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Editorial on the Research Topic
Current progress in genomic and genetic research on human
viral diseases

Viral diseases pose a global public health threat, demanding a deeper understanding of
the intricate interplay between viruses and their human hosts. The recent COVID-19
pandemic underscores the persistent challenges in combating viral pathogens and
highlights the limited comprehension of their complex interactions. Insightful genomic
and genetic studies are crucial in unraveling the co-evolution of viruses and hosts during
infections. Such studies either delve into human genetics to investigate determinants of
immune responses against viruses or explore viral genetic diversity that contributes to viral
fitness, virulence, immune evasion, and viral evolution. The integration of both host and
virus perspectives enhances our comprehension of the human-virus interplay, paving the
way for improved preventative and therapeutic strategies. Recent advances in next-
generation sequencing, bioinformatics, and data science have significantly propelled
genetic and genomic studies, marking a promising era in our pursuit of combating viral
infections.

This Research Topic invited a wide range of contributions, including original
research, reviews, and perspectives, focusing on genetics and genomics in the context
of human viral diseases. By emphasizing different aspects, the Research Topic
encouraged submissions exploring evolutionary genetics to address viral evolution,
genome analysis, and comparative genomics of human viruses. Key areas of interest
encompassed genetic determinants influencing human susceptibility to viral
infections, the impact of host genetics on vaccination response, and the
exploration of viral genetics concerning infectivity, tropism, immune evasion, and
antiviral resistance. Additionally, the Research Topic also welcomed new
methodologies addressing viral genetic diversity and its role in viral pathogenesis.
By promoting a comprehensive understanding of these genetic and genomic aspects,
this Research Topic aimed to advance our knowledge and contribute to the
development of effective strategies against human viral diseases.
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We are delighted to have received many excellent submissions,
nine of which have been successfully published in this Research
Topic. This editorial piece may serve as a brief overview of these
articles, highlighting their substantial contributions to the
Research Topic.

This compilation includes three original research articles
addressing the pressing Research Topic of COVID-19 and
SARS-CoV-2. Čiučiulkaitė, et al. focused on the effect of the
human GNB3 c.825C>T polymorphism on immune responses
upon COVID-19 mRNA vaccination. This was one of the few
studies at the time to document the significant decline in antibody
titers and T-cell responses from months 1–6 after the second dose
of vaccination. It also was one of the few studies to examine the
kinetics of T-cell responses against SARS-CoV-2 after mRNA
vaccination. While the GNB3 c.825C>T polymorphism had no
significant effect on the humoral immune response, individuals
with the CC genotype at this locus exhibited significantly enhanced
T-cell responses after mRNA-1273 vaccination, suggesting
improved protection against COVID-19. Möhlendick, et al.
from the same research group explored the potential impact of
the GNB3 c.825C>T polymorphism on the clinical outcome of
COVID-19. This study, which included 1,570 individuals,
examined the potential associations between demographic
factors, pre-existing conditions, laboratory parameters, GNB3
rs5443 genotype, and COVID-19 clinical outcome. Notably, in
addition to identifying associating factors against fatal COVID-19
outcomes among other examined parameters, they reported that
the GNB3 rs5443 TT genotype was significantly associated with a
40% reduced risk of COVID-19 fatality, suggesting its potential as
a prognostic biomarker. While the findings of Möhlendick et al. on
GNB3 genotypes may seem to contradict the observations of
Čiučiulkaitė, et al., it is important to note that the former
focused on clinical outcomes in unvaccinated individuals, while
the latter focuses on immune responses to COVID-19 vaccination.
These divergent findings underscore the complexity of the
interaction between SARS-CoV-2 and the host genetics and
immune responses, and further research is needed to reconcile
and fully understand these relationships.

Another COVID-19-related study was conducted by Li et al.,
who investigated into the SARS-CoV-2 pathogenesis from a viral
genetics perspective. Among many SARS-CoV-2 variants of
concern (VOC), the Delta variant emerged from India in
2020 and swept the world in mid-2021 with a high
transmission rate and high mortality. This study investigated
the evolution of the Delta variant by analyzing mutational
patterns in viral genomes originating from India at three
different time periods surrounding the emergence of Delta
VOC in the country. The study revealed a progressive
increase in viral mutations, with viral genomes exhibiting the
highest diversity following the establishment of Delta VOC.
Notably, the pre-Delta phase showed a higher number of
negatively selected sites, which may have protected critical
gene regions during evolution. This study suggests ongoing
viral adaptation and evolution and highlights the dynamic
genetic landscape of SARS-CoV-2.

Not surprisingly, HIV-1 is another virus heavily studied in
this Research Topic of publications. Yang et al. identified and
characterized two novel unique recombinant forms (URFs) of

HIV-1 from Hebei, China. Based on the analysis of near full-
length genome (NFLG) sequences, both URFs were shown to
result from the recombination of CRF01_AE and CRF07_BC,
but with distinct recombination breakpoints. Similarly, Zhang
et al. reported two novel HIV-1 URFs resulting from HIV-1
CRF01_AE and subtype B recombination in two MSM patients.
Xing et al. focused their study on the origin and spread of
another novel CRF - CRF68_01B initially discovered among
men who have sex with men (MSM) populations. Phylodynamic
analysis of CRF68_01B helped to trace the origin of CRF68_01B
back to Shenzhen in 2003, indicating subsequent spread to other
regions. Molecular network analysis further revealed
interprovincial transmission and highlighted the significant
role of MSM populations in the spread of CRF68_01B. Fan
et al. conducted a study investigating integrase strand transfer
inhibitor (INSTI) resistance mutations in a treatment-naive
HIV-positive patient cohort in Hebei, China. This study,
pertinent to the global use of INSTI-containing antiretroviral
therapy, identified both major and accessory INSTI-resistance
mutations, with an overall INSTI resistance rate of 3.82%.
Although the frequency of INSTI resistance was low, this
study highlights the need for pre-treatment testing and
increased resistance monitoring during INSTI-based ART
regimens. Overall, these studies have provided valuable
insights into the genomic diversity, transmission dynamics,
and drug resistance profiles of HIV-1, highlighting the
importance of ongoing research in understanding and
managing this complex viral infection.

This Research Topic includes two review articles addressing
the ongoing evolution of SARS-CoV-2 and the application of
quantitative metagenomics next-generation sequencing
(Q-mNGS) in the detection of infectious agents causing fever
of unknown origin (FUO). The review by Fang et al. outlines the
trajectory evolution of SARS-CoV-2, focusing on the amino acid
variations of the spike protein and genomic recombination. Pre-
Omicron variants showed concentrated spike protein mutations,
including early D614G, which alters the antigenicity,
transmissibility, and pathogenicity of SARS-CoV-2, while
Omicron introduced numerous novel mutations, enhancing
transmissibility and immune evasion without increasing
clinical severity. The recombinant XBB variant, emerged in
2022, likely resulted from co-circulation and co-infection in
immunocompromised patients. Despite transmission
advantages, these variants have demonstrated moderate
antibody escape, necessitating increased surveillance for
genomic variation, particularly spike protein mutations and
recombination, broad-spectrum therapeutics, and widespread
vaccination efforts. Dong et al. reviewed the application of
Q-mNGS as a transformative method for the detection of
infectious agents causing FUO. This high-throughput
sequencing technology outperforms conventional molecular
diagnostic methods, providing faster and more comprehensive
results at a lower cost, potentially revolutionizing FUO
evaluation and reducing unnecessary testing.

Collectively, we are convinced that the compilation of
publications within this Research Topic provides a glimpse into
the current focus and research progress in genomic and genetic
studies of human viral diseases.
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Use of Quantitative Metagenomics
Next-Generation Sequencing to
Confirm Fever of Unknown Origin
and Infectious Disease
Yuxin Dong†, Yulei Gao†, Yanfen Chai and Songtao Shou*

Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China

A body temperature >38.3◦C that lasts ≥3 weeks and lacks a clear diagnosis after 1
week of standard hospital examination and treatment is called “fever of unknown origin”
(FUO). The main causes of FUO are infections, hematological diseases, autoimmune
diseases, and other non-infectious inflammatory diseases. In recent years, quantitative
metagenomics next-generation sequencing (Q-mNGS) has been used widely to detect
pathogenic microorganisms, especially in the contribution of rare or new (e.g., severe
acute respiratory syndrome-coronavirus-2) pathogens. This review addresses the
undetermined cause of fever and its evaluation by Q-mNGS.

Keywords: quantitative metagenomics next-generation sequencing, fever of unknown origin, infections,
pathogen, rare disease

INTRODUCTION

Fever of unknown origin (FUO) can be caused by various diseases. More than 200 causes of FUO
have been reported (Horowitz, 2013). In 1961, Petersdorf and Beeson were the first to define
FUO as a state of febrile illness for more than 3 weeks, with a body temperature greater than
38.3◦C (101◦F) on several occasions and an uncertain diagnosis after 1 week of standard hospital
examination and treatment (Petersdorf and Beeson, 1961). In 1991, Durak and Street re-defined
FUO into four groups: “classic,” “nosocomial,” “neutropenic,” and “human immunodeficiency
virus (HIV)-associated.” They proposed three outpatient visits and related investigations as an
alternative to “1 week of hospitalization” (Durack and Street, 1991). In 1997, Arnow and Flaherty
updated the FUO definition and considered the “minimum diagnostic evaluation to qualify
as FUO” to be: comprehensive history-taking; repeated physical examination; complete blood
count (including differential and platelet counts); routine blood chemistry (including lactate
dehydrogenase, bilirubin, and liver enzymes); urinalysis (including microscopic examination);
chest radiograph; erythrocyte sedimentation rate (ESR); antinuclear antibodies; rheumatoid factor;
angiotensin-converting enzyme; routine blood cultures (×3) while not receiving antibiotics;
cytomegalovirus immunoglobulin-M antibodies or virus detection in blood; heterophile antibody
test in children and young adults; tuberculin skin test; computed tomography (CT) of the abdomen
or radionuclide scan; HIV antibodies or virus-detection assay; further evaluation of abnormalities
detected by the tests stated above (Arnow and Flaherty, 1997). Because of the complicated clinical
characteristics and lack of laboratory indicators of a disease, the diagnosis is difficult and contributes
to a high cost of hospitalization.
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Infections, neoplasms, non-infectious inflammatory diseases,
and other conditions are the four primary etiological groups
for FUO (Mourad et al., 2003). Obtaining a detailed medical
history and undertaking examinations to evaluate the cause
of fever are crucial. The standard diagnosis and treatment
process of FUO have not yet been proposed, but they should be
performed in a specific order when carrying out the examination
and diagnosis (Figure 1). Identification of pathogenic bacteria
is crucial for targeted anti-infective medication (Haidar and
Singh, 2022; Messacar et al., 2017). In patients with prolonged
fever, empiric therapy is not recommended because it can
mask symptoms, delay the diagnosis, and obstruct decision-
making regarding optimal treatment (Unger et al., 2016). Only
a few exceptions exist if treatment must be initiated based
solely on diagnostic suspicion: antibiotics for culture-negative
endocarditis, tuberculostatic agents for active tuberculosis, and
glucocorticoids for temporal arteritis with a risk of vision loss
(Bryan and Ahuja, 2007). Culture and testing of body fluids
are common for a microbial diagnosis, but such cultures and
tests are positive in only ∼40% of cases. Also, implementation
and interpretation of blood cultures require time, which delays
the information obtained by clinicians (Tromp et al., 2012).
The sensitivity and specificity of PCR-based detection is based
on the genomic sequence of known pathogenic bacteria,
provides limited information, and is suboptimal for detection of
mixed infections (Reuwer et al., 2019). Medication mistakes or
treatment delays may arise due to the limits of clinical testing.

According to two systematic reviews conducted from 1995 to
2004 (Gaeta et al., 2006) and 2005 to 2015 (Fusco et al., 2019),
infections are the leading cause of FUO. Screening and diagnostic
processes must be developed to detect the pathogens that
cause infection-related FUO. Quantitative metagenomics next-
generation sequencing (Q-mNGS) is a current method to detect
infection-related FUO pathogens. Quantitative metagenomics
next-generation sequencing, also known as “high-throughput
sequencing” or “massive parallel sequencing,” is a type of
technology that allows for the simultaneous and independent
sequencing of hundreds to billions of DNA fragments (Morganti
et al., 2019). Q-mNGS has many uses in clinical microbiological
testing, and provides an unbiased method for pathogen detection.
Recent studies have shown that Q-mNGS could be used
to diagnose various infectious diseases, including coronavirus
disease 2019 (COVID-19) (Ren et al., 2020), pneumonia due
to Chlamydia psittaci infection (Chen et al., 2020), Ebola
virus (EBOV) infection (Li et al., 2019), and talaromycosis
(Shi et al., 2021).

Revolution in DNA-Sequencing: From
Sanger Sequencing to Quantitative
Metagenomics Next-Generation
Sequencing
The “first generation” of gene-sequencing technology was born
with the advent of the chain-termination method described by
Sanger and Coulson (1975) and the chain-degradation method
described by Maxam and Gilbert (1977). Gilbert and Sanger built
the first sequencer in 1977 and used it to sequence the first

FIGURE 1 | FUO diagnosis and treatment flow chart.
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full-length genome, phage X174, with 5,375 bases (Maxam and
Gilbert, 1977; Aoyama et al., 1981). First-generation sequencing
can produce a sequence of 700–1,000 bases at a time, so it cannot
keep up with the pressing need for biological gene sequences.

Following a revolution in traditional sequencing technology,
second-generation sequencing technology, known as “next-
generation sequencing” (NGS), can be employed to obtain the
sequences of hundreds of thousands to millions of nucleic-
acid molecules in a single run. With NGS introduction, the
transcriptome and genome of a species can be investigated in
great detail. Jonathan Rothberg developed the biotechnology
company 454 Life Sciences (Branford, CT, United States) in
2005 (Margulies et al., 2005). Other technologies, such as
sequencing by oligonucleotide ligation and detection (SOLiD)
(Applied Biosystems, Foster City, CA, United States) and Solexa
(Illumina, San Diego, CA, United States), emerged subsequently.
A total of 454 Life Sciences was acquired by Roche (Basel,
Switzerland) in 2007.

The basic principles of this technology are that the DNA
fragment does not need to be fluorescently labeled, there is
no need for electrophoresis, and the sequence is changed by
synthesis. A pyrophosphate group is removed when a base is
added to the sequence, so pyrosequencing is also known as the
detection of pyrophosphate bases (Nyrén et al., 1993; Ronaghi
et al., 1998). Sequencing by SOLiD technology is based on ligase
sequencing (Pérez-Enciso and Ferretti, 2010). Solexa technology
(which is also used for sequencing-by-synthesis) was developed
first by Illumina and is now used by the second-generation
sequencer developed by Illumina (Pérez-Enciso and Ferretti,
2010; Strub et al., 2011).

Metagenomics (also known as “microbial environmental
genomics”) creates a metagenomic “library” by extracting the
DNA or RNA of all microorganisms from environmental
samples directly and studying them using genomics research
strategies. Metagenomics based on NGS has become the
focus of clinical research since the development of gene-
sequencing technology.

Q-mNGS is a method for analyzing the genetic material of
microbes and hosts from patient samples to diagnose infectious
diseases. Q-mNGS has become the focus of clinical research due
to the rapid advancement of gene-sequencing technology.

Third-generation sequencing technology includes the
Pacific Bioscience (Levene et al., 2003) and Oxford Nanopore
(Eisenstein, 2012) platforms, which are single-molecule
technologies. Single-molecule sequencing (which does not
require PCR amplification and which can, theoretically,
determine nucleic-acid sequences of any length) is most notable
when compared with first-generation and second-generation
sequencing technologies (Figure 2).

Quantitative Metagenomics
Next-Generation Sequencing in Fever of
Unknown Origin or Infectious Diseases
The diagnostic value of NGS has been investigated in
retrospective studies for patients suffering from fever (Table 1).
The effectiveness of detection of NGS is higher than that of
traditional methods. Fu et al. (2021) undertook a retrospective
study on 175 patients with FUO to compare Q-mNGS with
culture and traditional methods, including smears, serological
tests, and amplification of nucleic acids (traditional PCR, Xpert
MTB/RIF, and Xpert MTB/RIF Ultra). In comparison with
culture and conventional methods, the authors concluded that
Q-mNGS of blood might increase the overall rate of detection of
novel organisms by 22.9 and 19.79%, and enhance the diagnostic
rate by 38.0 and 32.0%, respectively. Zou et al. (2022) evaluated
12 patients with tuberculosis following renal transplantation, and
Q-mNGS was helpful in 67% of cases.

Benamu et al. (2021) evaluated 55 patients with febrile
neutropenia to compare the results of blood culture and standard
microbiological testing within 24 h of fever onset and every
2–3 days. The Karius microbial cell-free DNA sequencing test
(KT) sensitivity and specificity were 85% (41/48) and 100%
(14/14), respectively. The calculated time-to-the-diagnosis was,

FIGURE 2 | The history of gene sequencingtechnology.
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TABLE 1 | List of sequencing associated with fever or infectious disease’ study.

References Research type Disease type Method Conclusion

Li et al. (2019) Retrospective 70 patients of suspected
Ebola hemorrhagic fever

mNGS vs. qRT-PCRUS These results demonstrate the utility of
mNGS in broad-based pathogen detection
and outbreak surveillance.

Fu et al. (2021) Retrospective 175 patients of FUO mNGS vs. culture or traditional
methods [smears, serological tests,
nucleic acid amplification testing
(NAAT)]

mNGS had significantly higher diagnostic
efficacy in the FUO than culture or other
traditional methods.

Zou et al.
(2022)

Retrospective 12 patients of
mycobacterium
tuberculosis infection

Interferon-gamma release assay
and NGS vs. the traditional PPD
test and M. tuberculosis detection

The interferon-gamma release assay and
NGS are relatively new detection methods
with high sensitivity and specificity and can
help with early TB diagnosis.

Benamu et al.
(2021)

Prospective 55 patients with febrile
neutropenia (FN)

The Karius microbial cell-free DNA
(mcfDNA) sequencing Test (KT) vs.
blood culture (BC) and standard
microbiological testing (SMT)

The use of KT in the diagnosis and
treatment of FN shows promise.

Liu et al. (2020) Retrospective 17 patients of underwent
lung transplantation

NGS vs. the bacteria culture
method

NGS showed more sensitivity than bacterial
culture for the detection of bacteria.

Reyes et al.
(2021)

Retrospective 38 patients of febrile illness mNGS vs. conventional viral
pathogen detection methods (such
as PCR)

In international travelers with febrile
syndrome, viral metagenomics has the
potential to help identify viral pathogens
and co-infections in a single step.

Xiao et al.
(2020)

Retrospective 8 patients of COVID-19 Meta sequencing vs. multiplex PCR
amplification (amplicon) and hybrid
capture (capture)

Meta-sequencing can be prioritized if other
genetic materials are to be studied, such as
target viruses that have become highly
diversified through recombinational events,
or if the viral load within the RNA sample is
high.

Jerome et al.
(2019)

Retrospective 40 patients of fever after
traveling

mNGS analysis vs. standard of care
diagnostics

MNGS has the potential to improve
infectious disease diagnostic yield and
detect multiple pathogens in a single
sample.

Williams et al.
(2018)

Retrospective 12 plasma specimens from
patients with unexplained
febrile illness

Unbiased sequencing vs.
VirCapSeq-VERT (a positive
selection system).

The utility of high-throughput sequencing
strategies in outbreak investigations

Horiba et al.
(2021)

Retrospective 112 patients of pediatric
febrile neutropenia

NGS vs. blood cultures NGS technique has great potential for
detecting causative pathogens in patients
with FN and may be effective for detecting
pathogens in minute quantities of
microbiota.

in general, shorter with KT (87%). Adjudicators determined real-
time KT results have allowed early optimization of antimicrobial
agents in 47% of patients. Liu et al. (2020) retrospectively
evaluated 17 patients who received a lung transplant. The
proportion of bacteria detected in the lungs of donors was 52.9
and 35.3% by NGS and bacterial culture, respectively. NGS was
more sensitive for bacterial detection than the classic bacterial
culture. Reyes and colleagues Xiao undertook a retrospective
study on 38 patients. In eight of the 38 patients (21%), all viral
pathogens detected by 42 conventional assays were also detected
by Q-mNGS, and Q-mNGS resulted in additional pathogenic
findings in two patients (5%).

NGS provides more information than conventional diagnostic
tests. Xiao et al. (2020) were the first to systematically
investigate inter- and intra-individual variations in severe
acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) using
amplicon- and capture-based whole-genome sequencing; it was
also the first comparative study using multiple approaches. The

study illustrated that ultra-high-throughput metatranscriptomic
(meta) sequencing uncovered rich genetic information in clinical
samples besides SARS-CoV-2, and provided references for
clinical diagnostics and therapeutics. In June 2020, the US Food
and Drug Administration granted Emergency Use Authorization
for a Q-mNGS test for COVID-19 manufactured by Illumina,
the first such authorization for a NGS diagnostic News in
Brief (2020). Li et al. (2019) demonstrated that Q-mNGS of
field-collected samples could be used to recover nine genomes
from the EBOV outbreak in Boende (Democratic Republic of
Congo) in 2014 (>50% coverage), detect the EBOV with a
high sequencing depth of 17.3 ± 4.7 SD million reads with
comparable sensitivity to PCR, and identify co-infections from
well-recognized (Plasmodium falciparum) and novel/uncommon
(e.g., Orungo virus) pathogens. Jerome et al. (2019) prospectively
included 40 returning travelers presenting with fever (≥38◦C)
whose plasma samples were sequenced: 11 of 40 patients were
diagnosed with a viral infection. Five viral infections were
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detected by Q-mNGS that were also revealed in standard-of-
care diagnostics, but two patients infected with the Chikungunya
virus and one patient with the mumps virus were also
diagnosed by Q-mNGS only. Williams et al. (2018) investigated
the plasma virome from cases of unexplained febrile illness
in Tanzania from 2013 to 2014 by sequencing methods.
The latter could aid detection of viral coinfections, such as
the nearly complete genomes of dengue virus-2 and human
pestivirus. Horiba et al. (2021) evaluated 87 patients with febrile
neutropenia. Putative pathogens were detected by Q-mNGS
in 17.2% of patients, but all had negative blood cultures.
Pathogenic detection methods (e.g., PCR) require clinicians to
first suspect a specific bacterial infection before carrying out
the corresponding detection. However, NGS technology can be
employed to detect pathogenic bacteria in patient samples with
high sensitivity, thereby providing recommendations for clinical
treatment.

Often, NGS has been undertaken without using a structured
diagnostic protocol, and at different stages of FUO. Zhu et al.
(2021) found that use of Q-mNGS for blood as the first-
line investigation could increase the diagnosis rate of FUO
by 10.9% compared with that using culture, and that using
Q-mNGS as the second-line investigation could improve the
diagnosis rate of concurrent infection by 66.7 and 12.5% for
non-bloodstream infection.

Ultimately, the cost of FUO assessment can be reduced by
Q-mNGS application because the diagnosis will be achieved
early because unnecessary and costly diagnostic tests will not
be carried out. Chai et al. (2018) investigated the cost–benefit
relationship of Q-mNGS in FUO in which a cause could not
be found despite appropriate investigations. A decision tree was
created to describe systematically the costs and benefits associated
with NGS introduction. Each diagnostic pathway was made
until a first- or second-line investigation was positive. NGS was
introduced into the pathway as a supplement to first- or second-
line investigations. Chai and colleagues reported NGS use as
the first-line investigation assuming a probability of detecting
the cause of cost-effectiveness in all cases of ≥60% using unit
costs of diagnostic tests and procedures in Singapore dollars

in 2016. In that analysis, using a rational set of rates for a
second-line investigation, the total expected cost of using NGS
as a second-line investigation was greater than that using it
as a first-line investigation. Although that analysis excluded
the costs associated with hospitalization duration, the faster
and more definitive answers provided by NGS may enable
additional cost savings.

CONCLUSION

Q-mNGS is a sensitive diagnostic method for FUO evaluation.
It could become a routine procedure in the diagnostic workup
of FUO. Q-mNGS appears to be cost-effective in FUO because
it avoids unnecessary investigations and reduces the duration of
hospitalization.
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Background and aims: Albeit several factors which influence the outcome of

corona virus disease (COVID-19) are already known, genetic markers which

may predict the outcome of the disease in hospitalized patients are still very

sparse. Thus, in this study, we aimed to analyze whether the single-nucleotide

polymorphism (SNP) rs5443 in the gene GNB3, which was associated with

higher T cell responses in previous studies, might be a suitable biomarker to

predict T cell responses and the outcome of COVID-19 in a comprehensive

German cohort.

Methods: We analyzed the influence of demographics, pre-existing disorders,

laboratory parameters at the time of hospitalization, and GNB3

rs5443 genotype in a comprehensive cohort (N = 1570) on the outcome of

COVID-19. In a sub cohort, we analyzed SARS-CoV-2-specific T cell responses

and associated GNB3 rs5443 genotypes. We investigated the influence of all

factors on COVID-19 fatality in multivariable analysis.

Results:We found a younger patient age, normotension or absence of diabetes

mellitus or cardiovascular diseases, normal blood cell counts, and low

inflammatory markers at hospital admission were protective factors against

fatal course of disease. In addition, the rs5443 TT genotype was significantly

associated with protection against COVID-19 fatality (OR: 0.60, 95% CI:

0.40–0.92, p = 0.02). We also observed significantly increased SARS-CoV-2-

specific T cell responses in rs5443 TT genotype carriers (p = 0.01). Although we

observed a significant association of the factors described previously in

univariate analysis, only a younger age of the patients, normal blood cell

counts, and the GNB3 rs5443 TT genotype remained independent predictors

against COVID-19 fatality in multivariable analysis.
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Conclusion: Immutable predictors for COVID-19 fatality are relatively rare. In

this study we could show that the TT genotype of the SNP rs5443 in the gene

GNB3 is associated with protection against COVID-19 fatality. It was as well

correlated to higher SARS-CoV-2-specific T cell responses, which could result

in a milder course of disease in those patients. Based on those observations we

hereby provide a further prognostic biomarker, which might be used in routine

diagnostics as a predictive factor for COVID-19 mortality already upon

hospitalization.

KEYWORDS

GNB3, rs5443, genetic association, T cell response, G protein, COVID-19, SARS-CoV-2,
disease severity

Introduction

Heterotrimeric guanine-binding proteins (G proteins)

transmit signals from the cell surface, trigger intracellular

signal cascades, and involve in a wide variety of physiological

processes (Klenke et al., 2011). The gene GNB3 encodes the G

protein subunit β3 and is located on chromosome 12p13.31. The

ß-subunits are not only the important regulators of the

a-subunits of G proteins but also intracellular effectors. The

synonymous single-nucleotide polymorphism (SNP) rs5443

(c.825C>T; p.S275=) in the gene GNB3 is associated with

several disorders and affects the pharmacodynamics of many

different drugs (Klenke et al., 2011). The T allele of this SNP gives

rise to the splice variant Gβ3-s, which lacks 123 nucleotides or

41 amino acids. Aberrant splicing results in a dominant gain of

function and G protein activation (Siffert et al., 1998). We could

show in previous studies that the rs5443 T allele is associated with

increased chemotaxis, migration, and proliferation of B

lymphoblasts, neutrophils, and T lymphocytes (Virchow et al.,

1998; Virchow et al., 1999; Lindemann et al., 2001; Tummala,

2013). Lindemann et al. (2001) could show that CD4+ T cell

counts are increased in individuals carrying the rs5443 T allele.

Therefore, it appears that individuals carrying the T allele show

an increased function of their cellular immune system.

Adaptive immune responses, especially those of the T cells,

are of major importance in SARS-CoV-2 infection. Virus-specific

CD4+ and CD8+ T cells produce effector cytokines and exert

cytotoxic activity in most patients with SARS-CoV-2 infection,

whereas neutralizing antibodies directly interfere with viral entry

of host cells (Jung and Shin, 2021). Nevertheless, patients with

corona virus disease 2019 (COVID-19) not only show lower

proportions of SARS-CoV-2-specific CD4+ or CD8+ T cells but

also B cells and NK cells, with increasing disease severity (Huang

et al., 2020; Peng et al., 2020; Zeng et al., 2020; Olea et al., 2021).

Zeng et al. (2020) observed CD4+ T cell lymphopenia in all severe

and fatal cases with SARS-CoV-2 infection in their study.

Furthermore, the authors could show that prolonged

activation and exhaustion of CD8+ T cells were associated

with COVID-19 severity. In single-cell transcriptomic

analyses, encompassing over 80,000 virus-reactive CD8+ T

single cells, Kusnadi et al. (2021) could show that SARS-CoV-

2-reactive CD8+ cells exhibited exhausted phenotypes with a

decreased capacity to produce cytokines in severely ill COVID-19

patients.

In light of these observations, we hypothesized that the SNP

rs5443 in the gene GNB3 might influence the T cell response in

COVID-19 patients as well and, thereby, the outcome of the

disease. To answer this question we analyzed the SNP rs5443 in

the gene GNB3 in a comprehensive retrospective German cohort

with SARS-CoV-2 infection and its influence upon T cell

response and course of COVID-19.

Methods

Study participants, recruitment, and
outcome of the patients

The study was conducted following the approval of the Ethics

Committee of the Medical Faculty of the University of Duisburg-

Essen (20-9230-BO) and in cooperation with the West German

Biobank (WBE; 20-WBE-088). Written informed consent was

obtained from the study patients.

Enrollment started on 11 March 2020, and ended on 18 May

2021. Altogether, 1,570 SARS-CoV-2-positive patients with at

least one positive real-time reverse transcription polymerase

chain reaction (RT-PCR) test result were consecutively

recruited for the study. Follow-up was completed on 30 June

2021, and at that time all patients either were discharged from the

hospital as “cured” or had a fatal outcome of the disease. The

clinical outcome was defined as follows according to the criteria

of the ECDC (European Center of Disease Prevention and

Control, 2021)—“mild’: outpatients (N = 205); “hospitalized”:

inpatients (N = 760); “severe”: hospitalized patients admitted to

an intensive care unit and/or became dependent on mechanical

ventilation (N = 292); “fatal” all cases of COVID-19-related

deaths during the hospital stay or within a follow-up of

30 days (N = 313). In contrast to the ECDC classification,

where patients counted up to three times, every patient

counted only once, according to the worst clinical outcome
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observed during the hospital stay in our study. The patients

included in this study were of Caucasian origin.

For further statistical analyses, demographic data, medical

history, and hematological parameters (erythrocyte, platelet,

neutrophil, and lymphocyte counts) at the time of hospital

admission were documented for each patient. The medical

history included pre-existing disorders of the cardiovascular

system (e.g., myocardial infarction, coronary heart disease but

not arterial hypertension), arterial hypertension, and diabetes

mellitus.

Neutrophil–lymphocyte ratio, platelet–lymphocyte ratio, and

systemic immune-inflammation index were calculated as

inflammatory markers. The neutrophil-lymphocyte ratio

(NLR) is calculated by dividing the number of neutrophils per

nanoliter (nl) by the number of lymphocytes per nl from a

peripheral blood sample. Similarly, the platelet-lymphocyte

ratio (PLR) is calculated, where the number of platelets per nl

is divided by the number of lymphocytes per nl in a peripheral

blood sample. For the systemic immune-inflammation index

(SII), the platelet counts per nl were multiplied by the number

of neutrophils per nl and then divided by lymphocyte counts per

nl in a peripheral blood sample.

Interferon-γ ELISpot assay

SARS-CoV-2-specific T cell responses were analyzed in

182 randomly selected SARS-CoV-2-positive patients using

interferon-γ (IFN-γ) ELISpot assays as previously described

(Schwarzkopf et al., 2021). Briefly, ELISpot stripes containing

polyvinylidene difluoride (PVDF) membranes (MilliporeSigma™
MultiScreen™ HTS, Fisher Scientific, Schwerte, Germany) were

activated with 50 µl of 35% ethanol for 10 s and washed with

distilled water. Plates were then coated for 3 hours with 60 µl of

monoclonal antibodies against IFN-γ (10 μg/ml of clone 1-D1K,

Mabtech, Nacka, Sweden). Thereafter, ELISpot plates were washed

and then blockedwith 150 µl AIM-V® (Thermo Scientific, Dreireich,

Germany). After 30 min at 37°C, AIM-V® was discarded, and

duplicates of 250,000 peripheral blood mononuclear cells

(PBMC) were grown in the presence or absence of either

PepTivator® SARS-CoV-2 protein S1/S2 (600 pmol/ml, Miltenyi

Biotec, Bergisch Gladbach, Germany) in 150 µl of AIM-V®. The
peptide mix of the S1/S2 protein consists mainly of 15-mer

sequences with 11 amino acids overlap, covering the

immunodominant sequence domains of the surface glycoprotein

of SARS-CoV-2. After 19 h of incubation at 37°C, the ELISpot plates

were washed, and captured IFN-γ was detected by incubation for

1 hour with 50 µl of the alkaline phosphatase-conjugated

monoclonal antibody against IFN-γ (clone 7-B6-1, Mabtech,

Stockholm, Sweden), diluted 1:200 with PBS plus 0.5% bovine

serum albumin (BSA). After further washing, 50 µl of nitro blue

tetrazolium/5-bromo-4-chloro-3-indolyl-phosphate (NBT/BCIP)

was added, and purple spots appeared within 7 min. Spot

numbers were analyzed by an ELISpot reader (AID Fluorospot,

Autoimmun Diagnostika GmbH, Strassberg, Germany). Mean

values of duplicate cell cultures were considered. We determined

SARS-CoV-2-specific spots by spot increment, defined as stimulated

minus non-stimulated values. Stimulated spot numbers > 3-fold

higher than negative (unstimulated) controls combined with an

increment value of >3 to the antigen were considered positive. Of

note, the negative controls reached a mean value of less than

one spot.

Genotyping of GNB3 rs5443 (c.825C>T)

Genomic DNA was extracted from 200 µl EDTA-blood using

the QIAamp® DNA Blood Mini Kit (Qiagen, Hilden, Germany).

Polymerase chain reaction (PCR) was performed with 2 µl genomic

DNA and 30 µl Taq DNA-Polymerase 2x Master Mix Red

(Ampliqon, Odense, Denmark), with the following conditions:

initial denaturation 94°C for 3 min; 35 cycles with denaturation

94°C for 30 s, annealing at 66°C for 30 s, and elongation 72°C for 30 s

each; final elongation 72°C for 10 min (forward primer: 5′ GCT
GCC CAG GTC TGA TCC C 3’ and reverse primer 3′ TGG GGA

GGGTCCTTCCAGC5′). PCR products were digestedwithBseDI

(Thermo Scientific, Dreireich, Germany), and restriction fragments

were analyzed by agarose gel electrophoresis. The various genotype

results from restriction fragment length polymorphism (RFLP)-PCR

were validated by Sanger sequencing.

Statistical analyses

Correlation of demographics (sex and medical history) and

outcome of COVID-19 were calculated using Pearson’s chi

square (χ2) statistics using the Baptista–Pike method for the

odds ratio (OR) and 95% confidence interval (CI). One-way

analysis of variance (ANOVA) was performed using the

Kruskal–Wallis test with Dunn’s multiple comparison to

assess the influence of age, hematological parameters, or

inflammatory markers on COVID-19 severity. To calculate

thresholds for the laboratory values, which correlate with fatal

course of disease receiver operating characteristic (ROC)

analysis, Youden`s J statistic was performed.

The number of patients with fatal outcome of disease, for

whom IFN-γ ELISpot analyses could be performed, was relatively

small. Thus, we defined additional groups to perform statistical

analyses to estimate the influence of the T cell response on

COVID-19 severity in our cohort. Therefore, patients from the

categories “mild” and “hospitalized” were grouped together to

the group “moderate,” whereas the patients with “severe” and

“fatal” COVID-19 were consolidated to the group “serious.” The

differences in T cell responses as analyzed by IFN-γ ELISpot

between patients with “moderate” and “serious” COVID-19 was

estimated by Mann–Whitney test.
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Hardy–Weinberg equilibrium (HWE) was calculated using

Pearson’s chi square (χ2) goodness of fit test, and samples were

considered as deviant from HWE at a significance level of p < 0.05.

For genetic association, we calculated OR and 95% CI by

Pearson’s chi square (χ2) statistics using the Baptista–Pike

method for OR and 95% CI, respectively. p-values are reported

two-sided, and values of <0.05 were considered significant. One-way
analysis of variance (ANOVA)was performed using Kruskal–Wallis

test with Dunn’s multiple comparison test to determine the

influence of GNB3 rs5443 genotype on T cell response as

measured by IFN-γ ELISpot assay.

Multivariable analysis was performed to estimate

independency of the variables age, sex, medical history,

laboratory parameters, and GNB3 rs5443 genotypes by

stepwise Cox regression (likelihood ratio test, backward).

Results

From 11 March 2020 to 30 June 2021, we enrolled and

studied 1,570 SARS-CoV-2-positive patients to determine the

association of the SNP rs5443 in the gene GNB3, with severity of

COVID-19. In a sub group of patients (N = 182), who were

representative for all severity groups, we additionally analyzed

the T cell response to SARS-CoV-2-specific antigens. The

demographics and clinical characteristics of the patients are

summarized in Table 1. We observed that about 20% of all

patients (inpatients and outpatients) and 23% of the hospitalized

patients had a fatal outcome of COVID-19. With increasing

severity of the disease, we found significantly more elderly and

male patients and those who had arterial hypertension,

cardiovascular disorders, or diabetes mellitus as pre-existing

medical disorders (Table 1). The number of platelets,

erythroctytes, and lymphocytes decreased significantly,

whereas the neutrophil counts increased with disease severity

(p < 0.0001, ANOVA). Regarding the inflammatory markers,

NLR, PLR, and SII, we observed significantly higher values with

increasing severity of COVID-19 as well.

SARS-CoV-2-specific T cell response and
GNB3 rs5443 genotype

In 182 patients, we performed IFN-γ ELISpot assays to

determine T cell response to SARS-CoV-2-specific antigens.

We were able to analyze patients from all severity groups:

“mild” (N = 79); “hospitalized” (N = 82); “severe” (N = 17),

and “fatal” (N = 4). The number of patients with fatal

outcome of disease, for whom IFN-γ ELISpot analyses

could be performed, was relatively small. Thus, we defined

additional groups to perform statistical analyses to estimate

the influence of the T cell response on COVID-19 severity in

TABLE 1 Demographics, clinical characteristics, and outcome of the disease in SARS-CoV-2-positive patients. Classification according to the COVID-
19 surveillance report of the ECDC: category “mild” is a case that has not been reported as hospitalized or dead. A “severe” case has been admitted
to intensive care and/or required mechanical respiratory support. All values are given in medians and interquartile ranges (IQR), except from sex and
medical history, which are reported in absolute counts and percentages.

Characteristics All patients
(N = 1570)

Mild
(N = 205)

Hospitalized
(N = 760)

Severe
(N = 292)

Fatal
(N = 313)

p-value

Age–years 62.0 (49.0–76.0) 47.0 (34.5–64.0) 62.0 (48.3–76.0) 59.0 (50.0–70.0) 71.0 (59.5–82.0) p < 0.0001

Male sex 910 (58.0) 107 (52.2) 416 (54.7) 185 (63.4) 202 (64.5) p = 0.002

Medical history

Cardiovascular systema 547 (34.8) 11 (5.4) 257 (33.8) 111 (38.0) 168 (53.7) p < 0.0001

Arterial hypertension 748 (47.6) 29 (14.1) 373 (49.1) 149 (51.0) 197 (62.9) p < 0.0001

Diabetes mellitus 404 (25.7) 14 (6.8) 214 (28.2) 76 (26.0) 100 (31.9) p = 0.001

Hematological parameters

Erythrocytes/nl 4.4 (3.8–4.8) 4.6 (4.2–4.9) 4.4 (4.0–4.9) 4.4 (3.8–4.8) 4.0 (3.4–4.6) p < 0.0001

Platelets/nl 202.0 (156.0–260.0) 204.0 (164.0–270.5) 205.0 (157.0–255.0) 209.0 (169.0–292.0) 189.0 (135.0–242.0) p < 0.0001

Neutrophils/nl 4.9 (3.1–7.5) 3.7 (2.7–5.1) 3.9 (2.6–5.8) 6.3 (4.2–9.3) 7.7 (5.2–11.7) p < 0.0001

Lymphocytes/nl 0.9 (0.7–1.3) 1.1 (0.9–1.5) 1.0 (0.7–1.4) 0.8 (0.6–1.1) 0.7 (0.5–1.1) p < 0.0001

Inflammatory markers

NLR 5.0 (2.9–9.9) 3.1 (2.1–4.7) 3.8 (2.4–6.2) 7.9 (4.5–13.0) 11.1 (6.0–18.5) p < 0.0001

PLR 217.8 (151.1–326.7) 176.3 (139.1–268.9) 197.7 (140.7–285.5) 269.8 (181.4–418.4) 252.6 (162.9–414.2) p < 0.0001

SII 1031.0 (523.9–2206.0) 717.2 (385.7–1055.0) 769.6 (399.8–1417.0) 1680 (921.9–3466.0) 1917.0 (1010.0–4019.0) p < 0.0001

aCardiovascular system: for example, myocardial infarction, coronary heart disease but not arterial hypertension. Abbreviations: nl = nanoliter; NLR, neutrophil–lymphocyte ratio; PLR,

platelet–lymphocyte ratio; SII, systemic immune-inflammation index.
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our cohort. Therefore, patients from the categories “mild”

and “hospitalized” were grouped together to the group

“moderate,” whereas the patients with “severe” and “fatal”

COVID-19 were consolidated to the group “serious.” We

observed a significant decline of spots increment in the

IFN-γ ELISpot assay comparing the “serious” group (N =

21, median = 9.5, and IQR = 6.8–19.3) to the “moderate”

group (N = 161, median = 14.0, IQR = 8.5–32.8, p = 0.04,

Figure 1A).

In a next step, we analyzed the influence of GNB3

rs5443 genotypes on IFN-γ production against SARS-CoV-

2-specific antigens. Here, we found a significant increase of

IFN-γ spots increment in TT genotype carriers (median =

18.5 and IQR = 8.9–35.4) compared to those with CC

genotype (median = 10.0, and IQR = 5.1–19.0) or CT

genotype (median = 8.5, and IQR = 5.0–24.4) (both p =

0.01, respectively, Figure 1B).

GNB3 rs5443 as a protective factor against
COVID-19 fatality

Overall, the observed genotypes for GNB3 rs5443 were

compatible with HWE in patients with “mild” (p = 0.66),

“hospitalized” (p = 0.07), “severe” (p = 0.52), and “fatal” (p =

0.28) SARS-CoV-2 infection. Genotype distributions for all

patients and the different groups according to severity of SARS-

CoV-2 infection are shown in Table 2. Notably, we observed very

similar rs5443 T allele frequencies (35%–36%) in all groups, except

from those patients with a “fatal” outcome of COVID-19 (29%).

Thus, we estimated, whether T allele or TT genotype carriers might

be protected more effectively against fatal outcome of the disease.

We found a significant association for protection against COVID-19

fatality in rs5443 TT genotype carriers comparing all patients

(“mild,” “hospitalized,” and “severe”) with SARS-CoV-2 infection

FIGURE 1
(A) IFN-γ ELISpot responses to S1/S2 protein of SARS-CoV-2 per 250,000 peripheral blood mononuclear cells stratified by COVID-19 severity.
Due to the low number of cases in the individual groups, patients from the categories “mild” and “hospitalized”were grouped together to the group
“moderate,”whereas the patients with “severe” and “fatal”COVID-19 were consolidated to the group “serious.” There was a significant decline of IFN-
γ spots increment comparing the “serious” (N = 21, median = 9.5, and IQR = 6.8–19.3) to the “moderate” (N = 161, median = 13.5, and IQR =
8.0–35.0) groups (p = 0.04). (B) IFN-γ ELISpot responses to S1/S2 protein of SARS-CoV-2 per 250,000 peripheral bloodmononuclear cells stratified
by the GNB3 rs5443 genotype. Individuals with the TT genotype had significantly higher spots increment (median = 18.5, and IQR = 8.9–35.4)
compared to CT (median = 8.5, IQR = 5.0–24.4, and p = 0.01) or CC genotype carriers (median = 10.0, IQR = 5.1–19.0, and p = 0.01). Abbreviations:
IFN-γ = interferon gamma; PBMC = peripheral blood mononuclear cells; IQR = interquartile range.

TABLE 2 GNB3 rs5443 (c.825C>T) genotype distribution among all patients with SARS-CoV-2 infection and subdivided according to the severity of
COVID-19.

All patients
(N = 1,570)

Mild
(N = 205)

Hospitalized
(N = 760)

Severe
(N = 292)

Fatal
(N = 313)

GNB3 rs5443 CC 700 (44.6) 89 (43.4) 330 (43.4) 121 (41.4) 160 (51.1)

GNB3 rs5443 CT 666 (42.4) 90 (43.9) 324 (42.6) 130 (44.5) 122 (39.0)

GNB3 rs5443 TT 204 (13.0) 26 (12.7) 106 (13.9) 41 (14.0) 31 (9.9)

Minor allele frequency (T) 0.34 0.35 0.35 0.36 0.29
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and with those who died from COVID-19 (OR: 0.60, 95% CI:

0.40–0.92; p = 0.02, Table 3).

Thereupon, we performed multivariable analysis to analyze

the independence of the GNB3 rs5443 TT genotype in

comparison to the other predictive parameters: age, pre-

existing disorders, hematological parameters, and

inflammatory markers. We performed ROC analysis and

Youden`s statistic for the numeric variables to estimate a

threshold above which the risk for COVID-19 fatality

significantly decreased. We found that a younger patient age

(<62 years; p < 0.0001), erythrocyte (≥4.0/nl; p = 0.02), platelet

(≥133.5/nl; p < 0.0001), neutrophil (<6.6/nl; p < 0.0001), and

lymphocyte (≥0.9/nl; p < 0.0001) counts above these respective

thresholds at the time of admission to hospital, and the GNB3

rs5443 TT genotype (p = 0.03) remained independent predictors

for protection against COVID-19 fatality (Table 3).

Discussion

Remarkably, we observed that the TT genotype of the SNP

rs5443 in the gene GNB3 was associated with a higher T cell

response as estimated by IFN-γ ELISpot assay in our patients. We

could not find an association ofGNB3 genotype to lymphocyte or

T cell counts. Thus, it seems that the increased T cell response in

TT genotype carriers might be related to an increased activation

of T cells. Early development of CD8+ T cell responses is

correlated to a more effective viral clearance and a mild

course of COVID-19. Patients with severe disease display

early onset of inflammation as well as delayed and relatively

excessive adaptive immune response (Moss, 2022). The SNP

rs5443 in the gene GNB3 was not only correlated to higher T cell

responses but also to a significantly reduced risk for COVID-19

fatality in our study in univariate and multivariable analyses.

The underlying mechanism of the influence of GNB3 genotype

on T cell response remains elusive. Juno (2014) could show that

GNB3 TT genotype carriers had a significantly lower LAG-3 gene

expression. The LAG-3 (lymphocyte activation gene 3) gene is

localized on chromosome 12 nearby to GNB3, nevertheless there

are no SNPS in the gene LAG-3 in high linkage disequilibrium with

rs5443, which could be causative for the different gene expression in

GNB3 TT genotype carriers. LAG-3 was found to be expressed on

dysfunctional or exhausted T cells in chronic viral infections and

correlated with severity of the infection (Blackburn et al., 2009;

Richter et al., 2010). Further studies are needed to analyze whether a

reduced LAG-3 expression is responsible for the T cell activation in

GNB3 TT genotype carriers.

We found that the comorbidities arterial hypertension, other

disorders of the cardiovascular system and diabetes mellitus were

associated with COVID-19 fatality in univariate analysis. This has

already been extensively described in a multitude of studies and

meta-analyses (Zhou et al., 2020). A variety of other factors, for

example, age, sex, or laboratory parameters, have also been identified

to influence the course of COVID-19 (Hobohm et al., 2022). The

TABLE 3 Protective factors against COVID-19 fatality. Abbreviations: nl = nanoliter; NLR = neutrophil-lymphocyte ratio; PLR = platelet-lymphocyte
ratio; SII = systemic immune-inflammation index; OR = odds ratio; CI = confidence interval, NS = not significant in stepwisemultivariable analysis.

Univariate analysis Multivariable analysis

Factor OR (95% CI) p-value Or ([95% CI) p-value

Age (<62 years) 0.35 (0.27–0.45) <0.0001 0.47 [0.34–0.64) <0.0001
Sex (female) 0.71 (0.55–0.92) 0.01 NS NS

Absence of

Diseases of cardiovascular system 0.41 (0.32–0.53) <0.0001 NS NS

Arterial hypertension 0.53 (0.41–0.68) <0.0001 NS NS

Diabetes mellitus 0.75 (0.57–0.98) 0.04 NS NS

Hematological parameters

Erythrocytes (≥4.0/nl) 0.27 (0.21–0.34) <0.0001 0.70 (0.52–0.94) 0.02

Platelets (≥133.5/nl) 0.40 (0.29–0.54) <0.0001 0.42 (0.30–0.60) <0.0001
Neutrophils (≤6.6/nl) 0.28 (0.21–0.36) <0.0001 0.32 (0.23–0.45) <0.0001
Lymphocytes (≥0.9/nl) 0.41 (0.32–0.53) <0.0001 0.55 (0.41–0.74) <0.0001

Inflammatory markers

NLR (<7.3) 0.24 (0.18–0.31) <0.0001 NS NS

PLR (<224.6) 0.60 (0.46–0.78) <0.0001 NS NS

SII (<1206.4) 0.32 (0.24–0.42) <0.0001 NS NS

GNB3 rs5443 TT genotype 0.60 (0.40–0.92) 0.02 0.65 (0.44–0.96) 0.03
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infection-fatality ratio of COVID-19 significantly increases through

ages 30, 60, and 90 years (COVID-19 Forecasting Team, 2022).

Thus, we observed that a younger age (<62 years) was an

independent protective factor against COVID-19 fatality in our

study as well. Nevertheless, we could not confirm the independent

influence of other consistent factors, like sex or pre-existing

disorders, in a multivariable analysis.

Normal cell counts of lymphocytes and platelets upon

hospital admission are associated with a significantly reduced

risk for fatal outcome of COVID-19. Impaired adaptive

immune responses as reflected by low counts of white

blood cells together with augmented inflammation serve as

a good predictor for the course of the disease (Qin et al.,

2022). In our study, we noticed impaired white blood cell

counts in individuals with severe COVID-19 as well. Several

studies could show that the inflammatory markers NLR, PLR,

and SII determined upon hospital admission are good

predictive markers for in-hospital mortality (Fois et al.,

2020; Wang et al., 2021; Sarkar et al., 2022). We also

found a significant association for COVID-19 fatality and

high NLR, PLR, and SII in the univariate analysis in our

study. Nonetheless, those markers did not reach statistical

significance in the multivariable analysis. Therefore, it seems

even more important to find persistent markers that can

predict the course of COVID-19 disease.

Together with a younger patient age, a normal white blood

cell count at hospital admission, the GNB3 rs5443 TT

genotype remained an independent protective factor against

COVID-19 fatality in our study. Immutable predictors are still

relatively rare, thus analyses of genetic host factors might be

useful in predicting severity, which could be implemented in

routine diagnostics.
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Background: Immune responses following vaccination against COVID-19 with

different vaccines and the waning of immunity vary within the population.

Genetic host factors are likely to contribute to this variability. However, to the

best of our knowledge, no study on G protein polymorphisms and vaccination

responses against COVID-19 has been published so far.

Methods: Antibodies against the SARS-CoV-2 spike protein and T-cell

responses against a peptide pool of SARS-CoV-2 S1 proteins were measured

1 and 6 months after the second vaccination withmRNA-1273 in themain study

group of 204 participants. Additionally, antibodies against the SARS-CoV-

2 spike protein were measured in a group of 597 participants 1 month after

the second vaccination with mRNA-1273. Genotypes of GNB3 c.825C>T were

determined in all participants.

Results: The median antibody titer against the SARS-CoV-2 spike protein and

median values of spots increment in the SARS-CoV-2 IFN-γ ELISpot assay

against the S1-peptide pool were significantly decreased from months 1 to 6

(p < 0.0001). Genotypes of GNB3 c.825C>T had no influence on the humoral

immune response. At month 1, CC genotype carriers had significantly increased

T-cell responses compared to CT (p = 0.005) or TT (p = 0.02) genotypes. CC

genotype carriers had an almost 6-fold increased probability compared to TT

genotype carriers and an almost 3-fold increased probability compared to

T-allele carriers to mount a SARS-CoV-2-specific T-cell response above the

median value.

Conclusion: CC genotype carriers of the GNB3 c.825C>T polymorphism have

an increased T-cell immune response to SARS-CoV-2, which may indicate

better T-cell-mediated protection against COVID-19 after vaccination with

mRNA-1273.
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1 Introduction

Antibodies and T-cells play an important role in both the

outcome of COVID-19 and vaccination against it. Interaction

between the angiotensin-converting enzyme 2 receptor expressed

on the host cells and the receptor-binding domain in the spike (S)

1 subunit of the SARS-CoV-2 spike protein allows the virus to

enter the host cell (Harrison et al., 2020). Vaccines against

COVID-19 encode this SARS-CoV-2 spike protein and induce

an immune response (Martinez-Flores et al., 2021). Immune

responses following vaccination against COVID-19 with

different vaccines and the waning of immunity vary within

the population (Collier et al., 2021). Common factors such as

age, sex, pre-existing conditions, or immunosuppressive therapy

have been investigated and shown to contribute to this variability

(Geisen et al., 2021; Lindemann et al., 2021; Simon et al., 2021;

Steensels et al., 2021; Widge et al., 2021). In addition, genetic host

factors are also likely to contribute to this variability (Crocchiolo

et al., 2022; Gutierrez-Bautista et al., 2022). However, to the best

of our knowledge, no studies on vaccination against COVID-19

and G protein polymorphisms have been published so far.

Here, we investigated whether genotypes of the c.825C>T
polymorphism in the gene GNB3 (rs5443) may influence the

immune response after vaccination against COVID-19. This

polymorphism exerts diverse influences on G protein-

mediated signaling by generating a splice variant of the G

protein subunit beta-3 (Siffert et al., 1998). Previous studies

have shown that the GNB3 c.825C>T polymorphism affects

the immune response after stimulation with various recall

antigens and after vaccination against the hepatitis B virus

(HBV) (Lindemann et al., 2001; Lindemann et al., 2002).

2 Methods

2.1 Study group

For the study, 2,526 healthcare workers from the University

Hospital Essen (Essen, Germany) were recruited. From this study

cohort, we gathered a homogeneous group of 204 participants

aged between 18–40 years for further investigations. All

participants in this study group were non-obese, non-smokers,

and were healthy or had minor health issues, but no

immunosuppressive conditions or cardiovascular diseases.

Immune responses after the vaccination in the study group

did correlate neither with age nor with BMI. Furthermore,

there were no differences in immune responses between

healthy participants and participants with minor health issues.

The allele frequencies of GNB3 c.825C>T are differently

distributed in African and East Asian populations. In this

study, merely two participants belonged to these

populations and they constituted less than 1% of our study

group. The selection was based on questionnaires and the flow

chart of enrollment is shown in Supplementary Figure S1. For

additional investigations of antibody titers, we established an

age-matched replication group of 597 participants. All

participants in both study groups were vaccinated twice

with the COVID-19 vaccine mRNA-1273 (Moderna Inc.).

None of the participants had a history of SARS-CoV-

2 infection and all tested negative for antibodies against the

SARS-CoV-2 nucleocapsid protein. The investigations were

reviewed and approved by the Ethics Committee of the

Medical Faculty of the University of Duisburg-Essen

(21–10005-BO). All participants provided their written

informed consent to participate in this study.

2.2 Study design

Blood samples were taken from all participants 1 and

6 months after the second vaccination with mRNA-1273. We

measured antibody titers against the SARS-CoV-2 S protein and

the SARS-CoV-2 nucleocapsid protein and determined

genotypes of the GNB3 c.825C>T polymorphism. In addition,

in the main study group of 204 participants, the T-cell response

against the S1 peptide pool was measured using the SARS-CoV-

2 IFN-γ ELISpot assay 1 and 6 months after the second

vaccination.

2.3 GNB3 c.825C>T genotyping

Genomic DNA was extracted from 200 µl EDTA blood

using the QIAamp® DNA Blood Mini Kit (Qiagen, Hilden,

Germany). Polymerase chain reaction (PCR) was performed

with 2 µl genomic DNA and 30 µl Taq DNA-Polymerase 2x

Master Mix Red (Ampliqon, Odense, Denmark) under the

following conditions: initial denaturation 94°C for 3 min, 38

cycles with denaturation at 94°C for 30 s, annealing at 60°C for

30 s, elongation at 72°C for 30 s each, and final elongation at

72°C for 10 min (forward primer: 5′ GCCCTCAGTTCTTCC
CCAAT 3’; reverse primer 3′CCCACACGCTCAGACTTCAT
5′). PCR products were digested with BseDI (Thermo

Scientific, Dreireich, Germany), and restriction fragments

were analyzed by agarose gel electrophoresis. For the

various genotypes, results from restriction fragment length

polymorphism (RFLP)-PCR were validated by Sanger

sequencing.
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2.4 Detection of antibodies against SARS-
CoV-2 spike protein

Determination of anti-spike SARS-CoV-2 antibody

concentrations was performed using the SARS-CoV-

2 S1 receptor-binding domain (RBD) IgG/sCOVG test

(Siemens Healthcare GmbH, Erlangen, Germany) according to

the manufacturer’s instructions. Anti-Spike SARS-CoV-

2 antibody concentration results were reported in binding

antibody units per ml (BAU/ml). The limit of detection for

positivity was 21.8 BAU/ml.

2.5 Detection of antibodies against the
SARS-CoV-2 nucleocapsid protein

All samples were also analyzed for SARS-CoV-2 IgG

antibodies against the nucleocapsid protein to exclude

participants with prior SARS-CoV-2 infection. The Architect

i2000SR CoV-2 IgG assay (Abbott Diagnostics, IL, United States)

was used according to the manufacturer’s instructions. Results

with an index ≥1.4 were considered evidence of the previous

infection.

2.6 ELISpot assay

To assess SARS-CoV-2-specific cellular immunity, we

performed ELISpot assays using an overlapping peptide pool

of SARS-CoV-2 S1 proteins (Miltenyi Biotec, Bergisch Gladbach,

Germany) without the addition of any cytokines. We tested

250,000 peripheral blood mononuclear cells (PBMCs) per

sample and measured IFN-γ production after 20 h of

incubation. Mean values of duplicate cell cultures were

considered. The median and mean spot numbers of

autologous (unstimulated) controls were 0 and 0.05,

respectively. SARS-CoV-2-specific spots were determined as

stimulated minus unstimulated values (spots increment). The

cut-off definition for positive results was based on negative

control values (non-stimulated cultures) and the consideration

that three times higher values for stimulated versus non-

stimulated cells in cellular assays are often interpreted as a

positive T-cell response. Using these criteria, the cut-off was

1.5 spot increments. Further details on the ELISpot assay and the

cut-off definition have been published previously (Schwarzkopf

et al., 2021).

2.7 Statistical analysis

Statistical analysis was performed with GraphPad Prism 7

(Graph Pad Software, San Diego, California, United States) and

IBM SPSS Statistics 27 (IBM Software, Ehningen, Germany).

Comparisons between three groups were made using the

Kruskal–Wallis test and between two groups using the

Mann–Whitney test. For genetic associations, we calculated

the odds ratio (OR) and 95% confidence interval (CI) by

Fisher’s exact test using the Baptista–Pike method for the OR.

p-values are given two-sided and values <0.05 were considered

significant.

3 Results

3.1 Descriptive statistics of study groups

In the main study group of 204 participants,

105 participants were tested 1 month and 163 participants

6 months after the second vaccination with mRNA-1273. At

both time points, sixty-four subjects participated. At month 1,

the median age of the study group was 24 years (range 18–39),

the BMI 22.5 kg/m2 (range 17.0–29.9), and 69.5% (n=73) of

participants were female. At month 6, the median age was

26 years (range 18–40), the BMI was 22.5 kg/m2 (range

17.0–29.1), and 75.5% (n=123) were female. In the

additional study group of 597 participants, the median age

was 28 years (range 18–40), the BMI was 23.0 kg/m2 (range

16.7–53.8), and 74.4% (n=444) of the participants were

female.

3.2 Antibody titer against SARS-CoV-2 S1-
RBD and T-cell response to SARS-CoV-
2 S1 ELISpot assay one and six months
after the second vaccination with mRNA-
1273

The median antibody titer against SARS-CoV-2 S1-RBD was

3,887 BAU/ml (range 1,058–52,213) at month 1 (Figure 1A),

which significantly (p < 0.0001) decreased to 644 BAU/ml (range

91–6,491) at month 6 (Figure 1B).

At month 1, 93.3% and at month 6, 41.7% of participants had

a positive T-cell response in the SARS-CoV-2 IFN-γ ELISpot

assay against the S1-peptide pool. Median values of spots

increment decreased from 7.5 (range 0.5–60.5) to 0.5 (range

-0.5–22.5) (p < 0.0001, Figures 1C,D).

Samples of 64 participants were available at both time

points, 1 and 6 months after the second vaccination. The

median antibody titer against SARS-CoV-2 S1-RBD was

3,682 BAU/ml (range 1,058–52,213) at month 1, which

significantly (p < 0.0001) decreased to 731 BAU/ml

(range 128–6,491) at month 6 (Figure 2A). Median

values of spots increment in the SARS-CoV-2 IFN-γ
ELISpot assay against the S1-peptide pool decreased

from 6.0 (range 0.5–49) to 1.8 (range 0.0–22.5) (p <
0.0001, Figure 2B).
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3.3 Influence of GNB3 c.825C>T on the
immune response one and six months
after the second vaccination with mRNA-
1273

We investigated the impact of GNB3 c.825C>T genotypes on

the humoral immune response. We found a slightly albeit non-

significantly lower anti-spike antibody titer in TT genotype

carriers at month 1, which was no longer detectable in month

6 (Figures 1A,B). We validated these results in a larger cohort of

597 individuals (Figure 3).

Atmonth 1, themedian values of spots increment in the ELISpot

assay were 13.3 (range 0.5–57.5) for CC, 5.0 (range 0.5–60.5) for CT,

and 4.5 (range 0.5–27.0) for TT genotype carriers (p = 0.006,

Figure 1C). CC genotype carriers had significantly increased

T-cell responses compared to CT or TT genotypes (p =

0.005 and p = 0.02, respectively, Figure 1C). The effect was even

more pronounced when comparing the CC genotype with T-allele

carriers (13.3 vs. 4.5 spots increment, p = 0.001). At month 6, T-cell

responses were strongly reduced and, therefore, genotype-dependent

differences were no longer detectable (Figure 1D).

We analyzed the frequency distribution of GNB3 genotypes

above and below the median of 7.5 spots increment 1 month after

the second vaccination to estimate if there is a genotype-related

probability for a T-cell response above this cutoff. We found that

CC genotype carriers had an almost 6-fold increased probability

compared to TT genotype carriers (OR: 5.9, 95% CI: 1.6–21.5, p =

0.01) and an almost 3-fold increased probability compared to

T-allele carriers (OR: 2.9, 95% CI: 1.3–6.2, p = 0.01) to mount a

SARS-CoV-2-specific T-cell response above the median value.

4 Discussion

In this study, we observed a nearly 6-fold decrease in

antibody titers from 1 to 6 months after the second

FIGURE 1
Humoral and cellular immune responses were stratified by GNB3 genotypes 1 and 6 months after the second vaccination with mRNA-1273.
Distribution of antibody concentrations against SARS-CoV-2 S1-RBD 1 month (A) and 6 months (B) after the second vaccination. ELISpot responses
to the S1-protein of SARS-CoV-2 at 1 month (C) and 6 months (D) after the second vaccination. Antibody titers are reported in BAU/ml and T-cell
response as spots increment. Red dashed lines indicate the cut-off for positivity (1.5 spots increment per 250,000 peripheral blood
mononuclear cells).
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vaccination with mRNA-1273; nevertheless, all participants

remained seropositive 6 months after the second vaccination.

Despite many studies on the immune response after vaccination

against COVID-19, there are only a few studies on the course of

antibody titers over a longer period of time after vaccination with

mRNA-1273. Those studies also reported a significant drop in

antibody titers after vaccination with mRNA-1273 (Collier et al.,

2021; Doria-Rose et al., 2021; Tre-Hardy et al., 2021; Gallagher

et al., 2022).

In addition, Tré-Hardy et al. investigated whether different

demographic characteristics such as age, BMI, or pre-existing

conditions may influence the kinetics of antibody titers and

FIGURE 3
Comparison of humoral response and GNB3 genotypes 1 month after the second vaccination with mRNA-1273 in the replication group. The
median of anti-spike antibody levels is given in BAU/ml.

FIGURE 2
Humoral (A) and cellular (B) immune response 1 and 6 months after the second vaccination with mRNA-1273 in the group of 64 participants
who were available at both time points. Antibody titers are reported in BAU/ml and T-cell response as spots increment. Red dashed lines indicate the
cut-off for positivity (1.5 spots increment per 250,000 peripheral blood mononuclear cells).
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found no statistically significant relationship. Despite a very

homogeneous study group of young, non-obese, and non-

smoking participants without systemic immunosuppressive

therapies or serious pre-existing conditions, we observed an

almost 6-fold decrease in antibody titers, which confirms the

findings of Tre-Hardy et al. (2021).

Some individuals generate lower antibody titers due to older

age, pre-existing conditions, or immunosuppressive therapy

(Geisen et al., 2021; Lindemann et al., 2021; Simon et al.,

2021; Steensels et al., 2021; Widge et al., 2021). In our study,

we present, for the first time, data on the potential influence of a

G protein polymorphism on the immune response after

vaccination with mRNA-1273. For this project, we chose the

GNB3 c.825C>T polymorphism because it was shown to

correlate with T-cell responses to vaccination against HBV

and to different recall antigens (Lindemann et al., 2001;

Lindemann et al., 2002). In our current study, we observed

that C-allele carriers had higher antibody titers, but this trend

escaped statistical significance. In addition, no statistically

significant differences were found between the genotypes of

GNB3 c.825C>T and the antibody titers after the booster

vaccination against HBV (Lindemann et al., 2002). However,

it has been shown that CT genotype carriers tend to have higher

antibody titers after booster vaccination against HBV. It seems

that GNB3 c.825C > T may have a slight impact on the humoral

immune response.

Data on T-cell kinetics after the vaccination with mRNA-

1273 are scarce. Many studies tested T-cell immunity only once

after vaccination or after a very short follow-up time. However,

Gallagher et al. investigated the kinetics of T-cell responses after

vaccination with mRNA-1273 at long-term follow-up and

demonstrated approximately 30% decreased T-cell responses

at a median of 223 days after the first vaccination with

mRNA-1273 (Gallagher et al., 2022).

Our analysis of the cellular immunity also reveals a decrease

in T-cell responses 6 months after the second vaccination with

mRNA-1273. We observed a 15-fold decrease in T-cell responses

in the SARS-CoV-2 ELISpot assay against the S1 peptide pool

from 1 to 6 months after the second vaccination. In addition, at

6 months, only half of the participants had a T-cell response

above the cut-off. It is also worth noting that our study is the first

to measure T-cell responses in such a large cohort and, in

addition, all tests were performed on freshly collected PBMC.

Our data show that CC genotype carriers have a stronger

T-cell-mediated response and may be better protected against

COVID-19 or have a milder COVID-19 infection after

vaccination with mRNA-1273. This may also be an advantage

for CC genotype carriers when antibodies cannot neutralize the

virus and T-cell immunity is critical, e.g., after infection with

immune escape variants of SARS-CoV-2 or when the humoral

immune response is impaired.

However, at this time point, further studies are needed. First,

our data should be replicated in an independent cohort. Further

studies after booster vaccination causing a stronger immune

response are also needed to see the influence of

GNB3 c.825C>T on the T-cell response after a longer follow-

up. Last, the molecular mechanisms by which the GNB3

c.825C>T polymorphism influences the T-cell response after

SARS-CoV-2 vaccination and the potential clinical

implications of these findings are to be yet unraveled.
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Antiretroviral therapy (ART) regimens containing integrase strand transfer

inhibitors (INSTIs) are the recommended treatment for human

immunodeficiency virus type 1 (HIV-1)-infected patients in the most recent

guidelines in China. In this study, we investigated INSTI resistance mutations in

newly diagnosed therapy-naive HIV-positive patients in Baoding City, Hebei

Province (China) to provide guidance for implementing routine INSTI-

associated HIV-1 genotypic resistance testing. Plasma samples were

collected from HIV-1-infected patients without treatment at Baoding

People’s Hospital from January 2020 to December 2021. The part of HIV-1

pol gene encoding integrase was amplified, sequenced, and analyzed for INSTI

resistance. Clinical data including demographic data, CD4+ T cell counts, HIV-

RNA loads, and resistance mutations were collected. Treatment-naïve HIV-1

patients (n = 131) were enrolled. We identified ten genotypes, and the

predominant genotype was CRF01_AE in 67 patients (51.15%), CRF07_ BC in

39 patients (29.77%), subtype B in 11 patients (8.40%), and other subtypes

(CRF68_01B, 3.82%; CRF55_01B, 1.53%, CRF80_0107, 1.53%; URFs 1.53%;

and CRF103_01B, CRF59_01B, and CRF65_cpx, 1.4% each). Four major

(E138A, R263k, G140S, and S147G) and three accessory (H51Y, Q146QL, and

S153F) INSTI-resistance mutations were observed (genotype CRF01_AE, three

patients; genotype B, one patient; and genotype CRF07_BC, one patient),

resulting in different degrees of resistance to the following five INSTIs:

raltegravir, elvitegravir, dolutegravir, bictegravir, and cabotegravir. The overall

resistance rate was 3.82% (5/131). All INSTI-resistant strains were cross-

resistant. The primary INSTI drug resistance rate among newly diagnosed

HIV-infected patients in Baoding was low, but monitoring and research on

HIV INSTI resistance should be strengthened in Baoding because INSTI-based

regimen prescriptions are anticipated to increase in the near future.
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Introduction

Human immunodeficiency virus (HIV), the causative

agent of acquired immune deficiency syndrome (AIDS),

was first reported in 1981, and it quickly became a major

epidemic threatening human health (Centers for Disease

Control and Prevention, 1981). Today, antiretroviral

therapy (ART) has transformed AIDS from a fatal disease

into a treatable but currently incurable chronic disease, and

there have been significant changes in the life expectancy of

people living with HIV (Trickey et al., 2017). However, with

the widespread application of antiretroviral drugs in clinical

practice, HIV drug resistance has become an important factor

affecting ART efficacy (Godfrey et al., 2017; Zhao et al., 2017).

The HIV resistance rate to non-nucleoside reverse

transcriptase inhibitors has increased significantly, and

some areas have even experienced a high rate of

transmissible resistance, leading to incomplete viral

suppression and treatment failure (Wittkop et al., 2011;

Clutter et al., 2016; World Health Organization, 2019). One

of the newest antiretroviral drug classes is integrase strand

transfer inhibitors (INSTIs), which target the HIV integrase

enzyme and block incorporation of reverse transcribed

proviral DNA into the host genome. Because they have

excellent tolerability, minimal toxicity, high efficacy, and

are easy to use, integrase inhibitors became preferred

agents for treatment-naive or experienced patients, and

they are a novel treatment option for acquired and

transmitted resistance in combination with other HIV drug

classes (Winans and Goff, 2020; Boyd and Donovan, 2013;

NAMSAL ANRS 12313 Study Gro up Kouanfack et al., 2019;

Durham and Chahine, 2021). The United States Food and

Drug Administration (United States FDA) has approved the

following five drugs for clinical use: dolutegravir (DTG),

raltegravir (RAL), elvitegravir (EVG), bictegravir (BIC), and

cabotegravir (CAB). Despite integrase inhibitors plays an

effective role in antiretroviral action with a novel

mechanism of action, resistance is inevitable (Jiang et al.,

2016), and previously published studies have shown that there

were important INSTIs resistance mutations in newly

diagnosed HIV-1 patients in Spain, Canada, and the

United States (Stekler et al., 2015; Ji et al., 2018; Casadellà

et al., 2020; López et al., 2021). Major INSTIs resistance

mutations have also been discovered in Yunnan (Deng

et al., 2019) and Jiangsu (Yin et al., 2021) in China, and

INSTIs resistance mutations were found in our neighboring

provinces such as Henan (Yang et al., 2021), Beijing (Yu et al.,

2022). Therefore, early monitoring of INSTIs drug resistance

is of great significance for clinical development of HIV

medication guidance and timely adjustment of medication

regimens. However, there have been no previous reports on

the spread of INSTIs drug resistance strains in Hebei.

Therefore, this study was a preliminary analysis of primary

integrase gene mutation and drug resistance in Baoding to

provide a reference for preventing and treating HIV-1 patients

in China.

Materials and methods

Study participants

Baoding People’s Hospital is the designated hospital of

ART and takes charge of anti-HIV therapy of all HIV-1-

infected individuals in Baoding city. In this study, a total of

131 HIV-1-infected individuals were recruited in Baoding

City before starting ART from January 2020 to December

2021. Their blood samples were collected in Baoding People’s

Hospital, and written informed consent was obtained from all

subjects before blood collection. The baseline demographic

characteristics were investigated using face-to-face interviews

when we collected subjects’ blood samples. CD4+ T cell counts

were determined using the BD FACSCount system (Becton

Dickenson, CA, United States). Plasma HIV RNA levels were

quantitatively tested using the Ampliform HIV-1 Monitor

Test, version 1.5 (Roche, Cobas AmpliPrep/TaqMan 48,

Switzerland). The detection limit threshold

was <20 copies/ml.

Nucleotide acid purification and
polymerase chain reaction amplification

Viral RNA was purified using the QIAamp Viral RNA Mini

Accessory Set (Qiagen, Duesseldorf, Germany), in accordance with

the manufacturer’s instructions. The part of HIV-1 pol gene encoding

integrase (HXB2: 4053-5214) was amplified in two steps using self-

designed primers. For the first-round of reverse transcriptase-

polymerase chain reaction (RT-PCR) amplification, we used the

M-MLV 4 One-Step RT-PCR kit (Beijing Bomaide Gene

Technology, Beijing, China), in accordance with the manufacturer’s

instructions and using the following primers: INF12-2:5′-
GCATTAGGRATYATTCARGCAC-3′ (outer l forward), INF12-1:
5′-GGRATYATTCARGCACAACCAG-3′ (outer forward), and

INR15-1: 5′-TGGGATRTGTACTTCYGARCTTA-3′ (outer

reversal). Thermal cycling conditions for the first round of RT-

PCR consisted of reverse transcription at 50°C for 45 min,

inactivation at 95°C for 2min, which was followed by three cycles
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of amplification at 95°C for 20 s, 50°C for 30 s, and 72°C for 2 min and

30 s. This was followed by 35 amplification cycles 95°C for 15 s, 50°C

for 20 s, and 72°C for 2 min, with a final extension at 72°C for 10min.

Using the first-round RT-PCR product as a template, the second-

round of PCR was performed using TaKaRa Premix Taq (TaKaRa

Biotechnology, Dalian, China). Amplification was performed using

the following primers: INF09:5′-
TCTAYCTGKCATGGGTRCCAGCAC-3′ (inner forward) and

INR18:5′-CATCCTGTCTACYTGCCACAC-3′ (inner reversal).

The PCR conditions were as follows: a denaturing step at 95°C for

4 min, followed by three cycles at 95°C for 30 s, 55°C for 30 s, and 72°C

for 2 min and 30s; then 35 amplification cycles at 95°C for 20 s, 55°C

for 20 s, and at 72°C for 2 min; and a final extension at 72°C for

10min. Positive products were detected using 1.2% agarose gel

electrophoresis, and the positive products with the same size, as

shown by the electrophoresis bands, were purified and sequenced

using the Sanger sequencing technology by the Beijing Bomaide Gene

Technology Co., Ltd. (Beijing, China). The sequencing primers were

selected from the second round of amplification primers INF09,

INR18 and KVL082: 5′-GGVATTCCCTATCAATCCCCAAAG-
3′, KVL083: 5′-GAATACTGCCATTTGTACTGCTG-3′.

Sequence and drug-resistant mutation
analysis

Raw sequences were assembled using Contig Express 9.1.

Multiple sequence alignment was completed using ClustalW, and

manual editing was performed using Bio-Edit 7.0 software. A

neighbor-joining phylogenetic tree was constructed using the

Kimura two-parameter model with 1000 bootstrap replicates

using Molecular Evolutionary Genetic Analysis version

6.0 software (MEGA 6.0). HIV-1 subtypes were preliminarily

analyzed using the online REGA HIV-1 Subtyping Tool 3.0

(http://dbpartners.stanford.edu:8080/RegaSubtyping/stanford-

hiv/typingtool/) and identified using a neighbor-joining tree

based on the HIV-1 integrase gene sequences. The Stanford

HIV-1 drug resistance database (HIVdb version 9.0) was used

to analyze the mutations. The Stanford HIVdb algorithm

classifies the likelihood of INSTI resistance mutations being

associated with resistance into “susceptible”, “potential low-

level”, “low-level”, “intermediate”, and “high-level.” In our

study, sequences containing low-level to high-level gene

mutations were defined as resistance sequences. The related

sequences were submitted to GenBank, and the accession

numbers are ON529336 - ON529466.

Statistical analysis

Statistical analysis was conducted using SPSS 21.0 (IBM

Corp., Armonk, NY, United States). Means or frequencies

were used to summarize demographic data. The differences of

polymorphisms mutations according to subtypes were analyzed

using chi-square test. All tests were two-tailed, and

p-values <0.05 were considered statistically significant.

Results

Patient characteristics

One hundred thirty-one patients were evaluated in this study.

Most were men (115/131, 87.79%), and the median age was

34 years (range, 18–76 years). The most common transmission

routes were among men who have sex with men (MSM) (87.79%,

115/131) followed by heterosexual (HET) transmission (12.21%,

16/131). The median CD4+ T cell count was 166 cells/μl (range,

4–926 cells/μl). HIV-1 RNA loads ranged from 4.72 log10 RNA

copies to 7.57 log10 RNA copies/ml (Table 1). Phylogenetic

analysis of the integrase (IN) gene revealed that the sequenced

strains could be divided into ten genotypes (Figure 1). The

prevalence of each subtype was as follows: CRF01_AE

TABLE 1 Clinical characteristics of patients at enrolment.

Variables Patients N (%)

Age (years)

18–50 113 (86.26)

51–76 18 (13.74)

Sex

Male 115 (87.79)

Female 16 (12.21)

Transmission route

MSM 115 (87.79)

Heterosexual 16 (12.21)

CD4T-cell count (cells/μL)

<200 45 (34.35)

≥200 86 (65.65)

HIV-1 viral load (log10 RNA copies/mL)

<5 66 (50.38)

≥5 65 (49.62)

Genotype

CRF01_AE 67 (51.15)

CRF07_BC 39 (29.77)

B 11 (8.40)

CRF68_01B 5 (3.82)

CRF55_01B 2 (1.53)

CRF80_0107 2 (1.53)

URFs 2 (1.53)

CRF103_01B 1 (0.76)

CRF65_cpx 1 (0.76)

CRF59_01B 1 (0.76)

MSM, men who have sex with men; HIV, human immunodeficiency virus.
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(51.15%, 67/131), CRF07_BC (29.77%, 39/131), B (8.40%,11/

131), and other subtypes (10.69%, 14/131).

INSTI resistance mutations

Drug resistance analyses showed that four major INSTI-

resistance mutations (E138A, G140S, S147G, and R263K) and

three accessory INSTI-resistance mutations (H51Y, Q146QL,

and S153F) were detected in five patients. Information about

INSTI resistance mutations corresponding to the specific

drugs are listed in Table 2. To date, the CAB-associated

resistance mutations have been listed in the HIVdb version

9.0. On the basis of this classification system, 96.18% of

participants had viruses that were fully susceptible to five

INSTIs. Low-level resistance to second-generation INSTIs

DTG, BIC, and CAB were identified in 1.53% (2/131),

1.53% (2/131), and 2.29% (3/131) of participants,

respectively. Intermediate-level resistance to all three

second-generation INSTIs was 0.76% (1/131), and there

was no high-level resistance. However, for both the first-

generation INSTIs EVG, and RAL, low-grade resistance was

2.29% (3/131) and intermediate-level resistance was 0.76% (1/

131). There was one case of high resistance to EVG. The

overall INSTIs drug resistance rate was 3.82% (5/131) in this

study.

Natural polymorphisms of CRF01_AE and
CRF07_BC strains at integrase resistance-
related sites

Compared with the international standard strain HXB2 of

subtype B, the CRF01_AE and CRF07_BC strains had more

naturally occurring polymorphic variants in the encoded amino

acids in the integrase gene coding region. The CRF01_AE strain

had more than 50% mutation rates at K14R, V31I, I72V, T112V,

T124A, T125A, G134N, I135V, K136Q, D167E, V201I, L234I/S,

FIGURE 1
Phylogenetic tree analysis based on the HIV-1 integrase gene sequences. A neighbor-joining tree was constructed using MEGA 6.0 with
1000 bootstrap replicates, and were adjusted using the online itol (https://itol.embl.de/). The standard reference sequences of HIV-1 subtypes were
downloaded from the HIV database (http://www.hiv.lanl.gov/content/index). Different subtypes are shown in using different colors listed in this
figure.
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and S283G, while the CRF07_BC strain had K42Q, L101I,

T112V, T124A, T125A, I135V, K136Q, V201I, R269K,

D278A, and S283G have a mutation rate of more than 50%.

There were statistically significant differences between the two

genotype mutation rates at 14 polymorphic variants K14R,

K42Q, I72V, L101I, T125A, G134N, I135V, K136Q, D167E,

V201I, L234I, L234S, R269K, and D278A (P < 0.05; Table 3).

Discussion

Since RAL (the first INSTI) was approved by the US FDA

in 2007, HIV treatment has entered a new era. ART regimens

containing INSTIs have become the recommended treatment

for HIV-1-infected patients in the Chinese Guidelines for

Diagnosis and Treatment of HIV/AIDS (2021) in China

(AIDS and Hepatitis C Professional Group, 2021).

However, with the widespread use of INSTIs, INSTI-

related drug resistance mutations have gradually emerged.

This study monitored the prevalence of resistance mutations

associated with HIV INSTI in ART-naïve patients in Baoding

from January 2020 to December 2021. Four major INSTI-

resistant mutations were detected in five patients, including

E138A, G140S, S147G, and R263K as well as three accessory

INSTI-resistant mutations H51Y, Q146QL, and S153F,

which cause varying degrees of resistance in the following

five INSTIs: BIC, DTG, CAB, EVG, and RAL (Table 2). The

prevalence of INSTI resistance was 3.82% (5/131). This

INSTI resistance prevalence was higher than that in

Jiangsu (0.76%) (Yin et al., 2021), Henan (1.7%) (Yang

et al., 2021), and Beijing (0.34%) in China (Yu et al.,

2022) as well as in Italy (0.2%) (Rossetti et al., 2018),

Austria (2.3%) (Zoufaly et al., 2017), and Uganda (1.2%)

(McCluskey et al., 2021), but lower than that in Yunnan

(5.7%) (Deng et al., 2019) and Poland (8.3%) (Parczewski

et al., 2012) and close to that in Korea (3.4%) (Jeong et al.,

2019), which suggests that it is necessary for us to strength

the surveillance of INSTIs resistance in order to control and

prevent the spread of HIV-1 resistant strains.

In this study, all INSTI-resistant strains were resistant to

EVG, and one patient was highly resistant to EVG. In the

subtype distribution, there were three patients with the

CRF01_AE genotype, which is carried in the H51Y, S153SF,

G140S, S147SG, and Q146QL mutations, and it had high,

intermediate, and low levels of resistance to five INSTIs. One

patient who had subtype B carried E138A and had low

resistance to RAL and EVG, and one patient with the

CRF07_BC subtype carried the R263K mutation and had

intermediate resistance to BIC, DTG, CAB, and EVG but

low resistance to RAL. R263K is selected in vitro using

EVG, DTG, and BIC and in patients receiving DTG. It

reduces DTG and BIC susceptibility approximately two-fold

and EVG susceptibility to a greater extent (https://hivdb.T
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stanford.edu/dr-summary/comments/INSTI.[OL]/). E138A is

non-polymorphic mutation that is selected-for in patients

receiving RAL, EVG, and DTG. Alone, this non-

polymorphic mutation does not reduce INSTI

susceptibility, but when it occurs in combination with the

Q148 mutations, it is associated with high-level resistance to

RAL and EVG and an intermediate reduction to DTG and BIC

susceptibility (https://hivdb.stanford.edu/dr-summary/

comments/INSTI.[OL]/). However, this study showed that

none of these mutations occurred in the E138A and

Q148 mutation combinations. In the past years, INSTIs

have never been included in the free ART regimens in

Hebei. We infer that HIV-1 INSTI resistant strans should

be introduced into Hebei from other areas.

In this study, many amino acid polymorphisms that are

different from the standard B subtype strains were detected in

both the CRF01_AE and CRF07_BC strains, which have also

been reported in untreated persons who are infected with other

genotype strains in other countries (Brado et al., 2018; Alaoui

et al., 2019; Huang et al., 2019; Lai et al., 2021). Although these

polymorphic variants were encountered in more than half of

the studied participants, other polymorphic mutations that

probably have no effect on INSTIs susceptibility were

reported in previous in vitro studies, and clinical trials

showed different frequencies (Kobayashi et al., 2011;

Casadellà et al., 2015). However, naturally occurring

polymorphisms impact the intasome complex stability and

may, therefore, contribute to the overall potency against

INSTIs and natural polymorphisms, while subtype-specific

differences may influence the effect of individual treatment

regimens (Brado et al., 2018). The differences of polymorphic

variants between CRF01_AE and CRF07_BC suggest that the

disease progress of CRF01_AE is faster than CRF07_BC (Ye

et al., 2022).

There are some limitations to our study, such as using

only the IN gene in the genotyping accuracy and CRF

identification. The lacking of reverse transcriptase and

protease resistance data not only affects genotyping

accuracy but also the assessment of resistance to first-line

regimens. Additionally, the relatively small number of

samples obtained for our analysis limits our ability to

definitively provide frequency analysis for INSTI resistance

mutations. Study results are also limited because Sanger

sequencing was used instead of next-generation

sequencing, which allows minority variants to be reported.

In our future study, we will increase the sample size and

sequence the whole length pol gene using more sensitive

techniques such as next-generation sequencing methods to

minimize the limitations.

Conclusion

The respective prevalence rate of INSTI major resistance

mutations in ART-naive patients in Baoding was 3.82%. We

think that the surveillance of INSTI resistance should be

recommended before regarding treatment regimens containing

INSTI are planned in Baoding city. The study is small and a more

clear picture of INSTI resistance in China should be evaluated in

a larger national study.
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TABLE 3 Natural polymorphisms of CRF01_AE and CRF07_BC strains at integrase resistance-related sites.

polymorphic
variants

CRF01_AE CRF07_BC P polymorphic
variants

CRF01_AE CRF07_BC P

N % N % N % N %

K14R 45 67.16 10 25.64 <0.001 I135V 60 89.55 28 71.79 0.019

V31I 42 62.69 18 46.15 0.098 K136Q 62 92.54 30 76.92 0.022

K42Q 5 7.46 28 71.79 <0.001 D167E 42 62.69 5 12.82 <0.001
I72V 34 50.75 6 15.38 <0.001 V201I 67 100 33 84.62 0.001

L101I 18 26.87 30 76.92 <0.001 L234I 62 92.54 7 17.95 <0.001
T112V 63 94.03 34 87.18 0.222 L234S 2 2.99 24 61.54 <0.001
T124A 64 95.52 34 87.18 0.117 R269K 5 7.46 24 61.54 <0.001
T125A 65 97.01 31 79.49 0.003 D278A 6 8.96 27 69.23 <0.001
G134N 61 91.04 8 20.51 <0.001 S283G 61 91.04 32 82.05 0.173

Note: The differences of polymorphisms mutations according to subtypes were analyzed using chi-square test.
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Identification of two near-identical
novel HIV-1 unique recombinant
forms (CRF01_AE/B) among men
who have sex with men in baoding,
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Men who have sex with men (MSM) are the most frequent infection route of the
human immunodeficiency virus (HIV) in Baoding, China, creating chances for the
occurrence of unique recombinant forms (URFs) of the virus, i.e., recombination of
different subtypes caused by co-circulation of multiple subtypes. In this report, two
near-identical URFs (BDD002A and BDD069A) isolated from MSM in Baoding were
identified. Phylogenetic tree analysis based on nearly full-length genomes (NFLGs)
revealed that the two URFs formed a distinct monophyletic cluster with a bootstrap
value of 100%. Recombinant breakpoints analysis identified that the NFLGs of
BDD002A and BDD069A were both composed of CRF01_AE and subtype B, with
six subtype B mosaic segments inserted into the CRF01_AE backbone. The CRF01_
AE segments of the URFs clustered closely with the CRF01_AE reference sequences,
and the B subregions clustered with the B reference sequences. The recombinant
breakpoints of the two URFs were almost identical. These results suggest that
effective interventions are urgently needed to prevent the formation of complex
HIV-1 recombinant forms in Baoding, China.

KEYWORDS

HIV, near full-length genome, unique recombination forms, baoding, MSM

Introduction

The human immunodeficiency virus-1 (HIV-1) possesses an extremely high mutation
frequency, resulting in HIV-1-enriched gene polymorphisms (Yebra et al., 2018). During the
spread of HIV, if more than two subtypes infect the same cell, their genomic information can
exchange to generate recombinant virus genomes (Moore and Hu, 2009). A total of
132 circulating recombinant forms (CRFs) of HIV and many unique recombinant forms
(URFs) have been reported worldwide (https://www.hiv.lanl.gov/content/sequence/HIV/
CRFs/crfs). In recent years, CRF01_AE and subtype B have become the two main HIV-1
genotypes prevalent in key populations of China, especially among men who have sex with
men (MSM) (He et al., 2012). Hebei is a northern province of China with low HIV prevalence
(Lu et al., 2017). By the end of October 2020, 15,178 individuals in the Hebei Province were
diagnosed with HIV-1/AIDS, and the number of individuals infected with HIV-1 through
MSM reached 77.5% (Lu et al., 2020; Wang, 2020). Baoding, which borders Beijing and
Tianjin, was the second region severely affected by HIV-1 in Hebei Province, with MSM
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responsible for 84.8% of the HIV-1-infected population (Shi et al.,
2021a). The prevalence of subtypes CRF01AE and B was similar to
that reported in the whole province at 49.44% and 17.78%,
respectively (Shi et al., 2021b). In this study, we identified two

highly similar, nearly full-length genome (NFLG) sequences
isolated from MSM in Baoding, Hebei Province. These two
unique recombinant forms (URFs) were composed of subtypes
CRF01_AE and B.

FIGURE 1
The phylogenetic tree is based on NFLG sequences BDD002A and BDD069A. The standard subtype references were downloaded from the Los Alamos
National Laboratory HIV Database (www.hiv.lanl.gov). The neighbor-joining phylogenetic tree of BDD002A (8,810 bp, red-filled circleC) and BDD069A
(8,944 bp, red-filled square■) was constructed based on the NFLG sequences using Mega6.0. The stability of each node was assessed by bootstrap tests with
1,000 replicates, and only bootstrap values ≥90% are shown at the corresponding nodes. The scale bar represents a 5% genetic distance. NFLG, near full-
length genome.
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Case description

The two individuals, BDD002A and BDD069A, were a 35-year-old
unmarried man and a 39-year-old married man, respectively.
Moreover, their baseline CD4+ T-cell counts were 242 cells/ul and
128 cells/ul, respectively while the HIV-1 viral load were
1,140,000 copies/ml and 703,000copies/ml, respectively. They were
infected through homosexual transmission. The study was approved
by the Medical Ethics Committee of the Baoding People’s Hospital
(protocol number: 2019-03). Written informed consent was obtained
from the subjects prior to sample collection.

Diagnostic assessment

As described previously by us (Yang et al., 2022), HIV-1 RNA was
extracted from 140 µL of the plasma samples of subjects BDD002A and

BDD069A using a QIAamp Viral RNA Mini Accessory Set (QIAGEN,
Hilden, Germany). PrimeScript IV 1st Strand cDNA Synthesis Mix
(TaKaRa Biotechnology, Dalian, China) was used to reverse transcribe
the RNA into 3′half-molecule cDNAs using the primers and reaction
conditions listed in our previous report (Yang et al., 2022). Nested
polymerase chain reactions (PCR) was performed using TaKaRa Premix
Taq (TaKaRa Biotechnology, Dalian, China) to amplify 3′halfmolecule
region of the NFLGs of BDD002A and BDD069A. HIV-1 near full-
length pol and gag genes were amplified using TakaraOne-step RT-PCR
Kit v2.0 (TaKaRa Biotechnology, Dalian, China). HIV-1 near full-length
pol gene was amplified in two steps using the primers below:Pol-1e:
TGGAAA TGTGGRAARGARGGAC (forward), Pol-x: CCTGTAATG
CARMCCCCAATATG TT (reverse) and Pol-3: ACTGAGAGAC AG
GCTAATTTTTTAGGGA (forward), Pol-4e:CTCCTAGTGG
GGATRTGTACTTCTGARCTTA (reverse). HIV-1 near full-length
gag gene was amplified in two steps using the primers below:gag-
763:TGACTAGCGGAGGCTAGAAGG (forward), gag-5:TTCCYCC

FIGURE 2
Bootscan results of the novel CRF01_AE/B identified. (A) Bootscan plots of BDD002A using CRF01_AE, subtype B and subtype G as references. The
parameters of the bootscan analysis were a window size of 400 bp and a step size of 100 bp. (B) Bootscan plots of BDD069A using CRF01_AE and subtype B as
putative parental reference sequences and subtype G as the outgroup. The parameters of the bootscan analysis were a window size of 400 bp and a step size
of 100 bp. CRF, circulating recombinant form.
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TATCATT TTTGGTTTCC (reverse) and gag-617: TGTGGAAAAT
CTCTAGCAGTGG (forward), gag-6:TAATGCTTTTATT TTYTCYT
CTGTCAATGGC (reverse). The reaction conditions used for
amplification have been reported previously (Lu et al., 2017; Fan et
al., 2022a). The positive PCR products were purified using 1.0% agarose
gel electrophoresis and sequenced using the Sanger sequencing
technology by Tianyi Huiyuan Bioscience & Technology Inc.
(Beijing, China). Two NFLGs were obtained by assembling them
with near full-length gag, pol and 3′half-genome gene sequences

using Sequencher 5.4.6 (Gene Codes Corp., Ann Arbor, MI, United
States of America).

The NFLG sequences were then submitted to the online tool HIV
BLAST (https://www.hiv.lanl.gov/content/sequence/BASIC_BLAST/
basic_blast.html) to determine whether the same recombinant
sequences had been identified previously, but no sequences with high
similarity (>95%) to BDD002A and BDD069A were found in the HIV
database. In addition, phylogenetic tree and subregion phylogenetic trees
were constructed using the neighbor-joining (N-J) method based on the

FIGURE 3
Recombinant maps of the novel CRF01_AE/B identified. The unique recombinant maps of (A) BDD002A and (B) BDD069A were drawn with the online
Recombinant HIV-1 Drawing Tool (https://www.hiv.lanl.gov/content/sequence/DRAW_CRF/recom_mapper.html). Six B segments were inserted into the
CRF01_AE backbone, and 11 breakpoints divided the whole genome into 12 unique segments.

FIGURE 4
Subregional phylogenetic trees of the novel CRF01_AE/B identified. The trees were constructed by the neighbor-joining method with 1,000 bootstrap
replicationsusingMega6.0. Bootstrap values≥90%are shownat the correspondingnodes. The scalebars indicate agenetic distanceof 5%. Each segment of BDD002A
and BDD069A is marked by a red-filled circle and a red-filled square, respectively. (A) CRF01_AE regions for both URFs. (B) subtype B regions for both URFs.
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Kimura two-parameter model with 1,000 bootstrap replications by
Mega6.0. The recombination pattern was determined by
Recombination Identification Program (https://www.hiv.lanl.gov/
content/sequence/RIP/RIP.html) and jpHMM. Recombination
breakpoints were identified by SimPlot (v3.5.1.0) and Bootscan analysis.

We acquired two NFLG sequences with 8,810 bp (HXB2:
761–9,613) and 8,944 bp (HXB2: 625–9,604) from BDD002A and
BDD069A, respectively. The constructed NFLG N-J tree showed that
both BDD002A and BDD069A formed a monophyletic branch with a
bootstrap value of 100%, indicating that BDD002A and BDD069A
are two novel recombinant forms (Figure 1). The recombinant
breakpoints analysis revealed that BDD002A and BDD069A were
composed of 12 interlaced mosaic gene segments, including six
CRF01_AE subregions (I, III, V, VII, IX and XI) and 6 B regions
(II, IV, VI, VIII, X and XII), with 11 recombinant breakpoints relative
to the HXB2 coordinate (Figure 2; Figure 3; Figure 4). Subregion
analysis (Figure 3) confirmed that the gene mosaic structure of the two
NFLGs are: ICRF01_AE (HXB2, 790–1,172 nt), IIB (HXB2,
1,173–1,818 nt), IIICRF01_AE (HXB2, 1,819–2,098 nt), IVB (HXB2,
2,099–2,755 nt), VCRF01_AE (HXB2, 2,756–4,489 nt), VIB (HXB2,
4,490–4,881 nt), VIICRF01_AE (HXB2, 4,882–5,390 nt), VIIIB
(HXB2, 5,391–5,617 nt), IXCRF01_AE (HXB2, 5,618–6,331 nt), XB
(HXB2, 6,332–8,285 nt), XICRF01_AE (HXB2, 8,286–8,979 nt) and
XIIB (HXB2, 8,980–9,411 nt) for BDD002A (Figure 3A); and ICRF01_
AE (HXB2, 790–1,172 nt), IIB (HXB2, 1,173–1,818 nt), IIICRF01_AE
(HXB2, 1,819–2,070 nt), IVB (HXB2, 2,071–2,726 nt), VCRF01_AE
(HXB2, 2,727–4,489 nt), VIB (HXB2, 4,490–4,881 nt), VIICRF01_AE
(HXB2, 4,882–5,390 nt), VIIIB (HXB2, 5,391–5,700 nt), IXCRF01_AE
(HXB2, 5,701–6,331 nt), XB (HXB2, 6,332–8,285 nt), XI CRF01_AE
(HXB2, 8,286–9,006 nt) and XIIB (HXB2, 9,007–9,411 nt) for
BDD069A (Figure 3B). The above data revealed that both NFLGs
shared seven almost identical breakpoints except a minor difference
within the vif-vpr gene region (Figure 3). The parental origin of all
fragments of the two NFLGs were analyzed and the CRF01_AE
regions for both URFs were from the CRF01_AE cluster five
lineage, which is circulating primarily among MSM in major
northern cities of China (Figure 4A) (Feng et al., 2013). The
subtype B regions for both URFs were clustered within the
northern China subtype B lineage, which also circulates primarily
among MSM in northern China (Figure 4B) (Li et al., 2011).

Discussion

The diversity of HIV-1 is a significant challenge in preventing the
global spread of HIV due to the different pathogenicity of subtypes.
The co-circulation of multiple subtypes enables the occurrence of
numerous URFs (Gao et al., 2021). In China, the prevalence of CRFs
may be underestimated because of the high prevalence of URFs and
the formation of many potential CRFs (Liu et al., 2019; Wang et al.,
2021). URFs convert to CRFs if they spread widely and circulate in the
population (Robertson et al., 2000; Hemelaar, 2012). In recent years,
new CRFs such as CRF103_01 B and CRF112_01 B have been found
because of the high occurrence of URFs among MSMs in Baoding
(Zhou et al., 2020; Fan et al., 2022b;Wang et al., 2022). The continuous
emergence of new recombinant forms has brought new barriers to the
monitoring, treatment, vaccine development and prevention of HIV.
In this study, we identified and characterized two novel recombinants

derived from subtypes CRF01_AE and B, which were highly different
from those reported previously in the cities of Langfang and Baoding
and other Chinese provinces (Guo et al., 2014; Yan et al., 2015; Li et al.,
2018; Huang et al., 2019; Li et al., 2019; Ou et al., 2019; Ge et al., 2020;
Fan et al., 2022c). These two URFs were more complex than those
reported previously. Although no new CRF has been formed, we infer
that it may be a potential CRF. Currently, the sexual contact has been
the main route of HIV-1 spread, it is key vital for us to carry out
dynamic monitoring of new recombination forms in order to interdict
HIV-1 spread.

In conclusion, we identified two almost identical HIV-1 URFs
among MSMs in Baoding. The recombinant forms of CRF01_AE/B
and CRF01_AE/CRF07_BC were found frequently in the MSM
population of Baoding, indicating an increase in the genetic
diversity of HIV-1 and the presence of many undiagnosed multiple
infection cases in this region (Ou et al., 2019; Fan et al., 2022d; Yang
et al., 2022), further bringing more barriers for HIV prevention and
therapy. This study suggests that we should continuously monitor
HIV-1 molecular epidemiology in order to provide effective
suggestions to HIV-1 prevention and vaccine design.
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Characterization of two novel 
HIV-1 second-generation 
recombinants (CRF01_AE/
CRF07_BC) identified in Hebei 
Province, China
Xuegang Yang 1†, Na Zhao 1†, Miaomiao Su 1†, Juan Meng 1, Jian Du 1, 
Weina An 2, Haoxi Shi 2 and Weiguang Fan 2*
1 Infection Division, The People’s Hospital of Baoding, Baoding, Hebei, China, 2 Clinical Laboratory, The 
People’s Hospital of Baoding, Baoding, Hebei, China

Introduction: The unique recombinant forms (URFs) of HIV-1 consist of a mixture 
of subtypes, and each URF has a unique breakpoint. In this study, we identified 
the near fulllength genome (NFLG) sequences of two novel HIV-1 URFs (Sample 
ID: BDD034A and BDL060) isolated during HIV-1 molecular surveillance in 2022 
in Baoding city, Hebei Province, China.

Methods: The two sequences were aligned with subtype reference sequences and 
CRFs from China using MAFFT v7.0, and the alignments were adjusted manually 
using BioEdit (v7.2.5.0). Phylogenetic and subregion trees were constructed using 
MEGA11 with the neighbor-joining (N-J) method. Recombination breakpoints 
were identified by SimPlot (v3.5.1) based on Bootscan analyses.

Results: Recombinant breakpoint analysis revealed that the NFLGs of BDD034A 
and BDL060 were composed of CRF01_AE and CRF07_BC, containing seven 
segments, respectively. For BDD034A, three CRF01_AE fragments were inserted 
into the CRF07_BC main framework, whereas for BDL060, three CRF07_BC 
fragments were inserted into the CRF01_AE main framework.

Discussion: The emergence of the CRF01_AE/CRF07_BC recombinant strains 
indicates that HIV-1 co-infection is common. The increasing genetic complexity 
of the HIV-1 epidemic in China warrants continued investigation.

KEYWORDS

HIV, circulating recombinant forms, near full-length genome, unique recombination 
forms, MSM

Introduction

The high rates of mutation, recombination and replication that are characteristic of 
HIV-1 mean that new circulating recombinant forms (CRFs) and unique recombinant forms 
(URFs) are constantly emerging (Hemelaar, 2012; Bbosa et al., 2019). To date, 132 CRFs, as 
well as numerous URFs, have been registered in the Los Alamos National Laboratory HIV 
database.1 In China, CRF01_AE and CRF07_BC are the predominant intersubtype 

1 https://www.hiv.lanl.gov/content/sequence/HIV/CRFs/CRFs.html
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recombinant forms of HIV-1, with recombinant forms between 
these two subtypes emerging, most prevalently among men who 
have sex with men (MSM), in recent years (He et al., 2012; Li et al., 
2016; Yin et  al., 2019). The continuous emergence of new 
recombinant forms has brought new challenges to the monitoring, 
treatment and prevention of HIV infection. Hebei is a northern 
province of China with a low HIV prevalence (Lu et  al., 2017); 
however, over the last 10 years, the number of individuals infected 
with HIV-1 through sexual contact has reached 98.9%, among 
which 77.5% of cases are in MSM, with CRF01_AE (49.6%), 
CRF07_BC (29.7%) and B subtype (13.0%) being the three main 
genotypes (Lu et al., 2020). The co-circulation of CRF01_AE and 
CRF07_BC strains and the dual infection of these strains in the 
sexually-active population has increased the generation of inter-
subtype recombinant forms (Luan et  al., 2017). In this study, 
we  detected and characterized 2  second generation HIV-1 
recombinant strains (BDD034A and BDL060) derived from the 
CRF01_AE and CRF07_BC subtypes, isolated from MSM infected 
with HIV-1.

Materials and methods

In this study, we identified the near full-length genome (NFLG) 
sequences of two novel HIV-1 URF strains (Sample ID: BDD034A 
and BDL060) isolated during HIV-1 molecular surveillance in 
2022 in Baoding city, Hebei Province, China. The two individuals 
from which these strains were isolated, BDD034A and BDL060, 
were a 44-year-old unmarried man and a 45-year-old married man, 
respectively (see Table  1 for further details). This study was 
approved by the Medical Ethics Committee of Baoding People’s 
Hospital (protocol number: 2019–03). Written informed consent 
was obtained from the subjects prior to sample collection.

RNA was extracted from 140 μL of each subject’s plasma sample 
using a QIAamp Viral RNA Mini Kit (Qiagen, Duesseldorf, 
Germany) in accordance with the manufacturer’s instructions. 
PrimeScript IV 1st Strand cDNA Synthesis Mix (TaKaRa 
Biotechnology, Dalian, China) was used to reverse transcribe the 
RNA into 3′ and 5′ half-molecule cDNAs using the primers 1.R3.
B3R: 5′-ACTACTTGAAG CACTCAAGGCAAGC TTTATTG-3′ 
and 07Rev8: 5′-CCTART GGGATGTGTACTT CTG AACTT-3′. A 
nested polymerase chain reaction (PCR) was performed using 
TaKaRa Premix Taq (TaKaRa Biotechnology) to amplify the 3′ and 
5′ half-molecule regions of the NFLG sequences of BDD034A and 
BDL060. The reaction conditions and primer sequences used for 
amplification have been reported previously (Yang et  al., 2022). 
PCR products were detected using 1.0% agarose gel electrophoresis, 
and amplified products of the expected size were purified from the 
corresponding electrophoretic bands and sequenced using Sanger 
sequencing technology by Tianyi Huiyuan Bioscience & Technology 
Inc. (Beijing, China).

The two NFLG sequences were submitted to the online tool 
HIV BLAST2 to search for similar sequences. Then the two 
sequences were aligned with subtype reference sequences and 
CRFs from China3 using MAFFT v7.0 (Katoh and Standley, 
2013), and the alignments were adjusted manually using BioEdit 
(v7.2.5.0). Phylogenetic and subregion trees were constructed 

2 https://www.hiv.lanl.gov/content/sequence/BASIC_BLAST/basic_blast.html

3 https://hiv.lanl.gov/components/sequence/HIV/search/ search.html

FIGURE 1

Phylogenetic tree based on the NFLG sequences. The neighbor-
joining tree of BDD034A and BDL060 was constructed using Mega 
11 with a bootstrap value of 1,000 replicates. Only bootstrap values 
≥75% are shown in the corresponding nodes. The scale bar 
represents a 5% genetic distance.

TABLE 1 Epidemiological information about the two participants.

Strain name Sex Age 
(years)

Marital 
status

Transmission 
route

CD4 T-cell 
count (cells/μL)

HIV-1 viral load 
(copies/mL)

Accession 
number

BDD034A Male 44 Married MSM 571 35,200 OP745422

BDL060 Male 45 Married MSM 379 43,000 OQ207706

43
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using MEGA11 (Tamura et al., 2021) with the neighbor-joining 
(N-J) method (Saitou and Nei, 1987). Recombination 
breakpoints were identified by SimPlot (v3.5.1) based on 
Bootscan analyses.

Results

We acquired two NFLG sequences of 8,890 bp (HXB2: 723–9,613) 
and 8,847 bp (HXB2: 757–9,604) from BDD034A and BDL060, 

FIGURE 2

Bootscan analysis. (A) Bootscan plot of BDD034A using CRF01_AE (accession numbers JX112801 and JX112859), CRF07_BC (accession numbers 
HQ215552 and AF286226) and J (accession numbers EF614151 and AF082394) as reference sequences. The parameters were set to a window size of 
800 and a step size of 100. (B) Bootscan plot of BDL060. The reference sequences were the same as those for BDD034A above. The parameters were 
set to a window size of 450 and a step size of 100.
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respectively. The results of HIV BLAST suggested that there are no ≥95% 
similar sequences found in the HIV database. The constructed NFLG 
N-J tree showed that both BDD034A and BDL060 formed separate 
monophyletic branches, indicating that BDD034A and BDL060 are two 
different novel recombinant forms (Figure  1). The recombinant 
breakpoint analysis revealed that BDD034A and BDL060 were 
composed of seven interleaved mosaic gene fragments (Figures 2, 3). 
However, the difference between these sequences was that BDD034A is 
a combination of three CRF01_AE fragments inserted into the CRF07_
BC main framework, whereas BDL060 is a combination of three CRF07_
BC fragments inserted into the CRF01_AE main framework (Figure 3A 
and Figure 3B). The mosaic recombinant structure of the BDD034A 
sequence can be described as follows: ICRF07_BC (HXB2, 790–3,375 nt); 
IICRF01_AE (HXB2, 3,376–3,786 nt); IIICRF07_BC (HXB2, 3,787–
4,204 nt); IVCRF01_AE (HXB2, 4,205–4,673 nt); VCRF07_BC (HXB2, 
4,674–6,544 nt); VICRF01_AE (HXB2, 6,545–6,739 nt); and VIICRF07_
BC (HXB2, 6,740–9,411 nt). Subregion phylogenetic analysis was used 
to confirm the genetic origin of each segment. Segments I, III, V and VII 
were clustered with CRF07_BC, which is prevalent among MSM in 
northern China (Figure 4A). Segment II was clustered with CRF01_AE 
cluster 4 and segment VI, segment IV was clustered with CRF01_AE 
cluster 5 (Figure 4A). The mosaic recombinant structure of the BDL060 
sequence can be described as follows: ICRF01_AE (HXB2, 790–2,600 nt); 
IICRF07_BC (HXB2, 2,601–3,097 nt); IIICRF01_AE (HXB3, 
098–3,627 nt); IVCRF07_BC (HXB3, 628–4,731 nt); VCRF01_AE 
(HXB2, 4,732–6,151 nt); VICRFF07_BC (HXB2, 6,152–8,587 nt); and 
VIICRF01_AE (HXB2, 8,588–9,411 nt). Subregion phylogenetic analyses 
indicated that four CRF01_AE segments mainly originated from 
CRF01_AE cluster 4 strains among the MSM population in China 
(Figure 4B).

Discussion

CRF01_AE is the most important HIV-1 strain in China 
owing to its significant contribution to the HIV-1 epidemic, and 
it has been found to possess at least seven gene clusters. CRF01_
AE cluster 1 was found primarily among heterosexuals and 
intravenous drug users (IDUs) in the southern provinces of 
China. CRF01_AE clusters 1, 2 and 3 were prevalent among 
heterosexuals and IDUs in southern and southwestern provinces 
of China. CRF01_AE clusters 4 and 5 were mainly distributed 
among the MSM population in northern China, including Beijing 
and Tianjin. Clusters 6 and 7 were only detected among 
heterosexuals in two southeast and southwest provinces (Feng 
et al., 2013; Li et al., 2017). In this study, phylogenetic analysis of 
BDD034A showed that segments II, IV and VI clustered within 
clusters 4 and 5 of CRF01_AE, respectively. Because BDD034A 
showed intra-subtype recombination, it does not rule out the 
possibility of dual infection. CRF07_BC is another dominant 
HIV-1 strain in China that was originally isolated in 1993 in an 
IDU in Yunnan Province (Meng et al., 2012), and then spread 
along drug trafficking routes to Sichuan, Guangxi and Xinjiang 
Provinces (Tee et al., 2008) in southwestern and northern China. 
At present, CRF01_AE and CRF07_BC are the predominant 
intersubtype recombinants among sexually-active populations, 
especially among MSM in China (Li et  al., 2016). High 
geographical mobility, condom-free sex and multiple sexual 
partners are contributing factors that lead to an increase in CRFs 
of HIV-1. The extremely high-risk behaviors and cocirculation of 
multiple subtypes make MSM significantly more vulnerable to 
dual infection (Liu et al., 2019). According to our previous report 

FIGURE 3

Genetic map of BDD034A (A) and BDL060 (B). The Recombinant HIV-1 Drawing Tool was used, which is available at the HIV database: https://www.
hiv.lanl.gov/content/sequence/DRAW_CRF/recom_mapper.html.
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(Shi et al., 2021), the educational level of MSM in Baoding City 
is low, and they have limited knowledge of HIV prevention. Both 
of BDD034A and BDL060 have primary education, multiple 
sexual partners and unprotected anal intercourse. Future research 
should focus on MSM with low educational level, learn more 
about HIV prevention, strengthen self-protection, and reduce the 
risk of HIV transmission. Hebei Province is located in northern 
China, surrounding Beijing and Tianjin. The convenient 

transport network in this region enables geographical mobility, 
and creates opportunities for dual or multiple infections within 
the MSM population. This has led to the emergence and 
prevalence of new recombinant strains in MSM in recent years, 
such as CRF103_01B, CRF123_0107, CRF01_AE/B and CRF01_
AE/CRF07_BC (Huang et al., 2019; Zhou et al., 2020; Han et al., 
2021; Xing et al., 2021; Fan et al., 2022a,b; Xing et al., 2022). The 
emergence of new recombinant forms have increased the diversity 
of HIV-1 isolates prevalent in Hebei province, indicating the 
further molecular monitoring of HIV-1 diversity is vital in 
the region.

Conclusion

In conclusion, we  identified two novel recombinant forms of 
HIV-1 isolated from MSM, which have no similar breakpoints from 
the CRFs and URFs reported previously. The BLAST search results 
indicated there are no ≥95% similar sequences in the database with 
the BDD034A and BDL060 sequences. The emergence of CRF01_AE 
and CRF07_BC recombinant forms might suggest high genetic 
variation among HIV-1  in Hebei, warning us to continuously 
supervise HIV-1 molecular epidemiologic dynamics and gather 
enough information for vaccine design and to provide effective 
suggestions for accurate control.
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Over three years’ pandemic of 2019 novel coronavirus disease (COVID-19), 
multiple variants and novel subvariants have emerged successively, outcompeted 
earlier variants and become predominant. The sequential emergence of variants 
reflects the evolutionary process of mutation-selection-adaption of severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2). Amino acid substitution/
insertion/deletion in the spike protein causes altered viral antigenicity, 
transmissibility, and pathogenicity of SARS-CoV-2. Early in the pandemic, D614G 
mutation conferred virus with advantages over previous variants and increased 
transmissibility, and it also laid a conservative background for subsequent 
substantial mutations. The role of genomic recombination in the evolution of 
SARS-CoV-2 raised increasing concern with the occurrence of novel recombinants 
such as Deltacron, XBB.1.5, XBB.1.9.1, and XBB.1.16 in the late phase of pandemic. 
Co-circulation of different variants and co-infection in immunocompromised 
patients accelerate the emergence of recombinants. Surveillance for SARS-CoV-2 
genomic variations, particularly spike protein mutation and recombination, is 
essential to identify ongoing changes in the viral genome and antigenic epitopes 
and thus leads to the development of new vaccine strategies and interventions.

KEYWORDS

SARS-CoV-2, evolution, Omicron, spike protein, amino acid substitution, recombination

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a sister clade of SARS-CoV 
(Coronaviridae Study Group of the International Committee on Taxonomy of Viruses et al., 2020), 
has posed a global public health threat since its initial outbreak in December 2019 (Hu et al., 
2020). On May 5, 2023, the World Health Organization (WHO) declared the end of the 2019 novel 
coronavirus disease (COVID-19) pandemic as a Public Health Emergency of International 
Concern. At that time, WHO reported a total of 765,222,932 cases and 6,921,614 deaths 
worldwide.1 Consistent with other coronaviruses, the genome of SARS-CoV-2 is a single-stranded 
positive-sense RNA of approximately 30,000 nucleotides, with replication mediated by 

1 https://covid19.who.int/
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RNA-dependent RNA polymerase (RdRP) (Vkovski et al., 2020; Li 
et al., 2020b). The 5’-terminus of the SARS-CoV-2 genome contains 
two open reading frames (ORFs), while the 3’-terminus contains four 
major structural proteins coding-gene in the following order: spike 
protein, envelope protein, membrane protein, and nucleocapsid protein 
(Bai et al., 2021). Despite the presence of error-correction enzymes, 
which contribute to a relatively high replication fidelity compared to 
other RNA viruses, SARS-CoV-2 still undergoes significant mutations 
(Robson et  al., 2020; Domingo et  al., 2021; Perales, 2021). The 
nucleotide mutation rates of SARS-CoV-2 are estimated to 
be 6.677 × 10–4 and 8.066 × 10–4 substitutions per year for the whole 
genome and spike protein, respectively (Wang S. et al., 2021).

Amino acid mutations in the spike protein play a crucial role in 
the evolution of SARS-CoV-2. The spike protein, which forms a 
trimeric fusion protein on the surface of the coronavirus, exhibits a 
crown-like appearance and serves as an ideal target for inducing 
neutralizing antibodies and protective immunity (Kang et al., 2021; 
Tian et al., 2021). The spike protein is composed of S1 and S2 subunits, 
and the Receptor Binding Domain (RBD) in the spike interacts with 
the human receptor angiotensin-converting enzyme 2 (ACE2) 
receptor when activated to allow the virus to entry into cells 
(Conceicao et al., 2020; Hoffmann et al., 2020b; Zhang et al., 2021a). 
Mutations in the spike protein, particularly in the RBD, have led to 
alterations in spike-ACE2 recognition, resulting in viral immune 
escape and the failure of neutralizing antibodies (Magazine et al., 
2022; Chen et al., 2023). Spike proteins are classified as open and 
closed forms according to the up and down conformations of the 
RBD, and mutations in the spike may change the RBD conformation 
(Walls et al., 2020; Wrapp et al., 2020). The D614G mutation, which 
represents the substitution of amino acid D (Asp) by G (Gly), is 
conservative across all major variants (Wassenaar et al., 2022) and 
predominant in the spike protein during the early stage of pandemic 
(Chang et al., 2020). The D614G mutation has been shown to enhance 
furin proteolysis capacity by 50 times (Gobeil et al., 2021). Notably, 
the Omicron variant harbors more than 60 substitutions, deletions, 
and insertions, of which 15 rare mutations are found in the spike (He 
et  al., 2021; Ma et  al., 2022b). The spike protein of Omicron 
predominantly adopts closed conformations (Calvaresi et al., 2023), 
potentially leading to the failure of nearly all anti-spike monoclonal 
antibodies (Focosi and Casadevall, 2022; Turelli et al., 2022).

In addition to point mutations in the spike protein, viral genomic 
recombination is common among coronaviruses (Yewdell, 2021), 
especially during the late pandemic phase when different variants 
co-circulate. According to the US Centers for Disease Control and 
Prevention (CDC), the most prevalent circulating strains in the US as 
of May 13, 2023, were XBB.1.5 (61.5%), XBB.1.9.1 (10.0%), and 
XBB.1.16 (9.4%) (Ma et  al., 2023). The frequent occurrence of 
recombination makes it challenging to predict the effectiveness of 
vaccines targeting the spike protein, and recombination may confer 
altered transmissibility, virulence, and immune escape properties to 
the virus (Focosi and Maggi, 2022; Carabelli et al., 2023).

The evolution of SARS-CoV-2 within the population follows the 
mutation-selection-adaptation theory of Darwinian evolution 
(Goldman, 2021; Figure 1). In this context of hypermutation, both 
innate and adaptive host immune responses drive mutation selection 
(Thorne et al., 2021), as we have previously discussed (Shen et al., 
2023). The virus evolves to adapt to external selection pressures, and 
antigenic drift occurs as mutations gradually accumulate, affecting the 

virus’s immunogenicity (Bano et  al., 2021; Shapira et  al., 2023). 
Antigenic drift facilitates viral evasion from host immune response, 
particularly by affecting antibody neutralization, resulting in viral 
resistance to previous infection and vaccination (Zhang et al., 2022; 
Cao et al., 2022c; Planas et al., 2023; Qu et al., 2023). The evolutionary 
trend tends to lower the pathogenicity but increase the transmissibility 
of variants, resulting in long-term retention of virus in human hosts 
(Magiorkinis, 2023). In this review, we provide an overview of SARS-
CoV-2, summarize the characteristic amino acid mutations in the 
spike protein, particularly in novel variants, discuss recent 
recombination events, and propose future perspectives to guide viral 
evolution and intervention strategies.

2. An overview of SARS-CoV-2

2.1. Nomenclature and timeline of 
SARS-CoV-2

Several nomenclatures have been introduced for SARS-CoV-2 
according to genetic relatedness of the sequences, including GISAID,2 
Year-Letter (NextStrain) nomenclature,3 and Phylogenetic Assignment 
of Named Global Outbreak LINeages (Pango lineage) (Rambaut et al., 
2020). The GISAID nomenclature system is based on marker 
mutations within the eight high-level phylogenetic groups, from the 
early split of S and L, to the further evolution of L into V and G, and 
later G into GH, GR and GV, and more recently GR into GRY. The 
Year-Letter nomenclature consists of the year when the clade emerged 
and a capital letter starting with A for each year, including 19A, 19B, 
20A, 20B, 20C, and 20I. The Pango lineage uses an alphabetical prefix 
and a numerical suffix to identify descendants4 and contains 
phylogenetic, genetic, and epidemiological information. The first letter 
represents the lineage label of the variant, with the order from A to Z, 
then AA to AZ, BA to BZ, etc. The subsequent numbers separated by 
periods indicate the branches of lineages. When a branch has three 
more numeric suffixes, a new letter will be used as the lineage label in 
alphabetical order. For example, C.1 is the branch of B.1.1.1 (O’Toole 
et  al., 2022). The recombinant variants are named in a uniform 
nomenclature beginning with “X.”

To promote surveillance and research, WHO categorized SARS-
CoV-2 variants as three specific classes: variants of concern (VOC), 
variants of interest (VOI), and variants under monitoring (VUMs).5 
VOCs are variants of high mutation and transmission rate. To date, 
Alpha, Beta, Gamma, Delta, and Omicron are known emerged VOCs 
and have become dominant in turn globally or regionally. The Alpha 
variant (B.1.1.7) was discovered in the UK in September 2020 (du 
Plessis et al., 2021; Galloway et al., 2021). It was proven to be highly 
transmissible and infectious, and became prevalent a few months later 
(Davies et al., 2021; Volz et al., 2021). The Beta variant (B.1.351) was 

2 https://www.gisaid.org/references/statements-clarifications/

clade-and-lineage-nomenclature-aids-in-genomic-epidemiology-of-active-

hcov-19-viruses/

3 https://nextstrain.org/ncov

4 https://www.pango.network/the-pango-nomenclaturesystem/

statement-of-nomenclature-rules/

5 https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
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first reported in South Africa in October 2020 (Tegally et al., 2021), 
and the Gamma variant (P.1) was first identified in travelers from 
Brazil in January 2021 (Fujino et  al., 2021). The Delta variant 
(B.1.617.2) was isolated in India (Mlcochova et al., 2021) and quickly 
became the most prevalent variant worldwide in June 2021 (Mahase, 
2021). The Omicron variant (B.1.1.529/BA sublineages) was first 
discovered in Botswana, South  Africa in November 2021, and 
outcompeted other VOCs rapidly upon its emergence (He et al., 2021). 
Five major sublineages of Omicron, BA.1, BA.2, BA.3, BA.4, and BA.5, 
have been identified so far (Tegally et al., 2022). Most recently, a series 
of novel Omicron subvariants have emerged, such as BA.2.75 (Saito 
et al., 2022), BF.7 (Scarpa et al., 2023a), Deltacron (Kreier, 2022), XE 
(Rahimi and Bezmin Abadi, 2022b), XF (Chakraborty et al., 2022), 
BQ.1 (Wang et al., 2022b), BQ.1.1 (Wang et al., 2022b), XBB (Imai 
et al., 2023), XBB.1 (Arora et al., 2023), XBB.1.5 (Tamura et al., 2022), 
XBB.1.16 (Harris, 2023), and they have raised increasing concern. The 
timeline of emergence of variants is illustrated in Figure 2A.

2.2. Entry pathways of SARS-CoV-2 and 
hypotheses for VOCs

Two described entry pathways of SARS-COV-2 through the cell 
membrane or through endosomes (Figure 2B) have been reviewed in 
detail previously (Shang et al., 2020; Hoffmann et al., 2020b; Rahbar 
Saadat et al., 2021; Jackson et al., 2021b; Lim, 2023). The two entry 
pathways differ because S2’ cleavage occurs either at plasma 
membrane by the transmembrane protease serine protease 2 
(TMPRSS2) [such as in the nasal epithelial cells, lungs, and bronchial 
branches where TMPRSS2 is highly co-expressed with ACE2 
(Lukassen et al., 2020; Sungnak et al., 2020)] or within the cell by 
endolyosomal cathepsins such as Cathepsin L (Bestle et  al., 2020; 

Shang et al., 2020). The proteolytic site between the S1 and S2 subunit 
of the spike protein, also known as furin cleavage site (FCS), is cleaved 
by a host protease furin (Lavie et al., 2022). This process of cleavage is 
essential to the entry pathway and membrane fusion (Bestle et al., 
2020; Hossain et al., 2021; Johnson et al., 2021; Peacock et al., 2021; 
Lavie et al., 2022). Optimization of FCS has been shown to facilitate 
cell–cell fusion to improve the infectivity (Hoffmann et al., 2020a), 
increase the transmissibility (Peacock et  al., 2021), and promote 
pathogenesis (Johnson et al., 2021).

Multiple hypotheses have been proposed to explain the origin 
of VOCs (Mallapaty, 2022), such as (1) circulation in geographically 
sequencing limited areas; (2) circulation within animal hosts then 
spillover to humans; and (3) evolution in immunosuppressed 
chronic infection hosts. In some regions, the limited capacity for 
genomic sequencing has resulted in a lack of testing for 
asymptomatic patients. It has been observed that asymptomatic 
carriers exhibit higher levels of antiviral immunity and lower levels 
of inflammation compared to symptomatic individuals (Yang et al., 
2020b; Le Bert et al., 2021; Ma et al., 2022a). This immunological 
profile may create an environment conducive to viral evolution 
under immune pressure. There is evidence supporting the 
hypothesis of an animal host origin, with white-tailed deer (Hale 
et al., 2022; Marques et al., 2022) and farmed mink (Koopmans, 
2021; Lu et  al., 2021) identified as stable animal reservoirs for 
SARS-CoV-2. These variants have the potential to infect animals 
and accumulate mutations within animal reservoirs. Subsequently, 
the virus may undergo further evolution, giving rise to new 
subvariants that can then spillover to humans. The hypothesis of 
chronic infection in immunodeficient hosts is widely accepted in 
many scenarios. Chronic infection in such individuals is associated 
with ACE2 affinity, immune evasion, and optimization of viral 
packaging (Choi et al., 2020; Kemp et al., 2021; Harari et al., 2022; 

FIGURE 1

Process of mutation-selection-adaptation in SARS-CoV-2 evolution.
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Wilkinson et al., 2022). This process drives the mutation profiles of 
the virus and enhances its fitness (Ghafari et al., 2022; Hill et al., 
2022). Extensive immune escape has been observed in SARS-CoV-2 
infections in immunocompromised hosts, such as patients with 
advanced HIV disease (Cele et al., 2022).

3. Spike protein mutations produce 
antigenic drift

Mutation profiles of the variants of concern (VOCs) exhibit 
certain overlapping patterns, while also assuming distinct roles in the 
process of viral evolution, thereby suggesting an underlying 
evolutionary resemblance among these variants. Notably, a common 
early substitution mutation, namely D614G, is shared by all five 
VOCs, which has been shown to significantly augment the binding 
affinity of the viral spike protein to the ACE2 receptor, consequently 
amplifying viral pathogenicity (Alkhatib et al., 2021; Wang P. et al., 
2021; Zhang et al., 2021b; Venkatakrishnan et al., 2022). Moreover, the 
substitution P681H has been identified in Alpha (Lubinski et  al., 
2022), Gamma (Fujino et al., 2021), and Omicron (Tian et al., 2022), 
and has been demonstrated to enhance viral cell entry. Conversely, the 
substitution P681R, occurring at the same position, has been observed 
to augment the replication capacity and pathogenicity of the Delta 
variant (Mlcochova et al., 2021; Saito et al., 2021; Liu et al., 2022). 
These mutations accumulate in a stepwise manner, progressively 
modifying the antigenic epitope of the virus, ultimately leading to a 
transition from “genetic drift” to antigenic drift.

3.1. Spike mutations in current VOCs

For variant Alpha (B.1.1.7), of eight mutations in the spike protein, 
D614G, Del H69/V70 (Del H69/V70 represents amino acid deletion 
mutation in the site 69 and 70 of the spike protein), N501Y, and 
P681H are most meaningful (Wang P. et  al., 2021). The D614G 
mutation has been found to confer a fitness advantage by promoting 
efficient replication in primary airway cells, thereby increasing 
virulence and transmission (Hou et  al., 2020; Korber et  al., 2020; 
Ozono et al., 2021; Zhou et al., 2021). It also leads to alterations in 
spike conformation and enhanced FCS cleavage (Zhang et al., 2020) 
and leads to alterations in spike conformation and enhanced FCS 
cleavage (Gobeil et al., 2021; Nguyen et al., 2021). However, it has also 
been observed that the D614G mutation renders the virus more 
susceptible to monoclonal antibodies by increasing epitope exposure, 
suggesting that it does not impede the effectiveness of vaccines 
(Weissman et al., 2020), indicating it does not impede vaccine effect 
(Hou et al., 2020; Weissman et al., 2020; Yurkovetskiy et al., 2020; 
Ozono et al., 2021). Del H69/V70 is associated with diagnostic test 
failure for probes targeting spike proteins, known as spike gene 
targeting failure (SGTF) (Bal et al., 2021). SGTF has been utilized as a 
reliable proxy for monitoring the prevalence of the B.1.1.7 variant (Bal 
et al., 2021; Borges et al., 2021; Kidd et al., 2021). N501Y has been 
shown to enhance the binding of the spike protein to human ACE2 
receptors, potentially expanding the host range of SARS-CoV-2 (Starr 
et al., 2020; Chan et al., 2021; Zahradník et al., 2021; Wang et al., 
2022c). P681H, which is located adjacent to the FCS, has been found 
to enhance the efficiency of FCS cleavage during virus entry into cells 

FIGURE 2

Timeline, structure, and entry pathways of SARS-CoV-2. (A) The chronological order of the emergence of major SARS-CoV-2 variants. (B) There are 
two pathways for SARS-CoV-2 entering cells: endosome pathway and membrane pathway. ACE2, angiotensin-converting enzyme 2; TMPRSS2, 
transmembrane protease serine protease 2; S1, subunit 1 of the spike protein; FP, fusion peptide, responsible for membrane fusion; S1/S2, furin 
cleavage site between S1 and S2 subunit of the spike protein; S2’, another proteolytic site in the subunit 2 of the spike protein.

51

https://doi.org/10.3389/fmicb.2023.1228128
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Fang et al. 10.3389/fmicb.2023.1228128

Frontiers in Microbiology 05 frontiersin.org

and contributes to Alpha’s resistance to type I interferons (Lubinski 
et al., 2022; Lista et al., 2022).

For Beta variant (B.1.351), the combination of E484K and N501Y 
mutations has a synergistic effect in enhancing the affinity of the spike 
protein for human ACE2 receptors (Starr et al., 2020; Zahradník et al., 
2021). Mutations Del 242–244, K417N, E484K, and N501Y have been 
shown to confer significant resistance to infection or vaccine-induced 
neutralizing antibodies (Garcia-Beltran et al., 2021; Hu et al., 2021; 
Tao et al., 2021; Wibmer et al., 2021; Wang P. et al., 2021).

The Gamma variant (P.1) carries 12 mutations in the spike protein, 
including K417T, N501Y, and E484K (Faria et al., 2021). These three 
mutations collectively enhance the affinity of the spike protein for 
ACE2 receptors, thereby increasing the transmissibility of the Gamma 
variant. E484K is also associated with reduced neutralization by 
antibodies (Faria et al., 2021). E484K is also associated with reduced 
neutralization by antibodies (Cele et al., 2021; Greaney et al., 2021; 
Wibmer et al., 2021).

The Delta variant (B.1.617.2) harbors several mutations previously 
reported in other VOCs, including L452R, T478K, E484Q, D614G, 
and P681R in the spike protein (Liu et al., 2022). These mutations 
partly explain the rapid global spread of the Delta variant upon its 
emergence. The L452R mutation has been found to increase infectivity, 
modestly reduce susceptibility to neutralizing antibodies, and enhance 
viral fusogenicity, thereby promoting virus replication (Motozono 
et al., 2021). E484Q exhibits similar reduced sensitivity to vaccine-
induced neutralizing antibodies as L452R, but lacks synergistic effects 
when taken together (Motozono et al., 2021). Similar to P681H in 
Alpha, P681R in Delta increases FCS cleavage, resulting in enhanced 
transmissibility (Mlcochova et al., 2021; Saito et al., 2021; Wibmer 
et al., 2021). Studies have revealed that spike of Delta is more stable 
and binds with higher affinity to ACE2 than the spike of the wild-type 
(Gomari et al., 2023).

As discussed above, the evolution of SARS-CoV-2 of pre-Omicron 
variants has primarily centered around recurrent mutations in key 
residues of the spike protein, including D614, N501, P681, K417, and 
E484. However, with the emergence of the Omicron variant and its 
sublineages, the landscape has undergone a significant shift. The 
Omicron variant harbors over 30 spike mutations, with 15 of them 
occurring in the RBD (Kumar et al., 2021). Figure 3 illustrates the 
mutation profiles of VOCs. In general, Omicron exhibits several 
distinctive characteristics compared to previous VOCs, including 
enhanced transmissibility, reduced antibody neutralization capacity 
(resulting in lower vaccine effectiveness), altered tissue tropism, 
relatively lower pathogenicity, and an increased likelihood 
of reinfection.

The higher transmissibility may attribute to the altered viral 
affinity to ACE2 receptor. Multiple experimental observations have 
demonstrated that the binding affinity between the RBD of the spike 
protein and ACE2 is significantly higher for Omicron compared to 
wildtypes (Kumar et al., 2021; Abeywardhana et al., 2022; Cui et al., 
2022; Hong et al., 2022). The mutations T478K, Q493R, Q498R, and 
N501Y collectively contribute to the increased binding affinity 
through electrostatic effects (Kumar et al., 2021; Abeywardhana et al., 
2022). However, another study revealed that Omicron exhibits 
comparable binding affinity to ACE2 when compared to the wild type 
SARS-CoV-2 and weaker binding affinity than the Delta variant (Wu 
et al., 2022). This discrepancy may stem from differences in the surface 
plasmon resonance methodologies employed in the studies, 

necessitating further research. The sublineages of Omicron display 
variations in their ACE2 affinity, with BA.2 exhibiting the highest 
affinity, followed by BA.3, BA.1, BA.2.75, and BA.5 (Abeywardhana 
et  al., 2022). Furthermore, Omicron variants exhibit reduced 
sensitivity to neutralizing antibodies induced by triple-dose 
inactivated vaccines (Ren et  al., 2023). Reports indicate that the 
neutralizing activity against Omicron variants is lost in 90% of 
immunization serum samples and 43% of convalescent serum samples 
(Zhang et  al., 2022). In contrast to pre-Omicron variants, which 
primarily exploit TMPRSS2 for cell entry (Hoffmann et al., 2020b), 
Omicron variants have a propensity for entering nose and throat cells 
that are deficient in TMPRSS2 via the cathepsin-mediated endosomal 
pathway (Hui et al., 2022; Meng et al., 2022; Willett et al., 2022; Zhao 
et  al., 2022). This shift in cell entry tropism from the membrane 
pathway to the endosomal pathway reduces the capacity of Omicron 
to fuse infected cells and form syncytia, resulting in a lower 
pathogenicity (Meng et al., 2022; Willett et al., 2022). The Omicron’s 
propensity to infect upper respiratory tract restricts its clinical 
manifestation and lowers the disease severity. From a structural 
standpoint, compared with Delta, Omicron has an inconsistent 
distribution of electrostatic potential and a geometric reorganization 
in the FCS of the spike protein. This structural divergence contributes 
to Omicron’s reduced fusogenicity and consequently lower 
pathogenicity (Fantini et al., 2022). Moreover, the Omicron variant 
possesses an enhanced capacity for immune evasion, leading to 
reinfection of individuals (Chavda et al., 2022; Xia et al., 2022). For 
pre-Omicron variants, infection-induced protective immunity has 
limited efficacy against BA.4 and BA.5, but it demonstrates a strong 
effect in preventing reinfection of BA.1 and BA.2 (Altarawneh 
et al., 2022).

Notably, the combinatorial mutations in the spike protein appear 
to have a synergistic effect on the characteristics of Omicron, further 
complicating its mutation profile. Preliminary findings suggest that 
certain mutations in Omicron form three distinct clusters, wherein 
the mutations seem to work in concert to compensate for the 
detrimental effects of any individual mutation (Martin et al., 2022). 
Two mutations, N501Y and Q498R, collectively increase the affinity 
of a variant for the ACE2 receptor by nearly 20-fold (Bate 
et al., 2022).

3.2. Spike mutations in novel subvariants

3.2.1. BA.2.75 (BM.1.1.1)
BA.2.75, a descendant from BA.2, was first detected in India and 

Singapore (Saito et al., 2022). Differing from BA.2, BA.2.75 carries 9 
additional mutations in the spike protein (147E, W152R, F157L, 
I210V, G257S, D339H, G446S, N460K, and an R493Q reversion 
mutation) (Sheward et al., 2022; Kurhade et al., 2023; Qu et al., 2023). 
BA.2.75 exhibits enhanced resistance to neutralization compared to 
BA.2 but falls short of the BA.4/5 variant (Qu et al., 2022; Saito et al., 
2022; Cao et al., 2022b; Wang L. et al., 2022). The G446S and N460K 
mutations are primarily responsible for the increased resistance of 
neutralizing antibodies against BA.2.75 (Qu et al., 2022; Wang et al., 
2022a), while the R493Q mutation reduces neutralization resistance 
(Wang et  al., 2022a). Furthermore, the spike protein of BA.2.75 
demonstrates significantly higher affinity for ACE2 (Saito et al., 2022), 
and the N460K mutation, which enhances S processing, leads to 

52

https://doi.org/10.3389/fmicb.2023.1228128
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Fang et al. 10.3389/fmicb.2023.1228128

Frontiers in Microbiology 06 frontiersin.org

increased cell–cell fusion of BA.2.75 compared to BA.2 (Qu 
et al., 2022).

3.2.2. BA.4.6
BA.4.6, a sublineage of BA.4, carries two additional mutations 

in the spike protein (R346T and N658S) and was initially identified 
in the US and UK (Hachmann et al., 2022). This subvariant exhibits 
a notable ability to evade neutralizing antibodies induced by 
infection or vaccination, with titers lower than those of BA.5 by a 
factor of 2 to 2.7 (Hachmann et al., 2022; Wang et al., 2022b; Planas 
et al., 2023).

3.2.3. BF.7
BF.7 variant (also known as BA.5.2.1.7) is a derivative of BA.5 and 

has gained attention since the beginning of 2022, particularly in Asia 
(Kelleni, 2023; Pan et al., 2023; Scarpa et al., 2023a). Compared to 
BA.5, BF.7 carries an additional R346T mutation in the RBD and 
shares an identical N-terminal domain (NTD) (Scarpa et al., 2023a). 
The R346T mutation has been associated with enhancing the virus’s 
ability to evade neutralizing antibodies generated by vaccines or 
previous infection (Akif et al., 2023). However, R346T does not greatly 
increase the affinity of BF.7 to ACE2 (Scarpa et al., 2023a). Although 
enhanced resistance to neutralization exists (Qu et al., 2023), BF.7 
appears to be less virulent, with a low evolutionary rate of 5.62 × 10–4 
substitutions/sites/years compared to other Omicron subvariants 
(Scarpa et al., 2023a).

3.2.4. CH.1.1
CH.1.1, a descendant of BA.2.75, has rapidly emerged in the 

UK. Compared with BA.2.75, CH.1.1 owns additional 4 substitutions 
(R346T, K444T, L452R, and F486S) in the RBD of the spike protein 

(Uraki et  al., 2023). CH.1.1 does not pose a significant threat to 
pandemic control. Antiviral drugs (remdesivir, molnupiravir, 
nirmatrelvir, and ensitrelvir) remain effective against CH.1.1, and an 
additional dose of bivalent mRNA vaccines may be  beneficial in 
preventing CH.1.1 infection (Uraki et al., 2023).

3.2.5. BQ.1 and BQ.1.1
BQ.1 and BQ.1.1 have evolved from BA.5 (Wang et al., 2022b). 

Compared with the progenitor BA.5, BQ.1 carries additional K444T 
and N460K mutations in the spike protein, while BQ.1.1 has an 
additional R346T mutation (Wang et al., 2022b). Strong resistance to 
neutralization is observed in the BQ.1 and BQ.1.1 subvariants, largely 
driven by the N460K mutation (Kurhade et al., 2023; Qu et al., 2023).

3.2.6. XBB and XBB.1.5
XBB variant carries 9 additional changes in the RBD and 5 

additional changes in the NTD compared to its progenitor BA.2 (Imai 
et al., 2023). The R346 position is a critical mutation site (harboring 
R346T/S/I) that leads to increased immune evasion by neutralizing 
antibodies (Cao et al., 2021). Similar to BQ.1 and BQ.1.1, the XBB 
lineage exhibits an exceptionally strong ability to evade antibodies 
(Arora et  al., 2023). BQ and XBB subvariants have rendered all 
authorized antibodies ineffective, with titers against BQ and XBB 
significantly lower (Wang et al., 2022a; Chakraborty et al., 2023). A 
cohort study in Singapore revealed that protection against XBB 
reinfection was lower and weakened more rapidly compared to 
protection against BA.4 or BA.5 reinfection in previously vaccinated 
omicron-infected individuals (Tan et al., 2023), further indicating 
greater immune evasion in XBB.

XBB.1.5 has a substantial growth advantage over BQ.1.1 and 
XBB.1, becoming the predominant strain in the US by January 2023 

FIGURE 3

Illustration of RBD conformation of spike protein complexed with ACE2 receptors. There are two RBD conformations: “up” and “down,” and when the 
RBD is in “up” conformation, the spike protein is open to the ACE2 receptor. The trimeric spike protein is indicated by chain in three colors, purple, 
green, and blue, and three ACE2 receptors are indicated in yellow, gray, and pink. The complexes are obtained from RCSB.org (7KNE, 7KNH, 7KNI for 1 
“up,” 2 “up,” 3 “up,” respectively).
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(Tamura et al., 2022). XBB.1.5 is a recombinant of two descendants 
from BA.2, differing from XBB.1 by an additional F486P mutation in 
the spike protein (Tamura et al., 2022). Unlike the F486S mutation in 
XBB.1, which disrupts the local hydrophobic interaction of the spike 
with ACE2, F486P in XBB.1.5 restores this interaction (Yue et al., 
2023). This mechanism enhances the affinity for ACE2 and suggests a 
higher growth advantage for XBB.1.5 compared to its progenitor 
XBB.1. F486P makes XBB.1.5 slightly less immune evasive but more 
infectious than its ancestor XBB.1, likely due to increased binding 
affinity to human ACE2 (Tamura et al., 2022; Mahase, 2023).

3.2.7. XBB.1.16
XBB.1.16 is another XBB sublineage harboring the F486P 

substitution, outcompeting other variants in India by the end of 
March 2023 (Looi, 2023; Varghese et al., 2023). Compared to XBB.1.5, 
XBB.1.16 carries two additional substitutions, E180V in the NTD and 
T478R in the RBD, in the spike protein (Yamasoba et  al., 2023). 
XBB.1.16 exhibits a greater growth advantage compared to XBB.1 and 
XBB.1.5, but its potential for immune evasion is similar to XBB.1 and 
XBB.1.5 (Yamasoba et  al., 2023). Notably, XBB.1.16 and XBB.1.5 
demonstrate similar characteristics in terms of cell line tropism, cell 
entry efficiency, and neutralization evasion (Nehlmeier et al., 2023).

3.3. Spike mutations in RBD conformation

SARS-CoV-2 infection is partially controlled by the conformation 
of the spike protein RBD. The RBD located in the S1 subunit of the 
extracellular domain of the spike is responsible for interacting with 
ACE2 receptors, and has been shown an important molecular 
determinant of the COVID-19 pandemic (Shang et al., 2020). The 
RBD exists in two different conformations: up for receptor binding 
and down for immune evasion. Accordingly, the spikes are also in 
open and closed conformations. Compared with the closed-form spike 
protein, an open-form with an up RBD conformation leads to infection 
more rapidly (Yin et al., 2022), and binding with antibodies more 
easily (Berger and Schaffitzel, 2020; Yin et al., 2022). Figure 4 illustrates 
the different up or down conformations of spike protein complexed 
with ACE2 receptors. In the early phase of the pandemic, the D614G 
substitution adjacent to the NTD subdomain leads to a more open and 
thus receptor-accessible conformations of the spike compared with the 
wild-type (Benton et al., 2021; Gobeil et al., 2021; Mansbach et al., 
2021; Zhang et al., 2021a). The D614G substitution confers the virus 
an adaptation advantage and higher transmissibility, facilitating the 
acquisition of further mutations and forming the variants of concern 
(Korber et al., 2020; Zhang et al., 2020; Plante et al., 2021). It is shown 
that the conformations of Alpha, Beta and Delta spikes are 
predominantly open and that the binding of ACE2 increases 
membrane fusion (Calvaresi et al., 2023). In contrast, substitution of 
the Omicron spikes results in a predominantly closed conformation 
that may allow them to evade antibodies (Calvaresi et al., 2023). Other 
studies show that the mutations in the RBD of Omicron may promote 
the conformation to change from “down” to “up” and thus increase 
engagement of ACE2 (Hossen et al., 2022; Ye et al., 2022). This may 
due to the mutations that reduce the protein–protein interaction 
affinity of RBD with its neighboring domains (Singh et al., 2022).

Glycosylation is another way to affect the RBD conformation and 
thus change the spike open state. The SARS-CoV-2 spike gene encodes 

22 N-linked glycan sequons per protomer and the trimeric spike 
protein displays 66 N-linked glycosylation sites. Glycosylated spike has 
a higher barrier to opening and also energetically favors the down 
state over the up state (Pang et  al., 2022). Inhibition of protein 
N-glycosylation is shown to block SARS-CoV-2 infection (Casas-
Sanchez et al., 2021). The glycosylation sites also have the effect of 
facilitating immune evasion by shielding specific epitopes from 
antibody neutralization (Watanabe et al., 2019). It is observed that 
proximal glycosylation sites (N165, N234, and N343) shield the 
receptor binding sites on the SARS-CoV-2 spike, especially when the 
RBD is in the “down” conformation (Watanabe et al., 2020). Sztain 
et al. (2021) revealed that N-glycan at position N343 facilitates RBD 
opening, and plays a gating role in the spike protein open state. 
Although the spike surface is substantially shielded by N-glycans, it 
presents regions that are vulnerable to neutralizing antibodies such as 
in the RBM, NTD, and S2 subunit (Chi et al., 2020; Tortorici et al., 
2020; Cerutti et  al., 2021). Mutations in the spike may affect 
glycosylation. For example, P681H and P681R were found in Alpha 
and Delta, respectively, and they decreased O-glycosylation which 
potentially increases furin cleavage and may influence viral infectivity 
(Zhang et al., 2021c).

4. Recombinant mutations 
complement variants with new 
properties

Recombination, a frequently observed evolutionary mechanism 
in coronaviruses, plays a significant role in the genetic diversity and 
evolution of these viruses. For example, lineage 5 of Middle East 
respiratory syndrome coronavirus (MERS-CoV), which caused the 
MERS-CoV outbreak in South Korea and mass infections in 
Saudi Arabia in 2015, is putatively a recombinant virus of groups 3 and 
5 of clade B, or lineages 3 and 4 (Wang et al., 2015; Sabir et al., 2016). 
The measurement of recombination versus de novo mutation (R/M) 
provides insights into the relative impact of these two variations 
(Patiño-Galindo et  al., 2021). In SARS-CoV-2, the R/M ratio is 
0.00264 (Turakhia et  al., 2022), while in MERS, it is estimated to 
be 0.25–0.31 (Patiño-Galindo et al., 2021), indicating a low level of 
recombinant mutations in the early stage of the SARS-CoV-2 
pandemic. However, as co-infections and mutation accumulation 
increase within the population, recombination is expected to play a 
more prominent role in generating functional genetic diversity (Kim 
et al., 2020).

4.1. Co-circulation of variants provides 
basis for recombination

Recombination occurs when genetically distinct SARS-CoV-2 
variants co-infect the same host during co-circulation (Figure 5A). 
This process leads to the emergence of recombinant viruses with 
new properties, such as increased transmissibility or virulence (Li 
et al., 2020a). Recombination occurs frequently in the later phase of 
pandemic (Varabyou et al., 2021). Turakhia et al. (2022) developed 
a method called Recombination Inference using Phylogenetic 
PLacEmentS (RIPPLES) to detect recombination in pandemic-scale 
phylogenies. By analyzing a 1.6 million sample tree, they identified 
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589 recombination events, indicating that approximately 2.7% of 
sequenced SARS-CoV-2 genomes have detectable recombinant 
ancestry (Turakhia et al., 2022). The distribution of recombination 
breakpoints across the SARS-CoV-2 genome is not uniform, with a 
higher incidence toward the 3’ end compared to the 5’ end, 
consistent with previous analyses in other human coronaviruses 
(Patiño-Galindo et al., 2021; Müller et al., 2022). Recombination 
events often lead to genetic alterations near the breakpoints, and the 
specific breakpoints vary across the genome (Bolze et al., 2022). For 
example, a recombinant virus containing genetic material from the 
Alpha (B.1.1.7) and Epsilon (B.1.429) variants was detected in 
New York, and recombinant mutations were found in the spike, 
nucleocapsid, and ORF8 coding regions (Wertheim et al., 2022). In 
the US, there have been nine reported recombination events 
between the Delta (AY.119.2) and Omicron (BA.1.1) variants, with 
the breakpoint located between the NTD and RBD of the spike 
protein (Lacek et  al., 2022a). These recombinants can produce 
hybridized spike proteins containing characteristic amino acids 
from both Delta and Omicron (Lacek et  al., 2022a). The 
co-circulation of different variants highlights the importance of 
ongoing genomic surveillance, with particular attention to 

recombinants (Jackson et al., 2021a). Figure 5B illustrates different 
patterns of recombination.

4.2. Co-infection in immunocompromised 
population accelerates recombination

Co-infection is common in the later phase of the pandemic. For 
example, a 17-year-old Portuguese female was reported to 
be co-infected with two SARS-CoV-2 lineages belonging to distinct 
clades, differing by six variants (Pedro et al., 2021). Similar co-infection 
events have been observed, such as B.1.1.28 co-infecting with either 
B.1.1.248 or B.1.91 lineages (da Silva Francisco et al., 2021), and GH 
co-infecting with GR clades (Samoilov et al., 2021). In the US, out of 
29,719 SARS-CoV-2 positive samples sequenced from November 
2021 to February 2022, 20 co-infections were identified (Lacek et al., 
2022b). In Brazil, nine co-infection events (0.61%) were identified in 
the investigated samples from May 2020 to April 2021, although this 
data is likely an underestimation due to sample limitations. 
Recombination has been found to occur more frequently in 
immunodeficient individuals at high risk of severe COVID-19 

FIGURE 4

Representation of the SARS-CoV-2 spike protein, showing amino acid mutations in VOCs Alpha, Beta, Gamma, Delta and Omicron. Amino acid 
mutations are colored in orange, Alpha; yellow, Beta; purple, Gamma; green, Delta; red, Omicron; blue, ≥ 2 VOCs. The spike protein structure 
complexed with ACE2 receptor is obtained from RCSB.org (7KNE). The mutations of VOCs are based on the data from covariants (https://covariants.
org, 20I for Alpha, 20H for Beta, 20  J for Gamma, 21A for Delta, and 21  L for Omicron).
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(Perez-Florido et  al., 2023). Immunodeficient individuals are 
considered incubators for punctuated evolutionary events, possibly 
due to their vulnerability to chronic and co-infections (Rockett et al., 
2022). For instance, a recombinant variant of B.1.160 and Alpha was 
isolated from a patient with lymphoma who was chronically infected 
for 14 months. The patient was initially infected with B.1.160, followed 
by concurrent Alpha infection, and eventually, the recombinant 
variant emerged (Burel et al., 2022).

4.3. Intra-variant recombination in omicron 
major subvariants

Recombination occurs in five major sublineages of Omicron. 
BA.1, a descendent lineage of B.1.1, shows distinctly different 

phylogenetic as compared with other VOCs or VOIs. It has caused the 
fourth epidemic wave in South Africa (Araf et al., 2022; Lino et al., 
2022; Saxena et al., 2022; Tian et al., 2022). The spike gene sequencing 
reveals that the BA.1 subvariant shares nine common amino acid 
mutations with most VOCs in the spiked proteins (three more than 
BA.2) (Araf et al., 2022; Ou et al., 2022; Tian et al., 2022), suggesting 
that Omicron may be derived from the recombinant origin of these 
VOCs. Three more Alpha-associated mutations (Del 69, Del 70, and 
Del Y144) were found in BA.1 rather than in BA.2, for BA.1 is 
phylogenetically closer to Alpha than the other variants (Kumar et al., 
2021; Ou et al., 2022). Reverse mutations were also found in some 
dominant mutations (frequency > 95%) in BA.1 (Ou et  al., 2022). 
Taken together, these support the role of Alpha in Omicron evolution.

Along with BA.1, BA.2 and BA.3 were also isolated in South Africa 
(Zhou et  al., 2022). BA.2 has caused increased global infection, 

FIGURE 5

Illustration of recombination in co-infected cells and different recombination patterns. (A) When different variants co-infect an individual, there is 
possibility that recombinant variants emerge with altered properties. (B) BA.3 is putatively a recombinant of BA.1 and BA.2, and the breakpoint probably 
lies in the spike protein-coding gene. BA.4 is putatively a recombinant of BA.2 and BA.5, and the breakpoint probably lies in the M protein-coding gene. 
XD and XF are recombinants of Delta and BA.1, and the breakpoints lie in the spike protein-coding gene/ORF3a and NSP3 protein-coding gene, 
respectively. XE is a recombinant of BA.1 and BA.2, with breakpoint lying in the NSP6 protein-coding gene. XBB.1.5 is a recombinant od BJ.1 and 
BA.2.75, and the breakpoint probably lies in the S1 subunit of the spike protein-coding gene. M, membrane protein; ORF3a, open reading frame 3a; 
NSP, non-structural protein.
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hospitalization, and mortality rate (Chen et al., 2022; Fonager et al., 
2022; Rahimi and Bezmin Abadi, 2022a). BA.3 is likely a recombinant 
derivative of BA.1 and BA.2 due to BA.3 has similar genome in NTD 
region of the spike protein with BA.1 and BA.2 (Viana et al., 2022). A 
study revealed that BA.3 shared main mutations with BA.1 and BA.2, 
and BA.3 seemed to originate later (Wang C. et al., 2022), thus to some 
extent, corroborating the possibility of recombination.

BA.4 and BA.5 were afterwards identified as Omicron lineages in 
South  Africa (Tegally et  al., 2022). They were estimated to have 
originated in mid-December 2021 and early January 2022 (Viana 
et al., 2022). Their most recent common ancestor was estimated to 
have originated in mid-November 2021, coinciding with the 
emergence of BA.2 (Tegally et al., 2022). It deserves to note that BA.4 
and BA.5 are close to BA.2 in genomes, and they both have similar 
spike proteins with BA.2 (Tegally et al., 2022). It is estimated that BA.4 
and BA.5 are likely to evolve independently from the common 
ancestry of BA.2 subvariant (Wang C. et al., 2022). Compared with 
BA.2, BA.4 and BA.5 own extra mutations Del 69–70, L452R, F486V, 
and the wild-type amino acid at position Q493 (Ou et al., 2022). BA.4 
and BA.5 share mutational profiles from 5’-UTR to envelope protein 
but differ distinctly from membrane protein to 3’-UTR (Tegally et al., 
2022). This mutation pattern suggests that there exists a breakpoint 
within E and M, which is the possible evidence of recombinant event.

4.4. Inter-variant recombination between 
delta and omicron

Recombination events raised more concerns when Omicron 
quickly outcompeted Delta pandemic. Co-circulation of Delta and 
Omicron provided a grounded basis for recombinant variants. There 
is growing concern about the possibility that this recombination 
potential could eventually result in mutations that confer virus on 
enhanced transmissibility and immune escape properties.

On January 7, 2022, scientists detected a Delta and Omicron 
recombinant genome, and informally named it as “Deltacron” (Kreier, 
2022). Nevertheless, it was later determined as a lab contamination 
(Kreier, 2022). On March 9, WHO declared the detection of such 
recombinants in different regions around the world and designated 
this Deltacron as a VUM (Farheen et al., 2022; Maulud et al., 2022). 
Generally, Deltacron is referred to as the AY.4/BA.1 recombinant, 
named XD, and consists of a full-length spike protein of Omicron and 
backbone of Delta (Mahase, 2022; Wang C. et al., 2022). According to 
Chinese Center for Disease Control and Prevention, of the 36 amino 
acid mutations found in the spike protein, 27 are present in BA.1 and 
5  in AY.4, while 4 are present in both (Wang and Gao, 2022). 
Structural analysis of the Deltacron recombinant spike suggests its 
hybrid content leads to optimization of viral binding to the host cell 
membrane (Colson et  al., 2022a,b). Consequently, this novel 
recombined virus causes increased disease transmission (Chakraborty 
et al., 2022; Hosch et al., 2022). The Deltacron recombinant also has 
the potential to escape neutralization by monoclonal antibody (Evans 
et  al., 2022). Although Delta (AY.45) and BA.1 are sensitive to 
Sotrovimab neutralization, while an AY.45-BA.1 recombinant, with 
its breakpoint located adjacent to the Sotrovimab binding site, is 
resistant to its neutralization (Duerr et al., 2023). Deltacron shows 
higher transmissibility but lower clinical severity (Moisan et  al., 
2022). As recombination did not really emerge on a large scale and 

did not show its power until the appearance of Deltacron, the advent 
of Deltacron is regarded as a “gray rhino” event, rather than a “black 
swan” event.

Other than Deltacron (recombinant of AY.4 and BA.1, also known 
as XD), the UK Health security agency recognized two similar 
recombinants, XE and XF (Chakraborty et  al., 2022). The XE 
recombinant contains genomic elements from Omicron BA.1 and 
BA.2 subvariants (Rahimi and Bezmin Abadi, 2022b). The breakpoint 
lies in the NSP6 protein-coding region of genome, with the 11,537 bp 
of the BA.1 and 11,537 bp of the BA.2 genomes before and after the 
break site (Chakraborty et al., 2022). XE appears to be roughly 10% 
more transmissible than its parent variant BA.2 (Basky and Vogel, 
2022). The XF variant contains the genomes of NSP1 to NSP3 from 
the Delta variant; the breakpoint lies at site 5,386, and the rest genomes 
from Omicron BA.1 variant (Chakraborty et al., 2022).

XBB, nicknamed Gryphon, is the most recent recombinant. XBB 
is regarded as the first observed SARS-CoV-2 variant to increase its 
fitness through recombination rather than substitutions (Tamura 
et al., 2022). XBB derives from two BA.2 sublineages: BJ.1 (BA.2.10.1) 
and BM.1.1.1 (BA.2.75) (Arora et al., 2023; Scarpa et al., 2023b). XBB 
and its first descendant XBB.1 are both evolutionarily close to BA.2 
genomes (Scarpa et  al., 2023b), suggesting BA.2 acts as their 
progenitor. The breakpoint lies between position 22,901 and 22,939, a 
position in the middle of RBD (Scarpa et al., 2023b). The mutation 
profiles possibly altogether contribute to the greater immune invasion 
capabilities of XBB than do those of the earlier Omicron variants BA.2 
(Imai et al., 2023). The pathogenicity of XBB.1 is comparable to or 
even lower than that of BA.2.75 (Tamura et al., 2022). Though XBB 
subvariants exhibit enhanced fusogenicity and substantial immune 
evasion in elderly population, but the fusion inhibitors EK1 and 
EK1C4 can potently block either XBB or XBB.1.5 spike protein 
mediated fusion and viral entry (Xia et al., 2023a).

4.5. Overall characteristics of emerging 
recombinants

As a whole, the novel recombinant subvariants demonstrate a 
higher transmission rate and relatively greater resistance to antibodies 
compared to earlier variants (Wang et al., 2022a; Brandolini et al., 
2023; Faraone et al., 2023). In January 2023, there was a rapid increase 
in the prevalence of XBB.1.5 in the United States (Callaway, 2023). 
According to the World Health Organization (WHO), XBB.1.5 
accounted for 23-86% of circulating variants throughout the country 
(XBB.1.5 Updated Risk Assessment, 24 February 2023).6 However, 
these recombinant variants do not significantly increase the severity 
of the disease or cause clinical exacerbation (Karyakarte et al., 2023). 
XBB.1.5 does not carry mutations associated with potential changes 
in pathogenicity, such as P681R (Mlcochova et al., 2021; Saito et al., 
2021). It is important to note that most vaccines are developed based 
on the spike protein, and the emergence of recombinant variants may 
pose a risk of vaccine failure (Tamura et al., 2022). Therefore, it is 
crucial to consider potential new subvariants in the development of 
novel strategic vaccines.

6 https://www.who.int/
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5. Outlook for SARS-CoV-2 evolution 
and interventional strategies

Various factors drive the viral evolution (Moelling, 2021), 
including RNA polymerase exchanging accuracy for efficiency 
(Yewdell, 2021), the selective pressures exerted by host immune 
system (Milne et al., 2021; Thorne et al., 2021), chronic infection in 
other species then spillover to human (Lu et al., 2021; Hale et al., 2022; 
Marques et al., 2022), and prolonged co-infection in immunodeficient 
hosts (Ou et al., 2022; Rockett et al., 2022). These factors contribute to 
the mutation-selection-evolution process of SRAS-CoV-2 evolution. 
Continuous evolution of SARS-CoV-2 has led to rapid and 
simultaneous emergence of multiple variants that exhibit a growth 
advantage over previously circulating variants (Wolf et  al., 2022). 
During the evolution of SARS-CoV-2, the spike gene is the only gene 
that undergo the strong positive selection, while other genes show 
only weak or temporary positive selection (Lu et al., 2023) Thus, spike 
mutations contribute highly in its evolution. The mutational process 
is dynamic, and the mutation spectrum of SARS-CoV-2 may tend to 
be more similar to that of other animal Sarbecoviruses (Bloom et al., 
2022). Here we propose several interventional strategies.

 1. Genomic surveillance of SARS-CoV-2, specifically in the spike 
gene and genomic recombination, is of utmost importance in 
recognizing its evolutionary trend. Efforts have been made to 
promote the genomic monitoring. Dadonaite et  al. (2023) 
developed a novel deep mutational scanning (DMS) platform 
for mapping the effects of spike protein mutations on immune 
evasion and viral infectivity (Xia et  al., 2023b). Saldivar-
Espinoza et  al. (2023) developed a SARS-CoV-2 Mutation 
Portal which provides access to a database of SARS-CoV-2 
mutations. Sathyaseelan et al. (2023) developed a CoVe-tracker 
(SARS-CoV-2 evolution tracker)7 for quick surveillance of 
newly emerging mutations/variants/lineages to facilitate the 
understanding of viral evolution, transmission, and disease 
epidemiology. Huang et  al. (2023) developed a genomic 
surveillance framework and a dynamic community-based 
variant dictionary tree, which enables early detection and 
continuous investigation of SARS-CoV-2 variants. Outbreak.
info is a platform for scalable and dynamic surveillance of 
SARS-CoV-2 variants and mutations, and it relies on shared 
virus sequences from the GISAID Initiative (Gangavarapu 
et al., 2023; Tsueng et al., 2023).

 2. As the recently expanding Omicron subvariants are capable of 
immune evasion from most of the existing neutralizing 
antibodies, it is imperative to explore broad-spectrum antivirals 
to combat the emerging variants. Resistance to monoclonal 
antibody neutralization is dominated by the action of epitope 
single amino acid substitutions in the spike protein (Cox et al., 
2022). Currently, most therapeutic neutralizing antibodies and 
promising vaccine candidates are designed to target the RBD 
or use RBD as the sole antigen (Shi et al., 2020; Yang et al., 
2020a, 2021; Dai et al., 2022; Han et al., 2022). A novel group 
of neutralizing antibodies and vaccines targeting S2 subunit of 
the spike [such as fusion peptide (FP), heptad repeats 1 and 2 
(HR1-HR2), and stem helix (SH)] may become the next 

7 https://project.iith.ac.in/cove-tracker/

generation of therapeutic strategies. For example, COV44-62 
and COV44-79 were identified as anti-FP antibodies and 
showed considerable neutralizing capacity (Dacon et al., 2022).

 3. Strategies should be implemented to prevent long-term SARS-
CoV-2 infection and to limit the spread of emerging, 
neutralization-resistant variants in immunocompromised patients 
(Gonzalez-Reiche et al., 2023). It is found that the evolutionary 
rate of SARS-CoV-2  in chronic infection individual is 2-fold 
higher than that around the globe (Chaguza et al., 2023). This 
persistent intrahost evolution may accelerate antigenic alteration 
and lead to the emergence of genetically distinct subvariants 
(Smith and Ashby, 2022; Ahmadi et al., 2023; Chaguza et al., 
2023). Bendall et  al. (2023) observed a tight transmission 
bottleneck that would limit the development of highly mutated 
VOCs in the transmission chain of acutely infected individuals, 
further suggesting that selection for long-term infection in 
immunocompromised patients may drive SARS-CoV-2 VOC 
evolution (Braun et al., 2021; Wilkinson et al., 2022). Surveillance 
by sequencing is recommended for (i) patients carried with SARS-
CoV-2, (ii) patients suspected of reinfection, and (iii) patients who 
are immunocompromised (Landis et al., 2023).

 4. Vaccination in large population acts as a valuable measure in 
decreasing the mortality. However, vaccination alone cannot 
slow the pace of viral evolution for immune evasion and 
therefore, vaccine protection against severe and fatal outcomes 
for COVID-19 patients may not be assured (Van Egeren et al., 
2023). Current herd immunity and BA.5 vaccine boosters may 
not efficiently prevent the infection of Omicron convergent 
variants (Cao et al., 2022a). However, these may result from the 
decreased pathogenicity of SARS-CoV-2 via inducing the 
mutations. The vaccination against SARS-CoV-2 still efficiently 
decrease the case fatality rate (Wang C. et al., 2022).

6. Summary and conclusion

In the process of SARS-CoV-2 evolution, external and internal 
pressures drive the selection of randomly occurring mutations, with 
the retention of favorable mutations leading to adaptation. SARS-
CoV-2 exhibits a trajectory of evolution characterized by increased 
transmissibility, reduced virulence, and enhanced immune escape, 
enabling its long-term persistence within the population. The mutation 
patterns observed in pre-Omicron variants primarily manifest at 
recurrent amino acid sites within the spike protein, affecting the RBD 
conformation and glycosylation sites, consequently altering 
antigenicity. However, the emergence of the Omicron introduced a 
multitude of novel mutations, resulting in a substantial increase in 
transmissibility and immune evasion. Remarkably, the severity and 
clinical manifestation of patients did not escalate further, mainly for 
Omicron’s tropism for the upper respiratory tract. These changes 
observed in Omicron are attributed to the ongoing viral evolution. The 
appearance of the recombinant variant XBB and its subsequent 
descendants since August 2022 likely stems from the co-circulation of 
multiple variants and co-infection in the immunocompromised 
patients during the later stage of the pandemic. Although novel 
recombinant variants such as XBB.1.5 and XBB.1.16 demonstrate a 
considerable transmission advantage and outcompete the predecessors, 
they do not exhibit a significant increase in disease severity and display 
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relatively moderate antibody escape. Although SARS-CoV-2 is no 
longer regarded as a Public Health Emergency of International 
Concern, its evolution persists. We strongly recommend for enhanced 
surveillance of the viral genome, particularly in immunocompromised 
patients, the development of therapeutics targeting domains beyond 
the RBD, and the promotion of widespread vaccination.
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Background: Since 2019, severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) has diversified extensively, producing five highly virulent lineages

designated as variants of concern (VOCs). The Delta VOC emerged in India with

increased transmission, immune evasion, and mortality, causing a massive global

case surge in 2021. This study aims to understand how the Delta VOC evolved

by characterizing mutation patterns in the viral population before and after its

emergence. Furthermore, we aim to identify the influence of positive and negative

selection on VOC evolution and understand the prevalence of di�erent mutation

types in the viral genome.

Methods: Three groups of whole viral genomes were retrieved from GISAID,

sourced from India, with collection periods as follows: Group A—during the initial

appearance of SARS-CoV-2; Group B—just before the emergence of the Delta

variant; Group C—after the establishment of the Delta variant in India. Mutations

in >1% of each group were identified with BioEdit to reveal di�erences in mutation

quantity and type. Sites under positive or negative selection were identified with

FUBAR. The results were compared to determine howmutations correspond with

selective pressures and how viral mutation profiles changed to reflect genetic

diversity before and after VOC emergence.

Results: The number of mutations increased progressively in Groups A–C, with

Group C reporting a 2.2- and 1.9-fold increase from Groups A and B, respectively.

Among all the observed mutations, Group C had the highest percentage of

deletions (22.7%; vs. 4.2% and 2.6% in Groups A and B, respectively), and

most mutations altered the final amino acid code, such as non-synonymous

substitutions and deletions. Conversely, Group B had the most synonymous

substitutions that are e�ectively silent. The number of sites experiencing positive

selection increased in Groups A–C, but Group B had 2.4- and 2.6 times more sites

under negative selection compared to Groups A and C, respectively.

Conclusion: Our findings demonstrated that viral genetic diversity continuously

increased during and after the emergence of the Delta VOC. Despite this, Group

B reports heightened negative selection, which potentially preserves important

gene regions during evolution. Group C contains an unprecedented quantity of

mutations and positively selected sites, providing strong evidence of active viral

adaptation in the population.
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), a betacoronavirus infamous for causing the coronavirus disease
2019 (COVID-19), emerged in late 2019 and rapidly escalated into
a global pandemic. The SARS-CoV-2 genome spans approximately
30 kb in length and encodes 16 non-structural, four structural, and
nine accessory proteins (Wu et al., 2020; Bai et al., 2022). The
structural proteins include the nucleocapsid (N), membrane (M),
envelope (E), and spike (S) (Khailany et al., 2020). Glycosylated S
proteins cover the virion surface and contain the receptor-binding
domain (RBD), which mediates host-binding interactions (Huang
et al., 2020; Letko et al., 2020). The E protein contributes to the
formation of the viral envelope, while the M protein plays an
essential role in virion assembly (Bai et al., 2022). The N protein
binds the viral genome and has multiple roles in RNA synthesis
and translation, viral replication, and cell cycle regulation (Bai
et al., 2022). The ORF1ab gene encodes 16 non-structural proteins
that are essential for viral RNA replication and transcription (Bai
et al., 2022). The accessory proteins encoded by other open reading
frames (ORFs) encompass a diverse range of functions, including
viral release, inhibition of host cellular functions and immune
response, formation of ion channels, and interactions with other
viral proteins (Li et al., 2020; Toft-Bertelsen et al., 2021; Zinzula,
2021; Bai et al., 2022).

SARS-CoV-2, such as other RNA viruses, exhibits a high
mutation rate primarily attributed to its error-prone RNA-
dependent RNA polymerase (Duarte et al., 2022). When coupled
with high rates of viral reproduction, these mutations may occur
throughout the viral genome, allowing viral quasi-species to arise
and persist within the infected host (Karamitros et al., 2020).
Additionally, exposure to an enormous pool of susceptible hosts
favors the rapid evolution of SARS-CoV-2, producing numerous
viral variants that circulate within human populations (Duarte
et al., 2022). This has been well illustrated by the many SARS-
CoV-2 variants of concern (VOCs) designated by theWorld Health
Organization (WHO), which possess mutations that confer high-
risk traits including increased transmissibility, increased virulence,
and reduced susceptibility to vaccines and therapeutics (World
Health Organization, 2021). The designated VOCs included the
Alpha, Beta, Gamma, Delta, and Omicron lineages (World Health
Organization, 2021). In particular, the Delta VOC has been known
for its increased virulence, pathogenicity, and severity of COVID-
19 disease (Liu and Rocklöv, 2021; Zhang et al., 2022).

The first SARS-CoV-2 infection case in India was reported in
Kerala on 30 January 2020 (Andrews et al., 2020). On 11 March
2020, theWHO declared COVID-19 a global pandemic, prompting
the Indian government to impose a nationwide lockdown on
25 March 2020 (Siddiqui et al., 2020). A subsequent wave of
transmission hit India during the Spring of 2021, driven by the
emergence of a new variant, B.1.617.2, in Maharashtra (Rambaut
et al., 2020). B.1.617.2 was later designated as a VOC in May
2021, following a significant surge in cases both regionally and
globally, and was subsequently renamed the Delta variant (World
Health Organization, 2021). Retrospective investigations revealed
that the Delta VOC first emerged in India in mid-September
2020, although its transmission did not escalate until March 2021
(McCrone et al., 2022). The surge in Delta cases was accompanied

by an alarming increase in local mortality and hospitalization rates
due to its heightened transmissibility and immune evasion (Zhan
et al., 2022). These advantageous features allowed Delta VOC to
overtake the Alpha VOC as the dominant global lineage, fueling
new outbreaks and resurgences worldwide despite the advancement
of vaccine uptake (Liu and Rocklöv, 2021; Zhang et al., 2022).

In this study, we aim to characterize the genetic diversity
and evolutionary trends of the Delta VOC in India. To achieve
this, we conducted a multilayered analysis of the SARS-CoV-
2 genome using archived whole-genome SARS-CoV-2 sequences
from a public database. By collecting database-derived sequences
at three distinct time periods surrounding the emergence of Delta
VOC in India, we aim to identify specific mutation patterns that
characterize the state of the viral population immediately before
VOC emergence and reflect the succession of Delta VOC as the
dominant SARS-CoV-2 lineage in early 2021. Furthermore, we
seek to identify genomic regions of SARS-CoV-2 that underwent
positive or negative selection to further improve our understanding
of the SARS-CoV-2 evolutionary progression.

2. Materials and methods

2.1. Establishment of study groups and data
collection

Full-length SARS-CoV-2 genomes derived from clinical
specimens in India were sourced from the GISAID database
for three study groups (A, B, and C) based on their initial
sampling dates (Khare et al., 2021). The study groups and their
corresponding time periods of interest included (1) GroupA, which
represents the earlier stage of the COVID-19 pandemic in India,
when all reported cases were caused by the initial SARS-CoV-2
Wuhan strain and its early descendants; (2) Group B, which reflects
the pre-Delta period, which was immediately before the suspected
emergence of Delta VOC; and (3) Group C, which corresponds
to the Delta-dominant period, when the Delta VOC was well
established in the population (Figure 1) (India Today Web Desk,
2020; World Health Organization, 2020; Choudhary et al., 2021).
The duration of the study periods was adjusted to ensure the sample
size of each group was both acceptable and comparable to the other
groups, as the number of positive COVID-19 cases per day (and
thus the available genomes) varied greatly among the time periods
of the three groups.

To ensure the reliability and completeness of the SARS-
CoV-2 genome data used in our analysis, the GISAID filters
for high-quality and complete genome sequences were applied
while retrieving viral genomes for each group. The retrieved
viral genomes were then viewed in Molecular Evolutionary
Genetics Analysis (MEGA X), which revealed multiple genomes
with indications of poor sequence quality (Kumar et al., 2018).
These indicators included large unreported gaps (suggestive
of amplicon dropout) or an excessive number of ambiguous
bases, potentially arising from sequencing errors. Considering the
potential interference of unreliable sequences in our mutation and
selection investigations, these genomes were excluded from further
analyses if the indicators at any given locus exceeded 1% of the

Frontiers inMicrobiology 02 frontiersin.org66

https://doi.org/10.3389/fmicb.2023.1222301
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Li et al. 10.3389/fmicb.2023.1222301

FIGURE 1

Positive COVID-19 case summary in India, with the relative timeline of events pertaining to the Delta variant of concern (VOC). The positive case

numbers were based on the World Health Organization reports (World Health Organization, 2020). The collection dates and rationale of study

Groups A, B, and C are denoted by red arrows.

total group’s sequences. The detailed data retrieval and processing
workflow is depicted in Figure 2.

2.2. Multiple sequence alignment

For each study group, all viral genome sequences were aligned
to the original Wuhan-Hu-1 SARS-CoV-2 reference sequence
(GISAID Accession EPI_ISL_402124) using the MAFFT v7 online
server option for SARS-CoV-2 (https://mafft.cbrc.jp/alignment/
server/add_sarscov2.html?mar15) (Katoh et al., 2019). The derived
multiple sequence alignment (MSA) files were visually inspected in
MEGA X (Kumar et al., 2018).

2.3. Mutation identification

Each group’s full genomeMSAwas used to generate a positional
nucleotide numeric summary file in BioEdit (Hall, 1999). This
output file was then split into the individual genes of SARS-
CoV-2 using an in-house Python program (https://github.com/
connor-lowey/SARS-CoV-2_Delta_Helper_Scripts). To determine

the prevalence of the mutations, the frequencies of all identified
genetic variations were calculated and categorized using
thresholds of <1%, 1–10%, and >10% for each respective
group. The chosen thresholds stopped at >10% to accommodate
heterogeneous viral populations and to avoid excluding an
excess of data by setting an unattainable threshold. Mutations
across the whole viral genome were characterized for all
groups by recording mutations present at each frequency
threshold in each individual gene relative to the SARS-CoV-
2 reference genome. Potential codon changes at the amino
acid level were recorded as resulting in a synonymous or
non-synonymous amino acid substitution, an insertion, or
a deletion. All mutations within a given gene at both the
nucleotide and amino acid levels were compared among groups
to determine which mutations were shared and which were
unique to a particular group. The intergroup differences
in mutation prevalence were further assessed for statistical
significance using an in-house Python script (https://github.com/
connor-lowey/SARS-CoV-2_Delta_Helper_Scripts). A chi-squared
test of independence was used to compare groups by individual
gene, and a Bonferroni correction was applied. A p < 0.05 was
considered statistically significant.
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FIGURE 2

GISAID SARS-CoV-2 genome data retrieval and processing workflow. “Group Specific” indicates that individual analyses were performed on Groups

A, B, and C independently.

2.4. Recombination and selection

To analyze recombination events and evidence of natural
selection, we processed each group’s whole-genome MSA file by
splitting it into individual gene ORFs using MEGA X and then
tested them for recombination and evidence of selection on the
Datamonkey webserver (Kumar et al., 2018; Weaver et al., 2018).
The recombination events were first assessed using the Genetic
Algorithm for Recombination Detection (GARD) with site-to-site
rate variation set to General Discrete and rate classes set to three
(Kosakovsky Pond et al., 2006). All other parameters were left

as default settings. Before conducting selection analyses, all stop
codons (terminal and premature) were removed from the MSA
files with MEGA X. This step was necessary as the Datamonkey
selection tools reject the presence of any stop codons (Kumar et al.,
2018). Gene-specific MSA files, omitting stop codons, were used
to detect site-specific positive/negative selection using the Fast,
Unconstrained Bayesian AppRoximation for Inferring Selection
(FUBAR) tool with default parameter settings (Murrell et al., 2013).
All amino acid sites under positive or negative selection were
compared against the list of mutations in the corresponding group
to determine which sites under selection coincided with a mutation
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present at a frequency of >1% in the group. The intergroup
differences in the quantities of positive and negative selection sites
were assessed for statistical significance using an in-house Python
script, as described in the section above.

3. Results

3.1. Establishment of study groups

The collection dates for each of the three study groups were
selected based on the timeline of SARS-CoV-2 and the emergence
of Delta VOC in India. As shown in Figure 1, Group A contained
sequences collected from 22 April to 16 May 2020 (n= 579) during
the initial introduction of the SARS-CoV-2 Wuhan strain to India.
Group B was sampled from 29 July to 29 August 2020 (n = 554),
representing the period just before the suspected emergence of the
Delta VOC. Group C contained sequences from 9 April to 12 April
2021 (n = 447) during the surge in positive cases predominantly
attributed to the Delta VOC. Themost prevalent viral lineage found
in Group A was B.1, which was the dominant global lineage during
the start of the pandemic (Rambaut et al., 2020). In contrast, the
most prevalent lineages were B.1.1.306 in Group B (a descendent
lineage that did not achieve any notable WHO designations) and
B.1.617.2 in Group C (the Delta VOC, as designated by the WHO).
This highlights the diversification away from the original strain
over time (Rambaut et al., 2020;World Health Organization, 2021).

3.2. Mutation analysis

To assess the temporal progression of mutation frequency and
type across Groups A, B, and C, we first identified all mutations
that are present at frequencies >1% in each of the study groups.
Further mutation profiling revealed varying proportions of non-
synonymous and synonymous codon changes among the groups,
with Group C showing more distinctive results while Groups A and
B were more alike. In all study groups, the ORF1a gene had the
largest number of mutations out of any gene, as it makes up over
40% of the viral genome (Figure 3A) (Khare et al., 2021). Following
closely behind in both Groups A and C were ORF1b and the S gene,
as well as the N gene.

Group A was found to have the lowest number of nucleotide
mutations (96), including the lowest quantity of both non-
synonymous and synonymous substitutions out of all groups
(Figure 4). However, when the relative percentage of each mutation
type was calculated for the study groups, Group A had the
largest proportion of non-synonymous mutations out of all the
study groups. Specifically, this mutation type made up 61.5% of
mutations in Group A and 60.5% and 51.7% of mutations in
Groups B and C, respectively. Forty-eight (60.0%) of all mutations
present at the 1–10% sequence threshold and 11 (68.8%) of all
mutations present at the >10% sequence threshold encoded a non-
synonymous substitution (Figure 4). Of these, the greatest number
of non-synonymous substitutions in Group A occurred in ORF1a,
with 17 at the 1–10% threshold range and 3 at the >10% threshold
(Supplementary Table 1A). Notably, Group A had no insertions

and only four deletions, all occurring in the E gene at the 1–10%
threshold (Supplementary Table 1A).

Group B exhibited an intermediate quantity of mutations,
with a higher total count than Group A but fewer mutations
than Group C across all frequency ranges (Figures 3A–C). Out
of the 114 mutations in Group B, 96 (84%) fell within the 1–
10% frequency range, while only 18 mutations (16%) occurred
in >10% of the group’s sequences. This proportion of mutations
reaching the >10% threshold was the lowest compared to the other
groups (17% in Group A, 33% in Group C), although Group B
had noticeably more mutations overall than Group A (114 vs.
96 mutations >1%, respectively). Most mutations were present in
ORF1a and ORF1b, followed next in quantity by the N gene rather
than the S gene (as seen in Groups A and C). Group B had the
highest relative proportion of synonymous mutations across all
frequency ranges (37.8% overall, Figure 4), most of which were
found in ORF1a (Supplementary Table 1B). Similar to Group A,
Group B did not contain any insertions and had the fewest deletions
among all groups.

Group C had the highest mutation count at all frequency ranges
among the three study groups (Figures 3A–C), with 2.2 and 1.85
times more mutations than the Group A and B totals at the >1%
level, respectively. These differences were statistically significant,
with p<0.001 for both pairwise comparisons of Groups A and B
vs. Group C. Similarly, this group had significantly more mutations
present at a frequency of >10%, with 4.4 and 3.9 times more than
Groups A and B (p < 0.001), respectively. Interestingly, Group C
also had the highest number of deletions present at all frequencies,
and these deletions made up 22.7% of the group’s total mutations
shown in Figure 4. Consequently, the relative proportions of non-
synonymous and synonymous substitutions were observed at lower
amounts in Group C in comparison to the other groups; however,
Group C had more mutations that cause a change in the amino
acid coding (sum of non-synonymous substitutions, insertions,
and deletions) than any other group at all frequencies (74% of
all mutations present in >1% of sequences). Most of Group C’s
deletions were found in the ORF1a, ORF1b, S, and ORF8 genes
(Supplementary Table 1C). Compared to Groups A and B, Group
C contained significantly larger mutation counts in the S gene
at all frequency levels (p<001). At a frequency of >10%, the S
gene in Group C had one more mutation than ORF1a (21 and 20,
respectively), despite ORF1a being 3.5 times longer than the S gene
(Khare et al., 2021). Similarly, Group C also reported a significant
difference in the number of mutations in ORF1a and ORF8 when
compared to other study groups, as shown in Figure 3A (p < 0.05
and p < 0.01, respectively).

All mutations occurring in >1% of their respective group
were compared to determine common and unique mutations
within Groups A–C. Across the entire genome, a total of 42
amino acid coding sites were affected by mutations shared by
at least two of the three study groups (Table 1). These involved
49 different nucleotide-level mutations, accounting for instances
where multiple mutations occurred within the same codon.
Notably, ORF7a, ORF7b, and ORF10 were the only genes that
contained no sharedmutations between study groups. On the other
hand, ORF1a alone had almost half (48%) of the shared mutations
in the entire genome, with 20 shared amino acid sites resulting
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FIGURE 3

Quantities of nucleotide-level mutations identified in study group sequences at relative frequencies of >1% (A), 1–10% (B), and >10% (C).

from 23 unique nucleotide-level mutations. ORF1b and N held
the next-largest numbers of shared amino acid sites (seven and
five, respectively), although these were considerably lower than the

quantity of ORF1a. The most common combination for shared
mutations was Group A and Group B, accounting for 25 of the
42 possible amino acid sites. Nine amino acid sites contained
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FIGURE 4

Prevalence of varied genetic mutation types in the three study groups at relative frequencies of >1%, 1–10%, and >10%. The bars in the graph

represent the occurrence of each mutation type, while the numbers above the bars show the total counts of mutations within each respective group

and frequency range.

TABLE 1 Quantities of mutated amino acid sites shared by multiple study

groups.

Gene Mutated amino
acid sites shared

by ≥2 study
groups

Unique
mutationsa

a�ecting shared
amino acid sites

ORF1a 20 23

ORF1b 7 8

S 4 5

ORF3a 2 2

E 1 1

M 1 1

ORF6 1 1

ORF7a 0 0

ORF7b 0 0

ORF8 1 1

N 5 7

ORF10 0 0

Full genome 42 49

aMutations, reflecting a single mutation at the nucleotide level where multiple distinct

mutations (substitutions and/or deletions) can occur within the same amino acid codon.

mutations shared by Groups A, B, and C together, while six amino
acid sites had mutations shared by just Groups B and C. The least
frequent pairing was Group A with Group C, which only occurred
at two amino acid sites in the full genome.

To quantify the unique mutations that were specific to each
study group (not shared with another group), comparisons were
made using genes, and the results are summarized in Table 2.

Notably, unique mutations made up most of the mutations
identified in Group C, at 91.5% (193 of the total 211 mutations
present in >1% of Group C). The proportions of Group A
and B were considerably lower than Group C, with unique
mutations comprising 60.4% and 63.2% of all mutations in
each group, respectively. Many of Group C’s unique mutations
were found in ORF1a, ORF1b, and the S gene. In ORF1a,
Group C had 2.4- and 3.3 times more unique mutations than
Groups B and A, respectively. Similarly, in ORF1b, Group C
had 2.1- and 2.9 times more unique mutations than Groups
B and A, respectively. The S gene of Group C exhibited a
strikingly higher unique mutation count, with 4.3- and 7.4
times more mutations than those identified in Groups A and
B, respectively.

3.3. Tests for recombination and selection

For each group, individual gene alignments were tested for
recombination and then for the presence of positive or negative
selection at individual amino acid sites to characterize the
evolutionary context of each study group. As Datamonkey tools
reject stop codons, the MSA input files were required to have
all stop codons replaced with N’s. This included the replacement
of premature stop codons found in at least one sequence within
the ORF1b, S, ORF3a, M, ORF6, ORF7a, ORF7a, ORF7b, ORF8,
and N genes in various study groups. Analysis of gene alignments
using GARD revealed no evidence of recombination within any
individual gene across the study groups, so subsequent testing
for positive selection could proceed without further adjustments.
The findings from the FUBAR tool, as depicted in Figure 5,
indicated that both positive (diversifying) and negative (purifying)
selection was detected in all study groups, although the number
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TABLE 2 Unique nucleotide mutations occurring exclusively within individual study groups, with frequencies >1%.

Gene Group A
mutations

Proportion of
total Group A
mutations

(%)a

Group B
mutations

Proportion of
total Group B
mutations

(%)a

Group C
mutations

Proportion of
total Group C
mutations

(%)a

ORF1a 20 55.6 27 57.4 65 90.3

ORF1b 11 61.1 15 68.2 32 88.9

S 12 75.0 7 70.0 52 94.5

ORF3a 1 33.3 8 80.0 3 100.0

E 4 80.0 0 0.0 1 100.0

M 1 50.0 2 66.7 3 100.0

ORF6 0 0.0 1 50.0 1 100.0

ORF7a 1 100.0 0 0.0 4 100.0

ORF7b 0 0.0 1 100.0 1 100.0

ORF8 2 100.0 2 100.0 15 93.8

N 6 50.0 8 57.1 16 84.2

ORF10 0 0.0 1 100.0 0 0.0

Full genome 58 60.4 72 63.2 193 91.5

a “Total mutations” refers to all genetic variations present within a group’s genome sequences at frequencies exceeding 1%.

of amino acid sites reported varied greatly amongst the different
genes.

Across the whole genome, the number of amino acid sites
experiencing positive selection showed a progressive increase, from
33 sites in Group A to 47 in Group B and 51 in Group C,
although no statistically significant difference was observed for any
individual genes (Figure 5A). Although Group A had fewer sites
under positive selection than Group B, it reported an equivalent
number of genes affected. In contrast, GroupA had the fewest genes
experiencing negative selection, with only five genes vs. the nine
and seven genes reported in Groups B and C, respectively. Of note,
the ORF1a and S genes in Group A had the highest presence of
negative selection, at 16 and 11 sites, respectively. Similarly, ORF1a
and ORF1b had the most sites under positive selection, with 8 and
10 sites, respectively. Interestingly, the S gene in Group A had 2.75
times more sites under negative selection than positive selection.

Group B reported a significant increase in the number of sites
under negative selection, with 99 sites identified across the whole
genome. This represented a substantial difference as compared to
Group A, which had 38 sites (2.6 times fewer, p < 0.001), and
Group C, which had 41 sites (2.4 times fewer, p < 0.001). As
shown in Figure 5B, most of these sites were found in ORF1a and
ORF1b, with 45 and 34 sites, respectively. The difference between
study groups was highly significant for both of these genes (p <

0.001). As stated above, Group B also had the highest number
of genes affected by negative selection out of all groups. ORF1a
and ORF1b also contributed the largest number of sites under
positive selection in Group B, although on a much smaller scale
than those under negative selection (16 and 8 sites, respectively). In
contrast to Group A, the S gene in Group B contained more sites
under positive selection (seven sites) but fewer sites under negative
selection (five sites). Additionally, Group B reported seven sites
under positive selection in ORF3a, while Group A reported two

sites and Group C reported only one in this gene. This difference
in ORF3a was initially statistically significant (p < 0.05) but was no
longer significant after applying the Bonferroni correction.

Group C had the highest number of amino acid sites under
positive selection, with a total of 51 sites across the entire genome.
Importantly, Group C was the only group in which the number
of sites under positive selection exceeded those under negative
selection, as both Groups A and B reported the opposite pattern
at the genome level. Group C also found nine genes with sites
experiencing positive selection, compared to seven genes in both
Groups A and B. ORF1a had an equivalent number of sites under
both positive and negative selection (18), while ORF1b was nearly
equivalent with 11 sites under positive selection and 10 under
negative selection. The S gene in Group C also had a higher
number of sites under positive selection (11 sites) as compared to
negative selection (six sites), with four of these positive selection
sites corresponding to lineage-definingmutations of the Delta VOC
(G142D, L452R, P681R, and D950N; Table 3).

To assess the relationship between the sites under positive
or negative selection and mutations present at frequencies >1%,
comparisons were made within each study group at the amino
acid level. The proportion of sites under selection that also had
a mutation at the same amino acid site is summarized by the
gene in Supplementary Tables 2A–C. As the number of sites under
selection varied among genes (Figure 5), numbers were presented
as the percentage of sites under selection for ease of comparison.
It should be noted that this study focused exclusively on mutations
present in >1% of each study group, and consequently, not all sites
under selection had corresponding mutations at the same locus
that met the >1% threshold. As a result, the overall proportion
of selection sites with matching mutations was low across the full
genome for all three study groups, although certain genes exhibited
higher proportions (Supplementary Tables 2A–C).
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FIGURE 5

Quantities of amino acid sites identified as experiencing positive selection (A) or negative selection (B) in study groups.

Importantly, Group C contained all the expected lineage-
defining mutations of the Delta VOC, as described in Table 3 (cov-
lineages.org, 2023; Hodcroft, 2023d). Several mutations, including
F924F in ORF1a, P314L in ORF1b, and D614G in S, were identified
in all study groups, supporting the establishment of thesemutations
in the viral population at an early stage. In particular, the P314L
mutation in ORF1b, which was under positive selection in all three
study groups, and the D614G Mutation in S are also lineage-
defining mutations for the Alpha, Beta, and Gamma VOCs, all
of which were detected earlier than the Delta VOC (Hodcroft,
2023a,b,c,d). The S protein position 681 holds a lineage-defining
mutation for both the Alpha and Delta VOCs, although the amino
acid substitutions differ between lineages, and was reported to be
under positive selection in Group C (Hodcroft, 2023b,d). Similarly,
the N protein position 203 serves as a lineage-definingmutation site
for the Alpha, Gamma, and Delta VOCs, although the Alpha and
Gamma lineages share the R203K substitution while Delta contains
R203M (Hodcroft, 2023b,c,d). Additionally, both Group A and C

reported the G662S mutation in ORF1b, but this is only a lineage-
defining mutation of the Delta and Omicron BA.2.75, XBB, and
XBB.1.5 VOCs (equivalent Nextstrain nomenclature are Omicron
22D, 22F, and 23A, respectively), all of which emerged long after
the sequence collection dates of Group A (Hodcroft, 2023d,f,g,h).

4. Discussion

The error-prone nature of RNA viruses and the massive global
availability of susceptible hosts have provided ample opportunity
for SARS-CoV-2 to circulate and diversify rapidly (Duarte et al.,
2022). Following the succession of the Delta VOC (B.1.617.2) as the
dominant global variant, continued adaptive evolution led to the
emergence of multiple sub-lineages within the Delta variant family,
termed AY lineages by Pango nomenclature (Eales et al., 2022; cov-
lineages.org, 2023). Here, we focused on the viral population in
India to characterize trends in genetic diversity and selection before
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TABLE 3 Delta VOC lineage-defining mutations identified in study

Groups A–C.

Gene Mutation Identified
groups

Selection References

ORF1a F924F A, B, C Negative (A,
B)

a

ORF1b P314L A, B, C Positive (A, B,
C)

a

ORF1b G662S A, C None a

ORF1b P1000L C None a

S T19R C None a , b

S G142D C Positive a

S E156- C None a

S F157- C None a

S R158G C None a

S L452R C Positive a , b

S T478K C None a , b

S D614G A, B, C None a

S P681R C Positive a , b

S D950N C Positive a , b

ORF3a S26L C Positive a , b

M I82T C Positive a , b

ORF7a V82A C None a , b

ORF7a T120I C Positive a , b

ORF8 D119- C None a

ORF8 F120- C None a

N D63G C Positive a , b

N R203M C None a , b

N D377Y C None a , b

aHodcroft, 2023d at https://covariants.org/variants/21A.Delta.
bcov-lineages.org, 2023 at https://cov-lineages.org/global_report_B.1.617.2.html.

and after the emergence of Delta VOC. The range of collection
dates for Groups A, B, and C provide distinct snapshots of the
viral population at the first introduction of SARS-CoV-2 to India,
just before the emergence of the Delta variant, and well after the
Delta VOC was established in the country. This unique sampling
strategy effectively displays the evolutionary progression toward

VOC emergence. To the best of our knowledge, this is currently
the only study providing an evolutionary perspective through this

tri-phased sampling strategy.
As expected, mutation analyses revealed increasing quantities

of mutations with the temporal progression of Groups A–C.
Notably, Group C had a significant increase in mutations at both
the >1% and >10% thresholds, which is well supported by reports

showing that the Delta VOC harbors 29 characteristic mutations
that differ from the original Wuhan strain (Khare et al., 2021;
Borcard et al., 2022; cov-lineages.org, 2023; Gangavarapu et al.,
2023). In particular, 33.2% of the total mutations found in Group
C were present in >10% of the group’s sequences, as opposed

to 16.7% and 15.8% in Groups A and B, respectively. While
the increasing quantity of mutations demonstrates an increase
in genetic diversity, the larger percentage of mutations reaching
the >10% threshold demonstrates the progression toward a new
lineage becoming dominant in the viral population. Similarly,
intergroup comparisons supported the evolutionary context of
Groups A, B, and C. Comparisons of mutations revealed that
mutations identified in multiple groups were most often shared
between Groups A and B, whereas mutations shared between
Groups A and C were rare. This is reasonable given that the
collection dates of the groups progressed temporally from Group
A to B to C, with Group A and C being collected almost a full year
apart. Furthermore, 91.5% ofmutations found in>1% of Group C’s
sequences were unique mutations not shared by any other group,
which emphasizes the distinct genetic profile that appears after
the emergence of Delta VOC. Despite having lower proportions
than Group C, Groups A and B still reported over 60% of their
mutations as unique rather than shared, demonstrating that the
viral population of each group possesses a specific genetic profile
that changes over time.

Another interesting pattern in Group C was the proportion
of different mutation types, which differed from Groups A and
B. At all examined frequency thresholds (Figure 4), all three
groups had a higher percentage of non-synonymous substitutions
than synonymous substitutions, but Groups A and B consistently
reported similar percentages in each mutation type. While Group
C still followed this pattern, the percentages of non-synonymous
and synonymous substitutions were distinct, and the proportion
of synonymous mutations was lower than those of Groups A and
B at all frequencies. This was exchanged for a large increase in
deletions, with Group C reporting 12–16 times more deletions than
Groups A and B overall (>1% threshold) and additionally being
the only group that contained deletions (13 occurrences) above
the >10% sequence threshold. Specifically, deletions within the S
gene made up 22 of the 48 identified Group C deletions, which is
not surprising as S protein deletions have been reported to affect
transmissibility, antigenicity, and immune escape, thus conferring
a fitness advantage (Harvey et al., 2021; Liu et al., 2021). Deletions
have been frequently reported throughout the genome of all five
VOC lineages, including the Delta VOC, which dominates Group
C (Hodcroft, 2023a,b,c,d,e). No insertions were reported in >1%
of sequences in any group, which was unsurprising given that
insertions are known to occur far less frequently than deletions
in both the SARS-CoV-2 virus and in broader protein evolution
(De Jong and Rydén, 1981; Liu et al., 2021). Altogether, Group
C has the largest proportion of mutations causing changes in the
final amino acid code, such as non-synonymous substitutions and
deletions. In total, 74.4% of mutations in Group C at frequencies
>1% caused changes in the final amino acid code (vs. 65.6 and
63.2% in Groups A and B, respectively). This proportion increased
to 82.9% of mutations at the >10% threshold (vs. 68.8 and 61.1%
in Groups A and B, respectively). This tendency to cause a change
in the final genome sequence supports the dynamic nature of
the SARS-CoV-2 virus and explains its incredible ability to adapt
to human populations by continuously diversifying and evolving.
Similarly, other RNA viruses such as human immunodeficiency
virus 1 (HIV-1) are known to be highly mutable viruses as well due
to the activity of the error-prone RNA-dependent RNA polymerase,
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which creates ample opportunity for diversification (Kustin and
Stern, 2021; Duarte et al., 2022).

Certain mutations may become established because of natural
selection as favorable changes can provide evolutionary advantages
such as improved survival and reproduction of the virus (Karlsson
et al., 2014). Shortly after SARS-CoV-2 emergence, selection
favored mutations that contributed to reproductive success, such
as the S gene D614G substitution, as there was little evolutionary
need for antigenic diversity (Carabelli et al., 2023). Interestingly,
the D614G mutation was not reported to be under any selection,
despite being detected in all study groups (Table 3). This is perhaps
because it became an established mutation very early in the
pandemic (first reported in January 2020) and was highly prevalent
in all our study groups, potentially causing it to be regarded as the
standard sequence rather than a mutation (Tian et al., 2021).

As natural and vaccine-acquired immunity against SARS-CoV-
2 increased in the host population, so did the need for viral
antigenic variations to enable its immune escape and continue
transmission (Carabelli et al., 2023). Mutations in viral surface
proteins highly exposed to the immune system, such as the S
protein, are typically under high selective pressure, and the Delta
VOC holds the majority of its characteristic mutations within the
S protein (Malik et al., 2021; cov-lineages.org, 2023). For example,
the S protein L452R mutation was identified in Group C and found
to be under positive selection in our study. Located in the receptor-
binding motif region of the RBD, which binds the host angiotensin-
converting enzyme-2 (ACE2) receptor, L452R causes structural
changes that may stabilize the interaction between the S protein and
the ACE2 receptor on the host cell to increase viral infectivity (Tian
et al., 2021). Similarly, the S protein P681R mutation was identified
in Group C and reported to be experiencing positive selection. This
mutation sits within the furin cleavage site of the S protein, and
this cleavage of the S1 and S2 subunits is a critical part of host cell
entry (Huang et al., 2020; Tian et al., 2021). The P681R mutation in
the S protein facilitates furin-mediated cleavage, which improves
host cell entry, and was reported to be an important element of
succession of Delta VOC over the previously dominant Alpha VOC
(Tian et al., 2021; Liu et al., 2022). This list is not exhaustive but
conveys the importance of these high-prevalence mutations found
in Group C and supports how selection drives the evolution of viral
lineages with an advantageous repertoire of mutations. Evidence
of both positive and negative selection has been reported by other
studies in the S gene, while positive selection has been reported in
ORF1ab, ORF3a, and ORF8 (Velazquez-Salinas et al., 2020; Martin
et al., 2021; Duarte et al., 2022; Upadhyay et al., 2022).

The number of amino acid sites experiencing positive selection
increased with the temporal group progression, from 33 in Group
A to 47 in Group B and 51 in Group C. Most of these sites
were in ORF1a and ORF1b, which is unsurprising given that
they encompass around 70% of the viral genome together (Bai
et al., 2022). Other genes reporting high numbers of variations
in all groups included S and N, while the remaining structural
genes (E and M) found hardly any sites under positive selection.
Interestingly, Group B was the only group to report that ORF3a
(functions in viral release, inflammasome activation, and necrotic
cell death) had a higher number of sites under positive selection,
equivalent to the S and N genes (Naqvi et al., 2020; Gorkhali et al.,

2021; Bai et al., 2022). In terms of negative selection, Group B
had 2.4–2.6 times more sites detected within the whole genome
than any other group, with ORF1a and ORF1b contributing a
large number of sites. ORF1b notably reported a jump from 5
sites in Group A to 10 sites in Group C and 34 sites in Group B.
Additionally, Group B contains more mutations reaching the >1%
threshold than Group A, but fewer mutations reaching the >10%
threshold. Given that Group B represents an intermediate period
where SARS-CoV-2 is established and circulating in the country,
but the Delta VOC has not yet emerged, we suspect that these
results demonstrate a period of heightened diversification within
the viral population.

As the virus moves away from its initial introduction in India
(Group A), it gains more opportunities to diversify by increasing
the number of infected hosts and by the progression of time,
allowing more viral replication and transmission cycles (Carabelli
et al., 2023). This heightened genetic diversity is evident in Group
B as characterized by an increased total mutation count; however,
many of these did not reach the >10% threshold, which indicates
the presence of numerous low-prevalence lineages rather than a
single dominant lineage. Similarly, Group B reported the highest
proportion of synonymous mutations, which do not change the
translated amino acid code. This observation aligns with the
findings that Group B had the largest number of sites experiencing
negative selection across all study groups. During viral evolution,
negative selection plays a crucial role in preserving essential
functional features through synonymous substitutions (Spielman
et al., 2019; Berrio et al., 2020). As RNA viruses are known to
experience strong purifying selection due to their densely coded
genome, it is plausible that the observed increase in Group B’s
negative selection is working to maintain essential gene function
while the viral population is undergoing a massive expansion
and diversifying into new lineages (Kustin and Stern, 2021). This
notion is supported by the work of Martin et al., who reported
a significant shift in selective pressures within the global SARS-
CoV-2 viral population about 11 months after its initial appearance
(November 2020), where the number of sites detected under
both positive and negative selection increased substantially and
continued throughout the following months in 2021. Remarkably,
the time frame in the study by Martin et al. coincides with the
collection dates of Groups B and C in our work, further supporting
the differentiation of Groups B and C from Group A with respect
to the quantities of sites under selection.

One notable limitation of this study is its dependency on the
GISAID database for viral genome availability and quality. The
detection of viral variants heavily depends on the extent of local
sequencing efforts, the throughput capacity of Indian sequencing
laboratories, and the consistent deposition of Indian viral sequences
in the GISAID database. We encountered challenges during the
study of Group A, which was sampled during the early stage of
the COVID-19 pandemic in India when viral genome availability
in GISAID was very limited. Consequently, both Groups A and
B were sampled over much wider collection date ranges than
Group C to provide a similar number of genomes across all
groups. This suggests a less precise snapshot of genetic diversity
as the wider ranges of collection dates may include multiple
cycles of viral transmission. Similarly, our study relied on the
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availability of high-quality sequences within databases. Despite
applying quality filters during database queries, many samples were
removed from our study due to the presence of unreliable genome
regions suspected of poor-quality sequencing and/or amplicon
dropout. This was especially troublesome in Group C, where the
increased prevalence of mutations might have made sequencing
with previous primer schemes increasingly difficult, which was
a known problem for the Delta VOC (Borcard et al., 2022).
According to the periods of sequence collection, Group A may
have used ARTIC primer V2 or earlier, while Group B and C may
have used ARTIC primer V3 or earlier (Quick, 2020). The ARTIC
primer V4 series, designed to address SARS-CoV-2 Beta, Gamma,
and Delta VOC mutations in V3 primer binding sites, was released
on June 18, 2021, which was several months after the collection
dates of GroupC (Davis et al., 2021). Nonetheless, we endeavored to
address these limitations through the utilization of a larger number
of genomes within each group, meticulous attention to genome
quality, and a focus on whole-genome analysis.

This study effectively demonstrates the evolutionary
progression toward VOC emergence in SARS-CoV-2, with a
specific focus on the Delta VOC, known for its significant global
impact as one of the most virulent variant lineages. With a unique
tri-phased sampling strategy, this study provides valuable insight
into the evolutionary dynamics preceding and following the
emergence of Delta VOC. It is plausible that similar patterns
of genetic diversity and evolutionary selection may have been
observed in other VOC lineages before their initial appearance.
By enhancing our understanding of the dynamic nature of SARS-
CoV-2 evolution, this study has the potential to facilitate earlier
recognition and prediction of the emergence of future variant
lineages. Such insights could be instrumental in mitigating the
impact of the emerging variants and effectively responding to the
evolving challenges from the SARS-CoV-2 VOCs.
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