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B cells play a critical role in adaptive immune responses mainly due to antigen presentation and antibody production. Studies about the tumor-infiltrating immune cells so far demonstrated that the function of B cells in tumor immunity is quite different among various tumor types. The antigen presentation of B cells is mainly anti-tumoral, while the role of antibody production is controversial. Moreover, the immunosuppressive regulatory B cells are detrimental to anti-tumor immunity via the secretion of various anti-inflammatory cytokines. This review briefly summarizes the different roles of B cells classified by the primary function of B cells, antigen presentation, antibody production, and immunity regulation. Further, it discusses the potential therapeutic target of B cells in tumor immunity.
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Introduction

Cancer is still a threat to humanity due to its high death rate (1). Various therapies have been developed to treat cancer, including surgery, radiotherapy, chemotherapy, immunotherapy, etc. Among these therapies, immunotherapy has become more and more attractive for researchers, companies, and clinicians in recent years (2). T cell-based immunotherapy is critical and effective in cancer therapy, and the promising outcome of the antibodies targeting immune checkpoints in the treatment of cancer created a grave impact on immunotherapy (2, 3). Though the CD8+ T cells have an irreplaceable role in the cytotoxicity in the tumor microenvironment (TME) (4) and immune checkpoint inhibitors (ICIs) are quite efficient in many cancer types, most patients are still resistant to ICIs (5). Increasing studies demonstrated the function of other immune cells in the development of cancer in recent years (6, 7), which might be additional and optimal targets for the treatment of cancer.

B cells are involved in adaptive immunity as the antigen-presenting cells (APCs) and antibody-secreting cells (ASCs), while the function of B cells in cancer immunity is controversial. B cell depletion in mice by anti-IgM treatment from birth showed resistance to syngeneic fibrosarcoma and reduced incidence of pulmonary metastasis (8). In contrast, the lung adenocarcinoma cell inoculation in µMT mice failed to show any difference to WT mice (9), yet the µMT mice had faster tumor growth than WT mice when the tumor cell line was transfected with B cell-specific neoantigen (9). The function of B cells in tumor growth seems to vary among different tumor cell lines. Moreover, antibody production from B cells is not always beneficial. For example, antibody-dependent cellular cytotoxicity (ADCC) is a critical mechanism of the antibody in the anti-tumor effect of B cells (10), while the immune complexes in circulation or TME are correlated with poor clinical outcomes (11).

In this review, we will briefly discuss the immunological mechanism of B cells in cancer immunity to elucidate the controversial phenomenon in various tumor types and potential therapeutic targets of B cells in different tumor types. This review is classified by the basic functions of B cells, but not anti- and pro- tumoral functions of B cells, which is already discussed in other reviews (12).



Antigen-presenting cells

B cells are efficient APCs in T cell-dependent (TD) antigen-induced humoral immunity. TD antigens are recognized and engulfed by B cells through B cell receptor (BCR), degraded in lysosome, and presented to CD4+ cells, resulting in CD4+ T cells and further CD8+ cells activation (13). Several studies demonstrated the antigen presentation of B cells plays a critical role in tumor-specific CD4+ and CD8+ T cell activation. B cells undoubtedly present antigen to induce T cell activation in virus-induced tumor growth (14). In the syngeneic B16 melanoma cell line transfer system, B cell depletion by anti-CD20 antibody treatment resulted in a two-fold bigger tumor volume and impaired interferon-γ (IFN- γ) and tumor necrosis factor (TNF-α) production from CD4+ T cells and CD8+ T cells (15).

A recent study elucidated how antigen presentation of B cells plays a role in tumor immunity. T follicular helper (TFH) cells are involved in B cell maturation and activation. Germinal center (GC) B cells could be activated by TFH-B interaction and further differentiate into short-term living plasma cells, long-term living plasmablasts, and memory B cells. The single-cell RNA sequencing result of tumor-infiltrating lymphocytes in many studies revealed the presence of GC B cells in the TME (9, 16), yet the role of GC B cells is not well known. The study done by Cui et al. in lung adenocarcinoma patients elucidated that GC B cells facilitate the function of CD8+ T cells in anti-tumor immunity via the TFH-GC B cell interaction in a neoantigen-dependent manner (9). They utilized a lung adenocarcinoma cell line (KP) with limited somatic mutations, which means that there are few or no neoantigen expression and weak B/T cell responses so that B cell or T cell depletion doesn’t affect the tumor growth. With the transfection of HELLO fusion protein, which contains HEL, GP33, and GP66 that can be recognized by MD4 transgenic BCR, GP33-specific CD4 TCR, and GP66-specific CD8 TCR, respectively, KP-HELLO cells are able to activate specific B/T cells. The inoculation of KP-HELLO cells in B cell knockout or TFH knockout mice showed much faster tumor growth and weaker CD8+ T cell function compared to tumor growth inoculated in WT mice, suggesting that the GC B cells that recognize the neoantigen and further interact with activated CD4+ T cells are able to support CD8+ T cells function in TME. Further results demonstrated that interaction between neoantigen-specific TFH and GC B cells and interleukin-21 (IL-21) secreted by TFH cells are necessary for the cytotoxicity of CD8+ T cells (9).



Antibody-secreting cells

B cells play an essential role in the adaptive immune responses by producing antibodies (17). At the same time, the role of antibody-secreting B cells is a double-edged sword in tumor immunity. Once the B cells are activated by recognizing the neoantigen, B cells participate in a two-pathway differentiation process that induces both short-lived plasmablasts and long-lived plasma cells and memory B cells (17). Therefore, these plasmablasts, plasma cells, memory B cells, and the secreted antibodies are neoantigen-specific. Both BCR signaling that provides binding to the antigen, and the B-T cell interaction are essential in the TD antigen-involved long-term antibody production (17).

Commonly, the antibodies are thought to be anti-tumoral. Antibodies with high FcγR affinity and target neoantigens expressed on tumor cell surface induce ADCC, antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC), which are significant mechanisms of antibody drugs for cancer therapy. For example, the Fc domain of the monoclonal antibody (mAb) has a different affinity to different FcγR expressed on various immune cells (18), among which natural killer (NK) cell is involved in ADCC and is discussed in many mAb treatments in cancer (10, 19). Several mAbs have been used in the clinic based on their cytotoxicities, such as anti-GD2 mAb for melanoma and neuroblastoma treatment (20–23) and chimeric anti-CD20 mAb and anti-CD22 mAb for leukemia treatment (24–27).

Unfortunately, not all of the antibodies contribute to anti-tumoral immunity. Antibodies bind to various antigens released by tumor cells and form circulating immune complexes (CICs), which correlate with poor outcomes (11). In the squamous cell carcinoma mouse model, CICs accumulate in the dermal stroma of neoplastic tissue, activate FcγR on residents, and recruit pro-tumoral and angiogenic myeloid cells (especially mast cells and macrophages) to facilitate tumor cell survival and angiogenesis (28).

Except for IgG, IgA is also a double-edged sword for tumor growth. Many studies have found the accumulation of IgA-producing B cells in TME (29, 30), yet the role of IgA in tumor growth is still controversial. In ovarian cancer patients, tumor-infiltrating B cell-derived IgA dampens tumor growth through the unspecific transcytosis and neoantigen-specific phagocytosis (29). Yet the function of IgA in other cancers is entirely different. Several cancer types have shown that the proportion of IgA-producing cells is highly associated with poor outcomes (31–33). IgA is pro-tumoral in these cases and has the following mechanisms. Firstly, the IgA production is not induced by neoantigen presentation but by the immunosuppressive microenvironment, and the IgA cannot mediate ADCC (34, 35). Secondly, IgA is immunosuppressive in mucosal immunity (36). IgA deficiency leads to a higher risk of inflammation (37–39), and the interaction between IgA and marginal zone B and B1 cell-specific protein (MZB1) may be an important factor (36). What’s more, IgA induces anti-inflammatory cytokine interleukin-10 (IL-10) production from monocytes and further inhibits the immune system (40).



Regulatory B cells

The discovery of a population of the suppressive function of B cells can be retrospect to 1974 since B cells could delay hypersensitivity (41, 42). Subsequently, more and more papers found that some B cells inhibit the development of various diseases such as experimental autoimmune encephalomyelitis (EAE) (43), allograft rejection (44, 45), lupus nephritis (LN) (46), type 1 diabetes (T1D) (47, 48), anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) (49) and so on. These B cells regulate immune responses by secreting anti-inflammatory cytokines such as IL-10 (50–54), IL-35 (55–57), and transforming growth factor-β (TGF-β) (58, 59) to dampen CD4+ T cells (60), CD8+ T cells (53), antibody production (61) and facilitate regulatory T (Treg) cells (62, 63). These B cells are so-called Breg cells. Breg cells are not restricted to a specific B cell phenotype. Therefore, IL-10-producing B cells, for example, are usually utilized to detect Breg cells. Since Breg cells vary in various phenotypes, those types of B cells all have an inhibitory function in immune responses. The phenotype of Breg cells mainly includes transitional B cells (CD19+CD24hiCD38hi) (64) and plasmablasts (CD19+CD27intCD38+) (65) in human, follicular B cells (CD19+CD23+CD21int), marginal zone B cells (CD19+CD23-CD21hi), plasma/plasmablasts (CD19+/B220lo/-CD138+), transitional B cells and B10 cells (CD19+/B220lo/-CD1d+CD5+) in mice (50).

Breg cells can not only impair immune responses in TME by secreting antibodies as described above but many anti-inflammatory cytokines production and pathways also contribute to immunosuppression in TME. IL-10 is the most important anti-inflammatory cytokine defining the Breg cells, several pathways are involved in IL-10 production (66, 67). For example, IL-10 production is increased from B cells when stimulated with LPS or CpG (68–70), and MyD88, the downstream of TLR, is necessary for IL-10 production from B cells under LPS stimulation (71), suggesting that TLR activation is able to induce Breg cells differentiation. CD40 and BCR signaling are also related to IL-10 production, as anti-CD40 antibody treatment in vivo and in vitro expands the IL-10+ B cells, and antigen-stimulated B cells transfer in the EAE mouse model rescued IL-10 production in a CD40-dependent manner (72, 73). B cell-derived IL-10 is a strong immunosuppressive cytokine in various autoimmune diseases, it is also important in tumor growth. B cell-deficient mice showed slower tumor growth than WT mice when the mice bearing MC38 carcinoma and EL4 thymoma, and this effect is related to the B cell-derived IL-10 (74, 75). IFN- γ production reduced from B cell-knock out splenic cells when cocultured with WT B cells, and IL-10 production from B cells increased after coculturing with irradiated melanoma cells, not sarcoma cells, indicating that Breg cells suppress the anti-tumor immunity to certain tumors (75). IL-10 production from B cells impairs inflammatory cytokines, including TNF-α and IFN-γ, secretion from cytotoxic T cells to promote tumor growth. While in the chemical carcinogenesis of skin, TNF-α is a promoter for tumor growth, IL-10 produced by B cells facilitates tumor growth in a TNF-α-dependent manner (76). Moreover, IL-10-producing B cells are also being found to promote tumor growth in non-Hodgkin B cell lymphoma (77).

TGF-β is another critical anti-inflammatory cytokine secreted by Breg cells. In the breast tumor model, TGF-β is highly expressed on tumor-infiltrating B cells and associated with the conversion of resting CD4+ T cells to Treg cells (78, 79). Furthermore, IL-35 produced by Breg cells also plays a promotion role in pancreatic tumor growth (80, 81). Altogether, Breg cells suppress anti-tumor immunity via the secretion of anti-inflammatory cytokines such as IL-10, TGF-β and IL-35.



Anti- and pro-tumorigenic factors secreted by B cells

Except for the antibodies and cytokines described above, B cells also secrete some other factors that affect tumor growth. Lymphotoxin α1β2 (LTα1β2) plays a critical role in the lymphoid organ development and especially in ectopic tertiary lymphoid organs (82–84). Indeed, the presence of B cells in tertiary lymphoid organs is associated with better anti-tumor immunity in lung cancer (85). Though the remodeling of lymphoid organs contributes to the anti-tumor immunity, some studies found that lymphotoxin derived from B cells supports tumor growth. Androgen promotes prostate cancer (CaP) growth by binding to the androgen receptor expressed on both normal and cancerous prostate cancer cells. Androgen ablation by castration induces cell death of cancer cells and lymphocyte infiltration in TME, and it is effective for androgen-dependent CaP patients, while many patients are castration-resistant (CR). B cells are abundant in TME of CaP, and the B cell-derived lymphotoxin in TME activates IKKα, which is involved in nuclear factor κB (NF-κB) signaling and promotes metastasis, and STAT3, leading to CR-CaP and prostate tumor growth (86, 87).

In addition, a recent study found that γ-Aminobutyric acid (GABA) derived from B cells promotes tumor growth by facilitating IL10+ macrophages in TME (88). In the study of MC38 colon cancer cell line inoculation in vivo, which is reported that B cells suppress anti-tumor T cell responses in this cell line (89, 90), and B cells secreted GABA promotes tumor growth by facilitating IL-10 production from macrophages. Though GABA production is not restricted to B cells, GABA production from B cells is much more than other immune cells in draining lymph nodes. In addition, B cell-specific GABA depletion restored anti-tumor immunity (88). Therefore, the metabolism network of tumor-infiltrating immune cells could be a valuable target for therapy.



Discussion

The function of B cells in cancer development is controversial. Different B cell phenotypes play a different role in various cancer (Figure 1). When the tumor cells express neoantigens containing BCR epitope, B cells can present these neoantigens and interact with neoantigen-activated TFH cells to facilitate the cytotoxicity of CD8+ T cells. Activated B cells further differentiate into ASCs. The IgG antibodies secreted by ASCs induce ADCC, ADCP, and CDC to promote anti-tumor immunity. Immunosuppressive IgA production in TME supports tumor growth. In addition, CIC accumulation is associated with poor outcomes. IL-10+ IgA-producing B cells could be categorized as a part of Breg cells, which suppress the anti-tumor immunity, other Breg cells such as TGF-β-producing B cells or IL-21-producing B cells also limit anti-tumor immunity. Moreover, B cells-derived lymphotoxin supports lymphoid organ development but promotes tumor growth and relapse by inducing angiogenesis. And GABA produced by B cells in TME impairs tumor growth by supporting IL-10+ macrophages.




Figure 1 | The role of B cells in tumor immunity. The antibodies produced by plasma cells induce ADCC mediated by NK cells, ADCP by macrophages, and CDC mediated by C1q, which target and kill tumor cells. IgA-expressing Breg cells dampen anti-tumor immunity by secreting anti-inflammatory cytokines such as IL-10 and TGF-β to suppress CD4+ T cells, CD8+ T cells and dendritic cells (DCs), and facilitate Treg cells. B cells also promote anti-tumor immunity by presenting antigen to CD4+ T cells and further interacting with activated T cells to induce TFH cells, thus promoting the function of CD8+ T cells. In addition, the production of lymphotoxin from B cells enhances anti-tumor immunity by facilitating tertiary lymphoid organ formation while promoting tumor growth by the induction of angiogenesis. Moreover, B cells produce GABA to impair anti-tumor immunity by facilitating IL-10-producing macrophages.



Though there are many controversial functions of B cells in tumor immunity, the role of B cells in different tumor types is different. Therefore, it is still possible to look for an adequate B cell-based therapy in some specific tumors. For example, IgA+ Breg cells express PDL1, secrete IL-10 in TME and suppress local immune responses in several cancer types, such as human prostate and liver cancer (91, 92). PD-L1/PD-1 blockade can restore the anti-tumor immunity by reactivating CD8+ T cells since Breg cells suppress CD8+ T cells by producing anti-inflammatory cytokine IL-10. Simply depleting B cells couldn’t well demonstrate the function of B cells in a specific tumor cell type, thus, further studies may be needed to elucidate which phenotype of B cells or which mechanism is predominant. Yet, if the depletion of B cells largely impairs tumor growth, it can still be considered a potential treatment. Breg cells play a critical role in suppressing tumor immunity in some cases. Therefore, for these tumor cells, it is valuable to deplete Breg cells. However, since there is no good marker for Breg cells, it is challenging to deplete Breg cells specifically. In the case that B cell deficiency promotes tumor growth, antibody production, and antigen presentation might be essential. Therefore, B cell activation seems feasible in those BCR epitope-containing neoantigen expressing tumor cells. Though STAT3 activation and CD5+ B cell proportion are correlated with poor outcomes in B16 skin tumor cell lines (93, 94), adoptive transfer of activated B cells in tumor cell inoculated mice leads to slower tumor growth (95).

In summary, increasing studies found that B cell-targeted therapy could be a prospective candidate in immunotherapy. However, based on the mouse experiment, B cell-targeted therapy may not be as efficient as T cell-based therapy. Therefore, the combination of B cell and T cell-targeted therapy could be promising in cancer therapy.
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Chimeric antigen receptor (CAR)-based therapies are presented as innovative treatments for multiple malignancies. Despite their clinical success, there is scientific evidence of the limitations of these therapies mainly due to immunogenicity issues, toxicities associated with the infusion of the product, and relapses of the tumor. As a result, novel approaches are appearing aiming to solve and/or mitigate the harmful effects of CAR-T therapies. These include strategies based on the use of ligands as binding moieties or ligand-based CAR-T cells. Several proposals are currently under development, with some undergoing clinical trials to assess their potential benefits. In addition to these, therapies such as chimeric autoantibody receptor (CAAR), B-cell receptor antigen for reverse targeting (BAR), and even chimeric human leukocyte antigen (HLA) antibody receptor (CHAR) have emerged, benefiting from the advantages of antigenic ligands as antibody-binding motifs. This review focuses on the potential role that ligands can play in current and future antitumor treatments and in other types of diseases, such as autoimmune diseases or problems associated with transplantation.
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Introduction

Immunotherapy using autologous genetically engineered chimeric antigen receptor (CAR) T (CAR-T) cells is widely emerging as one of the major breakthroughs for treating cancer. The aim of these therapies is focused on driving T-cell cytotoxicity specifically against tumor antigens in cancer cells (1, 2). However, the identification of suitable targeted tumor-associated antigens (TAAs) remains a challenge nowadays due to life-threatening toxicity derived from off-tumor on-target antigen recognition (3–5).

Various approaches are being proposed for both hematological and non-hematological malignancies (6). Remarkable antitumor responses have been achieved from anti-CD19 CAR-T therapies against B-cell acute lymphoblastic leukemia (B-ALL) and other refractory B-cell malignancies, demonstrated in pivotal clinical trials (7–11). This has led to the approval by Food and Drug Administration (FDA) and/or European Medicines Agency (EMA) of several CD19-directed products, such as tisagenlecleucel (KYMRIAH®, Novartis) (12), axicabtagene ciloleucel (YESCARTA®, Kite Pharma-Gilead) (13), and lisocabtagene maraleucel (BREYANZI®, Juno Therapeutics-Celgene-BMS) (14) for treating large B-cell lymphoma and brexucabtagene autoleucel (TECARTUS®, Kite Pharma-Gilead) (15) for treating relapsed/refractory mantle cell lymphoma. In this context, our group obtained the first European-developed CAR-T approved by the Spanish Agency of Medicine [Agencia Española del Medicamento y Productos Sanitarios (AEMPS)] with the authorization of ARI-0001 (at Hospital Clínic de Barcelona) administration for relapsed or refractory CD19+ B-ALL in adult patients (16). Another CAR-T treatment recently approved by the FDA is idecabtagene vicleucel (ABECMA®, Celgene-BMS) based on the recognition of B-cell maturation agents (BCMAs) for treating multiple myeloma (MM) (17). Besides approved therapies, ciltacabtagene autoleucel (of CARTITUDE clinical trials, Janssen-Johnson&Johnson) (18) is also a BCMA-directed CAR-T product expected to be authorized for MM treatment.

Despite this range of validated products, researchers are striving to broaden the clinical benefit of CAR-T cells while exploring new cutting-edge applications. Nevertheless, resistance mechanisms, such as T-cell exhaustion, immunosuppression, or antigen loss, carrying to relapse and therapy failure, have been reported during these trials (19, 20). In fact, an estimated 30% of relapses after anti-CD19 therapy were related to antigen loss (20). This highlights the need to improve or fine-tune CAR-T therapies to avoid tumor escape by identifying novel tumor antigen targets, testing various CAR-expressing cells as CAR-Natural killer (NK), and, most importantly, enhancing the CAR molecule itself.

The minimal structure of a CAR consists of an extracellular antigen recognition domain, tethered to a hinge domain followed by a transmembrane region, and an intracellular signaling domain (CD3ζ). Additionally, different generations can be found according to the number of modular intracellular costimulatory domains (mainly 4-1BB, CD28, or OX-40) (1, 21) (Figure 1).




Figure 1 | Chimeric antigen receptor (CAR) generations. (A) First-generation CAR includes a single-chain variable fragment (scFv) extracellular region and a T-cell activation domain. This minimal structure can recognize the antigen in an HLA-independent manner. By adding a costimulatory domain, (B) second-generation CAR is more able to expand and persist due to this second signal. (C) The third-generation CAR has an additional costimulatory signaling domain to increase proliferation, survival, and activity of engrafted T cells. Recently, (D) the fourth-generation CAR has been developed to include extra genes, such as recognition domains for transcription factors involved in mediating signal transduction. The idea is to modulate the effect of the CAR, facing an immunosuppressive tumor microenvironment by cytokine production or other additional effects.



Autologous T cells expressing CAR molecules are activated upon non-HLA-restricted ligand recognition, subsequent posttranslational phosphorylation of CD3ζ is produced, and the zeta-chain-associated protein kinase 70 (Zap-70) is recruited, inducing the assembly of downstream proteins. Meanwhile, CAR-costimulatory regions can activate Phosphoinositide 3-kinase (PI3K)/Protein kinase B (AKT), tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2)/Mitogen-activated protein kinase (p38MAPK), and c-Jun N-terminal kinase (JNK) pathways. Finally, CAR functional domains enable the CAR to integrate all downstream signaling pathways that end up with the expression and activation of transcriptional modulators—Nuclear factor kappa B (NF-κB), Nuclear factor of activated T-cells (NFAT), Signal transducer and activator of transcription 3 (STAT3), Activator protein 1 (AP-1)—to drive the effector function of CAR-T cells (22, 23).

Largely, the extracellular antigen recognition domain is a single-chain variable fragment (scFv) composed of a variable heavy chain (VH) and a variable light chain (VL), which are usually derived from a murine monoclonal antibody (moAb), joined by a linker region (1) (Figure 2). Due to the scFv murine nature, immunogenicity is one of the major issues regarding in vivo long-term expression of CAR-T cells (24, 25). Moreover, aggregation and instability can lead to poor persistence and loss of effectiveness (26). Even though the moAb characteristics of scFv allow potential benefits for the CAR-T therapy, cell persistence, antitumor response efficiency, and off-tumor on-target toxicity need to be improved, and thus, innovative approaches can bring improvements in this regard.




Figure 2 | Schematic differences between conventional chimeric antigen receptor T (CAR-T) cell and ligand-based CAR-T cell. (A) Second-generation conventional CAR-T cell structure, including T-cell activation domain (signal 1) and costimulatory regions. The recognition domain of this CAR-T is composed of the single-chain variable fragment (scFv) that allows direct interaction with the tumor-associated antigen to trigger the antitumor response. (B) Schematic representation of the different chains that form an antibody and how the scFv domain is obtained from the variable heavy and light chains of a monoclonal antibody to be used in the CAR-T structure. (C) Structure of a second-generation ligand-based CAR-T cell that shares the same domains as mentioned with scFv-based CAR-T cells but incorporating a ligand as a target recognition domain. (D) Immune cytokines, growth factors, immunoglobulin superfamily proteins, and chimeric peptides, among others, are listed as potential molecules to be used as ligand-based CAR-T cell recognition domains (see some abbreviations in Table 1).





Changing the extracellular target-binding region, changing the “CAR” concept to other but similar receptors

Optimized design of every region of a synthetic CAR has been shown to be relevant to its clinical success (27). Different strategies are being developed to increase CAR-T cell response, one of which is proposing a new extracellular target-binding region (28). Given this, non-antibody-based strategies are being proposed as a promising improvement for CAR-T cell therapies based on the interaction of surface receptors with their natural ligands (29). Specifically, ligand-based CAR-T cells take benefit from the receptor-binding domain of soluble molecules, i.e., cytokines, growth factors, immunoglobulin superfamily proteins, or chimeric peptides for targeting TAA to induce the antitumor response (26) (Figure 2). Similar to scFv-based CAR-T cells, the ligand recognition is in an HLA-independent manner. Additionally, the downstream signaling T-cell activation is maintained in the ligand-based CAR-Ts as all four generations can be found, but most approaches use the second- and third-generation CARs (Table 1).


Table 1 | List of preclinical studies and current clinical trials using ligand-based CAR-T cells in course.



One of the main constraints lies in finding the right ligand for the CAR structure, as the pool of candidates is still limited. Moreover, its target must be tumor specific or highly expressed while having minimal presence in normal tissues, making it necessary to optimize the proposals as much as possible. Worldwide, a considerable number of preclinical studies have been published and clinical trials are currently ongoing, validating suitable ligands and elucidating their clinical potential (Table 1).



Ligand-based Chimeric Antigen Receptor (CAR)-T cell preclinical studies

Over the recent years, efforts have been focused on proving CAR-T success against solid tumors, but several difficulties have arisen such as finding a specific TAA, insufficient cell expansion after recognition, tumor penetration, and evasion mechanisms. These obstacles for CAR-T therapies need to be overcome (39–41). Indeed, different approaches are being evaluated, including ligand-based strategies.


IL-11-based CAR-T cell

The IL-11/IL-11Rα signaling pathway is involved in several biological activities, and it is supposed to induce an antiapoptotic effect via STAT3 activation (42, 43). It has been shown that human IL-11Rα is overexpressed in several types of cancer, including osteosarcoma (OS) and lung-associated metastases. Immunohistochemistry results from Huang et al. (30) showed that four different OS cell lines overexpress IL-11Rα within 20%–60% and 14 of 16 patients were positive for IL-11Rα in their OS lung metastasis samples. In contrast, IL-11Rα was not expressed in the surrounding normal lung tissue or other essential tissues (30). OS treatment has been stagnant during these years, and finding new treatments is still needed (44). Because of its orphan disease condition, IL-11Rα was proposed as a suitable candidate for CAR-T therapy (45).

A second-generation CAR-T was designed using IL-11 peptide (CGRRAGGSC) as the extracellular domain (46). In vitro, IL-11Rα-CAR-T cells were cytotoxic to four different OS cell lines compared with control T cells. After in vitro injection in OS mouse models, engineered T cells accumulated in lung metastasis nodules that resulted in selective tumor cell lysis and tumor regression, with no visible lung metastases in three of the five mice treated compared with controls (30).



Adnectin-based CAR-T cell

Adnectin is derived from the 10th type III domain of human fibronectin (10Fn3) (47). The 10Fn3 domain interacts with integrins and belongs to the immunoglobulin superfamily. Its structure is close to the antibody variable domain but with better stability and no dependence on disulfide bonds (48). This feature allows the manipulation of this domain to generate mutants with different interactions. Hence, a similar scFv structure, increased stability, and human nature make adnectin an interesting candidate for ligand-based CAR-T therapies (31).

One of the target membrane surface receptors to direct adnectin-CAR-T cells is the epithelial growth factor receptor (EGFR). This receptor has tyrosine kinase activity that governs fundamental cellular processes, including proliferation, cell migration, metabolism, and survival (49). Moreover, it is one of the most suitable candidates targeted in cancer therapies, since it is overexpressed in several tumors such as breast, lung, and head and neck (50).

Han et al. (31) designed CETUX-CAR (scFv derived from cetuximab) and adnectin-CAR-T cells targeting EGFR (both third-generation CAR-T) to compare their activity (31). Ligand-based CAR-T therapy was developed after revising a previous work by Emanuel et al. (51) to generate adnectin clones for this aim. Four adnectin clones were evaluated (E1, E2, E3, E4) with different binding affinities. E3 was considered the most eligible (51). In comparison to CETUX-CAR-T therapy, E3 CAR-T cell displayed relatively lower binding affinity toward EGFR but higher selectivity against EGFR-overexpressing cancer cells. Nevertheless, it has comparable reactivity, cytotoxicity, and hence antitumor response when incubated with lung carcinoma H292 cells (31). These characteristics expect new broad opportunities to selectively target EGFR-positive tumor cells, avoiding classical issues of classic CAR-T therapies, which will be discussed later.



EPHB4-based CAR-T cell

Ephrin type-B receptor 4 (EPHB4), a member of the family of receptor tyrosine kinases (RTKs), is ubiquitously expressed in distinct types of malignancies as rhabdomyosarcoma (RMS). EPHB4 expression is negligible in vital tissues except of a weak expression in normal placenta cells (52, 53). Differences in ligand-dependent or ligand-independent activation of EPHB4 have been reported, being stimulation without ligand binding the one that leads to cell growth and transformation. In RMS and other malignancies, EPHRIN B2 interaction with EPHB4 may induce apoptosis and lack of proliferation (54). Based on the fact that EPHRIN B2 is a unique ephrin ligand that interacts with EPHB4, a second-generation CAR-T cell with an extracellular portion of EPHRIN B2 can be considered for RMS treatment (55).

In vitro robust and sustained killing activity against RMS, OS, and triple-negative breast cancer (TNBC) cells was assessed by Kubo et al. (34), even following multiple tumor rechallenges, indicating no reduction of antitumor effect. Even though the interaction with EPHRIN B2 should induce weak proliferation, in vitro results refuse this idea and do not promote proliferation in RMS cells (55). Another considered point was the possible effect off immunomodulatory effect of the P3F fusion gene, which undergoes some RMS variants, on CAR-T activity. Nevertheless, this translocation product did not modulate the EPHB4-CAR-T activity (56).

After substantiating that EPHRIN B2 could bind EPHB4 mouse receptors, the antitumor effect and off-tumor on-target toxicity were in vivo verified with RMS tumor xenograft models. The results showed decreased tumor growth rates and prolonged survival in treated animals with EPHB4-CAR-T compared with anti-CD19 CAR-T control without any sign of adverse effects (55). These promising results have led to the generation of novel studies, and future clinical trials are being proposed.



FLT3L CAR-T cell

Acute myeloid leukemia (AML) is still a rare malignancy but represents a third of all diagnosed leukemias. Two ligand-based CAR-T cells have been proposed against AML, FLT3L CAR-T and granulocyte-monocyte colony-stimulating factor receptor (GMR) CAR-T (32, 33). Approximately 30% of AML cases have mutated the FMS-like tyrosine kinase-3 (FLT3), mainly internal tandem duplication (ITD) mutations that lead to constitutive activity of tyrosine kinase domain (TKD) and promote, via different signaling pathways, the progression of AML with poor prognosis (57, 58). As scFv-based CAR-T targeting FLT3 has no optimal results, Wang et al. (32) developed a second-generation ligand-based CAR-T cell with the FLT3 ligand (FLT3L) as the recognizing domain (32, 59).

FLT3L CAR-T cell can specifically recognize FLT3-positive cells, and in vitro studies have proven their cytotoxic efficacy against 10 different primary AML cell lines, five with FLT3-ITD and five with wild-type (WT) FLT3 expression. Moreover, treated mice showed longer survival, but results also revealed that recognition seemed to be independent of FLT3 levels on cells, relying on the FLT3 genotype (32).

Cytotoxicity efficacy was proven in vitro against 10 different primary AML cell lines, five with FLT3-ITD and five with WT FLT3 expression. FLT3L CAR-T cell can specifically recognize FLT3-positive cells and display cytotoxicity. In vivo experiments verify this idea, since treated mice showed longer survival. In fact, results revealed that recognition seemed to be independent of FLT3 levels in cells but relied on the FLT3 genotype (32).

FLT3L-FLT3 interaction allows dimerization and phosphorylation of FLT3 and activation of downstream signaling pathways that end up in cell growth and survival (60, 61). Since FLT3L CAR-T allows ligand-dependent activation, it can stimulate this phosphorylation and may promote cell growth in FLT3 WT. Thus, FLTL3 WT is less sensitive to CAR-T cytotoxicity. Otherwise, FLT3-ITD is constitutively activated (ligand-independent) developing different phosphorylation profiles that are more sensitive to CAR-T therapy when FLT3 CAR-T interacts. This may allow the CAR-T therapy the ability to distinguish between both types of cells, being more lethal for mutated FLT3. So, distinguishing the receptor by genotype can be a novel strategy with potential benefit in such types of tumors (32).



GMR CAR-T cell

Another different approach for AML treatment is GMR CAR-T cells. The granulocyte-macrophage colony-stimulating factor (GM-CSF) is an immunomodulatory cytokine capable of tuning the phenotype of myeloid cells but also T cells through myeloid intermediaries (62). Its main target is GM-CSF receptor (GMR), composed of two subunits: α subunit (CD116) that is present in normal and AML and juvenile myelomonocytic leukemia (JMML) myeloid cells and β subunit (CD131) shared with IL-3 and IL-5 receptors. Recent studies revealed that GMR can be found as complexes of two α subunits (low-affinity receptors) or both α and β subunits (high-affinity receptors) (33).

AML expresses both complexes, and since CD116 is overexpressed in more than 60% of AML, mainly in those with poor prognosis, Saito et al. (33) proposed a second-generation ligand-based CAR-T cell targeting GMR (33, 63) after they demonstrated antiproliferative effects of the same construct against JMML (63). Different CAR-Ts were built and evaluated to enhance this effect against AML. Referring to a previous work by López et al. (64), they used GM-CSF as a binding region (33) mutated in residue 21 that plays a key role in the functionality of the cytokine but not affecting the binding (64). After screening analysis of several mutated GM-CSFs, E21K and E21R, both had increased antitumor response. In vitro and in vivo results revealed E21K mutation as the one with durable in vitro cytotoxicity and complete suppression of the progression of CD116+ AML cells in vivo, correlating strongly with the CD116 levels in tumor cells. These may appear to conflict with other reported data in which E21K-mutated GM-CSF had a reduced binding capacity to high-affinity receptors but maintained the binding capacity to low-affinity receptors, leading to less AML interaction than scFv-CARs (33, 64). Although the mechanism has not been identified yet, it seems that the reduction of time interaction with receptors would enhance T-cell stimulation (65). Despite all of these important results, off-tumor adverse effects were not tested and this would be necessary to evaluate for further applications (33).



Thrombopoietin-based CAR-T cell

Thrombopoietin (TPO) is a hematopoietic growth factor produced not only by the liver but also in the bone marrow and kidney niches. TPO is defined as a natural ligand to the myeloproliferative leukemia (MPL) receptor, also known as CD110. Overexpression of MPL has been characterized as a negative prognosis factor for AML progression due to the effects of the associated signaling, such as Janus Kinase 2 (JAK2)/STAT5, Phosphoinositide 3-kinase (PI3K)/Protein kinase B (AKT), and proto-oncogene, serine/threonine kinase (Raf1)/Mitogen-activated protein kinase (MAPK) (36).

The TPO/MPL pathway is essential for the survival and self-renewal of leukemia stem cells (LSCs) and hematopoietic stem cells (HSCs) and is therefore involved in the progression of AML. For this reason, Zoine et al. (36) proposed a second-generation ligand-based CAR-T cell using the biologically active region of the TPO protein to target the MPL receptor. The outcomes showed not only a significantly specific cytotoxicity against MPL+ AML cell lines in vitro but also satisfactory results in murine AML xenograft models. Notably, on-target off-tumor toxicities were detected in the bone marrow compartment during the trials. The authors justify that bone marrow toxicity could be advantageous for the model, as most patients with AML receive a bone marrow transplant and treatment with TPO-based CAR-T cells may be helpful to replace the adverse effects of pretransplant conditioning regimens.



IL-10-based CAR-T cell

Among the diverse ways of drawing an antitumor response in AML is that based on the IL-10 receptor (IL-10R). IL-10R is a receptor composed of four members, two alpha (IL-10RA) and two beta (IL-10RB) molecules, being hematopoietic-specific and ubiquitous, respectively. Published data infer that the IL-10/IL-10R pathway, when with aberrant function, is involved in promoting the stemness of AML cells (37). For this reason, it seems reasonable to validate the CAR-T response against IL-10R. To this end, Chen et al. (37) designed a second-generation ligand-based CAR-T cell using IL-10 as a binding motif and assessed the degranulation and cytokine secretion from T cells and killing of the AML-targeted cells in culture. Following good in vitro results, they assessed the product in a murine AML xenograft model and obtained prolonged survival in treated models compared with those that did not undergo CAR-T treatment.



CD27 CAR-T cell

CD70 is the membrane-bound ligand of the CD27 receptor, which belongs to the TNF receptor superfamily. This interaction is considered a potential target to address CD70-positive malignancies, such as diffuse large B-cell lymphoma and follicular lymphoma, as well as AML, since CD70 is expressed on most of its leukemic blasts, while its expression is low or absent in normal bone marrow samples (66). Importantly, CD70 expression is transient and restricted to a subset of highly activated T, B, and dendritic cells under physiological conditions, playing a role in T-cell activation. However, it is not essential for the development and maintenance of a functional immune system.

In this context, Sauer et al. (38) developed a first-generation CAR-T cell based on a ligand, CD27z-CAR, which uses the full-length CD27 cDNA as a recognition domain. Additionally, their research incorporated the design of several CAR-T sequences with the CD70-specific scFv to compare reactivity against the target.

All CAR-T cell populations mediated cytotoxicity against CD70-positive tumor cell lines but not CD70-negative cells in in vitro assays (38). However, because the efficacy of CAR-T cells is determined not only by their cytolytic activity but also by their ability to proliferate after the tumor challenge, they were subjected to successive cocultures. The results showed differences in their ability to kill and proliferate during successive cocultures, with CD27z-CAR able to kill tumor cells during five consecutive cocultures in at least two of the four donors in contrast to other CAR-T cell populations, as well as the highest production of T helper 1 (TH1)-type cytokines, such as Interferon (IFN)-γ and TNF-α (38).

Following these results, the same research evaluated the CD27z-CAR in vivo effects in CD70-positive AML murine xenograft models. Their results demonstrated an efficient ability to control leukemic growth, leading to complete leukemia remission in all mice by day 21 (38). Furthermore, they could demonstrate a significant expansion of the transduced T cells in the in vivo models, thus corroborating the relationship between the administered therapy and the remission of pathology.




Ligand-based CAR-T cell clinical trials

Although anti-CD19 scFv-based CAR-T therapies have clinically succeeded, as several products have already been approved (12, 13), the reality is that limited clinical information is still available for other strategies, as could be for ligand-based CAR-T cells. However, a few phase I/II clinical trials are currently trying to elucidate the safety and bioactivity of different approaches.


IL-13-zetakine CAR-T cell

One of the most hopeful proposals is focused on treating central nervous system (CNS) solid tumors, such as glioblastoma multiforme (GBM) (67–69). GBM is one of the most lethal primary brain tumors, and its outcome remains poor. High-grade glioblastoma does not respond to standard treatments such as surgery or chemotherapy mainly because of tumor heterogeneity (70). Diverse differentiation status has been found in GBM cell populations: stem-like cancer-initiating cells (GSCs), expressing stem cell markers and maintaining certain self-renewal capacity, and differentiated glioblastoma cells (71). It has been proposed that GSCs are responsible for this lack of response because of their natural resistance to conventional treatments (72).

IL-13 receptor α2 (IL13Rα2) is demonstrated to be expressed within 50%–80% of GBM cells, independently of differentiation status, but not significantly expressed in normal CNS tissue. IL13Rα2-positive tumors are associated with a worse prognosis, hypothetically owing to IL-13/IL13Rα2 interaction (73–75). IL-13 is an immunomodulatory cytokine that promotes apoptosis and transforming growth factor alpha (TGF-β) secretion when it interacts with IL13Rα1/IL-4Rα high-affinity heterodimer. Alternatively, IL-13 has a higher affinity to IL13Rα2 but does not induce intracellular signaling (76). Therefore, overexpression of IL13Rα2 in GBM may reduce proapoptotic signaling and promote cell survival (75).

Considering these facts, IL13Rα2 is a suitable candidate for different treatments as is IL-13-zetakine (77, 78). This product is an adoptive T-cell therapy engineered with a CAR structure whose recognition domain is IL-13 cytokine, which contains the E13Y mutation, for targeting IL13Rα2. The importance of this mutation relies on reducing the affinity to IL13Rα1/IL-4Rα heterodimer but increasing IL13Rα2 binding compared with WT IL-13 (77). The aim is to specifically redirect the cytotoxic activity of T cells to GBM cells that overexpress this TAA compared with normal CNS cells.

During the last few years, a first-generation IL-13 CAR-T was developed and tested, obtaining a sustained cytotoxic response to both cancer-initiating cells and differentiated GBM cells in vitro. Also, there was evidence of antitumor activity and limitation of the progression of established IL13Rα2-positive tumors in xenograft mice without clear collateral damage on healthy tissue (77, 78). With these results, Brown et al. (79) conducted a first-in-human pilot clinical trial (NCT00730613) to assess the activity and safety of IL-13-zetakine after intracranial delivery in three patients with recurrent GBM. Indeed, two out of three showed transient antitumor activity in the absence of severe adverse events. Although the survival rate was 11 months, the small cohort denied the capacity to establish the therapy survival benefit (67).

Aware that the CAR-T response needs to be improved, Brown et al. (80) started to tune the IL-13-zetakine structure. Thus, the second-generation CAR-T cell was developed using 4-1BB as the costimulatory domain and CD3ζ as the intracellular signaling domain (80). Preclinical results showed an enhanced response. As the first-generation IL-13 CAR-T activity was transient, and its persistence was limited, one of the aims was to analyze the antitumor response and cell persistence of the second-generation one. For this reason, a current phase I clinical trial (NCT02208362) (81) studies the activity, adverse effects, and best dose of these CAR-T cells. In fact, one patient has reported a transient complete response after complete CAR-T dose administration with important improvements in the quality of life for up to 7.5 months (68). The trial is still ongoing, but this case appears to be a great hope. Another clinical trial has just started (NCT04661384) to test this CAR-T therapy in patients with leptomeningeal disease from glioblastoma, ependymoma, or medulloblastoma, but the results are not expected to be analyzed until December 2022 (69).



Pan-ErbB CAR-T cell

The ErbB receptor family comprises a synergistic dynamic signaling network composed of four members, EGFR/ErbB-1, ErbB-2/NEU/HER2, ErbB-3/HER3, and ErbB-4/HER4 (49). After ligand-dependent stimulation, diverse homodimer or heterodimer combinations may occur (50). ErbB-2 is demonstrated to be the preferred member for dimer formation, while ErbB-3 pairing is essential, because of its lack of intrinsic tyrosine kinase (TK) activity. Upon dimer activation, tissue development, proliferation, and differentiation are promoted (50).

Several studies have revealed aberrant expression or function of some ErbB receptors, mainly ErbB-2 dimers with ErbB-1 or ErbB-3, as a determinant of the pathogenesis of many malignancies, such as mesothelioma, epithelial ovarian carcinoma (EOC), or head and neck carcinoma [head and neck squamous cell (HNSCC)] (82–85). Consequently, there is a considerable interest in targeting ErbB family members, but problems of selective pressure and tumor resistance have been emerging due to the overexpression of non-targeted receptors (82).

To circumvent this, diverse approaches are currently trying to redirect their mechanism toward two or more ErbB dimers to prevent the signaling network from escaping and continuing tumor progression. This idea includes T1E28z or pan-ErbB CAR-T cell, a second-generation CAR-T therapy that includes T1E as a binding moiety for treating many epithelial malignancies (83).

T1E is a chimeric polypeptide that takes benefit from different ErbB ligand properties: epidermal growth factor (EGF) and TGF-α selectively bind to ErbB-1 with high affinity but weaker or no affinity for ErbB-2/ErbB-3 heterodimers, respectively. Structural analysis of both revealed that EGF is unable to bind ErbB-2/ErbB-3 with high affinity because of the lack of essential amino acids in the N-terminal region, whereas TGF-α cannot bind despite having these crucial residues (86). Thus, a chimera was developed introducing N-terminal linear region of TGF-α into the EGF C-terminal sequence, resulting in high affinity for ErbB-2/ErbB-3 maintaining ErbB-1 specificity (87). ErbB-4 heterodimer binding was also reported. This made T1E a promiscuous ligand ideal for multitargeting ErbB dimers, preventing antigen loss and signaling compensation.

Davies et al. (83) engineered T cells with T1E28z and evaluated its binding capacity, resulting in eight of nine possible ErbB homo and heterodimers, with most affinity detected against cells that coexpressed ErbB-1 and ErbB-2 (83). One of the main challenges of CAR-T therapies is the enrichment and expansion of T cells. For this reason, they also introduced a chimeric cytokine receptor named 4αβ, in which IL-4 receptor-α ectodomain has been coupled to the shared β chain used by IL-2/15 (88). With IL-4, T cells receive a potent and selective stimulation, allowing better expansion. Preclinical studies have revealed that T4 immunotherapy (CAR-T combining T1E28ζ and 4αβ chimeric receptors) achieves a relevant antitumor response in HNSCC, EOC, and malignant mesothelioma in vitro (83–85).

Considering that T1E polypeptide can efficiently bind to ErbB mouse receptors, in vivo efficiency and toxicity were tested in diverse immunocompromised xenograft mice, including all three malignancies mentioned above (89). T cells elicit antitumor activity in the absence of relevant toxicity when delivered intratumorally or intraperitoneally at a moderate dose. Nevertheless, after high-dose intraperitoneal delivery, cytokine release syndrome (CRS) appeared, providing evidence that intratumor administration seems to be the safest route for solid tumors and that CRS dose-dependently appeared (83, 89).

To build on this, van Schalkwyk et al. (90) designed a phase I clinical trial (NCT01818323) to assess the safety of T4 immunotherapy to treat HNSCC that is not suitable for conventional active therapy. Primary results are expected to be published in April 2022. If results are robust, other clinical approaches should be initiated to evaluate CD4+ CAR-T therapy against other malignancies, such as EOC or malignant mesothelioma (91).



AUTO2: APRIL-based CAR-T cell

MM represents 13% of all hematologic cancers, and it is characterized by extreme growth of malignant plasma cells (PCs) in the bone marrow, aberrant production of monoclonal immunoglobulin, and immunosuppression, among others (92, 93). Over the past decade, autologous stem cell transplants, proteasome inhibitors (PIs), and immunomodulatory drugs (IMiDs) have significantly raised survival rates, and moAbs further improved relapsed/refractory multiple myeloma (RRMM) outcomes (93–95). Nonetheless, overall survival is extremely reduced in patients with RRMM after IMiDs or IP treatments. Therefore, there remains a need for new approaches that could lead to durable remissions in MM patients, especially in RRMM (94).

Although the CARTITUDE-1 trial seems to have recently promising results (18), treatment of MM still involves many challenges, focusing on TAA detection. Since CD19 has a reduced expression in malignant cells, some RRMMs appear to be CD19-negative and other well-defined antigens (CD56 or CD38) have expression levels in other tissues, then other antigens need to be validated (95).

BCMA is another suitable candidate for CAR-T therapies because it is absent on hematopoietic stem cells but selectively expressed on PCs, and BCMA is almost present in MM cells. After the first anti-BCMA CAR-T cell trial, remission was reported in four of 12 patients, but high doses were required for persistent remission due to the low expression of BCMA in MM cells. Moreover, similar to CD19 therapies, tumor escape by downregulation of targeted BCMA was reported (96, 97).

Considering this, Lee et al. (98) attempted overcoming low target density and antigen escape targeting two TNF-receptor superfamily members, BCMA and a transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI) (98). Both are coexpressed on the majority of PC and MM cells and may play a similar role in providing PC with survival signaling (35). For this reason, a bispecific third-generation CAR was constructed using a murine truncated version of a proliferation-inducing ligand (APRIL), a natural ligand for both BCMA and TACI with nanomolar affinity (99, 100). The final product, AUTO-2, is retrovirally transduced to produce CAR-T cells expressing APRIL-CAR-T and the RQR8 switch system that acts as a marker but also as a suicide molecule when adverse effects of the therapy occur (101, 102).

The preclinical evaluation demonstrated cytolysis at low levels of target antigen, even when the BCMA expression was downregulated or lost. These data were confirmed in vivo, where an improved disease control compared with scFv-based CAR was observed (101), but the problem still was the need for considerable T-cell doses to achieve relevant responses with a short follow-up duration. A phase I/II clinical trial (NCT03287804) (102) was initiated to test the safety and efficacy of AUTO2 in RRMM patients. Phase I showed that eight of 11 (81.9%) treated individuals achieved expansion and persistence of CAR-T cells in peripheral blood, while four of 11 (36.4%) had a complete/very good/partial response up to 2 years. However, the average death during the trial was eight of 11 (72, 73), so the duration of response could not be quantified, and thus, phase II was not initiated.

Even though the results of the clinical trial seemed to show a glimmer of hope, APRIL-based CAR-T cells required better optimization. After evaluation of all of these studies, Schmidts et al. (35) generated a second-generation CAR where they changed the extracellular domain of AUTO2 for a tri-APRIL binding moiety (TriPRIL) (35). The study hypothesized that preserving the trimeric form of the natural ligand would increase the binding affinity and efficacy against MM cells. Also, they used human APRIL so it would reduce immunogenicity. Indeed, data revealed that antitumor activity was enhanced in vitro against BCMA+ and BCMA- cells and in vivo with xenograft models compared with monomeric APRIL-based CAR-T cells (35). Therefore, TriPRIL CAR-T therapy holds promise for treating MM, including the absence of BCMA. Further clinical trials will be required to elucidate its potential clinical benefits.



Beyond ligand-based CAR-T

Although this review focuses mainly on what the literature refers to as ligand-based CAR-T cells, it is necessary to mention other approaches in which ligands are incorporated as the binding moiety of the CAR structure. In this regard, we found the so-called chimeric autoantibody receptor (CAAR) (103), B-cell receptor antigen for reverse targeting (BAR) (104), and chimeric HLA antibody receptor (CHAR) (Figure 3).




Figure 3 | Role of ligands in other antibody-mediated diseases. Recently, new approaches have emerged in which different ligands linked to antibody-like structures can be used to address specific pathologies. The sequence of these products shares similar domains to CAR-Ts but changes the extracellular domain. In panel (A), a chimeric autoantibody receptor (CAAR) can be seen in which an autoantigen is incorporated as a recognition domain of the CAAR to redirect it toward autoantibodies on the autoreactive B-cell surface, thus facing autoimmune responses. Panel (B) shows the structure of a B-cell receptor antigen for reverse targeting (BAR). The recognition domain includes an antigen specific to the single B-cell receptor (BCR) clonally specific of each B-cell tumor. Finally, panel (C) represents an example of chimeric HLA antibody receptor (CHAR), where molecules of the class I HLA system replace the conventional recognition domain to direct the transduced T cell toward anti-HLA antibody-producing B cells to cope with posttransplant immune rejection.



Treatments for autoimmune diseases specifically eliminate self-reactive cells while preserving protective immunity (103). However, this premise is proving difficult to implement, as both autoimmunity and cancer are closely related, requiring optimal management of autoimmune therapies to prevent cancer development due to general immunosuppression (105). For this reason, novel approaches try to avoid the classic issues associated with autoimmunity treatments.

In this sense, CAAR molecules consist of a chimeric immunoreceptor that includes an autoantigen as the extracellular domain. This technology directs the modified T-cell response toward autoreactive memory B cells expressing autoantibodies as their surface immunoglobulins (sIg-BCR), or autoantibody-producing PCs, which are autoantibody-secreting cells (103). This would generate selective therapy against reactive immunity, thus avoiding a general suppression of the abovementioned protective immunity. This strategy has been used by Ellebrecht et al. (103), who have constructed a CAAR T cell using the different forms of the Dsg3 autoantigen target of pathological autoantibodies present in a significant percentage of patients with pemphigus vulgaris (PV). Their results expect potential benefits that these CAARs could bring to the treatment of autoimmune diseases.

BCR signaling has been identified as an important pathway in B-cell lymphomagenesis, and there is increasing evidence that antigenic stimulation of the BCR is a trigger for proliferation. Several autoantigens, such as ARS2 and LRPAP1, have been proposed as stimulatory ligands of the BCR and its pathway in one quarter of diffuse large B-cell lymphomas (DLBCLs) and almost half of the mantle cell lymphomas (MCLs), respectively (104–106).

From the study of these BCR antigens arise structures defined as BAR. BAR-bodies were initially designed with the idea of conjugating toxins to these BCR antigens. One example is the research led by Thurner et al. (107), where it is shown that LRPAP1-based BARs conjugated to Pseudomonas aeruginosa exotoxin A toxin are internalized and specifically kill MCL cells with LRPAP1-reactive BCRs by inducing apoptosis.

Further research has led to the construction of an antibody-like structure that incorporates the sequence of these identified BCR antigens, or at least their BCR-binding epitope, replacing the variable fragments of the scFv heavy and light chains, with the aim of transducing T cells and targeting malignant B-clones with unique specificity for these BCRs responsible for tumor expansion (104, 106). Since approaches such as that of Bewarder et al. (106) that uses the BCR antigen to target MCL cells have exclusive specificity for cells with the specific surface BCR, they do not only represent a strictly tumor-specific approach but can also be expected to be more effective but less toxic than the currently available CAR-T cells with specificity for CD19, as they should not affect other cells and should work equally well in the presence of autoantibodies against the antigen in question.

In the same line as CAARs and BARs, T cells that express CHAR with the ability to kill B cells that produce donor-specific class I HLA antibodies are being developed to treat antibody-mediated rejection in the field of solid organ transplantation. One of the main problems in solid organ transplantation is the presence, or de novo generation, of donor-specific antibody anti-HLA molecules (anti-HLA-DSA), which is associated with a high risk of antibody-mediated rejection (108). Our thinking has changed from considering rejection as a primarily T cell-mediated process. Insufficient control of the humoral arm of a recipient’s immune system by current immunosuppressive regimens is now the pathogenic factor primarily responsible for allograft dysfunction and loss (109). This new CHAR could be a therapeutic approach for personalized desensitization of HLA-sensitized recipients and even for antibody-mediated rejection in solid organ transplantation.




Discussion

CAR-T cell-based therapeutic strategies allow the production of significant numbers of tumor-specific reactive T cells, resulting in potent responses that can lead to the elimination of tumor cells expressing the target antigen (1). As mentioned above, those approaches are being considered as one of the further progress in the field of antitumor therapies, even including several commercial products available for clinical use (12–16). Specifically, it is the conventional CAR, with the scFv fragment as the recognition domain, that is mostly proposed, since they were the first to appear and to get results. In any case, scFv-based CAR is not exempt from limitations and concerns, such as immunogenicity or toxicity (5, 24). For this reason, ligand-based CAR-T cells are now emerging as a suitable alternative to address them (110). They are presented as an alternative therapy because most of the preliminary and clinical studies conducted to date show similar results in terms of activity and efficacy (110).

It is relevant to highlight the commonalities between the two technologies. The proof of concept involves engineering of autologous T cells, allowing the CAR expression on the cell surface, so that the modified cells can acquire tumor specificity. Since the same intracellular signaling domains are used, upon recognition of the target molecule, the internal signaling necessary to enable T-cell activation and expansion will be triggered (22, 23).

Both approaches share HLA-independent target recognition, which allows for less restriction in the recognition of what they are meant to act against. The main difference lies in the interaction on which target recognition depends. While scFv-based CAR-T cells rely on moAb–target binding, which is defined as a higher-affinity interaction, ligand-based CAR-Ts use ligand–receptor binding, which is presumably a lower-affinity interaction (28). Using the properties of this modification in the CAR structure, the aim is to mitigate the issues detected after administration of conventional CAR-T therapies.


Immunogenicity

CAR-T cells have the potential to trigger both cellular and humoral immune responses against non-self-components of the CAR structure, but its clinical implication remains poorly investigated and exhibits great variability depending on the CAR-T and type of tumor (24).

Human anti-mouse antibodies (HAMAs) against mouse-derived scFvs have been detected in a subset of patients. Anti-idiotype antibodies are also reported, directed toward specific regions of scFv binding sequence, since the hypervariable region (the idiotype and the allotype determinants) of the scFv are highly immunogenic. Additionally, antibodies against CAR peptides originated from the fusion of the domains that make up its structure can also be found (24, 25). Regarding the cellular immune response, specific cytotoxic T cells could arise from the processing and cross-presentation of foreign peptides of the CAR structure. Finally, immune response could also be triggered by residual elements from gene transfer viral vectors, which are inevitably immunogenic (24).

Despite the lack of conclusive evidence, it is inferred that these elements may interfere negatively with CAR-T cell activity by either neutralizing their recognition capacity, causing loss of CAR membrane expression, or directly increasing CAR-T cell apoptosis (24, 25). Immunogenicity arising from the non-human origin of scFv could be reversed using human moAbs, but the full ability and a sufficient human moAb library to obtain them are not currently available. Also, humanized scFv can be an option, but problems exist with cell surface stability, dimerization, and aggregation that limit the desired cytotoxic activity (26, 110).

Ligand-based CAR-T cells have been proposed to dodge these adverse effects considering that natural human ligands are used to replace the scFv region, as non-human sequences are eliminated, and the immunogenicity of the product is reduced (both HAMA and cytotoxic T cells). It is worth mentioning that the reduction in immunogenicity will be greater the more original ligand sequence is included (full-length sequence) in the final recombinant molecule (26, 31, 35). Antibodies directed against the region of the fused domains and immunogenicity of viral vector peptides will still exist, but ligand-based CAR-T cells may be less likely to prompt immune responses (35).

Despite that fact, it requires further investigation to elucidate the possible benefit of using ligand-based CAR-T cells to reduce immunogenicity, as there is a lack of results to prove it.



Tonic CAR signaling and scFv instability

Throughout the design process of scFv molecules, many studies have highlighted problems of oligomerization either as part of a CAR structure or in a soluble form. Oligomerization occurs mainly through a process of domain swapping, where the VH region of one scFv is incorrectly associated with the VL region of another scFv (26, 111). This causes the aggregation of CAR structures, which will result in dysfunctionalities leading to tonic signaling through constitutive activation via the signaling described above. Not to mention that these oligomerizations could lead to problems in target recognition by the CAR (111).

CAR-transduced T-cell tonic signaling is widely described in many investigations. In addition to aggregations of scFv, high levels of cell surface CAR expression, the addition of endogenous TCR-associated signaling, and the incorporation of certain intracellular signaling domains into the CAR sequence can trigger constitutive cytokine release, prolonged and excessive expansion, and thus further T-cell exhaustion (26, 111). However, natural ligands are probably more stable and have a lower risk of dimerization and domain swapping if no multimeric ligands appear, and these will require further study. Thus, ligand-based approaches would reduce potential tonic signaling that prevents early exhaustion of CAR-T therapy, thus prolonging its functionality and thus improving the probability of success of the intervention when administered in in vivo models.



Affinity-tuning and toxicity management

Another potential advantage of ligand-based CAR-T cells is their capacity to multitarget (110). The native forms of ligands that are proposed for CAR structure often can bind to different receptors, being bispecific or trispecific. Recent publications consider that one of the main drawbacks encountered is the relapsed/refractory state of some malignancies after CAR-T infusion mainly due to downregulation of the specific antigen against which the cytotoxic activity is directed (antigen loss) (21, 31). Given that scFv has a single specificity for a particular peptide, ligand-based CAR-T cells may provide a safeguard against antigen loss, anticipating one of the possible mechanisms of tumor evasion (112). For instance, the APRIL-CAR proposed by Lee et al. (98) has bispecificity for BCMA and TACI, leading to increased recognition and lysis of MM cells, either BCMA+ or BCMA-, compared to an scFv-based CAR-T cell directed against BCMA that does not prevent the proliferation of BCMA- tumor cells (35, 98).

This potential benefit from ligand-based CAR-T cells must be balanced against the toxicity problems that have already been described in some patients when treated with scFv-based CAR-T cells (5). Specifically, these off-tumor on-target toxicities arise because target molecules can be constitutively expressed in healthy tissues, causing harmful activity by altering normal tissue functionality (3). If a product with bispecificity or trispecificity is infused, the potential number of off-target sites at which it can act increases significantly, thereby increasing the risk of adverse effects (4, 21, 35). Therefore, this promiscuous binding could be also analyzed as a disadvantage of the ligand-based design if other known or unknown binding partners exist in healthy tissues, leading to off-tumor on-target toxicities. For this reason, these potential toxic effects of ligand-based CAR-T cells need to be carefully explored in animal models.

However, this could be countered by considering the sensitivity of the CAR interaction toward the recognized molecule. Normally, the process of production of scFv regions depends on somatic hypermutation mechanisms, in which molecules with the highest affinity for the target are selected (113). Thus, at low concentrations of the target molecule in the tumor, the CAR-T cell is able to reach the activation threshold and trigger the cytotoxic response (31, 114). However, this characteristic of high-affinity CARs makes them poorly able to discriminate between target cells with various levels of antigen expression. Considering that tumors tend to overexpress certain molecules above basal levels present in other tissues (82), this means that the CAR-T cells activate the cytotoxic response not only toward the tumor but also toward other healthy tissues, increasing the risk of off-tumor on-target toxicities. Finally, scFv-CAR-T cells have constitutive basal activation of CAR signaling by their extracellular domain, increasing the off-target effects of the therapies and the earlier exhaustion of the T cell (31).

By using ligands and not antibody chains as the target-binding molecule, a lower-affinity interaction will be achieved (110). Additionally, the ability to modify native ligand sequences also offers some flexibility in CAR binding. An example is the GM-CSF-CAR, where mutations are introduced into the target-binding domain so that the product has less affinity toward its target (33). By reducing the affinity, a high TAA expression level will be needed to activate the T cell, increasing the selectivity of ligand-based CAR-T therapy against tumor cells. However, previous studies have shown that the affinity of a CAR toward its target is inversely proportional to the activation threshold of the T cell, although the mechanism is not yet fully described (114). Thus, by modifying the ligands, we can generate CARs that are less affine but induce greater cytotoxic activity on the tumor.

Ultimately, if the potential benefits associated with the ability to prevent and/or reduce tumor evasion of the immune response can be balanced during in vitro development and testing in in vivo models with a thorough analysis of CAR-T interactions with known and undescribed targets, if, in addition, possible modifications of the ligand used to modulate the cytotoxicity of the CAR-T product can be described, and if immunogenicity issues are resolved, we may be talking about a therapeutic alternative that will potentially discriminate tumor from healthy tissue, be tumor-specific, and reduce the risk of adverse effects (31, 110).



Challenges ahead for ligand-based CAR-T cells

Although the use of natural ligand-based CARs presumably has many advantages, these alternative CAR designs have their own limitations. These include the potential for off-tumor toxicity, unwanted target-associated signaling, and possible interference with the physiological interaction between the endogenous ligand and the target.

As has already been mentioned in this review, the possibility of ligand binding to different targets may lead, on the one hand, to a reduction in the ability to evade the antitumor response, at the same time, it may trigger on-target off-tumor toxicities by increasing the range of possible interactions outside the tumor (4, 21). Although this can be contrasted with the modulation of the interaction affinity, making the therapies more selective, this aspect must be widely considered in the testing phases in animal models. It is worth mentioning that toxic effects are also present in conventional CAR-T therapies, and therefore, it is a pending task for all CAR-T cell therapies.

Another aspect to consider is the possible unwanted signaling that may be generated in the target cell because of the interaction with the ligand fused to the CAR. For example, if the ligand plays a role in cell proliferation and survival, their interaction could increase tumor growth. This is a very preliminary approach that requires further study, but a possible alternative would be to introduce modifications in the ligands that prevent signal transduction in the target, as proposed by Saito et al. (33), who introduced mutations in GM-CSF at residue 21, a key to the functionality of the ligand but maintaining the binding capacity.

Finally, possible interference of endogenous ligands on the interaction of the ligand that is used as the CAR binding moiety should also be considered, generating a competition between both for binding to the target (35). This could result in reduced functionality of the CAR-T cell. Although this is presumed to be a mild effect, it should be considered individually as a reason for the study depending on the type of ligand.




Conclusion

As described in this review, ligand-based CAR-T cells offer several advantages over CARs containing an scFv domain as a binding moiety. Although they should generate greater toxicity problems due to their ability to recognize multiple off-tumor targets, clear advantages are described: 1) they are less likely to provoke an immune response, as the ligands are derived from natural human sequences and therefore fewer murine regions will be present in the CAR structure; 2) somatic hypermutation phenomena are not necessary, thus reducing anti-idiotype antibodies; 3) ligand-based CARs are often able to bind to multiple targets, thus reducing the potential for tumor escape; 4) the nature of the ligands and their binding to the receptor allow for a certain tuning capacity that reduces their sensitivity and enables therapies with a greater ability to discriminate between tumor tissues, which tend to overexpress the target, and healthy tissues; and 5) less tonic signaling and longer lasting functionality should be detected associated with a reduction in the probability of ligand aggregation.

Ideally, ligand-based CAR-T therapies appear to be proposals that would improve the safety profile of CAR-T cells and increase cell persistence, maintaining similar levels of response to those achieved with scFv-based CAR-T cells in hematological malignancies and translate these to solid tumors. They should therefore be presented as a significant advance in cancer immunotherapy. Nevertheless, there is still a lack of data and much research to be done to truly elucidate their potential benefit and corroborate their safety profile. Therefore, public and private institutions should invest in the development and testing of these products and technologies. However, there is a conflict of interest, as native ligand sequences cannot be patented like scFv; at the basic research level, it would facilitate the production of therapies, but, for the time being, there is a lack of investment to bring them to clinical trials and to be able to analyze the issues mentioned in this review. It is also particularly important for the scientific community to engage with these types of therapies, as more information is still needed. In conclusion, what emerges from this work is that ligands are intended to offer a future alternative for developing new therapies, but more support and effort will be needed to get results.
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Background

Immune checkpoint inhibitors (ICIs) are associated with different immune-related adverse events (irAEs), but there is limited evidence regarding the association between urinary incontinence and ICIs.



Methods

We described the case of a patient experiencing urinary incontinence who later experienced a series of irAEs such as myocarditis, myositis, and neurologic diseases while on ICI treatment in our hospital. In addition, we queried the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) from the third quarter of 2010 to the third quarter of 2020 to perform a retrospective study to characterize the clinical features of urinary incontinence associated with ICIs.



Result

In the FAERS study, 59 cases of ICI-related urinary incontinence were retrieved, and approximately 32.2% of the cases were fatal. Combination therapy with nervous system drugs and age >80 years old were the significant risk factors for fatal outcomes. Among these cases of ICI-related urinary incontinence, 40.7% (n = 24) occurred concomitantly with other adverse events, especially, neurological (fifteen cases), cardiovascular (seven cases), musculoskeletal (six cases), and urological disorders (five cases). Five cases had an overlapping syndrome similar to our case report, including one case of myasthenia gravis with myocarditis and another of myasthenic syndrome with polymyositis.



Conclusion

ICI-related urinary incontinence might be a signal of fatal neuromuscular irAEs, especially when it occurs concomitantly with ICI-associated neuromuscular–cardiovascular syndrome. Clinicians should be aware of the occurrence of urinary incontinence to identify potentially lethal irAEs in the early phase.
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Introduction

Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy and improved clinical outcomes in multiple cancer types (1). To date, approved ICIs include anti-cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4; ipilimumab), anti-programmed cell death-protein-1 (PD-1; pembrolizumab, nivolumab, cemiplimab), and anti-programmed cell death-ligand 1 (PD-L1) therapies (atezolizumab, durvalumab, avelumab) (2). Despite their important clinical benefits, ICIs cause a unique spectrum of side effects termed immune-related adverse events (irAEs). These events can affect many organ systems, and they can be fulminant or even fatal in some cases (3).

During routine surveillance, we identified a patient with unusual urinary incontinence symptoms during immunotherapy treatment. In addition, urinary incontinence did not develop as an isolated adverse effect. A more detailed medical examination revealed that the patient experienced a series of irAEs such as myocarditis, myositis, and neurological diseases. Urinary incontinence is the involuntary leakage of urine (4), and its pathogenic causes include neuromuscular diseases, inflammation, or infection of the bladder or urethral wall and bladder outlet obstruction (5). In addition, the neural control of the lower urinary tract and pelvic floor musculature is essential for urine storage. Therefore, the damage of these areas is one of the leading causes of urinary incontinence (5). ICIs can damage the function of nerves and muscles via lymphocyte-rich infiltration, antibody-mediated inflammation, and sterile inflammation (6). No study has demonstrated an association between urinary incontinence and ICI treatment. Conversely, ICI-related neuromuscular adverse events, such as ICI-related myelitis, Guillain–Barré syndrome (GBS), and myasthenia gravis–myositis syndrome, were reported to be linked to urinary incontinence symptoms (7–9). This suggests that urinary incontinence is secondary to irAEs.

To date, there has been limited research investigating the association between ICIs and urinary incontinence. We only identified one similar case report from the published literature (7). Recently, the FDA Adverse Event Reporting System (FAERS) database has been increasingly utilized to quickly detect rare and unexpected adverse events. Therefore, we reviewed the reported cases of urinary incontinence after ICI treatment and described the concomitant irAEs and characteristics by retrospectively analyzing the FAERS database.



Case report

A 65-year-old woman was diagnosed with clinical stage IIIC (cT3N3M0) pulmonary adenocarcinoma 2 months prior to hospitalization with no actionable somatic mutation and a tumoral cell PD-L1 status of ≥50%. She had opted to join a clinical trial program that included immunotherapy, anti-vascular endothelial growth factor (VEGF) therapy, and chemotherapy. She received two cycles of treatment consisting of the anti-PD-1 antibody (HLX10 4.5 mg/kg every 3 weeks), anti-VEGF monoclonal antibody (HLX04 bevacizumab biosimilar, 15 mg/kg every 3 weeks), and carboplatin (area under the concentration–time curve = 5 mg/ml/min) plus pemetrexed (500 mg/m2). The initial examination was unremarkable. After the first cycle of treatment, she experienced a liver injury. After oral hepatic protectants (bicyclol, polyene phosphatidylcholine capsules) were used, her symptoms significantly improved.

During the two-cycle treatment, the patient displayed sudden urinary incontinence after her body position changed. The severity of urinary incontinence required the patient to use sanitary napkins to move about in the ward. Subsequently, the patient exhibited mild fatigue. The neurological examination was unremarkable, and no evidence of tenderness to the palpation of major muscle groups, decreased muscle strength, or ptosis were noted. Notable laboratory abnormalities are listed in Supplementary Table 1.

Electrocardiogram (ECG) demonstrated a normal sinus rhythm with a slight decrease in the R wave amplitude. Echocardiography, cardiac magnetic resonance, brain magnetic resonance imaging, abdominal and pelvic computed tomography (CT), and kidney/bladder ultrasound revealed normal findings. Chest CT revealed increased pericardial thickness. Needle electromyography uncovered left external anal sphincter neurogenic impairment (Supplementary Table 2). In addition, nerve conduction studies revealed peripheral neurogenic impairment, which may have involved the motor nerves with demyelination (Supplementary Table 3). This finding is consistent with previous clinical observations that the principal manifestation of ICI-related neuropathy is motor nerve demyelination (10). A urodynamic study (UDS) found a reduction in intraurethral pressure. A repetitive nerve stimulation study suggested the abnormality of the neuromuscular junction (Supplementary Table 4). Notably, AChR antibody testing was positive. These results supported a diagnosis of myasthenia gravis or Lambert–Eaton myasthenic syndrome. Additionally, based on her elevated creatine kinase (CK), myocardial enzyme, and cardiac troponin I (cTnI) and the changes of ECG data, she was suspected to have myositis and myocarditis. All of these findings suggested that the patient had developed an overlap of urinary incontinence–myasthenia gravis–neuropathy–myositis–myocarditis-like syndrome.

Then, the patient was administered intravenous methylprednisolone 80 mg/day for 2 days. Her CK and CK-MB isoenzyme (CK-MB) levels were decreased slightly by treatment, but her cTnI levels increased rapidly. Subsequently, the patient received steroid pulse therapy (methylprednisolone 500 mg) and intravenous immune globulin 40 mg/kg/day for 3 days. Her symptom of incontinence improved, and her CK, CK-MB, and cTnI levels were decreased by this treatment (Figure 1). During the process of glucocorticoid tapering (from 80 to 40 mg/day), her myocardial enzyme and cTnI levels rose again (Figure 1), and the patient developed new-onset hoarseness. Mycophenolate mofetil (MMF) 1,000 mg/day was thus prescribed. Following this treatment, the patient’s CK-MB and cTnI gradually decreased to normal, and urinary incontinence was relieved. MMF and corticosteroids were discontinued at 11 and 14 weeks following symptom onset, respectively. The radiographic evaluation after two cycles of treatment revealed partial tumor remission. Six months after the last antitumor treatment, retreatment with the original chemotherapy regimen (carboplatin plus pemetrexed) combined with bevacizumab was performed because of lesion progression. The tumor was effectively controlled again, and urinary incontinence did not recur.




Figure 1 | Temporal changes of creatinine kinase (CK), cardiac troponin I (cTnI) and myocardial enzyme (AST/ALT/CK-MB). Treatments performed are indicated below the graph. MMF, Mycophenolate Mofetil.



Overall, we suspected that urinary incontinence syndrome was caused by ICI therapy for several reasons. First, there was a temporal association between ICI treatment and the occurrence of urinary incontinence. Second, the patient underwent urinalysis, urine culture, ultrasound, and UDS, and the results did not uncover other potential causes of urinary incontinence. Third, the patient was retreated with the original chemotherapy regimen (carboplatin plus pemetrexed) combined with bevacizumab, and urinary incontinence did not recur.

However, the electrodiagnostic data and clinical manifestations of neuromuscular toxicity were atypical in this case, which could potentially have several explanations. First, we identified the disease in an extremely early stage, and neither the patient’s symptoms nor the electrodiagnostic data were typical at this stage. Second, the patient was treated with high-dose steroids and intravenous immunoglobulin in an extremely early stage; therefore, the disease was relieved to a certain extent before electrodiagnostic testing. Finally, the patient had overlapping neuromuscular toxicity, and different diseases interacted with each other, which might have affected the electrodiagnostic data.



Descriptive analysis based on the FDA adverse event reporting system database


Definition and design

We downloaded FAERS data files from the third quarter of 2010 to the third quarter of 2020. We used generic and brand names to identify drugs, including anti-CTLA-4 (ipilimumab), anti-PD-1 (pembrolizumab, nivolumab, cemiplimab), and anti-PD-L1 therapies (atezolizumab, avelumab, durvalumab). We identified cases of urinary incontinence using the preferred term “urinary incontinence” according to the Medical Dictionary for Regulatory Activities (version 23.0). Duplicate reports were excluded from our analysis. In the deduplication process, we extracted the latest (most recent) case version from all available cases based on the case ID, case initial/follow-up code (“I” or “F”), case event date, age, sex, and reporting country (11). We retained the most current case version and removed all others.

To summarize the clinical characteristics of cases of ICI-related urinary incontinence, we analyzed general information, patient characteristics, indications for ICIs, outcomes (serious events defined as death, hospitalization, life-threatening events, or disability), the role of ICIs (primary suspected, secondary suspected, and concomitant), and ICI treatment strategy (monotherapy or combination therapy). Additionally, we analyzed the drugs used concomitantly with ICIs, such as nervous system drugs (including benzodiazepines, antipsychotics, antiepileptics, and antidepressants), α-adrenoceptor antagonists, and diuretics, which have been reported to increase the risk of urinary incontinence (12). We further analyzed the concurrent adverse events (AEs), especially neuromuscular toxicity and cardiotoxicity, which also occurred in our case. Clinical characteristics were described using quantities and proportions for qualitative variables and medians (with the interquartile range) for quantitative variables. We also performed a subgroup analysis to explore the differences in the clinical characteristics of severe and non-severe ICI-associated urinary incontinence. Proportions were compared using Pearson’s chi-square or Fisher’s exact test. Data were analyzed using SPSS (v22.0; IBM Corp, Armonk, NY, USA), and statistical significance was indicated by p < 0.05.



Results of the FDA adverse event reporting system analysis

Our analysis of the FAERS database captured 96,814 AEs related to ICI treatment, including 59 cases of urinary incontinence (45, 5, 2, and 7 events associated with anti-PD-1, anti-PD-L1, anti-CTLA-4, and combination therapies, respectively). Table 1 presents the characteristics of patients with ICI-related urinary incontinence. Most cases of ICI-related urinary incontinence occurred in patients with lung cancer and melanoma (35.6% and 23.7%, respectively), and most cases were reported in the Americas (40 [67.8%]). The mean age of the affected patients was 70.0 ± 11.3 years. Meanwhile, patients older than 80 years were more likely to experience fatal outcomes (Table 2, Fisher’s exact test, p = 0.003). Urinary incontinence was more common in men than in women (54.2% versus 44.1%). The results of time-to-onset (TTO) analysis for urinary incontinence associated with ICI are also summarized in Table 1. The median TTO was 16 days (interquartile range = 6–82), suggesting that urinary incontinence most commonly occurred in the early period.


Table 1 | The characteristics of patients with immune checkpoint inhibitor (ICI)–related urinary incontinence.




Table 2 | Differences in clinical characteristics of fatal and non-fatal ICI-associated urinary incontinence cases.



Our study identified patients with urinary incontinence who experienced poor outcomes. Approximately 32.2% of these events resulted in death, 6.8% were life-threatening, and 20.3% led to hospitalization. Most patients with ICI-related urinary incontinence were treated with polypharmacy. In total, 23.7% (14/59) of cases involved the concurrent use of drugs influencing bladder function, and the most common concurrent drugs were nervous system drugs (benzodiazepines, antipsychotics, antidepressants, antiepileptic), followed by α-adrenoceptor antagonists and diuretics. In cases involving concurrent nervous system drug use, the fatality rate was even higher, at 72.7% (8/11). In an analysis of fatal versus non-fatal cases (Table 2), we confirmed that patients who concurrently used nervous system drugs were more likely to have fatal outcomes (Fisher’s exact test, p = 0.003).

Considering the possible confounding factors, we also checked the overall anticancer regimen in our case and other risk factors of urinary incontinence recorded in the FAERS database. In total, 16.9% (10/59) of the cases were treated with combination therapy featuring vascular endothelial growth factor receptor (VEGFR) inhibitors and/or chemotherapy. Specifically, 10.2% (6/59) were treated with chemotherapy, 5% (3/59) were treated with VEGFR inhibitors, and only 1.7% (1/59) were treated with both drugs.

Among the cases of ICI-related urinary incontinence, 39.0% (n = 23) occurred concurrently with other AEs, especially neurological disorders (n = 15 [25.4%]) such as myasthenia gravis (three cases) and myasthenic syndrome (one case). In addition, the most commonly reported concurrent symptoms were neuromuscular systems, including fatigue, muscular weakness, ptosis, hoarseness, and dysphagia, which were found in 86.4% (51/59) of the cases.

Similar to the aforementioned case report, in the FAERS database, we also found five cases of ICI-associated neuromuscular–cardiovascular overlapping syndrome. The neuromuscular AEs mainly included myasthenia gravis, myasthenic syndrome, and myositis. Case 5 was not diagnosed with myasthenia gravis/myasthenic syndrome, but ptosis was the specific symptom. The cardiovascular disorders mainly included myocarditis, cardiac arrhythmias, and pericardial effusion. In addition, the prognosis was poor, and the outcomes included three fatalities and two hospitalizations. Table 3 presents the descriptive characteristics of these reports.


Table 3 | ICI-related urinary continence concomitant with neuromuscular–cardiovascular syndrome case series in the FDA Adverse Event Reporting System database.






Discussion

In our study, we reported a case of urinary incontinence after ICI treatment in a patient with non-small cell lung cancer who also had other irAEs, including myasthenia gravis, neuropathy, myositis, and myocarditis. Then, we reviewed the FAERS database to analyze more cases of ICI-related urinary incontinence, summarized the clinical characteristics, and explored the correlation between urinary incontinence and other ICI-related disorders.

In the published literature, limited research has examined the association between ICIs and urinary incontinence. One study reported a case similar to ours, as it described a patient who developed an overlap syndrome consisting of myasthenia gravis, myositis, and myocarditis after cancer immunotherapy, and the patient also experienced urinary and fecal incontinence. In addition, there were some common characteristics among the cases reported by Ng et al. and our group, such as the early onset of AEs and poor prognoses (7).


Possible mechanisms

The mechanism of ICI-associated urinary incontinence remains unclear. Generally, urinary incontinence is usually caused by neuromuscular disorders that influence urinary storage and voiding. Additionally, some urological diseases such as cystitis can induce urinary incontinence. In our retrospective study of the FAERS database, it was evident that urinary incontinence does not develop as an isolated adverse effect, as it always occurred concomitantly with neuromuscular irAEs.

ICIs can cause nerve and muscle damage through lymphocyte infiltration, antibody-mediated inflammation, and sterile inflammation (13). In addition, irAEs can present as central nervous system (CNS) diseases (such as aseptic meningitis, encephalitis, CNS demyelinating diseases, and transverse myelitis), peripheral nervous system diseases (such as peripheral neuropathy, GBS, myasthenia gravis, and Lambert–Eaton myasthenic syndrome), and myositis (13–15). Several studies reported that ICI-related neuromuscular disorders induced urinary incontinence. For example, sphincter dysfunction occurs in 86%–92% of patients with ICI-related myelitis, and the related symptoms include urinary incontinence (9). Bladder dysfunction was observed in patients with GBS at rates ranging from 25% to more than 80% (16), and the symptom could present as urinary incontinence (17, 18). Kelly et al. reported that ipilimumab could induce GBS, and their patient presented with dysautonomia that manifested as urinary retention (8). Meanwhile, other neuromuscular irAEs could theoretically cause lower urinary tract dysfunction based on the characteristics of the primary disease. For example, autoimmune encephalitis could present with bladder dysfunction (19, 20). Diabetic peripheral neuropathy may be associated with urinary incontinence, which manifested as urge incontinence (5). In total, 11.7%–72% of patients with multiple sclerosis developed urinary incontinence (21–25). Myasthenia gravis can predispose individuals to a higher risk of urinary incontinence by affecting the tone of the smooth or striated muscle of the distal sphincter (5). The frequency of urinary incontinence was significantly higher in patients with myasthenia gravis than in controls (26, 27). Sandler et al. concluded that voiding dysfunction heralded either a new diagnosis of myasthenia gravis or an exacerbation of the disease process (28). The Lambert–Eaton myasthenic syndrome is characterized by autonomic dysfunction, which is also experienced as voiding dysfunction in some cases (29). Inflammatory myopathies can also affect bladder/urinary function by decreasing pelvic floor function (30).

Moreover, it is well known that in patients with systemic autoimmune diseases (such as systemic lupus erythematosus, Sjögren’s syndrome, and rheumatoid arthritis), non-bacterial cystitis can develop and, in turn, contribute to urinary incontinence. In one study, bladder biopsy samples displayed lymphocyte infiltration and increased numbers of mast cells (31). Consistently, there were cases featuring coincident cystitis in our FAERS database analysis. Several studies reported that ICI-related non-bacterial cystitis could also induce bladder dysfunction (32–35). Meanwhile, the analyses of bladder biopsy samples also revealed numerous events of lymphocyte infiltration into the urothelium (32, 35).



Concomitant adverse events

Neuromuscular irAEs were the most frequently reported concomitant AEs with urinary incontinence. Concomitant neurological AEs included encephalitis, encephalopathy, facial paralysis, neuropathy, and myasthenia gravis/myasthenic syndrome. Concomitant musculoskeletal irAEs included two cases of myositis. In addition, concomitant urological irAEs included one case of cystitis. Myelitis, multiple sclerosis, and GBS are common neurological causes of bladder dysfunction. The related concomitant AEs were not observed in the FAERS database. However, the typical symptoms of these diseases were reported (including paraparesis, paresthesia, muscular weakness, diplopia, seizure, and ataxia). This suggests that many neurological irAEs might be underreported. This might be attributable to their non-specific symptoms, their low incidence, and a lack of recognition of these irAEs among oncologists (36, 37).



Other interferences

We additionally reviewed anticancer regimens reported in the FAERS database. Combined treatment with other anticancer therapies was only reported in limited cases. In our case, the patient was rechallenged with the original chemotherapy regimen combined with VEGFR inhibitors, and urinary incontinence did not recur. We also explore the related literature in PubMed and EMBASE. There is no evidence demonstrating that VEGFR inhibitors can induce urinary incontinence. Regarding chemotherapy, carboplatin/paclitaxel therapy for gynecologic cancers may lead to new-onset or worsening urinary incontinence, most likely related to paclitaxel (38). However, the use of paclitaxel for gynecologic cancers was rare in our findings. Overall, these results suggest that urinary incontinence is mainly relevant to ICIs.



Prognosis and mortality

In this FAERS study, patients with urinary incontinence experienced relatively severe outcomes, especially a high mortality rate. However, urinary incontinence is not inherently dangerous. Therefore, we must realize that death is not necessarily related to the drug/events, but it could possibly be related to the underlying disease. Because of the limitation of the FAERS database, we could not obtain information on the underlying illnesses of patients. By analyzing the concomitant drugs, we found that nervous system drugs were the most common concomitant drugs, which means that patients with urinary incontinence may also have nervous system disease. Notably, patients who used nervous system drugs had a significantly higher risk of fatal outcomes in the analysis (Table 2). Furthermore, ICI-related urine incontinence always occurs concomitantly with neuromuscular irAEs or neuromuscular–cardiovascular overlapping syndrome, both of which have high risks of mortality and are difficult to manage (13, 39, 40). Therefore, further investigation into the prognosis and mortality of ICI-related urine incontinence is needed.



Management suggestions

The occurrence of urinary incontinence during ICI treatment points toward possible life-threatening neuromuscular AEs, which should be assessed using relevant tests. For example, muscle and myocardial enzyme and cTn levels should be tested. Electrophysiology, neuroimaging, lumbar puncture, and antineuronal/AChR antibody measurements should be used to identify ICI-induced nervous systems toxicity. UDS, urological ultrasound, urinalysis, and urine culture should be performed to identify other urinary system diseases. In addition, ECG should also be performed to identify ICI-induced myocarditis and myositis. The most important thing is to be aware of potentially lethal neuromuscular irAEs based on the presence of urinary incontinence, muscle weakness, fatigue, myalgia, or dyspnea. In addition, proactive and effective treatments are also crucial. Glucocorticoids represent the mainstay of treatment; our case appeared to involve steroid-dependent irAEs. Additional immunosuppressant and intravenous immunoglobulin therapy effectively improved the disease. This was consistent with the disease characteristics of the ICI-associated overlap syndrome in previous studies and the aforementioned similar case (40). These findings remind us that ICI-related urinary incontinence might require intensive monitoring and combination therapy.



Limitations

We acknowledge that our study had limitations. We were unable to calculate the incidence because FAERS lacks denominators, and it does not receive reports for every AE that occurs with a product. Additionally, the lack of test data and clinical elements, such as laboratory data, some radiological findings, and preexisting disease, makes it challenging to fully analyze all of the confounders involved in the occurrence of AEs. Notwithstanding these limitations, information within FAERS can support the data or information found in clinical research or published studies. In some cases, FAERS data can provide meaningful postmarketing signals of rare AEs not observed in clinical trials.




Conclusion

ICI-related urinary incontinence might represent a signal of neuromuscular irAEs, which are associated with poor prognoses. Among the cases of urinary incontinence featuring concomitant irAEs, it is essential to remain vigilant regarding neuromuscular toxicities, especially myasthenia gravis–myocarditis–myositis syndrome, which has a high fatality rate. In addition, patients who received combination treatment with nervous system drugs or those of age > 80 years might have a higher risk of fatal outcomes. The early detection and engagement of a multidisciplinary team are critical, and high-dose glucocorticoid/immunomodulator therapy should be implemented.
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Engineered cord blood megakaryocytes evade killing by allogeneic T-cells for refractory thrombocytopenia
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The current global platelet supply is often insufficient to meet all the transfusion needs of patients, in particular for those with alloimmune thrombocytopenia. To address this issue, we have developed a strategy employing a combination of approaches to achieve more efficient production of functional megakaryocytes (MKs) and platelets collected from cord blood (CB)-derived CD34+ hematopoietic cells. This strategy is based on ex-vivo expansion and differentiation of MKs in the presence of bone marrow niche-mimicking mesenchymal stem cells (MSCs), together with two other key components: (1) To enhance MK polyploidization, we used the potent pharmacological Rho-associated coiled-coil kinase (ROCK) inhibitor, KD045, resulting in liberation of increased numbers of functional platelets both in-vitro and in-vivo; (2) To evade HLA class I T-cell-driven killing of these expanded MKs, we employed CRISPR-Cas9-mediated β-2 microglobulin (β2M) gene knockout (KO). We found that coculturing with MSCs and MK-lineage-specific cytokines significantly increased MK expansion. This was further increased by ROCK inhibition, which induced MK polyploidization and platelet production. Additionally, ex-vivo treatment of MKs with KD045 resulted in significantly higher levels of engraftment and donor chimerism in a mouse model of thrombocytopenia. Finally, β2M KO allowed MKs to evade killing by allogeneic T-cells. Overall, our approaches offer a novel, readily translatable roadmap for producing adult donor-independent platelet products for a variety of clinical indications.
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Introduction

There is an urgent need for a robust and consistently available platelet supply for thrombocytopenic patients. Platelets have a short shelf-life, and hospitals depend on apheresis procedures with adult donors to continuously replenish the supply. The development of an adult donor-independent, off-the-shelf platelet product would alleviate constraints on the platelet inventory and reduce the demand for donors.

Platelets have been successfully generated from human embryonic stem cell (hESC)- and human induced pluripotent stem cell (hiPSC)-derived megakaryocytes (MKs), the cell-type that produces platelets (1–3). However, various concerns, including the expression of oncogenes in hESCs and hiPSCs (1, 4, 5), the usage of non-human serum and feeder cells during culture (3, 6, 7), as well as low platelet yields from ex-vivo generated MKs (8) have prevented widespread clinical use of these techniques. However, progress has been made in generating higher yields of platelet-producing MKs in non-human serum- and feeder-free conditions using various techniques, such as spinning embryoid bodies, bioreactors with turbulent flow and shear forces, and culture on gas-permeable surfaces (9–13). These include a study by Ito et al. (10) that used hiPSCs and bioreactors with vertical reciprocal turbulence, which generated 70-80 platelets per MK. Furthermore, using serum-free conditions, Matsunaga et al. (14) generated upwards of 3.4 x 104 platelets per starting human umbilical cord blood (CB) hematopoietic stem cell (HSC), which indicates the potential of generating clinically useful doses of platelets from CB-HSCs. Various small molecule signaling inhibitors and gene expression modifications have also been used to increase MK maturation and produce more functional platelets (10, 13, 15–18). In this study, we developed a novel method using human CB as a source of platelets. We hypothesized that mesenchymal stem cells (MSCs) and MK-lineage growth factors would provide an ex-vivo, surrogate hematopoietic niche (19, 20) for robust expansion and differentiation of CD34+ CB-HSCs into MKs. We previously showed that MSCs induce expansion of CB-HSCs to myeloid cells (21). Here, we assessed whether a modified MSC-CB co-culture platform could be used to generate and expand MKs for efficient platelet production.

CB-derived MKs have impaired maturation and release fewer platelets than peripheral blood HSC-derived MKs (22, 23). The downregulation of Rho or Rho-associated coiled-coil-containing kinases (ROCK1 and ROCK2) is critical in MK maturation and leads to endomitosis, polyploidization, and proplatelet formation (10, 24–29). We hypothesized that ROCK inhibition would enhance CB-MK maturation in our MSC-CB co-culture platform, thereby optimizing platelet production. Furthermore, alloimmune platelet transfusion refractoriness (PTR) is a life-threatening condition observed in multiply transfused patients and results in bleeding complications and reduced survival (30, 31). The most frequent immune cause of PTR is the presence of alloantibodies against human leukocyte antigen (HLA) class I epitopes, resulting in rejection of transfused platelets unless HLA-I compatible platelets are transfused (31–36). To address this issue, we utilized CRISPR-Cas9-mediated knockout (KO) of the β-2 microglobulin (β2M) gene to generate HLA-I-deficient CB-HSCs and CB-MKs. We sought to determine whether HLA-I-deficient CB-HSCs could expand ex-vivo, differentiate into MKs, evade immune clearance, and generate functional platelets. Overall, this study provides a proof-of-concept for a multifaceted approach to optimize CB-MKs as a consistently available source of off-the-shelf platelets that may be beneficial for alleviating the constraints on the platelet inventory.



Materials and methods

Additional methods regarding CB processing, platelet collection and quantification, MK and platelet analyses, flow cytometry, western blot, T-cell cytotoxicity, bleeding studies, CRISPR, and animal usage are provided in the supplement.


MSC co-culture and MK differentiation

CB samples were collected and CD34+ cells were isolated, as described in the supplement, following written informed consent under MD Anderson IRB-approved protocols. CD34+ cells were seeded over 50% confluent BM- or CB-derived MSC monolayers and grown in serum-free good manufacturing practice (GMP) grade SCGM media (Cell Genix, Portsmouth, NH), supplemented with 1% glutamine, penicillin/streptomycin (Thermo Fisher Scientific, Waltham, MA) and recombinant human thrombopoietin (TPO, 50ng/ml), IL-6 (50ng/ml), stem cell factor (SCF, 50ng/ml), IL-3 (5ng/ml), and FLT3-ligand (FLT3-L, 5ng/ml) at 37°C and 5% CO2 for the initial 3-4 days. All cytokines were purchased from either Peprotech (East Windsor, NJ) or R&D Systems (Minneapolis, MN). IL-3 and FLT3-L were used for the initial myeloid commitment and were removed after 3 days of culture. Thereafter, the cells were maintained in TPO (50ng/ml), IL-6 (50ng/ml), SCF (25ng/ml), and IL-11 (25ng/ml) until maturation, with media changes every third day. The cells were immunophenotyped at day 10-11 of culture and non-MK-lineage cells were removed using MACS lineage negative selection kits (Miltenyi Biotec, GmbH, Germany). The relatively purified MKs were plated on fresh MSC monolayers and expanded further. ROCK inhibitors (Y27632, 5-10μM, Selleckchem, Houston, TX; KD045, 100nM-10μM, Kadmon Corporation, LLC) were then used for 4-5 days to induce MK polyploidization and maturation in the day 19 CB-MK differentiated product in the absence of MSCs (Supplementary Figure 1A).



CB-MK infusion and chimerism

All animal experiments were performed under MD Anderson Institutional Animal Care and Use Committee-approved protocols. 6-week-old NSG mice were irradiated with 300cGy and infused with CB-MKs at 16-20h post-irradiation. For homing analyses, mice were infused with 5x106 KD045-treated or untreated CB-MKs that were labelled with 2μM carboxyfluorescein succinimidyl ester (CFSE, Thermo Fisher). Mice were sacrificed at 16h post-infusion. The BM, liver, blood, and spleen were harvested and analyzed for the percentage of CFSE+ human CD42+ cells in the non-erythroid (Ter119-) fraction of total live cells by flow cytometry. For BM engraftment studies, CB-MKs were infused in sub-lethally (300cGy) irradiated mice and BM cells were harvested from the femur and tibia by crushing and washing with PBS. Single-cell suspensions were stained with hCD41, hCD42, mCD45, and Ter119 antibodies. The percentage engraftment was determined through counting hCD41+/hCD42+ cells in the Ter119- fraction of the live mice BM cells.



CRISPR-Cas9-mediated β 2M KO

CRISPR-Cas9 mediated β2M KO was performed on day 3 of MK differentiation. Following KO confirmation, CD34+ cells/MKs were cultured in the standard MK differentiation conditions mentioned earlier. Details regarding the KO are in the supplement.



Statistics

All statistical analyses were performed using Prism 8 software (GraphPad, San Diego, CA). Two-group comparisons were performed using unpaired t-tests unless otherwise noted. Statistically significant p values <0.05 are reported as *p<0.05, **p < 0.01, ***p < 0.001 and ****p < 0.001 The significance test used and sample sizes (n) are reported in each figure legend.




Results


CB CD34+ cells undergo robust ex-vivo expansion and differentiation in the MSC co-culture system

We used an in-vitro MSC co-culture system with cytokines and pharmacological inhibitors to enrich and differentiate CB-MKs (Figure 1A and Supplementary Figure 1A). Purified CB-HSCs were characterized as the percentage of CD34+ lineage-cells, with a positivity of 93.0% (n=12 cords) (Figure 1B). We collected an average of 1.33 x 106 CD34+ cells per CB unit following positive selection (n=15 cords, Figure 1C). CD34+ cells were expanded in serum-free media containing human recombinant TPO and a cocktail of cytokines in liquid culture alone or in co-cultures with MSC support, as described in Supplementary Figure 1A. CD34+ cells demonstrated a significantly higher fold-expansion when co-cultured with MSCs at day 20, compared to CD34+ cells cultured alone (308-fold vs. 114-fold, p<0.0001, Figure 1D). The MSC co-cultures supported significantly more CD41a+CD42b+ MK expansion and differentiation, compared to the CD34+ cells cultured with cytokines alone. The average number of expanded cells was 395.1 x 106 for those expanded with MSCs and 113.8 x 106 for those expanded without MSCs at day 20 (p<0.0001, n=15 and 5 cords respectively, Figure 1E). The percentage of CD41a+CD42b+ CB-MKs expanded with MSCs increased from 31.5% at day 10 to 92.1% (p<0.0001, n=4 cords) on day 20 (Figure 1F).




Figure 1 | MSCs support HSC expansion and MK terminal differentiation from CB CD34+ cells. (A) Schematic of the experimental workflow of MK differentiation and platelet production from CB-derived CD34+ cells in an MSC co-culture system. (B) Percentage of CD34+ cells after positive selection amongst multiple cord donors (n=12, each dot represents a different cord). (C) Number of CD34+ cells collected per CB unit after positive selection (n=15, each dot represents a different cord). (D, E) Violin plots comparing fold-change expansion of CD34+ cells (D) and total MKs generated (E) with and without MSC support at day 20 (n=15 in MSC co-culture and n=5 without MSCs, ****p < 0.0001). (F) hCD41+CD42+ expression pattern in CB-MKs cultured with or without MSCs at day 0, 10, and 20 (n=3-4 CB). (G) Human CFU-MK representative image (5X magnification) exhibiting GPIIb/IIIa receptor complex staining in day 12 differentiated CB-MK colonies (scale bar = 100µm). (H) Proplatelet formation (black triangles) and released platelets in the day 12 CFU-MK image (scale bar = 20µm). (I) Giemsa staining of a day 23 expanded mature CB-MK showing polyploid nuclei. (J) Representative transmission electron microscopy (TEM) 5000X magnification image of a CB-MK (Abbreviations: DMS, demarcation membrane system; Mito, mitochondria; MVB, multivesicular bodies; N, nucleus; red arrows, granules; scale bar = 2µm). (K) Representative histograms depicting the expression of hCD41a, hCD42b and hCD61 expression (blue) in day 22 MKs compared to unstained controls (red). (L) Ploidy of CB-MKs generated in the presence or absence of MSCs and 10µM Y27632, quantified by propidium iodide staining (n=4 with MSCs and 4 without MSCs, **p < 0.01). All statistical analyses completed with unpaired t-tests. * means p<0.05.



We expanded CB-derived CD34+ cells for 10-12 days with TPO in collagen-based MegaCult-C MK colony-forming (CFU-Meg) assays and visualized their expression of CD41/CD61 (GPIIb/IIIa receptor complex) (Figure 1G). We found >50 cells in an MK colony that were actively generating platelets, observed by the presence of proplatelet extensions and demarcation membrane systems (Figure 1H) (37). Expanded polyploid MKs on culture day 20 were further verified by the presence of granules and multiple nuclei, as visualized by Giemsa staining (Figure 1I) and transmission electron microscopy (TEM) (Figure 1J and Supplementary Figure 2A). The purity and maturation of the CB-MKs were confirmed by flow cytometry analysis of the MK maturation markers CD41a, CD42b, and CD61 (Figure 1K). Finally, MKs generated in the presence of MSCs and 10µM of the ROCK inhibitor Y27632 displayed significantly higher polyploidization (≥8N nuclei) than those generated with 10µM Y27632 but in the absence of MSCs (9.08% with MSCs vs. 4.58% without MSCs, p < 0.01, Figure 1L).



ROCK inhibition increases  CB-MK maturation

Downregulation of Rho signaling is a critical step in thrombopoiesis (28). ROCK1/2 are directly downstream of Rho, and ROCK inhibition enhances MK maturation and platelet shedding (10, 24–26). We therefore sought to determine whether ROCK inhibitors alter CB-MK differentiation and platelet generation. We treated day 17-19 CB-MKs with 5-10μM of the ROCK inhibitor Y27632 for 4-5 days in the absence of MSCs and observed an increase in the number of large MKs compared to untreated MKs (19μm vs. 10μm average cell size, p=0.02, n=3 cords, Figure 2A). This suggests an acceleration in MK maturation with pharmacological ROCK inhibition. We also used shear stress, which increases platelet release from MKs (10, 38), to increase platelet production in day 23 expanded CB-MKs that were treated with or without Y27632. Slight shear stress induced by 6 hour horizontal shaking generated a higher number of platelets from CB-MKs treated with 10μM Y27632, compared to control CB-MKs (2.53 x 1010 vs. 1.37 x 1010, p=0.0095, Figure 2B).




Figure 2 | CB-MK-derived platelets are functional and exhibit aggregation characteristics. (A) Representative 10X images of differentiating MKs under normal conditions and with 5-10μM Y27632, with examples of larger MKs marked by black arrows. (B) Number of secreted platelets from MKs treated with shear stress for 6h and were untreated or pretreated with 10μM Y27632 for 96h (n=3, **p<0.01). (C) Representative image of unstimulated and 5μg/ml collagen stimulated platelets in tubes. White triangles indicate aggregating platelets. (D) Flow cytometry contour plots depicting CD62P (P-selectin) expression in unstimulated and TRAP-stimulated platelets. (E) Frequency of CD62P+ platelets after TRAP stimulation or without stimulation (n=3, **p<0.01 and ***p<0.001). (F) Transmission electron microscopy (TEM) 10000X (left, scale bar = 2µm) and 50000X (right, scale bar = 500nm) resolution images of a CB-MK-derived platelet (Abbreviations: Mito, mitochondria; MT, microtubule; OCN, open canalicular network; red arrows, granules). (G) Imaging flow cytometry of platelets generated from CB-MKs and assessed for the expression of tubulin and CD41a (scale bar = 7 µm). All statistical analyses completed with unpaired t-tests.





CB-MKs produce functional platelets

Next, we examined if CB-MK-generated platelets are functional, since earlier studies indicated that CB-derived platelets have impaired aggregation and MSCs may reduce platelet activation, as shown by reduced platelet expression of the activation marker CD62P following MSC co-culture (39–41). Following stimulation with collagen, platelets derived from 10μM Y27632-treated MKs showed a higher amount of visible aggregation than unstimulated platelets (Figure 2C). We also stimulated CB-MK-derived platelets with thrombin receptor activating peptide (TRAP). We found a significant dose-dependent increase in CD62P expression in stimulated platelets, compared to unstimulated platelets (2.57% for unstimulated platelets vs. 17.63% for those treated with 100nM TRAP, p=0.0018; 29.13% for those treated with 50μM TRAP, p=0.0003, Figures 2D, E). TEM further confirmed the presence of classical surface and intracellular morphology features in CB-derived platelets, including expression of dense, α, and glycogen granules, an open canalicular system, and multiple mitochondria (2-6nm size range, Figure 2F, Supplementary Figures 2B, 3C). Imaging flow cytometry analysis of platelets derived from CB-MKs indicated co-expression of tubulin with CD41a (Figure 2G).



The highly potent KD045 ROCK inhibitor increases MK platelet production in-vitro

We compared the impact of Y27632 with that of a newly developed and potent second-generation ROCK inhibitor, KD045, on CB-MK maturation and platelet generation. Day 19 CB-MKs were treated with various doses of Y27632 or KD045 for 96h in the absence of MSCs (Supplementary Figure 1A). KD045-treated CB-MKs exhibited significantly higher polyploidization (≥8N nuclei) compared to untreated CB-MKs in a dose-dependent manner (6.55% in the control vs. 11.07% for 100nM KD045, p<0.0001; 12.93% for 1μM KD045, p<0.0001; 15.10% for 5μM KD045, p<0.0001, Figures 3A, B). KD045-treated CB-MKs also had significantly higher polyploidization than equimolar concentrations of Y27632 (percentage of CB-MKs expressing ≥8N ploidy was 12.93% for 1μM KD045 vs. 7.05% for 1μM Y27632, p<0.0001; 15.10% for 5μM KD045 vs. 9.73% for 5μM Y27632, p=0.0005, Figure 3B). KD045 treatment also resulted in a higher proportion of large CB-MKs compared to untreated control CB-MKs, suggesting increased terminal maturation (Supplementary Figure 4A).




Figure 3 | KD045 ex-vivo treatment enhances CB-MK polyploidization, reduces ROCK signaling, and stimulates MKs to secrete more functional platelets. (A) Histograms showing ploidy analysis by propidium iodide (PI) staining in CD42a+ MKs cultured alone (control) or with 100nM or 1μM KD045 for 96h. (B) Percentages of polyploid levels in MKs that were untreated or treated for 96h with Y27632 or KD045 (n=4-6 different cords in at least 3 independent experiments, **p < 0.01, ***p < 0.001 and ****p < 0.0001). (C) Numbers of secreted platelets from 1x105 CB-MKs that were untreated or treated with Y27632 or KD045 (n=4 different cords in independent experiments, **p < 0.01, ***p < 0.001 and ****p < 0.0001). (D) Number of platelets generated from untreated and KD045-treated day 22 CB-MKs that were subjected to horizontal shaking for 6h prior to platelet quantification. Data are presented as the number of platelets produced per CB unit (n=3-4 per group, **p < 0.01, ***p < 0.001, ****p < 0.0001). (E) Number of platelets generated from untreated, Y27632-, and KD045-treated day 22 CB-MKs that were subjected to horizontal shaking for 6h prior to platelet quantification. Data are presented as the number of platelets generated per seeded CD34+ cell on day 0 (n=4 per group, **p < 0.01, ***p < 0.001, ****p < 0.0001). (F) Aggregation of unstimulated and collagen-stimulated platelets derived from 100nM KD045-treated CB-MKs. (G) Flow cytometry-based pLIMK(Thr508) and pMYPT1(Thr696) intracellular expression, by mean fluorescence intensity (MFI), in untreated, 1μM Y27632, and 100nM-1μM KD045 treated MKs for 48h (n=3, **p < 0.01 and ***p < 0.001 by paired t-tests). (H, I) Western blots and normalized relative pMYPT1(Thr696) levels after 6h and 12h treatment with 100nM, 1μM and 5µM of KD045 in day 22 expanded CB-MKs (n=3 independent experiments, *p < 0.05, **p < 0.01, ***p < 0.001 by paired t-tests). All statistical analyses completed with unpaired t-tests unless otherwise noted.



Furthermore, KD045-treated CB-MKs generated more platelets at day 4 of ROCK inhibitor treatment than untreated CB-MKs. The number of generated platelets from 1 x 105 untreated CB-MKs was approximately 3.68x105 and significantly less than that from 1x105 CB-MKs treated with 100nM KD045 (7.48 x 105, p<0.0001), 1μM KD045 (8.85 x 105, p<0.0001), and 5μM KD045 (8.74 x 105, p<0.0001). KD045-treated CB-MKs also produced significantly more platelets than equimolar concentrations of Y27632 (8.85 x 105 for 1μM KD045 vs. 5.48 x 105 for 1μM Y27632, p<0.001; 8.74 x 105 for 5μM KD045 vs. 7.18 x 105 for 5μM Y27632, p<0.001, Figure 3C). In an effort to further optimize the platelet yield from the CB-MKs, we subjected day 22 CB-MKs to horizontal shaking for 6 hours prior to platelet collection and quantification. Horizontal shaking resulted in significantly higher platelet yields compared to those of untreated day 22 CB-MKs (1.01 x 109 platelets per CB unit in static conditions vs. 4.00 x 1010 with shaking, p<0.0001), which was further enhanced in day 22 CB-MKs that were pretreated with KD045 (2.10 x 109 platelets per CB unit in static conditions vs. 7.65 x 1010 with shaking, p<0.0001, Figure 3D). KD045-treatment also resulted in significantly higher platelet yields following 6h horizontal shaking than equimolar concentrations of Y27632 (3.60 x104 for 1µM KD045 vs. 2.16 x 104 for 1µM Y27632, p<0.001; 3.85 x 104 for 5µM KD045 vs. 2.19 x 104 for 5µM Y27632, p<0.001, Figure 3E). We also found that platelets generated from 100nM KD045-pretreated CB-MKs had significantly higher aggregation following stimulation with collagen compared to those that were unstimulated (Figure 3F). We observed no significant difference in the mean platelet volume of platelets derived from untreated or KD045-pretreated CB-MKs (Supplementary Figure 4B).

We also investigated the effect of ROCK inhibition on the expression of molecules downstream of ROCK in CB-MKs. The relative intracellular expression of pMYPT1(Thr696), which is downstream of ROCK, was significantly reduced after 48h treatment with 100nM and 1μM KD045 compared to untreated CB-MKs, as determined by flow cytometry (1.0 for untreated vs. 0.35 for 100nM KD045, p=0.0006; and 0.14 for 1μM KD045, p=0.0002; n=3, Figure 3G). Furthermore, 1μM Y27632 was less effective at reducing pMYPT1(Thr696) compared to KD045 (p=0.0019), consistent with our findings regarding increased platelet production by KD045-treated CB-MKs compared to Y27632-treated CB-MKs. These findings were confirmed by western blot, which showed that KD045 nearly abolished pMYPT1(Thr696) expression (1.0 for untreated vs. 0.20 for 1μM KD045, p<0.0001; 0.11 for 5μM KD045, p<0.0001; and 0.08 for 10μM KD045, p<0.0001, n=3 independent experiments, Supplementary Figures 4C, D). KD045 also reduced pLIMK(Thr508) expression at 100nM (1.0 vs. 0.67, p=0.0068 in untreated vs. treated cells) and at 1μM (1.0 vs. 0.46, p=0.0012 in untreated vs. treated cells). Equimolar concentrations of KD045 also more potently reduced pLIMK(Thr508) compared to Y27632 (0.46 for 1µM KD045 vs. 0.89 for 1µM Y27632, p=0.002, Figure 3G). However, the effect of KD045 on pLIMK(Thr508) expression was smaller than its effect on pMYPT1(Thr696). Short durations of KD045 treatment also induced dose-dependent reductions in pMYPT1(Thr696) (p=0.0013, p=0.0004 and p=0.0008 for 100nM, 1μM and 5μM KD045 respectively at 12h and p=0.012, p=0.0067 and p=0.0004 for 100nM, 1μM and 5μM KD045, respectively at 6h, n=3 independent experiments, Figures 3H, I).

We also examined the effect of several cytokines on CB-MK phenotypes. IL-21 reduced the expansion of fully differentiated CB-MKs (p=0.0082, Supplementary Figure 4E), while IL-11 and IL-1β increased platelet release by KD045-treated CB-MKs (p=0.004, Supplementary Figure 4F). Furthermore, KD045 did not alter the expression of CD41/CD42 in CB-MKs (p=0.14, Supplementary Figure 4G). We also found that fewer platelets generated from CB-MKs expressed CD62P compared to peripheral blood platelets (p<0.0001, Supplementary Figure 4H). However, CD41/CD42 expression was similar between peripheral blood platelets and CB-MK platelets (p=0.26, Supplementary Figure 4I).



KD045-pretreated human CB-MKs produce platelets in a murine model of thrombocytopenia

We used a radiation-induced thrombocytopenia model in NSG mice to study the effect of ex-vivo ROCK inhibition on donor CB-MKs in-vivo (Supplementary Figure 1C). Following sublethal exposure of mice to 300cGy radiation, we observed a significant reduction in platelet counts (1200 x 109/L for control vs. 320 x 109/L at day 7 post-radiation, Supplementary Figure 5). Within 16-20h following sublethal irradiation, KD045-pretreated human CB-MKs were transferred to the mice by intravenous injection. We evaluated human CB-MK (hCD41+CD42+ vs. mCD45) chimerism at 4 weeks post-radiation by flow cytometry and found that the transferred human CB-MKs could be detected in various organs (Figure 4A).




Figure 4 | ROCK inhibition increases MK platelet production in an in-vivo thrombocytopenia model. (A) Percentage CB hCD41a+ hCD42+ chimerism in various niches of sub-lethally irradiated NSG mice at 1-month after infusion of 7 x 106 CB-MKs that were pretreated with KD045 (n=4-5 mice). (B, C) Percentages of untreated or KD045 pretreated CFSE+ CB-MKs (in total Ter119- BM live cells) that homed to mice bone marrow (BM) (B) and lungs (C) at 16h post 5 x 106 CB-MK transfer (n=5 mice per group). (D) CB-MK-derived circulating platelet chimerism in mice blood at 2, 5, 7 and 14 days after transfer of 15 x 106 MKs that were either untreated or pretreated with KD045 prior to transfer (n=4-5 mice per group from 2 different CB donors, *p < 0.05 and **p < 0.01). (E) Platelet counts in mice blood at 14 days after transfer of 15 x 106 MKs that were either untreated or KD045-pretreated prior to transfer (n=4 mice per group, ***p < 0.001 and ****p < 0.0001). (F) Tail bleeding time in seconds of sub-lethally irradiated NSG mice 14 days after infusion of KD045-pretreated MKs, compared to bleeding time of mice that did not receive MKs (n=5-6 mice per group, ***p < 0.001). All statistical analyses completed with unpaired t-tests. "ns" means not significant.



ROCK inhibition alters cytoskeletal proteins (42), which may hinder CB-MK migration and homing. We therefore determined if KD045-treated CB-MKs have impaired BM homing. NSG mice were irradiated with 300cGy and infused with 5 x 106 untreated or 100nM KD045-pretreated CB-MKs. At 16h post-infusion, human CD41+ CB-MK chimerism in the BM revealed that KD045 treatment did not impact the BM homing potential of CB-MKs (2.2% for control CB-MKs vs. 1.9% for KD045 pretreated CB-MKs, Figure 4B). Similarly, CB-MK homing to the lung was unaltered by KD045 treatment (6.3% for control CB-MKs vs. 4.6% for KD045 pretreated CB-MKs, Figure 4C).

Next, we studied the effect of ex-vivo KD045 pretreatment on MKs’ platelet generation capacity in-vivo. NSG mice were sub-lethally irradiated and then infused with 15x106 KD045-treated or untreated CB-MKs (Supplementary Figure 1D). The percentage of circulating human CD41+ platelets was analyzed (n=2 cord donors, Supplementary Figure 4J). We observed a significantly increased percentage of human CD41+ platelets, compared to mouse platelets, in the blood of mice that received KD045-pretreated MKs compared to those that received untreated MKs (n=4-5 mice per group from 2 different CB donors, p=0.03 for CB1 and p=0.03 for CB2 at day 14; Figure 4D). The number of platelets circulating in mice at day 14 that received KD045-pretreated MKs was also significantly higher than in mice that received untreated MKs (n=4 mice per group, p<0.001 for CB1 and p<0.0001 for CB2; Figure 4E). Mice that did not receive CB-MKs had no detectable human CD41+ platelets (data not shown). In this mouse model of thrombocytopenia, mouse MK-derived platelet counts begin to increase approximately 20 days post-irradiation (Supplementary Figure 5). To examine the function of platelets generated from KD045-pretreated CB-MKs, we measured tail vein bleeding time at day 14 post-CB-MK infusion. We found a significant reduction in bleeding time in the recipients of KD045-pretreated CB-MKs (538 seconds for mice that did not receive CB-MKs vs. 130 seconds for mice that received KD045-pretreated CB-MKs, p=0.0002, Figure 4F), suggesting that KD045-pretreated CB-MKs and their platelets were functional in-vivo.



CRISPR-Cas9 edited HLA-I deficient CB-MKs exhibit normal expansion and undergo reduced cytotoxic T-cell-induced killing

β2M plays an important role in HLA class-I-mediated antigen presentation and recognition. Loss of HLA class-I from a cell surface can help that cell evade the immune system. Therefore, selective removal of β2M from CB-MKs could allow their platelets to escape the removal by the immune system in patients with alloimmune PTR. We developed CB-CD34+ HLA class-I-deficient CB-MKs (β2M KO, exon 2) (Figure 5A and Supplementary Figure 1B) and evaluated the surface expression of β2M. We observed an approximately 90% KO efficiency at day 7 in the differentiating CD34+ cells and early CB-MKs (n=3, p<0.0001, Figures 5B, C). On day 25 of culture, including 4 days of KD045 treatment, we observed similar numbers of mature CB-MKs in the Cas9 control and HLA-I (β2M) KO groups (Figure 5D). The number of platelets released per CB-MK was similar in both groups (Figure 5E), suggesting that β2M ablation does not affect CB-MK proliferation or platelet generation. The levels of CD62P expression were also similar in platelets derived from Cas9 control CB-MKs and β2M KO CB-MKs, indicating similar levels of activation between groups (Figures 5F, G).




Figure 5 | CRISPR-Cas9 engineered β2M KO CB-HSCs/MKs have a similar maturation profile and escape allogenic CD8+ T-cell-mediated killing. (A) Schematic of the generation of CRISPR-Cas9 edited β2M KO MKs. (B) Histogram of β2M expression in Cas9 control and CRISPR-Cas9 β2M KO CD34+ cells at 72h after electroporation. (C) β2M expression of the expanding and differentiating day 6 CB-derived CD34+ cells (n=3, ****p<0.0001). (D) Expansion potential comparison between Cas9 control and β2M crRNA+Cas9 treated CB-derived cells (n=4). (E) Comparison of the number of platelets secreted per mature MK after 72h culture of day 22, KD045-primed control and β2M KO MKs (n=3, p>0.15). (F) Flow cytometry contour plots of CD41a and CD62P expression in control and β2M KO CB-MK-derived platelets. (G) Percentage of platelets generated from Cas9 control and β2M KO CB-MKs that expressed CD62P (n=3). (H) Apoptosis analysis of Cas9 control and β2M KO day 20 MKs after MK and pre-activated CD8+ T cell co-culture for 4h, followed by annexin V staining of hCD42+CD3- cells (n=3, **p<0.01). (I) Cr51 release assay of day 22 expanded Cas9 control and β2M KO CB-MKs co-cultured with pre-activated CD8+ T cells (n=2 cords, **p<0.01, ***p<0.001). Statistical analyses were performed using unpaired t-tests. "ns" means not significant.



Direct co-culture of control or β2M KO mature CB-MKs with cytotoxic T-cells was performed for 4h, followed by assessment of CB-MK apoptosis by measuring annexin V. We found a reduced number of annexin V+ cells in β2M KO CB-MKs (54.80% in the control vs. 6.97% in the β2M KO, p=0.005, Figure 5H and Supplementary Figure 6B), suggesting that β2M KO CB-MKs escape cytotoxic T-cell killing. Through chromium release assays, we found that T-cells killed less β2M KO CB-MKs than control CB-MKs at all effector:target ratios tested (81.2% vs. 9.9% at 20:1, p=0.0005; 55.1% vs. 4.1% at 10:1, p=0.004; 39.0% vs. 1.2% at 5:1, p=0.008; and 21.5 vs. 0.3% at 1:1, p=0.002; Figure 5I). Our data are consistent with earlier observations showing that β2M KO iPSC-derived MKs are resistant to HLA mismatched-mediated killing (43, 44).




Discussion

With an increasing demand for platelets, the global platelet inventory is continually stressed (45, 46). This is exacerbated by the cumbersome logistics of collecting platelets via apheresis and the short shelf-life once the platelets are collected. Novel strategies to produce a consistent and robust supply of platelets are urgently needed. Here, we used several methods, including co-culture with MSCs and ROCK inhibition to promote CB-MKs’ maturation and platelet production. In addition, we facilitated immune evasion of MKs by editing their β2M gene expression. Taken together, these modalities may serve as the basis for the development of a new generation of consistently available, off-the-shelf platelets for clinical use in thrombocytopenic patients.

We used CB-derived MKs in this study as CB is a rich source of HSCs and is usually discarded as a waste product but can be readily collected by many world-wide Obstetrical Units and CB banks. These characteristics make CB an ideal source of HSCs from which MKs can be derived. Differentiating MKs requires multiple signals available in the marrow niche (47, 48), including a supportive stromal microenvironment in which MSCs are an integral part (19, 20, 48). We previously developed a co-culture system with human MSCs to expand myeloid cells from CB-HSCs (21). We refined this platform with a cytokine cocktail to expand and differentiate MKs from CB. Our results validate the efficacy of this co-culture approach in that significantly more MKs were derived from a single CB unit expanded in the presence of MSCs compared to those cultured without MSC support.

Cultured CB-MKs also have maturation defects that limit their platelet production (22, 23). ROCK signaling enhances cytokinesis and prevents endomitosis and MK maturation (10, 24–26, 28). Given the availability of highly selective and potent ROCK inhibitors, we used these agents to induce MK maturation. Using a novel ROCK inhibitor, KD045, along with MSC support, we overcame CB-MK maturation defects, allowing their subsequent differentiation into platelet-producing CB-MKs.

We observed that combining KD045 with IL-1β and IL-11 stimulation further enhanced CB-MK production. Earlier studies have shown that IL-11 enhances megakaryopoiesis and IL-1β accelerates platelet generation (49–55). Additional cytokines, including CCL5 and MIP, also increase platelet release (56). Contrary to earlier studies identifying megakaryopoiesis and thrombopoiesis-promoting roles of IL-21 (57), we observed significantly reduced numbers of MKs following IL-21 treatment (Supplementary Figure 4E). Although further studies are needed to determine the optimal cytokine milieu for enhancing ROCK inhibition-driven CB-MK maturation, we were able to generate substantial numbers of platelet-producing CB-MKs using our current expansion and ROCK inhibition strategies.

Furthermore, applying shear stress to MKs can increase platelet release (38), and in some experiments (Figures 2B, 3D, E) we used this technique to enhance platelet production in-vitro. However, shear stress can damage MKs, which could limit their viability. Thus, in our in-vivo studies, we did not apply shear stress to MKs before their transfer to mice. Future studies to determine techniques that allow for the utilization of shear stress to enhance platelet generation without sacrificing MK viability are in progress.

Notably, throughout our in-vivo studies, we detected variability in the percentage of CB-MK donor-derived platelets in the peripheral blood of sub-lethally irradiated mice at various time points. This is likely due to inherent differences in the CB cell donors from which the CB-MKs were derived, indicating heterogeneity of MK differentiation potential and platelet production across CB donors. Future studies are in progress to determine the optimal CB donors for MK differentiation. These include examinations of CD34+ cell viability and colony forming unit capability, along with total nucleated cell number and CD34+ cell dose per CB unit. We will compare these characteristics of individual CB units with their capacity to generate CB-MKs and platelets. These findings will enable us to screen CB units to determine which are most suitable for efficient CB-MK production.

Until recently, gene editing of HSC-derived MKs has been challenging and inefficient and as a result, few studies have used CRISPR-Cas9-mediated gene targeting in MKs (58–60). Here, we used CRISPR-Cas9 to knock out (KO) β2M in CB-CD34+ cells, followed by differentiation to mature MKs that evade allogeneic T-cell killing. We anticipate that β2M KO for the abrogation of HLA-I antigen expression in MKs/platelets will be a viable technique for patients with PTR due to their immune evasion. However, loss of HLA-I may leave the CB-MKs vulnerable to killing by natural killer (NK) cells, which recognize and kill cells lacking HLA-I antigens. If this arises, we will determine if overexpression of HLA-E in the CB-MKs protects them from NK-mediated killing. HLA-E inhibits NK cells by binding to inhibitory CD94/NKG2A receptors and its upregulation can reduce NK lysis of cells lacking HLA-I antigens (61, 62). We will utilize this characteristic of HLA-E to safeguard CB-MKs if needed.

One of the critical limiting factors in the use of CD34+ cells to generate platelets has been the yield of MKs and platelets that are generated in-vitro (8). In our optimized technique with MSC co-culture, we generated approximately 4 x 108 CB-MKs per CB unit, and with KD045 and horizontal shaking we generated approximately 7.65 x 1010 platelets from a CB unit, or 5.8 x 104 platelets per starting CD34+ cell. Yields of MKs and platelets vary widely across previous studies, with upper limits of 2 x 105 MKs and 3.4 x 104 platelets per initial hiPSC or CD34+ HSC placed into culture (63). Our results are in-line with these yields. A unit of transfused platelets typically contains 3-4 x 1011 platelets (64). We are further optimizing the production and processing of CB-MKs in our laboratory to produce the maximal number of platelets from the CB-MKs, but it is possible that even a lower number of CB-MKs can provide optimal hemostasis.

Procedures to scale-up our findings and generate CB-MKs and platelets in a good manufacturing practice (GMP)-compliant manner for clinical use are in progress. We will use CD34+ cells from clinically approved, cryopreserved CB units from our FDA-licensed CB bank. Following positive selection and β2M KO, CD34+ cells will be cultured in sequential GMP-compliant, closed bioreactors with MSCs and MK lineage-specific cytokines for 18 days, followed by ROCK inhibition without MSCs for 3 days. After collection and quality control product release the cells will be administered to the patient (Supplementary Figure 7). Using this system of CB-MK differentiation, we envision the establishment of a consistent and readily available platelet source that can be given to patients with refractory alloimmune thrombocytopenia. Importantly, our technique will use a closed system, which will reduce potential contamination that can arise with a protocol involving multiple changes in conditions, such as feeder cells, cytokines, and pharmacologic inhibitors. Also, the multistep nature of the process will provide multiple opportunities to increase efficiency with advancing technologies and the use of better reagents once developed.

Overall, we provided a rationale for using multiple modalities to improve CB-MK differentiation and platelet production, including MSC co-culture and the novel ROCK inhibitor KD045 to differentiate CB-MKs and removal of β2M to improve CB-MK immune evasion. These techniques, applied collectively, provide a readily translatable strategy to provide a universal off-the-shelf platelet source to maintain a reliable supply of platelets for vulnerable thrombocytopenic patients.
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Immune checkpoint therapy via PD-1 antibodies has shown exciting clinical value and robust therapeutic potential in clinical practice. It can significantly improve progression-free survival and overall survival. Following surgery, radiotherapy, chemotherapy, and targeted therapy, cancer treatment has now entered the age of immunotherapy. Although cancer immunotherapy has shown remarkable efficacy, it also suffers from limitations such as irAEs, cytokine storm, low response rate, etc. In this review, we discuss the basic classification, research progress, and limitations of cancer immunotherapy. Besides, by combining cancer immunotherapy resistance mechanism with analysis of combination therapy, we give our insights into the development of new anticancer immunotherapy strategies.
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Introduction

Cancer immune surveillance is an important process by which the immune system can identify and eliminate nascent tumor cells (1). Normally, when tumor cells invade healthy tissue, the immune system can recognize and eliminate them based on tumor-associated antigens (TAAs). However, tumor cells can evade the immune system through a variety of mechanisms called immune escape (2). There are four main mechanisms: 1) decreasing immunogenicity by down-regulating surface antigen expression; 2) up-regulating immune checkpoints on the surface for suppressing T-cell activity; 3) recruiting suppressor immune cells such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Treg) as well as cytokines to form a suppressive immune microenvironment; 4) releasing acidic and toxic metabolites that inhibit the activity of immune cells in the tumor microenvironment (3).

Cancer is the second-leading cause of human death after cardiovascular and cerebrovascular diseases, and the number of patients continues to increase. Cancer treatment has progressed from surgical resection, radiation therapy, chemotherapy, and targeted drug therapy to immunotherapy. Cancer immunotherapy reactivates the body’s immune system to produce anticancer effects and thus kills and eliminates tumor cells. Immunotherapy is a promising treatment. Different from traditional therapy, immunotherapy uses some cytokines, chemokines, and immune cells to reshape the tumor microenvironment, which can lead to robust effects and prevent recurrence (4, 5). The emergence of immunotherapy has changed the standard and concept of tumor treatment. This article focuses on the latest clinical progress in cancer immunotherapy, including monoclonal antibodies (mAbs), small molecule drugs, adoptive cell therapy, oncolytic viruses, and cancer vaccines (Figure 1). We discuss limitations, immune resistance, and combination strategies in this review and hope to give a promising outlook for the future development of cancer immunotherapy.




Figure 1 | Cancer immunotherapy methods, including monoclonal antibodies (mAbs), small molecule drugs, adoptive cell therapy, oncolytic virus, and cancer vaccines. CAR, chimeric antigen receptor. CXCR, C-X-C motif chemokine receptor. TAAs, tumor-associated antigens. ADCC, antibody-dependent cell-mediated cytotoxicity. PD-1, programmed death-1. PD-L1, programmed death-ligand 1. CTLA-4, cytotoxic T-lymphocyte-associated protein 4.





Monoclonal antibody therapy


Therapeutic mAbs

mAbs are immunoglobulins (Ig) which commonly include two Fab terminals binding to targets and an Fc terminal binding to receptors on the surface of immune cells. All mAbs exert their function by direct targeting via Fab terminals. Additionally, Fc-Fc receptor (FcR) interaction can modulate their modes of action (MOA) (6, 7). The main Fc-mediated effector functions are classified into complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), and antibody-dependent cellular phagocytosis (ADCP). CDC is attributed to the Fc interaction with complement component C1q, followed by the activation of the complement system leading to the downstream immune responses on different immune cells (8, 9). ADCC and ADCP are two mechanisms mediated by the direct interaction of Fc and FcγR. ADCC is mainly attributed to NK cells activated by the interaction of FcγRIIIa with the mAb’s Fc part. ADCP is mediated by FcγIIa-activated macrophages, which can phagocytose antibody-bounded tumor cells, leading to the elimination of tumor cells (8, 9). In other MOAs, mAbs are used to bind and block, such as soluble antigens (e.g., α- tumor necrosis factor (TNF-α)) and disease-dependent pathological mediators (e.g., vascular endothelial growth factor (VEGF)). Since rituximab targeting CD20 was first approved for Non-Hodgkin’s lymphoma (NHL) in 1997, the US Food and Drug Administration (FDA) has approved a variety of therapeutic monoclonal antibodies, which can target CD19, HER-2, VEGFA, EGFR, and CD52, etc. (Table 1).


Table 1 | FDA-approved mAbs (Up to March 2022).



Besides non-conjugated mAbs targeting ‘naked’ antigens, antibody-drug conjugates (ADCs) have shown promising therapeutic effects. ADCs show direct cytotoxicity based on their payloads, which can be ingested through the endocytosis of receptor-bound ADCs. Among the ADCs approved by the FDA, the indications of targets including CD22, CD30, CD33, CD79b, and BCMA are hematological tumors. Besides, HER2, Nectin-4, and Trop-2 are indicated for solid tumors. In terms of target accessibility, solid tumors are more obstructive than hematological tumors. The microenvironment of solid tumors and other factors make it difficult for mAbs to penetrate. In this regard, the accessibility of hematological tumors is better, which is the key factor why therapeutic mAbs will make breakthroughs in the field of hematological tumors first. But now, ADCs also show promising results for the treatment of solid tumors after the optimization of antibodies, linkers, and payloads. In a phase II clinical trial for HER-2-overexpressing or HER-2-mutated NSCLC (NCT03505710), the results showed that the ORR of Enhertu ([fam]-trastuzumab deruxtecan, an HER-2 ADC) was 61.9% and the median PFS was 14 months. In a phase I clinical trial of triple-negative breast cancer (TNBC), the initial objective response rate (ORR) was 43%, the complete or partial response (CR/PR) was confirmed in 5 patients, and the disease control rate (DCR) was 95% among 21 evaluable patients treated with datopotamab deruxtecan (a Trop-2 ADC).

The structure of mAb determines its MOA. Fc-engineering methods are used to endow therapeutic mAbs with stronger antitumor and immune activation abilities, which are achieved through amino acid mutation and glycosylation modification. Tafasitamab is a therapeutic mAb targeting CD-19 with upregulated MOA activity through Fc-related modifications. S239D and I332E mutations were performed in tafasitamab to enhance ADCC and ADCP. In the RE-MIND study, the ORR of tafasitamb combined with lenalidomide was 67.1%, and the CR was 39.5%, which was much higher than that of the control group treated with lenalidomide singly.

In several patients, the mAb-induced severe or partially life-threatening side effects were caused by a cytokine storm. In some cases caused by anti-CD20 mAb rituximab, it is assumed that the excessive activation of the complement system and the subsequent lysis of the targeted CD20+ cells, as well as the Fc-FcγR interactions with recruited macrophages, lead to a strong cytokine secretion (10, 11). While the side effects of mAbs therapy can be significantly less toxic than that of traditional chemotherapy, mAbs can still pose a significant risk to patients. Using the Fc-engineering strategy to reduce the immunogenicity of mAbs will provide new ideas for future development. Due to the large molecular weight, mAbs can only be administered by injection, which will lead to poor compliance for patients who require long-term treatment. Compared to mAbs, nanobody without Fc terminal has higher tissue permeability and lower production cost, which makes it become the key to succeed in mAbs development. In addition to being used singly, therapeutic antibodies are often combined with chemotherapy drugs and targeted therapy drugs. MAbs therapy will always be an important concept for tumor treatment. Further analyses will contribute to the design of safer therapeutic mAbs with fewer side effects and higher efficacy profiles in the future.



Bispecific mAbs

Bispecific mAbs (bsAbs) can bind multiple targets at the same time and have a better antitumor effect. Compared with ordinary mAbs, bsAbs offer better stability, higher specificity, and fewer side effects. They offer significant effects in clinical treatment. BsAbs are divided into two types: those that target multiple TAAs and those that engage T cells. They can produce multiple stimulations or inhibition effects, or recruit and activate more immune cells to eliminate tumor cells. Blinatumomab produced by AMGEN is the first FDA-approved bsAb that can specifically target the CD19 of tumor cells and the CD3 of T cells (Table 1). The clinical results of blinatumomab show that the response rate of patients after treatment reaches 72%, and the average life expectancy is more than nine months. Currently, amivantamab (targeting EGFR/METR) has also been approved for the treatment of non-small cell lung cancer (NSCLC) with EGFR exon 20 insertion mutations. Another approved bsAb, emicizumab, is being used to treat hemophilia. In addition to the three bsAbs already on the market, clinical studies of nearly 100 bsAbs are ongoing, which are mainly in the field of tumor therapy (12, 13). Among the bsAbs under clinical research, MEDI5752 developed by AstraZeneca is a monovalent bsAb that can target both PD-1 and CTLA-4. The results of the clinical trial (NCT03530397) have shown that MEDI5752 exhibits promising antitumor activity and durable clinical benefit in the treatment of patients with advanced solid tumors who are not eligible for standard therapy, with an objective response rate (ORR) of 19.8% and a median duration of response (DOR) of 17.5 months (AACR 2022, Abstract#CT016). AFM13 developed by Affirmed can simultaneously bind to CD30 of lymphoma cells and CD16A of natural killer (NK) cells to kill lymphoma cells without costimulatory signals. The results of the clinical trial (NCT03192202) of AFM13 have shown that 53% of patients had a complete response (CR), 37% had a partial response (PR), and progression-free survival (PFS) and overall survival (OS) were 58% and 79%, respectively (AACR 2022, Abstract#CT003).

Although bsAb is a very promising immunotherapy treatment, there are still problems. The manufacturing of bsAbs is time-consuming and costly. There are bsAb-specific byproducts, such as mispaired products, undesired fragments, and higher levels of aggregates. Additional purification strategies are needed to be designed to obtain products of high purity. At the same time, more clinical trials are needed to explore the optimal route of administration and optimal dose to increase the concentration in target tissues and reduce systemic side effects (14). In addition, bsAbs targeting solid tumors are very challenging because of the adverse effects on normal tissues or other complicated factors such as inadequate penetration (12).



Immune Checkpoint mAbs

There are immune checkpoints on the surface of T cells that can regulate the immune system. They play a negative regulatory role to prevent excessive activation of T cells to avoid autoimmune damage. However, tumor cells can use these immune checkpoints to suppress the immune response, thus performing immune escape and allowing tumor cells to escape the clearance of the immune system (15). Immune checkpoint mAbs can restore the relevant functions of T cells by blocking immune checkpoints and releasing the “brake” of the immune system (16). More than ten immune checkpoints have been discovered, and CTLA-4 and PD-1 are the most widely studied (Table 1).

Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is a member of the CD28-B7 Ig superfamily. It is expressed on the surface of activated T cells and can act as an immune checkpoint to downregulate immune responses, thereby inhibiting the proliferation and activation of T cells (17, 18). In 2014, the FDA approved ipilimumab, a mAb targeting CTLA-4, for the treatment of melanoma; it significantly improved patient survival (19). Lynch and colleagues improved PFS in patients with NSCLC using ipilimumab in combination with paclitaxel and carboplatin (20). In addition to CTLA-4, programmed death-1 (PD-1) is another immune checkpoint molecule expressed on the surface of T cells. Its ligand (programmed cell death ligand 1 (PD-L1)) is expressed on the surface of various tumor cells (15, 21). mAb targeting the PD-1/PD-L1 pathway can relieve immunosuppression to enhance T cell activity and kill tumor cells. In 2014, the FDA approved pembrolizumab for the treatment of multiple cancers, including NSCLC, melanoma, and bladder cancer (16, 22). In current clinical use, PD-1/PD-L1 mAbs combined with chemotherapy or targeted therapy have achieved remarkable results. A phase III clinical trial of NSCLC (NCT02998528) with nivolumab combined with chemotherapy was promising, and there were event-free survival (EFS) and pathological complete response (pCR) dual-positive outcomes (AACR 2022, Abstract#CT012). AstraZeneca announced the results of a clinical trial (NCT03899610) combining durvalumab and tremelimumab in advanced epithelial ovarian cancer (targets PD-L1 and CTLA-4, respectively): the ORR was 86.7%, and the ratio of TIL, CD8, and CD8/Foxp3 in TME was significantly increased (AACR 2022, Abstract#CT010). Fc-engineering strategies are also performed in immune checkpoint mAbs. Theoretically, since PD-L1 is expressed on tumor cells, retaining ADCC activity of mAbs can simultaneously utilize the killing effect of NK cells to enhance the anti-tumor effect. This provides a new idea for us to use immune checkpoint mAbs to exert new MOAs. Only avelumab, a PD-L1 mAb, is designed with strong ADCC activity currently. Other immune checkpoints expressed on tumor cells can also learn from the design strategy of avelumab, which may greatly improve antitumor activity. For PD-1 mAbs (e.g., Durvalumab), removing FcγR affinity is beneficial to attenuate the ADCC effect, which is beneficial to preclude FcγR1 mediated binding to macrophages/myeloid-derived suppressor cells (MDSCs)-a potential mechanism by which PD-1-bound T cells may be cleared.

More immune checkpoints continue to be discovered, such as TIM-3, LAG-3, and TIGIT. LAG-3 can bind its canonical ligand (MHC-II) to downregulate T cell activity. A phase II/III clinical trial (NCT03470922) demonstrated that the median PFS of the relatlimab plus nivolumab group was 10.12 (6.37 to 15.74), which was over 2-fold compared to the nivolumab group (4.63 (3.38-5.62)). Currently, Opdualag (nivolumab+relatlimab) is the first LAG-3 antibody therapy approved by the FDA and the first innovative cancer immunotherapy approved for a new immune checkpoint in nearly 10 years. LAG-3 antibody is the third immune checkpoint inhibitor approved for marketing after CTLA4 and PD-1 antibodies (23).. In some preclinical studies, anti-TIM-3 therapy can improve anti-tumor efficacy, and combination therapy with anti-PD-1 or anti-PD-L1 can significantly reduce tumor burden and improve anti-tumor immune responses (24). Several antibodies targeting TIM-3 are currently being tested in clinical trials singly or in combination to treat acute myeloid leukemia or solid tumors (NCT04150029, NCT03680508, and NCT03099109). BsAbs targeting two immune checkpoints (PD-1&CTLA-4, PD-1&LAG-3, and PD-1&TIM-3) simultaneously have also been developed. In light of the positive clinical efficacy already noted in combination therapy targeting immune checkpoints, the outcomes of clinical trials with bsABs are promising.

In terms of adverse reactions, immune checkpoint therapy does not cause cytotoxic reactions such as myelosuppression, vomiting, and alopecia, but it can cause immune-related adverse events (irAEs) due to the activation of T cells, which can be reduced by glucocorticoids and disappear after drug discontinuation. Most irAEs are always reversible (25, 26). The overall incidence of irAEs was lower than that of chemotherapy-induced adverse events (27). Most irAEs are grades 1/2, while grades 3/4 irAEs are less frequent (28, 29). Common irAEs include cutaneous toxicity and endocrinological disturbance, while less common but serious irAEs include pulmonary toxicity, renal toxicity, hepatitis, and gastrointestinal disturbance. Rare irAEs include type 1 diabetes, cardiac, neurological, and hematologic-related toxicity (30, 31). Besides, immune checkpoint therapy only has significant effects in some patients. The premise of its effect is that the expression level of immune checkpoints is relatively high in patients. Therefore, it is necessary to carry out genetic screening of patients and apply immune checkpoint therapy to eligible patients.




Small molecule drug immunotherapy


Small molecule targeting PD-1/PD-L1

Immune escape is an important means for tumor cells to escape from being eliminated. Due to the abnormal immune surveillance mediated by immune checkpoints, tumor cells form immune escape and then obtain unlimited proliferation ability, thus leading to tumorigenesis. MAbs therapy suffers from poor tissue penetration, a long half-life, and high production costs. Thus, researchers are trying to develop small molecule inhibitors targeting immune checkpoints. Most inhibitors are currently in the early development stage (Table 2). CA-170 developed by Aurigene and Curis has made the fastest progress and entered phase II clinical trial (CTRI/2017/12/011026) (32). CA-170 targets PD-1/PD-L1 and VISTA pathways, thus leading to the proliferation and activation of T cells to produce cytokines such as IFN-γ to kill tumor cells (33). CA-170 can effectively inhibit melanoma and colon cancer in rodent models, and CA-170 is superior to mAbs in terms of safety (34–36). In clinical studies, CA-170 has the best effect on NSCLC and Hodgkin lymphoma with a total clinical benefit rate of 70% and 77.8%, respectively (37). AUNP12 was reported by Aurigene and Pierre Fabre in 2014. It is the first polypeptide PD-1/PD-L1 inhibitor and has a structure similar to the extracellular domain of PD-1 (38). The EC50 of peripheral blood mononuclear cells (PBMCs) proliferation rescue experiments reached 0.41 nM (38, 39). The in vivo experiments also showed that AUNP-12 can inhibit tumor growth and metastasis. AUNP-12 can inhibit B16F10 and 4T1 tumors in rodent models, and the tumor growth inhibition rate (TGI) of the B16F10 model reached 44% (40). In 2015-2018, BMS successively published a series of patents, and the IC50 of compounds detected by HTRF was generally less than 1 nM (41). In 2021, Liu et al. reported a small molecule inhibitor-ZE132, of which the affinity KD was 19.36 nM. ZE132 can specifically act on PD-L1 and has good antitumor efficacy in a variety of syngeneic mouse models (42).


Table 2 | Summary of major marketed and clinically reported small molecule immunotherapy drugs (Up to March 2022).



Small molecule inhibitors have lower binding affinity than that of mAbs, and they are prone to off-target effects, which may even bring unknown off-target toxicity. The interaction between PD-1 to PD-L1 is a protein-protein interaction. The contact interfaces of PD1/PD-L1 are large, highly flat, and hydrophobic, which makes it difficult to design compounds and develop small molecule inhibitors. Nevertheless, small molecule inhibitors have mature R&D pipelines, better tissue permeability, and controllable pharmacokinetic properties, which can help to avoid the defects of mAbs.



IDO1 inhibitors

Indoleamine 2,3-dioxygenase1 (IDO1) is a 45 kDa hemoglobin oxidase and is a key enzyme in the metabolism of the L-tryptophan-kynurenine pathway. IDO1 plays an important regulatory role in the process of immune regulation (43, 44). Functionally, IDO1 plays a key role in carcinogenesis and cancer immune escape by catalyzing the initial step of canine urinary ammonia pathway. IDO1 is overexpressed in tumor cells and antigen-presenting cells (APC). It is conducive to the formation of an immunosuppressive tumor microenvironment and is closely related to the poor prognosis of various cancers (45). Inhibition of IDO1 can activate antitumor immune responses in rodent tumor models (43). A variety of IDO1 inhibitors have entered clinical studies. BMS-986205 and epacadostat have made the fastest progress (Table 2). BMS-986205, developed by BMS, is currently in phase III clinical trial (NCT03661320) in combination with nivolumab, gemcitabine, and cisplatin in bladder cancer. In addition, there are two phase II clinical trials ongoing for bladder cancer (NCT03519256) and HNSCC (NCT03854032).

Developed by Incyte, epacadostat is one of the most well-studied IDO1 inhibitors. It shows good efficacy in mouse melanoma models and is well-tolerated (46). However, the results of the clinical trial (NCT02752074) showed that the combination of epacadostat and pembrolizumab in the treatment of melanoma did not meet the main clinical outcomes, and Incyte stopped their phase III trials (47).

The development of IDO1 inhibitors is not going well, and some clinical trials have failed. On one hand, the reason for the failure of ECHO-301 (epacadostat plus pembrolizumab) may be that the pharmacodynamic indicators are not applicable or the drug combination strategy is not matched. On the other hand, the reason may be that the exact regulatory mechanism of IDO1 in physiology and pathology or its impact on the tumor microenvironment are not well understood. The TDO pathway can play a potential compensatory role after epacadostat treatment, causing tumor immunosuppressive effects (48). However, the immune-enhancing function of IDO1 inhibitors has been verified, and IDO1 inhibitors still have the potential for development. In the future, the combination therapy of IDO1 inhibitors with other antitumor drugs should be further explored, which has important implications for the success of clinical development.



Other small molecule drugs

Stimulators of interferon genes (STING) is an immunostimulatory target and an important adaptor protein anchored in the endoplasmic reticulum that senses foreign DNA invasion. Now the STING signaling pathway has become a new target for cancer and autoimmune diseases. Experiments have shown that the activation of STING pathway can induce antitumor effects. A variety of drugs such as ADU-S100 are under clinical studies (Table 2) (49, 50). The clinical application of STING agonists is mainly focused on intratumoral injections, and it is unclear whether systemic administration is safe.

In addition, inhibitors of A2A adenosine receptor (A2AR), chemokine receptors, toll-like receptors (TLRs), arginase 1 (ARG), and other targets are in clinical development and are expected to provide more choices for antitumor drugs (Table 2) (51–54). Many projects have entered phase II/III clinical trials.

Polypeptide inhibitors, which can combine the characteristics of antibodies and small-molecule drugs, are important directions for the development of inhibitors. On one hand, they have similar affinity and specificity as antibodies. On the other hand, they have good tissue penetration and provide tunable pharmacokinetic half-life and renal clearance route to avoid hepatic and gastrointestinal toxicities due to their small molecular weight.

Small molecules are agents with a low molecular weight that are capable of modulation of intracellular targets. And small molecules are promised to improve the therapeutic management of solid tumors due to their easy administration, high bioavailability, and favorable safety profile. Given these characteristics, the development of small molecule-based strategies in cancer immunotherapy has attracted widespread interest. Although small-molecule drugs targeting the extracellular or intracellular pathways of adaptive immunity or innate immunity have been developed, most of them are in the early stage of clinical trials, and more basic experiments and clinical trials are needed to elucidate their mechanisms, clinical efficacy, and pharmacokinetics. Nevertheless, small-molecule inhibitors may be an effective replacement and supplement for mAbs, and they will remain an important part of tumor immunotherapy in the future.




Adoptive cell therapy


CAR-T

The chimeric antigen receptor (CAR) is a genetically modified and synthesized chimeric antigen receptor. It is a membrane protein composed of different protein domains in series. It is flexible and offers specific antigen recognition. Patient-derived T cells modified by CAR in vitro can recognize tumor antigens and exert antitumor effects without MHC restrictions in vivo (55).

CAR-T therapy is a revolutionary approach to cancer therapy. CAR-T therapy has made breakthroughs in lymphomas, mainly targeting CD19. In 2017, the FDA approved two CAR-T products targeting CD19 (Kymriah and Yescarta, Table 3) (56, 57). The first generation of CAR contains CD3ξ, and the second generation adds a costimulatory domain CD28 or 4-1BB based on CD3ξ. Through March 2022, the FDA has approved five CAR-T products, all of which are second-generation CARs with indications focused on lymphoma (58, 59). The third-generation CAR uses lentivirus as a transfection vector, and the intracellular segment of the CAR can have two or more costimulatory signals. However, some studies have shown that the killing activity of the third-generation CAR-T cells is not significantly improved. This may be because the activation signal generated by one co-stimulatory molecule of ITAM already reaches the threshold of T lymphocyte activation signal. Simply increasing the number of ITAM will not further enhance the activation effect of CAR-T.


Table 3 | Summary of major marketed and clinically reported adoptive cell therapy (Up to March 2022).



New ideas for CAR design are now emerging to improve efficacy. Dual-target CAR-T cells can independently identify target antigens and address the off-target effect. CD19/CD22 CAR-T and CD123/CLL1 CAR-T have shown significant antitumor activity and are currently in clinical studies, some of which have entered phase II/III (Table 3) (60, 61). According to EXUMA Biotech, targeting CD3 T cells by subcutaneous injection of a self-inactivating lentiviral vector encoding a CAR targeting CD19 resulted in the successful generation of corresponding CAR-T cells in vivo and showed significant effects in mice (AACR 2022 Abstract #3294/11). This provides a new opportunity to overcome the challenges of production time, scale, and cost of adoptive cell therapies.

For solid tumors, Hegde et al. constructed TanCAR-T that could enhance T cell function and reduce antigen escape by facilitating crosstalk between HER2-ScFv and IL-13Rα2, thus increasing CD28 expression. The data of TanCAR-T showed good efficacy in a mouse glioblastoma model (62). In 2022, Grosskopf et al. published a delivery method for hydrogel that can improve the efficacy of treatment of solid tumors by injection into areas near the tumor (63). BioNTech announced the results of the first human clinical trial (NCT04503278) of BNT211—a new generation of CAR-T therapy targeting solid tumors. The combination of CAR-T targeting CLDN6 and mRNA vaccine CARVac for CLDN6 can effectively enhance the efficacy and provide new ideas for the treatment of solid tumors (AACR 2022, Abstract #CT002). In addition, combination therapy with immune checkpoint inhibitors may also enhance the efficacy of CAR-T for solid tumors (64).

However, there are several limitations to the application of this technology. Firstly, the expression of CAR mediated by retroviral or lentiviral vectors may have an impact on the gene expression of T cells, which may produce unpredictable results. So, a comprehensive safety assessment of CAR-T cells is required before application. Secondly, the proliferation of CAR-T cells can only be achieved after induction and activation. Therefore, whether the large-scale expansion of T cells in vitro can maintain immune activity is an important factor. Thirdly, necessary technical processes are required for different patients, which may take high costs and long periods. In addition, immunosuppressive TME and efficiency of delivery to the tumor site are also major barriers to a successful CAR-T therapy. In the future, innovations in CAR design, transduction methodologies, and allogeneic CAR-T are bound to lead to improved responses and transform the treatment of patients with cancer.



TCR-T

Various new methods have been developed to enhance the antitumor efficacy of immune system, including targeting new antigens, using new engineering or modifying TCR, and creating safety switches for internal suicide genes. By transferring the exogenous TCR gene that specifically recognizes TAAs into T cells, TCR-T can be constructed to improve the affinity to TAAs and exert an MHC-dependent antitumor effect (65). Compared with CAR-T therapy, TCR-T therapy has a better safety profile due to its MHC restriction, which can alleviate adverse reactions such as cytokine storms. The TCR-T category currently in clinical trials is mainly targeting NY-ESO-1. NY-ESO-1 TCR produced by Adaptimmune Therapeutics is currently in phase I/II clinical trials (Table 3).

MART TCR-T, gp100 TCR-T, and TCR-T targeting MAGE-A3 or MAGE-A4 have achieved positive results in clinical trials. However, safe use in the clinic should consider the type of antigen and TCR affinity (66, 67). In a clinical trial of nine patients treated with TCR-T, 56% (5/9) of patients experienced an OR, one of which was a CR. However, three of nine (44%) patients experienced severe neurologic toxicities, including two deaths. The cause of death, in part, may be a cross-reaction of TCR-T with a similar epitope of MAGE-A12 in brain.

While targeting NY-ESO-1, MAGEA3, and other TAAs is an attractive strategy for the application of ACT for the treatment of solid cancers, caution must be taken to ensure a lack of cross-reactivity with vital normal tissues. In addition, modification of the CDR region of TCR must be performed with caution. Because the modified receptors, similar to those produced after immunization in HLA-transgenic mice, are not negatively selected in the thymus and may be potentially reactive to unrelated normal host proteins. There is a need to develop better screening methods to avoid such toxicity in the future. As more antigen-specific TCRs are identified, more data will become available to better understand how to use TCR-T to treat patients. Immunosuppressive TME also limits the efficacy of TCR-T therapy. Combination therapy targeting TME may be a potential strategy to improve the efficacy of TCR-T immunotherapy.



TILs

Tumor-infiltrating lymphocytes (TILs) are immune cells that exist in tumor tissues and can specifically respond to TAAs. Using TILs is an effective treatment for many cancers. The first clinical pilot study using TILs was reported in 1988 for metastatic melanoma. The result demonstrated partial response in 2 patients and partial regression in 1 patient. Tumor-specific cytolytic activity was observed in 5 patients (68). In another study by Rosenberg et al., three sequential clinical trials about TILs were performed. Objective response rates in the three trials were 49%, 52%, and 72%, respectively. A study showed that 22% of all patients achieved complete tumor regression and 19% of the patients were disease-free for more than three years (69). The OR from patients treated with standard TILs is greater than 50% and many of these patients experiencing durable CRs beyond 5 years (70–72). The effort to extend TIL therapy for the treatment of other solid cancers is ongoing. Galon et al. studied TILs in patients with colorectal cancer by gene expression profiling and in situ immunohistochemical staining (73). The results suggested that TILs act as a valuable prognostic tool in the prediction of patient survival, and the results gave convincing information regarding tumor recurrence and survival in patients with early-stage colorectal cancer.

TILs therapy mainly works by isolating TILs from tumor tissues, amplifying them in vitro with high doses of IL-2, and then injecting them into patients (68, 74). Iovance’s LN-144 therapy has achieved a disease control rate (DCR) of 80% and ORR of 38% for stage IIIc/IV melanoma patients (Table 3). More notably, patients who are not responding to immune checkpoint inhibitors still benefit. Multiple clinical trials of TILs for various types of solid tumors are currently ongoing, thus showing therapeutic potential for malignancies such as melanoma, lung, and colorectal cancers (75). TILs therapy is separate from natural lymphocytes isolated from tumor tissues and it can recognize a variety of different targets with no cytokine storms reported. Thus, TILs therapy is safer than TCR-T and CAR-T therapies and more effective in solid tumors.

However, several issues have emerged that need to be addressed. Firstly, there is an urgent need to identify alternative and predictive biomarkers to better select appropriate patients for TILs treatment to improve response rates and duration. Secondly, TILs are needed to be improved memory and effector characteristics for longer persistence and enhanced antitumor activity. In addition, although TCR-T and CAR-T therapies show very competitive performance, they can only target a single TAA or a limited array of TAAs. By contrast, TILs can recognize a panoply of unknown TAAs, which ultimately demonstrates that TILs therapy has a bright future, especially with approaches that promote TAA release and enhance T-cell persistence. At last, we also need more investigations on combination approaches that can improve long-term efficacies and reduce the cost to a more affordable level.



CAR-NK

NK cells play an important role in innate immunity. CAR-NK is a therapy like CAR-T, which uses CAR to modify NK cells. CAR-NK can be activated by targeting TAAs to release cytotoxic cytokines such as granzyme to kill tumor cells (76). CAR-NK is currently still in preclinical or clinical research, which mainly targets CD19, NKG2D, CD7, or CD33, etc. (Table 3).

In a phase I/IIa clinical trial, 11 patients with non-Hodgkin’s lymphoma and chronic lymphocytic leukemia were treated with CD19 CAR-NK. And seven patients experienced CR without serious adverse reactions (77). In 2020, NEJM published a CAR-NK treatment for hematologic tumors using cord blood-derived CAR-NK targeting CD19 that achieved complete remission in seven patients, all without a cytokine storm or neurotoxic response. Moreover, one year after treatment, CAR-NK cells are still present in the patient’s body, which is especially important for long-term antitumor therapy (77). NKG2D is an activating receptor of NK cells, which is involved in the recognition of virus-infected cells and the killing of tumor cells. In a phase I clinical trial of NKX101 (allogeneic CAR-NK cells targeting NKG2D), 3 of 5 patients treated with high doses (1.5 billion×3 and 1 billion×3) achieved CR without serious adverse reactions (NCT04623944). At AACR 2022, Senti Bio announced the results of a preclinical study of CAR-NK with a genetic circuit that secretes IL-15 in a controlled manner to improve efficacy in the treatment of solid tumors (AACR 2022 Abstract #584).

Compared with CAR-T, CAR-NK usually produces IFN-γ and GM-CSF, thus it is less likely to produce cytokine storm. CAR-NK is widely available and can be derived from allogeneic delivery without need of HLA matching. However, some factors limit the wide use of CAR-NK. The manufacturing process of CAR-NK can be further simplified and optimized. Current CARs are designed for CAR-T and they are not the best for application to NK cells. CAR design for optimal NK cell activation and cytotoxicity needs to be improved. Secondly, CAR-NK’s unspecific killing function needs to be combined with CAR-derived specific killing. In addition, limited proliferation and inhibition of the tumor microenvironment limit the clinical development of CAR-NK (78).

The lack of in vivo durability of infused cells in the absence of cytokine is one of the major drawbacks of CAR-NK therapy. Modified CAR-NK which can secret IL-2/IL-15 has demonstrated good results in some preclinical research (79). In addition, the induction of a memory-like phenotype of CAR-NKs with a cocktail of cytokines (IL-12, IL-15, and IL-18) resulted in improved responses to B-cell lymphomas in vitro and in vivo (80, 81). Immunosuppressive TME and efficiency of delivery to tumor site are also major barriers to successful CAR-NK therapy. With more pre- and clinical data in further, CAR-NK therapy may lead to revolutionary advances in tumor immunotherapy. In addition, combined therapy which includes immune checkpoints blockade and targeted therapy may provide a new direction for CAR-NK-based immunotherapy.




Oncolytic virus

Oncolytic viruses (OV) therapy is a new type of antitumor therapy, which can target tumor cells and replicate in cells to kill tumor cells. OV has become the forefront of tumor biotherapy and it is increasingly common. OV can be obtained through natural or genetic engineering, mainly including herpes virus, adenovirus, and pox virus (82). OV exerts its antitumor effects mainly by selectively replicating within tumor cells and eventually leads to tumor cell lysis. The release of TAAs after lysis can activate the immune system to eliminate tumor cells. The release of cytokines by tumor cells infected with OV can eliminate metastatic tumor cells (83, 84). In 2015, AMGEN’s T-VEC became the first OV therapy on the market with an indication of melanoma, thus marking the maturity of this technology (Table 4). Researchers are currently using various techniques to enhance the antitumor effects of OV therapy including replacing some viral genes with oncogenes or integrating TAAs genes into the OV genome to promote the production of specific immune responses (85). In addition, the combination with immune checkpoint therapy has also become an important research direction. The clinical results of CG Oncology’s OV therapy CG0070 in combination with Keytruda show 89% CR (AACR 2022 Abstract#CT036) (86).


Table 4 | Summary of marketed and clinically reported oncolytic virus (Up to April 2022).



OV therapy is efficacious and safe, and it is a very promising tool for tumor immunotherapy (87–89). However, its mode of administration is currently limited to intra-tumoral injection, which has limitations in clinical use. Intratumoral administration is expensive and difficult, especially in cases of malignant gliomas. Some of the novel approaches involve the use of nanoparticles, complex viral particle ligands, and immuno-modulatory agents to deliver the virus into tumor. Alternatively, delivery of OV via nanoparticles using a technologically complex image-guided delivery system has also been considered (90).. In the future, OV therapy is expected to make exciting progress by solving the problem of drug delivery and combining with other immunotherapy methods



Cancer vaccines


Preventive cancer vaccines

The immunoprevention of cancer and cancer recurrence has received extensive attention; preventative cancer vaccines have made more progress in preventing cancer than in eliminating established cancer. Nevertheless, preventing tumors obviously impacts survival. Preventive cancer vaccines mainly refer to vaccines against viruses with high carcinogenic relevance. HBV and HPV vaccines are the main representatives. The pathogenesis of HBV-associated hepatocellular carcinoma is well supported by the literature (91, 92). A variety of new HBV vaccines are now on market, such as Hepacare, HEPLISAV-B, and PreHevbrio, which expand the efficiency and scope of protection. HPV vaccines mainly include bivalent (Cervarix), quadrivalent (Gardasil), and nine-valent (Gardasil9), thus focusing on the protection of subtypes 16 and 18 used to prevent cervical cancer, vaginal cancer, and vulvar cancer caused by HPV. Due to the complex pathogenesis of tumors, this method can only be used as an auxiliary preventive method. This type of vaccine can only be used to prevent viral infection—not tumorigenesis.



Therapeutic cancer vaccines

A better understanding of the breadth of TAAs, the development of natural immune response, and new antigen delivery technologies will help to improve vaccine design. Current mature therapeutic vaccines include dendritic cell (DC) vaccine, which has antitumor effects by inducing the patient’s monocytes to become DCs ex vivo by TAAs stimulation. The cells are then infused back into the patient to stimulate the activation and expansion of cytotoxic T lymphocytes (CTLs). DC vaccine can offer long-term immune memory and can prevent tumor recurrence. Provenge is the first DC vaccine approved by the FDA for castrate-resistant prostate cancer (Table 5). The DC vaccine Ilixadencel was granted orphan drug status by the FDA in 2021 for the treatment of patients with soft tissue sarcoma. Aivita Biomedical’s DC vaccine AV-GBM-1 clinical trial (NCT03400917) results show a 28% increase in 15-month OS for glioblastoma patients. With the development of sequencing technology and bioinformatics, more and more tumor antigens have been discovered and can be used to distinguish tumor cells from normal cells. A personalized vaccine designed in this way is an important development direction for cancer vaccines in the future (93). Multiple studies are reporting that personalized vaccines have good efficacy in the treatment of melanoma (94, 95). A combination with immune checkpoints is also an important research direction and can show better efficacy than a single vaccine therapy (96). In addition to DC vaccines, therapeutic vaccines include tumor cell vaccines, DNA/mRNA vaccines, and peptide vaccines (97).


Table 5 | Research progress of therapeutic cancer vaccines (Up to April 2022).



DC vaccines suffer from limited cell sources, long preparation periods, and high costs. However, their advantages include low side effects, good tolerance, and long-term immunological memory, which still give them broad market prospects.

The key to the development of the cancer vaccine is the need to identify the appropriate biomarkers and optimize the combination of treatments to improve their effectiveness in patients. The research on vaccines has been advancing in the past few decades, and many different characterized cancer vaccines are now available. However, there are still some problems that must be solved, including suitable tumor antigen and adjuvant components, suitable delivery modes, and effective methods to overcome immune attack. Although neoantigens are the best option for antitumor immunotherapy, the problem of obtaining individualized neoantigens hinders the application of cancer vaccines. This is mainly due to inherent alterations in tumor cells and the formation of an immunosuppressive TIME. Several approaches have been developed to overcome difficulties, including the use of immunostimulatory adjuvants, in combination with ACT and ICB.




Mechanisms in cancer immunotherapy resistance

Cancer immunotherapies, such as immune checkpoint blockade (ICB) and adoptive cell therapies (ACT), are effective for patients with various cancers (98). However, the response rate of cancer immunotherapies is still limited due to the lack of immunogenic antigens and various immune-resistant mechanisms (99). Understanding the immune resistance mechanisms is essential to improve the efficacy of current cancer immunotherapies.


Primary resistance and adaptive resistance

Patients who have primary resistance to cancer immunotherapies do not respond to the initial therapy. Adaptive resistance refers to the mechanism by which tumor cells can be recognized by the immune system, but it can adapt to immune attack to protect itself as the tumor progresses. The mechanism of adaptive resistance may include primary resistance, and the mechanism of primary resistance may also be the result of adaptive resistance.

The most fundamental reason why tumor cells cannot be recognized by T cells and thus lead to non-response to immunotherapy is the lack of tumor antigens. In addition, cancer cells may have tumor antigens, but the change in the antigen presentation mechanism can also result in the occurrence of immune resistance (100).

In tumor cell-intrinsic factors, insufficient tumor antigenicity and neoantigens contribute to primary and adaptive resistance. Tumor cells can evade specific immune recognition by T cells by downregulating the expression of TAAs, TSAs, and surface MHC. Tumor cells with relatively weak immunogenicity can escape the surveillance of the immune system and selectively proliferate. After the immune selection process, the immunogenicity of the tumor is getting weaker and weaker. The emergence of neoantigens can inhibit tumor progression, whereas poorly immunogenic tumors lack response to PD-1/PD-L1 blockade. Deletion of neoantigens is responsible for primary resistance to immunotherapy in triple-negative breast cancer (TNBC) (101). LINK-A, a lncRNA that can degrade phospholipase C by ubiquitin ligases, has a negative correlation with cytotoxic T lymphocytes infiltration in TNBC (102). It is currently believed that the higher the tumor mutation burden (TMB), the more neoantigens are produced, and the stronger T cell response are. Clinically, melanoma, renal cell carcinoma, and NSCLC with high TMB have a better response to anti-PD-1 therapy, while pancreatic cancer and prostate cancer with low TMB are less effective (103, 104).

In tumor cell-intrinsic factors, tumor signaling pathways can produce immunosuppressive components, or alter some gene expression to affect the efficacy of ICB. Oncogenic signaling through the MAPK pathway results in the production of VEGF and IL-8, which have inhibitory effects on T cell recruitment and function (105). Activation of AKT signaling through PTEN loss was also correlated with reduced CD8+ T cells in tumors and a poor response to anti-PD-1 in melanoma patients (106). IFN-γ signaling pathway in TIME activates JAK-STAT signaling, which can induce PD-L1 expression (107). Wnt/β-catenin signaling pathway is closely related to the occurrence and development of various tumors (108). Studies have shown that Wnt/β-catenin signaling in melanoma cells can prevent antitumor responses by interfering with the recruitment of BATF3-expressing DCs (109, 110).

In tumor-intrinsic factors, immunosuppressive metabolism in TIME can suppress immune response. Various metabolisms in tumor may cause immune resistance. Tumor cells preferentially utilize glycolysis to produce ATPs and molecules necessary for cell division such as nucleic acids, while reducing mitochondrial activity to decrease the production of reactive oxygen species (ROSs) for survival (Warburg effect) (111). Enhanced glycolysis in melanoma cells is associated with reduced infiltration of CD8+ T cells in tumors and resistance to in vitro T cell lysis and in vivo pericyte therapy, partially due to increased production of immunosuppressive lactate (112).

In addition, tumor cell-extrinsic mechanisms that lead to primary and adaptive resistance involve components other than tumor cells within TIME. Tregs reduce the expression of MHC-II molecules by secreting the inhibitory cytokine IL-10, which can affect DC maturation and suppress immune responses (113). MDSCs can express CD11b and CD33 to promote blood vessel growth, tumor invasion, and metastasis. CXCR2 can induce MDSCs to infiltrate tumors and mediate immune resistance (114). Tumor-associated macrophages (TAMs) can also affect immunotherapy responses. Several reports have discussed the role of macrophages in mediating therapeutic resistance in cancer (115–117).



Acquired resistance

A hallmark of cancer immunotherapy has been the induction of long-lasting tumor responses. However, patients who once responded to ICB sometimes relapse due to acquired resistance. Schachter et al. showed that 1/4 to 1/3 of patients with metastatic melanoma who received anti-PD-1 or anti-CTLA-4 therapy relapsed after ongoing treatment, even if they were effective against immunotherapy (118). The possible mechanisms of acquired resistance mainly include B2M mutation and loss of HLA heterozygosity, changes in tumor target antigens, and up-regulation of alternative immune checkpoints. There is evidence for each of these mechanisms can lead to acquired resistance to ICB or ACT.

B2M plays an important role in MHC-I antigen-presenting, antigen recognition, and T cell infiltration (119). Mutated B2M gene affects normal folding and transport of MHC-I, resulting in resistance to ICB (120). Sade-Feldman et al. analyzed post-treatment biopsy specimens from 17 metastatic melanoma patients with ICB treated, and they found the percentage of heterozygous deletions and point mutations of B2M was 9.4%, which suggested that B2M loss may be a common mechanism of resistance to targeted CTLA-4 or PD-1 therapy (121). GAO et al. showed that mutations in Janus kinase 1 (JAK1), JAK2, and B2M in tumor samples after immunotherapy may be the mechanisms of acquired resistance to anti-PD-L1 therapy in melanoma patients (122).

Additional evidence of loss of antigen-presenting machinery leading to acquired resistance to cancer immunotherapy is provided by a case of a patient with metastatic colorectal carcinoma who responded to TILs ACT. The TILs recognized mutated KRAS G12D presented by HLA-C*08:02 resulting in an objective antitumor response, followed by an isolated relapse in a lesion that had lost HLA-C*08:02 in chromosome 6 (123). Therefore, acquired resistance to ICB and ACT could be mediated through genetic mechanisms that altered antigen-presenting machinery and IFN-γ signaling.

Cytotoxicity T cells are specific for cancer cells that express their cognate antigen, but cancer cells may develop acquired resistance through decreased expression or mutations in these antigens. T cells turned on by checkpoint blockade therapy primarily recognize mutational neoantigens (104, 124). Gene deletions, mutations, or epigenetic alterations can lead to a decrease in MHC-presented mutational neoantigens and acquired resistance. One study found that the main cause of resistance to CD19 CAR-T cells for acute lymphoblastic leukemia was the loss of target antigens, which is mainly caused by antigen escape and lineage conversion (125, 126).

After immune checkpoint treatment, due to compensatory effects, the expression of other immune checkpoints is elevated, which in turn causes acquired resistance. TIM-3 is a negative immune checkpoint. It was found that TIM-3 was highly expressed in T-cells from animals that were resistant to anti-PD-1 treatment, which confirmed that the main mechanism of resistance to anti-PD-1 immunotherapy is the selective activation of a new immune checkpoint (23). In addition to TIM-3, other known alternative immune checkpoints are LAG-3, TIGIT, and VISTA, etc. Several clinical trials are currently undergoing to test antibodies against these immune checkpoints, both as monotherapy and combination therapy strategies, to provide additional clinical benefits (127).

Great advances occurred in the field of cancer immunotherapy due to years of mechanism exploration and clinical application development. However, to date, the benefits have been limited to a small number of patients with certain cancer types. In addition, thanks to more successful immunotherapy treatments, we now have a large proportion of patients who initially respond but eventually relapse. The mechanisms of immunotherapy resistance are complicated, and we are likely just observing the tip of the iceberg. To bring clinical benefit to the majority of patients, we need to have a comprehensive understanding of the tumor cell-intrinsic and -extrinsic factors that lead to immunotherapy resistance. These mechanisms can lead to primary, adaptive, and acquired resistance to immunotherapy. Elucidating these mechanisms will provide important clues to overcome resistance to immunotherapy.




Combination strategies for cancer immunotherapy

To enhance the effectiveness of cancer immunotherapy and overcome immunotherapy resistance, combination therapy has become a hot topic of current research (128, 129). Currently, ICB is the most used cancer immunotherapy in clinical combination.


Combination of different ICBs

An example of enhanced efficacy with combination therapy is the use of anti-CTLA-4 and anti-PD-1, which results in higher response rates and improved survival in melanoma patients (130, 131). In the phase III trial in patients with unresectable or metastatic melanoma, the five-year survival rate of the combination group (nivolumab plus ipilimumab) reached 52%, and the five-year survival rate of the nivolumab group and ipilimumab group was 44% and 26% respectively (131, 132).

In addition, blockades of TIM-3, LAG-3, and TIGIT are receiving increasing attention. In the treatment of hepatocellular carcinoma, it was found that blocking both TIM-3 and PD-1 can completely reverse the exhausted state of T cells and has a significant antitumor effect. However, blocking TIM-3 or PD-1 alone only partially restored the function of T cells (133). Both LAG3 and PD-1 can transmit co-inhibitory signals and blocking both LAG3 and PD-1 can play an immune synergistic effect by enhancing CD8+ T cell function and clearing Treg (134). TIGIT is mainly expressed on activated T cells and NK cells, which mediates immunosuppressive signal. TIGIT blockade synergizes with anti-PD-1 can enhance CD8+ T cell function and promote tumor regression (135).



Combination with chemotherapy and radiotherapy

Previously, it was believed that chemotherapy could lead to immunosuppression by affecting the number or function of lymphocytes. But in-depth studies have found that some chemotherapies can enhance tumor immunogenicity (136). Some studies believe that chemotherapy can enhance the antitumor immune response, among which pembrolizumab combined with chemotherapy has been approved by the FDA. Liposome doxorubicin combined with immunotherapy produces synergistic antitumor effects in mice, and more mice achieve complete tumor remission and prolonged survival (137). High-frequency and low-dose chemotherapy can effectively activate CTLs and inhibit immunosuppressive cells in TIME, which can promote efficacy and solve the problem of immune resistance (138). In an in-situ CRC-bearing mouse model with ineffective anti-PD-L1 treatment, the proportion of TILs was significantly increased after combination with oxaliplatin. At the same time, the combination of oxaliplatin and a novel PD-L1 blocker (PD-L1 Trap) significantly prolonged the survival of tumor-bearing mice (139). Chemotherapy combined with anti-PD-1 is used as a first-line treatment for advanced NSCLC, which has significantly more clinical benefits than a single agent (140).

Radiotherapy promotes the release of TAAs, TSAs, or damage associated molecular pattern molecules (DAMPs), which can enhance the immunogenicity of tumor cells and promote the recruitment and infiltration of immune cells. This relationship is the rationale for combination with immunotherapies. In a study of mouse model, radiotherapy combined with anti-PD-1 treatment reversed immune resistance (141). In the treatment of metastatic melanoma, radiotherapy combined with anti-CTLA-4 and anti-PD-1 therapy may become a new idea in combined immunotherapies (142). Pilones et al. reported that anti-CTLA-4 combined with radiotherapy effectively inhibited the lung metastasis of breast cancer in a mouse model (143). Deselm et al. found that radiotherapy made it more effective for CAR-T cells in a mouse model of pancreatic cancer, and the tumor cells that did not express the CAR target were also killed by CAR-T cells (144).



Combination with targeted therapy

Targeting intracellular signaling pathways with small molecule inhibitors is effective in rapidly reducing tumor volume. However, many of these drugs do not have durable effects, mainly due to the emergence of other compensatory pathways (145, 146). Emerging strategies to enhance immunotherapy response are being developed based on novel insights into T cells and overall immune function. Pembrolizumab combined with BRAF inhibitors shows synergistic antitumor activity and prolongs response time in mice with metastatic melanoma (147).

Tumor angiogenesis has an important relationship with tumor immunity. VEGF is related to the generation and regulation of MDSCs, so anti-angiogenic therapy combined with immunotherapy has a synergistic effect. Preclinical studies have shown that the combination of VEGFR inhibitor Axitinib and anti-CTLA-4 can enhance the antigen-presenting ability of DC to promote T cell proliferation in a mouse melanoma model (148). Data from clinical trials with the combination of ipilimumab and VEGF inhibitor bevacizumab showed that more than 30% of patients in the combination group observed a significant increase in CCR7+ CD8+ T cells, compared to only 6% of patients in the ipilimumab group (149). Studies have shown that sunitinib can reverse tumor-induced immunosuppression by reducing MDSCs (150). Various targeted therapies, such as EGFR, ALK, ROS1, and MEK inhibitors, are being clinically tested in combination with ICBs.

ACT combined with targeted therapy is also an innovative immunotherapeutic approach. Li et al. combine CAIX-specific CAR-T cells and sunitinib, which induces a potent antitumor response in an experimental model of metastatic RCC (151).



Other combination immunotherapies

The functional inhibition of CAR-T by PD-1/PD-L1 has been well established, which also provides the basis for the combination of PD-1/PD-L1 blockade and CAR-T. Existing preclinical studies have shown that CAR-T cells plus PD-1/PD-L1 blockade can effectively enhance the antitumor effect (152, 153).

IDO1 inhibitors have been in active clinical investigation and preliminary results suggest that IDO1 inhibitors produce additive efficacy when combined with cancer immunotherapies despite low activity as a single agent. Results from a phase I/II clinical trial, which combined IDO1 inhibitor epacadostat and Ipilimumab for the treatment of metastatic melanoma, showed an objective response and no tumor progression in some patients (154). In addition, IDO1 inhibitors combined with ICBs are also tested in various clinical trials (NCT03519256, NCT03854032, and NCT03661320). Combinations of type I interferons, TLR inhibitors, or STING agonists have also shown promise in preclinical models (155–157).

T-VEC can selectively replicate within tumors and produce granulocyte-macrophage colony-stimulating factor (GM-CSF), which triggers DC differentiation and enhancement of antigen presentation. This makes OVs susceptible to immunotherapy. OV therapy CG0070 in combination with Keytruda showed 89% CR in a clinical trial (AACR 2022 Abstract#CT036) (86).

Current combined strategies are complex because the potential combination approaches far exceed the available human and technical resources. There is an urgent need for us to test these combinations in appropriate preclinical models and to accelerate clinical translation through novel approaches to clinical trial design.




Discussion

Cancer occurrence and development is a complex process. Various immune-evasion mechanisms can counteract the body’s immune response, which becomes more complex as cancer progresses. Cancer immunotherapy can kill and eliminate tumor cells through the immune system, thus becoming another revolutionary treatment after surgical resection, radiotherapy, chemotherapy, and targeted therapy.

Various cancer immunotherapies have shown promising clinical efficacy. However, cancer immunotherapy still faces many problems and challenges. MAbs therapy is a very promising treatment for immunotherapy, which has been repeatedly demonstrated in clinical use. However, due to the immunogenicity, mAbs can cause irAEs, which requires strict monitoring in clinical use. The production process of mAbs is time-consuming and costly, and new purification strategies are needed for higher purity of mAbs. These problems are determined by the nature of the antibody itself, and we believe these problems will partly be solved with new design strategies and further optimization. The overall immune response rate of patients treated with ICB is not high, and there is a need to find reliable and effective biomarkers for precise and personalized immunotherapy. In combination with chemotherapy, mAbs have generated success against advanced-stage cancers, which previously had poor outcomes. In addition, combinations with different mAbs also showed a strong anti-tumor effect. Combination therapy may provide new opportunities for mAbs to reduce the side effects and improve the therapeutic effect in the future. Conjugation of cytotoxic agents to mAb allows for specific delivery of payloads to tumors, while multispecific antibodies grant novel mechanisms that increase specificity and facilitate delivery to historically intractable compartments. Besides, Fc- engineering mAbs can endow mAbs with stronger antitumor and immune activation ability through the incorporation of amino acid and glycan changes. With an increased understanding of immunobiology and the continued development of molecular biological methods, the possibilities for mAbs therapy are bounded only by the scope of human ingenuity.

Small molecule inhibitors for cancer immunotherapy always occupy an important position, although the sales of mAbs are far ahead. Small molecule inhibitors have mature R&D pipelines and the production process of small molecule inhibitors is more controllable than mAbs, which can help reduce costs. The controllable pharmacokinetic properties can help reduce the impact of side effects, and the good tissue permeability makes small molecule inhibitors useful for solid tumor immunotherapy. Small molecule inhibitors will always be an effective replacement and supplement for mAbs. Currently, a new form of small molecule inhibitor, proteolysis targeting chimeras (PROTAC) is tested in (pre-)clinical, such as IDO1 PROTACs. But many issues need to be addressed especially on whether it is a safe approach or whether there is a saturation in the degradation of proteins that may limit their effectiveness (158, 159).

ACT can be a potent new addition to the toolbox for cancer immunotherapy. However, many TCR-T/CAR-T clinical trials have been hampered by off-target effects and safety concerns (160, 161). While timely intervention is effective in most adverse events, side-effect management of ACT must be held in the whole process of ACT treatment. If tumor antigens are blocked by the self-secretion of tumor cells, they cannot be recognized by the immune system. Rationally designed strategies to identify candidate neoantigens and evaluate their immunogenicity are valuable for boosting the safety and efficacy of ACT. At present, the successful ACT therapy is mainly used in the treatment of hematological tumors. In solid tumors, getting CAR-T cells to infiltrate the tumor is a challenge, which can be compounded by the immunosuppressive TME. ACT combined with small molecule immunomodulator targeting immunosuppressive TIME may be effective for solid tumors.

The major challenge in oncolytic virus therapy is the targeted delivery of the virus into the tumor. In most cases, systemic administration does not work well because of preexisting immunity. Some novel approaches involve the use of nanoparticles, complex viral particle ligands, and immuno-modulatory agents to deliver OVs into the tumor. Alternatively, delivery of OVs via a nanoparticles using technologically complex image-guided delivery system has also been considered (90). Immune response after OVs infection suppresses the replication of the virus thereby posing a hindrance to the effective functioning of OVs therapy. Therefore, increasing anticancer treatments and consequently patient prognosis through contributions from molecular biology, immunology, genomics, and bioinformatics will provide a strong foundation for OVs’ potential clinical success in the future.

For preventive cancer vaccines, the successes of Gardasil are exciting. The next step is perhaps to look for other important tumorigenic antigens, possibly other viruses, to expand protection for people. In addition, for therapeutic cancer vaccines, an improved antitumor immune response is still in high demand because of the unsatisfactory clinical performance of the vaccine in tumor inhibition and regression. Personalized vaccine design and appropriate combined therapy could represent the best approach to increase the efficacy of cancer vaccines.

Compared with traditional chemoradiotherapy and targeted therapy, immunotherapy has significant advantages. Under the in-depth study of anti-tumor immune response mechanism, great progress has been made in the field of tumor immunotherapy. With the widespread application of immunotherapy, the occurrence of immune resistance has become an unavoidable problem. We are still at a very early stage of understanding the mechanisms of this immune resistance. By understanding mechanisms of immune resistance, we can enable immunotherapy to provide more survival benefits for cancer patients.

Compared with single-drug therapy, combination strategy for immunotherapy has a greater clinical effect. Clinical trials have shown that immunotherapeutic anticancer drugs, which include ICBs, ACT, chemotherapy, targeted therapy, etc., are important components of the combination. A few combination therapies have been approved by the FDA to improve clinical efficacy of cancer immunotherapy. With increasing research in identifying reliable biomarkers in guiding clinical immuno-oncology decisions, more convincing and effective combination strategies are expected.

As the development of tumor immunology, bioinformatics, and sequencing technologies, more and more mechanisms in TME will continue to be revealed. This will further the development of cancer immunotherapy and pave the way for effective cancer treatments in the future.
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Cancer immunotherapy represents a promising approach to specifically target and treat cancer. The most common mechanisms by which monoclonal antibodies kill cells include antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity and apoptosis, but also other mechanisms have been described. 14F7 is an antibody raised against the tumor-associated antigen NeuGc GM3, which was previously reported to kill cancer cells without inducing apoptotic pathways. The antibody was reported to induce giant membrane lesions in tumor cells, with apparent changes in the cytoskeleton. Here, we investigated the effect of humanized 14F7 on HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC) in combination with LC-MS and live cell imaging. 14F7 did not kill the HeLa cells, however, it caused altered protein expression (MS data are available via ProteomeXchange with identifier PXD024320). Several cytoskeletal and nucleic-acid binding proteins were found to be strongly down-regulated in response to antibody treatment, suggesting how 14F7 may induce membrane lesions in cells that contain higher amounts of NeuGc GM3. The altered expression profile identified in this study thus contributes to an improved understanding of the unusual killing mechanism of 14F7.
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Introduction

The past few decades have seen much progress in the field of cancer immunotherapy (1–3). Many monoclonal antibodies are in advanced clinical development, and several are already licensed for clinical use (4, 5). Most clinically interesting antibodies bind to immune or cancer cells, triggering cell death. Antibodies can kill cells by different mechanisms, the most common being antibody-dependent cell-mediated cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC) and induction of apoptosis (6, 7). Less frequent types of killing mechanisms include Fc-independent induction of cytotoxicity (without inducing morphological changes; often observed in cell death linked to apoptosis) and non-apoptotic mechanisms, where membrane lesions are formed upon treatment with mAbs (8–14).

14F7 is a clinically promising monoclonal antibody raised against the ganglioside NeuGc GM3, which represents an attractive target for cancer immunotherapy since this glycolipid is absent from healthy adult human tissues (15), but present in several malignancies (16–26). 14F7 is an IgG1 antibody with high affinity for its antigen (in the low nanomolar range) (19, 27–29). This interaction has been characterized structurally (complex with the carbohydrate part of the glycolipid) (30, 31) and by mutation analysis (32). In mouse models, 14F7 showed strong anti-tumor effects (20, 33). In order to prevent a possible human anti-mouse antibody response, and thereby increase its potential for immunotherapy, the original murine 14F7 mAb was humanized (14F7hT) (34). The cytotoxic properties of 14F7 were retained in the humanized variant, and no difference compared to the murine antibody was observed, however, 14F7hT also gained the ability to induce cell death by ADCC (35). While recent studies have found that anti-ganglioside antibodies of different IgG subclasses are commonly found in pathological processes (36), high-affinity anti-carbohydrate antibodies are rare (37).

The mechanism by which 14F7 activates signaling leading to cell death remains poorly understood. Carr et al. showed that 14F7-induced cell death in murine cancer cells (P3X63-Ag8.653) was caused by a complement-independent mechanism (20). A similar finding was reported by Casadesús et al., who observed complement-independent cell killing for 14F7 and a 14F7 variant that recognizes both NeuGc and NeuAc GM3 (38). Roque-Navarro et al. found in another murine tumor cell line (L1210) that 14F7 induced cell swelling and giant membrane lesions, but not the typical phenomena of apoptosis (DNA fragmentation, caspase activation or Fas mediation), suggesting a novel oncosis-like cell death mechanism (39–41). Several other antibodies with pore-formation mechanisms have been described in the literature (8, 12, 42, 43). Both Roque-Navarro et al. and Dorvignit et al. found indications of cytoskeletal involvement in 14F7-mediated cell death, but the details of this mechanism remain unexplored and there are currently no indications as to which cytoskeletal proteins may be involved (39, 44).

We have recently solved the crystal structure of the complex between 14F7 (a single-chain version) and the NeuGc GM3 trisacharide (31) and investigated how 14F7 recognizes NeuGc GM3 in a membrane-like environment (29). Here we seek to understand the effects that 14F7 induces in the cell, to gain a deeper understanding of the novel oncosis-like cell death mechanism induced by 14F7. To reveal differences in the expression profile between treated and untreated cells, we used stable isotope labeling with amino acids in cell culture (SILAC) in combination with LC-MS. Building on previous work (45, 46), we chose to work with HeLa cells. SILAC is a mass spectrometry (MS)–based quantitative method relying on the incorporation of ‘light’ and ‘heavy’ forms of amino acids (such as lysine and arginine) into proteins (Figure 1). It enables easy and comprehensive peptide identification by providing a defined number of labels per peptide (47). We identified twelve HeLa proteins that exhibited strongly altered expression after treatment with 14F7hT. Five of these proteins are related to the cytoskeleton and all of them were found to be downregulated in this investigation. No macroscopic changes were observed in the cells, however, this is likely due to the limited amount of NeuGc GM3 in the HeLa cell line.




Figure 1 | Overview of a SILAC experiment. First the cells were grown in 'light' or 'heavy' media. The 'heavy' cells were incubated with 14F7hT for 3 h before the cells were lysed and mixed. The proteins were separated by SDS-PAGE, trypsin-digested and identified by LC-MS analysis. The ratio of ‘heavy’ versus ‘light’ amino acids indicates which proteins were up- or down-regulated.





Materials and methods


Cell culture

HeLa (ATCC: CCL-2) cells were incubated in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% (v/v) fetal bovine serum (FBS) to increase the amount of NeuGc GM3 as well as with 2 ml l-glutamine, 50 U/ml penicillin and 50 mg/ml streptomycin. The cells were kept at 5% CO2, 37°C between experiments and split when the confluence was approaching 80-90%. HeLa cells were seeded in 6, 24 or 96-well plates 24-72 h prior to experiments and incubated at 37°C in a 5% CO2 incubator. Experiments were performed using an unspecific secondary antibody as control.



Incorporation of labeled amino acids and 14F7hT treatment of HeLa cells

For SILAC experiments, HeLa cells were cultured for at least five cell doublings in media either containing 13C- and 15N-labeled l-arginine (89990-Fisher) and 13C-labeled l-lysine (89988-Fisher) or media containing unlabeled l-arginine (89989-Fisher) and l-lysine (89987-Fisher) amino acids. The cells were treated with 14F7hT (25 μg/ml) for 3 h in 37°C, which was kindly provided by the Center of Molecular Immunology (CIM), Havana, Cuba.



NanoLC-LTQ orbitrap mass spectrometry

HeLa cell lysates from each labeling, heavy and light, were mixed 1:1 and subjected to sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE). Each Coomassie G-250 stained SDS-PAGE gel lane was cut into 12 slices, destained at 37°C for 30 min, followed by reduction at 60°C for 10 min and alkylation for 1h in the dark. The samples, were in-gel digested at 37°C for 4h using 0.1 µg of trypsin in 25 µl of 50 mM ammonium bicarbonate, pH 7.8. After micropurification using µ-C18 ZipTips (Millipore, Oslo, Norway), the peptides were dried in a SpeedVac and dissolved in 10 µl 1% formic acid, 5% acetonitrile in water. Half of the volume was injected into an Ultimate 3000 nanoLC system (Dionex, Sunnyvale CA, USA) connected to a linear quadrupole ion trap-orbitrap (LTQ-Orbitrap XL) mass spectrometer (ThermoScientific, Bremen, Germany) equipped with a nanoelectrospray ion source. For liquid chromatography separation, an Acclaim PepMap 100 column (C18, 3 µm beads, 100 Å, 75 μm inner diameter) (Dionex, Sunnyvale CA, USA) capillary of 50 cm bed length was used. The flow rate was 0.3 μl/min, with a solvent gradient of 7% B to 35% B in 110 minutes. Solvent A was aqueous 0.1% formic acid, and solvent B aqueous 90% acetonitrile in 0.1% formic acid. The mass spectrometer was operated in the data-dependent mode to automatically switch between Orbitrap-MS and LTQ- MS/MS acquisition. Survey full scan MS spectra (from m/z 300 to 2,000) were acquired in the Orbitrap with the resolution R = 60,000 at m/z 400. The method used allowed the sequential isolation of up to the seven most intense ions for fragmentation on the linear ion trap using collision-induced dissociation (CID) at a target value of 10,000 charges. Target ions already selected for MS/MS were dynamically excluded for 60 sec. The lock mass option was enabled in MS mode for internal recalibration during the analysis. Other instrument parameters were set as previously described (48).



Protein identification and quantification

Protein identification and quantification were performed with MaxQuant (49) (v.1.2.2.5) utilizing the Andromeda search engine (50). The tolerance level for matching the database was 6 ppm for MS1 and 20 ppm for MS/MS. Trypsin was used as digestion enzyme, and two missed cleavages were allowed. Carbamidomethylation of cysteines was used as fixed modification, whereas variable modifications included protein N-terminal acetylation, oxidation of methionines, deamination of asparagines and glutamines, and formation of pyro-glutamic acid at N-terminal glutamines. For estimation of the false discovery rate (FDR), which is the rate of falsely discovered proteins in our dataset, we included the reversed sequences into the database search. All hits to the reversed database could thus be regarded as false hits. By restricting the number of matches to this database to only 1% of total matches, we thus proceeded with an FDR of 1% to ensure reliable protein identification. For quantification, at least two quantification events were required per protein, and we further required the proteins to be quantified in at least 2 of 3 biological replicates. Normalized protein ratios H/L were reported by MaxQuant and used as is for analysis. A Student’s t-test was used to assess ratio significances.



Bioinformatics analysis

Functional annotation was performed using DAVID Bioinformatics Resources version 6.7 (51, 52) available at http://david.abcc.ncifcrf.gov/, using whole genome (Homo sapiens) as background), and Panther (http://www.pantherdb.org).



Measurement of cellular protein synthesis

HeLa cells were washed with leucine-free 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)-buffered medium and incubated with increasing concentrations of 14F7hT for 3 h or 18h at 37°C. Cells were then incubated with leucine-free HEPES-buffered medium complemented with 2 µCi/ml [3H] leucine (PerkinElmer) at 37°C for 20 min before proteins were precipitated with 5% (w/v) trichloroacetic acid (TCA) and washed once with the same solution (48). Finally, the proteins were dissolved in 0.1 M KOH and radioactively labeled leucine incorporation was quantified by ß-counting with Tri-Carb 2100TR® Liquid Analyzer (Packard Bioscience). Three independent experiments were performed with biological duplicates.



Measurement of cellular ATP level

Quantitation of the cellular ATP level was performed following the prescribed protocol by the commercially available CellTiter®-Glo 3D Cell Viability Assay kit (Promega). Briefly, HeLa cells (1x104 cells/well, 96-well plate) were washed with 200 µl/well leucine-free HEPES medium. Thereafter, 50 µl fresh leucine-free medium was added to each well. 14F7hT was added to corresponding plates at increasing concentrations (25 ng/ml to 25 µg/ml). The plate was then incubated for 20 h at 37°C. After incubation, 50 µl CellTiter®-Glo was added to each well, followed by an incubation of 10 min in the dark at room temperature. The signal was measured using Syngene Chemi-Genious. Three independent experiments were performed with biological duplicates.



Structural interference microscopy and live cell imaging

HeLa cells were cultured as described before and seeded on coverslips. The cells were washed in PBS and then fixed in a 4% (w/v) paraformaldehyde solution at room temperature (Alfa Aesar) for 15 min and permeabilized in 0.1% Triton X-100 in PBS for 2 min. The cells were incubated with the relevant primary antibodies diluted in blocking solution (10% PBS in FCS) for 1 h at room temperature or at 4°C overnight. The cells were again washed in PBS and incubated with blocking solution for 5 min. They were then incubated with secondary antibodies for 1 h. After the final washing step, the coverslips were mounted on ProLong Gold (Molecular Probes) supplemented with the nuclear staining reagent 4′,6-diamidino-2-phenylindole (DAPI) overnight at 37°C. Detailed analysis of single cells was either performed by confocal microscopy (Zeiss LSM 780) and analyzed with IMAGEJ software or super-resolution 3D SIM imaging performed on a DeltaVision OMX V4 system (Applied Precision) equipped with an Olympus 60X numerical aperture (NA) 1.42 object, cooled sCMOS camera and 405, 488 and 642 nm diode lasers, Z-stacks covering the whole cell were recorded with a Z-spacing of 125 nm. A total of 15 raw images (five phases, three rotations) per plane were collected and reconstructed by using SOFTWORX software (Applied Precision).

For live cell imaging, cells were seeded in 50 mm MatTek glass bottom dishes. Images were captured under controlled CO2 conditions at 37°C with a DeltaVision microscope (Applied Precision), equipped with a live cell Elite TruLight Illumination System and cooled Photometrics CoolSNAP HQ2 charge-coupled device (CCD) camera. Optical sections were acquired by using a 60X objective (Olympus, Plan Fluor, NA 1.42) and images were deconvolved by using SOFTWORX software (Applied Precision).




Results and discussion

Using a quantitative proteomics approach and bioinformatics analysis, we compared the expression profile of 14F7hT-treated HeLa cells with control cells. To increase the amount of NeuGc GM3, we supplemented the media with 10% FBS. An overview of the experimental strategy for SILAC is depicted in Figure 1. HeLa cells were maintained in SILAC medium (containing ‘light’ or ‘heavy’ forms of the amino acids lysine and arginine). The cells grown in the ‘heavy’ medium were treated with the anti-tumor antibody 14F7hT, while the cells grown in the ‘light’ medium served as control in the experiment. Cell lysates from each labeling were mixed 1:1 and fractionized by SDS-PAGE. After in-gel digestion, protein identification and quantification, bioinformatics analysis was performed.


SILAC and bioinformatic data analyses

The proteomes of ‘heavy’ and ‘light’ HeLa cells, treated with 14F7hT and untreated, respectively, were compared by LC-MS. In total, 3685 proteins were identified. Two thirds of these proteins were quantified in at least two replicates and used for further analysis (Table S1). Following stringent criteria (p < 0.05, at least two peptides per protein in two of three replicates and a minimum fold-change of 2), four proteins were found to be significantly down-regulated (Table 1; note that in Figure 2, two of the “significant” hits had only few peptides). In addition, we identified one protein that was up-regulated 2.7-fold and seven proteins that were clearly down-regulated; however, with p-values >0.05 (or where p-values could not be obtained). Among these, one protein only marginally missed the target p-value (cystatin A, p = 0.051; 4-fold down-regulated), and two additional proteins had higher p-values, but at least two peptides in three replicates (kinesin-like protein KIF14, p = 0.490, H/L = 0.23; and F-actin-uncapping protein LRRC16A, p = 0.162, H/L = 0.33). For all of these proteins, p-values were <0.001 if calculated based on z-statistics instead. Adding these proteins to the number of strongly regulated proteins yields eleven down- and one up-regulated protein (Table 1). A volcano plot of all data points with valid p-value is shown in Figure 2. In addition, we screened the data for large differentials that may have been missed due to p-values >0.1 or less peptides identified in the replicates. The proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository, where they are freely accessible with the dataset identifier PXD024320 (53).


Table 1 | Strongly regulated proteins.






Figure 2 | Volcano plot based on results obtained from 14F7hT-treated HeLa cells. This plot combines statistical significance, p-value (y-axis) with fold change (x-axis), to allow a quick visual overview over the interesting data. Points corresponding to the proteins with >2.5-fold altered expression levels and p < 0.05 are colored in red. The dotted lines represent the cut-off values (p < 0.05 = 1.3 at y-axis and 0.4, corresponding to 2.5-fold down-regulation, at x-axis).The discrepancy to Table 1 results from the exclusion of proteins that did not fulfill our strict peptide criteria in the table, and exclusion of proteins without valid p-value from the plot. Excluded from Table 1 were also two proteins identified as significant based on the p-value (labeled red in this plot): a glycosyltransferase (p = 0.024, H/L = 0.07, Protein ID: B7ZB85) and dermcidin, a secreted peptide with antimicrobial activity (p = 0.037, H/L = 0.18, Protein ID: P81605).



The bioinformatic tools DAVID (51, 52) and PANTHER (http://www.pantherdb.org) were used to categorize the regulated proteins (Figure 3).




Figure 3 | Regulated proteins visualized in pie diagrams according to biological process (A) or protein class (B). Of note, evaluation with a newer version of PANTHER gave slightly different results (see Figure S1). However, while 14F7 treatment clearly affects metabolic and cellular metabolic processes, no particular metabolic pathways is singled out.



19 transcription factors were identified as interacting partners of the 12 strongly regulated proteins listed in Table 1. These interactions were generated by DAVID protein-protein interaction analysis and are listed in Table 2. Three of the transcription factors interacting with the regulated proteins belong to the so-called homeobox genes. These genes express proteins that are spatially and temporally regulated during embryonic development (MEIS1B, HOXA3, TGIF). Several transcription factors (MEF2, GR, HSF2, EVI1, GATA and STAT) are also involved in cell development and growth. IRF and STAT are associated with interferon regulation and cell survival. Another transcription factor (JunB, ID: P17275) was directly down-regulated, by 1.4-fold, with 43 identified peptides (although slightly missing our criteria concerning p-value, with p = 0.062. This transcription factor is involved in regulating gene activity following primary growth factor response.


Table 2 | Transcription factors interacting with the regulated proteins.





Proteins affecting the cytoskeleton

There are three major types of filaments in the cellular cytoskeleton, namely actin- and intermediate-filaments and microtubules, which all assemble from small building blocks. DAVID functional annotation analysis revealed five significantly down-regulated proteins belonging to the cluster of cytoskeletal proteins (Table 1). These proteins include cystatin A, CLIP-associating protein 2, leucine-rich repeat-containing protein 16A, Kinesin-like protein KIF 14 and dystrophin. Of additional interest is a member of the POTE ankyrin domain family, a pseudogene belonging to the actin family.

Dystrophin (50-fold down-regulated). A cytoskeletal protein present in a variety of tissues. It is involved in many biological processes and is associated with several disorders, in particular muscular and cardiac diseases (54–56). Surprisingly, this protein was almost completely absent in response to 14F7 treatment. Dystrophin has been connected to cell death, although the relationship is controversial. For example, the processes occurring in dystrophin-deficient muscle cells are linked to a pathological increase in intracellular Ca2+ concentration, which causes an increase in the volume of sarcoplasmic reticulum lumen (57–60). However, how the absence of dystrophin leads to increased cytosolic calcium levels is poorly understood, although damage to the membrane and defective calcium channels have been suggested as possible explanations (61–63). The cellular swelling observed in 14F7hT-treated cells may be partially explained by the down-regulation of dystrophin, if the same regulation occurs during 14F7hT-mediated cell death. Membrane damage is linked to the swelling phenotype of antibody-treated cells, and could be an explanation for an increased Ca2+ level. Ca2+ is stored and released by several organelles, in particular the acidic lysosomes (64), providing a link to the observed down-regulation of cystatin, sensitizing cells for lysosomal cell death.

CLIP-associating protein 2 (14-fold down-regulated). Regulation of the dynamic behavior of microtubules occurs through microtubule-associated proteins. Proteins that associate with the tips of microtubules are called +TIPs since they are ‘plus-end’ tracking proteins (65). The mechanisms used by +TIPs are not fully elucidated, but one of the significantly down-regulated proteins in response to 14F7hT mAb treatment, the cytoplasmic linker associated protein 2 (CLIP-associated protein 2, CLASP2) is a +TIP contributing to generate cellular asymmetry. A study using yeast two-hybrid analysis identified CLASP1 and CLASP2 as interaction partners to CLIPs (cytoplasmic linker proteins) (66). Interestingly, several proteins of this family (CLASP1, Cap-Gly domain of CLIP2 and CLIP1) were identified in the present work, but not considered significantly regulated according to our strict criteria.

In cells, the minus end of microtubules is localized deep in the microtubule-organizing center (MTOC), and microtubule bundles will grow out from the center. This will prevent dynamic instability at the minus end, but alternating between growth, pause and shrinkage will occur at the plus ends. When the microtubules grow towards the cell membrane, +TIPs, such as CLIP-associated protein 1, will ensure continuous growth until the microtubules reach the end, where shrinking can occur. This alteration from growth to shrinkage is termed ‘catastrophe’ (67–69). +TIPs thus function as anti-catastrophe factors, meaning that they prevent premature microtubules.

In studies using RNAi or antibodies targeting CLIP-associated protein 2, the formation of leading-edge-orientated microtubules was inhibited (66, 70). CLIP-associated protein was almost absent in the cells after 3 h of 14F7hT treatment. This can contribute to an inability of the microtubules to continuously grow, thus leading to morphological changes.

POTE ankyrin domain family, putative beta-actin-like protein 3 (8-fold down-regulated). Post-translational modifications of this pseudogene belonging to the actin family, such as oxidation and methylation, have (by similarity) been suggested to regulate polymerization of actin filament and actin-myosin processes like cleavage furrow ingression during cytokinesis, respectively. For the latter process, demethylation by a protein named alkylation repair homolog 5 (ALKBH) is required. This protein was identified, but not considered significantly regulated according to our criteria (fold change 0.88). Down-regulation of the POTE ankyrin protein caused by 14F7hT treatment could destabilize the processes of microtubule polymerization and cleavage furrow ingression.

Kinesin-like protein KIF14 (4-fold down-regulated). KIF14 is a motor protein playing an essential role in cytokinesis that has been associated with poor prognosis in breast cancer. It is localized in the nucleus during interphase (71) and associates with developing spindle poles and microtubules in mitotic cells, to then accumulate at the central spindle and midbody in the later stages of mitosis (72). The latter process is dependent on the presence of protein regulator of cytokinesis 1 (PRC1) and citron rho-interacting kinase (CIT). The expression levels of these proteins were altered, but not significantly. Carleton et al. showed that silencing of KIF14 generated a variety of mitotic phenotypes in HeLa cells, possibly linked to the efficacy of siRNA silencing (72). Using time-lapse microscopy, less efficacious silencing was shown to cause induction of distinct phenotypes, all resulting in acute apoptosis. However, a strong KIF14 silencing induced cytokinesis failure, resulting in multinucleated cells. This correlation between silencing efficacy and phenotypic outcome suggests that KIF14 alteration may disrupt different stages of the cell cycle, explaining the multitude of phenotypes reported (73–75). As KIF14 expression decreased significantly when cells were treated with 14F7hT, this may cause a phenotype change associated with cell fatality.

Cystatin A (4-fold down-regulated). Cystatin A (Stefin A) has been detected in higher levels in invasive tumors, where tumors positive for cystatin A were larger and exhibited an increased mitotic activity, suggesting a growth advantage for the cells (76). This protein was shown to be a potent inhibitor of exogenous proteases (77) and suggested to protect cytosolic and cytoskeleton proteins from degradation. High levels of cystatin A may be relevant for regulation of apoptosis by inhibiting cathepsin B, when initiated by the lysosomal cell death pathway. Cells lacking the closely related cystatin B (Stefin B) exhibit a higher sensitivity to lysosomal induced cell death (78). The significant down-regulation of cystatin A in 14F7hT-treated cells may sensitize the cells for lysosomal cell death as well as induce increased degradation of cytoskeletal proteins.

F-actin-uncapping protein LRRC16A (3-fold down-regulated). This leucine-rich repeat protein is also associated with actin polymerization. It was not clustered as cytoskeletal protein by DAVID, however, it decreases the affinity of capping proteins for actin ends by binding to the capping proteins (CAPZA2) with high affinity, thus inhibiting capping activity. Polymerization of actin filaments occurs via elongation at the end. By capping the ends, actin elongation terminates (79). Down-regulation of leucine-rich repeat-containing protein 16A, as observed in this study, may enhance the affinity for capping proteins to actin ends, hence leading to a termination of actin elongation.

Another cytoskeletal protein of potential interest is desmoplakin, a protein with a function in cell-to-cell adhesion. This protein was found to be down-regulated 1.4-fold (p = 0.080, 43 peptides; ID: P15924). Desmoplakin is involved in the organization of cadherin-plakoglobin complexes and in the anchoring of intermediate filaments to cell structures called desmosomes. In contrast, clathrin was slightly up-regulated (1.28-fold, p = n.a., 19 peptides; ID: P53675), which may suggest that 14F7 is taken up into cells by clathrin-dependent mechanisms.



Other proteins up- or down-regulated

The only protein found to be significantly up-regulated (although not accessible to t-test statistics) was the metastasis-associated protein MTA1 (fold change 2.7; Table 1). MTAs belong to chromatin modifying proteins, functioning as integral parts of nucleosome remodeling and histone deacetylation (NuRD) complexes. MTA1 has been correlated with metastatic potential of carcinomas, but details of the process are poorly understood. However, it is known that MTA1 interacts with histone deacetylase 1 and 2 (HDAC1/2) (80), estrogen receptor alpha (81), CDK-activating kinase assembly factor MAT1 (MNAT1) (82) and tumor protein p53 (TP53) (83). Many cellular pathways are associated with MTA1, including cell fate programs. A possible explanation for MTA1 up-regulation upon antibody treatment is that it alters deacetylation of crucial target genes. Regarding the cell death mechanism, we noticed the down-regulation of TPX2 (fold change 0.82, p = 0.199, ID: Q96RR5; Table S1), which is involved in the assembly of microtubules during apoptosis, however, the effect was small, and contrary to what would be expected if cell death occurred by apoptosis. In contrast, a programmed cell-death protein (ID: Q9BRP1) was found to be almost 15-fold up-regulated, although with very weak criteria (p = n.a., 2 different peptides, but only one in two samples).

Two proteins with oxidoreductase activity, the drug-sensitive protein and the dermal papilla derived protein 12 (DERP12), were found to be down-regulated (fold change 0.22/0.26, p = 0.026/0.022) when HeLa cells were subjected to 14F7hT treatment (Table 1), whereas glutathione peroxidase was up-regulated 1.64-fold (p = n.a., ID: Q8TED1). Further studies will be required to suggest an explanation for the up- and down-regulated oxidoreductase activity.

Interestingly, one protein associated with carbohydrate biosynthesis, glucosamine/glutamine-fructose-6-phosphate aminotransferase 2, was found to be significantly down-regulated in our study (fold-change 0.07, i.e., 14-fold, p = 0.035; Table 1), and an additional enzyme, glycosyltransferase-like protein, was found to be similarly down-regulated, although with less stringent criteria regarding the peptides (fold change 0.07, p-values = 0.024, ID: B7ZB85; Table S1). This is interesting since the target of 14F7, the NeuGc GM3 ganglioside, is a glycosphingolipid not normally present in human healthy cells, but found in the plasma membrane of several malignant cells (16–18). The synthesis of these gangliosides involves glycosyltransferases, which catalyze the attachment of carbohydrate residues to the hydrophobic ceramide part of the ganglioside. Decreased expression of these enzymes may be linked to down-regulation of the antibody target and/or associated with cellular metabolic processes. In contrast, we noticed that the catalytic subunit of dolichyl-oligosaccharyl transferase was slightly up-regulated, with good statistics (1.3-fold, p = 0.032, ID: P46977; Table S1).

Three other proteins that were found to be upregulated, by 4-, 5- and 18-fold, respectively, were a tyrosine phosphatase (ID: Q05209), an outer dense fiber protein (ID: Q5BJF6) and Hermansky-Pudlak syndrome protein, which is involved in the biogenesis of early melanosomes (ID: Q969F9) (84), however, all with rather poor statistics.

In this study, HeLa cells were analyzed, showing alteration in e.g. glycosylation, biosynthetic and primary metabolic processes, but other cell lines may have dissimilar glycolytic and lipid metabolic levels, affecting survival differently.



14F7hT neither inhibits protein synthesis nor changes cellular ATP level

To investigate the toxic effect of 14F7hT more directly, we assessed protein synthesis of 14F7hT-treated cells. Measuring protein synthesis is a very sensitive method to study cell leakage. A 3h-treatment of HeLa cells with increasing concentrations of 14F7hT (25 ng/ml to 25 µg/ml) did not show any changes of cellular protein synthesis. In the four 14F7hT-treated samples, the total protein content remained unchanged compared to untreated cells (Figure 4). Even after 18 h, no changes were observed, indicating that 14F7hT treatment did not affect protein synthesis in the HeLa cells.




Figure 4 | 14F7hT treatment does not inhibit protein synthesis in HeLa cells. HeLa cells were incubated with varying concentrations (25 ng/ml to 25 µg/ml) of 14F7hT in serum-free medium for 3 h (left) or 18 h (right) at 37°C (n = 3). The level of protein synthesis was measured as described in the Methods section.



We also investigated whether 14F7hT treatment would affect the cellular ATP level, since ATP depletion can lead to necrosis (85). To that end, we incubated HeLa cells with increasing concentrations of 14F7hT (25 ng/ml to 25 µg/ml) and subsequently measured the ATP level in the cells. The results showed no changes in the cellular ATP level 20 h after 14F7hT treatment (Figure 5), indicating that 14F7hT did not induce ATP leakage.




Figure 5 | 14F7hT mAb treatment does not affect the cellular ATP level. HeLa cells were treated with increasing concentrations (25 ng/ml to 25 µg/ml) of 14F7hT in leucine-free medium for 20 h at 37 °C (n = 3). The positive control contained a mixture of 10 mM NaN3 and 50 mM 2-deoxy glucose, and showed a strong decrease in cellular ATP, as expected.





14F7hT does not disrupt the actin cytoskeleton or the microtubule network

Actin filaments and microtubules are important structural components of the cells, and interference with these components is associated with morphological changes or membrane disruptions. To evaluate the changes in cytoskeleton upon 14F7hT-treatment, we incubated HeLa cells with 14F7hT mAb, varying both 14F7 concentration and incubation times. The cells were stained for actin and tubulin to visualize the cytoskeleton with fluorescence microscopy (Figures 6A, B). For the analysis of filament dynamics, HeLa cells were transfected with RFP-actin and GFP-tubulin, to visualize the filaments by live cell microscopy after addition of 14F7hT (Figure 6). To our surprise, 14F7hT-treated cells did not display any morphological changes compared to non-treated cells. The HeLa cells contained an intact actin cytoskeleton and microtubule network with no obvious disruptions or fragmentations of these structural components even at the highest concentration (25 µg/ml) of 14F7hT and after long incubation times. Thus, the data clearly showed that the changes in expression profile revealed by SILAC are not manifested on the macroscopic level. The results obtained for the cells transfected with recombinant RFP-actin and GFP-tubulin, however, should be interpreted with caution since the expression levels of these proteins were artificially set with the transfection.




Figure 6 | 14F7hT mAb treatment does not lead to disruption of actin filaments or the tubulin network. HeLa cells were treated with either 25 µg/ml (A, B) or 50 µg/ml (B) 14F7hT and incubated for 6 h (A) or 15 h (B), and thereafter stained for actin and tubulin, and analyzed by SIM microscopy (scale bar 7 µm). Fluorescence live cell imaging was performed to analyze the effects on actin (red) and tubulin (green) filament dynamics after treatment with 2 µg/ml 14F7hT over a period of 3.5 h (C). 14F7hT treatment does not induce disruption or fragmentation of actin (A) or tubulin (B) filaments, nor does it have obvious effects on the dynamics of actin or tubulin filaments (C). Representative pictures of three independent experiments are shown with >50 (A, B) and 10-20 visualized cells (C), respectively.






Conclusion

Cancer immunotherapy is a growing research field. Several monoclonal antibodies are already applied in cancer therapy, and additional molecules are in the pipeline. These antibodies kill the malignant cells by different mechanisms, most commonly by ‘classical’ cell killing mechanisms, such as ADCC or CDC, but other mechanisms have also been suggested. 14F7hT has been reported to cause giant lesions in tumor cells and kill these cells by a non-apoptotic oncosis-like mechanism (39). Using a proteomics-based approach, we revealed 12 proteins that exhibited strongly altered expression upon 14F7hT binding to the target cells. Five of these are cytoskeletal proteins, affecting e.g. actin filament-based and microtubule-based processes. The HeLa cells studied in this work were not killed upon application of 14F7hT. Their NeuGc GM3 content is probably too low. Nevertheless, we suspect that the observed changes may represent early stages of cellular transformations that could be difficult to observe when the membrane lesions have formed and cells are dying. For example, we observed a slight down-regulation of TPX2 (1.2-fold), a protein involved in the assembly of microtubules during apoptosis, and 15-fold up-regulation of a programmed cell-death protein, although with poor statistics. A picture emerges that 14F7 treatment down-regulates proteins of the cytoskeleton and cell-cell-adhesion, and ultimately induces cell death. While further studies are required to verify the involvement of the identified proteins and the processes they inhibit or trigger, this work already considerably advances our current understanding of the 14F7 cell death mechanism, and identifies candidates for future therapies. An important question that remains unanswered is how this event of 14F7 binding to NeuGc GM3 on the cell membrane can connect with cell pathways that affect the expression of proteins related with the cytoskeleton.
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B-cell acute lymphoblastic leukemia (B-ALL) is the most common childhood malignancy. The cure rate has reached 90% after conventional chemotherapy and hematopoietic stem cell transplantation (HSCT), but the prognosis of patients with relapsed and refractory (R/R) leukemia is still poor after conventional treatment. Since FDA approved CD19 CAR-T cell (Kymriah) for the treatment of R/R B-ALL, increasing studies have been conducted on CAR-T cells for R/R ALL. Herein, we report the treatment of a patient with ALL who relapsed after allogeneic HSCT, had a complete remission (CR) to murine scFv CD19 CAR-T but relapsed 15 months later. Partial response was achieved after humanized CD19 CAR-T treatment, and the patient finally achieved disease-free survival after sequential CD22 CAR-T treatment. By comparing the treatment results of different CAR-T cells in the same patient, this case suggests that multiple CAR-T therapies are effective and safe in intramedullary and extramedullary recurrence in the same patient, and the expansion of CAR-T cells and the release of inflammatory cytokines are positively correlated with their efficacy. However, further clinical studies with large sample sizes are still needed for further clarification.
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Introduction

B-cell acute lymphoblastic leukemia (ALL) is the most common childhood malignancy and is usually treated with chemotherapy and allogeneic hematopoietic stem cell transplantation (1). The cure rate has reached 90%, but the prognosis of patients with relapsed and refractory (R/R) leukemia after conventional treatment is very poor (2, 3). Patients with recurrence after allogeneic hematopoietic stem cell transplantation (allo-HSCT) are usually treated with donor lymphocyte infusions (DLI) (4, 5). DLI can induce complete remission (CR); however, many patients do not achieve sustained CR (6, 7).

Drugs such as monoclonal antibodies (anti-CD20), anti-CD19 bi-specific T cell binding agents, and anti-CD22 antibody-drug conjugates have shown unexpected results both in the prophase and R/R settings and continue to change the treatment paradigm for ALL (8–10). In one phase 3 trial (11), inotuzumab ozogamicin, an anti-CD22 antibody conjugated to caricomycin, showed significantly higher response rates and better progression-free survival (PFS) than standard intensive chemotherapy in adults with R/R B-ALL. In addition, more patients became minimal residual disease (MRD)-negative and required allo-HSCT. In another randomized phase 3 trial involving adults with Ph-negative R/R B-cell precursor ALL (12), treatment with blinatumomab, a bi-specific monoclonal antibody construct that enables CD3-positive T cells to recognize and eliminate CD19-positive ALL blasts, resulted in significantly longer overall survival (OS) than standard chemotherapy. The blinatumomab group also had a 29% lower risk of death than the chemotherapy group.

Since the first CD19 chimeric antigen receptor T (CAR-T) cell (Kymriah) was approved by the FDA for R/R acute lymphoblastic leukemia, several CD19 CAR-T cells have been approved by the FDA, including Yescarta, Tecartus, and Breyanzi (13). Kymriah and other CD19 CAR-Ts have also shown high CR rates (70%-93%) in r/r B-ALL patients (14–19). However, some patients did not respond, and some relapsed within one year (43-55%) (15–19). However, one study showed that CD22 CAR-T cell therapy had a 74% response rate in 21 patients with R/R B-ALL (20). CD22 CAR-T cell therapy has a good response rate, even in patients who failed to respond to CD19 CAR-T therapy or those who have relapsed. Herein, we report the treatment of a patient who relapsed after allo-HSCT, relapsed after murine scFv CD19 CAR-T therapy, had a partial response after humanized CD19 CAR-T therapy and finally achieved disease-free survival after sequential CD22 CAR-T therapy.



Case

On November 5, 2016, a five-year-old male patient was admitted to the hematology department of a local hospital due to a neck mass. Physical examination showed scattered ecchymosis on the skin, the lymph nodes were swollen in the neck, axilla, and groin, and a mass of approximately 10 cm × 8 cm × 2 cm was detected on the right side of the neck with poor mobility, no tenderness, no congestion in the pharynx, grade 2 tonsil enlargement, and no abnormalities in the cardiopulmonary region, abdomen, or nervous system. Results of a routine blood examination revealed a white blood cell (WBC) count of 16.66×109/L, hemoglobin (HB) 114 g/L, and platelet (PLT) count of 172×109/L. Bone marrow cytology showed that hyperplasia was active, the proportion of granulocytes was low, the proportion of lymphocytes, mainly primitive naive lymphocytes, had increased (83.5%), and the proportion of peripheral blood blast cells was 59%. Immunophenotyping showed that abnormal cells accounted for 84.66% of nuclear cells and expressed CD34, human leukocyte antigen DR(HLA-DR), CD123, CD10, CD19, cCD79a, terminal deoxynucleotidyl transferase (TDT), CD38, and CD22. Cytosolic immunoglobulin M (CIgM), secretory immunoglobulin M (sIgM), CD117, CD20, CD7, CD33, CD15, CD13, CD11b, CD64, CD36, CD4, CD14, CD56, myeloperoxidase (MPO), cytoplasmic CD3 (cCD3), and membrane CD3 (mCD3) were not expressed. All 43 fusion genes were negative. The results of the karyotype analysis were as follows: 58-60, XY, + 4, + 5, + 6, + 7, + 14, + 17, + 18, and + 22 [CP5]. A diagnosis of acute lymphoblastic leukemia was made. The course of treatment for this patient is shown in Figure 1A.




Figure 1 | Clinical treatment process and the response of the patient (A) Clinical treatment process and response of the patient. (B) Bone marrow MRD before and after 1st CAR-T treatment. (C) Whole body PET/CT before and after 1st CAR-T treatment.



On November 10, 2016, the VDLD (Vincristine, Daunorubicin, L-asparaginase, and Dexamethasone) chemotherapy regimen was administered. On day 15, bone marrow cell morphology showed a severe reduction of bone marrow hyperplasia and a naive lymphocyte proportion of 12%. On day 33, marrow cell morphology revealed an MRD of 4.61%. The MRD was negative after two courses of CAM (Cyclophosphamide, Cytarabine, and Azathioprine) regimen consolidation. Two rounds of chemotherapy with the HR-1 (Dexamethasone, Vincristine, High dose methotrexate, Cyclophosphamide, Cytarabine, and L-asparaginase), HR-2 (Dexamethasone, Vindesine, High dose methotrexate, Ifosfamide, Vincristine, and L-asparaginase), and HR-3 (Dexamethasone, High dose cytarabine, Etoposide, and L-asparaginase) protocols began in February 2017, and the VDLD+CAM×2 regimen began on August 27, 2017. On November 8, 2017, the MTX+6-MP/CA/VD (Methotrexate, Azathioprine, Cyclophosphamide, Cytarabine, Vincristine, and Dexamethasone) regimen was administered, during which time the bone marrow MRD was 0.18%. The second cycle of MTX+6-MP/CA/VD chemotherapy was initiated in December 2017 and the third cycle of MTX+6-MP/CA/VD chemotherapy was initiated in March 2018. Subsequently, the MTX+6-MP/CA/VD regimen was used for maintenance treatment. During the period, multiple lumbar punctures were performed and chemotherapeutic drugs were injected to prevent central nervous system leukemia, and cerebrospinal fluid examination showed no abnormalities.

On September 27, 2018, the patient visited our hospital for further diagnosis and treatment, and a physical examination revealed no abnormalities. Results of a routine blood examination were: WBC count, 2.77×109/L; HB 89 g/L; and PLT 353×109/L. We also noted bone marrow cytological remission, MRD of 1.1%, and CD9, CD10, CD19, CD20, CD34, CD38, and CD58. Chromosome analysis results were 46, XY [20]. MA (Methotrexate and Cytarabine) chemotherapy was subsequently administered. On November 5, 2018, bone marrow cytology revealed that the MRD was 2.01%. On November 21, 2018, the pretreatment regimen of BUCY+ARA-C+ATG (Busulfan, Cyclophosphamide, Cytarabine, and Antithymocyte globulin) was started. Allo-HSCT (MNC 11.8×108/kg, CD34+ cells 9.84×106/kg) was performed on November 28 and 29, and the donor was the father of the patient with 5/10 HLA matches. Multiple bone marrow test results after transplantation were negative for MRD.

In September 2019 (the ninth month after transplantation), the patient experienced left scrotal swelling and pain; the bone marrow morphology was relieved, MRD was negative, and donor chimerism was 98.89%. A biopsy of the mass (left bolus biopsy tissue) showed that it was consistent with B-cell lymphoblastic leukemia or lymphoma. Immunohistochemistry results were: CD10 (+), the TdT (+), MPO (+), CD43 (+), CD79a (+), aired box gene 5+ (Pax-5 +), leucocyte common antigen (LCA) (focal +), CD20 + (part), P53 (approximately + 25%), CD3 (in +), CD2 (in +), CD21 (–), the Placental alkaline phosphatase (PLAP) (-), Mum - 1 (-), Bcl-6 (-), CD30 (-), CD5 (-), and Ki-67 (approximately 50% +). In situ hybridization results: Epstein-Barr virus-encoded small RNA (EBER) (-). Three-dimensional conformal radiotherapy (200 cGy/time × 13 times) was administered to the left testis and the left scrotum was significantly reduced. Bone marrow morphology on October 26 revealed: 1.55% naive lymphocytes, 0.78% MRD, and 99.78% donor chimerism. VDLD chemotherapy was then administered. On the 14th day of chemotherapy, bone marrow morphology showed low proliferation, and the percentage of proto-juvenile cells was 5%. Donor lymphocyte infusion (MNC 1.29×108/kg) was performed. Bone marrow morphology 12 days after infusion (on December 2) revealed hyperplasia was active, and that the proportion of primary and juvenile lymphocytes was 3.5%. MRD was 5.35%, and this population of cells expressed CD10, CD19, CD34, and CD58 (Figure 1B). The donor chimerism rate was 93.47%. PET/CT revealed: multiple lymph nodes with increased FDG metabolism in the left side of the abdominal aorta, posterior to the pancreas, and splenic hilum, considering leukemia infiltration; and after radiotherapy, the left testicle was enlarged compared to the contralateral testicle, and FDG metabolism was not significantly increased (Figure 1C).

On December 16, 2019, peripheral blood mononuclear cells were collected from the patient and murine scFv CAR-T cells were cultured at Shanghai YaKe Biotechnology Ltd. After pretreatment with the FC (Fludarabine, cyclophosphamide) regimen, CAR-T cells were infused on December 26. On day seven after infusion, the patient showed increased heart rate, elevated transaminase levels, and elevated inflammatory factors, and the CRS was assessed as grade 1 (Table 1). The CRS classification scheme is based on the report of Lee DW et al. (21). On January 14, 2020, the bone marrow morphology was relieved, and immunoreactivity was negative. PET/CT revealed that: the left para-abdominal aorta, posterior pancreas, and splenic hilar lymph nodes were slightly smaller than the anterior ones, the FDG metabolism was not significantly increased, and FDG metabolism did not increase after radiotherapy for left testicular infiltration (Figure 1C). These results suggested that the patient was in CR, which persisted for 15 months after discharge.


Table 1 | Characterization of the three infusions of CAR-T cells.



On April 11, 2021, the patient developed a facial mass on the right side that gradually increased in size. On May 6, an ultrasound examination revealed a 44 mm × 8 mm mass with a poorly defined border and an irregular shape. A biopsy under B-ultrasound guidance was performed on May 13. Pathological findings of the biopsy tissue of the right facial mass showed a lymphoproliferative lesion, consistent with B-lymphoblastic leukemia/lymphoma (Figure 2A). Immunohistochemical staining results were: CD79a+, CD43+, TdT+, CD20 scattered+, PAX-5 scattered+, P53 approximately 25% weak+, CD5-, CD23-, CD3-, CD2-, CD7-, MPO-, and Ki-67 (approximately 60%+). In situ hybridization results: FBER. On May 22, examinations showed bone marrow morphologic remission and negative MRD, with complete donor-type chimerism. PET/CT revealed: newly found space-occupying lesions with increased FDG metabolism in the subcutaneous soft tissue of the right face; and newly observed increased FDG metabolism in the nasopharynx and slightly increased bilateral small cervical lymph nodes (Figure 1C). On June 8, peripheral blood mononuclear cells were collected from the donor (the patient’s father), and humanized CD19 CAR-T cells were cultured. After pretreatment with the FC regimen, CAR-T cells were injected on June 17. On the fifth day after infusion, the patient developed a low fever (37.5°C) without other discomfort symptoms. CRS was rated grade 1. Facial MRI on days 13 and 42 after infusion revealed that the mass was smaller than before infusion (Figure 2B).




Figure 2 | Pathology, histochemistry, and MRI images of right facial mass (A) Pathology and histochemistry of right facial mass. (B) MRI images of the right facial mass before and after 2nd, the 3rd CAR-T cell treatment.



On July 30, 2021, the patient was pretreated with the FC protocol, and on August 3, humanized CD22 CAR-T cells cultured from the peripheral blood mononuclear cells of the donor (the patient’s father) were transfused back. On the first day after the infusion, the patient developed a fever with the highest temperature of 38.6°C. Subsequently, the patient continued to have repeated high fevers, with the highest temperature of 39°C, and a cough accompanied by chest tightness and breathlessness. Chest CT showed a pulmonary infection, which improved after antipyretic symptomatic treatment and anti-infective treatment. Drugs used included ibuprofen, meropenem, voriconazole, and caspofungin. No steroid hormones were used. CRS was graded as grade 2. As shown in Figure 3, CAR-T cell expansion and cytokine elevation were the most dramatic after the third CAR-T cell infusion (Supplementary Figure 1). After the third CAR-T cell infusion, the tumor was significantly reduced in size, with no activity in the lesion 191 and 297 days (February 10, 2022, and May 27, 2022) after the third CAR-T cell infusion (Figure 2B).




Figure 3 | Expansion and changes of T cell subsets after CAR-T cell therapy (A) The proportion of CAR-T cells in CD3+ cells after CAR-T cell therapy was detected by flow cytometry. (B) Changes in the proportion of T cell subsets after CAR-T cell therapy. The memory phenotype is in bulk T cells.





Discuss

In this patient with acute lymphoblastic leukemia, the first extramedullary (testicular) recurrence occurred more than nine months after allogeneic transplantation. After radiotherapy, the extramedullary lesions disappeared, but the bone marrow MRD was positive. The MRD increased after chemotherapy and donor lymphocyte infusion. After the first CAR-T cell treatment, the MRD was negative. Extramedullary (facial) recurrence occurred after 15 months, which improved after two CAR-T cell treatments, following which the patient continued to live disease-free.

Occasionally (≤ 2%), testicular recurrence occurs in acute lymphoblastic leukemia (22). Ding et al. (23) showed that testicular recurrence might directly evolve from leukemia clones that survive chemotherapy. It is also likely to have relapsed independently from the bone marrow. Radiotherapy is a good choice for patients with isolated testicular recurrences (24). Besides, CAR-T therapy for testicular recurrence has been started in several studies. In the study of Chen X et al. (25), all 7 patients had CR. One patient had bone marrow recurrence 6 months after CAR-T treatment, and 6 patients were still in remission during the follow-up period (median 14 months). Only 5 patients developed grade 1 CRS, and the remaining two patients did not develop CRS. Rubinstein JD et al. (26) and Yu J et al. (27) each reported 1 case of ALL with testicular recurrence and remission after CAR-T treatment.

Based on flow cytometric assessment of CD19 expression in B-ALL, relapse after CD19 CAR-T cell treatment can be divided into two groups: CD19-negative relapse and CD19-positive relapse (28, 29). When the patient relapsed after the first CD19 CAR-T cell treatment, immunohistochemistry showed strong CD19 positivity (Figure 2A), and the patient was classified as a CD19-positive relapse. Positive relapse is usually due to low potency or CAR-T cell loss. Several factors limit CAR-T cell power and efficacy, including limited long-term persistence, immunosuppressive tumor microenvironment, and intrinsic dysfunction associated with T cell exhaustion (30–33).

In some cases of treatment failure, secondary infusions of CD19 CAR-T cells were not reproducibly successful if the CD19 expression in leukemic cells remained high, possibly partly due to immune-mediated clearance of murine scFv CAR-T cells (34–36). Previous studies have shown that humanized CAR-T remains effective in patients who relapsed after murine scFv CAR-T cells treatment (37, 38). Therefore, we treated the patient with a second humanized CD19 CAR-T, resulting in a reduction of the patient’s lesions. In this patient, the expression rate of CD19 was still very high at the time of recurrence (Figure 2A). Among patients with CD19-positive ALL who relapsed after murine scFv CD19 CAR-T treatment, the humanized CD19 CAR-T CR rate (50%-64%) was still lower than in patients who had not received CAR-T therapy (37, 38). We believe that it may be caused by the resistance of tumor cells to CD19 CAR-T, and the mechanism needs to be further studied. In contrast, approximately 80% of patients with ALL after CD19 CAR-T cell therapy had CR after CD22 CAR-T cell therapy, which was not different from patients who did not receive CD19 CAR-T cell therapy (20, 39). Although we did not detect the mean fluorescence intensity (MFI) of CD19 and CD22, CD19 and CD22 in Figure 2A were analyzed by Image-Pro Plus software through the method of Liu X et al. (40). The mean density of CD19 (0.32 ± 0.01) was higher than that of CD22 (0.21 ± 0.00), indicating that the expression intensity of CD19 was still very high. The success of CD22 CAR-T may be due to the resistance of tumor cells to CD19 CAR-T at this time, but not to CD22 CAR-T.

The third CAR-T cell therapy yielded surprising results, with the patient’s lesions continuing to shrink with no significant activity. We also found a positive correlation between CAR-T cell expansion and the efficacy of the second and third CAR-T therapy in the same patient. The inflammatory cytokines IFNγ, SIL-2R, TNFα, and IL-6 also showed a positive correlation with CAR-T efficacy (Supplementary Figure 1). Treg cells inhibit excessive immune responses by expressing CTLA4 and secreting IL-10 and TGFβ (41), reflected in changes to Treg and IL-6 levels along with changes in inflammatory cytokines.

Relapse is observed in 30-60% of patients with acute lymphoblastic leukemia after CD19 CAR-T cell therapy, mostly within one year (16, 19, 28, 42, 43). Data from both murine studies and integration site analysis after adoptive T cell transfer in humans suggest that long-term persisting T cells are predominantly derived from stem cell-like memory T cells (TSCM) and central memory T cell (TCM) compartments of the infused product (44). In this patient, effective memory T Cell (TEM) increased after three CAR-T cell treatments and only began to decrease six days after the second CAR-T cell treatment. TCM increased significantly after the first and third treatments (17.1% and 14.4%, respectively) and increased to 4% after the second treatment (Figure 2B). Our data suggest that this is also likely to be true after CAR-T cell therapy.

In some studies, CAR-T therapies result in antigen escape/loss, and the rate of CD19-negative recurrence in ALL patients is 7%-25% (14–16, 34, 45, 46), while more patients have CD19-positive recurrence. To combat immune escape, studies continue to combine CAR T cells with radiation (47), checkpoint suppression (48), vaccines (49), or other immune agonists (50, 51). Another approach is to simultaneously target more than one antigen on cancer cells, such as CD19, CD20, and CD22 (20, 52–54). We believe that even if patient antigen escapes/loss, other antigens can still be searched, and more studies are still in progress. Summers et al. (55) showed no benefit of a second allogeneic HSCT after CAR-T treatment for patients with recurrence after HSCT. Moreover, the outcome of the second HSCT is usually worse in B-ALL patients (56–58). This patient is currently in sustained remission 14 months after the third CAR-T treatment, and we will continue to follow him closely.

By comparing the results of different CAR-T cells in the same patient, this case suggests that multiple CAR-T therapies is effective and safe in both intramedullary and extramedullary recurrence in the same patient and that CAR-T cell expansion and inflammatory cytokine release are positively associated with its efficacy. Further clinical studies with large sample sizes are needed for further clarification.
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Background

Apart from myasthenia gravis (MG), thymoma is associated with a wide spectrum of autoimmune paraneoplastic syndromes (PNSs). Here, we report on a rare case presenting with four different PNSs, namely, MG, membranous nephropathy, cutaneous amyloidosis, and Morvan’s syndrome associated with thymoma.



Case presentation

A middle-aged man was frequently hospitalized because of nephrotic syndrome (stage I membranous nephropathy), cutaneous amyloidosis, and MG with acetylcholine receptor (AChR) antibody and titin antibody positivity. Chest CT showed a thymic mass in the left anterior mediastinum, and he received intravenous immunoglobulin (IVIG), methylprednisolone pulse therapy, thoracoscopic thymoma resection, and radiotherapy. Postoperative pathological examination revealed a type B2 thymoma. During the perioperative stage, his electrocardiogram (ECG) showed myocardial infarction-like ECG changes; however, his levels of cardiac enzymes and troponin were normal, and he had no symptoms of precardiac discomfort. Six months after thymectomy, his nephrotic syndrome and MG symptoms were relieved; however, he presented with typical manifestations of Morvan’s syndrome, including neuromyotonia, severe insomnia, abnormal ECG activity, and antibodies against leucine-rich glioma-inactivated 1 (LGI1) and γ-amino-butyric acid-B receptor (GABABR). His symptoms did not improve after repeated IVIG and steroid therapies. Finally, he received low-dose rituximab, and his symptoms gradually resolved.



Conclusion

This case serves to remind us that apart from MG, thymoma is also associated with other autoimmune PNSs such as membranous nephropathy, cutaneous amyloidosis, and Morvan’s syndrome. Autoimmune PNSs can present concurrently with or after surgical or medical therapy for thymoma. For Morvan’s syndrome post-thymectomy with LGI1 antibody positivity, B-cell depletion therapy such as intravenous rituximab is an effective treatment.
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Introduction

Apart from myasthenia gravis (MG), thymoma is also associated with a wide spectrum of autoimmune paraneoplastic syndromes (PNSs), including systemic lupus erythematosus, autoimmune cytopenia, neuromyotonia, Morvan’s syndrome, limbic encephalitis, polymyositis, Good’s syndrome, autoimmune thyroid diseases, autoimmune hepatitis, and cutaneous autoimmune disorders (1–6). The clinical manifestations of PNSs associated with thymomas pose a challenge to clinicians because of the need to decipher the association between the presenting symptoms and the underlying mass. Here, we report a rare case of four different PNSs associated with thymoma: nephrotic syndrome (stage I membranous nephropathy), cutaneous amyloidosis, MG with acetylcholine receptor (AChR) and titin antibodies, and Morvan’s syndrome post-thymectomy with antibodies against leucine-rich glioma-inactivated 1 (LGI1) and γ-amino-butyric acid-B receptor (GABABR). The symptoms of nephrotic syndrome, cutaneous amyloidosis, and MG gradually improved after receiving intravenous immunoglobulin (IVIG), steroids, thoracoscopic thymoma resection, and radiotherapy. The symptoms of Morvan’s syndrome post-thymectomy did not improve after receiving IVIG and oral steroids but were relieved after receiving intravenous rituximab therapy.



Case presentation

A 49-year-old male patient was admitted to the Department of Nephrology of Henan Provincial People’s Hospital on 23 March 2020. He presented with symptoms of edema of both lower limbs for 2 months and eyelid edema for 15 days. Physical examination showed pitting edema of both legs, edema of double eyelids, and extensive pigmentation of the skin of the whole body. The patient subsequently underwent a series of examinations. The results showed that his level of 24-h urinary protein was 21.72 g/L, level of serum albumin was 9.5 g/L, serum total cholesterol was 9.07 mmol/L, creatinine was 125 μmol/L, and titer of antinuclear antibody (ANA) was 1:1,000, and he was also positive for anti-histone antibody (AHA). His electrocardiogram (ECG) at that time was normal. This patient underwent kidney biopsy, and the biopsy revealed that there was mild thickening of the glomerular basement membrane, normal mesangial cellularity, and no interstitial fibrosis or tubular atrophy. Immunofluorescence staining showed granular deposits along the capillary walls for IgG, C3, kappa, and lambda light chains, and electron microscopy showed subepithelial electron-dense deposits. Based on the above observations, the patient was diagnosed with stage I membranous nephropathy (Figure 1). This patient also underwent skin biopsy, where pathology showed cutaneous amyloidosis (Figure 1). He received methylprednisolone at an initial dosage of 40 mg per day and intravenous cyclophosphamide at a total dose of 2 g, with steroids tapered down gradually. In addition, he received treatment such as intravenous albumin supplementation and diuresis.




Figure 1 | Kidney biopsy findings showing stage I membranous nephropathy (A–C). (A) Normal mesangial cellularity (periodic acid–Schiff; original magnification, ×100). (B) Slight global glomerular basement membrane thickening (yellow arrows; Jones methenamine silver; original magnification, ×400). (C) Subepithelial electron-dense deposits, partially in the glomerular basement membrane (yellow arrows; original magnification, ×4,000). (D) Skin lesions on the patient’s left upper arm. (E, F) Skin biopsy findings showing cutaneous amyloidosis. (E) The skin specimen stained by hematoxylin–eosin revealed parakeratosis with focal hyperkeratosis, widened dermal papilla, and an amorphous red-stained mass substance (yellow arrow; ×400). (F) The skin specimen stained by crystal violet was positive (yellow arrow; ×400).



Four months after the above examinations, the patient was rehospitalized in our hospital for follow-up on 10 August 2020. The edema of his legs and eyelids had disappeared, the concentration of 24-h urinary protein decreased to 0.77 g/L, and the serum creatinine level had returned to normal. Thus, the steroid dosage was tapered to 20 mg/day. However, the patient complained of weakness in his neck and both hands, as well as chest distress, shortness of breath, inability to lie flat, and dysphagia. These symptoms were indicative of the fatigue phenomenon. Subsequent neostigmine test results were positive, while repetitive nerve stimulation showed 51.4% and 31% decremental compound muscle action potential responses at low- and high-stimulation frequencies, respectively. The patient underwent chest computed tomography (CT), which revealed a thymic mass in the left anterior mediastinum (Figure 2). Antibodies associated with MG in his serum were tested and demonstrated the following: the level of AChR antibody was higher than 320 nmol/L, and his titin antibody was also strongly positive.




Figure 2 | (A) Chest CT showing a thymic mass in the left anterior mediastinum (yellow arrow). (B) LGI1 antibody cell-based assay showing a 1:32 positive ratio. (C) ECG showing acute anterior, lateral, and high lateral myocardial infarction-like ECG changes. (D) Afterdischarges were observed in the F wave. (E) Needle EMG showing duplet, triplet, and multiplet bursts of spontaneous motor unit discharges in the tested muscles of the limbs at rest suggestive of myokymia. CT, computed tomography; LGI1, leucine-rich glioma-inactivated 1; ECG, electrocardiogram; EMG, electromyography.



The patient was diagnosed with thymoma-associated MG based on the observations above and received treatments such as IVIG at a dose of 0.4 g/kg/day * 5 days, methylprednisolone pulse therapy, and pyridostigmine administration. His muscle weakness then gradually improved. Subsequently, the patient underwent thoracoscopic thymoma resection using the subxiphoid approach under general anesthesia. The size of the thymus tissue examined was 5 × 3 * 1.5 cm, and its pathological diagnosis was type B2 thymoma. After surgery, the patient was transferred to the intensive care unit for respiratory support, anti-infection treatment, and immunomodulatory treatment. During this period, his ECG showed acute anterior, lateral, and high lateral myocardial infarctions (Figure 2); however, the myocardial enzyme profile and troponin levels were normal, and he had no symptoms of precardiac discomfort. After a period of recovery, he was transferred to the oncology department for radiotherapy. The patient was discharged on 28 November 2020. At that time, his symptoms of MG were relieved, the level of AChR antibody decreased to 19.6 nmol/L, and he was able to take care of himself.

In the following 6 months, the patient received oral prednisone and pyridostigmine bromide with regular follow-up. On 15 April 2021, the patient was readmitted for follow-up. His nephrotic syndrome and MG symptoms were relieved with 10 mg of oral prednisone per day. However, he complained of diffuse muscle twitching within the last week, as well as limb pain, blurred vision, and poor sleep. He could only sleep for 1–2 h every night. Physical examination revealed extensive myokymia in the limbs and trunk involving spontaneous, continuous, undulated muscle movements, similar to a bag of worms under the skin (Video 1). Needle electromyography (EMG) showed duplet, triplet, and multiplet bursts of spontaneous motor unit discharges in the tested muscles of the limbs at rest, and after discharges were observed in the F wave, suggesting peripheral nerve hyperexcitability syndrome (Figure 2). His ECG showed abnormal Q waves in the inferior wall leads and an ST-segment elevation of 1–1.5 mm. Blood tests showed that apart from ANA and AHA, anti-neutrophil cytoplasmic antibody (ANCA) was also positive. The patient’s serum was also tested for antibodies to cell-surface antigens, including N-methyl-D-aspartate receptor, LGI1, contactin-associated protein 2 (CASPR2), GABABR, and alpha-amino-3-hydroxy-5-methyl-4-iso-xazolepropionic acid (AMPA) receptors (EUROIMMUN, Germany), and the results showed that antibodies against LGI1 and GABABR were both positive, with titers of 1:32 (Figure 2) and 1:10, respectively. The patient was diagnosed with Morvan’s syndrome and treated with IVIG at a dose of 0.4 g/kg/day for 5 days and oral steroids; however, his symptoms of myokymia and insomnia did not improve 1 month later. Considering that the patient’s immune test indicated that he was in an immunosuppressive state at the time, he was treated with low-dose rituximab (7, 8) at a dose of 100 mg/week for 4 weeks. During the follow-up 1 month later, the muscle twitching, limb pain, and insomnia symptoms were significantly improved. Subsequently, the patient received 100 mg of rituximab intravenously every 6 months, and his symptoms have not recurred for 1 year. The timeline of the diagnosis and treatment is shown in Figure 3.




Figure 3 | Timeline of the diagnosis, treatment, and outcome. CT, computed tomography; cMAP, compound muscle action potential responses.





Discussion

Thymomas are epithelial tumors arising from the thymus and are the most commonly found tumors in the anterior mediastinum. Approximately 40%–50% of thymomas present with PNSs (5, 9). It has been noted that 25%–40% of patients with thymoma present with MG, and more than 15% of patients diagnosed with thymoma present with a PNS other than MG (2, 4, 10, 11). PNSs can be antibody- or non-antibody-mediated, leading to both organ-specific and systemic effects (2, 4, 11). Approximately one-third of patients with PNSs have two or more conditions (9). PNSs can also present before, concurrently with, or after surgical or medical therapy for thymomas (5, 11). Here, we present a rare case of a middle-aged male patient who was successively diagnosed with multiple thymoma-associated PNSs, including membranous nephropathy, cutaneous amyloidosis, MG, and Morvan’s syndrome, as well as with multiple positive serum antibodies (ANA, AHA, ANCA, AChR, titin, LGI1, and GABARB).

This patient was diagnosed with membranous nephropathy at the first visit due to nephrotic syndrome, and his symptoms were completely relieved after receiving steroids, cyclophosphamide, and thymectomy. Thymoma-associated nephropathy is very rare, with only 10% of nephrologists in France encountering patients with thymoma-associated renal disease (12). In thymoma-associated nephropathy, the most common pathology is minimal change glomerulopathy, followed by membranous nephropathy, focal segmental glomerulosclerosis, and others (12). Membranous nephropathy is usually associated with active thymoma, either newly diagnosed or recurrent. Tumor treatment (thymectomy, radiotherapy, or chemotherapy) frequently induces remission of nephrotic syndrome in membranous nephropathy (12). The good outcome in this patient confirmed this view. Immunological tests were disturbed in many cases of thymoma-associated nephropathy, and it was reported that ANA was positive in 13/18 (72%) of such cases (12). Our patient also showed many autoantibodies, such as ANA, AHA, and ANCA.

Cutaneous disorders associated with thymomas are widely heterogeneous and include pemphigus, lichen planus, vitiligo, alopecia areata, lupus erythematosus, and graft-versus-host-like disease (5, 13). However, our case is the first report of cutaneous amyloidosis associated with thymoma. As previously reported, the effect of thymectomy seems to be variable but can, in some cases, induce the regression of paraneoplastic cutaneous disorders (14, 15). In view of this, the patient’s skin manifestations improved after complete thymoma resection.

MG is the most common PNS associated with thymoma, with 10%–15% of MG patients presenting with thymoma and 25%–40% of patients with thymoma developing MG (2, 4, 10). Nearly all patients with thymoma-associated MG have detectable AChR antibodies (1, 10, 16). The AChR antibody concentration in our patient was very high, reaching 320 nmol/L. To date, no correlation has been observed between AChR antibody concentration and disease severity. The value of repeated AChR antibody testing in patients with this disorder has been debated; however, changes in antibody concentrations may predict disease severity in patients administered immunosuppressive drugs and can therefore support therapeutic decisions (16). After our patient underwent thymoma resection and immunotherapy, the concentration of AChR antibody decreased to 19.6 nmol/L, supporting the view that longitudinal observation of AChR antibody concentrations is needed for the long-term treatment of MG patients. In addition, the titer of the titin antibody in this patient was very high. The presence of titin antibody is suggested to be a strong indication of thymoma and is associated with more severe MG (17).

Acquired neuromyotonia (aNMT) is a disorder characterized by peripheral nerve hyperexcitability that results in continuous muscle activity. Clinical presentations include myokymia, fasciculations, and cramps (3, 18), and EMG shows spontaneous motor unit discharges as doublet, triplet, or multiplet bursts (myokymic discharges) or longer bursts with high intraburst frequencies (neuromyotonic discharges) (18). The clinical symptoms and EMG findings of this patient were typical manifestations of neuromyotonia. In 20% of cases, aNMT is associated with signs of central nervous system involvement, such as mood changes, hallucinations, and insomnia, together with autonomic dysfunction, collectively known as Morvan’s syndrome (19). Aside from neuromyotonia, the patient’s symptoms of severe insomnia, blurred vision, and myocardial infarction-like ECG changes support the diagnosis of Morvan’s syndrome.

Morvan’s syndrome is a rare disease associated with thymoma. In a study of 29 patients with Morvan’s syndrome, thymoma was found in 37% of the patients (19). aNMT is associated with antibodies to the Kv1 voltage-gated potassium channel complex. These antibodies do not target Kv1 channels directly; rather, they target two associated proteins, LGI1 and CASPR2 (6, 20, 21). In this patient, antibodies against LGI1 and GABABR were both positive, while antibodies against CASPR2 were negative. The LGI1 antibody was pathogenic in this patient, as it has been reported to alter Kv1.1 and AMPA receptors and modify synaptic excitability, plasticity, and memory (22). In addition, the role of the GABABR antibody in this patient’s disease is not clear, and it may only be a concomitant antibody.

The ECG of the patient showed serious abnormalities similar to those of myocardial infarction. A similar phenomenon has been reported in previous literature: severe bradycardia and even sudden death due to myocardial ischemia with normal coronary arteries occurred in patients with LGI1 antibody-associated encephalitis (21, 23). This emphasizes that in patients with Morvan’s syndrome associated with LGI1 antibody, cardiac complications are potentially life-threatening and require clinical vigilance. The patient received IVIG therapy after he was diagnosed with Morvan’s syndrome; however, his symptoms did not improve. The reason why IVIG did not work might be that most subclasses of LGI1 antibodies belong to IgG4, which is inadequate for activating a cellular- or complement-mediated immune response (24). The patient recovered after receiving B-cell depletion therapy. His good response to rituximab is consistent with previous research that reported the effectiveness of rituximab treatment in patients with LGI1 encephalitis (25).

We questioned why multiple coexisting autoimmune syndromes occur in patients with thymoma. Notably, the thymus is a key site for the establishment of immune tolerance. This process involves the maturation and selection of T cells during their migration through the thymic cortex and medulla. Thus, defective negative selection with the export of autoreactive CD4+ T cells together with a reduced level of regulatory T cells may appear to be the key features associated with the occurrence of PNS in thymoma patients (4, 26).



Conclusion

Overall, we present a rare case of a middle-aged male patient who was successively diagnosed with multiple thymoma-associated PNSs, including membranous nephropathy, cutaneous amyloidosis, MG, and Morvan’s syndrome, and who presented with multiple positive serum antibodies (ANA, AHA, ANCA, AChR, titin, LGI1, and GABARB). This case serves to remind us that, apart from MG, thymoma may also be associated with other autoimmune PNSs. Thymectomy, related tumor therapy, and immunotherapy are important for the management of PNSs. For Morvan’s syndrome post-thymectomy with LGI1 antibody positivity, B-cell depletion therapy such as intravenous rituximab is an effective treatment.
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Background

Chimeric antigen receptor T (CART) cell therapy targeting the B cell specific differentiation antigen CD19 has shown clinical efficacy in a subset of relapsed/refractory (r/r) diffuse large B cell lymphoma (DLBCL) patients. Despite this heterogeneous response, blood pre-infusion biomarkers predicting responsiveness to CART cell therapy are currently understudied.



Methods

Blood cell and serum markers, along with clinical data of DLBCL patients who were scheduled for CART cell therapy were evaluated to search for biomarkers predicting CART cell responsiveness.



Findings

Compared to healthy controls (n=24), DLBCL patients (n=33) showed significant lymphopenia, due to low CD3+CD4+ T helper and CD3-CD56+ NK cell counts, while cytotoxic CD3+CD8+ T cell counts were similar. Although lymphopenic, DLBCL patients had significantly more activated HLA-DR+ (P=0.005) blood T cells and a higher frequency of differentiated CD3+CD27-CD28- (28.7 ± 19.0% versus 6.6 ± 5.8%; P<0.001) T cells. Twenty-six patients were infused with CART cells (median 81 days after leukapheresis) and were analyzed for the overall response (OR) 3 months later. Univariate and multivariate regression analyses showed that low levels of differentiated CD3+CD27-CD28- T cells (23.3 ± 19.3% versus 35.1 ± 18.0%) were independently associated with OR. This association was even more pronounced when patients were stratified for complete remission (CR versus non-CR: 13.7 ± 11.7% versus 37.7 ± 17.4%, P=0.001). A cut-off value of ≤ 18% of CD3+CD27-CD28- T cells predicted CR at 12 months with high accuracy (P<0.001). In vitro, CD3+CD8+CD27-CD28- compared to CD3+CD8+CD27+CD28+ CART cells displayed similar CD19+ target cell-specific cytotoxicity, but were hypoproliferative and produced less cytotoxic cytokines (IFN-γ and TNF-α). CD3+CD8+ T cells outperformed CD3+CD4+ T cells 3- to 6-fold in terms of their ability to kill CD19+ target cells.



Interpretation

Low frequency of differentiated CD3+CD27-CD28- T cells at leukapheresis represents a novel pre-infusion blood biomarker predicting a favorable response to CART cell treatment in r/r DLBCL patients.
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Introduction

Diffuse large B cell lymphoma (DLBCL) represents the most frequent form of non-Hodgkin’s lymphoma (NHL). Five-year survival rates range from 55% to 64% (1, 2); however, patients who experience early relapse, or who are refractory to initial immunochemotherapy have a poor prognosis (3). In fact, salvage therapy for patients with refractory NHL has been associated with frequent therapy failures (>70%) and poor long-term outcome with an overall survival of only 6 months (3). Even consolidation therapy with subsequent autologous stem cell transplantation leads to only 50% long-term survival (4, 5).

Chimeric antigen receptor T (CART) cells represent a novel treatment option for patients with refractory/relapsing (r/r) DLBCL (6, 7). CART cell therapy takes advantage of autologous peripheral blood (PB) T cells, which are genetically modified ex vivo to express a chimeric antigen receptor (CAR) designed to target the CD19 antigen on the surface of the malignant B cell clone (8). Despite initial promising results with tisagenlecleucel (formerly CTL019) (7, 9), axicabtagene ciloleucel (formerly KTE-C19) (10) and lisocabtagene maraleucel (formerly JCAR017) (11), leading to overall response (OR) and complete remission (CR) rates of 83% to 52% and 58% to 40% (7, 11, 12), respectively, clearly not all patients benefit from CART cell therapy in the long-term (7). In fact, response rates decline to approximately 32% after one year (7). However, the identification of patients most likely to benefit from CART cell therapy is difficult to achieve by solely using clinical and basic laboratory criteria. Therefore, a reliable predictor of response to CART cell therapy at the time of enrollment, e.g., by a simple blood test, is an unmet need for optimal patient selection (13).

Currently, the best predictors of responsiveness to CART cell therapy are low lactate dehydrogenase (LDH) levels after lymphodepletion before CART cell infusion, a low tumor volume and a low Eastern Cooperative Oncology Group (ECOG) performance status (7, 14–16). Owing to the mode of action of CART cells, the immune system most likely plays a major role in its effectiveness. However, all three markers (LDH, tumor volume, ECOG) are not directly related to the immune system, and thus can, at best, represent surrogate markers for future tumor-immune surveillance by the gene modified autologous CART cells. More recently, other factors strongly linked to the immune system and possibly impacting on the response to CART cell therapy have been suggested. These factors include, but are not restricted to: i) defective T cell function (poor initial “pre-CAR” T cell quality or decreasing “post-CAR” T cell function) (17); ii) microenvironmental suppression (check point inhibition and suppressive cytokines) (18); and iii) antigen escape (target antigen modulation (19) or myeloid lineage switch) (20). In addition, increased frequencies of CD27+CD45RO-CD8+ T cells at the time of leukapheresis have been implicated to correlate with sustained remission in patients with chronic lymphocytic leukemia treated with CD19 CART cells (21), in multiple myeloma patients treated with B cell maturation antigen (BCMA)-specific CART cells (22), and recently in patients with DLBCL (23). It has been suggested that CD27+CD45RO-CD8+ T cells belong to the group of antigen-experienced CD3+CD8+ T lymphocytes that have long-lasting memory capabilities and improved ability to expand in vitro and in vivo (21, 22, 24). While of interest, the respective marker combination does not define a single cellular phenotype since CD45RO negativity may identify both naïve CD8+ T cells as well as antigen-experienced “stem cell memory” cells (23). Moreover, focusing the analyses exclusively on CD8+ T cells has the problem of potentially underestimating the cytotoxic potency of CD4+ T cells turned into CART cells during the manufacturing process. However, it has been clearly shown in adoptive T cell transfer studies in preclinical melanoma models that more differentiated CD8+ effector T cells are less effective for in vivo tumor treatment and that the renewal capacity of CD8+ T cells as determined by their telomer length plays an important role in that respect (25). In line with these studies, adoptive T cell transfer studies with autologous CD8+CD27+ T cells led to durable responses in heavily pretreated patients with metastatic melanoma (26). Apart from phenotypic data, a recent study suggested that germline mutations in UNC13D and compound heterozygous forms of CXCR1 may represent additional resistance factors to CART therapy (17). Whether and how they correlate with the cell surface phenotype of CD3+ T cells remains to be shown in the future. Furthermore, it should also be noted that for many patients, it is not possible to generate a suitable CART cell product due to prolonged lymphopenia and the associated inability to isolate a sufficient number of functional T cells (27).

Lymphopenia, as well as poor T cell quality and function, may reflect the intensity of previous immuno-chemotherapies, but may also result from hyperactivation of T cells, a process well-known to lead to their subsequent hypoproliferation and reduced life expectancy. Hyperactivated HLA-DR+ T cells have been shown to down-modulate cell surface expression of the co-stimulatory molecules CD27 and CD28 (28–31), which are otherwise decisively involved in the regulation of T cell activation (32, 33), the formation and maintenance of antigen-experienced T cells (34) and tumor immune surveillance (35). However, increased frequencies of HLA-DR+ T cells may also be the result of homeostatic proliferation (36). The expression levels of CD27 and CD28 as well as those of the high molecular weight form of CD45, i.e., CD45RA, and the chemokine receptor CCR7 allow, in principle, the determination of the position of a given T cell within the linear T cell differentiation model proposed by Romero et al. (37). In that model, CD3+CD27-CD28- T cells are mainly composed of T effector memory cells re-expressing CD45RA (TEMRA) cells and to a lower degree also contain effector memory type 3 (EM3) cells. While CCR7 is a robust marker for distinguishing between central and effector memory T cells, CD45RA is somewhat problematic because it is expressed on both naïve and terminally differentiated TEMRA cells and is overexpressed in 1 of 20 Caucasian individuals due to the C77G mutation (38), making it much more difficult to distinguish between bona fide CD45RA+ and CD45RA- cell subsets. Therefore, we here analyzed leukocyte subset distribution, T cell activation, and focused on CD27 and CD28 expression of bulk CD3+ T cells in the blood and corresponding leukapheresis products of adult r/r DLBCL patients and correlated the results with 3 months OR to CART cell therapy.



Patients and methods


Patients and clinical trial conduct

Between January 2016 and January 2022, 33 patients diagnosed with r/r DLBCL and scheduled for treatment with CART cells at our institution were enrolled into this study to investigate the composition of leukocyte subpopulations, their activation and differentiation status, together with serum markers in peripheral blood (PB) and leukapheresis samples. Patients gave their written informed consent in accordance with the Declaration of Helsinki. Patients received CART cells in clinical trials with tisagenlecleucel (n=15; Ethics Committee (EC) No.: 1422/2015, 1607/2018), YTB323 [n=2; EC No.: 2055/2019 (39)], or in routine applications of tisagenlecleucel (n=6) or axicabtagene ciloleucel (n=3). Analysis of data was approved by the EC of the Medical University of Vienna (EC No.: 1290/2020). Patient characteristics are presented in Table 1 and S1. Of the 33 enrolled patients, 26 already received CART cells, more than 3 months previously, at the time of data cut-off of this study. Seven patients were excluded from the study because they died before CART cell infusion (n=5), or received another treatment (n=2). The patients included into this study were heavily pretreated, showing failure to respond to two or more treatment lines, thus representing the subpopulation of patients with relapsed DLBCL eligible for CART therapy. The healthy control subjects (n=24) were age- (median 60 years; range 33-77 years) and sex- (10 women; 41.7%) matched and similar to the patients of Caucasian ethnicity.


Table 1 | Demographics, pathological features and clinical performance of patients.





Flow cytometric analyzes

Immunophenotyping of PB and the leukapheresis products was performed with fresh samples according to standard procedures (40) using directly conjugated monoclonal antibodies (Supplemental Table S2). To keep numbers of flow cytometric parameters low, the CD27 and CD28 expression status was analyzed on bulk CD45+CD3+ T cells. Acquisition was performed on flow cytometers (FACS Calibur and LSR Fortessa, Becton Dickinson, San Jose, CA; Navios or Cytoflex, Beckman Coulter, Krefeld, Germany) supported by the Cellquest, Diva and Kaluza software, respectively. Acquired data were analyzed with Flow Jo software (BD).



Generation of CART cells for in vitro studies

Buffy coats from anonymous healthy donor’s blood were purchased from the Austrian Red Cross, Vienna. CD3+ primary human T cells were isolated using the RosetteSep Human T cell Enrichment Cocktail (STEMCELL Technologies, Vancouver Canada) and immediately cryopreserved in RPMI-1640 GlutaMAX medium (Thermo Fisher Scientific, Waltham, MA) supplemented with 20% FCS and 10% DMSO (both from Merck, Darmstadt, Germany). Primary human T cells were thawed in RPMI-1640 GlutaMAX medium, supplemented with 10% FCS, 1% penicillin-streptomycin (Thermo Fisher Scientific) and 200 IU mL-1 recombinant human IL-2 (Peprotech, Waltham, MA) and activated with Dynabeads Human T-Activator CD3/CD28 beads (Thermo Fisher Scientific) at a 1:1 ratio according to the manufacturer’s instructions. Twenty-four hours after stimulation, T cells were transduced in cell culture plates, which were coated with RetroNectin (Takara, Shiga, Japan), according to the manufacturer’s instructions. Thawed lentiviral supernatant was added to the T cells at a final dilution of 1:2, yielding a cell concentration of 0.5 x 106 cells mL-1. Forty-eight hours after transduction, selection of CART cells was initiated by treatment with 1 µg mL-1 puromycin (Merck, Germany) for two days. Transduced T cells were cultivated in AIM V medium (Thermo Fisher Scientific) supplemented with 2% Octaplas (Octapharma, Vienna, Austria), 1% L-glutamine, 2.5% HEPES (both from Thermo Fisher Scientific) and 200 IU mL-1 recombinant human IL-2 for 14 days and then frozen in liquid nitrogen in IMDM medium containing 20% FB and 10% DMSO until further use.



Construction of lentiviral vector

VSV-G pseudotyped lentivirus was generated by co-transfection of Lenti-X 293T cells (Takara) with a puromycin-selectable pCDH expression vector (System Biosciences, USA) encoding the second-generation anti-CD19-CAR (FMC63.4-1BB.ζ) and viral packaging plasmids pMD2.G and psPAX2 (Addgene plasmids #12259 and #12260, respectively; kind gifts from Didier Trono) using the PureFection Transfection Reagent (System Biosciences, Palo Alto, CA) according to the manufacturer’s instructions. Viral supernatants were collected on day 2 and 3 after transfection and were concentrated 100-fold using the Lenti-X Concentrator (Takara) according to the manufacturer’s instructions. Viral suspensions were frozen at -80°C until further use.



Functional in vitro assays with CART cells

For in vitro experiments, CART cells were gently thawed and cultured in AIMV medium (Thermo Fisher Scientific, USA) supplemented with 2% Octaplas (Octapharma), 1% L-glutamine, 2.5% HEPES (both from Thermo Fisher Scientific, USA) and 50 IU mL-1 recombinant human IL-2 (Peprotech). One day after thawing, CART cells were expanded by adding five times the number of irradiated (120 Gray) TM-LCL cells, a human B lymphocyte cell line immortalized by Epstein-Barr virus infection (41), which have been optimized as feeder cells for CD19 CART cell expansion (42). Expansion of CD19 CART cells after removal of CD3CD28-beads with CD19+LCL cells has been used in the past and represents an accepted procedure for CART cell expansion and propagation (43). After three days, cells were further expanded every two to three days by adding fresh medium in a 1:2 ratio. Ten days after expansion, CART cells were FACS sorted with the antibodies listed in Table S2 to obtain CD3+CD8+CD27+CD28+, CD3+CD8+CD27-CD28- T, CD3+CD4+CD27+CD28+ and CD3+CD4+CD27-CD28- cell populations on a Sony SH800 Sorter (Sony Biotechnology, San Jose, CA) and cultured in the presence of IL-2 in medium as described above. Five to seven days later, cells were used for in vitro assays. For proliferation assays, 1 x 105 CART cells were incubated with the indicated amounts of irradiated (120 Gray) CD19+ TM-LCL cells (ranging from 2 x 105 to 1 x 104 cells) in triplicates in 96-well round-bottom tissue culture plates (Sarstedt, Nümbrecht, Germany) in a total volume of 200 µl for 48 h. Cells were pulsed with [methyl-3H]-thymidine (1 µCi per well) for 18 hours and thymidine up-take was analyzed as previously described (44). For analysis of T cell activation and cytokine production, 1 x 105 CART cells were incubated with the indicated amounts of CD19+ TM-LCL cells (ranging from 2 x 105 to 1 x 104 cells) in triplicates in 96-well round-bottom plates in a total volume of 200 µl for 72 hours. Subsequently, cell suspensions were transferred to 1.5 ml microcentrifuge tubes, centrifuged at 600 g for 5 minutes, supernatants were collected and subjected to cytokine analyses with a cytometric bead array (Luminex, Austin, TX) as described previously (45). Cells were stained as described (44), acquired on a Cytoflex flow cytometer (Beckmann Coulter) and data analyzed with the Flow Jo software package (Becton Dickinson).

For cytotoxicity assays, 1 x 106 CD19+ TM-LCL or CD19- K562 cells were resuspended in 50 µl of culture medium each and labelled with 50 µl of Na51CrO4 (Perkin Elmer, Boston, MA) at 37°C for 1 hour. After four subsequent washes, 5 x 103 TM-LCL and K562 cells were seeded into individual wells of 96-well round-bottom tissue-culture plates and incubated with the indicated amounts of sorted CART cells in duplicates/triplicates. Medium or 2% triton-X100 was added to target cells to determine spontaneous and maximum release, respectively. Subsequently, plates were centrifuged at 100 g for 5 minutes and incubated at 37°C for 5 hours. Supernatants were then collected with the Skatron system (Molecular Devices, Biberach an der Riss, Germany) and radioactivity was determined on a Cobra II gamma-counter (Packard, Meriden, CT). The percentage of specific release was determined as follows [CART cell induced release (cpm) – spontaneous release (cpm)]/[maximum release (cpm) - spontaneous release (cpm)]x100.



Statistics

The study was designed as a cohort study. Response to CART cell treatment was defined as complete response (CR) or partial remission (PR) at three months after CART cell infusion. No response was defined as stable disease (SD) or progressive disease (PD) after receiving CART cells. We present categorized data as absolute counts and relative frequencies, continuous data as mean and standard deviation, or median and range. Where applicable, we log-transformed variables to yield approximate normal distributions. To test the H0 of no association of T cell subsets with the outcome to CART cell therapy, the Fisher’s exact test and the independent sample t-test was used. To quantify the association between the outcome overall response at 3 months and the percentage of CD3+CD27-CD28- T cells, we used exact logistic regression, owing to the limited sample size. We also assessed other predefined variables and added these variables as co-variables into the main model separately. Generally, a two-sided P-value <0.05 was considered statistically significant.



Data Sharing

Please contact Dr. Nina Worel for sharing of data at nina.worel@meduniwien.ac.at.




Results


Enrollment and clinical characterization of r/r DLBCL patients

Our study aimed to identify robust pre-infusion biomarkers in the blood and leukapheresis samples of r/r DLBCL patients, as possible predictors to the subsequent response to CART cell therapy. Accordingly, between January 2016 and January 2022, 33 patients with r/r DLBCL were enrolled into this cohort study (Figure S1). Patients consisted of 19 males and 14 females, with a median age of 61.8 years (range, 32.9 to 77.2 years, Table 1) and a median disease duration at leukapheresis of 18.0 months (range, 3.7-266.4 months) (Table S1). Median time from PB assessment at the time of leukapheresis to CART cell infusion was 3.3 months (range, 1.2 to 14.1 months). These patients had a median follow-up time of 15.5 months (range, 6.1 to 57.1 months). OR at 3 months was observed in 15 patients (57.7%), with 11 patients achieving a CR (42.3%).



Cellular parameters of r/r DLBCL patients at leukapheresis

First, we assessed PB leukocyte subpopulations at the time of leukapheresis (Table 2 and Figure 1). Remarkably, r/r DLBCL patients had significant lymphopenia compared to healthy controls (HC) (1009 ± 927 x106/L versus 1785 ± 478 x106/L; P<0.001), due to reduced CD3+CD4+ T helper (297 ± 236 x106/L versus 735 ± 229 x106/L; P<0.001) and CD3-CD56+ NK cell numbers (164 ± 218 x106/L versus 313 ± 176 x106/L; P=0.009). CD3+CD8+ T cell, NKT cell, neutrophil and overall leukocyte numbers were similar to HC (Table 2 and Figure S2). The CD3+CD4+ lymphopenia led to a significantly lower CD4/CD8-ratio (0.9 ± 0.6 versus 2.1 ± 1.1, P<0.001) in DLBCL patients. Moreover, patients’ T cells had clear signs of activation, as determined by HLA-DR co-expression (315 ± 322 x106/L versus 113 ± 116 x106/L; P=0.005). Notably, chronic activation of T cells may lead to cell differentiation and replicative senescence, which is frequently accompanied by downregulation of the co-stimulatory molecules CD27 and CD28 (30, 31), the acquisition of memory (CD45RO/RA) and the loss of lymphnode homing (CCR7) markers (37). Indeed, when we examined the overall study population of r/r DLBCL patients in that regard, we found significantly higher percentages of differentiated CD3+CD27-CD28- (28.7 ± 19.0% versus 6.6 ± 5.8%; P<0.001), CD3+CD27- (38.6 ± 19.2% versus 19.6 ± 11.9%; P<0.001) and CD3+CD28- (41.7 ± 19.6% versus 15.5 ± 8.5%; P<0.001) PB T cells when compared to age-matched HC (Table 3; Figures 2A and S3). CD3+CD27-CD28- consisted exclusively of highly differentiated CCR7- CD45RA-/+ T effector memory (EM)/T effector memory RA cells (TEMRA) (Figure S4). Not unexpectedly, almost complete B cell aplasia was seen in most DLBCL patients (P<0.001).


Table 2 | Differences in lymphocyte populations between r/r DLBCL patients and healthy controls.






Figure 1 | Distribution of leukocyte populations in the PB of healthy control subjects, total r/r DLBCL patients and CART cell recipients. Here, the distribution of PB cell populations of 24 healthy control subjects (HC) and 31 of 33* r/r DLBCL patients is shown. Data of 13 of 15* CART cell responders (except 11 for CD3+HLA-DR+ T cells) and 11 CART non-responders 3 months after CART therapy are shown separately. P-values (unpaired t-test) are indicated. *) PB of two patients belonging to the CART responders was not available for analyses at this stage.




Table 3 | PB and leukapheresis material of r/r DLBCL patients scheduled for CART cell therapy contain significantly more CD3+ T cells with a differentiated CD27-CD28- phenotype when compared to healthy control individuals.






Figure 2 | Low frequency of differentiated CD3+CD27-CD28- T cells predicts a favorable response to CART cell therapy. (A) The distribution of PB CD3+ T cell populations stratified by the CD27 and CD28 expression status is given. Data show 24 healthy control subjects (HC), 31 of 33* r/r DLBCL patients scheduled for CART cell therapy, and more detailed data for 13 of 15* CART cell responders and all non-responders (n=11). (B) Shows the distribution of PB CD3+ T cell populations stratified by the CD27 and CD28 expression status in patients who were further separated into 9 of 11* complete responders and compared to 15 non-complete responders. Horizontal lines at 18% of CD3+CD27-CD28- T cells indicate the 78% (dotted line) and at 35% of CD3+CD27-CD28- T cells indicate 100% (dashed-and-dotted line) specificity levels (at sensitivity levels of 87% and 67%, respectively) of numbers of CD3+CD27-CD28- T cell numbers to predict CR (C) Shown are the numbers of CD3+CD27-CD28- T cells of patients who achieved complete remission (CR), partial remission (PR), stable disease (SD) or progressive disease (PD). P-values (unpaired Student’s t-test) are indicated. Cell frequencies were determined in 31 of 33* patients. Patients were treated with tisagenlecleucel (white/black symbols), axicabtagene ciloleucel (red symbols) or YTB323 (blue symbols). *) PB of two patients belonging to the CART responders was not available for analyses at this stage. (D) ROC (receiver operator characteristics) curve indicating the performance of numbers CD3+CD27-CD28- T cells for classifying CR. (E) Duration of complete remission (CR) after CART cell therapy. Shown are the percent of patients presenting with CR over the observational period of 12 months (Mo) with staging at 0, 3, 6 and 12 months. Patients were stratified according to those with >18% or ≤18% of CD3+CD27-CD28- T cells at the time of leukapheresis. Table shows the number (N) of patients within each group at each time point (percent of group in parenthesis). P values were calculated with Fisher’s exact test.





Low frequency of differentiated CD3+CD27-CD28- PB T cells in r/r DLBCL patients at leukapheresis correlates with OR

Stratification of patients into CART cell responders at 3 months after CART infusion (CR and PR) versus non-responders (SD and PD) revealed that the T cells of the latter group were in particular more activated, as indicated by HLA-DR co-expression (215 ± 205 x106/L versus 465 ± 397 x106/L; P<0.08) (Table 2). Accordingly, a higher frequency of differentiated CD3+CD27-CD28- PB T cells was also associated with non-responsiveness, while a lower frequency of differentiated CD3+CD27-CD28- PB T cells was a salient feature of patients with OR (35.1 ± 18.1% versus 23.3 ± 19.3%; P=0.14) (Table 3 and Figure 2). This was due to a trend towards lower frequencies of CD3+CD27- PB T cells (33.5 ± 17.7% versus 43.5 ± 21.2%; P=0.22) and CD3+CD28- PB T cells (36.4 ± 20.6 versus 49.2 ± 15.9; P=0.11) (Table 3 and Figure 2A). We found a tendency of low numbers of CD3+CD27-CD28- T cells being associated with month 3 OR (odds-ratio 0.97; 95% confidence interval 0.92-1.01; P=0.14; Figure S5A). This association remained virtually unchanged after pairwise adjustment for clinical (international prognostic index, double/triple hit mutation, cell of origin, gender, age at leukapheresis, NOS mutations) and PB parameters (LDH levels at CART cell infusion, frequency of CD3+CD27-CD28- T cells).



Low frequency of differentiated CD3+CD27-CD28- PB T cells at leukapheresis identifies patients with a high likelihood for CR

Next, we compared the CD27 and CD28 expression status on PB T cells of 9 of 11 CR patients to 15 patients presenting with non-CR (PR, SD and PD). From two CR patients no PB was available. Notably, a low frequency of CD3+CD27-CD28- T cells at the time of leukapheresis (13.7 ± 11.7% versus 37.7 ± 17.4%) was significantly associated with CR at month 3 (P=0.001) (Figure 2B and Table 3). Inclusion of CD3+CD27-CD28- values of the two patients with missing PB data but available values of the leukapheresis products (i.e., 16.5% and 37.4% of CD3+CD27-CD28-, respectively) changed the strength of the statistical comparison between CR and non-CR only very slightly (p-values 0.002 versus 0.001, respectively). For ease of comparison, the type of CAR used is given in Figure 2. Patients with low or high numbers of CD3+CD27-CD28- T cells were equally distributed in the subgroups treated with different CAR products suggesting that the type of CAR used did not appear to affect CR rates.

Similar to the above analyses obtained with CART cell responders versus non-responders, pairwise adjustment for clinical and PB parameters did not significantly change this association (Figure S5B). Both CD3+CD27- (25.1 ± 12.0% versus 45.9 ± 19.4%; P=0.008) and CD3+CD28- T cells (27.2 ± 15.3 versus 51.3 ± 15.8; P=0.001) contributed to this association (Table 3; Figures 2C and S3). Of note, the residual CD27 expression on the CD27+ T cells within the CD3+CD28- subset was found to be reduced compared to the one within the CD3+CD27+CD28+ subset. This indicated that the CD3+CD28- subgroup had already begun to downregulate also CD27 expression (data not shown). Therefore, determining the double-negative CD27-CD28- status of CD3+ T cells appeared to be the most robust strategy for enumerating differentiated T cells and also resulted in a moderately better statistical discrimination between CR and non-CR groups (P=0.001 versus P=0.006) when compared to the CD3+CD27+CD28+ subset. To exclude a sampling bias due to the lack of PB samples from the two CR patients, in addition we compared the leukapheresis products of the CR patients with those of the non-CR patients, for whom the full dataset of 11 and 15 patients was available, in terms of their CD3+CD27-CD28- T cell counts (Table 3). Very similar to PB, we found that low frequencies of CD3+CD27-CD28- T cells (15.2 ± 12.6% versus 35.8 ± 17.2%) were significantly associated with CR at month 3 (P=0.003) also in the leukapheresis product. Receiver operator characteristics (ROC) curve was used to determine the cut-off above which non-CR could be expected. Numbers of CD3+CD27-CD28- T cells greater 18% or 35% predicted non-CR with 78% or 100% specificity, (Figure 2D). Moreover, the cut-off value of ≤ 18% CD3+CD27-CD28- T cells predicted the duration of response over the subsequent 12-month follow-up period with high accuracy (p<0.001) (Figure 2E).



CD3+CD8+CD27-CD28- are inferior to CD3+CD8+CD27+CD28+ CART cells in terms of proliferation and cytotoxic cytokine production, but not regarding target-cell cytotoxicity

CD19 CART cells kill malignant and normal CD19+ B cells without MHC restriction. CD3+CD8+ CD19 CART cells have been reported to be able to perform serial killings with higher efficiency and speed than CD3+CD4+ CD19 CART cells (46). Our above finding that patients with lower numbers of CD3+CD27-CD28- T cells at leukapheresis have a much better chance of achieving CR, when undergoing CD19-directed CART cell therapy, prompted us to test whether CD3+CD8+CD27+CD28+ are, in fact, functionally superior to CD3+CD8+CD27-CD28- CD19 CART cells. Accordingly, we analyzed their cytotoxic, proliferative and cytokine-producing capabilities. Remarkably, CD3+CD8+CD27+CD28+ and CD3+CD8+CD27-CD28- CD19 CART cells (expressing the CD19-specific CART cell receptor on 91.6 ± 0.1% % and 91.4 ± 0.1% of CD8+ T cells, respectively, Figure S7) killed CD19+ B cells (TM-LCL) with nearly identical efficacies over the entire range of effector to target (E:T) ratios tested, while no such killing of CD19- K562 cells was observed with either of the two CD3+CD8+ CD19 CART cell subsets (Figure 3A). Notably, also CD3+CD4+ CART cells (expressing the CD19-specific CART cell receptor on 95.3 ± 0.8% of CD27-CD28- and 94.9 ± 2.2% of CD27+CD28+ CD4+ T cells, respectively, Figure S8) killed the CD19+ B cells (TM-LCL), however, with at least 3- to 6-fold lower efficacy when compared to their CD3+CD8+ counterparts (Figure 3A). Notably, CD4+CD27-CD28- outperformed CD4+CD27+CD28+ T cells in the killing of CD19+ target cells by a factor of 2. However, both CD3+CD8+CD27+CD28+ and CD3+CD4+CD27+CD28+ CART cells proliferated significantly more efficiently than CD3+CD8+CD27-CD28- and CD3+CD4+CD27-CD28- CART cells, respectively, when co-incubated with CD19+ TM-LCL cells at all E:T-ratios tested, with differences ranging between 1.5 ± 0.4 and 2.7 ± 1.7-fold for CD3+CD8+ and 1.0 ± 0.1 and 1.9 ± 1.1-fold for CD3+CD4+ T cells (Figure 3B). Moreover, CD3+CD8+CD27+CD28+ CART cells secreted higher levels of the Th1 cytokines IL-2, IFN-γ and TNF-α, while CD3+CD8+CD27-CD28- CART cells seemed to overproduce the Th2 cytokine IL-13 (Figure 3C). The situation was similar for CD3+CD4+ CART cells, with the sole exception that CD3+CD4+CD27-CD28- as compared to CD3+CD4+CD27+CD28+ CART cells produced higher levels of IFN-γ. Notably, the elevated IL-2 secretion levels of CD3+CD8+CD27+CD28+ CART cells were paralleled by their increased high-affinity IL-2R (CD25) expression when compared to CD3+CD8+CD27-CD28- CART cells (Figure 3D). The limited functional capabilities (i.e., proliferation, IL-2 and TNF-α production both subsets; IFN-γ production for CD8+ T cells) of CD27-CD28- T cells can be explained by their belonging to the TEMRA and EM3 subsets of memory cells (CCR7-CD45RA+/-), which are known to have limited renewal capacity (Figure S4) (37).




Figure 3 | Functional comparison of CD3+CD8+ and CD3+CD4+ CD27+CD28+ to CD3+CD8+ and CD3+CD4+ CD27-CD28- CD19 CART cells in vitro. Shown is (A) the cytotoxic potential as percent specific killing in 5-hour 51Cr-release assays, (B) the proliferation as count per minutes (cpm) (C) the cytokine production in pg/ml and (D) the percent expression of the high-affinity IL-2R (CD25) on CD27-CD28- CD3+CD8+ and CD3+CD4+ T cells in comparison to CD27+CD28+ CD3+CD8+ and CD3+CD4+ T cells upon co-culture with CD19+ TM-LCL cells. The cytotoxic potential of CD27-CD28- and CD27+CD28+ T cells in (A) is also shown against CD19- K562 cells. X-axes show the effector to target ratios with either a constant amount of 5 x 103 target cells (A), or a constant amount of effector cells of 1 x 105 (B–D). Data are shown as means plus SEM (whiskers). Numbers of CD19 CAR positive T cells were 91.5 ± 0.1% and 96.0 ± 0.3%, respectively. Data show the summary of three (A, D) or four (B, C) independent experiments with three different donors in biological triplicates for CD8+ T cells, except one donor in duplicates for Cytotoxicity tests, and two independent experiments with two different donors in biological triplicates for CD4+ T cells. *P < 0.05, **P < 0.01, ***P < 0.001 as determined by unpaired Student’s t-test.






Discussion

In this cohort study, we aimed to identify a simple and robust pre-infusion blood biomarker to predict the future response to CART cell treatment in r/r DLBCL patients. Compared to HC, r/r DLBCL patients presented with significantly more activated HLA-DR-expressing PB T cells, indicating cellular activation and/or homeostatic proliferation (36), as well as pathologically increased, frequencies of CD3+CD27-CD28- T cells. According to the linear T cell differentiation model proposed by Romero et al. and substantiated by our own analyses (Figure S4), T cells with this phenotype belong to the CCR7-CD45RA+/- terminally differentiated T effector memory RA (TEMRA) and effector memory type 3 (EM3) cells, respectively (37). We stratified patients according to OR (CR and PR) versus non-response (SD and PD), or CR versus non-CR (PR, SD and PD) 3 months after CART cell treatment, respectively. This revealed that the pathologically high levels of CD3+CD27-CD28- T cells were associated with non-CR (37.7 ± 17.4%), while patients with CR presented with low, almost physiological, levels of CD3+CD27-CD28- T cells compared to HC (13.7 ± 11.7% versus 6.6 ± 5.8%). A numeric predictor of CR was determined by plotting a ROC curve, which showed that a cut-off value of ≤18% CD3+CD27-CD28- T cells (Figure 2B) predicted CR with high accuracy even 12 months after CART cell transfusion (Figure 2E). This is the first study identifying low numbers of CD3+CD27-CD28- T cells as a valuable pre-infusion blood biomarker for long-term response to CART cell treatment in r/r DLBCL. Our clinical data corroborate previous in vitro findings indicating that both CD27 and CD28 are functionally important co-stimulatory molecules on T cells, which are critically involved in cellular activation programs (32, 47). Moreover, we have demonstrated herein that CD3+CD8+CD27-CD28- CART cells have comparable CD19+ target cell killing activity when compared to CD3+CD8+CD27+CD28+ CART cells, however, they are clearly inferior regarding CD19+ target cell-dependent proliferation and cytotoxic cytokine production, such as IFN-γ and TNF-α (48, 49). Interferon-γ is well-known to contribute to the CART cells’ cytotoxicity by targeting and destroying the tumor stroma (48), while TNF-α has been shown to sensitize tumor cells themselves for getting killed by CD8+ T cells (49). In addition, the elevated CD25 (high-affinity IL-2R) expression levels, along with their increased IL-2 secretion, speaks for a better overall fitness of CD3+CD8+CD27+CD28+ compared to CD3+CD8+CD27-CD28- CART cells.

We show here that CD3+CD4+ T cells can also be turned into CART killer cells, however, they have a 3- to 6-fold lower killing efficacy when compared to CD3+CD8+ T cells. Similar to CD8+CD27+CD28+ T cells, CD4+CD27+CD28+ T cells proliferated better and produced more IL-2 and TNF-α when compared to CD4+CD27-CD28- T cells. However, it is noteworthy that CD4+CD27-CD28- T cells produced significantly more IFN-γ than CD4+CD27+CD28+ T cells, which may explain their moderately superior killing activity compared with CD4+CD27+CD28+ T cells.

Accordingly, our findings also provide an explanation as to why the lack of CD27 and/or CD28 on T cells has been described to be associated with impaired immuno-surveillance capabilities of non-CART cells, previously (35). While the engagement of CD28 with an agonistic CD28 monoclonal antibody was, in fact “too potent in vivo” and induced a highly problematic cytokine storm in six participants of a fist-in-human phase I clinical trial in a previous study (50), engagement of CD27 by varlilumab (CDX-1127), a novel, agonistic, fully human CD27 monoclonal antibody, revealed durable antigen-specific antitumor efficacy (51), by increasing effector T cell numbers with an activated phenotype which was at the expense of naïve and Treg cell numbers in pre-clinical and human phase I and II immunotherapy trials (52). Moreover, conditioning treatment with CD27 mAb in a preclinical model enhanced the expansion and anti-tumor activity of adoptively transferred T cells (53) and by activating T cells recruits and stimulates myeloid cells for enhanced killing of CD27 mAb-opsonized tumors (54). In some CD27 mAb-treated melanoma patients, increased numbers of T cells that recognize melanoma-related antigens were revealed (52). Thus, the expression and active engagement on T cells of CD27 by mAbs has the potential to positively affect adaptive immunotherapy against cancer (55), suggesting conversely that the pathological increase of T cells which lack CD27 expression could be a gradually increasing disadvantage.

Until recently, the best predictors for response to CART cell treatment in r/r DLBCL have been factors not related to immune system function, such as low tumor volume, number of extranodal sites, low serum LDH levels immediately prior to CART cell infusion and a low ECOG performance status (7, 14–16). However, tumor volume/burden lacks specificity because it is a predictor of therapeutic success for the treatment of a large collection of different disease entities and therapies (56). The same holds true for serum LDH levels, which are an established marker of tumor burden, metabolic activity and thus aggressiveness of NHL. Very similar to tumor volume, the serum LDH level has been established as a prognostic factor for the disease course and treatment success of NHL since the 1970s and therefore is also included in the IPI score. Accordingly, while we found elevated serum LDH levels in the overall r/r DLBCL study group (325.9 ± 180.3 U/L), they were lower in OR (236.1 ± 114.0 versus 366.1 ± 162.5; P=0.08) and CR (246.4 ± 132.2 versus 323.9 ± 155.9; P=0.19) patients as compared to non-OR and non-CR patients, respectively, especially when determined at leukapheresis (Table 1), although, without reaching statistical significance.

More recently, the search for new biomarkers has turned to studying the nature of the tumor microenvironment, with the intention to identify the mechanistic basis of putative inhibitory factors, followed by the development of strategies for their inhibition/neutralization with, e.g., checkpoint inhibitors (57). These experimental approaches will help us to understand how to pave the way for the facilitated tumor invasion by the infused CART cells and to ultimately steer and support the activation and cytotoxicity of the latter. However, access to the site of tumor cell accumulation in DLBCL for diagnostic purposes, i.e., the bone marrow and/or lymph nodes, demands utterly invasive and thus burdensome procedures (e.g., bone marrow and/or lymph node biopsies). In contrast, the herein described assessment of the levels of peripheral blood CD3+CD27-CD28- T cells is easy to perform and standardize, also in sequential series of biological samples and thus suitable for daily clinical laboratory routine. In addition, numbers of CD3+CD27-CD28- T cells can reliably be determined in the leukapheresis product, as well with similar accuracy to peripheral blood (Figure S6 and Table S3).

Which mechanism(s) could be responsible for the down-regulation of CD27 and CD28 on the surface of CD3+ T cells in the PB of CART cell non-responders?

The fact that almost 90% of patients expressed elevated levels of HLA-DR+ T cells in their circulation (Table 2), indicates a possible hyperactivation of the immune system (58), which may be a reflection of the lengthy disease course (35.9 ± 53.8 months) and the associated microbial pressure on the lymphodepleted patients and/or the number of prior therapy lines given (median 3, range 1-11) to our patients. In this study, we found no correlation between the total number of different treatment lines and the number of CD3+CD27-CD28- T cells in the PB at the time of leukapheresis. However, we found a weak correlation between the number of R-CHOP cycles administered and the number of CD3+CD27-CD28- T cells (r=0.3931, P=0.0287).

Alternatively, the increased number of HLA-DR+ T cells could also be a sign of homeostatic proliferation due to treatment-induced lymphopenia. In this regard, it is important to note that homeostatically proliferating CD8+ T cells have been shown to neo-express HLA-DR, but always in conjunction with telomerase activity (36).

One mechanism explaining the loss of CD27 on activated T cells is that these cells tend to upregulate CD70, which is the ligand for CD27 (59). In turn, CD70 up-regulation and interaction with its ligand CD27, either on the same or on adjacent cells, may then lead to reactive downregulation of the latter (60). Similarly, CD28 modulation is known to be the result of cellular activation and replicative senescence (31, 61). Notably, the molecular mechanism(s) leading to CD70 upregulation on T cells during chronic systemic inflammation, such as in lupus erythematosus, are governed by epigenetic changes in T cells, such as histone modifications at the TNFSF7 (CD70) promoter (62) with subsequent downregulation of CD27 on terminally differentiated T effector memory RA cells (TEMRA) (63). CD28null cells were also found to exhibit significant changes in their whole-genome methylation pattern (64) and to receive less signaling through the ERK and JNK pathways, reducing the expression of the DNA methyltransferases Dnmt1 and Dnmt3a, which in turn contributes to the epigenetic downregulation of CD28 expression (65). Taken together, both CD27 and CD28 modulation seem to be governed by several factors, including ligand- and epigenetic/promoter-driven downregulation, all supported by chronic hyperactivation of the immune system.

The fact that low lymphocyte counts are frequently detected in DLBCL patients at initial presentation (66) and that lymphocytopenia after first-line therapy is a predictor of relapse (67) is well known. Therefore, it was not entirely surprising that our patient population suffered from significant lymphopenia. Several reasons can be suggested for the intrinsic activation-induced lymphocyte depletion, such as i) canonical tumor antigen-specific activation by lymphoma cells, ii) cytokine-dependent bystander activation caused by DLBCL-secreted and T cell tropic cytokines like IL-2 and IL-6 (68), or iii) reactivation of latent viruses such as CMV or EBV, which have been shown to be associated with the increased appearance of CD3+CD27-CD28- PB T cells previously (28). While the first two explanations are the matter of intense research, the latter can be excluded since no CMV and EBV reactivation was observed in our patients.

Previous studies suggested that an increased frequency of CD27+CD45RO-CD8+ T cells at the time of leukapheresis may correlate with sustained remission in patients with chronic lymphocytic leukemia treated with CD19 CART cells (21), in multiple myeloma patients treated with B cell maturation antigen (BCMA)-specific CART cells (22), and very recently in patients with DLBCL (23). The authors suggested that CD27+CD45RO-CD8+ T cells belong to the group of antigen-experienced CD3+CD8+ T lymphocytes that have long-lasting memory capabilities and improved ability to expand in vitro and in vivo (21, 22, 24). However, this T cell subset, which according to our algorithm belongs to T cells with a CD3+CD27+CD28- phenotype (29), was not found to be associated with OR and/or CR in our study (Table 3). We considered it important to focus on a combination of T lymphocyte surface markers with proven importance during the T cell activation process, i.e., well-established co-stimulatory molecules, such as CD27 and CD28, rather than the combination of one such marker (CD27) with a purely phenotypic marker, such as CD45RO negativity, which may, in fact, identify more than one T cell phenotype, e.g., naïve T cells and antigen-experienced “stem cell memory” cells (23). Romero et al., showed in healthy individuals that the majority of CD3+CD8+CD27-CD28- T cells is composed of CCR7-CD45RA+ terminally differentiated T effector memory RA cells (TEMRA), while they clearly also contain a smaller 10-20% fraction of CD27-CD28- T cells which belongs to the effector memory (EM) subset. The latter subset is commonly referred to as EM3 cells (37). Indeed, in CART patients at leukapheresis and healthy controls, it turned out that CD3+CD8+CD27-CD28- T cells are also highly enriched for CD45RA+CCR7- TEMRA cells (72.3±18.8% in healthy donors vs. 59.2±19.2% in lymphoma patients), the rest of the cells presented with a CD45RA-CCR7- EM phenotype, which is compatible with their relationship to EM3 cells (Figure S4). Within the CD3+CD4+ T cell subset, the picture was different. Herein, CD27-CD28- T cells are mainly composed of CCR7-CD45RA- EM cells belonging to the EM3 phenotype, while the number of TEMRA is usually low to non- existent among CD3+CD4+ T cells in healthy individuals (Figure S4). Thus, when gating on CD3+CD27-CD28- T cells one reads out the “sum of TEMRA and EM3 T cells” of both CD8+ and CD4+ T cells, with CD8+ T cells mainly contributing to the CD27-CD28- phenotype (65.4 ± 23.3% for healthy controls and 59.1 ± 23.8% for patients). A similar picture is seen in typical DLBCL patients (Figure S4).

Furthermore, analyzes of activation marker expression on T cells used for in vitro experiments confirmed that HLA-DR was clearly expressed on all cell types with a tendency for up-regulation on CD27-CD28- T cells as compared to CD27+CD28+ T cells on CD4 and CD8 T subsets. Moreover,CD69 was upregulated on both CD4+ and CD8+ CD27-CD28- T cells as compared to their CD27+CD28+ counterparts (Table S4). The picture was different for CD25 expression, which was downregulated on CD4+CD27-CD28- T cells as compared to CD4+CD27+CD28+ T cells. However, no clear sign for the upregulation of exhaustion markers (LAG-3, TIM-3 and PD-1) was evident on in vitro tested CART cells (Table S4), except TIM-3 on CD8+ T cells.

Comparable albeit slightly different changes were found on cells of patients undergoing leukapheresis. Here, HLA-DR was generally more up-regulated on CD27-CD28- T cells when compared to CD27+CD28+ T cells in patients. CD69 was found to be upregulated more on CD8+CD27-CD28- T cells as compared to CD8+CD27+CD28+ T cells, while no significant expression of CD69 was found on CD4+ T cells (Figure S9). CD25 expression was lower in all patients on the CD27-CD28- when compared to the CD27+CD28+ subset. Notably, PD-1 was clearly upregulated on CD4+CD27-CD28- as compared to CD4+CD27+CD28+ T cells which was in clear contrast to the CD8+ subset, in which PD-1 expression was higher on the CD27+CD28+ T cells when compared to CD27-CD28- T cells (Figure S9). The latter findings points to a remarkable and potentially functionally relevant dissociation of the expression of co-stimulatory and exhaustion marker molecules in DLBCL patients.

The significant association of low numbers of CD3+CD27-CD28- T cells in PB at the time of leukapheresis with CR at 3 months with the cut-off of ≤ 18% CD3+CD27-CD28- T cells to predict CR at 12 months after CART cell treatment seems to be a promising new predictive biomarker. Although our study shows that patients with high numbers of CD3+CD27-CD28- T cells may not respond as well to CART cell therapy as patients with low numbers of CD3+CD27-CD28- T cells, we are far from claiming that this circumstance is irreversible. For example, it may well turn out that administration of checkpoint inhibitors at the time of CART cell administration, e.g., against PD-1, could improve the inferior outcome of this group of patients. Of note in that respect, two of our patients with high numbers of differentiated T cells responded to CART cells when pretreated with pembrolizumab (69). Moreover, recent studies have shown that the use of the Bruton’s tyrosine kinase inhibitor ibrutinib (70), or the phosphoinositide-3 kinase inhibitor idelalisib (71, 72) can improve CART cell production in patients with chronic lymphocytic leukemia. Similar effects may be realized in r/r DLBCL in the future.

The better in vivo performance of CART cell products containing a low baseline amount of CD3+CD27-CD28- T cells may also have adverse effects. Patients receiving such T cells may suffer from more treatment-related toxicities after CART cell transfusion because the CART cells may exhibit greater CD19 target cell-dependent proliferation and cytotoxic factor (IFN-γ, TNF-α) production in vivo and thus a likely higher killing rate. However, no significant associations were found between the number of CD3+CD27-CD28- T cells in the leukapheresis product and the occurrence of i) cytokine release syndrome (CRS, r=0.1 and P=0.072), ii) clinical requirements for tocilizumab therapy (r=0.14 and P=0.51), or iii) long-term cytopenias (r=0.16 and P=0.57) (Spearman’s r-tests) in the present study.

Several important limitations of this trial should be considered. During the planning and recruitment phase of this trial no validated flow cytometric assay was available to monitor CART cell expansion in vivo and respective binding reagents for reliable monitoring had only become available very recently (73). Therefore, the relationship between the CD3+CD27-CD28- T cell status determined at leukapheresis and the kinetics of CART cell expansion in vivo could not be monitored.

In addition, our study is limited by a small sample size of only 33 patients with 26 patients who received CART cells at least three-month before response assessment. Therefore, larger multi-center studies are certainly needed to confirm our findings in the future. Due to the limited sample size, we were not able to test our biomarker in an independent validation cohort.

It has to be noted that the ethical permission did not include to test CART cells from patients in in vitro studies.

Therefore, in the CD19 CART cell in vitro studies shown here, T cells of healthy donors were transduced with a CD19-CAR. For that purpose, PBMC from healthy donors were processed for CART cell production using a protocol comparable to that used for the processing of the leukapheresis products from patients, without prior sorting into CD4+ and CD8+ T cells subsets before transduction and expansion. Accordingly, CD3CD28-bead stimulated PBMC were transduced with the CD19 CAR and further expanded for 14 days. Upon cryopreservation and recultivation, CART cells were further expanded by incubation with irradiated (120 Gy) CD19+ TM-LCL cells for 10 days followed by FACS-sorting for CD27 and CD28 expression. TM-LCL cells, while being non-proliferative, are still able to provide the CD19 antigen necessary for antigen-dependent proliferation of CD19 CART cells. They have been successfully used in the past for CD19 CART cell expansion (42). In fact, upon co-culturing with irradiated TM-LCL cells, the authors of this report routinely observed a 18-20-fold expansion of CD19 CART cells within 10 days. Expanded and sorted CART cells were than rested for 7 days followed by determination of their CD27 and CD28 expression status, their antigen-dependent cytotoxicity, proliferative capacity and factor production capabilities. While we did not observe a significant difference in the killing capacity between CD27+CD28+ and CD27-CD28- CART cells, we consider the differences in the proliferative capacity of CD3+CD27+CD28+ CD19 CART cells versus CD3+CD27-CD28- CD19 CART cells worth reporting, especially since previous studies had already shown that the ability to proliferate and expand well is associated with the expression of T cell clusters harboring upregulated proliferation-associated genes (74). Our study now shows that a similar stratification of T cells can be achieved by virtue of separating T cells according to their surface-expression status of the co-stimulatory molecules CD27 and CD28. It is in line with the linear differentiation model of T cells which has shown previously that CD3+CD27-CD28- T cells consist of TEMRA and EM3 cells, both belong to the terminally differentiated T effector memory cells with undetectable TREC numbers and short telomers (37). Elevated numbers of this phenotype are not found in healthy individuals (Figure 2A), but are a salient feature of individuals with considerable immunological dysregulation (chronic inflammation), such as the one found in r/r DLBCL patients.

In summary, our study has identified that a low number of CD3+CD27-CD28- T cells is a new biomarker associated with better treatment response to CART cell therapy. This novel insight has the potential to contribute to an improved selection of patients with a high chance of CR after CART cell treatment and/or to form the rational basis for co-medications, such as ibrutinib, at the time of leukapheresis or administration of checkpoint-inhibitors at the time of CART transfusion. Such findings may thus provide the basis for further increasing the success rates of this innovative and potentially curative therapy.
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Epigenetic modifications may alter the proliferation and differentiation of normal cells, leading to malignant transformation. They can also affect normal stimulation, activation, and abnormal function of immune cells in the tissue microenvironment. Histone methylation, coordinated by histone methylase and histone demethylase to stabilize transcription levels in the promoter area, is one of the most common types of epigenetic alteration, which gained increasing interest. It can modify gene transcription through chromatin structure and affect cell fate, at the transcriptome or protein level. According to recent research, histone methylation modification can regulate tumor and immune cells affecting anti-tumor immune response. Consequently, it is critical to have a thorough grasp of the role of methylation function in cancer treatment. In this review, we discussed recent data on the mechanisms of histone methylation on factors associated with immune resistance of tumor cells and regulation of immune cell function.
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Introduction

Over the past decade, immunotherapy, such as immune checkpoint and CAR T cell therapy, has become a promising strategy for treating cancer (1, 2). Cancer treatment is achieved by increasing the number and effectiveness of immune cells, which can recognize tumor cells, collaborating with tumor surface suppressors and soluble factors in the tumor microenvironment to prevent the tumor invasion and metastasis, thus maintaining the immune microenvironment homeostasis of the body, and improving immune response (3–5). However, due to the tumor heterogeneity and primary or acquired treatment resistance, only 10% to 30% of patients can benefit from immunotherapy (6–8). Therefore, identifying the source of low immune reactivity, effectively regulating immune cell and tumor cell therapeutic targets, and improving immunogenicity are of utmost importance.

The oncogenic transformation caused by the accumulation of related oncogene and tumor suppressor gene mutations accompanied by alteration of histone methylation modification has been observed in various human cancers, further emphasizing the importance of histone methylation modification in medical oncology research (9, 10). Many studies have suggested that aberrant methylation of histones can reduce the expression of tumor-associated antigens, hinder antigen presentation, and affect the exercise of anti-tumor immunity by anti-tumor effector T cells, specialized antigen-presenting cells (APCs), and other cells (11, 12). Moreover, it can alter the number and differentiation process of non-specialized APC infiltration, such as myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), and tumor-associated macrophages (TAMs), assisting tumor cell immune escape (13). Given the impact of histone methylation modification on the immune system and tumor cells, it is worth exploring whether targeting these enzymes may alter the tumor immune microenvironment and improve the efficacy of immunotherapy. Our findings showed that enzymes involved in histone methylation regulate tumor immunity, providing innovative strategies for formulating more perfect immunotherapy strategies. In this review, we discussed the effect and mechanism of aberrant histone methylation in the tumor immune microenvironment on immune cells and tumor cells.



Classification and biological functions of histone methyltransferases (HMTs)

The amino terminus of histones can be modified to create a class of “histone codes” that increase the amount of information in the genetic code of genes, resulting in different cell fate and pathological development in the same cases (14). Lysine and arginine residues of certain histones are catalyzed by a family of conserved proteins known as the histone methyltransferases (HMTs), consisting of two species based on their structure and modification sites, i.e., histone lysine methyltransferase (KMT) and protein arginine methyltransferase (PRMT), both of which use N-terminal residues as modification sites, such as H3K4, H3K9, H3K27, H3K36, H3K79, and H4K20 (15). Most KMT contain a conserved catalytic domain, called the SET domain. Accordingly, the KMT family can be divided into SET domain-containing enzymes, including EZH2, G9a, SETD2, SUV39H1, and SET domain-free DOT1-like proteins (16). PRMT is a group of enzymes that use S-adenosine methionine (SAM) as a methyl donor. The PRMT family has nine members (PRMT1-9) that generate a single methyl group, which is added to the target protein to create a monomethylarginine (MMA) tag (17). Based on the catalyzed methylation reaction type, the PRMT family is divided into three isoforms, a class of highly conserved genetic products (18).

HMTs have a major role in the epigenetic regulation of gene expression, especially in the regulation of genes related to tumor invasion and metastasis. HMTs catalyze the lysine and arginine residues of particular histones, which are involved in a variety of biological activities, including packaging of chromosome structures, affecting transcription factor recruitment and binding, initiation and extension factors and target DNA binding, RNA processing, editing, and other processes. They also regulate genome mutations, ultimately leading to cancer (10). These methyltransferases have been demonstrated to have an important role in tumor maturation, carcinogenesis, and maintenance of stem cell components. HMTs act in a closely controlled manner to direct the necessary cellular processes under normal cell physiological settings. However, these enzymes may dysregulate and modify the epigenetic landscape and proteome to drive cell growth and survival in malignant circumstances (18, 19).


Histone lysine methyltransferase (KMT) and tumor immunity

KMT abnormalities in the complex tumor microenvironment cause expression mutations of key immune regulators in tumor cells and effector genes in immune cells, which may lead to antigen presentation suppression, loss of immune tolerance, blocked anti-tumor immunity, and negative effects on immunotherapy. In the following paragraphs, we discuss the regulatory mechanisms of numerous popular histone lysine methylases in tumors and their effect on immune cells, further emphasizing the crucial necessity of inhibiting histone lysine methylases for immunotherapy (Table 1) (Figure 1).


Table 1 | Related functions of lysine methylase and tumor immunity.






Figure 1 | Histone lysine methyltransferase (KMT) involved in tumor immune summary. Promotes LOXL4 upregulation by antagonizing miR-29b and miR-30d to activate macrophage polarization; downregulates iNOS and TGF-β1 and inhibits macrophage phagocytosis. Downregulates iNOS and TGF-β1, inhibits macrophage phagocytosis. G9a inhibits SLC7A2, upregulates CXCL1 and thus recruits MDSC. G9a inhibits LCB 3II transcription and promotes immune escape. SUV39H1, G9a and EZH2 inhibit CXCL10 and CXCL9 transcription and reduce T cell recruitment. Meanwhile inhibit Fas transcription and curb Fas-FasL signaling pathway activation. EZH2 and SETDB1 repress MHC-II and MHC-I to affect antigen recognition. KDM2A and G9a directly repress the initiation of PD-L1 transcription. EZH2 and SETD2 inhibit the dsRNA-cGAS-STING pathway in the cytoplasm affecting PD-L1 transcription. In addition, EZH2 upregulates IRF1 to inhibit PD-L1 transcription. SETD2 downregulates FBW7 to inhibit PD-L1 expression. SUV39H1 inhibits SMAD3 in the cytoplasm and forms immunosuppression. EZH2 promotes FOXP3 transcription and Treg cell suppressor function. In contrast, DOTIL is the opposite. In T cells, EZH2 upregulates IL-2,TNF-αand INF-γ by promoting Fbxw7 and Numb activation of the Notch pathway, a process inhibited by miR-101 and miR-26a antagonism. SUV39H1 and DOTIL suppress the expression of immune factors. Black line represents promotion, red line represents inhibition, and dashed line represents physiological function.




EZH2

The Zeste homology 2 (EZH2) is responsible for modifying the lysine methylation of histone 3 (H3K27me3) to silence the gene (61). Previous studies have shown that EZH2 participates in malignant biological phenotypes such as the cell cycle, proliferation, invasion and metastasis actin, which is an important target for solid tumors and hematological tumors (62, 63). Moreover, several potential molecular mechanisms have revealed that EZH2 enrichment shapes the immunosuppressive tumor microenvironment. In tumor cells, EZH2 mutations down-regulate the expression of tumor antigens, thereby evading specific immune recognition by T cells. Major histocompatibility complex-I (MHC-I) acts as a potent marker for T cells to monitor tumors sensitively, and EZH2 suppresses its normal expression. Treatment with EPZ-6438 or EPZ-011989, EZH2 inhibitor, significantly depleted H3K27me3 and increased the expression of surface MHC-I protein (20, 21). In addition, studies have shown that the overexpression of EZH2 can inhibit programmed cell death protein 1 (PD-L1) in prostate cancer and hepatocellular carcinoma by enhancing the H3K27me3 level of the interferon regulatory factor 1(IRF1) transcription factor (22, 23). The use of EZH2 inhibitors (EPZ) activates the STING stress response to promote INF-γ-induced PD-L1 expression. Furthermore, EZH2 inhibitor combined with PD-1 treatment did not produce resistance or toxicity and had significant therapeutic effects (22).

EZH2 can also drive tumor cells to release certain mediators to affect the transport and activity of immune cells. LOXL4 is an important chemical inducer of macrophages. It was reported that EZH2 regulates macrophage activation through the miR-29b/miR-30d-LOXL4 axis and enhances tumor-associated macrophage (TAM) infiltration in breast cancer (24). In glioblastoma multiforme (GBM), iNOS and TGF-β2 can impaire engulfing and viability of macrophages (25). The number of infiltrating cells and the lethality of T cells represent the improved anticancer immunity of the body. Genome-wide studies showed that EZH2 levels are negatively correlated with CD8+ T cells, mainly inhibiting the production of tumor TH1-type chemokines CXCL9 and CXCL10 and thus reducing the recruitment of T cells (22, 26, 27), while the binding of carboxyl structure of ARID1A to EZH2 can reverse this step (28). Animal experiments have shown that the synergistic treatment of ovarian cancer with GSK126 (EZH2 inhibitor) and DNMT inhibitor improves the therapeutic efficacy of anti-PD-L1 therapy and overt T-cell therapy (27). In additional, the use of CPI-1205 (EZH2 inhibitor) in a mouse colorectal cancer tumor (MC38) model had a synergistic effect on the immunotherapeutic modality (29). Meanwhile, the activity of EZH2 in Treg cells maintains the stability of FOXP3 protein, increases the number of tumor-infiltrating FOXP3+ Tregs, alters the homeostatic balance with tumor effector T cells in the microenvironment and impairs the anti-tumor immune response (29). In contrast, EZH2 in CD8+ T cell can activate the Notch pathway, promote the release of cytokines in T cells, and maintain its good antineoplastic activity (30). Moreover, EZH2 is also involved in genome remodeling related to T-cell failure and promotes functional recovery (31). However, the tumor microenvironment can limit the conversion of oxidative phosphorylation to aerobic glycolysis by maintaining high expression of microRNA101 and microRNA26a, and limit the expression of EZH2 in T cells by controlling glucose metabolism. This hinders the normal expression of multifunctional cytokines (30). In overview, EZH2 has an important regulatory role on immune microenvironment components. Several clinical trials are currently recruiting to test the CPI-1205 or tazemetostat (an EZH2-targeted agent) in combination with Pembrolizumab in solid tumors (NCT03854474 and NCT03337698).


G9a

G9a (Euchromatic histone-lysine N-methyltransferase 2, EHMT2) is frequently upregulated in different types of cancer (64). G9a overexpression enhances H3K9me2 deposition, silencing and inhibiting tumor suppressor genes, and promoting tumor proliferation and migration through the Wnt pathway and epithelial-to-mesenchymal transformation (EMT), which can be a useful target for anticancer therapy (65). Notably, the special effects of G9a and the tumor microenvironment (TME) may explain the poor immunogenicity in specific cancers. For example, G9a is inversely associated with CD8+ T cell infiltration in melanoma and colon cancer. Moreover, it can inhibit the activated of Th1 cytokines/chemokines (32, 33). Further investigation revealed that Ga9 induces chromatin variability in chemokine-related genes, involved in homing of intratumoral effector lymphocytes and natural killer cells (34). In clinical cases, immunohistochemistry showed high intensity of G9a staining in 12 melanoma patients who did not respond to anti-PD-1 or anti-CTLA-4 treatment. Mouse melanoma resistance models treated with UNC0642 (a G9a inhibitor) in combination with anti-PD-1 therapy significantly reduced H3K9 levels in the LC3B II promoter region activating cellular autophagic responses and increasing PD-L1 levels, enhancing the blockade response to PD-1 immune checkpoint inhibitors (35).

G9a can also influence the methylation levels of multiple activated molecules of immune-related pathways. A previous study showed that G9a enhances H3K9me3 enrichment in the Fas promoter, restricts Fas-fasL release signals, and inhibits the tumor immune surveillance of host T cells (36). Moreover, in hepatocellular carcinoma (HCC), G9a silences SLC7A2 expression to induce CXCL1, promoting the recruitment of bone marrow-derived suppressor cells (MDSC) to the microenvironment (37). Given the above regulatory mechanisms, inhibition of G9a can remodel active tumor antigens and substantially modulate the tumor immune microenvironment. The combination of G9a inhibitors and immunotherapy strategies may be able to convert some “cold” immune tumors into “hot” tumors to achieve good immunotherapeutic results.




SETDB1

The Forked histone lysine methyltransferase 1 (SETDB1) containing the SET domain is responsible for the di-and trimethylation of the H3K9 residues. It is abnormally amplified and overexpressed in tumors (66). Yet, the underlying mechanisms of SETD2 gene mutations or loss of function leading to the corresponding dysfunction of tumor tissue proteins remain largely unexplored. Animal experiments showed that accumulation of SETDB1 mutations downregulates MHC-I-associated antigen presentation, thus preventing CD8+ T from correctly recognizing tumor cells and affecting sensitivity to PD-1/CTLA-4 treatment (38). On the other hand, SETDB1 in tumor cells forms a complex with TRIM28 or acts together with KDM5B that interferes with PD-L1 expression by blocking double-stranded RNA (dsRNA) production through the endogenous retroviral (ERV) pathway (39, 40). The loss of the SETDB1 gene also triggers type I interferon-induced PD-L1 expression through the cyclic GMP–AMP synthase (cGAS)–stimulator of interferon genes (STING) pathway and enhances anti-PD-L1 immune checkpoint blockade for antitumor effects (39–42). cGAS-STING pathway, an important pathway regulating host innate immunity, has been successively validated in various tumor models where SETD2 is an important epigenetic regulator. Thus, SETD2 is an attractive target for promoting immunotherapeutic responses.



SUV39H1

The variant suppressor 39 homolog 1 (SUV39H1), also known as KMT1A, is responsible for the introduction of the dimethylation and trimethylation of histone 3 lysine 9 (H3K9me3) (67). It mainly disrupts some important gene regulatory elements in tumor cells and reduces the sensitivity to immune response. In cervical cancer, SMAD3 is a key mediator of activation of multiple immune signaling pathways. SUV39H1 negatively regulates DNMT1 and reduces the direct binding of DNMT1 to the promoter region of the SMAD3 gene, thus inhibiting the activation of signaling by multiple downstream immune signaling pathways (43). In colon cancer, SUV39H1 negatively regulates Fas transcription and impairs the sensitivity of tumor cells to CTL Fas L-mediated cytotoxicity (35). More importantly, SUV39H1 has a non-negligible role in the dysfunction of tumor-infiltrating cells (CTL). It deprives effector T cells of their long-term memory reprogramming capacity (44) and induces SMAD2/3 inhibition of T cells to produce IL-2-mediated immune modulation (45). In conclusion, the inhibition of tumor cell gene expression by SUV39H1 under pathological conditions and its central role in suppressing the killing and memory functions of effector T cells provide new evidence in support of its effectiveness.



SETD2

SETD2 is the only human gene responsible for the trimethylation of histone H3 lysine 36 (H3K36me3) that interacts with RNA polymerase II (68, 69). Although there is clear evidence that SETD2 is abnormally expressed in various tumors, its causal relationship with tumorigenesis is still unclear. In the analysis of clinical sample, mutations in SETD2 led to the enrichment of tumor cell surface mutation-specific neoantigens, such as mutational load (TMB) microsatellite instability-high (dMMR/MSI-H). In addition, these patients with SETD2 mutated cancer were accompanied by transcriptional upregulation of genes associated with immune activity (46). Another clinical analysis of lung adenocarcinoma found many SETD2 gene mutations and significantly higher IFN-γ expression in the PD-L1 high-expression group (47). Furthermore, an experimental study in renal cell carcinoma found that SETD2 acts as a transcription factor regulating E3 ubiquitin ligase FBW7 target gene expression, causing altered PD-L1 expression levels and promoting CD4+ and CD8+ T cell infiltration and enhancing the anti-tumor effects of PD-1 antibodies (48). Based on the above studies, mutations in SETD2 are significantly correlated with tumor immune-specific genes and can drive tumor immunophenotypic alterations. However, extensive experimental studies are still needed to identify specific regulatory mechanisms of SETD2 on immune-related factors, which could provide new insights into the heterogeneous immune treatment of individual tumor patients.



KMT2 family

The histone-lysine N-methyltransferase 2 (KMT2) family of proteins is one of the most common mutations in human genome and confers the key functions of chromatin modifiability and DNA accessibility by modifying lysine 4 (H3K4) in the H3 tail of histone H3 (70). The current anti-tumor effects involving the KMT2 family are mainly focused on investigating immune checkpoints. In pancreatic cancer, inhibition of MLL1(KMT2A)activity or silencing expression reduces H3K4me3 levels in the CD274 promoter region and downregulates PD-L1 expression. Moreover, a KMT2A inhibitor combined with anti-PD-L1 or anti-PD-1 antibodies can effectively restrain the growth of a mouse model of pancreatic tumor in a Fas L- and CTL-dependent manner (49). Also, KMT2D is the main mutated gene in PD-L1-positive patients with hepatocellular carcinoma, whose large accumulation may lead to the ineffective response of PD-1 reagents (50). Frequent mutations in KMT2D have also been observed in non-small-cell carcinomas, along with mutations in TP53 (51). The response to immune checkpoint inhibitor (ICI) therapy is mainly influenced by intracellular tumor factors (e.g., tumor mutational load and microsatellite instability) and the tumor microenvironment. In an analysis of the immune assessment of ICI-treated patients through the Biocredit database, KMT2D was identified to have a critical role in a variety of tumor such as bladder cancer (52), esophageal cancer (53), gastric adenocarcinoma (54), lymphoma (56), and head and neck cancer (57, 71). These findings confirm that the KMT2 family is one of the drivers of immune escape. Alterations in its family-related genes may serve as predictive biomarkers for immunotherapy and help us to understand the prognostic effect of immune checkpoint therapy.



DOT1L

DOT1L (telomere silencing interference; also known as KMT4), which mainly catalyzes the methylation of H3K79, leads to gene mutations and impairs the interaction between Sir2 and Sir3 in the telomeric region (71). Inhibition of its catalytic activity has been widely used in cancer therapy. Recent studies have suggested that DOT1L is a central player in CD8+ T cell physiology, ensuring the activation of normal T cell receptor signaling and related signaling pathways that control CD8+ T cell differentiation. In the CD4-CRE transgenic mouse model, deletion of the DOT1L gene inhibited CD8+ Tcells apoptosis, as well as TNF and INF-γ expression. Furthermore, inhibition of DOT1L increased the threshold for TCR activation in T cells (58). Another study suggested that the loss of DOT1L directly impairs TCR/CD3 expression, resulting in an impaired immune response (59). Furthermore, DOT1L controls the subset differentiation of Foxp3+ regulatory T cells during carcinogenesis, reducing local inflammatory production in the microenvironment (60). The above results suggest that DOT1L is an important epigenetic target for regulating allogeneic T-cell responses, affecting the amount of immune cell infiltration, the direction of cell differentiation, and the secretion of immunomodulatory factors.




Protein arginine methyltransferase (PRMT) and tumor immunity

As a common post-translational modification, PRMT can catalyze the transfer of methyl groups from S-adenosine methionine (AdoMet) to the guanidine nitrogen atom of arginine. It can also affect the methylation status of the cancer genome, leading to activation or inhibitory recruitment of transcriptional mechanisms that are dysregulated in most tumors (72). In recent years, the development of PRMT-targeted drugs has been widely used in cancer therapy. Considering that PRMT1, PRMT4, and PRMT5 have the highest expression in cancer, their immunosuppressive effect have been well investigated (Table 2) (Figure 2).


Table 2 | Related functions of arginine methylase and tumor immunity.






Figure 2 | Protein arginine methyltransferase (PRMT) involved in tumor immune summary. PRMT1 regulates M2 macrophage polarization and promotes the transcription of IL-6 and IL-10. PRMT1 promotes the transcriptional level of PD-L1. PRMT4 negatively regulates T cells. PRMT4 promotes the transcription of XBP1 and forms the PRMT4-XBP1 complex to activate the endoplasmic reticulum stress pathway. PRMT5 inhibits the transcription of MHCI and MHCII and suppresses antigen recognition. PRMT5 promotes STAT1 expression to promote PD-L1 expression levels. In the cytoplasm, PRMT5 inhibits the dsRNA-cGAS-STING pathway, downregulates the interferon pathway, and downstream genes Vegfa, CCL7, CCL9, CCL5, and CCL10 expression are suppressed.PRMT4 inhibits IFNγ/α.PRMT5 promotes the immunosuppressive function of Foxp3 regulatory T cells. Black line indicates promotion, red line indicates suppression, and dashed line indicates physiological function.




PRMT1

Protein arginine methyltransferase 1 (PRMT1) is the main type I PRMT. Many experimental studies have shown that PRMT1 is overexpression or has an shear state in many cancer types (90). Using a genome-wide CRISPR immune screening system to screen for tumor-intrinsic factors that modulate tumor cell sensitivity to T cell-mediated killing, Hou J et al. identified PRMT1 as an intrinsic factor affecting T cell transport and lethality. The possible mechanism is the altered RNA levels of the cytokines/chemokines (73). In some tumor types, PRMT1 is an important regulator of the immune checkpoint pathway. In human hepatocellular carcinoma (HCC), PRMT1 expression is positively correlated with both PD-L1 and PD-L2 immune checkpoint expression (74). Similarly, PT1001B (PRMT1 inhibitor) enhances antitumor immunity by inhibiting PD-L1 expression on tumor cells, upregulating tumor-infiltrating CD8+ T lymphocytes. When the anti-PD-L1 monoclonal antibody was combined with PT1001B, the proportion of tumor-infiltrating effector cells was significantly increased in mice, and resistance to anti-PD-L1 treatment was well reversed (75). In addition, PRMT1 can protect the tumor cells, which can induce macrophages to assist in immune escape. Inhibition of PRMT1 in mice led to the inhibition of IL6 signaling and downstream STAT3 activation and decreased the number of tumor cells and M2 type macrophages (76). Taken together, these studies suggested that effective inhibition of PRMT1 can control T cell-mediated tumor killing and can effectively remodel the tumor immune microenvironment.



PRMT4

Protein arginine methyltransferase 4 (PRMT4), also known as coactivator-associated arginine methyltransferase 1 (CARM1), has a carcinogenic role in human cancer and is closely involved in the process of tumor growth and immune tolerance (91). CARM1 is overexpressed in different tumors and negatively associated with CD8+ T cells. It can also be used as a potent biomarker for pan-cancer prediction (77). In ovarian cancer, CARM1 acts as a transcriptional activator to promote XBP1 target gene expression. CARM1 and interacts with XBP1 to modulatie the ER stress response in the IRE1α/XBP1 pathway, triggering an immunosuppressive environment (78). Furthermore, CARM1 mainly targets BAF155 in triple-negative breast cancer by inhibiting the interferon pathway to inhibit the host immune response (79). Similarly, CARM1 is positively regulated by circHMGB2, which inhibits type I interferon responses and downstream genes. EZM2302 (a CARM1 inhibitor) and anti-PD-1 antibody significantly inhibited the immunosuppressive environment in vivo shaped by tumor growth in mice and reduced the efficacy of anti-PD-1 monotherapy in non-small cell lung cancer (80). In a mouse colon cancer model, inhibitors targeting CARM1 were effective in arresting solid tumor progression and enhancing immune infiltration (81). In addition, the inactivation of the CARM1 gene in T cells can increase the number of specific memory-like T cell populations in the microenvironment, allowing the body to maintain a continuous and effective immune attack against tumors. EZM2302 (CARM1) enhances the checkpoint blockade sensitivity of CTLA-4 mAb in a synergistic manner (82). Overall, the inhibition of the activity against CARM1 suppresses tumor progression, promotes T-cell infiltration and sustained immune memory, and may be an effective for immunotherapy of drug-resistant tumors.



PRMT5

PRMT5 is the major type II arginine methyltransferase, active in a variety of cellular activities, that achieve tumor-promoting effects through methylation-mediated transcription repression, including inhibition of normal expression of the tumor surface antigen proteins in different tumor types (92). For example, in melanoma, PRMT5 activity inhibits NLRC5 transcription and changes the regulation of the expression of genes involved in the presentation of the major histocompatibility complex class I (MHCI) antigen. Meanwhile, PRMT5 interfere with the dsRNA-cGAS-STING pathway to affect type I interferon responses, promoting immune escape (83). In addition, inhibition of PRMT5 promotes the expression of MHC II (84). Treatment with GSK3326595 (PRMT5 inhibitor) plus anti-PD-1 antibody enhanced the anti-tumor response in the mouse organism (83, 84). Thus, targeting PRMT5 may synergize with immune checkpoint therapy to improve therapeutic efficacy. PD-L1 is a key molecule highly expressed in tumor cells that interacts with immune cells to constitute an immunosuppressive environment. In lung cancer, GSK591 drug inhibits PRMT5-induced PD-L1 expression, which then trigger immune resistance (85). Thus, the combination with PD-1 treatment and inhibition and elimination of PRMT5 may promote synergistic inhibition. In contrast, in cervical cancer, PRMT5 promotes cancer progression by increasing the expression of histone H3R2 symmetric dimethylation (H3R2me2s), which is enriched in the promoter region of STAT1 to enhance transcription and drive up-regulation of PD-L1 expression (86).

Furthermore, PRMT5 also acts directly on the host immune cells to maintain cellular physiology and homeostasis, especially on the effector CD8+ T cells. PRMT5 can affect the deposition of H4R3me2s and H3R8me2s at the Blimp1 locus and force the differentiation of transient effector CD8+ T cells, resulting in a substantial loss of CD8+ T cell numbers and function (87). Inhibition of PRMT5 is a “double-edged sword”, its inhibition causes reduced AKT/mTOR signaling, which impairs glycolysis and increases fatty acid utilization after human CD8+ Tcells’stimulation leading to metabolic reprogramming (88). In addition, PRMT5 can interact with the FOXP3 transcription factor in Tregs to maintain the functional stabilization of Treg cells (89). In conclusion, given the selective role of PRMT5 in the tumor microenvironment, more attention should be paid to the mechanism of side effects in immune cells, and combined immunotherapy may maximize the efficacy.




Classification and biological functions of histone demethylases(HDMs)

With the progress of science and technology, almost all histone lysine methylation sites have been found to be reversible. To date, two classes of histone demethylases have been identified, mainly the lysine-specific demethylase-1 (LSD1) family and the jumonji (JmjC) domain-containing family (93). LSD1, which was identified first acts only on monomethylated and dimethylated lysines (94). The JmjC family is another class of JmjC domain-containing Fe (II). Ketoglutarate-dependent enzymes are divided into different species according to the sequence homology of the JmjC domain and the overall structure of the related motifs. Thus far, those active against H3K4, H3K9, H3K27, H3K36, and H4K20 have been identified (95). Their special structure allows them to function together with many other biological macromolecules (96).

Histone demethylases do not change the DNA sequence, and dynamically regulate in specific chromatin regions. They are important regulators of the physiological functions of embryonic development, gene regulation, cell reprogramming and other physiological functions, and they maintain genome integrity and epigenetic stability (97). Their role in cancer is particularly important, and it is closely related to the pathogenesis of the disease, including the demethylation of the oncogenes/tumor suppressor genes for mastering the cell fate, the enrichment of transcription factors, gene copy number alterations, and increased mutations. Targeting partial demethylases opens up an emerging field for anticancer therapy. In this process, some enzymes also have a prominent role in regulating the immune microenvironment (Table 3) (Figure 3).


Table 3 | Related functions of lysine demethylase and tumor immunity.






Figure 3 | Histone demethylase(HDMs) involved in tumor immune summary. In tumor cells, KDM1A, KDM2A, KDM4C, KDM5A, KDM5B, KDM5C and KDM6B negatively regulate key genes and signaling pathways involved in stimulating T-cell anti-tumor immunity, including ERV, MHC-I, TGF-β, CD247, JAG1, CXCL10,9,STING and PTEN, affecting cellular KDM1A, KDM3A, KDM4C, KDM4D, KDM5B, KDM5A positively regulate related proteins involved in activating tumor surface antigens, including CD247,CD47 and other surface antigens, or by promoting MEF2D, KLFS, SMAD4, STAT3, ARID3B, SETDBI to promote or activate downstream KDM5A promotes CXCL9 and CXCL10 recruitment of T cells into the microenvironment. kdm1A inhibits TGF-β binding to T cell-associated receptors and suppresses MHC-I antigen expression. KDM1A promotes PD-L1 expression in exosomes. kdm1A and KDM6B affect T cell function. kdm2A alters the activity of regulatory T cells.




LSD1 and tumor immunity

Lysine-specific demethylase 1 (LSD1), also known as KDM1A, acts as an H3K4/9me eraser that binds to CoREST or nucleosome remodeling to repress gene transcription (131). LSD1 is highly expressed in most solid tumors, altering tumor immunogenicity and immune response by inhibiting or activating different signaling pathways. Shi et al. first discovered that inhibiting LSD1 can enhance endogenous transcription (EVR) expression, activate dsRNA stress and type I interferon activation, and improve the immunotherapy response of poorly immunogenic tumors (98). More importantly, LSD1 is inversely associated with CD8+ T cells in various tumors. In tumor cells, LSD1 largely affects the normal expression of MHC-I protein antigen by inhibiting the MHC-I encoding genes H2-D1 and H2-K2, which leads to the possibility that CD8+ T cells do not effectively recognize MHC-I prompting immune escape. The above mechanism has been observed in melanoma, breast cancer, and small-cell lung cancer (98–100)

Conclusions regarding the regulation of PD-L1 expression are inconsistent. In cervical cancer, LSD1 seems to be positively correlated with PD-L1 levels, in which H3K4me2 demethylation directly promoted the increase in PD-L1 expression (101). On the other hand, the demethylation of MEF2D in HCC indirectly promotes the PD-L1 expression, and this process is competitively inhibited by has-miR-329-3p (102). Moreover, in gastric cancer, LSD1 increases the level of PD-L1 found in exosomes and is transported to T-cell expression to inhibit tumor immunity (103). In contrast, LSD1 significantly suppresses the PD-L1 expression level in HNSCC (104). The surprising finding is that using the LSD1 inhibitor alone, despite its effective tumor suppression, the resulting exogenous TGF-1 binding to the CD8+ T cell surface receptors inhibits the cytotoxic effects (105), which may be one of the reasons why the clinical effects of LSD1 inhibitors are suboptimal. Alternatively, LSD1 performs an epigenetic program within CD8+ T cells. On the one hand, it inhibits the transcription of the progenitor phenotype gene TCF1, disrupting the progenitor cell population (106). On the other hand, eomesodermin (EOMES), a transcription factor associated with the regulation of T cell failure, promotes T cell dysfunction (107). These make T cell depletion fast and unsustained recovery, resulting in poor persistence of PD-1 blocking therapy. Current experimental data suggest that treatment with LSD1 inhibitors (ORY-1001, SP2509 or GSK2879552) in combination with PD-1/PD-L1 monoclonal antibodies enhances in vivo immunogenicity and has a long-term response (101, 104, 106).



JmjC family and tumor immunity


KDM2

KDM2 is mainly responsible for the demethylation of the H3 lysine 36(H3K36) residues, and its family members include KDM2A and KDM2B (132). In glioma, LncRNA HOXA-AS2 promotes KDM2A expression by binding to miR-302a, thus recruiting H3K4me3 to demethylate JAG1 and promoting the proliferation and immune tolerance of regulatory T cells (108). In addition, KDM2A may promote immune body suppression Fumarate as an important metabolite may antagonize inhibitory histones and promote immune regulation (133, 134). In conclusion, KDM2 serves as a considerable therapeutic target.



KDM3

KDM3 is mainly composed of KDM3A, KDM3B, and KDM3C, which can specifically catalyze the demethylation of histone H3K9me1/2 (135). Using CRISPR screening in a mouse model of pancreatic cancer, KDM3A was found to be an epigenetic modulator of the response to immunotherapy. KDM3A mainly affects the KLF5 and SMAD4 transcription factor activity, regulates the epidermal growth factor receptor (EFFR) expression, and affects the T cell infiltration and the infiltration of dendritic cell DC (109). This suggests that KDM3A is closely related to the composition of the immune microenvironment. Therefore, eliminating KDM3A could help overcome immunotherapy resistance and enhance sensitivity to therapeutic effects, thereby creating a microenvironment for T-cell inflammation.



KDM4

The KDM4 protein family is composed of (KDM4A-C) and KDM4D, and several studies have found them to be overexpressed in cancer and to have the ability to malignant tumor growth (136). Notably, while maintaining tumor growth, they simultaneously suppress the activity of some pathways to interfere with normal immunosuppression. In HNSCC, the knockdown of KDM4A led to the activation of both types I IFN interferon signaling and DNA replication stress signal cGAS-STING, along with the significant upregulation of CXCL9, CXCL10, and CXCL11, and significantly increases the effect of the combined PD-1 blocking treatment (110). KDM4B is also recommended as a clinical prognostic marker and is closely associated with immune cell infiltration and immune checkpoint molecular expression (111). In colon cancer cell culture, KDM4B elevates HOXC4 expression by driving H3K27me3 demethylation to induce the expression of PD-L1, and exogenous miR-15a was able to prevent tumor escape events from occurring (112). Moreover, KDM4C is negatively associated with CD8+ T cells in lung cancer; transcription sequencing found that KDM4C mainly downregulates the transcript level of CXCL10 and inhibits T cell recruitment to tumors and killing (113). KDM4C is also involved in the regulation of PD-L1 expression, and the main mechanism is the transcriptional activation of the Notch gene and PD-L1 through ARID3B recruitment to regulate chromatin structure, whereas KDM4D promotes PD-L1 expression through the SP-1/STAT3/IRF1 signaling pathway, assisting the immune escape of in colorectal cancer (114, 115).



KDM5

The KDM5 protein family, including KDM5A-C and KDM5D, is responsible for removing histone H3 lysine 4 dimethylation and trimethylation (H3K4me2 and H3K4me3) (116). It is an attractive target in cancer therapy. Several prospective raw letter analyses have shown that KDM5 is closely associated with regulaing immune infiltration and expressing immune-related molecules, and is considered a prospective candidate for epigenetic anti-tumor therapy (117–119). In clinical treatment, some patients have low tumor cell PD-L1 abundance, so they cannot respond well to ICB. One study showed that increased KDM5A gene expression or protein abundance, promoting PD-L1 upregulation to accommodate the PD-1 treatment response, is a valuable clinical response tag (137). In melanoma, high expression of KDM5B can recruit the H3K9 methyltransferase SETDB1 to interact in the suppression of endogenous retrotransposable elements and block subsequent RNA and DNA sensing pathways as well as type I interferon responses, resulting in the inability of the organism to respond positively to tumor rejection and immune responses (40). A similar mechanism has been found in breast cancer. The STING promoter is directly transcriptionally repressed by KDM5B and KDM5C, disrupting the cGAS/STING pathway signaling and failing to activate a robust interferon response (120). Using KDM5 inhibitors reversed the normal transmission of this signaling pathway. It has also been suggested that combining of immunotherapy and KDM5 inhibitors could maximize the anti-tumor immune response, thus representing a potential therapeutic modality of interest.



KDM6

The KDM6 subfamily consists of three distinct members, i.e., KDM6A (also called UTX), KDM6B (also called JMJD3), and KDM6C (also called UTY), capable of removing di-and trimethylated H3K27, thereby activating or repressing target gene transcription (121). Its Function is highly dependent on the specific of the cell type pathological environment (122). The molecular basis of KDM6 in tumors is still in its infancy, and only a few studies have addressed this issue. Yet, several studies have shown a high correlation between its mutations and tumor immunity. A functional screen for lysine demethylase in HCC showed that KDM6A is closely associated with immune infiltration (123). In bladder cancer and its subtypes, KDM6A is a more frequently mutated gene, that negatively regulates the signaling pathways of the immune system and suppresses tumor immunity (124–126). In medulloblastoma, KDM6A activates the expression of Th1-type chemokines and promotes cell migration (127). Moreover, KDM6B inhibit CXCL9 and CXCL10 expression in colon cancer and exerts an anti-tumor immune effects (26). In contrast, the effect of KDM6B is positively regulated for CD8+ T cells. KDM6B can promote the differentiation of mature CD8+ T cells by demethylating the expression of GZMB and FasL (128). Inhibition of KDM6B resulted in reduced of toxicity-related genes in CD8+ T cells (129). Little experimental support exists for the specific mechanism of KDM6B in tumor progression and immune cell infiltration. However, available pan-cancer analyses suggest that KDM6B expression is associated with TMB, MSI and immune cell infiltration, and influences the response to immunotherapy and clinical outcome (130).





Conclusions and outlook

In the past decade, human cancer prevention and treatment have entered a new era with the emergence of immunotherapy. In the process of gradually understanding the potential mechanism of tumor cell occurrence and development, to the mechanism of killing malignant cells and avoiding the effect of the immune system, researchers have also developed corresponding therapeutic drugs for clinical practice, including immune checkpoint inhibitors, epigenetic targeted drugs, etc. Nevertheless, the low response rate and immune resistance in practical clinical applications led to identification of so-called “cold tumor”.

The concentrated research on histone methylation modifying enzymes in epigenetics advances our new understanding of “cold tumors” in human cancer, and builds the bridge between tumor cells and immune cells, promoting a deeper understanding of the complexity and diversity of the tumor immune microenvironment. Current studies on the involvement of histone methylase and demethylase in anti-tumor immunity mainly includes (1): regulation of tumor immunogenic antigen expression; (2) their influence on the activation of immune-related pathways; (3) regulation of expression of chemokines/cytokines and induced immune-related factors; (4) regulation of immune cells, including immune cell activation, immune cell depletion and functional remodeling, and immune memory. The above regulatory mechanisms provide a more comprehensive picture of the facilitative/suppressive immune microenvironment shaped by aberrant histone methylation modifications at the transcriptional and translational levels. Furthermore, the contribution of histone methylation modifications for tumor immune escape mechanism, immunotherapy tolerance mechanism, and immune stress has brought new perspectives and approaches for solving the “cold tumor” dilemma.

The above studies are still in their infancy but provide a solid theoretical basis for future preclinical and clinical development of combination therapies using epigenetic modulators and immunotherapeutic agents and show great potential. This will be a new therapeutic paradigm targeting improved and enhanced immune efficacy. We expect that based on the rapid development of immunogenomics, immunoproteomics, and immunobioinformatics, the complex structures in the tumor immune microenvironment will be revealed more comprehensively in the future. Together with the development of research on immune features in preclinical tumor models, this will greatly improve our understanding of the role of histone methylation in the immune microenvironment, facilitating clinical translation and the construction of precise therapeutic systems. Therefore, the development of this field is an important breakthrough to improve the efficacy of immunotherapy for the benefit of more patients. Based on the current research, we still need further studies to explore the role of histone methylation mutations in the regulation of immune resistance in different types of tumors. Meanwhile, the combination of single cell sequencing and spatial transcriptome sequencing will fully reveal the importance of histone methyl esterases in the tumor microenvironment, providing finer evidence to support the mechanism of epigenetic involvement in immune regulation. In addition, experimental models of combining multiple histone methylation modulators with immunotherapeutic agents will be developed, and rational and less toxic optimization protocols will be sought to advance clinical practice.

In conclusion, understanding the regulatory mechanisms of histone methylation modifying enzymes will improve immunotherapy.
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Cervical cancer is a public health problem of extensive clinical importance. Excision repair cross-complementation group 1 (ERCC1) was found to be a promising biomarker of cervical cancer over the years. At present, there is no relevant review article that summarizes such evidence. In this review, nineteen eligible studies were included for evaluation and data extraction. Based on the data from clinical and experimental studies, ERCC1 plays a key role in the progression of carcinoma of the uterine cervix and the therapeutic response of chemoradiotherapy. The majority of the included studies (13/19, 68%) suggested that ERCC1 played a pro-oncogenic role in both early-stage and advanced cervical cancer. High expression of ERCC1 was found to be associated with the poor survival rates of the patients. ERCC1 polymorphism analyses demonstrated that ERCC1 might be a useful tool for predicting the risk of cervical cancer and the treatment-related toxicities. Experimental studies indicated that the biological effects exerted by ERCC1 in cervical cancer might be mediated by its associated genes and affected signaling pathways (i.e., XPF, TUBB3, and. To move towards clinical applications by targeting ERCC1 in cervical cancer, more clinical, in-vitro, and in-vivo investigations are still warranted in the future.
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Introduction

Despite an upward trend in the HPV vaccination rates, cervical cancer remains the fourth most common female cancer worldwide (1, 2). Cervical cancer accounts for 527,600 new cases, representing 5% of all new cancer cases, and around 265,700 deaths annually worldwide (3). Patients with cervical cancer tend to metastasize early, resulting in a poor prognosis and a low 5-year survival rate of 30-60% (4). The major cause of it is infection with High-risk Human Papillomavirus and its diagnosis requires histopathological evaluation. Radical hysterectomy remains the first-choice therapy for patients at an early stage. A growing number of young patients have been diagnosed with this disease in recent years (5). As a result, some patients wish to preserve their fertility. In the late 1980s, the radical vaginal trachelectomy with bilateral pelvic lymphadenectomy was proposed as one of the standard approaches for fertility-sparing treatment (6). As for locally advanced cervical cancer, platinum-based concurrent chemoradiotherapy remain the gold-standard of treatment (7).It is problematic to treat locally advanced cervical cancers at stage IIb of the Federation of Gynecology and Obstetrics (FIGO). It invades the parametrium and lymph node, and is usually considered inoperable. Several studies demonstrated that neoadjuvant chemotherapy (NAC) reduced the tumor volume and increased tumor resectability, which achieved satisfactory outcomes in locally advanced cervical cancer (8, 9). As known, resistance to chemotherapy is the main obstacle to locally advanced cervical cancer treatment (10). Therefore, it is urgent to identify the biomarkers to predict chemotherapy or NAC response in locally advanced cervical cancer.

Excision repair cross-complementation group 1 (ERCC1) (the DNA repair gene) is a gene associated with platinum sensitivity and has been proposed as a novel biomarker of cervical cancer over the years (11, 12). ERCC1 gene is located on 19q13.2-q13.3, and encodes a 297 amino acid protein (13, 14). The C-terminal domain of ERCC1 interacts with xeroderma pigmentosum group F (XPF), which forms a heterodimeric protein complex. The complex is considered to be the main component of the nucleotide excision repair (NER) pathway (15). There are several major pathways for repairing DNA damage in human cells, one of which is NER (16). It can remove great varieties of helix-distorting DNA lesions, including UV-induced pyrimidine dimers, bulky chemical adducts, and photoproducts (17). The NER complex stabilizes the unwound DNA intermediate by recruiting xeroderma pigmentosum group A and replication protein A (18). Cisplatin is an alkylating compound that exerts its cytotoxic action by interfering with DNA replication by forming strong intrastructural cross-links, which activates cell apoptosis (19). Therefore, ERCC1 overexpression may have an adverse impact on cisplatin-induced cell death. Conversely, the inhibition of ERCC1 may sensitize cancer cells to cisplatin. In a study reported by Kassem et al. (20) on 80 colorectal cancer patients who received first-line oxaliplatin-based chemotherapy, patients with low ERCC1 expression had longer overall survival than those with high ERCC1 expression (P=0.011). Similarly, Torii et al. (21) also demonstrated that the expression level of ERCC1 was significantly increased by cisplatin treatment. They also found an association between ERCC1 expression and chemotherapeutic sensitivity of cervical adenocarcinoma cells. Additionally, a case-control study showed that low expression of ERCC1 was closely related to a significantly increased risk for cervical cancer (22). Though ERCC1 can be used not only as a prognostic biomarker but also to identify patients who will benefit from chemotherapy, the evidence has been debatable (23). In this present study, we summarize all published clinical and experimental data on ERCC1 applications in cervical cancer.



ERCC1 in cervical cancer


Roles of ERCC1 in cervical cancer among the current relevant studies

A systematic search was conducted in four databases, including MEDLINE, EMBASE (OVID), Cochrane Library, and PsychINFO to screen related studies prior to August 1, 2022. We included only studies that were reported in English. For identifying eligible studies in PubMed databases, the following search strategy was employed: ((excision repair cross-complementation group1) OR (ERCC1)) AND ((Cervical Neoplasm, Uterine) OR (Cervical Neoplasms, Uterine)) OR (Neoplasm, Uterine Cervical)) OR (Neoplasms, Uterine Cervical)) OR (Uterine Cervical Neoplasm)) OR (Neoplasms, Cervical)) OR (Cervical Neoplasms)) OR (Cervical Neoplasm)) OR (Neoplasm, Cervical)) OR (Neoplasms, Cervix)) OR (Cervix Neoplasms)) OR (Cervix Neoplasm)) OR (Neoplasm, Cervix)) OR (Cancer of the Uterine Cervix)) OR (Cancer of the Cervix)) OR (Cervical Cancer)) OR (Uterine Cervical Cancer)) OR (Cancer, Uterine Cervical)) OR (Cancers, Uterine Cervical)) OR (Cervical Cancer, Uterine)) OR (Cervical Cancers, Uterine)) OR (Uterine Cervical Cancers)) OR (Cancer of Cervix)) OR (Cervix Cancer))). The publication’s reference lists were manually checked to detect additional studies. On the basis of a data collection form, the following information was extracted, including the first authors’ names of the included studies, study publication year, the study type, median/mean age, stage of cervix cancer, treatment for cervix cancer, assessment for ERCC1 examination, the number of moderate/high/positive ERCC1 patients and low/negative ERCC1 patients, and the clinical implications or significances of ERCC1 in cervix cancer.

As shown in Tables 1–3, there were nineteen relevant studies (11, 12, 21–37) that were finally included for further evaluation. Among these eligible studies, thirteen studies were clinical trials reporting the ERCC1 expression and cervix cancer, three studies (33–35) were clinical studies reporting the ERCC1 polymorphism and cervix cancer, and three experimental studies (21, 36, 37) reporting the molecular roles of ERCC1 in cervix cancer. Study publication years ranged from 2000 to 2021 for the included studies. All the clinical studies were retrospective design. The median/mean age of the cervix cancer patients ranged from 43-58 years. The stage of cervix cancer patients included I to IVB, metastatic stage, recurrent stage, advanced stage, and locally advanced stage. The treatment methods for cervix cancer included radiation (i.e., EBRT), radical hysterectomy, neoadjuvant chemotherapy, chemoradiotherapy, and concurrent chemoradiotherapy. The common-used chemotherapeutic drugs among the included studies included etoposide, cisplatin, ifosfamide, fluorouracil (FU), cyclophosphamide (CTX), cyclophosphamide (CTP), etc. The assessments for evaluating the expression of ERCC1 mainly included immunohistochemistry (IHC), real-time polymerase chain reaction (RT-PCR), immunofluorescence, and fluorescence. The number of moderate/high/positive ERCC1 patients among the eligible clinical studies ranged from 7 to 72, while the number of low/negative ERCC1 patients in these studies ranged from 9 to 71.


Table 1 | Clinical findings of ERCC1 in cervical cancer.




Table 2 | ERCC1 polymorphism in cervical cancer.




Table 3 | Molecular mechanisms underlying the effects of ERCC1 in cervical cancer.



In the three clinical studies reporting the ERCC1 polymorphism, the sample size ranged from 260 to 433. The results of polymorphism examination derived from the peripheral blood and white blood cell. The methods for polymorphism detection in these studies included PCR restriction fragment length polymorphism assay, SNPware 12plex assay, and allelic discrimination RT-PCR. The reported ERCC1 polymorphisms among the three studies were C19007T, 118C>T, and rs3212986.

There were three experimental studies that investigated the aberrant expression of ERCC1 in cervix cancer. The research models among these studies were all in-vitro designed, which included a variety of cervical carcinoma lines, i.e., HT137, HT155, HT172, HT180, HT212, CASKI, and C33A cells. These cancer cells were treated with cisplatin resistance, 5-FU, and radiotherapy. A summary of the nineteen studies included in this study can be found in Tables 1–3.



Pro-oncogenic effects of ERCC1 in FIGO stage I to Stage III uterine cervix cancer

Currently, there is evidence that ERCC1 contributes to resistance to platinum-based chemotherapy or chemoradiotherapy coupled with platinum agents in multiple malignancies (38). For example, the relationship between ERCC1 expression and clinical characteristics and outcomes in patients with uterine cervical cancer has been detected in a number of studies. Such an association was not only observed in the early stage but also the advanced stage of uterine cervix cancer. According to the published data, high expression of ERCC1 might be correlated with poor prognosis in cervix cancer. Hasegawa et al. (25) reported that patients with FIGO stage I to II uterine cervix cancer with high ERCC1 expression had significantly worse DFS than those with low ERCC1 expression (P = 0.005). In addition, worse DFS was also observed in those patients who had a high level of ERCC1 under cisplatin-based chemotherapy/chemoradiotherapy (P= 0.002). The log-rank test indicated that high ERCC1 expression might be an independent prognostic factor in patients receiving cisplatin treatment (P<0.05). This finding was consistent with Park et al.’s study (27) which investigated the roles of ERCC1 in patients with Stage II B cervix cancer under neoadjuvant chemotherapy (etoposide and cisplatin). It was found that chemotherapy was responsive in all patients with negative ERCC1 expression. ERCC1 negativity was an independent predictor for responsiveness to neoadjuvant chemotherapy (P=0.021). This study also reported that low ERCC1 expression was a significant prognostic factor of DFS in multivariate analysis (P=0.046). In a more recent study (32) developed by Jeong et al., the authors investigated the prognostic significance of ERCC1 in early-stage (FIGO I B1 to II B) cervical cancer with chemoradioresistance. They observed that high ERCC1 expression was associated with significantly unfavorable DFS than those with low ERCC1 expression (76.8% vs. 88.6%, P=0.022). The above three clinical studies demonstrated that ERCC1 might play a pro-cancer role in early-stage uterine cervix cancer, especially in patients with cisplatin chemotherapy.



Pro-oncogenic Effects of ERCC1 in advanced uterine cervix cancer

In addition to the early stage of uterine cervix cancer, ERCC1 expression was also found to be associated with the prognosis of advanced cervix adenocarcinoma. An early study conducted by Bai et al. (28) demonstrated that advanced cervical squamous cell carcinoma patients with low ERCC1 mRNA expression had a significantly higher rate of complete response to cisplatin-based concurrent chemoradiotherapy (86.21%) than those with a high level of ERCC1 (19.36%, P < 0.001). Further analysis indicated that low ERCC1 mRNA level was an independent predictive factor for a complete response to chemoradiotherapy (P < 0.001). The authors also found that the sensitivity for detecting a complete response was 81.48% with a specificity of 96.97%. Liang et al. (26) investigated the clinical outcome in patients administrated with cisplatin-based concurrent chemoradiotherapy for locally advanced cervical cancer. They found that the 5-year DFS rates of the ERCC1-positive and ERCC1-negative groups were 43.8% vs. 76.5% (P = 0.011) and the 5-year OS rates for the ERCC1-positive and ERCC1-negative groups were 50.0% vs. 85.3% (P = 0.008). Zwenger et al. (30) demonstrated that poor DFS (P=0.021) and OS (P=0.005) were observed in patients with advanced cervical cancer who received cisplatin chemoradiotherapy with high ERCC1 expression when compared to those with low ERCC1 levels.

In addition to the above evidence, A correlation was also found between ERCC1 expression and survival in patients with metastatic or recurrent uterine cervix carcinoma treated with cisplatin and ifosfamide. Karageorgopoulou et al. (12) demonstrated that higher ERCC1 expression had shorter PFS and OS than those with low ERCC1 expression (median PFS: 5.1 vs 10.2 months, P = 0.027; median OS: 10.5 vs. 21.4 months, P = 0.006). Similarly, a study done in Korea showed the median OS of ERCC1-high patients was 320 days and that of ERCC1-low patients was 617 days (HR=2.322, 95%CI: 1.051–5.129; P=0.037) (31). Also, the median PFS was significantly poorer in ERCC1-high than in ERCC1-low patients (135 vs 242 days; HR=2.428, 95%CI: 1.145–5.148; P=0.032) (31). These preliminary studies indicated the prognosis and survival of patients with metastatic and recurrent uterine cervix cancer is poor when high ERCC1 expression is confirmed.

The Kaplan-Meier OS, PFS, and DFS curves stratified by ERCC1 status that reported in the included studies were displayed in Figures 1, 2.




Figure 1 | Kaplan-Meier overall survival curve stratified by ERCC1 status that reported in five included studies with the corresponding citation. (A) derived from the study of (24), namely A = (24); B = (29); C = (30); D = (23); E = (31).






Figure 2 | Kaplan-Meier disease-free and progression-free survival curve stratified by ERCC1 status that reported in six included studies with the corresponding citation. (A) derived from the study of (25), namely A = (25); B = (26); C = (29); D = (23); E = (30); F = (31).





ERCC1 serves as a tumor suppressor in advanced uterine cervix cancer

Inconsistencies from the above studies, Bajpai et al. (22) indicated that the level of ERCC1 was statistically lower in cervical cancer tissues than that in the normal cervix tissues (P=0.025) in patients under chemoradiotherapy (cisplatin combined with radiotherapy). Doll et al. (24) reported that uterine cervix cancer patients with low ERCC1 expression had significantly worse OS (17.9% vs. 50.1%, P = 0.046) and worse DFS (21.4% vs. 47.4%, P= 0.083) than those with higher expression levels. Also, in a subsequent study developed by Doll et al. (29), they observed that tumoral ERCC1 status (nuclear to cytoplasmic ratio) was dramatically associated with the OS of the patients with cervical cancer (HR=3.13, 95%CI: 1.27-7.71, P=0.013) as well as correlated with the PFS (HR=2.33, 95%CI: 1.05-5.18, P=0.038). Based on the results from Doll et al., patients with cervical cancer who expressed high levels of ERCC1 were thought to have a better survival.

Consistent with Doll et al.’s findings, Muallem et al. (23) also indicated that the high level of ERCC1 was associated with poor prognosis for patients with malignant cervical carcinoma and this tendency was presented as a “dose-response”. It was reported that the 2-year OS of advanced cervical cancer patients in the low, intermediate, and high ERCC1 group was 68.6%, 71.7%, and 90.7%, respectively (23). However, such trend in PFS was not always the same as the tendency of OS. It was reported that the 2-year PFS in the low, intermediate, and high ERCC1 group was 49.7%, 33.5%, and 72.7%, respectively (23). Overall, these results showed thatpatients with advanced cervical cancer who have a low level of ERCC1 have a worse OS and PFS.

Of note, some studies have also shown that ERCC1 expression does not have a clinical significance in patients with cervical cancer. For example, a previous trial conducted in Japan had recruited 45 patients with Stage I B1-IV B carcinoma of the cervix and found that there were no significant differences in ERCC1 expression between the low and high sensitivity to nedaplatin groups (P=0.079) (11). As a result of this study, it was suggested that ERCC1 was not an essential component of the cervical cancer process.



ERCC1 polymorphism and the risk of cervical cancer in women

Genetic mutagenesis can be caused by DNA alterations under environmental or endogenous carcinogens, leading to carcinogenesis (39). Single nucleotide polymorphisms (SNPs) are proposed to be one of the important biomarkers in the prognosis and therapeutic response of oncologic patients (40). In this comprehensive review, there were three studies (Table 2) reporting the association between ERCC1 polymorphisms and the risk of cervical cancer. Zhang et al. (34) analyzed the ERCC1 polymorphisms in peripheral blood from 154 cervical cancer patients and 177 non-cancer controls. The results showed that ERCC1 118C>T was associated with a high risk of cervical squamous cell carcinomas under the additive genetic model and the dominant genetic model (all P< 0.05). Platinum agents and ionizing radiation can induce hematological toxicities, genitourinary toxicity, and gastrointestinal toxicity (41). In a more recent study, Soares et al. (35) demonstrated that there was an association between ERCC1 rs3212986 and the onset of late gastrointestinal toxicity underwent cisplatin treatment (P=0.038). Patients carrying AA homozygous genotype had an increased risk of developing late gastrointestinal toxicity as compared to patients with the C allele (OR = 3.727, 95%CI: 1.199-11.588, P= 0.017). The underlying mechanisms might be correlated to the altered DNA repair capacity induced by ERCC1 rs3212986 polymorphism. However, some researchers in Korea did not find a positive association between ERCC1 polymorphisms and cervical cancer by evaluating the peripheral blood through the PCR restriction fragment length polymorphism assay in 229 invasive cervical cancer patients and 204 non-cancer controls (33). The allelic frequencies of ERCC1 in cervical cancer patients were not significantly different from those of the controls in this study (P = 0.925). The C/C genotype had no increased risk for cervical cancer susceptibility compared with the TT genotype (P = 0.932) (33). The authors concluded that there was no significant relationship between the ERCC1 C19007T polymorphism and cervical cancer invasiveness in Korean women (all P<0.05) (33).

Based on the above 3 included studies, 67% (2/3) of them suggested there was a positive relationship lying in ERCC1 polymorphism and the development and therapeutic response of cervical cancer. Since the genetic polymorphisms often vary between ethnic groups, the clinical outcomes of ERCC1 polymorphism might be not significant. Even though, detection of ERCC1 polymorphism might be a useful method for implementing strategies when choosing a proper treatment for a patient so as to reduce the toxicities or improve the treatment response rates in cervical cancer women.



Roles of ERCC1 in cervical cancer reported in experimental studies

Three in-vitro studies (Table 3) reported the molecular mechanisms of ERCC1 in cervical cancer that were available in the literatures. Cisplatin is one of the valuable adjuvants to radiotherapy for treating cervical cancer (42). However, patients are at risk for developing drug-resistant cervical cancer due to the progression of the disease. Britten et al. (36) developed several cervical carcinoma cell lines (e.g. HT137, HT155, HT172, HT180, and HT212) of cisplatin resistance. The authors found that there was a significant correlation between ERCC1 mRNA expression and cisplatin resistance in all cervical carcinoma lines (all P< 0.05), but such an association was not significant in ERCC1 protein expression (all P>0.05) (36). According to this study, it might be possible to identify cervical tumors likely to be resistant to cisplatin by examining pre-treatment ERCC1 mRNA levels.

It was suggested that combined chemotherapy had additive or synergistic effects on various specific malignancies, which could significantly prolong the survival of the sufferers (43). Torii et al. (21) examined the expression of ERCC1 in uterine cervical adenocarcinoma cells treated with cisplatin and 5-FU. The results turned out that a positive association between ERCC1 expression and sensitivity to cisplatin in cervical adenocarcinoma cells (HCA-1 and TCO-2). Cancer cells treated with cisplatin resulted in a significant elevation of ERCC1 expression, while a cisplatin-resistant cell line HCA-1R presented with a dramatically higher level of ERCC1 mRNA expression than the native cells. Interestingly, co-administration of cisplatin and 5-FU remarkably reduced the expression of ERCC1 in both HCA-1 and HCA-1R cells. Thus, co-administration of cisplatin and 5-FU showed synergistic or additive effects via inhibiting of ERCC1 expression, indicating a clinical advantage of combining these two drugs for suppressing ERCC1 in cervical adenocarcinoma cells. From the point of view of ERCC1 suppression, such combination therapy with cisplatin and 5-FU might be a promising treatment regimen for cervical adenocarcinoma.

Cisplatin-based chemotherapy and radiotherapy are the common-used combined treatments for locally advanced cancer diseases, while radiotherapy alone is considered to be applied for patients with early disease (44). Almeida et al. (37) conducted a clinical and experimental study. Immunohistochemical analysis on the tissues of the patients showed that increased expressions of ERCC1 (5/10 patients; P=0.0294) were found in malignant tissues after radiotherapy. An elevated expression of ERCC1 was found in half of the patients after treatment with 1.8 Gy. In-vitro experiments suggested that absent or weak modulations of ERCC1 were detected after exposure to 1.8 Gy of radiotherapy in cervical cell lines. The authors also supposed that the mechanisms might be correlated with the inhibition of the regulatory axis p53-EGFR-ERCC1 in tumor cells exposed to radiation in vivo (37). This study showed that the upregulation of ERCC1 might be part of a radio-resistance mechanism in cervical cancer.



Other molecular mechanisms underlying ERCC1 expression and cervical cancer

ERCC1 is one of the DNA repair genes (45). Its enzyme involves the nucleotide excision repair pathway that recognizes and eliminates cisplatin-associated DNA adducts (13, 46). One proposed mechanism for ERCC1 in cancer development might be due to the aberrant expression of ERCC1 causing the dysfunction of DNA-repair capacity, leading to the accumulation of genetic damage, which might induce the emergence of an aggressive tumor phenotype (47). ERCC1 status represents both the cellular intrinsic DNA damage repair ability and the extent of accumulated intratumoral DNA damage, which may be associated with the progression of the cancers (48). Besides, abnormal ERCC1 expression resulted in genetic instability and thus affected the therapeutic response under cisplatin to radiotherapy. Human gliomas seem to be resistant to cisplatin because of hypermethylation of the promoter of the ERCC1 gene (49).

Affected genes and signaling pathways might contribute to the effects of ERCC1 in cervical cancer. The 3’ side incision by ERCC4 requires ERCC1, which is located on chromosome 19. The ERCC1-ERCC4 complex was found to play roles in interstrand cross-link repair induced by the recombination repair mechanisms (22). ERCC1 is an endonuclease, serving as a heterodimer with xeroderma protein F (XPF). ERCC1/XPF complexes play roles in the incision that cleaves the damaged nucleotide strand at the 5’ end of the lesion (50). ERCC1 exerts effects on the response to a range of DNA-damaging chemotherapeutic agents. It was reported that ERCC1 might act together with class III β-tubulin (TUBB3), which was jointly involved in the development of locally advanced cervical squamous cell carcinoma (30).

The potential molecular mechanisms underlying the roles of ERCC1 in cervical cancer were shown in Figure 3.




Figure 3 | The potential molecular mechanisms underlying the roles of ERCC1 in cervical cancer. ERCC1 involves in the development and cisplatin/radiotherapy resistance in cervical cancer through the interaction with several specific genes and genetic polymorphisms. ERCC1 and XPF form a heterodimeric protein complex that cleaves the damaged nucleotide strand at the 5’ end of the lesion. ERCC1 acts together with TUBB3, contributing to the poor prognosis of cervical cancer. The activation of the regulatory axis p53-EGFR-ERCC1 may be part of a radio-resistance mechanism in cervical cancer. ERCC1 genetic polymorphisms partially contribute to the progression of cervical cancer and the toxicities under cisplatin treatment. Aberrant expression of ERCC1 and its associated genes and affected signaling pathways were jointly involved in the dysfunction of DNA-repair capacity of cervical cancer cells, increasing the proliferation of cervical cancer cells and allowing the resistance of cisplatin/radiotherapy. ERCC1, excision repair cross-complementation group 1; XPF, xeroderma pigmentosum group F; TUBB3, class III β-tubulin; EGFR, epidermal growth factor receptor.





Potential roles of targeting of ERCC1 in cervical cancer

As aforementioned, mounting clinical studies have confirmed the outstanding prognostic effects of ERCC1 in cervical cancer, thus the development of immunotherapy by targeting ERCC1 (i.e., ERCC1 inhibitor) may have important implications for modulating the antitumor immune responses in patients with advanced cervical cancer. There is a tight relationship between chemotherapy resistance and immunosuppression (51). In this review, ERCC1 expression was found to be correlated to chemotherapy-resistance (i.e., cisplatin and 5-FU) in cervical carcinoma, chemotherapy combined with ERCC1 inhibitor may dramatically reduce the immunosuppression and thus reinstate the immune function.

ERCC1 inhibitor may be not only applied for the combination with chemo/radiotherapy, but also the immunotherapy with check point inhibitors (i.e., anti-PD1 and anti-CTLA4). Combination of anti-PD-1 plus anti-CTLA-4 immunotherapy shows greater response rates than anti-PD-1 or anti-CTLA-4 antibody alone in multiple malignancies (52, 53). Due to a different anti-tumor mechanism of antitumor agents in a specific cancer type, a combination of drugs is recommended. For example, the combination of anti-PD-1 inhibitor and bevacizumab (an anti-vascular endothelial growth factor (VEGF) antibody, namely VEGF inhibitor) was found to have better outcomes in patients compared to sorafenib (54). Poly(ADP-ribose) polymerase inhibitor (PARPi) exerts therapeutic effect on various types of cancers. Trapping of PARP on the DNA by a small molecule PARPi generates DNA-PARP complexes. The capability of DNA repair is subsequently suppressed, resulting in replication fork collapse and catastrophic DNA double strand breaks which are selectively lethal to the cancer cell (55). It was reported that targeting PARP-1 with metronomic therapy might enhance anti-PD-1 immunotherapy in colon cancer (56). Similarly, since ERCC1 serving as a key DNA repair gene, ERCC1 inhibitor may be also applied for combining immunotherapy with check point inhibitors, which may help to enhance antitumor efficacy. Thus, ERCC1 inhibitor combined with either traditional regimens (i.e., chemotherapy or radiotherapy) or lately immunotherapies (i.e., anti-PD1, anti-CTLA4, or both) may obtain promising antitumor efficacy on cervical cancer.



Directions for future research

Cervical cancer is a public health problem of extensive clinical importance (57). Based on the above evidence from both clinical and experimental studies, ERCC1 is one of the essential and important factors in the progression of carcinoma of the uterine cervix and the therapeutic response of chemoradiotherapy. However, there are several points worth noting when interpreting the results. First, in this review, the relationship between ERCC1 expression and the status of cisplatin-based treatments in early and advanced cervical cancer has been extensively studied. However, the association between ERCC1 expression and chemosensitivity to other common chemotherapeutic medicines has not been fully investigated. Second, ERCC1 polymorphisms might also play roles in predicting the risk of cervical cancer and the toxicities that underwent cisplatin treatment, but whether these polymorphisms function in patients’ survival has not been elucidated. Third, the exact and in-depth molecular mechanisms underlying the effects of ERCC1 expression and the development of cervical cancer are not clear due to limited studies and need to be further elucidated. Therefore, more clinical, in-vitro, and in-vivo investigations are still warranted for future studies. Fourth, the importance of the development of immunotherapy trials by targeting ERCC1, i.e., ERCC1 inhibitor, should be addressed in the future.




Conclusion

The present review highlights the crucial roles of ERCC1 expression in cervical cancer. The majority of the included studies suggested that the ERCC1 served as a pro-oncogenic factor in both early-stage and advanced cervix cancer due to high expression of ERCC1 has been found to be associated with poor survival of the patients. ERCC1 polymorphism detection might be a useful tool for predicting the risk of cervical cancer and the toxicities that underwent cisplatin treatment. Experimental studies suggested that the biological effects exerted by ERCC1 in cervical cancer might be mediated by its associated genes and affected signaling pathways. To move toward clinical applications by targeting ERCC1 in cervical cancer, more investigations are still warranted in the future.
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Background

Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) has been reported to exhibit an oncogenic effect as an RNA-binding protein (RBP) by promoting tumor cell proliferation, migration and invasion in several tumor types. However, a pan-cancer analysis of IGF2BP3 is not currently available, and the exact roles of IGF2BP3 in prognosis and immunology in cancer patients remain enigmatic. The main aim of this study was to provide visualization of the systemic prognostic landscape of IGF2BP3 in pan-cancer and to uncover the potential relationship between IGF2BP3 expression in the tumor microenvironment and immune infiltration profile.



Methods

Raw data on IGF2BP3 expression were obtained from GTEx, CCLE, TCGA, and HPA data portals. We have investigated the expression patterns, diagnostic and prognostic significance, mutation landscapes, functional analysis, and functional states of IGF2BP3 utilizing multiple databases, including HPA, TISIDB, cBioPortal, GeneMANIA, GESA, and CancerSEA. Moreover, the relationship of IGF2BP3 expression with immune infiltrates, TMB, MSI and immune-related genes was evaluated in pan-cancer. IGF2BP3 with drug sensitivity analysis was performed from the CellMiner database. Furthermore, the expression of IGF2BP3 in different grades of glioma was detected by immunohistochemical staining and western blot.



Results

We found that IGF2BP3 was ubiquitously highly expressed in pan-cancer and significantly correlated with diagnosis, prognosis, TMB, MSI, and drug sensitivity in various types of cancer. Besides, IGF2BP3 was involved in many cancer pathways and varied in different immune and molecular subtypes of cancers. Additionally, IGF2BP3 is critically associated with genetic markers of immunomodulators in various cancers. Finally, we validated that IGF2BP3 protein expression was significantly higher in glioma than in normal tissue, especially in GBM.



Conclusions

IGF2BP3 may be a potential molecular biomarker for diagnosis and prognosis in pan-cancer, especially for glioma. It could become a novel therapeutic target for various cancers.





Keywords: insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), pan-cancer analysis, genetic alteration, prognosis, the Cancer Genome Atlas (TCGA), immune infiltration



Introduction

The N6 adenosine methylation (m6A) is methylated at the N6 site of adenosine and thought to be a dynamic modification of mRNA in mammalian cells (1–3). Distinct from DNA methylation and histone modification is playing a role at the transcriptional level, the m6A modification functions at a post-transcriptional level. Specifically, the m6A modifications achieve the control of the target gene expression through the coordination of 3 classes of regulators, including m6A methyltransferases (‘writers’), m6A modified binding proteins (‘readers’), and m6A demethylase (‘erasers’) (4). In mammals, the m6A ‘writer’ complex mainly contains methyltransferase-like protein 3 (METTL3), methyltransferase-like 14 (METTL14), Wilms-tumour associated protein (WTAP), which catalyzes the m6A modification of adenosine on RNA. Conversely, the m6A erasers mainly consists of fat mass, obesity-associated protein (FTO) and AlkB homolog 5 (ALKBH5) demethylases, which are responsible for removing the m6A marks selectively. Therefore, the m6A modification process is highly dynamic and reversible. The m6A ‘readers’ proteins (such as YTH, IGF2BP, and HNRNP families) are preferentially bind to the m6A-modified mRNA (also called the RNA Binding Proteins, RBPs) and regulate RNA metabolism by serving as readers. Among various readers, the Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) including IGF2BP1/2/3 was first identified in 2018. As an essential m6A reader, the stability of target mRNA can be enhanced by modification of m6A (5, 6).

IGF2BP3, a member belonging to the conserved IGF2BP family is highly expressed during both embryogenesis and carcinogenesis and lowly expressed in tissues of healthy adults (7, 8). IGF2BP3 has demonstrated to the malignant transformation of tumor. It includes proliferation, invasion, migration, and drug resistance (9–15). Besides its role as a newly reported m6A reader, IGF2BP3 has also been well-proven to function in cancer metabolism, immunity, angiogenesis, stemness, and differentiation (16–21). Specifically, previous evidence has indicated that IGF2BP3 plays a crucial role in human cancer development, such as breast cancer (10, 22), mesothelioma (11), colon cancer (15, 19), lung cancer (18), melanoma (13), nasopharyngeal carcinoma (NPC) (14), and hepatocellular carcinoma (HCC) (20). Nevertheless, there is still a lack of comprehensive and systematic studies assessing the impact of IGF2BP3 on multiple cancer types.

Recently, pan-cancer analysis of tumorigenesis and progression has become a research focus. Therefore, it is of importance to further investigate the oncogene profile using a pan-cancer strategy. However, there are still no relevant articles on IGF2BP3 and pan-cancer. Here, we performed comprehensive research on the roles of IGF2BP3 in human pan-cancer. Our findings showed that IGF2BP3 expression was significantly higher in most tumors than in adjacent paired normal tissues. Besides, both the diagnostic utility and predictive value of IGF2BP3 in the pan-cancer TCGA cohorts were evaluated. IGF2BP3 genetic alternations were identified using the cBioPortal database. Additionally, we investigated the potential relationship between IGF2BP3 mRNA expression level and clinicopathologic characteristics, tumor mutation burden (TMB), microsatellite instability (MSI), and infiltrating immune cells in pan-cancer. Drug sensitivity analysis of IGF2BP3 was also performed via the CellMiner database.

We concluded that IGF2BP3 could serve as a candidate prognostic factor across diverse tumor types. IGF2BP3 exerted its function via the regulation of TMB, MSI, tumor immune microenvironment (TME), and drug sensitivity. This study highlights the manifold roles of IGF2BP3 in pan-cancer, which is promising as a prospective biomarker and potential target for cancer therapy.



Materials and methods


Data collection and software availability

IGF2BP3 gene expression data and clinical profiles of tumors and their corresponding normal samples were acquired from The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/) and gene type-tissue expression (GTEx) using UCSC Xena (https://xena.ucsc.edu/) (23). Multidimensional analysis of IGF2BP3 expression in different cancer cell lines using the Cancer Cell Line Encyclopedia (CCLE) database (https://portals.broadinstitute.org/) (24). The expression level of IGF2BP3 across human cancer tissues and normal tissues (such as liver, lung, and stomach), as well as the corresponding 24 tumor cell lines (such as liver, thyroid, and lung) was systematically analyzed. The RNA-seq data in TPM format were converted into log2 format for expression comparison between samples (ns, p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).



Protein level analysis

The Human Protein Atlas (HPA) (http://www.proteinatlas.org/) is a milestone protein research database that contains protein expression in both tumor and normal tissues and is used to probe the protein levels of IGF2BP3. IHC Images of IGF2BP3 protein expression in normal and tumor tissues were downloaded from HPA, including brain, lung, pancreas, colon, cervix, nasopharynx and ovary. The antibody for IHC used was HPA076951.



IGF2BP3 expression in immune and molecular subtypes of cancers

The correlations between IGF2BP3 expression and immune or molecular subtypes were explored through the TISIDB database (25), an integrated database with a diversity of data types to evaluate tumor-immune system interactions. The association between IGF2BP3 expression and immunomodulators in pan-cancer was also explored based on the TISIDB database.



Specimen collection

Twenty-two glioma samples were provided by the Department of Neurosurgery, Zhongshan Hospital of Fudan University (Shanghai, China). The three normal tissues surrounding the tumor were normal brain tissues obtained by cortical resection during resection of deep brain glioma. All patients did not receive preoperative chemotherapy or radiotherapy. Tissue samples were extracted and immediately frozen in liquid nitrogen or formalin-fixed. All human samples were used only for research purposes. This study was approved by the Ethics Committee of Zhongshan Hospital, Fudan University.



Diagnostic value analysis

The subject operating characteristic (ROC) curve was established to assess the diagnostic performance of IGF2BP3 in pan-cancer. The area under the curve was taken to be in the range of 0.5 to 1, with higher values indicating a better diagnostic effect. An AUC value of 0.5–0.7 suggests poor diagnostic efficacy, 0.7–0.9 represents moderate accuracy, and above 0.9 indicates high diagnostic accuracy.



Survival prognosis analysis

Kaplan–Meier (KM) curve analysis were applied to estimate the association between IGF2BP3 expression and inter-tumor prognosis (OS, DSS, PFI). Next, we explored the relationship between IGF2BP3 expression and prognostic values (OS, DSS and PFI) in different clinical GBMLGG subgroups. The survival package was used for statistical analysis, and the”survminer” package for data visualization.



Association of IGF2BP3 expression with different clinical features of glioma

The IGF2BP3 gene expression levels in glioma patients with different clinicopathological features are shown by box plots and tables. Gene expression (RNAseq) and corresponding clinical information were extracted from the TCGA database, transformed into transcripts per million reads (TPM) format, and analyzed by log2-transformation. The Wilcoxon rank sum test was applied to compute the data of two groups, and p < 0.05 was considered to a statistically significant difference (ns, p ≥ 0.05; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001).



Univariate and multivariate Cox regression analyses in glioma

Survival information of overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) was downloaded from TCGA database to display the relationship between IGF2BP3 expression and patient outcomes. The median expression of IGF2BP3 within each tumor type was used as a cut-off value to distinguish low- and high-expression subgroups. The univariate survival analysis was performed to analyze the hazard ratio (HR) and 95% confidence intervals (95% C.I.). A hazard ratio (HR) <1 suggests that IGF2BP3 is a beneficial prognostic factor, while HR >1 indicates that IGF2BP3 is a risk factor for survival. Univariate and multifactorial Cox regression analyses of IGF2BP3 and clinical features were undertaken to ascertain their prognostic value in OS, DSS and PFI in GBMLGG. A survival kit was utilized for survival analysis.



Genetic alteration analysis

The cBioCancer for Cancer Genomics (cBioPortal) (www.cbioportal.org) was utilized to investigate genomic alteration analysis of specific genes (26, 27). In this study, we applied the “Cancer Types Summary” and below “Cancer Type” button for visualizing genomic alterations of IGF2BP3 among cancers from TCGA database. The frequency of IGF2BP3 copy number alterations and mutations in all TCGA tumors was examined, and the results are shown as plotted bar plots.



Tumor mutation burden, microsatellite instability

Tumor mutational burden (TMB) and microsatellite instability (MSI) have been characterized as the key biological markers of TME (28–31). Spearman’s correlation coefficient was employed to analyze the relationship between IGF2BP3 expression and TMB and MSI.



Tumor microenvironment

Estimation of stromal and immune cell components in malignant tumor tissues by differences in expression data (ESTIMATE) is a method for calculating stromal or immune scores, represented by the abundance of the immune and stromal components, respectively (32). The higher the score, the greater the proportion of the corresponding component in the TME. The ESTIMATE score is the sum of the stroma score and the immune score, suggesting the combined proportion of both in the TME. IGF2BP3 expression levels and ImmuneScore and StromalScore were acquired for each tumor by “estimate” R package and Spearman correlation analysis. Immune cell infiltration correlation analysis was performed via the TIMER2 database (http://timer.cistrome.org) (33).



Single-cell functional analysis

The functional status of IGF2BP3 in various cancers was studied using CancerSEA (http://biocc.hrbmu.edu.cn/CancerSEA/) (34), a database that can be used to assess the integrated functional status of diverse tumor cells at the single-cell level. In this study, we explored the average correlation of IGF2BP3 with functional status in 18 cancers, including angiogenesis, proliferation, apoptosis, cell cycle, DNA damage, DNA repair, inflammation, hypoxia, epithelial-mesenchymal transition (EMT), invasion, metastasis, differentiation, quiescence, and stemness. The threshold of IGF2BP3 associated with each tumor functional status was established as a threshold value of |r| >0.3 and a discrimination significance (p < 0.05).



Protein–protein interaction network and enrichment analysis

GeneMANIA (http://www.genemania.org) is an interactive and flexible online tool for building and visualizing protein-protein interaction (PPI) networks using bioinformatics methods such as physical interaction, co-expression, co-localization, gene enrichment analysis, gene interaction and site prediction, including generating reasonable hypotheses about gene function prediction and detecting Genes that share similar functions (35, 36). In this study, GeneMANIA was employed for PPI analysis of IGF2BP3. Gene set enrichment analysis (GSEA) was used to detect the IGF2BP3 affected pathway in tumors. The entire biological process is assessed on the basis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) and HALLMARK pathways.



Drug sensitivity of IGF2BP3 in pan-cancer

NCI-60 compound activity data and RNA-seq expression profiles from the CellMiner™ were downloaded to analyze the drug sensitivity of IGF2BP3 in pan-cancer (https://discover.nci.nih.gov/cellminer/home.do) (37). Drugs approved by FDA or clinical trials were selected for analysis.



Immunohistochemsitry

Tissues were formalin-fixed and paraffin-embedded and sectioned to 4 mm layer thickness regularly. Tissue sections were processed and stained with the following antibodies: IGF2BP3 (1:300, 14642-1-AP, Proteintech).



Western blot analysis

Total protein was isolated from tissues and quantified with the BCA protein quantification kit (Beyotime, #P001). Equal amounts of proteins separated by 10% SDS-PAGE, transferred to polyvinylidene fluoride membranes (0.45 μM PVDF, Millipore, USA), then the membranes were blocked with skimmed milk for 1 hour and incubated with primary antibody IGF2BP3 (1:1000, 14642-1-AP, Proteintech) overnight at 4°C. The corresponding HRP-conjugated secondary antibody (#A0208,1:2000, Beyotime Biotechnology, Shanghai, China) used, and the bands visualized by ECL Western blotting substrate (Thermo Fisher Scientific, USA). The intensity of protein expression was detected via ImageJ software.




Results


Expression and mutant aspects of IGF2BP3 in pan-cancer

The study flowchart is illustrated in Supplementary Figure 1. First, we assessed IGF2BP3 mRNA levels in normal human tissues, using the GTEx dataset. As shown in Figure 1A, the IGF2BP3 level varied across multiple types of tissue was remarkably high in bone marrow (BM). BM is known to be a highly differentiating tissue, and higher expression levels are not entirely unexpected. In addition, we examined the expression levels of IGF2BP3 across various tumor types. In different cancer cell lines from the CCLE database, not only were IGF2BP3 expression levels significantly and generally elevated but smaller ranges were shown compared to the range of expression in normal human tissues (Figure 1B).




Figure 1 | IGF2BP3 mRNA expression levels in pan-cancer. (A) IGF2BP3 expression levels in normal tissues from GTEx database. (B) IGF2BP3 expression levels in tumor cell lines from CCLE database. (C) IGF2BP3 expression levels in tumor tissues from TCGA database. (D) IGF2BP3 expression difference between tumor tissues from TCGA database and normal tissues from the GTEx database; ns, no significance; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.



Further comparison between the tumors and adjacent normal tissues displayed that the expression level of IGF2BP3 was upregulated in most types of human cancers. Directly, considering TCGA data alone, the gene expression difference achieved considerable significance in 20 of 26 TCGA cancer types, with the exception of glioma (GBMLGG), brain lower grade glioma (LGG), prostate adenocarcinoma (PRAD), rectum adenocarcinoma (READ), pancreatic adenocarcinoma (PAAD) and pheochromocytoma and paraganglioma (PCPG). Moreover, only in thyroid carcinoma (THCA) IGF2BP3 had an increased expression in corresponding normal tissues instead of tumor samples, which was the opposite of the condition in other cancer types (Figure 1C).

To further compare IGF2BP3 expression between the tumor and normal tissues, we combined data from TCGA and GTEx. Results from combined databases revealed that IGF2BP3 was over-expressed significantly in 31 out of 34 cancer types (exceptions were READ, TGCT, and PCPG). Mainly, IGF2BP3 was highly expressed in diverse tumor types, such as GBMLGG, glioblastoma multiforme (GBM), LGG, lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), PAAD, head and neck squamous cell carcinoma (HNSC), uterine corpus endometrial carcinoma (UCEC), colon adenocarcinoma (COAD), and esophageal carcinoma (ESCA). However, reversed results with significance were observed in PRAD and THCA (Figure 1D).

Next, we verified the expression of IGF2BP3 between cancer tissues and adjacent normal tissues at protein level using the HPA database. Compared to weak IHC positive staining in normal brain, lung, pancreas, colon, cervix, nasopharynx, and ovary tissues, much stronger staining of IGF2BP3 was examined in GBMLGG, LUAD, LUSC, PAAD, COAD, cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), HNSC, and ovarian serous cystadenocarcinoma (OV) tissues in terms of protein level (Figures 2A–H). The results from the two databases (TCGA and HPA) were broadly consistent.




Figure 2 | Representative immunohistochemical staining (IHC) in multiple normal (left) and tumor (right) tissues. The protein expression of IGF2BP3 in (A) glioma, GBMLGG; (B) lung adenocarcinoma, LUAD;(C) lung squamous cell carcinoma, LUSC; (D) pancreatic adenocarcinoma, PAAD; (E) colon adenocarcinoma, COAD; (F) cervical squamous cell carcinoma and endocervical adenocarcinoma, CESC; (G) head and neck squamous cell carcinoma, HNSC; (H) ovarian serous cystadenocarcinoma, OV.



Further, we assessed the associations between IGF2BP3 and different clinical characteristics in pan-cancer. For GBMLGG, IGF2BP3 expression was significantly correlated with World Health Organization (WHO) grade, histological type, IDH status, 1p/19q codeletion, primary therapy outcome, and age of GBMLGG (Supplementary Table 1). Specifically, the expression level of IGF2BP3 increased significantly with increasing WHO grade gliomas (Figure 3A). Moreover, IGF2BP3 showed higher levels in patients with GBM in comparison with other histological types of glioma (Figure 3B). Next, we subdivided the TCGA patients according to different IDH mutations and 1p/19q codeletion status and found that high IGF2BP3 expression positively correlated with IDH status (wildtype), and 1p/19q non-codeletion (Figures 3C, D). Additionally, IGF2BP3 was expressed higher in patients with age >60 (Figure 3E), and primary therapy outcome (PD) (Figure 3F), respectively.




Figure 3 | Associations between IGF2BP3 expression and different clinical characteristics in GBMLGG. (A) WHO grade; (B) Histological type; (C) IDH status; (D) p/19q codeletion; (E) Age; (F) Primary therapy outcome. ns, p ≥ 0.05; *p < 0.05; ***p < 0.001.





Mutation analysis of IGF2BP3

It is well recognized that DNA methylation and genetic alterations are tightly linked to the occurrence and development of tumors. Herein, we initially analyzed the IGF2BP3 alteration status across multiple cancer types using cBioPortal database (Supplementary Figure 2). Among all cancers tested, the IGF2BP3 gene was amplified in multiple types of cancer, with the highest alteration frequency (>6%) in uterine carcinosarcoma (UCS). Notably, the type of mutation was the primary type in the UCEC, skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), and COAD, which show an alteration frequency of ~4% (Supplementary Figure 2A). The types, sites and case numbers of the IGF2BP3 gene mutation were further displayed above the bars (Supplementary Figure 2C). Overall, as shown in Supplementary Figure 2B, amplification was the main type of alteration, while the most frequent putative copy-number alterations of IGF2BP3 were amplification, gain function, and diploid. Finally, in the present study, the gene alteration of DNAH11, GPNMB, TP53, KLHL7, NUP42, MALSU1, ABCB5, STK31, TRA2A, and HDAC9 was more common in the altered group than in the unaltered group across the cBioPortal database (Supplementary Figure 2D). As dysregulated IGF2BP3 was implicated in the process of RNA regulation and transcription in cancer, we further investigated whether IGF2BP3 was associated with the mutation of cancer-related genes. Here, we took LGG as an example to illustrate the correlation between the IGF2BP3 expression level and mutation frequencies. As shown in Supplementary Figure 2E, in LGG, the top five frequently mutated genes remained as IDH1 (82.6%), CIC (20.6%), TTN (12.8%), MUC16 (7.4%), and EGFR (7.2%). Moreover, the previously mentioned mutated genes with significance defined by FDR < 0.05. These results indicate that the IGF2BP3 is tightly correlated with cancer-related gene mutation status.



Diagnostic value of IGF2BP3 in pan-cancer

As shown in Figures 4A–H, IGF2BP3 has an exact accuracy (AUC > 0.7) in predicting 24 cancer types, and even exceeded 0.9 in 8 cancers including LAML (AUC = 1.0), GBM (AUC = 0.998), UCS (AUC = 0.983), LUSC (AUC = 0.939), STAD (AUC = 0.936), OV (AUC = 0.927), CHOL (AUC = 0.926), and ESCA (AUC = 0.920) (Supplemental Table 2), which had high diagnostic value.




Figure 4 | Receiver operating characteristic (ROC) curve for IGF2BP3 expression in pan-cancer.(A) LAML; (B) GBM; (C) UCS; (D) LUSC; (E) STAD; (F) OV; (G) CHOL; (H) ESCA.





Prognostic value of IGF2BP3 across cancers

Further, each cancer’s survival analysis was performed to investigate the association between IGF2BP3 expression level and prognosis, concentrating on OS, DSS, and PFI. The forest plot of the univariate Cox model suggested that IGF2BP3 was a significant risk factor for OS in GBMLGG (p < 0.001), LGG (p < 0.001), KIPAN (p < 0.001), KIRP (p < 0.001), KIRC (p < 0.001), PAAD (p < 0.001), LUAD (p < 0.001), LAML (p = 0.0011), MESO (p = 0.0014), ACC (p = 0.0028), UVM (p = 0.02), STES (p = 0.03), LIHC (p = 0.03), and BLCA (p = 0.03) patients (Figure 5A). Next, the Kaplan-Meier analysis of OS indicated that patients with high expression of IGF2BP3 was significantly correlated with poor prognosis in patients with GBMLGG (p < 0.001), LGG (p < 0.001), KIRP (p < 0.001), KIRC (p < 0.001), MESO (p < 0.001), LAML (p = 0.004), LUAD (p = 0.008), SARC (p = 0.008), UVM (p = 0.008), BLCA (p = 0.015), UCEC (p = 0.018), PAAD (p = 0.024), and LIHC (p = 0.044) (Figures 5B–N).




Figure 5 | Relationship of IGF2BP3 expression with patient Overall Survival (OS). (A) Forest map shows the univariate Cox regression analysis results for IGF2BP3 in TCGA pan-cancer samples. (B–N) Kaplan–Meier analysis of the association between IGF2BP3 expression and OS.



Moreover, as presented in Supplementary Figure 3A, we performed Cox regression analysis of DSS and identified that IGF2BP3 was an independent risk factor in patients with GBMLGG (p < 0.001), LGG (p < 0.001), KIPAN (p < 0.001), KIRP (p < 0.001), KIRC (p < 0.001), PAAD (p < 0.001), MESO (p < 0.001), LUAD (p = 0.0013), ACC (p = 0.0017), UVM (p = 0.0079), STES (p = 0.0084), SKCM-P (p = 0.03), and KICH (p = 0.04). Notably, the resulting Kaplan-Meier survival analysis indicated that patients with higher IGF2BP3 expression tended to exhibit a significantly shorter DSS as compared to those with lower IGF2BP3 expression, respectively, in GBMLGG (p < 0.001), LGG (p < 0.001), KIRP (p < 0.001), KIRC (p < 0.001), MESO (P < 0.001), UVM (p = 0.008), SARC (p = 0.009), PAAD (p = 0.01), UCEC (P = 0.018), and LUAD (P = 0.023) (Supplementary Figures 3B-K).

Also, univariate Cox regression analysis of PFI analyses was performed, and the results showed that IGF2BP3 was a risk factor in patients with high-risk factor in GBMLGG (p < 0.001), LGG (p < 0.001), KIPAN (p < 0.001), KIRC (p < 0.001), KIRP (p < 0.001), PAAD (p < 0.001), UVM (p < 0.001), LUAD (p = 0.0043), LIHC (p = 0.005), ACC (p = 0.0061), SKCM-P (p = 0.0064), and MESO (p = 0.02) (Supplementary Figure 4A). Furthermore, KM plotter analysis revealed that patients with higher IGF2BP3 expression had poorer PFI than those with lower IGF2BP3 expression in GBMLGG (p < 0.001), LGG (p < 0.001), KIRP (p < 0.001), KIRC (p < 0.001), MESO (p < 0.001), UVM (p =0.005), LIHC (p =0.006), and UCEC (p =0.014), as seen in Supplementary Figures 4B–I.

We further examined the associations of IGF2BP3 with prognosis (OS, DSS and PFI) in different clinical glioma subgroups. The results of the subgroup analysis demonstrated that high expression of IGF2BP3 was associated with worse OS in most clinical subgroups, including a subgroup of WHO grade: G3 (Figure 6A), 1p/19q codeletion: non−codel (Figure 6B), a subgroup of IDH status: WT (Figure 6C), a subgroup of IDH status: Mut (Figure 6D), a subgroup of Primary therapy outcome: PD (Figure 6E), a subgroup of Primary therapy outcome: SD (Figure 6F), a subgroup of Gender: Female (Figure 6G), a subgroup of Gender: Male (Figure 6H), a subgroup of Race: Black or African American (Figure 6I), subgroup of Race: White (Figure 6J), a subgroup of Age: <=60 (Figure 6K), a subgroup of Age: >60 (Figure 6L), a subgroup of Histological type: Astrocytoma (Figure 6M), and Histological type: Oligoastrocytoma (Figure 6N).




Figure 6 | Associations between IGF2BP3 expression and the OS in different clinical subgroups of GBMLGG. (A) WHO grade (G3); (B) 1p/19q codeletion (non−codel); (C) IDH status (WT); (D) IDH status (Mut); (E) Primary therapy outcome (PD); (F) Primary therapy outcome (SD); (G) Gender (Female); (H) Gender (Male); (I) Race (Black or African American) (J) Race (White); (K) Age ≤ 60; (L) Age>60; (M) Histological type (Astrocytoma); (N) Histological type (Oligoastrocytoma).



For DSS, the higher expression of IGF2BP3 had a worse DSS in a subgroup of WHO grade: G3, a subgroup of IDH status: WT, a subgroup of IDH status: Mut, a subgroup of 1p/19q codeletion: non−codel, a subgroup of Primary therapy outcome: PD, a subgroup of Primary therapy outcome: SD, a subgroup of Gender: Female, a subgroup of Gender: Male, a subgroup of Race: Black or African American, a subgroup of Race: White, a subgroup of Age: <=60, a subgroup of Age: >60, a subgroup of Histological type: Astrocytoma, and Histological type: Oligoastrocytoma (Supplementary Figures 5A–M).

For PFI, the higher expression of IGF2BP3 had a worse PFI in a subgroup of WHO grade: G3, a subgroup of IDH status: WT, a subgroup of IDH status: Mut, a subgroup of 1p/19q codeletion: non−codel, a subgroup of Primary therapy outcome: PD, a subgroup of Gender: Female, a subgroup of Gender: Male, a subgroup of Race: Black or African American, a subgroup of Race: White, a subgroup of Age: <=60, a subgroup of Age: >60, and a subgroup of Histological type: Astrocytoma (Supplementary Figures 6A–L).



Univariate and multivariate Cox regression analyses in GBMLGG patients

Uni- and multivariate Cox regression analyses of IGF2BP3 and clinical characteristics, were performed in TCGA-GBMLGG cohort. In univariate and multivariate Cox regression analyses, age, WHO grade, IDH status, 1p/19q codeletion, primary therapy outcome, histological type, and IGF2BP3 were significantly associated with the OS (Table 1). In contrast, primary therapy outcome, age, and IGF2BP3 were significantly correlated with DSS (Supplementary Table 3), and primary therapy outcome, IDH status, age, and IGF2BP3 were correlated significantly with PFI (Supplementary Table 4).


Table 1 | Univariate and multivariate Cox regression analyses of clinical characteristics associated with OS of glioma.





IGF2BP3 expression in different immune and molecular subtypes of cancers

Correlation of IGF2BP3 differential expression with molecular subtypes in pan-cancer was investigated by the TISIDB database. We found that IGF2BP3 was expressed differently in different immune subtypes (C1: wound healing, C2: IFN-gamma dominant, C3: inflammatory, C4: lymphocyte depleted, C5: immunologically quiet, C6: TGF-b dominant) of 29 cancer types. These include, for example, CESC (Figure 7A), LUAD (Figure 7B), LUSC (Figure 7C), LGG (Figure 7D), COAD (Figure 7E), STAD (Figure 7F), BLCA (Figure 7G), OV (Figure 7H), and BRCA (Figure 7I). In addition, we observed that IGF2BP3 expression was strongly associated with immune stimulators and immune inhibitors (Supplementary Figure 7) among nearly all malignancies, represented by UVM, GBMLGG, LGG, LUAD, and KIRC.




Figure 7 | Correlations between IGF2BP3 expression and immune subtypes across TCGA tumors. (A) CESC; (B) LUAD; (C) LUSC; (D) LGG; (E) COAD; (F) STAD; (G) BLCA; (H) OV; (I) BRCA.



Meanwhile, we observed that IGF2BP3 expression was significantly correlated with molecular subtypes of 16 cancer types, such as LGG (Figure 8A), GBM (Figure 8B), LUSC (Figure 8C), HNSC (Figure 8D), ACC (Figure 8E), BRCA (Figure 8F), UCEC (Figure 8G), COAD (Figure 8H), and KIRP (Figure 8I). Further, for LGG and GBM, IGF2BP3 was identified to express the highest in the molecular subtype of G-CIMP-low (Figures 8A, B). For LUSC and HNSC, IGF2BP3 was identified to express the highest in the molecular subtype of classical (Figures 8C, D). For ACC, IGF2BP3 expression was identified to be the highest in CIMP-intermediate molecular subtype (Figure 8E). For COAD, IGF2BP3 was expressed the highest in the molecular subtype of HM-SNV (Figure 8H). For STAD, IGF2BP3 was the most highly expressed in the molecular subtype of CIN (Figure 8E). For BRCA, IGF2BP3 showed the highest expression in the molecular subtype of basal (Figure 8F). For UCEC, IGF2BP3 expression was identified to be the highest in the molecular subtype of CN_HIGH (Figure 8G). For KIRP, IGF2BP3 was expressed the highest in the molecular subtype of C2c-CIMP (Figure 8I).




Figure 8 | Correlations between IGF2BP3 expression and molecular subtypes across TCGA tumors. (A) LGG; (B) GBM; (C) LUSC; (D) HNSC; (E) ACC; (F) BRCA; (G) UCEC; (H) COAD; (I) KIRP.





Immune aspects of IGF2BP3 in the tumor microenvironment

We further investigated the relationship between IGF2BP3 expression and immune cell infiltration in pan-cancer levels using immune cell infiltration data extracted from various databases. First, based on the TIMER (Tumor Immune Estimation Resource) database (https://cistrome.shinyapps.io/timer/), we measured six subpopulations of immune cells in TCGA data set including B cells, CD4+ T cells, CD8+ T cells, Neutrophils, Macrophages and Dendritic cells. Generally, as shown in Figure 9A, the IGF2BP3 expression had a significantly positive relationship with the infiltration of multiple immune cells, including T cells CD4, T cells CD8, Neutrophil, Macrophages and dendritic cells (DC) in a variety of cancer types. Significantly, some particular cancer types such as LGG, PRAD, and KIRC had a high infiltration level of all three types of immune cells (Figure 9B).




Figure 9 | Relationship of IGF2BP3 expression with Immune cell infiltration analysis. (A) The relationship between IGF2BP3 expression levels and the levels of infiltration of six immune-related cells based on TIMER database. (B) Analysis of immune-associated cells infiltration with IGF2BP3 expression in pan-cancer. p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001.



Moreover, a co-expression analysis was performed among 33 tumors to investigate the relationships between IGF2BP3 expression and immune-related genes. In accordance with the results (Figures 10A–E), there was a strong correlation between IGF2BP3 and most immune-related genes in specific cancer types such as GBMLGG, LGG, LUAD, PAAD, BRCA, and PRAD. Specifically, chemokines such as CXCL9, CXCL10, and CXCL11 and chemokine receptors such as CXCR5, CCR4, CCR8, and CCR1 were positively correlated with IGF2BP3 expression in various cancer types. MHC genes co-expressed with IGF2BP3 in almost all tumor types, particularly in UVM, PAAD, GBMLGG, LGG, KIRC, KIPAN, KIRP, COAD, BLCA, BRCA, PRAD, and LIHC. Moreover, immunostimulatory factors and immunosuppressive factors were also tightly correlated with IGF2BP3 expression in TCGA pan-cancer. Overall, these results show that the expression of IGF2BP3 is closely linked to the biological function of various cytokines and immune-relevant genes.




Figure 10 | Co-expression of IGF2BP3 and immune-related genes in pan-cancer. Heatmaps indicating the co-expression of IGF2BP3 with immune-relevant genes in pan-cancer, including chemokine genes (A), chemokine-receptor genes (B), MHC molecules (C), immunoinhibitors (D), and immunostimulators (E). *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001, and ****p-value < 0.0001.



As it is well known, TMB and MSI in the tumor microenvironment are the most important biomarkers for predicting the therapeutic efficacy of tumor immunotherapy in various tumor types. Outcomes from several studies indicated that tumors with high TMB/MSI status considered to manifest better responses to immunotherapy than those with low TMB/MSI. Thus, we evaluated the correlation between the IGF2BP3 gene expression and TMB and MSI in pan-cancer. As can be seen in Supplementary Figure 8A, a significant correlation (P<0.05) existed between IGF2BP3 expression and TMB in 14 categories of cancer. Specifically, IGF2BP3 expression was positively correlated with TMB in LGG, LUAD, LUSC, PRAD, BLCA, PAAD, SARC, BRCA, COAD, SKCM, KIRC, HNSC, and ACC while negatively correlated with TMB only in THCA. Further, we found that the expression of IGF2BP3 was positively related to the MSI in 6 cancers, including LUSC, BLCA, TGCT, ESCA, SARC, and COAD, but had a negative correlation with MSI in SKCM, THCA, HNSC, and DLBC (Supplementary Figure 8B).



Functional states of IGF2BP3 in scRNA-Seq datasets

To evaluate the functional state of IGF2BP3 in various cancer types at the single-cell level, we analyzed the correlation of IGF2BP3 with multiple functional states of cancer cells via the CancerSEA. This cancer’s single-cell state atlas revealed a positive correlation of IGF2BP3 with angiogenesis, differentiation, inflammation, metastasis, and quiescence. Negative correlations were observed between IGF2BP3 expression and apoptosis, cell cycle, DNA damage, and DNA repair (Supplementary Figure 9A). We then explored the correlation between IGF2BP3 and the functional state in specific cancers. The results found that IGF2BP3 positively correlated with cell cycle and DNA damage in GBM; with metastasis in Astrocytoma; with metastasis, angiogenesis, quiescence, and differentiation in LUAD; with stemness and DNA damage in NSCLC; with angiogenesis, differentiation, and inflammation in RB; with invasion in AML. Conversely, the IGF2BP3 was negatively correlated with cell cycle and DNA damage in Glioma, apoptosis in NSCLC, DNA repair, cell cycle, and DNA damage in RB, angiogenesis in AML, DNA repair, DNA damage, apoptosis, and differentiation in UM (Supplementary Figures 9B–I).



PPI network of IGF2BP3 in cancers and enrichment analysis

Next, functional network was constructed through GeneMANIA database to explore the potential interactome with IGF2BP3 protein as hub, and the result is shown in Figure 11. As evident in the figure, IGF2BP3 had strong physical interactions with IGF2BP1, which are both conserved IGF2BPs predominantly expressed during embryonic development but comparatively lower or silenced in adulthood (5). Moreover, high expression level of IGF2BP1 and IGF2BP3 has been detected in many human cancers, including glioma and lung adenocarcinoma. They have been correlated with invasiveness, aggressiveness and a poorer prognosis (38, 39). This analysis demonstrates good agreement with the predictions from the co-expression.




Figure 11 | PPI network for IGF2BP3 was constructed via GeneMANIA. Different colors of the network edge indicate the bioinformatics methods applied: physical interaction, coexpression, predicted, colocalization, pathway, genetic interaction, and shared protein domains. PPI, protein–protein interaction.



Furthermore, there was a significantly predictable link between IGF2BP3, LAPTM4A, and DHX57. GSEA was then conducted to determine the functional enrichment of high and low IGF2BP3 expression. The KEGG and HALLMARK analyses showed that IGF2BP3 was significantly linked to many immune-related signaling pathways (Figure 12).




Figure 12 | GSEA for samples with high IGF2BP3 expression and low expression. (A) The enriched gene sets in KEGG collection by the high IGF2BP3 expression sample. (B) The enriched gene sets in KEGG by samples with low IGF2BP3 expression. (C) Enriched gene sets in HALLMARK collection, the immunologic gene sets, by samples of high IGF2BP3 expression. (D) Enriched gene sets in HALLMARK by the low IGF2BP3 expression. Each line represented one particular gene set with unique color, and up-regulated genes located in the left approaching the origin of the coordinates, by contrast the down-regulated lay on the right of x-axis. Only gene sets with NOM p < 0.05 and FDR q < 0.25 were considered statistically significant. And only the leading-edge genes were displayed.





Drug sensitivity analysis of IGF2BP3

Enhancing drug sensitivity is crucial for preventing the drug resistance of cancer cells. We further investigated the potential correlation analysis between drug sensitivity and IGF2BP3 expression level accessed from the CellMiner database. Specifically, our results exhibited that IGF2BP3 had a significant and positive correlation with the clinical drug sensitivity of ARRY-704, RO-4987655, Trametinib, TAK-733, Mirdametinib, Cobimetinib, RO-5126766, Ulixertinib, ARRY-162, Selumetinib, etc(p < 0.01) (Figures 13A–J), while significant but negative associations with GDC-0810, AZD-9496, BAY-876, VT-464, and Acetalax sensitivity (p < 0.05) (Figures 13K–O). The data indicated that IGF2BP3 might be associated with chemoresistance of specific chemotherapeutic agents, such as Trametinib, Cobimetinib, ARRY-162 and Selumetinib, which were commonly used MEK inhibitors approved by the FDA for cancer therapy. These results established that IGF2BP3 was tightly linked to diverse drug sensitivity in different cancer cell lines and might serve as a promising therapeutic target for cancer immunotherapies.




Figure 13 | Drug sensitivity analysis of IGF2BP3. The expression of IGF2BP3 was associated with the sensitivity of ARRY-704 (A), RO-4987655 (B), Trametinib (C), TAK-733 (D), PD-0325901 (E), Cobimetinib (isomer1) (F), RO-5126766 (G), Ulixertinib (H), ARRY-162 (I), Selumetinib (J), GDC-0810 (K), AZD-9496 (L), BAY-876 (M), VT-464 (N), and Acetalax sensitivity (O).





Validation of IGF2BP3 expression in glioma

To further verify the pathophysiological roles of IGF2BP3, we applied experimental validation to determine its clinicopathological characteristics. We first evaluated the protein levels of IGF2BP3 in a series of clinical specimens, including nine glioma tissues (three specimens each from WHO grade 2,3,4 groups) and three peritumoral normal tissue using immunohistochemistry. The results showed that IGF2BP3 protein expression was significantly higher in glioma compared to normal tissue, especially in GBM (Figure 14A). Western blot analysis further verified the expression of IGF2BP3 protein in glioma. We confirmed a similar expression trend at the protein level (Figure 14B), suggesting that IGF2BP3 may be a potential molecular biomarker for the diagnosis and prognosis of glioma, especially GBM, which is expected to be a new therapeutic target for glioma.




Figure 14 | Validation of IGF2BP3 Expression in Glioma. (A) Representative immunohistochemical staining of IGF2BP3 expression in clinical glioma tissue and normal peritumor tissues. Scale bar=50 μm. (B) Western blot analysis of IGF2BP3 protein level in human glioma patient samples (grade 2 (n = 3), grade 3 (n = 6), grade GBM (n = 13)) and normal peritumor brain tissues (n = 3). β-actin was used as a loading control. All data are shown as the mean ± SD (at least three independent experiments). ns, no significance, *P <0.05, ***P < 0.001.






Discussion

IGF2BP3, also known as IMP3, a newly identified “reader” of m6A belonging to a highly conserved IGF2BP family (IGF2BP1/2/3) has been recognized to play an irreplaceable role in m6A modifications, mRNA stabilization, cell proliferation, and migration during the early stages of embryogenesis (40). Structurally, IGF2BP3 contains two N-terminal RNA recognition motifs (RRMs) and four C-terminal KH domains, which are critical for RNA-binding (5). As a m6A reader, IGF2BP3 was first reported in 1997 due to its high expression in pancreatic carcinoma (41). Subsequently, accumulative evidence has implied that the IGF2BP3 is post-transcriptionally active and plays a tumor-promoting role in various cancer types such as lung cancer (42), hepatocellular carcinoma (43), melanoma (44), and colorectal cancer (45), mainly by promoting tumor growth, invasion, metastasis, survival, and chemo-resistance (7–9).

In recent years, evidence has also suggested that IGF2BP3 might be a predictor of metastasis and clinical prognosis in different malignancies (46–50). For instance, IGF2BP3 could be a useful marker in predicting invasion in papillary biliary tumors (47). Moreover, both mRNA and protein levels of IGF2BP3 were remarkably up-regulated in cutaneous squamous cell carcinoma and IGF2BP3 was also identified as a novel therapeutic target for squamous cell carcinoma (48). Also, significant associations were found in colorectal cancer between IGF2BP3 positivity, poorer differentiation, and increased mortality, thus serving as a promising diagnostic biomarker for colorectal cancer in which higher expression indicates poorer prognosis (49). Further, a recent study revealed that m6A methylation regulators, IGF2BP2 and IGF2BP3, in particular, play essential roles in the malignant progression of glioma (50). However, upon reviewing the literature, there is no existing study comprehensively evaluating the significance of IGF2BP3 in pan-cancer on the whole scale. Of note, the pan-cancer analysis, which is of significant importance for understanding differences and similarities among different tumor types, can provide novel insights into cancer prevention and targeted therapy across cancer types. In recent years, there is increasing recognition of the value of a comprehensive pan-cancer analysis, which could potentially describe the essential roles of some driver mutations or genes in developing specific cancer types (51, 52).

In the present study, firstly, we used multiple databases to evaluate the expression level of IGF2BP3 across pan-cancer. The results showed that IGF2BP3 gene mRNA was highly expressed in most cancer types than in the normal samples, namely, GBM, GBMLGG, LGG, UCEC, CESC, LUAD, COAD, COADREAD, BRCA, ESCA, KIRP, KIPAN, STAD, HNSC, KIRC, LUSC, LIHC, SKCM, OV, PAAD, UCS, LAML, BLCA, ACC, KICH and CHOL, whereas low expression was detected in PRAD and THCA, which was consistent with previous studies in prostate and thyroid cancer (Figure 1) (53–55). IHC analysis from the HPA was in accordance with the IGF2BP3 mRNA level discrepancy and confirmed these results (Figure 2). It is also noteworthy that either prostate or thyroid cancer has been thought to be a malignant disease-carrying a relatively favorable prognosis that can be diagnosed earlier (56). Additionally, according to prior studies, the oncofetal protein IGF2BP3 has been reported as a predominant cancer-specific marker differentiating benign from malignant lesions of pancreas and uterine cervix (57, 58), highly indicating that increased IGF2BP3 expression was associated with unfavorable prognosis among tumor tissues. These results demonstrated that IGF2BP3 could indeed promote cancer development and progression.

In addition, IGF2BP3 expression levels are tightly correlated with the immune subtypes of nine cancers, including CESC, LUAD, LUSC, LGG, COAD, STAD, BLCA, OV, and BRCA. Meanwhile, IGF2BP3 was significantly associated with diverse molecular subtypes in nine cancer types. For instance, IGF2BP3 was most highly expressed in the G-CIMP-low molecular isoforms in LGG and GBM, in the molecular subtype of classical in both LUSC and HNSC, and the molecular subtype of basal in BRCA. It is important to mention that IGF2BP3 is tightly associated with both immune and molecular subtypes in four types of cancers, including LGG, LUSC, BRCA, and COAD (Figures 7, 8).

Furthermore, we wondered whether IGF2BP3 played a critical role in cancer diagnosis and prognosis. ROC curve and Survival curve in pan-cancer plotted by Kaplan-Meier estimate revealed that IGF2BP3 had a certain accuracy (AUC>0.7) in predicting 24 cancer types, especially had a strong predictive power (AUC>0.9) in predicting LAML, GBM, UCS, LUSC, STAD, OV, CHOL, and ESCA. Moreover, IGF2BP3 was closely related to the OS, DSS, and PFI in GBMLGG, LGG, KIRP, KIRC, MESO, UVM, UCEC, and PAAD. Thus, IGF2BP3 might represent significant value as diagnostic and prognostic biomarkers in the individualized precision cancer therapy (Figure 4).

Considering the important role of IGF2BP3 in gliomas, we further analyzed the role of IGF2BP3 in GBMLGG and identified significant correlations between IGF2BP3 expression levels and age, histological type and histological grade. Subsequently, we discovered that high expression of IGF2BP3 could cause a poorer OS, DSS, or PFI among a variety of clinical subgroups of GBMLGG. Since then, we confirmed WHO grade, age, IDH status, primary therapy outcome, gender, race, and IGF2BP3 expression level as independent indicators for the risk of OS, DSS, and PFI of GBMLGG through both univariate and multivariate Cox regression analyses (Figure 6; Supplementary Figures 5, 6).

IGF2BP3 may also have the potential as a therapeutic target for cancer treatment. Unlike chemotherapy, Immune checkpoint inhibitors help restore anti-tumor immune response, which has been shown to have a durable anti-tumor benefit in multiple cancers such as renal, melanoma, and lung cancers (59–61). Recently, increasing studies have reported that both TMB and MSI could be predictive biomarkers for identifying patients benefiting from immune checkpoint blockade therapies among multiple cancers (62–64), suggesting their potential response to immunotherapy. Moreover, the existing theory proved that an elevated TMB represented genomic instability associated with enhanced response to tumor immunotherapy (65, 66). In the present study, aberrant IGF2BP3 expression was found to be correlated with TMB in 14 cancer types, and MSI in 10 cancer types. The above correlation proved that IGF2BP3 was closely associated with the TME and might function as a promising biomarker for cancer immunotherapy in specific types of cancer. However, further experimental research is to prove its function (Supplementary Figure 8).

Another principal finding of this study was the primary role of IGF2BP3 in cancer immunity. Recently, it has been well documented that the immune status of the tumor is closely associated with both critical components and tumor-infiltrating immune cell concentrations in TME (32, 67). ESTIMATE algorithm has been shown to be a favorable predictor of the levels of both tumor purity and immune infiltration in a variety of malignancies (32), including pancreatic cancer (68), colon cancer (69), and lung adenocarcinoma (70). Herein, using the TCGA database, we discovered that IGF2BP3 was significantly positively associated with the immune component of TME in 11 cancers, including BLCA, BRCA, COAD, KIRC, KIRP, LAML, LGG, PCPG, PRAD, READ, and UVM, negatively associated with the stromal component of TME in 4 cancers, including ACC, GBM, LUSC and UCEC (Figure 9).

Following that, we found that IGF2BP3 expression was significantly positively correlated with the degree of B cell, neutrophil, CD8+, DC, and macrophage infiltration in LGG, PRAD, KIRC, THCA, BRCA, and GBMLGG. These cells are known to widely involved in both innate and adaptive immune responses (71, 72). Then, a close positive association between IGF2BP3 expression and several immune scores was detected in pan-cancer analysis. Thus, IGF2BP3 may represent a promising biomarker related to tumor immune cell infiltration, and it provides a possible regimen of immune-related therapies for many cancers.

Finally, in our current study of IGF2BP3 biological function, it was shown that IGF2BP3 presented significant participation in biological processes related to immune response and facilitated tumor development in various cancers (Figure 12). A recent study uncovered better responses in patients with higher IGF2BP3 expression in anti-PD-1/PD-L1 therapy (22). Also, in the current study, IGF2BP3 was found to significantly correlate with classic immune checkpoint in human cancers, which remained one of the most successful immunotherapy strategies for multiple cancers. The results above implied the role of IGF2BP3 as a target in immunotherapy.

CellMiner is a website that provides genomics and pharmacology tools to identify drug patterns and transcripts in the NCI-60 cell line. Specifically, the CellMiner database contains 360 microRNAs, 22,379 genes, and 20,503 compounds incorporating 102 FDA-approved drugs (37). In our study, by searching the CellMiner database, we first explored the correlation between IGF2BP3 expression and anticancer drug sensitivity in detail. Results revealed that IGF2BP3 had a significantly positive association with most anticancer drugs, such as ARRY-704, RO-4987655, Trametinib, TAK-733, Cobimetinib, Mirdametinib, RO-5126766, AZD-0364, Ulixertinib, and Selumetinib (Figure 13). Remarkably, the drugs mentioned here were all confirmed to be within the spectrum of inhibitors against the components (mainly MEK and ERK) of MAPK signaling pathway, which remains a key driver of tumor growth in human cancers (73). This finding also partly agreed with the previous work by Ramaswamy Suvasini et al. (74), while the latter established IGF2BP3 as a pivotal oncogenic factor expressed solely in the GBMs. Therefore, we deduced that IGF2BP3 might promote tumorigenesis by inhibiting positive regulators of the Raf/MEK/ERK pathway.

Although we have explored the pan-cancer role of IGF2BP3 from the perspective of bioinformatics in depth, we must acknowledge some limitations in the present study. To begin with, despite the conclusion that aberrant IGF2BP3 expression was associated with immune cell infiltration and prognosis of human cancers, we cannot definitively ascertain whether IGF2BP3 may exert functional effects on patient survival via an immune response. Therefore, the involvement of IGF2BP3 during immune regulation is still unclear and needs further investigation. Second, there is no clinical trial to evaluate the use of IGF2BP3-related therapeutic drugs in patients with pan-cancer. However, we have noted that a prognostic model containing eight genes, including IGF2BP3, for pediatric brain tumors has already been developed recently in a randomized controlled trial, which dramatically enhances the identification of those patients with a poorer prognosis by such gene signature (75). In the future, it is necessary to prospectively study the expression of IGF2BP3 and its significance in cancer immune infiltration, and to develop new drugs with higher anti-tumor activity targeting IGF2BP3.



Conclusion

In conclusion, as far as we know, this is the first systematic study to elucidate the role of IGF2BP3 in pan-cancer from various angles, including its expression pattern, diagnosis, survival prognosis, genetic mutation, TMB, MSI, tumor immune microenvironment, relevant signaling pathways, and drug sensitivity. Based on our findings, IGF2BP3 may serve as a biomarker for the clinical detection of cancer. Our findings on the role of IGF2BP3 are prerequisites for clinical research and the practical application of IGF2BP3-based therapies.
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Primary cutaneous squamous cell carcinoma (cSCC) is the second most common human cancer with a rising incidence of about 1.8 million in the United States annually. Primary cSCC is usually curable by surgery; however, in some cases, cSCC eventuates in nodal metastasis and death from disease specific death. cSCC results in up to 15,000 deaths each year in the United States. Until recently, non-surgical options for treatment of locally advanced or metastatic cSCC were largely ineffective. With the advent of checkpoint inhibitor immunotherapy, including cemiplimab and pembrolizumab, response rates climbed to 50%, representing a vast improvement over chemotherapeutic agents used previously. Herein, we discuss the phenotype and function of SCC associated Langerhans cells, dendritic cells, macrophages, myeloid derived suppressor cells and T cells as well as SCC-associated lymphatics and blood vessels. Possible role(s) of SCC-associated cytokines in progression and invasion are reviewed. We also discuss the SCC immune microenvironment in the context of currently available and pipeline therapeutics.
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1 Introduction

Cutaneous SCC (cSCC) is the second most frequent skin cancer in the United States (US) with 1.8 million new cases each year, and its global incidence rate has been reported to increase 3-7% annually (1, 2). cSCC lesions appear in regions that are most exposed to ultraviolet (UV); the head and the neck are the most common sites followed by the trunk and extremities (3).

UV radiation can alter the genome of epidermal cells and cause SCC development and subsequent metastasis, usually to nearby lymph nodes. A complex network of genes (TP53, CDKN2A, NOTCH1, NOTCH2, EGFR and TERT) and molecular pathways (RAS/RAF/MEK/ERK and PI3K/AKT/mTOR) are associated with the pathogenesis of cSCC (4). Also, recent findings identified EP300, PBRM1, USP28, and CHUK as four novel genes that are mutated in greater than 10% of cSCCs (5). The top three recurrently altered genes in metastatic cSCCs are TP53, CDKN2A, and NOTCH1/2 (6–8).

In addition to UV exposure ionizing radiation, fair skin, chronic immunosuppression, genetic conditions, the presence of chronic wounds or scars, smoking, chemical carcinogens, and human papillomavirus (HPV) infection are the other risk factors of cSCC development (9). The vast majority of cSCC cases are treated successfully by excision with clear margins (10, 11); however, these tumors can be aggressive and responsible for most of the ~15,000 non-melanoma skin cancer deaths in the United States each year (1). Patients with localized cSCC have a favorable prognosis with a 5-year survival rate of 99% following Mohs micrographic surgery (12, 13). Metastasis affects approximately 3.7%-5.2% of all SCC patients (14). The expected 5-year and 10-year survival rates in these patients decreases to 25-50% and 16%, respectively (11, 15–17).

Advanced cSCC is described as either a locally advanced disease that is untreatable by surgery or radiation therapy (RT), a metastatic disease with distant metastases, or large, multiple, and extracapsular nodal disease with a high risk of recurrence despite lymphadenectomy and radiation therapy (18). Cemiplimab, an immune checkpoint inhibitor, is the first medication approved in the United States for advanced cSCC (19). It is a human monoclonal antibody that inhibits the PD-1 pathway by blocking T-cell inactivation, thus assisting the immune system in fighting cancer cells (20) as illustrated in Figure 1. Cemiplimab exhibits an overall response rate of 50%, which is a significant improvement over conventional chemotherapy. It has been shown that cemiplimab has a significant antitumor function with long-lasting response, and acceptable safety profile in patients (19). Pembrolizumab is another PD-1 inhibitor, with a similar mechanism to cemiplimab, and has been recently approved in the United States for recurrent or metastatic cSCC that is uncurable with surgery or radiation therapy (21). A case of metastatic cSCC treated with nivolumab, another PD-1 inhibitor, has been reported, and the patient exhibited a complete response to this treatment (22). In another case report, a patient with unresectable recurrent scalp cSCC with meningeal invasion was successfully treated with nivolumab monotherapy (23).




Figure 1 | Cancer cells can evade immune surveillance by expressing PD-L1 protein that acts as a “stop sign” to inactivate T cells. PD-L1 attaches to PD-1 and B7.1 T cell receptors, both of which inactivate T cells. Cemiplimab prevents T cell inactivation and subsequently increases anti-cancer activity through PD-L1 blockade.



Lymphocyte activation gene 3 (LAG3) is an inhibitory receptor that is expressed on CD4+, CD8+, regulatory T (T-reg) cell, natural killer cell, B cell, and other immune cells (24). LAG3 serves a negative regulatory role in cancer immunology by interacting with its ligands. Higher LAG3 expression has been reported in head and neck squamous cell carcinoma compared to normal tissues. Therefore, LAG3-targeting agents could represent another promising checkpoint inhibitor immunotherapy for these malignancies (25). Combining immunotherapy and radiotherapy is another cutting-edge method of treating cSCC (26). The trials of radiation therapy and cemiplimab in patients with skin cancer (NCT05574101) as well as radiotherapy in combination with atezolizumab (PD-L1 inhibitor) in locally advanced borderline resectable or unresectable cSCC (NCT05085496) are ongoing. Another ongoing trial is testing cetuximab (EGFR inhibitor) before surgery in the treatment of patients with aggressive locally advanced skin cancer (NCT02324608).

The efficacy of talimogene laherparepvec (oncolytic viral immunotherapy) and panitumumab (EGFR inhibitor) for the treatment of locally advanced or metastatic cSCC is being researched in another ongoing trial (NCT04163952).

The development and progression of non-melanoma skin cancer (NMSC) are significantly influenced by immune system function (27). An increased incidence of cSCC in immunocompromised solid organ transplant recipients indicates the critical role of the immune surveillance in host protection (28). The immune system recognizes cancer cells as abnormal and can eliminate them in some cases (29); however, tumor cells might evade immune surveillance through immunoediting processes (30). Cancer cells utilize several mechanisms to escape immune surveillance, including MHC loss and expression of immunosuppressive factors, such as IL-6, IL-10, TGF-β, prostaglandins, and Fas ligand (31, 32).

The tumor microenvironment is characterized as a combination of tumoral and non-tumoral cells at the dynamic interface of neoplasia (33). Although non-tumoral cells within the tumor microenvironment may have protective functions in limiting tumor progression, many studies show that they have also an important role in tumor growth and metastasis (34). Therefore, it is crucial to understand the features of the cSCC tumor-associated immune microenvironment in detail to develop reliable prognostic markers and new advanced treatments.

In this review, phenotype and functions of cSCC-associated Langerhans cells, dendritic cells, macrophages, myeloid-derived suppressor cells and T cells as well as cSCC-associated lymphatics and blood vessels are discussed. Moreover, the potential roles of cSCC-associated cytokines in progression and invasion of the tumor are described.



2 Myeloid-derived suppressor cells in SCC

Myeloid-derived suppressor cells (MDSCs) are pathologically activated neutrophils and monocytes with immunosuppressive activity. They participate in the regulation of immune responses in many pathological conditions, such as cancer, chronic infection, sepsis, and autoimmunity. Two major groups of MDSCs in humans include granulocytic/polymorphonuclear MDSCs (PMN-MDSCs) and monocytic MDSCs (M-MDSCs), which originate from the granulocytic and monocytic myeloid cell lineages, respectively (35). MDSCs are related to poor outcomes in cancer (36). It has been shown that high levels of circulating MDSC in patients with solid tumors, were related to poor overall survival (37).

In cancer patients, these cells express the common myeloid marker CD33 but not mature myeloid and lymphoid cell markers in cancer patients. In humans, MDSCs are identifiable as lineage (CD3, CD14, CD19, CD56)–negative, HLA-DR–negative, and CD33-positive or CD33+CD14- CD11b+ cells (38, 39).

The signals driving MDSCs development occur in two partially overlapping phases. Expansion of immature myeloid cells occurs in phase 1, and neutrophils and monocytes convert to pathologically activated MDSCs in phase 2 (38).

MDSCs are one of the major factors responsible for immune suppression in cancers that not only cause tumor progression but also result in the failure of immunotherapy (39). Arginase, nitric oxide (NO), and reactive oxygen species (ROS) have all been shown to play a role in MDSC-mediated T-cell suppression (40). MDSCs are critical producers of NO in SCC, which suppresses E-selectin expression on tumor vessels. Subsequently, the entry of skin homing T-cells into tumors are restricted, resulting in evasion of SCC from immune detection (41).

Clearly, a successful cancer immunotherapy will be possible if the immune suppressive factors can be eliminated from the body. As MDSCs are one of the major immune suppressive factors in cancers, the challenge of effectively and selectively targeting MDSCs remains (39). Medications that diminish NO production e.g., iNOS inhibitors, may be effective in the treatment of SCCs and their premalignant precursor lesions actinic keratoses through improvement of anti-tumor immune responses (41). Based on earlier studies, all-trans retinoic acid (ATRA) promotes the differentiation of M-MDSCs into macrophages and DCs and apoptosis of PMN-MDSCs in both mice and humans (42–44). Concurrent use of ATRA therapy with CTLA-4 blockade was tested in melanoma patients and resulted in decrease in the number of circulating MDSCs. Therefore, targeting MDSCs in combination with immunotherapies may improve response rates and effectiveness in other skin cancers (45).



3 Tumor-associated macrophages

Macrophages are important tumor-infiltrating cells (46) contributing to different carcinogenesis stages, including initiation, growth, invasion, and metastasis (47, 48). More macrophages are present in SCC compared with normal skin (49). Macrophages surrounding and penetrating the tumor are termed tumor-associated macrophages (TAMS) (46).

In response to tumors, macrophages display a polarized reaction defined by two different states: classically activated macrophage (M1) and alternatively activated macrophage (M2). M1 macrophages are activated by interferon-γ (IFN-γ), bacterial lipopolysaccharide (LPS), or tumor necrosis factor-α (TNF-α) and release interleukin 12 (IL-12) to prevent tumor growth. In contrast, M2 macrophages are activated by IL-4 and release IL-10, which contributes to tumor progression (27, 50–52).

Tumor-associated macrophages have many similar characteristics to alternatively activated macrophages (M2 macrophages) (46). Based on recent studies, macrophage activation in SCC is heterogenous and there are three types of TAMs: TAMs expressing M1 markers, TAMs expressing M2 markers and TAMs simultaneously expressing M1 and M2 (49) (Figure 2). It is believed that tumors can generate a dynamic microenvironment that alters the TAMs into macrophages that help tumor growth (53). Weaker classical macrophage activation in SCC cause TAMs to produce more tumorigenic growth factors (49). Increased TAM levels are associated with poor prognosis in various human malignancies (47, 48, 54).




Figure 2 | A subset of TAMs in cSCC displays both classical and alternative activation features simultaneously. IFN-γ and IL-4 are secreted by Th1 and Th2 cells, respectively, in the cSCC microenvironment. As a result of these cytokines, which activate M1 classic and M2 alternate phenotypes, poly-activated TAMs are generated. STAT1 and STAT6 phosphorylation as well as MMP-9, MMP-11, and VEGF-C expression are characteristic features of TAMs.



Heterogeneous activation of TAMs in SCC suggests potential treatment strategies contributing to the induction of a more dominant M1 activation state with anti-cancer phenotype (27).

TAMs in SCC may produce matrix metalloproteinases (MMPs) that may aid tumor invasion. A positive correlation between MMP-9 (gelatinase B) and MMP-11 (stromelysin-3) proteins and increased tumor aggressiveness has been revealed (55–58). TAMs also contribute to lymphangiogenesis through vascular endothelial growth factor-C (VEGF-C) expression (59). It has been reported that enhanced lymph vessel density is related to increased risk of metastasis in the oral cavity SCC and melanoma (60, 61).

TAM densities and functional immunophenotypes differ in human cutaneous SCCs and BCCs, which can contribute to behavioral differences between these two tumors. It has been shown that SCCs express more TAM-associated markers (MMP-9, arginase-1, CD127 and CD40) compared with BCCs, and TAMs in SCC have a higher density and polarization state. Lactic acid levels are higher in SCCs compared with BCCs, and tumor-derived lactic acid is an important factor playing a role in TAM polarization in SCCs (62).

In fact, TAMs in SCC, due to weaker classical macrophage activation and higher production of tumorigenic growth factors, are unable to prevent tumor genesis and in fact they can even facilitate tumor growth; however, they contribute to tumor invasion and metastasis through production of high levels of MMPs, more dominant M2 activation and lymphangiogenic mediator (VEGF-C) expression (27).

CD200 (a known immunosuppressive surface protein) is overexpressed in stroma around cSCC, mainly by blood vessel endothelia. CD200 is also expressed on cSCC tumor cells (63). In addition, more CD200R+ cells are located in the cSCC microenvironment than normal skin, and CD200R was detected on macrophages and dendritic cells (28). Increased CD200 expression on tumor cells is associated with tumor progression and decreased patient survival (63, 64). Endothelial CD200 may inhibit aberrant diapedesis of macrophages during inflammation partly through downregulation of macrophage adhesion molecules. Hence, through this mechanism, CD200 may play a role in suppression of macrophage function (65). Moreover, binding of endothelial CD200 to CD200R on macrophages and dendritic cells inhibits proinflammatory activation (66–70) and suppresses classic activation of macrophages; therefore, M2 cells become the predominant macrophage polarized state (71).

Anti-CD200 antibody (through blocking the CD200-CD200R interaction) has been shown to improve antitumor activity against CD200-expressing human tumors in a mouse model (72, 73). Thus, anti-CD200 therapies could represent effective treatments for aggressive SCCs (28).



4 Dendritic cells and Langerhans cells

Dendritic cells (DC) are antigen-presenting cells (APCs) that play an important role in linking the innate and adaptive immune systems (74). The ability of DCs to induce tumor-specific T-cell responses facilitate their vital role in cancer immune surveillance (75).

Three main subsets of cutaneous DCs in humans include Langerhans cells (LCs), myeloid DCs (mDCs), and plasmacytoid DCs (pDCs) (76). As Langerhans cells are found in the epidermis, they are the first APCs to encounter SCC (77). LCs from human SCC can stimulate CD8+- or NK-cell-mediated response more efficiently than other DC subsets, resulting in a more robust proliferation of naive CD8+ T cells (78).

In addition to the primary role of DCs in initiating the cellular immunity, they are also involved in polarizing the naive CD4+ T cells towards a Th2 immune response through releasing type II cytokines, such as IL-4, IL-5, and IL-13 (79). Furthermore, it has been reported that LCs from SCC were more powerful inducers of allogeneic CD4+ and CD8+ T-cell proliferation and IFN-γ production compared to those from normal skin and eventually more potent in activating type 1 T-cell responses (77).

Tumor-induced dendritic cells dysfunction (29) and tumor-induced DC apoptosis (80–82) are two of major strategies used by tumors to escape immune surveillance.

Several studies have revealed that the number of both LCs and CD11c+ dermal DCs is markedly reduced in SCC lesions (83, 84) and the ability of the dermal myeloid DCs to activate T cells and stimulate the production of interferon (IFN)-γ is diminished (83, 85).

Higher levels of immunosuppressive cytokines, such as TGF-β, IL-10, IL-6 and VEGF-A, in the microenvironment of SCCs are believed to be possible causes of mDCs suppression (83). IL-10 has the potential to inhibit the differentiation of monocytes to DC (86), weaken APC function of DCs (87, 88), suppress DCs’ ability to activate T cells, and cause induction of antigen-specific anergy (89). Increased VEGF levels are related to decreased number of DCs in tumor lesion and in the peripheral blood of patients with various malignant tumors. This finding demonstrates the ability of VEGF to inhibit DC differentiation (90–92).

The presence of large numbers of pDCs is another distinguishing feature of the SCC tumor microenvironment (83). These cells facilitate tumor eradication through production of large quantities of IFN-α in response to foreign antigen. Moreover, pDCs can recognize, process, and cross-present foreign antigen to CD8+ T lymphocytes (93, 94). Despite lower antigen uptake by pDCs compared to mDCs, pDCs may still be effective in anti-tumor immune response (Figure 3) (95).




Figure 3 | cSCC microenvironment is associated with an increased number of IFN-α-secreting pDCs and LCs with enhanced ability to activate CD8+ T cells, which potentially promote immunosurveillance. In contrast, an increased number of regulatory T cells; tumor-associated macrophages; and immune suppressive cytokines, such as IL-10, TGF-β, and VEGF-A, are present in the tumor microenvironment. These factors contribute to tumor growth and immune dysfunction through suppression of mDC and CD8+ T cell activity.



It can be concluded that DCs are desirable targets for tumor immunotherapy due to their capacity to link the innate and adaptive immune systems as well as their ability to initiate the immune response (74). In addition, human LCs have been shown to be more potent inducers of type 1 T-cell response in the cSCC microenvironment. Hence, LCs can be used in DC-based cancer immunotherapy as a promising novel strategy in the treatment of skin malignancies (77).



5 T-lymphocytes

Numerous immune cells, including T-cells, are found in SCC lesions (96–98). Despite T cell infiltration into cutaneous SCC (cSCC), these cells are incapable of eradicating the tumor (99, 100).

It has been demonstrated that SCC and transplant-associated SCC (TSCC) microenvironments have significantly greater numbers of CD3+ and CD8+ T cells than normal skin. These cells accumulate predominantly in the peritumoral region and are less frequently noted within the tumoral region. The number of FOXP3+ T reg cells is increased in both SCC and TSCC compared to normal skin (101). Approximately more than 50% of the T cells infiltrating cSCCs from both immunocompetent and immunosuppressed patients are FOXP3+ T reg cells (97). These cells are CD4+ and lack CLA, CCR4, and CCR6 (skin resident T reg markers) (102). Moreover, these cells express markers of central memory T cells, such as L-selectin and CCR7. Given that T reg cells do not proliferate locally in tumors, recruitment from the blood may be the main mechanism responsible for significant presence of these cells in tumors (97).

Although FOXP3+ T reg cells contribute to immune tolerance (103), which is important for preventing autoimmune diseases (104), they may suppress antitumor immunity (105, 106) and play a role in immune evasion. Particularly, the immune response can be regulated by T reg cells by suppressing the proliferation and cytokine production of effector T cells (107, 108).

Based on several studies, the greater number of tumor infiltrating T regs is related to poor prognosis and lower survival rates in breast (109), ovarian (110, 111) and gastric carcinomas (105). T regs may contribute to cSCC metastasis and thus have potential prognostic significance (100). Some recent studies have identified CD8+ Tregs in cSCC (112) and other tumors (113) that exhibit even stronger regulatory activities compared to CD4+ Tregs (114). Given its ability to decrease the number of FOXP3+ T reg cells and inhibit T reg cell function, imiquimod could effectively inhibit the immunological destruction of cSCC (97).

TSCC has a distinct immune microenvironment that promotes tumor growth. There are fewer T cells, especially CD8+ T cells, in TSCC lesions in comparison to SCC lesions (101), and a decreased Tc/Treg ratio in TSCC has also been reported (112). Furthermore, an increased number of IL-22 producing CD8+ T cells and decreased number of CD4+ Th1 T cells have been revealed in TSCC lesions. Higher T regs and lower CD8+ T cells, which result in decreased immune surveillance, and increased exposure to IL-22, which enhances tumor proliferation, represent two main factors that contribute to the aggressive nature of TSCC (101) (Figure 4).




Figure 4 | The aggressive nature of TSCC is potentially explained by the presence of increased numbers of T regs along with reduced numbers of CD8+ and IFN-γ-producing T cells, resulting in reduced tumor surveillance as well as an increase in IL-22-producing T cells, which stimulate tumor cell proliferation.



Compared to photodamaged skin, SCCs are associated with an increased number of CD4+ T-cells. However, compared to premalignant lesions, including intraepidermal carcinoma (IEC), SCCs may also be associated with fewer numbers of CD8+ T-cells. The ratio of CD4+ to CD8+ T-cells is significantly increased in SCC compared to IEC (115).



6 Lymphatic and blood vessels

The lymphatic vascular system is the main pathway for metastatic spread in SCCs. Various cancers can cause lymphangiogenesis, which is associated with increased expression of vascular endothelial growth factors as well as increased relative lymphatic vessel area (LVA) or lymphatic vessel density (LVD) (59, 116, 117) In this context, overexpression of genes related to lymphangiogenesis and increased LVD has been shown in cSCC compared to normal skin (118).

The risk of metastasis in SCCs is related to several variables, including tumor thickness, horizontal tumor size, and desmoplastic growth (11, 15–17). Tumor thickness has been shown to be the most accurate predictive factor for metastasis in SCCs. Metastatic SCCs are associated with increased lymphangiogenesis; however, the extent depends on the thickness of the tumor. It has been shown that greater tumor thickness in SCCs is accompanied by an increase in relative lymphatic vessel area and lymphatic vessel density (118). Despite clear excision margins in SCCs, increased dermal lymphangiogenesis can facilitate metastatic spread (59).

VEGF-C is a key lymphangiogenesis mediator (119). Increased VEGF-C levels in the tumor and the juxtatumoral dermis of cSCC compared with normal skin have been reported, and it has been suggested that tumor-associated macrophages may play an important role in lymphangiogenesis through production of VEGF-C (59).

Podoplanin is a distinctive immunohistochemical marker of lymphatic endothelial cells. Overexpression of podoplanin in both tumor cells and stroma of cSCC have been reported (120). Additionally, a positive correlation is noted between the expression of podoplanin in intratumoral and peritumoral regions of cSCC and the Broder’s tumor differentiation grades (121–123) as well as the depth of tumor invasion to the dermis based on the Clark’s scale (124). According to several studies, increased podoplanin expression is associated with a higher mean of LVD in the SCC microenvironment (120, 124–126) and presence of LN metastasis in SCC patients (120, 121, 127, 128). Therefore, podoplanin could be used as a predictor of SCC prognosis given that increased podoplanin expression is related to poor prognosis and decreased survival in cSCC patients (120).

Most immune cells have their first contact with a tumor through endothelial cells of the local blood vessels (28). Endothelial cell integrity is believed to play an important role in tumors. Normal endothelial cells promote homeostasis, but dysfunctional endothelial cells can lead to cancer growth (129). Abnormal angiogenesis also contributes to tumor growth and promotes metastatic spread. The density of neovascularization in cSCC is positively correlated with deeper invasions and poorer tumor differentiation. As a result, SCC tumors with high angiogenic activity are classified as aggressive with poor prognosis (130). Podoplanin represents a potential target for antimetastatic therapy in cSCC. A cancer-specific monoclonal antibody against human podoplanin has been demonstrated to be an effective treatment strategy particularly in podoplanin-expressing malignancies (131).



7 Cytokines

Cytokines play an important role in tumor biology. It was previously thought that IFN-γ and other Th1 cytokines exhibit antitumor activity, whereas IL-4 and other Th2 cytokines have protumor function (132). However, based on recent studies, some cytokines, such as IFN-γ, have been shown to have pro-tumor or anti-tumor functions depending on the tumor type and tumor microenvironment (133).

High serum levels of proinflammatory cytokines, such as interleukin (IL)-1, IL-6, IL-8, and TNF-α, are often related to tumor growth and poor clinical prognosis in cancer patients (134–137). It has been suggested that the balance between multiple cytokines may contribute to the SCC pathogenesis (138). Several cytokines, including IL-6, IFN-γ, TGF-β and GM-CSF, play a role in keratinocyte proliferation and SCC development (139–143).

Significantly elevated serum IFN-γ levels have been reported in SCC patients compared with normal subjects, and higher IFN-γ levels in SCC patients are corelated with more advanced cancer stages. The combination of serum IFN-γ and TGF-β levels is more reliable for diagnosis of SCC, whereas measurement of serum IFN-γ alone is helpful in evaluating the SCC progression from early to middle stages (138).

Elevated serum IL-6 levels are associated with increased malignancy and poor prognosis in different types of tumors (144–146). It has been demonstrated that IL-6 is important in transforming benign tumors into malignant, invasive SCCs in the HaCaT cell model of skin carcinogenesis. A complex, reciprocally regulated cytokine network induced by IL-6 in the tumor cells, including inflammatory cytokines (MCP-1, GM-CSF, and IL-8) and angiogenic factor (VEGF), results in malignant and invasive tumor growth in vivo and stimulates tumor cell proliferation and migrations. These findings indicate that IL-6 could represent a great target for effective cSCC treatment (147).

IL-24 overexpression has been noted in invasive cSCC. IL-24 facilitates cSCC invasion (132) by increasing focal MMP-7 expression, and MMP-7 promotes cancer cell proliferation, migration, and invasion (148).

According to several reports, constitutive expression of G-CSF and GM-CSF together has been shown in SCCs (149–151). Through induction of cell proliferation, migration, and angiogenesis in cSCCs, G-CSF and GM-CSF contribute to tumor growth, invasion, and metastasis (149, 150, 152).

Transforming growth factor-β (TGF-β) signaling is mediated by several downstream proteins, such as Smad family proteins. This signaling pathway has a paradoxical role by acting as a tumor-suppressor or tumor-promoting factor in many types of cancers, such as SCC. In the early stages of SCC, TGF-β1 and TGF-βRI act as tumor suppressors. However, in later stages, these proteins promote tumor growth. Smad2, TGF-βRII, and Smad4 are typically considered tumor suppressors in SCC (153).

IL-22 is produced by CD4+ helper T lymphocytes (Th), such as Th1, Th17, and Th22 as well as a subset of CD8+ cytotoxic T cells (Tc22) (154–157). Significantly increased IL-22 is noted in the peritumoral regions of SCC and TSCC compared to normal skin. In transplant patients, overexpression of IL-22 and IL-22R facilitate tumor growth (101) and result in poorer prognosis (158). In addition to the role of IL-22 in cell proliferation, it can reduce IFN-γ production by Th1 cells as well as increase the production of immunosuppressive cytokines (159). It has been proposed that treating highly aggressive forms of SCCs in transplant patients by targeting the IL-22 pathway could represent an important, life-saving strategy (101).



8 Discussion

Skin malignancies are the most prevalent human cancers, and the immune system plays an important role in their development, progression, and eradication (160). There are approximately 1 million memory T cells/cm2 in normal human skin, which is approximately twofold the number of T cells that exist in the entire circulation (161), indicating the importance of cutaneous immune surveillance as part of the immune system.

The immune microenvironment surrounding the cSCC is dynamic and contains contradictory forces that promote and suppress tumor growth (72, 162–165).

To summarize, the cSCC microenvironment has more Tregs and myeloid-derived suppressor cells that suppress immune responses and fewer mDCs with poor antigen-presenting function. The macrophages present in the cSCC microenvironment predominantly exhibit the M2 phenotype and promote tumor invasion and metastasis through producing MMPs and lymphangiogenic mediators. The SCC microenvironment is rich in IL-6, IFN-γ, TGF-β, GM-CSF, and IL-24, which induce tumor growth and invasion. Moreover, increased dermal lymphangiogenesis facilitates metastatic spread. Overexpression of IL-22 and IL-22R accelerate tumor proliferation and subsequently result in poorer prognosis in transplant patients with cSCCs.
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Background

Immune checkpoint inhibitors (ICIs) have considerably improved patient outcomes in various cancer types, but their efficacy remains poorly predictable among patients. The intestinal microbiome, whose balance and composition can be significantly altered by antibiotic use, has recently emerged as a factor that may modulate ICI efficacy. The objective of this systematic review and meta-analysis is to investigate the impact of antibiotics on the clinical outcomes of cancer patients treated with ICIs.



Methods

PubMed and major oncology conference proceedings were systematically searched to identify all studies reporting associations between antibiotic use and at least one of the following endpoints: Overall Survival (OS), Progression-Free Survival (PFS), Objective Response Rate (ORR) and Progressive Disease (PD) Rate. Pooled Hazard Ratios (HRs) for OS and PFS, and pooled Odds Ratios (ORs) for ORR and PD were calculated. Subgroup analyses on survival outcomes were also performed to investigate the potential differential effect of antibiotics according to cancer types and antibiotic exposure time windows.



Results

107 articles reporting data for 123 independent cohorts were included, representing a total of 41,663 patients among whom 11,785 (28%) received antibiotics around ICI initiation. The pooled HRs for OS and PFS were respectively of 1.61 [95% Confidence Interval (CI) 1.48-1.76] and 1.45 [95% CI 1.32-1.60], confirming that antibiotic use was significantly associated with shorter survival. This negative association was observed consistently across all cancer types for OS and depending on the cancer type for PFS. The loss of survival was particularly strong when antibiotics were received shortly before or after ICI initiation. The pooled ORs for ORR and PD were respectively of 0.59 [95% CI 0.47-0.76] and 1.86 [95% CI 1.41-2.46], suggesting that antibiotic use was significantly associated with worse treatment-related outcomes.



Conclusion

As it is not ethically feasible to conduct interventional, randomized, controlled trials in which antibiotics would be administered to cancer patients treated with ICIs to demonstrate their deleterious impact versus control, prospective observational studies and interventional trials involving microbiome modifiers are crucially needed to uncover the role of microbiome and improve patient outcomes. Such studies will reduce the existing publication bias by allowing analyses on more homogeneous populations, especially in terms of treatments received, which is not possible at this stage given the current state of the field. In the meantime, antibiotic prescription should be cautiously considered in cancer patients receiving ICIs.



Systematic review registration

https://www.crd.york.ac.uk/prospero/, identifier CRD42019145675.
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1 Introduction

Cancer immunotherapy targeting immune checkpoints has revolutionized cancer management and resulted in significant improvement in patient outcomes in a large array of cancers (1). Currently approved immune checkpoint inhibitors (ICIs) include monoclonal antibodies targeting programmed cell death protein 1 (anti-PD-1) and its ligand (anti-PD-L1), as well as cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4). Furthermore, numerous molecules targeting other immune checkpoints are currently being evaluated in clinical trials and could soon enrich the list of authorized ICIs. Besides, the indications of approved products are increasingly expanded to new cancer types and earlier lines of treatment1.

This significant and steadily increasing use of ICIs and the variation of response between patients warrant attention to the factors that mitigate their efficacy. Only between 15 and 60% of patients, depending on cancer types, do respond to ICI treatment (1, 2), which leaves a wide range of patients who do not fully benefit from ICIs. In non-small cell lung cancer (NSCLC), one of the first cancers for which ICIs were authorized, only 15 to 30% of patients seem to achieve a durable benefit from ICIs (1, 3, 4).

In recent years, the gut microbiome has been increasingly discussed as playing a crucial role in the education and development of major components of the host’s immune system, and therefore in a certain number of health conditions and diseases (5). The role of the gut microbiome in modulating or predicting the effectiveness of ICIs has also been highlighted in recent papers (6–8). Several studies have identified gut bacteria that could be associated with good or poor clinical response in the fecal microbiome of cancer patients treated with ICIs. They have even shown that fecal microbiota transplantation (FMT) from patients responding to ICIs into germ-free or antibiotic-treated mice modulated the response of mice tumors to ICI treatment (6–8).

Cancer patients are particularly vulnerable to bacterial infections and antibiotics (ABX) are often used in the clinical practice. ABX are known to induce profound changes to the gut microbiome and to disrupt the balance between the various bacterial groups, genera and species normally found in each healthy individual. Microbiome disruption, called dysbiosis, can last for several weeks or even months after ABX intake (9, 10), and alter key functions of the microbiome (11). The relationship between ABX use and ICI efficacy is therefore increasingly studied in clinical practice. ABX exposure was notably shown in numerous retrospective and prospective studies to adversely influence the clinical outcomes of patients suffering from different types of cancer treated with ICIs (12–14). Sixteen meta-analyses were published on the subject and consistently concluded on a damaging impact of ABX use on the clinical outcomes of cancer patients treated with ICIs (15–30), yet only 48 cohorts (12,794 patients) were included in the most comprehensive meta-analysis (23), leaving a large part of the literature unexploited.

By including in the present meta-analysis a total of 107 articles reporting clinical data based on ABX exposure on 123 independent cohorts, for a total of 41,663 patients, we aimed to exhaustively cover the literature of the field and to provide novel analyses that were not performed in previously published meta-analyses. In particular, the impact of ABX use on treatment-related outcomes such as Objective Response Rate (ORR) and Progressive Disease (PD) rate has been poorly investigated to date, with few articles included in the meta-analyses having performed such analyses. Also, the potential differential effect of ABX use depending on the cancer type has not been investigated in as many cancer types as possible, and, for instance, the impact of ABX use in urothelial carcinoma (UC), in which ICIs are increasingly used, has never been conclusively examined. Hopefully, our findings will help improve the understanding of the links between ABX use and ICI efficacy, optimize individualized clinical care during cancer immunotherapy and benefit patient prognosis.

This meta-analysis aims to answer the following questions: is the use of ABX before and/or during an anti-PD-L(1)-based treatment associated with a modification of the response to treatment and survival in cancer patients? Are there elements related to the cancer, the ABX therapy itself and/or the time window of ABX exposure relative to ICI initiation that could modulate this impact and help physicians issue best practice recommendations?



2 Materials and methods


2.1 Registration


The meta-analysis protocol was submitted to the International Prospective Register of Systematic Reviews CRD42019145675URL : https://www.crd.york.ac.uk/prospero/ and the research work was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (31).



2.2 Data sources and literature search strategy

A systematic literature search was performed using MEDLINE (through PubMed) and a comprehensive query (Figure 1) in order to retrieve all relevant studies published until September 15, 2022 and reporting data on the associations between ABX use and the clinical outcomes of cancer in patients treated with anti-PD-(L)1-based treatments. In order to include the largest possible patient population, no filters for language (although the query was submitted in English) or year of publication were applied. Besides, proceedings of major oncology conferences held between 2017 and 2022 were also screened to identify unpublished studies that could be included, thus minimizing publication bias, using the following keywords: antibiotic, antibiotics, antimicrobial, antimicrobials, anti-infective, anti-infectives. Such conferences were the European Lung Cancer Congress (ELCC) and the World Conference on Lung Cancer (WCLC), as well as annual meetings from the American Association for Cancer Research (AACR), the American Society of Clinical Oncology (ASCO), the European Society for Medical Oncology (ESMO), the International Association for the Study of Lung Cancer (IASLC) and the Society for Immunotherapy of Cancer (SITC). Any relevant article references were also screened for additional studies.




Figure 1 | Literature query used on PubMed.





2.3 Study selection

Studies were included in the present meta-analysis if they fulfilled the following criteria: 1) study subjects were patients diagnosed with any type of cancer and treated with anti-PD-(L)1 agents, either as monotherapy or in combination with other anticancer treatments, 2) ABX-exposed patients received ABX before and/or after the initiation of and/or during immunotherapy, regardless of ABX class, route of administration and duration of use, 3) ABX-unexposed patients (the control group) did not receive ABX within the defined timeframes, and 4) studies provided data, suitably formatted for inclusion, on the associations between ABX use and at least one outcome retained for this meta-analysis, namely Overall Survival (OS), Progression-Free Survival (PFS), ORR and PD.

If several studies were redundant (i.e. they reported data on overlapping patient populations, which was identified by looking at patient recruitment centers and study periods), the most recent study was selected for inclusion in the meta-analysis.

The literature screening was independently conducted by two reviewers who consulted with a third author to resolve any discrepancy.



2.4 Data extraction

Using a standardized data extraction spreadsheet, the following data were collected from each of the included study, when available: first author’s name, publication year, publication type (full-text article, poster or abstract), country, patient and cancer characteristics (i.e. number of patients included, histology, cancer stage, Eastern Cooperative Oncology Group performance score (ECOG PS)), immunotherapy characteristics (ICI type, treatment scheme and line of treatment), ABX treatment characteristics (number of ABX users, ABX exposure time window (TW), indication, class, route of administration and duration of use) and outcomes of interest based on ABX exposure. Authors were contacted when crucial data, such as the number of ABX users, were missing in a study.

For OS and PFS, Hazard Ratios (HRs) and their 95% Confidence Intervals (CI) were included in the meta-analysis when reported as such in the studies and estimated from Kaplan-Meier curves with the Tierney et al. approach (32) when not, with the estimations performed independently in duplicate by two reviewers to ensure consistency of the results. In case of discrepancy, another estimation was performed by a third author and if the results remained inconclusive, the estimations were not included in the meta-analysis.

Regardless of the outcome, results yielded by multivariate analyses were preferred over results yielded by univariate analyses, when available, for inclusion in the meta-analysis. When results were available on multiple ABX exposure time windows in a given study, pre-defined criteria of selection were applied to include the largest number of qualitative results and to make the most relevant analyses possible (see the complete methodology in Supplementary Figure 1).



2.5 Quality assessment

As the majority of the studies included had a retrospective design, a quality assessment was independently performed by two reviewers using the Newcastle-Ottawa scale (NOS), a star-based system that rates non-randomized studies based on the three following domains: selection of the study groups, comparability of the study groups and ascertainment of the outcomes.



2.6 Data analyses


2.6.1 Pooled analyses

OS and PFS are respectively defined as time from immunotherapy initiation until death by any cause or loss to follow up (for OS) or until radiological evidence of progressive disease or loss to follow-up (for PFS). One of the aims of the meta-analysis was to evaluate the impact of ABX use on the survival and survival without cancer progression of cancer patients treated with ICIs by calculating pooled HRs for OS and PFS along with their 95% CI across all cohorts.

ORR and PD are treatment-related outcomes, with ORR representing the number of patients experiencing a complete or partial response, and PD equated, for the purpose of the meta-analysis, with the number of patients experiencing cancer progression. One of the aims of the meta-analysis was to assess the association between ABX use and response to treatment by calculating pooled Odds Ratios (ORs) for ORR and PD along with their 95% CI across all cohorts.



2.6.2 Subgroup analyses

In order to minimize between-study heterogeneity and to determine factors influencing the impact of ABX use on survival and treatment-related outcomes, several subgroup analyses were conducted, subject to an acceptable number of cohorts per group. As the number of studies reporting data on treatment-related outcomes was relatively small, the subgroup analyses were restricted to survival outcomes.


2.6.2.1 Subgroup analyses according to the cancer type

A cancer type formed a separate category if at least four cohorts of patients with that cancer type were available with data on both OS and PFS according to ABX exposure. An “Other” category was created to group cancers for which less than four cohorts of patients with that type of cancer reported data on survival outcomes, while an “Aggregated” category was defined to group cohorts having pooled patients suffering from various types of cancer.



2.6.2.2 Subgroup analyses according to the antibiotic exposure time window

Five ABX exposure TWs relative to ICI initiation were selected, based on the TWs defined in the included studies and with the assumption of a stronger impact of ABX when taken around ICI initiation: [-60 days; 0], [-30 days; 0], [-60 days; 60 days], [-90 days; 120 days] and “undefined” (noted hereafter]-∞; ∞[), Day 0 being the day of initiation of the treatment with ICIs, i.e. the day of the first administration of immunotherapy. Of note, a patient included in the TW [-60 days; 0] may have taken ABX only in an unspecified short period included in this TW (for example, between -15 and -10 days before ICI initiation).




2.6.3 Focus on non-small cell lung cancer

Lung cancers are responsible for the largest number of cancer-related deaths worldwide2. About 80% to 85% of all lung cancers are NSCLC. As NSCLC was one of the first cancers for which ICIs were approved3, it is the cancer for which the literature is the most comprehensive, with nearly half of the patients included in the meta-analysis suffering from NSCLC (and just as many studies focusing on this cancer type). For comparison, the second most represented cancer in this literature, namely UC, represents less than 15% of all patients and cohorts included. NSCLC was therefore the subject of a focus in the present meta-analysis, and some analyses were performed exclusively on the NSCLC patient population, allowing to minimize heterogeneity between studies. Thus, in addition to pooled HRs for OS and PFS and pooled ORs for ORR and PD, subgroup analyses were performed on survival outcomes according to the following ABX exposure TWs: [-60 days; 60 days], [-45 days; 45 days], [-90 days; 120 days] and]-∞; ∞[, Day 0 being the day of initiation of the treatment with ICIs. In addition, NSCLC studies were analyzed in more detail to bring out information on the baseline characteristics of NSCLC patients (histology, ECOG PS, PD-L1 expression), on the immunotherapy treatment (anti-PD-(L)1 scheme and agent, and treatment line) and on the use of ABX (ABX class, cause of prescription and route of administration).




2.7 Random-effect model

All calculations of HRs and ORs were performed using the inverse variance-weighted average method according to a random-effect model, to best accommodate the high heterogeneity expected from the included studies and measured using the Higgins and Thompson statistic I2. For survival outcomes, a value of HR > 1 indicated that ABX use was negatively associated with the considered outcome, while a 95% CI > 1 indicated that the association was statistically significant. For treatment-related outcomes, a value of OR for ORR < 1 indicated that ABX use was negatively associated with treatment response, and the association was statistically significant if the 95% CI was inferior to 1. On the contrary, a value of OR for PD > 1 indicated that ABX was associated with an increased odd of cancer progression, while a 95% CI > 1 indicated that the association was statistically significant. For all analyses, a p-value ≤ 0.05 was considered to be statistically significant.



2.8 Publication bias and sensitivity analysis

One weakness of a meta-analysis is that it relies on the available published literature and can be affected by publication bias, which occurs when the results of a study have an impact on the decision to publish the study. For example, it is known that researchers are less likely to publish their study when their working hypothesis is not met (in our case, if antibiotics do not impact patient outcomes). Publication bias was assessed for pooled HRs for OS and PFS and pooled ORs for ORR and PD through the generation of funnel plots that were analyzed for asymmetry using Begg and Egger tests. If a publication bias was detected, its impact on the meta-analysis results was assessed via a trim-and-fill approach. A sensitivity analysis was also conducted to assess the risk of one individual study biasing the results using the leave-one-out approach.

All analyses were performed using R version 3.6.1 and the meta package (33, 34).




3 Results


3.1 Study selection

The literature search conducted on PubMed initially retrieved 2,036 hits, of which 1,950 were excluded based on their title or abstract, leaving a total of 86 candidate studies for full-text reading. 20 studies were consequently discarded due to different reasons, including redundancy and/or overlapping cohorts, and the reporting of outcomes other than the ones retained for this meta-analysis. An additional 30 relevant studies were extracted from the screening of major oncology conference proceedings, and 11 were further identified by reviewing the references of relevant articles in the field. 67 articles published in peer-reviewed journals, 25 posters and 15 abstracts were ultimately included in the meta-analysis, representing a total of 107 articles (7, 12–14, 35–137), issued between 2017 and 2022, and reporting data on 123 independent cohorts. The results of the literature search process are displayed in Figure 2.




Figure 2 | Flowchart of the search process. AACR, American Association for Cancer Research; ASCO, American Society of Clinical Oncology; ELCC, European Lung Cancer Congress; ESMO, European Society for Medical Oncology; IASCL, International Association for the Study of Lung Cancer; SITC, Society for Immunotherapy of Cancer; WCLC, World Conference on Lung Cancer.



As shown in Supplementary Table 1, the included studies had Newcastle-Ottawa scale scores ranging from 3 to 8, with a median at 6. The missing criteria were generally item D (demonstration that outcome of interest was not present at start of study), G (adequate duration of follow-up) and H (loss to follow-up rate), and the lowest scores were mainly attributed to the abstracts. Of note, low scores do not necessarily correspond to poor-quality studies but rather to a lack of sufficient information.



3.2 Characteristics of studies and patients included

Baseline characteristics of studies and patients included are displayed in Supplementary Table 2. The very large majority of studies were retrospective analyses of patient medical records (some of which were entered into prospectively-maintained databases); only 6 studies reported prospective observational clinical trial data (13, 43, 81, 101, 110, 114).

Overall, a total of 41,663 patients diagnosed with cancer and treated with an anti-PD-(L)1-based treatment were included in the meta-analysis, among whom 11,785 (28%) were administered ABX in varying timeframes around ICI initiation.

The United States of America (USA) and Europe were the continents providing most cohorts and patients (34% of cohorts and 47% of patients for the USA, 29% of cohorts and 22% of patients for Europe), followed by Asia (22% and 9% of cohorts and patients, respectively). Within Europe, France and Spain produced most cohorts and included most patients (31% and 55% of cohorts and patients for France, respectively, and 29% and 14% for Spain).

The very large majority of patients included in the meta-analysis had a locally advanced or metastatic cancer. The number of patients enrolled in the studies ranged from 31 to 3,634, with the largest cohorts including NSCLC patients. In terms of number of patients (and of cohorts), NSCLC was by far the most represented cancer, with 40% of the 41,663 patients suffering from this cancer (and 41% of the cohorts including NSCLC patients), followed by UC (14% of patients, 12% of cohorts), melanoma (13% of patients, 7% of cohorts), renal cell carcinoma (RCC) (8% of patients, 7% of cohorts) and hepatocellular carcinoma (HCC) (4% of patients, 7% of cohorts). The remaining cohorts included patients suffering from cancer types less represented in this immuno-oncology literature, namely head and neck cancer, esophagogastric/gastric cancer, gynecologic cancers, cutaneous squamous cell carcinoma, Hodgkin lymphoma, colorectal cancer and sarcoma (each of these cancer types representing less than 3% of all patients and cohorts). Finally, 18 cohorts (16% of all patients) grouped patients suffering from various cancer types, of which NSCLC was once again the most represented cancer type (37%), followed by melanoma (29%).

The studies included were largely heterogeneous in terms of reported immunotherapy and ABX treatment characteristics, but from the review of this literature, patients seemed to be predominantly treated with anti-PD-1 monotherapy, nivolumab and pembrolizumab being the most represented ICI agents. The line of treatment greatly differed between studies, but the largest cohorts included patients receiving immunotherapy as first-line treatment for locally advanced or metastatic cancers. All studies selected varying time windows of exposure to ABX, some of them being strictly defined and very narrow around ICI initiation ([-14 days; 14 days] in Ahmed J. et al. (123)), other being broader and less defined (“after ICI initiation” in Masini et al. (131)). β-lactams and fluoroquinolones were the most used ABX in this patient population, and ABX were mostly administered via oral route. More detailed information on patient characteristics, anticancer treatment and antibiotic therapy is available for NSCLC patients in section 3.6.1.



3.3 Impact of antibiotic use on survival outcomes across all cancer types


3.3.1 Global analyses

112 and 80 cohorts reported data on OS and PFS based on ABX exposure, respectively, representing 40,236 patients and 12,564 ABX users (31%) for OS and 20,318 patients and 6,223 ABX users (31%) for PFS.

The random-effect model yielded respective HRs for OS and PFS of 1.61 [95% CI 1.48-1.76] and 1.45 [95% CI 1.32-1.60] (Figures 3, 4) across all cancer types and ABX exposure time windows, suggesting that ABX use is significantly associated with reduced survival and survival without progression of cancer patients treated with ICIs. When excluding HRs calculated from univariate analyses, to keep uniquely cohorts having controlled for confounding factors, the association between ABX and survival outcomes remained very highly significant, with HRs for OS and PFS being respectively of 1.64 [95% CI 1.44-1.90] and 1.62 [1.39-1.89] (Figures 5, 6). Of note, the design of the study (prospective or retrospective) did not appear to have exerted an impact on the results (data not shown).




Figure 3 | Forest plot of hazard ratios for overall survival of patients diagnosed with cancer exposed to antibiotics versus not exposed to antibiotics around immune checkpoint inhibitor treatment initiation. ABX, Antibiotic; CI, Confidence Interval; HR, Hazard Ratio; M, Multivariate; N/A, Not Available; TW, Time Window; U, Univariate; U*, Univariate, HR estimated from Kaplan-Meier curve.






Figure 4 | Forest plot of hazard ratios for progression-free survival of patients diagnosed with cancer exposed to antibiotics versus not exposed to antibiotics around immune checkpoint inhibitor treatment initiation. ABX, Antibiotic; CI, Confidence Interval; HR, Hazard Ratio; M, Multivariate; N/A, Not Available; TW, Time Window; U, Univariate; U*, Univariate, HR estimated from Kaplan-Meier curve.






Figure 5 | Forest plot of hazard ratios yielded from multivariate analyses for overall survival of patients diagnosed with cancer exposed to antibiotics versus not exposed to antibiotics around immune checkpoint inhibitor treatment initiation. ABX, Antibiotic; CI, Confidence Interval; HR, Hazard Ratio; TW, Time Window.






Figure 6 | Forest plot of hazard ratios yielded from multivariate analyses for progression-free survival of patients diagnosed with cancer exposed to antibiotics versus not exposed to antibiotics around immune checkpoint inhibitor treatment initiation. ABX, Antibiotic; CI, Confidence Interval; HR, Hazard Ratio; N/A, Not Available; TW, Time Window.



As expected, the heterogeneity factor was substantial in these global analyses (I2 of 82% for OS, I2 of 74% for PFS), due to the high variability observed between studies, notably in terms of type of cancer and ABX exposure time window.



3.3.2 Impact of antibiotic use on survival outcomes according to the cancer type

As shown in Table 1, ABX were negatively associated with OS across all cancer types, and this association was particularly pronounced in NSCLC and RCC patients, with HRs for OS being of 1.60 [95% CI 1.40-1.83] and 1.65 [95% CI 1.24-2.19], respectively. ABX use was also significantly associated with a decreased PFS in patients suffering from NSCLC, RCC, and from less represented cancers. Even though ABX use was not statistically associated with a decreased PFS in patients suffering from UC, melanoma and HCC, the HRs superior to 1 and the 95% CI close to statistical significance (notably for UC and melanoma) suggest a clinically meaningful trend towards a similar negative association in these cancer types.


Table 1 | Table of hazard ratios for overall survival and progression-free survival of patients diagnosed with cancer and exposed to antibiotics versus not exposed to antibiotics around immune checkpoint inhibitor treatment initiation, according to the cancer type.



As shown in the forest plots available in Supplementary Figures 2, 3, the I2 value remained high (> 50%) for most cancer types, which was expected given the large number of factors that can induce heterogeneity, such as the diversity of histological subtypes among each cancer type and differential cancer management, for example.



3.3.3 Impact of antibiotic use on survival outcomes according to the exposure time window

As shown in Table 2, the negative association between ABX use and survival outcomes was most pronounced when ABX were received in the one or two months preceding or following the initiation of immunotherapy, with the HR for OS reaching the high value of 2.24 [95% CI 1.66-3.03] in the [-30 days; 0] TW. It appears that the TW of ABX exposure relative to the date of initiation of the ICI treatment has an impact on the observed clinical outcomes, with ABX taken long before or after the initiation of the ICI initiation having a less pronounced impact on patient outcomes, compared with ABX taken just before or just after ICI initiation.


Table 2 | Table of hazard ratios for overall survival and progression-free survival of patients diagnosed with cancer and exposed to antibiotics versus not exposed to antibiotics around immune checkpoint inhibitor treatment initiation, according to the antibiotic exposure time window.



As shown in the forest plots available in Supplementary Figures 4, 5, heterogeneity remained high (I2 > 50%) for most TWs.




3.4 Impact of antibiotic use on treatment-related outcomes across all cancer types

44 and 38 cohorts reported data on ORR and PD based on ABX exposure, respectively, representing 7,854 patients and 1,997 ABX users (25%) for ORR and 6,142 patients and 1,654 ABX users (27%) for PD.

The random-effect model yielded ORs for ORR and PD of 0.59 [95% CI 0.47-0.76] and 1.86 [95% CI 1.41-2.46], respectively (Figures 7, 8), suggesting that ABX use was significantly and negatively associated with impaired response to treatment among cancer patients receiving ABX, with both a reduced odd of response and an increased odd of cancer progression among ABX users.




Figure 7 | Forest plot of odds ratios of the overall response rate of patients diagnosed with cancer and exposed to antibiotics versus not exposed to antibiotics around immune checkpoint inhibitor treatment initiation. ABX, Antibiotic; CI, Confidence Interval; OR, Odds Ratio; Response, Complete or Partial Response. *The OR value from multivariate analyses was available for this study and therefore used as such in the meta-analysis.






Figure 8 | Forest plot of odds ratios of the progressive disease rate of patients diagnosed with cancer and exposed to antibiotics versus not exposed to antibiotics around immune checkpoint inhibitor treatment initiation. ABX, Antibiotic; CI, Confidence Interval; CSCC, Cutaneous Squamous Cell Carcinoma; OR, Odds Ratio; Progression, Cancer progression. *The OR value from multivariate analyses was available for this study and therefore used as such in the meta-analysis.



As expected, the heterogeneity factor was substantial (I2 of 57% for ORR, I2 of 74% for PD) in these analyses.



3.5 Publication bias and sensitivity analysis

Funnel plots for OS, PFS, ORR and PD are available in Supplementary Figures 6–9. Begg and/or Egger tests indicate the existence of publication bias, as suggested by asymmetrical funnel plots, in global analyses associating ABX use with OS, PFS, ORR and PD (OS: p-value for Begg test: 0.7280, p-value for Egger test < 0.0001; PFS: p-value for Begg test: 0.0042, p-value for Egger test < 0.0001; ORR: p-value for Begg test: 0.0012, p-value for Egger test: 0.0014; PD: p-value for Begg test: 0.6212, p-value for Egger test: 0.0509). However, the trim-and-fill approach implemented indicated that the publication bias was unable to significantly affect the results for OS, PFS and PD, and that antibiotic use remained significantly associated with decreased OS (HR 1.44 [95% CI 1.30-1.59]) and PFS (HR 1.38 [95% CI 1.24-1.54]), and increased PD (OR 1.58 [95% CI 1.18-2.12]). On the contrary, the suggested deleterious impact of ABX treatment on the ORR did not remain statistically significant (OR 0.78 [95% CI 0.59-1.03]), although a clear trend for an impaired response still persisted. Besides, the sensitivity analysis performed using the leave-one-out-approach demonstrated that no single study was able to significantly influence the pooled HRs for OS and PFS, as well as the pooled ORs for ORR and PD (data not shown), supporting the reliability of the results.



3.6 Impact of antibiotic use on NSCLC patient clinical outcomes


3.6.1 Characteristics of NSCLC patients, immunotherapy and antibiotic treatment

A total of 50 independent cohorts including 16,529 patients (46% in the USA, 22% in Europe) suffering from NSCLC were included in the meta-analysis, of whom 5,022 (30%) were given ABX in the three months prior to ICI initiation and/or during immunotherapy.

The reported data on NSCLC patient characteristics, anticancer treatment and antibiotic therapy were largely heterogeneous between studies.

Pooling the 38 NSCLC cohorts reporting histologic data (10,561 patients), non-squamous cell carcinoma and squamous cell carcinoma accounted for 62% and 17% of histological subtypes, respectively. According to the 32 cohorts reporting performance status scores (6,323 patients), 87% of NSCLC patients had an ECOG PS equal to 0 or 1, with one-third of these patients having an ECOG PS of 0 and two-thirds having an ECOG PS of 1. Regarding expression of PD-L1 protein at tumor cell surface, as expressed by the Tumor Proportion Score (TPS), a TPS ≥ 50% was the most represented PD-L1 expression level among NSCLC patients, accounting for 45% of the 4,413 patients included in the 20 cohorts reporting such data, corresponding to an over-representation of this level of PD-L1 expression compared to the 30% rate usually observed (138, 139).

Among the 38 cohorts documenting treatments in more detail (representing 6,652 patients), the vast majority of patients (90%) received an anti-PD-(L)1-based treatment as monotherapy. Nivolumab, pembrolizumab (both anti-PD-1 agents) and atezolizumab (anti-PD-L1) respectively accounted for 40%, 31% and 28% of the molecules received (reported in 31 cohorts for 10,728 patients). 70% of patients were treated with anti-PD-(L)1-based treatments as first-line (22 cohorts, 5,651 patients).

β-lactams, fluoroquinolones and macrolides were the most represented classes used by NSCLC patients, accounting respectively for 52%, 27% and 14% of ABX prescriptions within the 23 cohorts documenting ABX use (1,531 ABX prescriptions). This was not unexpected considering the relatively broad spectrum of antimicrobial activity of these ABX classes, which are often used for oncology patients. In the 19 cohorts reporting the indication for ABX use (917 prescriptions), more than half (51%) of the prescriptions were indicated to treat respiratory tract infections including suspected pneumonia. Finally, the oral route was the most represented route of administration and accounted for 66% of the 537 prescriptions documented in 12 cohorts, which was expected as most of these patients are treated in the community setting.



3.6.2 Impact of antibiotic use on clinical outcomes of NSCLC patients

As previously mentioned, ABX use was significantly associated with impaired OS and PFS of NSCLC patients, as reported by the HRs respectively measured at 1.60 [95% CI 1.40-1.83] and 1.47 [95% CI 1.27-1.70] (Table 1 and Supplementary Figures 2, 3).

Similarly to the results obtained in the global analyses grouping all cancer types, excluding studies reporting only univariate analyses did not substantially change the results, with HRs being of 1.62 [95% CI 1.34-2.0] for OS and 1.51 [95% CI 1.18-1.93] for PFS, respectively (Supplementary Figures 10, 11). Of note, the most examined potential confounding factors for OS were, in this order, ECOG PS, age, sex, treatment line, smoking status/history, histology, other co-medications, cancer stage at diagnosis and presence of central nervous system metastases. The factors were broadly the same for PFS. Among the potential confounding factors, ECOG PS, histology and use of other co-medications were the factors with the greatest impact on OS and PFS (data not shown).

As shown in Table 3 and Figures 9, 10, OS and PFS were particularly reduced in patients treated with ABX within the weeks preceding or following ICI initiation, whereas the suggested damaging impact was not statistically significant when ABX were taken in timeframes more distant to immunotherapy start.


Table 3 | Table of hazard ratios for overall survival and progression-free survival of patients diagnosed with non-small cell lung cancer and exposed to antibiotics versus not exposed to antibiotics around immune checkpoint inhibitor treatment initiation, according to the antibiotic exposure time window.






Figure 9 | Forest plot of hazard ratios for overall survival of patients diagnosed with non-small cell lung cancer and exposed to antibiotics versus not exposed to antibiotics around immune checkpoint inhibitor treatment initiation, according to the antibiotic exposure time window. ABX, Antibiotic; CI, Confidence Interval; HR, Hazard Ratio; M, Multivariate; N/A, Not Available; TW, Time Window; U, Univariate; U*, Univariate, HR estimated from Kaplan-Meier curve.






Figure 10 | Forest plot of hazard ratios for progression-free survival of patients diagnosed with non-small cell lung cancer and exposed to antibiotics versus not exposed to antibiotics around immune checkpoint inhibitor treatment initiation, according to the antibiotic exposure time window. ABX, Antibiotic; CI, Confidence Interval; HR, Hazard Ratio; M, Multivariate; N/A, Not Available; TW, Time Window; U, Univariate; U*, Univariate, HR estimated from Kaplan-Meier curve.



17 and 14 cohorts reported data on ORR and PD based on ABX exposure, respectively, representing 3,296 NSCLC patients and 696 ABX users (21%) for ORR and 1,803 NSCLC patients and 499 ABX users (28%) for PD. The random-effect models yielded ORs for ORR and PD of 0.65 [95% CI 0.50-0.86] and 2.09 [95% CI 1.61-2.70], respectively, confirming significantly impaired response to treatment among NSCLC patients having received ABX around ICI initiation (Figures 11, 12).




Figure 11 | Forest plot of odds ratios of the overall response rate of patients diagnosed with non-small cell lung cancer and exposed to antibiotics versus not exposed to antibiotics around immune checkpoint inhibitor treatment initiation. ABX, Antibiotic; CI, Confidence Interval; OR, Odds Ratio; Response, Complete or Partial Response. *The OR value from multivariate analyses was available for this study and therefore used as such in the meta-analysis.






Figure 12 | Forest plot of odds ratios of the progressive disease rate of patients diagnosed with non-small cell lung cancer and exposed to antibiotics versus not exposed to antibiotics around immune checkpoint inhibitor treatment initiation. ABX, Antibiotic; CI, Confidence Interval; OR, Odds Ratio; Progression, Cancer progression.





3.6.3 Publication bias and sensitivity analysis

Funnel plots for OS, PFS, ORR and PD are available in Supplementary Figures 12–15 and suggested, again, some level of asymmetry. Begg and Egger tests both suggested the existence of publication bias in global analyses associating ABX use with survival outcomes (OS: p-value for Begg test: 0.0062, p-value for Egger test: 0.0047; PFS: p-value for Begg test: 0.0020, p-value for Egger test: 0.0037), but not in global analyses associating ABX use and treatment-related outcomes (ORR: p-value for Begg test: 0.2165, p-value for Egger test: 0.3866; PD: p-value for Begg test: 0.7016, p-value for Egger test: 0.3909). The trim-and-fill approach implemented indicated that such publication bias was unable to significantly affect the results for OS and PFS, with HRs being respectively re-calculated at 1.43 [95% CI 1.23-1.67] and 1.40 [95% CI 1.20-1.64]. In addition, the sensitivity analysis performed using the leave-one-out-approach demonstrated for all four outcomes that no single study was able to significantly influence the results, validating their reliability (data not shown).





4 Discussion

With the increasing use of immune checkpoint inhibitors in cancer care, considerable efforts have been made to identify factors that may alter their effectiveness, and ABX use has recently emerged as one of them, as demonstrated by numerous retrospective and prospective studies (7, 12–14, 35–137) and several meta-analyses (15–30) published on the topic. Our meta-analysis stands out from the others in that it included more than three-fold the number of patients compared with the most comprehensive published meta-analysis so far (23), allowing to perform reliable subgroup analyses evaluating the potential differential association of ABX use with outcomes depending on the cancer type and on the ABX exposure time window. The numbers of cohorts and patients included in our meta-analysis were also sufficient to explore the impact of ABX use on short-term treatment-related outcomes, namely ORR and PD, which has been relatively understudied to date. Response-based endpoints, such as ORR and PD, although investigator-assessed, are likely to be less affected by the patient inherent state of health, or subsequent lines of therapy, than overall survival outcome. Furthermore, such outcomes closely reflect the anti-tumor effect of the treatment (shrinkage versus escape versus growth of the tumor). Demonstrating a deleterious impact of antibiotics on response-based endpoints could therefore be an interesting way to dispose of possible confounding factors (such as the occurrence of a severe infection requiring an antibiotic treatment), that may be associated with a poorer prognosis without being directly related to the impact of ABX use on the gut microbiome. For all these reasons, our analyses provide some novel insights that may be useful in clarifying the specific settings in which ABX should be prescribed in cancer patients treated with ICIs.

Using a random-effect model, we firstly demonstrated that ABX use was associated with impaired survival outcomes in the entire cancer patient population receiving ICIs, which was subsequently confirmed by the analyses of publication bias and sensitivity, that confirmed the reliability and the robustness of the results, and which is in accordance with the meta-analyses previously published on the subject (15–30). Exclusion of cohorts not having performed multivariate analyses further showed that this suggested deleterious impact persisted despite adjustment for confounding factors, suggesting that ABX use is an independent predictor factor for OS and PFS. The negative association of ABX and OS held across all cancer types investigated, namely NSCLC, UC, melanoma, RCC and HCC, with the strongest effects observed in NSCLC and RCC patients. However, the association with PFS was not significant in melanoma, UC and HCC patients (although close to statistical significance, and clinically meaningful for melanoma and UC). These differential effects are likely explained in part by the fewer numbers of cohorts included in each category for PFS, but it also could be caused by heterogeneity between cancers and patients as well as different modalities of ABX use. NSCLC patients are, for example, particularly prone to lung infections due to smoking that impairs local epithelial immunity and cilia-induced mucus clearance (140). Nevertheless, the publication of more and more articles showing a negative association between ABX and outcomes in more and more types of cancer, in patients not specifically affected by respiratory infections, seems to suggest a common effect to a large part of cancer types. The deleterious impact of ABX did not seem to vary according to the route of administration, suggesting that it is not related to the severity of the underlying infection. Strikingly, ABX were strongly associated with decreased survival outcomes when taken in the few weeks prior to or following ICI initiation for patients suffering from all types of cancer and especially for NSCLC patients. The association between ABX use, OS and PFS seems to depend from the TW of ABX exposure relative to the date of initiation of the ICI treatment: ABX taken long before or after ICI start have a less pronounced impact on patient outcomes, compared with ABX taken just before or just after ICI initiation. This result supports the hypothesis of an involvement of the gut microbiome, as patients having received ABX near ICI initiation probably have a highly dysbiotic microbiome at the time of starting ICI. Finally, ABX were negatively associated to treatment-related outcomes, with a decreased odd of response and an increased odd of cancer progression in patients suffering from all types of cancer and notably in NSCLC patients. These results remained significant following publication bias and sensitivity analyses, except for the OR for ORR of patients diagnosed with any type of cancer (although a clear trend for an impaired response persisted), confirming that ABX are also negatively associated with the response to ICI treatment. ABX prophylaxis is now recommended in cancer patients receiving chemotherapy who are at high risk of grade 4 neutropenia and sepsis, and for whom the standard of care is now concomitant chemotherapy and ICIs. The results of this meta-analysis plead for caution in using such routine ABX prophylaxis when ICIs are considered. However, our analysis included a minority of studies dedicated to chemo-immunotherapy treatment and the indication for prophylactic ABX should be balanced with the risk of life-threatening neutropenia, taking into account individual characteristics (age, comorbidities, previous grade 4 neutropenia events, etc.) (141).

This systematic review and meta-analysis work certainly cannot discuss causality between ABX use and impaired clinical outcomes of cancer patients treated with ICIs, nor can it elucidate the underlying mechanisms involved. It can only show an association between ABX use and reduced ICI efficacy, and growing evidence in the literature and in the clinic suggest an involvement of the intestinal microbiome and ABX-induced dysbiosis. A high gut microbiome diversity at baseline was for example significantly associated with favorable clinical outcomes in several studies on NSCLC and melanoma patients (49, 56, 142). Our team recently demonstrated that FMT from ABX-treated healthy volunteers into germ-free mice altered the response of tumor-bearing mice to anti-PD-1 treatment, whereas FMT from healthy individuals having received both ABX and an ABX-adsorbent delivered to the colon that acted to protect the intestinal microbiome against dysbiosis was able to preserve ICI efficacy in the same mouse model (143). Besides, two recent clinical trials conducted in patients whose metastatic melanoma was refractory to a previous treatment with anti PD-(L)1 monoclonal antibodies suggested that FMT from other patients whose cancer responded to the same immunotherapy enabled to overcome the resistance of their tumor to PD-(L)1 blockade (144, 145). The mechanisms by which the gut microbiome impacts response to immunotherapy remain largely debated, but two types of non-mutually exclusive conjectures are being discussed: an adjuvant effect and non-antigen specific improvement of the anti-tumor response by an increased “immune tonus” on one hand (146), and an antigenic effect with improvement of anti-tumor immune response by antigenic mimicry and cross reactivity with phage or bacterial encoded antigens, on the other hand (147). Interestingly, the damaging impact of ABX on the clinical outcomes of cancer patients treated with ICIs, that remains to be proved, could also be exerted on the outcomes of patients treated with other types of cancer immunotherapy. In a recent retrospective study including 228 patients suffering from hematological cancers and treated with Chimeric Antigenic Receptor – T cells (CAR-T) therapy, ABX use in the four weeks preceding treatment initiation was indeed associated to worse survival and increased neurotoxicity (148). In another retrospective study presentation at ESMO 2022, ABX use in the three weeks prior to CAR-T therapy initiation was also associated to impaired survival outcomes and increased cancer progression (149). Changes in the composition of the gut microbiome was also associated to clinical outcomes. The intestinal microbiome, through its complex interplay with the immune system, could therefore be crucial for response to cancer immunotherapy in most cancers, making personalized patient management and microbiome research essential.

Several inherent limitations to our meta-analysis are worth mentioning. First, a meta-analysis depends in part on the studies included, and most of them, in this case, were retrospective and therefore heterogeneous and incomplete in terms of reported data. Heterogeneity was very high in most of our analyses, although we attempted to mitigate it by performing subgroup analyses. Besides, the potential differential impact of ABX use could not be evaluated according to patient and treatment baseline characteristics such as PD-L1 expression or line of treatment, due to the lack of cohorts having reported such data, whereas these factors might have been of importance. Similarly, too few studies reported detailed data according to ABX treatment characteristics (duration of use, ABX class and route of administration) on patient outcomes, thus making it impossible to refine results in this regard. Further research in the field shall investigate the differential impact of ABX classes or treatment schemes. Besides, some TWs may have been overlapping without the authors’ knowledge. For example, a patient exposed to ABX in the 30 days prior to ICI initiation could have received ABX in the 30 days following treatment start and only be included in the first category. In addition, the retrospective design made it impossible to characterize the microbiome of patients before and during ICI treatment. Second, statistical analyses demonstrated the existence of publication bias within the literature, which we attempted to mitigate by including unpublished studies such as conference proceedings abstracts and by performing analyses that confirmed that publication bias could not affect most of our results. Third, the studies have included patients whose cancer characteristics and immunotherapy treatment are no longer the most representative of the real-world setting. Indeed, studies mainly included patients treated with ICI as single agent, which no longer corresponds to standard of care, for most oncology indications, as ICIs are now mainly given in combination with chemotherapy or other treatment modalities. The impact of ABX use on patients treated with such combinations deserves to be further investigated, as only a few articles have investigated this matter (41, 52, 82) and do not allow to draw clear conclusions. Besides, nivolumab was the most represented ICI agent used in the papers included in this meta-analysis, whereas it has been largely supplanted by pembrolizumab in clinical practice since 2017. There was also an over-representation of high PD-L1 expressors (PD-L1 expression ≥ 50%) in the cohorts included in the meta-analysis compared to the real-world setting in link with the large number of single ICI agent studies. Fourth, ABX intake could not be the cause of worse outcomes but simply a marker of a degraded state in a patient, even though the performance of multivariate analyses precisely aims at adjusting for patient baseline characteristics. Finally, other medical interventions (e.g. prior radiotherapy), patient care and other co-medications besides ABX, such as proton pomp inhibitors and steroids, may also play a role in modulating ICI efficacy, and were not necessarily captured in the included studies. A meta-analysis evaluating the impact of proton pump inhibitor use on the clinical outcomes of 15,957 cancer patients treated with ICIs effectively concluded that their usage was negatively associated with survival outcomes (150). A negative association between steroid use and survival outcomes was also reported in another meta-analysis including 4,045 cancer patients receiving ICIs, suggesting the value of further studying the role of other co-medications (151).

In summary, this study demonstrated that ABX use around ICI initiation was negatively associated to survival and treatment-related outcomes of cancer patients, particularly when ABX were taken shortly before or after ICI start, suggesting that ABX prescription should be cautiously considered in cancer patients receiving an anti-PD-(L)1-based treatment. Future larger, prospective observational, multicentric studies evaluating changes of the intestinal microbiome and patient outcomes during immunotherapy, and interventional, controlled, randomized trials involving microbiome modifiers such as FMT or microbiome protectors, are crucially needed to explore the hypothesis of an involvement of the microbiome, elucidate the mechanisms at stake and restore the effectiveness of immunotherapies to improve patient care. It is only through such studies, which will put an end to the current publication bias by allowing analyses on more homogeneous populations, that we will be able to definitively conclude whether or not antibiotics have a deleterious impact on the clinical outcomes of cancer patients, and take the appropriate measures to improve the treatment of these patients.
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1Cancer Research Institute. https://www.cancerresearch.org/scientists/immuno-oncology-landscape/pd-1-pd-l1-landscape

2Global Cancer Observatory. https://gco.iarc.fr/
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Introduction and methods

In this study we report that sequential treatment of supercharged NK (sNK) cells with either chemotherapeutic drugs or check-point inhibitors eliminate both poorly differentiated and well differentiated tumors in-vivo in humanized-BLT mice.





Background and results

sNK cells were found to be a unique population of activated NK cells with genetic, proteomic, and functional attributes that are very different from primary untreated or IL-2 treated NK cells. Furthermore, NK-supernatant differentiated or well-differentiated oral or pancreatic tumor cell lines are not susceptible to IL-2 activated primary NK cell-mediated cytotoxicity; however, they are greatly killed by the CDDP and paclitaxel in in-vitro assays. Injection of one dose of sNK cells at 1 million cells per mouse to aggressive CSC-like/poorly differentiated oral tumor bearing mice, followed by an injection of CDDP, inhibited tumor weight and growth, and increased IFN-γ secretion as well as NK cell-mediated cytotoxicity substantially in bone marrow, spleen and peripheral blood derived immune cells. Similarly, the use of check point inhibitor anti-PD-1 antibody increased IFN-γ secretion and NK cell-mediated cytotoxicity, and decreased the tumor burden in-vivo, and tumor growth of resected minimal residual tumors from hu-BLT mice when used sequentially with sNK cells. The addition of anti-PDL1 antibody to poorly differentiated MP2, NK-differentiated MP2 or well-differentiated PL-12 pancreatic tumors had different effects on tumor cells depending on the differentiation status of the tumor cells, since differentiated tumors expressed PD-L1 and were susceptible to NK cell mediated ADCC, whereas poorly differentiated OSCSCs or MP2 did not express PD-L1 and were killed directly by the NK cells.





Conclusions

Therefore, the ability to target combinatorially clones of tumors with NK cells and chemotherapeutic drugs or NK cells with checkpoint inhibitors at different stages of tumor differentiation may be crucial for successful eradication and cure of cancer. Furthermore, the success of check point inhibitor PD-L1 may relate to the levels of expression on tumor cells.





Keywords: NK cells, supercharged NK cells, cytotoxicity, IFN-γ, chemotherapeutic, Hu-BLT, check-point inhibitor





Introduction

Cancer is the second leading cause of mortality globally (1, 2). Because of limited efficacy, and undesirable toxicities of current cancer therapies, there is an urgent need to improve the clinical outcomes in cancer patients (3–5). Despite intense research and improvement in therapeutic regimens, diagnosis of many cancers at the later stages of the disease remains associated with poor prognosis (2). With the rapid advances in the immunotherapy approaches in cancer, there is now greater focus on development of cell-based immunotherapies. More recently, clinical trials on cancer immunotherapies have demonstrated that immunotherapy is an effective treatment modality for many types of malignancies including metastatic melanoma, lung cancer, and bladder cancer (6–10). Effectors of the immune system are thought to shape the survival and maturation of tumor cells and also in the elimination of cancer. Hence, while surgery in combination with chemotherapy and radiotherapy is considered a fundamental therapeutic strategy and the standard of care in many solid tumors, immunotherapy alone or in combination with other therapies is now playing an important role in the treatment of various malignancies. The ultimate goal of immunotherapies is to assist the immune system to eradicate the cancer cells, and it appears that immunotherapy is on the way to transform terminal cancer to perhaps a more manageable chronic disease, and ultimately cure the patients from the disease if underlying mechanisms of immune activation and function are clearly delineated and the role of each immune subset clarified in the shaping of the tumors (11).

Heterogeneity in tumor cells necessitates treatment strategies which target all the different clones of tumor cells, and restores the function of immune cells in patients to prevent recurrences and the generation of new cancers. Thus, combinatorial treatments with immunotherapy may be required to target tumor cells at different stages of differentiation. We have shown in many previous publications that natural killer cells (NK) cells target cancer stem cells (CSCs)/poorly differentiated tumors whereas well differentiated tumors are not susceptible to primary NK cell effects, but they are susceptible to CD8+ T cell function, chemotherapy, radiation and antibody therapy (12). Not too many treatment strategies other than NK cells are capable of targeting CSCs, or poorly differentiated tumors, primarily due to their lack of or much lower expression of MHC-class I (13). We have shown recently that cannabinoids are potentially other factors that can target the CSCs/poorly differentiated oral and pancreatic tumors (14). However, radiation (15–18) and chemotherapy (12, 16–19) were unsuccessful in targeting CSCs. We have also shown that NK cell-mediated ADCC was significantly higher against PD-L1 and MICA/B expressing differentiated tumors as compared to their CSCs (20). It is conceivable that CAR-T and CAR-NK cells generated to high expressing surface receptors on CSCs/poorly differentiated tumors can achieve similar outcomes as NK cells; however, down-modulation or loss of those receptors on these cells may make these CARs ineffective and promote tumor growth and expansion, whereas the more a cell mutates and loses surface receptors, the better it is targeted by the NK cells (21). Indeed, NK cell-based clinical trials have demonstrated not only the safety but also the efficacy in decrease in tumor relapse rate (22–25).

NK cells mediate direct cytotoxicity as well as antibody-dependent cellular cytotoxicity (ADCC) (26). Two effector functions of NK cells that are crucial for the elimination of the tumors are NK cell-mediated cytotoxicity and secretion of cytokines which lead to direct killing of CSCs, and NK cell-mediated differentiation of tumors respectfully (27). IFN-γ and TNF-α secreted by NK cells play a crucial role in differentiating CSCs/undifferentiated tumors (28). We have shown previously that differentiated tumors are favorable targets of chemotherapy, thus, NK cells could assist chemotherapy in eradication of tumors (12, 29). Also, combining NK cell immunotherapy with checkpoint inhibitors such as anti-PD1 have shown promising results (26, 30).

In this study, we demonstrate the differences between the primary and supercharged NK cells (sNK) based on their genetics, proteomics and functional attributes, demonstrating the uniqueness of sNK cells not only for their increased cycling and significant rate of expansion, but also their superior function and their unique transcriptional profile on single cell RNAseq analysis level. The in-vivo studies revealed how the combination of sNK cells with chemotherapy or sNK cells with anti-PD1 antibody reduce tumor burden and either restore or increase IFN-γ secretion, and cytotoxic function of NK cells in various tissue compartments of oral and pancreatic tumor-bearing humanized-BLT (hu-BLT) mice. We also provide some underlying mechanisms governing such in vivo observations in a series of in vitro studies.





Results




Unique attributes of supercharged NK cells in comparison to primary NK cells

In our previous studies as well in this study, we demonstrate the superior ability of osteoclasts (OCs) to condition NK cells for greater expansion and heightened function (Figure S1) (31). Here, we compared cell expansion, IFN-γ secretion, and NK cell-mediated cytotoxicity of untreated, IL-2 treated NK, IL-2+anti-CD16mAbs treated NK, and IL-2+anti-CD16mAbs+sAJ2 treated NK cells with IL-2+anti-CD16mAbs+sAJ2+OCs treated NK cells, and found higher cell expansion and increased function in the presence of OCs (Figure 1). Probiotic bacteria, sAJ2 is a combination of 7-8 different strains, and is prepared as described previously (32). Due to their unusually high expansion rate and potent function, we coined IL-2+anti-CD16mAbs+sAJ2+OCs treated NK cells as supercharged NK (sNK) cells to differentiate them from all the other NK cell subsets that we had tested in our laboratory throughout the last 30 years (28). To further understand the differences between IL-2 treated primary NK (NK+IL-2) cells and sNK cells, we performed single-cell RNA sequencing. In the analysis of NK+IL-2 and sNK cells, we also integrated untreated NK cells derived from donor PBMC to help characterize the NK cell subsets. By studying untreated NK, NK+IL-2, and sNK cells, we were able to identify 4 transcriptionally unique NK cell clusters (Figure 2A). All 4 clusters have a consistent expression of NK cell genetic markers (IL2RB, CD7, NKG7). Among the 4 clusters, Cluster 1 has the highest expression of IL7R and NCAM1, resembling the transcriptional signature of previously characterized CD56bright NK cells (33). Cluster 3 has a comparably higher expression of genes related to cytotoxicity (GZMB, PRF1) and FCGR3A, which are identified as the genetic signature of cytotoxic CD56dim NK cells. The gene expression pattern of cluster 2 follows a subset of transitional NK cells between CD56bright and CD56dim NK cells. When the single-cell clusters are split by the three conditions, cluster 4 is shown to be exclusive in untreated NK cells (Figure 2B). We have also analyzed the expression of the main effector molecules in NK cell cytotoxic granules: perforin-1, granzyme B and cathepsin C (cathepsin C is responsible for the activation of granzyme B) (32). A significantly higher expression of granzyme B and cathepsin C in the presence of slightly decreased perforin was seen in sNK cells in comparison to primary IL-2 treated NK cells (Figures 2C, S2A). Through the cell-cycle score analysis on the single-cell RNA sequencing result, a considerably higher amount of sNK cells is assigned to the G2M phase, indicating a more active proliferation program in the sNK cells compared to untreated and NK+IL-2 cells (Figure 2D). Also, by performing SCENIC analysis on the sequencing data, a distinct regulon network is utilized in the sNK cells compared to either untreated or NK+IL-2 cells. Among the predicted regulon activities, sNK cells have upregulated regulon activities associated with NK cell survival (STAT2, IRF9) and effector functions (IRF1, JUN, STAT1, HIF1A) (Figure 2E) (27, 34–37). When assessed NK cell-mediated cytotoxicity of IL-2 treated primary NK and sNK cells against oral squamous carcinoma stem cells (OSCSCs), Mia PaCa-2 (MP2), and K562 cell lines, significantly higher cytotoxicity was mediated by sNK cells in comparison to NK+IL-2 cells (Figures 2F–H). We also observed higher secretion of IFN-γ and TNF-α by sNK cells in comparison to primary NK cells treated with IL-2 (Figures 2I–K, S2B). These results exhibited higher anti-cancer activity of sNK cells in comparison to primary activated NK cells.




Figure 1 | Osteoclasts induced higher cell expansion, increased cytokine secretion and cytotoxicity in NK cells in comparison to IL-2, IL-2+anti-CD16mAbs and IL-2+anti-CD16mAb+sAJ2 treatments Osteoclasts (OCs) were generated as described in the Materials and Methods section. NK cells (0.5x106 cells/2ml) were treated with a combination of IL-2 (1000 U/ml) and anti-CD16mAb (3μg/ml) for 18 hours before they were co-cultured with OCs and treated with sAJ2 (2:1:4: NK : OCs:sAJ2). NK cells were counted on days 6, 9, 12, 15, 18, and onwards until cells are expanding (Average: 24-36 days) (A, B). NK cells (0.5x106 cells/2ml) were left untreated, or treated with IL-2 (1000 U/ml), or a combination of IL-2 (1000 U/ml) and anti-CD16mAb (3μg/ml), or a combination of IL-2 (1000 U/ml), anti-CD16mAb (3μg/ml), and sAJ2 (2:4;NK:sAJ2), or a combination of IL-2 (1000 U/ml), anti-CD16mAb (3μg/ml), sAJ2, and OCs (2:1:4: NK : OCs:sAJ2). NK cells were counted on the days shown in the Figure (C), and the fold change based on the initial cell count of 0.5x106 cells/ 2 mL were determined every 3 days as shown in the figure (D). NK cell-mediated cytotoxicity against oral squamous cell carcinoma stem cell line (OSCSCs) was determined on the days shown in the figure using a standard 4-hour 51Cr release assay. The lytic units 30/106 cells were determined using the inverse number of NK cells required to lyse 30% of OSCSCs x 100 (E). Lytic units per 1% NK cells were determined based on the percentages of CD16+/CD56+ NK cells in the cultures obtained by flow cytometric analysis (F). The supernatants were harvested from the cultures on the days shown in the Figure E to determine IFN-γ secretion using single ELISA, and the levels were adjusted based on the number of cells (G). Averages and std. dev of three independent experiments are shown in Figure 1. ****(p value<0.0001), ***(p value 0.0001-0.001), **(p value 0.001-0.01), *(p value 0.01-0.05).






Figure 2 | OC-expanded supercharged NK cells exhibit higher levels of cytotoxic granules, increased cytotoxicity and augmented secretion of cytokines when compared to primary activated NK cells. OCs were generated as described in the Materials and Methods section. NK cells (0.5x106 cells/ 2ml) from healthy individuals were treated with a combination of IL-2 (1000 U/ml) and anti-CD16 mAbs (3 µg/ml) overnight before they were cultured with OCs and sAJ2 at a ratio of 2:1:4 (NK:OCs:sAJ2). Untreated NK cells, IL-2 treated NK cells, and super-charged NK (sNK) cells are used to construct single-cell cDNA libraries for sequencing. UMAP of all of the samples combined (A) or separated (B) are shown. Colors represent different UMAP clusters indicating genetically distinct NK cell subsets. Western blot of protein expression of granzyme B, cathepsin C, and perforin-1 in sNK vs. IL-2 treated primary NK cells derived from the same donor is shown in figure (C). Loading control can be found in Figure S1A. Each cell is assigned a cell-cycle score based on gene markers of different phases. The percentage of cells in each phase is represented in the bar-plot for untreated NK cells, IL-2 treated NK cells, and sNK cells (D). SCENIC is used to analyze the regulon activity in each condition. Each row of the heatmap represents a regulon, with some highlighted in the box (E). On day 14 of cultures, another set of NK cells were purified from healthy donors and were treated with IL-2 (1000 U/ml) overnight. Cytotoxicity of day 15 sNK cells and overnight IL-2 treated primary NK cells was determined using standard 4-hour 51Cr release assay against OSCSCs (F), MP2 (G), and K562 (H). The Lytic units (LU) 30/106 cells were determined using the inverse number of NK cells required to lyse 30% of OSCSCs (n=10) (F) or MP2 (n=5) x 100 (G) or K562 (n=3) x 100 (H). Primary NK cells were treated with IL-2 as described in Figure 1F, and the supernatants were harvested from day 15 sNK cells or IL-2 treated primary NK cells after an overnight incubation and were used to determine IFN-γ secretion using single ELISA. The amounts of IFN-γ secretion were adjusted based on 1 x 106 cells (n=10) (I). Primary NK cells were treated with IL-2 as described in Figure 1F, and the supernatants were harvested from day 15 expanded sNK cells or IL-2 treated primary NK cells after an overnight incubation, and they were used to determine IFN-γ (J) and TNF-α (K) using multiplex cytokine arrays (n=4). ****(p value<0.0001), ***(p value 0.0001-0.001), **(p value 0.001-0.01), *(p value 0.01-0.05).







Differentiated oral and pancreatic tumors are more susceptible to chemotherapeutic drugs in comparison to their stem-like counterparts

Our previous findings have demonstrated that differentiated tumors were more sensitive to chemotherapeutic drugs in comparison to CSCs/poorly differentiated tumors (12). Here, we determined the extent of cell death of oral cancer stem-like cells (OSCSCs), NK-diff-OSCSCs, CSCs/poorly differentiated pancreatic cancer MP2, and differentiated pancreatic cancer (PL12) and NK-diff-MP2 with or without the treatments with chemotherapeutic drugs cisplatin (CDDP) and paclitaxel (Figure 3). We observed higher cell death induced by CDDP (Figures 3A, C, S3) and paclitaxel (Figures 3B, D) against differentiated tumors in comparison to their CSCs/poorly differentiated counterparts. Thus, differentiation of tumors by the NK cells is an important step not only in curtailing the tumor growth, but more importantly in the response to chemotherapy drugs.




Figure 3 | Increased susceptibility of differentiated oral and pancreatic tumor cell lines to chemotherapeutic drugs in comparison to their stem-like counterparts. OSCSCs were differentiated using supernatants from IL-2 (1000 U/ml) and anti-CD16 mAbs (3µg/mL) treated primary NK cells as described in Materials and Methods section. OSCSCs, OSCCs and NK-diff-OSCSCs were treated with cisplatin (60 µg/mL) for 18-20 hours, after which, the cells were stained with propidium iodide (PI) to determine percent cell death using flow cytometric analysis (n=3) (A). OSCSCs and OSCCs were treated with paclitaxel (40 µg/mL) for 18-20 hours, after which, the cells were stained with PI to determine percent cell death using flow cytometric analysis (n=3) (B). MP2 cells were treated with supernatants from IL-2 (1000 U/ml) and anti-CD16 mAbs (3µg/mL) treated primary NK cells in order to induce differentiation as described in the Materials and Methods section. MP2, PL12, and NK-diff-MP2 cells were treated with cisplatin (60 µg/mL) for 18-20 hours, after which, the cells were stained with PI to determine percentage of cell death using flow cytometric analysis (n=3) (C). MP2 and PL12 tumor cells were treated with paclitaxel (40 µg/mL) for 18-20 hours, after which, the cells were stained with PI to determine percent cell death using flow cytometric analysis (n=3) (D). ***(p value 0.0001-0.001), **(p value 0.001-0.01), *(p value 0.01-0.05).







sNK cell immunotherapy alone or in combination with CDDP greatly inhibited tumor growth in hu-BLT mice

We used humanized-BLT (hu-BLT) mice model to demonstrate the efficacy of combinational treatment with sNK cells and chemotherapy against human oral CSCs/poorly differentiated tumors. Hu-BLT mice were generated by surgically implanting pieces of human fetal liver and thymus tissues under the renal capsule of NSG mice, followed by tail vein IV injection of same-donor CD34+ hematopoietic cells to support full reconstitution of the human bone marrow (38–40). In this study, hu-BLT mice after human immune cell reconstitution were surgically with human OSCSCs in oral cavity followed by IV injections of sNK cells and CDDP sequentially as depicted in Figure (Figure 4A). Upon sacrifice, the tumors were harvested and weighed. sNK cells alone or sNK cells combined with CDDP treated mice had smaller tumors in comparison to untreated mice with tumor (Figure 4B). Next, we dissociated tumors and recovered single cells to determine tumor cell counts. Tumors from tumor implanted mice treated with sNK cells alone or sNK cells combined with CDDP treated mice had significantly lower numbers of tumor cells as compared to tumor alone implanted mice (Figure 4C). When the same numbers of dissociated tumor cells from hu-BLT mice were cultured, significantly lower tumor cell expansion was seen in tumors from sNK cells alone or sNK cells combined with CDDP treated mice as compared to untreated tumors from tumor-bearing mice until day 14-19, after which the tumor growth rate gradually increased and at day 30 the tumor cultures were terminated. Even though the levels of tumor growth approached the levels seen with tumor alone implanted mice, we could still see a higher decrease in tumor growth with sNK+CDDP group as compared to sNK group, and both groups had on average less growth when compared to those from tumor alone implanted mice (Figure 4D). When the dissociated tumors of hu-BLT mice were used as targets for primary IL-2 activated NK cells in Cr-release assay, tumors from sNK cells alone or sNK cells combined with CDDP treated mice were killed much less when compared to untreated tumor-bearing mice (Figure 4E). In addition, there was statistically significant differences in the resistance of tumor cells to NK cell-mediated cytotoxicity dissociated from sNK+CDDP group as compared to sNK group, and both these groups had highly significant decreases in cytotoxicity when compared to those obtained from tumor alone implanted hu-BLT mice (Figure 4E). Our previous studies have demonstrated that CSCs/poorly-differentiated tumors grow at higher rate and are excellent targets of NK cell-mediated cytotoxicity, whereas differentiated tumors grow slow and are resistant to NK cell-mediated cytotoxicity (13, 41–43). Results shown in Figures 4D, E indicates that tumors from sNK cells alone or sNK cells combined with CDDP treated mice exhibited characteristics of differentiated tumors. In addition, when all the floating immune cells were removed by changing the media from tumor cultures throughout the days of 7-27 the differentiated nature of tumor cells grown from sNK cells or sNK in combination with CDDP gradually reverted to their CSC/poorly differentiated tumors, and their growth rate gradually increased and approached to those grown from tumor alone implanted BLT mice (Figures 4D). We have previously shown that reversion of NK differentiated tumors occurs after two weeks in culture without immune cells, and it correlates with the decreased MHC class I expression on tumor cells (44).




Figure 4 | Cisplatin mediated decrease in tumor growth when used sequentially with sNK cell treatment in tumor implanted hu-BLT mice, and increased NK cell-mediated cytotoxicity by immune effectors derived from spleen, bone marrow and peripheral blood. Hu-BLT mice were orthotopically implanted with 1 x 106 human OSCSCs into the floor of the mouth. One week after the tumor implantation, mice received supercharged NK (sNK) cells via tail-vein injection, and one week after sNK cell injection, mice received CDDP (50 µg/mice) via tail vein injection. The disease progression was monitored for another week (A). Hu-BLT mice were implanted with OSCSC tumors and were injected with sNK cells and CDDP sequentially as depicted in Figure 4A. At the end of experiment, hu-BLT mice were sacrificed; the tumors were harvested and weighed (n=3) (B). Hu-BLT mice were implanted with OSCSC tumors and, were injected with sNK cells and CDDP sequentially as depicted in Figure 4A. At the end of the experiment, hu-BLT mice were sacrificed; the tumors were harvested, and the single-cells were obtained as described in the Materials and Methods section. Tumor cells were counted microscopically (n=3) (C). Tumor cells were counted microscopically (n=3) (C). Hu-BLT derived tumors were cultured at 1.5 x 105/ ml at the initiation of the cultures. On day 3, unattached cells were removed and fresh media was added. Tumors were detached and counted on days 7, 10, 14, 19, 24, 27, and 30, each time 1 x 105/ ml cells were cultured (n=3) (D). NK cells (1 x 106/ml) from healthy human donors were treated with IL-2 (1000 U/mL) for 18 hours before they were added to 51Cr labeled hu-BLT derived tumors at various effector to target ratios. NK-mediated cytotoxicity was determined using 4-hour 51Cr release assay. The lytic units (LUs) 30/106cells were determined using inverse number of NK cells required to lyse 30% of the tumor-cells x 100 (n=2 per each experimental condition) (E). Hu-BLT mice were implanted with OSCSC tumors and were injected with sNK cells and CDDP sequentially as shown in Figure 4A. At the end of the experiment, hu-BLT mice were sacrificed. Spleens, peripheral blood, and bone marrow were harvested and single cell suspensions were obtained and cultured (1 x 106 /ml) with IL-2 (1000 U/ml) for 7 days. On day 7, the supernatants were harvested and the secretions of IFN-γ were determined using single ELISA (n=3) (F). Spleens, peripheral blood, and bone marrow cells were cultured (1 x 106 /ml) with IL-2 (1000 U/ml) for 7 days. On day 7, cells were used as effectors against OSCSCs using standard 4-hour 51Cr release assay. The Lytic units (LU) 30/106 cells were determined using the inverse number of cells required to lyse 30% of OSCSCs x 100 (n=3) (G). ****(p value<0.0001), ***(p value 0.0001-0.001), **(p value 0.001-0.01), *(p value 0.01-0.05).







Sequential treatment with sNK cell immunotherapy and CDDP exhibited increased IFN-γ secretion and NK cell-mediated cytotoxicity by bone marrow, PBMCs and splenocytes of hu-BLT mice

We then assessed IFN-γ secretion and NK cell-mediated cytotoxicity of splenocytes, peripheral blood and bone marrow derived cells of tumor-bearing hu-BLT mice with or without treatments. We observed suppression of both secretion of IFN-γ (Figures 4F, S4, S5A) and NK cell-mediated cytotoxicity (Figures 4G, S5B) in tumor-bearing untreated mice in comparison to those obtained from healthy mice without tumor implantation. Increase or restoration of IFN-γ secretion and NK cell-mediated cytotoxicity by bone marrow, splenocytes and PBMCs were seen in sNK cell injected tumor-bearing mice, and both these functions were further increased with the combination of sNK cells and CDDP treatment of tumor implanted mice when compared to those with tumor alone implanted mice (Figures 4F, G, S4, S5). CDDP alone injected mice either did not increase or increased slightly the secretion of IFN-γ in cells dissociated from spleen, peripheral blood, and BM (Figure S4).





Differentiated tumors expressed higher levels of PD-L1 and were more susceptible to NK cell-mediated ADCC in the presence of anti-PD-L1 as compared to their stem-like counterparts

Our previous studies have shown that CSCs/poorly-differentiated tumors are excellent targets of direct NK cell-mediated cytotoxicity, whereas their differentiated counterparts are significantly more resistant (13, 41–43). We have also shown previously that differentiated tumors have higher surface expression of MICA/MICB and are susceptible to ADCC mediated by the primary NK cells in the presence of anti-MICA/MICB antibody, even though NK cells are not able to kill these tumors directly (20). Here, we evaluated NK cell-mediated cytotoxicity against untreated stem-like (OSCSCs and MP2) and untreated or anti-PD-L1 antibody treated differentiated tumors (NK-Diff-OSCSCs, OSCCs, NK-Diff-MP2, and PL12) (Figure 5A–F). We demonstrate that NK cells mediated direct cytotoxicity of OSCSCs (Figure 5A) and MP2 (Figure 5D) tumors, whereas susceptibility to NK cell-mediated cytotoxicity was substantially and significantly lower against NK-diff-OSCSCs (Figures 5B, S6A), OSCCs (Figure 5C, S6A), NK-diff-MP2 (Figures 5E, S6B), and PL12 (Figure 5F, S6B) tumors when compared to OSCSCs and MP2 cells. NK cell-mediated cytotoxicity was increased against anti-PDL1-treated NK-diff-OSCSCs (Figure 5B), OSCCs (Figure 5C), NK-diff-MP2 (Figure 5E), and PL12 (Figure 5F) tumors. In accordance, higher surface expression of PD-L1 was seen on NK-diff-OSCSCs and OSCCs (Figure 5G) and NK-diff-MP2 and PL-12 (Figure 5H) tumors in comparison to their stem-like counterparts. Differentiated tumors also expressed higher surface expression of MHC-class I (Figures S7B, C). We also assessed surface expression of PD-L1 on NK cells (Figure S7A). The results indicated that both IL-2 and IL-2+anti-CD16mAb treatment elevated the expression of PD-L1 on NK cells (Figure S7A). Taken together, the data indicated that differentiated tumors express higher PD-L1 on their surface, and treatment of these cells with anti-PD-L1 antibody mediate ADCC in the presence of NK cells. However, poorly differentiated tumors are devoid of this surface antigen and therefore NK cells may become inactivated in the presence of anti-PD-L1 antibody treatment since activated NK cells exhibit PD-L1 on the surface.




Figure 5 | Differentiated tumors expressed higher levels of PD-L1 on their surface and were more susceptible to NK cell-mediated cytotoxicity when compared to their stem-like counterparts in the presence of anti-PDL1. Purified NK cells (1×106 cells/ml) from healthy individuals were left untreated, or treated with IL-2 (1000 U/ml), or treated with IL-2 (1000 U/ml) and anti-CD16 mAbs (3µg/mL) for 18 hours and were used as effectors in chromium release assay. OSCSCs were differentiated using IL-2 (1000 U/ml) and anti-CD16 mAbs (3µg/mL) treated NK cell supernatants as described in Materials and Methods section. OSCSCs (A), NK-differentiated-OSCSCs (B), and differentiated OSCCs (C), were labeled with 51Cr for an hour. NK-differentiated-OSCSCs (B), and differentiated OSCCs (C), 51Cr-labeled tumor cells were then left untreated or treated with anti-PDL1 (5 µg/ml) for 30 minutes. The unbound antibodies were washed away, and the cytotoxicity against the tumor cells was determined using a standard 4-hour 51Cr release assay. The Lytic units (LU) 30/106 cells were determined using the inverse number of NK cells required to lyse 30% of tumors x 100 (n=3) (A–C). The surface expression of PD-L1 was analyzed on tumor cells using flow cytometry. IgG2 isotype control antibodies were used as controls (G). Purified NK cells (1×106 cells/ml) from healthy individuals were left untreated, or treated with IL-2 (1000 U/ml) or treated with IL-2 (1000 U/ml) and anti-CD16 mAbs (3µg/mL) for 18 hours and they were used as effectors in chromium release assay. MP2 cells were differentiated using IL-2 (1000 U/ml) and anti-CD16 mAbs (3µg/mL) treated NK cell supernatants as described in Materials and Methods section. MP2 (D), NK-differentiated MP2 (E), and differentiated PL12 (F) were labeled with 51Cr for an hour. NK-differentiated MP2 (E), and differentiated PL12 (F) 51Cr-labeled tumor cells were then left untreated or treated with anti-PDL1 (5 µg/ml) for 30 minutes. The unbound antibodies were washed away, and the cytotoxicity against the tumor cells was determined using a standard 4-hour 51Cr release assay. The Lytic units (LU) 30/106 cells were determined using the inverse number of NK cells required to lyse 30% of tumors x 100 (n=3) (D, E, F). The surface expression of PD-L1 was analyzed on tumor cells using flow cytometry. IgG2 isotype control antibodies were used as controls (H). ***(p value 0.0001-0.001), **(p value 0.001-0.01), *(p value 0.01-0.05).







Anti-PD1 antibody induced higher IFN-γ secretion from NK cells in the presence of stem-like tumors in comparison to differentiated tumors

We have previously demonstrated that NK cells secrete higher levels of IFN-γ when co-cultured with CSCs/poorly differentiated tumors in comparison to differentiated tumors (42). In our current study, we co-cultured stem-like/poorly differentiated (MP2 and OSCSCs) and their differentiated counterparts (NK-Diff-MP2 and NK-Diff-OSCSCs) with NK cells with or without anti-PD1 treatment (Figures 6, S7). Lower secretion of IFN-γ was found when NK cells were co-cultured with NK-diff-OSCSCs (Figures 6A, S8) and NK-diff-MP2 (Figure 6B) in comparison to the cultures with their stem-like counterparts. Anti-PD1 treated NK cells without tumors showed slightly increased levels of IFN-γ secretion, however, the highest effect of anti-PD1 treatment was seen when NK cells were co-cultured with OSCSCs (Figures 6A, S8) or MP2 (Figure 6B) cells in comparison to those co-cultured with their NK-differentiated counterparts.




Figure 6 | Increased IFN-γ secretion by NK cells in the presence of cancer stem cells and anti-PD1. OSCSCs were differentiated using IL-2 (1000 U/ml) and anti-CD16 mAbs (3µg/mL) treated NK cell supernatants as described in the Materials and Methods section. NK cells of healthy individuals were treated with IL-2 (1000 U/ml) for 18-20 hours before they were co-cultured with tumor cells (NK: tumors; 1:1), and treated with anti-PD1 (500 ng/ml) antibody. On day 3 of co-culture, the supernatants were harvested and the secretion of IFN-γ was determined using single ELISAs (A). MP2 cells were treated with IL-2 (1000 U/ml) and anti-CD16 mAbs (3µg/mL) treated NK cell supernatants to induce differentiation as described in the Materials and Methods section. NK cells of healthy individuals were treated with IL-2 (1000 U/ml) for 18-20 hours before they were added to tumor cells (NK: tumors; 1:1), and were treated with anti-PD1 (500 ng/ml) antibody. On day 3 of co-culture, the supernatants were harvested and the secretion of IFN-γ was determined using single ELISA (B). **(p value 0.001-0.01).







sNK cell immunotherapy alone or in combination with anti-PD1 antibody inhibited tumor growth in hu-BLT mice and significantly improved immune function of hu-BLT mice

Hu-BLT mice were surgically implanted with human MP2 tumors followed by injections of sNK cells and anti-PD1 sequentially as depicted in Figure 7A. Upon sacrifice, the tumors were harvested and weighed, and the results were compared to tumor bearing mice in the absence of treatments. sNK cells alone or sNK cells combined with anti-PD1 antibody injected mice had smaller tumors in comparison to untreated tumor implanted mice (Figures 7B, S9A). Anti-PD1 antibody alone treated mice had smaller tumors compared to untreated tumor-bearing mice but the size was larger in comparison to either sNK treated or sNK + anti-PD1 antibody treated group (Figure 7B). Tumors were then dissociated and counted and the numbers were adjusted to 1.5X105 per well. Tumor growth were slightly with anti-PD1 alone treatment, and was much less with sNK cells alone or sNK cells combined with anti-PD1 treatments when compared to untreated tumor implanted mice (Figures 7C). When the same numbers of dissociated tumor cells from hu-BLT mice were cultured, significantly lower tumor cell expansion was seen in tumors from sNK cells alone or sNK cells combined with anti-PD-1 antibody treated mice as compared to those from untreated tumor-bearing mice until day 14-18, after which the tumor growth rate gradually increased and approached to those obtained from tumor alone implanted mice, and at day 27 the tumor cultures were terminated. Even though the levels of tumor growth gradually approached the levels seen with tumor alone implanted mice at the days 18-24, we could still see a lower tumor growth with sNK+anti-PD-1 antibody treated group as compared to sNK treated group, and both groups had on average lower growth when compared to those from tumor alone implanted mice (Figures 7D, S9B). Tumors dissociated from anti-PD-1 antibody group exhibited a lower rate of tumor growth when compared to the tumor alone implanted group but the levels of tumor growth were higher than those obtained from either the sNK treated or the sNK+anti-PD-1 antibody treated group (Figures 7D, S8B). In addition, when all the floating immune cells were removed by changing the media every three days from tumor cultures throughout the days of 7-27 the differentiated nature of tumor cells grown from sNK cells or sNK in combination with anti-PD-1 gradually reverted to their CSC/poorly differentiated tumors, and their growth rate gradually increased and approached to those grown from tumor alone implanted BLT mice (Figure 7D).




Figure 7 | Combination of sNK cells and anti-PD1 antibody halted the growth of MP2 tumors, and increased IFN-γ secretion and cytotoxic function by PBMCs, splenocytes and bone marrow derived immune cells from hu-BLT mice. Hu-BLT mice were orthotopically injected with 1 x 106 human MP2 tumors in the pancreas. One week after the tumor implantation, mice received supercharged NK (sNK) cells via tail-vein injection, and one week after sNK cell injection, mice received anti-PD1 (50 µg/mice) antibody via tail vein. The disease progression was monitored for another week (A). Hu-BLT mice were implanted with MP2 tumors and were injected with sNK cells and anti-PD1 antibody as depicted in Figure 7A. At the end of the experiment, hu-BLT mice were sacrificed and the tumors were harvested and weighed (n=3) (B). Hu-BLT mice were implanted with MP2 tumors and were injected with sNK cells and anti-PD1 antibody as depicted in Figure 7A. At the end of the experiment, hu-BLT mice were sacrificed and the tumors were harvested and single-cells were isolated as described in Materials and Methods section. Tumor cells were counted microscopically (n=3) (C). Hu-BLT derived tumors were cultured at 0.15 x 106/ml at the initiation of the tumor cultures, and the cell growth were determined on the days shown in the Figure. Statistical analysis is shown for sNK or sNK+anti-PD1 antibody group vs. untreated group (n=3) (D). Hu-BLT mice were implanted with MP2 tumors and, were injected with sNK cells and anti-PD1 antibody as depicted in Figure 7A. At the end of the experiment, hu-BLT mice were sacrificed and the spleens, peripheral blood, and bone marrow were harvested, and single cell suspensions were prepared and cultured in the presence of IL-2 (1000 U/ml) for 7 days. On day 7, the supernatants were harvested and the secretion of IFN-γ was determined using single ELISA (n=3) (E). Splenocytes, and peripheral blood and bone marrow derived immune cells were cultured in the presence of IL-2 (1000 U/ml) for 7 days. On day 7, cells were used as effectors against OSCSCs using standard 4-hour 51Cr release assay. The Lytic units (LU) 30/106 cells were determined using the inverse number of cells required to lyse 30% of OSCSCs x 100 (n=3) (F). NK (G) and CD3+ T (H) cells were purified from the spleen and cultured in the presence of IL-2 (1000 U/ml for NK cultures; and100 U/ml for T cell cultures) for 7 days. On day 7, the supernatants were harvested and the secretion of IFN-γ was determined using single ELISA (n=3) (G, H). ****(p value<0.0001), ***(p value 0.0001-0.001), **(p value 0.001-0.01), *(p value 0.01-0.05).







Sequential treatment with sNK cells and anti-PD1 augmented IFN-γ secretion and NK cell-mediated cytotoxicity by immune cells of spleen, peripheral blood, and bone marrow of tumor bearing hu-BLT mice

We observed suppression of both secretion of IFN-γ (Figures 7E, G, H, S10A, S11A) and NK cell-mediated cytotoxicity (Figures 7F, S10B, S11B) in tumor-bearing hu-BLT mice in comparison to those from healthy mice. Restoration or increased IFN-γ secretion and NK cell-mediated cytotoxicity were seen in tumor-bearing mice injected with sNK cells alone or anti-PD1 alone, and both of these functions were further increased with the combination of sNK cells and anti-PD1 antibody injection in tumor bearing mice (Figures 7E–H, S9, S10). It is important to note that the levels of IFN-γ secretion were comparable between sNK cells treated mice and anti-PD-1 treated mice; however, the NK cell mediated cytotoxicity was much higher in sNK treated tumor bearing mice than in the presence of anti-PD-1 treated tumor bearing mice (Figures 7E–H, S10, S11). The combination of both sNK and anti-PD-1 treatment significantly elevated IFN-γ secretion when compared to each treatment alone and increased cytotoxicity more than those seen in the presence of sNK treatment alone (Figures 7E–H, S10, S11). Taken together, these results indicated that sequential treatment of sNK cells with anti-PD-1 antibody is capable of increasing cytotoxic function in tumor-implanted hu-BLT mice and significantly augmented the secreted IFN-γ in immune cells from bone marrow, spleen and peripheral blood.






Discussion

NK cells are indispensable for the treatment of cancer due to their many important functions. We have come a long way in understanding the mechanisms underlying activation and increased function of NK cells, however, we still do not have a cure or even successful treatment for aggressive cancers. Most problems stem from not having the full understanding of NK function in cancer patients, and many underlying mechanisms of NK cell function still await clarifications. The mere fact that NK cells are specialized to target CSCs/poorly differentiated aggressive tumors, should place these cells at the top of any treatment strategies. Indeed, the function of NK cells found to be compromised in many if not all cancer patients provide the rationale for the induction and progression of cancer since NK cells eliminate the clones that seed the cancer (28, 45, 46). In addition, loss of NK cell function at the preneoplastic stage of tumorigenesis before the establishment of pancreatic cancer is a testament to the crucial roles that NK cells play in suppression of cancer (47, 48). Moreover, NK cells differentiate tumors through the production of IFN-γ and TNF-α leading to decreased expansion and progression of cancer, in addition to the conditioning of T cells to target tumor cells. In this regard, sNK cells with exceptional expansion and functional capabilities, select CD8+ T cells and expand their numbers and function allowing the formation of memory/effector cells (45). Indeed, successful eradication of cancer is partly dependent on formation of tumor specific memory/effector CD8+ T cells, and tumors infiltrated by CD8+ T cells were shown to have a much better prognosis in patients (49). When comparing the function of primary IL-2 activated NK cells or IL-2+anti-CD16mAb or IL-2+anti-CD16mAb+sAJ2 treated NK cells with sNK cells, many significant differences could be seen on genetic as well as protein and functional levels (Figure 1 and manuscript in prep) (28). Briefly, sNK cells are a unique population of NK cells with completely distinct profiles from those of untreated and IL-2 treated NK cells at the RNA seq analysis at the single cell level based on UMAP and regulon profiles, and in terms of cell cycle analysis, granule content and functional capabilities (Figure 2). When comparing to primary NK cells treated with different treatment strategies (Figure 1A) or those cultured with K562 or OSCSCs or MP2 or PBMCs (Figure S1), sNK cells proliferated up to 27-34 days, mediated much higher cytotoxicity and secreted much higher levels of IFN-γ whereas the primary NK cells after day 6 of culture lost their expansion capability and had minimal function (Figure 1). Having generated such a unique and potent population of NK cells, we aimed at understanding their effect in combination with other therapeutic modalities. Furthermore, by better understanding sNK cell function, we were able to establish combinatorial therapies to successfully treat cancer in hu-BLT mice. In this regard, we demonstrated two different treatments that can be combined with sNK cells not only restore or further activate the NK cells but also provide a strategy to augment the efficacy of the treatment with other treatment modalities to successfully eradicate all different subpopulations of tumor cells in the tumor microenvironment. In this case, we have previously shown that NK cell-differentiated tumors become susceptible to chemotherapeutic drugs (12). Indeed, treatment of tumor cells with supernatants from sNK cells not only increased the differentiation antigens such as MHC-class I, CD54, PDL-1 but it also curtailed their growth and made the tumors susceptible to chemotherapeutic drugs in in vitro experiments published previously and shown in here (12) (Figures 3, S3, S6). Furthermore, combining sNK cell treatment with chemotherapy drugs augmented the targetability of tumor cells by the chemotherapeutic drugs in vivo, as evidenced by the in vitro data. To validate our in vitro observations reported previously and in here, and to test the premise that sNK cells treated tumors become targetable by the chemotherapeutic drugs in vivo, we performed experiments in hu-BLT mice by first targeting and differentiating tumors with sNK cells (Figure 4) (12) followed by the use of chemotherapy drugs to target the differentiated tumors. In this paper, we showed that one dose of 1X106 sNK cell injection not only kills but also differentiates tumors in tumor bearing hu-BLT mice, allowing chemotherapy drugs to target the remaining tumors, thereby decreasing the tumor load, and also augmenting the secretion of IFN-γ by the NK cells from humanized mice. Such combinatorial treatments will establish a circular pattern in which sNK cells will increase the effectiveness of chemotherapeutic drugs in targeting tumors but also the chemotherapy drugs will increase the function of sNK cells to target more tumors. Thus, these treatment strategies should be able to remove the heterogenous nature of tumor cells, allowing restoration of NK cell function in cancer patients to prevent cancer recurrences. When tumors were resected and single cells were prepared and cultured, tumors from OSCSC implanted mice grew and proliferated at a much higher rate than those cultured either from sNK injected or sNK+CDDP treated tumor implanted mice (Figure 4D). Tumor growth was much less in sNK and sNK+CDDP treated tumor implanted mice until day 24 after which they started to increase their growth potential and the growth rate became closer to the tumors resected from tumor alone implanted mice. Coincided with increase in tumor growth was the decrease in MHC-class I expression on the tumor cells since the differentiated tumors were not supplied by either sNK cells or their supernatants, therefore, the tumors reverted to the poorly differentiated/CSC stage at the end of cultures. The reversion could be due to de-differentiation of the tumors or selection of tumors with CSCs/poorly differentiated phenotype which has much lower MHC class I expression. Indeed, in our previous paper we established that all the tumors initially exhibited differentiated phenotype and later lost the differentiation antigens and became poorly differentiated tumors (12, 13). Thus, those results argued for the de-differentiation of tumors rather than selection (13). In addition, when day 10 tumor cultures were tested in cytotoxicity against fresh IL-2 activated primary NK cells, those that were obtained from tumor implanted and sNK or sNK+CDDP injected mice had much lower susceptibility to NK cell mediated cytotoxicity when compared to those cultured from tumor alone implanted mice, indicating the increased differentiation and acquisition of MHC-class I antigens in these cultures. Interestingly, in this assay we could see significant differences in the decreases of cytotoxicity between sNK and sNK+CDDP tumor cultures, indicating higher differentiation stage of sNK+CDDP tumor cultures as compared to sNK tumor cultures (Figure 4E) (13, 41–43). In agreement with our studies, previous work from other labs demonstrated cisplatin mediated up-regulation of NK cell cytotoxicity through suppression of AR, and upregulation of ULBP-2 in the HCC tumor model (50). In addition, Low-dose cisplatin administration prevented suppression of NK cell activity in patients with gastrointestinal cancer (51). Finally, the use of combination of cisplatin and natural killer cells overcame cisplatin resistance in ovarian cancer (52).

Check-point inhibitors such as anti-PD-1 and anti-PD-L1 are becoming standard of care for many cancers; however, even though they work for certain cancer types and in certain cancer patients, not all cancer patients benefit from such treatments. To increase the effectiveness of both NK cells and anti-PD-1 therapy we sequentially we sequentially treated the tumor bearing hu-BLT mice with sNK cells and anti-PD-1 therapy and found such treatment to not only prevent and remove most of tumors from the mice but also it augmented the function of immune cells by increasing the secretion of IFN-γ when both treatments were used in mice. Indeed, anti-PD-1 treatment of NK cells in the presence of CSC/poorly differentiated tumors augmented the secretion of IFN-γ by the NK cells, indicating that NK cells are capable of activation through PD-1 surface receptors similar to those of T cells (Figures 6, 7G, S7). Indeed, sequential treatment of tumor bearing hu-BLT mice with sNK cells and anti-PD-1 antibody increased the release in IFN-γ by the immune effectors notably both the NK cells and T cells and halt the tumor growth and expansion (Figures 7G, H). Similar to the in vivo experiments with sNK+CDDP treatment, when tumors were resected from the sNK+anti-PD-1 treated mice, and single cells were prepared and cultured, tumors from MP2 implanted mice grew and proliferated at a much higher rate than those cultured either from sNK injected or sNK+anti-PD-1 treated and tumor implanted mice (Figure 7D). Tumor growth was much less in sNK and sNK+ anti-PD-1 treated and tumor implanted mice until day 18-24, after which they started to increase their growth potential and the growth rate became closer to the tumors resected from tumor alone implanted mice at day 27. Coinciding with the increase in tumor growth was the decrease in MHC-class I expression on the tumor cells since the differentiated tumors were not supplied by either sNK cells or their supernatants, therefore, the tumors reverted to the poorly differentiated/CSC stage at the end of the cultures. The reversion could be due to de-differentiation of the tumors or selection of tumors with poorly differentiated/CSC phenotype as stated above. In accordance with our studies, adoptive transfer of ex vivo IL-2-activated NK cells combined with anti-PD-1 resulted in tumor growth inhibition in a xenograft gastric cancer model (53). In another study, PD-1 and PD-L1 blockade induced a strong NK cell response that was found to be indispensable for the full therapeutic effect of immunotherapy (54). In addition, the authors showed that PD-1 was expressed on NK cells within transplantable, spontaneous, and genetically induced mouse tumor models. Furthermore, PD-1 expression was higher on NK cells with a more activated phenotype with no evidence of exhausted phenotype.

However, one has to take precaution in interpreting the in vivo data because the heterogeneity of tumor cells in terms of their differentiation stage may make the results very difficult to interpret. This could be one reason why certain cancer patients are able to benefit from the check-point inhibitors and yet others do not. For instance, the use of anti-PD-L1 antibody can have completely different effect on NK cells depending on the stage of differentiation of tumor cells, as seen in our study (Figure 5). If competent NK cells have infiltrated tumors with a higher fraction of CSCs/poorly differentiated tumors, they should be able to eliminate these tumors in direct cytotoxicity (Figure 5). In addition, higher expression of PD-L1 on tumor-activated NK cells may make NK cells themselves to become susceptible to ADCC, and decrease in the cytotoxic function of NK cells. On the other hand, if the tumor phenotype is tilted towards a well-differentiated phenotype, this may increase effectiveness of NK cells in mediating ADCC since tumor cells will be upregulating PD-L1 and becoming susceptible to NK cell-mediated ADCC effect, whereas such tumors are not, or are less susceptible to direct cytotoxicity by the primary NK cells as seen in our studies (Figure 5). Therefore, when such therapies fail in patients, one has to not only understand the nature of NK cells but also what type of tumors NK cells are targeting.

Finally, in this paper we present two different combinatorial therapies that will likely be successful in patients. There are many others such as combination of NK cells with CD8+ T cells, NK cells with radiotherapy, NK cells with virotherapy, NK cells with bacterial therapy, etc. All of these different scenarios are under investigation in our laboratory and should provide exciting treatment strategies for cancer therapy in the future.





Materials and methods




Cell lines, reagents, and antibodies

Oral squamous carcinoma stem cells (OSCSCs) and oral squamous cell carcinoma (OSCCs) were isolated from patients with tongue tumors at UCLA (13, 42, 55). NK cells, OSCSCs, and OSCCs were cultured in RPMI 1640 (Invitrogen by Life Technologies, CA), supplemented with 10% fetal bovine serum (FBS) (Gemini Bio-Products, CA). Recombinant IL-2 was obtained from NIH-BRB. Antibodies to CD16 were purchased from Biolegend (San Diego, CA). Antibodies used for flow cytometry – IgG2, MHC-class I, and B7H1 (PD-L1) were purchased from Biolegend (San Diego, CA). MIA PaCA-2 (MP2), PL12, and Capan human pancreatic cancer cell lines were provided by Dr. Nicholas Cacalano (UCLA, School of Medicine, CA, USA), and were cultured in DMEM supplemented with 10% FBS. Cisplatin and Paclitaxel were purchased from Ronald Reagan Pharmacy at UCLA. ELISA kits for IFN-γ were purchased from Biolegend (San Diego, CA), and multiplex analysis kit was purchased from Millipore (Billerica, MA). Propidium iodide (PI) and chromium-51 was purchased from PeproTech (Cranbury, NJ, USA) and Perken Elmer (Waltham, MA, USA), respectively. Chromium Single cell 3’ Reagent kit v3, Cat#1000075 was purchased from10X Genomics (Pleasanton, CA, USA).





Purification of human NK cells and monocytes

Written informed consents, approved by UCLA Institutional Review Board (IRB), were obtained from healthy individuals, and all procedures were approved by the UCLA-IRB. Peripheral blood was separated using ficoll-hypaque centrifugation, after which the white layer, containing peripheral blood mononuclear cells (PBMCs) was harvested. NK cells and monocytes were negatively selected from PBMCs using the EasySep® Human NK cell enrichment and EasySep® Human monocytes enrichments kits, respectively, purchased from Stem Cell Technologies (Vancouver, BC, Canada). Purified NK cells and monocytes were stained with anti-CD16 and anti-CD14, respectively, to measure purity using flow cytometric analysis. Samples showing greater than 95% purity were used for the study.





NK cell supernatant collection and stem cell differentiation

Purified NK cells were activated with rh-IL-2 (1000 U/ml) and anti-CD16 mAb (3 µg/ml) for 18-20 hours before the supernatant was harvested, and was used in differentiation of OSCSCs, and MP2 cells. The supernatant volume was determined based on IFN-γ required, and was accessed by ELISA specific to IFN-γ. Differentiation of OSCSCs and MP2 cells were conducted with an average total amount of 2000 pg and 5000 pg, respectively, over the course of 5 days. On day 0, 1 × 106 tumor cells were cultured, on day 1 unattached tumor cells were removed and attached tumor cells were treated with NK cell supernatants on days 1, 2, 3 and 4. On day 5, tumor cells were rinsed with 1 X PBS, detached and used for experiments.





Generation of osteoclasts and supercharged NK cells

To generate osteoclasts (OCs), monocytes were cultured in alpha-MEM media supplemented with M-CSF (25 ng/mL) and RANKL (25 ng/mL) for 21 days, media was replenished every three days. Human purified NK cells were activated with rh-IL-2 (1000 U/ml) and anti-CD16 mAb (3 µg/ml) for 18-20 hours before they were co-cultured with OCs and sAJ2 (OCs : NK:sAJ2; 1:2:4) in RPMI 1640 medium containing 10% FBS. Probiotic bacteria, AJ2 is a combination of seven to eight different strains of gram-positive probiotic bacteria (Streptococcus thermophiles, Bifidobacterium longum, Bifidobacterium breve, Bifidobacterium infantis, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus casei, and Lactobacillus bulgaricus) selected for their superior ability to induce optimal secretion of both pro-inflammatory and anti-inflammatory cytokines in NK cells (32). The medium was refreshed every three days with RPMI containing rh-IL-2 (1500 U/ml).





Western blot analysis

Cells were washed twice with an ice-cold PBS and lysed in NP-40 lysis buffer supplemented with protease inhibitor cocktail (APExBIO). Lysates were centrifuged at 16000g at 4°C for 20 minutes to obtain post-nuclear cell fraction. Protein concentration was determined with Pierce BCA protein assay kit (ThermoFisher Scientific). Non-reducing SDS-PAGE was performed, and separated proteins were transferred to nitrocellulose membrane. Membranes were blocked for 1 hour in 5% non-fat dry milk in PBS. Membranes were incubated in primary antibodies overnight at 4°C and HRP conjugated secondary antibodies for 1h at room temperature. Bands were visualized with Clarity Max Western ECL substrate (BioRad). Images were acquired with ChemiDoc ML imaging System (Biorad). The following primary antibodies were used: mouse anti-granzyme B (sc-8022, Santa Cruz Biotechnology), mouse anti-cathepsin C (sc-74590, Santa Cruz Biotechnology), mouse anti-perforin-1 (sc-136994, Santa Cruz Biotechnology). We used anti-mouse HRP conjugated secondary antibodies (405306 BioLegend). Stain free technology (BioRad) was used for loading control.





Single-cell RNA sequencing

Single-cell RNA sequencing was performed using a 10X Chromium machine. Single-cell cDNA libraries were prepared using the 10X Chromium Single cell 3’ Reagent kit v3 and sequenced via Illumina Novaseq 6000 (Illumina) to a depth of around 30 thousand reads per cell. Raw data from each sample were demultiplexed and aligned to a custom reference genome (GRCh38), and UMI counts were quantified using 10X Genomics CellRanger software (v3.0.0) with default parameters. Single-cell clustering and cell-cycle scoring are performed using the Seurat package (v3.0). Single-cell regulatory network inference and clustering (SCENIC) is done by using the SCENIC R package (1.2.0) with the hg38 database (https://resources.aertslab.org/cistarget/).





Tumor implantation in hu-BLT mice

Animal research was performed under the written approval of the UCLA Animal Research Committee (ARC) in accordance with all federal, state, and local guidelines. Combined immunodeficient NOD.CB17-Prkdcscid/J and NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG lacking T, B, and NK cells) were purchased from Jackson Laboratory. Humanized-BLT (hu-BLT; human bone marrow/liver/thymus) mice were prepared on NSG background as previously described (38, 56). To establish orthotopic tumors, mice were first anesthetized with isoflurane in combination with oxygen, and 1 x 106 human OSCSCs and MP2 tumor cells suspended in 10 μl HC Matrigel were then injected directly into the floor of their mouths and pancreas, respectively. One week after tumor implantation mice received 1 x 106 OC-expanded supercharged NK cells via tail vein injection. One week after NK injections, mice received CDDP (50 µg/mice) or anti-PD1 (50 µg/mice) via tail vein injection. One week later, mice were euthanized, and tumors, bone marrow, spleen, and peripheral blood were harvested.





Cell isolation and cell cultures of tumors and immune cells of hu-BLT mice

The oral and pancreatic tumors harvested from hu-BLT mice were immediately cut into 1 mm3 pieces and placed into a digestion buffer containing 1 mg/ml collagenase II (oral tumor) or collagenase IV (pancreatic tumor), 10 U/ml DNAse I, and 1% bovine serum albumin (BSA) in DMEM media, and incubated for 20 minutes at 37°C oven on a 150 rpm shaker. After digestion, the sample were filtered through 40 mm cell strainer and centrifuged at 1500 rpm for 10 minutes at 4°C. The pellet was re-suspended in DMEM media and cells were counted. To obtain single-cell suspensions from BM, femurs were cut at both ends and flushed by using RPMI 1640 media; afterwards, BM cells were filtered through a 40 µm cell strainer. To obtain single-cell suspensions from spleen, the spleens were minced, and the samples were filtered through a 40 µm cell strainer and centrifuged at 1500 rpm for 5 minutes at 4°C. The pellets were re-suspended in ACK buffer for 2-5 mins to remove the red blood cells followed by re-suspension in RPMI media and centrifugation at 1500 rpm for 5 minutes at 4°C. PBMCs were isolated from peripheral blood using Ficoll-Hypaque centrifugation of heparinized blood specimens. The buffy coats containing PBMCs were harvested, washed, and re-suspended in RPMI 1640 medium. Cells obtained from each tissue sample were treated with IL-2 (1000 U/ml) and cultured in RPMI 1640 medium containing 10% FBS for 7 days.





Surface staining and cell death analysis

Staining was performed by labeling the cells with antibodies as described previously (43, 57, 58). The percentage of dead cells was determined by propidium iodine (PI) (100 μg/ml) staining using flow cytometric analysis. Flow cytometric analysis was performed using Attune NxT flow cytometer (Thermo Fisher Scientific, Waltham, MA) and FlowJo v10.4 (BD, Oregon, USA) were used for analysis. For selected experiments Beckman Coulter Epics XL cytometer (Brea, CA) was also used, and the results were analyzed in the FlowJo vX software (Ashland, OR).





Enzyme-linked immunosorbent assays and multiplex cytokine assay

Single ELISAs were performed as previously described (43). To analyze and obtain the cytokine and chemokine concentration, a standard curve was generated by either two- or three-fold dilutions of recombinant cytokines provided by the manufacturer. For multiple cytokine array, the levels of cytokines were determined by multiplex assay, which was conducted as described in the manufacturer’s protocol for each specified kit. Analysis was performed using a Luminex multiplex instrument (MAGPIX, Millipore, Billerica, MA), and data was analyzed using the proprietary software (xPONENT 4.2, Millipore, Billerica, MA).





51Cr release cytotoxicity assay

The 51Cr release cytotoxicity assay was performed as previously described (59). Briefly, different ratios of effectors and 51Cr–labeled target cells were incubated for four hours. After which, the supernatants were harvested from each sample, and the released radioactivity was counted using the gamma counter. The percentage specific cytotoxicity was calculated as follows:

	

LU 30/106 was calculated by using the inverse of the number of effector cells needed to lyse 30% of target cells ×100.





Statistical analyses

Prism-9 software was used for statistical analysis. An unpaired or paired, two-tailed Student’s t-test was performed for experiments with two groups. One-way ANOVA with a Bonferroni post-test was used to compare different groups for experiments with more than two groups. Duplicate or triplicate samples were used for assessment. The following symbols represent the levels of statistical significance within each analysis: ****(p value<0.0001), ***(p value 0.0001-0.001), **(p value 0.001-0.01), *(p value 0.01-0.05).
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Characteristics Total (N)
Hazard ratio (95% Cl) P value Hazard ratio (95% Cl) P value

WHO grade 634
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G3 243 2.999 (2.007-4.480) <0.001 2258 (1.452-3.511) <0.001
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Age 674 ' |
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Histological type 674

Astrocytoma 192 Reference

Glioblastoma 155 6.602 (4.739-9.197) <0.001

Oligoastrocytoma 132 0.604 (0.374-0.975) 0.039 1.117 (0.633-1.970) 0.703

Oligodendroglioma 195 0.543 (0.363-0.813) 0.003 0.504 (0.273-0.933) 0.029
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Concurrent AE

Pearson 2 test.
isher’s exact test.
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Nervous system drug
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Diuretics
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Cardiovascular AEs
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Overlapping

Fatal cases
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Non-fatal cases

40
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17
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8
21

P value
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0.725
0322
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0.260
0.003
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0322
1.000
1.000
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1.000
0.322
1.000
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0.003
1.000
0.240
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Patient Age Gender

1 62
2 73

54
4 71
5 54

F

Indication

Non-small cell lung
cancer

Malignant melanoma
Cholangiocarcinoma

Non-small cell lung
cancer

Cholangiocarcinoma

ICIs

Nivolumab

Pembrolizumab
Nivolumab

Pembrolizumab

Nivolumab

Concurrent AEs

Myasthenia gravis, facial paralysis, hepatic enzyme increased

Myasthenia gravis, atrial fibrillation
Myasthenia gravis, myocarditis

Myasthenic syndrome, pericardial effusion, Bradycardia, heart injury,
Polymyositis

Myocarditis, eyelid ptosis

Outcome

Death

Hospital
Death
Death

Hospital
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Total number of patients
Study ABX Exposure TW (Patients treated with ABX) Analyses Hazard Ratio HR 95%-Cl Weight

Group = 1.ABX exposure in the two months prior to or after ICl initiation: [-60;60]

Derosa 2022 [-60;0] 338 (69) M 1.36 [0.95; 1.94] 2.2%
Schett 2019 [-60;0] 218 (33) M —_— 3.73 [1.34;10.39] 1.1%
Kim H. 2019 [-60;0] 131 (60) M —_— 3.83 [1.74; 8.47] 1.4%
Tomita 2020 [-60;0] 79 (24) u* 2.02 [0.94; 4.34] 1.5%
Ochi 2021 [-60;30] 531 (98) U —— 1.38 [1.03; 1.84] 2.4%
Nyein 2022 [-60;30] 256 (46) M 1.35 [0.91; 2.01] 2.2%
Mielgo Rubio 2018 - Intravenous ABX [-60;30] 168 (24) M —8— 2.85 [1.64; 495] 1.9%
Mielgo Rubio 2018 - Oral ABX [-60;30] 168 (56) M 1.16 [0.74; 1.81] 2.1%
Mielgo Rubio 2019 - Intravenous ABX [-60;30] 121 (36) M —_— 3.75 [1.71; 8.21] 1.4%
Mielgo Rubio 2019 - Oral ABX [-60;30] 121 (19) M —_— 1.00 [0.33; 3.05] 1.0%
Quaknine Krief 2019 [-60;30] 72 (30) M —— 2.20 [1.05; 4.60] 1.5%
Qiu 2022 [-60;60] 148 (80) U — 2.28 [1.41; 3.70] 2.0%
Forde 2020 [-30;60] 86 (34) U 1.95 [0.89; 4.28] 1.4%
Stokes 2021 [0;60] 3223 (970) M 1.33 [1.21; 1.46] 2.6%
Random effects model - 1.81 [1.42; 2.31] 24.7%

Heterogeneity: I = 59%, T = 0.1248, p <0.01

Group = 2.ABX exposure in the six weeks prior to or after ICl initiation: [-45;45]

von ltzstein 2022 [-42;0] 133 (19) M 1.23 [0.73; 2.06] 1.9%
Thompson 2017 [-42;0] 74 (18) M —— 3.50 [1.49; 8.22] 1.3%
Bagley 2019 [-42;28] 1960 (61) M 1.16 [0.54; 2.48] 1.5%
Stokes 2021 [-30;0] 3634 (762) M 1.31 [1.20; 1.44] 2.6%
Hopkins 2022 [-30;0] 2723 (194) M 1.23 [1.00; 1.51] 2.5%
Cortellini 2021 - Pembrolizumab monotherapy [-30;0] 950 (131) M - 1.42 [1.13; 1.79] 2.5%
Lu 2020 [-30;0] 340 (128) M —_— 290 [1.07; 7.87] 1.1%
Cortellini 2021 - Chemo-immunotherapy [-30;0] 302 (47) M 1.42 [0.91; 2.22] 2.1%
Derosa 2018 [-30;0] 239 (48) M —= 250 [1.64; 3.80] 2.1%
Pinato 2019 - Lung Cancer [-30;0] 119 (29) U —=— 9.30 [4.42; 19.55] 1.5%
Hakozaki 2019 [-30;0] 90 (13) M 2.02 [0. 70 5.83] 1.0%
Verschueren 2021 [-30;30] 221 (35) M 1.20 [0.78; 1.84] 2.1%
Kostine 2021 [-30;30] 149 (41) u 1.54 [1.01; 2.34] 21%
Huemer 2019 [-30;30] 142 (62) U —— 0.91 [0.57; 1.45] 2.0%
Peng 2021 [-30;30] 117 (41) U 1.42 [0.84; 2.41] 1.9%
Zhao 2019 [-30;30] 109 (20) M —E— 2.86 [1.30; 6.27] 1.4%
Ren 2021 [-30;30] 98 (27) U 1.60 [0.73; 3.53] 1.4%
Castello 2021 [-30;30] 50 (20) U 1.60 [0.18; 14.01]  0.4%
Castro-Balado 2021 [-30;30] 49 (17) M — 3.80 [1.44;10.05] 1.2%
Spakowicz 2020 [-28;28] 196 (70) U —=— 1.50 [1.07; 2.09] 2.3%
Ahmed Y. 2020 [28;28] 151 (53) M —= 2.63 [1.67; 4.13] 2.1%
Kulkarni 2020 [-28;42] 140 (54) u* 2.18 [0.93; 5.09] 1.3%
Hamada 2021 [-21;21] 69 (18) M 1.99 [0.94; 4.22] 1.5%
Hossain 2020 [-14;42] 63 (18) U 2.01 [0.96; 420] 1.5%
Hopkins 2022 [0;30] 2723 (518) M = 1.32 [1.15; 1.51] 2.6%
von ltzstein 2022 [0;42] 133 (35) M —— 2.75 [1.67; 4.53] 2.0%
Random effects model -> 1.78 [1.47; 2.15] 46.1%

Heterogeneity: I? = 66%, T2 = 0.1638, p<0.01

Group = 3.ABX exposure prior to and after ICl initiation in a large TW: [-90;120]

Hogue 2019 [-90;0] 161 (58) M 1.12 [0.70; 1.79] 2.0%
Zhang 2021 1-90;0] 69 (16) U 0.89 [0.41; 1.93] 1.5%
Svaton 2020 [-30;30] 224 (27) M 0.66 [0.31; 1.40] 1.5%
Rounis 2021 [-30;84] 66 (34) U 1.35 [0.76; 2.41] 1.8%
Galli 2019 [-30;90] 157 (27) u* 1.22 [0.84; 1.78] 2.2%
Random effects model 1.09 [0.80; 1.48] 9.0%

Heterogeneity: I = 0%, T2 = 0.0295, p=0.58

Group = 4.ABX exposure prior to, after and during ICI treatment: ]-coj+co[

Conde-Estevez 2021 [-90;0] 70 (39) M 1.15 [0.64; 2.08] 1.8%
Riudavets 2019 [-90;+c0] 267 (141) u* = 0.98 [0.74; 1.30] 2.4%
Metges 2018 - Lung Cancer [-60;+eo[ 325 (153) u* — 0.67 [0.48; 0.94] 2.3%
Ruiz-Patino 2020 [-80;+eo] 140 (32) M — 2.88 [1.86; 4.45] 2.1%
Geum 2021 [-30;+o0] 140 (70) u —s— 229 [1.16; 452] 1.6%
Do 2018 - Lung Cancer [-30;+00[ 109 (87) U —_— 3.45 [1.75; 6.79] 1.6%
Cortellini 2021 - Chemo-immunotherapy [0;+00] 302 (117) M 1.29 [0.91; 1.83] 2.3%
Schett 2019 [0;+oo] 218 (N/A) 8] — 1.12 [0.76; 1.66] 2.2%
Medjebar 2020 [0;+e0] 178 (31) M 0.84 [0.47; 1.50] 1.8%
Hogue 2019 [0;+e9] 161 (33) M 0.66 [0.42; 1.04] 2.1%
Random effects model 1.26 [0.84; 1.91] 20.1%

Heterogeneity: I = 82%, T° = 0.2785, p<0.01

Random effects model <> 1.60 [1.40; 1.83] 100.0%
Heterogeneity: /2 = 68%, T2 = 0,1936, p < 0.01 r T T 1
Test for subgroup differences: xg =15.47,df =3 (p < 0.01) 0.1 05 1 2 10
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Total number of patients
Study ABX Exposure TW (Patients treated with ABX) Analyses Hazard Ratio HR 95%-Cl Weight

Group = 1.ABX exposure in the two months prior to or after ICl initiation: [-60;60]

Schett 2019 [-60;0] 218 (33) u* ——— 345 [1.44; 8.28] 1.6%
Kim H. 2019 [-60;0] 131 (60) M —— 2.38 [1.28; 442] 2.1%
Tomita 2020 [-60;0] 79 (24) u* — 2.18 [1.24; 3.83] 2.3%
Ochi 2021 [-60;30] 531 (98) u 1.14 [0.89; 1.46] 3.1%
Mielgo Rubio 2018 - Intravenous ABX [-60;30] 168 (24) U - 3.03 [1.79; 5.14] 2.4%
Mielgo Rubio 2018 - Oral ABX [-60;30] 168 (56) U 1.25 [0.82; 1.91] 2.6%
Mielgo Rubio 2019 - Intravenous ABX [-60;30] 121 (36) M —=—— 448 [2.19; 9.17] 1.9%
Mielgo Rubio 2019 - Oral ABX [-60;30] 121 (19) M 1.73 [0.75; 3.98] 1.6%
Ouaknine Krief 2019 [-60;30] 72 (30) M 1.60 [0.84; 3.06] 2.0%
Qiu 2022 [-60;60] 148 (80) U —a— 1.64 [1.16; 2.33] 2.8%
Forde 2020 [-30;60] 86 (34) U —=— 2.33 [1.27; 4.27] 2.2%
Random effects model —— 1.97 [1.48; 2.62] 24.5%
Heterogeneity: /° = 66%, T = 0.1182, p < 0.01

Group = 2.ABX exposure in the six weeks prior to or after ICl initiation: [-45;45]

von ltzstein 2022 [-42;0] 133 (19) M 1.15 [0.68; 1.95] 2.4%
Thompson 2017 [-42;0] 74 (18) M —a— 250 [1.15; 5.43] 1.8%
Hopkins 2022 [-30;0] 2723 (194) M = 0.95 [0.79; 1.14] 3.2%
Cortellini 2021 - Pembrolizumab monotherapy [-30;0] 950 (131) M —— 1.29 [1.04; 1.60] 8.1%
Cortellini 2021 - Chemo-immunotherapy [-30;0] 302 (47) M 1.42 [0.91; 2.22] 2.6%
Derosa 2018 [-30;0] 239 (48) M 1.30 [0.92; 1.84] 2.8%
Hakozaki 2019 [-30;0] 90 (13) u* —a— 2,99 [1.44; 6.19] 1.9%
Kostine 2021 [-30;30] 149 (41) U — 1.05 [0.67; 1.64] 2.6%
Huemer 2019 [-30;30] 142 (62) U —— 1.02 [0.69; 1.50] 2.7%
Peng 2021 [-30;30] 117 (41) U 1.42 [0.93; 2.18] 2.6%
Zhao 2019 [-30;30] 109 (20) M —a— 3.45 [1.80; 6.62] 2.0%
Castello 2021 [-30;30] 50 (20) M ——— 420 [1.58;11.16] 1.4%
Castro-Balado 2021 [-30;30] 49 (17) M —+— 417 [1.58;11.02] 1.4%
Jin 2019 [-30;30] 37 (11) u* —_— 0.99 [0.39; 2.52] 1.4%
Ahmed Y. 2020 [28;28] 151 (53) u* —E— 222 [1.51; 3.27] 2.7%
Kulkarni 2020 [-28;42] 140 (54) u* 1.12 [0.75; 1.68] 2.7%
Hamada 2021 [-21;21] 69 (18) M —a— 3.16 [1.57; 6.35] 1.9%
Hossain 2020 [-14;42] 63 (18) U 1.62 [0.85; 3.09] 2.1%
Hopkins 2022 [0;30] 2723 (518) M = 1.23 [1.10; 1.37] 3.3%
von ltzstein 2022 [0;42] 133 (35) M 1.63 [0.96; 2.77] 2.3%
Random effects model - 1.57 [1.27; 1.95] 46.8%
Heterogeneity: /2 = 67%, T2 = 0.1658, p < 0.01

Group = 3.ABX exposure prior to and after ICl initiation in a large TW: [-90;120]

Hogue 2019 [-90;0] 161 (58) M —— 1.02 [0.67; 1.57] 2.6%
Zhang 2021 ]-90;0] 69 (16) U — 1.01 [0. 53; 1.92] 21%
Svaton 2020 [-30;30] 224 (27) M 0.85 [0.46; 1.56] 2.1%
Rounis 2021 [-30;84] 66 (34) U + 1.66 [0.26; 10.68] 0.5%
Galli 2019 [-30;90] 157 (27) u* — 1.40 1 07 1.84] 8.0%
Fang 2022 [0;90] 85 (17) u* _— 0.96 [0.25; 3.74] 0.9%
Random effects model 1.15 [0.92; 1.44] 11.3%
Heterogeneity: 2 = 0%, T2 = 0.0167, p=0.62

Group = 4.ABX exposure prior to, after and during ICI treatment: ]-co;+co[

Conde-Estevez 2021 [-90;0] 70 (39) M 1.15 [0.62; 2.14] 2.1%
Ruiz-Patino 2020 [-30;+c0] 140 (32) U 1.50 [0.73; 3.09] 1.9%
Geum 2021 [-80;+oo] 140 (70) U —— 0.98 [0.67; 1.44] 2.7%
Cortellini 2021 - Chemo-immunotherapy [O;+oof 302 (117) M 1.29 [0.91; 1.83] 2.8%
Schett 2019 (ORI 218 (N/A) u* 0.86 [0.61; 1.22] 2.8%
Medjebar 2020 (ORI 178 (31) M 0.73 [0.44; 1.21] 2.4%
Hogue 2019 (OB 161 (33) M —E— 0.60 [0.39; 0.92] 2.6%
Random effects model 0.94 [0.71; 1.26] 17.4%
Heterogeneity: 1 = 44%, T = 0.0600, p=0.10

Random effects model > 1.47 [1.27; 1.70] 100.0%

Heterogeneity: 1 = 66%, T2 = 0, 1740, p < 0.01 f T f !
Test for subgroup differences: )(3 28.33,df =3 (p < 0.01) 0.1 0.5 1 2 10
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Characteristics

Total AE (ICIs)

Total urinary incontinence
Occurred Region
Americas

Europe

Asia

Others

Reporting Year

2020

2019

2018

2017

2016 and earlier
Reporter Type
Healthcare professional
Non-healthcare professional
Null

Gender

Male

Female

Null

Age (n=49)

Mean, SD

Range

Indication for ICI
Lung cancer

Melanoma

Renal cancer
Glioblastoma

Breast cancer

Ovarian cancer
Cholangiocarcinoma
Pancreatic carcinoma
Colon cancer

Skin cancer

Acute myeloid leukemia
Transitional cell carcinoma
Prostate cancer

Bladder cancer

Others

Outcomes

Death

Life-Threatening

Other serious
Hospitalization

Null

ICIs Role

Primary suspected
Secondary suspected
Concomitant
Suspected Drugs

Only ICT

ICI plus one other drug
ICI plus two or more other
drugs

Only other drugs

n (%)

96814
59

40 (67.8)
9(15.2)
4 (6.8)
6(10.2)

13 (22.0)
8 (13.6)
17 (28.8)
13 (22.0)
8(13.6)

37 (62.7)
21 (35.6)
1(1.7)

32 (54.2)
26 (44.1)
1(1.7)

70.0 £ 11.30
41-87

21 (35.6)
14 (23.7)
6(10.2)
3(5.1)
2 (34)
2 (3.4)
2(34)
1(17)
1(1.7)
1(1
1

1

(1.7
7
7
117
117
2(34)

)
)
)
)
1.7)
)

19 (32.2)
4 (6.8)
17 (28.8)
12 (20.3)
7 (11.9)

48 (81.4)
8(13.6)
3(5.1)

41 (69.5)
7(11.9)

8 (13.6)

3(5.1)

Characteristics

ICI Treatment Strategy
Monotherapy

PD-1 inhibitor
Nivolumab
Pembrolizumab

PD-LI inhibitor
Durvalumab

Avelumab

Atezolizumab

CTLA-4 inhibitor
Ipilimumab
Combination Therapy
Ipilimumab + nivolumab
Concurrent Drugs

Single Concurrent Drugs
o-Adrenoceptor antagonists
Nervous system drug
Diuretics

Multiple Concurrent Drugs
o-Adrenoceptor antagonists +
Nervous system drug
Multiple nervous system drugs
Diuretics +

Nervous system drug
Concurrent AEs
Neurological AEs
Encephalitis

Myasthenia gravis/
Myasthenic syndrome
Facial paralysis
Neuropathy
Encephalopathy

Nervous system disorder
Cardiovascular AEs
Myocarditis

Pericardial effusion

Atrial fibrillation

Cardiac arrest

Cardiac disorder
Musculoskeletal AEs
Immune-mediated myositis
Polymyositis

Arthritis

Musculoskeletal disorder
Urinary AEs

Cystitis

Acute kidney injury
Renal disorder

Bladder disorder

Other AEs

Time to onset (days)
Median (IQR)

n (%)

45 (76.3)
23 (39.0)
22 (37.3)

2(3.4)

7 (11.9)
14(23.7)
8(13.5)
3(5.1)
4(6.7)
1(1.7)
6(10.2)
1(1.7)

3(5.1)
2(3.4)

24 (40.7)
15
4(6.8)

4(6.8)
3(5.1)
2(3.4)
2(34)
1(1.7)
7
2(34)
2(3.4)
1(1.7)
1(17)
2 (3.4)
6
1(17)
1(L7)
1(17)
3(5.1)
5(8.5)
1(17)
1(17)
3(5.1)
1(17)
3 (22.0)

16 (6-82)
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Total number of patients

Cancer type Study (Patients treated with ABX) Analyses Hazard Ratio HR 95%-Cl Weight
Non-Small Cell Lung Cancer Ahmed Y. 2020 141 (53) U 2.22 [1.51; 3.27] 1.3%
Non-Small Cell Lung Cancer Castello 2021 50 (20) M 4.20 [1.58; 11.16] 0.6%
Non-Small Cell Lung Cancer Castro-Balado 2021 49 (17) M 417 [1.58; 11.02} 0.6%
Non-Small Cell Lung Cancer ~ Conde-Estevez 2021 70 (39) M 1.15 {0.62; 2.14 1.0%
Non-Small Cell Lung Cancer Cortellini 2021 - Pembrolizumab monothera&/ 950 (131) M 1.29 1.04; 1.60] 1.4%
Non-Small Cell Lung Cancer  Cortellini 2021 - Chemo-immunotherapy - TW [-30;0] 302 (47) M 1.42 [0.91; 2.22] 1.2%
Non-Small Cell Lung Cancer Cortellini 2021 - Chemo-immunotherapy - TW [0;+eo[ 302 (117) M 1.29 [0.91; 1.83] 1.3%
Non-Small Cell Lung Cancer Derosa 2018 239 (48) M 1.30 [0.92; 1.84] 1.3%
Non-Small Cell Lung Cancer Fang 2022 85 (17) U 0.96 {0.25; 3.74] 0.4%
Non-Small Cell Lung Cancer  Forde 2020 86 (34) U 2.33 1.27; 4.27] 1.0%
Non-Small Cell Lung Cancer Galli 2019 157 (27) U 1.40 [1.07; 1.84] 1.4%
Non-Small Cell Lung Cancer Geum 2021 140 (70) U 0.98 [0.67; 1.44] 1.3%
Non-Small Cell Lung Cancer Hakozaki 2019 90 (13) U* 2.99 [1.44; 6.19] 0.9%
Non-Small Cell Lung Cancer Hamada 2021 69 (18 M 3.16 [1.57; 6.35] 0.9%
Non-Small Cell Lung Cancer Hogue 2019 - TW [-90;0 161 (58) M 1.02 0.67; 1.57 1.2%
Non-Small Cell Lung Cancer ~ Hogue 2019 - TW [0;+e9| 161 533 M 0.60 0.39; 0.92 1.2%
Non-Small Cell Lung Cancer Hopkins 2022 - TW [-30;0] 2723 (194 M 0.95 0.79; 1.14 1.5%
Non-Small Cell Lung Cancer Hopkins 2022 - TW [0;30] 2723 (518) M 1.23 [1.10; 1.37] 1.5%
Non-Small Cell Lung Cancer Hossain 2020 63 (18 U 1.62 {0.85; 3.09] 1.0%
Non-Small Cell Lung Cancer Huemer 2019 142 (62) U 1.02 0.69; 1.50] 1.3%
Non-Small Cell Lung Cancer  von Itzstein 2022 - TW [-42;0] 133 (19) M 1.16 0.68; 1.95] 1.1%
Non-Small Cell Lung Cancer von ltzstein 2022 - TW [0;42] 133 (35) M 1.63 0.96; 2.77] 1.1%
Non-Small Cell Lung Cancer  Jin 2019 37 (11) U 0.99 0.39; 2.52 0.7%
Non-Small Cell Lung Cancer  Kim H. 2019 131 (60) M 2.38 1.28; 4.42) 1.0%
Non-Small Cell Lung Cancer Kostine 2021 149 (41) U 1.05 0.67; 1.64] 1.2%
Non-Small Cell Lung Cancer Kulkarni 2020 140 (54) U* 1.12 0.75; 1.68] 1.2%
Non-Small Cell Lung Cancer ~ Medjebar 2020 178 (31) M 0.73 [0.44; 1.21] 1.1%
Non-Small Cell Lung Cancer Mielgo Rubio 2018 - Intravenous ABX 168 (24) U 3.03 [1.79; 5.14] 1.1%
Non-Small Cell Lung Cancer Mielgo Rubio 2018 - Oral ABX 168 (56) U 1.25 0.82; 1.91} 1.2%
Non-Small Cell Lung Cancer Mielgo Rubio 2019 - Intravenous ABX 121 (36) M 4.48 2.21; 9.10 0.9%
Non-Small Cell Lung Cancer Mielgo Rubio 2019 - Oral ABX 121 (19) M 1.73 0.76; 3.94] 0.8%
Non-Small Cell Lung Cancer ~ Ochi 2021 531 (98) U 1.14 [0.89; 1.46] 1.4%
Non-Small Cell Lung Cancer Ouaknine Krief 2019 72 (30) M 1.60 [0.84; 3.06] 0.9%
Non-Small Cell Lung Cancer Peng 2021 117 (41) U 1.42 [0.93; 2.18] 1.2%
Non-Small Cell Lung Cancer Qiu 2022 148 (80) U 1.64 [1.16; 2.33} 1.3%
Non-Small Cell Lung Cancer Rounis 2021 66 (34) U 1.66 [0.26; 10.68 0.3%
Non-Small Cell Lung Cancer Ruiz-Patino 2020 140 2323 U 1.50 [0.73; 3.09] 0.9%
Non-Small Cell Lung Cancer  Schett 2019 - TW [-60;0] 218 (33 u* 3.45 [1.44; 8.28] 0.7%
Non-Small Cell Lung Cancer Schett 2019 - TW [0;+eo[ 218 (N/A) U 0.86 [0.61; 1.22] 1.3%
Non-Small Cell Lung Cancer  Svaton 2020 224 (27) M 0.85 {0.46; 1.56] 1.0%
Non-Small Cell Lung Cancer ~ Thompson 2017 74 (18) M 2.50 1.15; 5.43] 0.8%
Non-Small Cell Lung Cancer  Tomita 2020 79 524) U 2.18 1.24; 3.83 1.0%
Non-Small Cell Lung Cancer  Zhang 2021 69 (16) U 1.01 0.53; 1.92 1.0%
Non-Small Cell Lung Cancer  Zhao 2019 109 (20) M 3.45 1.79; 6.66 0.9%

Urothelial Carcinoma Fukuokaya 2022 227 (61) M 1.07 [0.69; 1.65] 1.2%
Urothelial Carcinoma Hoffman-Censits 2020 - TW [-90;0] 350 (167) M 1.03 [0.74; 1.43] 1.3%
Urothelial Carcinoma Hoffman-Censits 2020 - TW [0;+co[ 350 (169) M 1.00 [0.72; 1.39] 1.3%
Urothelial Carcinoma Hopkins 2020 896 §235 U 1.24 1.05; 1.46] 1.5%
Urothelial Carcinoma lida 2021 115 (N/A M 1.43 0.85; 2.40 1.1%
Urothelial Carcinoma Ishiyama 2021 67 (15) M 3.43 1.76; 6.70] 0.9%
Urothelial Carcinoma Khan M. 2020 - TW [-60;0] 130 (70) U 0.91 [0.46; 1.80] 0.9%
Urothelial Carcinoma Khan M. 2020 - TW [0;60] 130 (44) U 1.31 [0.78; 2.21] 1.1%
Urothelial Carcinoma Okuyama 2022 155 (71) M 0.67 0.42; 1.08] 1.2%
Urothelial Carcinoma Routy 2018 42 (12) M 1.96 0.91; 4.23 0.8%
Urothelial Carcinoma Ruiz-Banobre 2021 119 (11) M 1.67 0.77; 3.63 0.8%
Urothelial Carcinoma Tomisaki 2022 40 (12 M 0.90 0.25; 3.20 0.5%
Urothelial Carcinoma Weinstock 2020 1747 (986) U 0.94 [0.87; 1.02] 1.5%
Melanoma Elkrief 2019 (10) M 3.12 [1.24; 7.90] 0.7%
Melanoma Hemadri 2019 172 (29) u* 1.32 0.75; 2.32] 1.0%
Melanoma Kostine 2021 293 (42) U 2.10 1.44; 3.06] 1.3%
Melanoma Swami 2020 166 (30 U 1.28 0.80; 2.04} 1.2%

Renal Cell Carcinoma Braun 2022 1805 (199) M 1.29 1.06; 1.57 1.4%
Renal Cell Carcinoma Derosa 2021 707 (104) U 1.24 [0.99; 1.55] 1.4%
Renal Cell Carcinoma Guven 2021 93 (31) M 2.24 1.28; 3.90] 1.1%
Renal Cell Carcinoma Kostine 2021 83 (20) U 1.06 0.55; 2.05] 0.9%
Renal Cell Carcinoma Kulkarni 2020 55 (24) M 2.70 1.27; 5.75} 0.8%
Renal Cell Carcinoma Lalani 2019 - Institutionnal cohort 146 (31) M 1.96 1.20; 3.20 1.1%
Renal Cell Carcinoma Ueda 2019 31 (5) M 3.83 [1.12;13.11] 0.5%
Hepatocellular Carcinoma Pinato 2022 - ICI monotherapy 258 (33) M 1.49 1.23; 1.81] 1.5%
Hepatocellular Carcinoma Pinato 2022 - Chemo-immunotherapy 584 (102) M 1.50 [1.27; 1.78] 1.5%
Hepatocellular Carcinoma Spahn 2020 99 (13 U 1.65 0.91; 3.01] 1.0%
Hepatocellular Carcinoma Fessas 2021 402 (155) M 0.73 0.57; 0.93} 1.4%
Esophagogastric Cancer Greally 2019 161 (62) U 1.10 0.78; 1.55 1.3%
Esophagogastric Cancer Guo 2020 49 (21 M 5.11 [2.42; 10.80] 0.8%
Gastric Cancer Jung 2021 228 (114) M 2.86 [2.13; 3.85] 1.4%
Esophagogastric Cancer Kim J.H. 2021 60 (15) M 4.32 [1.81; 10.32} 0.7%
Gynecologic Cancers Chambers 2021 - TW ‘30;03 101 (23) M 3.10 1.75; 5.49 1.0%
Gynecologic Cancers Chambers 2021 - TW [0;+c9 101 (35) U 0.59 0.33; 1.05} 1.0%
Head & Neck Cancer Plana 2020 74 (23) U* 1.03 0.68; 1.57 1.2%
Head & Neck Cancer Vellanki 2020 1037 (372) U 1.48 [1.29; 1.69] 1.5%
Hodgkin Lymphoma Hwang 2020 - TW [-90,0] 2 (20) M 1.24 [0.60; 2.55} 0.9%
Hodgkin Lymphoma Hwang 2020 - TW [0;90] 62 (21) M 3.35 1.56; 7.18 0.8%

Aggregated Ahmed J. 2018 60 (17 U 1.60 [0.84; 3.04} 1.0%

Aggregated Araujo 2021 - TW [-60;0] 216 (34) M 1.72 {1 14; 2.60 1.2%

Aggregated Araujo 2021 - TW [0;+eo[ 216 (92) U 1.03 0.75; 1.41] 1.3%

Aggregated Giordan 2021 138 (31) M 1.90 [1.41; 2.57] 1.4%
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Heterogeneity: /% = 74%, T2 = 0.1782, p < 0.01
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Study (Patients treated with ABX) Hazard Ratio
Ahmed Y. 2020 141 (53)

Bagley 2019 1960 (61)

Castro-Balado 2021 49 (17)

Conde-Estevez 2021 70 (39)

Cortellini 2021 - Pembrolizumab monotherapy 950 (131)
Cortellini 2021 - Chemo-immunotherapy - TW [-30;0] 302 (47)
Cortellini 2021 - Chemo-immunotherapy - TW [0;+e¢[ 302 (117)

Derosa 2022 338 (69)
Hakozaki 2019 90 (13)
Hamada 2021 69 (18)
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Hogue 2019 - TW [0;+o9[ 161 (33)
Hopkins 2022 - TW [-30;0] 2723 (194)
Hopkins 2022 - TW [0;30] 2723 (518)
Huemer 2019 142 (62)
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Nyein 2022 256 (46)
Ouaknine Krief 2019 72 (30)
Pinato 2019 119 (29)
Ruiz-Patino 2020 140 (32)
Schett 2019 - TW [-60;0] 218 (33)
Stokes 2021 - TW [-30;0] 3634 (762)
Stokes 2021 - TW [0;60] 3223 (970)
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(immunotherapy[Title/Abstract] OR immunotherapies[Title/Abstract] OR immunotherapeutic[Title/Abstract] OR
immunotherapeutics[Title/Abstract] OR ICI[Title/Abstract] OR ICls[Title/Abstract] OR CPI[Title/Abstract] OR "immune-checkpoint
inhibitor"[Title/Abstract] OR "immune checkpoint inhibitor"[Title/Abstract] OR "immune-checkpoint blockade"[Title/Abstract] OR

"immune checkpoint blockade"[Title/Abstract] OR ICB[Title/Abstract] OR ICBs[Title/Abstract] OR nivolumab[Title/Abstract] OR
opdivo([Title/Abstract] OR pembrolizumab|Title/Abstract] OR keytruda[Title/Abstract] OR atezolizumab|[Title/Abstract] OR
tecentriq[Title/Abstract] OR avelumab(Title/Abstract] OR bavencio[Title/Abstract] OR durvalumab[Title/Abstract] OR
imfinzi[Title/Abstract] OR ipilimumab[Title/Abstract] OR yervoy[Title/Abstract] OR cemiplimab[Title/Abstract] OR
libtayo[Title/Abstract] OR toripalimab|[Title/Abstract] OR TopAlliance[Title/Abstract] OR sintilimab[Title/Abstract] OR
Innovent|[Title/Abstract] OR camrelizumab|[Title/Abstract] OR dorstalimab|[Title/Abstract] OR tislelizumab|[Title/Abstract] OR "PD-
1"[Title/Abstract] OR PD1[Title/Abstract] OR "PD-L1"[Title/Abstract] OR "PD-(L)1"[Title/Abstract] OR PDL1[Title/Abstract] OR
"CTLA-4"[Title/Abstract] OR CTLA4[Title/Abstract] OR "AMP-124"[Title/Abstract] OR "AMP-514"[Title/Abstract] OR "STI-
A1110"[Title/Abstract] OR "TSR-042"[Title/Abstract] OR "RG-7446"[Title/Abstract] OR "BMS-936559"[Title/Abstract] OR "MEDI-
4736"[Title/Abstract] OR "MSB-0020718C"[Title/Abstract] OR "AUR-012"[Title/Abstract] OR "STI-A1010"[Title/Abstract])
AND
(antibiotic*[Title/Abstract] OR antimicrobial*[Title/Abstract] OR "anti-infective"[Title/Abstract] OR "anti-
infectives"[Title/Abstract] OR macrolide*[Title/Abstract] OR fluoroquinolone*[Title/Abstract] OR quinolone*[Title/Abstract] OR
"beta-lactam"[Title/Abstract] OR "beta-lactams"[Title/Abstract] OR cephalosporin*[Title/Abstract] OR
tetracycline*[Title/Abstract] OR penicillin*[Title/Abstract] OR aminoside*[Title/Abstract] OR cycline*[Title/Abstract] OR "co-
medication"[Title/Abstract] OR comedication*[Title/Abstract] OR "concurrent medication"[Title/Abstract] OR "concomitant
medication"[Title/Abstract] OR "concurrent drug"[Title/Abstract] OR "concomitant drug"[Title/Abstract] OR "co-
medications"[Title/Abstract] OR "concurrent medications"[Title/Abstract] OR "concomitant medications"[Title/Abstract] OR
"concurrent drugs"[Title/Abstract] OR "concomitant drugs"[Title/Abstract])
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Aggregated
Aggregated
Aggregated
Aggregated

Total number of patients

Study (Patients treated with ABX) Analyses Hazard Ratio HR
Ahmed Y. 2020 141 (53) M 2.63
Bagley 2019 1960 (61) M 1.16
Castello 2021 50 (20) U 1.60
Castro-Balado 2021 49 (17) M 3.80
Conde-Estevez 2021 70 §39) M 1.15
Cortellini 2021 - Pembrolizumab monotherapy 950 (131) M 1.42
Cortellini 2021 - Chemo-immunotherapy - TW -30;08 302 (47) M 1.42
Cortellini 2021 - Chemo-immunotherapy - TW [0;+e[ 302 (117) M 1.29
Derosa 2018 239 (48) U 2.50
Derosa 2022 338 (69) M 1.36
Do 2018 109 (87) U 3.45
Forde 2020 86 (34) U 1.95
Galli 2019 157 (27) u* 1.22
Geum 2021 140 (70) U 2.29
Hakozaki 2019 90 (13) M 2.02
Hamada 2021 69 (18) M 1.99
Hogue 2019 - TW [-90;0 161 (58) M 1.12
Hogue 2019 - TW [0;+c9| 161 (33) M 0.66
Hopkins 2022 - TW [-30;0] 2723 (194) M 1.23
Hopkins 2022 - TW [0;30] 2723 (518) M 1.32
Hossain 2020 63 (18) U 2.01
Huemer 2019 142 (62) M 0.91
von ltzstein 2022 - TW [-42;0] 133 (19) M 1.23
von ltzstein 2022 - TW [0;42] 133 (35) M 2.75
Kim H. 2019 131 (60) U 3.83
Kostine 2021 149 (41) U 1.54
Kulkarni 2020 140 (54) u* 2.18
Lu 2020 340 (128) M 2.90
Medjebar 2020 178 (31) M 0.84
Metges 2018 325 (153) u* 0.67
Mielgo Rubio 2018 - Intravenous ABX 168 (24) M 2.85
Mielgo Rubio 2018 - Oral ABX 168 (56) M 1.16
Mielgo Rubio 2019 - Intravenous ABX 121 (36) M 3.75
Mielgo Rubio 2019 - Oral ABX 121 (19) M 1.00
Nyein 2022 256 (46) M 1.35
Ochi 2021 531 (98) U 1.38
Ouaknine Krief 2019 72 (30) M 2.20
Peng 2021 117 (41) U 1.42
Pinato 2019 119 (29) M 9.30
Qiu 2022 148 (80) U 2.28
Ren 2021 98 (27) U 1.60
Riudavets 2019 267 (141) u* 0.98
Rounis 2021 66 (34) U 135
Ruiz-Patino 2020 140 (32) M 2.88
Schett 2019 - TW -60;0? 218 (33) M 3.73
Schett 2019 - TW [0;+c9 218 (N/A) U 1.12
Spakowicz 2020 196 (70) U 1.50
Stokes 2021 - TW [-30;0] 3634 (762) M 1.31
Stokes 2021 - TW [0;60] 3223 (970) M 1.33
Svaton 2020 224 (27) M 0.66
Thompson 2017 74 (18) M 3.50
Tomita 2020 79 (24) u* 2.02
Verschueren 2021 221 (35) M 1.20
Zhang 2021 69 (16) U 0.89
Zhao 2019 109 (20) M 2.86
Agarwal 2019 101 (26) M 2.01
Braun 2022 1483 (182) M 1.23
Fukuokaya 2022 227 (61) M 1.33
Hoffman-Censits 2020 350 (167) U* 1.11
Hopkins 2020 896 (235) U 1.44
Ishiyama 2021 67 (15) M 3.34
Khan M. 2020 - TW [-60;0] 130 (70) U 1.46
Khan M. 2020 - TW [0;60] 130 (44) U 1.62
Okuyama 2022 155 (71) M 1.02
Ren 2021 143 (38) U 2.30
Routy 2018 42 (12) u* 2.44
Ruiz-Banobre 2021 119 (11) M 1.29
Spakowicz 2020 38 (20) U 3.01
Tomisaki 2022 40 (12) M 0.76
Weinstock 2020 1747 (986) U 0.96
Bagley 2019 1177 (23) M 0.70
Elkrief 2019 74 (10) M 2.00
Hemadri 2019 172 (29) u* 1.81
Kostine 2021 293 (42) U 1.80
Mohiuddin 2020 568 (114) M 1.95
Pinato 2019 38 (17) U 7.50
Poizeau 2022 2605 (749) M 1.01
Spakowicz 2020 321 (74) U 1.46
Swami 2020 166 (30) U 1.73
Braun 2022 1805 (199) M 1.28
Derosa 2021 707 (104) M 1.60
Ernst 2021 427 (56) M 1.10
Guven 2021 93 (31) M 2.31
Kostine 2021 83 (20) U 1.98
Kulkarni 2020 55 (24) M 4.20
Lalani 2019 - Institutionnal cohort 146 (31) M 1.44
Spakowicz 2020 104 (34) U 2.01
Fessas 2021 402 (155) M 1.01
Jun 2020 95 (25) M 1.68
Pinato 2022 - ICI monotherapy 258 (33) M 1.31
Pinato 2022 - Chemo-immunotherapy 584 (102) M 1.14
Ren 2021 317 (36) U 1.80
Shen 2021 36 (4) U 3.15
Spahn 2020 99 (13) U 1.76
Greally 2019 161 (62) U 1.26
Guo 2020 49 (21) M 5.88
Jung 2021 228 (114) M 2.47
Kim J.H. 2021 60 (15) M 5.14
Ren 2021 46 (14) U 3.00
Plana 2020 74 (23) M 1.05
Spakowicz 2019 64 (19) U 1.37
Vellanki 2020 1037 (372) U 1.70
Chambers 2021 - TW {-30;0? 101 (23) M 3.03
Chambers 2021 - TW [0;+co 101 (35) U 0.87
Spakowicz 2020 45 (14) U 1.16
Abu-Sbeih 2019 826 (569) U 2.21
Ahmed J. 2018 60 (17) U 2.90
Araujo 2021 - TW -60;0? 216 (34) M 2.39
Araujo 2021 - TW [0;+] 216 (92) U 1.17
Eng 2021 2737 (1615) M 1.12
Gaucher 2021 372 (100) M 1.47
Giordan 2021 138 (31) M 211
Iglesias-Santamaria 2019 102 (60) U 0.98

apoor A. 2020 155 (70) U 1.02
Masini 2019 169 (59) U 0.59
Ng Wei Qi 2021 44 (9) u* 4.90
Perez-Ruiz 2020 253 (53) U* 2.34
Pinato 2019 39 (6) M 7.80
Sen 2018 - TW [-60;31] 172 (19) U 2.00
Sen 2018 - TW [-30;0] 172 (14) u* 1.57
Spakowicz 2020 225 (89) U 2.11
Tinsley 2019 291 (92) M 1.47
Vick 2020 216 (81) U 3.40
Vitorino 2021 114 (24) U 0.97
Random effecss model 1.61

Heterogeneity: /“ = 82%, % =0.1797, p <0.01
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Age, ment tive ERCC1 ERCC1
Years patients patients
(n) (n)
Doll et al. (24) Retrospectiv NA Locally Radiation Fluorescent THC NA NA Patients with low ERCC1 expression had significantly worse OS (17.9% vs.
advanced 50.1%, P = 0.046) and worse DFS (21.4% vs. 47.4%, P=0.083) than those

with higher expression levels.

Hasegawa et al. Retrospectiv 46 FIGO Radical hysterectomy ~ THC 7 2 Patients with high ERCCI expression had significantly worse DFS than
(25) Stage I to those with low ERCC1 expression (P = 0.005). Similar trends were also
i observed in those patients received cisplatin-based chemotherapy or
chemoradiotherapy with cisplatin (P=0.002).
Liang etal. (26) Retrospectiv 54 Locally Concurrent HC 16 34 ‘The 5-year disease-specific survival rates of the ERCC1-positive and
Advanced  chemoradiotherapy ERCCl-negative groups were 43.8% vs. 76.5% (P = 0.011). The 5-year OS

rates for the ERCC1-positive and ERCCI-negative groups were 50.0% vs.
85.3% (P = 0.008).

Parketal. (Park | Retrospectiv 50 Stage 1B Neoadjuvant HC 34 9 Response to chemotherapy was detected in all patients with negative

etal. (27)) chemotherapy ERCCI expression. ERCCI negativity was an independent predictor for
(etoposide and responsiveness to neoadjuvant chemotherapy (P=0.021). Low ERCC1
cisplatin) expression was a significant prognostic factor of DFS in multivariate

analysis (P=0.046).

Baietal. (Baietal. | Retrospectiv 53 Locally Chemoradiotherapy ~ RT-PCR 29 31 Patients with low ERCC1 mRNA expression had a significantly higher rate

(28)) Advanced  (cisplatin) of complete response (86.21%) than those with high level of ERCCI
(19.36%, P < 0.001).

Doll et al. (Doll Retrospectiv NA Locally Chemoradiation Immunofluorescent NA NA Tumoral ERCCI status (nuclear to cytoplasmic ratio) was correlated to OS

etal. 29)) Advanced (HR=3.13, 95%CI: 1.27-7.71, P=0.013) and PES (HR=2.33, 95%CI: 1.05-
5.18, P=0.038).

Bajpai et al. (22))  Retrospectiv 43 NA Chemoradiotherapy RT-PCR, Western n 39 ERCCI expressions were statistically lower in cervical cancer tissues than

(cisplatin) blot that in the normal cervix tissues (P=0.025)

Muallem et al Retrospective 44 advanced  EBRT and Cisplatin  IHC 7 40 ‘The 2-year OS in the low, intermediate, and high ERCCI group was

(23) 68.6%, 71.7%, and 90.7%, respectively. The 2-year PFS in the low,
intermediate, and high ERCCI group was 49.7%, 33.5%, and 72.7%,
respectively.

KATO etal. (1) Retrospectiv 46 Stage [ Nedaplatin HC 26 19 ‘There were no significant differences in ERCCI expression between the
BI-IV B low and high sensitivity to nedaplatin groups (P=0.079).

Zwenger etal (30) | Prospective 435 advanced  Cisplatin HC 35 53 Poor DFS (P=0.021) and OS (P=0.005) were observed in cisplatin

chemoradiotherapy patents with high ERCC1 expression.

Karageorgopoulou  Retrospective 58 metastatic/  Cisplatin and HC 2 1 Higher ERCCI expression had shorter PFS and OS than those with low

etal. (12)) recurrent  ifosfamide ERCCI expression (mPFS: 5.1 vs 10.2 months, P = 0.027; mOS: 10.5 vs.

21.4 months, P = 0.006).

Ryu et al. (31) Retrospective 51 IVB/ Cisplatin HC 13 19 ‘The median OS of ERCC1-high patients was 320 days and that of ERCC1-
metastatic/ low patients was 617 days (HR=2.322, 95%CI: 1.051-5.129; P=0.037). The
recurrent median PFS was significantly poorer in ERCC1-high than in ERCCI-low

patients (135 vs 242 days; HR=2.428, 95%Cl: 1.145-5.148; P=0.032).

Jeong et al. (32) Retrospectiv 46 IBltoll  Chemoradioresistance ~ THC 60 71 High ERCCI expression suggested significantly unfavorable DFS (76.8%

B vs. 88.6%, P=0.022).

ERCCI, excision repair cross-complementation group1; IHC, immunohistochemistry; OS, overall survival; PD, progressive disease; HR, hazard ratio; PES, progression free survival; DFS, disease-free survival; RT-PCR, real-time polymerase chain reaction.
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Study/
Reference

Sample size

Invasive
HAN et al. cervical cancer:
(33) 229; non-cancer

controls: 204

Zhang et al. Cervical cancer:

(34)

154; non-cancer
controls: 177

260 patents
with cervical

Soares et al. cancer who

(35) underwent
cisplatin
treatment

Examination
sample/
tissue and
method

Peripheral blood;
PCR restriction
fragment length
polymorphism
assay

Peripheral blood;
SNPware 12plex
assay

White blood cell;
Allelic
discrimination
RT-PCR

ERCC1 poly-
morphism

C19007T

118C>T

1s3212986

Main findings

The allelic frequencies of cancer patients were not significantly different from that of
controls (P = 0.925); The C/C genotype had no increased risk for cervical cancer
susceptibility compared with the TT genotype (P = 0.932). There was no significant
relationship between the ERCC1 C19007T polymorphism and cervical cancer
invasiveness (all P<0.05).

ERCC1 118C>T was associated with high risk of cervical squamous cell carcinomas
under additive genetic model and the dominant genetic model (all P< 0.05)

An association between ERCCI rs3212986 and the onset of late gastrointestinal
toxicity underwent cisplatin treatment (P=0.038); Patients carrying AA homozygous
genotype have an increased risk of developing late gastrointestinal toxicity as
compared to patents with the C allele (OR = 3.727, 95%CI: 1.199-11.588, P= 0.017).

ERCC, excision repair cross-complementation groupl; OR, odds ratio; Cl, confidence interval; RT-PCR, real-time polymerase chain reaction.
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Treatments
for cervical
cancer

Study/
Reference

Britten et al. Cisplatin

(36) resistance
Torii et al. Cisplatin and
(21) 5-FU
Almeida

Radioth
etal. (37) adiotherapy

Experimental
model

Cervical
carcinoma lines
(HT137, HT155,
HT172, HT180
and HT212)

Uterine cervical
adenocarcinoma
cells (HCA-1 and
TCO-2)

CASKI and C33A
cells

Main findings

There was a significant correlation between ERCC1 mRNA expression and cisplatin resistance in all
cervical carcinoma lines (all P< 0.05), but such an association was not significant in ERCCI protein
expression (all P>0.05). It might be possible to identify cervical tumors likely to be resistant to cisplatin by
examining pre-treatment ERCC1 mRNA levels.

There was an association between ERCC1 expression and sensitivity to cisplatin in cervical
adenocarcinoma cells. A cisplatin-resistant cell line HCA-1R showed a dramatically higher level of ERCC1
mRNA expression than the native cells. Co-administration of cisplatin and 5-FU showed the synergistic or
additive effects via inhibiting of ERCCI expression.

Absent or weak modulations of ERCC1 was detected after exposure to 1.8 Gy of radiotherapy in cell lines,
which might be associated with the inhibition of the regulatory axis p53-EGFR-ERCCI. Increased
expressions of ERCCI (5/10 patients; P=0.0294) was found in malignant tissues after radiotherapy with the
same radiation dose. This study showed that upregulation of ERCC1 may be part of a radioresistance
mechanism in cervical cancer.

ERCCL, excision repair cross-complementation groupl; EGFR, epidermal growth factor receptor.
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References

Preclinical studies (30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
Clinical trials NCT02208362
NCT01818323
NCT03287804
NCT04661384

Ligand

IL-11
Adnectin
FLT3L
GM-CSF
EPHRIN B2
Tri-APRIL
TPO

1L-10
CD27
1L-13

TIE
APRIL
1L-13

Target CAR structure
IL11-Ra IL11 - CD28 -CD3 {
EGFR Adnectin- CD28 - 4-1BB - CD3 {
FLT3 FLT3L - 4-1BB - CD3 {
GMR GM-CSF - CD28 - CD3 {
EPHB4 EPHRIN B2 -CD28 - CD3 {
BCMA/TACI  Tri-APRIL - 4-1BB - CD3 {
MPL R TPO - CD28 - CD3 {
IL-10R IL-10 - 4-1BB - CD3 {
CD70 CD27- CD3 {
IL-13R02 IL-13(E13Y) - 4-1BB - CD3 {
ErbB 1-4 TIE - CD28 - CD3 {
BCMA/TACI  APRIL - CD28 - OX40 - CD3 {
IL-13R02 IL-13(E13Y) - 4-1BB - CD3 {

Disease

0OS and lung metastases
Lung cancer

AML

AML, JMML

RMS

MM

AML

AML

Diffuse large B-cell lymphoma, follicular lymphoma, AML
Glioma

HNSCC

MM

Leptomeningeal glioblastoma, Ependymoma or medulloblastoma

OS, osteosarcoma; EGER, epidermal growth factor receptor; FLT3L, EMS-like tyrosine kinase 3 ligand; FLT3, EMS-like tyrosine kinase 3; AML, acute myeloid leukemia; GM-CSF,
granulocyte-monocyte colony-stimulating factor; GMR, granulocyte-monocyte colony-stimulating factor receptor; JMML, juvenile myelomonocytic leukemia; EPHB4, ephrin type-B
receptor 4; RMS, rhabdomyosarcoma; APRIL, a proliferation-inducing ligand; BCMA, B-cell maturation antigen; TACI, transmembrane activator and calcium-modulator and cyclophilin
ligand interactor; TPO, thrombopoietin; MPLR, myeloproliferative leukemia receptor; MM, multiple myeloma; HNSCC, head and neck squamous cell carcinoma. The clinical trials are

collected from clinicaltrials.gov.





OPS/images/fimmu.2023.1071675/crossmark.jpg
©

2

i

|





OPS/images/fimmu.2022.1065379/crossmark.jpg
©

2

i

|





OPS/images/fimmu.2022.1065379/fimmu-13-1065379-g001.jpg
A 1.001 B 1.0
L.
075 08 !
2 s L ERCC1-negative
< 2 |
3 H 0.6 T
£ 050 ° L
g 2
g = A N S
= g 04 ERCC1-positi
-positive
0.25 3 positi
ERCC1 mi
————— > lower quartie
0.004 < lower quartie p=0.046
0 2 4 6 8 10
Years from Diagnosis
# at risk 0.0 20.0 40.0 60.0 80.0
> lower quartile 24 19 15 9 7 7 )
< lower quartile 8 2 1 1 1 1 Overall survival (months)

D E I ERCC1-low
") ERCC1-high

s _

g 3

:

5 e

§ g

[ 3

£ ERCC1 H-Score of Expression §

g —Mo-1 4~ 0-1-censored

3 11525  ~1525-censored

3 ~ 3-censored
0 12 24 36 48 60 0 500 1000 1500 2000

Months Overall survival (days)





OPS/images/fimmu.2022.1065379/fimmu-13-1065379-g002.jpg
ERCC1 low-expression (n=29)

p=0.005
ERCCI high-expression (n=7)
20 40 60 80 100 120 140
(months)
B .o
08 Low ERCCI eresaon
g
5 08 gL
@
E
8.0 0 e TRt 4%
E 041 HhERCC cprezacn
H
o
0.2
P=0.046
0.0 T - - -
[ 25 50 s 100 125
Disease free survival (months)
1.0
o
0.8
g
§ 06 ERCC1-negative
2 1
g | o
E 0.4 2 i X
3 ERCC1-positive

0.0 20.0 40.0 60.0 80.0
Disease-specific survival (months)

Cumulative survival

Cumulative Progression Free Survival
o
H

-
o

o
®

o
o

ERCC1 H-Score of Expression

0.2
—Mo-1 ~t- 0-1-censored
11525 ~1-1.5-2.5-censored
0.0 3 3-censored
0 12 24 36 48 60
Months
Group C
0FS s o ERRC evsn
| ™
‘ —» H-score
| 1 N T
| P=0.021
1. ™) ERCC1-low
") ERCC1-high
0.
0.
04
0.
0.

0 200 400 600 800
Progression-free survival (days)

1000





OPS/images/fimmu.2022.1065379/fimmu-13-1065379-g003.jpg
[ Cancer cells survival and }

cisplatin/radiotherapy resistance






OPS/images/fonc.2022.958756/crossmark.jpg
©

2

i

|





OPS/images/fimmu.2023.1071675/fimmu-14-1071675-g012.jpg
>
@

Enrichment plot KEGG terms Enrichment plot KEGG terms
9 ool —— [
] 9 o064
2
H [
2 -0.24 -
- @ 047
E-044 £
S 2 024 Term
£ . £ LINOLEIC_ACID_METABOLISM
€ 06 & == _ACID_|
i} — PYRMIDINE METASOLISM ES-055NES=1.7,P=0.0099,FDR=0.16
2.4,P=0,FDR=0 0.0

INTESTINAL IMMUNE ETWORK_FOR_IGA_PRODUCTION

S|
[T IR UL AL BORINE METABOLIGM " -0 | 0 — 3 =0 018 FDR=024
T ES=-0.55,NES=-2.2,P=0 FDR=7e-04 | | l ' — HEMATOF'OIETIC CELL_LINEAGE
[ T S T AN R i " T E5<057 NES=1 8 =004 FOR0.2

d h_ex| i
E 0.0 W— igh_ ] W_ High_ex|
&Y -0.54 g -0.59

v —
10000 20000 0

' I ES 069 NES=1.7, P=0. 025 FDR=0.18

o

10000 20000
Rank in ordered dataset Rank in ordered dataset
Cc D
Enrichment plot HALLMARK terms Enrichment plot HALLMARK terms
@ o0 = 2 s
:
2 024 F 02
e o
aE> E 014
5 4 £ 04 Term
= Term 8 __ KRAS_SIGNALING_DN
i -0.64 __ MTORC1_SIGNALING “01 £5=0.17,NES=0.73,P=0.96,FDR=1
S 1 COAGULATION

7NES=-24,P=0,FDR=0 =

_— OLYS “ I | ES=0.22 NES=0.82,P=0.71,FDR=1
|| [ T 1 1 ] ES=-061,NES=-2.3,P=0,FDR=0 1 , __ KRAS_SIGNALING UP
__ DNA_REPAIR | £5=0.21,NES=0.86,P=0.62, FDR=1
I LT TN ES=7067,NES=-2.2,P=0,FDR=0 I __ ALLOGRAFT REJECTION
Hids | | i £5-0.3NES 88,20 45 FOR=1
X 004 High_ex| i
£ o0 'Low;exp\* \9[ £ ool o \Huhr
X -0.5+ © -054

6 10&00 20\!100 !'J 10000 20600
Rank in ordered dataset Rank in ordered dataset






OPS/images/fimmu.2023.1071675/fimmu-14-1071675-g008.jpg
166 16F28P3_exp
Pv=2370:29
=Classic-ke 23,

pol
5

@

°

Expression (log2CPM)

D
HNSC :: IGF2BP3_exp
P 126,08
n=Aypical 67,
Bl 7,
Classca 40,
Mesenchymal 74
S10
Q.
S
&
g 5
5
20
14
o
o -5
<7> ,o,?w &9\ &
A
«
Subtype
G
CN TOW 144,
MSI 124,
POLE 79
12
s
o
O 89
N
=)
S 4
5
2 o]
1%
o
g -4
3
]
X > &
\»(9 \,0$ @9 o4
b <
SR

B ceuw_?gzen _exp
neClasdio e 47,
G-CIMP-high 2,
SCMpow's,
. LGme-Gam 1,
=
o
Q75
D
250 ?
S25
20.0
S
¢ -o*\‘g’ S Q’°$ e?’\“ S
RS
& & S
C & (AR, é@
el
@E
Subtype
E ACC : IGF2BP3_exp
nxﬁqv‘ 19,
CIMP-intermediate 27,
s CIMP-low 32
=10
o
8
> 5
o
5o ‘ $
7]
@
o5
(=8
& - :
& & &
< S Q
SR
o) & )
Q«\
0\\‘*
Subtype
H COAD : IGF2BP3_exp
Pv=2.51e-05
n=CIN 226,
GS 49,
HMSV,
Hiindel 60
_10
=
o
Qs
f=2]
2
59
1]
8
g 59
£
]
N 123 Q >
(&) © ﬁé :\(\b
&
Subtype

c LUSC :: IGF2BP3_exp
Pr=5.07e.05
n=basal 42,
classical 63,
primiive 26,
‘secretory 39
_10
>
o
Q
_g* 5
<
c
-9
7]
g 0
s
3
w
> >
> @ & S
& ,5,‘9\(' & &°
¥ & &
Subtype
BRCA:: IGHEPS 3_exp.
F Pv=3.02e-7:
n:Basa.lﬂz
Her2 73,
LumA 508,
LumB 191,
Normal 137
=
o
Q 51
[=2]
2]
Y
2
o
851
X
n}
S a Py
2 ‘? 'o
PLINS \)@ Qé‘ &
S
Subtype
1
KIRP :: IGF2BP3_exp
Pv=5.15e-08
n=C1 95,
C2a 35,
C2b22,
C2c-CIMP 9
S10
o
Q
@ 59
K]
5
o 04
1%
o
2 51
n}

S

¢ O C:]’
c,
o’b

Subtype

N






OPS/images/fimmu.2023.1071675/fimmu-14-1071675-g009.jpg
B cell

T cell CD4

Correlation
0.5

*¥
KRR ORRER

XREKE ‘
XREKR

T cell CD8

xkk

Neutrophil

*

)

*‘.i

:

H
* S *
A AR H
* 1% |5 \%

*

Macrophage

XXXK
XRRKR

XARKR
%% %%

DC g t
. 1 W . i i
S 1>0N0 0S000VANIANSOSOLCS0A0<CVORON0EOT<Z000
3OS B = O =0 ROz SISO SSECRREEEC
o » “9Ffal0wu¥poFFoarSITBIErcO XS arc* 8
] 5 a @
< o
o
(&)
B
LGG
0.00.10203040506 00 02 04 06 08 0.0010203040500 010203 04
c
o
7,
[7)]
(4]
-
Q
X
]
o
o
@
Y
[0) 00 02 04 06 00 02 04 06 00 01 02 03 04 01 02 03 04 00 01 02 03 020406081.01214
KIRC
=01 0.0 0.1 02 03 04 0.0 0.2 04 06-0.20.002040608101.2 000102030405 -0.2 00 02 04 06 00 05

B cell T cell CD4 T cell CD8 Neutrophil Macrophage DC





OPS/images/fimmu.2023.1071675/fimmu-14-1071675-g010.jpg
3
i
3
n

1U8191}J000 UONEIaLI0D

SENETC ot N Yt osaw YUV osaw
ERR N T “Y ** oun “+* oun
EVE c R RER LV Hom o W
PN e et g " foocs
R vy 2 =
-ERER | R R IR e H 2 oant
> YV Yowo o
o * avid o.o”
3 vous k]
2 vota E] ..
5 ava¥avod ..m ava¥avoo
] avoo avoo
5 2810 3
£
£ 3
E e E
= avay £
ko 3 W o
o A\ RRELY 2
b4 ©
[ b
o Y 3
N 5 " 99mED
P a ** avvd
] P *CWAn
H = " sals
] c
®
£ :
@
r g
2 c
a ]
0 ‘@
o @
2 4
¢ x
3 ?
° o
3}

-

T aws
vos3
osm
avm
20V
wao
OSNH

0830
" ouvs
A uumuz
A o i, R B B b [T
X MR son
N AU Ywows
3 SR
- 3 £98855e
S= 59 mmmmmm
9o mc 8 PExx
2 zF
o =
w
2
3 2w o 2 2o @ e
23 31 T S S
T o ....._us.s .s_.._IEs I —
AR b piopam TR .
SN 3N Ho RRSEER
AR Wi 3
: SV vons Qvauavoo
3 3 ava¥avod avoo
2 NeteeeetcYavoo ; 2810
st ogia 3

N
B B

]

. e c‘ﬁ“‘ .
“uu ks YW IV awis
AAMAMA vosa

B RS SeN oem

48
>
>)

4

Co-expression between IGF2BP3 and MHC genes

Co-expression between IGF2BP3 and chemokine genes
expression between IGF2BP3 and chemokine receptor genes

3333 T334
233 I





OPS/images/fimmu.2023.1071675/fimmu-14-1071675-g011.jpg
IGF2BP1

%DTWA

N
L

Networks

m Physical Interactions

m Co-expression

m Predicted

: m Co-localization

EIF2AKD m Genetic Interactions

m Pathway

» Shared protein domains

NDUFAE4





OPS/images/fimmu.2023.1071675/fimmu-14-1071675-g004.jpg
>

Sensitivity (TPR)

O

Sensitivity (TPR)

Sensitivity (TPR)

B
LAML
3
o
E
2
>
@
s
Q
IGF2BP3 [72]
AUC: 0.818
Cl: 1.000-1.000
0.0 02 04 06 08 1.0
1-Specificity (FPR)
E
LUSC
3
o
e
2
>
.‘ﬁ
IGF2BP3 c
AUC: 0.939 &
Cl: 0.922-0.956
0.0 02 04 06 08 1.0
1-Specificity (FPR)
H
CHOL
3
o
=
2
>
IGF2BP3 g
AUC: 0.926 $

Cl: 0.844-1.000

00 02 04 06 08 1.0

1-Specificity (FPR)

GBM

IGF2BP3
AUC: 0.998
Cl: 0.996-1.000

00 02 04 06 08 1.0

1-Specificity (FPR)

STAD

IGF2BP3
AUC: 0.936
Cl: 0.917-0.955

00 02 04 06 08 1.0

1-Specificity (FPR)

ESCA

IGF2BP3
AUC: 0.920
Cl: 0.895-0.945

0.0 02 04 06 08 1.0

1-Specificity (FPR)

(9]

Sensitivity (TPR)

Sensitivity (TPR)

ucs

IGF2BP:

3

AUC: 0.983
Cl: 0.961-1.000

02 04 06 08
1-Specificity (FPR)

1.0

IGF2BP3
AUC: 0.927
Cl: 0.901-0.953

02 04 06 0.8
1-Specificity (FPR)

1.0





OPS/images/fimmu.2023.1071675/fimmu-14-1071675-g005.jpg
Cancer

GBMLGG
L66

KIPAN

KIRP

KIRC

PAAD
LuAD
MESO

Ace

uvm

STES.

LiHC

BLCA
THCA
KICH

LAML
SARC
SKeMp
Esca
HNSC.
CoAD
COADREAD
PCPG
STAD
THYM
ucEC
GBM

LaML
TARGET-WT
SKCMM
SKCM
T60T
TARGET-NB
PRAD
READ
CHoL
TARGET-ALL
TARGETALLR
Lusc

ov

ucs

oLeC
cesc
BRCA.

s
2 o
e =
@ 0.0{P<0.001 I
0 25 50 75
Time (months)
Low|43 20 7 3 0
High| 42 8 0 0 0
SARC

0.8 0.6 0.4 02 0.0 020,406 08 1012

=
——
-

-

——
—_—
-
-

Hazard Ratio

MESO

.o 1GF2BP3)|

- Low
~+ High{

o] 1GF28P3

~ Low
~+~ High)

[ 50 100 150 200
Time (months)

Low(131 43 1 0

Highl|132 32 7 0
UCEC

1093 1GF2BP3

—~Low
— High
e
=
Overall Survival
HR =1.65 (1.09-2.49)
P=0018
T
0 50 100 150 200
Time (months)
276 8 10 0 0 0
275 62 10 3 1 0

Benand Fato GBMLGG LGG
TGF2BP3 10 GF28P3]
7 iow| £ ~+ Low
4 ~+ High g 08 ~~ High
.29
32) 206
19) 2
.27) = 04
.46) 2 3
pes 'S 0.2{overal S 0.2+ Overall Survival
107(1.011.13) 5 |HR=7. 5 |HR = 3.37 (2.30-4.94)
] Boofpcoon ~ S| Goo{p<oont i
1.05(1.01,1.10) T s 100 150 200 0 50 100 150 200
12101.01,1.47) Time (months) Time (months)
1.35(0.98,1.88)
1.11(0.99,1.25) Low|3s7 68 18 5 0 Low|263 52 14 3 )
1.07(099,1.14) High|348 25 8 2 1 High[264 38 12 4
118(0.97,1.3)
1:10(0.98,1.24)
1.040.88,1.10)
1.05(038,1.12) D E
1040381.11)
145(089,1.59) KIRP KIRG
1.05(097,.12) 210 1GF2BP3] 2.1.04 1GF2BP3
1:43(093,1.36) —+ Low ekalow
107(0.96,1.20) —~ High| 3 -~ High
106(094.1.20) = s
105(036,1.14) S 0.6 S06
104(0.95,1.14) s s
1.02(0.96,1.09) = 04 =04
102(0.36,1.08) g =
1.14(0.53.246) S 0.2{ Overall Survival S 0.2 Overall Survival
102(089,1.16) § | HR=554(266-11.57) € | HR=211(1.54-288)
1.03(0.84,1.26) @ 0.04P<0.001 @ 0.04P <0.001
- - L T T —
bl 0 50 100 150 200 ] 50 100 150
090(084,097) Time (months) Time (months)
093(085,1.01) Low o 269 121 27 o
pror-spd o R T Lo
0.99(0.95,1.03) ighl1as 29 0 0 High 270 86 13 1
LAML LUAD
10 1GF2BP3 10 GF28P3
2 ~ Low| 2 - Low
3 os] ~+ Higl —~ High|
K F]
S o8] © 067
s | o
3 04 3 [
S 0.21 Overall s S 0.2 Overall Surviva
S 7 |HR=1.90 (1.23-2: 5 7 |HR =147 (1.10-1.97)
@ 0.04P=0004 @ g0 P=0008
0 25 50 75 100 0 50 100 150 200 250
Time (months) Time (months)
Low |71 23 1 3 0 Low 263 44 8 2 1 0
High 15 0 0 High(263 20 8 4 2 0
uvm BLCA
2109 TGF28P3 TGF28P3
= —~ Low, - Low
Sosd ~+ High| —+ High|
F
o064
s
044
2
z 0.2 Overall Survival Overall Survival
HR = 3.58 (1.40-9.13) HR = 1.44 (1.07-1.94)
3 oo{P=o000s | P=0015
0 20 40 60 80 0 40 80 120 160
Time (months) Time (months)
Low f40 2% 12 2 Low (207 47 10 1
High [40 26 7 3 High|206 34 13 5 2
PAAD LIHC
1.0 1GF28P3 1.0 1GF28P3
£ —Low £ ——Low
Sos —+ High Sos —+High
s E
2 2
Sos So0s
s s
504 504
2 2
2 0.2 Overall Survival — 2 0.2-{ Overall Survival
S [HR=1.61(1.07-2.48) S [HR=1.43(1.01-2.02)
D o{P=0024 @ ,0{P=0.044
— >
[} 25 50 75 0 30 6 9 120
Time (months) Time (months)
Low/[ss 23 7 1 Low|187 64 25 6 0
High(ss 9 4 1 High[18s 49 20 3






OPS/images/fimmu.2023.1071675/fimmu-14-1071675-g006.jpg
WHO grade: Grade 3

IGF2BP3

2 -+ Low

5 - High
<
o
&
S
®
2
e
3
7]

0 50 100 150 200

Time (months)

Low
High

121 23 5 0 0
122 9 3 a 1

Primary therapy outcome: PD

0 50 100 150

Time (months)
56 23 10 4 0
56 5 2 1 1

Race: Black or African American

200

Low
High

-

Survival probability
© © o ©

50
Time (months)

75 100 125

Histological type: Astrocytoma

21
50.8
[
-]
006
Q
T 0.4
2
o030
®0lP
0 50 100 150 200
Time (months)
Low |97 21 4 0 0
Highles 9 2 1 1

B C

1p/19q codeletion: non-codel

Survival probability

50
Time (months)

259 49 16 2 0
259 12 3 1 1

100 150 200

Low
High

G
Prlmary therapy outcome: SD

IGF2BP3
—+ Low
—+ High

-

Overall Survival

HR = 2.69 (1.28-5.65)
P =0.009

0 40 80 120
Time (months)

73 27 F 4 2 0
74 19 7 3 1

Race: White

IGF2BP3
—+ Low

Survival probability
e o o 9 9o

160
Low

High

J

0.0 P<0001

50 150
Time (months)
Low

317 64 17 5 0
High|319 25 8 2 1

100

200

N
Hlstologlcal type: Oligoastrocytoma

e 9o

Survival probability
o

0. Overall Survival
0.
0 50 100 150
Time (months)

D
IDH status: WT IDH status: Mut
£ z
3 3
3 ©
-3 -3
2 [
o o
® ©
2 2
2 & Overall Survival
a @ HR = 2.05 (1.33-3.18)
0 50 100 150 200 0 50 100 150
Time (months) Time (months)
Low|[123 8 4 1 1 Low[219 44 10 2 0
High|123 0 0 0 0| High|220 39 1 4 0
H
Gender: Female Gender: Male
.3.1.
50.8
3
0.
o
0.4
2
0.
(2]
0.
0 50 100 150 200
3 0 50 100 150
Time (months) Time (months)
Low[148 29 10 4 0 Low[199 37 9 1 0
High[149 15 5 1 1 High 199 12 2 1 0
Age: <=60 Age: >60
sl IGF2BP3 10 1GF2BP3
=0 q —+ Low 2 = Low
'.Eo' — High S 08
] 2
30.6 0.6
o o
0.4 §04
S 2
zo. E 0.2 Overall
3 (2]
9., 0.04 P <0.001
0 50 100 150 200 [1] 20 40 60 80
Time (months) Time (months)

Low

275 57 18 5 0
High|277 31 8 2 1

Low

71 27 9 2 0
High| 72 13 3 0 0





OPS/images/fimmu.2023.1071675/fimmu-14-1071675-g007.jpg
>
@
(9]

CESC : IGF2BP3_exp LUAD :: IGF2BP3_exp LUSC : 1GF28P3_exp
Pv=4.51e-01 Pv=5.28e-21 g
n=C177,C2217,C4 6 n=C183,C2 147,C3 179,C4 20,C6 28 ECIATS s S 8 A Tes 1d

510 S 104 =

2 = = 1ol

o O 8)

X 51 > >

<! S 57 S 51

& c =

O 04 k) o

g @ 01 @ 04

g 3 4

o 4 o o

< -5

- i X5 .54

c1 Cl C2 C3 C4 C6 Cl C2 C3 c4 C6

Subtype Subtype Subtype

o
m
m

COAD :: IGF2BP3_ex
LGG: 1GF28P3 exp e P STAD :: IGF2BP3_exp
1=t n=C1332,C2 85,C39,C412,C6 3 Pv=1.06e-04
n=C3 10,C4 147,C5 356,C6 1 n=C1 129,C2 210,C3 36,C4 9,C6 7

Expression (log2CPM)

— =104
=
% x g 104
59 N 54 O
o =2} [
K<) - = D 54
= : g
S S 01 =1
29 @ S ol
o g a
S g .5 &
ai o =1
) : : : X 57
c3 ca C5 GCs ClL C2 C3 c4 cé6 w
Subtype Subtype ClL C2 C3 C4 C6
Subtype
H |
BLCA: IGFZBP3 _exp OV ::IGF2BP3_exp
Pv=5,15€- Pv=4.07e-01 BRCA:: IGFZBPS _exp
n=C1173,C2 164,C3 21 C436,C6 3 n=C1 46,C2 159,C3 3,C4 61 Pv=2.74e-
n=C1 369, C2 390,C3 191 C4 92,C6 40
104 ,2-\
. 104 g
54 (@) 5 54
S IN
o 51 g
04 = = 04
c =
S 04 =
-5 0 a
0 ()
o 557
S -51 <
-10 v . - v v 2 N
Cl C2 C3 C4 Co6 ni i i ; . v
Subtype Cl C2 C3 C4 C6
C1 Cc2 C3 C4 Subtype

Subtype





OPS/images/fimmu.2023.1071675/fimmu-14-1071675-g003.jpg
Cancer: GBMLGG

A B c
WHO grade Histological type IDH status

G2 EJ G3EI G4BT @ Astrocytoma @ Glioblastoma OWT @ Mut
- @ Oligoastrocytoma @ Oligodendroglioma

8

-

N

The expression of IGF2BP3
Log2 (TPM+1)
o

The expression of IGF2BP3
Log2 (TPM+1)
The expression of IGF2BP3
Log2 (TPM+1)

o
m
mn

1p/19q codeletion Primary therapy outcome

- @ codel @ non-codel @©PD @SD@PR@CR
o Fkk w 5 2 8 _ns
5 ° Seo & ]
L —~4 '... ® N 4 o
9% o< o6
5= =<3 e &

o oF o=
§=2 H) ol 4
2% 7% e
o O © 01 N2
g0 g~ 53
X 3 o 3
o 2 o
-2 F 4 2






OPS/images/fimmu.2022.1004703/crossmark.jpg
©

2

i

|





OPS/images/fimmu.2022.1004703/fimmu-13-1004703-g001.jpg





OPS/images/fimmu.2022.1004703/fimmu-13-1004703-g002.jpg
N
5 ...S\».L./f
£ oy >

i aw e

brofbs

HEEEEE
mW BEE

© = [<f+|S]
Wm HEEE

s (7
in caar

oot (%)

B
iow
[Frave.

" [eorrcom






OPS/images/fimmu.2022.1004703/fimmu-13-1004703-g003.jpg





OPS/images/fonc.2022.1002808/crossmark.jpg
©

2

i

|





OPS/images/fonc.2022.1002808/fonc-12-1002808-g001.jpg





OPS/images/fonc.2022.1002808/fonc-12-1002808-g002.jpg
i
) 7 374mA
’ 37.4mA
le 37.4mA
) o 37.4mA
A A L 37AmA
37.4mA
374mA
f'\N A 37AmA
374mA.

374mA
B e
74mA
7 AmA

37.4mA
37.4mA

.ﬂ 37.4mA

| I R N

F wave, left posterior tibial nerve

TLLLICILIL

A oA A A

C

‘ \ |
A A A A

MARASVARA S

n /1
% A 2
R
A L L Y
A

|

avf

HH et A A A A

v

T
vaune UV/ L\/ \ 3
A
JAAAIA
'l/\\__lr’f\\,,Jt A

v

"AL,‘ JL/\,, \J"/ AL;J‘/\\, J\

4 VB

1: 2mV/10ms

E 1 l I I Ik

Insertion
Insertion
Insertion

Insértion

A4 : 200uV / 10ms
Insertion B4 : 200uV / 10ms
C4 : 200uV / 10ms
} D4 : 200uV / 10ms
i E4 : 200uV / 10ms

Right medial head of gastrocnemius





OPS/images/fonc.2022.1002808/fonc-12-1002808-g003.jpg
A 49-year-old man with history of
pigmentation of the skin

Symptoms: edema of lower limbs and eyelids

Diagnostic evaluation:

« Kidney biopsy: stage | membranous
nephropathy

« Skin biopsy: cutaneous amyloidosis

* ANA and AHA: positive

Diagnosis:

* Nephrotic syndrome (stage | membranous
nephropathy)

* Cutaneous amyloidosis

Treatment:

» Steroids and cyclophosphamide

Mar. 2020

Symptoms: weakness, chest distress and
dysphagia
Diagnostic evaluation:

Chest CT: a thymic mass in the left anterior
mediastinum
Aug. 2020 Neostigmine test: positive

Repetitive nerve stimulation: decremental
cMAP response at low and high stimulation
frequencies
Antibodies to AChR and titin: positive
Thymoma biopsy: type B2 thymoma

Diagnosis:

* Thymoma associated MG

Treatment:

+ Steroids, IVIG, thymoma resection and
radiotherapy

Symptoms: myokymia, limbs pain, blurred

vision and poor sleep

Diagnostic evaluation:

« EMG: peripheral nerve hyperexcitability
syndrome
ECG: abnormal Q wave in the inferior wall

Apr.2021 leads and an ST segment elevation of 1-

1.5mm

« Antibodies against LGI1 and GABABR
positive

Diagnosis:

« Movan's Syndrome

Treatment:

« Steroids, IVIG and rituximab

Follow-up:

ABECREE » Free of Symptoms
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Vector

scfv

CAR structure

Derived

Total cells dose

CAR-T ratio

Weight (kg )

CAR-T cells (/kg )

Blasts% pre-CAR-T cell infusion
ECOG score pre-CAR-T cell infusion

Expression of CD19/CD22
Before treatment

Maximum of
CAR-T cells/CD3+ cells

Precondition
Response

CRS

Ist CAR-T

lentivirus
Murine
Anti-CD19(FMC63)scFV-CD8a-4-1BB-CD3(
Autologous
1.85x10°
79%
28
5.2x10°
EM+ and 5.35% in BM
1
CD19+CD22+

0.19%

FC
CR
1

2nd CAR-T

lentivirus
Humanized
Anti-CD19 scFV-CDB8a-4-1BB-CD3{
Allogenic
2.4x10°
69.53%

31
5.3x10°
EM+ and MRD-
1
CD19+CD22+

3.3%

FC
Mass decrease

1

3rd CAR-T

lentivirus
Humanized
Anti-CD22 scFV-CD8a-4-1BB-CD3(
Allogenic
281x10°
56.4%

31
5.17x10°
EM+ and MRD-
1
CD19+CD22+

17.4%

FC
CR
2

CAR, chimeric antigen receptor; scEv, single-chain fragment variable; ECOG, Eastern Cooperative Oncology Group; EM, extramedullary; BM, bone marrow; MRD, minimal residual
disease; FC, fludarabine cyclophosphamide; CR, complete remission; CRS, cytokine release syndrome.
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Tumor type
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Mechanistic

References

EZH2 Diffuse large B-cell Tumor cell MHC-1/ Inhibition of both MHC-I and MHC-II expression (20)
lymphoma MHC-IT
Pan cancer Tumor cell MHC-T Down-regulate MHC-I expression (1)
Prostate cancer Tumor cell STING Blocking the activation of RNA-STing-ISG stress response (22)
Hepatocellular carcinoma Tumor cell IRF1 Suppress PD-L1 expression by upregulating the promoter H3K27me3 (23)
levels of CD274 and IRF1
Breast cancer Macrophage = miR-29b/  Promoting LOXL4 expression through repressing the expression of (24)
miR-30d miR-29b and miR-30d to regulating macrophage activation
Glioblastoma multiforme Macrophage | iNOS/ Inhibition of EZH2 activates iNOS and increases TGF(2 levels to (25)
TGFB2 enhance phagocytic activity and survival of microglia
Ovarian cancer/Colon CD8" Tcell = CXCL9, Affects T cell migration via controlling the expression of CXCL9 and (26,27)
cancer CXCL10 CXCL10
Pan cancer T cell ARID1A Combines with ARID1A to restore CXCL9 and CXCL10 expression (28)
and promote T cell infiltration
Colorectal Treg cell N/A Control H3K27me3 levels to block antitumor T cell responses (29)
cancer Ovarian cancer T cell Numb, Activate Notch pathway and stimulate T cell polyfunctional cytokine (30)
Fbxw7 expression
N/A CART cell N/A Remodeling the epigenome associated with CAR T cell exhaustion (31)
GYa Melanoma/Colon cancer Tumor cell N/A Inhibit the IFN-induced expression of the CXCL9 and CXCL10 (32,33)
Oophoroma Tumor cell N/A Involved in inhibiting the expression of multiple chemokines (34)
Melanoma Tumor cell LC3B IT Increase H3K9 enrichment in the LC3B II promoter region and (35)
decrease immune blocker reactivity
Colon Carcinoma Tumor cell Fas Restrict the transcriptional initiation of Fas and limit the release signal (36)
of Fas-FasL
Hepatocellular carcinoma Tumor cell SLC7A2 Downregulation of SLC7A2 induces MDSO chemotaxis via CXCL1 (37)
SETDB1 Melanoma/Lung cancer Tumor cell TE Derepresses TEs to generate MHC-1 peptides and triggers T-cell (38)
responses
Pan cancer Tumor cell PD-L1 Inhibit PD-L1 expression and reduce T cell infiltration (39, 40)
Pan cancer Tumor cell TE Disruption of TEs promptes cells to maintain cancerous state (41, 42)
SUV39H1 = Cervical carcinoma Tumor cell DNMT1 H3K9me?2 interacts with the DNMT1 promoter region to affect (43)
downstream SMAD3 expression
N/A T cell N/A Expression of the silent memory genes (44)
N/A T cell SMAD3 Interacts with Smad3 and enhances the IL-2 promoter repressor (45)
activity
SETD2 Pan-cancer N/A N/A Participate in the efficacy of immunotherapy (46)
Lung adenocarcinoma N/A N/A Enrichment of the mutations involved in PD-L1 (47)
Renal cell carcinoma Tumor cell FBW7 Increase PD-L1 expression by targeting the FBW7/NFAT1 axis (48)
KMT2A Pancreatic cancer Tumor cell CD274 Directly binds to the CD274 promoter to catalyze H3K4me3 to (49)
activate PD-L1 transcription in tumor cells
Hepatocellular carcinoma/ N/A N/A Mutations areassociated with PD-L1 (50, 51)
Nonsmall cell lung cancer
Pan-cancer N/A N/A Participate in immune regulation (52-57)
DOTIL N/A T cell TCR Controll CD8 T cell differentiation by ensuring normal T cell receptor (58, 59)
density and signaling
Colorectal cancer Treg cell N/A Altering the T cell subsets (60)
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PRMT1

PRMT4

PRMT5

N/A

Hepatocellular
carcinoma

Pancreatic ductal
adenocarcinoma

Hepatocellular
carcinoma

Pan-cancer
Ovarian cancer
Triple-negative
breast cancer

Non-small cell
lung cancer

Carcinoma of
colon

Pan-cancer
Melanoma
Hepatocellular
carcinoma
Lung cancer
Cervical
carcinoma
N/A

N/A

N/A

CD8" T cell
Tumor cell/
Macrophage
Tumor cell

Macrophage

N/A

Tumor cell

Tumor cell

Tumor cell

Tumor cell

Tumor cell/

CD8" T celll

Tumor cell

Tumor cell

Tumor cell

Tumor cell

CD8" T cell

CD8" T cell

Treg cell

N/A
PD-L1,PD-
L2

PD-L1

IL-6,IL-10

N/A

XBP1

BAF155

circHMGB2

N/A

N/A

NLRC5

CIITA,

CD74

CD247

STAT1

Blimp1

AKT

FOXP3

Affects the anti-tumor activity of T cells

Regulates PD-L1 and PD-L2 expression

Promoting the expression of PD-L1

Control both IL-6 and IL-10 expression and the downstream activation of
STATS3, affecting the polarization levels

Participate in the regulation of immune response and infiltration

Form a complex with XBP1s to regulate their target gene expression, thus
determining the ER stress response by controlling the IRE10/XBP1s pathway

Induction of BAF155 methylation and repression of interferon a/y pathway
genes

As a cicrHMGB2 downstream gene, inhibiting the type 1 interferon response

Inhibition to achieve better immune infiltration

Shape the immunosuppressive environment

Inhibition of the transcription of NLRC5, modulating the genes implicated in
MHCI antigen presentation

Increasing the enrichment of H3R8me2 and H4R3me2 at the CIITA and CD74
promoters, regulates MHC II expression

Increases H3R4me2 deposition at the CD274 promoter site and represses gene
expression

The expression of both STATI1 and PD-L1 is driven by the IFN/JAK/STAT1
pathway

Klrgl CD8 + Teell differentiation was inhibited by deposition at the H4R3me2s
and H3R8me2s sites of Blimp

Impact on the metabolic reprogramming of cells through the AKT/mTOR
signaling pathway

Increase signaling to FOXP3 dimethylation to promote Treg function and
migration capacity

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)

(89)
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KDMIA Pan-cancer Tumor cell ERV Suppressing ERV expression and curbing activation, such as dsRNA stress (98)
and type I interferon
Melanoma/Breast cancer/ | Tumor cell MHC-T Inhibition of MHC-I gene expression and reduced antigen presentation (98-100)
Small-cell lung cancer
Cervical cancer Tumor cell CD274, Mediated demethylation of H3K4 in the CD274/CD47 promoter region (101)
CD47
Hepatocarcinoma Tumor cell MEF2D Promote PD-L1 expression by MEF2D demethylation (102)
Gastric cancer Tumor cell PD-L1 Altering PD-L1 expression in exosomes did not affect membrane PD-L1 (103)
levels
Squamous cell carcinoma Tumor cell PD-L1 Inhibition of PD-L1 expression (104)
of the head and neck
Breast cancer Tumor cell TGF-B1 Binding to the TGF-1 promoter region, which upregulates its expression (105)
Pan-cancer CD8" T cell TCF1 The LSD1/CoREST complex physically interacts with TCF1 and (106)
antagonizes its transcriptional activity
Melanoma/Breast cancer CD8" T cell EOMES Affect the posttranslational level status of the EOMES (107)
KDM2A Glioma Tumor cell JAGL Promotes JAG1 demethylation and mediates the proliferation and activity (108)
of regulatory T cells
KDM3A Pancreatic cancer Tumor cell KLF5, In coordination with KLF5, SMAD4 regulates transcription in tumor cells (109)
SMAD4 to inhibit anti-tumor immunity
KDM4A Squamous cell carcinoma | Tumor cell N/A Inhibition of immune-related signaling pathways (110)
of the head and neck
KDM4B Carcinoma of N/A N/A Associated with immune cell infiltration and immune checkpoint (1)
endometrium molecular expression
Colon cancer Tumor cell HOXC4 PD-L1 expression was induced by the H3K27me3/HOXC4 axis (112)
KDM4C Lung cancer Tumor cell CXCL10 = Promoting the accumulation of H3K36me3 in the CXCL10 promoter (113)
region to repress the transcription level of genes affects T cell recruitment
Colorectal cancer Tumor cell ARID3B Recruited by ARID3B to activate downstream Notch and PD-L1 expression (114)
KDM4D Colorectal cancer Tumor cell IFNGR1 Co-activating SP-1 promotes IFNGR1 expression, thereby enhancing (115)
STAT3-IRF1 signaling and promoting PD-L1 expression
KDMS5A Melanoma/Colon cancer Tumor cell PTEN Inhibition of PTEN expression and induction of PI3K-AKT-S6K signaling (116)
pathway to increase the PD-L1 abundance in the tumor cells
KDM5B Melanoma Tumor cell SETDB1 Recruiting the H3K9 methyltransferase SETDBI to exert antitumor effects (40)
KDM5B/ | Breast cancer Tumor cell STING Binds to the STING promoter to directly suppress transcription, causing (120)
C disruption of the cGAS/STING pathway signaling
KDM6A Hepatocarcinoma N/A N/A Correlation with the immune infiltration (123)
Bladder cancer N/A N/A Negative correlation with immune-related pathways (124-126)
Medulloblastoma Tumor cell CXCLY9, Activates Th-1 type chemokine expression, and enhances T cell (127)
CXCL10 | recruitment
KDM6B Colon cancer Tumor cell CXCL9, Inhibition of the expression of both CXCL9 and CXCL10 (26)
CXCL10
N/A CD8'T cell GZMB, Promote the expression of GZMB and FasL effector genes through (128)
FasL demethylation
N/A CD8'T cell N/A Promote cytotoxicity-related gene expression (129)
Pan-cancer N/A N/A Associated with TMB, MSI and immune cell infiltration (130)
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All DLBCL patients. Patients who received CART cell treatment (n=26; 78.8%)
earolld i sudy
3mosresponders  3mosnon-  P- 3mosCR  3mos P
(CR+PR) responders  value non-CR  value
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Pooled

Time Window of

Number of Number o Number of :
Exposure to ABX Patients for Pooled Number of Patients =~ Pooled HR
. . Cohorts Pooled HR OS Cohorts
in Relation to ICI Indlideditor 0S [95% Cll Ineltiaadrtor for PFS (Number of ABX PFS
Treatment 0s (Number of 2 PES users, % of ABX users) [95% Cl]
Initiation (Days) ABX users, %
of ABX users)
1-60; 60] 12 cohorts 5372 9 cohorts 1,554
aa (14 HR values) (1,579, 29%) (11 HR values) (494, 32%)
i5:45] 23 cohorts 12,286 18 cohorts 5,577
455 (26 HR values) (2,500, 20%) (20 HR values) (1,368, 25%)
762
[-90; 120] 5 cohorts a 62 u%) ‘ 6 cohorts (179, 23%)
1,910 1,209
J-e05 0o 10 cohorts (703, >37%) ‘ 7 cohorts (22, 27%)

ABX, Antibioti

1, Confidence Interval; HR, Hazard Ratio; ICI, Immune Checkpoint Inhibitor; OS, Overall Survival; PFS, Progression-Free Survival.
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Time Window of
Exposure to ABX

in Relation to ICI
Treatment
Initiation (Days)

[-60; 0]

[-30; 0]

[-60; 60]

[-90; 120]

Jro of

ABX, Antibioti

Number of
Cohorts
Included for
oS

14 cohorts

19 cohorts

61 cohorts
(63 HR values)

9 cohorts

19 cohorts

Pooled
Number of
Patients for

oS
(Number of
ABX users, %
of ABX users)

5,055
(1,003, 20%)

9,539
(1,599, 17%)

21,855 (5,009,
23%)

4,139
(1,235, 30%)

7,000
(2,007, 29%)

Pooled HR OS
[95% CI]

Number of
Cohorts
Included for
PFS

10 cohorts

14 cohorts

43 cohorts
(45 HR values)

9 cohorts
(10 HR values)

14 cohorts

Pooled Number of Patients
for PFS (Number of ABX
users, % of ABX users)

1,457
(333, 23%)

5364
(658, 12%)

12,705 (3,264, 26%)

1,113
(430, 39%)

4,185
(959, 23%)

CI, Confidence Interval; HR, Hazard Ratio; ICI, Immune Checkpoint Inhibitor; OS, Overall Survival; PFS, Progression-Free Survival.

Pooled HR
PFS
[95% Cl]
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: Number of of Patients for
Number of of Patients for OS
Cancer Pooled HR OS Cohorts PFS Pooled HR PFS
Cohorts (Number of ABX 5 "
Type Included for OS  Users, % of ABX [95% Cl] Included for (Number of ABX [95% Cl]
‘ PFS Users, % of ABX
users)
users)

Non-Small Cell 47 cohorts 16,163 1.60 37 cohorts 8,421 1.47
Lung Cancer (55 HR values) (4,913, 30%) 1.40-1.83 (44 HR values) (2,363, 28%) 1.27-1.70;
Urothelial 14 cohorts 5,454 145 11 cohorts 3,804 1.18
Carcinoma (15 HR values) (1,950, 36%) 1.18-1.80] (13 HR values) (1,853, 49%) 0.94-1.49

5414 1.65 705 17
Melanoma, 9 cohorts (1,088, 20%) 1.16-2.34 4.coborts (111, 16%) 0.95-3.10
Renal Cell 8 cohots 3,420 1.65 7echorts 2920 165
Carcinoma (499, 15%) 1.24-2.19) (414, 14%) 1.14-2.38
Hepatocellular 1,791 135 1,343 1.25
Carcinoma Tehorts (368, 21%) 1.04-1.75 #cohorts (303, 23%) 0.69-2.30
otlies Gincss 10 cohorts 1,865 1.92 8 cohorts 1,772 1.88
(11 HR values) (712, 38%) 1.27-291 (10 HR values) (706, 40%) 1.13-3.11
A sied 17 cohorts 6,129 167 9 cohorts 1,353 1.28
BErCH (19 HR values) (3,034, 50%) 1.29-2.17] (11 HR values) (362, 27%) 0.99-1.66
it 112 cohorts 40,236 161 80 cohorts 20318 145
(124 HR values) (12,564, 31%) [1.48-1.76] (93 HR values) (6,223, 30%) 1.32-1.60]

Statistically significant deleterious effect. Non statistically significant effect.
ABX, Antibiotic; CI, Confidence Interval; HR, Hazard Ratio; OS, Overall Survival; PES, Progression-Free Survival.
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-28:42]
-60;30]
[-60;0]
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=0.0881, p = 0.47

with Progression
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13
7
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6
25
26
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24
7
9
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treated with ABX
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27
18
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11
50
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55
33
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16
20

with Progression

8
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32
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11
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9
16
38
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9
27
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‘Total of patients
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26
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Ratio OR
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Study time window with Reponse treated with ABX with Reponse not treated with ABX Odds Ratio OR 95%-Cl Weight
Castello 2021 -30;30 1 17 9 29 " 0.14 [0.02; 1.21 1.9%
Cortellini 2021* - Pembrolizumab monotherapy -30;0] 37 123 332 748 . 0.57 [0.37;0.87] 10.9%
Cortellini 2021* - Chemo-immunotherapy -30;0] 20 47 146 255 —E— 0.83 [0.42; 1.64. 8.4%
Derosa 2018 -30;0] 6 48 44 191 —& 0.48 [0.19;1.20]  6.4%
Fang 2022 [0;90] 2 17 11 68 —_— 0.69 [0.14;3.46] 3.0%
Galli 2019 -30;90 3 27 32 130 —— 0.38 [0.11;1.36]  4.3%
Hamada 2021 -21;21 2 18 25 51 s 0.13 [0.03;0.62] 3.2%
von ltzstein 2022 -42;42 19 64 18 49 — 0.73 [0.33; 1.60. 7.4%
Kim H. 2019 -60;0] 8 50 21 71 —=T 0.45 [0.18; 1.13; 6.4%
Nyein 2022 -60;30. 12 46 59 210 — 0.90 [0.44; 1.86 8.0%
Ouaknine 2019 -60;30 11 30 10 42 —_—— 1.85 [0.66;5.18] 5.6%
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Schett 2019 -60;0] 6 33 52 185 — 0.57 [0.22;1.46] 6.2%
Sun 2022 -30;30. 22 72 65 173 —e 0.73 [0.41;1.32 9.3%
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CAR-T
CAR-T
CAR-T
CAR-T
CAR-T

CAR-T
CAR-T
TCR-T
TCR-T
TILs
TILs
CAR-NK
CAR-NK
CAR-NK
CAR-NK

Target

CD19
CD19
CD19
CD19
BCMA

BCMA
CLDN6
NY-ESO-1
PRAME

CD19
NKG2D
CD7
CD33

Name

Kymriah
Yescarta
Tecartus
Breyanzi

Abecma

bb21217

BNT211

NY-ESO-1 TCR
MDG1011

LN-144

LN-145

FT596

NKX101

anti-CD7 CAR-pNK
anti-CD33 CAR-NK

Company

Novartis
Gliead
Gliead
BMS

Bluebrid Bio
& BMS

Bluebrid Bio

BioNtech

Adaptimmune Therapeutics
MediGene AG

Tovance Biotherapeutics
Tovance Biotherapeutics
Fate Therapeutics

Nkarta Therapeutics
PersonGen BioTherapeutics

PersonGen BioTherapeutics

Highest Development Phases

Marketed
Marketed
Marketed
Marketed
Marketed

Phase I (NCT03274219)
Phase I/Ila (NCT04503278)
Phase I/IT (NCT05296564)
Phase 11 (NCT03503968)
Phase IT (NCT03645928)
Phase II (NCT04614103)
Phase I (NCT04245722)
Phase I (NCT04623944)
Phase I/IT (NCT02742727)
Phase I/IT (NCT02944162)
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Virus

HSV-1
ECHO-7
Adenovirus
HSV-1
Adenovirus
Adenovirus
Adenovirus
Coxsackievirus
HSV-1

Poliovirus

Name

T-VEC
RIGVIR
H101
DELYTACT
CG0070
Reolysin
DNX-2401
Cavatak
G207
PVSRIPO

Company

AMGEN

LATIMA

Sunway
Daiichi-Sankyo
CG Ocology
Oncolytics Biotech
DNAtrix

Merck

Treovir

Tocagen

Highest Development Phases

Marketed (FDA)

Marketed (Latvia)

Marketed (NMPA)

Marketed (MHLW)

Phase 11T (NCT04452591)

Phase 1T (NCT04445844)

Phase IT (NCT02798406)

Phase IT (NCT04152863)

Phase I/IT (NCT00028158)

Orphan Drug (Glioma; Glioblastoma)
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Name

Provenge
Cimavax-EGF
Mutanome
NEO-PV-01
AV-GBM-1
TEDOPI

llixadencel

Company

Dendreon

Bioven

BioNTech

Neon Therapeutics
Aivita Biomedical

OSE Immunotherapeutics
Bristol-Myers Squibb

Immunicum

Highest Development Phases

Marketed (FDA)

Marketed (Cuba)

Phase I (NCT04183166)

Phase I (NCT02897765)

Phase IT (NCT03400917)
Orphan Drug (HLA-A2 NSCLC)

Orphan Drug (Soft tissue sarcoma)
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Therapeutic mAb

Target Name
CD20 Rituximab

CD20 Ofatumumab

CD20 Obinutuzumab

CD19 Tafasitamab

CD19 Loncastuximab tesirine
CD52 Alemtuzumab

CD79b Polatuzumab vedotin
CD33 Gemtuzumab ozogamicin
CD38 Tsatuximab

CD22 Moxetumomab pasudotox
CD30 Brentuximab vedotin
CCR4 Mogamuizumab

BCMA Belantamab mafodotin
HER-2 Trastuzumab

HER-2 Ado-Trastuzumab emtansine
HER-2 [fam]-trastuzumab deruxtecan
HER-2 Margetuximab

EGFR Cetuximab

EGFR Panitumumab

EGFR Necitumumab

VEGFA Bevacizumab

VEGFR Ramucirumab

Nectin-4 Enfortumab vedotin
TROP-2 Sacituzumab govitecan
Bispecific mAb

Target Name
CD19/CD3 blinatumomab

FIX/FX emicizumab
EGFR/METR amivantamab

Immune checkpoint mAb

Target Name
CTLA-4 Ipilimumab

PD-1 Pembrolizumab

PD-1 Nivolumab

PD-1 Cemiplimab

PD-L1 Atezolizumab

PD-L1 Avelumab

PD-L1 Durvalumab

LAG-3 Relatlimab

Company

Roche

Novartis

Roche

MorphoSys & Incyte
ADC Therapeutics
Genzyme

Roche

Pfizer

Sanofi
AstraZeneca
Seagen

Kyowa Kirin

GSK

Roche

Roche

Daiichi-Sankyo
&AstraZeneca

MacroGenics
Merck
AMGEN
Lilly

Roche

Lilly

Astellas
Gliead

AMGEN
Roche
&)

Bristol-Myers Squibb
Merck

Bristol-Myers Squibb
Sanofi/Regeneron
Roche

Merck/Pfizer
AstraZeneca

Bristol-Myers Squibb

Company

Company

Year of launched

1997
2009
2013
2020
2021
2007
2019
2017
2020
2018
2011
2018
2020
1998
2013
2019

2020
2004
2006
2015
2004
2014
2019
2020

Mechanism of Action

CDC, ADCC, ADCP
CDC, ADCC, ADCP
ADCC, ADCP

CDC, ADCC, ADCP
Cytotoxic drug delivery
CDC, ADCC, ADCP
Cytotoxic drug delivery
Cytotoxic drug delivery
CDC, ADCC, ADCP
Cytotoxic drug delivery
Cytotoxic drug delivery
CDC, ADCC, ADCP
Cytotoxic drug delivery
CDC, ADCP

Cytotoxic drug delivery
Cytotoxic drug delivery

ADCC, ADCP

Signal blockade, CDC, ADCC
Signal blockade

Signal blockade, ADCC
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Protein

Down-regulated proteins
Dystrophin

Glucosamine/Glutamine-fructose-6-phosphate transaminase 2

CLIP-associating protein 2

POTE ankyrin domain family, putative beta-actin-like protein
3

Brix domain containing 1/ribosome production factor 2
homolog

Drug-sensitive protein 1/Gastric associated differentially-
expressed protein YA61P

Kinesin-like protein KIF 14
Histidyl t-RNA synthetase, mitochondrial

Cystatin A
DERP12

F-actin-uncapping leucine-rich repeat protein LRRC16A

Up-regulated proteins

Metastasis associated protein

Protein ID H/L
(Gene name) ratio

P11532 (DMD)

094808
(GFPT2)

B4DM73
(CLASP2)

QIBYX7
(POTEI)

Q9H7B2 (RPF2)

QINZ23 (YA61)

Q15058 (KIF14)

P49590
(HARS2)

P01040 (CSTA)

QS8TE0L
(DERP12)

Q5VZK9
(LRRC16A)

Q13330 (MTA1)

0.02
0.07

0.07

0.13

0.20

0.22

0.23
0.24

0.25
0.26

0.33

2.70

Function

cytoskeletal protein

controls the flux of glucose into the
hexosamine pathway

cytoskeletal protein

ATP-binding cytoskeletal protein

associated with the nucleolus in an RNA-

dependent manner

oxidoreductase activity

cytoskeletal protein

translation

cytoskeletal protein

oxidoreductase activity, acting on a sulfur
group of donors

cytoskeletal protein

identified in a screen for genes expressed in
metastatic cells

Identified
peptides

p-
value®

0.018
0.035

0.026

0.490

0.051

0.022

0.162

na.

‘p-values were based on Student’s t-test. Listed are proteins significantly regulated (p < 0.05 and >2-fold change, corresponding to normalized H/L ratio) upon 14F7hT mAb binding to

HeLa cells. In addition, the list includes three proteins with higher p-values and five proteins, for which no valid t-test could be carried out (but which all had at least two peptides per protein
in two of three replicates). The function was assigned using DAVID (51, 52).
n.a. (= not available, since there were not sufficient values for a valid t-test).
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Proteins interacting with transcription factor

P01040, P11532, 094808, P49590, Q5VZK9, Q15058, BADM73, Q13330
P01040, P11532, P49590, Q5VZK9, Q15058, BADM?73, Q13330
P01040, P11532, QIH7B2, P49590, Q5VZKY, Q15058, BADM73
P11532, Q9H7B2, 094808, P49590, Q5VZK9, BADM73
P11532, Q9H7B2, 094808, P49590, Q5VZK9, Q15058, B4ADM73, Q13330
P11532, QOH7B2, 094808, P49590, Q5VZK9, B4DM?73, Q13330
P01040, P11532, Q9H7B2, 094808, P49590, Q5VZKY, Q15058, BADM73, Q13330
P01040, P11532, 094808, P49590, Q5VZK9, Q15058, Q13330
P11532, QIH7B2, 094808, P49590, Q15058
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Fold enrichment

2.56
2.45
1.83
1.98
2.05
227
1.41
2.11
2.73
2.33
2.04
1.80
1.59
1.86
1.58
1.94
1.95
1.92
1.43

p-value

0.003
0.015
0.066
0.092
0.014
0.023
0.062
0.033
0.059
0.048
0.039
0.032
0.068
0.062
0.026
0.098
0.097
0.052
0.057
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