anomalies that correspond to the true
model; (C) The model recovered by DGV-Net; (D) The model recovered by MGV-Net.
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The kernel operator is defined by the volume of the voxel,

density contrast, the location of observation points, and the position

of the voxel. The kernel operator γi,j can be expressed as follows:

γi,j � G∫ze

zs

∫ye

ys

∫xe

xs

Δρ zp − z( )
r3

dxdydz (7)

where G � 6.67 × 10−1N ·m2 · kg−2 is the gravitational constant,
x, y, z are coordinates of the density body in the three directions

respectively, r �
����������������������������
(xp − x)2 + (yp − y)2 + (zp − z)2

√
represent

the distance from the field source to the observed position.

While the density is constant, which mean Δρ � ρc, Eq. 7

becomes (Nagy et al., 2000):

γi,j � ρcG||| xp − x( ) ln yp − y( ) + r[ ] + y ln xp − x( ) + r[ ]
− ztan−1 xp − x( ) yp − y( )

zp − z( )r
∣∣∣∣∣∣xexs
∣∣∣∣∣∣yeys
∣∣∣∣∣∣yeys (8)

3.2 Datasets generation

The ML model training is necessary to utilize large enough

labeled datasets. Because the conventional Green’s function

between the gravity response and field source cannot be

FIGURE 6
Predicted gravity anomaly and gravity misfit characteristics of horizontal distributed model (A) Gravity anomaly calculated by density contrast
predicted by DGV-Net; (B)Gravity anomaly misfit produced by DGV-Net; (C)Gravity anomaly calculated by density contrast predicted by MGV-Net;
(D) Gravity anomaly misfit produced by MGV-Net.

TABLE 3 The evaluating indicators of recovered horizontal distributed
model.

Model relative error (ε) MSE of gravity (�ω)

DGV-Net .14036 .0055

MGV-Net .14099 .063
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directly transformed to the weight values of the designed CNN

model. In the training process, an abundant training dataset needs

to be used to build themapping relationship between the input and

output. The features of the training datasets directly determine the

application scenarios of the model. In this study, we trained the

GV-net model with plenty of voxels by the presupposed prior

density assumption as the output of the GV-Net and calculated the

corresponding gravity anomaly at the observed grid as the input of

the GV-Net. The input gravity anomaly was the superposition of

all voxel anomalies in one field source. If repeated this generation

time by time, the location of a voxel in the field source model is

stochastic for simulating various density distribution situations as

much as possible.

Figure 3 shows four randomly generated density models.

The models are composed of rectangle prisms of different scales

and arrangements, so theoretically, they can approximately

represent the distribution of density anomalies with different

shapes. In this study, the size of each voxel is

50 m×100 m×100 m, and the density contrast of each block

is .5–1.0 g/cm3. A total of 19,200 sets of data are used for

training and 2,000 sets of data were used for validation for both

DGV-Net and MGV-Net.

4 Result

4.1 Model training

Figure 4 shows the loss function and model relative error of

DGV-Net and MGV-Net, respectively. To reduce time costs and

FIGURE 7
Dipping dyke density model (A) The shape of the dipping dyke density model; (B) Gravity anomalies that correspond to the true model; (C) The
model recovered by DGV-Net; (D) The model recovered by MGV-Net.

TABLE 4 The evaluating indicators of recovered dipping dike model.

Model relative error (ε) MSE of gravity (�ω)

DGV-Net .39563 .1079

MGV-Net .45065 .0412
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ensure the stability of the loss curves and error curves, the loss

value and error on curves are calculated by the prediction results

of 200 random samples from relevant datasets, rather than all

datasets.

During the training of DGV-Net and MGV-Net, both the

loss curves and error curves decreased smoothly with the increase

of epochs, but there are a few different behaviors between

training datasets and validation datasets. The curves associated

with validation datasets (Orange curves) tend to be stable when

the epochs reach a certain value, while the curves associated with

training datasets (Blue curves) are not stable until the end of

epochs. These features illustrated that for a randommodel, which

are most likely not in the training datasets, the GV-Net predicts

accuracy restricted to a level because of using the finite training

datasets.

Moreover, the validation loss curve of DGV-Net reaches to a

steady state faster than MGV-Net, which means the Dice loss is

more conducive to the convergence of the GV-Net model.

The model relative error curves in Figure 3 and Figure 3 show

that the prediction accuracy of DGV-Net is better than MGV-

Net. Therefore, we can estimate that DGV-Net will have better

performance than MGV-Net for anomalous models that are not

in the training datasets.

Table 2 shows the time required for GV-Net training

process and single prediction. We can see that the training

time when employing the root mean square loss function is

significantly less than that using the Dice loss function. The

time required for single prediction using the trained model is

far less than 1s. Consequently, when the GV-Net is used for

inversion problems, as long as the model is well-trained, fast

FIGURE 8
Predicted gravity anomaly and gravity misfit characteristics of dipping dyke model (A) Gravity anomaly calculated by density contrast predicted
by DGV-Net; (B)Gravity anomalymisfit produced by DGV-Net; (C)Gravity anomaly calculated by density contrast predicted byMGV-Net; (D)Gravity
anomaly misfit produced by MGV-Net.
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inversion can be executed for the same type of problems.

Comparison with other research for fast inversion solutions,

such as compressive inversion (Foks et al., 2014), and adaptive

mesh inversion (Davis and Li, 2011). Our approach reflects

sufficient efficiency.

4.2 Model validation

In order to illustrate the inversion effect of GV-Net more

intuitively, we designed three typical density models to evaluate

the performance of GV-Net with two different loss functions.

The three models were the horizontal distributed density model,

the dipping dyke density model, and the vertical distributed

density model respectively. The residual density and model grid

setting are consistent with the training datasets. To clearly show

the shape of the retrieved model, only the voxels with a density

greater than or equal to 0.3 g/cm3 are drawn for the results in the

following figures.

1) Horizontal distributed density model

Generally, gravity is sensitive to the lateral variations of the

density contrast, so we designed a model with two density blocks

that are totally separate in horizontal (Figure 5A) to test the

ability of GV-Net to identify lateral density variations. The

gravity response of this model (Figure 5B) sharply depicts the

contour of this model in the horizontal direction. The results

(Figures 5C, D) demonstrated that both DGV-Net andMGV-Net

can predict the outcome with reasonable accuracy for the density

contrast with horizontal distribution characteristics.

FIGURE 9
Vertical distributed model (A) The shape of the vertical distributed density model; (B) Gravity anomalies that correspond to the true model; (C)
The model recovered by DGV-Net; (D) The model recovered by MGV-Net.

TABLE 5 The evaluating indicators of recovered vertical distribute density
model.

Model relative error (ε) MSE of gravity (�ω)

DGV-Net .347 .0494

MGV-Net .39653 .1014
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Figure 6 shows the forward gravity and gravity misfit from

predicted density contrast. The max misfit in recovered gravity is

less than 5% of the maximum of the input gravity for the DGV-

Net model, and the max error in gravity recovered is reach 15%

due to the left block error in MGV-Net.

Table 3 summarizes the model relative error and the mean

square error of recovered gravity. From Table 3, we found that the

model relative errors don’t have a significant difference between

DGV-Net and MGV-Net, this feature may illustrate that the two

sorts of loss functions we used in this study have no distinct

differences for GV-Net to predict simple density model.

2) Dipping dyke density model

The dipping dyke model is a classical 3D density model that can

be used to evaluate the effectiveness of inversionmethods (Zhu et al.,

2020; Peng and Liu, 2021). Figure 7A illustrates a dipping dyke

model and Figure 7B is the forward gravity. Figure 7C and Figure 7D

are the inversion results predicted by DGV-Net and MGV-Net.

Table 4 lists the relative error of the predicted models and the mean

squared of gravity misfit. The prediction of DGV-Net recovered the

shape of the true model mostly but exists a big bias in density value.

The prediction of MGV-Net did not retrieve the true shape of the

real model and the density value is also incorrect. But we found that

the gravity misfit was not so bad as the density model, both models

gave acceptable gravity misfit.

Figure 8 shows the predicted gravity and gravity misfit of the

dipping dyke model. From Figures 8A, C, the predicted gravity

anomalies are generally consistent with input gravity anomalies,

but the gravity anomalies misfit have obvious non-Gaussian

characteristics (Figures 8B, D).

In our training datasets, considering the generation strategy

of our density model, models like dipping dyke are very rare. The

GV-Net can recover this dipping dyke model proving that our

method has the power to image the complicated density models

even if they were not included in the training datasets.

FIGURE 10
Predicted gravity anomaly and gravity residual characteristics of vertical distributed model (A) Gravity anomaly calculated by density contrast
predicted by DGV-Net; (B)Gravity anomaly misfit produced by DGV-Net; (C)Gravity anomaly calculated by density contrast predicted by MGV-Net;
(D) Gravity anomaly misfit produced by MGV-Net.
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3) Vertical distributed model

It is tough to revive vertical density information through

gravity inversion. The conventional gravity inversion methods

use the depth weighting function to control the density located

in a suitable depth, but this process is depending on the

researchers’ experience. To verify the performance of GV-

Net to separate the density distribution in the vertical

direction, we design an extreme vertical density model which

means the different bodies have different depths but the same

FIGURE 11
The density model and theoretical gravity with different noise levels. (A) The truemodel; (B)Gravity with noise-free; (C)Gravity with 1%Gaussian
noise; (D) Gravity with 2% Gaussian noise; (E) Gravity with 5% Gaussian noise; (F) Gravity with 10% Gaussian noise.
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horizontal position (Figure 9A). It is difficult to intuitively

retrieve any vertical characteristics from the forward gravity

(Figure 9B).

Table 5 summarized the model relative error and mean

squared error of recovered gravity, from these two metrics,

the DGV-Net has better performance in separating the density

bodies in the vertical direction. Figure 9C and Figure 9D show the

inversion results, the shallow body is well predicted by both

DGV-Net and MGV-Net, but for the deeper body, the DGV-Net

shows better results than MGV-Net.

The predicted gravity and gravity misfit of the vertical distributed

model are shown in Figure 10. The gravity misfit produced byMGV-

Net is obviously bigger than that obtained by DGV-Net.

4.3 Noise effect

Actual gravity data is affected by various factors, such as the

observation environment, instrument features, and human

operations, which inevitably contain a certain degree of noise.

In most cases, these noises are stochastic. We assumed that the

noise is Gaussian noise with zero mean. We found that the DGV-

Net mostly outperforms the MGV-Net in the model prediction

accuracy in section 4.1. Therefore, in this part, we chose DGV-

Net to test the robustness to the noise of our method.

We first use the well-trained DGV-Net model in section

4.1 to deal with the noise-contained gravity. The true density

model is shown in Figure 11A, and the forward gravity

contaminated by 0%, 1%, 2%, 5%, and 10% Gaussian noise

are shown in Figures 11B–F respectively. The results predicted

by DGV-Net are shown in Figures 12A, C, E, G, I, these results

illustrated that the DGV-Net model can accurately predict the

density structure while the noise is less than 2%, and this

model can’t retrieve any useful information when the noise

increases to 5%.

We reproduced the training datasets that contain different

noise strengths. 0%, .1%, .2%, .3%, .4%, .5%, 1%, 1.5%, 2%, 4%

and 6% Gaussian noise was randomly added in the process of

generating the training datasets, the occurrence probability of 0%

noise level is 3/13, and the occurrence probability of other noise

levels is 1/13. For the convenience of expression, we call the

DGV-Net model trained by noise-contained datasets as

NDGV-Net.

The results predicted by NDGV-Net are shown in Figures

12B, D, F, H, J, the density contrast can be effectively recovered

even with the noise level up to 10%. However, the NDGV-Net

model can restore the contour of density volume well, but it

sacrifices the accuracy in density value prediction. Table 6 shows

that the relative error of the result predicted by NDGV-Net for

noise-free gravity is far greater than the result predicted by DGV-

Net. These features illustrated that the robustness to noise of GV-

Net is mainly controlled by the training datasets. It is important

to balance the robustness and prediction accuracy through

FIGURE 12
Results predicted by DGV-Net and NDGV-Net with various
noise contained gravity data. Fig (A), (C), (E), (G) and (I) are the
DGV-Net inversion results when the noise levels are 0%, 1%, 2%, 5%
and 10%, respectively; Fig (B), (D), (F), (H) and (J) are the
NDGV-Net inversion results when the noise levels are 0%, 1%, 2%,
5% and 10%, respectively.

TABLE 6 The relative error(ε) of recovered models under different noise
contained gravity for NDGV-Net and DGV-Net.

Noise level 0% 1% 2% 5% 10%

DGV-Net .0059 .1768 .3354 .6515 .6888

NDGV-Net .1479 .1398 .1777 .186 .2892
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special noise setting of the training datasets for a specific

inversion problem.

5 Case study

To verify the ability of the proposedmethod in this study to deal

with real scenarios, we employed GV-Net to image the San Nicolas

sulfide copper-zinc mine in Zacatecas, Mexico. The mining area has

been studied in detail by different scholars using different inversion

methods (Phillips et al., 2001; Lelièvre and Oldenburg, 2009; Zelin

et al., 2019; Huizhen et al., 2021).

The residual Bouguer gravity anomaly is shown in Figure 13A,

and the geological profiles in the location of AA′ and BB’ are shown
in Figure 14, which are interpreted from logging data. On the basis of

the size of the research region, orebody burial depth, and

surrounding rock density characteristics, we regenerated the

training datasets suitable for this mining area, and the new

training datasets still divide the model into 32 × 64 × 64 three-

dimensional cells, the size of a single cell is 25 m × 25 m × 25 m, and

the density of the training datasets varies from .7 to 1.2 g/cm3 on the

basis of prior information from the geological profiles. Considering

that the actual datamay be containing noise, the same noise addition

strategy is adopted in the training datasets as in the NDGV-Net

training datasets.

We intercepted six two-dimensional profiles of the 3D

density structure along the AA’, BB’ positions and its left and

right 100 m, respectively. The corresponding cross-section

results are shown in Figure 15, in order to clearly highlight

the orebody position, only the voxels with a density greater than

0.6 g/cm3 is shown in Figure 15.

Figures 13B, C are the predicted gravity anomalies and

gravity misfit, respectively. We can see that the predicted

gravity anomalies and true gravity anomalies have the same

FIGURE 13
(A) Residual gravity anomaly map of the San Nicolas deposit (Huang et al., 2021); (B) Predicted gravity from invert density model; (C)
Characteristics of gravity anomaly misfit.

FIGURE 14
(A) Geologic cross-section along the AA′ line; (B) Geologic cross-section along the BB′ line; (C) Density of the major rock units.
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change trend, but there is a certain large and non-normal

distribution of gravity misfit characteristics.

The predicted results in Figure 15 shows that our inversion

method accurately restores the orebody position. The ore body size

is basically the same as the real ore, but the ore body morphology is

more like a regular prism, which should be related to the

characteristics of the training datasets adopted in this article.

Compared to the application of traditional inversion methods in

this area (Phillips et al., 2001; Zelin et al., 2019; Huizhen et al., 2021),

our method obtained a desirable result through the trained ML

model based on targeted training datasets and no longer rely on the

subjective experience of researchers.

6 Conclusions and discussions

This study purposes a CNN model named GV-Net, which

implements inversion of the residual Bouguer gravity anomaly

based on the ML technique. We first analyzed the effect of

different loss functions on the GV-Net model and evaluated

the prediction accuracy by three typical density contrast

models. Then we tested the robustness to noise of our

method by the noise or noise-free training datasets.

Ultimately, the practicability of the method has been

demonstrated by actual mining area data. The main

conclusions of this research are as follows:

FIGURE 15
Inversion result at different cross-sections (The black lines indicate the true outline of the sulfide deposit) (A) Density Cross-section at AA′ line;
(B) Density Cross-section at BB′ line; (C) Density Cross-section at 100 m south of AA′ line; (D) Density Cross-section at 100 m west of BB′ line; (E)
Density Cross-section at 100 m north of AA′ line; (F) Density Cross-section at 100 m east of AA′ line.
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1) The selection of the loss function will influence the training

speed, convergence characteristics, and model prediction

accuracy. In this study, the DiceLoss function has better

performance in model prediction accuracy, and the

MSELoss needs less time for the training process. Therefore,

when we try to solve a practical problem, an appropriate loss

function should be selected on the basis of weighing the

prediction accuracy of the model against the training time

cost of the model.

2) From the three synthetic tests, our GV-Net model has

shown the ability to revive the shape of shallow density

contrast, but it still lacks sufficient recovery for the

abnormal density distribution of complex structures or

abnormal bodies with obvious vertical distribution

characteristics. There is no significant difference

between DGV-Net and MGV-Net in predicting simple

density models, but for sophisticated models, the DGV-

Net has better performance in depicting the shape of

density blocks. The mean squared error of gravity is

acceptable for three synthetic models, but it seems

independent of the relative error of the model. This

feature may be caused by the absence of gravity

constraint in the model training phase.

3) The robustness to noise of the GV-Net is closely related to the

noise characteristics in the training datasets. While training

datasets are designed by reasonable noise control, the anti-

noise ability of the model is significantly improved.

4) In the GV-Net model, prior knowledge is directly included in

the training dataset, rather than relying on the experience of

researchers that is required by traditional inversion methods.

When we predict a density anomaly body using the trained

model, only the gravity anomaly is required as input, and we

will obtain a reasonable result.

5) Using the GV-Net model to solve inversion problems, the

training process is also time-consuming. But if a suitable AI

model with good generalization ability can be achieved, the

time needed to invert a density model is very small. The single

prediction time of all models in this study is in milliseconds

which demonstrated that our method can be used to fast

imaging for specific inversion problems.

6) Using GV-Net for inversion of actual mining area data, the

results are consistent with previous studies, which

demonstrates the practicability of this method.

Although the method proposed in this study can better

realize the fast inversion of residual Bouguer gravity anomaly,

there are still some problems that need to be further solved, such

as how to construct a training dataset that can represent real

geologically density distribution better. In addition, in the

model prediction process, the gravity data is used as the

input to directly invert the three-dimensional density model,

and the gravity misfit shown certain non-stochastic

characteristics.
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Deep seismic sounding (DSS) profiles are one of the most powerful tools for

detecting crustal structures, and they have been deployed worldwide.

Generally, the analysis of DSS data mainly focuses on body waves, while the

surface waves are considered noise. We suggest that the surface waves in DSS

data can be used to constrain subsurface structures. In this study, we use a DSS

profile in the Piedmont and Atlantic Coastal Plain as an example to present the

usage of the DSS surface wave. Multimodal dispersion curves were extracted

from theDSS datawith the Frequency-Bessel transformmethod, andwere used

in Monte Carlo joint inversions with body wave refraction traveltimes to

constrain the shallow structures. Through the inversion, a horizontal stratum

on the surface was identified in the Piedmont, and a two-layer sedimentary

structure was identified in the Atlantic Coastal Plain. Comparisons with existing

studies verified the accuracy of the shallow structures obtained in this study,

demonstrating that the shallow velocity structure could be well constrained

with the additional constraints provided by the multimodal dispersion curves.

Thus, we believe that further research on the surface waves recorded in DSS

surveys is warranted.

KEYWORDS

deep seismic sounding data, frequency-bessel transform method, multimodal
dispersion curves, refraction, joint inversion

1 Introduction

Deep seismic sounding profiles (abbreviated as DSS, also known as active source

seismic wide-angle reflection/refraction profiles) are an important tool for interpreting

crustal and lithospheric structures (Chen et al., 2017). With seismic wide-angle reflections

and refractions, DSS profiles can obtain deep crustal and lithospheric velocity structures

with little prior information. A large number of DSS profiles have been constructed to
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study crustal and lithospheric structures worldwide (e.g.,

Kosminskaya, 1971; Pakiser & Mooney, 1989; Benz et al.,

1992; Mooney et al., 1998; Li et al., 2006; Hübscher & Gohl,

2014; Duan et al., 2016; Lin et al., 2019; Marzen et al., 2019; Guo e

al., 2019; Zhao &Guo et al., 2019), and their results were collected

to build global crustal models (e.g., CRUST 5.1 presented by

Mooney et al., 1998) and regional crustal models (e.g., HBCrust

1.0 presented by Duan et al., 2016; Lin et al., 2019). These models

have been used to solve a wide range of both seismological and

nonseismological problems (Mooney et al., 1998).

Generally, the P-wave phases and surface waves are clear in

most DSS datasets, and they are therefore easy to identify; in

contrast, the S-wave phases are relatively difficult to identify. The

P-and S-wave phases from the deep crust (e. g. refractions Pn and

Sn from the uppermost mantle, and the reflections PmP and SmS

fromMoho) are mainly used to constrain the middle-lower crust

and the uppermost mantle structure, while the P-and S-wave

refractions (Pg and Sg) from the basement are used to constrain

the upper crustal structure. However, surface waves are always

considered coherent noise. In shallow/near-surface geophysics,

surface wave analysis is a powerful and widely used tool for

detecting subsurface structures (e.g., Socco & Strobbia, 2004; Lu

and Zhang, 2006; Park et al., 2007; Maraschini and Foti, 2010).

Thus, we suggest that surface waves in DSS data could also be

used to constrain shallow/near-surface structures. With the

additional information from the surface wave, a finer shallow

structure (approximately 0–2 km depth) can be constrained by

the DSS data, and it will be helpful for the many studies, such as

estimating site response (Schleicher & Pratt, 2021), earthquake

ground motion simulation (Fischer et al., 1995; Frankel et al.,

2009), receiver function analysis (Zheng et al., 2005; Li et al.,

2017; Anggono et al., 2018) and tectonic evolution research

(Lawrence & Hoffman, 1993a; Marzen et al., 2020).

In this study, we extracted multimodal dispersion curves

from the onshore DSS line in the Atlantic Coastal Plain (ACP)

with the Frequency-Bessel transform (F-J) method, and then we

performed the joint inversion of the multimodal dispersion

curves and the Pg and Sg travel times to constrain the shallow

structure. A thin layer in the Piedmont and a two-layer sediment

structure in the ACP were identified with the additional

constraints provided by the dispersion curves, demonstrating

that surface wave analysis is helpful when imaging a higher

resolution shallow structure for DSS datasets.

2 Data and methods

2.1 The data

From 2014 to 2015, onshore and offshore seismic surveys

were conducted by the Eastern North American Margin

Community Seismic Experiment (ENAM-CSE) project, which

was funded by NSF-GeoPRISMS. The profiles extended from the

eastern Piedmont to the Atlantic Ocean and yielded high quality

data (P- and S-body waves and surface waves from both active

sources and earthquakes) (Lynner et al., 2020). The seismic line

FIGURE 1
Geometry of the ENAM-CSE onshore seismic lines. The black dashed lines represent the geological terrane boundaries, and the red stars
represent explosion sources. The black dots represent the seismographs. ACP denotes the Atlantic Coastal Plain. The detailed views in the figure
show the crooked-line geometries.
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used in this study is the north onshore ENAM-CSE seismic line

(Line one in Figure 1). Line one is a 220 km-long seismic line

located in Virginia and North Carolina, consisting of five

borehole explosions (182 kg bulk emulsion in each borehole)

and 708 vertical component seismographs (4.5 Hz Geospace

GS11D instruments). The spacing between the western two

shots (SP11 and SP12) is approximately 70 km, and the

spacing between the other shots is approximately 30 km. The

seismograph spacing is approximately 320 m. Both P- and

S-body waves and surface waves are visible on the seismic

record sections (Figure 2; Guo et al., 2019).

Although the acquisition geometry for the ENAM DSS Line

one is not straight (Figure 1), the azimuths of the source-receiver

raypaths (Figure 2) show that the crooked seismic line could be

considered a straight line after ~10 km offset. The seismic line

near the source is very crooked, indicating that it is better to treat

the velocity structure as laterally homogeneous when we process

the seismic data near the sources (Zelt, 1999).

2.2 The conventional DSS data processing
method

The seismic record section in the DSS data (Figure 2) is the

shot gather plotted with the reduction velocity (Vred). The y-axis

of the seismic record section map is the reduced time (Tred)

calculated by the Vredand real time:

Tred � t − offset/Vred. (1)

With the seismic record sections, we could identify and manually

pick the traveltimes according to the characteristics of each

seismic phase (Braile and Smith, 1975; Giese et al., 1976). As

the first arrivals, the Pg traveltimes are very easy to pick, and then

the Sg traveltimes can be picked under the guidance of picked Pg

traveltimes (Musacchio et al., 1997). The uncertainties of the

picked traveltimes could be evaluated by the signal-to-noise ratio

(SNR) of the seismic data (Zelt and Forsyth 1994).

After picking the traveltimes from each shot gather, 1D

models are constructed using the traveltimes and the

corresponding amplitudes with little prior information (Braile

and Smith, 1975; Giese et al., 1976). Then, an initial 2D model

along the seismic line is constructed by combining the 1D

models, and the preferred 2D model is obtained by the

inversion of all the body wave traveltimes.

Because of the large DSS source spacing and the receiver

spacing, minimum-structure models should be applied in the 1D/

2D model constructions to avoid overinterpreting the data

(Constable et al., 1987; Zelt, 1999). The desirability of the

minimum-structure model is the principle of Occam’s razor:

the velocity structure should be as simple, or as smooth as

possible to reduce the temptation to overinterpret the data

(Constable et al., 1987; Zelt, 1999). To characterize the

subsurface structure including the velocity layers with large

velocity contrast (e.g., the sediment structure in this study),

the minimum-structure model is usually the simplest layered

models fitting the DSS data. x2 is usually set as the misfit function

for minimum-structure model inversions (Zelt & Smith, 1992;

Zelt & Barton, 1998; Zelt, 1999) and is expressed as follows:

x2 � 1
n
∑
i

[(toi − tsi )/ei] (2)

where toi represents the ith value of the observed body

traveltimes, tsi represents the ith value of the calculated body

traveltimes, and ei is the uncertainty of the value toi . n is the

number of picked traveltimes. x2 � 0 represents that the fitting

errors are equal to 0, andx2 � 1 represents that the fitting errors

FIGURE 2
Azimuths of the source-receiver raypaths and seismic record
sections plotted at a reduction velocity of 6.0 km/s. In the upper
right corner of the seismic record sections, the red stars represent
the sources, and the seismic record sections are recorded by
the seismographs on the red line. Pg and Sg are the P- and S-wave
refractions respectively, and the picked traveltimes are marked by
the red lines. SW represents the surface wave. (A) Azimuths of the
SP11 source-receiver raypaths and the corresponding seismic
record section. (B) Azimuths of the SP15 source-receiver raypaths
and the corresponding seismic record section.
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are equal to the uncertainties of the picked data, indicating that

the corresponding model has already satisfied the data

(Bevington, 1969; Zelt, 1999).

2.3 Analysis methods for the surface wave

2.3.1 The F-J method for multimodal dispersion
curves extraction

The F-J method is an array-based surface wave analysis

method designed for extracting multimodal dispersion curves

from ambient noise cross-correlation functions (Wang et al.,

2019). Li & Chen (2020) extended this method to the application

of earthquake records when the azimuth range is controlled

within 90°, which could also be used for active source seismic

records. The multimodal dispersion curves obtained by this

method has been used in the imaging of many shallow/near-

surface structures (Wu et al., 2019; Yang et al., 2019;Li et al.,

2020) and deep structures (Wu et al., 2020; Zhan et al., 2020; Sun

et al., 2021).

A simple formula is used in the F-J method to retrieve the

dispersion spectrum (I(c,ω)) from Green’s function (C(r,ω))
and is expressed as follows:

I(c,ω) � ∫C(r,ω)J0(kr)rdr, (3)

FIGURE 3
F–J spectrograms extracted from 30-km-long seismic record sections. In the upper right corner of each figure, the red star represents the
source, and the F-J spectrogram is extracted from the seismic data on the red line. (A) and (B) are the spectrograms extracted from the SP11 data with
the MFJ method and MWS method, respectively. (C) and (D) are the spectrograms extracted from the SP15 data with the MFJ method and MWS
method, respectively.

Frontiers in Earth Science frontiersin.org04

Guo et al. 10.3389/feart.2022.1025935

8180

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1025935


where J0(kr) is the 0th-order Bessel function of the first type. k

represents the wavenumber, r is the distance between the receiver

and the source, c denotes the velocity, and ωis the frequency. The

surface wave dispersion curves can be identified by the maximum

of I(c,ω). For the observed seismic data, C(r,ω) is the seismic

trace with offset r, so a seismic array is needed to calculate I(c,ω)
, and the dispersion curves identified from I(c,ω) are associated
with the average structure beneath the seismic array.

Recently, the F-J method has been improved to include the

multiwindow scanning (MWS) method (Li & Chen, 2020; Li

et al., 2021a, b) and modified frequency-Bessel transform

(MFJ) method (Li et al., 2021b; Xi et al., 2021; Zhou &

Chen, 2021). In the MWS method, time windows calculated

by the surface wave group velocity are applied on the seismic

traces to improve the SNR of the F-J spectrum (I(c,ω)), and
additional modes can be resolved by the MWS method (Li &

Chen, 2020). In the MFJ method, the Bessel function J0(kr) is
replaced by the Hankel function, and some of the crossed

artifacts in the F-J spectrum can be removed (Xi et al., 2021;

Zhou & Chen, 2021). In this study, both the MWS and MFJ

methods were applied to extract the dispersion curves from

the DSS data.

2.3.2 The inversion scheme
Since Pg, Sg and the surface waves are visible in the ACP DSS

data, we suggest that the joint inversion of body wave refraction

traveltimes and dispersion curves should be performed to

constrain the shallow structure. In addition, to ensure that our

inversion scheme can be conveniently applied to most of the

existing DSS data, the inversion scheme with surface waves

should be as close as possible to the inversion scheme of

conventional DSS data processing. We first use all seismic

data (multimodal dispersion curves, Pg and Sg travel times) in

each shot gather to construct 1D models, and then construct the

2D model by using the interpolation of these 1D models.

In this study, the Monte Carlo inversion method (Socco and

Boiero, 2008; Maraschini and Foti, 2010.) was used to construct

1D models with the extracted dispersion curves and Pg and Sg

traveltimes. In the Monte Carlo inversion, generous random

initial models were generated to perform the model parameter

space sampling, and the preferred models were selected

according to the acceptance criterion from the initial models.

The acceptance criterion of the Monte Carlo method for the joint

inversion of Pg and Sg traveltimes and multimodal dispersion

curves is as follows:

x2
p ≤ 1& x2

s ≤ 1&x2
dis ≤ 1, (4)

where x2
p , x2

s and x2disare the x2 of Pg, Sg and the multimodal

dispersion curves respectively.

The x2 of Pg and Sg are calculated by Eq. 2. The calculation

of the multimodal dispersion curves x2
dis should avoid the

errors caused by associating a picked dispersion curve with an

incorrect mode number (Maraschini et al., 2010). To solve this

problem, we calculated the errors between a picked dispersion

curve and each of the calculated multimodal dispersion

curves, and then the picked dispersion curve was associated

with the calculated dispersion curve corresponding to

minimum error. The error between the jth picked

dispersion curve and the kth calculated multimodal

dispersion curves is calculated as follows:

FIGURE 4
The multimodal dispersion curves picked from the F-J spectrograms. The black dots are the picked dispersion curves. The white vertical lines
are the uncertainties of the picked dispersion curves. In the upper right corner of each figure, the stars represent the sources, and the F-J
spectrograms are extracted from seismic data on the red lines. (A) Themultimodal dispersion curves picked from the 0–30 km offset seismic record
section of SP11. (B) The multimodal dispersion curves picked from the 0–30 km offset seismic record section of SP15.
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fjk � 1
nj

∑
i

[(Vo

ij − Vs
ik)/eij] (5)

where fjk denotes the error between the jth picked dispersion

curve and the kth calculated dispersion curve, and nj is the

number of values in the jth picked dispersion curve.; Vo
ij and Vs

ik

are the ith values in the jth pickedmodal dispersion curve and the

kth calculated modal dispersion curve respectively, and eij is the

uncertainty of the picked value Vo
ij.

The jth picked dispersion curve is associated with the

calculated dispersion curve corresponding to minimum error,

so the fitting error xjof the jth picked dispersion curve is as

follows:

xj � min(fj1, fj2, . . . , fjk ). (6)

The χ2dis of the picked multimodal dispersion curves is the

average fitting error of all picked dispersion curves, and is

expressed as follows:

x2
dis �

1
m
∑
j

xj, (7)

where m is the number of picked dispersion curves.

3 Results

3.1 Multimodal dispersion curves
extracted from the DSS data

To implement the F-J method on the DSS data, we should

transform the seismic traces from the time domain C(r, t) to the
frequency domainC(r,ω) using Fourier transform.WithC(r,ω)
observed in different traces (rs), I(c,ω) can be numerically

integrated by Eq. 3, and then, the F-J spectrogram is plotted

with I(c,ω) to pick dispersion curves and corresponding

uncertainties. For each shot gather, we first divided the

seismic line to 30 km-long segments, which is equal to the

FIGURE 5
F–J spectrograms extracted from the 10-km-long seismic record sections. In the upper right corner of each figure, the stars represent the
sources, and the F-J spectrograms are extracted from seismic data on the red lines. The black dots in (a)–(c) are the dispersion curves picked from
the 30-km-long SP11 F-J spectrograms (Figure 4A), and the black dots in (D–F) are the dispersion curves picked from the 30-km-long SP15 F-J
spectrograms (Figure 4B). (A–C) are the F-J spectrograms extracted from the 0–10 km offset, 10–20 km offset, and 20–30 km offset of SP11,
respectively. (D–F) are the F-J spectrograms extracted from the 20–30 km offset, 10–20 km offset, and 0–10 km offset of SP15, respectively.
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shot source spacing, to extract the dispersion curves. Then, the

multimodal dispersion curves were extracted from the shorter

segments to increase the lateral resolution of the inversion result.

3.1.1 Multimodal dispersion curves extracted
from the 30-km-long seismic record sections

Figure 3 shows the F-J spectrograms extracted from the

0–30 km offset seismic record section of SP11 and SP15 with

the MFJ and MWS methods. Two dispersion curves are visible in

the spectrograms of SP11 (Figures 3A,B). The higher modal

dispersion curve is not clear in the MFJ spectrogram (Figure 3A),

but it can be greatly enhanced by the MWS method (Figure 3B).

Three dispersion curves are visible in all of the spectrograms of

SP15 (Figures 3C,D). It is noteworthy that a vertical signal

(marked by the ellipse in Figure 3C) exists in the spectrogram

extracted by the MFJ method. Compared with the F-J

spectrogram obtained by the original F-J method

(Supplementary Figure S6A), this vertical signal is attenuated

by the MWS method (Figure 3D) but enhanced by the MFJ

method (Figure 3C), so it is difficult to determine whether this

vertical signal is a dispersion curve or an artifact. We ignore this

confusing “vertical signal” for now and will discuss whether it is a

dispersion curve using the inversion results.

FIGURE 6
The results of the joint Monte Carlo inversion with the multimodal dispersion curves and the Pg and Sg travel times from the SP11 seismic data.
(A) The black lines are the calculated dispersion curves of the accepted models, the red lines are the calculated dispersion curves of the best fitting
model, and the white dots are the picked dispersion curves. In the upper right corner, the red star represents the source, and the F-J spectrogram is
extracted from the seismic data on the red line. (B) The black lines are the acceptedmodels, and the red line is the best fitting model. The green
lines are the boundaries of the model parameters, and 106 initial two-layer models were randomly generated between the green lines. (C) The red
lines are the picked Pg and Sg, and the blue dashed lines are the calculated Pg and Sg of the accepted models.

TABLE 1 The models fitting the SP11 seismic data.

Accepted model Vs.1 (km/s) Vs.2 (km/s) T1 (km)

model 1 2.87 3.51 0.43

model 2 2.88 3.49 0.42

model 3 2.89 3.49 0.44

model 4 2.94 3.48 0.46

model 5* 2.87 3.48 0.42

model 6 2.89 3.51 0.44

model 7 2.89 3.46 0.42

model 8 2.87 3.50 0.43

model 9 2.87 3.49 0.42

*Thea best fitting model
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The dispersion curves are picked from the overtones of the

F-J spectrograms, and the uncertainties of the dispersion curves

are set to the widths of the red overtones in the F-J spectrograms

(Figure 4). Because of the “vertical signal”, it is difficult to

associate the picked dispersion curves with correct mode

numbers. Thus, the picked dispersion curves are named mode

1, mode 2, and mode three for convenience.

3.1.2 Multimodal dispersion curves extracted
from the 10-km-long seismic record sections

We successfully extracted F-J spectrograms from the 10-

km-long seismic record sections (Figure 5). For the F-J

spectrograms extracted from the 10-km-long SP11 data

(Figures 5A–C), the overtones are nearly located in the

same place, indicating the subsurface structure within

30 km offset of SP11 is nearly laterally homogenous. For

the F-J spectrograms extracted from the 10-km-long

SP15 data (Figures 5D–F), the variation in the overtones

suggests that the phase wave velocities gradually increase

from the 0 km offset to the 30 km offset of SP15.

Overall, we applied the F-J method to the seismic data of the

ENAM Line1, and multimodal dispersion curves could be

successfully obtained within a 30 km offset of SP11 and

between SP14 and SP15. The shortest segment that can be

FIGURE 7
The results of the joint Monte Carlo inversion with the multimodal dispersion curves and the Pg and Sg travel times from the SP15 seismic data.
In the upper right corner of (A–G), the red star represents the source, and the F-J spectrogram is extracted from the seismic data on the red line.
(A–G) are the dispersion curves of the acceptedmodels one to seven in Table 2. (H) The red lines are the picked Pg and Sg, and the blue dashed lines
are the calculated Pg and Sg of the accepted models in Table 2.
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used to extract dispersion curves is approximately 10 km.

However, dispersion curves cannot be obtained from the

seismic data between SP12 and SP14. Guo et al. (2019)

showed that the jump of refractions, the disappearance of

refractions and very curved refractions are visible in the

seismic record section between SP12 and SP14, suggesting a

large lateral variation in the shallow structure between SP12 and

SP14. Generally, in array-based surface wave analyses such as the

F-J method, the obtained dispersion curves are regarded as an

average effect of the structure beneath the array, so we inferred

that the failure of applying the F-J method to the seismic data

between SP12 and SP14 may be related to the complex shallow

structure.

3.2 The inversion results

To obtain the minimum-structure 1D model, we first used

two-layer models to perform the inversion. If the inversion failed,

the three-layer models were used to perform the inversion

instead.

3.2.1 The velocity models constrained by the 30-
km-long seismic record section from SP11

Two-layer models were successfully used to perform the joint

inversion of the multimodal dispersion curves and the Pg and Sg

traveltimes from seismic data within a 30 km offset of SP11. The

model spacing for the Monte Carlo inversion included

FIGURE 8
The accepted models in Table 2. (A) The green lines are the limits of the model parameters, and 106 initial three-layer models were generated
between the green lines. The red line represents model one in Table 2, the blue lines represent models six and seven in Table 2, and the black lines
represent the other models. (B) The best fitting model (model four in Table 2).

TABLE 2 The models fitting the SP15 seismic data.

Accepted model Vs.1 (km/s) Vs.2 (km/s) Vp1/Vs.1 Vp2/Vs.2 T1 (km) T2 (km)

model 1 1.11 3.4 1.10 1.4 0.36 1.32

model 2 1.71 3.47 1.37 1.25 0.82 0.72

model 3 1.57 3.46 1.44 1.24 0.7 0.78

model 4* 1.42 3.42 1.31 1.53 0.59 1.32

model 5 1.16 3.46 1.68 1.39 0.50 1.46

model 6 2.09 3.4 1.10 1.49 0.98 0.40

model 7 2.11 3.32 1.10 1.60 1.00 0.46

Note: Themodels are three-layermodels, and the S- and P-wave velocities of the third layer are 3.5 km/s and 6.0 km/s, respectively. Themodels including the 1.10 Vp/Vs. ratio (models 1, 6,

and 7) could further be excluded by the “vertical signal” the near mode one dispersion curve.

*The best fitting model.
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3 parameters: Vs.1 and Vs.2 denoting the S-wave velocities of the

first and second layers respectively, and T1 denoting the

thickness of the first layer. The P-wave velocities were

calculated by Vs.1 and Vs.2 with the empirical Vp-Vs relation

(Brocher, 2005) during the inversion. The upper and lower limits

of Vs.1, Vs.2 and T1 were 0.5–3.5 km/s, 3.0–3.8 km/s and

0.2–3 km (shown as the green lines in Figure 6B), respectively.

A total of 106 two-layer models were randomly generated in the

model space, and nine models (Figure 6B; Table 1) were accepted

by the acceptance criterion of the joint inversion (Eq. 4). In the

model space, the accepted models (Figure 6B) were concentrated

in a very small range, indicating that high resolution shallow

structure was constrained by the inversion.

3.2.2 The velocity models constrained by the 30-
km-long seismic record section from SP15

According to a previous study on body wave arrivals (Guo et al.,

2019), the average Vp/Vs. ratio of the ACP sediment may be much

lower than the empirical value calculated by Brocher (2005),

indicating that the Vp/Vs. ratio should be introduced as a variable

in the inversion of the SP15 seismic data. A total of 106 two-layer

models were randomly generated to perform the Monte Carlo

inversion, but none of the models were accepted by the acceptance

criterion (Eq. 4), so the three-layer models were used to perform the

inversion.

Based on the prior information provided by the DSS body

wave traveltimes analysis (Guo et al., 2019), the bottom layer

(third layer) of the three-layer models was set as the basement,

and the corresponding P- and S-wave velocities were 6.0 km/s

and 3.5 km/s, respectively. There are six model parameters in

the model space: Vs.1 and Vs.2 denoting the S-wave velocities

of the first two layers, the corresponding Vp1/Vs.1 ratio and

Vp2/Vs.2 ratio and thicknesses T1 and T2. The upper and

lower limits of the model parameters were set as follows:

0.5–3.0 km/s for Vs.1, 0.5–3.49 km/s for Vs.2, 1.1–5.0 for both

Vp1/Vs.1 and Vp2/Vs.2 and 0.two to two km for both T1 and

FIGURE 9
The analysis of the F-J spectrograms extracted from the 10-km-long seismic record sections. In the upper right corners of (A–C), the red stars
represent the source, and the F-J spectrograms are extracted from the seismic data on the red lines. In the titles of (A–C), T1 represents the first layer
thickness of the best fittingmodel (model 4) in Table 2. The F-J spectrograms in (A), (B), (C) are extracted from the 20–30 kmoffset, 10–20 kmoffset,
and 0–10 kmoffset of SP15 seismic data respectively. The dispersion curves in each F-J spectrogramwere calculated by (A) themodel obtained
by subtracting 0.03 km from the first layer thickness of model 4; (B) the model obtained by adding 0.02 km to the first layer thickness of model four;
and (C) the model obtained by adding 0.08 km to the first layer thickness of model 4. (D) The 2D minimum-structure model constructed by
combining the three 1D models of (A–C).

Frontiers in Earth Science frontiersin.org10

Guo et al. 10.3389/feart.2022.1025935

8786

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1025935


T2. In addition, the sum of the first two layer thicknesses was

less than 3 km.

Seven models were selected from the 106 initial three-

layer models according to the acceptance criterion (Eq. 4).

The dispersion curves of the accepted models are very

different from each other, so we plotted them separately in

Figure 7. All of the accepted model parameters are shown in

Table 2 and Figure 8, and the best fitting model is model 4

(Figure 8B).

In the analysis of the SP15 F-J spectrograms, it was not clear

that the “vertical signal” near the mode one dispersion curve is a

dispersion curve. The dispersion curves of accepted models two

to five show that there is a dispersion curve near the “vertical

signal”, suggesting that this “vertical signal” is the low-resolution

image of a dispersion curve. By confirming that the “vertical

signal” is a dispersion curve, it is further proved that the F-J

method is an effective surface wave analysis method for DSS data.

In addition, the models 1, 6, and seven could be excluded from

the accepted models because: these models produce dispersion

curves between the picked mode one and mode two dispersion

curves, but these dispersion curves are far from the “vertical

signal”.

3.2.3 The velocity models/2D velocity model
constrained by the 10-km-long seismic record
sections from SP15

The Rayleigh wave phase velocities shown in the 10 km-

long F-J spectrograms of SP15 (Figures 5D–F) decrease

gradually from west to the east (from 30 km offset to 0 km

offset), while the sediment thickness presented by the drill

hole data (Lawrence & Hoffman, 1993b) increases gradually

from west to east. It seems that the variation in the Rayleigh

wave phase velocities is caused by the variation of the

sediment thickness (Socco & Boiero, 2008). Therefore, we

changed the layer thicknesses of the best fitting model (model

four in Table 2) to fit the F-J spectrograms extracted from the

10-km-long seismic record sections. We successively reduced

the first layer thickness of mode four by 0.03 km, increased the

first layer thickness of mode four by 0.02 km, and increased

the first layer thickness of mode four by 0.08 km. Then the

dispersion curves calculated from the corresponding 1D

models could fit the spectrograms from the 20–30 km

offset, 10–20 km offset and 0–10 km offset, respectively

(Figure 9). The 2D shallow structure (Figure 9D) was then

constructed by the three 1D models.

4 Discussion

4.1 The sensitivity of the seismic data

To explore the sensitivity of the multimodal dispersion

curves and the Pg and Sg traveltimes, we performed Monte

Carlo inversion with the subset data of the SP11 and SP15 data.

4.1.1 The sensitivity of the SP11 seismic data
In the Piedmont, the reduced Pg traveltimes (Figure 2A)

are slightly larger than zero, suggesting that a thin layer should

exist on the surface. However, detailed information about this

layer cannot be constrained by the Pg and Sg traveltimes

inversion (Guo et al., 2019), indicating that the Pg and Sg

traveltimes are not sensitive to the velocity and thickness of

this layer.

We performed the Monte Carlo inversion only with the

fundamental dispersion curve (the picked mode 1), and the

low-resolution layered structure on the surface (black lines in

Figure 10) was constrained by the fundamental dispersion curve.

With the joint inversion of the fundamental dispersion curve and

the Pg and Sg traveltimes, the bottom layer velocity could be

further constrained (blue lines in Figure 10), demonstrating that

the Pg and Sg traveltimes are mainly sensitive to the velocity of

the bottom layer. With the joint inversion of the fundamental

and first dispersion curves, both the velocities and thickness were

further constrained, and the range of the accepted models (red

lines in Figure 10) is close to the range of the models accepted by

the joint inversion of the multimodal dispersion curves and the

FIGURE 10
The inversion results with the subset data of the SP11 seismic
data. The black lines are models obtained by the fundamental
dispersion curve; blue lines are models obtained by the joint
inversion of the fundamental dispersion curve and the Pg and
Sg traveltimes; and red lines are models obtained by the joint
inversion of the fundamental and first dispersion curves.
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Pg and Sg traveltimes (Figure 6). It is suggested that the

multimodal dispersion curves could be sensitive to both the

velocity and layer thickness and that the body wave

traveltimes only play a minor role in the joint inversion of

SP11 data.

4.1.2 The sensitivity of the SP15 seismic data
In the ACP, the Pg reduced times are nearly flat between the

0 km offset and 30 km offset of SP15 (Figure 2B), while there are

obvious differences between the 10-km-long F-J spectrograms

(Figures 5D–F), suggesting that the dispersion curves are more

sensitive to lateral variation in the sediment structure than the

refraction traveltimes. The variation in the first layer thickness of

the 2D model does not introduce significant errors in the Pg and

Sg traveltimes, confirming that the multimodal dispersion curves

could be much more sensitive to the first sedimentary layer

thickness than the refraction traveltimes.

We adjusted the second layer thickness of the accepted

models and found that halving the thickness of the second

layer did not introduce significant errors into the dispersion

curves, suggesting that the dispersion curves exerted little

constraint on the second layer. Because the Pg and Sg

traveltimes are determined by the basement velocity and the

quotient of sedimentary thickness and velocity, the Pg and Sg

traveltimes also provide little constraint on the second layer.

Although both the dispersion curves and the body wave

traveltimes exerted little constraint on the second layer, this layer

was still constrained by the joint inversion of the dispersion

curves and the Pg and Sg traveltimes, suggesting that the join

inversion of body waves and surface waves is an effective way to

improve the resolution of subsurface structures. We performed

the joint inversions with themultimodal dispersion curves and Sg

traveltimes, and the results were presented in Figures 11A,B. We

also performed the joint inversions with the multimodal

dispersion curves and Pg traveltimes respectively, and the

results were presented in Figures 11C,D. The contradictory

results accepted by different subset data (Figures 11A,B and

Figures 11C,D) demonstrate that a completed seismic dataset,

including the surface waves and the P-and S- body waves, is

helpful to constrain the fine subsurface structure.

FIGURE 11
The inversion results with the subset data of the SP15 seismic data. A total of 106 two-layermodels were randomly generated in themodel space
outlined by the black dashed box in (A) and (C). The blue dots in (A) and (C) are themodels accepted bymultimodal dispersion curves. The red dots in
(A) are the models accepted by the multimodal dispersion curves and the Sg traveltimes, and the red dots in (C) are the models accepted by the
multimodal dispersion curves and Pg traveltimes. (B) and (D) present accepted models (the red dots in (a) and (C)) with the Vs-depth relation.
The contradictory results accepted by different subset data demonstrate that it is important to use both the surface waves and the P-and S-body
waves to constrain the subsurface structure.
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4.2 Comparisons with the existing results

In the Piedmont, the velocities of the thin layer agree with the

near-surface velocities constrained by the seismic-wave

propagation of the Mw5.8 earthquake (Figure 12, Pollitz and

Mooney, 2014). In the ACP, our study revealed a two-layer

sediment structure, while only one sediment layer was identified

by conventional DSS data processing (Guo et al., 2019). The

offshore ENAM-CSE seismic lines (Figure 12) indicate that the

sediment in the ocean consists of two layers (Shuck et al., 2019;

Lynner et al., 2020), and the P-wave velocities in the ocean

sedimentary layers are approximately consistent with the P-wave

velocities in our models. Catchings et al. (2008) (Figure 12)

constrained the shallow P-wave velocity structure of the ACP

with a 30 km-long shallow seismic reflection/refraction survey in

Delmarva Peninsula, Virginia, and the P-wave tomograph they

presented is also approximately consistent with the two-layer

sediment structure obtained by our study. With the results from

Shuck et al. (2019), Catchings et al. (2008) and our study, we infer

that the two-layer sediment structure extends from the ocean to

the land.

The sedimentary Vp/Vs. ratios constrained by this study are

much lower than the empirical values (Brocher, 2005), but

experimental data samples have shown that extremely low

sedimentary Vp/Vs. ratios are not unusual (Kassab & Weller,

2015; Zaitsev et al., 2017). Combined with the surface lithology

(King& Beikman 1974; Glover & Klitgord 1995) in the ACP and

the studies on low sedimentary Vp/Vs. ratios (Gregory, 1976;

Christensen, 1996; Salem, 2000; Brocher, 2005; Mavko et al.,

2009; Kassab & Weller, 2015), we inferred that the low Vp/Vs.

ratios in this study may be associated with high quartz content

(Christensen, 1996; Brocher, 2005) and/or groundwater

undersaturation (Gregory, 1976; Christensen, 1996; Salem,

2000; Mavko et al., 2009; Kassab & Weller, 2015; Berg et al.,

2021).

5 Conclusion

In this study, we extracted the multimodal dispersion curves

from DSS data in the Piedmont and ACP with the F-J method

and constrained the shallow velocity structure with the Monte

Carlo inversion of the multimodal dispersion curves and the

body wave refraction traveltimes. A ~0.42 km thick layer in the

Piedmont and a two-layer sediment structure in the ACP are

effectively constrained by the joint inversions. These subsurface

structures are not identified in the conventional DSS data

processing, indicating that the resolution of the shallow/near-

surface structure (0–2 km depth) could be improved by

extracting dispersion curves from the DSS data.

Since clear surface waves are also observed and consider

noise in deep seismic reflection and shallow seismic reflection/

refraction experiments, it is suggested that analysis of surface

waves recorded by these seismic experiments would also be

worthwhile.
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Joint towed streamer and
ocean-bottom-seismometer data
multi-parameter full waveform
inversion in acoustic-elastic
coupled media
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Geology, Tongji University, Shanghai, China

Short-offset towed streamer data, and sparse ocean-bottom seismometer (OBS)
data are not conducive to applying multi-parameter full waveform inversion (FWI) in
production. It is challenging to reconstruct deep velocity in the former, and the latter
suffers from severe acquisition footprints. We developed a joint acoustic-elastic
coupled full waveform inversion (J-AEFWI) method, in which towed streamer data
and ocean-bottom seismometer data were used jointly to build P-wave and S-wave
velocity models. A new joint objective function was established using the least-
squares theory, and the joint acoustic-elastic coupled full waveform inversion
method on the acoustic-elastic coupled equation was derived. The method can
inject the residuals of the towed streamer data and the ocean-bottom seismometer
data in time backward propagating to update P-wave and S-wave velocity models.
The synthetic experimental results show that joint acoustic-elastic coupled full
waveform inversion obtains more accurate results than when using these two
types of data alone. Compared to using the towed streamer or ocean-bottom
seismometer data alone, the joint acoustic-elastic coupled full waveform
inversion method leads to better illumination of the deep background velocities
and suppression of acquisition footprints. The results of joint acoustic-elastic
coupled full waveform inversion were slightly better than those of the cascaded
full waveform inversion strategy. To further demonstrate the benefit of the
proposed method, we applied it to the field data, and better results are
obtained as expected.

KEYWORDS

towed streamer data, ocean-bottom-seismometer data, joint multi-parameter FWI, full
waveform inversion, acoustic-elastic coupled media

1 Introduction

Since it was proposed (Lailly, 1983; Tarantola, 1984), full waveform inversion (FWI) has
been successfully applied to practical seismic data to build subsurface geophysical parameters
(Crase et al., 1990; Operto et al., 2013; Pan et al., 2018; Pan et al., 2020; Borisov et al., 2020; Peter
et al., 2022). In recent decades, the development and application of FWI ranges from acoustic
media (Gauthier et al., 1986; Ravaut et al., 2004; Plessix et al., 2010; Xukai and Robert, 2015;
Yang et al., 2016) to elastic media (Sears et al., 2008; Vigh et al., 2014; Liu et al., 2021), using
towed streamer acquisition (Dessa et al., 2004; Plessix et al., 2010; Shen, 2010) or ocean-bottom
node/ocean-bottom seismometer (OBN/OBS) acquisition (Sears et al., 2008; Vigh et al., 2014;
Peter et al., 2022).
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When OBN/OBSs cannot be deployed on a large scale, a towed
streamer is the primarymarine seismicwave observation tool. The low cost
and low processing effort have appealed to recent researchers and have led
to successful cases of acoustic FWI (Dessa et al., 2004; Plessix et al., 2010;
Shen, 2010; Agudo et al., 2018); however, several issues need to be
addressed. To facilitate macro-model building, FWI relies on a wide-
azimuthal acquisition to obtain sufficient transmitted waves (Bunks et al.,
1995; Pratt, 1999; Virieux and Operto, 2009; Plessix, 2010). The fixed
spreading and cable length limit the towed steamer observation aperture,
resulting in insufficient diving waves recorded, especially in deep seawater
environments. In this case, FWI tends to fall into cycle skipping without
considering other methods to supplement low frequencies (Yao et al.,
2019). On the other hand, the modeling equation for acoustic FWI is a
simplified approximation of the elastic equation. The converted P-waves
generated by the elastic parameters (e.g., S-wave velocity) cannot be
simulated using the acoustic equation. When significant converted
waves are present in towed streamer data, acoustic FWI tends to
incorrectly project converted waves onto P-wave velocity instead of the
correct S-wave velocity. Some studies have also focused on this issue,
considering that the application of towed streamer data in elasticmedia in a
more advanced approach (Li andWilliamson, 2019; Thiel et al., 2019; Sun
and Jin, 2020; Yang and Liu, 2020). In addition, the absence of necessary
low frequencies and surge noise in streamer data is not conducive to FWI,
resulting in the need for other waveform shaping methods.

The multi-parameter elastic FWI for OBN/OBS seismic data is now
considered as a more advanced solution to solve some of the complex
imaging problems, which usually has the advantages of low frequencies,
long offsets, and full azimuthal coverage (Sears et al., 2008; Dellinger
et al., 2017; Peter et al., 2022). The benefits of low frequencies need not
be elaborated, while the long-offsets and full-azimuthal coverage can
receive a sufficient number of diving waves. This weakens the
dependence on the starting velocities for obtaining large-scale
structures (Plessix et al., 2010). In addition, the abundant S-waves in
the OBN/OBS data play a key role in S-wave velocity inversion, which
improves the resolution of the multi-parameter inversion results. All of
these can overcome the shortcomings of towed streamer acquisition, but
limitations of towed streamer cannot be ignored. Its expensive cost and
low quantity (hundreds or even thousands of meters apart) constrain its
dense deployment in practical production. Insufficient or under-
sampled data is not enough for FWI to cover subsurface structures.
In general, FWI requires dense, fully sampled data for migration
stacking. The under-sampled data, in turn, causes the inversion to
fall into a system of underdetermined solutions, causing sharp

acquisition footprints and layer discontinuities in the inversion
results (Zheglova and Malcolm, 2019; Faucher et al., 2020).

Because OBN/OBS is still expensive to deploy densely, a scheme of a
joint towed streamer and OBN/OBS acquisition has been successfully
applied (Yang and Zhang, 2019; Yu and Sun, 2022). One of its advantages
is that the towed streamer and OBN/OBS simultaneously receive seismic
waves from the subsurface (Figure 1). The solid red line indicates the wave
path of the towed streamer, and the solid blue line indicates the wave path
of the OBS. The OBS is sparsely placed on the seafloor, which can receive
P- and S-waves in x, y, and z directions, whereas the densely connected
towed streamer hydrophones in seawater can only receive P-waves
(containing S-P converted waves). Moreover, their wave paths
intuitively showed that OBS acquisition has a larger imaging angle
than towed streamer acquisition, and a larger imaging angle is more
conducive to FWI macromodel building (Virieux and Operto, 2009).
Currently, most FWI applications use only streamer data or OBS data, but
few studies use both. We propose a joint acoustic-elastic coupled FWI
(J-AEFWI) method that combines towed streamers and OBS data using
the acoustic-elastic coupled equation (AECE), which can simultaneously
record the pressure component, x, y, and z components in acoustic-elastic
coupled media (Yu et al., 2016; Yu and Geng, 2019). The method can
inject the residuals of the towed streamer data and the OBS data in
time backward propagating to update P-wave and S-wave velocity
models. The J-AEFWI approach complements FWI with wide-
azimuthal coverage to make obtaining long-wave information
easier and make S-wave velocity inversion better than FWI with
towed streamer data alone. It complements FWI with dense data
simultaneously to suppress the acquisition footprints more than
FWI with OBS data alone. Next, the AECE is reviewed, and the
J-AEFWI method is illustrated. A set of synthetic and field data
inversion experiments were conducted.

2 Methodology

In acoustic-elastic coupled media, AECE was used to simulate
wave propagation (Yu et al., 2016) as follows:

LAEUAE � FAE (1)
where UAE � (vx, vz, P, τsxx, τsxz)T is the wavefield components and
FAE � (0, 0, f, 0, 0)T is the source vector. T indicates transposition.
The operator LAE is the AECE forward operator and satisfies the
following:

FIGURE 1
Combined towed streamer andOBS acquisition geometry. The red dots on the seawater surface indicate the towed streamer hydrophones, and the blue
squares on the sea floor indicate the OBS. The solid red line indicates the wave path of the towed streamer, and the solid blue line indicates the wave path of
the OBS.
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(2)

where vx and vz are the particle velocity components, P is the pressure,
τsxx and τ

s
xz are the deviatoric stress components, ρ is the density, and λ

and μ are Lamé parameters. The pressure, x, and z components are
integrated into the AECE, allowing pure P-waves to be obtained
directly (Yu et al., 2016).

In J-AEFWI, the joint pressure component of the towed streamer
and the x and z components of the OBS objective function based on
the l2-norm can be written as

min
m

J m( ) � γ*φ ‖ Psim
ts − Pobs

ts ‖22 + α ‖ vsimxo − vobsxo ‖22 + β‖ vsimzo − vobszo ‖22,
(3)

where J indicates the objective function,m indicates the model parameters,
superscripts sim and obs indicate the simulated and observed data,
subscripts ts, xo, and zo indicate the pressure component of the towed
streamer, and x and z components of the OBS, respectively.

We used the adjoint-state method to deduce the adjoint equation
(included in Appendix A):

L
AE

* ~U
AE

� ~FAE (4)

where, ~UAE � (~vx, ~vz, ~P, ~τsxx, ~τsxz)T is the adjoint wavefield, LAE* is the
adjoint operator, and

~FAE � α vsimxo − vobsxo( ), β vsimzo − vobszo( ), γ*φ Psim
ts − Pobs

ts( ), 0, 0( )T (5)
is the adjoint source function and satisfies

α � 0, β � 0, γ � 1, or
α � 1, β � 1, γ � 0, or
α � 1, β � 1, γ � 1.

⎧⎪⎨⎪⎩ (6)

Parameters α, β, and γ act as switches in the inversions. When α = 0, β = 0,
and γ = 1, it indicated towed streamer data alone. When α = 1, β = 1, and
γ =0,AEFWIwas indicated forOBS data alone. J-AEFWI is indicatedwhen
α = 1, β = 1, and γ = 1. The φ is a weighting parameter used to control the
contribution of different data points in the inversion. The selection strategy
for parameter φ is explained in a subsequent discussion. LAE* was given by:
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

The gradients of the objective function with respect to the
parameters λ and μ are derived as follows:
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� ∑

shot
∫ dt

zvx
zx

+ zvz
zz

( )~P

zJ

zμ
� ∑

shot
∫ dt

zvx
zx

+ zvz
zz

( )~P − zvx
zx

− zvz
zz

( )~τsxx − zvx
zz

+ zvz
zx

( )~τsxz

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(8)

Finally, P- and S-wave velocity gradients were obtained using the
chain rule. The parameters were updated by:

mk+1 � mk + αkgk (9)
wherem is the model parameter, α is the updating step length, g is the
conjugate update direction of the model parameters, and k is the
number of iterations.

FIGURE 2
The true P-wave velocity (A) and S-wave velocity (B) models and their starting models (C,D).
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3 Synthetic inversion examples

We conducted three FWI experiments for towed streamer data alone,
OBS data alone, and combined towed streamer and OBS data. All
experiments used Eqs 1, 4, 8, 9 to invert P- and S-wave velocities, and

the difference is the selection of the weighting parameters in Eq. 6. The
size of the true and starting models was 10 km × 3.5 km shown in
Figure 2. The experimental acquisitions followed the towed streamer and
the OBS acquisition. A total of 200 streamer hydrophones were spaced
20 m apart at the seawater surface, and 11OBSwere spaced 1,000 m apart

FIGURE 3
Shot gathers of the towed streamer (A), OBS x (B), and z (C) components.

FIGURE 4
The P-wave velocity (A,C,E) and S-wave velocity (B,D,F) updating directions for the first iteration of three inversion experiments. (A,B) are updating
directions of towed streamer data alone, (C,D) are updating directions of OBS data alone, and (E,F) are updating directions of joint towed streamer and OBS
data.
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FIGURE 5
The spectrums of updating directions. (A–C) are the P-wave velocity updating direction of TS-FWI, OBS-FWI and J-AEFWI, respectively. (D–F) are the
S-wave velocity updating direction of TS-FWI, OBS-FWI and J-AEFWI, respectively.

FIGURE 6
The P-wave velocity (A,C,E) and S-wave velocity (B,D,F) inversion results. (A,B) are results for towed streamer data alone, (C,D) are results for OBS data
alone, (E,F) are results for joint towed streamer and OBS data.
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FIGURE 7
Vertical P-wave velocity (A) and S-wave velocity (B) profiles at three different locations. The solid black lines indicate the true velocities, the dashed lines
indicate the starting velocities, the red lines indicate the results for towed streamer data, the green lines indicate the results for OBS data, and the blue lines
indicate the J-AEFWI results.

TABLE 1 The data residuals of the final inversion results.

Method Vx of OBS Vz of OBS Pressure of towed streamer

FWI for towed streamer data 23.6% 22.6% 1.3%

FWI for OBS data 16.5% 20.6% 20.2%

J-AEFWI 5.7% 5.9% 2.2%
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on the seafloor. Figure 3 shows the common shot gathers for both
acquisitions. The towed streamer data had a clear acquisition density
advantage, but only a few diving waves were recorded. In contrast, OBS

data are sparse, but its long-offset data are abundant. The experiments are
concerned with P-wave velocity and S-wave velocity building, and the
weak parameter density is the true value that is not updated in the
inversions. All three experiments were iterated 200 times to maintain
consistency in the computation effort.

The characteristics of these three experiments can be observed in the
updated directions for the first iteration of the inversion, as shown in
Figure 4. Figures 4A, B show the P-wave velocity and S-wave velocity
updating directions of the AEFWI for towed streamer data. The updating
direction of the P-wave velocity has good continuity of layers (especially in
shallow parts), which is attributed to the dense acquisition of the towed
streamer. The weakness of (A) is that the updating direction is dominated
by the high-wavenumber information mainly concentrated on the layers
rather than the most desired low-wavenumber information. This is
because of the slight imaging angle, which is attributed to the narrow
aperture of the towed streamer acquisition. Although FWI can slowly
recover models after multiple iterations, such small-angle data are
unfavorable for inversion. Moreover, relying only on small-angle
reflected waves, the illumination of the shallow part of the updating

FIGURE 8
Pressure residuals of FWI results for (A) towed streamer data, (B) OBS data and (C) J-AEFWI. The z-components residuals of FWI results for (D) towed
streamer data, (E) OBS data and (F) J-AEFWI.

FIGURE 9
The x, z-component data of OBS and towed streamer data.
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direction is excellent, whereas the illumination of the deep part is
insufficient (Peter et al., 2022). In addition, without S-waves, the

direction of the S-wave velocity relying only on the converted P-waves
is insufficient and shows dispersion in depth.

FIGURE 10
The starting P-wave (A) and S-wave (B) velocities; P-wave (C) and S-wave (D) velocities of AEFWI for OBS data; and P-wave (E) and S-wave (F) velocities
of J-AEFWI. The dotted line behind the ship indicates the towed streamer, the red balls represent OBS, and the target area is in the red box. The yellow line
indicates the free gas layer. The part of images of starting P-wave velocity (G), starting S-wave velocity (H), P-wave velocity of AEFWI for OBS data (I), S-wave
velocity of AEFWI for OBS data (J), P-wave velocity of J-AEFWI (K) and S-wave velocity of J-AEFWI (L), respectively. The areas indicated by arrows,
rectangles and circles show improvements for J-AEFWI.
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Figure 4C, D show P-wave and S-wave velocity updating directions of
sparse OBS data AEFWI. As expected, the updating directions of the OBS
data are very poor for layer continuity compared with the updating
directions of the towed streamer data. The sparse data indicate that
imaging stacking is insufficient, and many acquisition footprints (show
arcs) appear in the direction profiles. Encouragingly, long-offset data play a
significant role in determining the background velocity. The updated
directions of the OBS data have more low-wavenumber information,
which is crucial for recovering large-scale structures. The deep
illumination of the model is much better because of wide-azimuthal
acquisition (Shen et al., 2018). Virieux and Operto (2009) found that
the frequency and imaging angle influence the wavenumber of the imaging.
The lower the frequencies and the larger the imaging angles, the lower the
wavenumber of the imaging results. If the starting model is not good
enough, the low frequency and long observation aperture become keys to
the success of FWI (Shipp and Singh, 2002; Ravaut et al., 2004; Operto et al.,
2006; Plessix et al., 2010). In addition, positively influenced by the abundant
S-waves, the updating direction of the S-wave velocity is better illuminated
in the deep part (Figure 4D), making the S-wave velocity inversion more
likely to succeed (Ren and Liu, 2016; Wang and Cheng, 2017).

Figures 4E, F show the P-wave and S-wave velocity updating
directions of the J-AEFWI. The updating directions of J-AEFWI are
shaped as a combination of the towed streamer and OBS updating
directions. On the one hand, the strong acquisition footprints are
faded, and the continuity of the layers was enhanced owing to the
addition of the towed streamer data. On the other hand, the low-
wavenumber information from the wide-azimuthal OBS data
remained, and the superior illumination of the deep parts was
preserved. As observed, the updated directions of
J-AEFWI carry more information for P-wave and S-wave
velocity buildings.

Figure 5 shows the wavenumber spectrum of the updating
directions of the FWI for towed streamer data, OBS data and
J-AEFWI. The low wavenumbers in the updating directions of the
OBS data are dominant, whereas updating the directions of the towed

streamer data contain higher wavenumbers. The updating directions
of J-AEFWI contain both low and high wavenumbers.

The characteristics of the updating directions are projected in the
inversion results. Figure 6 shows the results of the three inversion
experiments. Figures 6A, B are P-wave and S-wave velocity results for
the towed streamer data. Benefiting from dense acquisition, FWI accurately
depicts the structural layers, which are almost consistent with the true
velocities. However, below 2 km depth, the different background velocities
are not adequately inverted and blended, which affects the identification of
deeper structures (low-velocity structures indicated by the dashed boxes). In
the results of theOBSdata (Figures 6C,D), large-scale background velocities
are adequately inverted, especially at the depth indicated by the dashed
boxes, where the low-velocity structures are well illuminated and can be
identified clearly. The shortcoming is that insufficient data leads to
inadequate stacking, resulting in poor continuity and shallow acquisition
footprints. Figures 6E, F show better inversion results for J-AEFWI. In the
shallow part, the results depict the layers at high resolution, and the
acquisition footprints are suppressed; in the deep part, sufficient
illumination and accurate macroscopic velocities remain.

Figure 7 shows vertical velocity profiles at three different locations.
Above 2 km depth, the results for towed streamer data (red lines) closely
match true velocities (black lines), while the results deviate from true
velocities below it. On the contrary, the results forOBS data (green lines) are
slightly worse at shallow depth and slightly better at a deeper depth. The
inversion results of J-AEFWI accurately fit the true velocities in both the
deep and shallowparts. Overall, the results of J-AEFWI are better than those
of AEFWI for towed streamer data alone or AEFWI for OBS data alone.

To further illustrate the accuracy of the inversion results, the
data residuals are quantitatively shown. Figure 8 shows the final
data residuals of FWI for towed streamer data, OBS data, and
J-AEFWI. Where the red arrows indicate, the amplitudes of
residuals are smaller for J-AEFWI. Compared to the residuals of
the initial model, the data residuals of the final inversion results are
shown in Table 1. Naturally, the FWI for towed streamer data uses
only towed streamer data and not the OBS data, which has the

FIGURE 11
Synthetic data generated using initial models (A), AEFWI results for OBS data (B) and J-AEFWI results, compared to the observed data. Themiddle of each
image shows the field data and the sides show the synthetic data, which are separated by red lines. The waveforms after multiples are muted.
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smallest residuals for the towed streamer data and the larger
residuals for the OBS data. The FWI for OBS data uses only
OBS data and not the towed streamer data, which has the
smallest residuals for the OBS data and the larger residuals for
the towed streamer data. The J-AEFWI uses both towed streamer
and OBS data, and have the smallest residuals.

4 Field data examples

We tested the J-AEFWI approach on South China Sea field data. A
total of 875 shots were distributed evenly over a straight line of
approximately 20 km. Considering the calculation cost, we

selected only a part of the data to implement in the
experiments. The collection ship carried 360 towed streamer
hydrophones, and only five OBSs were arranged on the seafloor
with 400 m spacing. Figure 9 shows the x, z-component of an OBS,
and the towed streamer data. We know from early works that free
gas layers exist in the target area (indicated by the yellow line in
Figure 10A). During pre-processing, we applied a transformation
from 3D to 2D geometric spreading (Crase et al., 1990), and a band-
pass filter was applied to the data. A time window is applied to mute
the reflected waves after multiple arrivals.

In approximately 1 km deep water, the towed streamer hardly
received the diving waves, so it is unwise to implement FWI for
multi-parameter building using towed streamer data alone. In this

FIGURE 12
The images with corresponding velocity models overlay. P-wave velocity of AEFWI for OBS data (A), S-wave velocity of AEFWI for OBS data (B), P-wave
velocity of J-AEFWI (C) and S-wave velocity of J-AEFWI (D). The ADCIGs of (E) P-wave velocity of AEFWI for OBS data, (F) S-wave velocity of AEFWI for OBS
data, (G) P-wave velocity of J-AEFWI, and (H) S-wave velocity of J-AEFWI. The areas indicated by arrows and rectangles show improvements for J-AEFWI.
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section, we describe the implementation of an AEFWI experiment
for OBS data and a J-AEFWI experiment. The starting P-wave and
S-wave models are presented in Figures 10A, B. Before the FWI,
we improved the starting models using tomography techniques.

Figures 10C, D shows AEFWI results for OBS data alone.
Compared with the starting models, the inversion results change
on macroscopic velocities and appear to have some high
wavenumber information which is beneficial to identify the
layers. In particular, a well-defined low-velocity layer appears in
the shallow part, which is consistent with prior information
provided by the early works that free gas layers exist in the
target area. Unfortunately, sparse data led to poor continuity
and irregular perturbations in these layers. J-AEFWI improved
these anomalies caused by insufficient data. As shown in Figures
10E, F, the irregular disturbances of the layers are suppressed, and
layers are more continuous.

Conventionally, the reverse time migration (RTM) imaging
technique is used to verify the accuracy of inversion results.
Figures 10G–L shows the P-wave velocity (G) and S-wave velocity
(H) images of the starting models, P-wave velocity (I) and S-wave
velocity (J) images of AEFWI for OBS data, and P-wave velocity (K)
and S-wave velocity (L) images of J-AEFWI. In the target area, both
inversion experiments improved the RTM images (indicated by
rectangular areas). More accurate velocities allowed the images to
migrate to the correct position, as evidenced by the more continuous
and clear images. In particular, the images of S-wave velocities, which
were blurred for the starting models, improved significantly with the
inversion results. In addition, the images of the J-AEFWI results are
more converged and clearer than those of the OBS data (indicated by
the circles and arrows).

Figure 11 presents a comparison between field data and synthetic
data for the initial models, OBS data AEFWI results, and J-AEFWI
results. The center of the red lines represents the field data, with the
synthetic data on either side. The waveforms after multiples have been

suppressed. In Figure 11A, the initial model’s synthetic data lacks
some reflection events and exhibits poor continuity (as indicated by
the red arrow). In contrast, Figure 11B demonstrates that the OBS data
inversion results exhibit improved continuity in the reflection events.
Finally, Figure 11C shows that the synthetic data generated by the
J-AEFWI method most closely aligns with the field data, as indicated
by the red circles.

To verify the reliability of the inversion results, we show the
P-wave and S-wave velocity images with a velocity model overlay,
as shown in Figures 12A–D, where the emerging velocity layers
largely coincide with the image positions. We also show the angle-
domain common-image gathers (ADCIGs) to illustrate the
accuracy of the inversion results. Figures 12E–H shows ADCIGs
at locations in the target region. Figures 12E–F show the ADCIGs
of P-wave velocity and S-wave velocity for the AEFWI of OBS data,
and Figures 12G–H show the ADCIGs of P-wave velocity and
S-wave velocity for the AEFWI of joint data. The ADCIGs of the
two FWIs are generally similar, and a comparison shows that the
ADCIGs of the J-AEFWI results are flatter and clearer at some
locations than those of the OBS data (indicated by arrows and
rectangles).

5 Discussion

The weighting parameter φ played a key role in the success of
the J-AEFWI approach. For simplicity, the value of φ was set to
balance the proportions of the two data in the objective function. In
addition, before calculating the updating directions of J-AEFWI, φ
can be adjusted such that the energy of the gradients of the two
types of data is approximately half. In practice, the value of φ can be
adjusted according to the quality of the different data. If the spacing
of OBS in the field data is large, it is appropriate to increase the
weighting of towed streamer data and decrease the weighting of

FIGURE 13
P-wave (A) and S-wave (B) velocity of cascaded AEFWI.
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OBS data in this case. The weighting of the OBS data can be
increased as the OBS interval decreases, or the weighting of the
towed streamer data can be adjusted downward if the noise
pollution is serious.

Next, we present a cascaded AEFWI approach that does not require
determining the value of the weighting parameters. We first inverted
100 times using theOBS data, and the inversion results were then inverted
100 times using the towed streamer data, with the same inversion
parameters as above for AEFWI. As shown in Figure 13, the cascaded
AEFWI accurately reconstructs the velocitymodels. In the vertical velocity
profiles (Figure 14), the inversion accuracy of the cascaded FWI was

slightly worse than that of J-AEFWI. This is because cascaded FWI utilizes
both data in segments, whereas J-AEFWI utilizes both data in the entire
inversion process.

Figure 15 shows P-wave and S-wave velocity normalized misfits
between inversion and true models. First, the decline of J-AEFWI in
P-wave velocity misfit is leading in the whole process, and cascaded
AEFWI takes inversion results of OBS data as the starting point, which
inevitably lags behind J-AEFWI. This pattern is the same in S-wave
velocity misfit, but inversion for OBS data is ahead of inversion for towed
streamer data. This is because S-waves in OBS data play a significant role
in S-wave velocity building.

FIGURE 14
Vertical P-wave velocity (A) and S-wave velocity (B) profiles at three different locations. The solid black lines indicate the true velocities, the dashed lines
indicate the starting velocities, the red lines indicate the cascaded AEFWI results, and the blue lines indicate the J-AEFWI results.
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6 Conclusion

We developed a J-AEFWI method, in which towed streamer
and OBS data were used to build P-wave and S-wave velocity
models based on the same acoustic-elastic coupled equations. This
method combines the advantages of both types of data. On the one
hand, towed streamer data with dense acquisition can accurately
depict model layers and suppress acquisition footprints. On the
other hand, the long-offset OBS data with rich diving waves benefit
deep illumination and large-scale background velocity building.
The synthetic experimental results show that J-AEFWI obtains
more accurate results than when using these two types of data
alone. The results of J-AEFWI were slightly better than those of the
cascaded FWI strategy. This method was applied to the field data,
and better results were obtained.
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Appendix A

We used Lagrangian multiplier method to derive the adjoint
equations and gradients. The acoustic-elastic coupled equation and
the objective function can be expressed as
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− zτsxx
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and
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0
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0
γ*φ Psim

ts − Pobs
ts( )2 + α vsimxo − vobsxo( )2 + β vsimzo − vobszo( )2dt

(A2)
Expanding the objective function using the Lagrange multiplier

method yields:

O m,U, ~U( ) � J + ∫t

0
〈~vx,O/ 1〉xdt + ∫t

0
〈~vz,O/ 2〉xdt + ∫t

0
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(A3)
where,

U � vx, vz, P, τ
s
xx, τ

s
xz( ) (A4)

~U � ~vx, ~vz, ~P, ~τ
s
xx, ~τ

s
xz( ) (A5)

The vector ~U represents adjoint-wavefield. The new objective
function J calculates the first derivative of each parameter and
equals zero:

zO
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� 0 (A6)

zO
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z ~Ui
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Finally, we can obtain the adjoint equations:
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and gradients:
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(A11)

The expressions of P- and S-wave velocity can be obtained by using the
chain rule.
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Adaptive variable-grid
least-squares reverse-time
migration
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Variable-grid methods have the potential to save computing costs andmemory

requirements in forward modeling and least-squares reverse-time migration

(LSRTM). However, due to the inherent difficulty of automatic grid

discretization, conventional variable-grid methods have not been widely

used in industrial production. We propose a variable-grid LSRTM (VG-

LSRTM) method based on an adaptive sampling strategy to improve

computing efficiency and reduce memory requirements. Based on the

mapping relation of two coordinate systems, we derive variable-grid

acoustic wave equation and its corresponding Born forward modeling

equation. On this basis, we develop a complete VG-LSRTM framework.

Numerical experiments on a layered model validate the feasibility of the

proposed VG-LSRTM algorithm. LSRTM tests on a modified Marmousi model

demonstrate that our method can save computational costs and memory

requirements with little accuracy loss.

KEYWORDS

variable-grid method, LSRTM, adaptive sampling, imaging resolution, computing
efficiency

Introduction

Migration technologies play an increasingly significant role in seismic data processing

(Yilmaz, 2001). Reverse time migration (RTM) (Baysal et al., 1983; Whitmore, 1983),

which uses two-way wave equations for wavefield propagation, is regarded as the most

effective method for imaging steep dip and complex structures. Compared with one-way

wave-equation migration (Claerbout, 1971; Xie and Wu, 2005) and ray-based migration

methods (Schneider, 1978; Hill, 1990), RTM has no dip limitation and can correctly image

prism and overturned waves. RTM has been widely studied and developed by many

scholars because of its advantage in providing high-accuracy subsurface images (Sun and

McMechan, 2001; Rocha et al., 2016; Du et al., 2017). However, RTM images usually suffer

from artifacts (Zhang and Sun, 2009), incomplete illumination (Buur and Kühnel, 2008)

and low-frequency noise (Díaz and Sava, 2016) because conventional RTM algorithm uses

the adjoint of the linearized wave equation rather than its inverse (Nemeth et al., 1999).
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Inverse theory-based least-squares migration (LSM) (Lailly

and Bednar, 1983) aims to obtain images with fewer artifacts and

acquisition marks by approximating the exact inverse of the wave

equation modeling operator (Lambaré et al., 1992; Kühl and

Sacchi, 2003; Hu et al., 2016). Using the RTM operator to

perform migration procedure under the framework of LSM

leads to least-squares reverse-time migration (LSRTM) (Dai

et al., 2012; Dong et al., 2012). The data-domain LSRTM

method seeks to iteratively update the subsurface reflectivity

by minimizing the residual between the simulated data and

observed data (Dai and Schuster, 2013; Zhang et al., 2015;

Wang et al., 2017). It has been extended to elastic (Feng and

Schuster, 2017; Ren et al., 2017; Gu et al., 2018), viscoacoustic

(Dutta and Schuster, 2014; Sun et al., 2016; Chen et al., 2017;

Yang and Zhu, 2019) and anisotropic cases (Qu et al., 2017; Yang

et al., 2019; Mu et al., 2020) due to its superiority in balancing

amplitude, suppressing artifacts, and improving image

resolution. However, limited by large computing costs (Dai

and Schuster, 2013), the sensitivity to migration velocity (Tan

andHuang, 2014; Li et al., 2017), and themismatch of amplitudes

(Zhang et al., 2015), conventional LSRTM is not extensively used

in large-scale field data processing.

Many researchers have done valuable work to accelerate

LSRTM. Dai et al. (2012) used multi-source strategy to

improve the computing efficiency of LSRTM. After that, Dai

and Schuster (2013), Li et al. (2018), Liu and Liu (2018), Zhao

and Sen (2019), and Li et al. (2020) successively applied plane-

wave theory and encoding technologies to LSRTM to reduce the

computational costs. However, the crosstalk noise often occurs in

LSRTM images when using the multi-source encoding

algorithms, which seriously degrades the inversion quality.

Speeding up the convergence rate of LSRTM is another way

to save production costs. Duprat and Baina (2016) introduced a

preconditioning factor into LSRTM and achieved fast

convergence results. Rocha et al. (2018) developed an energy-

based LSRTM algorithm to speed up the convergence of LSRTM.

Thanks to the development of high-performance computer, the

GPU/CPU parallel LSRTM algorithm has been developed to

improve the efficiency (Xue and Liu, 2017; Zhang et al., 2018). In

recent reports, some deep-learning frameworks have been used

to alleviate the computing burden (Vamaraju et al., 2021) and

reduce the number of iterations (Kristian and Mauricio, 2022) of

conventional LSRTM.

Another promising application to speed up LSRTM is

using the model-driven variable-grid methods. The use of

irregular spatial grid interval can be traced back to Moczo’s

(1989) finite-difference modeling for SH-waves. Jastram and

Behle (1992) proposed variable-grid spacing algorithm in

depth domain and applied it to solve two-dimensional

acoustic wave equation. Then, Jastram and Tessmer (1994)

developed this method into elastic cases. Falk et al. (1996)

used varying grid spacing to simulate the tube wavefield

successfully. The variable-grid algorithms mentioned above

usually use different finite-difference coefficients in the

transition region between coarse and fine grids. Wang and

Schuster (1996) proposed an interpolation-based variable-

grid method for elastic and acoustic wave equation

modeling. Wang (2001) further developed interpolation

strategy into viscoelastic wave simulation. The variable-grid

strategy has been successfully applied to waveform inversion

and RTM. Ha and Shin (2012) developed an axis

transformation method to speed up Laplace-domain full-

waveform inversion (FWI). Li et al. (2014) proposed an

efficient dual-variable algorithm and applied it to RTM.

Sun et al. (2017) introduced the variable-grid technique

into cross-well seismic data imaging. Wang et al. (2017)

developed an adaptive FWI algorithm based on the

variable-grid strategy to reduce the computational costs.

FIGURE 1
Principle of the adaptive sampling.

FIGURE 2
Flowchart of the proposed VG-LSRTM.
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Since wavefield simulation and RTM are the basic units of

LSRTM, these variable-grid methods mentioned above have

the potential to accelerate LSRTM. However, there are many

difficulties in applying them to LSRTM. First, conventional

variable-grid algorithms always sample a specified area, the

edge of which generates strong spurious reflections because

the grid size in this area is much smaller than that in other

areas. Such spurious reflections are hard to eliminate in

seismic wave propagation, and is likely to reduce the

quality of LSRTM images. Second, it is necessary to

change the finite-difference scheme or coefficients of the

transition regions between spatial grids of different sizes to

achieve successful wavefield extrapolation, which poses

challenges of accuracy and stability for the

implementation of variable-grid LSRTM (VG-LSRTM).

Finally, due to the difficulty inherent in automatically

gridding complex velocity model, conventional variable-

grid methods are not so practical and they are hardly

applied to LSRTM. The pseudo-time domain method

(Alkhalifah, 2003; Ma and Alkhalifah, 2013) provides a

global grid discretization strategy to overcome these

problems, which can be considered as a special variable-

grid method. Li et al. (2017) developed a cross-correlation

LSRTM algorithm in pseudo-time domain (PT-LSRTM) to

improve the computing efficiency and reduce the sensitivity

of velocity errors to imaging results. However, the

demigration operator in pseudo-time domain is more

complicated than that in depth domain. Therefore, PT-

LSRTM cannot significantly reduce the computational costs.

To improve the computing efficiency of LSRTM without

precision loss, we propose an adaptive VG-LSRTM

algorithm based on a global sampling strategy in this

paper. Our variable-grid approach is efficient and

convenient, which does not require changing the finite-

difference scheme and its coefficients, adding the

transition region between grids of different sizes, and

manually gridding the velocity model. We first derive a

variable-grid first-order acoustic wave equation and the

corresponding demigration equation based on a mapping

relationship. Then, two numerical tests on synthetic data

demonstrate the advantages of our method. After that, we

discuss the possible risks of the proposed method in terms of

stability and accuracy. Finally, we summarize the paper in

the conclusion section.

FIGURE 3
Layered model: (A) regular-grid model and (B) variable-grid model.

TABLE 1 Modeling parameters of FG-LSRTM, CG-LSRTM and VG-
LSRTM tests.

Tests Methods Nx Nz dx (m) dz

1 FG-LSRTM 601 301 5 5 m

2 CG-LSRTM 601 201 5 7.5 m

3 VG-LSRTM 601 197 5 Variable

FIGURE 4
Comparison of vertical grid interval.
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Methodology

Adaptive sampling method and variable-
grid acoustic wave equation

The 2D first-order velocity-stress acoustic wave equation in

an inhomogeneous isotropic media is written as:

ρ
zu

zt
� zp

zx

ρ
zw

zt
� zp

zz

1

ρv2
zp

zt
� zu

zx
+ zw

zz
+ S(t)

(1)

where u and w are the particle velocity, p is acoustic pressure

field, ρ is medium density, v is acoustic velocity, and S(t) is the
source term.

Eq. 1 has been widely used in forward modeling and

LSRTM (Virieux, 1986; Li et al., 2017). It is easier to

obtain better results by using finer spatial grid than

coarser one when applying the finite-difference technique

to solve Eq. 1. However, for those high-velocity zones, the

use of fine grid leads to a waste of computing resources. In

this section, we introduce an adaptive sampling method to

solve the above problem based on the assumption that the

formation velocity varies with depth and properties of the

underground media.

Given an initial velocity model whose number of grid points

and spatial grid spacing are already known. We use Eq. 2 to

calculate its optimal vertical grid spacing along the depth

direction:

dz(z) � v min(z)
fdk

(2)

where dz(z) denotes the optimal vertical grid spacing in

depth z, v min(z) is the minimum velocity of each layer

along z-axis, k denotes the number of vertical grid points

per wavelength, and fd denotes the maximum frequency of

the source. Obviously, dz(z) decreases as k and fd increase.

To ensure that the grid dispersion never occur, k is set to ten

in this paper.

FIGURE 5
Wavefield snapshots computed by: (A) fine-grid method, (B) coarse-grid method, (C) variable-grid method, and (D) variable-grid method with
linear interpolation.

Frontiers in Earth Science frontiersin.org04

Huang et al. 10.3389/feart.2022.1044072

112111

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1044072


In order to keep the total depth of the initial model

constant, we resample it using an adaptive sampling

method. The process is illustrated in Figure 1. The

horizontal axis in Figure 1 denotes depth of the initial

model and the black dashed line in Figure 1 denotes the

optimal vertical grid spacing. First, we take a small trial step

from the surface of the model and gradually increase it to

obtain the first grid point z1, where z1 � dz(z1). Then we use

the same way to get the next grid point z2, where

z2 − z1 � dz(z2). Next, we repeat this process to the

maximum depth of the model and get all of the grid

points. In high-velocity zone, the grid interval is larger

than that in low-velocity zone, and the grid points are

sparser, which makes grid discretization more reasonable

compared with regular-grid implementation. Now we obtain

a new model, which has variable vertical grid interval. We

keep the horizontal grid interval constant because the

formation velocity varies mainly along the depth direction

and our adaptive sampling method is not applicable to areas

where the medium velocity changes slowly.

The initial model is located in Cartesian coordinate system

M(x, z) while the new model is located in a new rectangular

coordinate system N(ξ, η). There is a mapping relationship

between the coordinate variables of the two coordinate

systems. We use Eq. 3 to express this relation:

ξ � x

zη

zz
� φ(z)

(3)

where the ξ and η are the coordinate variables inN(ξ, η), x and z

are the coordinate variables in M(x, z), and φ(z) denotes the
mapping relationship. It is important to note that the based on

the adaptive sampling shown in Figure 1, η does not depend on x.

Thus, Eq. 1 can be rewritten as:

ρ
zu

zt
� zp

zξ
� zp

zx

ρ
zw

zt
� zp

zη
� zp

zz

zz

zη
� zp

zz

1
φ(z)

1

ρv2
zp

zt
� zu

zξ
+ zw

zη
+ S(t)

� zu

zx
+ zw

zz

zz

zη
+ S(t)

� zu

zx
+ zw

zz

1
φ(z) + S(t)

(4)

Eq. 4 is the variable-grid acoustic wave equation, which

can be solved in M(x, z) by means of the mapping relation.

Its computational complexity is not much different from

that of Eq. 1. φ(z) in Eq. 4 is obtained when resampling the

initial model and it can be solved by the finite-difference

method.

The principle of variable-grid LSRTM

Based on the superposition principle of the wavefield, the

velocity model can be expressed as:

s2 � s20 + Δs2 (5)

where s denotes slowness, which is the reverse of velocity. s0
denotes the background slowness fields and Δs is the

perturbation. Similarly, the seismic wavefield can be separated

into the background wavefield p0 and the perturbation

wavefield ps:

p � p0 + ps (6)

The background wavefield p0 obeys Eq. 4:

ρ
zu0

zt
� zp0

zx

ρ
zw0

zt
� zp0

zz

1
φ(z)

1

ρv2
zp0

zt
� zu0

zx
+ zw0

zz

1
φ(z) + S(t)

(7)

Substitute Eq. 5 and Eq. 6 into Eq. 4, subtract Eq. 7, and

perform Born approximation (Dai et al., 2012), we get the control

equation of ps:

ρ
zus

zt
� zps

zx

ρ
zws

zt
� zps

zz

1
φ(z)

s2
zps

zt
� ρ(zus

zx
+ zws

zz

1
φ(z)) − Δs2zp0

zt

(8)

Eq. 8 is the Born forwarding modeling equation, which can

be rewritten as a matrix:

FIGURE 6
Comparison of the snapshots at a distance of 1.3 km for
different forward modeling methods.
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ps � Lm (9)
where L denotes the Born (linearized) forwarding modeling

operator, and m � s2 is model parameter. The goal of LSRTM

is to reconstruct the optimal reflectivity image of the earth

(Dutta and Schuster, 2014). The objective function J is

defined as:

J � 1
2
‖Lm − dobs‖22 (10)

where ‖ · ‖22 is the L2-norm of a vector and dobs is the observed

data.We use a gradient-based algorithm (Dai et al., 2011) to solve

Eq. 10 as follows:

g � L*(Lm − dobs) (11)

where g is the gradient and * denotes the conjugate transpose of a

matrix. The process of the steepest descent method to solve the

objective function can be expressed as:

p

mk+1 � mk − αkgk

gk � L*(Lmk − dobs)
αk � (gk)pgk

(Lgk)pLgk

(12)

where k denotes the iteration index and αk denotes the step

length.

We summarize complete VG-LSRTM workflow in Figure 2.

When “Yes” is output in the diamond box, we obtain the VG-

LSRTM imaging result with irregular vertical grid interval. Then

FIGURE 7
Single shot record: (A)observed data, (B) Born-modeled data at the first iteration of the fine-grid test, (C)Born-modeled data at the first iteration
of the coarse-grid test, and (D) Born-modeled data at the first iteration of the variable-grid test.
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we use linear interpolation technique to transform the variable-

grid image into a regular-grid one based on the mapping relation.

Numerical examples

In this section, we demonstrate the feasibility and advantages

of the proposed method with synthetic data. The numerical tests

FIGURE 8
LSRTM images after 20 iterations: (A) FG-LSRTM image, (B) CG-LSRTM image, (C) VG-LSRTM image, and (D) VG-LSRTM image after linear
interpolation.

FIGURE 9
Normalized data residual convergence curves of the three
LSRTM tests.

TABLE 2 Model parameters of FG-LSRTM, CG-LSRTM and VG-LSRTM
tests.

Tests Methods Nx Nz dx (m) dz

1 FG-LSRTM 681 701 10 5 m

2 CG-LSRTM 681 351 10 10 m

3 VG-LSRTM 681 360 10 Variable
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are for two models: 1) a layered model and 2) a modified

Marmousi model.

Layered model

First, we use a layered model shown in Figure 3A to illustrate

the implementation process of VG-LSRTM in detail. The model

is 3 km wide and 1.5 km deep, which has three horizontal layers

with velocity of 1,500 m/s, 2,500 m/s and 4,500 m/s, respectively.

Three comparative tests shown Table 1 are designed to

demonstrate the effectiveness of our method. In Test 1, the

size of the fine-grid model grids is 601 × 301 with a 5 m grid

spacing. 601 × 201 grid points are used in coarse-grid model

(Test 2), with grid interval of dx � 5 m and dz � 7.5 m. The

variable-grid model is displayed in Figure 3B, which is resampled

from the fine-grid model. Compared with the fine-grid model,

the number of vertical grid points of the variable-grid model is

reduced by 34.6%.

Figure 4 shows the vertical grid spacing of these models. The

blue dashed line denotes the theoretical optimal value of the fine-

grid model, which is calculated by Eq. 2. The red dashed line

displays the vertical grid spacing of the variable-gird model. It

varies more smoothly between two layers than the blue line. For

conventional variable-grid methods (Jastram and Tessmer, 1994;

Wang and Schuster, 1996; Ha and Shin, 2012; Fan et al., 2015), it

is inevitable to add a transition area between two layers with

different velocity, change the finite-difference scheme of the

seismic wave equation, or modify the finite-difference

coefficients. When the modeling parameters are not

reasonable, strong spurious reflections will occur in the

transition area. Our adaptive variable-grid method is much

easier to implement and can effectively avoid the spurious

reflections.

Next, we test our method using forward modeling. A Ricker

wavelet source with dominant frequency of 30 Hz is used. The

time step is 0.5 ms. Figures 5A–C show the wavefield snapshots

at 0.65 s, which are computed by the fine-grid, coarse-grid and

variable-grid methods, respectively. The variable-grid snapshot

(Figure 5C) is irregular in depth direction. For comparison

purposes, we apply linear interpolation to it to get a regular-grid

one, as shown in Figure 5D. As indicated by the red arrows,

numerical dispersion in Figure 5B is stronger than that in

Figures 5A,D. As shown in Figure 6, we extract a single

trace from these snapshots at a distance of 1.3 km for

further comparison. The black arrows indicate the

dispersion. From Figure 6, we find that the blue line and the

red line almost coincide but they are different from the

black line.

In LSRTM tests, the recording time is 1.5 s. In total, 21 shots

are evenly distributed on the surface and the shot interval is

150 m. Each shot has 601 receivers and the receiver interval is

FIGURE 10
Modified Marmousi model: (A) regular-grid model, and (B) variable-grid model.

FIGURE 11
Comparison of vertical grid interval.
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5 m. Figure 7A shows the synthetic single shot record using the

fine-grid model, which is regarded as the observed data. Figures

7B–D show the Born-modeled data at the first iteration of the

fine-grid method, coarse-grid method and variable-grid method,

respectively. Obviously, the numerical dispersion in Figure 7C is

strong (see the red arrow). Figures 8A–C show the FG-LSRTM,

CG-LSRTM and VG-LSRTM images after 20 iterations,

respectively. Figure 8D shows the linear interpolation profile

of the image in Figure 8C. As indicated by the red arrows in

Figure 8, the FG-LSRTM and VG-LSRTM images show fewer

FIGURE 12
LSRTM images using different migration velocity model after 30 iterations: (A) FG-LSRTM image, (B) CG-LSRTM image, (C) VG-LSRTM image,
and (D) VG-LSRTM image after linear interpolation.

FIGURE 13
Magnified views of the dashed red boxes shown in Figure 12: (A) FG-LSRTM image, (B) CG-LSRTM image, and (C) VG-LSRTM image after linear
interpolation.
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imaging artifacts, higher resolution, and better balance of

reflector amplitudes compared with the CG-LSRTM image.

Figure 9 shows the convergence curves of the normalized data

residual. The convergence curves of FG-LSRTM method and the

VG-LSRTM method almost coincide after 15 iterations, which

means that the proposed algorithm converges as fast as

conventional LSRTM.

These LSRTM tests are performed on a cluster using twenty-one

server nodes. The CPU is a 2.20 GHz Intel Xeon Silver 4,214, which

has forty-five compute nodes. The computing time of FG-LSRTM,

CG-LSRTM and VG-LSRTM is 93 min, 62 min and 64min,

respectively. The VG-LSRTM method saves about 34.6% of

memory compared to the FG-LSRTM method because the

number of vertical grid of the variable-grid model is 34.6% of

that of the fine-grid model. From the layered model tests, we

conclude that the VG-LSRTM method can improve computing

efficiency, reduce memory consumption, and provide high-

resolution image with little accuracy loss.

Modified Marmousi model

Similar to the previous section, we use the coarse-grid, fine-

grid, and variable-grid Marmousi models to further verify the

advantages of the proposed method. The model parameters are

shown in Table 2. Figure 10A shows the regular-grid model.

Figure 10B displays the variable-grid model, which is resampled

from the fine-grid model. From Table 2, the number of vertical

grid points of the variable-grid model is 360, decreasing by

48.6%. The comparison of vertical grid interval is presented in

Figure 11. We can see that the variable-grid grid interval (the red

line) varies smoothly with model velocity.

In imaging tests, the time interval is 0.3 ms, and the recording

time is 3 s. In total, 35 sources are distributed laterally from 0 to

6.65 km, and the shot interval is 200 m. Each shot has 681 receivers,

and the receiver interval is 10 m. The dominant frequency of the

Ricker wavelet source is 30 Hz. Figure 12 shows the images after

FIGURE 14
Vertical slices of Figure 13 at: (A) 3.5 km and (B) 4.25 km.

FIGURE 15
Normalized data residual convergence curves of CG-LSRTM,
FG-LSRTM and VG-LRSRTM methods.
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30 iterations. Figure 12A displays the FG-LSRTM image, Figure 12B

shows the CG-LSRTM image, Figure 12C shows the VG-LSRTM

image, and Figure 12D shows the VG-LSRTM image after linear

interpolation. Figure 13 shows the magnified views of the dashed red

boxes shown in Figure 12. Obviously, the images in Figures 13A,C

show better imaging resolution than that in Figure 13B. To

demonstrate that the VG-LSRTM method has high accuracy and

low errors, we extract two traces from the images in Figures 13A,C (see

the red and blue lines). Figures 14A,B show the single trace

comparison at the distance of 3.5 km and 4.25 km, respectively.

We can see that there is almost no amplitude and phase error between

the FG-LSRTM and the VG-LSRTM image.

Figure 15 shows the normalized data residual convergence

curves of these tests. We can see that the curves of the FG-

LSRTM method and the VG-LSRTM method almost coincide,

and they converge faster than that of the CG-LSRTM method.

Each LSRTM test uses thirty-five nodes on a 2.20 GHz Intel Xeon

Silver 4214 CPU. The computing time of FG-LSRTM, CG-LSRTM

andVG-LSRTM is 25.6 h, 13.1 h and 13.8 h, respectively. Compared

with the FG-LSRTM method, our VG-LSRTM method can save

46% of the computation time. From the numerical example of the

modified Marmousi model, we conclude that the proposed VG-

LSRTM method can greatly improve computing efficiency.

Discussion

Numerical tests on the layered model and the modified

Marmousi model have shown that the proposed method is

efficient and accurate. Nevertheless, the final effect that our

method can achieve depends on initial spatial grid interval, the

velocity structure of the model, and the maximum frequency of the

source. Severe vertical velocity variation, small spatial grid interval,

and the use of low-frequency source are favorable factors for the

proposed VG-LSRTM algorithm. In addition, the accuracy loss of

VG-LSRTM images mainly originates from the sampling process

shown in Figure 1 because model velocity varies continuously while

the grid points are obtained by discrete sampling. Other factors that

may reduce the accuracy of the imaging results, such as the use of

linear interpolation technology and the order of the finite-difference

scheme for approximating φ(z), have negligible effects on the final

results. The stability condition of Eq. 4 is worth discussing. By

analyzing the results of a large number of numerical tests, we find

that the stability condition of Eq. 4 is slightly more stringent than

that of Eq. 1.

Conclusion

Conventional variable-grid methods are difficult to implement

and apply to LSRTM.We presented a VG-LSRTM algorithm based

on an adaptive sampling strategy to accelerate LSRTM in this paper.

We derived a variable-grid first-order stress-velocity acoustic wave

equation and its corresponding Born forward modeling operator

based on a mapping relationship between two coordinate systems.

We developed a complete VG-LSRTM workflow and proved its

feasibility using two numerical examples. Forward modeling tests

for a layered model demonstrated that the proposed variable-grid

method has high wavefield simulation accuracy. LSRTM tests for

the layered model and a modified Marmousi model validated that

our VG-LSRTM can save large computing costs and provide high-

resolution imaging results as well as FG-LSRTM.
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The crustal velocity structure in the South Yellow Sea (SYS) Basin is crucial

for understanding the basin’s geological structure and evolution. OBS

(ocean-bottom station) data from the OBS2013 line have been used to

determine the crustal velocity structure in the SYS. The velocity model of

the upper crust in the northern SYS was determined using first-arrival

traveltime tomography. The model showed a higher resolution shallow

crustal velocity structure but a lower resolution middle-lower crustal

velocity structure. The crustal velocity structure, together with the

Moho discontinuity in the SYS Basin, was also constructed using a

human–computer interactive traveltime simulation, and the result was

highly dependent on the prior knowledge of the operator. In this study, we

reconstructed a crustal velocity model in the SYS Basin using a joint

tomographic inversion of the traveltime and its gradient data of the

reflected and refracted waves picked from the OBS data. The resolution

of the inverted velocity structure from shallow-to-deep crust was

improved. The results revealed that the massive high-velocity body

below the Haiyang Sag of the Jiaolai Basin extends to the Qianliyan

Uplift in the SYS; the low-velocity Cretaceous strata directly cover the

pre-Sinitic metamorphic rock basement of the Sulu orogenic belt; and the

thick Meso-Paleozoic marine strata are retained beneath the

Meso–Cenozoic continental strata in the northern depression. The

Moho depth in the SYS Basin ranges from 28 to 32 km.

KEYWORDS

South Yellow Sea Basin, crustal velocity, Moho discontinuity, OBS, reflection,
refraction, joint inversion
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Introduction

The South Yellow Sea (SYS) Basin, the main part of the

Lower Yangtze region, is located in the continental shelf area

between the Chinese Continent and the Korean Peninsula. With

a total area of approximately 280,000 km2 and a sea-bottom

depth of less than 80 m, oil and gas exploration in the SYS Basin

has never made a breakthrough. In 2013, the Qingdao Institute of

Marine Geology of the China Geological Survey, in conjunction

with the First Institute of Oceanography of the Ministry of

Natural Resources and the Institute of Geology and

Geophysics, Chinese Academy of Sciences, implemented the

joint land–sea deep seismic exploration line OBS2013

(Figure 1, blue dotted line) (Liu et al., 2015) in the Jiaodong,

Bohai, and SYS regions, which aimed to study the structure of oil-

and gas-bearing basins accompanied by the morphology of

Moho discontinuity and deep structures in the exploration

area. With the OBS2013 line data, Zou et al. (2016) generated

a velocity structure model of the upper crust in the northern part

of the SYS using first-arrival traveltime tomography. Zhao et al.

(2019a) obtained a continuous 2-D velocity and interface model

by using a human–computer interaction simulation of refraction

and reflection traveltime data picked from OBS2013. Zhang et al.

(2021) processed and analyzed the converted shear wave of the

OBS data by forward simulation of the shear wave data. Liu et al.

(2021) constructed the crustal velocity structure in the SYS Basin

by using a human–computer interaction simulation of the

refraction and reflection traveltime picked from OBS data

combined with gravity data and obtained the approximate

shape of the Moho discontinuity. Among the aforementioned

studies, the resolution of velocity in the shallow layer inverted

using first-arrival traveltime tomography is high, but that in the

middle-to-lower layer is low. The velocity structures and the

Mohomorphology obtained by employing the human–computer

interaction simulation are heavily dependent on operator

expertise.

To obtain a more precise velocity model and reduce the

impact of human factors, this article proposes a joint

tomographic inversion which can simultaneously use the

traveltime and its gradient data of the reflected and refracted

waves to invert the underground velocity model without

determining the corresponding relationship between the

seismic events and the reflection interfaces beforehand

(Billette and Lambar, 1998). Moreover, the traveltime gradient

can reflect the direction of ray propagation at the shot point and

receiver point to solve the multipath problem of reflected rays,

strengthen the constraint on the model space, and improve the

inversion effect (Jin and Zhang, 2018). However, this requires

picking the gradients in common-source gathers and in

common-receiver ones, respectively. In data from survey line

OBS2013, the OBS distance is large (6 km); in this case, the

gradients cannot be picked in common-source gathers. To

address this issue, we used a phase-shift wave-field

extrapolation and the principle of reciprocity between a

source and a receiver to pick the gradients in common-source

gathers so that it becomes possible to use the joint tomography

method (Alerini et al., 2009). Through this method, the crustal

velocity structure and the undulating shape of the Moho

discontinuity along this line are obtained. The related

scientific problems are discussed, and some new

understandings are attained.

Geological structure of the South
Yellow Sea Basin and OBS2013 data

Tectonic division of the South Yellow Sea
Basin

The SYS Basin is located to the east of the Tanlu Fault Zone

and south of the Sulu Orogenic Belt. Its northern and southern

edges are adjacent to the Sino-Korean block and South China

block, with the Sulu Orogenic Belt and the Jiangshao Fault Belt

as the boundaries, respectively. Moreover, the basin connects to

the Lower Yangtze Subei Basin in the west. Overall, it is a

superimposed basin on the Meso-Paleozoic marine strata which

have been significantly transformed by Meso-Cenozoic tectonic

plate movements (Wan, 2012; Li et al., 2017). The current SYS

Basin is delimited in conformity with the stratigraphic

FIGURE 1
Tectonic regionalization of the SYS Basin and the position of
survey line OBS2013.
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distribution range since the Cretaceous–Paleogene extinction.

From north to south, the basin can be categorized into five

secondary structural units, namely, the Qianliyan Uplift,

Northern depression, Central Uplift, Southern depression,

and Wunansha Uplift (Figure 1). A series of faulted

depressions, grabens, and other structures have also

developed in the basin. The faulted depressions are primarily

distributed to the west of 123°E and are characterized as

northern faults in addition to the southern stratigraphic

overlap, and the faulted depressions are steep in the north,

and gentle in the south. Most of the structural lines are NNE

and NE, controlling the basin’s formation and development.

The Mesozoic strata in the Northern depression, together with

the Paleozoic strata in the Central Uplift and the Wunansha

Uplift, have feasible hydrocarbon potential. Moreover, the

OBSs of the OBS2013 survey line are essentially arranged in

the south of the Qianliyan Uplift and the whole Northern

depression.

OBS2013 data

OBS2013 survey line, with a length of 223 km, is the first deep

seismic survey line deployed in the SYS area. A total of 39 OBSs

FIGURE 2
Seismic phase and event-picking of OBS19: (A) seismic phase identification of OBS19 seismic records, (B) seismic event-picking position of
OBS19 seismic records, (C) the close-up of the pickup effect of the red dashed rectangles (i, ii, iii, and iv) in (B).
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(C06–C39 in Figure 1) are deployed, including 17 short periodic

MicroOBSs and 22 short periodic GeoprosOBSs. The distance

between the OBSs is 6 km, and the sampling interval of the

seismic wave is 4 ms. Additionally, the 2,501 shots are fired at a

spacing of 125 m. The initial shot point is located at OBS03, and

the termination shot point is 106 km away from OBS39 (red line

in Figure 1).

It is necessary to note that we have denoised the OBS data to

improve the signal-to-noise ratio (SNR). Due to the shallow-

water depth and large wind waves in the area where the OBSs

were located, a substantial amount of noise is found in the seismic

records. Among the noise, random noise can be practically

divided into low-frequency surge noise with a frequency of

0–3 Hz, high-frequency wind–wave noise with a frequency

above 30 Hz, and ship-dynamic noise and coastal–industrial

noise with a frequency of 20–200 Hz. Moreover, coherent

noise can be generally classified into surface waves, shallow-

reflection multiples, and water waves that are mainly

concentrated in the direct-wave region, as well as wide-angle

virtual reflection and deep refraction multiples positioned

outside the direct-wave region (Zhao et al., 2020). According

to the distribution characteristics of noise, data preprocessing

comprises automatic gain control, bandpass filtering, and

predictive deconvolution (Peacock and Treitel, 1969; Garret

et al., 2012; Zhao et al., 2020).

Figure 2A illustrates the seismic phase identification of the

post-noise reduction OBS19 seismic records (converted speed of

6 km/s), in which the Ps seismic phase is the inflected seismic

phase in the sedimentary layer appearing on both sides of the

station as the first arrival, and its apparent velocity is low. Pg1 is

the refracted phase in the upper crust, followed by the Ps phase in

the form of the first arrival. Simultaneously, the reflected seismic

phase PsP at the bottom interface of the sedimentary layer can be

identified near the converted traveltime of 1.5 s, exhibiting a

significant hyperbolic symmetry. The Pb seismic phase of the left

branch (the refraction seismic phase under the basement of the

SYS’s continental basin) is reduced from 2 s to 1.2 s at the 20-km

offset due to the Qianliyan Fault, and then the seismic phase can

be continuously traced to the 90-km offset. The PcP seismic

phase (the reflected wave seismic phase at the upper and lower

crust interfaces) appears at 20–80 km, and the converted

traveltime ranges from 1.5 s to 2.5 s. The PmP phase (Moho

reflection phase) appears at an offset of 90 km and a traveltime of

3.5 s. The reflected seismic facies PcP in the high-velocity marine

sedimentary layer are recorded at 20 km of the right branch and

extend to approximately 45 km. The Pg2 seismic phase (refracted

phase in the mid-crust) occurs at 45–65 km, and the equivalent

traveltime ranges from 3 to 4 s. In addition, the PmP phase

appears at 70–135 km, with weak phase energy. At 120 km, the

Pn seismic phase (upper mantle refraction seismic phase)

appears at the conversion time of 1 s with weak energy (Liu

et al., 2021; Zhang et al., 2021).

Methodology

For the tomographic inversion, the traveltimes and their

gradients must be picked from the reflected and refracted phases

in common-source and common-receiver gathers, respectively.

Given the large OBS distance, we picked the traveltimes and their

gradients of the same phase in the common-source gathers based

on the principle of reciprocity. Since the sources are close to the

sea surface and the OBS is located on the sea bottom, the sources

are corrected to be located at the sea bottom by using a wave-field

extrapolation technique to meet the principle of reciprocity.

Wave-field extrapolation

At present, the common wave equation datum correction

methods can be divided into three categories: Kirchhoff integration

method, finite difference method, and phase-shift method. The two

previous methods are approximate solutions, while the wave equation

transformed in the phase-shift will not distort the waveform and has

high accuracy. Therefore, this study used the phase-shiftmethod in the

frequency–wavenumber domain to implement wave-field

extrapolation (Gazdag, 1978; Cui et al., 2007; Alerini et al., 2009),

redatuming and interpolation of the sources at receiver positions. First,

the seismic records were transformed from the time–space domain to

the frequency domain by using the Fourier transform. Afterward,

wave-field extrapolation was performed using the “step-by-step

accumulation” and “step-by-step parking”methods (Yang et al., 2007).

FIGURE 3
Schematic diagram of the principle of reciprocity: (A) Picking
of data on common-receiver gathers at source s1, (B) picking of
data on common-receiver gathers at source s2, and (C) use of the
reciprocity to obtain the two gradients. The stars represent
the sources and the triangles the receivers.
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Picking traveltimes and their gradients at
common-receiver gathers

The traveltime gradient refers to the tangent slope of the local

correlation event in the seismic record at the center trace. It is the

ratio of the traveltime difference△t between the two ends of the local

coherent-phase axis centered on the track and the distance Δx
between them. Because the source spacing is small, the traveltime

and its gradient at each source can be picked in the common-receiver

gather by using the slant stack method (Schleicher, et al., 2008).

Picking traveltimes and their gradients at
common-shot gathers

Since the number of OBSs was small and the interval was

large, the number of seismic records in a common source was

insignificant, making the tracking of seismic events even more

challenging. The aforementioned slant-stacking method was

unsuitable for picking the seismic event traveltimes and the

gradient data at each receiver point in the common-source

gather. This study applied the principle of reciprocity between

a source and a receiver to the traveltime and gradient pickup of

the sparse OBS observation system (Alerini et al., 2009). Figure 3

presents the details of its principle. For the seismic records

T1 with the receiver at r1 and the source at s1, the traveltime

gradient ps
1 at source s1 in the common-receiver gathers is picked,

as exemplified in Figure 3A. As shown later, we circumvent the

problem of picking slopes in common-source gathers by applying

reciprocity of Green’s functions and using information from

common-receiver gathers. Concerning the seismic records

T2 with the receiver point at r2 and the source at s2, the

traveltime gradient ps
2 at point s2 is picked in the common-

receiver gathers, as illustrated in Figure 3B. In this way, we

obtained the two gradients (Figure 3C).

Joint tomographic inversion of reflected
and first-arrival waves

The first arrival includes direct and refraction waves, and its

event traveltime and gradient data are straightforward to pick.

The first arrival of small and medium offsets can describe a

shallow seabed’s characteristics, and the first arrival of large

offsets can also reflect the deep strata information. In contrast,

the observation angle of the reflected wave is limited, but the

reflected wave contains a considerable amount of mid-deep

information, which is more beneficial in the inversion of mid-

deep crustal velocity. The joint tomographic inversion using first-

arrival and reflected wave data can increase the coverage angle of

the rays and their coverage times (Prieux et al., 2013; Liu and

Zhang, 2022). Compared with a single first-arrival or reflected

wave, joint inversion has a higher accuracy.

Following stereo-tomography (Billette et al., 2003; Lambare

et al., 2004), the smooth velocity model was estimated from the

traveltime and its gradient data of the local coherent events of

both first-arrival and reflection waves. By modifying the velocity

model and the location of the reflection points, the calculated and

picked traveltimes and their gradients of the first-arrival and

reflected waves are made consistent, thereby obtaining the

underground velocity model (Li et al., 2019).

In joint tomography, the data space d of traveltime and its

gradient tomography can be expressed as:

d � [(xs, zs, pxs, xr, zr, pxr, tsr)n]Nn�1 , (1)

where (xs, zs) is the coordinate of the source s; (xr, zr) is the

coordinate of the receiver r; pxs and pxr are the traveltime

gradients at the source and receiver points, respectively; and

tsr is the two-way traveltime. The subscript n represents the nth

ray pair, and N represents the number of ray pairs.

The model space m is composed of discrete velocity

parameters mv, first-break wave section parameters mfstray , and

reflection wave section parameters mref ray , which can be

expressed as:

m � (mv ,mfstray ,mrefray)T . (2)

The objective function of joint tomographic inversion is:

O(mfstray , mrefray , mv) � 1
2
φ[dfstcal(mfstray , mv) − dfstobs]TC−1

d [dfstcal(mfstray , mv) − dfstobs]
+1
2
(1 − φ)[drefcal(mrefray , mv) − drefobs]TC−1

d [drefcal(mrefray , mv) − drefobs]
+1
2
λ(mv −mvprior)TC−1

m LTL(mv −mvprior),
(3)

where the first two items are the data residuals, and the third

item is the model constraint. Additionally, φ is the first-arrival

inversion weight; λ is the damping coefficient that adjusts the

relative size of the model constraint item role; dfstobs and dfstcal
are the first-arrival observation data and calculation data,

respectively; and drefobs and drefcal are the reflected-wave

observation data and calculation data, respectively. mv is

the model, mvprior is the a priori model; L represents the

Laplace operator which carries on the smooth constraint to

the model; T superscript is the matrix transpose, and Cd and

Cm are the covariance matrices of the data and the model,

respectively. The data items and model parameter items are

weighted, and the observation data with different magnitudes,

such as the traveltime and gradient, and the model parameters

with different magnitudes, such as the velocity and reflection

point position, are normalized.dcal(m) is a nonlinear function.
At the initial model mvprior, the function is expanded by using

Taylor series, and the linear term is obtained:

dcal(m) � dcal(mvprior) + G(m −mvproor) , (4)
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where G � (Gv, Gray)T, Gv is the kernel function matrix of the

data about the node velocity of the discrete model, andGray is the

kernel function matrix of the data about the ray parameters

(reflection point coordinates, ray exit angle, and ray traveltime)

(Billette and Lambar, 1998).

In order to obtain the minimum solution of objective

function (3), after substituting Eq. 4 into Eq. 3, making the

derivative of objective functionmodel space parameter equal to 0,

then the following linear inversion equation is obtained:

(GT
v C

−1
d Gv GT

rayC
−1
d Gray

λC−1
m L 0

)( Δmv

Δmray
) � (GT

v C
−1
d Δd
0

), (5)

where Δd represents the data residual vector, its element is

the difference between the observed data and the data

calculated by the current inversion model, and Δmv and

Δmray are the corrections of the ray segment parameters

and discrete velocity values, respectively. In this way, it will

continue iteratively until the mean square error between

FIGURE 4
(A) Initial velocity model, (B) tomographic inversion results of first-arrival traveltimes and their gradients, and (C) tomographic inversion results
of traveltimes and their gradients of first-arrival wave joint-reflected waves.
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the inversion model calculation data and the observation

data meets the given error limit.

Results

Picking traveltimes and their gradients

In total, 39 OBSs were encoded into the OBS2013 survey

line in the SYS, of which 29 OBSs collected valid data. After

preprocessing the robust OBS data, consistent with the OBS

water-depth data, we extended the shot point from the sea

surface to the seabed where the OBS was located using the

phase-shifting wave-field extrapolation method from Chapter

3. Additionally, the local event traveltime and its gradient of

the common source were picked through the principle of the

reciprocity method. Figures 2B, C illustrate the result of the

traveltimes and their gradients picked at the common receiver

(OBS19). Then, Figure 2B portrays the pickup effect of the

traveltime position at OBS19. The first-arrival seismic phases

(Ps, Pb, Pg1, and Pg2) and reflected-wave seismic phases (PcP,

PsP, and PmP) are picked. Moreover, Figure 2C displays the

close-up of the picked effect of the red dashed rectangles (i, ii,

iii, and iv). For all the valid OBS data, 284 groups of the first-

arrival traveltimes and their gradients, along with 395 groups

of reflection traveltimes and their gradients, were picked.

Joint tomographic inversion of traveltimes
and their gradients

The crustal velocity distribution is inverted by the

tomography using 284 groups of first-arrival traveltimes and

their gradients, as well as 395 groups of reflection traveltimes and

their gradients. According to the previous information on surface

velocity in the study area and the velocity model constructed by

the predecessors, the initial velocity model in Figure 4A is

established. The model’s length in the x direction is 200 km,

the depth in the z direction is 40 km, the velocity increases

linearly with depth, v= (2 + 0.2z) km/s, and the size of the initial

discrete unit of the model is 4 km × 1.5 km.

First, 284 groups of first-arrival traveltimes and their

gradients were employed for tomographic inversion. In the

inversion process, the multiscale strategy was utilized to

continuously subdivide the grid. Subsequently, the grid was

divided every 20 iterations. After 60 iterations, we derived the

inversion result with a grid size of 1 × 0.375 km (Figure 4B).

Then, 395 groups of the reflection traveltimes and their gradients

were added for joint tomographic inversion. The weight

coefficient of the first-arrival data item is 0.4, and the

reflection data item is 0.6. Using the same initial model and

iteration parameters as the first-arrival inversion, the final

inversion result of the reflection data is presented in

Figure 4C. By tracking the RMSE (root mean square error) of

position, slope, and traveltime of the source and receiver pairs in

the iterative process, it is found that the inversion process is

convergent. Comparing Figure 4B with Figure 4C, the

tomographic inversion results using only the first-arrival data

are fundamentally consistent with the joint inversion results

above 15 km. However, the two inversion results for the mid-

deep velocity below 15 km differ. The joint tomographic

inversion result is of higher quality than the tomographic

inversion result of the first-arrival data.

Based on the joint tomographic inversion results in

Figure 4C, the shallow velocity of the model between

OBS14 and OBS36 is low, and the velocity on both sides is

higher than that in the middle. The tectonic boundary between

the Qianliyan Uplift, Northern depression, and Central Uplift is

clearly given, which is consistent with the tectonic boundary’s

location distribution in Figure 1. Moreover, the velocity model

above a depth of 5 km (e.g., the velocity contour of 4.54 km/s)

also reflects the distribution of secondary structures. OBS22,

OBS23, and OBS24 are located on the North Branch of the

Northern depression’sWestern bulge, and OBS29 is on the South

Branch of the Northern depression’s Western bulge.

The basement of the Jiaolai Basin comprises Late

Archean–Late Proterozoic metamorphic rocks, which

extensively crop out on the basin’s northern and southern

sides. Primarily, the sedimentary rock series is composed of

the Lower Cretaceous Laiyang Group and Qingshan Group, as

well as the Upper Cretaceous Wangshi Group. In particular, the

Laiyang Group is primarily deposited by river lake facies clastic

sediments, which are intercalated with dolomitic shale and a

small number of pyroclastic rocks. In addition, the Qingshan

Group is an intricate series of volcanic, pyroclastic, and typical

sedimentary rocks. Finally, the Wangshi Group is made of river

lake facies clastic rocks mixed with mudstone and pyroclastic

rocks. For each set of strata, the thickness can reach several

thousand meters, which are either in parallel unconformity or

angular unconformity. A small amount of the Paleogene strata is

present in numerous regions, such as in the Pingdu Sag, and a

small number of Quaternary deposits are distributed in the

basin’s northwestern area (Qiu et al., 2011). Based on the

joint inversion results itemized in Figure 4C in the Qianliyan

Uplift area, because the high-velocity body below the Haiyang

Sag of the Jiaolai Basin has a large-scale extension to the

Qianliyan Uplift, the low-velocity Cretaceous strata directly

cover the Sulu Orogenic Belt’s pre-Sinian metamorphic rock

basement.

As the central body of the lower Yangtze paraplatform, the SYS

Basin is a multicycle superimposed basin of Meso-Paleozoic marine

basins and Meso-Cenozoic continental basins based on the pre-

Nanhua fold metamorphic crystalline basement. More specifically,

the SYS Basin can be categorized into three structural layers from the

bottom to the top: the Nanhua EarlyMiddle Triassic marine strata as

the lower structural layer, a late Cretaceous Paleogene half-graben
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lacustrine deposit in the middle, and Neogene–Quaternary

depression-type fluvial facies and marine continental facies clastic

sediment as the upper layer (Zhang et al., 2014; Zhao et al., 2019b).

The inversion results in Figure 4C show that in the Central Uplift

area, due to the strong erosion since the Indo-China movement, the

low-velocity Neogene–Quaternary strata in the upper structural layer

are directly overlaid by the Mesozoic and Paleozoic carbonate

formations in the lower structural layer. As a result, a strong

difference in the formation velocity in the shallow part of the two

regions exists. At depths of 5 km–20 km in the model, a large area of

a relatively low-velocity anomaly from OBS22 to OBS32 in the

Northern depression is observed. This indicates that under theMeso-

Cenozoic continental strata of the middle and upper structural layers

of the Northern depression, the geological situation of an exceedingly

thick lower structural layer can be found in the Meso-Paleozoic

marine strata.

The Moho discontinuity in Figure 4C is approximately

determined according to the 8 km/s velocity contour. Its

depth in the study area ranges from 28 km to 32 km. In the

Qianliyan Uplift, affected by the strong subduction collision

orogeny between the Yangtze block and the North China

block during the Indosinian period, the Moho discontinuity

fluctuates to a great extent, but in other regions, it fluctuates

only at a very low level.

Conclusion

With the OBS2013 line in the SYS, this study combines the

phase-shift wave-field extrapolation and the principle of reciprocity,

and the traveltimes and their gradient picking of the local coherent

events of sparse OBS data are realized. Simultaneously, the crustal

velocity structure and the undulating shape of the Moho

discontinuity in the SYS are revealed by joint tomographic

inversion of reflected and refracted seismic waves. Accordingly,

the crustal velocity structure substantiated that the high-velocity

body in the deep Haiyang Sag of the onshore Jiaolai Basin

extends to the SYS’s Qianliyan Uplift area at a large scale. It is

also worth noting that the low-velocity Cretaceous strata directly

cover the pre-Sinian metamorphic rock basement of the Sulu

Orogenic Belt, and the thick Meso-Paleozoic marine strata are

preserved under the Meso-Cenozoic continental strata in the

Northern depression. Finally, the fluctuation characteristics of the

Moho discontinuity in a depth range of 28–32 km in the study area

are further characterized.
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Microseismic positioning of an
isolated working face under
complex geological conditions
and its engineering application

Zhao Long*

School of Science, Liaoning Technical University, Fuxin, China

In view of the inability to accurately locate vibrations in isolated workings under

complex geological conditions, an adaptive rotational categorization method, a

downhill comparison method based on time-frequency analysis (TFA-DC

method), a variable-step acceleration search method, and a dual-phase

seismic source location method (TD-DL method) are proposed. A set of

integrated software with features of “visualization”, “interactive” and “one-click”

was developed for microseismic data processing. Results show that compared

with the improved STA/LTA method, the recognition accuracy of the island

working face microseismic signal by the adaptive wheel classification method

is increased by 4.8%. Comparedwith the improved STA/LTAmethod, the TFA-DC

method has the advantage that it can simultaneously pick up the exact p wave

and the peak Swave, and the failure ratio is 0. Comparedwith simulated annealing

algorithm and genetic algorithm, stepwise accelerated searchmethod has better

results. The standard deviation of objective function value, location error and

wave velocity error are all 0. Method improves the positioning of the TD - DL

detector coordinates, dual phase and coherence of known information, such as

the positioning result positioning error is only the p wave and S wave ChanZhen

phase positioningmethod of 9.5% and 14.5%, to a certain extent offset the pwave

and SwaveChanZhen phase calculation of the positioning error, so as to improve

the effect of source localization precision of the inversion.

KEYWORDS

microseismic monitoring, adaptive wheel classification method, TFA -DC method,
step-size accelerated search method, dual seismic source location

1 Introduction

With increase in mining depth and scale, the uncertainty of the underground

environment in which it takes place gradually increases, which is manifested by the

fact that the primary geological structure of the strata in which it is located is susceptible to

extensive disturbance or even destruction. This may imply that the mining of mineral

resources may also be accompanied by a number of environmental and safety hazards

such as impact pressure, collapse of the mining area, rock explosion, and roofing of the

tunnel flake (Pan et al., 2007; Cui et al., 2019; Li et al., 2019).
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In order to monitor and prevent these safety hazards,

microseismic monitoring technology is now commonly used

in the mining process to monitor and locate disaster sources

(Gong et al., 2010; Gong et al., 2012). This predicting is necessary

as part of monitoring the rock interface damage, matrix or

inclusions fracture during the mining process to ensure the

safety of construction and reduce economic losses (Li and Xu,

2020). The core elements of microseismic monitoring are phase

identification, arrival time pickup, algorithm optimization, and

source localization.

For seismic phase recognition, Zhao et al. (2015) used

microseismic waveform repetition, tail-wave drop, signal

principal frequency, and occurrence time that fall under

Fisher classification method parameters to construct a

seismic phase recognition model. Dong et al. (2016)

selected microseismic occurrence time, seismic moment,

total radiated energy, P- and S-wave energy ratio, corner

frequency, and static stress drop as feature parameters for

microseismic recognition. Used Fisher classification

method, and Plain Bayes method and logistic regression

were used for classification. Jiang et al. (2021) proposed an

earthquake phase identification method based on random

forest classifier after reducing the data volume by singular

value decomposition and used the time-frequency

characteristics of microseismic signals. Wu et al. (2016)

proposed an earthquake phase identification method

based on S-transform, and the similarity of phase and

frequency and random combination analysis of P-wave

waveform.

In arrival pickup, Ross et al. (2018) proposed a method for

the P-wave arrival pickup and the initial motion polarity

determination using deep learning. Perol et al. (2018)

proposed a method for seismic phase identification and arrival

pickup based on U-shaped neural networks. Lee et al. (2017)

proposed a modified energy ratio (MER) method for arrival

pickup. Diehl et al. (2009) proposed a method for the P-wave

arrival pickup based on a hybrid STA/LTA-Polarization-AIC

algorithm. for P-wave arrival pickup is proposed based on the

short time-window average/long time-window average (STA/

LTA), polarization and AIC criteria.

In terms of optimization of algorithms, Li et al. (2014)

proposed a simplex shape localization method based on

L1 parametric statistics, which had high immunity to

outliers with large deviations. Jia et al. (2017) analyzed the

relationship between localization error and the number and

location of sensors using high-density table-array and

particle swarm algorithms. In the source location, the

joint inversion localization method is more common (Li

et al., 2013; Zheng et al., 2016; Xue et al., 2018), and there

are many other methods, Wang et al. (2019) proposed a

differential evolutionary microseismic localization method

with improved localization objective function for traditional

localization method which relied heavily on the walking time

accuracy. Wang et al. (2020) proposed a hybrid microseismic

source localization algorithm based on simplex-shortest path

ray tracing.

The above research results have improved the accuracy of

earthquake source localization to a certain extent, but there are

some shortcomings. For the seismic phase identification, the

commonly used STA/LTA method calculates the ratio of the

long- and short-time windows of the whole signal, and the

invalid background noise in the whole signal accounts for most

of it, resulting in lot of arithmetic power and time; for the arrival

pickup, with the increase of the geophone arrangement density (Jia

et al., 2017; Zhao et al., 2019), the quality of the waveforms collected

by each geophone is increasingly different for poor quality signals.

Therefore, for some of the poor quality signals, even if the high-

precision pickup method is used, the pickup results will have large

errors, leading to an increase in the source inversion error. For

optimization algorithms, traditional algorithms such as genetic

algorithms and simulated annealing algorithms usually rely on

the selection of iterative initial parameters, which may lead to

distorted or scattered localization calculation results if they are

not selected properly (Tian and Chen, 2002). Due to their fixed

search step, these may also lead to poor accuracy or convergence of

localization results. For different objective functions, and initial data

(including geophone coordinates, P-wave initial value arrival time,

etc.), the localization effect may occur for source localization, and

hence it may be difficult to recognize the accurate initial arrival time

of the single phase of the S-wave due to interference with other

phases. On this basis, the current utilization of the S-wave single-

phase relative to source localization is not high. The difference and

connection between P-wave single-phase and S-wave single-phase in

source localization are not clarified; the effect of source localization

using S-wave arrival time alone is unknown.

Aiming at the above existing problems, by means of theoretical

analysis, algorithm programming, numerical calculation and

engineering verification, the adaptive wheel classification seismic

phase identification method and time-frequency analysis-downhill

comparisonmethod (TFA-DCMethod) are put forward respectively.

The phases locationmethod for the double seismic phase is TFA-DC-

double Seismic Phases (TD-DL method), and the optimization

algorithm of accelerated search with variable step size. And

integrated into interactive microseismic signal processing software,

the source inversion and location results can be obtained by one-click

through the original signal, which provides a new feasible scheme for

real-time microseismic monitoring.

2 Project overview

2.1 Geological conditions of the
8204–2 working face of Tashan Mine

Tashan Mine is a model mine in Datong area, and is a mega

mine with the largest design capacity, with an annual production
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of 15 million tons of coal in China. The project team conducted

several field surveys of the Tashan Mine and finally selected the

8204–2 working face in the second pan area as the basis for the

study. The mine conditions of 8204–2 working face of Tashan

Mine are as follows:

Tashan mine 8204–2 working face is an isolated island

working face, coal seam mining depth is about 500 m, coal

seam thickness is 12–20 m averaging about 15 m, coal seam

dip angle is 2–5°, uses comprehensive mining, the working

face length is about 150 m, advances 10 cuts per day of about

8 m, and has no underground monitoring system.

Therefore, in view of the geological conditions at Datong

Tashan Mine, the microseismic monitoring system was placed at

the 8204–2 working face in the second pan area.

2.2 Tower hill mine introduction to
microseismic monitoring

The initial selection of the site of the stations was based on the

above-ground and below-ground comparison map of the

8204–2 working face of the Tashan Mine, which required each

station to cover the 8204–2 working face as much as possible, and

there should be no “three points and one line” between each ground

station, which is conducive to observation and data processing (Jia

et al., 2017). It was planned to set up 11 alternative ground

monitoring stations in the mine. Initially, seven stations were set

up for observations, and later, if necessary, 1–2 stations were set up

according to the results from the observations, and key monitoring

areas. After repeated surveys of the pre-selected locations, the

specific locations of the seven ground monitoring stations were

finally determined. The precise mine coordinates of the ground

monitoring stations were measured on site by GPS positioning

equipment at the mine site, as shown in Table 1.

As shown in Table 1, the distribution map of the ground

monitoring stations in the mining area with seven stations is

drawn, as shown in Figure 1, where the redmark is the location of

the selected ground monitoring stations.

2.2.1 High-frequency microseismic collector
architecture

The high-frequency microseismic signal collector consisted

of a data collector, a three-component vibration velocity sensor, a

GPS timing system, and a Wi-Fi transmission module.

The data collector consists of a first- and second preamplifier, an

analog-to-digital conversion unit, a data storage unit, a control unit, a

display, a hard disk, a USB module, a Wi-Fi interface, and a power

supply module. The data collector adopted high-frequency data

acquisition and synchronous segment index compression technology

to achieve high-speed retrieval, high-precision data segmentation and

rapid upload, and high efficiency in post-processing to browse data,

count overall parameters, and sieve valid data.

Three-component high-frequency vibration velocity sensor

was used to have complete, continuous signal acquisition, three-

component vibration velocity sensors were assembled from one

vertical and two horizontal sensors, which monitored the

vibration signal in three directions: east-west, north-south,

and vertical velocity, Each sensor was such that it covered a

circular area of 1–2 km of monitoring, with the frequency of

vibration velocity signal within 10–1,400 kHz flat response, high

signal-to-noise ratio, small phase difference, high dynamic

resolution, and strong temperature adaptability.

The collector equipment was IP68 rated for water and dust

resistance and is equipped with 4 TB of space for binary stream

data storage. Each collector is designed with eight sampling

channels, which had a sampling channel sampling frequency

of up to 10 kHz with a sensitivity of 100 ± 5% (V/m/s). A three-

component vibration velocity sensor has six channels, GPS

timing system occupies one channel, and the remaining one

channel can be connected to other sensors. The design of the

high-frequency micro-vibration collector is shown in Figure 2.

The GPS timing system determines the ground station data

sampling time with the Earth coordinates of the ground station,

occupying one acquisition channel of the data collector. The data

collector uses its external port to read the PPS (Pulse Per Second)

signal of the GPS timing system to synchronize with the vibration

signal with a timing accuracy of 10 µs,, to ensure the sampling

accuracy of 10 kHz of the data collector.

The Wi-Fi transmission module has the wireless transmission

support of the data collector and the speed-sensor sensing data,

which are, in turn, connected to the bridge data transmitter.

3 Details on the microseismic phase
identification and the seismic source
localization methods

3.1 Adaptive rotation categorization
method fundamentals

The adaptive rotational categorization method consists of

four main steps which are as follows::

TABLE 1 Coordinates of mining area of station.

Detector serial number Coordinate/m

X Y Z

Station 1 1987.23 22567.34 60.41

Station 2 2,291.32 22618.45 46.54

Station 3 1,689.46 22383.53 61.27

Station 4 2016.45 23034.54 63.83

Station 5 918.66 22763.34 44.34

Station 6 1940.56 22400.87 62.64

Station 7 1,587.54 22614.56 54.82
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1) Adaptive high-pass filtering

In order to reduce the interference of the background noise

on the microseismic response and to improve the recognition

accuracy and algorithm stability of the adaptive rotational

categorization method, high-pass filtering of the original

signal was required, and the lower high-pass filtering limit

required for high-pass filtering needed to be entered manually.

Therefore, in order to realize automatic process operation of the

whole method, an adaptive high-pass filtering processing method

that can process various forms of microseismic signals is needed.

For the automated operation of high-pass filtering, here a

base over-zero rate was used, which used the period function to

discriminate the period (the number of times it crosses the X-axis

from bottom up per unit time) to estimate the frequency of the

main trend waveform with higher energy and stable frequency in

the intercepted signal. The number of times the signal crosses the

X-axis from bottom up in 10 s is 9, so the base rate was 0.9 Hz.

The number of segments of the intercepted signal calculated is

shown in Figure 3.

2) Calculation of the upper and lower bounds of the background

noise amplitude

In order to further bring out the microseismic response

signal, and determine the basis for taking the radius of

rotation circle Rw (mm/s) after the original signal had

undergone the adaptive high-pass filtering to improve the

signal-to-noise ratio, the 95% probability of the falling point

in the horizontal axis interval (μ-2σ,μ+2σ) of the normal

FIGURE 1
Distribution of ground monitoring stations in mining area.

FIGURE 2
Structure of the high frequency microseismic collector.
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distribution was introduced as the confidence interval of the

signal. This, method gradually used increasing the coverage from

Y=0, and judging whether the whole signal was included. The

method of 95% of data points was used to iteratively compare the

upper and lower bounds of the background noise amplitude that

satisfied the above conditions to ensure that the obtained results

covered most of the background noise, invalid responses, and

filtered out the microseismic response signals.

3) Rotation circle radius calculation and rotation iteration

A small number of higher amplitude data points were

selected from a single microseismic response that provided the

base data for the next step of grouping the exceedance points into

categories. The center of the rotating circle was located on the

X-axis, and its radius was taken as the range expansion factor, Q,

times the distance between the upper bound Du (mm/s) and the

lower bound Dd (mm/s) of the background noise amplitude. By

traversing all data points of the whole signal and comparing

them, the data points larger than the radius Rw of the rotating

circle were filtered out to obtain all the exceedance points needed

for the next step. The iterative screening used the average of the

absolute values of the two elements before and after in the whole

segment signal to represent the amplitude of the signal here. This,

increased the applicable range of the iterative comparison, and

avoided the identification error caused by the radical change of a

single data point.

4) Clustering of exceedance points

In order to finally obtain the influence region of the

microseismic response in the microseismic signal, i.e., to

identify the seismic phase of the whole microseismic signal, the

overruns selected by the rotation circle needed to be grouped into

the same group to represent a single seismic phase identification

result, and into multiple groups to represent multiple seismic

phase identification results. If the time difference between the two

was greater than the grouping interval, Fint, the points were

grouped into one category, after which the points were grouped

into the next category.

3.2 TFA-DC method determine the pickup
time

Speech and power density spectrograms were used to obtain

the location and regularity of the background noise and the

change of frequency, amplitude and energy of the microseismic

signal before and after the initial arrival of P-wave and the

S-waves. On this basis, the FIR band-pass filtering was carried

out twice continuously with the main frequency of the S-wave

as the circle point, and the specified filtering range in radius was

used to filter out the high and low frequency background noise

with regularity and power greater than that of P-wave and

S-wave signals. This made the power density spectrogram of the

S-wave of the main frequencies clearly appear, and also made

the signal image smoother and more suitable for iterative

comparison. Based on the above theoretical results, the TFA-

DC method for the joint pickup of the P-wave and S-wave dual-

oscillation phase arrivals was used by setting the mathematical

expression of the full-subwave amplitude as a threshold, and

followed three major relationships between the P-wave and the

S-wave power magnitude, the arrival sequence, and the

waveform overlap.

3.2.1 Connection between P wave and S wave
After analyzing the original signal by speech spectrogram and

power density spectrogram and using two consecutive FIR

bandpass filtering, the three relations between p wave and S

wave are as follows: power magnitude relationship, arrival

sequence relationship, waveform overlap relationship.

1) Power relationship

FIGURE 4
Overlap of P-wave and S-wave.

FIGURE 3
Calculation diagram of basic zero-crossing rate.
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The power and amplitude of S wave in the microseismic

signal are larger than that of p wave, so the amplitude surge

caused by the initial arrival of the microseismic signal is mainly

caused by the arrival of S wave, so the seismic pickup by S wave is

more concise than that by p wave.

2) The relationship of arrival sequence

In most cases, p wave velocity is greater than S wave velocity,

so p wave should arrive at the detector first than S wave. That is,

from the perspective of microseismic signal waveform, the shock

change of microseismic signal waveform caused by the arrival of

p wave should be on the left side of the shock change of

microseismic signal waveform caused by the arrival of S wave.

3) Waveform overlap relationship

Usually, the distance between the seismogenic position and the

detector is relatively small, so it is difficult to completely calm the

mechanical vibration caused by the initial arrival of p wave before

the arrival of S wave. Therefore, the p wave shape should overlap

with the S wave shape, and the overlap is shown in Figure 4.

To sum up, to pick up the precise arrival time of p wave, the

peak arrival time of S wave must be found first, and the precise

arrival time information of S wave is often covered by the tail of p

wave and background noise. Therefore, in order to improve the

adaptability of the algorithm and the calculation speed of the

algorithm, the peak arrival time of S wave must be extracted first.

3.2.2 When S wave peak value is collected
S there should be a p wave crest value after know signal with

wavelet amplitude of the first great point, and according to the law

of conservation of energy, mechanical vibration amplitude

detector should be gradually decreases, and the S wave reaches

the since the arrival, or S wave signal wavelet amplitude should

gradually decreases, and there will be no signal wavelet amplitude

repeated shocks, Therefore, the peak arrival time of S wave should

be the time corresponding to themaximum amplitude of the signal

wavelet after the precise arrival time of p wave, and the amplitude

of the signal wavelet itself is the maximum value of the current

wavelet. Therefore, the peak arrival time of S wave can be obtained

by sorting all the sampled values of the signal according to the size.

3.2.3 P wave accurate time pickup
In order to obtain the precise time limit of p wave, the

corresponding amplitude of the peak value of S wave and the

amplitude of the left signal wavelet are successively compared by

iterative comparison method. The program flow is shown in

Figure 5, and the steps of the method are described as follows.

3.3 The variable-step accelerated search
methods for microseismic optimization
calculations

The variable-step acceleration search method (Jia et al., 2022)

was divided into three major modules, namely, the continuous

FIGURE 5
Flow chart of the TFA-DC method procedure.
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comparison module, the variable-step module, and the

acceleration module, where the continuous comparison

module was the main line process, and the variable-step

module and the acceleration module were adjust the search

step for the main line journey.

1) Continuous comparison module

The module essentially took the advantage of the uniqueness

of the minimal value of the objective function by taking any

starting point from which the objective function values of the

adjacent specified points were calculated successively and

compared numerically.

The objective function unknowns were three, and the

positions of each prescribed point of the three-dimensional

polyhedron are shown in Figure 6, and the three-dimensional

iterative process is shown in Figure 7. When the unknown

quantity of the objective function was four or more, it was

reduced to a four-dimensional space or a multi-dimensional

space above four dimensions according to mathematical

induction.

Usually, the closer the value of the objective function was

to zero, the more accurate was its corresponding source

localization. When the value of the objective function failed

to converge or had a large value, it indicated that the source

could not be localized, or had a large error. The minimum

point was found using the optimization algorithm, and the

spatial location corresponding to this minimum point was the

location of the source. Therefore, the microseismic source

localization problem could be transformed into finding the

value of the respective variable corresponding to its minimum

value in the case of convergence of the multivariate objective

function.

2) Variable step-size module

If the objective function value of each specified point was

smaller than the objective function value of the starting point,

then the coordinate value of the specified point with the smallest

objective function was assigned to the starting point. Further, if

no specified point with a smaller objective function value was

found, then the distance from this point to each specified point

(search step) was reduced to one-half of the original, and the

cycle was iterated until the search step was smaller than the lower

limit of the search step, and the current value of the desired

variable was the final output.

3) Acceleration module

The essence of the acceleration module is to record the

position number of the geometric center point of the

polyhedron to each specified point of the polyhedron twice

in succession, and if the position number is the same twice, the

search step will be expanded to Q (the acceleration factor) times

of the original one, so that the single-variable convergence

process can be accelerated, thus speeding up the

computation. In practical engineering problems, due to the

increase in the anisotropy of the spatial distribution of the

FIGURE 7
Schematic diagram of three-dimensional iterative process.

FIGURE 6
Diagram of specified points of three-dimensional
polyhedron.

Frontiers in Earth Science frontiersin.org07

Long 10.3389/feart.2022.1043790

137136

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1043790


objective function, a smaller acceleration factor can effectively

improve the error tolerance rate in the face of the computational

errors caused by the increase in the search step. Hence, the

acceleration factor in the range of 1.0–1.5 can be better adapted

to the convergence of different objective functions. In summary,

the recommended value of the acceleration factor is 1.5, and the

specific value can be adjusted according to the actual working

conditions.

In the actual operation, the range of values of the four

variables and the convergence range were usually different,

and if a uniformly varying search step was applied to them,

the individual variables converged while the rest continued to

iterate gradually. This resulted in a lot of waste of arithmetic

power as well as computation time. Therefore, the

acceleration module was used whereby most of the

variables converged while a single variable is calculated

separately.

3.4 The TD-DL method study for
microseismic source localization

The TFA-DC method was used to process the microseismic

event signal by substituting the exact P-wave arrival time and the

peak S-wave arrival time into the dual-phase objective function,

and integrating the dual-phase wave velocity as the phase

propagation speed., The variable-step acceleration search

method was performed to search for the minimum value of

the objective function, and a dual-phase source location method

used both the exact P-wave arrival time and the peak S-wave

arrival time.

A single microseismic event usually contained multiple

seismic phase information such as the P-wave, the S-wave,

the surface wave, and the reflection wave at the same time.

Except for the P-wave, the rest were not used for localization

calculation due to overlapping and interference problems.

Therefore, the dual-earthquake phase objective function (Li

et al., 2017), which used both the P-wave single-earthquake

phase and the S-wave single-earthquake phase, was introduced,

and the wave velocity of the dual-earthquake phase was

integrated in it as follows (Eq. 1):

R(x0 , y0 , z0 , vm) �������������������������������������������������������������������
γ

N
∑N
i�1
[(Ti

P − tiP − TP0)2 + (Ti
S − tiS − TS0)2]/2 + (1 − γ)

N
∑N
i�1
[(Ti

P − Ti
S) − (tiP − tiS)]2

√√

(1)

where: R (x0, y0, z0, vm) is the travel time residual of the double

shock phase; vm is the shock phase propagation velocity (m/s); γ

is the equilibrium coefficient, taking values from 0 to 1.

It was because the P- and S-wave velocities were unknown

and changed continuously, and the magnitude of this change

varied during propagation, the algorithm failed to converge when

the two wave velocities were substituted into the calculation

independently. Therefore, due to the uncertainty of the wave

velocity structure, the simultaneous substitution of the average

wave velocities of the two single seismic phases for the

localization inversion calculation lead to a decrease in the

localization accuracy.

In view of the above unknowns and uncertainties, the average

wave velocities of the P-wave and S-wave were set to the same

value, and were thus calculated by substituting them into the

variable-step acceleration search method together with the

required spatial coordinates of the seismic source x0, y0, z0.

Firstly, this method avoided the pre-velocity measurements,

and achieved real-time monitoring. Secondly, this method

reduced the influence of the wave velocity structure on the

localization accuracy, and made the objective function

converge to the minimum value as much as possible. Finally,

this method improved the convergence of the objective function

because the degree of the geotechnical rupture was different

under different seismic conditions. Due to this, the wave

velocities of the P-waves generated by extrusion and the

S-waves generated by shear were not constant. Under small-

scale microseismic monitoring here, the propagation distance

between P-wave and S waves had short propagation distances

and their velocity variations were small. Hence, the ratio of the

wave velocities of the P- and S waves in a single microseismic

event were considered as constant. the seismic phase propagation

velocity (vm) was characterized as the uniform propagation

velocity of the two.

The improved dual-phase objective function worked by

forming an equation with four independent variables based on

the existing geophone coordinates and the dual-phase arrival

time. The minimum value of the objective function was searched

in the definition domain using an optimization algorithm, and

the values of the four independent variables corresponding to the

minimum value were the required source inversion coordinates

and their corresponding seismic phase propagation velocities.

TFA-DC method is an arrival picking method that can

simultaneously obtain the P-wave accurate arrival time and

the S-wave peak arrival time of microseismic signals. Firstly,

by analyzing the speech spectra and power density spectra of the

original signal, the position and rule of the background noise and

the frequency, amplitude and energy changes of the microseismic

signal before and after the initial arrival of p wave and S wave

were obtained. The first band-pass filtering was carried out

according to the algorithm to filter out the background noise

of high and low frequencies with regular power greater than p

wave and S wave signals, so that the main frequency of S wave in

the power density spectrum was clearly displayed.

Then, the main frequency of S wave is taken as the dot, and

the filtering range is specified as the radius to carry out the second

bandpass filtering, which makes the signal image smoother and

suitable for iterative comparison. Due to the radius of the choice

of p wave and S wave frequency range, and the p wave velocity

than the S wave, so the filtered waveform of p wave precisely
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when the p wave to wave and S wave crest value that corresponds

to the full signal waveform amplitude can be clearly revealed, and

in most cases will not produce interference or covering.

Finally, the mathematical expectation of the full wavelet

amplitude is set as a threshold, and the filtered signals are

compared down hill according to the three relations of

P-wave and S-wave power, arrival sequence and waveform

overlap, so as to obtain the precise P-wave arrival time and

the S-wave peak value represented by the first peak on the right

side of the P-wave seismic phase.

Due to the smoothing effect of bandpass filtering on the

abrupt signal, the smooth transition phenomenon of increasing

or decreasing wavelet amplitude will occur at the abrupt signal,

which leads to the fact that the P-wave accurate arrival time

pickup in TFA-DC method is earlier than the actual arrival time.

Since the S wave signal collected by the geophone needs a certain

time course from its arrival to its peak value, and sometimes

other seismic phases are superimposed on it, the peak value of S

wave is actually later than its real arrival time. Therefore, the

inversion and location of the source using the above p wave or S

FIGURE 8
Integrated software graphical user interface.
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wave single seismic phase time data alone may cause a certain

deviation of the location results compared with the real source.

After selecting the objective function and importing the

relevant time and geophone space coordinate information, the

variable step acceleration search method is used to search the

minimum value of the objective function. The value of the

independent variable corresponding to the minimum value of

the objective function obtained by iterative search is the spatial

coordinate of the source.

The proposed TD-DL method is a new localization method

including a complete set of microseismic localization solutions,

which includes a joint TFA-DC dual-phase arrival pickup

method that can pick up both the P-wave accurate arrivals

and S-wave peak arrivals, a dual-phase objective function that

FIGURE 9
Basic function graphical user interface.

FIGURE 10
Display of some other functions.
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integrates wave velocities, and a variable-step acceleration search

method, which combine to form the TD-DL method that can

automatically pick up arrivals and calculate localization.

3.5 Integrated software development

All the microseismic signal processing methods proposed

in this paper were integrated, and the graphical user interface

of the integrated software was designed using Matlab

programming language for the development of a full-

process processing software for microseismic signals. As a

microseismic signal processing software with the features of

“visualization”, “interactive” and “one-click”, the software

has the functions of signal playback, seismic phase

identification, on-time pickup, and inversion. The

integrated software has a graphical user interface as shown

in Figure 7. The graphical user interface of the integrated

software is shown in Figure 7.

3.5.1 Basic functions
The initial parameters required by the software were nine,

namely sampling frequency, sampling interval, grouping interval,

reduction multiplier, fine-filter radius, coarse-filter upper limit,

coarse-filter lower limit, variable-step lower limit, and check

mark. The sampling frequency, sampling interval, and

grouping interval were required for echo identification, the

reduction multiplier and fine filter radius were required for

on-time pickup, the coarse-filter upper limit and coarse-filter

lower limit were required for all functions, the variable-step lower

limit was required for inversion positioning, and the check mark

was required to limit the playback data. The abbreviations in

Figures 8A, B are represented in detail as follows, details are:

sample frequency (S. frequency)、sample interval (S. interval)、

group intervals (G. interval)、reduced multiplier (R. multiplier)

、fine filtration radius (F-FIL radius) 、upper limit of coarse

filtration (U-L-C filtration)、lower limit of coarse filtration

(L-L-C filtration) 、variable-step lower limit (V-S-L limit) 、

oscilloscope markers (O. markers).

The commands were import signal, phase identification,

pickup time, continuous pickup and inversion positioning. The

single pickup time function picks up the precise P-wave arrival

time and the S-wave peak time of a single microseismic signal of

the corresponding geophone, while the continuous pickup

function picks up the P-wave precise time and S-wave peak

time of multiple geophones corresponding to multiple

microseismic signals in a single test. All the results of the above

operations were obtained. The results of all the above operations

are displayed in the result output panel for specific extraction of the

valid information. The graphical user interface for the basic

functions of the integrated software is shown in Figure 9.

3.5.2 Signal analysis functions
The soft-signal analysis interface was mainly divided into three

image areas, namely the original signal image area, the seismic

phase recognition image area, and the arrival pickup image area.

The original signal image area shows the waveform of the original

signal obtained from the import data function, the seismic phase

recognition image area is the seismic phase recognition result

obtained from the seismic recognition function through the red

FIGURE 11
Schematic diagram of microseismic signal in microseismic monitoring project.
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dotted rectangular box, and the arrival pickup image area is the

exact arrival time of the P-wave and the peak arrival time of the

S-wave obtained from the pickup arrival function through the

circle and the square, respectively.

3.5.3 Inverse positioning function
The inverse positioning interface was divided into four main

functional areas, namely the optimization algorithm and

objective function adjustment control, the geophone

coordinates and the arrival time display and modification

control, the initial parameters display and adjustment control,

and the source inversion positioning image display and

adjustment control. By entering the initial parameters such as

the geophone coordinates, dual-phase arrival time, and the

search starting point of the optimization algorithm, the

inverse positioning function was used to locate the

microseismic source inversion.

3.5.4 Other functions
To facilitate further analysis of the microseismic signals and a

comparative analysis between different methods, the following

functions are provided:

1) Optimization algorithms are available as pattern search

algorithm, variable step accelerated search method, simulated

annealing algorithm, and genetic algorithm.

FIGURE 12
Microseismic phase identification results of the two methods.

FIGURE 13
Calculation time for the two methods

TABLE 2 Comparison of the microseismic phase identification effects for the two methods.

Comparative indicators Seismic phase identification method

Improving the STA/LTA methodology Adaptive rotation categorization method

Number of successful identifications 159 167

Recognition accuracy 94.6% 99.4%

Standard deviation of identification deviation 0.225 0.077

Calculation time average/s 0.281 0.115

Calculation time standard deviation/s 0.127 0.071
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2) The objective function could be selected as either single-phase

or dual-phase, with two single-phase objective functions

available under the single-phase option, and one dual-

phase objective function corresponding to the dual-phase

option.

3) The initial parameters and the geophone coordinates and the

arrival support the function of modifying and restoring the

default parameters.

4) The 3D plot window and the result output panel support

clearing function.

FIGURE 14
Three-component velocity profiles for each station for microseismic events.
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5) The initial arrival time could be selected according to the single or

double oscillation phase with only the P-wave precise arrival time

or only the S-wave peak arrival time, or a corresponding group of

the precise P-wave arrival time and the peak arrival time of the

S-wave could be selected at the same time.

Some of the other features are shown in Figure 10.

4 Engineering example validation

4.1 Engineering validation of the seismic
phase identification

According to the monitoring results of the ground monitoring

station of the Tashan mine, the microseismic signals generated

from seven microseismic events with different periods and

different seismic locations were classified, and the sources were

named as “Source I” to “Source O”, in which each event contained

seven three-directional microseismic signals. Each event contained

seven microseismic signals in the X-, Y-, and Z-axes, and each

microseismic signal contained one microseismic response, and the

signal form is shown in Figure 11.

4.1.1 Comparison of the effect of seismic phase
recognition

The initial parameters used for the adaptive rotational

categorization method in the following analysis were:

sampling frequency, Fs =5000 Hz, sampling interval, Cint =10,

grouping interval, Fint =10 s, and range expansion factor, Q = 2.

1) Analysis of identification results

Through daily monitoring of the microseismic events in the

mine area, a total of 168 microseismic signals were collected from

seven sources, seven geophones, and three sub-directions, which

were expressed in the form of “source - sub-direction”. For e.g.

“I-X” indicates the microseismic signals from source I and the

X-axis sub-direction of the geophone. The microseismic signal was

monitored under source I (Liu et al., 2017). The results are shown

in Figure 12, where each rectangle represents a segment of a

microseismic signal, and the true value of microseismic response

count of each segment was 1. If the result is 1, the recognition was

classed under successful, and if not, the recognition was classed

under failed. The absolute value of the difference between the

number of phases and the true value of the microseismic response

is called the recognition deviation.

From Figure 12A it can be seen that the number of

recognition failures of the improved STA/LTA method is

9 times, the maximum magnitude of recognition bias is one

time, and the distribution of recognition failure results is not

regular. From Figure 12B it can be seen that the number of

recognition failures of the adaptive rotational categorizationT
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method is one time, and the maximummagnitude of recognition

deviation is one time.

2) Calculation time analysis

As shown in Figure 13, the calculation time of the improved

STA/LTA method and the adaptive rotational categorization

method was higher than that of the adaptive rotational

categorization method for the above 168 segments of

microseismic signals with a mean value of 0.281 s and a wide

range of variation of 0.303 s. The calculation time of the adaptive

rotational categorization method is shorter than that of the

improved STA/LTA method, with a mean value of 0.115 s and

a small range of variation of 0.152 s. The calculation time of the

adaptive rotational categorization method is shorter than that of

the improved STA/LTA method. and the range of computation

time variation is also smaller, with a polar difference of 0.152 s.

3) Comparison of the recognition effect of the two methods

By collating and analyzing the identification results with the

computation time, the results are shown in Table 2.

As can be seen fromTable 2, compared with the improved STA/

LTA method, the recognition accuracy of the adaptive rotational

categorization method is improved by 4.8%, the standard deviation

of recognition deviation is 34.2% of the former, the mean value of

computation time is 40.9% of the former, and the standard deviation

of computation time is 55.9% of the former. This shows that the

method has advantages over the improved STA/LTA method in

terms of seismic phase recognition accuracy, stability, and

computation speed and stability, and thus has advantages over

the improved STA/LTA method.

4.2 Engineering validation of the TFA-DC
method

To further verify the reliability of the TFA-DC method for

microseismic signal arrival pickup, the microseismic signal data

from the microseismic monitoring project at the Tashan Mine

were selected for verification, as shown in Figure 14, and the

pickup results are shown in Table 3.

According to Table 3, the following conclusions can be

drawn:

1) The maximum time difference, the minimum time difference,

the mean time difference and the standard deviation of the

time difference at the peak of the S-wave to time are all 0 s.

2) The maximum time difference when the P-wave is accurate is

0.025380 s, the minimum time difference is 0 s, the average

time difference is 0.007825 s, and the standard deviation of

the time difference is 0.006180 s.

3) The maximum calculated run time is 2.220,169 s, the

minimum calculated run time is 1.418,231 s, the average

calculated run time is 1.853,774 s, and the standard

deviation of the calculated run time is 0.220,383 s.

4) There is no pickup failure due to low signal-to-noise ratio in

the above pickup results.

It can be seen that the TFA-DCmethod has certain advantages

in terms of the types of the pickup waves, the average time

difference, the standard deviation of time difference, the average

computation time required for a single pickup, the standard

deviation of time, and the success rate of pickup. This indicates

that it is an effective method for picking upmicroseismic signals in

time, and can thus meet the needs of engineering sites.

4.3 Engineering example validation of the
variable-step accelerated search method

In order to further demonstrate the advantages of the variable-step

acceleration search method for seismic source localization, the

localization effects of the three algorithms, the simulated annealing

algorithm, the genetic algorithm, and the variable-step acceleration

searchmethod, were compared using the P-wave initial arrival time and

the spatial coordinates of the geophone from engineering field data

under the simplified velocity model using the average wave velocity.

TABLE 4 Geophone coordinates and first arrival-time of the P-waves.

Detector serial number Coordinate/m P-wave initial arrival time/ms

X Y Z

Station 1 1987.23 22567.34 60.41 34.9

Station 2 2,291.32 22618.45 46.54 36.6

Station 3 1,689.46 22383.53 61.27 39.3

Station 4 2016.45 23034.54 63.83 41.1

Station 5 918.66 22763.34 44.34 42.3

Station 6 1940.56 22400.87 62.64 44.5

Station 7 1,587.54 22614.56 54.82 47.8
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4.3.1 Geophone coordinates and observation
arrival times

The data obtained from blasting at the Tashan mine were

used as an example to compare and analyze the positioning

effects of the three algorithms. The first arrivals of the P-waves

were picked up by the seven geophones after the blast, and the

blast coordinates, i.e., the true values of the source, were

determined at the site (2,732.7 m, 226,57.6 m, 56.3 m). The

spatial coordinates of each geophone and the arrival times of

the P-wave first arrivals picked up by them are shown in

Table 4.

4.3.2 Analysis of the variable-step acceleration
search method

To this end, the initial coordinates of the starting point were:

X0 = 1,000 m, one Y0 = 20000 m, Z0 = 30 m; the initial value of the

TABLE 5 The location results of the three algorithms.

Algorithm name Ordinal
number

Calculation result

Value of
the
objective
function

Epicenter of
earthquake
X-axis
coordinate/
m

Y-axis of
the source
of the
earthquake
coordinate/
m

Z-axis of
the source
of the
earthquake
coordinate/
m

Average
wave
speed/
(m-ms−1)

Computational
runtime
Time/s

simulated annealing
algorithm

1 5.0535 4962.9986 22512.2460 33.1711 19.6681 0.3242

2 5.0924 4984.5465 22503.3729 30.3694 19.4404 0.3240

3 4.9254 4762.5225 22541.7894 17.3283 19.6651 0.6734

4 4.9173 4429.1774 22536.9012 5.4555 19.6698 0.5431

5 4.8792 4721.3913 22554.0068 64.2862 19.6877 0.5784

6 4.9490 5806.3029 22551.1332 31.4845 19.6696 0.7054

7 5.0316 4873.5630 22499.9251 33.4910 19.6696 0.3794

8 4.8242 4612.7009 22571.8290 31.9297 19.6692 0.7131

9 5.0530 4942.6721 22505.0755 21.8559 19.6627 0.3298

10 4.7808 4755.8970 22608.0432 33.0843 19.6636 1.2724

genetic algorithm 1 3.0755 3190.5302 22715.0156 21.7622 19.5669 0.1839

2 2.0944 2,828.6849 22663.0269 35.8069 11.4750 0.1831

3 2.7797 2,659.0983 22661.0881 36.4068 12.3687 0.1807

4 4.0425 1774.8754 22910.0040 16.9286 20.3000 0.1895

5 4.0857 1704.4062 22908.3217 27.6348 19.4979 0.1801

6 3.2071 2,600.7883 22702.3587 11.5437 19.5901 0.1843

7 4.0667 1,197.1550 22777.5673 22.5223 19.5981 0.1946

8 2.4051 2,978.3973 22665.7056 36.1533 11.2296 0.1827

9 3.2700 3901.6363 22712.1750 36.5710 19.5314 0.1848

10 2.5399 3152.5621 22675.4920 12.5687 11.5724 0.1844

Accelerated search method
with variable step length

1 0.8149 2,731.3624 22651.4978 51.8261 6.5672 0.1211

2 0.8149 2,731.3624 22651.4978 51.8261 6.5672 0.1291

3 0.8149 2,731.3624 22651.4978 51.8261 6.5672 0.1276

4 0.8149 2,731.3624 22651.4978 51.8261 6.5672 0.1289

5 0.8149 2,731.3624 22651.4978 51.8261 6.5672 0.1265

6 0.8149 2,731.3624 22651.4978 51.8261 6.5672 0.1432

7 0.8149 2,731.3624 22651.4978 51.8261 6.5672 0.1450

8 0.8149 2,731.3624 22651.4978 51.8261 6.5672 0.1204

9 0.8149 2,731.3624 22651.4978 51.8261 6.5672 0.1369

10 0.8149 2,731.3624 22651.4978 51.8261 6.5672 0.1266

Frontiers in Earth Science frontiersin.org16

Long 10.3389/feart.2022.1043790

146145

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1043790


average wave velocity of the P-wave,V0 = 5 m/ms: the upper limit

of the model size, Xu = 5000 m: Yu = 30000 m: Zu = 100 m: the

lower limit of the model size, Xd = 0 m, Yd = 0 m, Zd = 0 m; the

upper limit of the velocity, Vu = 20 m/s: the lower limit of the

velocity, Vd = 0 m/s: the search step for the lower limit, J =

0.001 m: and the initial value of search step, r = 2000 m. The

results of the 10 calculations using the variable-step acceleration

search method are shown in Table 5.

Data shown in Tables 5 and 6 imply that themean and standard

deviation of the objective function value, and themean and standard

deviation of the localization error of the variable step acceleration

search method are smaller than the remaining two algorithms. This

indicates that the accuracy and convergence stability of the results of

this algorithm were better than the remaining two algorithms, and

the mean value of the computation time was smaller than the

remaining two algorithms.

TABLE 6 Comparison of location effect of three algorithms.

Calculation result Algorithm name

Simulated annealing
algorithm

Genetic
algorithm

Accelerated searchmethod
with variable step
length

Value of the objective function average value 4.9506 3.1567 0.8149

(statistics) standard
deviation

0.105 1 0.723 7 0

Positioning error/m average value 2,156.2724 621.3889 7.6839

(statistics) standard
deviation

366.1830 524.5183 0

Calculation time/s average value 0.584 3 0.184 8 0.130 5

(statistics) standard
deviation

0.2899 0.0043 0.0085

FIGURE 15
Schematic diagram of picking up mine seismic signal at
arrival-time.

TABLE 7 Arrival-time data of P-wave and S-wave of mine seismic signal.

Detector serial
number

KZXH-1 KZXH-2 KZXH-3

P-wave arrival
time/s

S Wave arrival
time/s

P-wave arrival
time/s

S Wave arrival
time/s

P-wave arrival
time/s

S Wave arrival
time/s

Station 1 34.184 35.425 25.423 27.089 18.563 19.487

Station 2 34.394 35.912 25.404 26.776 18.364 19.861

Station 3 34.582 36.495 26.281 27.179 18.972 20.357

Station 4 34.237 36.013 26.411 27.508 18.662 20.222

Station 5 35.109 36.789 25.981 27.454 18.844 20.950

Station 6 34.072 35.512 25.015 26.909 18.864 19.064

Station 7 34.318 35.673 26.138 28.220 18.657 19.723
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Hence, the variable-step acceleration search method

could find the optimal convergence point precisely and

quickly with the specified P-wave arrival time, the target

function model, and the coordinates of the geophones. and

the results are guaranteed to be the same every time. The

optimization algorithm had no substantial impact on the

localization accuracy, which was mainly due to other factors

such as P-wave arrival time, objective function model,

geophone position coordinates, and wave speed model.

4.4 Engineering validation of the TD-DL
methods

In order to further confirm the superiority and practicality

of the TD-DL method in seismic-source inversion

localization, the seismic signals from the microseismic

monitoring project of the Tashan mine were selected for

the on-time pickup and inversion localization calculation,

and the results were compared with the localization

calculation results of P-wave and S-wave single seismic

phases. These signals were named as, “KZXH-1”, “KZXH-

2”, and “KZXH-3”. The time pickups of the above three groups

of microseismic signals were performed using the TFA-DC

method, and the time pickups obtained after the filtering

process are shown in Figure 15, and the obtained P-wave

precise time pickups and S-wave peak time pickups are shown

in Table 7.

TABLE 9 Location results of each seismic phase in mine seismic signal.

Microseismic signal serial
number

Positioning method Seismic source
inversion
coordinates/m

True coordinates of
earthquake
source/m

Positioning error/m

X Y X Y

KZXH-1 P-wave monooseismic phase 4517.149 20364.137 4543.334 20322.445 49.233

S-wave monooseismic phase 4530.174 20364.112 43.696

TD-DL methodology 4540.003 20 316.041 7.218

KZXH-2 P-wave monooseismic phase 4271.073 20488.176 4352.556 20443.235 93.054

S-wave monooseismic phase 4351.157 20520.015 76.792

TD-DL methodology 4345.139 20440.165 8.027

KZXH-3 P-wave monooseismic phase 4232.197 20590.101 4145.768 20578.202 87.226

S-wave monooseismic phase 4170.037 20590.146 27.033

TD-DL methodology 4144.161 20574.059 4.450

TABLE 10 Integrated software inversion of Tashan mine positioning data on April 10.

Number of seismic
phase responses

Pickup on time (s) Positioning coordinates (m)

P-wave S-wave X Y Z

1 26.9216 27.0223 2,546.2354 22713.2231 41.2253

2 32.5781 32.6974 2,784.5421 22756.2854 56.4235

3 37.2538 37.3569 2,897.6874 22743.5861 58.7456

4 44.3678 44.4567 2,987.2569 22684.5436 60.2468

TABLE 8 Three-dimensional coordinates of the geophones at the

Detector Serial Number Coordinate/m

X Y Z

Station 1 1987.23 22567.34 60.41

Station 2 2291.32 22618.45 46.54

Station 3 1689.46 22383.53 61.27

Station 4 2016.45 23034.54 63.83

Station 5 918.66 22763.34 44.34

Station 6 1940.56 22400.87 62.64

Station 7 1587.54 22614.56 54.82
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4.4.1 Geophone arrangement
The geophones of the mine microseismic monitoring

project were arranged at a depth of 2 m below the surface,

and were only used for two-dimensional monitoring,

i.e., monitoring the X-axis and Y-axis coordinates of the

source location, so the coordinate variation range of the

geophones are mainly distributed in the X-axis and Y-axis,

and its coordinates are shown in Table 8.

FIGURE 16
Software calculation of the April 10 microseismic arrival pickup event.

FIGURE 17
Software calculation of the microseismic localization results for the April 10 event.
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4.4.2 Analysis of positioning results
In order to increase the constraint information at the

arrival of the double-shock phase and improve the

convergence and positioning accuracy of the localization

algorithm, the Z-axis coordinates were imported at the

same time in addition to the geophone X-axis and Y-axis

coordinates for cooperative localization during the

calculation., and only the X-axis and Y-axis coordinates

are used for the localization results. Although the variation

range of the Z-axis coordinates of the geophones was much

smaller than that of the X-axis and Y-axis, the addition of the

Z-axis coordinates increased the convergence error tolerance

and reduced the converged objective function value. This

indicated that the addition of the Z-axis coordinates

improved the positioning accuracy. After importing the

geophone coordinates and arrival data, the inverse

localization calculations were performed using the

variable-step accelerated search method, and the results

were compared with the true coordinates of each source

and the localization errors are shown in Table 9, where the

true coordinates of the source were obtained from the

reported seismic location of the mine.

From Table 9, it can be seen that under the source KZXH-

1, the TD-DL method localization error is 14.7% and 16.5% of

the P-wave and the S-wave single seismic phases,

respectively; under the source KZXH-2, the TD-DL

method localization error is 8.6% and 10.5% of the P-wave

and the S-wave single seismic phases, respectively; under the

source KZXH-3, the TD-DL method localization error is 5.1%

and 16.5% of the P-wave and the S-wave single seismic

phases, respectively.

4.5 Engineering applications of integration
software

In January 2019, the high-frequency microseismic wireless

ground monitoring system of Tashan coal mine was officially

put into operation, and the monitoring was carried out during

the operation of Tashan coal mine 8204–2 working face, which

is an isolated island working face with the risk of power

disaster. In April, the working face was advanced 120 m,

and a total of 41 microseismic events were monitored, with

a total release energy of 24,300 J, including 15 events below

102 J, 15 events between 102 J and 103 J, 12 events between

103 J and 104 J, and no events larger than 104 J. At this stage,

the working face was widened, the advance speed was reduced,

and the number of microseismic events and the energy of

microseismic events were low.

The microseismic signal microseismic arrival time pickup

and its localization were performed using the integrated

software for microseismic events received at station one

from 12:00 to 14:00 on April 10. From the integrated

software, the microseismic arrival time and source location

of the microseismic events in the mine was easily obtained. It

was easy to operate and did not require complicated

calculations. The process merely imported the measured

microseismic waveform data by clicking on the arrival time

pickup from the software, and the source inversion

positioning to get the desired results. The obtained

positioning data are shown in Table 10, and the positioning

effect is shown in Figures 16, 17.

5 Conclusion

Combining simulated algorithms, geophone coordinates,

initial arrival times, and microseismic signals obtained from

actual projects. The main conclusions that can be drawn are

as follows:

1) Analysis of microseismic signals based on monitoring of

isolated working face at Tashan mine, the recognition

accuracy of the adaptive rotation categorization method

improved by 4.8%, the standard deviation of recognition

deviation was 34.2% of the former, and the mean and

standard deviation of calculation time were 40.9% and

55.9% of the former, respectively.

2) The TFA-DC method compares with the improved STA/

LTA method, the average time difference and the standard

deviation of the former P-wave were 6.18‰ and 3.98‰ of

the latter, the average computation time and standard

deviation required for a single pickup of the former

were 43.99% and 10.54% of the latter, and the former

arrival time pickup failure ratio was 0, while for the

latter was 15.63%.

3) Under the simulated cases, when simulated annealing

algorithm and the genetic algorithm were compared,

the standard deviation of the objective function value,

the standard deviation of the localization error, and the

standard deviation of the wave velocity error of the

variable-step acceleration search method were all 0; the

average value of the localization error of this algorithm

was 0.7% and 1.9% of the remaining two.

4) The TD-DL method offset the positioning errors obtained

from the P-wave and S-wave single-phase calculations to a

certain extent, thus improving the inversion positioning

accuracy of the source; the average value of the positioning

errors of the TD-DL method under the engineering data

was 9.5% and 14.5% of the P-wave and S-wave single-

phase positioning, respectively.

5) The software was integrated with “visual”, “interactive”

and “one-click” features for microseismic data processing,

and the analysis of the April data from the Tashan mine

enables faster and more direct access to the location of the

source of microseismic events.

Frontiers in Earth Science frontiersin.org20

Long 10.3389/feart.2022.1043790

150149

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1043790


Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further

inquiries can be directed to the corresponding author.

Author contributions

The author confirms being the sole contributor of this work

and has approved it for publication.

Funding

2020 Liaoning Provincial Education Department Scientific

Research Funding Project (LJ2020JCL022).

Conflict of interest

The author declares that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the

publisher.

References

Cui, F., Yang, Y. B., Lai, X. P., and Cao, J. T. (2019). Experimental study of
physical similar materials based on microseismic monitoring key strata fracture
induced rock burst. Chin. J. Rock Mech. Eng. 38 (4), 803–814. doi:10.13722/j.cnki.
jrme.2018.1423

Diehl, T., Deichmann, N., Kissling, E., and Husen, S. (2009). Automatic S-wave
picker for local earthquake tomography. Bull. Seismol. Soc. Am. 99 (3), 1906–1920.
doi:10.1785/0120080019

Dong, L. J., Wesseloo, J., Potvin, Y., and Li, X. B. (2016). Discrimination of mine
seismic events and blasts using the Fisher Classifier, Naive Bayesian Classifier and
logistic regression. Rock Mech. Rock Eng. 49 (1), 183–211. doi:10.1007/s00603-015-
0733-y

Gong, S., Dou, L., Ma, X., Mu, Z. L., and Lu, C. P. (2012). Optimization of network
layout algorithm for improving microseismic positioning accuracy in coal mine.
Chin. J. Rock Mech. Eng. 31 (1), 8–17. https://kns.cnki.net/kcms/detail/detail.aspx?
FileName=YSLX201201004andDbName=CJFQ2012

Gong, S., Dou, L., Ma, X., and Liu, J. (2010). Selection of optimal number of
channels to improve microseismic positioning accuracy in coal mine. J. China Coal
Soc. 35 (12), 2017–2021. doi:10.13225/j.cnki.jccs.2010.12.014

Jia, B., Jia, Z., Zhao, P., and Chen, Y. (2017). Microseismic localization in small
scale region based on high-density array. Chin. J. Geotechnical Eng. 39 (4), 705–712.
https://kns.cnki.net/kcms/detail/32.1124.tu.20160918.1242.004.html

Jia, B., Li, F., Pan, Y., and Zhou, L. L. (2022). Microseismic source locationmethod
based on variable stepsize accelerated search. Rock Soil Mech. 43 (3), 843–856.
doi:10.16285/j.rsm.2021.0872

Jiang, R. C., Dai, F., Liu, Y., and Li, A. (2021). A novel method for automatic
identification of rock fracture signals in microseismic monitoring. Measurement
175, 109129. doi:10.1016/j.measurement.2021.109129

Lee, M., Byun, J., Kim, D., Choi, J., and Kim, M. (2017). Improved modified
energy ratio method using a multi-window approach for accurate arrival
picking. J. Appl. Geophys. 139 (1), 117–130. doi:10.1016/j.jappgeo.2017.
02.019

Li, J., Lei, W., Zhao, H., Wang, T., Liu, Y. H., and Zhang, H. (2019). Microseismic
response characteristics of coal and rock impact failure under repeated blasting. J. China
Univ. Min. Technol. 48 (5), 966–974. doi:10.13247/j.cnki.jcumt.001053

Li, J., Zhang, H., Rodi, W. L., and Toksoz, M. N. (2013). Joint microseismic
location and anisotropic tomography using differential arrival times and differential
backazimuths. Geophys. J. Int. 195 (3), 1917–1931. doi:10.1093/gji/ggt358

Li, L., He, C., and Tan, Y. (2017). Research on microseismic observation system
and source location objective function. Acta Sci. Nat. Univ. Peking. 53 (2), 329–343.
doi:10.13209/j.0479-8023.2016.091

Li, N., Wang, E., Sun, Z., and Li, B. L. (2014). Source location method of simplex
microseismic based on L1 norm statistics. J. China Coal Soc. 39 (12), 2431–2438.
doi:10.13225/j.cnki.jccs.2013.1855

Li, X., and Xu, N. (2020). Research status and prospect of microseismic source
location. Prog. Geophys. 35 (2), 598–607. https://kns.cnki.net/kcms/detail/11.2982.
P.20190624.1628.197.html

Liu, X., Zhao, J., Wang, Y., and Peng, P. A. (2017). Microseismic P-wave
automatic picking technology based on improved STA/LTA method.
J. Northeast. Univ. Nat. Sci. Ed. 38 (5), 740–745. https://kns.cnki.net/kcms/
detail/detail.aspx?FileName=DBDX201705028andDbName=CJFQ2017

Pan, Y., Zhao, Y., Guan, F., Li, G. Z., and Ma, Z. S. (2007). Research and
application of seismic monitoring and positioning system. Chin. J. Rock Mech. Eng.
26 (5), 1002–1011. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=
YSLX200705020andDbName=CJFQ2007

Perol, T., Gharbi, M., and Denolle, M. (2018). Convolutional neural network for
earthquake detection and location. Sci. Adv. 4 (2), e1700578. doi:10.1126/sciadv.
1700578

Ross, Z. E., Meier, M. A., and Hauksson, E. (2018). P-wave arrival picking and
first-motion polarity determination with deep learning. J. Geophys. Res. Solid Earth
123 (6), 5120–5129. doi:10.1029/2017jb015251

Tian, Y., and Chen, X. (2002). Review on seismic location. Prog. Geophys. 17 (1),
147–155 . h t tps : / /kns .cnk i .ne t /kcms/deta i l /de ta i l . a spx?F i leName=
DQWJ200201023andDbName=CJFQ2002

Wang, H., Liang, M., and Zhu, M. (2020). Hybrid localization algorithm of
microseismic source based on simplex and shortest path ray tracing. China Min.
Ind. 29 (10), 110121–111115. https://kns.cnki.net/kcms/detail/detail.aspx?
FileName=ZGKA202010019andDbName=CJFQ2020

Wang, Y-H., Wang, B-l., and Duan, J-H. (2019). Microseismic location based on
differential evolution algorithm. Coal Geol. Explor. 47 (1), 168–173. https://kns.cnki.
net/kcms/detail/detail.aspx?FileName=MDKT201901026andDbName=CJFQ2019

Wu, S. J., Wang, Y. B., Zhan, Y., and Chang, X. (2016). Automatic microseismic
event detection by band-limited phase-only correlation. Phys. Earth Planet.
Interiors 261, 3–16. doi:10.1016/j.pepi.2016.09.005

Xue, Q., Wang, Y., and Chang, X. (2018). Joint inversion of location, excitation
time and amplitude of microseismic sources. Bull. Seismol. Soc. Am. 108 (3A),
1071–1079. doi:10.1785/0120170240

Zhao, C., Tang, S., Qin, M., Guo, X. Q., Jiao, W. Y., and Liu, C. (2019).
Experimental study on positioning accuracy of microseismic monitoring system.
Min. Technol. 19 (2), 46–49. doi:10.13828/j.cnki.ckjs.2019.02.015

Zhao, G. Y., Ju, M. A., Dong, L. J., Li, X. b., Chen, G. h., and Zhang, C. x. (2015).
Classification of mine blasts and microseismic events using starting-up features in
seismograms. Trans. Nonferrous Metals Soc. China 25 (10), 3410–3420. doi:10.
1016/s1003-6326(15)63976-0

Zheng, Y., Wang, Y., and Chang, X. (2016). Wave equation based microseismic
source location and velocity inversion. Phys. Earth Planet. Interiors 261, 46–53.
doi:10.1016/j.pepi.2016.07.003

Frontiers in Earth Science frontiersin.org21

Long 10.3389/feart.2022.1043790

151150

https://doi.org/10.13722/j.cnki.jrme.2018.1423
https://doi.org/10.13722/j.cnki.jrme.2018.1423
https://doi.org/10.1785/0120080019
https://doi.org/10.1007/s00603-015-0733-y
https://doi.org/10.1007/s00603-015-0733-y
https://kns.cnki.net/kcms/detail/detail.aspx?FileName=YSLX201201004andDbName=CJFQ2012
https://kns.cnki.net/kcms/detail/detail.aspx?FileName=YSLX201201004andDbName=CJFQ2012
https://doi.org/10.13225/j.cnki.jccs.2010.12.014
https://kns.cnki.net/kcms/detail/32.1124.tu.20160918.1242.004.html
https://doi.org/10.16285/j.rsm.2021.0872
https://doi.org/10.1016/j.measurement.2021.109129
https://doi.org/10.1016/j.jappgeo.2017.02.019
https://doi.org/10.1016/j.jappgeo.2017.02.019
https://doi.org/10.13247/j.cnki.jcumt.001053
https://doi.org/10.1093/gji/ggt358
https://doi.org/10.13209/j.0479-8023.2016.091
https://doi.org/10.13225/j.cnki.jccs.2013.1855
https://kns.cnki.net/kcms/detail/11.2982.P.20190624.1628.197.html
https://kns.cnki.net/kcms/detail/11.2982.P.20190624.1628.197.html
https://kns.cnki.net/kcms/detail/detail.aspx?FileName=DBDX201705028andDbName=CJFQ2017
https://kns.cnki.net/kcms/detail/detail.aspx?FileName=DBDX201705028andDbName=CJFQ2017
https://kns.cnki.net/kcms/detail/detail.aspx?FileName=YSLX200705020andDbName=CJFQ2007
https://kns.cnki.net/kcms/detail/detail.aspx?FileName=YSLX200705020andDbName=CJFQ2007
https://doi.org/10.1126/sciadv.1700578
https://doi.org/10.1126/sciadv.1700578
https://doi.org/10.1029/2017jb015251
https://kns.cnki.net/kcms/detail/detail.aspx?FileName=DQWJ200201023andDbName=CJFQ2002
https://kns.cnki.net/kcms/detail/detail.aspx?FileName=DQWJ200201023andDbName=CJFQ2002
https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZGKA202010019andDbName=CJFQ2020
https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZGKA202010019andDbName=CJFQ2020
https://kns.cnki.net/kcms/detail/detail.aspx?FileName=MDKT201901026andDbName=CJFQ2019
https://kns.cnki.net/kcms/detail/detail.aspx?FileName=MDKT201901026andDbName=CJFQ2019
https://doi.org/10.1016/j.pepi.2016.09.005
https://doi.org/10.1785/0120170240
https://doi.org/10.13828/j.cnki.ckjs.2019.02.015
https://doi.org/10.1016/s1003-6326(15)63976-0
https://doi.org/10.1016/s1003-6326(15)63976-0
https://doi.org/10.1016/j.pepi.2016.07.003
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1043790


Crosstalk attenuation for imaging
of multiples based on angle gather
residual moveout analysis
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Imaging of multiples, as a supplement to imaging of primaries, can provide a wider
range of subsurface illumination. Therefore, it can provide more detailed
information on subsurface structures. However, imaging of multiples suffers
from crosstalk issues generated by unrelated events. Many strategies have
been proposed to attenuate crosstalk, among which the angle domain Radon
crosstalk attenuation algorithm achieves good application effect. In the angle
domain, the true imaging is flat, while the crosstalk events have moveouts.
Therefore, it is convenient to identify the crosstalk in angle gathers using the
Radon transform. However, the conventional Radon transform lacks a quantitative
description for crosstalk in angle gathers, which would affect the accuracy of
crosstalk attenuation. In this paper, residual moveout kernels are derived with a
Radon transform to attenuate crosstalk in angle gathers for imaging of multiples.
First, two types of residual moveout (RMO) equations are derived based on the
causality of crosstalk. A three-layer model is used to verify the correctness of the
analytical solutions. Then, based on the derived equations, the two types of
crosstalk can be attenuated respectively in the Radon domain. Synthetic
experiments demonstrate that the derived RMO equations can effectively
attenuate the crosstalk events in imaging of multiples.

KEYWORDS

imaging of multiples, radon transform, residual moveout, crosstalk attenuation, angle-
domain common-image gather

1 Introduction

Unlike the conventional approach treats surface-related multiples as noises, imaging of
multiples uses them as effective signals to image subsurface structures. Since the multiples
have more propagation paths, imaging of multiples can provide more detailed information
on subsurface structures (Berkhout and Verschuur, 2003). There are three main approaches
for implementing imaging of multiples (Lu et al., 2021). The up-down wavefield imaging
method (Berkhout and Verschuur, 1994; Liu et al., 2011) replaced the source wavelet with
primary and multiples and used multiples as receivers for migration. The seismic
interferometry proposed by Schuster and Rickett (2000) transformed multiples into
primary and imaged them. In addition, the Marchenko imaging proposed by Wapenaar
et al. (2014) used surface-related multiples and internal multiples for migration (Singh et al.,
2017; Gu and Wu, 2022).

Although imaging of multiples has been implemented through different approaches,
there still remains many undesired crosstalk issues in imaging result. Crosstalk is generated
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due to the correlation of unrelated events (Liu et al., 2016; Lu et al.,
2016; Lu et al., 2021). These crosstalk issues introduce difficulties in
the interpretation of the imaging results. Therefore, it is crucial to
attenuate them. Many methods have been proposed to attenuate
crosstalk for imaging of multiples. One category is to remove
crosstalk during the migration, such as the least-squares
migration (LSM) (Berkhout, 2014; Ordoñez et al., 2014; Zhang
and Schuster, 2014; Tu and Herrmann, 2015; Wong et al., 2015;
Lu et al., 2018; Lu et al., 2021) and imaging using controlled-order
multiples (Liu et al., 2016). However, such methods usually require a
huge amount of computation or complete separation of different
orders multiples. The other category is to deal with the crosstalk after
migration, such as the angle domain Radon crosstalk suppression
(Wang et al., 2014; Wong et al., 2015). In the angle domain, the
moveouts of imaging are flat when imaging of multiples using the
correct velocity, whereas the moveouts of crosstalk are curved. The
Radon transform can attenuate curved events in angle gathers, and
then the crosstalk issues can be addressed without increasing the
calculation cost and separation of different orders multiples.
However, this strategy using the tangent-squared approximation
as the kernel function of the Radon transform lacks a quantitative
explanation of the theoretical mechanism of crosstalk and therefore
affects the accuracy of crosstalk attenuation.

To enhance the effectiveness of the Radon transform to
attenuate the crosstalk in angle gathers, a better understanding of
the crosstalk generation mechanism is needed. Mathematically, the
crosstalk in angle gathers can be calculated and attenuated based on
the causality (Lu et al., 2016; Lu et al., 2021). Here, we propose a
method to attenuate crosstalk by applying the residual moveouts of
crosstalk as kernel functions in the Radon transform. Imaging
results with an improved signal-to-noise ratio can then be produced.

In this paper, for the purpose of convenience in analyzing the
residual moveouts for crosstalk, we first review the principle of
classifying crosstalk according to the causality. Next, we derive the
RMO equations for two types of crosstalk in angle gathers based on
the classification principle and verify the correctness of the
equations in angle gathers using a three-layer model. Then, we
compare the derived RMO equations with the tangent square
approximation equation as kernel functions for the Radon
transform and demonstrate the effectiveness of our method.
Finally, we perform a numerical experiment with a subset of the
Sigsbee2b model, which proves that our proposed method can

attenuate most of the crosstalk and improve the signal-to-noise
ratio of the imaging results.

2 Methodology

2.1 The classification of crosstalk

In this section, we explain the generation and classification of
crosstalk in the imaging ofmultiples.We assume that the sea surface is
a fully reflective interface. Therefore, in the imaging of multiples, the
free-surface seismic data are multiplied by −1, loaded at the sea
surface, and propagated forward as virtual sources to composite the
subsurface source wavefields. Then, the images using cross-correlation
imaging conditions in the frequency domain can be computed as:

Im x( ) � ∑
ω

∑
j

Sj x;ω( )∑
l

Rl x;ω( )⎡⎢⎢⎣ ⎤⎥⎥⎦ (1)

where Im represents the imaging results of multiples; x represents the
vector coordinates of the imaging point; ω is the frequency; Sj and Rl

respectively represent the forward-propagated source wavefields and
the backward-propagated receiver wavefields; j and l respectively
represent primary and the order of multiples for the source
wavefields and receiver wavefields. When j equals 1, Sj represents
the forward-propagated source wavefield of the primaries, and when
j equals n (n≠1), Sj represents the forward-propagated source
wavefield of the (n-1) thorder multiples. Similarly, when l equals
1, Rl represents the backward-propagated source wavefield of the
primaries, and when l equals n, Rl represent the backward-
propagated source wavefield of the (n-1) th-order multiples.

Eq 1 donates not only the correct imaging results of multiples,
but also the crosstalk. To have a more intuitive understanding of the
formation for crosstalk, we rewrite Eq 1 as:

Im x( ) � ∑
ω

S1 x;ω( )R2 x;ω( ) + S2 x;ω( )R3 x;ω( ) + S3 x;ω( )R4 x;ω( ) +/[ ]
+∑

ω

S1 x;ω( )R3 x;ω( ) + S2 x;ω( )R4 x;ω( ) + S3 x;ω( )R5 x;ω( ) +/[ ],
+∑

ω

S1 x;ω( )R1 x;ω( ) + S2 x;ω( )R1 x;ω( ) + S2 x;ω( )R2 x;ω( ) + ...[ ]

(2)

In Eq 2, the images can be divided into three parts. The first part
corresponds to the correct imaging results of multiples, for example,

FIGURE 1
The ray paths diagrams for the two types of crosstalk. (A) The diagram of trajectories for causal crosstalk, (B) the diagram of trajectories for anti-
causal crosstalk. In (A), The virtual source S1 (recorded primary reflections carried with information of reflector-1 as the source wavefield) and receiver
wavefield R3 (second order multiple) can generate causal crosstalk at position (A). In (B), the virtual source S1 and receiver wavefield R3 (recorded primary
reflections carried with information of reflector-2 as the receiver wavefield) can generate anti-causal crosstalk at position (B).
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S1 and R2 constitute effective imaging according to the ray travel
time and the cross-correlation imaging conditions (Clarebout,
1978). The second part and the third part are corresponding to
the crosstalk generated by uncorrelated events. (Lu et al., 2021).
classify the above crosstalk into two types based on causality, which
are causal crosstalk and anti-causal crosstalk. To better understand
the generation formation of crosstalk, we display the ray path
diagrams for the two types of crosstalk (Figure 1).

We illustrate the diagram of trajectories for two types of crosstalk
based on the cross-correlation imaging conditions from the second
part and the third part in Eq 2 (Figure 1). In Figure 1A, the recorded
primary reflection carried with information of reflector-1 at the sea
surface forward propagated as the source wavefield S1 (dashed blue
arrow), and it cross-correlates with the receiver wavefieldR3 backward
propagated (dashed blue arrow), which generates the crosstalk at
position A. These crosstalk events are related to the wavefields after
reflection with the reflector-1 and are deeper than the actual depth of
reflector-1. Therefore, these events are called “causal crosstalk”.
Similarly, in Figure 1B, the recorded primary reflection carried
with information of reflector-2 backward propagated as the source
wavefield R1 (black arrow), and it interacts with the virtual source S1
(dashed blue arrow), which generates the crosstalk at location B. These
events carried the information of reflector-2 are shallower than the
real location, and actually contrary to the actual causality. Therefore,
they are called “anti-causal crosstalk” (Lu et al., 2021).

The two types of crosstalk events are easily identified in simple
models by their causality. However, the propagation paths of the
wavefields are hard to judge and identify when there are many
subsurface reflectors and complex structures. With the
understanding of the classification mechanism of crosstalk, we
can calculate the residual moveouts of the two types of crosstalk
independently in angle gathers. And then, based on the derived
equations, we can address the crosstalk issues under complex
scenarios.

2.2 The calculation for the residual
moveouts of crosstalk in the angle domain

Due to the arrival-time differences, the imaging events and
crosstalk components have different moveouts in the angle

FIGURE 2
Reflection ray paths in a normal velocity medium. a is the
inclination of the reflector and γ is the angle of the ray normal to the
reflector. S and R are the position of the wavefield continued to the
local source and receiver points in the subsurface respectively. h
is the local subsurface half offset after the downward continuation. z
and x are the depth and vertical position of the reflection point,
respectively.

FIGURE 3
Ray paths for generating causal crosstalk. V1 and V2 are the velocity of the first and second layers, respectively. za is the depth of the reflector-1. αs and
αr are the incident and emergent angles of the source and receiver rays with respect to the vertical direction. βs and βr are the angles of the source and the
receiver rays with respect to the vertical direction after refraction by the reflector-1. γ is the half-aperture angle, which is equal to (βs+βr)/2.

Frontiers in Earth Science frontiersin.org03

Gao et al. 10.3389/feart.2023.1128217

154153

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1128217


domain. Based on the differences in moveouts, we can attenuate
crosstalk in angle gathers using the Radon transform. To
quantitatively characterize the moveouts in the angle domain for
crosstalk and attenuate them, in this section, we first derive the
residual moveout equations for two types of crosstalk.

There are many methods for generating angle gathers, such as
subsurface offset-to-angle conversion (Sava and Fomel, 2003;
Biondi and Symes, 2004) and directional vector (Yoon and
Marfurt, 2006; Xu et al., 2011). In this paper, we use the
subsurface offset-to-angle algorithm to calculate the imaging
angles. Based on the slant stack principle proposed by Sava and
Fomel (2003), the subsurface offset gathers generated after the
migration can be converted into angle gathers. The subsurface
offset-angle conversion can be expressed as:

tan γ � −zz
zh

∣∣∣∣t,x. (3)

In Eq 3, t is the travel time, z and x are the depth and vertical
position of the reflection point, respectively, and h is the local
subsurface half-offset after downward continuation (Figure 2).
The crosstalk events can be converted from the subsurface offset
domain to the angle domain based on Eq 3. Meanwhile, using this
conversion approach, we can derive the RMO equations for two
types of crosstalk in angle gathers.

2.2.1 Calculation of the residualmoveout for causal
crosstalk

There are two types of crosstalk, which are causal crosstalk and
anti-causal crosstalk. In this section, we derive the RMO equation
for causal crosstalk. First, we can obtain the relationship between
depth and subsurface offset based on the results after migration and
then use the subsurface offset-to-angle conversion relationship to
calculate the RMO equation for causal crosstalk.

Alvarez et al. (2007) gives the RMO equation for multiples in
angle gathers for imaging of primaries. The causal crosstalk events in

imaging of multiples have similar kinematic characteristics as the
previous ones in angle gathers. Thus, we use the approach of Alvarez
et al. (2007) to obtain the RMO equation for causal crosstalk.

In Figure 3, based on the travel time and the trigonometric
relationship, the forward-propagated virtual source wavefield S1
ends up at a specific location (xIs, zI) in the subsurface (as purple
dashed circles indicate) after migration. Similarly, the backward-
propagated receiver wavefield R3 ends up at (xIr, zI). The causal
crosstalk can be generated by cross-correlating the source and
receiver wavefield propagated into the subsurface. Combining the
above principles and the derivation of Alvarez et al. (2007), the depth
zI of the imaged causal crosstalk and the subsurface half-offset hI can
be displayed as:

zI � za + ρ











z2a +

h2I
1 − ρ2

√
ρ ≠ 1( ), (4)

FIGURE 4
Ray paths for generating anti-causal crosstalk. V1 and V2 are the velocity of the first and second layers, respectively. za and zb are the depth of the
reflector-1 and reflector-2. αs and αr are the incident and emergent angles of the source and receiver rays with respect to the vertical direction. βs and βr
are the angles of the source and the receiver rays with respect to the vertical direction after refraction by the reflector-1. γ is the half-aperture angle, which
is equal to (βs+βr)/2. hI is the subsurface half-offset, which is equal to (xIr-xIs)/2.

FIGURE 5
A three-layer velocity model with two flat reflectors.
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where ρ is equal to V2/V1; V1 and V2 are the velocity of the first and
second layers, respectively; za is the depth of the reflector-1.

Based on Eqs 3, 4, we can obtain the relationship between the
depth zIγ and the half-aperture angle γ in the angle domain as:

zIγ � za 1 + cos γ ρ2 − tan 2 γ 1 − ρ2( )[ ]









ρ2 − sin 2 γ

√{ }. (5)

Eq. 5 is the moveout equation for causal crosstalk in angle
gathers. In Eq. 5, when reflector-2 has the same velocity as
reflector-1 (ρ=1), the imaging depth for causal crosstalk in
angle gathers is zIγ(0)=2za. This indicates that when multiples
are used for migration at a constant velocity, the causal crosstalk

is a flat moveout in angle gathers. That is, the imaging depth does
not vary with the change of angle. By subtracting the flat moveout
from Eq. 4, the RMO for causal crosstalk in angle gathers can be
followed as:

ΔnRMO � zIγ 0( ) − zIγ � za ρ − cos γ ρ2 − tan 2 γ 1 − ρ2( )[ ]









ρ2 − sin 2 γ

√{ }, (6)

where zIγ(0) denotes the depth of causal crosstalk when the velocity
of reflector-1 (ρ=1) is used for the migration. Eq. 6 shows the
relationship between the RMO of the causal crosstalk in angle
gathers and the half-aperture angle γ and it qualitatively
characterizes the kinematics mechanisms of the causal crosstalk
when the multiples are migrated with the correct velocity.

2.2.2 Calculation of the residual moveout for anti-
causal crosstalk

Similar to the calculation of the RMO equation for causal
crosstalk, we first obtain the relationship between imaging depth
and subsurface offset for anti-causal crosstalk based on travel time
and Snell’s law. Then, we calculate the RMO equation for anti-causal
crosstalk in terms of the subsurface offset-to-angle conversion
relationship proposed by Sava and Fomel (2003). However, when
anti-causal crosstalk events are imaged, they involve information
from two different reflectors and therefore have different kinematic
mechanisms compared to causal crosstalk events. In the following,
we give a detailed derivation of the RMO equation for anti-causal
crosstalk in angle gathers.

The RMO equation for anti-causal crosstalk can actually be
calculated based on the travel time of the CMP gathers and Snell’s
law. In Figure 4, the forward-propagated virtual source wavefield S1
with information of reflector-1, and the backward-propagated
receiver wavefield R3 with information of reflector-2, end up at a

FIGURE 6
The simulated common shot gather. Arrows 1,2,4 represent the
primary, first-order multiple and second-order multiple associated
with the first layer. Arrows 3,5 represent the primary and first-order
multiple waves associated with the second layer.

FIGURE 8
Two types of crosstalk in angle gathers. The red solid and the light
blue line represent the calculated anti-causal crosstalk and causal
crosstalk, respectively.

FIGURE 7
The migration result using primaries and multiples. The light blue
arrows and the red arrows indicate causal crosstalk and anti-causal
crosstalk, respectively.
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particular location (xIs, zI) and (xIr, zI) in the subsurface (as purple
dashed circles indicate) after migration, respectively. By correlating
the two wavefields, the anti-causal crosstalk will be generated.

Based on the cross-correlation imaging conditions, the anti-
causal crosstalk follows the same travel time in imaging as the
primary from the second layer. As shown in Figure 4, the total travel
time in the second layer contains four main components, which can
be described as:

T � ts1 + ts2 + tr2 + tr1, (7)
where the subscript s refers to the source-side rays and the subscript
r refers to the receiver-side rays; ts1 and ts2 represent the time of
forward-propagating rays from virtual source to reflector-1, from
reflector-1 to reflector-2; tr1 and tr2 represent the time of backward-
propagating rays from receiver side to reflector-1, from reflector-1 to
reflector-2.

Based on Equation 7 and the geometry relationship shown in
Figure 4, we can calculate the depth zI of the crosstalk event and the
half-offset hI as:

zI � za + zb − V2ts1 cos βs
hI � ρ2 − 1( )V1ts1 sin αs

{ , (8)

where zI represents the depth of the anti-causal crosstalk events.
Combining Eq 8 and the travel time relationship, the

relationship between the depth zI of causal crosstalk and the
subsurface half-offset hI can be computed as:

zI � za + zb − ρ











z2a −

h2I
ρ2 − 1

√
. (9)

According to the principle of slant stack (Eq. 3), we can turn Eq 9
into the relationship between the depth of anti-causal crosstalk in
angle gathers and half-aperture angle. As shown in Figure 4, the
depth of anti-causal crosstalk in angle gathers can be expressed
based on the principle of Eq 3 as:

zIγ � zI − hI tan γ. (10)

Substitute Eqs 9, 10 and combining Snell’s law, the relationship
between the depth zIγ and the half-aperture angle γ can be
calculated as:

zIγ � za + zb − za
ρ2 − 1( ) sin γ tan γ + ρ2 cos γ










ρ2 − sin 2 γ
√ . (11)

Therefore, the residual moveout equations for anti-causal
crosstalk can be expressed in angle gathers as:

ΔnRMO � zIγ 0( ) − zIγ � za −ρ + ρ2 − 1( ) sin γ tan γ − ρ2 cos γ









ρ2 − sin 2 γ

√[ ],
(12)

where zIγ(0) is the depth of anti-causal crosstalk in angle gathers
when migrated at a constant velocity (ρ=1). Eq. 12 shows the
relationship between the RMO of anti-causal crosstalk and the
half-aperture angle γ.

To test our derived equations of crosstalk in angle gathers, we use a
three-layer flat model as shown in Figure 5. In this model, we set the
P-wave velocities of each layer to 1,500 m/s, 2,500 m/s, and 4,000 m/s.
The model contains 800 points in the horizontal direction and
400 points in the vertical direction with a grid size of 6.25 m. The
acquisition geometry with fixed distribution is used for numerical
simulations. We use 500 shots to simulate shot gathers with each
shot interval of 6.25 m, and each shot gather has eight hundred traces.
For one shot gather, we deploy both the sources and receivers at the
surface with minimum and maximum offsets of 0 km and 2.5 km. The
synthetic data is produced by the constant density acoustic wave
equation. We use an impulse wavelet with a peak frequency of
25 Hz to mimic a P-wave source. The simulated shot gather is
shown in Figure 6. The total record time is 4.9 s, and the sampling
rate is 0.5 ms. To clearly show the crosstalk events in the imaging results,
the direct arrivals, internal multiples, and multiples beyond the second
order associated with the first layer have been removed.

We use the cross-correlation imaging conditions to image
primaries and multiples from seismic records (as shown in
Figure 6). The corresponding stacked migration results are

FIGURE 9
Comparison of the tangent-squared approximation equation
and two RMOequations in the angle domain. (A) and (C) are the curves
corresponding to the tangent-squared approximation equation and
RMO equation for anti-causal and causal crosstalk in angle
gathers, respectively. (B,D) are the relative error of the tangent-
squared approximation to the more accurate RMO equation for anti-
causal and causal crosstalk, respectively. The solid pink line and the
pink dashed line represent the results of the derived RMO equation for
anti-causal crosstalk and the tangent-squared approximation
equation in angle gathers. The light blue solid line and the light blue
dashed line represent the results of the derived RMO equation for
causal crosstalk and the tangent-squared approximation equation in
angle gathers.
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shown in Figure 7, which can not only have correct imaging at a
depth of the reflectors but also produce two types of crosstalk at the
wrong locations.

In Figures 6, 7, the actual image of the first layer is generated by
the primary andmultiples of adjacent orders (arrows 1 and 2, arrows
2 and 3) reflected from the first layer based on the cross-correlation
conditions. Similarly, the actual image of the second layer is
generated by the primary and multiples of adjacent orders
(arrows 3 and 5) reflected from the second layer based on the
cross-correlation conditions. For the two types of crosstalk, arrows
1 and 4 are respectively used as virtual source wavefield and receiver
wavefield to generate causal crosstalk (as light blue arrows indicate);
arrows 1 and 3 are respectively used as virtual source wavefield and
receiver wavefield to generate anti-causal crosstalk (as red arrows
indicate).

To verify our derived equations, we extracted the angle gathers
at 2.5 km (yellow dotted line in Figure 7) and stacked the analytic
solutions of the derived equations onto the angle gathers obtained
after migration. Figure 8 shows the angle gathers, which are
extracted from the stacked imaging results after migration.

In Figure 8, we notice that the actual imaging events are horizontal
in the angle domain, while the crosstalk events are curved. Moreover,
the derived analytical solutions (as red and light blue curves indicate)

and the actual curves of the crosstalk can be fitted well, which proves the
correctness of our method. We use the subsurface offset-to-angle
algorithm to obtain angle gathers; thus, the half-aperture angle γ for
crosstalk is related to the offset. In thismodel, themaximumoffset at the
surface is 2.5 km, and it can be calculated that themaximumvalue of the
analytical solution curve for causal crosstalk (as the light blue curve
indicates) corresponding to the angle gathers is 45°, while themaximum
value of the analytical solution curve for anti-causal crosstalk (as red
curve indicates) corresponds to only 30°.

2.2 The attenuation of crosstalk in the radon
domain

In the Radon domain, the imaging events and crosstalk in
angle gathers can be effectively distinguished. This is because the
imaging events in angle gathers are well-focused in the Radon
domain, which makes it easy to separate the crosstalk in angle
gathers. To separate imaging events and crosstalk more
accurately in the Radon domain, we apply the two types of
RMO equations derived above as new kernel functions to the
Radon transform. Finally, we proved the accuracy of our derived
RMO equations using model simulations.

FIGURE 10
Comparison of Radon transform for angle gathers using tangent square approximation and two RMO equations. (A) Results of Radon transform for
two types of crosstalk using tangent square approximation equation as kernel function, (B) Results of Radon transform for anti-causal crosstalk using
derived RMO equation of anti-causal crosstalk as kernel function, (C) Results of Radon transform for causal crosstalk using derived RMO equation of
causal crosstalk as the kernel function. The black arrows indicate the location of the actual imaging in the Radon domain. The red arrows indicate the
location of anti-causal crosstalk in the Radon domain. The blue arrows indicate the location of causal crosstalk in the Radon domain.
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The generic expression for the Radon transform in the angle
domain (Sava and Guitton, 2005) can be expressed as:

z q, γ( ) � z0 + qg γ( ), (13)
where γ is the half-aperture angle, z0 is the depth when γ is zero, q is a
curvature parameter, and g(γ) is a function that approximates the
residual moveout of the crosstalk in angle gathers.

Wang et al. (2014) performed the Radon transform on angle
gathers by applying the principle of Eq 13 and used the tangent
square approximation equation as the kernel function, which can be
expressed as (Biondi and Symes, 2004; Sava and Guitton, 2005;
Alvarez et al., 2007)

g γ( ) � tan 2 γ. (14)
This approach using Eq 14 as the kernel function can separate

the imaging events from the crosstalk by focusing on different
curvature portions in the Radon domain. By removing the
curvature portion associated with the crosstalk and stacking the
results in angle gathers after the inverse Radon transform, the final
imaging results can be recovered. However, Eq 14 is not derived
based on the generation mechanism of crosstalk, which may
influence the capability of focusing crosstalk in the Radon
domain. Therefore, we use two more approximate RMO
equations as new kernel functions based on Eqs 6–12, which can
be expressed as:

ganti−causal γ( ) � −ρ + ρ2 − 1( ) sin γ tan γ − ρ2 cos γ









ρ2 − sin 2 γ

√ , (15)

gcausal γ( ) � cos γ ρ2 − tan 2 γ 1 − ρ2( )( )









ρ2 − sin 2 γ

√ − ρ, (16)

where Eqs 15, 16 are the RMO equation for anti-causal crosstalk and
causal crosstalk, respectively.

Figure 9 displays the comparison of the tangent-squared
approximation equation and two RMO equations in the angle
domain. Compared to the tangent-square approximation, Eqs 15,
16 provide a more accurate description of the kinematic shape for
crosstalk in angle gathers (Figures 9A, C). To show this difference,
we make the relative error of the two derived RMO equations with
the tangent square approximation with increasing angle (Figures 9B,
D), respectively. Note that when the aperture angle is small, both
derived RMO equations and the tangent-squared approximation
can fit the actual curves. However, as the aperture angle increases,
the derived RMO equations can better fit the actual curves as shown
in Figures 9A, C.We use the two RMO equations and tangent square
approximation equation as kernel functions to apply the Radon
transform for angle gathers, and the results are shown in Figure 10.

In Figure 10, the actual imaging results of multiples in the Radon
domain are focused at zero curvature (as black arrows indicate),
while the crosstalk events are focused at non-zero curvature (as light
blue arrows and red arrows indicate). In addition, the results of the
Radon transform for angle gathers using these two equations as
kernel functions are more focused in the Radon domain (Figures
10B, D). Based on the focused capabilities, our method can separate
the correct imaging and crosstalk in the Radon domain, thus
recovering high signal-to-noise imaging results.

FIGURE 11
The Sigsbee2b velocity model.

FIGURE 12
The imaging results of migration. The red arrows and light blue
arrows mark the locations of anti-causal crosstalk and causal
crosstalk, respectively.
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3 Numerical examples

We apply the proposed method to numerical examples. A subset
of the Sigsbee2b model, as shown in Figure 11, is used to test the
feasibility and robustness of our method.

The subset of the Sigsbee2b model has 801 grid points in the
horizontal direction and 1,201 grid points in the vertical direction,
and the grid size is 7.62 m. The velocity model used for producing
seismic records is shown in Figure 11, which contains the faults
portion of the Sigsbee2b model. A Ricker wavelet with a dominant
frequency of 25 Hz and a maximum frequency of 45 Hz is employed
to mimic a P-wave source. The number of shots is 125, with a shot
interval of 48.72 m and a receiver interval of 22.86 m. For one shot
gather, we deploy both the sources and receivers at the surface with
minimum and maximum offsets of 0 m and 6,096 m. Split-spread
acquisition geometry is used for numerical simulation. The length of
the data record is 20 s, and the time sample interval is 0.8 ms. The
seismic records with direct waves and ghost waves are removed for
imaging of multiples.

The Sisgbee2b model has a high-velocity reflector at the bottom,
which can produce multiples with strong amplitudes. We use the
one-way wave-equation migration algorithm for the imaging of
multiples. Figure 12 shows the imaging result for the subset of the
Sigsbee2b model. From the comparison of the imaging result
(Figure 12) with the actual Sigsbee2b velocity model (Figure 11),
it can be seen that not only the correct imaging events are generated,
but also events are generated at the wrong locations. Similar to the

model in Figure 1, these wrong events, i.e., crosstalk, are generated
by primaries and multiples related to the water bottom and the
bottom reflector of the Sigsbee2b model based on the cross-
correlation imaging conditions. In Figure 12, the red arrows
indicate the anti-causal crosstalk event, which is related to the
bottom of the Sigsbee2b model, and the light blue arrows
indicate the causal crosstalk event, which is related to the water
bottom. Note that these two types of crosstalk are not much different
from the actual imaging events in terms of characteristics, which can
be challenging to attenuate crosstalk in the imaging results.
Moreover, the two above have different moveouts in the angle
domain, and the crosstalk events are more separable. Therefore,
to show the difference between crosstalk events and effective
imaging, we apply the subsurface offset-angle conversion
algorithm to compute the angle gathers after migration.

Figure 13 shows the angle gathers of the 201st, 401st, 601st, and
801st seismic traces. The imaging angle range in each angle gather is
from −45° to 45° with a sampling of 0.5°. In Figure 13, the crosstalk
events are curved in the angle domain, while the actual imaging is
flat. In addition, the crosstalk events display different bending
patterns due to their kinematic mechanisms. Among them, the
curve that bends upward is anti-causal crosstalk (as red arrows
indicate), and the curve that bends downward is causal crosstalk (as
light blue arrows indicate). As discussed in the preceding section, the
Radon transform can separate these two crosstalk events from the
effective imaging and thus achieve the purpose of attenuating the
crosstalk. By using the RMO equations for two types of crosstalk

FIGURE 13
Angle gathers after migration. The red arrows and light blue arrows mark the locations where the anti-causal crosstalk and the causal crosstalk are
located, respectively.
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previously obtained as the kernel functions for the Radon transform
and by performing the Radon transform on the obtained angle
gathers, we can separate the crosstalk and the actual imaging in the
Radon domain.

Figure 14 shows the results of the Radon transform using two
kernel functions for trace 401 of ADCIGs. In Figure 14, the actual
imaging is focused on the zero-curvature portion, while the anti-
causal crosstalk and the causal crosstalk are respectively distributed on
the left (as the red arrow indicates in Figure 14A) and right sides (as
the light blue arrow indicates in Figure 14B) of the zero-curvature
portions in the Radon domain. In this domain, the two types of
crosstalk and effective imaging correspond to three different curvature
components, respectively. The results of the radon transform in
Figure 14 show that our method can significantly separate
crosstalk and the correct imaging in the Radon domain when
facing complex reflectors. Therefore, the effective imaging results
in the Radon domain can be obtained by removing the non-zero
curvature components in Figures 14A, B with a suitable function.
Next, we transfer the effective images in the Radon domain to the
angle domain by inverse Radon transform and stack the angle gathers
of 801 traces to obtain the imaging results with crosstalk attenuated.

Figure 15 shows the imaging result after attenuating crosstalk
events. Compared with the imaging results without crosstalk

attenuation (Figure 12), the imaging results in Figure 15 have better
resolution with two types of crosstalk attenuated. In addition, some of
the less obvious crosstalk events are also attenuated to some extent. In
summary, the proposed method to attenuate crosstalk for imaging of
multiples can be used for complex models, which demonstrates the
feasibility and robustness of our proposed method.

4 Conclusion

To solve the problem of unphysical kernel functions when
applying the Radon transform to remove crosstalk in the angle
domain, we derive two RMO equations for crosstalk based on the
causality and apply them to attenuate crosstalk in the Radon
domain. The RMO equations can accurately describe the
kinematic mechanism of the crosstalk in the angle domain. A
simple model verifies the accuracy of the RMO equations.
Compared with the Radon transform using the conventional
tangent-squared approximation, our equations can make the
crosstalk more focused in the Radon domain and can better
separate the crosstalk from the actual imaging. A subset of the
Sigsbee2b model is used for the numerical test, and it has validated
the feasibility and robustness of our method. The crosstalk
attenuated using our method has recovered high signal-to-noise
imaging results, which benefits the subsequent geological
interpretation. In our paper, we use the subsurface offset-to-angle
algorithm to obtain ADCIGs, therefore, for 3D seismic data, we need
to face the challenge of extracting ADCIGs more efficiently to

FIGURE 14
Results in radon domain after radon transform with two kernel
functions. (A) The Radon transform using the RMO equation of anti-
causal crosstalk as the kernel function, (B) the Radon transform using
the RMO equation of causal crosstalk as the kernel function. The
red arrows and light blue arrows mark the locations where the anti-
causal crosstalk and the causal crosstalk are located, respectively.

FIGURE 15
Denoised migration result. The red and light blue arrows mark
the positions of the two types of crosstalk before being denoised.
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address a large number of calculations. In addition, our approach
assumes that the source ghost and receiver ghost do not exist.
Therefore, in practical seismic data processing, this situation may
have an influence on the accuracy of crosstalk attenuation.
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Application of a new hydrocarbon
detection technique with phase
decomposition in carbonate
reservoir of the Pre-Caspian Basin

Zhen Wang1, Yiqiong Zhang1*, Zhifeng Ji1, Shutang Jin2,
Ren Jiang1, Xueke Wang1, Yankun Wang1, Shanbo Sheng2 and
Yaping Lin1

1Research Institute of Petroleum Exploration and Development, China National Petroleum Corporation
(CNPC), Beijing, China, 2China National Oil and Gas Exploration and Development Co., Ltd. (CNODC),
Nursultan, Kazakhstan

Due to the lowporosity and thin thickness of theCarboniferous carbonate reservoir in
the Pre-Caspian Basin, the impedance difference between the reservoir and the
surrounding rock is not obvious, and the seismic response characteristics are weak. It
is ambiguous to detect oil and gas based on the convention attribute amplitude and
frequency information. According to the geological characteristics of the
Carboniferous Reservoir in the Pre-Caspian Basin, we proposed a new
hydrocarbon detection method from the phase decomposition of sensitive
frequency in post-stack seismic data, which improves the accuracy of
hydrocarbon detection. The forward model that is a method of numerical analysis
is utilized to testify the feasibility of hydrocarbon detectionwith phase decomposition,
which showed that the amplitude of oil and gas layers in −90° phase components is
stronger than that of water layer. The special frequency band seismic data sensitive to
oil and gas is decomposed into 10 Hz, 20 Hz, 30 Hz, 40 Hz, 50 Hz, and 60 Hz single
frequency energy body, and thenhydrocarbon is detected according to the amplitude
anomaly in specific frequency energy body. The application of forward model and
filed example demonstrates that thefluid type in the reservoir canbedirectly identified
by the phase decomposition technique, which has higher accuracy than the
conventional hydrocarbon detection technology with post-stack data. After the
application of this technology, the coincidence between hydrocarbon results and
oil test results in the blockwas increased from60% to80%, and the coincidence rate is
much higher than the detection results using conventional attributes, more than 90%.
All the two exploration wells deployed according to the detection results have
obtained higher oil production, new discovered oil geologic reserves have been
increased to 5.54 million tons.

KEYWORDS

Pre-Caspian Basin, phase decomposition, hydrocarbon seismic direct detection,
frequency, seismic signals analysis, fluids detection, forward modeling analysis

OPEN ACCESS

EDITED BY

Jian Sun,
Ocean University of China, China

REVIEWED BY

Ying Hu,
Chengdu University of Technology,
China
Qiang Guo,
China University of Mining and
Technology, China

*CORRESPONDENCE

Yiqiong Zhang,
cugbzyq@163.com

RECEIVED 03 January 2023
ACCEPTED 21 June 2023
PUBLISHED 06 July 2023

CITATION

Wang Z, Zhang Y, Ji Z, Jin S, Jiang R,
Wang X, Wang Y, Sheng S and Lin Y
(2023), Application of a new hydrocarbon
detection technique with phase
decomposition in carbonate reservoir of
the Pre-Caspian Basin.
Front. Earth Sci. 11:1136423.
doi: 10.3389/feart.2023.1136423

COPYRIGHT

©2023Wang, Zhang, Ji, Jin, Jiang, Wang,
Wang, Sheng and Lin. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 06 July 2023
DOI 10.3389/feart.2023.1136423

163162

https://www.frontiersin.org/articles/10.3389/feart.2023.1136423/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1136423/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1136423/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1136423/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2023.1136423&domain=pdf&date_stamp=2023-07-06
mailto:cugbzyq@163.com
mailto:cugbzyq@163.com
https://doi.org/10.3389/feart.2023.1136423
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2023.1136423


1 Introduction

Carbonate reservoirs in the eastern margin of Pre-Caspian Basin
are characterized by strong vertical and horizontal heterogeneity,
larger differences in the type, scale and hydrocarbon-bearing
property of the reservoir space. Multiple oil-water systems are
developed in the Carboniferous system, with smaller oil layer
thickness (single layer thickness of about 2 m), and limited
distribution range. The updip direction is shielded by lithological
and physical changes, resulting in great uncertainty for quantitative
analysis. Therefore, it is necessary to predict the reservoir
distribution and fluid properties, so as to improve the drilling
success rate. Many theoretical researches and new technologies
had been used in the carbonate reservoirs’ exploration (e.g., Zhao
W et al., 2014), such as forward and inversion modeling of complex
wave field of fracture-porous media petrophysical model,
identification of structural tensor small fault from seismic
gradient, quantitative prediction of fracture-cavity reservoir by
cloud transform stochastic simulation, and gas reservoir detection
based on pre-stack elastic parameter inversion and frequency
division attribute. But there are some issues in the corresponding
seismic prediction technologies, such as weak theoretical methods
and low prediction accuracy. At present, reservoir fluid detection by
seismic data includes pre-stack detection and post-stack detection.
Pre-stack fluid detection is mainly based on AVO theory for pre-
stack fluid parameter inversion. Post-stack fluid detection is chiefly
based on the “bright spot” of amplitude attribute, seismic wave
absorption attenuation theory and 90° phase shift technique (Cao
et al., 2010; Qiao et al., 2018; Zheng et al., 2019; Guo et al., 2022). The
seismic wave absorption attenuation theory uses seismic amplitude
changing with frequency to detect fluids. The 90° phase shift
technique only makes 90° phase rotation to zero-phase seismic
data to better depict formation lithology (Chen et al., 2012). Due
to complex underground geological conditions, reservoir seismic
response is not only affected by non-fluid factors such as reservoir

type, physical properties, thickness and interference, but also by
fluid properties in the reservoir (Yang et al., 2010; Chen X et al.,
2020; Chen et al., 2022), so conventional fluid detection techniques
have ambiguity in practical application.

Phase decomposition was originally proposed by Castagna et al.
(2016). This technique has been applied in sandstone reservoirs (Barbato
et al., 2017; Castagna et al., 2019; Selmara et al., 2019; Zhou et al., 2019),
and achieved remarkable results. All the applications conducted phase
decomposition in full-band seismic data, and the application of phase
decomposition to carbonate reservoirs is very limited.

In view of the shortcomings of conventional post-stack
hydrocarbon detection methods, this paper applies phase
decomposition technique to directly detect hydrocarbons based
on in seismic data volume of sensitive frequency under the
premise of only post-stack seismic data. First, establish a forward
model based on the statistics of reservoir parameters in the study
area, decompose the frequency and phase of forward modeling
results and actual seismic data, and find out the frequency and
phase components that are sensitive to oil layers. Finally, the method
is applied to predict lithologic reservoirs in the slope area of the
Central Block in the eastern margin of the Pre-Caspian Basin to
verify the effectiveness of the method.

2 Regional geology

The Pre-Caspian Basin is one of the world’s largest petroliferous
basins, with an area of about 585,000 km2, most of which is located in
the west of Kazakhstan, and the maximum thickness of sedimentary
rocks is 21 km. Tectonically, it belongs to the foreland basin in the
southeast of the Eastern European Craton. The basin widely develops
the Permian Kungurian gypsum-salt layer, which is vertically divided
into two major structural strata (pre-salt and post-salt) (Zhao et al.,
2010; Zheng et al., 2011; Zhao et al., 2016). Several world-class giant oil
and gas fields have been proved in the basin, but the exploration degree

FIGURE 1
Location of the Central Block in the eastern Pre-Caspian Basin.
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of the basin is uneven. The exploration degree of the post-salt layers is
relatively high, while the exploration of the pre-salt Paleozoic strata is
mainly concentrated at the basin margin (Xu et al., 2009), and the
remaining exploration area is large. However, the drilled wells show that
the relationship between oil and water is complex and the drilling
success rate is low, leading to low exploration effect at present. The
Central Block of the Kazakhstan Pre-Caspian Basin is the first risk
exploration block of PetroChina (Jin et al., 2015), which is located in the
uplift zone of the eastern margin of the basin with higher exploration
degree, covering an area of 3,262.3 km2 (Figure 1). The main
exploration target layer is the pre-salt Carboniferous KT-I and KT-II
layers (Fang et al., 2008; Xu, 2011; Liang et al., 2013; He et al., 2014). In
the Central Block, North Truva Oilfield and Takyr hydrocarbon-
bearing structure have been discovered successively. Since 2012,

large pre-salt structural traps have been drilled, and exploration in
this area has shifted from structural traps to lithological traps. The study
area is located in the northern part of the Central Block, covering an
area of 450 km2 (Figure 2). The study area is mainly developed in the
Carboniferous carbonate reef reservoirs developed in the open platform,
with one shoal being one reservoir. There is no unified oil-water
interface, and the oil-water relationship is complicated. At present,
24Wells have been drilled and 3D seismic data of “two widths and one
height” have been collected, which is conducive to oil and gas detection
and research.

According to the drilling, well logging, lithology, and
paleontology data of the exploration block and its surrounding
oil and gas fields, the strata are vertically divided into three sets
of main stratigraphic combinations (Figure 3), which are in order

FIGURE 2
Carboniferous sedimentary facies distribution of the Study area.
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from bottom to top: the pre-salt Paleozoic carbonate and clastic
combination, the lower Permian Kungurian Formation salt stratum,
and the post-salt Permian-Quaternary clastic combination.

3 Principle of phase decomposition

Phase decomposition is a new and unique application. It is
different from the 90° phase-shifting technique of seismic
sedimentary facies (Pan et al., 2013). It is significantly different
from the traditional phase rotation. It does not rotate the seismic

trace with a simple phase angle, but decomposes the seismic trace
into various phase components.

In the past, seismic attribute research was mainly conducted in
amplitude domain and frequency domain, but rarely in phase domain,
due to the lack of effective algorithm to decompose the phase domain.
In 2015, John Castagna invented the least square method (CLSSA)
frequency and phase decomposition algorithm (Castagna et al., 2016;
Castagna et al., 2019), which achieved a fundamental breakthrough in
this domain. The phase decomposition technique is to transform the
seismic wave in the phase domain. On this basis, the corresponding
components of different phases can be extracted, and specific

FIGURE 3
Composite stratigraphic column of the Central Block.
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combinations of different phase profiles can be made to highlight the
characteristics of formation fluids. The basic formula of time-frequency
analysis commonly used in seismic signal processing is shown in
Formula (1).

S t( ) � ∫ S′ f, t( )df (1)

where, S′(f, t) is the time-frequency analysis of seismic signals; f is
frequency.

Formula 1 does not consider the phase change, but in fact, the
seismic wave is a function of the three parameters (amplitude,
frequency and phase). When considering the phase change,
Formula 1 becomes Formula 2:

S′ θ, t( ) � ∫f2

f1
S′ f, θ, t( )df (2)

where, S(f, θ, t) � A(f, t) cos θ(f, t), f1 and f2 are used to define
the bandwidth of the target layer. If S′(θ, t) is defined as phase
gather, which is used to characterize the relationship between
amplitude versus frequency and time in seismic signals.

When the frequency is fixed, Formula 2 becomes Formula 3:

S′ t( ) � ∫θ2

θ1
S′ θ, t( )dθ (3)

where, θ1 and θ2 are used to define the phase width of the target
layer. Formula 3 is the basis of phase decomposition and
reconstruction technique. When all phase and frequency
variation ranges are considered, S′(t) � S(t).

It is found that the zero-phase component of seismic signals often
represents the information of stratum interface, and the change of
pore fluids or lithology in the stratumwill cause amplitude anomaly in
the −90° phase component (Lin et al., 2007). According to this
characteristic, the phase decomposition technique can be used to
directly identify the fluid types in the reservoir.

4 Synthetic analysis of forward
modelling

Seismic wave forward modeling is to obtain the propagation rule of
seismic wave in the known underground geological model, including

propagation time, path, energy, etc. (Zhao L et al., 2014; Chen Y et al.,
2020). Forward modeling is the first step to understand the unknown
problems in seismic research. The rules obtained from forwardmodeling
in a given geological model can improve people’s understanding of the
unknown model, thus helping to solve the problem.

4.1 Statistics of well logging parameters

According to the well logging interpretation results, the
thicknesses of various layers of Carboniferous KT-I and KT-II
layers are counted (Figure 4). The well logging interpretation
shows that the thin layers less than 5 m thick are the dominated,
and the thicknesses of all oil layers of KT-II layer are less than 5 m.
From the porosity statistics, the average porosity of the oil layers of
KT-I and KT-II layers is about 10%.

According to the statistics of petrophysical analysis results of various
lithofacies, the velocity and density values of each layer are given as
follows: the velocity of caprock above layer KT-I is about 2,900 m/s, the
density is about 1.9 g/cm3; the velocity of layer KT-I is 5,950 m/s, the
density is 2.68 g/cm3; the velocity of mudstone interlayer is 2,800 m/s,
and the density is 2.1 g/cm3; The velocity of layer KT-II is 6,100 m/s, the
density is 2.7 g/cm3; the velocity ofMKTmudstone is 3,050 m/s, and the
density is 2.1 g/cm3.

4.2 Analysis of forwardmodel and its seismic
response characteristics

According to the reservoir characteristics in well, considering
reservoir thickness, the distance between reservoir and formation
top, and the mudstone interlayer, a forward model of the target
reservoir is established, and it is filled with physical parameters
(such as velocity, density, porosity) from statistics of well-
logging data.

As shown in Figures 5A, B, according to the actual formation
development, layer KT-I is designed four reservoir groups: the first two
groups are filled with oil and gas respectively, and the last two groups are
filled with water. Two groups are 2 m from the top interface of layer KT-
I, and another two groups are about 50 m from the top interface of layer
KT-I. The mudstone interlayer with a thickness of about 2 m is

FIGURE 4
Statistics of KT-I and KT-II layer’s thicknesses.
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embedded in layer KT-I. Four groups of reservoirs are also designed for
layer KT-II: two groups are 20 m from the top interface of layer KT-II,
and another two groups are 40 m from the top interface of layer KT-II.

The sections obtained by using 30 Hz dominant frequency,
Ricker wavelet, surface shooting, single row receiving and wave
equation forward modeling method are shown in Figures 5C, D.

When the reservoir of layer KT-I is close to the top interface
(2 m): 10–15 m thick oil layer will significantly weaken the reflection
intensity of the overlying interface, but 15 m thick water layer will
also significantly weaken the reflection intensity of the overlying
interface. Then, the oil layer and water layer are difficult to identify.
When the reservoir of layer KT-I is farer from the top interface

FIGURE 5
Geological model, forward modeling records and phase decomposition results.
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(>50 m) and there is a mudstone interlayer: the reservoir has
stronger reflection (relative to the surrounding rock and
mudstone interlayer), thus the reservoir can be identified.

When the reservoir of layer KT-II is 20 m from the top interface:
10–15m oil layer weakens the reflection intensity of the overlying
interface, similar to that of layer KT-I, but the weakening degree is
reduced. The 0–15m thick water layer will also cause the above
phenomenon. When the reservoir of layer KT-II is 40 m away from
the top interface: the reservoir is characterized by stronger reflection
(relative to the surrounding rock and mudstone interlayer), and the top
and bottom of the reservoir with a certain thickness can be identified.
Therefore, oil layer and water layer cannot be determined from the
conventional seismic reflection amplitude alone.

4.3 Phase decomposition of forward
modeling result

The forward modeling results of layer KT-I and layer KT-II
are decomposed by phase decomposition technique (Figures 5E,
F) to obtain 180° and −90° phase component sections. From the
phase decomposition results of layers KT-I and KT-II, the 180°

phase component section mainly reflects the characteristics of

layer KT-I interface; On the −90° phase component section, the
waveform is distributed in blocks, similar to the shape of the
reservoir in the geological model; RMS amplitude is calculated
in −90° phase component, and it can be seen that the reflection
characteristics of the reservoir are more obvious. Moreover, the
amplitude intensity of oil layer is greater than that of water layer.
Therefore, the phase decomposition technique can be used to
identify the existence of oil and gas reservoirs.

5 Applications

5.1 Spectrum decomposition of seismic data

The phase information of seismic data can be obtained by
spectrum decomposition of seismic data, so the selection of
spectrum decomposition algorithm is also crucial to the result
of phase decomposition. Spectrum decomposition has been
widely used in fine geological interpretation. Due to the
sensitivity of frequency change, many subtle stratigraphic
features have been more finely interpreted and identified in
the frequency domain (Zhang et al., 2017; Chen Y et al., 2020).
Affected by stratum absorption and other factors, seismic

FIGURE 6
Comparison of spectrum decomposition results of different methods applied to actual seismic traces ((A) actual seismic records, (B) Fourier
transform with 20 ms window, (C) Fourier transform with 100 ms window, (D) wavelet transform, (E) least squares spectrum decomposition).
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wavelet changes with time and space. In order to reflect the
influence of stratum in the target layer on seismic wavelet,
spectrum decomposition must be carried out in a small time
window. There are several different implementation methods
for spectrum decomposition. In the early stage, the short time

Fourier transform (STFT), continuous wavelet transform
(CWT), S-wave transform (ST) and other methods were used
for spectrum decomposition. Affected by the time window
tailing effect, these methods have low resolution in time and
frequency.

FIGURE 7
Analysis of sensitive frequency and phase of oil layers in different intervals.

FIGURE 8
Seismic attribution comparison in the KT-I layer. (A) Conventional stack data volume and (B) Specified phase stack volume.
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In this paper, the constrained least squares spectrum analysis
(CLSSA) is used for spectrum decomposition. Compared with
other methods, the CLSSA method has higher resolution in time
and frequency. Compared with the discrete Fourier transform, it
reduces the tailing effect of the window and spectrum smoothing,
which can ensure better maintenance of the reflection spectrum
characteristics in the short window. Compared with short-time
Fourier transform, the improvement of resolution by CLSSA
method increases with the shortening of time window length.

Therefore, the least square method is superior to short-time
Fourier transform and continuous wavelet transform in
spectrum decomposition.

The time-frequency spectrum obtained by applying different
spectral decomposition methods to the actual seismic traces
(Figure 6). It can be seen that the frequency spectrum of the 20ms
Fourier transform is artificially widened, and the truncation effect in the
time domain is obvious. The time lag effect of 100 ms Fourier transform
and wavelet transform is obvious, and the wavelet transform moves to

FIGURE 9
Comparison of conventional stack data volume (A) and specified phase stack volume (B) of KT-II.

FIGURE 10
Cross plot of RMS amplitude of well point and RMS amplitude of phase decomposition reconstruction volume in different intervals.
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the low frequency end. The spectrum decomposition of the least squares
method has high vertical resolution, and is closely related to the energy of
the seismic traces. The tailing effect in frequency domain and time
domain is small.

5.2 Frequency band sensitivity to
hydrocarbons and phase optimization

A lot of attempts have been made on the input data of phase
decomposition for oil and gas detection. The first attempt is to
use the original full-frequency data for phase decomposition,
and the effect of identifying oil-water layers is indistinct.
Therefore, on the basis of least square spectrum

decomposition processing, single frequency data was
innovatively adopted for phase decomposition by 10 Hz,
20 Hz, and 30 Hz single frequency volumes. According to the
characteristics of the spectrum gather of the well side traces, the
oil and gas response energy is concentrated near 20 Hz, so the
20 Hz single frequency volume is finally used for phase
decomposition.

As shown in Figure 7A, through fine reservoir calibration, it
can be found that the amplitude energy group of KT-I oil layer is
about 20 Hz on the frequency gather and 30°–80° on the phase
gather. The sensitive frequency bands of layers KT-II and KT-I
are close, as shown in Figure 7B, but the sensitive phases are
different, and they are located between 150° and 180° and
between −150° and −180°.

FIGURE 11
Comparison of oil and gas detection effects between conventional amplitude and amplitude after phase decomposition.
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5.3 Analysis of detection effect

After the sensitive frequency and phase are determined, oil and
gas can be detected according to the amplitude corresponding to the
specified frequency and phase section. The detection effect of this
method is illustrated from the two dimensions of section and plane.

It can be seen from the section (Figures 8, 9) that the amplitude
difference between oil layer and dry layer is not obvious in the
conventional section. After the phase decomposition and data
reconstruction of seismic data in sensitive frequency band, the
designated phase stacking section can better distinguish oil layer
and dry layer. On the overall phase stacking section, the amplitude of
oil layer is stronger than oil-water layer, and oil-water layer is
stronger than dry layer.

In the phase interval stack volume, to extract the slice of RMS
attribute of KT-I and KT-II respectively, and use the amplitude
characteristics previously analyzed to detect fluids. Moreover, the
RMS amplitude at the well point and the RMS amplitude of the
phase decomposition are intersected, as shown in Figure 10.
Compared with the amplitude detection results of conventional
section, the phase decomposition results have a better distinction
between the oil layer and oil-water layer of KT-I. The intersection
results of KT-II are slightly worse than KT-I, but compared with the
conventional seismic amplitude attributes, it has a better
identification accuracy for oil layer.

According to the threshold value obtained from well intersection
analysis, the fluid ranges of KT-I and KT-II can be carved. The left part
in Figure 11C shows the fluid carving result of upper KT-I, and
Figure 11D shows that of upper KT-II. Compared with conventional
seismic amplitude attributes (Figures 11A, B), the fluid results identified
by phase decomposition have a higher coincidence rate with the drilled
wells. There are 6 industrial oil flow wells in layer KT-I, 6 wells are
matched, thus the coincidence degree is 100%. There are 10 industrial
oil flow wells in layer KT-II, 8 wells are matched, thus the coincidence
degree is 80%. Moreover, according to the prediction results, the drilled
wells L-4 and L-7 have both obtained industrial oil flow in the target
formation. Hereinto, Well L-4 obtained daily oil production of 4.89 m3

in Carboniferous KT-I in testing, and obtained maximum daily oil
production of 24 m3 in KT-II; Well L-7 obtained daily oil production of
12 m3 in Carboniferous KT-II in testing after acid fracturing. It also
verifies the accuracy of oil and gas detection results.

6 Conclusion

In the case that conventional amplitude and frequency cannot
distinguish fluids clearly, this paper provides a new idea for oil and
gas detection. Its core is to find the corresponding sensitive frequency and
phase of oil and gas layers. In a specific study area, the sensitive frequency
and phase are different, so it is necessary to analyze and optimize
according to forward modeling and actual data. Therefore, in practical
application, it is necessary to strengthen the combination of well and
seismic analysis.

The phase range of oil layer energy concentration of KT-I layer
in the Pre-Caspian Basin is 30°–80°, and the characteristics of oil
layer, oil-water layer and dry layer on section are obvious, thus they
can be effectively distinguished; The phase range of energy
concentration of KT-II oil layer is between +150° and −150°.

Both forward modeling and practical application results show that
the phase decomposition technique is highly reliable for fluid
identification under the carbonate reef facies controlled constraint,
and the identification results can be used for well location
optimization, which is of great significance for improving the
exploration efficiency of complex carbonate rocks. However, this
method has some limitations. It requires drilling data to optimize the
sensitive frequency and phase, thus it is difficult to apply in the area
without wells.
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