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Editorial on the Research Topic

Transcription factors in immunological disease and haematological
malignancies
Our Research Topic, delves into key transcription factors involved in immunological

diseases and haematological malignancies, and brings to the fore cutting-edge research and

thorough and targeted literature reviews. These timely works highlight the future potential

of targeting transcription factors for clinical intervention in the treatment of a range of

diseases in which they may be critically involved.

With regards to the original research articles, Butcher et al. employed elegant mouse

models to demonstrate the T-bet+ Th17 cells, responsible for experimental autoimmune

encephalitis through induction of GM-CSF, are governed by expression of GATA3 which

drives expression of Egr2, Bhlhe40, and Csf2. Liang et al. reveal that RBP-J–mediated Notch

signalling regulates macrophage development and activation. Their murine Parkinson’s

Disease (PD) model showed Notch signalling within microglia resulted in decreased

tyrosine hydroxylase positive neurons that was blocked by inactivation of RBP-J that

decreased infiltrating, inflammatory macrophages and activated microglia. This work

showed for the first time that RBP-J–mediated Notch signalling may well play a

significant role the development of PD predominantly through the regulation of the

activation of microglia via NF-kB signalling. Research presented by Mah et al. reports on

the important role of ING5 for normal liver cellularity in foetal development in a cell

extrinsic fashion using a gene knockout mouse model. However, a third of these mice

survived weaning and ING5 was not found to be required for haematopoietic stem cell self-

renewal. Interestingly, the highly related ING4 transcription factor, bearing an identical

homeodomain may provide some level of redundancy. Trezise et al. explored the results of

a primary B cell CRISPR/Cas9-mediated screen, which illuminated key components of the

pathway mediating antibody secretion. The results of these studies identifies potential

candidates may be targeted for clinical treatment for antibody-mediated diseases, and

potential pathogenic genes that may underlie primary antibody deficiencies. These

highlight the importance of discovery research into the functional mechanisms of
frontiersin.org014
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transcription factors in normal and disease development, which can

inform future diagnostic and therapeutic strategies.

Our Research Topic also brings together a number of in-depth

scientific reviews of the literature. The first is provided by Balendran

et al. with a focus on the transcription factors, NF-kB, STATs, AP-1
and IRFs with regards to their critical role in inflammatory disease.

These transcription factors may serve as potential therapeutic

targets in rheumatoid arthritis, through targeting with direct

inhibitors, or via targeting signalling pathways that may activate

these transcription factors, or exploring transcription factor

interaction with a natural compound screen.

Jackson et al. delivers a comprehensive review of the role of Hhex

in development, physiology and disease, where the pleiotrophic

actions of Hhex have been shown to be dependent on the cellular

context. Salient observations include how the function of Hhex in

embryological development can be reflected in disease processes that

may involve Hhex, including repression of Cdkn2a in the context of

HSC self-renewal, emergency haematopoiesis and acute myeloid

leukaemia, as well as potential roles in type 2 diabetes where both

HHEX and CDKN2A variants very frequently occur together as

genetic risk factors.

The literature behind the current state of knowledge for ZHX2 in

normal cellular processes, including proliferation, differentiation, and

metabolism homeostasis, was explored by Li et al. The involvement of

ZHX2 in cancer is also reviewed with its potential role as an oncogene

in hepatocellular carcinoma, clear cell renal cell carcinoma and triple-

negative breast cancer increasingly recognised.

Radhakrishan et al. present an in-depth review on the role of

epithelial-mesenchymal transition (EMT) transcription factors of

the ZEB, TWIST and SNAIL families. These transcription factors

are important in haematopoiesis, with roles in haematological

malignancy increasingly recognised. Such oncogenic roles have

become evident with overexpression linked to worse clinical

outcomes in myeloid malignancies, with dysregulation, mutation

and chromosomal aberrations involving these factors also observed

in lymphoid neoplasms. Unlike Hhex, EMT transcription factor

roles in haematopoiesis have been suggested to be broadly distinct

from roles in embryological development.

The review by Roy et al. examines proliferation of B cells and their

germinal centre development, including generation of plasmablasts

and plasma cells is governed by the signalling of NF-kB. They also

detail how NF-kB monomers each serve in specific roles in the

differentiation/formation of plasma cells and germinal centre B cells.

This body of research helps inform a number of B cell-driven diseases,

including lymphoma, immunodeficiency and autoimmunity, as well

as importantly allowing the authors to pose a number of outstanding

questions in field.

The role of the transcription factor KLF2 in B cells, specifically in

terms of development, activation, generation and maintenance of
Frontiers in Immunology 025
plasma cells, is reviewed by Wittner and Schuh. This report explores

the function of KLF2 as both an activator and an inhibitor of various

B cell functions, depending on immunological context, as well as

describing KLF2’s known roles in B cell malignancies such asmultiple

myeloma and splenic marginal zone lymphoma, and diseases such as

IgA deficiencies.

Finally, Zhang et al.‘s review explores the growing literature

around dendritic cell (DC) differentiation. The heterogenicity of

type 2 conventional DCs (cDC2), the origins of plasmacytoid DCs

(pDCs), and emerging knowledge on DC3, the latter of which share

features of both cDC2s and monocyte-derived DCs, is specifically

explored. Insights into the transcription factors governing these cell

types including IRF8, PU.1 and E2–2 and provided. The data

presented in their review suggest that the development of cDCs

and pDCs relies heavily on a balance between several key

transcription factor pairs, notably E2.2/ZEB2 versus ID2/NFIL3

or PU.1 versus BCL11A.

Collectively, these publications shine a light on the crucial roles of

a number of key transcription factors across normal development, as

well as immunological and haematological malignancy. The

publications highlighted in this section strongly validates the need

for discovery research that can yield important new insights and

novel therapeutic approaches in the treatment of diseases of unmet

clinical need.
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ZHX2 in health and disease

Na Li1†, Zhuanchang Wu1† and Chunhong Ma1,2*
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As a transcriptional factor and the negative regulator of alpha fetal protein

(AFP), Zinc fingers and homeoboxes 2 (ZHX2) has a well-established role in

protection against hepatocellular carcinoma (HCC). However, recent studies

have suggested ZHX2 as an oncogene in clear cell renal cell carcinoma

(ccRCC) and triple-negative breast cancer (TNBC). Moreover, mounting

evidence has illustrated a much broader role of ZHX2 in multiple cellular

processes, including cell proliferation, cell differentiation, lipid metabolism,

and immunoregulation. This comprehensive review emphasizes the role of

ZHX2 in health and diseases which have been more recently uncovered.

KEYWORDS

ZHX2, tumor repressor, oncogene, cell differentiation, lipid metabolism, immunoregulation
Introduction

ZHX2, a member of the ZHX (Zinc fingers and homeoboxes) family, is a ubiquitous

transcriptional factor that was first identified as a negative regulator of murine postnatal

alpha fetal protein (AFP) (1). In 1977, Roushlatti and colleagues compared serum AFP in

different mouse strains and found a gene which they called Regulator of Alpha-fetoprotein

(Raf), subsequently renamed Alpha-fetoprotein regulator 1 (Afr1), negatively regulated

the AFP expression in adult mice (1, 2). In 2005, Perincheri et al. further refined and

identified Zhx2 as the homologous gene of Afr1 by positional cloning (3). Human ZHX2

was first cloned by Nagase et al. from a size-fractionated brain cDNA library in 1998 (2).

In 2003, human ZHX2 was then identified as a ZHX1-interacting protein by Kawata et

al. (4).

ZHX2 has been extensively studied in cancer development. ZHX2 suppresses the

transcription of oncofetal genes AFP (1, 3, 5) and glypican 3 (GPC3), and works as a

tumor suppressor gene in HCC (5, 6). Subsequent studies have found that ZHX2 is

widely expressed and participates in many types of cancer. Consistent with findings in

HCC, low ZHX2 expression correlates with poor prognosis of thyroid cancer (7),

multiple myeloma (8–10), and chronic lymphocytic leukemia (11, 12). On the

contrary, ZHX2 promotes the development of ccRCC (13–15), TNBC (16), and gastric

cancer (17, 18). Beyond regulating cancer development, the latest reports have shown

that ZHX2 involves in several other physiological or pathological processes, including cell
frontiersin.org01
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differentiation and development (19–21), lipid metabolism (22–

24), and viral replication (25, 26). Especially, ZHX2 is

abundantly expressed in the thymus and spleen (2) and there

is clear evidence supporting the involvement of ZHX2 in

regulating B cell development (27), NK cell maturation (28),

and macrophage polarization (29–31).

In this review, we outline these new advances in ZHX2

mediated regulation in health and diseases. We also discuss the

multiple mechanisms involved in controlling ZHX2 expression

and transcription.
ZHX2 protein structure and its role
as a transcription factor

The human ZHX2 gene is localized on chromosome 8q24.13

and consists of 4 exons (4). The third exon is the sole coding

exon of ZHX2 which encodes a protein of 837 amino acid

residues (4). Human ZHX2 protein, like the other two family

members ZHX1 and ZHX3, contains two Cys-Xaa2-Cys-Xaa12-

His-Xaa4-His-type zinc finger domains (Znf) and four

homeodomains (HD) (originally thought as five HDs) (4).

Besides, ZHX2 contains a proline-rich region (PRR) at

position 408 to 440 between HD1 and HD2 (4). The

homology of ZHX2 protein in humans and mice is as high as

87%. Kawata et al., in 2003, identified ZHX2 as a ubiquitous

transcription factor. ZHX2 interacts with nuclear transcription

factor Y subunit alpha (NF-YA) and forms homodimers or

heterodimers with ZHX1 or ZHX3 to exert transcriptional

inhibitory function (5). The amino acid sequence between

residues 195 and 358 containing HD1 is required for

homodimerization of ZHX2, and ZHX2 interacts with NF-YA

via the region between 263 and 497 residues (4). Similar to full-

length ZHX2, truncated ZHX2 containing residues 242-446

(ZHX2(242-446)) but not ZHX2(242-439) maintain the

capability to localize in the nuclei and suppress the expression

of Cyclin A/E in HCC (6). The decreased nucleic ZHX2

expression significantly correlates with poor survival of HCC

patients (6). However, how ZHX2 loses its nuclear localization is

completely unknown. More studies are required to define the

exact nuclear localization signal (NLS) and the molecules or

mechanisms regulating the nuclei translocation of ZHX2.

A growing number of genes have been identified as the

ZHX2 targets, most of which are cancer-related. ZHX2 not only

negatively controls the transcription of liver cancer marker genes

AFP and GPC3, but also inhibits cell proliferation-related genes

such as Cdc25 (4), Cyclin A/E (6), and Notch1 (32). In addition,

ZHX2 represses transcription ofmultidrug resistance mutation 1

(MDR1) (33), lipoprotein lipase (LPL) (34), lysine demethylase

2A (KMD2A) (35), and S100 calcium binding protein A14

(S100A14) (7) in HCC and thyroid cancer cells. Although

ZHX2 was orig inal ly reported to be a ubiquitous

transcriptional repressor, recent reports uncover another face
Frontiers in Oncology 02
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of ZHX2 as a transcriptional activator (36, 37). Jiang et al. found

that Zhx2 bindsMup promoters and is required for high levels of

Mup expression in adult mouse liver (36). ZHX2 also binds to

the promoter of phosphatase and tensin homolog (PTEN) and

subsequently promotes the transcription of PTEN (37).

Strikingly, several non-coding RNAs have been elucidated as

the ZHX2 targets, either enhanced or inhibited. ZHX2 represses

transcription of H19 (3, 38, 39), the first imprinted non-coding

transcript to be identified. In glioma cells, ZHX2 binds to the

promoter region of linc00707 and negatively regulates its

expression, leading to glioma cells proliferation, migration and

invasion, and vasculogenic mimicry (VM) formation (40). On

the contrary, ZHX2 increases transcription of miR-24-3p and

linc01431, which targets SREBP1c (24) and PRMT1 (26) in

hepatocytes respectively.

The mechanism by which ZHX2 controls target gene

transcription is not fully understood. ZHX2 was originally

known as an NF-YA interacting protein (4) and therefore

represses transcription of MDR1, Cdc25, and Notch1 by

interacting with NF-YA (4, 6, 32, 33). However, there is no

evidence for the presence of NF-YA binding sites in promoter of

some other ZHX2-targeted genes, such as Cyclin E, or AFP (5, 6).

A global analysis of Zhx2 targets using ChIP-seq in a murine

macrophage cell line shows a significant overlap with two known

apoptosis regulators Jun (41) and Bcl6 (42), which suggest a

strong involvement of Zhx2 in cell apoptosis (30). In ccRCC,

ChIP-seq data indicate that the genome-wide chromatin

occupancy of ZHX2 overlaps with 75% of p65-binding motifs

(13). ZHX2 and RelA/p65 overlapping sites also display a strong

enrichment for H3K4me3 and H3K27ac, indicating that ZHX2

colocalizes with NF-kB to active gene promoters (13). In TNBC,

the integrated ChIP-seq and gene expression profiling show that

ZHX2 and HIF1a co-occupy transcriptional active promoters to

promote gene expression (16). These studies suggest that ZHX2

may mainly serve as a transcriptional cofactor, interacting with

different coactivators/repressors in different physiological

circumstance to control its localization in the genome and

downstream transcriptional activity. In addition, the Znf

domains of ZHX2 process potential DNA-binding activity,

however, whether ZHX2 can bind DNA directly and its

consensus binding motif still need to be investigated.
Control of ZHX2 expression

ZHX2 expression is tightly regulated under different

circumstances. A computational network study indicates

ZHX2 as one of the most regulated transcription factors in

myeloid cells to avoid an avalanche of transcriptional events

(31). In Hodgkin lymphoma (HL), a chromosomal

rearrangement far upstream region of ZHX2 gene results in

the transcriptional silence of ZHX2, and two transcription

factors, homeodomain protein MSX1 and bZIP protein XBP1,
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are identified to directly regulate ZHX2 expression (11).

Furthermore, human ZHX2 is lower expressed in fetal liver,

increased after birth, and silenced in HCC (43–45).

Consequently, multiple mechanisms are revealed to control

ZHX2 expression at different levels (Figure 1):

At the ZHX2 gene transcription level- Lv et al. found that

ZHX2 promoter region is hypermethylated in HCC, suggesting

that the hypermethylation-mediated silencing of ZHX2 is an

epigenetic event involved in HCC (45). In addition, copy

number analysis showed that ZHX2 gene is amplified in

various cancers, including ovarian cancer (~40%) and breast

cancer (~15%). The ZHX2 copy number significantly correlates

with enhanced ZHX2 expression (16). Wu et al. (34) and Zhao

et al. (37)found that Zhx2 expression can be repressed by free

fatty acid in hepatocytes. Constantly, hepatic Zhx2 is reduced in

mice with fatty liver, indicating that ZHX2 could be regulated by
Frontiers in Oncology 03
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the metabolic microenvironment. This is consistent with a

previous computational network study indicating ZHX2 as one

of the most regulated transcription factors in myeloid cells (31).

The detailed mechanisms regulating ZHX2 expression in

different circumstances need to be further studied.

At the post-transcription level- microRNAs (miRNAs) are

short non-coding RNAs that regulate gene expression post-

transcriptionally. They generally bind to the 3’-UTR

(untranslated region) of their target mRNAs and reduce

protein production by destabilizing mRNA or translational

silencing (46, 47). HBV-encoded proteins, particularly a well-

known oncogenic protein HBx, drive the high expression of

miR-155, which binds to seed sites in the 3’-UTR of the ZHX2

mRNA and inhibit its translation (48). Similarly, HBx promotes

CREB-mediated activation of miR-3188 to repress ZHX2

expression, leading to activated Notch signaling in HCC (32).
FIGURE 1

Control of ZHX2 expression. At the gene and transcription level, some transcription factors, hypermethylation of ZHX2 promotor, and cellular
stimuli such as free fatty acid are known to regulate ZHX2 transcription. Concurrently, ZHX2 gene amplification contributes to its enhanced
expression in cancer. At the post-transcription level, miR-155 and miR-3188 upregulated by HBx inhibit ZHX2 mRNA translation, but lncRNA
PART1 promotes ZHX2 mRNA level by altering the miRNA landscape. At the PTMs level, hydroxylated ZHX2 protein is recognized and degraded
by E3 ubiquitin ligase VHL, which is inhibited by USP13-induced deubiquitination, while NRMT1-mediated Na-methylation of ZHX2 promotes its
transcription factor activity. Created using Biorender.com.
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While in TNBC, lncRNA PART1 promotes ZHX2

transcription (49).

At the posttranslational modifications (PTMs) level- Zhang

et al. report that inactivation of the von Hippel-Lindau (VHL)

E3 ubiquitin ligase in ccRCC leads to the accumulation of ZHX2

protein and its nuclear localization. ZHX2 protein hydroxylation

at proline 427, 440, and 464 allows VHL to bind and promote its

protein degradation (13). However, a deubiquitinase USP13

inhibits the ubiquitination of ZHX2 and enhances its stability

(15). A recent study found that the N-terminal methylation

(Na-methylation) of ZHX2 by the methyltransferase NRMT1

regulates its transcription factor activity and its occupancy on

targeted promoters (50). Up to now, whether there are other

PTMs and their roles in ZHX2 trafficking, stability, and

transcriptional activity are less clear.
ZHX2 in cancer-a context-
dependent tumor repressor or
driver?

ZHX2 is initially identified as an AFP repressor and a tumor

repressor in HCC (3, 5). Whereafter, abnormal expression of

ZHX2 is reported in multiple types of tumor (6, 8, 11).

Furthermore, ZHX2 expression is closely related to the

malignancy and poor prognosis of B-cell lymphoma (11, 12),
Frontiers in Oncology 04
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myeloma (8–10), lung cancer (51), and thyroid cancer (7),

suggest ing that ZHX2 plays an important role in

tumorigenesis and cancer development. Interestingly, latest

studies reported that ZHX2 functions as an oncogene in

ccRCC (13, 14) and TNBC (16). Likewise, Jiang et al. reported

that the whole-body knockout of Zhx2 results in reduced liver

tumors in diethylnitrosamine (DEN)-induced HCC mice (52).

Therefore, ZHX2 is abnormally expressed in multiple tumors

and plays different roles, either acting as a tumor suppressor or

oncogene in a context-dependent manner (Figure 2). Here, we

outline the role of ZHX2 in multiple tumors.
ZHX2 as a tumor suppressor in HCC and
other cancers

ZHX2 regulates the posttranscriptional silencing of

oncofetal genes AFP, and GPC3, both of which are expressed

in fetal liver, silenced after birth, and reactivated in HCC (43–

4 5 ) . T h e s e s u g g e s t t h a t ZHX2 c on t r i b u t e s t o

hepatocarcinogenesis as a tumor suppressor. Consistently, our

previous study showed that the nuclear ZHX2 is reduced in

human HCC tissues compared with adjacent nontumor tissues

and nuclear ZHX2 represses HCC cell growth by inhibition of

cell cycle genes (Cyclin A and Cyclin E), demonstrating for the

first time the tumor suppressor activity of ZHX2 in HCC (6). In

accordance, another study detected the hypermethylation of
frontiersin.org
FIGURE 2

The tumor repressor or driver role of ZHX2 in cancer. In HCC, ZHX2 has a context-dependent role. ZHX2 inhibits HCC via multiple mechanisms,
but whole body knockout of Zhx2 reduces DEN-induced liver tumors indicating its complex roles. In HCC, lung cancer, multiple myeloma, HL,
and thyroid cancer, ZHX2 acts as a tumor suppressor and transcriptionally represses AFP, GPC3, Cyclin A/E, LPL, KDM2A, and S100A14
expression via interacting with NF-YA or other unknown partners to restrict cancer progress. However, in ccRCC and TNBC, ZHX2 plays an
oncogenic driver role by interacting with p65 and HIF1a to activate oncogenic signaling. Created using Biorender.com.
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ZHX2 promoter and the silencing of ZHX2 expression in HCC

tissues (45). Subsequent studies further illustrated the critical

role of ZHX2 as a tumor suppressor in HCC with a variety of

etiologies, including NASH-related HCC (34, 37) and HBV-

related HCC (25, 32). However, there is conflicting data on the

role of ZHX2 in HCC. Hu et al. reported increased ZHX2

staining in HCC tissues and higher ZHX2 expression in poorly

differentiated and metastasis samples, indicating that ZHX2

might promote HCC progression (53). Jiang et al. recently

showed that whole body Zhx2 knockout (Zhx2KO) leads to

dramatically reduced liver cancer in DEN-induced HCC

mouse model, indicating the oncogenic role of ZHX2 in DEN-

induced liver tumor model (52). Interestingly, compared with

Zhx2KO mice, DEN induces more tumors in liver-specific Zhx2

knock-out mice (Zhx2Dliv) (52). These data suggest that ZHX2

expression in non-parenchymal cells plays a critical role in liver

carcinogenesis. Therefore, although most studies support the

conclusion that ZHX2 works as a tumor suppressor in HCC, the

exact role of ZHX2 in HCC needs to be further defined and

ZHX2 expression in non-parenchymal cells should be

deeply investigated.

The tumor suppressor role of ZHX2 has also been

demonstrated in many other types of tumors including

hematological tumors and solid tumors. Spectral karyotyping

identified chromosomal rearrangement far upstream region of

ZHX2 gene in Hodgkin lymphoma and this aberration results in

ZHX2 silencing (11, 12). Low ZHX2 is associated with poor

prognosis in chronic lymphocytic leukemia and multiple

myeloma (MM) (8, 54), while higher ZHX2 mRNA correlates

with better overall survival in patients with breast cancer (55) and

thyroid cancer (7). ZHX2 inhibits proliferation and promotes

apoptosis of lung cancer cells by inhibiting the p38-MAPK

signaling pathway (51). Integrative bioinformatics analyses reveal

that a miRNA-related SNP (rs3802266-G), which creates a stronger

binding site for miR-181-a-2-3p in 3’UTR of ZHX2 mRNA and

consequently reduces ZHX2 expression, was significantly associated

with increased risk of pancreatic cancer (56).

ZHX2 not only inhibits tumor growth but also suppresses

tumorigenesis and tumor development through multiple

mechanisms. Cancer stem cells (CSCs) are crit ical

determinants of tumor relapse and therapeutic resistance (57).

ZHX2 counteracts liver cancer stem cell traits by inhibiting

KDM2A-mediated demethylation of H3K36 at the promoter

region of stemness-associated transcription factors, such as

NANOG, SOX2, and OCT4 (35). Furthermore, ZHX2 inhibits

thyroid cancer metastasis (7) and is responsible for reduced

chemotherapy resistance in HCC (33). ZHX2 enhances the

cytotoxicity of anti-cancer drugs in HCC via transcriptional

repression of MDR1 leading to decreased drug efflux (33).

Consistently, a clinical study shows a positive correlation

between high ZHX2 expression and longer survival in MM

patients (8). However, a recent in vitro study shows that
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treatment of proteasome inhibitor bortezomib (BTZ) leads to

enhanced ZHX2 expression which in turn promotes BTZ

resistance in cultured MM cells (58). All these data reveal a

widespread restriction role of ZHX2 in tumor development at

multiple dimensions, including tumor cell proliferation,

metastasis, stemness, and chemotherapeutic resistance.
Oncogenic role of ZHX2 in ccRCC,
TNBC, and other tumors

Despite the apparent tumor repression role of ZHX2 in HCC

and other cancer types, a number of studies have illustrated that

ZHX2 can function as an oncogene. Recently, Zhang et al.

reported in Science that the loss of tumor suppressor gene

VHL in ccRCC leads to the accumulation of ZHX2 protein in

the nuclear, which is correlated with poor survival in patients

(13, 59). Mechanistically, ZHX2 interacts with RelA/p65 and

promotes oncogenic signaling at least partially via activating NF-

kB signaling (13). ChIP-seq and gene expression profiling show

that 75% of p65 binding sites overlap with those of ZHX2 and

their overlapping sites display a strong enrichment of H3K4me3

and H3K27ac (13). In addition, Zhu et al. reported that ZHX2

promotes cell growth and migration through activating MEK/

ERK pathway and mediates Sunitinib resistance by regulating

the autophagy in ccRCC (14). A similar phenomenon is found in

studies of multiple osteosarcoma and gastric cancer (17, 18),

where high expression of ZHX2 shows a significant correlation

with poor survival. Further, a recent study clarified that ZHX2

functions as a cofactor of the HIF1a to promote HIF1a
oncogenic signaling in TNBC (16).

Together, accumulated data demonstrate the critical role of

ZHX2 in cancer, either as a tumor suppressor or as an oncogene.

However, the detailed mechanism underlying the context-

dependent role of ZHX2 in tumors remains largely unknown.

Further investigation is required to define the genetic and

environmental contexts that influence ZHX2 interaction networks

and put genetic interaction networks into different tumors context.
Beyond cancer — other biological
roles for ZHX2

Besides the complicated roles in tumors, recent studies

suggest the involvement of ZHX2 in the regulation of cell

differentiation, HBV replication, lipid homeostasis, and

immune responses (Figure 3). In agreement, ZHX2 has been

reported in the occurrence of chronic hepatitis B (CHB) (32, 48),

metabolism-related diseases (30, 37), nerve-related diseases (19,

60, 61), and immune-related diseases (29) (Figure 3). We will

discuss the role of ZHX2 in different physiological and

pathological processes here.
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ZHX2 in development

The first evidence indicating the involvement of ZHX2 in

development comes from the critical role of Zhx2 in the postnatal

repression of Afp andGpc3 in mice (3). In agreement, the dynamic

expression of hepatic Zhx2 has been found during liver

development and after hepatectomy (21). Zhx2 is low in fetal

liver and increases after birth, while Zhx2 expression is significantly

declined 24 hours after hepatectomy and then reverses to normal

level (21). Therefore, ZHX2 might be a potential therapeutic target

in different liver diseases which cause liver injury.

Several studies have illustrated the participation of ZHX2 in

regulation of cell development of different origins, such as

neurons, blood cells, and bipolar cells. Altered ZHX2 expression

has been detected during erythroid differentiation (62) and B cell

development (27). Concurrently, ZHX2 is responsible for

macrophage polarization (29) and NK cell’s terminal maturation

(28). In the nervous system, ZHX2 interacts with Ephrin-B and

regulates neural progenitor maintenance (19). Genome-wide

analyses identified inherited CNVs (copy number variations)

that affect non-genic intervals upstream ZHX2 in autism

spectrum disorder (ASD) patients (61). Exome sequencing in

subjects with familial corticobasal degeneration (CBD) shows that

mutations in ZHX2 gene may cause its structural changes,
Frontiers in Oncology 06
11
indicating the possible involvement of ZHX2 in corticobasal

degeneration (63). In the process of tooth root development,

ZHX2 knockdown reduces the mineralization of stem cells from

the apical papilla (SCAPs) and promotes SCAPs proliferation

(20). Also, Zhx2 participates in the regulation of bipolar cell subset

fate determination during retinal development (64). Collectively,

accumulating evidence demonstrated that ZHX2 is strongly

involved in the developmental processes of different cells, which

is consistent with the acknowledged ZHX2-mediated

transcription of stemness genes. However, much work is

required to better understand the exact roles and mechanisms

of ZHX2 in organogenesis and tissue repair.
ZHX2 and HBV infection

HBV is one of the well-known risk factors for HCC. According

to theWHO (World Health Organization), almost one-third of the

world’s population has been infected with HBV at some point in

their lives (65, 66). HBV infects more than 250million individuals

worldwide, and almost 1million die annually from complications

of persistent infection, cirrhosis, and HCC (66).

As a liver cancer suppressor, ZHX2 expression is

significantly decreased in tumor tissue from HBV-positive
FIGURE 3

The role of ZHX2 in different physiological and pathological processes. ① Through regulating cell development, ZHX2 is implicated in inhibiting
neuronal differentiation and promoting osteo/odontogenic differentiation of stem cells from SCAPs. ② ZHX2 restricts HBV replication via CBP/p300
and linc01431-mediated epigenetic repression or via inhibiting viral promoter activity in non-epigenetic manners. However, HBx protein reduces ZHX2
expression by upregulating miR-155 and miR-3188 expression. ③ ZHX2 is a critical regulator in lipid hemostasis and plays roles in atherosclerosis,
NASH, and NAFLD-HCC progress. ④ ZHX2 is involved in immune regulation by influencing the development of multiple immune cell subsets.
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HCC patients and liver from HBV transgenic mice (48). Further

studies show that HBV infection, especially the viral protein HBx

reduces ZHX2 expression via upregulation of an oncomiR miR-

155 (48) or CREB-mediated activation of miR-3188 (32), leading

to liver cancer progression. In turn, ZHX2 serves as a novel

restriction factor against HBV replication via regulating HBV

promoter activities and cccDNA modifications. In vitro and in

vivo experiments confirm that ZHX2 significantly inhibits HBc,

HBsAg, and HBeAg expression (25), while overexpression of

ZHX2 eliminates HBx-mediated proliferation of HCC cells (48).

Mechanistically, ZHX2 binds to cccDNA and reduces the

expression of histone regulator genes p300/CBP, leading to

epigenetic repression of cccDNA (25). Alternatively, ZHX2

increases the expression of linc01431, a novel noncoding RNA

for HBV restriction, which competitively binds with PRMT1 to

block HBx-mediated degradation and enhances the occupancy

of PRMT1 on cccDNA, thereby repressing cccDNA

transcription (26). All in all, ZHX2 and HBV are mutually

regulated by each other during HBV infection.
ZHX2 and lipid metabolism

Interestingly, a study in mice using the QTL (quantitative trait

locus) mapping strategy identified Zhx2 as a novel regulator of

plasma levels of lipids, including triglyceride (TG) (23), indicating

a potential role of Zhx2 in lipid metabolism. Compared with other

mouse strains, BALB/cJ mice that harbor Zhx2 defect exhibit

decreased serum lipid levels and resistance to atherosclerosis when

fed a high-fat diet (30). Constantly, altered hepatic transcript levels

of several genes affecting lipid homeostasis, including Lpl, are

detected in BALB/cJ mice (23). Notably, further research shows

that ZHX2 inhibits the uptake of exogenous lipids in hepatocytes

by transcriptional repression of LPL expression, which leads to cell

growth retardation, and suppresses the progression of NAFLD to

HCC (34). Concurrently, it has been found that ZHX2 increases

transcription of miR-24-3p which binds to SREBP1c mRNA to

promote its degradation, thereby inhibiting SREBP1c-mediated

lipid de novo synthesis (24). The involvement of ZHX2 in fatty

liver disease is further confirmed by a recent study showing that

Zhx2 deficiency in hepatocytes exacerbates NASH progression by

transcriptional activation of Pten (37). Collectively, ZHX2 is a

critical regulator of lipid metabolism, while we still need more

studies to fully delineate the downstream network contributing to

ZHX2-mediated lipid regulation.
ZHX2 and immune regulation

ZHX2 is abundantly expressed in thymus and spleen (2), and

increasing studies have shown that ZHX2 affects the development
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and function of different immune cells and participates in the

progression of a variety of immune-related diseases.

ZHX2 is involved in the process of B-cell
differentiation

A study using gene expression profiling describes an

interesting expression pattern of ZHX2 in B lymphoid cells.

Similar to essential transcription factors PAX5 and E2A, ZHX2 is

turned on during the transition from hematopoietic stem cells

(HSCs) into early-B and shows a further increase in pro-B and

later stages (27). Recently, Nagel et al. confirmed that ZHX2 is

significantly upregulated in B cells while ZHX1 is

downregulated. The reduced expression of ZHX2 together

with the activation of ZHX1 may contribute to the deregulated

B-cell differentiation phenotype in HL (67). However, to date,

there were no reports about the role of ZHX2 in B cell

development and functions. Interestingly, a genome-wide

association study reveals rs10108684, the intronic SNP of

ZHX2, as one of the eight top-scoring associations between

SNPs and vaccinia antibody levels in African-Americans,

strongly suggesting the critical involvement of ZHX2 in B cell-

mediated antibody production (68). In summary, ZHX2 shows a

dynamic expression pattern during B cell development but its

function in B cell maturation is completely unknown and

requires further studies.

ZHX2 inhibits NK cell maturation and function
Natural killer (NK) cells are primarily involved in innate

immunity and possess important functional properties in anti-

viral and anti-tumor responses (69–71). NK cells are derived

from hematopoietic stem cells (HSC) via a series of

developmental stages, including common lymphoid progenitor

(CLP), NK cell precursors (NKP), immature NK cells and

mature NK cells (72, 73) Multiple internal pathways and

external factors contribute to the development of NK cells

from HSCs (73). Tan et al. recently showed that ZHX2

significantly restricts the terminal maturation and effector

functions of NK cells both in vivo and in vitro (28).

Mechanistically, ZHX2 controls NK cell maturation and

function via two related pathways. ZHX2 down-regulates the

responsiveness of NK cells to IL-15, the cytokine crucial for NK

cell development and survival (74). On the other hand, ZHX2

controls the transcription of Zeb2, a transcription factor

identified as a major driver of CD27low NK cell maturation

(75, 76). It has been reported that Zeb2 directly or indirectly

modulates IL-15-mediated survival and development of NK cells

(77, 78). Zeb2 might be associated with ZHX2-mediated

regulation of IL-15 signaling (77, 78). Accumulation of

immature NK cells has been reported in different tumors (79).

The contribution of ZHX2 in the dysregulation of tumor-

infiltrating NK cells strengthens ZHX2 as an immune
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checkpoint regulating NK cells. Targeting ZHX2 has great

potential in NK cell-based cancer immunotherapy.
ZHX2 is a critical regulator of macrophages
Macrophages are a key subset of phagocytic cells that readily

engulf and degrade dying/dead cells as well as invading bacteria

and viruses (80). Macrophages are distributed widely in the body

tissues and play a vital role in development, tissue homeostasis

and repair, and immunity (81). Macrophages are highly plastic

cells that usually present different polarization states in response

to local milieu stimuli (82, 83). Recently, a computational

network study indicates ZHX2 as one of the most regulated

transcription factors in myeloid cells to avoid an avalanche

transcription event (31) Our previous study showed that Zhx2

is an important transcription factor that regulates macrophage

polarization via reprogramming macrophage glucose

metabolism (29). Zhx2 deletion in macrophages significantly

attenuates systemic inflammation in mice, prolongs mice

survival , attenuates pulmonary injury and reduces

proinflammatory cytokines in septic mice (29). Specifically,

loss of Zhx2 confers macrophage tolerance to LPS-induced

sepsis, accompanied by reduced levels of pro-inflammatory

cytokines and lactate release (29). Mechanistically, Zhx2

enhances the production of proinflammatory cytokines in

macrophages by promoting glycolysis in a Pfkfb3-dependent

manner (29). Accordingly, BALB/cJ strain mice are less likely to

develop atherosclerosis, and this resistance to atherosclerosis can

be repeated in BALB/c mice by the transfer of bone marrow-

derived macrophages from BALB/cJ mice (30). That is, ZHX2

promotes macrophage survival and proinflammatory functions

in atherosclerotic lesions (30). In addition, tumor-associated

macrophages (TAMs) are critical modulators of the tumor

microenvironment (84). The important role of ZHX2-

mediated pro-inflammatory polarization of macrophages

suggests that targeting ZHX2 to modulate TAM may be a

promising strategy for anti-tumor immunotherapy.
Conclusions and perspectives

As a transcription factor, ZHX2 transcriptionally regulates the

expression of a series of genes that participate in cell proliferation,

differentiation, and metabolism homeostasis. Accordingly, ZHX2

has a broader role in regulating multiple physiological and

pathological processes, including cell development, immune

regulation, cancer development, and metabolism-related

diseases. Significantly, ZHX2 exerts its roles in a context-

dependent manner. The exact mechanisms controlling the

switch of ZHX2 function in health and diseases are still not

clear. Nevertheless, it remains uncertain whether ZHX2 interacts
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with DNA directly or indirectly via other transcription factors to

exert its transcriptional regulation role. Future research needs to

be focused on ZHX2 structure, protein interactome, and high

throughput screening to clarify its transcriptional regulation and

identify new targeted genes. Equally important, the mechanisms

that regulate ZHX2 expression are still uncertain. Accumulated

studies have suggested that different stimuli regulate ZHX2

expression at different levels including transcription, post-

transcription, and posttranslational modification levels.

However, the mechanisms are not yet precisely understood.

Moreover, in addition to hydroxylation, ubiquitination, and

Na-methylation, other PTMs that determine the biological

function and nucleocytoplasmic shuttling of ZHX2 under

different circumstances need to be further explored.
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An arrayed CRISPR screen of
primary B cells reveals the
essential elements of the
antibody secretion pathway

Stephanie Trezise1,2,3, Isabella Y. Kong1,2,4, Edwin D. Hawkins1,2,
Marco J. Herold1,2, Simon N. Willis1,2 and Stephen L. Nutt1,2*

1Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia, 2Department of Medical
Biology, The University of Melbourne, Parkville, VIC, Australia, 3Center for Immunology and
Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Harvard University,
Boston, MA, United States, 4Department of Pediatrics, Division of Pediatric Hematology/Oncology, Weill
Cornell Medicine, New York, NY, United States
Background: Humoral immunity depends on the differentiation of B cells into

antibody secreting cells (ASCs). Excess or inappropriate ASC differentiation can

lead to antibody-mediated autoimmune diseases, while impaired differentiation

results in immunodeficiency.

Methods: We have used CRISPR/Cas9 technology in primary B cells to screen for

regulators of terminal differentiation and antibody production.

Results: We identified several new positive (Sec61a1, Hspa5) and negative

(Arhgef18, Pold1, Pax5, Ets1) regulators that impacted on the differentiation

process. Other genes limited the proliferative capacity of activated B cells

(Sumo2, Vcp, Selk). The largest number of genes identified in this screen (35)

were required for antibody secretion. These included genes involved in

endoplasmic reticulum-associated degradation and the unfolded protein

response, as well as post-translational protein modifications.

Discussion: The genes identified in this study represent weak links in the antibody-

secretion pathway that are potential drug targets for antibody-mediated diseases,

as well as candidates for genes whose mutation results in primary immune

deficiency.

KEYWORDS

plasma cell, immunodeficiency, humoral immunity, in vitro differentiation, endoplasmic
reticulum, unfolded protein response, ER associated degradation (ERAD)
Abbreviations: ASC, antibody secreting cell; CRISPR, clustered regularly interspaced short palindromic repeats;

CTY, cell trace yellow; ER, endoplasmic reticulum; ERAD, ER associated degradation; FoB, Follicular B cell;

UPR, unfolded protein response.
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Highlights
Fron
• Study revealed key dependencies in B-cell terminal

differentiation and antibody secretion.

• These genes are potential therapeutic targets for treating

antibody-mediated diseases and candidate causative genes

for primary antibody deficiencies.
Introduction

The differentiation of mature B cells into antibody secreting cells

(ASCs) is an essential component of the adaptive immune response.

The ASC compartment is comprised of short-lived proliferating

plasmablasts and long-lived, generally post-mitotic, plasma cells. The

antibodies produced by these cells are important for the elimination of

pathogens and the persistent secretion of these antibodies after

pathogen clearance provides long-term protection against re-

infection. Conversely, the inability to efficiently produce antibodies

results in immune deficiency. Despite the crucial roles that ASCs play in

immune health, we still lack a complete understanding of the factors

that regulate their differentiation and antibody secretion.

While many factors have been implicated in driving this terminal

differentiation process, most of the focus to date has been on the

transcription factors Irf4, Blimp-1 (encoded by Prdm1) and Xbp1 (1).

Irf4 is essential for the initial stages of the ASC differentiation process,

in part due to its role in driving expression of Prdm1/Blimp-1 (2–5).

Blimp-1, while not required for the initiation of the differentiation

process, is essential for the formation of ASCs, as it silences the

expression of the genes responsible for maintaining B cell identity

including Pax5 (6–9). In ASCs, Blimp-1 maintains the expression of

genes involved in antibody secretion, either through direct activation

or through the recruitment of chromatin modifying complexes

(9, 10).

ASCs are a highly specialized cell type, devoting approximately

70% of their transcriptome to the synthesis of the Igh and Igl chains

(11). This unique transcriptional program is accompanied by a

reorganization of the cellular cytoplasm to allow for the formation

of parallel arrays of rough endoplasmic reticulum (ER) that is

necessary to facilitate massive antibody secretion. The high rates of

antibody synthesis make ASCs extremely sensitive to ER stress and,

consequently, they are particularly dependent on ER stress responses

such as the ER-associated degradation (ERAD) pathway and the

unfolded protein response (UPR) (12). Xbp1 is a key regulator of the

UPR that drives increases in cell size and ER content and promotes

expression of genes involved in ER homeostasis and secretory protein

production (7, 9). Xbp1 is not required for the differentiation or

survival of ASCs, however, the UPR activity and secretory capacity of

Xbp1-deficient ASCs is greatly diminished (9, 13, 14). It is highly

likely that there are additional, as yet unknown, genes which are also

essential for the generation and function of ASCs.

We have previously performed a comprehensive transcriptional

analysis of the terminal differentiation process from naïve B cell

through to long-lived bone marrow plasma cells (11). This study

revealed that despite differences in anatomical location, lifespan and
tiers in Immunology 0217
proliferation status, ASCs share a core transcriptional signature. In

addition to known regulators of ASC biology, Prdm1, Irf4 and Xbp1,

this ASC gene signature contained many genes whose functions have

not been previously characterized or have not been examined in the

context of ASCs. To interrogate the function of these genes, we have

developed a CRISPR-Cas9 mediated arrayed targeted screen in

primary mouse B cells, with the ability to measure multiple

parameters in parallel, including antibody secretion. We have used

this system to identify genes positively and negatively influencing the

differentiation, proliferation, survival and secretion capacity of ASCs.

Several of the genes identified in these screens as being required for

ASC differentiation or antibody secretion have been implicated in

primary antibody deficiencies. In most primary antibody deficiency

patients, the genetic cause remains undetermined, therefore, the

additional hits from these screens represent excellent candidates for

the genes that underpin these diseases. Conversely, the genes

identified as negative regulators of differentiation may play roles in

preventing antibody-mediated autoimmune diseases or allergy.
Results

An arrayed targeted CRISPR screen for
primary murine B cells

We sought to establish a CRISPR-Cas9 based screening system,

which would allow the identification of genes that are essential for the

generation, survival and/or antibody-secreting capacity of ASCs.

While conventional pooled CRISPR-Cas9 screens can detect genes

required for differentiation and survival, they are not able to assess

defects in antibody secretion (15, 16). We optimized a 96-well

transfection and primary B cell transduction protocol that

consistently results in transduction rates above 80% (Supplementary

Figures 1A, B). To test this system, cells were transduced with sgRNAs

targeting Sdc1, which encodes CD138, a surface marker that serves as

a proxy for ASC differentiation. Naïve splenic B cells were isolated

from Cas9 transgenic mice and stimulated for 24 hours with LPS

before lentiviral transduction with sgRNAs. Following transduction,

the cells were returned to culture under LPS stimulation for a further

three days before analysis (Figure 1A). At three days post-

transduction, there were few detectable CD138+ cells within the

sgRNA transduced populations (Supplementary Figure 1C). To

ensure that this system could block the differentiation of B cells, we

measured the effect of targeting Prdm1, an essential driver of the

differentiation process (8), and Plpp5, an ASC signature gene that

does not influence differentiation (17). At three days post-

transduction, cells transduced with sgRNAs targeting Prdm1

showed an 80-90% decrease in the proportion of differentiated cells

(Supplementary Figure 1D). In contrast, cells transduced with

sgRNAs targeting Plpp5 did not display any difference in the

proportion of CD138+ cells compared to controls (Supplementary

Figure 1D). To examine the antibody-secreting capacity of the

transduced cells, the concentration of IgM in the culture

supernatant was measured by ELISA. Cells transduced with

sgRNAs targeting Prdm1 showed a 95% reduction in IgM secretion

relative to the control, while Plpp5 targeting sgRNAs did not impact

on antibody secretion rates (Supplementary Figure 1E). From these
frontiersin.org
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data, we conclude that, despite the short timeframe of the assay, this

system is suitable for identifying genes that are essential for B cell

differentiation and antibody secretion.
Identification of positive regulators of
ASC differentiation

We used this system to interrogate the ASC gene signature to

identify novel regulators of ASC differentiation in vitro. Of the 301

originally defined ASC signature genes, we screened sgRNAs

corresponding to 258 protein-coding genes (Table S1). Naïve

splenic B cells were transduced with an arrayed lentiviral library

containing two sgRNAs against each gene such that each well received

a single sgRNA and were cultured as above (Figure 1A). The impact of

each sgRNA on differentiation was determined by examining the

proportion of transduced (BFP+) cells that expressed CD138. The cut-

off for genes of interest was arbitrarily set to sgRNAs that reduced the

proportion of CD138+ cells by 50% relative to the untransduced

controls for each plate (Figure 1B). In agreement with Supplementary

Figures 1C, D, sgRNAs targeting Prdm1 or Sdc1 resulted in a decrease

in CD138+ cells. We also observed a reduction in differentiated cells

following transduction with sgRNAs targeting Irf4, Hspa5, and

Sec61a1. There was strong agreement between the effect of sgRNA

pairs directed against the same gene, and a consistent effect of

targeting the same gene across replicate screens (Supplementary

Figure 2A). These results demonstrate that most genes within the

ASC signature are not required for differentiation to CD138+ ASCs, at

least in the context of this in vitro assay.

The single timepoint examined in the screen assay does not

provide any information as to how these genes are influencing the

kinetics of the differentiation process. To investigate this, we repeated
Frontiers in Immunology 0318
the assay, focusing on the genes of interest and including multiple

timepoints (Figure 1C). As expected, targeting Plpp5 did not have any

effect on the frequency of differentiated cells at any examined

timepoint, while targeting Irf4 or Prdm1 resulted in a significant

reduction in differentiated cells at all examined timepoints. Similarly,

Hspa5 targeting resulted in a significantly decreased frequency of

CD138+ cells at all timepoints. Hspa5, encodes Grp78 or BiP, a major

regulator of the UPR, which binds to ER stress sensors, keeping them

in an inactive state (18). It is likely that the Hspa5 targeted cells have

unrestrained activation of their UPR, resulting in cell death, and that

the cells undergoing differentiation and upregulating antibody

production would be the most sensitive to this stress. Sec61a1

encodes the largest subunit of the Sec61 complex, which controls

the co-translational or post-translational transport of polypeptides

into the ER lumen and peptide insertion into the ER membrane (19,

20). Sec61a1 targeted cells initially showed similar rates of

differentiation to untransduced cells, however, at later timepoints

there was a significant decrease in the frequency of differentiated cells.

It is of interest that the ASC signature examined in this screen

contains 36 other genes that are considered components of the

UPR that did not impact on ASC differentiation rates.
Negative regulators of ASC differentiation

We hypothesized that this screening assay, with minor

modifications, would also be suitable to identify negative regulators

of the B-cell differentiation process (Figure 2A). In contrast to the

screen for positive regulators, the cells were cultured in LPS + IL-4 as

this condition induces a relatively weak differentiation response and,

therefore, enhanced differentiation rates should be more apparent.

We also introduced the sgRNAs into unstimulated B cells, to allow the
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FIGURE 1

Identification of genes essential for LPS driven B cell differentiation in vitro. (A) Workflow of targeted CRISPR screen. Naïve splenic B cells were isolated
from Cas9 expressing transgenic mice, activated with LPS and transduced with an arrayed lentiviral library that co-expressed specific sgRNAs and BFP.
Three days after transduction, cells were analyzed by flow cytometry and culture supernatant by ELISA. (B) Average fold changes in the proportion of
transduced cells (BFP+) that express CD138 for each targeted gene relative to the untransduced control. Genes with a fold change ≤0.5 are labelled and
highlighted in red. Data points represent the mean of 2 independent sgRNAs from 2 replicate experiments. (C) Proportion of CD138+ cells among cells
transduced with sgRNAs (BFP+) targeting Hspa5, Irf4, Prdm1, Sec61a1 or the Plpp5 control at the indicated time post-activation with LPS. Data points
represent the mean of triplicate wells and error bars indicate the S.E.M. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Data in (C) is representative
of 3 independent experiments.
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targeting of these genes early in the differentiation process. To validate

this approach, B cells were transduced with sgRNAs directed against

Bach2, as Bach2-/- B cells display enhanced differentiation (21) and

BACH2 variants are associated with many autoimmune and allergic

diseases (22). The transduction rate of unstimulated B cells, although

reduced compared to that of activated B cells, was sufficient for the

development of a robust assay (Supplementary Figure 3A). At 4 days

post-transduction, Bach2 sgRNA transduced cells displayed a 4-fold

increase in the rate of differentiation compared to the untransduced

controls (Supplementary Figure 3B).

To identify potential negative regulators of ASC differentiation,

we reanalyzed the RNAseq data that was used to generate the ASC

gene signature and focused on genes that had a 3-fold higher

expression in follicular B cell (FoB) samples compared to all ASC

subsets (≤0.05 false discovery rate (FDR), ≥32 fragment per kilobase

million reads (FPKM) in FoB samples) (11). This strategy generated a

candidate list of 155 genes that are downregulated during

differentiation that included many canonical B cell genes including,

Cd19, Cd22, Ms4a1 (Cd20), Bcl6, Pax5 and Ebf1 (Supplementary

Figure 3C and Table S2). An arrayed lentiviral library was generated

that contained two sgRNAs targeting each gene within this gene list.

In agreement with the validation experiments, targeting Bach2

resulted in an increased proportion of CD138+ cells (Figure 2B).
Frontiers in Immunology 0419
The other sgRNAs that resulted in a large increase in differentiation

were directed against Ets1, Pax5 and Pold1. We also observed a more

modest effect in targeting AB124611, Arhgef18 (or A430078G23Rik

which is the same gene as Arhgef18), Fam43a, Ripk3, Rnf130 and

Rsp6ka5. There was an additional gene, Eef1a1, which encodes a

translation elongation factor, that resulted in a decrease in the

proportion of CD138+ cells.

To analyze the kinetics of differentiation in the targeted cells we

performed a time course in cultures supplemented with LPS

(Figure 2C) or LPS + IL-4 (Supplementary Figure 3D). Cells

transduced with sgRNAs targeting AB124611 or Arhgef18 displayed

a slight increase in differentiation in both conditions at all timepoints.

All other genes resulted in a significant increase in differentiation at

multiple timepoints, with the transcription factors Bach2, Ets1, Pax5

and the DNA polymerase Pold1 targeted cultures having the most

pronounced impact. Pold1 is involved in lagging strand synthesis

during DNA replication and G1 to S-phase transition (23, 24) Indeed,

we observed that Pold1 targeted cells display delayed proliferation

kinetics (Figure 2D) that may be indirectly driving increased rates of

differentiation by slowing cell cycle progression (25, 26). The

pathways through which AB124611 (unknown function), Arhgef18/

A430078G23Rik (guanine nucleotide exchange factor), Fam43a

(unknown function), Ripk3 (necroptosis pathway), Rnf130 (E3
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Identification of genes that repress ASC differentiation in vitro. (A) Overview of experimental workflow for targeted arrayed CRISPR/Cas9 screen. Naïve
splenic B cells were isolated from Cas9 expressing transgenic mice and transduced with an arrayed lentiviral sgRNA library. Following transduction, cells
were cultured in LPS + IL-4 for 4 days before analysis by flow cytometry. (B) Each data point represents the average fold change in the proportion of
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a fold change of ≤0.5 or ≥2 are labelled and highlighted in red. Data points represent the mean of 2 independent sgRNAs from 2 replicate experiments.
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ubiquitin ligase) and Rps6ka5 (S6 kinase family) limit ASC

differentiation is unclear and requires further investigation.
Identification of B cell proliferation and
survival regulators

To investigate potential regulators of B cell proliferation or

survival, we reanalyzed the data from the positive regulator screen,

this time examining the total live cell number (Figure 3A). 10 genes

which influenced B cell survival and/or proliferation were identified

(Cdv3, Hspa5, Irf4, Rpl10, Rpl15, Rpl23a, Rps6, Sec61a1, Sumo2, Vcp).

Comparison with the differentiation results demonstrated that some

of these genes (Irf4,Hspa5 and Sec61a1) affected both cell number and

differentiation, while the other genes identified only influenced cell

number (Supplementary Figure 2B). Irf4 has been linked to cell

division in activated B cells as it directly induces the expression of

genes involved in proliferation, including Myc (27, 28). Sumo2 has

previously been implicated in proliferation and cell survival as

Sumo2-deficient mouse embryonic fibroblasts have decreased cell

cycling and an increased cell death compared to WT cells (29). All the

genes within the ASC gene signature that encode ribosomal proteins
Frontiers in Immunology 0520
(Rpl10, Rpl15, Rpl23a, Rps6) were identified as having a strong effect

on cell number. As efficient protein translation is essential for cell

division and survival, it is unsurprising that targeting these genes

would have a dramatic effect on cell numbers. As discussed

previously, Hspa5/Grp78 is a major regulator of ER homeostasis

and a reduction in Grp78 concentration can result in cell death (18).

Vcp and Selk, a gene that was just above our fold change cut-off, both

encode components of the ERAD pathway, which is responsible for

detecting misfolded proteins and targeting them for proteasomal

degradation before they can accumulate and trigger the terminal

UPR (30–33). Curiously, there are additional genes within the ASC

gene signature (Derl1, Derl3, Edem3, Herpud1, Hsp90b1, Os9, Sel1l)

that encode components of the ERAD pathway which, when

inactivated, did not have a clear impact on the total live cell

number. This may reflect a redundant role between family

members within this pathway.

By measuring cell number, we could not dissect the effects of

genes that affected cell survival and genes that affected proliferation.

Therefore, to interrogate these processes, Cas9 expressing B cells were

labelled with the division tracking dye Cell Trace Yellow (CTY),

activated for 24 hours with LPS, transduced with sgRNAs targeting

the genes of interest and CTY dilution was assessed at multiple
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Genes affecting total live cell number. (A) Experimental workflow is described in Figure 1A. Average fold changes in the total number of live cells for each
targeted gene relative to the untransduced control. Genes with a fold change of ≤0.5 are labelled and highlighted in red. Data points represent the mean
of 2 independent sgRNAs from 2 replicate experiments. (B) Naïve B cells from Cas9 transgenic mice were labelled with the division tracking dye CTY,
activated with LPS and transduced with sgRNAs targeting Irf4, Prdm1, Cdv3, Sumo2, Sec61a1, Hspa5, Selk, Vcp or the Plpp5 control. At the indicated
timepoints, the dilution of CTY was assessed by flow cytometry. Data points represent the mean proportion of cells in each division from triplicate wells.
Error bars indicate the S.E.M. Representative of 3 independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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timepoints post-transduction. The genes encoding ribosomal proteins

are essential for many basic cellular processes and were therefore

excluded from further investigation. B cell division and differentiation

are linked processes, with the probability of differentiation increasing

with each division, therefore genes that were identified as regulators of

differentiation were included even if they did not meet the reduction

in cell number threshold (34, 35). We also included Plpp5, which does

not influence B cell number, as an additional control. The CTY

dilution profiles of cells transduced with sgRNAs targeting Prdm1 and

Plpp5 overlapped with the untransduced controls, indicating that

these genes do not influence B cell proliferation (Figure 3B). It has

previously been demonstrated that Irf4-deficient B cells have a

reduced proliferative capacity in response to LPS compared to WT

B cells (27, 36). This proliferative defect was confirmed by our data

and was most notable at later timepoints where cells transduced with

Irf4 targeting sgRNAs had stalled in their proliferation (Figure 3B).

Targeting Cdv3, Hspa5, Sumo2 or Vcp caused a dramatic reduction in
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proliferation capacity while targeting Selk or Sec61a1 resulted in a less

severe alteration in cell division. Clearly, there are many direct and

indirect approaches to target B cell proliferation and thus impact on

ASC differentiation and function.
Identification of antibody
secretion regulators

An advantage of performing these screens in an arrayed format is

that it allows for the identification of genes that regulate antibody

secretion, the predominant function of ASCs. We assayed antibody

production by measuring the concentrated of secreted IgM in the

culture supernatants using ELISAs. To account for variation in cell

numbers between cultures, results were normalized to IgM secretion

per cell. Within the ASC gene signature, there were 35 genes that

influenced antibody secretion (Figure 4A). The reduction in IgM
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Genes essential for antibody secretion. (A) Experimental workflow is described in Figure 1A. The concentration of IgM in the culture supernatant was
measure by ELISA and normalized to the live cell number. Data are presented as average fold change in IgM per cell for each targeted gene relative to
the untransduced control. Genes with a fold change of ≤0.5 are labelled and highlighted in red. Data points represent the mean of 2 independent
sgRNAs from 2 replicate experiments. (B, C) Naïve B cells from Cas9 transgenic mice were activated with LPS, transduced with sgRNAs targeting Xbp1,
Ell2, Bckdk, Cacna1h, Ddost, Fndc3a, Tvp23b, or the Plpp5 control, and cultured for a further 3 days before analysis. Mean fluorescence intensity (MFI) of
IgM on the (B) plasma membrane or (C) total cellular IgM. (D, E) At 2 days post-transduction, transduced and untransduced cells were sorted and re-
cultured overnight before transfer to ELISpot plates. (D) Average spot size formed and (E) representative wells are shown. Error bars indicate S.E.M. and
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secretion after targeting Irf4, Prdm1 and Sec61a1 is reflective of the

block in differentiation, whereas the remaining 32 genes are potential

specific regulators of the antibody-secretion process (Supplementary

Figures 2C, D). Genes whose disruption specifically impaired

antibody secretion can be segregated into several groups; genes

known to be required for antibody secretion (Xbp1, Ell2), genes

involved in protein folding and ERAD (Calr, Dnajb11, Edem1,

Erlec1, Srprb), genes involved in post-translational modifications

(Ddost, Dhdds, Dpagt1, Fut1, Uba5), and genes with an unknown

function or whose function is not obviously linked with antibody

secretion (Bckdk, Bet1, Cacna1h, Dnajc3, Enpp1, Fcer1g, Fkbp2,

Fkbp11, Fndc3a, Fos, Isg20, Qpctl, Tmem66, Tns3, Trabd, Tvp23b,

Yars, Zfyve21).

There are multiple stages in the secretion process that these genes

may be either directly or indirectly regulating and several of these

genes (Bckdk, Cacna1h, Ddost, Ell2, Fndc3a, Tvp23b) were selected for

validation and a more in-depth investigation of their role in antibody

secretion. Xbp1 and Plpp5 were included as additional controls. To

determine whether these genes were influencing the transcriptional

switch from producing the membrane bound form of

immunoglobulin produced by B cells to the secretory form

expressed in ASCs, we examined the amount of membrane bound

IgM present on the plasma membrane of transduced CD138+ cells

(Figure 4B). Cells transduced with sgRNAs targeting Ell2 displayed an

increase in membrane bound IgM, which is in line with the known

role of Ell2 in promoting the usage of the distal Igh polyadenylation

site to drive the production of secretory transcripts (37). No other

sgRNAs affected the levels of membrane bound IgM, suggesting that

these genes regulate processes further along the antibody-secretion

pathway. Decreased antibody secretion may also be due to a reduction

in the production of IgM protein, therefore, the total IgM production

capacity of the CD138+ cells was determined by sequential membrane

bound and intracellular labelling of IgM with the same antibody

(Figure 4C). As expected, Xbp1 targeted cells had decreased levels of

IgM as Xbp1-deficient ASCs are known to have a reduced capacity to

upregulate immunoglobulin production (13, 14). No other targeted

genes resulted in decreased total IgM levels, suggesting that they do

not regulate the protein production capacity of ASCs per se. The

proportion of IgM+ cells was consistently greater than 90% for all

sgRNAs, demonstrating that the reduction in IgM secretion was not

due to increased frequencies of isotype switched cells (data not

shown). To examine the rate of secretion per cell, naive should

have special character for i B cells were stimulated with LPS for 24

hours then transduced with sgRNAs. At 2 days post-transduction,

BFP+ cells were sorted and returned to culture to recover for 24 hours

before transfer to ELIspot plates. The average spot size was reduced

for all genes and was comparable to that observed for undifferentiated

(CD138-) B cells (Figure 4D, E). Thus, all sgRNAs examined appear to

reduce antibody secretion downstream of protein synthesis.
Discussion

The generation, survival and function of ASCs is critical for an

effective adaptive immune response and underpins the protective

immunity elicited by all current vaccinations. Previous work has

identified a core group of expressed genes that are shared between all
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ASC subsets (11) and interrogating this signature provided us with

the opportunity to identify novel regulators of ASC biology. We

developed an arrayed CRISPR/Cas9-mediated screening system

which allowed for the identification of factors essential for the

differentiation, survival, proliferation and antibody secretion

capacity of primary B cells at a very high resolution.

The ASC gene signature consists of genes encoding proteins of

diverse functional categories including gene expression and

translat ion, UPR, protein transport , post-translational

modifications, metabolism, receptors and signaling pathways (11,

12). In light of this it was surprising that only five genes within the

ASC gene signature were essential for the differentiation to CD138+

ASCs to occur in vitro, including Sdc1, the gene that encodes CD138,

Irf4, Prdm1, Sec61a1 and Hspa5. Irf4 and Prdm1 are well known

regulators of ASC formation and function (8, 9, 38). Sec61a1 and

Hspa5, encode proteins important in protein translocation into the

ER and ensuring correct protein folding. Sec61a1 has been implicated

in the differentiation and survival of human ASCs as SEC61A1

haploinsufficiency causes decreased rates of differentiation in vitro

and decreased plasmablast populations in vivo (39). This study

identified two families with SEC61A1 mutations, one with a

nonsense mutation resulting in haploinsufficiency (p.E381*) and the

other with a point mutation (V85D). Interestingly, neither of these

mutations resulted in changes in peripheral B cell populations,

however, plasmablast populations were reduced. Furthermore, the

mutation of SEC61A1 in multiple myeloma cell lines results in UPR

activation and cell death (40, 41). This suggests that the absence of

differentiation observed in Sec61a1 targeted mouse B cells is likely due

to increased cell death during the differentiation process as cells try to

increase their rates of antibody synthesis. Hspa5 encoded Grp78 is a

key regulator of the UPR due to its function as an ER chaperone

protein (18). Grp78 binds to unfolded or misfolded proteins in the ER

lumen to facilitate correct protein binding, however, it also binds to

the ER stress sensors, IRE1a, PERK and ATF6, keeping them in an

inactive state. In the absence of Grp78, the ER stress sensors activate

downstream processes including the UPR, and if left unrestrained will

induce cell death. It is likely that this terminal UPR activation is

occurring in the Hspa5 targeted cells resulting in the decrease in

differentiation, survival and proliferation observed in this study.

By altering the parameters of our genetic screen, we were also able

to identify 10 genes that act as negative regulators of ASC

differentiation. This list included four regulators of gene expression,

Bach2, Pax5, Ets1 and Pold1. Bach2 is known to represses the

expression of Prdm1 (21, 42) and Bach2-/- B cells display increased

rates of differentiation, as was also evident in our screen results. Pax5

is a master regulator of B cell identity, and its inactivation in mature B

cells results in cells reverting to an earlier progenitor stage (43).

Although downregulation of Pax5 expression is one of the earliest

stages of the ASC differentiation process (6), and Pax5 represses many

ASC genes (44, 45), this process is not essential as differentiation

proceeds if Pax5 cannot be downregulated (46). Furthermore, others

have reported that RNAi knockdown of Pax5 expression in activated

B cells did not alter the rate of differentiation (47). In contrast, we

observed increased rates of differentiation in the targeted cells,

suggesting that Pax5 downregulation, while not essential, may still

be a limiting step in normal ASC differentiation. This discrepancy is

potentially due to a more complete loss of Pax5 following CRISPR
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editing while the residual levels of Pax5 following RNAi may be

sufficient for the differentiation process to occur normally. Ets1 has

been shown to negatively regulate ASC differentiation specifically

induced by the TLR9 ligand CpG (48, 49), however our data suggests

a broader function for Ets1 in controlling the rate of ASC

differentiation. Interestingly, Ets1 is proposed to act by maintaining

Pax5 expression and post-translationally inhibiting Blimp-1 (49). In

keeping with this gatekeeper function, variants in ETS1 has been

linked to several autoimmune conditions including systemic lupus

erythematosus (50) and multiple sclerosis (51). Interestingly,

targeting Pold1 caused an increase in differentiation to a similar

extent as these key transcription factors. Pold1 encodes the catalytic

subunit of the DNA polymerase delta (PolD) complex, which is

involved in the synthesis of the lagging strand during DNA

replication and in several DNA damage repair pathways (23), and

its mutation in humans results in immunodeficiency (52). We found

that Pold1 loss resulted in a slowed cell cycle in activated B cells. This

coupled with prior reports showing B cells that spend a prolonged

time in G1 display dramatically increased rates of differentiation (25,

26) suggest that Pold loss indirectly increased to rate of ASC

differentiation by slowing the cell cycle.

Many of the genes identified in this screen as being essential for

antibody secretion encode components of the ER protein processing

pathway. This pathway involves a multitude of processes (targeting to

the ER, polypeptide import, folding, N-linked glycosylation,

recognition of misfolded proteins, and targeting of misfolded

proteins for degradation) (18) and hits from this screen have been

implicated in almost every stage of this pathway (Figure 4F) Srprb

encodes a component of the signal recognition complex, which is

controls the co-translational targeting of polypeptides to the ER (53).

Calr and Dnajb11 are involved in maintaining ER homeostasis

through their roles as chaperones to promote correct protein

folding (54, 55). Edem1 and Erlec1 are components of the ERAD

pathway (56, 57). Ddost, Dhdds, Dpagt1 and Fut1 are all involved in

post-translational modification, with Ddost, Dhdds and Dpagt1 being

required for the synthesis and attachment of N-linked glycosylations

and Fut1 being a factor regulating protein fucosylation (58–61).

Correct protein glycosylation is essential for facilitating correct

protein folding, preventing protein degradation by the ERAD

pathway, trafficking from the ER to the golgi, movement through

the golgi and transport to the plasma membrane (62). All of these

processes are required for antibody secretion, therefore, targeting

genes regulating the addition of glycans is likely affecting at least one

of these processes.

Several recent studies have also used a CRISPR-Cas9 screening

approach to identify regulators of ASC differentiation (15, 63, 64).

Although each group used independently curated gene lists for their

boutique sgRNA library, making a direct comparison of the results

difficult, a relatively small number of common genes essential for ASC

differentiation were identified in each study (Prdm1, Irf4 and Hspa5).

It is also noteworthy that the prior studies identified glycosylation

machinery and components of the ERAD and UPR pathways as being

essential for ASC differentiation and/or survival (63, 64), while, with

the exception of Hspa5 and Sec61a1, we observed that targeting these

pathways specifically disrupted antibody secretion. A potential

explanation for this discrepancy is that these previous screens all

used the induced germinal center culture system, where the B cells
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were kept alive for longer (65). The shorter timeframe of our screen

may allow for this block in antibody secretion to be detected before

the accumulation of protein becomes high enough to trigger the

terminal UPR, leading to a selective loss of ASCs. These caveats aside,

these studies collectively provide a wealth of new information on

genes required for ASCs differentiation and function.

The genes required for antibody secretion represent excellent

candidates for the development of new small molecules to treat

antibody-mediated diseases including autoimmune conditions, allergy,

transplant rejection and the plasma cell malignancy multiple myeloma. It

is interesting to note, however, that there are 27 additional genes within

the ASC gene signature that are implicated in the UPR that did not have a

measurable effect on antibody secretion in this assay (Figure 4F). There

may be redundancy in this pathway so targeting only one gene at a time

may not have any effect on secretion rates. The genes identified by this

screen may also highlight potential weak links in the antibody secretion

process that may underlie immunodeficiency syndromes. As highlighted

above, human SEC61A1 haploinsufficiency has recently been

demonstrated to cause a primary antibody deficiency through impaired

ASC differentiation (39), whereas IRF4 haploinsufficiency has been linked

to Whipple’s disease caused by the inability to control infection with the

bacteria Tropheryma whipplei (66). Mutations in the BTD gene cause

Biotinidase deficiency, a treatable deficiency in biotin that may have an

immunodeficiency component (67, 68). Mutations in several other

regulators identified in our screen may also result in antibody

immunodeficiency, including CACNA1H, a calcium channel linked to

epilepsy. Two patients with CACNA1Hmutations have been reported to

show selective antibody deficiency (69), whereas patients harboring

mutations in the genes encoding ribosomal proteins have been

documented to develop common variable immune deficiency (70). The

remaining genes from our screen that are involved in ASC differentiation,

proliferation or antibody production represent strong additional

candidates for primary antibody deficiency genes.
Materials and methods

Mice

Experimental mice were bred and maintained on a C57BL/6 genetic

background and housed in the Walter and Eliza Hall Institute (WEHI)

animal facility in a specific pathogen free environment. Animal

experiments were conducted in accordance with protocols approved by

the WEHI animal ethics committee. Rosa26-lox-STOP-lox-Cas9-IRES-

GFP mice (71) were bred with B6-Cre-deleter mice to generate the

constitutive Cas9 transgenic strain.
B cell isolation and culture

Naïve splenic B cells were isolated using a B cell isolation kit

(Miltenyi Biotech) and cultured in B cell medium (RPMI 1640, 10%

FCS, 2 mM L-Glutamine, 1 mM sodium pyruvate, 10 mM HEPES, 50

mM b-mercaptoethanol, 1% non-essential amino acids) supplemented

with 10 mg/mL LPS (Sigma-Aldrich) ±10 ng/mL mouse IL-4 (R&D

Systems). For proliferation analysis, non-proliferating lymphocytes were

separated using a Percoll (GE Healthcare) density gradient prior to B cell
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isolation and cells were labelled with the division tracking dye,

CTY (Invitrogen).
Flow cytometry

Cells were stained with monoclonal antibodies specific for CD138

(281-2; BioLegend) or IgM (331.12; eBioScience). Intracellular

staining was performed using BD Cytofix/Cytoperm (BD

Biosciences). Cell viability was determined by the addition of 1 mg/
mL Propidium Iodide (PI; Sigma-Aldrich), 1 mg/mL FluoroGold

(Sigma-Aldrich) or 1 mL/mL eFluoro-780 (eBioscience).
Enzyme-linked immunosorbent
assay (ELISA)

Plates were coated with anti-IgM (1 mg/mL; Southern Biotech)

overnight. Plates were washed with PBS/0.04% Tween-20, PBS, then

water before the addition of cell culture supernatant or IgM

standard (TEPC183; Sigma-Aldrich) to the appropriate wells.

After 4 hours, plates were washed and incubated with anti-IgM-

HRP (1 mg/mL; Southern Biotech) for a further 4 hours. Plates were

washed and bound IgM was visualized by the addition of 2,2’-

Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS; Sigma-

Aldrich) substrate solution (0.54 mg/mL ABTS, 10.5 mg/mL citric

a c id , 15 mg/mL t r i sod ium c i t r a t e d ihydra t e , 0 . 03%

hydrogen peroxide).
Enzyme-linked immunospot (ELISpot)

Multiscreen HA plates (Millipore) were coated with anti-IgM diluted

in 0.2 M carbonate buffer for 4 hours. Plates were washed with PBS

before cells in B cell medium were added. Plates were then incubated at

37°C 10% CO2 for 14-18 hours. Plates were washed as in the ELISA

method before the addition of anti-IgM-HRP. IgM secreting cells were

visualized by the addition of 3-amino-9-ethylcarbazole (AEC; Sigma-

Aldrich) solution (0.05 M sodium acetate, 0.25 mg/mL AEC, 2% N,N,-

Dimethyl Formamide, 0.03% hydrogen peroxide).
Production of lentiviral vectors

Individual sgRNA plasmids were obtained from the Sanger Arrayed

Mouse Whole Genome Lentiviral CRISPR Library (Sigma-Aldrich,

#MSANGERG) that co-expressed BFP. HEK293T cells were

maintained in DMEM/10% FCS and plated 16 hours prior to

transfection at a density of 2x104 or 1.5x106 cells for 96-well and 10

cm2 plates respectively. pMDL1-gag-pol, pCAG-Eco, pRSV-REV and

sgRNA plasmids were combined at a ratio of 3:2:2:3. Fugene6

Transfection Reagent (Promega) was added to the plasmid mix at a

ratio of 3 ml FuGENE6 to 1 mg DNA and incubated for 30minutes before

the FuGENE6-DNA mixture was added to HEK293T cultures.

Transfected HEK293T cells were BFP+ (Supplementary Figure 1A).

Lentivirus containing supernatant was collected 48 hours post-

transfection, and either used fresh or stored at -80 °C.
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Transduction of primary B cells

Non-tissue culture treated 96-well plates were coated with

Retronectin (32 mg/mL; produced in house) for 4 hours and plates

were blocked with PBS/2% BSA prior to the addition of cells and

lentiviral containing supernatant. Each well received only a single

sgRNA expressing lentiviral supernatant. Plates were then centrifuged

at 1200 rpm for 90 minutes. Following centrifugation, supernatant

was removed, and cells were resuspended in B cell medium containing

LPS ± IL-4. The rate of transduction (proportion of BFP+ cells

(Supplementary Figure 1B) and impact of CRISPR sgRNA on ASC

differentiation (proportion of total BFP+ cells that are CD138+) and

cell number was determined by flow cytometry, and the impact on

antibody secretion was quantified by ELISA. The proportion of BFP+

CD138+ ASCs and the antibody secretion rate were compared to

untransduced controls for each plate.
Analysis of publicly available RNAseq data

To generate a list of FoB specific genes, we reanalyzed RNA-

sequencing data published by Shi et al. (GSE60927) (11). The count

table was downloaded and gene with at least 1 count per million

(CPM) in at least three samples were included downstream analysis

(72, 73). Count data were normalized using the trimmed mean of M-

values (TMM) method, and differential gene expression analysis was

performed using the limma-voom pipeline (limma version 3.40.6)

(72, 74, 75). FoB specific genes had a 3-fold higher expression in FoB

samples compared to all ASC subsets (≤0.05 false discovery rate).

Heatmaps of logCPM were generated using pheatmap.
Statistical analysis

Statistical significance was determined by two-way ANOVA with

multiple comparisons.
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Krüppel-like factor 2: a central
regulator of B cell differentiation
and plasma cell homing
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Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center,
University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
The development of B cells, their activation and terminal differentiation into

antibody-producing plasma cells are characterized by alternating phases of

proliferation and quiescence that are controlled by complex transcriptional

networks. The spatial and anatomical organization of B cells and plasma cells

inside lymphoid organs as well as their migration within lymphoid structures and

between organs are prerequisites for the generation and the maintenance of

humoral immune responses. Transcription factors of the Krüppel-like family are

critical regulators of immune cell differentiation, activation, and migration. Here,

we discuss the functional relevance of Krüppel-like factor 2 (KLF2) for B cell

development, B cell activation, plasma cell formation and maintenance. We

elaborate on KLF2-mediated regulation of B cell and plasmablast migration in the

context of immune responses. Moreover, we describe the importance of KLF2

for the onset and the progression of B cell-related diseases and malignancies.
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Introduction

Krüppel-like factor 2 (KLF2) is a transcription factor of the Krüppel-like factor (KLF)

family whose members are characterized by a C-terminal zinc finger DNA-binding

domain. The family name originated from the phenotype of a Drosophila loss-of-

function mutant with abnormal segmentation of the abdominal region of the Drosophila

larva (“Krüppel” mutant, Krüppel: German word for cripple). In Drosophila, the krüppel

gene is one of the so-called gap genes, a group of genes responsible for the development of

the Drosophila larvae and their segmentation (1, 2). The KLF family consists of 17

members in vertebrates, all of which are involved in the control of differentiation,

proliferation, cell adhesion, and migration processes in a variety of cell types (3, 4).

KLF2 was first described by Anderson and colleagues in 1995 and originally named lung

Krüppel-like factor (LKLF) due to its high expression in the lung (5). The importance of

KLF2 during embryonic development was revealed in 1997 by Kuo and colleagues using a

genomic knockout mouse model for the Klf2 gene. Their study demonstrated that KLF2-

deficient embryos died between days E12.5 and E14.5 due to hemorrhage, defective blood
frontiersin.org0127
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vessels, and an abnormal tunica media in utero (6). Thus, KLF2 has

an essential function in embryonic development and in endothelial

cell biology. From the time point of its discovery in the late 1990s,

numerous studies have revealed a crucial role for KLF2 during

proliferation, differentiation, activation, and positioning of B and T

cells, and other immune cells (4, 7). The loss of function of KLF2 is

associated with diseases, such as arteriosclerosis, adipogenesis,

thrombosis, and lymphoma (3, 4, 7–12). The role of KLF2 has

been intensively studied in T-lymphoid cells and it becomes

increasingly evident that KLF2 also acts as an important regulator

of different aspects of B cell biology. Therefore, in this review article,

we discuss the relevance of KLF2 during B cell differentiation and

activation as well as its function of KLF2 as a regulator of B cell and

plasma cell homing. Finally, we elaborate on how KLF2 contributes

to B cell-related diseases and malignancies.
Expression of KLF2 in B-lymphoid
cells

Expression of KLF2 in early B cell progenitors in the bone

marrow (BM) was discovered in a mouse model with tetracycline-

controllable expression of the pre-B cell receptor (pre-BCR) (13).

The pre-BCR is part of a critical checkpoint in early B cell

development, which tests the ability of newly formed

immunoglobulin (Ig) µ-heavy chains (µHC) to functionally pair

with the surrogate light chain components VpreB and l5. Pre-BCR-
mediated signals result in clonal expansion of pre-B cells,

suppression of apoptosis, targeting of the VDJ-recombination

machinery to the Ig light chain (IgL) loci, and allelic exclusion

(14, 15). Analyses of changes in the transcriptome upon
Frontiers in Immunology 0228
tetracycline-controlled pre-BCR induction, uncovered KLF2 as a

pre-BCR-induced gene (13). KLF2 expression in pre-B cells was

confirmed in KLF2:GFP reporter mice (16). Pre-BCR signals result

in Erk5 phosphorylation, which in turn activates the transcription

factors Mef2c and Mef2d by phosphorylation. Phosphorylated

Mef2c and Mef2d, in turn, activate transcription of the Klf2 gene

and, in parallel, of immediate-early genes, encoding for the

transcription factors Jun and Fos, as well as the early growth

response proteins Egr1 and 2 that induce pre-B cell expansion

(17). In addition, Mef2c/d transcription factors induce IRF-4, a

transcription factor important for the termination of pre-B cell

expansion and the initiation of immature B cell differentiation (18).

Over time, KLF2 accumulates in proliferating pre-B cells and

inhibits the Mef2c/d-mediated transcription of the immediate-

early genes Jun and Fos and Egr1/2, thus, contributing to the

termination of pre-B cell expansion (17). Along this line, ectopic

expression of KLF2 resulted in a block of pre-B cell proliferation

concurrent with decreased c-myc and increased p21 and p27mRNA

abundances (19) (Figure 1). However, KLF2-deficient mice

displayed normal pre-B and immature B cell compartments (16,

20), suggesting that in the absence of KLF2, termination of pre-B

cell expansion still occurs and is presumably mediated through Irf-4

upregulation. As aforementioned, activation of Mef2c/2d by pre-

BCR signals results in the upregulation of Irf-4 expression.

Subsequently, IRF-4/IRF-8-mediated upregulation of the

transcription factors Aiolos and Ikaros was shown to

downregulate pre-BCR expression and to impair cell cycle

progression and thereby pre-B cell expansion (21).

As aforementioned, KLF2 expression is induced by the pre-BCR

in early B cell development and is maintained in immature B and

follicular (Fo) B cells (13, 16, 20, 22). Marginal zone (MZ) B cells
FIGURE 1

Krüppel-like factor-2 (KLF2) contributes to the termination of pre-B cell expansion through inhibition of Jun/Fos and Egr1/2. Moreover, KLF2 inhibits
the proliferation of pre-B cells and the activation of naïve, mature B cells by downregulating c-myc and upregulating p21 and p27. In B cells, KLF2
suppresses NF-kB activation. Furthermore, KLF2 represses Notch2 signaling in naïve B cells, thereby driving B cell differentiation to follicular B cells.
KLF2 controls the migration of B cells and plasmablasts by positively regulating L-Selectin, Itga4b7, Itga4b1, ItgaM, Chemokine receptor 9 (CCR9),
Sphingosine-1-Phosphate-Receptor (S1PR) 1 and S1PR4. IgA plasmablast homing to gut-associated lymphoid tissues (GALT) is mediated by KLF2-
regulated factors Itga4b7 and CCR9. Itg, integrin.
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show low abundances of KLF2 mRNA and protein whereas B1 cells

in the peritoneum display the highest abundance of KLF2 (16, 20,

22). Activation of splenic B cells in vitro with LPS, anti-CD40/IL-4

or anti-IgM (anti-BCR) led to decreased KLF2 mRNA and protein

abundances (16, 20, 22, 23). In this context, ectopic expression of

KLF2 in LPS-activated, proliferating B cells led to an inhibition of B

cell activation, expansion, and plasmablast differentiation (19).

Therefore, KLF2 acts as a quiescence factor that keeps mature B

cells in a resting state. The function of KLF2 as an important

quiescence regulator was already postulated in 2000, when KLF2

was found in comparative transcriptome analyses to be highly

abundant in resting, naïve B, and anergic B cells, but

downregulated in activated B cells (24). In mature B cells, Klf2

gene expression might be driven by the transcription factor Foxo1

(similar to the Foxo-1-mediated regulation of the Klf4 gene) as

Foxo1-binding sites were found in the Klf2 promoter and Foxo1-

binding to the Klf2 promoter was described (25). In support, Klf2

mRNA was reduced in Foxo1-deficient B cells (26). B cell activation

results in PI3K-Akt-mediated phosphorylation of Foxo1.

Phosphorylated Foxo1 is transported out of the nucleus and

becomes transcriptionally inactive (27). Consequently, Klf2

expression is terminated, which in turn, might enable B cell

proliferation and differentiation.

B cells in secondary lymphoid organs can be activated by

antigen in either a T cell-dependent (TD) or a T cell-independent

(TI) manner. TD activation leads to the formation of a germinal

center (GC) reaction in which the BCR of the activated B cell

undergoes affinity maturation and Ig class switch recombination

occurs. As a result of the GC reaction, B cells with a high affinity

BCR either differentiate to memory B cells (Bmem) or to plasma

cells (28–31). One study unraveled increased Klf2 RNA abundances

in CD80+/PD-L2+ Bmem that were shown to quickly differentiate

into antibody-secreting cells but did not form new germinal centers

(32). Furthermore, single-cell RNAseq of isotype-switched Bmem

uncovered a cluster of Klf2-expressing Bmem. The cells in this

cluster were characterized by low abundances of Cr2 (CD21),

intermediate abundances of Fcer2a (CD23), and expressed Klf2,

Vimentin-1 and Prostate androgen-regulated mucin-like protein 1

(Parm-1). Based on these characteristics, the authors of this study

defined cluster I cells as transitional Bmem (33). Although KLF2 has

been detected in Bmem subsets, its functional relevance for Bmem is

so far mostly unknown. We speculate that KLF2 in Bmem might

functionally contribute to their tissue distribution and retention. In

this context, KLF2 expression in Bmem correlated with expression

of factors critical for homing and migration, such as Integrin

(Itg)b7, Sphingosine-1-phosphate-receptor 1 (S1PR1) and C-C

chemokine receptor CCR6 expression (34). Additionally, it is

tempting to speculate that KLF2 might keep Bmem in the resting

state until they encounter their specific antigen.

GC B cells that differentiate to plasma cells undergo a dramatic

morphological change characterized by an increase in cell size and

an enlargement of the endoplasmatic reticulum (ER) (31). This

process is controlled by a complex regulatory network of

transcription factors. Blimp-1 (encoded by the Prdm-1 gene) is

the key transcription factor that drives plasma cell differentiation by

promoting Ig production and secretion, and by repressing B ell
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activation-signature transcription factors Pax5, Bcl-6, Bach2 and

the enzyme Activation-induced cytidine deaminase (AID, encoded

by the Aicda gene) (31). Activated B cells first differentiate into

proliferating plasmablasts that are migratory and then into mature,

resting plasma cells (35). In plasmablasts in the blood, expression of

KLF2 and its target gene S1pr1 was detected (36). Migration along

the sphingosine-1-phosphate (S1P) gradient guides plasmablasts

from lymph nodes and spleen to lymph and blood (36). Analysis of

KLF2:GFP reporter mice revealed KLF2 expression in IgM and IgA

plasmablasts in the blood. In lymphoid organs, the highest

frequency of KLF2-positive cells was found within the IgA

plasmablast population in mesenteric lymph nodes (mLN),

suggesting a pivotal role of KLF2 for IgA plasmablasts and IgA

plasma cells (37).
Functional role of KLF2 in peripheral
B cell subsets

The regulatory role of KLF2 in B cell proliferation and

activation was primarily analyzed in vitro by overexpression

approaches and by studying loss-of-function mutants of KLF2

and their ability to activate NF-kB signaling. Regarding the

regulation of quiescence, ectopic expression of KLF2 in pre-B cell

cultures and in LPS-activated B cells led to the downregulation of c-

myc and upregulation of the cell cycle inhibitors p27 and p21 (19).

Moreover, as shown in monocytes, KLF2 interferes with NF-kB
activation (4, 38), a mechanism that might also apply for B cells and

B lymphoma cells. Accordingly, KLF2 loss-of-function mutations as

found in human lymphoma cells impaired KLF2-mediated NF-kB
suppression in a B lymphoma cell line (11), a topic that will be

discussed later in the review article.

To study the functional relevance of KLF2 during B cell

development and activation in vivo, mouse models with a

conditional B cell-specific deletion of a floxed KLF2 gene were

generated. To achieve B cell-specific deletion, either mb1cre or

CD19cre deleter mouse strains were used (16, 20, 22). The B cell-

specific deletion of KLF2 resulted in enlarged spleens with an

expansion of Fo B cells and MZ B cells (16, 20, 22). KLF2-

deficient Fo B cells showed enhanced CD21 surface expression

and altered BCR-mediated calcium signals, and thus, as concluded

from these parameters and changes in the global gene expression

profile partially resembled MZ B cells (16, 20, 22). Fo B and MZ B

cells are functionally distinct B cell subsets. Fo B cells migrate

between lymphoid organs and give rise to GC upon activation. MZ

B cells are a specialized B cell subset located in the splenic marginal

zone and their mobility, in contrast to Fo B cells, is limited to

shuttling between the marginal zone and the B cell follicle to

facilitate antigen transport (39). MZ B cells can develop either

from transitional B cells or from follicular B cells (40). Their

differentiation is driven by Notch2 signaling. Deletion of Notch2

or its ligand Dll-1 resulted in a loss of MZ B cells (41, 42). In an

elegant study, induction of Notch2IC (intracellular domain of

Notch2 that interacts with DNA-binding protein RBPJ and

regulates transcription) resulted in the conversion of Fo B cells to

MZ B cells. Upon induction of Notch2IC signaling, Klf2 (besides
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Irf-8 and Foxo1) was downregulated (43). These findings are

supported by the expansion of MZ B cells observed in KLF2-

deficient mice and suggest a role of KLF2 in the cell fate decision

and the imprinting of the cellular identity of Fo B versus MZ B cells

(Figure 1). As described later, loss-of-function mutations of human

KLF2 are frequently found in splenic marginal cell lymphoma

(SMZL) and play a role in disease onset and/or progression.

Immunization experiments showed an increased immune

response to TI antigen type 2 (TNP-Ficoll) antigens in B cell-

specific KLF2-deficient animals compared to controls, which might

be due to the observed expansion of MZ B cells and the altered

phenotype of KLF2-deficient Fo B cells (22). Immunization with the

TD antigen TNP-KLH, however, resulted in reduced antigen-

specific IgG titers upon boost immunization. Antigen-specific IgG

plasma cells as determined by ELISpot analyses were unaffected in

the spleen but were virtually absent in the BM, indicating that loss

of KLF2 affects plasmablast homing and/or plasma cell survival in

the BM (20).

Importantly, KLF2 deletion profoundly affected mucosal

immune responses. KLF2-deficiency resulted in reduction and

phenotypic alterations of peritoneal B1 cells (16, 20, 44). Mice

with a B cell-specific KLF2 deletion develop fewer and smaller

Peyer’s patches (PP) and natural IgA in the serum was reduced (16,

20, 22). Furthermore, B cell-specific deletion of KLF2 resulted in

drastically reduced secretory IgA (SIgA) in the gut lumen

concomitant with reduced IgA plasma cells in the intestinal

lamina propria (LP). IgA plasmablasts and plasma cells, however,

accumulated in the mLN and PP, although PP were smaller in size

and numbers. Immune responses to immunization with soluble

recombinant Flagellin, an immunodominant protein of Salmonella

typhimurium, were blunted. In summary, B cell-specific deletion of

KLF2 in B cells in mice led to a phenotype similar to that observed

in human IgA deficiencies (37).
KLF2-regulated genes in B cells and
plasma cells

KLF2 acts a major regulator of thymic exit and T cell migration

by regulating S1PR1 (45–47). In peripheral murine B cell subsets,

one study also described direct binding of KLF2 to the edg1

promoter (the edg1 gene encodes for S1PR1) in murine MZ B

cells by chromatin immunoprecipitation (ChIP) (22). In this study,

S1pr1 mRNA was shown to be downregulated in KLF2-deficient

MZ B cells and upregulated in Fo-deficient B cells despite the lack of

KLF2 binding to the edg1 promoter in Fo B cells (22). Two other

independent studies demonstrated that S1PR1 mRNA and protein

were not significantly altered in KLF2-deficient Fo B cells (16, 20).

Therefore, the involvement of KLF2 in the regulation of S1pr1

expression in MZ B cells and Fo B cells remains unresolved. In IgA

plasmablasts, however, RNASeq data confirmed the KLF2-

dependent regulation of S1pr1 and S1pr4 mRNAs, which were

both significantly reduced in KLF2-deficient IgA plasmablasts in

the mLN (37). Therefore, KLF2-mediated regulation of S1PRs

might contribute to plasmablast migration and homing to the

bone marrow as well as mucosal effector sides (Figures 1, 2).
Frontiers in Immunology 0430
The chemokine receptor CXCR5 recognizes the chemokine

CXCL13 and is important for the positioning of B and T cells

inside the B cell follicles in lymph nodes and the spleen (48) and

for the shuttling of MZ B cells between the follicle and the

marginal zone of the spleen (39). In T follicular helper (TFH)

cells, KLF2 binds directly to the Cxcr5 promoter (as shown by

ChIP) and represses Cxcr5 expression. Downregulation of KLF2

caused by ICOS signals via Foxo1 resulted in Cxcr5 upregulation

that is critical for TFH-positioning in the B cell follicle (49). In

contrast to the well described regulation in TFH cells, KLF2-

mediated regulation of Cxcr5 in B cells remains controversial: one

study described downregulation of CXCR5 mRNA and protein in

KLF2-deficient MZ B cells and an upregulation in KLF2-deficient

Fo B cells (22). However, two other studies were not able to

confirm this regulation (16, 20). Therefore, it remains unclear

whether KLF2 might be involved in the regulation of MZ B cell-

shuttling between the marginal zone and the follicle, or in Fo B

cell-positioning within the follicle as shown for TFH cells. Hence,

resolving the role of KLF2 in MZ B-shuttling and Fo B cell

migration within the follicle will require more sophisticated spatial

and temporal analyses.

Genome-wide microarray RNA expression analyses in Fo B

cells in two different mouse strains with a B cell-specific Klf2

deletion (either CD19Cre- or mb1Cre-mediated) identified the

surface receptors L-Selectin (CD62L) and Integrin (Itg) b7, which
are important for migration and homing, as KLF2-regulated factors

(16, 20) (Figure 1). While L-Selectin as a major factor of leucocyte

extravasation, plays an important role in B cell migration from

blood to lymph nodes, Itgb7 is known for its specific role in mucosal

lymphocyte migration. It was demonstrated by chromatin

immunoprecipitation (ChIP) that KLF2 directly binds to the Itgb7
promoter in B cell lines (50). On protein level, loss of surface L-

Selectin and surface Itga4b7 was demonstrated in KLF2-deficient

splenic Fo B cells and B cells in the blood (16, 20). Moreover, in

KLF2-deficient TACI+/CD138+ IgA plasmablasts, Itga4b7 was

downregulated (37). As the Itga4 chain was virtually absent on

the surface of KLF2-deficient IgA plasmablasts, not only Itga4b7
but also surface expression of Itga4b1, which is critical for BM

homing, is impaired (37). Besides downregulation of L-Selectin and

Itgb7, a significant reduction of S1pr4 and an increase of S1pr3

transcripts in KLF2-deficient Fo B cells was detected (16). While

S1PR3 plays a role for MZ B cell positioning but is dispensable for

lymph node motility, the function of S1PR4 in B cells is unclear

(39, 51).

KLF2 directly induces Blimp1 during Th1 cell differentiation by

binding to the Prdm1 promoter (52) but it remains unclear whether

Blimp1 is also controlled by KLF2 during plasma cell

differentiation. Based on the findings that KLF2-deficent mice had

reduced numbers of antigen-specific IgG-secreting plasma cells in

the BM and that natural IgA was reduced in their serum, the effect

of KLF2 deletion on plasmablast and plasma cells subsets was

thoroughly assessed by our group (20, 37). Plasmablasts were

defined as CD19+/B220+/TACI+/CD138+ cells with a high

frequency of proliferating Ki67+ cells, whereas plasma cells were

identified as CD19lo/neg/B220-/TACI+/CD138+ which are non-

proliferating (35, 37). Analysis of plasma cell compartments in B
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cell-specific KLF2-deficient mice revealed a severe dysregulation of

the compartmentalization of IgA plasmablasts and IgA plasma cells.

In these mice, IgA plasmablasts and IgA plasma cells were virtually

absent in the BM, reduced in the blood, the spleen and importantly,

the intestinal LP. However, IgA plasmablasts and IgA plasma cells

accumulated in mLN of KLF2-deficient mice (37). RNAseq as well

as flow cytometric analyses of KLF2-deficient IgA plasmablasts

compared to controls identified L-Selectin, Itgb7, ItgaM, and

chemokine receptor CCR9 as KLF2-regulated factors (37). Surface

CCR9 on IgA plasmablasts was significantly reduced concomitant

with an impaired migration towards a CCL25 gradient in vitro (37).

Together, reductions of Itgb7 and CCR9 expression in KLF2-

deficient IgA plasmablasts led to compromised IgA responses

caused by impaired migration from mLN to the LP of the small

intestine and colon (37). Hence, KLF2 regulates the expression of

the important gut-associated lymphoid tissue (GALT)-homing

factors Itgb7 and CCR9 (Figures 1, 2). Upon KLF2-regulated

expression of CCR9 and Itgb7, IgA plasmablasts are attracted to

the LP by gradients of CCL25, the ligand of CCR9. CCL25 is

secreted by e.g., intestinal epithelial cells (IEC) (53). CCL25-binding

to CCR9 activates Itga4b7 that binds to MadCAM-1 on endothelial

cells and leads to the extravasation of plasmablasts to the mucosal

LP (54, 55). Inside the intestinal LP, IgA plasmablasts differentiate

to mature IgA plasma cells. A subset of those express ItgaEb7 which
enables them to bind to E-Cadherin on IECs, a mechanism that
Frontiers in Immunology 0531
might promote dimeric IgA binding to the poly-IgR and facilitate

transcytosis of dimeric IgA to the gut lumen [(56), Figure 2].

In addition to the regulation of Itga4b7, the expression of the

ItgaM chain was also affected in KLF2-deficient IgA plasmablasts.

ItgaM is a binding partner of Itgb2, which is important for lymph

node egress of B cells (57). Moreover, ItgaM was absent on KLF2-

deficient IgA plasmablasts compared to their wildtype counterparts

(37). The dysregulation of ItgaM together with the aforementioned

reduction of S1PR1 might be the cause for the observed

accumulation of IgA plasmablasts/plasma cells in the mLN and in

the remaining PP of KLF2-deficient mice (37). Hence, KLF2 might

be involved in the process of lymph node exit of IgA plasmablasts

presumably by regulating ItgaMb2 and S1PR1.

In summary, KLF2 contributes to the control of the quiescent,

resting state of mature B cells and pre-B cells by controlling cell cycle

regulators (c-myc, p21, and p27) and immediate-early transcription

factors (such as Jun, Fos, and Egr1/2), respectively. Moreover, KLF2-

regulated genes are crucial for migration and homing of naïve B cells,

activated B cells, and plasmablasts. KLF2-regulated gene products

include integrins (Itga4b7, Itga4b1, and ItgaM), selectins (L-

Selectin), and chemokine receptors (CCR9) as well as Sphingosin-

1-phosphat-receptors (S1PR1, S1PR3, and S1PR4) in IgA

plasmablasts. By regulating the expression of these factors, KLF2

controls the exit of IgA plasmablasts from the lymph node as well as

their homing to the intestinal LP.
FIGURE 2

IgA plasmablast homing to the intestinal lamina propria (LP): Intestinal epithelial cells (IECs) express CCL25, which is presented on glucosamine-glycans
on endothelial cells of venules as a ligand for the CCR9 receptor on IgA-expressing plasmablasts (and other immune cells). Integrin a4b7
is activated upon CCR9 signaling and binds to its ligand MadCAM-1, followed by plasmablast migration to the intestinal LP. Itga4b7 and CCR9 expression
is induced by KLF2 in IgA plasmablasts. Inside the LP, IgA plasmablasts differentiate into IgA-secreting plasma cells, a subset of those express ItgaEb7 to
localize close to the IECs. This mechanism might facilitate the binding of dimeric IgA to the poly-Ig receptor and might subsequently promote the
transcytosis of dimeric IgA through the epithelial layer to the gut lumen. Itg, integrin; SIgA, secretory IgA.
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KLF2 in B cell-related diseases
and malignancies

Splenic marginal zone lymphoma

In humans, splenic marginal zone lymphoma (SMZL) is a low-

grade B cell lymphoma, with variable clinical course. Clinical

diagnosis is rather difficult as specific phenotypic and genetic

markers are lacking. In approximately one third of SMZL cases,

the IgHV1-2 heavy chain that harbors few somatic mutations and a

long CDR3 region is expressed (58, 59) and approximately one third

of SMZL cases harbor a hemizygous deletion of chromosome 7q

with a so far unsolved role in the pathogenesis of SMZL (60–62).

Transcriptome and mutational analyses have revealed candidate

genes that may contribute to disease onset and/or progression.

Mutations were predominantly detected in the KLF2 and the

NOTCH2 genes. KLF2 was inactivated by mutations in 42% of

SMZL patients/cases (11). This is in line with findings that KLF2-

deficient mice display a strong expansion of MZ B cells (16, 20, 22).

Based on the mutations found in SMZL patients, expression

constructs with genes encoding for different KLF2 mutant forms

were generated. The effect of these KLF2 mutants on NF-kB
activation was assessed in in vitro reporter assays in HEK293T

cells and OCI-LY19 B-lymphoma cells. KLF2 mutants failed to

suppress NF-kB activation in contrast to non-mutated KLF2 (11).

Constitutive activation of the NF-kB signaling pathway contributes

to SMZL pathogenesis by promoting MZ B cell survival and

expansion (63, 64).
Multiple myeloma

The hallmark of Multiple Myeloma (MM), a malignant disease,

is the expansion of plasma cells. Clinical signs include

hypercalcemia, renal failure, anemia, and bone lesions. Moreover,

MM is characterized by plasma cell expansion in the BM and the

presence of free IgL chains, the so-called Bence Jones proteins that

can be found in the serum and the urine of MM patients (65).

Genetic predispositions such as mutations in the N-RAS, K-RAS or

EGR1 genes as well as translocations are primary events in the onset

of MM (65, 66). Deregulation of histone methylation can also

contribute to MM. In this context, the chromosomal translocation

t (4,14) (p16;q32) can be found in up to 20% of MM patients. This

translocation results in the overexpression of WHSC1, a histone H3

lysine 36 (H3K36) methyltransferase (67). Furthermore, the

KDM3a histone demethylase that catalyzes the removal of H3K9

mono- and di-methylations, is expressed in MM lines and was

shown to be essential for MM cell proliferation and survival. KLF2

was identified as a target gene of KDM3a. KLF2 is highly expressed

in MM cell lines (68). Downregulation of KLF2 resulted in an

impairment of MM cell proliferation and in the induction of

apoptosis. IRF-4 was identified a KLF2-regulated gene in MM cell

lines. Together, KDM3a, KLF2, and IRF-4 regulate the expression of

ITGb7, an essential integrin for MM homing to and adhesion in the

BM (69). As aforementioned, ITGb7 is a crucially important KLF2-
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regulated target gene in healthy B cells and plasma cells. Therefore,

KLF2 is involved in MM cell adhesion and BM homing. Moreover,

KLF2 is involved in the regulation of the angiogenic factors EGFL7

and ITGb3 in MM cells. KLF2 expression was increased by ITGb3
signaling which in turn led to upregulation of EGFL7, thereby

enhancing MM cell expansion (70). In contrast to naïve B cells, MM

cells proliferate in the presence of KLF2. As aforementioned, KLF2

in MM cells promotes their proliferation and survival. Therefore,

the complex interplay of the various signaling pathways implicated

in the pathogenesis of MM (i.e., the RAS/RAF/MEK/ERK, the

PI3K/AKT, the JAK/STAT, and the NF-kB pathways (71) with

the KLF2 signaling network in MM cells needs to be

further investigated.
IgA deficiencies

As aforementioned, B cell-specific deletion of Klf2 in the mouse

resulted in a profound disturbance of the localization of IgA plasma

cells concurrent with the absence of SIgA in the gut lumen and feces

(37). These phenotypes are strikingly similar to those found in

human IgA deficiencies (72). Loss of Itgb7, a central player of IgA
plasmablast/plasma cell homeostasis, is implicated in the human

Kabuki syndrome. In a corresponding mouse model, deletion of the

gene encoding for the Kmt2d histone methyltransferase led to a

decrease of Itgb7 expression, which consequently resulted in a

defective homing of IgA plasmablasts to the gut (73). As Itgb7 is

also a direct target gene of KLF2, it will be of great interest to study

the effect of KLF2 loss-of-function mutations on the onset and

progression of gut-related diseases, such as Ulcerative colitis and

Crohn’s disease.
B cell abnormalities

Recently, a novel mutation in the human KLF2 gene was

discovered that leads to the disruption of the highly conserved

zinc finger domain required for the nuclear transport and DNA-

binding. The patients showed lymphopenia with decreased B cell

numbers, lower numbers of switched memory B cells, and reduced

serum IgG1. Moreover, L-Selectin on blood B cells was

downregulated. In addition, this mutation also resulted in an

imbalance of various T cell subsets (74).
Future perspectives

KLF2 is a central regulator of not only B cell and plasma cell

differentiation, activation, and migration, but is equivalently

important in other immune cells. KLF2 alterations have been

associated with a multitude of diseases, such as adipogenesis,

atherosclerosis, thrombosis, asthma, arthritis (3, 4, 7–9, 12).

Thus, the challenge for further studies will be the identification

and characterization of the KLF2-regulated signalosome,

transcriptome, and proteome in various cell types in immune

responses and diseases.
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The chromatin reader protein
ING5 is required for normal
hematopoietic cell numbers
in the fetal liver

Sophia Y.Y. Mah1,2, Hannah K. Vanyai1,2, Yuqing Yang1,2,
Anne K. Voss 1,2*† and Tim Thomas 1,2*†

1Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research,
Melbourne, VIC, Australia, 2Department of Medical Biology, University of Melbourne, Melbourne,
VIC, Australia
ING5 is a component of KAT6A and KAT7 histone lysine acetylation protein

complexes. ING5 contains a PHD domain that binds to histone H3 lysine 4 when

it is trimethylated, and so functions as a ‘reader’ and adaptor protein. KAT6A and

KAT7 function are critical for normal hematopoiesis. To examine the function of

ING5 in hematopoiesis, we generated a null allele of Ing5. Mice lacking ING5

during development had decreased foetal liver cellularity, decreased numbers of

hematopoietic stem cells and perturbed erythropoiesis compared to wild-type

control mice. Ing5–/– pups had hypoplastic spleens. Competitive transplantation

experiments using foetal liver hematopoietic cells showed that there was no

defect in long-term repopulating capacity of stem cells lacking ING5, suggesting

that the defects during the foetal stage were not cell intrinsic. Together, these

results suggest that ING5 function is dispensable for normal hematopoiesis but

may be required for timely foetal hematopoiesis in a cell-extrinsic manner.

KEYWORDS

ING5, chromatin, KAT6A, KAT7, fetal, hematopoiesis
Introduction

The mammalian inhibitor of growth (ING) family consists of five proteins, ING1 to

ING5, defined through sequence homology (1, 2). These proteins are chromatin ‘reader’

proteins as they all contain a plant homeodomain (PHD) finger (3), which is prominent in

chromatin adaptor proteins (4). ING proteins are involved in the regulation of a wide range

of critical cellular processes including DNA repair, apoptosis, cell cycle and epigenetic

regulation of gene expression via association with histone acetyltransferases (HATs) or

histone deacetylases (HDACs) (5, 6).

The PHD fingers of all mammalian ING proteins and yeast orthologues bind to mono-,

di- or tri-methylated lysine 4 of histone H3 (H3K4me1/2/3) (7). The strongest binding

occurs with H3K4me3. The affinity decreases 10-fold with the removal of successive methyl

groups (8–17). This binding is specific to H3K4 methylation, as histone H3 methylated at
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other lysine residues (lysine 9) or histone H4 mono-, di- or

trimethylated at lysine 20 (H4K20me1/2/3) is not bound (3, 8).

H3K4me3 is enriched in the promoter regions and immediately

downstream of transcription start sites of active genes and is

associated with gene activation (7, 18). Dysregulation of ING

proteins is associated with aberrant gene expression in cancers

(19–22).

ING5 has been detected in distinct protein complexes, which

contain a MYST (MOZ, Ybf2/Sas3, Sas2 and Tip60) protein family

enzyme subunit. The MYST proteins are a family of histone

acetyltransferases with diverse roles in chromatin regulation (23–

25). ING5 was found in KAT6A (formerly known as MOZ,

monocytic leukaemia zinc finger gene), KAT6B (formerly MORF

or Querkopf) and KAT7 (formerly HBO1) complexes (26). Both

KAT6A and KAT7 have essential roles in regulating the

hematopoietic system (27–30). KAT6A is essential for the

formation of definitive hematopoietic stem cells (HSCs) during

embryonic development (27), and the maintenance of HSC in adult

bone marrow (28). The role of KAT6A in hematopoiesis is

dependent on its acetyltransferase activity (31). These findings

suggest that how the acetyltransferase activity is directed to

chromatin is important for the function of these proteins. KAT6A

is required for pre-B cell proliferation in germinal centres and for

the maturation of CD8+ T cells (32–34). KAT7 also has essential

roles in the hematopoietic system, and like KAT6A, KAT7 is

critically important for maintenance of HSCs (29), as well as in

lineage commitment, in particular erythropoiesis (35) and T cell

development (36). KAT7 function is also critical in thymic epithelial

cells for clonal selection of T cells in the thymus (37).

Chromosomal translocations involving the KAT6A gene (24,

38, 39) or the KAT6B gene (40–42) cause aggressive forms of acute

myeloid leukaemia. KAT7 dysregulation is associated with a variety

of cancers (43) and, similar to KAT6A, KAT7 chromosomal

translocations cause leukaemia (44). Both KAT6A and KAT7 are

promising targets for anti-cancer therapy (45–47), in particular

leukaemia, and a drug inhibiting the enzymatic activity of KAT6A is

in clinical trials.

Since the complexes containing the MYST family proteins

KAT6A and KAT7 have essential roles in hematopoiesis, and

both contain the adaptor protein ING5 we undertook a study to

examine the role of ING5 in hematopoiesis.
Materials and methods

Animal strains and alleles

Mice with loxP sites flanking exons 3 to 5 of the Ing5 gene

(Ing5fl) were generated by OZgene Pty Ltd, Bently, Western

Australia, using Bruce 4 ES cells, which are C57BL/6 derived.

Removal of exons 3 to 5 was achieved by crossing the Ing5fl mice

to a Cre-deleter mouse strain (48), which produced a frame shift

and a premature stop codon and generated the germline deleted

Ing5– allele used in this study. The region of deletion

(Supplementary Figure 1; Figure 1A) encodes part of the N-

terminal ING domain and the nuclear localisation signal. Mice
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carrying the Ing5– allele were backcrossed to wild-type C57BL/6J

mice for more than 8 generations. Mice were genotyped by PCR

using a common forward oligonucleotide 1 (TGCTGGG

ACTGTTTACAAATTAGA) toge the r w i th a reve r s e

oligonucleotide 2 (AAAGGAGTGAACAATACAGCATGA)

detecting the wild-type (322 bp product) allele or a reverse

oligonucleotide (ATGTACCGAATGTGGGAACTAAAT)

detecting the null allele (528 bp product) in the same reaction.

Quantitative reverse transcriptase PCR using a pair of

oligonucleotides amplifying cDNA 3 prime of the deleted exons

( forward CCAGAAGCCTGAGTGTCTCC and reverse

TGCCAGTCTGTTGATGAAGC) was performed on RNA

isolated from E10.5 embryos using Qiagen RNeasy Mini Kit

(Qiagen 217004) followed by cDNA synthesis using Super Script

III Reverse Transcriptase (Invitrogen 18080085) and RT-qPCR

amplification using SYBR Hi-ROX (Bioline QT605-05). Values

for RT-qPCR are displayed as arbitrary units relative to the

housekeeping gene Pgk1.
Tissue collection

Foetal livers were isolated from E14.5 embryos, and cells were

dissociated by passing through a 40 mm cell strainer (Corning

352340). Bone marrow, thymus and spleen cells were isolated from

transplant recipients using standard techniques. Peripheral blood

and tissue cell counts were obtained using an automated

hematology analyser (ADVIA 120; Siemens).
Hematopoietic transplant experiments

All irradiated recipients were CD45.1+ C57BL/6 female mice

aged 6-8 weeks. Mice received irradiation (2 x 5.5 Gy 3 h apart) and

were given drinking water supplemented with 10 mg/ml of

neomycin (Sigma N6386) for 3 weeks post-irradiation.

Competitive transplantation experiments were conducted using

1x106 bone marrow cells from femurs of CD45.1+ mice

(competitor cells) combined with 0.5 x 106 cells of CD45.2+ E14.5

foetal livers (donor). Cells were injected into the tail vein of

irradiated CD45.1+ host mice. Three hosts were used per donor.

Peripheral blood was isolated at 4 weeks and 16 weeks post-

transplantation for analyses. Haematopoietic organs were

recovered at 16 weeks post-transplantation.
Flow cytometry

For hematopoietic organs, equal numbers of cells were stained

with primary antibodies (Supplementary Table 1) using standard

procedures. Cell types were identified using cell surface markers as

shown in Supplementary Table 2. Expression of CD34 and CD135

were used to identify a stem cell population, designated LT-HSCs,

and progenitor cell populations, as previously published (49–51) or,

alternatively, SLAM markers CD150 and CD48 (52, 53) were used

to identify a stem cell population designated HSCs and progenitor
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cell populations. After excess secondary antibodies were removed

by washing with FACS buffer, all pelleted cells were resuspended in

Fluoro-Gold viability dye (8 mg/ml; Sigma 39286). Samples were

then analysed on flow cytometry analysers, LSRIIW, LSRIIC, or

Fortessa1 (BD Biosciences). Data were analysed using FlowJo v10.4

(Treestar). Representative gating strategies are displayed in

Supplementary Figures 2-7.
Frontiers in Immunology 0337
Statistical analysis

Data are presented as means ± s.e.m. and were analysed using a

graphing and statistics software (Prism 9 version 9.4.1, GraphPad;

or R version 4.2.2, The R Foundation for Statistical Computing

Platform). The specific statistical tests used, and number of

observations are stated in the figure legends.
B C D

E F

G H I

A

FIGURE 1

Gross phenotypic effects of loss of ING5. (A) The wild-type and germline null allele of the Ing5 gene used in this study. Exons are numbered. Red
arrows indicate position of oligonucleotide primers used for genotyping. LoxP, Cre-recombinase target sequence. Details of the targeting strategy
and the intermediate conditional allele are displayed in Supplementary Figure 1. (B) Levels of Ing5 mRNA quantified by RT-qPCR in whole E10.5
Ing5–/–, Ing5+/– and Ing5+/+ embryos. N = 6 Ing5–/–, 4 Ing5+/– and 8 Ing5+/+ embryos. (C) Numbers of Ing5–/–, Ing5+/– and Ing5+/+ mice generated
by mating Ing5+/– x Ing5+/– mice at 3 weeks of age (weaning). A total of 155 mice were genotyped. Ing5–/– were underrepresented at weaning (p <
10-6). (D) Body weight of E18.5 foetuses. N= 11 Ing5–/–, 15 Ing5+/– and 17 Ing5+/+ foetuses. (E) Representative images of Ing5–/– and Ing5+/+ E18.5
spleens. St, stomach; Sp, spleen. (F) Quantification of the number of cells in the spleen at E18.5 using an automated hematology analyser. (G) Body
weights of E14.5 foetuses. N = 8 Ing5–/–, 16 Ing5+/– and 7 Ing5+/+ foetuses. (H) Representative images of Ing5–/–, Ing5+/–and Ing5+/+ foetuses at
E14.5. (I) Foetal liver cellularity at E14.5. The number of nucleated hematopoietic cells was quantified using an automated hematology analyser. N =
11 Ing5–/–, 25 Ing5+/– and 12 Ing5+/+ foetuses. Each dot represents one foetal liver. Data are displayed as mean ± s.e.m. and were analysed by one-
way ANOVA followed by Tukey’s multiple comparisons test (B, D, F,G, I), or are displayed as absolute numbers and were analysed by cumulative
binomial probability analysis (C). Each dot represents one animal (B, D, F, G, I).
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Results

To examine the role of ING5 in hematopoiesis we generated a

mouse strain in which exons 3, 4 and 5 were deleted in the germline

(Supplementary Figure 1; Figure 1A). Exons 3 to 5 encode part of
Frontiers in Immunology 0438
the conserved N-terminal ING domain and the nuclear localisation

signal. Splicing around exons 3 to 5 results in a frameshift

obliterating the PHD finger. Therefore, no functional protein is

produced from the mutated locus. Quantitative reverse

transcriptase PCR was used to assess Ing5 mRNA levels in whole
B

C

D

A

FIGURE 2

Loss of ING5 causes a reduction in HSC and progenitor numbers. E14.5 foetal liver hematopoietic cell suspensions were analysed for HSC and
progenitors within the LSK compartment using SLAM markers CD48 and CD150. Gating strategy as shown in Supplementary Figure 2.
(A) Representative flow cytometry plots for each genotype gated on live cells. Numbers within plots are average percentage ± s.e.m. of total live cells.
(B) Bar graph showing the number of LSK and c-Kit+ progenitor cells per foetal liver. (C) Representative flow cytometry plots for identification of stem
and progenitor cells using CD150 and CD48 gated on the LSK compartment. Numbers within plots are average percentage ± s.e.m. of total LSK cells.
(D) Bar graph showing the number of stem and progenitor populations per foetal liver. N = 4 Ing5–/–, 15 Ing5+/– and 4 Ing5+/+ foetuses. Data are
displayed as mean ± s.e.m. and were analysed after log transformation by two-way ANOVA with genotype and cell type as the independent factors
followed by Šıd́ák’s multiple comparisons test. Each dot represents data from one animal. HPC-1, hematopoietic progenitor cells 1; HPC-2,
hematopoietic progenitor cells 2; HSC, hematopoietic stem cells; MPP, multipotent progenitor cells. Detailed gating strategy in Supplementary Figure 2.
Supplementary Table 1 displays antibodies used, and Supplementary Table 2 cell surface markers used for various hematopoietic cell populations.
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E10.5 embryos from heterozygous intercross matings. No Ing5 RNA

was detected in Ing5–/– embryos using primers that amplify mRNA

encoded 3’ of the genomic deletion, showing that the mutation

targets the Ing5 locus and that any splicing out of frame results in

degradation of the out-of-frame mRNA (Figure 1B).

Using this allele on an inbred C57BL/6 background, we

studied the effect of loss of ING5 by generating homozygous

embryos from heterozygous intercross matings. Only a third of the

number of Ing5–/– mice expected were present at weaning (p < 10-

6, Figure 1C) with some mice dying soon after birth. At E18.5

before birth, Ing5–/– foetuses were externally morphologically

normal, although smaller than wild-type and Ing5+/– foetuses (p

= 0.0004 and 0.006; Figure 1D). Noteworthy was a reduction in

spleen cellularity in E18.5 Ing5–/– foetuses compared to wild-type

and Ing5+/– littermate controls (p = 0.04 and 0.002; Figures 1E, F),

which resembled, but was not as significant as the loss of spleen

cellularity in Kat6a–/– (Moz–/–) foetuses (27). A moderate growth

retardation was visible at E14.5 in Ing5–/– foetuses compared to

wild-type littermate controls (p = 0.002; Figures 1G, H). A

reduction in foetal liver cellularity to 53% of wild-type was
Frontiers in Immunology 0539
apparent in E14.5 Ing5–/– foetuses (p = 0.0003; Figure 1I). This

reduction in foetal liver cells was still apparent when the moderate

growth retardation was taken into consideration (62% of wild-

type; p = 0.005; data not shown).

To determine the role of ING5 in foetal liver hematopoiesis, we

examined the hematopoietic stem cell compartment at E14.5 using

flow cytometry (Supplementary Figure 2). The number of lineage

negative (Linneg) c-Kit positive (c-Kit+) progenitor cells per foetal

liver was significantly reduced in Ing5–/– foetuses compared to wild-

type and Ing5+/– littermate controls (p = 0.049 and 0.003;

Figures 2A, B). Ing5–/– foetuses also showed a tendency of a

reduction in Linneg, c-Kit+, Sca-1+ (LSK) cells compared to wild-

type and Ing5+/– littermate controls (p = 0.1 and 0.002;

Figures 2A, B). Examining the stem cell compartment further by

subdividing the LSK population based on the expression of CD48

and CD150 (52, 53), we found a significant decrease in the

hematopoietic progenitor cell 2 (HPC-2) population (p = 0.01

and 3x10-5; HPC-2; Figures 2C, D) and the HSC populations in

Ing5–/– foetuses compared to wild-type and Ing5+/– littermate

controls (p = 0.03 and 0.005; Figures 2C, D).
B

A

FIGURE 3

Loss of ING5 results in an increase in proerythroblasts and a decrease in the mature erythrocyte population. (A) Representative flow cytometry plots
for each genotype, gated on Ter-119+ cells. Population I, proerythroblasts; II, basophilic erythroblasts; III, polychromatic erythroblasts; IV,
orthochromatic erythroblasts; IV, orthochromatic erythroblasts and reticulocytes; V, mature red blood cells. Numbers within plots are average
percentage ± s.e.m. of the total Mac-1neg Gr-1neg CD45.2neg Ter-119+ cells. (B) Bar graphs of the number cells in each sub-population of
erythroblasts per foetal liver. N = 8 Ing5–/–, 14 Ing5+/– and 11 Ing5+/+ foetuses. Data are displayed as mean ± s.e.m. and were analysed after log
transformation by two-way ANOVA with genotype and cell type as the independent factors followed by Šıd́ák’s multiple comparisons test. Each dot
represents number of cells of one animal. Gating strategy in Supplementary Figure 3.
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Together, the results presented in the previous section suggested

that the principal effect of loss of ING5 was on the stem and

progenitor cell populations. In E14.5 foetal livers, the majority of

progenitors are required to generate definitive erythroid cells in

large numbers to support the growth of the embryo. Therefore, we

examined erythropoiesis using flow cytometry (54) (Supplementary

Figure 3). This analysis showed that there was an accumulation of

proerythroblasts (population I) in Ing5–/– and Ing5+/– foetuses

compared to wild-type littermate controls (p = 0.03 and 0.04;

Figures 3A, B) but not in basophilic (II), polychromatic (III) or

orthochromatic erythroblasts and reticulocytes (IV; Figures 3A, B).

Interestingly, Ing5–/– foetuses displayed a significant reduction in

mature erythrocytes compared to wild-type and Ing5+/– littermate

controls (p = 0.0003 and 0.005; Figures 3A, B). Therefore, loss of

ING5 resulted in a reduction in progression through the

proerythroblasts stage of erythropoiesis and a reduction in mature

erythrocytes at E14.5, which were mild enough to allow

development of the Ing5–/– foetuses to term.

To further examine the function of ING5 in hematopoiesis we

performed competitive foetal liver hematopoietic cell transplants. We

transplanted 500,000 E14.5 foetal liver test cells mixed with 1,000,000

adult bone marrow competitor cells. A minimum of three individual
Frontiers in Immunology 0640
foetal livers (biological replicates) for each genotype were

transplanted, each into three recipients (technical replicates)

making a total of at least nine transplants for each genotype

studied. The technical replicates for each biological replicate were

averaged. The foetal liver cells had a CD45.2 cell surface phenotype

and both the recipient and competitor cells had a CD45.1 cell surface

phenotype (Figure 4A). Examination of the peripheral blood

(Supplementary Figure 4) at 4 weeks post-transplantation

(Figures 4B, C) or at 16 weeks post-transplantation (Figures 4D, E)

showed no significant differences in the number of white blood cells

or the proportion of leukocyte populations, apart from a slight

increase in CD4+ T cells in the Ing+/– sample compared to the

Ing5–/– (Figure 4E).

After 16 weeks, we examined the stem cell compartment in the

bone marrow of the transplanted mice studied in Figure 4, using the

flow cytometric gating strategy shown in Supplementary Figure 5.

Bone marrow cellularity was not significantly different between

genotypes (Figure 5A). No significant differences between

genotypes were seen in stem or early progenitor cell populations

generated by the transplanted cells (Figures 5B-D) identified using

two methods, namely by subdividing LSK cells based on CD135 and

CD34 expression (Figures 5B, C; detailed gating strategy in
B C

D E

A

FIGURE 4

Loss of ING5 does not have a major effect on the contribution of donor cells to mature cell types in the peripheral blood after short-term or long-term
reconstitution. Analysis of peripheral blood by flow cytometry 4 weeks and 16 weeks after competitive foetal liver cell transplantation. (A) Protocol for
competitive transplantation of foetal liver cells into irradiated recipient mice and subsequent analyses. (B) Quantification of nucleated white blood cells in
the peripheral blood using an automated hematology analyser 4 weeks after transplantation. (C) Proportion of CD45.2+ donor cells among mature cell
types in the peripheral blood 4 weeks post-transplantation. (D) Quantification of nucleated white blood cells in the peripheral blood using an automated
hematology 16 weeks after transplantation. (E) Proportion of CD45.2+ donor cells among mature cell types in the peripheral blood at 16 weeks post-
transplantation. N = 5 Ing5–/–, 5 Ing5+/– and 3 Ing5+/+ foetal liver samples, transplanted into 3 recipients each. Each dot represents the average of three
recipient mice that received cells from the same donor. Data are displayed as mean ± s.e.m. and were analysed by one-way ANOVA followed by Tukey’s
multiple comparisons test. Gating strategy in Supplementary Figure 4.
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Supplementary Figure 5) or CD150 and CD48 expression (Figure 5D;

gating strategy in Supplementary Figure 5). Similarly, no significant

differences in the contribution of donor cells of different genotypes to

common lymphoid progenitors (CLPs) were detected (Figures 5B, C).

The transplanted cells were distinguished from host or competitor

cells by the CD45.2 cell surface phenotype. No major significant

differences in the B cell linage were observed between recipients

receiving Ing5–/– or Ing5+/+ littermate control foetal liver cells when
Frontiers in Immunology 0741
bone marrow and spleen were examined (Figures 6A-E;

Supplementary Figure 6). A slight difference was seen between the

proportion of T2 and marginal zone B cells in the spleen between

Ing5–/– and Ing5+/–, but Ing5–/– and Ing5+/+ donor cells were not

significantly different (Figure 6E). Similarly, no significant differences

in the T cell linage were observed between recipients receiving Ing5–/–

or Ing5+/+ littermate control foetal liver cells when the thymus was

examined (Figures 6F-H; Supplementary Figure 7).
B

C D

A

FIGURE 5

Loss of ING5 does affect donor cell contribution to the production of HSCs and progenitor cells in the bone marrow after competitive foetal liver
cell transplantation. Analysis of the bone marrow 16 weeks after competitive foetal liver cell transplantation. (A) Quantification of nucleated
hematopoietic cells in the bone marrow of recipients using an automated hematology analyser. (B) Gating strategy to identify stem and progenitor
subsets using CD135, CD34 and CD127. (C) Proportion of CD45.2+ donor cell contribution to each major subtype of HSC and progenitor cells
identified using CD34, CD135 and CD127. (D) Proportion of CD45.2+ donor cell contribution to each major subtype of HSC and progenitor cells
identified using CD48 and CD150. N = 5 Ing5–/–, 5 Ing5+/– and 3 Ing5+/+ foetal liver samples in (A, C, D). Data are displayed as mean ± s.e.m. and
were analysed by one-way ANOVA followed by Tukey’s multiple comparisons test. Each dot represents the average of three recipients that received
cells from the same donor. Detailed gating strategy in Supplementary Figures 2; 5.
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Overall these results show that while there are significant

differences in the cellularity of the foetal liver and foetal stem and

progenitor cells, these differences are not cell-intrinsic to the long-

term repopulating stem cells.
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Discussion

In this study we observed that about two thirds of the Ing5–/–

mice died between birth and weaning, presumably accounting for
B

C

D
E

F G

H

A

FIGURE 6

Loss of ING5 does not have a major effect on donor cell contribution to lymphoid development in bone marrow, spleen and thymus after competitive
foetal liver cell transplantation. Analysis of bone marrow, spleen and thymus cells by flow cytometry 16 weeks after competitive foetal liver cell
transplantation. (A) Major subtypes of B cell progenitors in the bone marrow. (B) Proportion of CD45.2+ donor cell contribution to each major subtype of
B cell progenitors and mature B cells in the bone marrow. (C) Major subtypes of B cells in the spleen. (D) Quantification of nucleated hematopoietic
cells in the spleen. (E) Proportion of CD45.2+ donor cell contribution to each major subtype of B cell progenitors and mature B cells in the spleen. (F)
Major subtypes of T cells in the thymus. (G) Quantification of nucleated hematopoietic cells in the thymus. (H) Proportion of CD45.2+ donor cells
contribution to each major subtype of T cells progenitors and mature cell types. N = 5 Ing5–/–, 5 Ing5+/– and 3 Ing5+/+ foetal liver samples transplanted
into 3 recipients each. Each dot represents the average of the three recipients that received cells from the same donor. Data are displayed as mean ±
s.e.m. and were analysed by one-way ANOVA followed by Tukey’s multiple comparisons test. MGZ B cells: marginal zone B cells; T1, transitional zone 1
B cells; T2, transitional zone 2 B cells. ETP, early thymic progenitors; DN2-4, double negative (CD4neg CD8neg) cell stage 2-4; DP, double positive for
CD4 and CD8.
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the deaths observed soon after birth. The surviving Ing5–/– mice

were normal and fertile. We observed some abnormalities in

hematopoiesis in Ing5–/– foetuses. Since ING5 is a member of the

KAT6A and KAT7 chromatin regulatory complexes, this suggested

that, like KAT6A and KAT7, ING5 may have a function in the

hematopoietic stem cell compartment. At E18.5 the spleens of

Ing5–/– foetuses were severely cytopenic. The spleen, a site of

erythropoiesis during foetal development, is populated by HSCs

coming from the foetal liver (55). This phenotype is similar to,

although not as severe as the phenotype of foetuses lacking the

histone acetyltransferase KAT6A (MOZ) (27). Similar to Kat6a

heterozygous foetuses (27), foetuses lacking ING5 showed a

reduction in the numbers of CD48+ CD150+ HSCs.

During development, the rapidly growing foetus requires the

production of a large number of red blood cells. Examining

erythropoiesis, we found an increase in the most immature

erythroid progenitor cells and a reduction in the number of

mature red blood cells. These findings are similar to the effect of

a conditional deletion of Kat7 or Kat6a on erythropoiesis in

midgestation embryos (27, 29). Loss of either KAT7 or KAT6A

causes a delay in erythropoiesis maturation resulting in the

accumulation of early erythroid progenitors that does not prevent

differentiation of mature definitive red blood cells (27, 29). In

addition, disrupted erythropoiesis was also observed after shRNA

knockdown of Kat7 (Hbo1 (35);.

In contrast to loss of KAT6A or KAT7 function, loss of ING5

function does not affect the ability of ING5 deficient cells to

repopulate the hematopoietic system of a lethally irradiated

recipient mouse. This suggests that, unlike the effects of loss of

KAT6A or KAT7, the effects of loss of ING5 are not cell autonomous

but affect the interaction of hematopoietic cells with surrounding

cells, particularly in the foetal spleen. Alternatively, other aspects of

foetal development affecting hematopoietic cells may affect foetal

liver hematopoiesis, which might include a developmental delay.

The results described in this paper suggest that the ING5

adaptor protein is not required for many of the essential, cell-

intrinsic functions of either KAT6A or KAT7 in the hematopoietic

system. KAT6A and KAT7 are the enzyme subunits of their

respective complexes, which, in addition to ING5, contain

BRPF1-3 (KAT6A and KAT7) (26, 35, 56, 57) or JADE1-3

(KAT7) (26, 58). The BRPF and JADE family proteins are also

adaptor proteins containing bromo and PHD domains and so direct

their respective complexes to chromatin (59). Indeed, alternative

splice variants of JADE may lack the ING5 binding domain,

resulting in a KAT7 complex which does not contain ING5 and

has a changed histone lysine specificity (11, 58). This suggests that

ING5 has a specific role in modulating the activity of chromatin

regulatory complexes in which it is found. KAT7 has a global

function in regulating H3K14ac (46, 60–62), but under different

conditions has been shown to acetylate H4 (26). KAT6A has a

function in regulating H3K23ac (63) and H3K9ac at specific loci

(64–67). H3K14ac and H3K23ac are the two most abundant histone

acetylation modifications (68), suggesting that the complexes
Frontiers in Immunology 0943
generating the modifications are present throughout the genome

(62). However, there is an enrichment of at least H3K14ac and

KAT7 at transcription start sites (62, 69). Transcription start sites

are also enriched for H3K4me3 (7, 18), the modification bound by

ING5 (3, 8). It is possible that the function of ING5 is related to the

enrichment of these complexes at transcription start sites rather

than at all genomic locations where KAT6A and KAT7 are found.

ING5 has an identical domain structure to ING4 and these

domains are highly conserved (2). ING4 is an alternative subunit for

the KAT7 complex (26) and has also been pulled-down in the

KAT6A complex (70), suggesting that there might be a degree of

redundancy between ING4 and ING5 in the KAT6A complex as

well as in the KAT7 complex.

In conclusion we have shown that ING5 has a function in the

hematopoietic system during foetal development. However, the loss

of ING5 does not cause severe defects of the same magnitude as the

complete loss of the function of the protein complexes in which it

is found.
Data availability statement
The original contributions presented in the study are included

in the article/Supplementary Materials. Further inquiries can be

directed to the corresponding authors.

Ethics statement
The animal study was reviewed and approved by Walter and

Eliza Hall Institute Ethics Committee.

Author contributions
Contribution: SM, YY, HV conducted experiments and

analysed data. TT and AV wrote the manuscript. TT and AV

conceived and supervised the project. All authors contributed to the

article and approved the submitted version.

Funding

SM and HV were supported by an Australian Government

Postgraduate Award. This work was supported by the Australian

Government via the Australian National Health and Medical

Research Council through Project Grants (AKV, TT 1084248;

AKV, TT 1143612), Research Fellowship (AKV 1081421) and an

Investigator Grant (AKV 1176789); via the Independent Research

Institutes Infrastructure Support Scheme; and by the Victorian

Government through and Operational Infrastructure Support

Grant and the Walter and Eliza Hall Institute.
Acknowledgments
The authors thank Faye Dabrowski and Leanne Johnson for

expert animal care.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1119750
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mah et al. 10.3389/fimmu.2023.1119750
Conflict of interest
The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Immunology 1044
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1119750/

full#supplementary-material
References
1. Soliman MA, Riabowol K. After a decade of study-ING, a PHD for a versatile
family of proteins. Trends Biochem Sci (2007) 32(11):509–19. doi: 10.1016/
j.tibs.2007.08.006

2. Coles AH, Jones SN. The ING gene family in the regulation of cell growth and
tumorigenesis. J Cell Physiol (2009) 218(1):45–57. doi: 10.1002/jcp.21583

3. Champagne KS, Kutateladze TG. Structural insight into histone recognition by
the ING PHD fingers. Curr Drug Targets. (2009) 10(5):432–41. doi: 10.2174/
138945009788185040

4. Aasland R, Gibson TJ, Stewart AF. The PHD finger: implications for chromatin-
mediated transcriptional regulation. Trends Biochem Sci (1995) 20(2):56–9. doi:
10.1016/S0968-0004(00)88957-4

5. Russell M, Berardi P, Gong W, Riabowol K. Grow-ING, age-ING and die-ING:
ING proteins link cancer, senescence and apoptosis. Exp Cell Res (2006) 312(7):951–61.
doi: 10.1016/j.yexcr.2006.01.020
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The Haematopoietically expressed homeobox transcription factor (Hhex) is a

transcriptional repressor that is of fundamental importance across species, as

evident by its evolutionary conservation spanning fish, amphibians, birds, mice and

humans. Indeed, Hhex maintains its vital functions throughout the lifespan of the

organism, beginning in the oocyte, through fundamental stages of embryogenesis

in the foregut endoderm. The endodermal development driven by Hhex gives rise

to endocrine organs such as the pancreas in a process which is likely linked to its

role as a risk factor in diabetes and pancreatic disorders. Hhex is also required for

the normal development of the bile duct and liver, the latter also importantly being

the initial site of haematopoiesis. These haematopoietic origins are governed by

Hhex, leading to its crucial later roles in definitive haematopoietic stem cell (HSC)

self-renewal, lymphopoiesis and haematological malignancy. Hhex is also

necessary for the developing forebrain and thyroid gland, with this reliance on

Hhex evident in its role in endocrine disorders later in life including a potential role

in Alzheimer’s disease. Thus, the roles of Hhex in embryological development

throughout evolution appear to be linked to its later roles in a variety of

disease processes.

KEYWORDS

transcription factor, Hhex, diabetes, haematopoiesis, leakamia, AML, T-ALL
1 Background

The Haematopoietically expressed homeobox gene (Hhex), also known as Hex, Xhex in

Xenopus and Prh (proline rich homeodomain), was first identified in chicken

haematopoietic cells, as well as cells of the liver and lungs, with homologues noted in

chickens, Xenopus, mice and humans (1–5). Hhex is a non-clustered/divergent/orphan
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homeobox gene, members of which are distinct from the clustered

(Hox) homeobox genes, in that they are spread throughout the

genome. The genomic structure of human Hhex was shown to

comprise 4 exons (Figure 1) located on chromosome 10 whilst in

mice Hhex is located on chromosome 19 (2, 5). The Jayaraman

laboratory first showed a role for Hhex in haematopoiesis using

chicken cells at a similar developmental state to that of

megakaryocytic-erythroid progenitors (MEPs). Transformation of

these cells by Hhex, specifically the myeloblasts, induced them to

proliferate in vitro (6). Early analysis of haematopoietic cell lines at

various stages of differentiation quickly revealed Hhex was weakly

expressed in T cells and plasma cells, but abundant in developing B

cells (7). Hhex is also found in myeloid and osteoclastic progenitors

along with MEPs, but downregulated during differentiation (7).

The first study of Hhex noted the DNA binding capacity of the

homeodomain and thus its potential for transcriptional regulation

(1). Depending on the context and cofactor interactions, Hhex can

act as a transcriptional repressor or activator (8, 9). The activation

domain of Hhex, regardless of cell type, was determined to be at the

carboxy-terminus (10), while the N-terminus of Hhex may be

responsible for inhibiting DNA binding by the homeodomain and

that may also enable Hhex to form oligomers within the nucleus to

mediate its function as discussed further below (Figure 1) (11, 12).

As a key regulator of development and haematopoiesis,

expression of Hhex must be tightly controlled, and its role as a

repressor is key to its utility in haematopoietic stem and progenitor

cells. In a study employing murine haematopoietic cell lines it was

shown that Hhex was regulated by an element in its first intron (13).

This haematopoietic-specific enhancer is bound by GATA-1,

GATA-2 and c-Myb (13, 14). Hhex was also identified as a

GATA-binding partner in human endothelial cells where its

expression is induced by transforming growth factor (TGF)-b1
with Hhex then driving Flk-1 expression and downregulating

vascular endothelial growth factor (VEGF) signalling (15).
Frontiers in Immunology 0247
Following translation, Hhex protein is regulated by and

interacts with a number of proteins in undertaking its functions.

In humans, oligomers of Hhex, in the form of octamers, have been

shown to bind with high affinity to numerous locations within the

promoter of Goosecoid and the DNA is wrapped by Hhex binding to

promote transcriptional repression (16). These oligomeric forms of

Hhex are highly stable, resisting both chemical and thermal

denaturing (17, 18). Hhex also regulates the retention of

Groucho/Transducin-like enhancer protein (TLE) proteins in the

nucleus via direct binding, and this Hhex/TLE interaction is

important for transcriptional repression (Figure 1) (19).

It also was reported that Hhex bound Jun via helix III of the

Hhex homeodomain implying a role of Hhex in cytokine/growth

factor signalling (20). In a haematopoietic cell line, K562, the N-

terminal proline-rich domain of Hhex was observed to interact with

the proteasome, specifically the HC8 subunit within the 20S and 26S

proteasomes (21). Whilst Hhex was cleaved slowly by the

proteasome, this process was not required for the transcriptional

repression mediated by Hhex (21). Truncated forms of Hhex,

formed subsequent to the proteolysis process, were still able to

bind DNA (21). Hhex can be phosphorylated by the b subunit of

CK2 at residues S163 and S177, an event that inhibits DNA binding

by Hhex, which in turn is reversible by dephosphorylation (22). In

human U937 cells, Hhex was reported as a potential negative

regulator of eukaryotic translation initiation factor 4E (eIF4E) in

myeloid cells (23). In this context, Hhex was thought to regulate

cellular translation by inhibiting eIF4E-dependent Cyclin D1

mRNA transport (23). HOXA9 was required for eIF4E function,

which in turn competes with Hhex as a functional repressor of

eIF4E, and if dysregulated can lead to leukemogenesis (24).

Moreover, eIF4E-dependent nuclear export of Cyclin D1 and

ornithine decarboxylase mRNAs is stimulated by HOXA9 (24).

Together, these results clearly demonstrate Hhex regulates and

is regulated by diverse intracellular processes depending on the
FIGURE 1

Overview of Hhex gene structure in humans. Numbers indicate amino acid position. C-Terminal (CT), eukaryotic Initiation Factor-4A (eIF4a),
Homeo-Domain (HD), N-Terminal (NT), Phosphorylation Domain (PD), Promyelocytic Leukaemia protein (PML), SRY-Box Transcription Factor 13
(Sox13), Transducin-Like Enchancer/Groucho (TLE/Gro), Wingless/Integrated Signalling domain (Wnt). Gene and protein sequence information was
obtained from NCBI (NM_002729.5 and NP_002720.1 respectively). Created with BioRender.com.
frontiersin.org
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cellular context and warrant further research to fully understand the

post-translational roles of Hhex in diverse cell types.
2 Role of Hhex in embryogenesis

Hhex plays a fundamental role in embryogenesis in many

organisms throughout evolution including in fish, amphibians,

birds, mice and humans, demonstrating its highly evolutionarily

conserved role in vertebrate development, which is also strikingly

revealed by amino acid sequence alignment, particularly with

regards to the homeodomain (Figure 2).
2.1 Humans

Hhex expression was detected in a human cDNA library of

oocytes and embryos (up to 10 weeks old) along with other Hox

family genes including HOXD8, HOXD1 and OCT1, as well as

HOXA7 exclusively in oocytes (25). In human ESCs and inducible

pluripotent stem cells (iPSCs), Hhex overexpression was able to

induce hepatoblasts (26). The same group also showed that Hhex

was driving hepatogenesis through repression of eomesdermin

(EOMES) expression (Figure 3) (27). Moreover, in human iPSCs,

Hhex, and its closely related orphan homeobox gene Hlx, enhance

early-phase reprogramming, whilst blocking pluripotency in

somatic cells (28). Hhex expression was also found to be

restricted by Sonic Hedgehog (Shh) activity in a human ES model

of pancreatic development where Hhex was one of several

epithelium markers, along with HNFa, Pax6 and PTF1a to be

downregulated by Shh (Figure 3) (29). In a recent study, Hhex was
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demonstrated to be a “gatekeeper” of pancreatic development in

human IPSCs, with its deletion resulting in liver and duodenum

development (30). This commitment to pancreatic development

driven by Hhex was observed in combination with other

transcription factors including FOXA1, FOXA2 and GATA4 (30).

Additionally, inhibition of all-trans retinoic acid was also noted to

downregulate HHEX in a pancreatic endoderm model using hESCs

(31). Whilst there is a clear importance of Hhex demonstrated in

human embryological development, much of what we understand

regarding its key developmental roles has nevertheless been

extensively gleaned from murine studies as detailed below.
2.2 Mice

Hhex was initially observed as exhibiting endodermal

expression, marking developing liver and foregut, as well as

mesodermal expression with nascent blood islands in the visceral

yolk sac of murine embryos (32). Further characterisation of the

murine embryo by in situ hybridisation revealed Hhex was

expressed in the chorion of the ectoplacental cavity and weakly in

the visceral endoderm of the future yolk sac at E7.5, in liver and

thyroid tissues only at E9.5 and in the foetal liver, lung and thyroid

at E12.5-15.5 (33). Hhex was further shown to be essential for liver

formation in the murine embryo at day E9.5 (33). As well as being

important for thyroid and lung, Hhex Knock Out (KO) mice

revealed that Hhex was involved in the hepatic ectoderm, as well

as a role in monopoiesis, with embryonic lethality ultimately

resulting by E10.5 (33). Bogue, et al. showed Hhex plays a role in

murine foregut organogenesis including the thymus, where Hhex is

downregulated by E18.5 (34). Whilst the specification of thyroid
FIGURE 2

Evolutionary conservation of Hhex between divergent species. Gene amino acid sequence alignment of Hhex between species including Human, Mouse,
Chicken, Xenopus and Zebrafish. Amino acid alignment highlighted in yellow. The topmost, colour-coded bar indicates the degree of conservation between
species. Gene sequences were obtained from UniProt and aligned with MUSCLE alignment using SnapGene software (Version 5.2.4).
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cells does not require Hhex (35), it is nevertheless required for

normal thyroid development, where by E10 it is the organ with the

highest Hhex expression, with its expression remaining high until

E18.5 (34). Additionally, the absence of Pax8 failed to affect the

expression of Hhex in the developing thyroid at E9, but Hhex was

undetectable at E10, suggesting that Pax8 is required for

maintaining Hhex expression, but not the induction of its

expression (35). These studies collectively point to later roles for

Hhex in endocrinology. It was also shown that Hhex is vital for

developing lung, bile duct, gall bladder and pancreas. High, and

essential, expression of Hhex in the developing liver endoderm was

also reported, potentially linking to Hhex’s vital importance in

additionally providing the necessary organ environment to facilitate

haematopoiesis, detailed further in subsequent sections of this

review (34, 36).

Further characterisation of Hhex’s role in endodermal

development within the embryo showed that in the absence of

Hhex-anterior visceral endoderm (AVE) repression, Bmp2 is not

present in the proximal visceral endoderm and Wingless/Integrated

3 (Wnt3) and Nodal are not properly limited to the posterior

epiblast (37). Hhex-AVE null embryos then exhibited later

initiation of the primitive streak and impaired patterning within

the anterior primitive streak (37). Other studies noted that Hhex

expression lacked asymmetry in the anterior visceral endoderm of

murine embryos and that TLE4 expression could also induce

endodermal expression of Hhex (38, 39). Using a fluorescent
Frontiers in Immunology 0449
marker to track Hhex expression in the early endoderm, the

importance of Hhex for self-renewal was demonstrated with the

absence of Hhex allowing cellular proliferation and differentiation

(40). The requirement of Hhex in the endothelial tissues during

murine embryological development of the forebrain was also

reported, in addition to liver and thyroid, which may be related

to Hhex polymorphisms as risk factors in neurological diseases such

as Alzheimer’s disease discussed later in this review (41).

A link to b-catenin/Wnt signalling was first suggested when

Hhex expression was ablated in the developing mouse embryo by

conditional deletion of b-catenin at E7.5 in the prospective

definitive endoderm of the neural plate stage embryos (Figure 3)

(42). In addition, within the ventral foregut endoderm of the

developing mouse embryo, SRY-Box Transcription Factor 13

(Sox13), a known Wnt/TCF signalling repressor, was shown to

directly interact with Hhex, where Hhex blocks Sox13 repression of

Wnt/TCF, whilst Wnt/TCF could in turn de-repress Hhex

(Figures 1, 3) (43). This implies the presence of a positive

feedback loop in which Hhex can amplify Wnt/TCF signalling to

drive development of the murine embryo.

The first reported target of Hhex in development was regulation

of the sodium-bile acid cotransporter protein via a Hhex response

element (HRE) in the promoter (44). It was also found that Hhex

directly binds and represses endothelial cell-specific molecule-1

(ESM-1), via the evolutionarily conserved HRE-1, revealing the

essential role of Hhex in the formation of the vascular endothelium
FIGURE 3

Established functions and interactions of Hhex in mammalian cells in various tissue and disease contexts. *Potentially other anti-apoptotic molecules
are involved depending on the immunological cell type in question. Acute Myeloid Leukaemia (AML), B-cell lymphoma 2 (Bcl2), Cyclin-dependent
kinase 2a (Cdkn2a), Eomesodermin (EOMES), Forkhead box e1 (Foxe1), Haematopoietic Stem Cell (HSC), (Pax8), Lim domain only 2 (Lmo2), Lysine-
specific demethylase 1 (Lsd1), Polycomb Repressive Complex 2 (PRC2), Runt-related transcription factor 1 (Runx1), Sonic Hedgehog (SHH), SRY-box
transcription factor 13 (Sox13), T cell Acute Lymphoblastic Leukaemia (T-ALL), Tumour Growth Factor-beta (TGF-b), Thyroid Transcription Factor-1
(TTF-1), Vascular Endothelial Growth Factor (VEGF), Wingless-Integrated/b-Catenin (Wnt/b-Cat). Created with BioRender.com.
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in the developing embryo (45). Vasculogenesis and cardiac

development was also found to require Hhex, with VEGFa levels

repressed by Hhex in murine embryos (Figure 3) (46). It was also

revealed in mice that urokinase-type plasminogen activator (uPA)

induces angiogenesis via reducing the transcription activity of Hhex

which causes de-repression of the VEGF receptor expression (47).

Liver and pancreatic development in the anterior definitive

endoderm were also observed to be driven by Hhex+Cxcr4+ cells

upon isolating and culturing the cells in vitro (48). Hhex was also

observed to induce liver development in an in vivo system,

independently of Cxcr4 expression, with lack of Hhex also

inhibiting pancreatic development (49). This study showed that

Hhex controls the proliferation rate of the endodermal cells in the

leading edge which allows it to grow beyond the cardiogenic

mesoderm when the gut tube is closing and the positioning of

these cells is essential for pancreatic specification (49).

Organogenesis in the murine embryo endoderm was

demonstrated to be induced by Hhex by promoting hepatoblast

development in the stromal environment by allowing continued

differentiation (49, 50). Moreover, recent studies have shown that

pluripotent stem cells expressing wildtype Hhex can facilitate

normal liver development in both mice and pigs otherwise

lacking Hhex, which in the absence of Hhex results in embryonic

lethality (51).

Mechanistically, it was observed that HNF3b and GATA-4 motifs

in the Hhex promoter transactivate Hhex in the liver allowing tissue-

specific expression of Hhex (52). Using embryoid bodies, Hhex was

shown to synergise with BMP-4, inducing upregulation of Albumin,

Afp carbamoyl phosphate synthetase, transcription factor 1 and

CCAAT/enhancer binding protein alpha, leading to secretion of

Albumin and transferrin, and inducing a pro-hepatic gene signature

which included fibrinogens, apolipoproteins and cytochromes (53).

Hhex was also observed to repress Shh cell signalling in hepatocyte

proliferation of the developing mouse embryo, by translocating to the

nucleus and mediating transcriptional repression (54). This process

was facilitated by GPC3 binding CD81, which would otherwise bind

to Hhex, keeping it from entering the nucleus (54). The transcriptional

repression by Hhex was also blocked via Shh, which itself is bound by

GPC3, that in turn downregulates its function as well as it binding to

CD81 (54). It was also reported using Hhex KO mice that Hhex is

necessary for hepatic differentiation in the endoderm via VEGF

signalling, independently of endothelial cells (55). An important

function of Hhex in bile duct formation was also suggested using

Notch2 KO mice, where Hhex expression declined perinatally,

normalised post-weaning, and remained elevated in icteric 6-

month-old mice, thereby suggesting a role in promoting secondary

bile duct formation (56).

In a genome-wide computational analysis study, aimed at

identifying cis-regulatory transcription factors, Hhex was reported

to be controlling embryonic blood and endothelial development at

E11.5 mouse embryos, shown via b-galactosidase reporters (57).

The use of embryonic stem cell (ESC)-derived Hhex KO embryoid

bodies revealed that they lacked macrophage potential whilst

endothelial cells expanded (58). In contrast, Hhex overexpression
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in embryoid bodies reduces cell numbers by upregulating Flk-1 and

increases the number of blast colony forming cells (BL-CFCs)

formed with haemangioblast characteristics (58).

A potential role of Hhex within the bone of murine embryos

was shown at E15.5, with changes to intracellular localisation of

Hhex during development (59). The same group also observed

Hhex expression in the chondrocyte cell line, ATDC5, which

increased with differentiation, and when Hhex was overexpressed,

it induced a necroptotic-like cell death (60). A role of Hhex in

central nervous system (CNS) neurons during murine embryonic

development was discovered by the observation of inhibition of

axonal growth when Hhex is prematurely expressed (61). This may

be linked to Hhex’s potential role in neurological diseases

(see below).
2.3 Zebrafish

Zebrafish have been used to study the role of Hhex in the

embryological development of vertebrates. This first study in

zebrafish specifically observed Hhex expression with the yolk

syncytial layer, equivalent to the murine visceral endoderm,

acting as a transcriptional repressor (62). Initially, Hhex is

regulated by the maternal Wnt pathway, and later by the Bmp-

mediated pathway, with overexpression of Hhex downregulating

both pathways, whilst concordantly upregulating chordin (62). Bmp

and Fgf are required in liver development of zebrafish by specifically

blocking Hhex and Prox1 expression within that tissue, but not in

the neighbouring endoderm and mesoderm (63). In addition,

within the dorsal yolk syncytial layer of zebrafish, Hhex is

activated by Wnt/b-catenin, along with Vega1 and 2 via the

action of Boz, which in turn allow the repression of Hhex (64).

Hhex is also vital for zebrafish haemangioblast development

where it functions downstream of Cloche, a gene that plays an

important role in haemangioblast differentiation (65). Scl and Hhex

induce each other’s expression suggesting that they may also

compensate for each other’s functions (65). A role for Hhex was

also revealed as a transcriptional regulator of the VEGFC/FLT4/

PRX1 signalling pathway that is necessary for development of the

vascular system in zebrafish (66).

Normal hepatopancreatic duct (HPD) formation in the

zebrafish embryo also requires Hhex, as shown using Hhex KO

zebrafish (67). The need for Hhex in HPD formation was also

verified in a subsequent study, where Hhex was shown to be

necessary in both the endoderm and the yolk syncytial layer for

HPD fate (68). The mutation of Telomere Maintenance 2 (Tel2)

was observed to repress Hhex, whilst unmutated Tel2 engaged with

Hhex’s promoter to facilitate Hhex expression necessary for normal

liver regeneration in zebrafish (69).

Late thyroid development in zebrafish embryos was also

observed to require Hhex, along with the homeobox transcription

factor Nk2.1a, also known as Thyroid Transcription Factor-1 (TTF-

1) in mammals (70). Indeed, another study also noted Hhex, along

with Pax2a and Nk2.1, tightly regulated Bcl2l in the developing
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thyroid of zebrafish, implying a potential role of Hhex in regulation

of pro-survival molecules (71), a finding that will be covered more

extensively later in the context of lymphopoiesis.
2.4 Xenopus

Hhex was first identified in Xenopus by Newman et al, and

denoted Xhex, where in the gastrula stage embryo, it was found to be

expressed in the dorsal endomesoderm, which in turn gives rise to

the liver (3). Hhex also plays an important role in anterior

development originating from the endoderm (72) and was also

observed to be important in vasculature development where it

may have a role in the VEGF/Flk-1 signalling pathway in vascular

endothelial cells (3). Overexpression of maternal Wnt/b-catenin and

TGF-b signals induced ectopic Hhex and Cerberus, both early gene

markers of the anterior endomesoderm, whereas blocking these

pathways, downregulated expression of Hhex and Cerberus (73).

Expression of the BMP antagonists Noggin and Chordin was found

to allow normal Hhex and Cerberus expression, and conversely

Hhex mRNA, injected ventrally, upregulated ectopic Cerberus (73).

This research goes some way to describe the initial gene expression

events associated with Hhex expression within the anterior

endoderm required for normal development of the Xenopus

foregut and liver (73). Another study suggested that Hhex

promotes anterior identity in the Xenopus embryos by directly

repressing Goosecoid, as well as being required for endodermal

anterior patterning (9, 74, 75). These studies underscore the complex

roles of Hhex in regulating the expression of multiple genes during

the development of the Xenopus embryo.

Promoter analysis within the Xenopus embryos revealed that b-
catenin represses Hhex expression indirectly via the homeodomain

repressor Vent2, but conversely, subsequently drives liver

organogenesis (76). Moreover, it was shown in both murine and

Xenopus embryos that a 4.2kb upstream region of the Hhex gene

was important for Hhex expression in endothelial precursor cells,

liver and thyroid where an intronic component was required and

adequate for normal anterior visceral endoderm and anterior

definitive endoderm development (77).

Hhex is also required for normal cardiogenesis in Xenopus

embryos, where its expression is induced in the endoderm via the

Wnt/b-catenin signalling antagonist Dkk-1 and Hhex goes on to

then regulate diffusible heart-inducing factor (78). Hhex, along with

Cer1, was necessary for the Sox17 signalling pathway required for

cardiac mesoderm formation in murine Embryonic Stem Cells

(mESCs) (79).

Hhex plays a vital role in embryological development from

organisms such as fish and amphibians, up to mice and humans.

Universally, across all organisms analysed, Hhex is crucial for

endodermal and mesodermal development within the embryo, giving

rise to the foregut, thyroid, pancreas (in mice and humans), liver,

haematopoietic and vascular systems. Hhex operates as a transcriptional

repressor, in combination and in conflict with various other
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transcription factors and developmental proteins depending on the

organism, but consistently in relation toWnt/b-catenin signalling which
appears to govern Hhex expression. Bmp is also consistently repressed

by Hhex expression in mice, fish and amphibians, with the observation

yet to be made in humans. Whilst in humans and mice, Shh is able to

repress Hhex expression. These fundamental roles of Hhex in the

formation of key organs and tissues in the developing embryo,

foreshadow a continuing importance of Hhex in haematological and

endocrinological diseases as discussed below.
3 Role of Hhex in HSC development
and maintenance

As its name suggests, Hhex plays a central role in haematopoiesis

in vertebrates with its haematopoietic expression detected across fish,

amphibians, birds and mammals (1, 3, 62). The first haematopoietic

progenitors found within the developing embryo are within the initial

site of primitive haematopoiesis within the liver, the haemangioblast,

and Hhex is essential for its development (80). Early studies revealed a

high level of Hhex expression across many branches of haematopoiesis

including within myeloid and erythro-megakaryocytic progenitor

cells, with both lineages downregulating Hhex with differentiation,

as well as within B cells, Natural Killer (NK) cells, dendritic cells (DCs)

and immature T cell progenitors in the thymus (6, 7, 81). Whereas

another study showed that, conversely, Hhex overexpression in

haematopoietic progenitor cells results in a failure to contribute to

mature blood lineages (82). An important role for Hhex was also

demonstrated in erythropoiesis, specifically with regard to the globin

genes, where Hhex is upregulated, along with Id2, in high-foetal

haemoglobin conditions in human erythroblasts (83). Creation of

murine Hhex KO ESC cocultures, where haematopoietic progenitor

cells (HPCs) developed in vitro, showed that loss of Hhex delayed

haemangioblast formation and caused an accumulation of CD41+ and

CD41+/c-Kit+ cells, thought to be the earliest HPCs, as well as

impairing further haematopoietic development by impeding their

proliferation (84).

Our own studies revealed that Hhex was essential for murine

HSC self-renewal and emergency haematopoiesis following

myeloablation (85). In these settings, Hhex directly represses

Cdkn2a via PRC2 complex-mediated repression, in a similar

mechanism as observed in acute myeloid leukaemia (AML) (85,

86). Cdkn2a is highly upregulated when Hhex is deleted in both

HSCs and AML, and the absence of Cdkn2a rescues the defective

HSC self-renewal and emergency haematopoiesis observed in Hhex

KO mice (Figure 3) (85, 86). The repression of Hhex, and resultant

expression of Cdkn2a and Cdkn1b, was also noted to be necessary

for osteoclastogenesis in mice, indicating similar relationship

between Hhex and cyclin dependent kinase inhibitors in the

context of osteoclasts (87).

Within both the embryo and adult, an evolutionarily conserved

non-coding region in the Hhex locus was found to bind the

important HSC transcription factors Gata2, Scl, Fli1, Pu.1 and

Ets1/2 and to be essential for HSC development, haematopoiesis
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and homeostasis (88). The methyltransferase SETD8 was shown to

be an erythroid specific repressor of Hhex, along with Gata2 and

Hlx, with Hhex being upregulated when SETD8 was deleted (89).

These studies collectively illustrate the key role of Hhex in adult

HSCs and haematopoiesis, continuing from Hhex’s necessity in the

haemangioblast of the developing embryo. The repression of

Cdkn2a via PRC2 by Hhex is central to its function and Hhex

appears to utilise this mechanism in the context of AML. Being able

to inhibit Hhex may therefore be a clinical strategy in the context of

some haematological malignancies.
4 Role of Hhex in lymphopoiesis

Several laboratories have now shown that Hhex plays a pivotal

role in lymphopoiesis. The impaired B cell development exhibited in

Hhex null mice was first reported in the context of a RAG1-deficient

blastocyst complementation system which circumvented the

embryonic lethality of Hhex KO mice (90). This study noted

deficiencies in mature B cells, pre-B cells and CD5+ B cells as well

as the presence of a CD19+B220- aberrant B cell population within the

bone marrow of Hhex KO mice (90). Moreover, studies using Lck-

Hhex transgenic mice showed that overexpression of Hhex in T cells

impacted their development, demonstrating that downregulation of

Hhex is necessary for normal T cell development (91).

A critical role for Hhex in early murine lymphopoiesis was most

clearly demonstrated using haematopoietically inducible KO mice

and competitive bone marrow transplantation assays, where the

absence of Hhex blocked lymphoid cell development beyond the

common lymphoid progenitor (CLP) cell stage (81). This defect in

lymphopoiesis was characterised by the formation of a Pro-B-like

aberrant (CD19+B220-) B cell population which was defective in IL-

7/Stat5 signalling capacity with an increased level of apoptosis in the

few remaining B cell progenitors (81, 92). However, expression of

constitutively active Stat5 transgene failed to rescue the defective

lymphopoiesis observed in the absence of Hhex, indicating that

defective IL-7 signalling in this context was not the primary cause of

the lymphopoietic defect observed (93). In contrast, transgenic

expression of the potent anti-apoptotic molecule, Bcl2 was able to

restore normal lymphopoiesis in Hhex null mice, both in vitro and

in vivo, thus showing that Hhex plays a key role in inhibiting

apoptosis during lymphopoiesis (Figure 3) (93).

Hhex-null CLPs exhibited downregulation of the cell cycle gene,

Cyclin D1, which was shown to play a key role in the lymphoid

developmental block, as retroviral overexpression of Cyclin D1

rescued lymphopoiesis in vitro (Figure 3) (81). Interestingly, in

the human myeloid cell line (U937), Hhex was a reported as a

negative regulator during translation of eIF4E protein, which in

turn inhibited eIF4E-dependent transport of Cyclin D1 mRNA

within the cell (23, 94). It was also demonstrated by the same

laboratory that loss of Hhex resulted in aberrant nuclear function of

eIF4E, where eIF4E is normally required for nuclear transport of

Cyclin D1 mRNA into the cytoplasm (23, 94), a process stimulated

by HOXA9 (24). Additionally, whilst the crucial cell cycle inhibitor

Cdkn2a was observed to be upregulated in the absence of Hhex, its
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absence did not restore the impaired lymphopoiesis observed in the

Hhex null mice, thus collectively suggesting that regulation of cell

cycle is not the primary role of Hhex in the context of lymphoid

development (93).

Beyond lymphoid development, Hhex plays specific

downstream roles in both T regulatory cells (Tregs) and NK cells.

The expression and function of Foxp3, the critical transcription

factor required by Tregs, is negatively regulated by Hhex, which

binds directly to the Foxp3 locus, with Hhex overexpression

resulting in a failure to suppress the immune response in murine

models of Treg function (95). In contrast, TGF-b/Smad3 signalling,

which promotes Treg activity, was found to downregulate normal

Hhex expression in Tregs (95). In the context of NK cells, repression

of Hhex expression is required for normal development (96).

Conversely, Hhex was shown to directly repress the expression of

the pro-apoptotic protein BIM to allow normal NK cell

survival (97).

Recently, Hhex, in concert with transcriptional corepressor

TLE3, was also revealed to be a key regulator of germinal centre

B cells developing into memory B cells through induction of the

transcription factor Ski (98). The absence of Hhex in memory B

cells resulted in an upregulation of Bcl-6, which was also shown to

directly repress Hhex in germinal centre B cells (98). Similar to its

function in CLPs, the Bcl-6 target gene, Bcl2 was able to rescue the

Hhex KO phenotype in memory B cells (Figure 3) (98). This

suggests that the significant role of Hhex in maintenance of cell

survival remains important throughout B cell development.
5 Role of Hhex in leukaemia

Given the vitally important role of Hhex in haematopoiesis, it is

no surprise that Hhex has increasingly revealed itself as playing a

fundamental role in both the development and maintenance of

various haematological malignancies, most notably in the context of

T-ALL and AML. Upregulation of Hhex expression was first seen in

the peripheral blood of B cell leukaemia patients (99) and

dysregulation of Hhex was then subsequently suggested to be a

contributing factor to B cell leukaemogenesis (7). Hhex was found

to induce murine B cell leukaemia in the AKXD model as a

consequence of retroviral insertion upstream of Hhex and mEg5

(100). In this system, both Hhex and mEg5 were upregulated

following retroviral insertion but only Hhex was expressed highly

in these samples (100). Subsequent studies using bone marrow

transplants in lethally irradiated recipient mice of retrovirally

overexpressed Hhex in HPCs showed Hhex induced T cell

lymphomas (82).

Whilst these findings indicate the potential involvement of

Hhex in B and T-cell leukaemogenesis, in the case of lymphoma

one group noted a clear reduction in Hhex expression in all human

B cell lymphoma classes they tested, with the exception of

oncogenic activation (101). Indeed, in some primary cutaneous T

cell lymphoma (CTCL) patient samples HHEX was shown to be

deleted (102). Specifically, the deletion of HHEX via a 10q23.33-

10q24.1 chromosomal deletion resulted in a loss of heterozygosity
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in about half of the patient samples, thereby being suggestive of a

role for HHEX in the aetiology of CTCL (102). Although, in the

context of anaplastic large cell lymphoma (ALCL), HHEX was not

observed to drive the pathogenesis of disease, as its overexpression

induced apoptosis and differentiation and its expression was

repressed by TGFb/SMAD-pathway in ALCL cell lines (103).

The utility of Hhex has also been strongly established in the

development of T-ALL in both mice and humans. The clearest

evidence for this was shown in a murine model Lmo2-induced

leukaemia in mice and T-ALL patient samples, where it was

revealed upregulation of Hhex as an integral part of a broader

induction of an HSC transcriptional programme and where Hhex

could additionally phenocopy the action of Lmo2 in early

leukaemogenesis (Figure 3) (104). In a study using Rag-deficient

NOD mice, T-ALL initiation was potentially caused by the loss of T

cell progenitor checkpoint regulation, with induction of a HSC gene

programme including Hhex, as well as Lmo2, Lyl and Kit (105).

Indeed, the +1 enhancer element of HHEX was shown to be directly

bound by LMO2/FLI1/ERG in human T-ALL (14). HHEX was also

observed as a direct transcriptional target of LMO2 in human early

T-cell Precursor (ETP)-ALL (106). The same group also found

CD2-Lmo2 transgenic mice required Hhex to be expressed for

development of T-ALL, implying Hhex as a crucial mediator of the

oncogenic functions of Lmo2 (106). We also observed that Hhex is

required for the radio-resistance of Leukemic Stem Cells (LSCs) in a

similar mouse model of human ETP-ALL (107).

Deacetylation treatment was also observed to downregulate

Lmo2 expression and its target Hhex in T-ALL (108). Ldb1 and

Lmo2 were also reported to bind the promoters of Hhex, Lyl1 and

Nfe2, resulting in their upregulation in HSPCs and human ETP-

ALL cell lines, as well as pre-leukaemic Lmo2 transgenic

thymocytes in the murine Lmo2-induced T-ALL model (109).

Induced deletion of Ldb1 conversely downregulates Hhex

expression in murine T-ALL (109). Hhex was observed to be

repressed by NKK-3 in human T-ALL samples. The same group

noted that HHEX activated AUTS2, part of the chromatin

modulating PRC1 complex, which in turn mediated MSX1

expression (110). Collectively, these studies underscore the

interplay between other transcription factors, especially Lmo2 and

its binding partners Ldb1 and Lyl1, in regulating the expression of

Hhex leading to the development of T-ALL.

Dysregulation of Hhex is also well-documented in terms of its

involvement in AML where nuclear Hhex was downregulated,

whilst eIF4E was upregulated (23). Use of CD11c-Hhex

transgenic mice revealed that high levels of Hhex during myeloid

development may induce myeloid leukaemia, with higher cell cycle

rates observed, although leukemogenesis was slow (18 months of

age), implying that further mutation(s) were required in addition to

Hhex overexpression (91).

Another group discovered an AML patient with a NUP98/

HHEX chromosomal translocation as the only cytogenetic

aberration and made a murine version of this genetic lesion

(111). With a 9-month latency, the bone marrow bearing this

lesion gave rise to a transplantable acute leukaemia, bearing

similar gene dysregulation found in the more clinically common
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homeobox gene fusion NUP98/HOXA9 translocation (111). AMLs

driven by NUP98-Hhex fusion, along with other NUP98-

oncoprotien fusions, exhibit an induced aneuploidy via a

weakening in the mitotic spindle checkpoint (112). Indeed, in the

most commonly observed form of numeric aneuploidy in AML,

trisomy 8, the HHEX gene body is repressed by hypermethylation

and may serve as a potential diagnostic feature of the disease (113).

Hhex overexpression was also detected in AML patients with the t

(8, 21)(q22;q22) translocation and studies in Kasumi-1 cells, a

leukaemic cell line which bears the 8:21 chromosomal

translocation, showed that Hhex was required for their survival

(114). These observations point to Hhex, and other Hox genes, as

being both gene fusion partners and drivers for the promotion of

AML development.

In the K562 myelogenous cell line, Hhex was shown to influence

leukemogenesis through repression of VEGF via its promoter

region, but required TLE co-repression to mediate its function

(115). Dasatinib, a BCR-ABL/Src kinase inhibitor, reduced

phosphorylation of Hhex, which in turn allowed Hhex-mediated

repression of VEGF and VEGFR-1 leading to a reduction in cell

survival (116). In the context of Acute Pro-myelocytic Leukaemia

(APL) analysis of 18 patients showed PML-RAR-a reduced HHEX

expression by targeting its promoter, which then downregulated

VEGF-A, and thus the pro-angiogenic response in APL (117).

We have shown using a murine model of AML, specifically MLL-

ENL, that Hhex was required for both the initiation and propagation

of AML, with loss of Hhex resulting in the upregulation of p16INK4a

and p19Arf, leading to myeloid differentiation and growth arrest (86).

Mechanistically, we demonstrated that Hhex represses PRC2-

mediated epigenetic repression of Cdkn2a by binding to the

Cdkn2a locus and directly interacting with the PRC2 to enable

H3K27me3-mediated epigenetic repression (86). Hhex was also

observed to be a direct target of Runx1, a transcription factor with

known tumour-suppressor function, where Hhex combined with

Flt3-ITD to induce AML in mice (Figure 3) (118). Hhex

expression, in combination with a mutant form of additional sex

combs-like 1 (Asxl1) an epigenetic modulator often mutated in

myeloid leukaemia, was also found to enhance Runx1-ETO and

Flt3-ITD-driven myeloid leukaemia via upregulation of Myb and

Etv5 in mice (119). We also observed that Hhex overexpression

induced self-renewal of murine IL-3 dependent promyelocytes in

vitro (120). Moreover, this function of Hhex required nuclear

localisation and structure function analysis demonstrated a

requirement of the DNA-binding and N-terminal–repressive

domains of Hhex for promyelocytic transformation (120). Despite

Hhex containing a PML-interaction domain (Figure 1), it did not

require PML for transformation, nor did it require p16INK4a and

p19Arf indicating Hhex did not require PRC2-mediated epigenetic

repression for this particular process unlike what we observed for the

induction of AML (120). Nevertheless, Hhex could still cooperate

with growth factor (IL-3) independence to cause pro-myelocytic

leukaemia in mice (120). It is increasingly clear that Hhex plays

a vital, but context dependent, role in the pathology of AML,

but typically requires cooperative mutations in growth factor

signalling pathways.
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In summary, across multiple types of haematological

malignancy, Hhex appears to be a key player in the disease

development. Whilst technically challenging, greater focus should

be placed on developing effective ways to target Hhex and its

interacting partners in leukaemia patients. There would be clinical

benefit in being able to effectively drug Hhex, and related

transcription factors, particularly in the context of AML, where in

many countries an aging population is resulting in a dramatically

increasing disease burden of AML, and where existing therapies are

currently limited and suboptimal.
6 Role of Hhex in solid cancers

In addition to Hhex’s well-established roles in leukaemogenesis,

it has been reported to contribute to the development of a range of

solid tumours including those with endocrine functions such as in

the breast, prostate and thyroid, as well as the liver, cervical and bile

duct cancers.

Several studies point to Hhex playing an important part in the

development of breast cancer. Hhex is expressed in breast epithelial

cells, with its intracellular localisation regulated and altered by

malignancy of these cells (121). Hhex was also noted to upregulate

the NIS (sodium iodine symporter) promoter which is specifically

upregulated in breast tissue with lactation (121). Work using a

breast cancer cell line (MCF-7) showed that Hhex transcriptionally

controlled endoglin and inhibited cell migration (122). Subsequent

work from the same laboratory reported that siRNA Knock Down

(KD) of Hhex in breast cancer cells enhanced their proliferation in

part due to VEGF signalling (Figure 3) (19, 123). Moreover, Hhex

overexpression impaired breast tumour growth in mice, which may

help explain the poor prognosis which is associated with breast

cancer patients exhibiting low Hhex expression (123). HHEX

expression was also confirmed to be lower in human breast

cancer compared to pre-cancerous tissue, potentially contributing

to the worse clinical outcomes observed in breast cancer patients

bearing low levels of HHEX expression (124, 125). In addition, type

2 diabetes (T2D) single nucleotide polymorphisms (SNPs) in Hhex

(rs11187146) and Cdkn2a/b (rs1333049) were linked as being as

additive risk factors in likelihood of developing and dying from

breast cancer in an American patient cohort (126). Overall, these

studies suggest that lower Hhex expression is a poor prognostic

indicator in breast cancer and further study is needed to better

understand its function in this disease.

In prostate cancer, the protein kinase CK2 was shown to impede

Hhex by phosphorylation-induced inhibition of Hhex’s DNA

binding, allowing increased proliferation and migration of

prostate cancer cell lines (127). In addition, inhibition of CK2

blocked Hhex phosphorylation resulting in reduced cell

proliferation (127). The same laboratory previously suggested that

Hhex controlled the expression of endoglin in the inhibition of

prostate cancer cell line migration (123). In the prostate cancer cell

line PNT2-C2, TGF-b signalling downregulated Hhex expression,
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whilst also increasing Hhex phosphorylation (Figure 3) (128).

Additionally, when looking at another endocrine organ, the

thyroid, and given the vital role Hhex plays in its development, it

was perhaps unsurprising to find Hhex reported as highly expressed

in thyroid patient tumour samples with nuclear localisation (129).

It may be expected, given its important role in development of

the liver, that Hhex may play a role in cancer development and

progression within this organ. Indeed, the absence of Hhex appears

to be necessary for the progression of hepatocellular carcinoma

(HCC) with Hhex overexpression increasing known tumour

suppressor genes p53 and Rb, whilst downregulating c-Jun and

Bcl2, well known proto-oncogenes (130). These observations also

correlated with reduced tumorigenicity in mice, with Hhex

expression denoting poorly differentiated HCC, suggesting that

absence of Hhex expression may serve as a biomarker of HCC

progression (130). Studies of HCC have also revealed that Hhex

interacts with the potent oncogenic transcription factor, c-Myc

(131). KD of Hhex using siRNA showed increased proliferation in

HCC (131). Whilst c-myc drives metabolism and proliferation,

Hhex appears do the opposite, causing decreased c-Myc activity and

reduced tumour growth in a murine xenograft model of HCC (131).

However, another study found that Hhex was nevertheless

expressed in the majority of HCC cell lines (132).

In cholangiocarcinoma (CCA), more commonly known as bile

duct cancer, Hhex was also found to be highly expressed and to

operate in a positive feedback loop with Notch3, which itself is

important in CCA, as well as inducing Wnt signalling (133). CCA

tumour growth was reduced with siRNA KD of Hhex in a xenograft

model, and Hhex overexpression in cholangiocytes increased their

proliferation (133). Interestingly, whilst Hhex is suggested to be a

positive regulator in the context of bile duct cancer, in contrast it

appears to operate as a negative regulator in the context of liver

carcinoma, which may hint at the underlying of role of Hhex in

embryological development of these two organs.

The importance of the methylation status of the Hhex gene was

noted in melanoma patients, where those with hypermethylated Hhex

exhibited significantly worse levels of overall disease-free survival, as

well as disease specific survival and lymph node metastasis, compared

to patients with hypomethylated Hhex gene (134). The methylation

status of Hhex was also shown to be relevant in cervical squamous cell

carcinoma (CSCC), where hypomethylated HHEX was also observed

as a positive prognostic indicator in patients (135). Moreover, another

study uncovered HHEX as a potential biomarker in CSCC, speaking

to its importance in the pathology of the disease (136).

In summary, in addition to Hhex’s well-established role in

haematological malignancy, the absence of Hhex, and in some

settings its overexpression, serves as important drivers of solid

tumour development, potentially stemming from its role in the

embryological development of the organs from which the cancer is

derived. These observations suggest that a better understanding of

how Hhex mediates its normal developmental as well as its aberrant

tumour-promoting functions may aid the development of more

targeted therapeutics for cancer patients.
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7 Role of Hhex in pancreas
and diabetes

As previously discussed, Hhex plays a vital role in the

embryological development of the organs of the vertebrate foregut

including the pancreas. Moreover, Hhex also remains functionally

relevant in the pancreas in the adult organism. Specifically, it was

revealed within adult pancreas that Hhex is expressed in

somatostatin-secreting delta cells (137). Use of two mouse models

of pancreatic deletion of Hhex showed it is needed for pancreatic

development (137). Moreover, decreased somatostatin in Hhex KO

pancreatic islets caused impaired paracrine inhibition of insulin

released from beta cells (137). In beta cells the Hhex locus is

targeted by Lsd1 which facilitates H3K3me1/2 methylation-

mediated repression of Hhex preventing beta to delta cell

transition (Figure 3) (138). This suggested that compromised

paracrine control may be partly responsible for T2D through the

acceleration of beta cell exhaustion and failure (137). Hhex RNA

and protein was also revealed in humans as being highly expressed

in the pancreas, specifically the islets, exocrine acini and ductal

epithelium, but not detected at significant levels in liver

parenchyma and colonic epithelium (139). The overexpression or

KD of Hhex in Xenopus showed that it is essential for the ventral

pancreas formation, via Vpp1 expression in ventral pancreatic

progenitor cells, as well as liver development (140). This finding

was also verified in Drosophila in that Hhex is equally important in

glucose metabolism, as revealed in tissue specific KD studies (141).

Increasingly, and perhaps unsurprisingly, Hhex has been

observed as a notable risk factor in a number of endocrinological

and metabolic diseases that involve the pancreas. A number of

allelic SNPs (rs1111875, rs5015480 and rs7923837) within the Hhex

gene have been implicated to varying degrees as T2D risk factors,

with a Genome-Wide Association Study (GWAS) linking

rs5015480 with gestational diabetes mellitus with these studies

and meta-analyses showing that the ethnic background of the

patient population is the most important factor as to whether a

Hhex SNP risk factor allele applies and to what extent

(Supplementary Table 1) (142). Indeed, a study of T2D patients

using ATAC-seq also detected Hhex in open chromatin peaks,

amongst other candidate genes associated with T2D and islet

dysfunction (143). In murine studies, Hhex may potentially play a

broader role in metabolism beyond the pancreas, such as in the liver

which was shown to have high Hhex expression, but which

decreased in response to high fat feeding (144). This study

however also conflicts with that of Costapas et al, who reported

that pancreatic islets exhibited lower Hhex expression (139, 144).

Nevertheless, the modulation of Hhex expression within the liver in

response to dietary metabolism suggests that Hhex SNPs may play a

relevant role as a risk factor in T2D susceptibility (144).

Interestingly, Hhex may function in the pancreas via a similar

fashion to that which was observed in HSCs and leukaemia, by

directly repressing Cdkn2a, as a consistent SNP in the Cdkn2a gene

(rs10811661) is often concurrent with SNPs within the Hhex gene

as well-established risk factors in the development of T2D

(Supplementary Table 1). Indeed, in a study of T2D patients

Hhex and Cdkn2a polymorphisms were detected in about half of
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patients, where it was shown a CpG site was introduced or removed

associated with the differential methylation the SNP-CpG site of

Hhex in pancreatic islets (Figure 3) (145). Moreover, Cdkn2a, along

with several other genes, was also associated with both differential

methylation of DNA of the CpG-SNP site within islets and the

DNA methylation of surrounding CpG sites, suggesting that this

may be a molecular means by which Hhex SNPs associated with

T2D mediate their effect in patients (145).

There were also conflicting separate studies regarding the role of

T2D SNPs affecting low birth weight when inherited by the

offspring (Supplementary Table 1). Given the role of Hhex SNPs

in T2D and glucose metabolism, its influence on the risk of T1D

development, polycystic ovary syndrome (which shares an insulin

resistance link with T2D) and metabolic syndrome was also

explored in humans with studies revealing no such link from

several GWAS studies (Supplementary Table 1). Interesting

though, Hhex’s association with T2D, which extends to high body

weight index, may also have further a role in adipocyte development

in vitro where lack of Hhex impairs expression of PPAR-gamma

protein and impedes adipogenesis (146). Based on the evidence

produced thus far, Hhex does not appear to play a role in birth

weight, PCOS, metabolic syndrome or T1D development despite a

clear relationship with glucose metabolism in T2D, but it may be

involved in adipocyte development.

Several studies have hinted at how Hhex may be regulated and

which functions it performs within the pancreas. Hhex is

upregulated in human islets by gastrin hormone treatment (50)

and Aldh1a2 KD reduced Hhex expression, along with Prox1, in the

pancreas and liver (147). Using hESCs it was shown that Hhex,

along with Pax6, may be repressed by Aristaless related homeobox

(ARX) in that ARX KO pancreatic progenitor cells exhibited an

upregulation of Hhex and conversely when ARX was re-expressed,

Hhex was then downregulated (148). Whilst Hhex is not required in

ductal cell function of adults, KD of Hhex in pancreatic progenitor

cells can cause pancreatitis (149). However, Hhex is vital in early life

for maintenance of ductal homeostasis and allowing ductal

hypersecretion as a cause of chronic pancreatitis in children

(149). Ferreira et al. went on to show that the G-protein coupled

receptor Npr3 is repressed by Hhex and thereby the potential

secretion by ductal cells (149). Within islets, delta cell specific-

Hhex was shown to control cAMP and concentration of

intracellular calcium via histone post-translation changes, which

in turn modulates Cav1.2 calcium channel and adenylyl cyclase 6

(AC6) and secretion of somatostatin (150). These histone

modifications that epigenetically control secretion of somatostatin

within islets were mediated by a super complex composed of the

Cullin 4B-RING E3 ligase (CRL4B) and interestingly, the PRC2

methyltransferase complex (Figure 3) (150).

The strong association of SNPs risk factors in T2D for both Hhex

and Cdkn2a across a broad spectrum of human ethnicities, combined

with observations that epigenetic modifications made via Hhex

within pancreatic islets involve PRC2, are tantalising. This strongly

suggests that Hhex’s well-documented function in HSCs and

leukaemia via PRC2-mediated repression of Cdkn2a may also be

one of its primary roles in the adult pancreas. However, further

research is still required to resolve this hypothesis more conclusively.
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8 Role of Hhex in endocrinology

Perhaps unsurprisingly given its important role in the

developing thyroid gland and pancreas in the embryo, Hhex

continues to play an important part in the endocrine system and

in endocrinological diseases. The expression of Hhex was observed

in both early undifferentiated thyroid cells and in the adult thyroid

gland of both rats and humans, as well as in differentiated follicular

thyroid cell lines (151, 152). Cells of the thyroid line FRTL-5

decreased their levels of Hhex expression in response to thyroid

stimulating hormone (TSH) (152), with another study in

differentiated human thyroid cells reporting that Hhex was not

required for thyroid-specific gene expression induced by TSH (153).

The thyroglobulin promoter was shown to be repressed by Hhex,

which in turn blocked the activation of thyroid transcription factor-

1 (TTF-1, also known as NKX2-1) and Paired box 8 (Pax8)

(Figure 3) (152). In a subsequent publication, the same laboratory

noted that TTF-1 enhanced the promoter activity of Hhex in rat

FRTL-5 cells, and that the mRNA of both TTF-1 and Hhex was co-

expressed in human thyroid tissues (154). In another report

following on from that work, Puppin, et al, identified a

relationship between Pax8 and Hhex, where Pax8 induced Hhex

protein expression in a thyroid cell line and induced Hhex promoter

activity in non-thyroidal cell lines (155). Hhex, along with Pax8,

Foxe1 (Forkhead Box E1, also known as TTF-2) and E-Cadherin,

were also observed to be downregulated in response to the

functional inactivation of TTF-1 in PCCI3 thyroid cells (156).

Whilst Hhex has minimal impact on thyroid specific gene

expression (153), Foxe1 is required for NIS expression as shown

in FRTL-5 cells (157). And it is also worth noting that Hhex

upregulates the NIS promoter within breast tissue (121),

suggesting a potentially similar mechanism of function for Hhex

within both the breast and thyroid. Indeed, in the precursor cells of

developing thyroid Hhex, along with Pax8, TTF-1 and Foxe1,

operate in a highly inter-related network governing normal

thyroid development (Figure 3) (35, 158, 159). Collectively, this

research clearly shows the close relationship between the

transcription factors Hhex and Pax8 in regulating TFF-1

expression to govern thyroid function.

Potentially conflicting reports exist showing that Hhex was

absent in oncogene-transformed thyroid cell lines (Pellizzari,

2000), however another study from the same laboratory showed

that Hhex was actually highly expressed in thyroid tumour samples

from patients and concentrated within the nucleus (129, 152).

Hhex, along with notably Pax8 and NIS amongst other thyroid

specific genes, was also observed to be significantly decreased in

patients in both benign thyroid tissues and carcinomas suggesting a

potential involvement in a de-differentiation process (160).

Given the well-established role of Hhex in thyroid development

within the embryo, the effect of mutations within Hhex was

examined. Although Hhex mutations were found to not be a

driver of thyroid dysgenesis (TD), PAX8 R52P mutation was

implicated (161). Whilst another group subsequently examined

the thyroid tissue of Chinese children suffering from TD for

Hhex mutations (162), they also failed to show any link between
Frontiers in Immunology 1156
Hhex mutations and TD, along with FOXE1, TTF-1 and PAX8, but

still observed a correlation with the intronic mutation rs2275729,

although owing largely to the small study size, further work is

required to determine its potential importance (162). In addition,

heterozygous Hhex mutations were detected in a small fraction (8/

110) of congenital hypothyroidism patients which ultimately went

on to develop TD (163).

The adrenal gland may also have a requirement for Hhex, with a

meta-analysis of patients detecting a Hhex SNP (rs2497306)

associated with levels of serum dehydroepiandrosterone sulphate

(DHEAS), which is produced by the adrenal gland and associated

with aging (164). Moreover, the rs2497306 SNP was also observed

to be negatively associated with serum DHEAS levels of female RA

patients (165). Additionally, the mild endocrine disruptor DDT

(Dichloro-diphenyl-trichloroethane) was found to disrupt the

Hhex-mediated regulation of cellular proliferation within rat

adrenal cortex (166). These observations collectively suggest a role

for Hhex in regulating processes within the thyroid and adrenal

glands that warrant further investigation.
9 Miscellaneous roles of Hhex in
neurological and other diseases

A number of studies have examined the potential role of Hhex

in Alzheimer’s Disease (AD) in terms of SNPs that are known to be

risk factors in T2D. However, several GWASs ultimately concluded

that Hhex SNP rs1544210 was not specifically associated with late-

onset AD (167–169). However, another meta-analysis found whilst

Hhex SNP rs1544210 was not statistically significant in analysis of

their 3 included studies (p=0.04, 0.09 and 0.29), there was a trend

towards association with late-onset AD susceptibility (170). In a

European patient cohort study of 110 candidate polymorphisms,

Hhex SNP rs1111875, a major risk factor in T2D, was found to be a

highly significant risk factor (p<0.00001) for AD, but only with the

accompanying GSTM3 (rs7483) SNP (171). Whereas in a Korean

population it was shown that Hhex polymorphisms observed in

T2D (rs1111875 and rs5015480) were not associated with AD or

Parkinson’s Disease (PD) (172), Hhex T2D SNP rs1544210 was

associated with greater dementia and AD risk in a Swedish

population (173).

Simpson et al. investigated how Hhex may influence neuronal

biology, noting that Hhex had broad expression in CNS neurons in

adults, including neurons of the corticospinal tract following spinal

damage, and was amongst the most potent inhibitors of neurite

growth (61). However, in adults Hhex expression was substantially

reduced in immature cortical and peripheral neurons (61). In early

immature cortical neurons, Hhex overexpression impaired both the

initial axonogenesis including the axonal elongation growth rate

with domain deletion analysis suggesting Hhex acted in this context

as a transcriptional repressor (61). In the context of multiple

sclerosis (MS), the HHEX SNP rs7923837, is a known risk factor

of the disease (174). This observation may be related to more

metabolically active lymphocytes in the blood of MS patients, which

also express significantly less HHEX, but also bear far greater
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nuclear rs7923837 SNP Hhex, when compared to healthy controls

(174). Recently, the microglia of mice were shown to decrease their

Hhex expression when socially stressed or administered with

agonists to TLR-2 and TLR-4 (175). Conversely, Hhex

overexpression dampened the expression of inflammatory genes

associated with TLR-4 induction, collectively suggesting that Hhex

may be repressed by inflammatory signals (TLR-2/4) which can

then contribute to neuro-inflammation in microglia (175). These

findings suggest the potential of therapeutic intervention targeting

Hhex in the treatment of neuro-inflammation in certain

disease settings.

There are also a number of reports of Hhex function in various

aspects of physiology including angiogenesis, milk production,

muscle and lung function, as well as various diseases including

psoriasis, hepatic and gallstone disease. In a study of milk

production in dairy cows Hhex was reported to be targeted by

miR-148 and regulate VEGFA, NRP1 and MYH10 with these genes

in turn targeted by miRNAs miR-186, miR-148 and miR-141/200a

respectively (176). A potential role for Hhex in terms of lactation,

specifically protein localisation, was noted in vitro and Hhex may

also play a role in mammary cell differentiation and tumorigenesis

(121). In lung fibroblasts, Hhex expression was induced in response

to TGF-b1, as was miR-21-3p which targets Hhex (177).

In muscle, Hhex was observed to upregulate gene expression of

SMemb/Non-muscle Myosin Heavy Chain-B via the cAMP-

Responsive element (178). In vascular smooth muscle cells, Hhex

overexpression promoted G0/G1 to S-phase cell cycle transition,
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inducing cell cycle genes including CDK2, CDK6, CyclinB2 and

CyclinD2, and inhibiting apoptosis, with the authors linking this to

a potential role in vascular proliferative disease (179). Indeed,

another study noted Hhex promoted vasculogenesis via VEGF as

it was associated with increased vascular density in a rat model of

stroke (180). In the skin lesions of psoriasis patients, Hhex mRNA

and protein was found to be significantly lower in mesenchymal

stem cells which suggested a role for Hhex in angiogenesis via its

known influence on the VEGF signalling pathway (181, 182).

Hhex was also shown to be a novel bile acid-induced FXR/Fxr

target gene following chronic bile acid exposure in hepatocytes with

the FXR/Fxr binding to a conserved intronic enhancer in both

human and mouse Hhex (183). The prevalent Hhex T2D risk factor

SNP rs1111875 was found to be significantly associated with

development of gallstone disease and is suggested as a potential

biomarker (184). Additionally, Hhex was shown to be necessary in

the formation of hepatic cysts of the bile duct in a liver conditional

KOmodel in mice, resulting in increased expression of PC1/2 in the

absence of Hhex (185). These data suggest Hhex may play an

important role in various liver diseases.

These seemingly disparate involvements of Hhex in various

organs and tissues all likely hint at a continuation of the utility of

Hhex beyond embryonic development (Figure 4). For example,

Hhex was noted as playing an important role in the development of

liver, vascular endothelium and forebrain which may link to the

reported observations above. Hhex may well also have

undocumented functions in breast, muscle and myelination
FIGURE 4

Anatomical overview of Hhex in normal human physiology and disease. Acute Myeloid Leukaemia (AML), Gestational Diabetes Mellitus (GDM),
Haematopoietic Stem Cell (HSC), Hepato-Cellular Carcinoma (HCC), Type II Diabetes (T2D), T cell Acute Lymphoblastic Leukaemia (T-ALL). Created
with BioRender.com.
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during embryology. Further research into the Hhex’s functions in

both development of the embryo and adult will elucidate more

clearly if its functions are maintained in the adult or whether it is

redeployed in additional roles.
10 Conclusions/perspectives

This review reveals that Hhex is a crucial transcription factor

throughout vertebrate evolution and the lifespan of the organism from

embryo to adult. Hhex acts as a powerful transcriptional repressor,

notably of PRC2 target genes such as Cdkn2a in HSCs, leukaemia and

potentially in diabetes, given that SNPs in Hhex are typically noted as

a risk factor alongside Cdkn2a. Hhex also plays a distinct role in

maintaining pro-survival genes during lymphopoiesis. Additionally,

Hhex itself appears to be regulated during embryological development

by the Wnt/b-catenin signalling pathway in which it operates in a

positive feedback loop. Moreover, Hhex is reported to repress genes in

many other contexts including Eomes in hepatogenesis, Sox13 in the

foregut endoderm, ESM-1 in the vascular endothelium, VEGF in

vasculogenesis and cardiogeneisis, goosecoid in Xenopus anterior

identity and the thyroglobulin promoter governing TTF-1 and Pax8

in the thyroid gland (Figure 3). Many of the diseases where Hhex

manifests as a driving or contributing factor echo Hhex’s embryonic

functions within the affected organ, where Hhex continues to play an

important role. Thus, more extensive research into the exact role of

Hhex in haematological malignancies, solid tumours, diabetes and

thyroid diseases, may offer the greatest immediate benefits for diseases

where Hhex is already heavily implicated and greater therapeutic

intervention is still required. As such more broadly, further study into

Hhex’s precise mechanisms of action and direct binding partners may

contribute to tackling disruptions to embryonic development, diseases

of the adult endocrine system and malignancies.
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GATA3 induces the pathogenicity
of Th17 cells via regulating
GM-CSF expression
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T-bet-expressing Th17 (T-bet+RORgt+) cells are associated with the induction of

pathology during experimental autoimmune encephalomyelitis (EAE) and the

encephalitic nature of these Th17 cells can be explained by their ability to

produce GM-CSF. However, the upstream regulatory mechanisms that control

Csf2 (gene encoding GM-CSF) expression are still unclear. In this study, we found

that Th17 cells dynamically expressed GATA3, the master transcription factor for

Th2 cell differentiation, during their differentiation both in vitro and in vivo. Early

deletion of Gata3 in three complimentary conditional knockout models by Cre-

ERT2, hCd2Cre and Tbx21Cre, respectively, limited the pathogenicity of Th17 cells

during EAE, which was correlated with a defect in generating pathogenic T-bet-

expressing Th17 cells. These results indicate that early GATA3-dependent gene

regulation is critically required to generate a de novo encephalitogenic Th17

response. Furthermore, a late deletion of Gata3 via Cre-ERT2 in the adoptive

transfer EAE model resulted in a cell intrinsic failure to induce EAE symptoms

which was correlated with a substantial reduction in GM-CSF production without

affecting the generation and/or maintenance of T-bet-expressing Th17 cells.

RNA-Seq analysis of Gata3-sufficient and Gata3-deficient CNS-infiltrating CD4+

effector T cells from mixed congenic co-transfer recipient mice revealed an

important, cell-intrinsic, function of GATA3 in regulating the expression of Egr2,

Bhlhe40, and Csf2. Thus, our data highlights a novel role for GATA3 in promoting

and maintaining the pathogenicity of T-bet-expressing Th17 cells in EAE, via

putative regulation of Egr2, Bhlhe40, and GM-CSF expression.

KEYWORDS

GATA3, experimental autoimmune encephalomyelitis, Th17, pathogenicity, GM-
CSF, Bhlhe40
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Introduction

As an important part of the adaptive immune system, CD4 T

helper (Th) cells play central roles in orchestrating immune responses

to a variety of infections as well as during allergic and/or autoimmune

reactions via the production of unique sets of cytokines (1). In

response to foreign or self-antigen-laden antigen presenting cells,

naïve T cells differentiate into distinct Th effector lineages through a

combination of T cell receptor (TCR) activation and differentiating

cytokine cues. As a result, lineage-specific transcription factors are

induced and initiate the differentiation of specific Th effector cell

lineages. The master lineage transcription factors for each lineage are

T-bet (Th1), GATA3 (Th2), RORgt (Th17), and Foxp3 (Treg),

respectively (1, 2). For Th17 cell differentiation, IL-6, IL-21, and/or

IL-23 signaling induces the Th17-lineage transcription factor RORgt
via Stat3 activation, and RORgt then works in conjunction with the

pioneering transcription factors BATF/IRF4 and Stat3 to regulate the

expression of effector cytokines IL-17A and IL-17F (1, 3, 4). During

Th2 cell differentiation, a combination of TCR stimulation and IL-4-

Stat6 signaling is sufficient to drive GATA3 expression and the

production of Th2-related cytokines, including IL-4, IL-5, and IL-

13 (1). In the case of Th1 cell differentiation, TCR activation together

with IL-12- and/or IFNg-mediated signaling induces T-bet

expression and endow T-bet+ cells with the capacity to produce

IFNg (1).
However, the one-transcription factor-one fate model is over

simplified and there are many in vivo experimental contexts in

which multiple master lineage transcription factors can be co-

expressed (1, 2). In fact, GATA3 is expressed by all T cells at

various expression levels in vivo and its expression is tightly

regulated to an appropriate level for optimal T cell survival and

proliferation (1, 5). Additionally, there are multiple instances in

which GATA3 is co-expressed at intermediate or high levels with

other master-lineage transcription factors. For example, a subset of

colonic Foxp3+ Tregs can co-express either GATA3 or RORgt, and
GATA3/RORgt co-expressing cells have been observed in asthmatic

patients and models of allergic inflammation (6, 7). Additionally, in

a model of enforced expression of GATA3, de novo Th17 cell

differentiation was still able to occur, suggesting that GATA3 may

not intrinsically block RORgt+ Th17 cell differentiation (8).

Similarly, T-bet and GATA3 can be co-induced or co-expressed

during Th1 differentiation in vitro (9–11) and both can be expressed

dynamically in Tregs (12). Lastly, there are situations in which T-

bet and RORgt can be co-expressed. For example, T-bet+RORgt+

Th17 cells have been found in the gut and in the central nervous

system (CNS), where they are able to co-produce IL-17A and IFNg
(13–17). Thus, while the expression of primary lineage defining

transcription factors is critically required for the lineage

commitment of Th subsets, dynamic expression of the master

regulators of other lineages may endow the established cell

lineages with additional functions.

One experimental model in which T-bet+RORgt+ Th17 cells

have garnered significant attention is experimental autoimmune

encephalomyelitis (EAE), a mouse model of multiple sclerosis. In

EAE, a peripheral immunization with myelin oligodendrocyte
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glycoprotein peptide (MOG35-55) results in the generation of

several autoimmune demyelinating Th subsets, including T-bet–

RORgt+ (Th17), T-bet+RORgt+ (T-bet-expressing Th17), T-

bet+RORgt– (Th1) cells, which are all found in the CNS at the

peak of the disease. Several experimental lines of evidence have

shown that 2D2-transgenic in vitro polarized Th17 cells are

sufficient to induce EAE symptoms in transfer models. However,

neither Th1-related IFNg, nor Th17-related IL-17A, IL-17F, IL-21,

IL-22 cytokines are required to provoke EAE symptoms (18–21).

Instead, granulocyte-macrophage colony stimulating factor (GM-

CSF) has emerged as a key pro-encephalomyelitic cytokine that is

both required for EAE and is secreted by encephalitic Th17 and Th1

cells in the CNS (22–24). However, the exact mechanisms through

which GM-CSF-production is regulated within T cells are less clear.

IL-1b and IL-23 cytokine signaling are required for in vivo GM-CSF

production during EAE and the transcription factors c-Rel, NF-

kB1, RUNX1, RORgt, Bhlhe40 have been proposed to affect T cell

Csf2 expression (22–30). Of the aforementioned transcription

factors, Bhlhe40 is particularly noteworthy as it is induced within

T cells upon TCR stimulation and Bhlhe40-/- mice have been

demonstrated to be deficient in GM-CSF production in T cells in

vivo (31, 32). Thus, Bhlhe40-dependent GM-CSF production within

encephalitic T cells has emerged as a key pro-inflammatory

pathway in EAE, although the precise mechanisms through which

Bhlhe40 expression is regulated are currently unclear.

Innate lymphoid cells (ILCs), the innate counterparts of Th

cells, also express T-bet, GATA3 and RORgt, for the development

and functions of group 1 ILCs (ILC1s), ILC2s and ILC3s,

respectively (33). Like T-bet+RORgt+ Th17 cells, NKp46+ ILC3s

in the intestinal lamina propria also express both T-bet and RORgt
(34). Strikingly, GATA3 plays important role in the development of

NKp46+ ILC3s and regulates optimal production of IL-22 (35).

Since ILC and Th subsets often utilize similar transcriptional

machinery for their development and functions, we hypothesized

that GATA3 may also have an important function in regulating the

generation and functions of T-bet+RORgt+ Th17 cells.

Here we report that de novo differentiating Th17 cells

dynamically express GATA3 ranging from an early intermediate

level to a late low level. Complimentary experimental models

designed to probe the functions of GATA3 in EAE revealed that

while the early intermediate expression of GATA3 is dispensable for

the initial differentiation of Th17 cells, it is required to generate

encephalitogenic T-bet-expressing Th17 cells and to provoke EAE

symptoms. Interestingly, when Gata3 was deleted at a later stage,

following the generation of Th17 cells in the draining lymph node,

the re-transfer of these effector T cells in an adoptive transfer EAE

model revealed that the production of GM-CSF was drastically

reduced without affecting the overall proportion of IFNg/IL-17A-
producing T cells or relative T-bet-expressing Th17 cell

percentages. Further co-adoptive transfer experiments revealed

that the GATA3-mediated GM-CSF regulation effect was cell

intrinsic. Transcriptomic analyses through RNA-Seq revealed that

GATA3 regulated the expression of Bhlhe40 and Egr2 in a cell-

intrinsic manner. Together, these results suggest a novel regulatory

pathway involving GATA3, Egr2, Bhlhe40, and GM-CSF in EAE.
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Materials and methods

Mice

Gata3fl/fl [Taconic line 355 (36)], Cre-ERT2-Gata3fl/fl mice

[Taconic line 8445 (37)], Cd45.1/Cd45.2 C57BL/6 (Taconic line

8422), Cd45.1 C57BL/6 (Taconic line 7), Tcra-/- (Taconic line 98)

and C57BL/6 mice were ordered from the NIAID-Taconic

repository or the Taconic. hCd2CreGata3fl/fl mice has been

reported recently (38). Tbx21Cre mice [Jax line 024507 (39)] were

crossed with Gata3fl/fl mice to generate Tbx21CreGata3fl/fl mice.

RorcE2-Crimson mice (35) were crossed with Gata3ZsGreen (40) and

Foxp3RFP [Jax line 008374 (41)] reporter mice to generate

RorcE2CrimsonGata3ZsGreenFoxp3RFP triple reporter mice. 2D2 mice

were purchased from the Jackson Laboratory (JAX line 006912). All

mice were imported, bred, and housed within the National Institute

of Allergy and Infectious Diseases (NIAID) specific pathogen-free

animal facilities. Unless otherwise specified, all experimental mice

were used between 6-16 weeks of age under an animal study

protocol approved by the NIAID Animal Care and Use Committee.
In vitro CD4 T cell cultures

Naïve T cells (CD3+CD4+CD45RBhiCD25– from C57BL/6 mice

or CD3+CD4+CD45RBhiCD25–Foxp3–RORgt–GATA3– from

Gata3ZsGreenRorcE2-CrimsonFoxp3RFP mice) were isolated from

peripheral lymph nodes via cell sorting (FACSAria, BD

Biosciences). The isolated naïve T cells were subsequently

cultured under Th17 conditions (1 mg/ml anti-CD3; 2 mg/ml anti-

CD28; 10 mg/ml anti-IL-4, 10 mg/ml anti-IFNg; 0.5 ng/ml TGFb1,
10 ng/ml IL-1b, 20 ng/ml IL-6, 10 ng/ml IL-23) in complete

RPMI1640 media (Invitrogen, 10% FBS (Hyclone), 200 mM

Glutamine, 100 mM sodium pyruvate (Gibco), 50 mM b-
mercaptoethanol (Sigma), 100 U/ml penicillin and 100 mg/ml

streptomycin (Gibco)) for 0-72 hr as indicated.
Experimental autoimmune
encephalomyelitis

For EAE experiments, MOG35-55/Complete Freund’s Adjuvant

(CFA) and MOG35-55/Incomplete Freund’s Adjuvant (IFA)

emulsions were prepared. For MOG35-55/CFA preparations, 0.4

mg/ml of MOG35-55 peptide (MEVGWYRSPFSRVVHLYRNGK,

NIAID peptide core facility) was emulsified 1:1 in CFA (BD)

supplemented with Mycobacterium tuberculosis extract H37Ra

(Difco, 4 mg/ml). For MOG35-55/IFA preparations, 0.4 mg/ml of

MOG35-55 peptide was emulsified 1:1 with IFA (BD).

To induce active EAE, 8-12-week-old sex matched mice were

injected subcutaneously with MOG35-55/CFA (50ml/flank) and 200

ng of Pertussis Toxin (‘Ptx’, Calbiochem) intraperitoneally on days

0 and 2 of the experiment. Immunized mice were subsequently

harvested at the indicated time points or at the peak of EAE

symptoms. EAE clinical scores and body weights were collected
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daily and scored as follows: 0 – asymptomatic, 1 – tail paralysis, 2 –

hindlimb paresis, 3 – hindlimb paralysis, 4 – unilateral forelimb

paralysis and hindlimb paralysis, 5 – moribund or death. To isolate

draining lymph node effector T cells for adoptive cell transfer EAE

experiments, the indicated donor mice were immunized with

MOG35-55/CFA and Pertussis Toxin, and the draining lymph

nodes were subsequently collected six days post-immunization.

CD3+CD4+CD44hi T cells were collected from the draining lymph

nodes by cell sorting for the cell transfer procedure. For some

experiments involving 2D2 cells, naïve 2D2 cells were isolated by

cell sorting (CD3+CD4+CD45RBhiCD25–Vb11+) and transferred

intravenously (2x106 cells/mouse) to Cd45.1/Cd45.2 hosts before

immunization. To induce EAE in Tcra-/- recipients in adoptive cell

transfer EAE experiments, 4x106 donor cells were transferred

intravenously and the recipient mice were injected with MOG35-

55/IFA and Pertussis Toxin (i.p. d0, d2). The Tcra-/- recipient mice

were monitored daily for EAE clinical symptoms as described

above. In some experiments involving Cre-ERT2-Gata3fl/fl mice

or CD4 T cells, the mice were also injected with 100 ml of tamoxifen

(T5648; Sigma-Aldrich, 4mg/ml) or a vehicle control (corn oil) on

immunization d0 or cell transfer d0.
Tissue preparation

For the isolation of CNS-infiltrating cells for flow cytometry

experiments, mice were perfused via cardiac puncture with cold

PBS immediately following euthanasia. The brain and spinal cord

were subsequently dissected, minced finely, and digested with 1 U/

ml Liberase TM (05401119001; Roche) and 0.3 U/ml DNase I

(10104159001; Roche) in incomplete RPMI1640 media for 30

minutes at 37°C. The tissues were mechanically disrupted via

repetitive pipetting and filtered through a 70 mm cell strainer

(Fisher Scientific). The resulting cell suspension was centrifuged

through a percoll density gradient (38% - 70%) and mononuclear

cells were collected from the interphase. The mononuclear cell

suspension was washed and resuspended in culture medium for

flow cytometry. For the preparation of lymph node or splenic cell

suspensions, lymph nodes (inguinal, axillary, brachial) and spleens

were isolated sterilely and mechanically disrupted using a 70 mm
cell strainer. Erythrocytes were lysed from the resulting splenic cell

suspension using ACK lysis buffer (Fisher Scientific). The final cell

suspensions were washed and resuspended in culture medium (re-

stimulated samples) or FACS buffer (non-stimulated samples) for

flow cytometry.
Flow cytometry and cell sorting

To detect intracellular cytokine production, cells were re-

stimulated with 10 ng/ml phorbol 12-myristate 13-acetate (PMA,

Sigma Aldrich) and 500 nM ionomycin (Sigma Aldrich)

in complete RPMI 1640 media for 5 hours in the presence of

1X Brefeldin A (Biolegend) for the last hour of the incubation.

Following re-stimulation, single cell suspensions were
frontiersin.org
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first incubatedwith anti-CD16/CD32 (2.4G2) antibodies (15 minutes,

4°C) and subsequently stained for extracellular antigens (20 minutes,

4°C). Cytokines and transcription factors were stained using the

Foxp3 staining buffer set (00-5523-00, eBioscience) according to the

manufacturer’s instructions. The samples were acquired using an

LSR-II, Fortessa, or FACS Symphony cytometer (BD Biosciences),

and the results were analyzed using FlowJo software (Tree Star, v10).

The following antibodies were used in the study: CD3 (17A2), CD4

(RM4-5), CD44 (IM7), CD25 (PC61.5), CD45RB (C363-16A), T-bet

(04-46), RORgt (Q31-378), GATA3 (TWAJ), Foxp3, IFNg (XMG1.2),

IL-17A (eBio17B7), GM-CSF (MP1-22E9), Bhlhe40 (Dec1, NB100-

1800), Egr2 (erongr2), TNFa (MP6-XT22), CD45.1 (A20), CD45.2

(104), Vb11 (RR3-15), CD11b (M1/70), CD45 (30-F11), F4/80

(BM8), Gr1 (RB6-8C5), Tmem119 (106-6), and Goat anti-Rabbit

secondary antibody (Thermofisher, A-11008). For FACS sorting

experiments, single cell suspensions were prepared sterilely and

stained as described above. Specified live cell populations were

sorted using a FACS Aria (BD Biosciences) and collected into

complete RPMI 1640 media. The isolated populations were washed

twice with PBS and subsequently used for downstream applications.
RNA-Seq analysis

CNS-infiltrating CD3+CD4+CD44hiCD45.1+CD45.2+ and

CD3+CD4+CD44hiCD45.1–CD45.2+ T cells were sorted directly

into 300 ml of Qiazol (Qiagen) from vehicle or tamoxifen treated

Cd45.1/Cd45.2 C57BL/6 and Cd45.2 Cre-ERT2-Gata3fl/fl mixed co-

transfer EAE Tcra-/- hosts by cell sorting. Total RNA was extracted

and cDNA libraries were prepared using the Smart-Seq2 method

(42) as previously described (43). Multiplex sequencing reads of 50

bp were generated by the NHLBI DNA Sequencing and

Computational Biology Core and sequence reads were mapped to

the mouse genome (mm9) using bowtie 2 with the default settings

(44). Gene expression was measured by RPKM (45) and

differentially expressed genes were identified using Partek Flow

(Partek). Differentially expressed genes were imported into

Ingenuity Pathway Analysis and analyzed using the Core Analysis

settings. Th17-related genes and pathways that connect Gata3,

Egr2, Bhlhe40, and Csf2 were built using the differential

expression data, and the build and connect features of Ingenuity

Pathway Analysis. The RNA-Seq datasets have been deposited at

the Gene Expression Omnibus database under the accession

no. GSE227394.
Statistics

Statistical differences between experimental groups were

determined by a two-tailed Student’s t test, Bonferroni-holm

multiple comparison-corrected Student’s t tests, or one way

ANOVA with Tukey post-hoc comparison tests as appropriate

with Prism 7 software. For all statistical comparisons, *, p <0.05;

**, p <0.01; ***, p <0.001. All summary data are reported as mean ±

standard error of the mean.
Frontiers in Immunology 0466
Results

GATA3 is dynamically expressed during de
novo Th17 cell differentiation both in vitro
and in vivo

GATA3 is important for the development of NKp46+ ILC3s

that express both T-bet and RORgt (35). To test whether GATA3

also plays a role in T-bet-expressing Th17 cells, we first examined

the kinetics of GATA3 expression by flow cytometry during de novo

Th17 polarization in vitro (Figures 1A, B). As expected, naïve T cells

expressed a low baseline level of GATA3. However, the expression

of both GATA3 and RORgt was induced within 24 hours of culture.

GATA3 expression was then gradually reduced to lower levels over

the next 48 hours of culture. The dynamic expression of GATA3 in

RORgt-expressing cells was further assessed using naïve T cells from

the Gata3ZsGreenRorcE2-CrimsonFoxp3RFP triple reporter mice

(Figures 1C, D). Again, GATA3-ZsGreen and RORgt-E2-Crimson

were co-induced within 24 hours of Th17-polarizing culture

conditions, and GATA3-ZsGreen expression was subsequently

reduced back to a low level over the next 48 hours. We next

examined the kinetics of GATA3 expression in differentiating

Th17 cells in vivo using MOG35-55/CFA immunized C57BL/6

mice (Figures 1E, F). In the unimmunized naïve C57BL/6 mice,

few RORgt+ Th17 cells were present within the lymph nodes and all

of them were GATA3low. On the fourth day post immunization,

CD4 T cells in the draining lymph nodes began to co-express

GATA3 and RORgt, however, by the sixth day post immunization,

GATA3 expression within the RORgt+ Th17 cells returned to a low

state akin to naïve T cells. We also assessed MOG-antigen specific

CD45.2 + 2D2 cells that were adoptively transferred to

CD45.1+CD45.2+ host mice which were subsequently immunized

with MOG35-55/CFA (Figures 1G, H). As expected, in the

unimmunized state, CD45.2+ naïve 2D2 T cells retained a naïve

phenotype and did not express RORgt or GATA3 within the naïve

CD45.1+CD45.2+ hosts. However, the donor 2D2 T cells co-

expressed GATA3 and RORgt on the fourth day post-

immunization and the RORgt+ Th17 cells downregulated GATA3

to a low state on the sixth day post-immunization. Taken together,

these data demonstrate that GATA3 is dynamically regulated

during a de novo Th17 cell differentiation both in vitro and in vivo.
Early expression of GATA3 is essential to
generate pathogenic T-bet+ Th17 cells
and to induce EAE

To determine what effects early GATA3 expression might have

on the development of a Th17 cell response in vivo, we utilized three

complimentary Gata3 conditional knockout mouse strains in the

EAE model. First, we immunized the Cre-ERT2-Gata3fl/fl mice with

MOG/CFA with or without tamoxifen pretreatment on day 0. CD4

T cells from the draining lymph nodes (dLNs) of these immunized

mice were isolated on day 6 post immunization and then

transferred into the Tcra-/- recipient mice. In this adoptive

transfer EAE experiments, CD4 T effector cells from tamoxifen-
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pretreated Cre-ERT2-Gata3fl/fl dLNs were unable to elicit EAE

symptoms in new Tcra-/- hosts, in comparison to CD4 effector

cells from vehicle-treated Cre-ERT2-Gata3fl/fl dLNs (Figure 2A). To

assess the effects of deleting Gata3 on the development of ‘non-

pathogenic’ or ‘pathogenic’ Th17 cells in MOG-immunized mice,

we quantified the frequency of Th subsets that either expressed T-

bet and RORgt (Figures 2B, C) or IFNg and IL-17A (Figures 2D, E)

in dLNs six days post immunization. Interestingly, tamoxifen pre-

treated Cre-ERT2-Gata3fl/flmice failed to generate a ‘pathogenic’ T-
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bet+RORgt+ Th17 cell response in comparison to vehicle-treated

controls (Figures 2B, C); which corresponded with a failure to

generate IFNg+IL-17A+ Th17 cells (Figures 2D, E). However, since

many other cell types, including ILCs, NK cells, NKT, and CD8 T

cells, rely on GATA3 for their development and functionality, and

recent publications have suggested that meningeal NKp46+ ILCs

help to regulate Th17 cell-mediated neuroinflammation in the CNS

(46, 47), we were concerned that the failure to mount a T-

bet+RORgt+ Th17 response might be reflective of the functions of
A B

D
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G H

C

FIGURE 1

GATA3 is transiently induced during Th17 cell differentiation. (A, B) Naïve C57BL/6 CD4 T cells cultured under Th17 polarization conditions and
monitored for GATA3 expression at 0, 24, 48, and 72 hr. (A) Representative FACS plots at the indicated timepoints depicting GATA3 and RORgt
staining amongst CD4+CD44+Foxp3- T cells and representative GATA3 histograms within CD4+CD44+Foxp3-RORgt+ T cells. (B) Mean % of GATA3-
expressing (i.e., GATA3+RORgt+ Th17) cells among CD4+CD44+Foxp3-RORgt+ populations in (A) from three independent experiments. (C, D)
Representative RORgt and GATA3 reporter expression by RorcE2-CrimsonGata3ZsGreenFoxp3RFP CD4 T cells cultured under Th17 polarization conditions
as in (A). (D) Mean % of GATA3-expressing (i.e., GATA3+RORgt+ Th17) cells among CD4+CD44+Foxp3-RORgt+ populations in (C) from two
independent experiments. (E–H) The in vivo kinetics of GATA3 expression within draining lymph node (dLN) Th17 cells in response to MOG35-55/CFA
immunization. (E, F) Representative GATA3 and RORgt staining (E) within CD4+CD44+Foxp3- dLN T cells and the mean % of GATA3-expressing cells
among CD4+CD44+Foxp3-RORgt+ T cells (F) from immunized C57BL/6 mice (n=5-8 mice/timepoint from three independent experiments). (G, H)
Representative GATA3 and RORgt staining (G) within donor 2D2 CD4+CD44+Foxp3- dLN T cells and the mean % of GATA3-expressing cells among
2D2 CD4+CD44+Foxp3-RORgt+ T cells (H) from immunized 2D2 naïve T cell recipient Cd45.1/Cd45.2 mice (n=4 mice/timepoint from two
independent experiments). UI – unimmunized, PI – post immunization. For statistical comparisons, a one-way ANOVA was conducted with Tukey
Post-Hoc testing for group comparisons. Significance levels are denoted as follows: **p <0.01; ***p <0.001.
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GATA3 in ILCs rather than a T cell intrinsic defect. To rule out the

functions of GATA3 in non-T cells, we crossed hCd2Cre mice with

Gata3fl/fl mice to assess the effects of a complimentary mature T

cell-restricted Gata3 knockout (hCd2CreGata3fl/fl) on EAE

induction (Figures 2F, J). Interestingly, hCd2CreGata3fl/fl mice

similarly failed to develop EAE in comparison to Gata3fl/fl

controls (Figure 2F). In addition, hCD2CreGata3fl/fl mice failed to

generate a T-bet+RORgt+ Th17 cell response within the draining

lymph nodes in comparison to Gata3fl/fl mice (Figures 2G, H);

which also corresponded with a failure to generate IFNg+IL-17A+

Th17 cells (Figures 2I, J). These data demonstrate that early GATA3

expression during de novo Th17 cell differentiation is required to

generate a pathogenic T-bet+RORgt+ Th17 cell response.

Next, to determine whether GATA3 is required in pathogenic

T-bet+RORgt+ Th17 cells, we crossed Tbx21Cre mice with Gata3fl/fl

mice to generate a Gata3 conditional knockout mouse model with

GATA3 deficiency only in T-bet-expressing/expressed cells

(Tbx21CreGata3fl/fl). Again, Tbx21CreGata3fl/fl mice were resistant

to developing EAE symptoms in comparison to Gata3fl/fl controls

(Figure 3A). However, as T-bet-expressing NKp46+ meningeal ILCs

(46, 47) have been reported to play a critical role in regulating Th17-

mediated neuroinflammation and GATA3 regulates the

development and functionality of ILC1 and NK cells, we sought

to test the role of GATA3 in T-bet+RORgt+ Th17 cells through the

adoptive transfer model of EAE (Figure 3B). In transfer EAE

experiments, CD4 effector cells harvested from dLNs of the

Tbx21CreGata3fl/fl 6 days post immunization were only able to

elicit mild EAE symptoms in comparison to Gata3fl/fl CD4
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effector cells (Figure 3B), suggesting that the resistance to EAE

conferred by the Tbx21CreGata3fl/fl conditional knockout is

mediated by T-bet+ T cells. Tbx21CreGata3fl/fl mice were unable to

generate and/or maintain T-bet+RORgt+ Th17 cells within the

draining lymph nodes of immunized mice (Figures 3C, D). In

addition, as we observed before, Tbx21CreGata3fl/fl CD4 effector

cells were also unable to generate IFNg+IL-17A+ Th17 cells

(Figures 3E, F). Together, all our results demonstrate that T-bet+

Th17 cells require early GATA3 expression during de novo Th17

cell differentiation for their development and encephalitic functions

in EAE.
GATA3 is essential for GM-CSF expression
by pathogenic T-bet+RORgt+ Th17 cells

As we found that GATA3 is induced and subsequently

downregulated to a low expression state during Th17 cell

differentiation in vivo, and that early GATA3 expression is

essential for the generation of T-bet+RORgt+ Th17 cells, we were

curious as to what effects late post-differentiation maintenance

levels of GATA3 might have on the pathogenicity of established

Th17 cells in EAE. To examine how late maintenance levels of

GATA3 might affect the pathogenicity of Th17 cells in EAE, we

assessed the effects of a late Gata3 deletion on the pathogenicity of

Cre-ERT2-Gata3fl/fl CD4 effector cells in transfer EAE experiments.

We first compared the frequency of IFNg and IL-17A positive CD4

effector cells within the d6 draining lymph nodes of Cd45.1/Cd45.2
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FIGURE 2

Early GATA3 expression is required to generate a de novo T-bet+ Th17 cell response and EAE symptoms. (A) Mean EAE clinical scores from Tcra-/-

hosts that received 4x106 CD4+CD44+ T cells harvested from the draining lymph nodes (dLNs) of Cre-ERT2-Gata3fl/fl mice 6 days after MOG/CFA
immunization with vehicle or tamoxifen treatment (n=12 mice/group from three independent experiments). On the day of the cell transfer
procedure, the Tcra-/- host mice were boosted with MOG35-55/IFA and Pertussis Toxin as described in the methods. (B, C) Representative T-bet and
RORgt staining amongst d0 Vehicle or Tamoxifen-treated Cre-ERT2-Gata3fl/fl d6 dLN CD3+CD4+CD44+Foxp3- T cells (B), and the mean
percentages of T-bet and RORgt expressing T cell subsets (C). (D, E) Representative IFNg and IL-17A staining amongst Vehicle or Tamoxifen treated
Cre-ERT2-Gata3fl/fl d6 dLN CD3+CD4+CD44+Foxp3- T cells (D), and the mean percentages of IFNg and IL-17A expressing T cell subsets (E, n =5
mice/group from two independent experiments). (F) Mean EAE clinical scores from MOG35-55/CFA immunized Gata3fl/fl and hCd2CreGata3fl/fl mice.
n=12 mice/group from three independent experiments. (G, H) Representative T-bet and RORgt staining amongst Gata3fl/fl and hCd2CreGata3fl/fl d6
post-immunization dLN CD3+CD4+CD44+Foxp3- T cells (G), and the mean percentages of T-bet and RORgt expressing T cell subsets (H).
(I, J) Representative IFNg and IL-17A staining amongst Gata3fl/fl and hCd2CreGata3fl/fl d6 dLN CD3+CD4+CD44+Foxp3- T cells (I), and the mean
percentages of IFNg and IL-17A expressing T cell subsets (J). n=6 mice/group from two independent experiments. For statistical comparisons,
unpaired student’s T tests were used. Significance levels are denoted as follows: *p <0.05; **p <0.01; ***p <0.001.
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and Cre-ERT2-Gata3fl/fl mice (Figures 4A, B). As expected, the

frequencies of IFNg and IL-17A positive CD4 effector cells were

similar amongst Gata3-sufficient Cd45.1/Cd45.2 and Cre-ERT2-

Gata3fl/fl mice, confirming that IFNg+IL-17A+ Th17 cells were

efficiently generated before deletion of Gata3. To assess the effects

of a late Gata3 deletion on the pathogenicity of Cre-ERT2-Gata3fl/fl

effector cells, d6 dLN CD4 effector cells were transferred to Tcra-/-

recipients, which were subsequently treated with corn oil (vehicle)

or Tamoxifen on post transfer day 0 (Figure 4C). Interestingly,

Tamoxifen-treated Cre-ERT2-Gata3fl/fl CD4 effector cells Tcra-/-

recipients were resistant to transfer EAE in comparison to vehicle

treated controls (Figure 4C), indicating that late maintenance levels

of GATA3 are also required for Th17-mediated encephalomyelitis.

To determine how a late Gata3 deletion might affect the frequency

of IFNg- and IL-17A-producing CD4 effector cells, we phenotyped

donor Gata3-sufficient and deficient effector cells from transfer

EAE recipient mice. In contrast to the early Gata3 deletion model in

which Gata3-deficient cells were unable to generate T-bet+RORgt+

Th17 cells, deleting Gata3 at the post-differentiation stage did not

affect the frequency of IFNg or IL-17A positive CD4 effector cells in

the CNS (Figures 4D, E) nor in the spleen (Figures 4F, G). Instead, a

late Gata3-deletion resulted in a substantial reduction in GM-CSF-

producing Cre-ERT2-Gata3fl/fl donor CD4 effector cells in the CNS

(Figures 4H, I) and the spleen (Figures 4J, K). As prior work has

demonstrated that GM-CSF is an effector cytokine critically

required for the recruitment and activation of CNS mononuclear

cells and for EAE induction (22, 23, 48), the inability of late

tamoxifen-treated Cre-ERT2-Gata3fl/fl CD4 effector cells to

produce GM-CSF likely explains why these transferred CD4
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effector cells were unable to induce EAE. However, as the

cytokines IL-23 and IL-1b are required for GM-CSF induction

(48), we were concerned that the effects of late GATA3low

expression on GM-CSF production might be reflective of a less

inflammatory environment rather than a cell intrinsic effect. Thus,

to determine if a late deletion of Gata3 affects GM-CSF production

in a cell intrinsic manner, we conducted mixed congenic co-transfer

EAE experiments. In brief, Cd45.1/Cd45.2 and Cd45.2 Cre-ERT2-

Gata3fl/fl d6 dLN CD4+ T effector cells were collected from MOG35-

55/CFA immunized donor mice, mixed at a 1:1 ratio, and then

transferred to vehicle- or tamoxifen-treated Tcra-/- recipients. We

first assessed the relative percentages of Cd45.1/Cd45.2 and Cre-

ERT2-Gata3fl/fl donor cells pre-transfer (Figures 5A, B) and post-

transfer in the vehicle- or tamoxifen-treated Tcra-/- recipients’ CNS

(Figures 5C, D) and spleen (Figure 5E). Cd45.1/Cd45.2 and Cre-

ERT2-Gata3fl/fl donor CD4 effector cells were equally present in the

starting population (Figures 5A, B) and in the vehicle- and

tamoxifen-treated Tcra-/- recipient spleens following the transfer

(Figure 5E). However, we detected a slight reduction in the

frequency of CNS-infiltrating Cre-ERT2-Gata3fl/fl effector cells

within the tamoxifen-treated Tcra-/- mice (Figures 5C, D) vs

vehicle control recipients, suggesting that a late Gata3 deletion

confers a slight cell-intrinsic disadvantage to Gata3-deficient Cre-

ERT2-Gata3fl/fl effector cells in comparison to Gata3-sufficient

effector cells (Figures 5C, D). We next assessed the phenotypes of

the donor cells in the CNS (Figures 5F–I). As in our single

population transfer EAE experiments (Figure 4), we observed a

similar distribution of IFNg and IL-17A positive Cd45.1/Cd45.2 and

Cre-ERT2-Gata3fl/fl donor CD4 effector cells in the vehicle-treated
A B
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FIGURE 3

GATA3 expression is required for the development and/or maintenance of early T-bet+ Th17 cells. (A) Mean EAE clinical scores from MOG35-55/CFA
immunized Gata3fl/fl and Tbx21CreGata3fl/fl mice. n=10 mice/group from three independent experiments. (B) Mean cell transfer EAE clinical scores from
Tcra-/- mice that received d6 dLN Gata3fl/fl or Tbx21CreGata3fl/fl donor CD4+CD44hi T cells and immunized with MOG35-55/IFA. n=10 mice/group from
three independent experiments. (C, D) Representative T-bet and RORgt staining amongst Gata3fl/fl and Tbx21CreGata3fl/fl d6 post-immunization dLN
CD3+CD4+CD44hiFoxp3- T cells (C). The mean percentages of T-bet- and RORgt-expressing CD4 T cell subsets within the d6 dLN (D).
(E, F) Representative IFNg and IL-17A staining amongst Gata3fl/fl and Tbx21CreGata3fl/fl d6 post-immunization dLN CD3+CD4+CD44hiFoxp3- T cells (E).
The mean percentages of IFNg and IL-17A positive dLN CD3+CD4+CD44hiFoxp3- T cell subsets. n=6 mice/group from two independent experiments.
For statistical comparisons, unpaired student’s T tests were used. Significance levels are denoted as follows: *p <0.05; **p <0.01; ***p <0.001.
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and tamoxifen-treated Tcra-/- recipients. However, when we

assessed Cd45.1/Cd45.2 and Cre-ERT2-Gata3fl/fl CD4 T effector

cells for their ability to produce GM-CSF, we noticed that GM-CSF

staining was dramatically reduced in a cell-intrinsic manner in the

tamoxifen-induced Gata3-knockout Cre-ERT2-Gata3fl/fl effector

cells (Figures 5H, I). Thus, these data together suggest that a late

Gata3 deletion does not affect the maintenance, stability, or ability

of Th17 cells to generate T-bet+ Th17 cells; instead, encephalitic

CD4 T cells intrinsically require low levels of GATA3 to efficiently

produce GM-CSF.
GATA3 is required for normal expression of
Bhlhe40, Egr2 and Csf2

To gain insight as to how late expression of GATA3 might

regulate GM-CSF within established CD4 effector cells, we

compared the transcriptomes of CNS-infiltrating Gata3-sufficient

and Gata3-deficient CD4 effector cells in the mixed Cd45.1/Cd45.2

and Cre-ERT2-Gata3fl/fl co-transfer EAE model (Figure 6) at the

peak of EAE. Comparison of gene expression between CNS-
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infiltrating Cd45.1/Cd45.2 and Cre-ERT2-Gata3fl/fl CD4+CD44hi

T effector cells that were isolated from the same vehicle-treated

Tcra-/- recipients did not reveal much differentially regulated genes.

On the other hand, by comparing the transcriptomes of CNS-

infiltrating Cd45.1/Cd45.2 and Cre-ERT2-Gata3fl/fl CD4+CD44hi T

effector cells isolated from tamoxifen-treated Tcra-/- recipients at

the peak of EAE, we identified 97 differentially expressed genes, of

which 72 were significantly down-regulated in Gata3-deficient

effector cells. Genes associated with Th1-related responses

including Ifng, Il2, Penk, Ccl1, and Il18r1, genes associated with T

cell-B cell signaling including Cd40lg, Tnfsf11, and Tnfsf14, and Csf2

expression, consistent with our results above (Figures 4, 5), were

downregulated (Figure 6). Interestingly, we also detected altered

expression of several transcription regulators, including down-

regulated expression of Bhlhe40 and Egr2, and up-regulated

expression of Vhl in Gata3-deficient Cre-ERT2-Gata3fl/fl vs

Gata3-sufficient Cd45.1/Cd45.2 T effector cells. Vhl, Egr2, and

Bhlhe40 are of note as Vhl is an important regulator of the HIF1a

hypoxic-response pathway in T cells (49) and Vhl has been

implicated as a potential upstream regulator of Bhlhe40 (Stra13)

in human RCC4 cells (50). In addition, Miao and colleagues have
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FIGURE 4

GATA3 is required for GM-CSF production and CD4 T cell-mediated encephalomyelitis. (A, B) Characterization of the pre-transfer d6 dLN
CD3+CD4+CD44hi Cd45.1/Cd45.2 and Cre-ERT2-Gata3fl/fl populations. (A) Representative IFNg vs IL-17A staining and (B) the mean percentages of
IFNg and IL-17A CD4+CD44hiFoxp3- T cell subpopulations in the pre-transfer isolates. (C) Mean transfer EAE clinical scores from Tcra-/- hosts that
received 4x106 Cre-ERT2-Gata3fl/fl d6 dLN CD4+CD44hi T cells (A, B) and a vehicle or tamoxifen treatment. n=15 mice/group from four
independent experiments. (D-G; H-K) Characterizations of the Cre-ERT2-Gata3fl/fl donor CD4 T cells within vehicle or tamoxifen treated Tcra-/-

hosts post-transfer. Representative IFNg and IL-17A staining of vehicle or tamoxifen treated Cre-ERT2-Gata3fl/fl donor CD4 T cells in the Tcra-/- host
CNS (D) and the spleen (F). The mean percentages of IFNg and IL-17A subpopulations within the CNS (E) and spleen (G). Representative GM-CSF and
IL-17A staining of vehicle or tamoxifen treated Cre-ERT2-Gata3fl/fl donor CD4 T cells within the Tcra-/- host CNS (H) and the spleen (J). The mean
percentages of IL-17A and GM-CSF positive donor CD4 T effector cells within the CNS (I) and the spleen (K). n=12 recipient mice/group from four
independent experiments. For statistical comparisons, unpaired student’s T tests were used. Significance levels are denoted as follows: *p <0.05;
**p <0.01; ***p <0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1186580
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Butcher et al. 10.3389/fimmu.2023.1186580
shown that Egr2 can bind to the Bhlhe40 locus within CD4 T cells in

ChIP experiments (51), and Bhlhe40 has been shown to directly

regulate Csf2 expression in knockout and ChIP experiments

(31, 52).

We further confirmed the regulation of Egr2 and Bhlhe40

expression by GATA3 at the protein level by flow cytometry. In

agreement with the RNA-Seq results, CNS-infiltrating Gata3-
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sufficient Cd45.1/Cd45.2 CD4+ T effector cells expressed Egr2,

while the late Gata3-knockout Cre-ERT2-Gata3fl/fl CD4+ effector

cells expressed less Egr2 (Figures 7A, B). Bhlhe40 expression

followed a similar pattern, with CNS-infiltrating Cd45.1/Cd45.2

CD4 effector cells expressing higher levels of Bhlhe40 than the

late Gata3-knockout CD4 effector cells (Figures 7C, D).

Interestingly, in agreement with our prior observations that
FIGURE 6

GATA3 regulates pro-inflammatory gene expression in EAE. RNA-Seq analysis was performed using CNS-infiltrating CD4+CD44hiCD25-

CD45.1+CD45.2+ C57BL/6 and CD45.1-CD45.2+ Cre-ERT2-Gata3fl/fl donor T effector cells from tamoxifen-treated Tcra-/- co-transfer EAE mice at
the peak. Differentially expressed genes were identified using Partek Flow Genomic Suite (Partek) and curated based on an FDR threshold of <0.05.
Differentially expressed genes were clustered and displayed as a heatmap. The results are representative of biological duplicates.
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FIGURE 5

The post-differentiation effects of GATA3 on GM-CSF production is cell intrinsic. Mixed co-transfers of CD45.1+CD45.2+ C57BL/6 and CD45.2+ Cre-
ERT2-Gata3fl/fl d6 dLN CD4+ T effector cells were conducted. (A, B) The starting ratios of FACS-sorted donor Cd45.1/Cd45.2 C57BL/6 and Cd45.2
Cre-ERT2-Gata3fl/fl d6 dLN CD4 T effector cells shown as a representative FACS plot (A) and population means (B). (C-E) The post-transfer ratios of
donor CD45.1+CD45.2+ C57BL/6 and CD45.2+ Cre-ERT2-Gata3fl/fl cells within host Tcra-/- mice treated with corn oil (vehicle) or tamoxifen.
(C) Representative CD45.2 and CD45.1 staining within the CNS. The mean percentages of corn oil or tamoxifen treated CD45.1+CD45.2+ C57BL/6
and CD45.2+ Cre-ERT2-Gata3fl/fl CD4 T cells within the CNS (D) and spleen (E). (F, G) Representative post-transfer corn oil or tamoxifen treated
CD45.1/CD45.2 and Cre-ERT2-Gata3fl/fl donor CD4 T effector IFNg and IL-17A staining (F) and subpopulation means (G) within the CNS of Tcra-/-

recipient mice. (H, I) Representative post-transfer donor Cd45.1/Cd45.2 and Cre-ERT2-Gata3fl/fl donor CD4 T effector GM-CSF and IL-17A staining
(H) and subpopulation means (I) within the CNS of Tcra-/- recipient mice. n=12 mice/group from three independent experiments. For statistical
comparisons, unpaired student’s T tests were used. Significance levels are denoted as follows: *p <0.05; **p <0.01; ***p <0.001.
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GATA3 expression is not restricted to RORgt+T-bet+ ‘pathogenic’

Th17 cells, and that the percentage of IFNg+IL-17A+ Th17 and

IFNg-IL-17A+ Th17 cells were unaffected in late Gata3-knockout

effector cells, the expression of Egr2 and Bhlhe40 were not restricted

to RORgt+ cells. Instead, both RORgt+ Th17 and RORgt- CD4

effector cells were able to express Egr2, Bhlhe40, and GM-CSF,

suggesting that the GATA3-dependent expression of Egr2 and

Bhlhe40 is not Th17 cell specific. To determine if early GATA3

might also affect the expression of Egr2 and Bhlhe40 in

differentiating T cells, we revisited our early tamoxifen-inducible

Cre-ERT2-Gata3fl/fl d6 draining lymph node Gata3 deletion model.

In the d6 draining lymph node, Gata3-sufficient vehicle control

Cre-ERT2-Gata3fl/fl CD4 effector cells, including both RORgt+

Th17 and RORgt- T cells, expressed Egr2 (Figures 7E, F) and

Bhlhe40 (Figures 7G, H). On the other hand, tamoxifen-treated

Gata3-knockout Cre-ERT2-Gata3fl/fl CD4 effector cells were largely

Egr2 and Bhlhe40 negative (Figures 7E–H).

To gain insight as to how GATA3 might regulate Bhlhe40 and

thereby Csf2 expression, we analyzed our RNA-Seq results in an

Ingenuity Pathway Analysis (Figure 8). Based on this analysis, there

are several ways in which TCR signaling-dependent GATA3

expression via Crebbp, Fos, Myc, Cebpa, and/or STAT6 might

help induce Egr2. Egr2, or possibly GATA3 itself, may help to

directly induce Bhlhe40, and Bhlhe40 in turn regulates Csf2

expression resulting in GM-CSF-dependent encephalomyelitis

in EAE.
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Discussion

GATA3 is the master transcription factor for Th2 cell

differentiation and ILC2 development (53). It also plays an

important role during T cell and ILC development at multiple

stages (37, 54). In fact, GATA3 is expressed by all T cell and ILC

subsets albeit at different levels (54, 55). We have previously

reported that GATA3 regulates the development of NKp46+

ILC3s that express both RORgt and T-bet (35). Furthermore, it

regulates the expression of IL-22 in ILC3s. In the present study, we

found surprising new regulatory roles for GATA3 in regulating

Th17 responses in autoimmune neuroinflammation. GATA3

expression is induced during de novo Th17 differentiation both in

vitro and in vivo. Consistent with the previous finding that GATA3

regulates the development of T-bet/RORgt co-expressing ILC3s, it

also regulates the differentiation of T-bet/RORgt co-expressing

Th17 cells. Furthermore, continuous expression of GATA3 is

required for GM-CSF expression in EAE.

In terms of the regulation of GATA3 expression, it is known

that T cell receptor activation induces initial GATA3 expression in

vitro under Th2 polarizing conditions, and GATA3 can help to

enforce the Th2-program via a positive reinforcement loop

involving autocrine IL-4 production (56, 57). Co-expression of

RORgt and GATA3 may be explained by the induction of

GATA3 within developing Th17 cells by IL-4 from a secondary

cellular source. However, as our in vitro Th17 polarization
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FIGURE 7

GATA3 is required for normal Bhlhe40 and Egr2 expression at all stages. (A–D) The expression of Egr2 and Bhlhe40 within Gata3-sufficient (Cd45.1/
Cd45.2) and Gata3-deficient (Cre-ERT2-Gata3fl/fl) CNS-infiltrating CD3+CD4+CD44hiFoxp3- T effector cells from co-transfer EAE Tcra-/- recipient
mice treated with tamoxifen (cell transfer d0). (A) Representative Egr2 and RORgt staining and summary statistics (B) amongst tamoxifen treated
CNS-infiltrating CD4+CD44hiFoxp3- Cd45.1/Cd45.2 and Cre-ERT2-Gata3fl/fl cells. (C) Representative Bhlhe40 and RORgt staining and summary
statistics (D) amongst tamoxifen treated CD4+CD44hiFoxp3- Cd45.1/Cd45.2 and Cre-ERT2-Gata3fl/fl cells. n=4 mice/condition from two
independent experiments. (E–H) The expression of Egr2 and Bhlhe40 within Gata3-sufficient (Vehicle, d0) or Gata3-deficient (Tamoxifen, d0) day 6
dLN CD3+CD4+CD44hiFoxp3- T effector cells from MOG35-55/CFA-immunized Cre-ERT2-Gata3fl/fl mice. (E) Representative Egr2 and RORgt staining
and the corresponding summary statistics (F) from vehicle control or tamoxifen treated d6 dLN Cre-ERT2-Gata3fl/fl CD4 T effector cells. (G)
Representative d6 dLN CD4 T effector Bhlhe40 and RORgt staining and the corresponding summary statistics (H) from immunized and vehicle or
tamoxifen treated Cre-ERT2-Gata3fl/fl mice. n=4 mice/condition from two independent experiments. For statistical comparisons, unpaired student’s
T tests were used. Significance levels are denoted as follows: *p <0.05; **p <0.01; ***p <0.001.
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conditions included an anti-IL-4 neutralizing antibody, TCR-driven

expression of GATA3 in the absence of IL-4 would be the most

likely explanation for the transient induction of GATA3 within

developing Th17 cells.

We used three complimentary Gata3 deletion models (Cre-

ERT2-Gata3fl/fl, hCd2CreGata3fl/fl and Tbx21CreGata3fl/fl) to study

the functions of an early GATA3 induction within nascent Th17

cells in EAE. These different models essentially yielded similar

results: all three mouse strains were unable to develop notable

EAE symptoms correlated with an inability to generate

encephalitogenic T-bet+ Th17 cells within the draining lymph

node or CNS following an immunization with MOG35-55. These

results are noteworthy for several reasons. Firstly, despite the

observation that RORgt and GATA3 are co-induced during Th17

differentiation, T-bet-RORgt+ Th17 cells were still able to develop

with or without functional GATA3 protein; suggesting that Th17

cells do not intrinsically require GATA3 for their development, an

observation that we have recently reported (38). Secondly, per these

data, GATA3 is necessary for the development of encephalitogenic

T-bet+ Th17 cells, presumably from T-bet- Th17 cells. Thirdly, the

deletion of Gata3 did not result in an increase in IFNg-production
or T-bet+RORgt- Th1 cells within the draining lymph nodes or

CNS. These results were surprising as prior work in vitro has

demonstrated that GATA3 actively represses Runx3 protein-

regulated production of IFNg within in vitro polarized Th2 cells

(58) and T-bet and Runx protein are required for the development

of pathogenic IFNg-producing Th17 cells (59). Since de novo T-bet+

Th17 cells failed to develop in our Gata3-conditional knockout

models, determining which genes are responsible for the observed

phenotypes proved to be technically challenging and remains an

open question. It is likely that GATA3 regulates the balance
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between RORgt and T-bet during the differentiation of T-bet+

Th17 cells as it does during the development of NKp46+ ILC3s.

Once GATA3 has been induced and subsequently

downregulated, mature Th17 cells express low levels of GATA3.

However, low levels of GATA3 expression are still required for

eliciting EAE symptoms. In contrast to the effects of an early Gata3

deletion on T cell priming, a late post-developmental deletion of

Gata3 did not affect the relative proportions of IFNg+IL-17A+ or T-

bet+RORgt+ ‘pathogenic’ Th17 cells in the CNS or periphery, but

still prevented the development of encephalomyelitis symptoms.

The presence of T-bet+RORgt+ ‘pathogenic’ Th17 cells allowed us to
study gene regulation mediated by GATA3. Strikingly, this late

Gata3 deletion resulted in a defect in the production of GM-CSF,

which has regarded as a pro-encephalomyelitic cytokine that is

secreted by encephalitic Th17 and Th1 cells in the CNS (22–24).

This effect is cell intrinsic as demonstrated by mixed congenic

transfer EAE experiments. Transcriptomic analyses of Gata3-

sufficient and Gata3-deficient (late Gata3 deletion by tamoxifen)

CNS-infiltrating CD4 effector cells from our mixed congenic

transfer EAE model revealed stark reductions in the expression of

Bhlhe40 and Egr2, and enhanced expression of Vhl within late-

Gata3-deficient CD4 effector cells. These results are noteworthy as

in EAE experiments, CNS-infiltrating Bhlhe40-/- CD4 T cells are

virtually unable to produce GM-CSF; Lin and colleagues have

demonstrated that Bhlhe40 can directly regulate Csf2 expression

(31, 52). Like GATA3 (56, 57), Bhlhe40 has been reported to be

induced in response to TCR stimulation (31, 32); and Bhlhe40 and

GM-CSF reporter mice have demonstrated that both are strongly

expressed by CNS-infiltrating T cells in comparison to CD4 effector

cells in the periphery (48, 52). These results suggest that TCR-

dependent maintenance of GATA3 expression may help to regulate

Bhlhe40 and Csf2 expression within the CNS. In addition, Vhl is an

important regulator of the HIF1a hypoxic-response pathway in T

cells (49) and has been implicated as a potential upstream regulator

of Bhlhe40 (Stra13) in human RCC4 cells (50). Lastly, Miao and

colleagues have demonstrated that Egr2 can bind to the Bhlhe40

locus within CD4 T cells in ChIP experiments (51). Since both

Bhlhe40 and Egr2 are also regulated by early TCR signaling, it is

likely that GATA3 is required for the maintenance of Bhlhe40 and

Egr2 expression within the CNS which leads to GM-CSF

production by encephalitic Th17 cells. While the results presented

here highlight a novel role for GATA3 in regulating GM-CSF

production, the results are limited in that it is unclear if the

effects of GATA3 on GM-CSF are direct, indirect via regulation

of Egr2 and Bhlhe40, or a mixture thereof. Additional studies will be

needed to determine the exact regulatory mechanisms though

which GATA3 affects T cell intrinsic GM-CSF production.

Altogether, our data demonstrate that dynamic GATA3

expression during Th17 cell differentiation is required for Th17-

mediated encephalomyelitis in EAE. An early deletion of GATA3

during Th17 cell differentiation blocked the development of

‘pathogenic’ T-bet+RORgt+ Th17 cells, however, a late deletion of

GATA3 at the established T effector stage allowed the presence of T-

bet+RORgt+ Th17 cells. Nevertheless, GATA3 is still critically

required for encephalomyelitis, which is associated with a

reduction in the expression of GM-CSF and its regulators. Thus,
FIGURE 8

A model of regulatory network involving GATA3, Egr2, Bhlhe40 and
Csf2. The top differentially expressed genes between
CD4+CD44hiCD25-CD45.1+CD45.2+ C57BL/6 and CD45.1-CD45.2+

Cre-ERT2-Gata3fl/fl donor T effector cells in Figure 6 were used in
an ingenuity pathway analysis to visualize regulatory connections
between GATA3, Egr2, Bhlhe40 and Csf2. Downregulated genes
from the dataset were overlaid (green).
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our study highlights a novel role for GATA3 in promoting the

pathogenicity of T-bet+ Th17 cells in EAE, via putative regulation of

Egr2, Bhlhe40, and GM-CSF expression.
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Rheumatoid arthritis (RA) is a destructive inflammatory autoimmune disease that

causes pain and disability. Many of the currently available drugs for treating RA

patients are aimed at halting the progression of the disease and alleviating

inflammation. Further, some of these treatment options have drawbacks,

including disease recurrence and adverse effects due to long-term use. These

inefficiencies have created a need for a different approach to treating RA.

Recently, the focus has shifted to direct targeting of transcription factors (TFs),

as they play a vital role in the pathogenesis of RA, activating key cytokines,

chemokines, adhesion molecules, and enzymes. In light of this, synthetic drugs

and natural compounds are being explored to target key TFs or their signaling

pathways in RA. This review discusses the role of four key TFs in inflammation,

namely NF-kB, STATs, AP-1 and IRFs, and their potential for being targeted to

treat RA.

KEYWORDS
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1 Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that mostly

affects joints. Joint inflammation is initiated and maintained by a complex interaction

between many cells, including T cells, dendritic cells, B cells, macrophages, neutrophils,

osteoclasts, and fibroblast-like synoviocytes (FLS) (1). These cells can release pro-

inflammatory cytokines , chemokines, reactive oxidative species , matrix

metalloproteinases (MMPs) and autoantibodies into synovial joints and thus contribute

inflammation, cartilage damage, osteoclast activation, and bone destruction (2–4).

Many pro-inflammatory mediators have been implicated in the pathogenesis of RA (5).

For example, tumor necrosis factor (TNF), interferons (IFNs), interleukin (IL) -1b, IL-2,
IL-4, IL-6, IL-8, IL-17, IL-18, IL-21, IL-22, IL-23 and granulocyte macrophage-colony

stimulating factor (GM-CSF) have been suggested to play a central role in RA pathogenesis

(6–8). These cytokines activate key transcription factors (TFs), such as nuclear factor-kB
(NF-kB), activator protein-1 (AP-1), interferon regulatory factors (IRFs), and signal
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transducer and activator of transcription (STAT) proteins, which

can further promote the production of pro-inflammatory mediators

(9). Therefore, targeting these key TFs or the signaling pathways

associated with these TFs is a feasible strategy for treating RA.

While several synthetic drugs are currently being trialed aimed at

targeting key TFs in RA, several natural compounds have also been

explored as potential alternative treatment options with a focus on

targeting TFs. In this review, we summarize the role of four families

of TFs, namely NF-kB, STATs, AP-1 and IRFs, in the pathogenesis

of RA, and provide an update on the latest preclinical and clinical

trials targeting them.
2 NF-kB

2.1 NF-kB signaling pathway

The NF-kB signaling pathway controls many biological

processes, but its dysregulation is often associated with

inflammation, for example, that associated with RA. Activated

NF-kB is observed in RA synovium in early and late stages of
Frontiers in Immunology 0277
joint inflammation and initiation of inflammation is triggered by

NF-kB activation in both T cells and antigen presenting cells (10).

Different extracellular and/or intracellular stimuli (e.g., TNF, IL-1b,
IL-6, MMPs and RANKL) can activate the NF-kB signaling

pathway, either directly or indirectly (11). The NF-kB family is

composed offive structurally related members that include NF-kB1/
p50 (precursor p105), NF-kB2/p52 (precursor p100), RelA/p65,

RelB, and c-Rel which bind to specific DNA and kB enhancer

elements that mediate the transcription of target genes (12, 13). NF-

kB is activated via two different pathways. Direct activation includes

canonical and non-canonical pathways, mediated by inhibitor of

kappa B (IkB) kinase (IKK) and NF-kB-inducing kinase (NIK),

respectively. The indirect activation of NF-kB is interconnected

with other cellular pathways, including mitogen-activated protein

kinase (MAPK), Rho, and phosphoinositide 3-kinase (PI3-K) (11).

2.1.1 Canonical pathway
In inflammatory conditions, such as in RA, cytokines,

chemokines and free radicals provide signals that lead to

degradation of IkB protein resulting in the disassociation of NF-

kB (12, 13) (Figure 1). Activation of the canonical pathway occurs
FIGURE 1

Signaling pathways leading to the regulation of NF-kB target genes. The activation of NF-kB involves two signaling pathways, the canonical and
non-canonical pathways. Both are activated through engagement with distinct receptors, leading to transcriptional regulation several NF-kB target
genes that are responsible for immune and inflammatory responses.
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through stimulation of the TNF receptors, Toll-like receptors

(TLRs), interleukin receptors, pattern recognition receptors

(PRRs), T cell receptors (TCRs) and B cell receptors (BCRs) (14,

15). The canonical pathway has an IKK complex, comprising IKKa
and IKKb, the homologous catalytic subunits, and IKKg, a

regulatory subunit of the complex that activates IKKb (14).

Receptor activation stimulates numerous kinases, such as

transforming growth factor-b (TGF-b)-activated kinase 1 (TAK1),

receptor-interacting protein kinase 1 (RIP1), MAPK kinase ERK1

(MEKK1) and TANK-binding kinase (TBK1), which phosphorylate

IKKb and activate the IKK complex (16). Activated IKKb then

phosphorylates IkBa and activates its downstream TFs, RelA/p50

and p50/c-Rel (13). The liberated RelA/p50 and p50/c-Rel

translocate to the nucleus and activate the transcription of NF-

kB-dependent inflammatory genes (14, 17).
2.1.2 Non-canonical pathway
Noncanonical NF-kB pathway respond to a certain type of

stimulus, such as the lymphotoxin b receptor (LTbR), CD40, the B-
cell activating factor receptor (BAFFR) and receptor activator of

NF-kB (RANK) (18) (Figure 1). NIK is essential for the activation of

this pathway and is central to the signaling that activates IKKa and

forms a functional cooperation with IKKa to phosphorylate p100.

Phosphorylation of p100 stimulates the partial proteasomal

processing of p52 (11). This generates NF-kB2/p52 through the

degradation of the p100 C-terminal IkB-like structure, and leads to

the nuclear translocation of p52/RelB occurs (19).
2.2 NF-kB-regulated genes

NF-kB regulates more than 150 genes involved in anti-

apoptosis, cell proliferation, immunity, and inflammation. It plays

a key role in regulating the activation, survival, and differentiation

of innate and adaptive immune cells (20). In RA, a deregulated NF-

kB signaling pathway contributes to the pathogenic process and

activates both immune and non-immune cells (e.g., FLS) through

transcriptional regulation of inflammatory mediators, including

TNF, IL-1, IL-2, IL-6, IL-8, IL-9, IL-12, IL-18, IL-23, GM-CSF,

VEGF, RANKL, MCP-1, MIP-2, CXCL1, CXCL10, RANTES,

ICAM-1, VCAM-1, MMPs, and COX-2. (10, 13, 20, 21). These

NF-kB-regulated inflammatory mediators have been reported to

play a crucial role in the pathogenesis of RA by activating both

immune and non-immune cells.

T cells and macrophages are key responders to the NF-kB
signaling pathway. Deregulated NF-kB signaling causes aberrant

activation of T cells and each member of the NF-kB family is

responsible in activating different types of T cells in RA. RelA and c-

Rel activate naïve T cells by inducing TCR activation. c-Rel

promotes the transcription of Foxp3, a key regulator of Tregs

(22). NF-kB differentiates Th1 and Th17 cells by inducing IL-12

production and promotes IL-17 synthesis in Th17 cells, and thereby

recruiting neutrophils and monocytes to sites of inflammation.
Frontiers in Immunology 0378
Th17 cells contribute to inflammation by regulating expression of

TNF, IL-1b, IL17, IL-21, and IL-22 (23). Noncanonical NF-kB
regulates Th17 to induce GM-CSF. On the other hand, Th2

responses are regulated by NF-kB1/p50. In macrophages, NF-kB
induces a range of inflammatory mediators, including TNF, IL-1b,
IL-6, IL-12, and COX-2. Activated c-Rel is essential for IL-12B

expression and also for NF-kB-ATF3-CEBPd transcriptional

circuit, which enables macrophages to analyze the responses

received from persistent and transient TLR4 stimulation (24). In

FLS, NF-kB p50/p52 and NFATc1 respond to RANKL and exhibit

an inflammatory response along with osteoclast activation and

osteoclast genesis (18). NFATC1 is a major TF that regulates

osteoclast differentiation (25). Together with NFATC1, RelB

regulates osteoclast formation (26). Given the broad range of

inflammatory roles of NF-B, its targeting might be beneficial for

treating RA.
2.3 Current treatments targeting NF-kB

2.3.1 Synthetic drugs
Conventional disease-modifying antirheumatic drugs

(cDMARDs) and biological DMARDs (bDMARDs) have been

used to treat RA for many decades. Methotrexate (MTX) is a

first-line drug widely used to treat RA, while bDMARDs, such as

TNF inhibitors, have been used since 1980. Currently, five main

classes of TNF-inhibiting bDMARDs are available: etanercept,

adalimumab, certolizumab pegol, golimumab, and infliximab. A

recent clinical trial suggests switching from TNF inhibitors to

tacrolimus (TAC) after acquiring low disease activity. TAC is an

immunosuppressant that can block the calcineurin pathway in T

cells by inhibiting cytokine production and T cell proliferation (27).

Artemisinin-type compounds inhibit several receptor-coupled

signaling pathways that include IL-1, TNF, RANKL, growth

factor receptors, and TLRs (4). Terfenadine and Fexofenadine

have recently been identified as more cost-effective and safer TNF

inhibitors (28). Regulation of RANKL levels is maintained by

bDMARDs (e.g., Denosumab) (29). All the above-mentioned

drugs target cytokines that can activate NF-kB, thereby indirectly

suppressing its activity. The long-term use of these drugs and the

need to increase the dosage for an effective result can lead to adverse

effects, such as osteoporosis, hyperlipidemia, hepatitis, tuberculosis,

malignancies, and adrenal insufficiency (30). Furthermore, there is

an increase in resistance to these drug in 30% of cases of RA (31).

Since there is a need for a different approach to reduce side

effects, recent studies focus directly on targeting NF-kB, thus
potentially achieving more precision in treating RA (Table 1).

Tetrandrine, a bisbenzylisoquinoline, blocks NF-kB/RelA (32).

Iguratimod is a new synthetic targeted DMARD (stDMARD) that

inhibits the translocation of NF-kB to the nucleus and is approved

only in China and Japan for RA treatment (33). Small-interfering

RNA (siRNA) targeting NF-kB, delivered in combination with

MTX inside a liposome capsule, prevents its release in the

circulation, avoiding possible adverse effects of MTX (17). Chen
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et al . , have demonstrated that low molecular weight

polyethyleneimine cholesterol polyethylene glycol encapsulates

siRNA as an efficient way to silence NF-kB/p65 to restore an

anti-inflammatory microenvironment in RA (34). Drug delivery

via nanocarriers is now being explored to deliver controlled doses of

drug of interest to promote cell/tissue specific treatment, thus

minimizing the potential side effects (43).

2.3.2 Natural compounds
To minimize side effects caused by synthetic drugs, many

studies are now focusing on natural compounds that can alleviate

RA disease (Table 1). Celastrol, triptolide, resveratrol, curcumin,

myricetin, fisetin and quercetin have been identified to hopefully

reduce RA severity by targeting numerous cytokines, signaling

pathways and proteases (41, 44). Numerous studies have shown

the effect of celastrol on actively improving RA severity through

suppression of the following: ROS-NF-kB-NLRP3 signaling (37),

HIF expression and ROS release (36), the PI3-K/AKT/mTOR axis

(45, 46) and NF-kB by degrading IkB (44, 47). Resveratrol, a

polyphenol, activates sirt1, which suppresses the transcriptional

activity of NF-kB/p65 by deacetylation and inhibits the COX/MMP

pathway and the production of IL-1b, IL-6, and TNF (48).

Curcumin suppresses the expression of NF-kB by upregulating

that of miR-124 (39). Emerging findings suggest that treating RA

patients with vitamin D supplementation can lower RANKL and

CXCL10 levels, and suppress activation of NF-kB (18).

Glucosamine prevents the demethylation of particular CpG sites

in the promotor region of IL-1b, thereby preventing NF-kB from

binding to the promotor region and suppressing the expression of

IL-1b (49). These studies indicate the potential of natural

compounds to not only target NF-kB, but also to suppress

inflammation in RA.
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3 JAK/STAT

3.1 JAK/STAT signaling pathway

The Janus kinase/signal transducer and activator of

transcription (JAK/STAT) pathway is a key signaling pathway

important in governing many biological processes, including cell

differentiation, proliferation, and immune functions. Several studies

have identified that the JAK/STAT signaling pathway is deregulated

in RA (50, 51). Many of the proinflammatory cytokines, including

TNF, IL-b, IL-6, IL-7, IL-8, IL-12, IL-15, IL-17, IL-23, IL-32, IFN
and GM-CSF, that are highly expressed in RA are known to be

regulated by JAK/STAT signaling pathway (50, 52). The JAK family

has four members, JAK1, JAK2, JAK3 and tyrosine kinase 2

(TYK2), while the STAT family of TFs consists of seven

members, namely STAT1, STAT2, STAT3, STAT4, STAT5a,

STAT5b, and STAT6. Upon receptor ligation, JAKs are

autophosphorylated, and recruit and phosphorylate members of

the STAT family (Figure 2). Phosphorylated STATs dissociate from

the receptor and form homo or heterodimers before translocating to

the nucleus to activate the transcription of STAT-regulated genes

(53). STATs bound to gene promoters can be dephosphorylated by

nuclear protein tyrosine phosphatases (N-PTPs) and subsequently

exit the nucleus to the cytoplasm for further activation cycles (54).

Negative regulators of the JAK/STAT pathway, such as PTPs,

protein inhibitors of activated STAT (PIAS), and suppressors of

cytokine signaling proteins (SOCS), play crucial roles in controlling

STAT-regulated gene expression (55–57).

JAKs and STATs are activated by stimulation with various

cytokines (51, 58). JAK1 is phosphorylated by four types of cytokine

receptor families: (i) cytokine receptor with gc (IL-2, IL-4, IL-7, IL-9,
IL-15, and IL-21 receptors); (ii) receptors with gp130 subunits (IL-
TABLE 1 Synthetic drugs and natural compounds targeting NF-kB either directly or indirectly.

Target Drugs Effects on NF-kB-regulated inflammatory factors Study type Reference
(s)

Synthetic drugs

NF-kB Tetrandrine Inhibits IL-1b, TNF and IL-6
Clinical trial
NCT05245448

(32)

NF-kB Iguratimod Inhibits prostaglandin E2, bradykinin, IL-1b, IL-6, IL-8, GM-CSF, TNF and COX-2
Clinical trial
NCT03855007

(33)

NF-kB siRNA Inhibits IL-1, TNF, IFNg and IL-6 production In vitro (17, 34)

Natural compounds

NF-kB Vitamin D Inhibits RANK, CXCL10, and IL-17a.
Clinical trial
NCT04344405

(18)

NF-kB Celastrol
Inhibits IL-1b, TNF, substance P, b-endorphin, MMP9, COX-2, c-Myc, TGF-b, c-JUN, JAK1, JAK3,
IKKb, SYK, MMP3 and MEK1.

In vitro (31, 35–37)

NF-kB Curcumin Inhibits IL-1, TNF, and IL-6. Increases IL-10 In vitro (38, 39)

NF-kB Resveratrol Inhibits COX-2, iNOS, TNF, MMP3, MMP13 In vitro (40, 41)

NF-kB Quercetin Inhibits IL-1b, IL-6, IL-8, IL-13, TNF and IL-17 In vitro (42)
f
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6, IL-11, IL-27, oncostatin M (OSM), cardiotrophin-1 (CT-1),

leukemia inhibitory factor (LIF), cardiotrophin-like cytokine

(CLC), and ciliary neurotrophic factor (CNTF) receptors; (59)

(iii) class 2 cytokine receptors (IL-10 family, type 1 and 2 IFN

receptors); and (iv) IL-3, IL-5, and GM-CSF receptors. As for JAK1,

JAK2 is activated by (i) the gp130 receptor family, (ii) the IL-3R

family (IL-3, IL-5R and GM-CSF receptors), (iii) the class 2

cytokine receptor family, and (iv) single chain receptors, such as

growth hormone, thrombopoietin, prolactin and erythropoietin
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receptors. JAK3 is activated by IL-2, IL-4, IL-7, IL-9, IL-15 and

IL-21 receptors and TYK2 is activated by IFN type 1, IL-6 family,

IL-10 family, IL-12, IL-13, and IL-23 receptors (60).

STAT1 is activated by IFNg, IL-2, IL-6, IL-7, IL-21, epidermal

growth factor (EGF), platelet-derived growth factor (PDGF), TNF,

hepatocyte growth factor (HGF) and angiotensin 2. It has been

found that IFNa/b are the only cytokines that can activate STAT2.

STAT3 is activated by the IL-6 cytokine family (IL-6, IL-11, IL-27,

IL-31, CNTF, OSM, and LIF), the IL-10 cytokine family (IL-10, IL-
FIGURE 2

Signaling pathway leading to the regulation of JAK/STAT target genes. The family of JAK kinases are activated upon receptor ligation. Subsequently,
they recruit STAT family proteins and phosphorylate them. Phosphorylated STATs form homo or heterodimers before being translocated to the
nucleus to regulate transcription of STAT target genes.
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19, IL-20, IL-22, IL-24, IL-26, IL-28A, IL-28B and IL-29), GM-CSF,

IL-2, IL-7, IL-21, IFNa/b, and leptin. STAT4 is activated by IL-12,

IL-23 and IFNa/b whereas STAT5 is activated by the IL-3, the IL-2

cytokine family (IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21), prolactin,

EGF, GM-CSF, PDGF and GH. STAT6 is activated only by IL-4 and

IL-13 (58, 61, 62).
3.2 STAT-regulated genes

STATs bind directly to DNA regulatory elements and regulate

gene transcription. STAT1, STAT3, STAT4, STAT5, and STAT6

have been shown to be highly expressed in RA (63). STATs often

interact with other TFs, which assemble in the promotor or

enhancer regions of target genes. Examples of such interactions

are STAT1-STAT2 with IRF9, STAT1 with NF-kB, STAT3 with

Jun, STAT3 with IRF4, RORgt, and BAFT in T cells, and STAT1

with IRF1, IRF8 and PU.1 in macrophages. These complex

transcription networks highlight the fact that multiple TFs can be

involved in regulating gene expression in various cell types.

3.2.1 STAT1
Various STAT proteins play a different role in different cell

types that lead to RA pathogenesis. In synovial macrophages,

STAT1 activates CXCL9 and CXCL10, which recruit T cells,

induce Th1 differentiation, and upregulate IFNg production (64,

65). STAT1 activation is essential for activated IRF1 and TLR3 in

macrophages (66). STAT1 can induce iNOS expression and

produce NO, which can reduce cell migration, while suppressing

STAT3 activity (67). Most importantly, STAT1 regulates MMP3

and MMP13, thereby inducing cartilage degradation in the knee

joint (68). A study by Kuuliala et al. has suggested that the

activation of STAT1 and STAT6 in circulating leukocytes helps

predict the response to treatment in RA (69).
Frontiers in Immunology 0681
3.2.2 STAT3
STAT3 is another major TF involved in inflammation. STAT3

induces angiogenesis, transcription of B cell lymphoma protein 2

(BCL-2), several MMPs, including MMP1, 3, and 13, and cyclins

(70, 71). STAT3 activates RORgt, which induces IL-6 production

and leads to Th17 polarization and stabilization (72). It can inhibit

fibroblast apoptosis (73), the function of STAT1, and the expression

of IFNa (74).

3.2.3 STAT4, STAT5, and STAT6
The production of the Th1-driven cytokine, IL-12, is mediated

through STAT4. STAT5 promotes the production of CD4+ T cells

(75). A few studies have reported the role of STAT5 in GM-CSF-

induced CCL17 production (76, 77), a chemokine found to be

important in inflammatory arthritis (78). IL-4 transduces signal

through STAT6, which regulates the Treg cell response (55, 69).
3.3 Current treatments targeting JAK/STAT

3.3.1 Synthetic drugs
JAK/STATs are key regulators of cytokines produced in RA

pathogenesis and therefore, are considered as feasible drug targets

(60). Currently, JAK inhibitors (JAKi) are used as third-line therapy

for RA patients with disease recurrence after using MTX and

bDMARDs. JAKi are tsDMARDs, and they competitively inhibit

by binding to the ATP binding site of the kinase domain present in

JAKs, thereby inhibiting the JAK phosphorylation and preventing

STAT activation (60). Among the currently available JAKi,

baricitinib and tofacitinib are pan JAKi (Table 2). Baricitinib,

tofacitinib and upadacitinib are approved by the FDA for the

treatment of RA (87), while filgotinib and peficitinib are being

evaluated (82). Tofacitinib is highly selective for JAK1 and JAK3,

with less selectivity for JAK2 and TYK2 (64). Baricitinib inhibits
TABLE 2 Synthetic drugs and natural compounds targeting JAK/STAT either directly or indirectly.

Target Drugs Effects on JAK/STAT-regulated inflammatory factors Study type Reference(s)

Synthetic drugs

JAK1/3 Tofacitinib Inhibits STAT1, STAT3, STAT5, CXCL9, and CXCL10 FDA-approved (64, 79)

JAK1/2 Baricitinib Inhibits IL-6, IL-12, IL-23, IFNg, CXCL9 and CXCL10 FDA-approved (73)

JAK1 Upadacitinib – FDA-approved (80)

JAK1 Fligotinib Inhibits STAT1 and STAT5 FDA-approved (81)

JAK3 Peficitinib – FDA-approved (82)

Natural compounds

JAK2/3 Notopterol Inhibits STAT5 In vitro (83)

JAK2 Genkwanin Inhibits STAT3 In vitro (84)

JAK1/2 Kaempferol Inhibits STAT1 and STAT3 In vitro (85)

STAT1/3 EGCG Inhibits iNOS and ICAM-1 In vitro (86)
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JAK1 and JAK2, while moderately inhibits TYK2 and JAK3 (88).

One study showed a similar safety profile for baricitinib and

tofacitinib, but a better clinical outcome with baricitinib (89). The

introduction of a nanostructure-based drug delivery system enables

site-specific delivery of tofacitinib and the JNK inhibitor SP600125

(90). Upadacitinib and filgotinib selectively inhibit JAK1 and have

been proven to be efficient in phase 2 and 3 studies (91). Another

study demonstrated that baricitinib combined with MTX and

upadacitinib with MTX can effectively inhibit the JAK/STAT

signaling pathway (82).

3.3.2 Natural compounds
Although JAKi function effectively in RA patients, they are

expensive for broader application and demonstrate adverse effects,

including hepatotoxicity, gastrointestinal perforations,

thromboembolism, herpes zoster, and tuberculosis; therefore,

some studies are focusing on exploring natural compounds that

can inhibit JAK/STAT signaling (87) (Table 2). Notopterol is a

natural compound that effectively inhibits JAK2/JAK3 and

suppresses the production of CXCL2, CXCL9, CXCL10, CXCL12,

CCL5, IL-1b, IL-6, and TNF levels in bone marrow-derived

macrophages. Genkwanin, a flavone, inhibits the JAK/STAT

pathway by binding to JAK2 and NF-kB, reducing TNF, NO and

IL-6 levels, while increasing IL-10 production (84, 92). Quercetin,

epigallocatechin-3-gallate (EGCG), resveratrol, curcumin,

genistein, chlorogenic acid, swertiamarin, cyanidin, ferulic acid,

baicalein, falcarindiol, cinnamaldehyde and cryptotanshinone

have been found to be effective in inhibiting JAK/STATs.
4 AP-1

4.1 Activation of AP-1

The activator protein-1 (AP-1) is proposed to play an important

role in inflammation and pathogenesis of RA (93). Increased levels

of c-Fos and c-Jun in RA synovium are correlated with disease

severity (94). In the initial phase of RA, ROS activated AP-1, but in

the late phase, proinflammatory cytokines can upregulate AP-1

(95). It is a leucine zipper TF composed of Fos, Jun, and ATF

families of proteins (96). Fos proteins (FosB, Fra-1, Fra-2, c-Fos)

heterodimerize with members of the Jun family, whereas Jun

proteins (c-Jun, JunB and JunD) can heterodimerize and/or

homodimerize with members of the Fos family to form

transcriptionally functional complexes that bind to the promotor

region of AP-1 sites (97) (Figure 3). The dimer composition of AP-1

and the active state of the Jun and Fos components determine the

target of AP-1 (98). Jun : Jun and Fos : Jun dimers selectively bind to

AP-1 motifs, known as the 12-O-tetra-decanoylphorbol-13-acetate

(TPA) responsive element (TRE) and the cAMP-responsive

element (CRE) (99).

AP-1 is activated primarily by MAPK signaling. The three main

subfamilies in the MAPK signaling pathway, extracellular signal-

regulated kinases (ERKs), p38, and c-Jun N-terminal kinase (JNK),

are essential for activation of AP-1 (96). MAPKs are activated by a
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cascade of phosphorylation events, wherein activated mitogen-

activated protein kinase kinase kinase (MAPKKK) phosphorylates

mitogen-activated protein kinase kinase (MAPKK), which finally

phosphorylates MAPK (100). IL-1b, IL-6, TNF, TGF-b, and TPA

up-regulates AP-1 through the MAPK pathway (101, 102). ERK1/2

is activated through a signaling cascade via phosphorylation of Ras,

Raf, and MEK 1/2 (98). Stimulation of TLR4, IL-1R, and TNFR

activates MyD88 and TAK1, which activates MKK4/7 or MKK3/6,

thereby activating c-Fos/c-Jun of AP-1 by JNK and p38, respectively

(103, 104). CXCL1 induces c-Jun phosphorylation in RA synovial

fibroblasts (RASFs), and increased activation of AP-1 is observed in

CXCL1 treated cells (93). AP-1 is activated by enhanced PI3K/AKT

activation through stimulation of TNF- and thrombin-induced

EGFR transactivation in chondrocytes (105, 106). Another study

in RASFs showed that myostatin-induced TNF expression through

the PIK3-AKT-AP-1 signaling pathway by activating the c-Jun

binding site found in the TNF gene promoter region (107).

Activating transcription factor 2 (ATF2), a member of the AP-1

TF family, is highly expressed in RA FLS activated via ERK and

MAPK. Sprouty2 can inhibit ATF2 overexpression by inhibiting the

phosphorylation of ERK and MAPK (108).
4.2 AP-1-regulated genes

4.2.1 Fos
AP-1 selectively regulates a range of cytokines, chemokines,

proteinases, and TFs. Each member of the AP-1 family differentially

regulates genes. c-Fos/AP-1 induce the expression of MMPs (e.g.,

MMP1, 2, 3, 8, 9, and 13) and cytokines (e.g., IL-23) (109, 110).

MMPs are mainly regulated by IL-1b-induced c-Fos/AP-1; most

genes in the MMP family have an AP-1 binding site in the promoter

regions near the TATA box and a mutation in the AP-1 binding site

completely suppresses MMP expression (111). MMPs are essential

for cartilage joint matrix breakdown and MMP13 predominantly

degrades cartilage by cleaving type 2 collagen (111). IL-1b can

induce osteoclast genesis directly and/or indirectly through RANKL

signaling. Integration of RANKL andM-CSF signaling requires Fos/

AP-1 (112).

4.2.2 Jun
c-Jun differentially regulates cyclooxygenase-2 (COX-2) and

arginase-1 (ARG-1) and promotes macrophage activation, thus

contributing to arthritis progression (113). JunB can control Th17

differentiation by inducing the expression of RORgt and RORa,
while suppressing the expression of Foxp3 (72). JunB synergizes

with c-MAF and GATA3 and induces activation of IL-4, which

induces Th2 cell differentiation (114). cJun and JunB together

activate AKT1 by binding directly to its promoter region (115).

4.2.3 NFAT
The nuclear factor of activated T cells (NFAT) is suggested to

play a role in the pathogenesis of RA (116). AP-1 interacts with

NFAT and cooperatively forms an AP-1/NFAT complex, which

enhances transcriptional activity compared to Fos-Jun or NFAT
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binding and regulates most cytokines. It regulates IL-2, which is

required for Treg proliferation (114). As AP-1 regulates some

important inflammatory mediators that promote RA, it serves as

a treatment target to alleviate RA. Synthetic drugs and natural

compounds targeting AP-1 are being studied at present.
4.3 Current treatments targeting AP-1

4.3.1 Synthetic drugs
Given the role of AP-1 in the regulation of key inflammatory

mediators known to promote RA, targeting it is a potential

treatment solution; however, there are no FDA-approved AP-1

inhibitors available in the clinic. Many in vitro and in vivo studies

are currently focusing on drugs that can inhibit AP-1 (Table 3).

CKD-506 is an orally administered hydroxamate that blocks the

activation of AP-1 and NF-kB transcription in peripheral blood

mononuclear cells isolated from RA patients (117). T-5224, a
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molecular inhibitor of c-Fos/AP-1, inhibits the DNA binding of

c-Fos/c-Jun, thus inhibiting IL-1b, IL-6, TNF, MMP1, 3, and 13. N-

(3-acetamidophenyl)-2-[5-(1H-benzimidazol-2-yl) pyridin2-yl]

sulfanylacetamide can disrupt the interaction between AP-1 and

NFAT and blocks the transcription of IL-2 and some cyclosporin A-

sensitive cytokines (126). A cyclin-dependent kinase 4/6 (CDK)

inhibitor (CDKi) blocks AP-1 transcription by decreasing Jun

stability, thus blocking the production of MMP3 and attenuating

cartilage destruction in the collagen-induced arthritis model (119).

A novel JNK inhibitor, 11H-indeno[1,2-b] quinoxaline-11-one

oxime, has been shown to not only inhibit JNK phosphorylation

but also block the transcriptional activity of AP-1 and NF-kB (120).

Roflumilast, a selective phosphodiester-4 inhibitor, inhibits the

production of IL-1b, IL-6, TNF, CCL5, CXCL9, CXCL10, MMP3,

and MMP13 by blocking the transcriptional activity of AP-1 and

NF-kB (118). Many of these synthetic drugs targeting AP-1 show

promise in preclinical studies, but further research and clinical trials

are needed before obtaining FDA approval.
FIGURE 3

MAP kinase signaling pathways leading to the regulation of AP-1 target genes. Members of MAP kinases, ERK, JNK and p38, are responsible for
activating transcription factors that regulate transcription of FOS and JUN genes and their subsequent activation. Subsequently, activated AP-1 binds
to the promoter regions of its target genes and regulates their expression.
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4.3.2 Natural compounds
While there are no FDA-approved AP-1 inhibitors available, many

studies have explored natural compounds that can potentially block

components in the AP-1 pathway (Table 3). Antcin K is an extract

taken from a medicinal mushroom, Antrodia cinnamomea, that

inhibits vascular cell adhesion molecule 1 (VCAM-1) and monocyte

adhesion to RASFs by inhibiting the phosphorylation of p38 and

MEK1/2-ERK (122). Apigenin-4´-O-a-L-rhamnoside, a natural

flavonoid, exhibits inhibitory mechanisms against MMP1, MMP3,

TNF, and RNAKL in RA FLS by inhibiting the MAPK/JNK/p38

pathway (102). Anticin K and Apigenin-4´-O-a-L-rhamnoside

inhibit the inflammatory mediators of AP-1 and indirectly suppress

the activation of AP-1. Treatment with resveratrol directly suppresses

bradykinin-mediated AP-1 and NF-kB activities and inhibits COX-2

production in RASFs (40). Melittin, the primary component of bee

venom, exhibits inhibitory properties by suppressing MMP1 and

MMP8 by blocking the phosphorylation of PI3-K/AKT and ERK/

JNK and the translocation of c-fos (106). Thymoquinone is another

natural compound found in Nigella sative, which shows anti-

inflammatory properties in preclinical arthritis models, blocking

multiple pathways that include AP-1 and NF-kB (127). The

ethanolic extract of Sigesbeckia orientalis inhibits pannus formation

and reduces cartilage damage and bone erosion in the collagen-induced

arthritic model, while it leads to decreased expression of IL-1b, IL-6, IL-
8, COX-2, MMP9, and NLRP3 by inhibiting MAPKs, AP-1, and NF-

kB in in vitro studies carried out in synovial cells (125).
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5 IRFs

5.1 Activation of IRFs

In humans, the interferon regulatory factor (IRF) family of

transcription factors consists of nine members, IRF1 to IRF9. They

share a homology region found in the N-terminal DNA binding

domain, which binds to the interferon stimulated response element

(ISRE). The diverse C-terminal domain is unique to each member

and binds to a wide range the proteins outside the IRF family. They

are activated via signals received by activation of TLR and BCR

(128). Upon activation, IRFs can form homo- or hetero dimers,

which are translocated to the nucleus. Hyperactivated IRFs mainly

produce IFNs and thus contribute to inflammatory diseases. Each

member of the IRF family is regulated by a range of inflammatory

mediators present in RA synovium and their mode of activation is

discussed below (Figure 4).

5.1.1 IRF1
TLR-activated TAK1 can induce IRF1 transcription via the RelA/

p50 complex (129). Furthermore, the JAK/STAT signaling cascade has

also been shown to induce the expression of IRF1 (130). The following

studies have also demonstrated a similar pathway of IRF1 activation.

Pristane induces autophagy in macrophages and can induce IRF1

activation by activating STAT1 (66), and IKKb regulates IRF1

transcription in conventional type 1 dendritic cells (129).
TABLE 3 Synthetic drugs and natural compounds targeting AP-1 either directly or indirectly.

Target Drugs Effects on AP-1-regulated inflammatory factors Study type Reference
(s)

Synthetic drugs

AP-1 CKD-506 Inhibits TNF, IL-6, IL-8, MMP1, and MMP3
Clinical trial
NCT04204603

(117)

AP-1 Roflumilast Inhibits CCL5, CXCL9, CXCL10, MMP3 and MMP13 In vivo (118)

c-Fos T-5224 Inhibits MMP1, 3, 13, TNF, IL-6, and IL-1b In vivo (111)

Jun CDKI
Inhibits MMP1 and MMP3 production via AP-1 signaling
pathway

In vitro (119)

JNK
11H-indeno[1,2-b] quinoxalin-11-one

oxime
Inhibits IL-6 production by inhibiting AP-1 and NF-kB
pathway

In vitro (120)

Natural compounds

AP-1 Thymoquinone Inhibits TNF and IL-6 In vivo (121)

AP-1 Actin K Inhibits VCAM-1 In vitro (122)

AP-1 Apigenin-4´-O-a-L-rhamnoside Inhibits MMP1, MMP3, RANKL and TNF In vitro (102)

AP-1 Thymoquinone
Inhibits ICAM-1, VCAM-1, MAPK, MMP3, MMP13, and
COX-2

In vitro (123, 124)

AP-1 Extract of Sigesbeckia orientalis Inhibits IL-1b, IL-6, IL-8, COX-2, MMP9, MAPKs In vivo (125)

c-Jun Melittin Inhibits COX-2, MMP1, MMP3, MMP8 and MMP13 In vitro (106)
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5.1.2 IRF3
IRF3 is activated by various signals received from intracellular

receptors such as RIG-1, MDA5, TLR3, TLR4, and cytosolic double-

stranded DNA (dsDNA) sensors (131). Activated TLR3 signals via

TRIF to activate TBK1 and IKKe via TRAF3. dsDNA in the cytosol

can trigger type 1 IFN through STING, which can activate IRF3 by

stimulating its phosphorylation by activating TBK1. It is suggested

that the C-terminal tail of the STING oligomer can recruit both

TBK1 and IRF3 by binding to the IRF3 motif and delivers IRF3 to

TBK1 (132). Finally, TBK1, along with IKKϵ, phosphorylate IRF3 to
form dimers and then translocate to the nucleus (133).

5.1.3 IRF4
IRF4 is induced by activation of BCR and CD40 in B cells, TCR

in T cells, and TLR in macrophages. However, it is not activated by

type 1 or type 2 IFNs. The receptor activation leads to activation of

c-Rel, which binds to the promotor region of IRF4 to induce

transcription. The promotor region contains Foxp3, STAT4,

STAT6, and IRF4 binding sites, suggesting that IRF4 is capable of

autoregulating its expression (134).

5.1.4 IRF5
IRF5 activation is initiated upon binding of ligands to TLR7/8/9,

wherein MyD88, IRAK1/4, and TRAF6 are recruited. Then

autophosphorylation of IRAK4 activates TAK1 to phosphorylate
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IKKb. Meanwhile, TRAF6 ubiquitinates IRF5, which is subsequently

phosphorylated by IKKb, thus forming homodimers. IRF5

homodimers are translocated to the nucleus to activate target

genes (128).

5.1.5 IRF6, IRF7 and IRF8
IRF6 is regulated via TLR2 in epithelial cells and TLR3 in

keratinocytes (135). In keratinocytes, RIPK4 phosphorylates and

activates IRF6 (136). IRF7 is activated through TLR3 and TLR7 via

two different pathways. TLR3 is activated by dsRNA and

phosphorylates IRF7 via TRIF, while TLR7 signals via MyD88-

TRAF6 signaling, which is induced by ssRNA (137). IRF8 is activated

in macrophages, dendritic cells, T cells, and NK cells. Binding of IFNg to
its receptor activates IRF8 by activating STAT1. IRF8 is also activated

following stimulation with IFNa/b and LPS (138).
5.2 IRF-regulated genes

IRFs play a major role in autoinflammation and autoimmunity

(139). IRF1, IRF3, IRF5 and IRF7 are important in the induction of

type 1 IFN, where IRF4, IRF5 and IRF8 regulate the development of

myeloid cells and play a crucial role in inflammatory responses

(140). A wide range of studies have suggested a role for each IRF in

inflammatory diseases, including RA.
FIGURE 4

Signaling pathways leading to the regulation of IRF target genes. Ligands binding to TLRs and IFNRs initiate downstream signaling pathways via
downstream activators and adaptor molecules, such as STATs and MyD88, which lead to the activation of IRF family transcription factors. Activated
IRFs form homo or heterodimers before being translocated to the nucleus, where they regulate transcription of IRF target genes.
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5.2.1 IRF1
IRF1 regulates several IFN-regulated genes (e.g., CXCL9, CXCL10,

and CXCL1)1 in rheumatoid synovium and activates B cell activating

factor (BAFF), which is highly expressed in RA (141). IRF1 regulates

TNF-induced IFNb expression and subsequently activates STAT1 to

activate IFN-regulated genes (141). IRF1 can induce TLR3 expression

in pristane-induced arthritis (66). A recent study demonstrated that the

invasiveness of synovial fibroblasts is regulated by the expression of

follistalin-like protein 1 induced by IRF1 (142).

5.2.2 IRF2 and IRF3
IRF2 negatively regulates IFN type 1 signaling and

counterbalances the activity of IRF1. IRF2 activates IL-12p40 and

VCAM-1, leading to the development of NK cells and Th1 cells,

respectively (143). IRF2 stimulates inflammatory ROS levels, TNF,

IL-1b, and IL-6 expression, and suppresses superoxide dismutase.

The knockdown of IRF2 gene is shown to inhibit the JAK/STAT

signaling pathway (144). IRF3 regulates the expression of IL-6, IL-8,

MMP3, and MMP9 in RA FLS by activating c-Jun/AP-1 (145).

5.2.3 IRF4
IRF4 plays a diverse role in inflammation and arthritis. It is

mainly involved in T cell differentiation. IRF4 responds to IL-4 and

regulates Th1 and Th2 differentiation through interaction with T-

bet and GATA3, respectively. IRF4 binds directly to RORgt and
mediates the differentiation of Th17 cells (146) and regulates Glut1,

IL-17 and IL-21 levels (147, 148). Furthermore, it interacts with

BCL-6 and Foxp3 to produce T follicular helper cells and Tregs,

respectively (146). In macrophages, IRF4 distorts macrophages into

the M2 phenotype through JMJD3 competing for MyD88 with IRF5

while suppressing M1 polarization of M1 and inducing IL-4 and IL-

10 secretion. Previous studies have shown that a pro-inflammatory

cytokine GM-CSF can regulate CCL17 formation in monocytes/

macrophages through JMJD3 and IRF4 (78). In addition to these

functions, IRF4 binds to STAT3, STAT6, and NFATs to carry out

transcription. IRF4 functions as a transcriptional repressor by

forming a homodimer or heterodimer with IRF8, suppressing the

expression of IFN-inducible genes and inhibiting IRF1 activity in

macrophages and T cells (134).

5.2.4 IRF5
Studies show that IRF5 acts in T cells, monocytes, and

macrophages. Increased expression of IRF5 induces M1

polarization while suppressing M2 polarization (128). IRF5

increases the expression of IL-12 in circulating monocytes in

samples from OA patients without treatment and promotes Th1-

related genes in resting T cells (149). Furthermore, IRF5 induces a

wide range of pro-inflammatory cytokines such as IL-17, monocyte

chemotactic proteins (MCP-1), TNF-a, RANTES, IL-6, IL-12p40,
and IL-23p40 (150, 151). IRF5 up-regulates MMP3 production

mediated via NF-kB (151).

5.2.5 IRF6 and IRF7
TLR3-induced activation of IRF6 leads to enhanced expression

of IL-23p19, while negatively regulating IFNb expression by
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competing with IRF3 in the IFNb promotor region or by forming

a heterodimer complex with IRF3 (135). In addition, IRF6 induces

the expression of IL-8, CCL5, and CXCL11 (136, 152) and IRF7

mediates RANKL production in RA FLS (137).

5.2.6 IRF8
IRF8 is crucial for the development and maturation of myeloid

cells. At the transcription level, IRF8 is co-recruited to form ternary

complexes with other TFs. It forms a heterodimer with IRF1,

STATs, AP-1, and PU.1 (138, 143) and induce the production of

IL-6, IL-12p40 and TNF. On the other hand, IRF8 negatively

regulates osteoclastogenesis by inducing IFNg (153). Recently, it

was found that IRF8 can promote the expression of MMP13 in

OA (154).
5.3 Current treatments targeting IRFs

Since the IRF family of TFs is involved in the regulation of a

wide range of inflammatory mediators, they can be potential

treatment targets for RA. Currently a type 1 IFN inhibitor,

anifrolumab, is subjected to phase 2 clinical trials (155). A study

in RA patients by Juge et al. shows a IRF5 response to rituximab

within 24 weeks (156). Certain JAKi, such as tofacitinib and

baricitinib, are documented to suppress the activity of certain

IRFs by inhibiting STAT1 activity (141).
6 Other TFs

In addition to the TFs discussed above, other TFs such as, hypoxia-

inducible factor (HIF) and nuclear factor-erythroid 2-related factor-2

(Nrf2), are also implicated in the pathogenesis of RA. In RA synovium,

HIF is activated during hypoxia, which aggravates angiogenesis,

synovial hyperplasia, and pannus formation (157–159). TNF, IL-1b,
and IL-33 can induce the expression of HIF in RASFs and resident

macrophages (157). Production of HIF primarily induces the

expression of VEGF, which promotes the synthesis of proteolytic

enzymes in endothelial cells (160). Furthermore, it promotes the

generation of M1-type macrophages and Th17 cells (161, 162).

Knockdown of HIF-a in collagen-induced arthritis (CIA) mouse

model has been shown to inhibit multiple inflammatory pathways

and thereby, ameliorating arthritis (163). In recent years, several studies

are focusing on HIF inhibitors as potential therapeutics for treating

arthritis. Pharmacological HIF inhibitor, PT2977 has been shown to

ameliorate arthritis in the CIA mouse model (164). Moreover, natural

compounds, that include andrographolide, geniposide,

dihydroarteannuin, and tylophorine-based compounds, can inhibit

HIF and be effective in attenuating RA progression (163, 165–167).

Nrf2 is a redox regulator, which plays a protective role by exerting

anti-inflammatory and antioxidant effects (168). Significantly, the

protective role of Nrf2 has been linked to relieving severe symptoms

in RA via detoxification, regulation of redox balance, and metabolism

(34, 169). TNF and increased ROS levels can induce the expression of

Nrf2 in RA synovium, which in return suppresses the proliferation and
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MMPs production in RAFLS via inhibition of inflammatory mediators

activated in RA (169). Due to this protective role of Nrf2, studies are

focusing on synthetic drugs, including, dihydroartemisinin, and

dimethyl fumarate, as well as natural compounds, including

sinomenine, licochalcone, 7-deacetyl-gedunin, calycosin and

resveratrol, that increase the expression of Nrf2 to treat RA (170–

174; 90). While both HIF and Nrf2 have been identified as potential

treatment targets for RA, further studies, utilizing the above-mentioned

synthetic and natural compounds, are required to explore their

therapeutic potential.
7 Network of TFs

In a complex disease, such as in RA, all the aforementioned TFs

can form a network to cross-regulate each other or function

cooperatively to activate or antagonize downstream target genes

(175, 176). Examples of such interactions are STAT1-STAT2 with

IRF9, STAT1 with NF-kB, STAT3 with Jun, STAT3 with IRF4,

RORgt, and BAFT in T cells, and STAT1 with IRF1, IRF8 and PU.1

in macrophages (146, 177). Further, c-Fos/AP-1 and NFATc1

together control the osteoclast differentiation (110). IRF4 can

bind to STAT3, STAT6, and NFATs to facilitate transcription of

their downstream genes but it can also function as a transcriptional

repressor by forming a heterodimer with IRF8, suppressing the

expression of IFN-inducible genes and inhibiting IRF1 activity in

macrophages and T cells (134). AP-1, NF-kB, and IRFs together are

known to activate MMPs, (178). NF-kB, IRF4/8, PU.1, AP-1, and
STAT1 induce the expression of IL-1b (179). STAT3 can activate

HIF in RA synovium (180). While these studies highlight the

complex network of TFs and their regulation of downstream

inflammatory mediators, a careful approach is warranted when

targeting them for therapeutic benefits. Since these TFs function

both individually and cooperatively, targeting one or more TFs can

effectively ameliorate RA. However, the key TFs involved in RA

pathogenesis are also associated with biological processes involving

homeostasis, and therefore inhibiting these TFs may lead to

undesirable side effects. This challenge is currently being

addressed by tissue-specific/joint-specific drug delivery via

nanocarriers, which increase the specificity and efficacy, while

minimizing potential adverse effects (17, 30, 31, 35, 121, 181–183).
8 Conclusion and prospect

RA is a chronic inflammatory autoimmune disease, causing

pain and disability. Several drugs that are currently used for RA

treatment are effective only delaying the progression of the disease

or alleviating inflammatory symptoms. Many of these drugs have

drawbacks, including disease recurrence and adverse effects due to

long-term use. Therefore, there is a need to develop novel

therapeutic strategies to address these shortcomings.
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TFs play important roles in immune and nonimmune cells

through regulation of gene expression. Studies emphasize the

importance of the forementioned TFs in RA disease initiation and

progression of RA disease. With the approval of JAK inhibitors in

the treatment of RA, the pursuit of TFs or their signaling pathways

as potential treatment targets has gained momentum. Currently,

several inhibitors of TFs are being investigated, and they block TF

function by inhibiting protein-protein interaction, translocation of

TFs from the cytosol to the nucleus, or protein-DNA binding.

In summary, this review highlights key TFs and their signaling

pathways that may become targets for future RA therapies; it also

provides an update on several synthetic drugs and natural

compounds that are in consideration for targeting such TFs or

the signaling pathways that activate TFs.
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Dendritic cells (DCs) are sentinel immune cells that form a critical bridge linking

the innate and adaptive immune systems. Extensive research addressing the

cellular origin and heterogeneity of the DC network has revealed the essential

role played by the spatiotemporal activity of key transcription factors. In response

to environmental signals DC mature but it is only following the sensing of

environmental signals that DC can induce an antigen specific T cell response.

Thus, whilst the coordinate action of transcription factors governs DC

differentiation, sensing of environmental signals by DC is instrumental in

shaping their functional properties. In this review, we provide an overview that

focuses on recent advances in understanding the transcriptional networks that

regulate the development of the reported DC subsets, shedding light on the

function of different DC subsets. Specifically, we discuss the emerging

knowledge on the heterogeneity of cDC2s, the ontogeny of pDCs, and the

newly described DC subset, DC3. Additionally, we examine critical transcription

factors such as IRF8, PU.1, and E2-2 and their regulatory mechanisms and

downstream targets. We highlight the complex interplay between these

transcription factors, which shape the DC transcriptome and influence their

function in response to environmental stimuli. The information presented in this

review provides essential insights into the regulation of DC development and

function, which might have implications for developing novel therapeutic

strategies for immune-related diseases.

KEYWORDS

dendritic cells, transcription factor, IRF8, cDCs, pDCs
1 Introduction

Our body is constantly exposed to danger in the form of pathogenic micro-organisms

that seek to break through the skin and the mucous membranes that provide the first

barrier of defense. The acquisition of mutations in our own cells resulting in their

transformation into malignant clones represents another form of danger to which the
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body must respond in order to avoid the development of cancer. A

rare group of heterogeneous immune cells known collectively as

dendritic cells (DCs) are central to sensing these dangers and

orchestrating the appropriate response, while at the same time

ignoring normal healthy cells and commensal micro-organisms.

DCs are a diverse group of cell types that are widely dispersed

throughout the body. They act as sentinels to capture exogenous

antigens that are processed and presented via either major

histocompatibility complex class II (MHC-II) to CD4+ T cells

(direct presentation) or shuttled through a specialized pathway to

MHC-I to engage CD8+ T cells (cross-presentation) (1–5). Antigen

uptake alone is insufficient to fully activate DCs, thus allowing DCs

to remain tolerant to harmless antigens derived from healthy tissue

or commensal microbes (6–12). However, DCs express an array of

pattern-recognition receptor (PRRs) and C-type lectin receptors

(CLRs) whose engagement induces maturation and migration, key

steps in promoting their interaction with antigen specific T cells and

thereby initiating adaptive immunity (13–15).

To face this variety of immune challenges, DCs have evolved

into a variety of phenotypically and functionally distinct cellular

subsets in both mouse and human (5, 16–19). DCs can be broadly

separated into conventional dendritic cells (cDCs), plasmacytoid

DCs (pDCs), and monocyte-derived DCs (moDCs), the latter

becoming prevalent during inflammation. Conventional DCs can

be further divided into type 1 cDC (cDC1s) and type 2 cDCs

(cDC2s). Of note Langerhans Cells that were traditionally classified

as DCs due to their morphological and phenotypic similarities with

DCs and their ability to prime T cell response, are now recognized

to be a specialized population of tissue macrophages (20, 21), and

therefore their ontogenetic and homeostatic properties differ greatly

from DC (22, 23).
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Generally, mouse cDCs and moDCs are defined by high cell

surface expression of the integrin CD11c (encoded by Itgax) and

MHC-II. Beyond the expression of CD11c and MHC-II, additional

cell surface markers can be used to distinguish mouse DC subsets.

cDC1s co-express the cell surface molecules XCR1, CD24, DEC205,

CD8a and CLEC9A (24, 25) (Figure 1). In the peripheral lymphoid

and non-lymphoid organs such as the lung, gut and LN, cDC1s also

can also be identified as CD103+CD11b- cDCs (26, 27). The splenic

cDC2 subset is defined by the presence of CD11b, Sirpa (CD172a)

and CD4 on the cell surface (28, 29). Adding to that cDC2s can co-

express CD103+CD11b+ in non-lymphoid organs (27, 30).

Although the cDC2 compartment has been described as a discrete

subset, the advent of single cell technology has revealed a high

degree of diversity within this population and some additional

markers have been proposed to define the basis of this heterogeneity

(discussed later). Under inflammatory conditions, moDCs can

respond to the chemokines such as CCL2 and CCL7 and

upregulate cell surface expression of MHC-II, CD11c and CD11b,

and thus can be easily mistaken as cDC2s (31). Additional markers

such as CD64 and MAR-1 can be used to discriminate moDCs from

cDC2s (32). pDCs are distinct from the other DC subsets in that

they exhibit a lower level of expression of CD11c and MHC-II.

pDCs also express a variety of unique markers (compared to cDCs

and moDCs), including BST2, B220, and SiglecH (33). Whether

pDC belongs to the DC lineage remains at present a matter of

debate given that pDCs express some lymphoid markers and overall

have a limited capacity to present antigens to T cells compared to

the cDC or moDC compartments (34–36).

Given their critical role in orchestrating adaptive immune

responses, high dimensional and throughput techniques such as

single cell RNAseq and Cytometry by time of flight (CyTOF), have
FIGURE 1

Transcription factors controlling DC specification and function. The figure highlights the development of cDCs subtypes and pDCs from the shared
common dendritic cell progenitors (CDP). Some other DCs subtypes (DC3) have also been reported recently in mouse and human and derive from
monocyte-dendritic cell progenitors (MDP). The common lymphoid progenitor (CLP) generates pDCs but lack cDC potential. Under inflammation,
monocytes can differentiate into monocyte-derived (mono)DCs. Each DC subtype has unique surface markers and attributes in regulating immune
response. The transcription factors governing DC lineage specification and function are shown.
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been applied to the DC lineages. These approaches have revealed

unexpected heterogeneity within the DC subsets in both mouse and

human, especially the cDC2s (37–39). Single-cell analysis of human

mononuclear phagocytes also identified an inflammatory subset of

CD5-CD163+CD14+ inflammatory DC3s that were distinct from

cDC2s and able to prime Th2 responses (40). The integration of

these newly identified subsets into the overall picture of DC

development is a very active area of current research (41–43). In

this review we will focus on the recent insights on both the

transcriptional programming and the ontogeny of the DC

lineages and discuss how these findings inform our understanding

of the functional specialization of the DC subsets.
2 cDC1 development and function

2.1 Transcriptional regulation of
cDC1 development

cDC1s differentiate principally from the common dendritic cell

progenitor (CDP), a population that also gives rise to cDC2s (44,

45). A CDP subset committed to cDC1 fate has been characterized

through the expression of CD11c–MHC-II-/intCD117intZbtb46-

GFP+ in the bone marrow (46) and pre-cDC1s (CD11c+MHC-II-/

intCD135+CD172-Siglec-H-Ly6C-) (47) in the bone marrow and

spleen (44, 48, 49). However, cellular barcoding and fate mapping

studies have challenged this linear model of differentiation, given

that cDC1 imprinting could be detected as early as the

hematopoietic stem cell (HSC) (50–52).

Despite the challenges surrounding their origin, there is a very

good understanding of the transcriptional mechanisms controlling

cDC1 differentiation. cDC1 commitment is dependent on the

expression of specific transcription factors (TFs), including

BATF3 (Basic Leucine Zipper ATF-Like Transcription Factor 3)

(53), IRF8 (Interferon Regulatory Factor 8) (54), PU.1 (55), NFIL3

(Nuclear Factor, Interleukin 3 Regulated) (56, 57), and ID2

(Inhibitor of DNA Binding 2) (58), where the specific inactivation

of any of these TFs is associated with a strong defect in cDC1

development (Figure 1). However, this cDC1 deficiency can be

rescued by short-term bone marrow reconstitution (59) or over-

expressing IRF8 in absence of BATF3 (60), highlighting the

significant role of IRF8 and the fine network of TFs allowing

cDC1 differentiation.

cDC1 differentiation is intimately linked to optimal expression

of IRF8 which is tightly regulated by the spatio-temporal

coordinated action of key TFs (Figure 2A). Indeed, its expression

is initiated in early DC progenitors, including Lymphoid Primed

Multipotent Progenitors (LMPPs) and is dependent on PU.1-

induced chromatin remodelling (61). At the LMPP stage, RUNX

and CBFb induce the activation of the distal +56Kb Irf8 enhancer

that is essential for the initiation of IRF8 expression (62). Further

down the path toward DC differentiation the activity of two

additional enhancers have been shown to be pivotal in dictating

cDC1 vs pDC fate: +41Kb and +32kb Irf8 enhancers. In progenitors,

E protein controls the activation of +41Kb Irf8 enhancer, which

results into the commitment of DC progenitors to the pDC lineage.
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As alluded to earlier IRF8 expression in progenitors is central for

cDC1 differentiation, therefore it has been proposed that the

upregulation of ID2 can counteract the action of E protein on the

+41Kb Irf8 enhancer, which results in the activation of the +32Kb

Irf8 enhancer whose accessibility is tightly regulated by BATF3, DC-

SCRIPT and IRF8 itself to maintain adequate IRF8 level in pre-

cDC1 and cDC1 (46, 63, 64). This key decisional step is also

controlled by additional transcription factors, namely ZEB2 (Zinc

finger E-box binding homeobox 2) and NFIL3. ZEB2 inhibits ID2

expression of in CDPs thereby promoting pDC differentiation(65,

66). In contrast, NFIL3 acts upstream of ID2 and ZEB2 to control

cDC1 differentiation as its binding in CDPs to the -165Kb Zeb2

enhancer prevents ZEB2 expression in CDPs, promoting the

transition from a ZEB2hiID2lo CDPs to ZEB2loID2hi CDPs (57,

63). This concomitant reduction in ZEB2 expression and increase in

ID2 expression drive the differentiation of cDC1s (63). Beyond the

important role for IRF8 in controlling DC fate in progenitors, a role

for IRF8 in maintaining cDC1 survival has been postulated (67).

However, recent studies suggested that rather than being essential

for their survival, IRF8 as well as BATF3 control cDC1 identity in

fully differentiated cells as their deletion, in both cases, enables the

appearance of cDC1-like cells expressing cDC2 features (68, 69).
2.2 Key attributes and function of cDC1s

The importance of cDC1s in the immune system has been

highlighted by the interrogation of cDC1-deficient mouse models

(53, 70). The absence of cDC1s is associated with a reduction in the

control of tumor growth (71–76) and impaired control of viral (53)

or parasitic (77) infections. The major role of cDC1s in these

contexts is inferred from their capacity to activate naïve CD8+ T

cells. Indeed, cDC1s can confer the 3 signals required for the

efficient activation of naïve T cells: 1) the presentation of antigen-

derived peptides mainly via cross-presentation, 2) co-stimulatory

signals and 3) cytokines.

cDC1 are not only important for the activation of naïve CD8+ T

cells (78–80) but also for the re-activation of memory CD8+ T cells

which confer a faster and higher control of secondary infection, as

for example in the case of Listeria monocytogenes (53). In this

setting, cDC1s are the main producer of IL-12 and CXCL9 which

facilitate the recruitment and activation of memory CD8+ T cells

(81). In the tumor context, the production of prostaglandin E2

(PGE2) by tumor cells leads to cDC1 dysfunctionality marked by

the downregulation of IRF8, and key effector cytokines such as

CXCL9 and IL-12, resulting in poor CD8+ T cell tumor infiltration

and ultimately in tumor immune evasion (82, 83). Moreover, cDC1s

play a major role in licensing CD4+ T cells for CD8+ T cells

activation (84, 85). The cDC1/CD4+ T cell interaction through

CD40/CD40L signaling increases expression of CD70 and BCL2L11

in the cDC1, allowing an increase in cDC1 survival and the

differentiation and expansion of tumor-specific memory CD8+ T

cells (84, 86, 87).

In addition to their role in the initiation of the CD8+ T cell

response, cDC1s restrain progenitor of exhausted T (Tpex) cells in

the white pulp niche of the spleen in an MHC-I dependent manner.
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FIGURE 2

Transcriptional network controlling the development and function of DCs subsets. (A) This figure depicts the transcriptional network that regulates
the development and function of cDC1s from bone marrow progenitors to peripheral tissues. The transcription factor IRF8 plays a crucial role in
cDC1 development, and its expression is regulated by several enhancers located at -50 kb, +56 kb, and +32 kb relative to the Irf8 gene locus. The
transcription factors PU.1, RUNX-CBFb, BATF3, and DC-SCRIPT activate these enhancers at different stages of cDC1 development. In addition, NFIL3
is required for cDC1 development, and it suppresses ZEB2 expression via binding at-165kb Zeb2 enhancer during the CDP stage. ZBTB46 expression
marks the commitment to the cDC1 lineage, while DC-SCRIPT and ETV6 promote the maturation process of cDC1s. WDFY4 is a co-activator that
primarily controls the cross-antigen presentation ability of mature cDC1s. (B) cDC2s express IRF4 and can be further divided into two subtypes:
cDC2a, which have an anti-inflammatory function, and cDC2b, which have a pro-inflammatory function. The development of cDC2a requires T-bet,
while the development of cDC2b requires RoRgt. Both cDC2a and cDC2b develop from a CDP and this process is controlled by C/EBP binding at
the -165kb zeb2 enhancer. (C) This figure illustrates the transcriptional network that controls the development and function of pDCs from bone
marrow to peripheral tissues. The development of pDCs from multiple lineages requires the transcription factors PU.1, CBFb, IRF8, and TCF3. The
primary regulator of pDC development is E2-2, controlled by a network of transcription factors, including BCL11A, ZEB2, and ID2. E2-2 also controls
the expression of IRF8 via binding to the Irf8 + 41kb enhancer region at the CDP stage, possibly through complex formation with other transcription
factors such as MTG16. The function of SPIB is to retain immature pDCs in the bone marrow, while RUNX2 expression promotes the egress of pDCs
from the bone marrow. Type I IFN production, a significant function of pDCs is mainly controlled by IRF5, IRF7, and IRF8. Other transcription factors,
such as E2-2, RUNX2, SPIB, NFATC3, and CXXC5, can directly control IRF7 expression and regulate type 1 IFN production. (D) moDCs develop from
Ly6Chi monocytes under the control of several transcription factors, including KLF4, MafB, and PU.1, as well as low levels of IRF8. The final
differentiation of moDCs also requires the activity of IRF4, ETV6, and ETV3. Arrows indicate positive regulation, while bars indicate negative
regulation.
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This improves the control of infection by limiting Tpex migration to

the red pulp and their differentiation into exhausted T cell (88).

How this mechanism can be transposed to the control of tumor

growth is still not clear despite evidence of the localization of Tpex

in distinct niche in the tumor (89, 90).
3 cDC2 development and function

3.1 Transcriptional control of
cDC2 development

Similar to cDC1s, cDC2s also develop from the CDP, although

the transcriptional circuitry controlling cDC2 development is less

well understood (Figure 2B). As opposed to cDC1s, cDC2s express

low amounts of IRF8 and instead highly express IRF4 (Interferon

Regulatory Factor 4). Conditional ablation of IRF4 in CD11c+ cells

has shown impaired, but not the complete loss of cDC2s (91). A

potential explanation for the observation that some cDC2s develop

in absence of IRF4 could be that the cDC2 population represents a

heterogeneous mix of IRF4-dependent and independent subsets. In

line with this possibility, a body of work has highlighted a certain

degree of diversity within that compartment and the involvement of

different TFs (39, 92).

The first report describing cDC2 diversity revealed that the

conditional ablation of NOTCH2 (Neurogenic locus notch

homolog protein 2) in CD11c-expressing cells resulted in the

reduction of ESAM+ splenic cDC2s and lamina propria

CD103+CD11b+ DCs (93). Subsequently, the transcription factor

KLF4 (Kruppel-like factor 4) was found to be important for the

development of ESAM- cDC2s (43, 94). This evidence indicates that

NOTCH2 and KLF4 independently control the development of

functionally distinct cDC2 subsets (94, 95).

Yet, a study addressing cDC2 heterogeneity at a single cell level

has put forward an alternative model to the one proposed here

above (39). Brown et al. suggested that cDC2 could be separated

instead into T-BET (T-box expressed in T cells) and RORgt (RAR-
related orphan receptor gamma) cDC2s, cDC2a and cDC2b

respectively. Importantly, in the aforementioned study, neither

the expression of Klf4 or Irf4 enable the discrimination of cDC2a

from cDC2b. Instead, the authors proposed the use of additional

cell surface markers, namely CLEC10A and CLEC12A, to separate

cDC2a and cDC2b. Interestingly, the interrogation of chromatin

accessibility revealed that open chromatin regions in cDC2a showed

an enrichment for RBPJ (Recombination signal binding protein for

immunoglobulin kappa J region) motifs. As RBPJ is the DNA-

binding component of the NOTCH TF complex, this finding is

compatible with the earlier reported role for NOTCH2 signaling in

controlling cDC2 heterogeneity (39, 93).

In addition to the aforementioned role for ZEB2 in controlling

pDC differentiation, a role for ZEB2 in controlling cDC2

development has been shown. However, its function remains

controversial as conflicting results have been reported. One study

showed that conditional deletion of ZEB2 in ItgaxcreZeb2fl/fl mice

led to reduced number of splenic cDC2s (65), but a subsequent

study failed to confirm this observation (66). This latest study is
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somewhat contrasting with the development of a novel mouse

model lacking cDC2s and other myeloid lineages (57). In this

study, a triple mutation of all three NFIL3-C/EBP sites within the

-165Kb enhancer of Zeb2 ablated its expression exclusively in the

myeloid compartment and led to the complete loss of pre-cDC2

specification and mature cDC2 development in vivo (57). Whilst the

nature of this discrepancy warrants further investigation, these

studies also highlighted ZEB2 as a critical regulator of pDC

development through its repressive activity on ID2, as well as its

important role for monocytes commitment as these 2 populations

were strongly affected in this mouse model (57).
3.2 Diversity and function of cDC2s in
mice and human

Compared to cDC1s, cDC2s appear more efficient in presenting

antigens via MHC-II molecules to CD4+ T cells (1, 96). However,

cDC2s are not equally able to present soluble versus cell associated

antigens. CD4+ T cell proliferation in response to soluble antigen

was unperturbed in mice lacking cDC1s (Xcr1DTR mice or Batf3-/-

mice), demonstrating that cDC2s compensate for the lack of cDC1s

in this setting (53, 97). In contrast, cDC2s are far less efficient than

cDC1s in the uptake and processing of cell-associated antigens, and

thus display a limited capacity to prime CD8+ T cells through this

route (98).

As alluded earlier, mice lacking IRF4 were originally used to

define the function of cDC2s (91). These studies led to define a key

role for cDC2s in the regulation of Th2 and Th17 immune

responses aiming to eliminate extracellular pathogens

(Nippostrongylus brasiliensis) and parasites (Aspergillus

fumigatus), respectively (91, 99). At that time, it remained unclear

how cDC2s could direct such distinctive responses. Some

clarification for this division of labor came from studies

highlighting the distinct roles for NOTCH2 dependent and KLF4

dependent cDC2s. For example, in the gut NOTCH2-dependent

cDC2s were the critical source of IL-23 that were required for

clearance of extracellular pathogens such as Citrobacter Rodentium

though the induction of a Th17 biased immune response (100, 101).

In addition, NOTCH2-dependent splenic cDC2s were required to

promote T follicular helper (TFH) cell and germinal center (GC) B

cell formation in response to Listeria monocytogenes (102, 103). In

contrast, it was found that conditional deletion of Klf4 in DCs was

detrimental for Th2, but not Th17, immune responses in mice (94).

In line with the above, a STAT6/KLF4 dependent CD11blow cDC2

population localized in the skin has been shown to mediate Th2

immune responses (43).

cDC2s are also important for the T cell response to viral

infection. Following PV (single-stranded RNA pneumonia virus)

infection, cDC2s can acquire a hybrid phenotype characterized by

increased IRF8 expression and the capacity to prime both CD4+ and

CD8+ T cells. The acquisition of these cDC1-like properties by

cDC2s was dependent on the signaling via Toll-like receptors and

the type 1 interferon receptor (104). Additionally, the induction of

TFH cell differentiation was dependent on the presentation of viral

antigens at the T/B border by migratory cDC2s (102). Furthermore,
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LN resident cDC2s are strategically positioned to capture the

influenza A virus (105) and other blood born antigens (106)

resulting in the rapid initiation of T cell responses, independent

of migratory DCs influx. While moDCs were also reported to

activate T cells under similar conditions (107, 108), some studies

have suggested that inflammatory cDC2s can acquire moDC like

features, such as the expression of MAR-1 and CD64, and the

moDCs will express cDC2 signature genes including CD11b and

CD172a, suggesting that the antigen presentation capacity of

moDCs may actually be due to contamination by inflammatory

cDC2s (104, 105). In agreement with this conclusion, the use of

CD26 as an additional marker to differentiate inflammatory cDC2

from moDCs, highlighted the limited antigen presentation capacity

of CD26- moDCs (104).

Collectively, these studies highlight the functional specificities

of the various cDC2 subtypes within different organs. Deciphering

the molecular mechanisms underpinning this diversity is a

prerequisite to define the role of these different subsets of cDC2s

in initiating adaptive immune responses in the context of

pathogens, virus infection and tumor clearance, as this knowledge

will provide a rational framework for their use in clinical settings.
4 DC3: a unique DC subtype or the
DCs with different cells state?

The application of single-cell RNAseq technology to DCs has

led to many reports of novel DC subtypes (38, 40, 92, 109). The use

of different annotation strategies to define populations with

otherwise very similar transcriptomic features has created a good

deal of confusion in the field (110). The status of the DC3

population represents an example of this issue.

DC3s were initially identified in the blood of humans

through single-cell RNA sequencing (38). The subsequent

studies phenotypically characterized the DC3 population as

CD163+CD14+ DCs that accumulate in the blood of patients with

systemic lupus erythematosus (SLE) (40). DC3s display an

intermediate phenotype and function between cDC2s and

monocytes and are characterized by low expression of IRF8 (111).

Unlike cDC1s and cDC2s, the development of DC3s relies on GM-

CSF, but not FLT3L, and it is developmentally independent of the

CDP (92). Functionally, these cells have been proposed to promote

the differentiation of naïve CD8+ T cells into tissue-homing CD103+

T cells (92).

The AXL+ DC subpopulation was also reported in the blood of

humans, alongside the DC3 population, displaying an

intermediate phenotype between cDC2s and pDCs (38). This

population was characterized by the expression of Siglec6 and

AXL. Similarly, in mice, transitional DCs (tDCs), also referred to

as “pDC-like” cells, with characteristics spanning between cDC2s

and pDCs, were observed during steady-state and influenza

infection, and appear to be the equivalent to the AXL+ DCs in

humans (109). It has been recently proposed that these “pDC-

like” cells are pre-cDC2s and require KLF4 for both their

development and function (112).
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Other similar single-cell transcriptomic studies have identified

another DC population that exhibits an “activated” DC phenotype

and is referred to as “DC3” in both mouse and human (113). This

DC population lacks the canonical cDC1s and cDC2s gene

signature but expresses the matured cDC1 and cDC2 signatures

(113). Similar population have also been described as

CCR7+LAMP3+ DCs, Mreg DCs or ISG+ DCs within tumors

(114–116). It is important to note that these “activated” DC

populations represent developmental states of both cDC1s and

cDC2s and therebefore they are not to be confounded with

CD163+CD14+ DCs (DC3s) reported by Dutertre, Cytlak,

Bourdely and Villani et al. Currently, it is recommended to

designate this “activated” DC population as “CCR7+ DCs” due to

the consistent detection of CCR7, a common marker for DC

activation and maturation, in various contexts except ISG+ DCs

(110, 116).

Sorting out the cellular relationships between the cDC1, cDC2,

DC3 and CCR7+DCs populations is one of the key goals for the

DC field moving forward. Regardless of their development

origins, identifying the environmental cues and the molecular

mechanisms driving DC3 and CCR7+ DC phenotype and

functional attributes also warrants further investigation.
5 pDC development and function

5.1 pDC ontogeny

pDCs are a distinct cell type first identified through their

capacity to rapidly produce large amounts of type I interferons

(IFNa/b) (117–120). Whether pDCs developed from lymphoid or

myeloid progenitors has remained a controversial question for

more than two decades (34, 121). Similar to the development of

cDCs, Flt3 signaling is required for optimal pDC development

(122). Yet as opposed to cDCs, that can only originate from the

myeloid progenitors, Flt3+ CMPs, CDPs and CLPs have all been

shown to retain pDC potential both in vitro and in vivo following

adoptive transfer (44, 45, 48, 49, 123–125). These findings led to the

concept that pDC have a dual origin: myeloid and lymphoid

(Figure 2C). However, the myeloid origin of the pDCs is being

disputed by different groups (35, 36, 125, 126). This issue has been

revisited with IL-7R+ lymphoid progenitors being proposed to be

the main source for pDCs in vivo (126). A predominantly lymphoid

origin for the pDCs is also supported by their expression history of

the recombination activating gene 1 (Rag1) and the rearrangement

of the D-J regions of the Igh locus (125, 127). In an effort to

distinguish the properties of myeloid- vs lymphoid-derived pDCs, it

was found that the myeloid-derived Zbtb46+ pDCs have a distinct

transcriptome that resulted in them being more efficient than

lymphoid-derived pDCs in their capability to present antigens to

T cells (125). While this study is accordance with earlier reports

pointing to the dual origin of pDC (127), these findings were

subsequently challenged by a study that proposed that a CD115-

Ly6D+ lymphoid progenitors are the sole source of pDCs in vivo

(126). Crucially, the definition of a lymphoid or myeloid origin of
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pDCs largely depends on the markers used to track the

development history of pDCs. For example, Dress et al. used CD2

as a lymphoid lineage marker to trace the development history of

pDCs, and conclude that the pDCs are of lymphoid origin (41, 126).

However, CD2 expression is not restricted to the lymphoid lineage

as 20% of the cDC are fate mapped in the hCD2-iCre+/–R26-stop-

EYFP+ mouse model (128), thus this model cannot completely rule

out the participation of myeloid biased progenitor to the pDC pool.

Adding to that, clonal tracing of HSC and CX3CR1+ progenitors

using FlipJump system and single-cell transcriptome and phenotype

analysis (CITE-seq) suggested that cDCs and pDCs share a

common progenitor (129). Further characterization of the pDCs

specific transcriptional program will be helpful to improve our

understanding of pDC ontogeny and the heterogeneity of

this population.
5.2 Transcriptional control of
pDCs development

The development of pDCs requires the TF E2-2 (E protein

encoded by Tcf4) (Figure 2C). E2-2 deficient mice die in utero, but

transfer of Tcf4-/- fetal liver cells into irradiated WT recipients

results in the complete loss of pDCs from the BM and all peripheral

lymphoid organs, but has no impact on the development of other

myeloid or lymphoid cell types (33). E2-2 is a member of the basic

helix-loop-helix superfamily of TFs that has long (E2-2L) and short

(E2-2S) isoforms (130). E2-2S is expressed in all hematopoietic

progenitors and different types of mature immune cells, but E2-2L is

preferentially expressed in pDCs and binds to the pDC specific 3’

enhancer of Tcf4 to maintain E2-2s expression via a positive

feedback loop (130). E2-2s expression initiates in HSCs and is

further upregulated during pDC development. E2-2s forms a

complex with Mtg16 (myeloid translocation gene on chromosome

16) to directly control the expression of key genes involved in pDC

development and function, including CCR9, TLR9, Bst2 and B220

(131). In DC progenitors, ID2 as an E protein inhibitor binds E2-2s

preventing its binding to DNA, and thereby inhibits their pDC

potential (63). In contrast, ZEB2 expression in progenitors prevents

ID2 expression, enabling E2-2s to promote pDC development. In

line with the above, constitutive deletion of -165kb Zeb2 enhancer

featuring a cluster of E box motifs, results in lack of ZEB2

expression, increased ID2 expression that prevents pDC

differentiation (132). Thus, the coordinate action of E2-2L, E2-2s,

ID2 and ZEB2 dictates pDCs development at steady state.

Other TFs have been implicated in the cellular fate of BM

progenitors. PU.1 is highly expressed in myeloid and lymphoid BM

progenitors, but its expression level is substantially reduced

following the commitment of progenitors to the pDC lineage (55,

122, 133, 134). High expression of PU.1 in cDC was shown to be

essential to maintain their identity as PU.1 deficient cDCs gained

pDC like features (55). Thus, it is conceivable that downmodulation
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of PU.1 in progenitors constitutes a key instrumental step in

allowing pDC differentiation (135). In line with this, the

expression of PU.1 is negatively regulated by BCL11A (B-cell

chronic lymphocytic leukaemia/lymphoma 11A), a critical

regulator of pDC development (136). Adding to that, loss of PU.1

in CD11c+ cells resulted in an increased differentiation of

progenitor toward the pDC lineage, although PU.1 deficient pDCs

were dysfunctional, as IFNa production was reduced in PU.1

deficient pDCs (55). In contrast to the down-modulation of PU.1

following pDCs commitment, IRF8 expression is increased

markedly during pDC development (67). Thus, it is somewhat

surprising, that IRF8 deficiency in CD11c+ cells has no impact on

the development of pDCs. This is in fact due to a compensatory

mechanism provided by IRF4 as double knockout mice lack pDCs

(67). Although IRF8 is dispensable for pDC differentiation, it is

essential for their IFNa production, thus indicating a nonredundant

role for IRF8 in controlling pDC function.

Spi-B is another ETS family TF that is highly expressed in pDCs

(137). In contrast to the decreased PU.1 expression following pDCs

development, Spi-B expression is substantially increased from

progenitors to mature pDCs. Germline deletion of SpiB results in

decreased pDC numbers in the BM but their numbers are increased

in peripheral organs (138). These data suggests that Spi-B is

dispensable for pDC differentiation but a critical regulator of pDC

homeostasis. Having said that, its role and its mode of action in

pDCs remains under investigated. In contrast to BM, the TF

RUNX2 (RUNX family transcription factor 2) promotes pDC

their egress, as germline ablation or tamoxifen induced deletion

of RUNX2 result in reduced number of peripheral pDCs, whilst

RUNX2 is dispensable for their differentiation in the BM (139, 140).

Two mechanisms were proposed. Sawai et al. showed that RUNX2

was required for the expression of chemokine receptors on the cell

surface of pDCs including CCR2 and CCR5 that were required for

the migration of pDCs from BM into the periphery in response to

their ligands (139). In contrast, Chopin et al. demonstrated that

RUNX2 deficiency resulted in increased expression of CXCR4, a key

chemokine receptor associated with BM tropism (140). Spi-B and

RUNX2 are not only critical regulators of pDC homeostatic in the

periphery but also have been both shown to be critical for IFNa
production by pDC, though the regulation of Irf7 (138, 140).

BCL11A is a zinc-finger TF and is known to regulate lymphoid

development (141). Both BCL11A and PU.1 control Flt3 expression

in early hematopoietic progenitors (142), which is required for pDC

development and their homeostasis. ChIP-seq data showed that

BCL11A bound to the Tcf4 proximal promoter and knockdown of

BCL11A strongly reduced E2-2 expression (136). Interestingly,

downregulation of Bcl11a occurred after Tcf4 deletion in BM

derived pDCs (143), indicating a positive feedforward loop

between BCL11A and E2-2 in controlling pDC development.

IKAROS (encoded by IKAROS Family Zinc Finger 1 (Ikzf1)) is a

zinc-finger DNA-binding protein that homo- or hetero-dimerizes

with other IKAROS family members to suppress the gene
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expression. IKAROS prevents premature cDC gene expression in

CDPs and promotes pDC development (144, 145). The relationship

between IKAROS with other TFs that control the development and

function of pDCs has not been studied.

Collectively, these studies have revealed a dynamic TF network

that regulates the development of pDCs within the hematopoietic

system. These studies also highlight a critical point in the current

debate about whether pDCs and cDCs share a common ancestor.

These findings suggest that the lineage trajectories of DCs are

dictated by mutual antagonism between transcription factors

(E2.2/ZEB2 vs ID2/NFIL3 or PU.1 vs BCL11A), thus inferring a

close relationship between pDCs and cDCs.
5.3 The function of pDCs in mouse
and human

Unlike cDCs, pDCs have limited capacity to present antigens.

Instead, their key feature is the rapid production of type I IFNs

(IFNa/b) after exposure to the ligands for TLR7 (recognize

ssRNA) and TLR9 (recognize CpG), especially after the viral

infection (33, 146, 147). The early production of type I IFNs by

pDCs initiates the anti-viral gene expression program in many cell

types and promotes the expansion of NK cells and virus specific

CTLs for viral clearance (146, 147). This type I IFN production

results in the apoptosis of activated pDCs, potentially limiting the

scale of inflammatory response and preventing pathology

associated with an overly active anti-viral immune response

(148). This control appears important as aberrant type I IFN

production by pDCs is strongly linked to the development of

autoimmune diseases like SLE and systemic sclerosis in both

mouse models and human (149, 150).
6 moDCs development and function

6.1 Transcriptional control of
moDCs development

The ambiguous nature of moDCs has hampered our capacity to

define some of the key TFs associated with their differentiation.

Lineage tracing experiments have demonstrated that moDCs derive

from a separate myelopoiesis branch distinct from the one

producing cDCs and pDCs (151). In contrast to the requirement

of high dose IRF8 for cDC1 development, moDCs develop in a

relatively low concentration of IRF8. This expression of IRF8 is

driven by Irf8 + 56kb enhancer whose activation is controlled by

RUNX-CBFb (62). The differentiation of Ly6C+ monocytes into

moDCs or macrophages is controlled by the TFs IRF4 and MafB

(MAF BZIP Transcription Factor B), and PU.1 (Figure 2D) (152–

154). The differentiation of mouse monocyte into moDCs in

presence of GM-CSF and IL-4 requires IRF4. In its absence, the

cells differentiate into macrophages (155). It also had been reported

that MafB expression will push the human monocytes into the

macrophage pathway, while high concentration of PU.1 will

suppress MafB and thus promote differentiation into moDCs
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(152, 156). Apart from PU.1, a most recent study found that

ETV3 and ETV6 are able to repress macrophages development

potential in monocytes by suppressing MafB expression in both

mouse and human (154). Thus, moDCs use a distinct repertoire of

TFs compared to those that promote cDC development.
6.2 The function of moDCs

Monocytes represent a major cell population in the circulation,

from which they are recruited into the tissues by inflammatory cues

and give rise to both macrophage and moDCs. Normally,

monocytes express Ly6C and macrophage colony stimulating

factor receptor (M-CSFR/CD115) and respond to GM-CSF (157).

The moDCs can be easily confounded for cDCs in tissues as they

share a variety of cell surface markers including the “canonical DC

markers” MHC-II and CD11c, as well as the cDC1 marker CD24

and the cDC2 marker CD172a (158). In addition to sharing cDC

phenotypic features, moDCs can present antigen to both CD4+ and

CD8+ T cells. Notably, moDCs can cross-present antigen released

from certain microorganisms to CD8+ T cells under acute

inflammation condition and might replace some (41), but not all

anti-infection functions of cDCs (77). As per their cDCs

counterpart, moDCs express costimulatory molecules that

support the differentiation of CTLs (159) and present antigen

directly to CD4+ T cells promoting their differentiation into Th17

cells (160). Furthermore, moDCs are strong producers of

proinflammatory cytokines including IL-1b, TNFa, IL-23 (161),

and IL-12 in cancer (162). Collectively, although moDCs arise from

a distinct myeloid branch compared to cDCs, both subsets share a

substantial number of overlapping phenotypic and functional

characteristics after activation.
7 Concluding remarks

Recent advances in the field of DC research have provided new

insights into the heterogeneity and functional diversity of DC

subsets. Studies on the transcriptional regulation of DC

development and function have led to the identification of key

TFs and their targets that shape the transcriptome and function of

DCs. In-depth phenotyping of DCs has also identified novel DC

subtypes, such as DC3, highlighting the need for continued

investigation into the ontogeny of DCs. While much progress has

been made, much is still to be learned about the intricate

connections between different TFs and their doses regulating the

differentiation and activation of DCs.

Whilst we try to build a comprehensive map of the

transcriptional network governing DC heterogeneity, which will

be essential for their clinical application, there is an urgent need to

understand how DC functionalities, independently of their origin,

are shaped by environmental signals. To fulfill the long-recognized

potential of DC based therapy to treat malignancies, we believe that

an in-depth characterization of the signals that drive their diversity

and a better under understanding of the environmental cues that

shape their functional attributes is urgently required.
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The epithelial to mesenchymal transition (EMT) is a fundamental developmental

process essential for normal embryonic development. It is also important during

various pathogenic processes including fibrosis, wound healing and epithelial

cancer cell metastasis and invasion. EMT is regulated by a variety of cell signalling

pathways, cell-cell interactions and microenvironmental cues, however the key

drivers of EMT are transcription factors of the ZEB, TWIST and SNAIL families.

Recently, novel and unexpected roles for these EMT transcription factors (EMT-

TFs) during normal blood cell development have emerged, which appear to be

largely independent of classical EMT processes. Furthermore, EMT-TFs have also

begun to be implicated in the development and pathogenesis of malignant

hematological diseases such as leukemia and lymphoma, and now present

themselves or the pathways they regulate as possible new therapeutic targets

within these malignancies. In this review, we discuss the ZEB, TWIST and SNAIL

families of EMT-TFs, focusing on what is known about their normal roles during

hematopoiesis as well as the emerging and “unexpected” contribution they play

during development and progression of blood cancers.

KEYWORDS

EMT, hematopoiesis, leukemia, blood cells, stem cells, malignancy
1 Introduction

The Epithelial to Mesenchymal Transition (EMT) is a physiological process whereby

epithelial cells transform into a more mesenchymal phenotype, enabling them to migrate

away from their epithelial layer of origin. Typically, epithelial cells are arranged side by side

through strong intercellular junctions and are attached to the basement membrane with a

clear apical-basal polarity. The cells are held together and to the basement membrane

through various cell adhesion molecules such as claudin and E-cadherin. In contrast,

mesenchymal cells are generally motile with only transient polarity and intercellular

junctions. Depending on the biological context, EMT can be classified into three types.
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Type I EMT occurs during normal embryonic development and was

first described in chicken embryos (1, 2), Type II EMT occurs

during tissue repair, wound healing and fibrosis (reviewed in (3, 4)

and Type III EMT occurs during pathogenic processes – most

notably cancer metastasis (5).

Several key transcription factors, hereafter termed EMT-

transcription factors (EMT-TFs), play fundamental roles in

regulating the initiation and progression of all three types of

EMT. These EMT-TFs belong to three distinct families, the ZEB

(ZEB1 and ZEB2), TWIST (TWIST1 and TWIST2) and SNAIL

(SNAI1, SNAI2 and SNAI3) families. During embryogenesis, these

EMT-TFs are critically important for regulating essential

developmental processes such as gastrulation, mesoderm

specification, neural crest formation and skeletal development (6–

11). In the malignant context, EMT-TFs also play fundamental roles

in critical aspects of cancer cell function and survival including

tumor progression and metastasis, resistance to therapy, immune

evasion and stemness (12–18).

There has been an increasing interest in the role EMT-TFs play

in the development and functioning of the hematopoietic system,

even though there is no obvious EMT process involved. Even more

surprisingly, these EMT-TFs are now also emerging as significant

contributors to the pathogenesis and development of malignant

hematological disease. However, the underlying mechanisms of

their involvement are not yet fully understood. In this review, we

discuss the ZEB, TWIST, and SNAIL families of EMT-TFs and

outline their “unexpected” functions in regulating normal and

malignant blood cell development.
2 EMT transcription factors (EMT-TFs)

2.1 ZEB family

The Zinc-finger E-box binding homeobox (ZEB) family of

transcription factors were first discovered in Drosophila

melanogaster by Fortini et al. (19). Fortini described two highly

conserved homologous genes, zfh1 and zfh2 (now known as ZEB1

and ZEB2) that encode for large proteins containing multiple N-

and C- terminal DNA-binding C2H2 zinc-fingers separated by a

homeodomain region (19). Lai et al. found zfh1 to be expressed in

the early embryonic mesoderm, along the dorsal vessel and in the

developing central nervous system (CNS). Expression of Zfh2, on

the other hand, was largely localized to the CNS and hindgut of

developing embryos (20). Chicken Zeb1 (Zfh1) was later identified

during embryonic lens development as a transcriptional repressor

of the d1-crystallin enhancer core (21). This study subsequently

found ZEB1 to be primarily expressed during the post-gastrulation

period in mesodermal tissues, neuroectoderm, neural crest and lens

(21). Murine Zeb1 was first cloned from a mouse brain cDNA

library in 1996 (22), while mouse Zeb2 was initially named Sip1 (for

SMAD-interacting protein 1) following its identification in a yeast

two-hybrid system using the MH2 domain of Xenopus Smad1 as

bait (23).

The vertebrate ZEB1 and ZEB2 proteins share a high degree of

structural similarity, with both carrying C2H2 zinc-finger clusters at
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their N- and C-terminal ends that bind E-box and E-box-like DNA

motifs (5’-CACCTG-3’) (23, 24). Around 85% of protein sequence

identity within ZEB1 and ZEB2 is shared at the zinc-finger domains,

whereas only 30-50% sequence identity is shared in the intervening

region containing the SMAD interaction domain (SID),

homeodomain (HD) and C-terminal binding repressor protein

(CtBP) interaction domain (CID) (25, 26). ZEB proteins

primarily act as transcriptional repressors, through interaction

with SMAD proteins, the CtBP and histone remodeling

complexes such as the nucleosome remodeling and deacetylase

complex (NURD) (27, 28). One of the best characterized targets

of ZEB proteins is the CDH1 gene, encoding E-cadherin, a key

epithelial gene that is downregulated during the EMT process

(27, 29).

Zeb1 knockout mice display skeletal and craniofacial defects

and die shortly after birth due to a failure to respirate (30, 31).

Homozygous Zeb1 mutant mice, lacking the C-terminal zinc-finger

domain, also experience perinatal lethality with ~80% of mice dying

within two days of birth. However, in contrast to full knockout

mice, Zeb1 mutant mice are morphologically normal with the

exception of a significantly reduced thymus (32). In the adult

ZEB1 has been shown to be a critical regulator of bone

development, with Zeb1 expression found to be downregulated as

mesenchymal stem cells (MSCs) differentiate down the osteoblastic

lineages in the presence of BMP-2 (33). In vitro knockdown of Zeb1

in MSCs resulted in enhanced osteogenesis, while in vivo osteoblast

knockdown of Zeb1 increased bone mass in the ovariectomized

mouse model of osteoporosis (34). Interestingly, Fu et al. reported

that Zeb1 deletion in endothelial cells reduced bone associated

angiogenesis and subsequently impaired bone formation (35).

These findings indicate that ZEB1 has differential functions

within endothelial and osteoblastic cells which coordinately

contribute to bone development and maintenance. How the

expression of ZEB1 is controlled in these different cell types and

what level of crosstalk is involved remains to be elucidated.

Zeb2 KOmice die around E9.5, exhibiting growth retardation as

well as failure of neural tube closure and neural crest delamination

(36). Various conditional Zeb2 deletion models have demonstrated

a critical role for ZEB2 in neurological, gastrointestinal, craniofacial

and CNS development (reviewed in (37). Germline de novo ZEB2

mutations or deletions cause a dominant syndromic form of

Hirschsprung disease (HSCR) called Mowat-Wilson Syndrome.

Patients with this syndrome exhibit microcephaly, mental

retardation, submucous cleft palate among other distinct facial

features (38–40).
2.2 TWIST family

The Twist family consists of two members, TWIST1 and

TWIST2 (DERMO-1), which exist as a sub-class of the basic

helix-loop-helix (bHLH) superfamily of transcriptional repressors.

This superfamily is characterized by the presence of a bHLH motif,

which is a short chain of basic amino acids followed by two

amphipathic a-helices separated by a more divergent loop (41–

43). The basic region of the bHLH motif serves to recognize and
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bind E-box sequences in the DNA, while the HLH region is

responsible for forming homo/heterodimers with other bHLH

proteins (44, 45). Through recognition of distinct E-box

sequences, heterodimerization with different bHLH proteins

allows significant heterogeneity in the target DNA sequences

bound by TWIST proteins.

Twist1 was first discovered in Drosophila melanogaster by

Simpson et al. who identified that embryonic lethal twi mutations

resulted in abnormal gastrulation, impaired dorso-ventral

patterning and failed mesoderm differentiation, resulting in an

embryo with a ‘twisted’ phenotype (46). The Drosophila twist

gene was subsequently cloned in 1987 (7) and mouse Twist1 in

1991 (47). Twist1 KO mouse models are embryonic lethal at E11.5,

and show a failure of neural tube closure and developmental defects

impacting somite formation, cranial mesenchyme and limb

development (10). The human TWIST1 gene displays 92%

sequence identity with murine Twist1 and was mapped by Wang

et al. to chromosome 7p21 (48). Haploinsufficiency of the TWIST1

gene in humans results in Saethre-Chotzen syndrome, a congenital

anomaly characterized by craniosynostosis as well as facial and limb

anomalies (49–51).

The Twist2 gene was first discovered in mice by Li et al. using a

yeast two-hybrid system to screen for binding partners of the bHLH

protein, E12. This study identified a novel bHLH dimerization

partner, which was named Dermo-1 due to its expression in the

embryonic murine dermis (52). Like TWIST1, TWIST2 is also

detectable throughout embryonic development and during the

neonatal period, however it is downregulated in adult tissues (52).

An early study by Sosic et al. revealed that unlike Twist1 KO, Twist2

KO mice were viable and born at expected mendelian ratios. Twist2

KO mice did, however, display significant post-natal abnormalities

including growth retardation, cachexia and elevated levels of pro-

inflammatory cytokines. KO mice also experience perinatal lethality

with 60% of homozygous KO mice dying within three days of birth

(53). A later study by the same group identified germline nonsense

homozygous mutations in the TWIST2 gene in patients with

autosomal recessive Setleis syndrome, an inherited developmental

disorder under the branch of Focal Facial Dermal Dysplasia (FFDD)

(54, 55).
2.3 SNAIL family

The Snail family of transcription factors consists of three

members, SNAI1 (Snail), SNAI2 (Slug) and SNAI3 (Smuc)

characterized by the presence of a highly conserved C2H2 zinc-

finger C-terminal region containing four to five zinc fingers and a

more diverse amino-terminal region. The C2H2 zinc-fingers allow

Snail family transcription factors to recognize and bind E-box

elements in target DNA sequences (56, 57). All Snail family

members also contain a highly conserved eight amino acid

(MPRSFLVK) N-terminal SNAG repressor domain (58, 59).

Studies have shown that the Snail family predominantly act as

transcriptional repressors across a plethora of developmental and

EMT-related pathways (60–62).
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SNAI1 was the first and founding member of the Snail family,

originally identified in Drosophila melanogaster. Embryos with loss

of function mutations in the Sna gene show defects in gastrulation,

mesoderm specification and embryo patterning resulting in an

embryo resembling a Snail (46, 63). The murine Snai1 gene was

cloned in 1992 and found to be expressed in mesoderm and

primitive ectoderm during gastrulation, as well as in the pre-

somitic mesoderm, neural crest, developing lung, gut and kidney

and early stages of cartilage differentiation (64). Mouse Snai1 KO is

embryonically lethal at E7.5-8.5 due to defects in gastrulation and

mesoderm formation (65). SNAI1 is a major driver of the EMT

process, playing a key role in repressing the epithelial specific

cadherin, E-Cadherin, through binding to E-box sequences in its

promoter (66). Other EMT related genes regulated by SNAI1

include epithelial markers such as claudins, occludins and

desmoplakins and mesenchymal markers such as vimentin and

fibronectin (60, 67, 68).

The Snai2 gene, also known as Slug, was first identified by Nieto

et al. in chickens as a homolog for the Xenopus snai1 gene (69).

Using antisense oligos towards snai2, Nieto et al. further identified a

role for this gene in EMT processes associated with neural tube

development and mesoderm emergence from the primitive streak

(69). The mouse homolog of Snai2 was subsequently cloned from

mouse cDNA using chicken Snai2 oligos, and found to initiate EMT

when ectopically expressed in a rat carcinoma cell line (70). In sharp

contrast to Snai1 KO mouse models, Snai2 KO mice are viable

however, exhibit severe growth retardation and eyelid

malformations as well as pigmentat ion, gonadal and

hematopoietic defects post birth (71, 72). Germline homozygous

SLUG deletions have been identified in Waardenburg disease, a

congenital disorder characterized by hearing loss and pigmentation

changes in hair, skin and eyes (73).

The third member of the Snail superfamily, Snai3 (also known

as Smuc), was the last to be identified and is the least well

understood. In 2000, Kataoka et al. isolated a Snai1-related gene

from mouse tissues, initially named Smuc, which was highly

expressed in the skeletal muscle and thymus (74). The human

SNAI3 gene was later identified using in silico analysis, and

determined to contain the conserved SNAG domain as well as

five DNA-binding zinc fingers (75). Murine Snai3 KO mice do not

exhibit any obvious abnormalities [Bradley et al., 2013 (76); Pioli

et al., 2013 (77)], suggesting a possible redundant role for Snai3

alongside its other family members.
3 An emerging role for EMT-TFs
in hematopoiesis

Hematopoiesis is not readily associated with EMT, although an

exception to this could be the emergence and generation of

primitive HSCs in the embryo (78). In vertebrates, hematopoiesis

occurs in two waves: primitive hematopoiesis, which occurs during

early embryogenesis, and definitive hematopoiesis, which occurs

during later stages of development (79, 80). Unlike primitive HSCs,

definitive HSCs can give rise to the entire hematopoietic system and
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persist throughout life. Definitive HSCs arise from a population of

hemogenic endothelial cells in the embryonic AGM (embryonic

aorta, gonad and mesonephros region) (81). This process of

Endothelial to Hematopoietic transition (EHT) closely resembles

EMT and is characterized by a loss of endothelial characteristics and

increased migratory capabilities (82, 83). EMT-TFs have thus far

not been implicated in EHT and HSC emergence in the embryo,

however there is increasing evidence that these factors are expressed

in hematopoietic cells and play important roles in regulating

normal blood cell development and function (Figure 1; Tables 1, 2).
3.1 ZEB family

ZEB1 is expressed widely throughout hematopoiesis, with the

greatest expression observed in hematopoietic stem and

multipotent progenitor cells (HSPCs) as well as in more

differentiated myeloid, erythroid, and lymphoid cells. Conversely,

ZEB1 expression is significantly lower in committed myeloid-

restricted and lymphoid-restricted progenitors (99, 100). Zeb1

mutant embryos, lacking the C-terminal zinc-finger domain,

experience perinatal lethality with ~80% of mice dying within two

days of birth (32). Homozygous mutant embryos are

morphologically normal; however, they show significant thymic

atrophy and drastically reduced thymocyte number, a phenotype

that persists in the 20% of mice surviving the perinatal lethality

period (32). Thymocyte analysis in surviving mice revealed a
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significant reduction in both immature and mature T cells, with

the majority of detectable thymocytes being double positive (DP)

CD4+CD8+ or single positive (SP) CD4+ or CD8+ T cells. A

concurrent reduction of mature T cells was also observed in the

peripheral lymphoid organs of these mice (32). B and myeloid cell

development appeared unaffected, with numbers of these cells in the

spleen and bone marrow of Zeb1 mutant mice reported to be

normal. A second Zeb1mutant mouse with a C-terminal truncation

generated through ENU mutagenesis, termed Zeb1Cellophane, also

displayed thymic atrophy and impaired T cell development. The

thymus similarly contained a significantly enhanced proportion of

immature double negative (DN) T cells and mature SP T cells,

alongside a reduced proportion of intermediate DP T cells (85).

Despite these thymic abnormalities, the Zeb1Cellophane mice had

normal T cell numbers in the spleen. B cell development was largely

normal, although they had a slightly reduced percentage of

marginal zone B cells in the spleen and significantly reduced

proportion peritoneal B1 cells. These mice also had significantly

reduced natural killer (NK) cell numbers, however this phenotype

was not described further. Myeloid cell development was not

explicitly analyzed in any of these mutant Zeb1 mouse models.

Almotiri et al. has more recently employed an interferon-inducible

Mx1-Cre based approach to conditionally knockout (KO) Zeb1 in adult

hematopoietic cells (100). In this system, two weeks after Mx1-Cre

induced Zeb1 deletion, all KO mice developed reduced monocytic cell

numbers but retained normal numbers of granulocytic and lymphoid

cells. In line with the constitutive mutant Zeb1 mice, these inducible
FIGURE 1

EMT-TF expression in hematopoiesis: Generalized overview of EMT-TFs expression throughout the hematopoietic hierarchy, as outlined in
referenced articles. In many cases expression of EMT-TFs has not been thoroughly assessed experimentally, and current knowledge relies on gene
expression datasets obtained from sorted mouse and/or human cells. Created with BioRender.com.
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TABLE 1 Summary of EMT-TF knockout or mutant mouse model hematopoietic phenotypes.

KNOCKOUT/DEFICIENCY

GENE MODEL STEM and PROGENITOR MYELOID LYMPHOID
OTHER PHE-
NOTYPE REFERENCE

ZEB1

Constitutive C-
terminal
deletion

Reduced thymus size, reduced
T-cells in thymus and

periphery. Majority T cells
detected in thymus were

mature DP and SP CD4 + ATLL

Higashi Y
1997 (32),

Hidaka T 2008
(84)

Constitutive C-
terminal
deletion

Reduced thymus size with
reduced DF T-cells but

enhanced DN and mature SP
T cells. Normal T cells but

abnormal B cells in the spleen
Arnold C,
2012 (85)

Inducible KO
(MX1-Cre)

Normal HSC numbers at steady state
but have defective competitive

transplantation ability, reduced self-
renewal and impaired differentiation.
Normal HSC homing and migration

Reduced
monocytes,

normal numbers
of granulocytes

Normal lymphoid cells in
blood Reduced thymus size
with reduced DP T-cells but
enhanced DN and mature SP
T cells. DN1 to DN2/3 block
also evident Reduced effector
and central memory CD8+ T

cells in periphery
Almotiri A,
2021 (100)

Conditional KO
(haematopoietic
cells): inducible

KO
(RosaERT2Cre) Reduced HSPC number

Reduced
monocytes

Reduced thymic cellularity,
reduced % DN4 with increased

CD8+. B-cells normal
Wang J, 2021

(86)

ZEB2

Constitituve KO
Impaired HSPC differentiation all
lineages and migration in embryos

Goossens S,
2011 (87)

Inducible KO
(MX1- Cre)

Increased HSCs and MEPs. but
reduced GMPs

Reduced
monocytes and
erythroid cells,

enhanced
granulocytes
and immature
megakaryocytes

Reduced B-cells and a block in
development from pre-pro-B
to pro- B. Reduced T cells

Myeloproliferative
disease

splenomegaly bone
marrow fibrosis Li J, 2017 (88)

TWIST1

Constitutive KO
Reduced GM-CFU. M-CFU, BFU-E

formed from AGM 10.5

E10.5 AGM cells show
impaired B cell development

on OP9 co-culture
Kulkeaw K,
2017 (89)

Constitutive KO
HSCs have reduced repopulating

capacity
Dong CY,
2014 (90)

Inducible KO
(MX1- Cre)

Reduced HSPCs with impaired self-
renewal and reduced quiescence.
Reduced lymphoid and meg/eryth
differentiation with enhanced

granulocyte/macrophage differentiation.
Loss of lymphold biased HSCs.

Reduced engraftment in competitive
transplantation. HSC homing normal

HSCs sensitive to
irradiation induced
DNA damage and
apoptosis. 5FU

treatment also led
to rapid HSC
exhaustion and
haematopoletic

failure
Wang J, 2021

(91)

TWIST2 Constitutive KO

Enhanced GMPs with increased
proliferative capacity and enhanced

differentiation in vitro

Enhanced
myeloid cell
numbers,
increased

macrophages,
neutrophils and

basophils.
Normal

erythrocytes and
platelets Normal lymphoid numbers

Meylodysplasia/
myeloproliferation?

Sharabi A B,
2008 (92)

(Continued)
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TABLE 1 Continued

KNOCKOUT/DEFICIENCY

GENE MODEL STEM and PROGENITOR MYELOID LYMPHOID
OTHER PHE-
NOTYPE REFERENCE

SNAI1

Conditional
haematopoietic
specific KO Normal Normal

Carmichael C,
2017 (93)

SNAI2

Constitutive KO
Normal HSC numbers. Reduced BFU-
E and CFU-E in spleen, normal in BM

Normal myeloid
cell numbers
macrocytic
anaemia

Reduced thymus size, reduced
DP T cells. B cells normal
increased T cell apoptosis

Stress erythropoesis
impaired

Perez-Losada
J, 2002 (72)

Constitutive KO
Slightly reduced CFU-GM CFU-M,

BFU-E CFU-E
Normal myeloid
cell numbers Normal lymphoid numbers

HSCs increased
sensitiviy to DNA

damage and
increased apoptosis,
unable to recover

haemat system after
irradiation LD50

dose.
Inoue A, 2002

(94)

Constitutive KO

HSCs show enhanced repopulating
capacity in competitive transplants.
HSCs show normal homing and
differentiation but increased self-
renewal and proliferation capacity Normal Normal

5FU induced
enhanced HSC
cycling and

proliferation leading
to enhanced

haematopoietic
recovery

Sun Y, 2010
(95)
F
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TABLE 2 Summary of EMT-TF overexpression mouse model hematopoietic phenotypes.

OVEREXPRESSION

GENE MODEL STEM and PROGENITOR MYELOID LYMPHOID
OTHER PHENO-

TYPE REFERENCE

ZEB1

Transgenic
mouse, Vav-

iCre

Expanded monocytic
development, increased myeloid,
extramedullary haematopoiesis,

splenomegaly
Wang J, 2021

(86)

ZEB2

Transgenic
mouse, Vav-

iCre

Expanded monocytic
development, increased myeloid,
extramedullary haematopoiesis,

splenomegaly

Impaired T cell
development, DN

block, expanded DN
population

ETP-ALL,
extramedullary
haematopoiesis,
splenomegaly,

myeloproliferation?
Wang J, 2021

(86)

TWIST1

Retroviral
overexpression
and transplant

Enhanced quiescnece and self
renewal, enhanced repopulating
capacity, myeloid-erythroid

differentaition bias
Dong CY,
2014 (90)

SNAI1

Transgenic
mouse, Vav-

iCre
Increased ST-HSCs, increased

GMPs.

Enhanced myelopoiesis,
increased immature myeloid

cells with enahcned self-renewal
and proliferative capacity

Myeloproliferation,
AML

Carmichael C,
2020 (96)

CombiTA-
SNAI1

transgenic AML, B-lymphomas
Perez-Mancera
PA, 2005 (97)

SNAI2

CombiTA-
SNAI1

transgenic AML, B-ALL
Perez-Mancera
PA, 2005 (97)

SNAI3

Retroviral
overexpression
and transplant

Normal HSCs from retroviral
SNAI3+ cells

Normal myeloid output from
retroviral SNAI3+ cells

Reduced lymphoid
(B and T) cell
output from

retroviral SNAI3+
cells

Dahlem T,
2012 (98)
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Zeb1 KO mice also displayed reduced thymic cellularity with an

increase in the proportion of immature DN T cells and more mature

SP T cells, and a concomitant reduction in the proportion of

intermediate DP T cells. Within the DN population, a further

differentiation block was apparent between the DN1 and DN2/3

stages of maturation. Overall, the authors concluded that the reduced

thymocyte cellularity in Zeb1 conditional KO mice was likely due to

enhanced apoptosis in the more mature DP and SP T cells, suggesting

Zeb1 loss impairs thymocyte survival at these later stages of maturation

(100). Almotiri et al. also observed reduced CD8+ central and effector

memory T cells in the blood and bone marrow of their Zeb1

conditional KO mice. This finding correlates with earlier published

data showing ZEB1 expression to be important for the development

and maintenance of CD8+ T-cell memory (101).

HSCs were present in normal numbers following induction of

Zeb1 KO, however upon competitive transplantation with wild type

cells they displayed severe self-renewal and differentiation defects

leading to rapid engraftment failure. Bone marrow homing 18 hours

post-transplant was normal, demonstrating the migration and

invasion capability of Zeb1 KO HSCs was not impacted. Gene

expression analysis of Zeb1 KO HSCs identified altered expression

of EMT related genes, such as those involved in cell adhesion, cell

polarity and the cytoskeleton as well as alterations in genes important

for both myeloid and lymphoid differentiation (100). In particular,

increased expression of the epithelial adhesion molecule EPCAM1 in

Zeb1 KO HSCs was found to enhance their survival by supporting a

pro-survival gene expression program, including increased

expression of anti-apoptotic BCL-XL, leading to reduced apoptosis.

As EPCAM1 is usually downregulated as HSCs differentiate, this

increased expression in Zeb1 KO HSCs also likely contributes to an

imbalance between self-renewal and differentiation in vivo (100).

Wang et al. independently generated a hematopoietic-restricted

KO of Zeb1 using Tie2-Cre, Vav-iCre or the tamoxifen inducible

RosaERT2-cre crossed onto a Zeb1 floxed background (99). They also

generated an inducible Zeb1/Zeb2 double knockout (DKO) model

using the tamoxifen inducible RosaERT2-cre approach. They used

these models in combination with bone marrow transplantation

studies to examine the role of ZEB1 in hematopoietic differentiation,

both alone as well as in collaboration with ZEB2. In these animal

models, Zeb1 KO led to decreased HSPC populations, impaired

myeloid cell output (particularly monocytic cells) and reduced

thymic cellularity. While absolute numbers were not provided,

characterization of T-cell proportions in the thymus revealed a

reduced percentage of DN4 T cells and increased percentage of

CD8+ SP T cells. Differences in the T-cell phenotype described by

Wang et al. and Almotiri et al. may reflect the different models utilized,

such as the use of bone marrow transplantation models in the Wang

et al. study and the potential immune modulating impacts of polyI:

polyC treatment in the Mx1-Cre model utilized by Almotiri et al.

Nevertheless, Zeb1 loss clearly impacts T-cell development in the

thymus and it will be important for future studies to clarify the role

it plays using more sophisticated lineage restricted knockout models.

Wang et al. further demonstrated that Zeb1 KO HSPCs had

impaired self-renewal potential, as evidenced by decreased

hematopoietic colony formation in serial replating assays and

reduced capacity to give rise to all mature hematopoietic cells in
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competitive BM repopulation assays. These HSPC defects were

more severe in Zeb1/2 double knockout (DKO) mice, with mice

rapidly succumbing to anemia and cytopenia following tamoxifen

induced deletion of both genes. Interestingly, a single wildtype allele

of Zeb2 was sufficient to rescue the hematopoietic defects observed

in the DKOmice, indicating that ZEB2 might play a more dominant

role in regulating hematopoietic lineage differentiation (99).

In other studies, ZEB1 expression has been detected across all

dendritic cell (DC) subsets and neutrophils (102) and in vitro

culture systems have identified a role for this protein in DC

activation and subsequent induction of T cell responses (103).

Further research, however, is needed to clarify the role/s of ZEB1

in mature myeloid and lymphoid cell subsets.

ZEB2 is also broadly expressed throughout hematopoiesis, with

reduced expression in T cells relative to myeloid and B lineage cells

(87, 102). A role for ZEB2 during normal hematopoiesis has been

studied using a variety of conditional Zeb2 loss of function mouse

models. Hematopoietic-restricted (Vav-Cre) and combined

hematopoietic and endothelial-restricted (Tie2-Cre) KO of Zeb2

was utilized by Goossens et al. to study the role of ZEB2 in HSC

formation and differentiation during embryonic hematopoiesis

(87). While ZEB2 was not required for HSC cluster formation in

the embryonic AGM region, it played a crucial role in HSPC

differentiation and migration. Zeb2 KO embryos displayed a

severe block in hematopoietic differentiation in all lineages, as

evidenced by reduced development of mature blood cells in vivo

and impaired differentiation in in vitro methylcellulose cultures. In

addition, Zeb2 KO embryos showed significant alterations in the

localization of HSPCs in the fetal liver, a significant reduction in

circulating HSPCs as well as decreased homing of hematopoietic

cells to the bone marrow compared with wildtype controls (87).

This was attributed to an aberrant increase in the expression of b1
integrin and CXCR4, previously shown to be crucial for HSC

mobilization and homing (104–106). Moreover, Zeb2 KO fetal

livers contained increased numbers of HSCs, pointing toward a

possible feedback loop compensating for the hematopoietic

differentiation block and/or enhanced retention of HSPCs.

Interestingly, Zeb2 deficiency also resulted in high embryonic/

neonatal lethality due to intracephalic hemorrhaging. This was

proposed to be due to significantly reduced angiopoietin-1

expression and subsequently impaired pericyte coverage of

vasculature (87). A similar lethality was not observed in Zeb1

deficiency models described earlier that were generated using the

same approach by Wang et al. (86).

Li et al. generated conditional Zeb2 KO in adult hematopoietic

cells using the interferon-inducible Mx1-Cre approach. Zeb2

deletion using this model resulted in an increased frequency of

HSPCs in the BM and an expansion of megakaryocyte-erythroid

progenitors (MEPs) with concomitant reduction of granulocyte-

monocyte progenitors (GMPs). Bone marrow in these mice also

displayed a reduction in B cells (due to a block in transition from

pre-pro-B to pro-B), monocytes and mature erythroid cells along

with a significant expansion of granulocytes and immature

megakaryocytes (88). The mice also developed splenomegaly,

extramedullary hematopoiesis and bone marrow fibrosis

suggestive of a myeloproliferative phenotype. Bone marrow
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transplantation assays provided evidence that Zeb2 KO did not alter

HSC self-renewal but confirmed their impaired differentiation

capacity. These assays also demonstrated that hematopoietic

abnormalities in Zeb2 KO mice were not a consequence of an

impaired BM niche (88). Mechanistically, Li et al. identified

impaired responsiveness of ZEB2 KO bone marrow cells to IL-3

and IL-6 cytokine signaling but enhanced responsiveness to G-CSF

stimulation. This latter finding likely contributing to the

predominant granulopoiesis observed in ZEB2 KO mice.

Studies looking at Zeb2 KO or overexpression during DC

development have demonstrated that ZEB2 is required for the

development of a subset of DCs and is thought to play a role in

maintaining their cell fate or identity (107–109). Mechanistically,

Zeb2 was shown to directly repress expression of Id2, which

negatively impacts plasmacytoid DC (pDC) development. These

data implicate Id2 repression as a mechanism by which ZEB2 drives

pDC development (108). Similar roles for ZEB2 in maintaining

monocytic (109) and tissue-resident macrophage cell identity have

also been identified (110) although the key mechanisms involved

remain to be elucidated. While Zeb2 KOmice do not display overt T

cell abnormalities, ZEB2 has been shown to be upregulated

following CD8+ T cell activation and is important for promoting

CD8+ T effector cell differentiation and survival (111, 112).

Interestingly, again here ZEB2’s role in CD8+ T effector cell

regulation has been contributed, at least partially, to Id2

repression which is important for CD8+ effector memory

differentiation (113, 114). See Figure 2 for an overview of ZEB

family roles in hematopoiesis.
Frontiers in Immunology 08111
3.2 TWIST family

TWIST1 is highly expressed in embryonic HSPCs in the AGM

region at E9.5 and E10.5 with significantly lower expression in

HSPCs in the E14.5 fetal liver (89, 115). Twist1 KO is embryonically

lethal due to vascular and cranial neural tube defects around E11.5

(10). Kulkeaw et al. found that while Twist1 deficiency did not affect

formation of embryonic HSPCs themselves, it instead impaired

embryonic HSPC differentiation (89). This was evidenced by

reduced numbers of myeloid and erythroid colonies in in vitro

colony assays using Twist1 KO E10.5 AGM-derived cells, as well as

impaired B lymphoid differentiation following culture on an OP9

cell layer. Mechanistically, TWIST1 controls embryonic HSPC

differentiation, at least partially, through direct regulation of MYB

and GATA2 expression (89).

In the adult hematopoietic compartment, TWIST1 expression is

most abundant in long-term HSCs (LT-HSCs) and short-term

HSCs (ST-HSCs), with its expression declining during

differentiation (90, 91). Enforced expression of TWIST1 in HSCs

enhanced their ability to repopulate the bone marrow long term

following competitive transplantation alongside wild type HSCs,

while loss of TWIST1 led to a reduced ability of HSCs to engraft in a

similar experiment. TWIST1 overexpressing HSCs also displayed

enhanced quiescence and increased self-renewal potential, as well as

a specific myeloid/erythroid differentiation bias. These phenotypes

were associated with activation of the myeloid lineage-determining

factors PU.1 and GATA-1 and downregulation of the lymphoid

factor GATA-3 and HSC regulator RUNX1 (90). Conditional
FIGURE 2

ZEB family roles in hematopoiesis: Schematic showing known functions of ZEB1 and ZEB2 during normal hematopoiesis as determined through
analysis of knockout mouse models. Created with BioRender.com.
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Twist1 KO using an Mx1-Cre based approach in the adult

hematopoietic system resulted in reduced HSC numbers with

impaired quiescence and self-renewal capacity. Furthermore,

Twist1 KO HSCs had reduced lymphoid and megakaryocyte/

erythroid differentiation ability with a concomitant increase in

granulocyte/macrophage differentiation capacity (91). Twist1 KO

HSCs also had significantly reduced engraftment capacity in a

competitive bone marrow transplant setting, which was not due

to any observable homing defect. The impact of Twist1 deletion

during stress hematopoiesis was examined following irradiation or

treatment with the chemotherapeutic drug, 5-Fluorouracil (5-FU).

This analysis revealed an important role for TWIST1 in protecting

HSCs from irradiation-induced apoptosis, senescence and DNA

damage. Treatment with 5-FU also led to significantly reduced bone

marrow cellularity and impaired HSC recovery in Twist1 KO mice

after a single dose, and rapid HSC exhaustion and mouse death

following serial 5-FU treatments. Mechanistically, Twist1 KO

resulted in enhanced mitochondrial calcium levels and

subsequently increased production of reactive oxygen species

(ROS) in lymphoid-biased HSCs but not myeloid-biased HSCs

following irradiation induced stress. Importantly, blockage of

voltage-gated calcium channels was largely able to reverse

irradiation induced death in Twist1 KO mice as well as rescue

HSC levels, demonstrating a key role for enhanced mitochondrial

calcium influx in driving the stress induced hematopoietic

phenotype in these mice (91).

TWIST1 is also known to play a role in mesenchymal stem cell

(MSC) proliferation, survival and differentiation (116–119).

Interestingly, Twist1 KO in the bone marrow niche compartment

(including MSCs) resulted in reduced homing of wild type HSCs

following irradiation and transplantation. Wild type HSCs in a

Twist1 deficient bone marrow microenvironment also displayed

reduced quiescence and self-renewal potential with enhanced

proliferation and a clear myeloid lineage bias. There was also

reduced retention of wild type HSCs in Twist1 deficient bone

marrow, with enhanced mobilization to the spleen and blood -

likely due to an observed reduction in expression of CXCL12 and

VCAM1 (118). Interestingly, increased TWIST1 expression in bone

marrow-derived mesenchymal stem/stromal cells (BMSC)

enhanced their ability to maintain CD34+ hematopoietic stem

cells (HSC) in long-term in vitro cultures (116). This was likely

mediated, at least partially, by direct activation of the Cxcl12 gene by

TWIST1. These findings demonstrate a clear role for TWIST1

expression in bone marrow niche support of HSCs likely through

regulation of CXCL12 expression, a protein known to be important

for supporting HSC survival and self-renewal and also involved in

protecting HSCs from oxidative stress (120, 121)

TWIST2 is also expressed in the hematopoietic compartment,

preferentially in myeloid progenitors (92), where it plays a key role in

suppressing myeloid differentiation. Twist2 silencing in embryonic

stem cells leads to enhanced generation of myeloid lineage cells

during in vitro hematopoietic differentiation (122), while Twist2

deficient mice show significantly increased numbers of immature

and mature myeloid cells across all hematopoietic organs, including

macrophages, neutrophils and basophils (92). The significant

basophilia as well as the presence of hyper-segmented neutrophils
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and atypical monocytes were suggestive of a myelodysplastic/

myeloproliferative phenotype. No significant alteration in the

numbers of lymphocytes, red blood cells or platelets was observed in

these mice. The increase in total myeloid cells likely resulted from an

overall expansion of myeloid progenitors in the bone marrow of Twist2

KO mice, particularly the granulocyte/macrophage progenitor (GMP)

which showed increased proliferation and differentiation capability in

in vitro assays. The myeloid skewed and enhanced differentiation of

Twist2 KO progenitors was also observed in both non-competitive and

competitive bone marrow transplant experiments, demonstrating a

cell-intrinsic effect of Twist2 KO as well as a strong competitive

advantage against wild type cells. Mechanistically, TWIST2 was

found to inhibit the activity of known regulators of myeloid

differentiation, RUNX1 and C/EBPa, as well as suppress the

production of pro-inflammatory cytokines and chemokines (92).

Interestingly, Twist2 KO mice also develop an inflammatory

syndrome shortly after birth due to enhanced pro-inflammatory

cytokine production that results in perinatal death within 3-4 weeks

after birth (123). A possible role for TWIST2 in the regulation of

inflammation is further supported by its high expression in

chronically activated T helper (Th) lymphocytes (124), and ability

to repress the expression of key pro-inflammatory cytokines such as

TNFa, IL1b and IFNg (123, 125–128).
While no obvious T or B lymphoid phenotype was identified in

Twist2 KO mice, TWIST2 has been documented to play a role in

regulating T cell selection and apoptosis in the developing thymus

(129–131). Furthermore, Hwang et al. found that TWIST2

expression is important for regulating the CD4/CD8 thymocyte

lineage determination downstream of TCR activation (132). See

Figure 3 for an overview TWIST family roles in hematopoiesis.
3.3 SNAIL family

In the hematopoietic compartment SNAI1 and SNAI3 are

expressed in mature T and B cells, with SNAI1 also expressed in

mature myeloid lineage cells (76, 77), whereas SNAI2 has only been

detected in hematopoietic stem and progenitor cells (77, 94). Snai1

KO is embryonically lethal at E7.5-8.5, thus precluding studies

being undertaken into the role of SNAI1 during hematopoiesis (65).

A hematopoietic specific Snai1 KO showed no overt phenotype,

suggesting that SNAI1 is not required for normal hematopoiesis, or

alternatively that other family members may be able to compensate

for SNAI1 loss (93). A deeper investigation of this mouse model,

however, is still required. Hematopoietic specific Snai1 transgenic

mice, on the other hand, develop a myeloproliferative phenotype

characterized by an expanded population of both immature and

mature myeloid cells (particularly granulocytes), disrupted bone

marrow and spleen architecture and evidence of extramedullary

hematopoiesis. Interestingly, some of these mice developed Acute

Myeloid Leukemia (AML), which will be discussed more later.

Snai2 KOmice display normal B and myeloid cell development,

however they show macrocytic anemia as well as abnormal T cell

development characterized by reduced thymus size and reduced

numbers of CD4+CD8+ DP T cells (72). The reduced thymus size

and thymocyte numbers correlated with increased T cell apoptosis
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as demonstrated by an increase in apoptotic bodies and TUNEL

positive cells in histological sections. In addition to the macrocytic

anemia observed at steady state, stress erythropoiesis was also

perturbed in Snai2 KO mice as demonstrated by reduced

erythroid recovery following in vivo hematopoietic stress driven

by either phenylhydrazine (PHZ)-induced hemolytic anemia or

pregnancy-induced anemia. This impaired stress erythropoietic

response was likely due to reduced numbers of BFU-E and CFU-

E in the spleen of Snai2 KO mice at steady state, and a significant

reduction in their ability to expand under stress conditions (72). A

role for SNAI2 downstream of SCF/cKIT signaling in HSCs was

postulated based on similar phenotypes observed between Snai2 KO

mice and cKit or Scf mutant mice, supported by data showing

induction of Snai2 expression upon Scf stimulation of cKit in vitro

and anemia-induced activation of cKit signaling in vivo (72). In a

follow up study these authors further found that, similarly to cKit or

Scf mutant mice, Snai2 KO bone marrow cells were also

significantly radio-sensitive. Impaired hematopoietic recovery

following low dose irradiation resulted in death in the majority of

Snai2 KO mice as compared to 100% survival in wild type controls.

Importantly, intraperitoneal injection of a TAT-SNAI2 fusion

protein that readily enters cells was able to rescue irradiation

induced death not only in Snai2 null mice but also in cKit mutant

mice demonstrating a key role downstream of cKit/SCF signaling in

radioprotection of HSCs (133).

A separate study by Inoue et al. performed an extensive analysis

of the hematopoietic system of an independently generated Snai2

KOmouse model (94). Snai2 KOmice had normal peripheral blood

cell counts, however the number of in vitro colony-forming
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progenitors (BFU-E, CFU-E, CFU-GM, and CFU) was slightly

increased relative to wild type mice. In contrast to their relatively

normal steady state hematopoietic development, Snai2 KO mice

were severely impaired in their ability to reconstitute their bone

marrow following total body irradiation (TBI). Snai2 KO mice

showed increased sensitivity to DNA damage induced by

irradiation and all Snai2 KO mice died by day 13 post irradiation

due to severe pancytopenia. By comparison, wild type and Snai2

heterozygous mice survived longer, with around 50% surviving to at

least 30 days post irradiation. In response to irradiation, Snai2 KO

HSPCs displayed significantly increased apoptosis as compared

with wild-type HSPCs, suggesting a role for SNAI2 in protecting

against DNA damage induced cell death (94). In a follow up study,

Wu et al. found that wild type mice previously reconstituted with

Snai2 KO bone marrow were just as sensitive to irradiation induced

death as Snai2 KO mice, demonstrating that the increased

sensitivity of Snai2 KO HSPCs to irradiation was cell intrinsic.

Importantly, the authors also discovered that this radio-sensitivity

of Snai2 KO HSPCs could be rescued by transgenic expression of

the antiapoptotic protein BCL2 or deletion of TP53. Further, it was

demonstrated that SNAI2 is upregulated by TP53 following

irradiation, and in turn it can transcriptionally repress the BH3-

only pro-apoptotic protein, PUMA leading to an antagonism of

TP53 induced apoptosis. These data indicate that SNAI2 plays a key

role in mediating the DNA damage response downstream of the

TP53 pathway in HSPCs (134).

In a third study, Sun et al. further examined the functional

capacity of Snai2 KO HSCs (95). Using competitive bone marrow

transplantation experiments these authors demonstrated that Snai2
FIGURE 3

TWIST family roles in hematopoiesis: Schematic showing known functions of TWIST1 and TWIST2 during normal hematopoiesis as determined
through analysis of knockout mouse models. Created with BioRender.com.
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KO HSCs had increased proliferative capacity and enhanced ability

for hematopoietic reconstitution, with an approximately 8-fold

higher repopulation efficiency as compared to Snai2 heterozygous

HSCs. Importantly, this enhanced reconstitution ability was not due

to an altered differentiation or homing capacity. Snai2 KO HSCs

also displayed increased self-renewal capacity as demonstrated by

limiting dilution and serial transplantation experiments. Following

treatment with the chemotherapeutic drug 5-fluorouracil (5FU),

which kills proliferating cells and drives quiescent HSCs into cell

cycle, Snai2 KO HSCs showed enhanced proliferation and

expansion compared to WT cells both in vitro and in vivo. This

enhanced HSC proliferation and expansion of Snai2 KO HSCs

following 5FU treatment also lead to superior repopulating ability

upon competitive transplantation with wild type cells into

irradiated recipient mice (95). The percentage of Snai2 KO HSCs

in S phase was also significantly higher than for wild type HSCs,

supporting the idea that quiescent Snai2 KO HSCs were induced

into cell cycle more effectively by 5FU than wild type HSCs. No

difference in the level of 5FU-induced apoptosis was observed in

Snai2 KO HSCs. Together, these data suggest that SNAI2 acts as a

negative regulator of HSC self-renewal and proliferation, and a

positive regulator of HSC quiescence.

While the above studies suggested that the hematopoietic

defects in Snai2 KO mice were hematopoietic cell intrinsic, Wei

et al. identified a potential extrinsic role for SNAI2 in the bone

marrow niche (135). Following exposure to a lethal dose of

irradiation (12Gy), Snai2 KO mice could not be rescued from

irradiation-induced death via transplantation of wild type bone

marrow cells, with the majority of mice dying by three weeks post

irradiation and transplantation. In contrast, 100% of wild type mice

receiving either wild type bone marrow or Snai2 KO bone marrow

survived. These findings are somewhat contradictory to those of

Wu et al. who previously found that Snai2 KO mice could in fact be

rescued from irradiation-induced death by transplantation of wild

type bone marrow cells (134). This discrepancy may be explained by

the use of a lower dose of irradiation by Wu et al. (7Gy) or different

genetic backgrounds of the Snai2 KO mice between the two studies.

Interestingly, Wu et al. had also demonstrated that following

complete bone marrow reconstitution, a second dose of

irradiation (7Gy) still induced bone marrow failure and death in

wild type mice with Snai2 KO bone marrow, whereas Snai2 KO

mice with wild type bone marrow were protected (134). Combined

these data suggest that extrinsic SNAI2 in the bone marrow niche is

crucial for enabling HSPC engraftment and hematopoietic

reconstitution following irradiation, whereas intrinsic SNAI2

expression in the HPSC compartment is important for protecting

against irradiation-induced cell death.

The first evidence of a role for SNAI3 in the hematopoietic

system came from a study that examined the negative regulatory

element of the mouse Itgb2l, which is preferentially expressed in

maturing neutrophils (136). Using an electrophoretic mobility shift

assay (EMSA) it was demonstrated that SNAI3 could bind to the

negative regulatory element on the Itgb2l gene and block the

transcriptional activator, PU.1, from binding and driving

transcription. Another study by Dhalem et al. examined

hematopoietic lineage differentiation and derivation of mature
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hematopoietic cells upon retroviral mediated over-expression of

SNAI3 in mouse HSPCs (98). Mice transplanted with SNAI3

expressing HSPCs (marked by GFP expression) had an almost

complete loss of GFP+ T and B lymphoid cells, with the GFP+ cells

being primarily myeloid. Interestingly, the GFP+ HSPC

compartment appeared relatively normal in these mice as

compared to control mice receiving HSCPs transduced with an

empty vector control retrovirus (98). These data demonstrate that

aberrant expression of SNAI3 significantly perturbs lymphoid

differentiation but has minimal if any impact on early HSPC

development and myeloid differentiation.

Snai3 KO mice are completely viable with no obvious

phenotypic defects, demonstrating that SNAI3 is not essential for

embryogenesis or steady state adult development (76). Pioli et al.

generated a conditional Cre-mediated Snai3 knockout mouse

model and performed a T cell specific Snai3 deletion using Lck-

Cre. Deletion of Snai3 in the T cell lineage had no effect on T cell

development in the thymus and no T cell abnormalities were

observed in the peripheral lymphoid organs. To test for possible

functional redundancy between SNAI2 and SNAI3 in T cells, Pioli

et al. further generated Snai2/Snai3 double knockout (DKO) mice.

These DKO mice had a more severe phenotype as compared to

either single KO mouse, with severe growth retardation, infertility

and almost complete lethality by 15 weeks of age (77). Analysis of

lymphoid organs revealed that DKO mice had a significantly

reduced thymus size (even when normalized for the reduced body

weight), a decreased proportion of DP (CD4+CD8+) thymocytes

with a concomitant increase in CD4+ and CD8+ SP cells.

Surprisingly, the distribution of CD4+ and CD8+ SP T cells in

peripheral organs was relatively normal. DKO mice also displayed

significantly reduced B cell numbers and increased myeloid cells in

the marrow, spleen and blood (77). Whether the increase in

myeloid cells was a direct result of Snai2 and Snai3 loss in these

cells or was rather due to the striking loss of B cells still remains to

be elucidated. No analysis was performed on the primitive HSPC

compartment of these mice and so it is not known what impact

combined loss of Snai2 and Snai3 might have at earlier stages of

hematopoietic development (77). This study however did clearly

indicate potentially redundant functions for SNAI2 and SNAI3

during later stages of hematopoiesis. Similar studies using Snai1

knockout in combination with either Snai2 and/or Snai3 would

provide important additional knowledge in this area. See Figure 4

for an overview of SNAIL family roles in hematopoiesis.
4 EMT transcription factors in
hematological malignancy

While there is still much to be learned regarding the exact

mechanisms involved, it is becoming increasingly evident that

EMT-TFs are important regulators of normal blood cell

development and function. It is perhaps not surprising, therefore,

that aberrant expression and/or function of EMT-TFs is also now

emerging as a novel and important contributor to the malignant

hematopoietic phenotype.
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5 Myeloid malignancies

5.1 ZEB family

Using publicly available RNA-sequencing data from the GEPIA

database (http://gepia.cancer-pku.cn), Li et al. identified high ZEB1

expression in AML patients and found it to be associated with a

worse overall survival (137). A similar association between high

ZEB1 expression and worse overall survival had also been shown by

Stavropoulou et al. in their own AML patient cohort, and indeed

ZEB1 expression was significantly higher in AMLs with a more

stem-cell like and aggressive phenotype (138). Shousha et al.

identified a 1.8 fold increase in ZEB1 mRNA expression in more

than half of their AML patients as compared to control subjects,

using qRT-PCR analysis on peripheral blood samples (139). In

contrast to the above studies, Almotiri et al. used publicly available

Affymetrix microarray data to describe ZEB1 expression as being

lower in AML patient samples compared to normal cells (100). The

use of datasets generated using alternative gene expression analysis

technologies may explain the discrepant results between these

studies, however additional investigation is warranted to clarify

whether aberrant ZEB1 expression is indeed a significant finding

in AML.

ZEB1 appears to play important roles in AML cell biology, with

siRNA mediated knockdown of ZEB1 in human AML cell lines

leading to reduced cell proliferation and induced myeloid cell

marker expression in vitro, and subsequently delayed tumor onset

in in vivo xenograft models (137). Extending these studies to

primary mouse AML models, Stavropoulou et al. demonstrated
Frontiers in Immunology 12115
that shRNA mediated knockdown of Zeb1 in an MLL-AF9 driven

AML model resulted in impaired tumor cell invasion in vitro and

reduced in vivo infiltration into the bone marrow 1-week post-

transplant (138). In contrast, Almotiri et al. found that Cre-

mediated knockout of Zeb1 in either a MLL-AF9 or Meisa1/

Hoxa9 mouse model of AML actually enhanced tumor

development in vivo (100). These stark differences may be due to

the use of distinct models of Zeb1 perturbation, with Stavropolou

et al. and Li et al. using a stable shRNA knockdown approach, where

the cells already had reduced ZEB1 expression prior to transplant,

and Almotri et al. using an Mx1-Cre model to induce Zeb1

knockout after AML was established in vivo. It is also important

to note that Stavropoulou et al. did not extend their animal studies

to study tumor development post 1-week and thus no data on

disease progression and latency is available. These data do, however,

pose the question as to whether ZEB1 may play opposing roles in

driving tumor cell engraftment on one hand, while impairing tumor

cell proliferation on the other. This would not, however, agree with

the observed negative impact of ZEB1 knockdown on cell

proliferation in AML cell lines in vitro. Stavropoulou et al. further

determined that high ZEB1 expression was particularly associated

with a more immature and stem cell like AML phenotype generated

by transducing the MLL-AF9 oncogene virally into long term

repopulating HSCs (LT-HSCs) as opposed to more differentiated

granulocyte/macrophage progenitors (GMPs). These HSC-derived

AMLs were also more invasive with higher numbers of leukemia

initiating cells (LICs) in vivo (138).

Mechanistically, Li et al. found ZEB1 expression in AML to be

linked to altered TP53 protein levels, with knockdown of Zeb1
FIGURE 4

SNAIL family roles in hematopoiesis: Schematic showing known functions of SNAI1, SNAI2 and SNAI3 during normal hematopoiesis as determined
through analysis of knockout mouse models. Created with BioRender.com.
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leading to enhanced TP53 protein levels and overexpression

resulting in reduced TP53 protein levels (137). Whether this is

due to direct effects on TP53 transcription, translation or protein

stability remains to be determined. The authors further suggested

that this ZEB1 mediated regulation of TP53 may occur via the

PTEN/PI3K/AKT signaling pathway, but again clear mechanistic

insight remains to be elucidated.

Expression of ZEB2 does not appear to be specifically increased

in AML cells, with its expression level in AML being similar to that

of normal HSPCs. Similarly, no correlation has yet been

demonstrated between ZEB2 expression and survival in AML.

Despite ZEB2 not being specifically upregulated in AML cells, its

expression was found to be significantly increased following

transduction of the AML-ETO oncogene into a mouse

hematopoietic progenitor cell line. Furthermore, high ZEB2

expression was specifically associated with an invasive phenotype

and EMT-like gene expression signature in these cells (140). In

human AML cell lines, Li et al. were able to show that shRNA

mediated knockdown or CRISPR mediated knockout of ZEB2

reduced cell growth and induced aberrant myeloid differentiation

in vitro (141). Furthermore, shRNA knockdown of Zeb2 in mouse

MLL-AF9 AML cells led to reduced leukemia cell proliferation in

vitro (141). A similar finding was obtained by Wang et al. using a

RosaERT2Cre-mediated knock out of Zeb2 in the MLL-AF9 driven

mouse AMLmodel (86). Interestingly, when the authors introduced

a double knockout of Zeb2 and Zeb1 in this same MLL-AF9 model

they did not observe any further delay in tumor onset suggesting

that Zeb1 loss was could not compound the effect of Zeb2 loss alone.

Strikingly, hematopoietic specific expression of either a Zeb1 or

Zeb2 transgene in mice led to a significantly expanded myeloid

compartment (predominantly monocytic) and development of

extramedullary hematopoiesis (86). No AML was observed in

these mice up to 1.5 years of age suggesting that while these

genes may contribute to AML pathogenesis, they are not strong

drivers of AML and likely act in concert with other AML mutations

or oncogenes. Somewhat surprisingly, loss of Zeb2 during adult

hematopoiesis was also found to drive development of a

myeloproliferative-like phenotype characterized by splenomegaly,

extramedullary hematopoiesis and bone marrow fibrosis (88). In

contrast to Zeb2 transgenic mice, where enhanced myeloid

development favored the monocytic lineage, these Zeb2 knockout

mice showed enhanced granulocyte production. Mechanistically, Li

et al. identified deficient JAK/STAT signaling responses in Zeb2 KO

bone marrow cells when stimulated with IL6 or IL3, but enhanced

signaling when stimulated with the granulocyte cytokine G-CSF

(88). Furthermore, Pellman and colleagues determined that ZEB2

expression in AML regulates genes important for granulocytic

differentiation, likely through interaction with key epigenetic

proteins such as LSD1 and HDACs (141). Combined, these data

suggest that correct dosage of ZEB transcription factors is

important for normal myeloid development and their expression

levels may impact different lineages variably – possibly through

regulation of key lineage specific cytokine signaling pathways and

gene expression networks. See Figure 5 for an overview of ZEB

family in malignant hematopoiesis.
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5.2 Twist family

TWIST1 expression is highly upregulated in malignant HSCs

from Myelodysplastic syndrome (MDS) patients, with its

expression increasing with more advanced disease (142). In

contrast, there appears to be reciprocally lower levels of TWIST1

expression in the surrounding bone marrow mesenchymal cells in

MDS patients, reducing with disease severity. Li et al. further found

that levels of TWIST1 in MDS cells resulted in enhanced resistance

to TNFa driven apoptosis, TNFa being a pro-inflammatory

cytokine that is highly expressed in the MDS bone marrow

microenvironment. Knockdown of TWIST1 in MDS cell lines

rendered them more sensitive to TNFa induced cell death, with

this thought to be at least in part driven by coordinated regulation

of apoptosis by TWIST1, miRs10a/b, NFkB and TP53 (142, 143).

A more recent study by this same group found that TWIST1

expression was actually higher in MDS patients that were non-

responsive to treatment with the DNA demethylating agent 5-aza-

2’-deoxycytidine, compared to those that were responsive (144).

The level of responsiveness was also correlated with increased DNA

methylation and expression of the de novo DNA methyltransferase,

DNMT3A. A direct interaction between TWIST1 and DNMT3A

was identified, with evidence provided to suggest this complex can

methylate and repress expression of the cyclin dependent kinase

inhibitors CDKN1A and CDKN1C. As 5-aza-2’-deoxycytidine

treatment induces cell cycle arrest in MDS cells, TWIST1 driven

loss of cell cycle inhibition and reduced G0/G1 arrest may

contribute to an enhanced resistance to 5-aza-2’-deoxycytidine

treatment upon TWIST1 expression. Furthermore, augmented de

novo DNA methylation through increased DNMT3A levels in

TWIST1 expressing cells likely also contributes to reduced

sensitivity to the demethylating activity of 5-aza-2’-deoxycytidine.

TWIST1 expression is also upregulated in AML samples,

however the impact of this expression on prognosis in AML

remains somewhat controversial. One study has found that

patients with high TWIST1 expression were more likely to

achieve remission following standard AML induction

chemotherapy (cytarabine and daunorubicin combination

therapy) than those with lower TWIST1 expression, and

subsequently achieved a greater overall survival (145). The

authors further found that enforced TWIST1 expression in a

single AML cell line (KG1a) led to enhanced sensitivity to

cytarabine but no change in response to daunorubicin. In

contrast, a second study determined that enforced TWIST1

overexpression in two independent AML cell lines (U937 and

K562) led to increased resistance to daunorubicin, mitoxantrone

or imatinib, and subsequently found that high TWIST1 in AML

samples was associated with a worse overall survival (146). The

reason for these discordant findings remains unclear, however it

may relate, at least partially, to the different ways of stratifying AML

patients for survival analysis. For example, Chen et al. included only

patients that had received standard of care chemotherapy, while

Wang et al. included all AML patients in their analysis.

Wang et al. went on to further show that TWIST1 was most

highly expressed in the putative leukemia stem cell (LSC)
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compartment in AML (CD34+CD38-) and that its expression in

LSCs was higher than in normal CD34+CD38- HSCs. They also

found that enforced TWIST1 expression could drive increased cell

proliferation and enhanced colony formation along with reduced

apoptosis in AML cell lines. TWIST1 knockdown, on the other

hand, led to reduced cell proliferation and colony formation and

increased apoptosis (146). TWIST1 knockdown in the K562 AML

cell line delayed AML onset in in vivo xenograft experiments, while

knockdown in LSCs isolated from AML patients led to significantly

reduced colony forming potential in vitro. These data implicate

TWIST1 in regulation of LSC function, which mechanistically may

relate to the direct regulation of BMI1 expression, a critical

regulator of HSC self-renewal, and indirect regulation of RUNX1

and MPL expression, both important modulators of HSC function

and proliferation (146).

TWIST1 expression has been particularly associated with the

M3 subtype of AML, also termed Acute Promyelocytic Leukemia

(APL), which is driven by the t(15;17) translocation (146, 147).

Knockdown of TWIST1 in the NB4 APL cell line or in a mouse

model of APL resulted in apoptosis and differentiation of AML

blasts in vitro and enhanced survival of transplanted mice in vivo

(147). In other non-APL subtypes of AML, an association between

TWIST1 expression and DNMT3A mutation (a key driver

mutation identified in around a third of AMLs) has also been

identified, with TWIST1 expression being higher in AML cells

carrying mutant DNMT3A (148). Furthermore, mutant DNMT3A

but not wild type was able to upregulate TWIST1 when ectopically

expressed in an AML cell line. Knockdown of TWIST1 in a

DNMT3A mutant AML cell line (OCI-AML3) led to reduced
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invasion of these cells into the central nervous system of

xenografted mice.

While TWIST1 appears to have a clear tumor promoting role in

AML cells, its expression in the bone marrow microenvironment

seems to have a more tumor inhibiting impact on AML cells. Liu

et al. found that deletion of Twist1 specifically in the bone marrow

microenvironment resulted in enhanced engraftment and increased

dissemination/infiltration of wild-type murine MLL-AF9 leukemia

cells (118). Mechanistically, activated Notch signaling was observed

within the Twist1 deleted niche, which has been shown to

contribute to enhanced LSC expansion and self-renewal.

In Chronic Myeloid Leukemia (CML), TWIST1 expression is

also upregulated compared to normal samples, with expression

increasing further during more advanced phases of the disease (146,

149). More than 90% of CML cases are driven by the BCR-ABL

fusion, which is uniquely sensitive to tyrosine kinase inhibitors

(TKI) such as imatinib. In samples from CML patients that did not

respond to TKI treatment, TWIST expression was 100X greater

compared to patient samples that did respond (149). TWIST1

expression was also higher in an imatinib resistant CML cell line

compared to a sensitive cell line (149). Furthermore, knockdown or

overexpression of TWIST1 in CML cell lines led to enhanced

sensitivity and increased resistance to TKI treatment respectively

(146, 149). These data strongly implicate TWIST1 in driving TKI

resistance in CML, however the mechanism/s involved remains to

be determined.

While TWIST1 has been studied in much greater detail than its

family member TWIST2 in the context of malignant hematopoiesis,

the data currently available suggest opposing roles for these two
FIGURE 5

ZEB family during malignant hematopoiesis: Schematic outlining ZEB family roles in malignant hematopoiesis as determined through human and
mouse model analyses. Created with BioRender.com.
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proteins in AML. Whereas TWIST1 is upregulated in AML,

TWIST2 is hypermethylated in ~30% of AML patients resulting

in significantly reduced expression (150). Knockdown of TWIST2

in AML cells led to enhanced growth and colony forming capacity,

while enforced TWIST2 expression in AML cells inhibited their

growth and clonogenic capacity as well as protected mice from

AML in a subcutaneous xenograft model. Mechanistically, TWIST2

expression was found to repress a number of known tumor

suppressor genes as well as directly activate expression of the cell

cycle regulator CDKN1A. Interestingly TWIST2 was not able to

alter expression of known TWIST1 targets in AML, such as BMI1,

suggesting different interacting partners and/or DNA binding sites

for these two family members in AML cells (150). See Figure 6 for

an overview of TWIST family in malignant hematopoiesis.
5.3 Snail family

In keeping with the findings for ZEB proteins and TWIST1,

SNAI1 is also highly expressed in AML cells compared to normal

HSPCs (96, 139, 151), and is associated with worse overall survival

(96) and chemotherapeutic resistance (151). To study the role of

SNAI1 expression in AML, Carmichael et al. generated

hematopoietic restricted SNAI1 transgenic mice. These mice all

developed a myeloproliferative phenotype, which could transform

into AML after a long latency of 12 months or greater (96). Analysis

of Snai1 transgenic mice at the pre-leukemic stage identified a

significant skewing toward granulocyte/macrophage lineage

development, with increased numbers of immature myeloid cells

possessing increased self-renewal and mildly impaired

differentiation capacity (96). Mechanistically, this SNAI1-driven
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hematopoietic phenotype was dependent on the histone lysine

demethylase, LSD1, with physical interaction between the two

proteins leading to impaired LSD1 function, altered DNA binding

and aberrant target gene regulation. HSPCs ectopically expressing

SNAI1 subsequently displayed altered gene expression programs

related to normal myeloid differentiation, cytokine signaling,

migration/invasion/adhesion and inflammatory pathways (96).

These findings suggest that hematopoietic restricted SNAI1

expression can predispose to malignant transformation of

hematopoietic cells but does not directly drive it. Interestingly,

Perez-Mancera et al. found that expression of a tetracycline

regulatable Combi-tTA-Snai1 transgene was able to induce tumor

development in mice from 5 months onwards, with 40% of tumor

being AML and 50% being lymphomas (152). The earlier onset and

greater penetrance of AML development in the Combi-tTA-Snai1

mice, as well as the lack of lymphoma formation in the

hematopoietic-restricted model generated by Carmichael et al.,

suggest that either expression level differences between the two

models (which is unknown at this time) or the non-hematopoietic

expression of transgenic SNAI1 in the Combi-tTA-Snai1 mice

contributes to AML and/or lymphoma development.

SNAI2 expression is also significantly increased in human AML

samples compared to normal bone marrow (153). This increased

expression may be directly driven by AML oncogenes, as SNAI2

was found to be significantly upregulated in HSCs following viral

transduction with MLL-AF9, MEIS1 or HOXA9 oncogenes.

Furthermore, Snai2 knock out was able to reduce the ability of

MLL-AF9 and NUP98-HoxA9 oncogenes to transform mouse HSCs

in vivo, while limiting dilution assays demonstrated reduced LSC/

LIC frequencies in Snai2 knockout MLL-AF9 leukemia. Homing of

Snai2 deficient MLL-AF9 AML cells was normal, however increased
FIGURE 6

TWIST family during malignant hematopoiesis: Schematic outlining TWIST family roles in malignant hematopoiesis as determined through human
and mouse model analyses. Created with BioRender.com.
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apoptosis and impaired cell cycle progression were apparent. These

data suggest that upregulation of SNAI2 is important for the

transforming ability of AML oncogenes (153).

Zhang et al. further confirmed these data in human AML, with

SNAI2 knockdown in AML cell lines resulting in reduced

proliferative capacity and reduced LIC/LSC frequency. Use of a

cell permeable peptide (TAT-SNAG), predicted to interfere with

SNAI2 protein-protein interactions mediated by the SNAG domain,

was also able to impair AML cell growth and colony formation as

well as synergize with Cytarabine treatment in vitro to induce AML

cell death. It is important to note, however, that the SNAG domain

is highly conserved across SNAI family members as well as the GFI

family of hematopoietic transcription factors (154). Therefore, this

TAT-SNAG peptide may also inhibit the function of other SNAG-

domain proteins and so these particular results cannot be

conclusively linked to inhibition of SNAI2.

As with SNAI1, a similar Combi-tTA-Slug (Snai2) transgene

model was generated by Perez-Mancera et al. and also found to

drive development of Acute Leukemias, of which 40% were AML

(the other 60% being B-lymphoid) (97). Perez-Mancera et al.

subsequently went on to show that expression of SNAI2 is

upregulated in CML patient cells as compared to normal controls

and is directly upregulated by the BCR-ABL fusion oncogene that

drives the majority of CML cases. Strikingly, knockout of SNAI2

was able to completely block CML development in a BCR-ABL

transgenic mouse model, suggesting a key role for SNAI2

expression downstream of BCR-ABL (97). Furthermore, SNAI2

overexpression driven by BCR-ABL was shown by Mancini et al. to

be reversed upon TKI treatment, leading to a release of SNAI2
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driven repression of the pro-apoptotic protein PUMA and

subsequent induction of apoptosis. In contrast, in CML samples

carrying a TKI resistant BCR-ABL mutation, SNAI2 expression was

even more enhanced than in TKI sensitive samples and helped to

drive cell survival in response to TKI (155). These data demonstrate

a clear role for oncogene driven SNAI2 expression in driving CML

cell survival and therapy resistance. It is likely that similar

mechanisms are at play in AML, where AML oncogenes can also

upregulate SNAI2 expression. See Figure 7 for an overview of

SNAIL family in malignant hematopoiesis.
6 Lymphoid malignancies

6.1 Zeb family

Enhanced expression of ZEB2 has been identified in patients

with early T-cell precursor Acute Lymphoblastic Leukemia (ETP-

ALL), a particularly poor outcome subtype of T-ALL. Goossens

et al. discovered a novel BCL11B-ZEB2 fusion in rare cases of ETP-

ALL, which is thought to drive increased ZEB2 expression through

the 5’ BCL11B fusion partner (156). In other ETP-ALL cases, high

expression of ZEB2 may result from downregulation of miR200c, a

microRNA known to suppress ZEB2 protein expression (156). A

direct functional link between ZEB2 expression and ETP-ALL was

clearly demonstrated by the development of an ETP-ALL like

disease in hematopoietic-restricted Zeb2 transgenic mice from 5

months of age (156, 157). This same group also discovered that

ZEB2 could physically interact with LSD1 in transgenic ETP-ALL
FIGURE 7

SNAIL family during malignant hematopoiesis: Schematic outlining SNAIL family roles in malignant hematopoiesis as determined through human and
mouse model analyses. Created with BioRender.com.
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cells, and intriguingly this interaction appeared to infer sensitivity

to LSD1 inhibition (158). This sensitivity was further confirmed in

human ETP-ALL cell lines with high ZEB2 levels, but not found in

T-ALL lines without high ZEB2. A recent follow-up study by this

group identified upregulation of the IL7R in Zeb2 transgenic ETP-

ALL cells as driving IL7-mediated activation of JAK/STAT signaling

and upregulation of the pro-survival protein BCL2. This ZEB2/

LSD1 interaction appears to repress pro-apoptotic genes such as

BIM, making ETP-ALL cells susceptible to combined treatment

with LSD1 inhibitor and the BCL2 inhibitor ABT-199 or the JAK/

STAT inhibitor Ruxolitinib (159).

ZEB2 has also been implicated in B-cell Acute Lymphoblastic

Leukemia (B-ALL) with likely pathogenic mutations identified in a

small proportion of B-ALLs (160–162). Interestingly, in one study

these ZEB2 mutations were associated with a significantly worse

overall survival and an increased likelihood of relapse, being found

in nearly 30% of relapsed cases compared to only 2-3% of diagnosed

cases (161). However, the significance of these results remains to be

confirmed as the authors’ own subsequent work found this link to

be less evident in a second cohort of patients. It is still unclear how

the identified mutations affect ZEB2 function and how mutant

ZEB2 contributes to B-All pathogenesis, however these mutations

do appear to be associated exclusively with the “B-other” ALL

subtype, which lacks common B-All associated fusion proteins such

as BCR-ABL1, ETV-RUNX1 and MLL-fusions (163).

Interestingly, while ZEB2 expression is upregulated in ETP-

ALL, ZEB1 appears to be reduced suggesting opposing roles for

these two family members in this disease. The LMO2 oncogene,

which is specifically associated with the ETP-ALL phenotype, can

directly repress ZEB1 at the transcriptional level, and ZEB1

expression is negatively correlated with LMO2 expression in ETP-

ALL cells. LMO2 can also physically interact with ZEB1 and block

its DNA binding ability (164, 165). Wu et al. provided additional

evidence to suggest that downregulation of ZEB1 is essential for the

LMO2 driven stemness phenotype in T-ALL cells as well as

resistance to methotrexate treatment, a chemotherapeutic drug

used to treat T-ALL (165).

ZEB1 is also downregulated in other malignant T-cell diseases,

specifically Adult T-cell Leukemia/Lymphoma (ATLL), driven by

infection with HTLV-1, and cutaneous T cell lymphoma (CTCL).

In ATLL, Hidaka et al. discovered that the ZEB1 gene is frequently

impacted by focal deletion of the 10p11 chromosomal region (~1/3

of cases) (84). However, other epigenetic mechanisms also likely

lead to reduced ZEB1 expression in ATLL, as demonstrated by the

ability of demethylating and deacetylating agents to restore ZEB1

expression in ATLL cell lines lacking a 10p11 deletion. A direct

functional link between ZEB1 downregulation and ATLL

development is evident from ZEB1 mutant mice, which develop a

CD4+ ATLL from as early as 3 months of age (84). In CTCLs, which

consist of Mycosis Fungoides (early stage disease) and Sezary

Syndrome (late stage disease), up to 65% of patients display focal

deletion or somatic inactivating mutations in the ZEB1 gene. A clear

pathogenic role for these mutations in CTCL, however, has yet to

be elucidated.

In contrast to T-cell malignancies, ZEB1 expression is increased

in B-cell malignancies, specifically Mantle Cell Lymphoma (MCL)
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and Diffuse B Cell Lymphoma (DLBCL). Sanchez-Tillo et al.

identified ZEB1 protein expression in 50% of MCL cases studied

histologically, and found it to be directly correlated with b-catenin

expression (166). ZEB1 expression was subsequently found to be

driven by activated WNT-signaling in MCL cell lines, and was

linked to enhanced proliferation, reduced apoptosis and resistance

to chemotherapy (166). Expression of ZEB1 in MCL cells also

enhanced their lymphoma spheroid growth potential and increased

their resistance to Bortezomib – suggestive of a cancer stem cell

promoting role for ZEB1 in MCL (167). High ZEB1 expression has

also been observed in DLBCL patient samples, both through

immunohistochemical staining (168) and qRT-PCR analysis

(169). Lemma S et al. further determined that high nuclear ZEB1

expression is associated with adverse three year overall survival

(168), while Zhao et al. linked ZEB1 expression with increased

immune evasion of DLBCL cells via a feedback loop involving

ZEB1/SNHG14/miR-5590-3p that ultimately drives upregulation of

PD-L1 expression (169).
6.2 Twist family

Thus far, TWIST1 expression has not been investigated in the

context of T- or B- ALL, however it is significantly expressed in

CTCL (170–172). Increased TWIST1 expression appears to be due

to either gain of the chromosomal region 7p21 (171) or promoter

hypomethylation (172). Goswami et al. further determined that

TWIST1 expression in CTCL increases with disease stage from the

more indolent Mycosis Fungoides stage through to the advanced

Sezary syndrome stage (173). TWIST1 is also upregulated in ALK+

Anaplastic Large Cell Lymphoma (ALCL), a common pediatric

lymphoma driven by the t(2;5) NPM-ALK fusion. TWIST1

knockdown in ALK+ ALCL cell lines reduced their invasiveness

and enhanced their sensitivity to an ALK inhibitor, suggesting

TWIST1 may contribute to therapeutic resistance (174).

TWIST1 has also been implicated in Multiple Myeloma (MM).

In ~15% of MM patients the t(4;14) translocation leads to enhanced

expression of the NSD2 gene (175). Gene expression profiling by

Cheong et al. identified EMT gene signatures correlated specifically

with NSD2 high MM patient samples. They further demonstrated

that TWIST1 expression is upregulated in t(4;14) MM cell lines but

not in MM cell lines lacking this fusion. Knockdown of TWIST1 in

NSD2+ MM cell lines led to downregulation of the EMT gene

signature and reduced invasiveness in vitro. Conversely, enforced

TWIST1 expression in a mouse MM cell line enhanced its

migration in vitro and its dissemination/invasiveness in vivo, but

did not impact on overall tumor growth and proliferation (176).

Promoter hypermethylation of the TWIST2 gene is frequently

observed in both childhood and adult ALLs (both B and T lineage)

and is associated with loss of TWIST2 protein expression.

Interestingly, while TWIST2 hypermethylation was found in

approximately half of diagnostic ALL cases, it was present in

nearly all relapsed samples analyzed - suggesting a role for

reduced TWIST2 expression in disease relapse and therapy

resistance. Indeed, enforced expression of TWIST2 in B-ALL cell

lines led to reduced cell growth and increased sensitivity to
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chemotherapy (177). TWIST2 hypermethylation has also been

observed in some chronic lymphocytic leukemia (CLL) patients,

however no further investigation has been performed into possible

associations or implications (177, 178). Similarly to TWIST1,

TWIST2 was also found to be expressed highly in a Sezary

syndrome (CTCL) cell line compared to a T-ALL cell line in one

study, however no further evidence to support a role for TWIST2 in

this disease has been published to date (129).
6.3 Snail family

To date, no studies have looked specifically at SNAI1 in

lymphoid malignancies, however the Combi-tTA-Snai1 transgenic

mice do develop lymphomas in 50% of cases suggesting SNAI1

should be considered in the context of human lymphomas as well

(152). SNAI2 was originally identified as a downstream target of the

t(17; 19) E2A-HLF oncoprotein in human pro-B-ALL (179)

implicating it in this disease. Concordantly, Inukai et al. found

SNAI2 to be expressed in B-ALL cells expressing the E2A-HLF

oncoprotein and their preliminary studies suggested SNAI2 plays

an anti-apoptotic role downstream of this oncogene (179).

Furthermore, in the Combi-tTA-Slug transgenic mice, 60% of the

leukemias that developed were B-cell derived (97). These same

authors further found SNAI2 to be highly expressed in cell lines and

samples from B-ALL patients, however it remains unclear exactly

how SNAI2 expression contributes to B lineage transformation.
7 Conclusion

The importance of EMT-TFs during hematopoietic

development and their subsequent contribution to malignant

hematological disease is an emerging area of research. The ZEB,

TWIST and SNAIL families play distinct and overlapping roles

throughout hematopoiesis, including regulating HSC self-renewal,

quiescence and survival as well as differentiation along various

myeloid and lymphoid lineages. The functions of EMT-TFs in

hematopoiesis seem to be largely separate from the classical EMT

processes they control during development. Instead, they regulate

the expression and/or activity of key hematopoietic transcription

factors, epigenetic modifiers, cytokine signaling pathways and

regulators of cell survival and apoptosis.

In myeloid malignancies, increased expression of EMT-TFs has

been identified and linked to worse overall survival and poor

therapeutic response. In lymphoid malignancies, they have been

implicated in disease development through either increased or

decreased expression as well as mutations, deletions or fusions.

Pathologically, in leukemia and lymphoma EMT-TFs contribute to

enhanced LSC self-renewal and resistance to apoptosis, augmented

tumor cell invasion and dissemination as well as the aberrant

differentiation, cell growth and proliferation of tumor cells. It

remains unclear, however, exactly how coordinated and discrete

expression of these EMT-TFs is regulated during malignant
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transformation of hematopoietic cells, as well as what determines

their oncogenic or tumor suppressive roles in different

hematopoietic contexts.

It is intriguing to speculate about a potential role/s for EMT-TFs

in regulating the immune response to cancer. While EMT-TFs

have been implicated in controlling the cancer immune

microenvironment from a cancer cell perspective, they may also

play an intrinsic role in regulating the immune cells themselves. It is

clear that EMT-TFs contribute to the normal differentiation,

development and function of immune cells such as macrophages,

DCs and T lymphocytes. They also regulate the expression of

various inflammatory cytokines and chemokines, as well as genes

involved in DC and T-cell activation. How immune cell intrinsic

functions for EMT-TFs may contribute to cancer development,

progression and outcome remains an important future question

to address.

Despite significant progress in understanding the role of EMT-

TFs in blood cell development and malignant transformation, there

is still much to uncover about their complex mechanisms of action

as well as their future promise as therapeutic targets. Further

research in this area has the potential to reveal new insights into

the underlying biology of leukemia and lymphoma and to

identify novel approaches for the treatment of these aggressive

hematological diseases.
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Myeloid-specific blockade
of notch signaling
alleviates dopaminergic
neurodegeneration in
Parkinson’s disease by
dominantly regulating
resident microglia activation
through NF-kB signaling

Shi-Qian Liang1†, Peng-Hui Li1,2†, Yi-Yang Hu1†, Jun-Long Zhao1,
Fang-Ze Shao1, Fang Kuang3, Kai-Xi Ren4, Tiao-Xia Wei1,
Fan Fan1, Lei Feng1, Hua Han5 and Hong-Yan Qin1*

1State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental
Biology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China, 2Department of
Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China, 3Department of
Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China, 4Department
of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China, 5Department of
Biochemistry and Molecular Biology, School of Basic Medicine, Fourth Military Medical University,
Xi’an, China
Yolk sac–derivedmicroglia and peripheral monocyte–derivedmacrophages play

a key role during Parkinson’s disease (PD) progression. However, the regulatory

mechanism of microglia/macrophage activation and function in PD

pathogenesis remains unclear. Recombination signal–binding protein Jk (RBP-

J)–mediated Notch signaling regulates macrophage development and

activation. In this study, with an 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

(MPTP) hydrochloride-induced acute murine PD model, we found that Notch

signaling was activated in amoeboid microglia accompanied by a decrease in

tyrosine hydroxylase (TH)–positive neurons. Furthermore, using myeloid-

specific RBP-J knockout (RBP-JcKO) mice combined with a PD model, our

results showed that myeloid-specific disruption of RBP-J alleviated

dopaminergic neurodegeneration and improved locomotor activity.

Fluorescence-activated cell sorting (FACS) analysis showed that the number of

infiltrated inflammatory macrophages and activated major histocompatibility

complex (MHC) II+ microglia decreased in RBP-JcKO mice compared with

control mice. Moreover, to block monocyte recruitment by using chemokine

(C-C motif) receptor 2 (CCR2) knockout mice, the effect of RBP-J deficiency on

dopaminergic neurodegeneration was not affected, indicating that Notch

signaling might regulate neuroinflammation independent of CCR2+ monocyte

infiltration. Notably, when microglia were depleted with the PLX5622 formulated

diet, we found that myeloid-specific RBP-J knockout resulted in more TH+
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neurons and fewer activated microglia. Ex vitro experiments demonstrated that

RBP-J deficiency in microglia might reduce inflammatory factor secretion, TH+

neuron apoptosis, and p65 nuclear translocation. Collectively, our study first

revealed that RBP-J–mediated Notch signaling might participate in PD

progression by mainly regulating microglia activation through nuclear factor

kappa-B (NF-kB) signaling.
KEYWORDS

notch s igna l ing , Park inson ’ s d i sease , mic rog l ia , monocyte-der ived
macrophages, neuroinflammation
Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disease

characterized by insidious deterioration of motor control, which often

occurs in the older population with emotion, sleep, and cognition

disturbances (1). A prominent pathological symptom of PD is the loss

of dopaminergic (DA) neurons in the substantia nigra pars compacta

(SNpc) and less loss in the ventral tegmental area and other middle

brain regions. Although the cause of PD is not fully understood, a large

amount of evidence indicates that neuronal degeneration is always

accompanied by neuroinflammation (2–5), presented by reactive

morphology of microglia and astrocytes, infiltration of monocytes/

macrophages, and increased cytokine levels such as tumor necrosis

factor-a (TNF-a) and interleukin-6 (IL-6) in cerebrospinal fluid (CSF)

and blood (6–10). Therein, innate immune activation, especially

microglial activation, represents the major immunologically activated

cell population. However, the underlying mechanisms of microglial

activation remain unclear.

Microglia, as one kind of classical tissue-resident macrophage in

the central nervous system (CNS), originate from the precursors of

the embryonic yolk sac and play a pivotal role in cerebral tissue

development and neuronal integrity maintenance under

physiological conditions (11). However, in several neurogenerative

diseases, including PD, microglia are exposed to non-physiological

immune activators and become abnormally activated microglia that

may promote the pathogenesis and progression of disease (9, 12, 13).

Recently, with single-cell RNA sequencing applications, microglia

have been shown to be highly heterogeneous, especially during

disease progression, and have also been named disease-associated

microglia (DAM) (14, 15). DAM is composed of tissue-resident

microglia and monocyte-derived macrophages that migrate into the

brain via the blood−brain barrier. During disease progression,

infiltrated monocyte-derived macrophages are intermingled with

tissue-resident microglia to speed up or impede disease progression

(11). There are at least two subtypes of monocytes in mouse blood:

Ly6Chi classical inflammatory monocytes and Ly6Clo non-classical

patrolling monocytes, both of which can contribute to infiltrating

inflammatory macrophages (IMs) (16, 17). However, how monocyte-

derived macrophages and microglia contribute to PD pathogenesis

and progression as well as the underlying mechanism are not

well defined.
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Many studies, including our studies, have shown that

recombination signal–binding protein Jk (RBP-J)–mediated Notch

signaling participates in regulating monocyte differentiation and

macrophage activation under physiological and pathological

conditions (18–20). The Notch signaling pathway is a highly

conserved developmental pathway in evolution that regulates cell fate

by mediating cell−cell communication. The mammalian Notch

signaling pathway consists of four transmembrane receptors, five

Notch ligands, the Notch intracellular domain (NICD), and the key

transcription factor RBP-J. Once the Notch receptor is activated by its

ligand presented by an adjacent cell, the NICD is cleaved by g-secretase
and translocated to the nucleus, where it can associate with RBP-J and

then recruit coactivators to trigger downstream gene transcription,

such as Hes1 and Hes5, leading to cell proliferation or differentiation

(21, 22). Using RBP-J conditional knockout mice combined with some

disease models, one of our previous studies suggested that Notch

activation in myeloid cells could aggravate spinal cord injury by

promoting M1 macrophage polarization and upregulating

inflammatory cytokine expression (23). Recently, our study with a

mouse experimental autoimmune neuritis model further demonstrated

that myeloid-specific Notch signaling activation could alleviate

immune-mediated neuropathies by regulating Ly6chi monocyte

conversion through the RBP-J/NR4A1 axis (24). However, how

Notch signaling regulates microglial activation and monocyte-derived

macrophage infiltration during PD progression remains unknown.

In the present study, we found that the Notch pathway was

activated in activated amoeboid microglia in an MPTP-induced PD

mouse model. Furthermore, with myeloid-specific RBP-J–deficient

(RBP-JcKO) mice, we found that myeloid-specific Notch deficiency

resulted in more TH+ DA neurons and improved movement ability

compared with the control PD mice. Meanwhile, the number of

resident microglia showed no changes, whereas the number of

activated MHC II+ microglia and infiltrated monocyte-derived

macrophages decreased significantly in RBP-JcKO PD mice. Then,

utilizing CCR2−/− mice to block CCR2+ monocyte recruitment or a

PLX5622-formulated diet to deplete microglia, we found that

blockade of CCR2+ monocytes contributed negligibly to the

attenuated DA neuron degeneration in RBP-JcKO PD mice,

whereas microglia depletion enhanced the number of TH+ DA

neurons and reduced the inflammatory response in RBP-JcKO PD

mice. Further mechanistic studies showed that Notch signaling
frontiersin.org
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might regulate microglial activation through NF-kB signaling. In

summary, our results are the first to reveal that Notch signaling

might participate in PD progression by regulating resident

microglial activation through NF-kB signaling.
Method and materials

Mice and PD models

Wild-type mice with the C57BL/6 background were maintained

under specific pathogen–free conditions in the animal facility of the

Fourth Military Medical University. For myeloid-specific RBP-J

knockout (RBP-JcKO) mice, Lyz2-cre (namely, LysM-Cre)

transgenic mice (stock #019096, Jackson Laboratory, Bar Harbor,

ME, USA) were mated with RBP-J floxed (RBP-Jf/f) mice (25). After

genotype detection, Lyz2-cre+/−:RBP-J+/f mice were obtained as the

control mice, and Lyz2-cre+/−:RBP-Jf/f mice were treated as RBP-

JcKO mice. The RBP-J knockout efficiency in infiltrated

macrophages and microglia was detected with genomic DNA by

Real-time Quantitative PCR (qPCR), respectively. CCR2 knockout

(CCR2−/−) mice (stock #004999, Jackson Laboratory, Bar Harbor,

ME, USA) exhibit a defective monocyte recruitment during

immune responses and were crossed with RBP-JcKO mice to

obtain CCR2−/− RBP-JcKO or CCR2−/− control mice. CX3CR1GFP

(stock #005582, Jackson Laboratory, Bar Harbor, ME, USA) mice,

which can label CX3CR1+ microglia by Green fluorescent protein

(GFP) signal, were adopted. In some cases, CX3CR1GFP mice were

mated with RBP-JcKO mice. The mouse genotype was determined

by polymerase chain reaction (PCR) with mouse genomic DNA. All

PCR primers are listed in Table S1.

Acute PD models were used in this study. Briefly, MPTP

hydrochloride (MPTP-HCl; Sigma Co., St. Louis, MO, USA) was

blended in 0.9% sterile saline and then administered to the animals

intraperitoneally every 2 h for four times at 20 mg/kg body weight.

An equal volume of saline was injected into the control mice. All

mouse experiments were approved by the Animal Experiment

Administration Committee of Fourth Military Medical University.

All animals were treated according to the criteria outlined in the

Guide for the Care and Use of Laboratory Animals published by the

National Institutes of Health.
Open-field test

Mice were placed in an open-field arena (40 cm × 40 cm ×

40 cm) made of white acrylic and monitored using video for 5 min.

Four mice in four independent fields were simultaneously recorded.

Total distance moved and total time spent in three zones (10 cm ×

10 cm, 20 cm × 20 cm for center, and 40 cm × 40 cm for the

peripheral zone excluding the center area) were calculated using

ETHOVISION 9.0 software (Noldus). After each test, feces were

eliminated, and the floor was cleaned with 75% ethanol and then

dried completely. The locomotor activity was measured with

average speed and moved distance. Exploratory behavior was

evaluated as the distance moved in the central area.
Frontiers in Immunology 03128
Elevated plus-maze test

The elevated plus-maze apparatus contained four aims (30 cm ×

5 cm): two open and two closed arms with the same size, in which

16-cm-high black walls were elevated 45 cm over the floor and weak

red light was used as an illuminator. Each mouse was placed in the

central square of the plus-maze apparatus and stood facing the open

arm, and, then, their behavior was recorded for 5 min. The total

number of entries into the open and closed arms, as well as

immobility time, was recorded as overall locomotor activity.

Meanwhile, the degree of anxiety was calculated according to the

percentage of entrance into the open arms.
Single-cell suspension preparation
and FACS

Single-cell suspensions of the brain were prepared according to a

previous report (26, 27). Mice were deeply anesthetized in a CO2

chamber and transcranially perfused with 20 mL of phosphate buffer

saline (PBS). Brains were carefully removed from the skull and ground

by Dounce homogenizers. Mononuclear cell isolation was performed

by density gradient centrifugation with Percoll (70%/37%). After that,

the interphase containing mononuclear cells was collected and washed

with 1× HBSS. Myelin was removed by high-speed centrifugation at

850g in a 0.9 M solution of sucrose in 1× Hank's Balanced Salt Solution

(HBSS). Mononuclear cells were then rinsed in HBSS. After that, the

cells were resuspended completely in PBS containing 0.5% bovine

serum albumin (BSA) and 2 mM Ethylenediaminetetraacetic acid

(EDTA) and then incubated with antibodies. Each antibody for

FACS is listed in Table S2.

FACS was performed by BD FACSCanto II. Cell sorting was

done using BD FACSAria III. All FACS data were analyzed using

FlowJo software (FlowJo LLC).
Cell culture

The murine microglia cell line N9, the hippocampal cell line

HT-22, and the human neuroblastoma cell line SH-SY5Y were

cultured in Dulbecco's modified eagle medium (DMEM)

(Invitrogen, Carlsbad, CA, USA) containing 2 µM glutamine, 10%

fetal bovine serum (FBS), penicillin (100 U/mL), and streptomycin

(100 µg/mL). The cells were cultured in a saturated humidified

incubator in 95% air and 5% CO2 at 37°C. To induce microglial

activation, 5 × 104 N9 cells were cultured in 24-well plates and

stimulated with Lipopolysaccharide (LPS) (1 µg/mL; Escherichia

coli 0111: B4, l4391, Sigma-Aldrich, MO, USA) for 24 h.

For primary microglia culture, neonatal mixed culture was slightly

modified on the basis of the previous literature (28). postnatal 0–3

(P0–3) mouse pups were anesthetized with hypothermia, the meninges

were removed, and the cortices were minced in PBS containing 5%

FBS. Cells were then collected by centrifugation and dissociated with

trypsin for 20 min at 37°C. After filtration with a 40-µm cell strainer

(BD Biosciences, San Diego, CA, USA), the mixed cells were inoculated
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in 75-mm flasks at a density of 1.5 × 107 and cultured with DMEM

containing 10% FBS and Granulocyte-macrophage colony stimulating

factor (GM-CSF) (25 ng/mL) (Sigma-Aldrich, St. Louis, MO, USA).

After 2 weeks, mixed cells were separated by oscillation (125

Revolutions Per Minute (rpm), 37°C), and, then, microglia were

harvested and inoculated in 24-well plates overnight. The next day,

the cells were treated with LPS (100 ng/mL) or PBS for 24 h. GM-CSF

(25 ng/mL) was added during the whole microglia culture process. The

cultured medium and cells were harvested for subsequent enzyme-

linked immunosorbent assay (ELISA) detection and RNA preparation.

For the detection of p65 translocation, microglia were inoculated on a

slide in a 24-well plate and treated with LPS (100 ng/mL) for 6 h

followed by immunofluorescence staining.

For BMDM culture, bone marrow cells were isolated from

mouse femurs and were cultured in DMEM containing 10% FBS

for 16h, and then the suspension cells were inoculated in 24-well

plate at a density of 2 × 106 and cultured with DMEM containing

10% FBS and GM-CSF (25 ng/mL) for 7 days to obtain BMDMs.
Coculture experiments

LPS-treated primary microglia with neuron were cocultured.

Primary microglial cells (3 × 105) were cultured in 24-well plates and

then stimulated with LPS (100 ng/mL) for 6 h. After washing with

fresh DMEM, the activated microglia were cocultured with 5 × 104

HT-22 cells for 36 h, and, then, the mixed microglia and HT-22 cells

were collected and stained with CD45 and Annexin V/Propidium

Iodide (PI) (Sigma-Aldrich, St. Louis, MO, USA) for FACS analysis.

Coculture primary microglia with N-Methyl-4-Phenylpyridinium

Iodide (MPP)(+) induced DA neurons. MPP(+) neuron/microglia

coculture experiment was slightly modified on the basis of the

previous literature (29). In brief, SH-SY5Y (8 × 104) cells were

cocultured with primary microglia cells (3 × 105) in 24-well plates.

MPP+ iodide (Selleck, Houston, TX, USA) (1 mM) was applied directly

to the mixed cultures for 48 h, and, then, the mixed microglia and SH-

SY5Y cells were collected and stained with CD45 and Annexin V/PI

(Invitrogen, Carlsbad, CA, USA) for FACS analysis.
Immunofluorescence

Mice were sacrificed and transcranially perfused with 30 mL of PBS

plus 30 mL of 4% paraformaldehyde (PFA). Brains were fixed again in

4% PFA for 4 h followed by 30% sucrose dehydration overnight. Frozen

sections were made using a cryostat microtome (Leica, Nussloch,

Germany). A series of coronal sections (14 µm) containing the

midbrain were cut and attached to gelatine-coated slides. After drying

at room temperature, sections were blocked with blocking buffer (1%

bovine serum albumin plus 0.3% Triton X-100 in PBS) for 2 h at room

temperature. Primary antibodies were incubated with sections at 4°C

overnight. The next day, secondary antibodies were incubated with the

sections for 1 h at 37°C. Hoechst 33258 was counterstained (Sigma-

Aldrich, St. Louis, MO, USA) for 15 min. Therein, the DA neurons in

the SNpc were stained using anti–tyrosine hydroxylase (TH) (1:10,000)

(Sigma-Aldrich, St. Louis, MO, USA) antibody, and microglia in the
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SNpc were stained using anti–ionized calcium-binding adaptor

molecule-1 (IBA-1) (1:1,000) (Wako, Kyoto, Japan) antibody or anti-

Transmembrane Protein 119 (TMEM119) (1:200) (Abcam, Cambridge,

UK) antibody. All sections were observed and photographed using a

fluorescence microscope (BX51, Olympus, Tokyo, Japan) or a laser

scanning confocal microscope (FV1000, Olympus, Tokyo, Japan).

TMEM119 antibody information is listed in Table S2.
Quantification of TH+ neurons and
CX3CR1+/NICD microglia

We identified the SN regions according to the mouse atlas of

Franklin and Paxinos (30) and quantified the SN regions

corresponding to −3.64 to −2.92 on the bregma axis. The total

number of TH+ neurons of the SN was determined on the basis of

the stereological methods that are described in published literature

(31). In brief, a total of 10 sections were taken at intervals of 5 after

consecutive sections, and, then, TH immunohistochemical staining

was performed. The total number of TH+ neurons in the SNpc from

the 10 tissue sections was counted to quantitatively analyze the

whole number of DA neurons in the midbrain of the right

hemisphere. For microglia counting, the section at bregma of

−3.08 was selected, in which there was the most prominent

microglia activation. All CX3CR1+ cells in the photographed field

were counted, and, then, the mean value was analyzed.
Real-time PCR

Total RNA was extracted according to the protocol using

TRIzol reagent (Invitrogen, Carlsbad, CA, USA). Quantitative

real-time PCR was performed using an SYBR Premix EX TaqTM

II kit (Takara Bio, Dalian, China) and the ABI PRISM 7500 real-

time PCR system, and b-actin was used as an internal control. The

primers used for qPCR are listed in Table S1.
Enzyme-linked immunosorbent assay

The concentrations of TNF-a, IL-1b, IL-6, IL-10, and

transforming growth factor-b (TGF-b) in mouse serum and cell

culture supernatant were determined with ELISA kits (eBioscience,

San Diego, CA, USA) according to the recommended procedures.

Each sample was measured in triplicate.
Western blot

Cells were lysed in Radioimmunoprecipitation assay (RIPA) buffer

buffer containing the protease inhibitor Phenylmethanesulfonyl

fluoride (PMSF) (Beyotime, Shanghai, China), and, then, nucleic and

cytoplasmic protein extraction kits were applied (Beyotime, Shanghai,

China). Protein concentrations were quantitated with a Bicinchoninic

Acid Assay (BCA) Protein Assay kit (Pierce, Waltham, MA, USA).

Samples were run by sodium dodecyl sulfate polyacrylamide gel
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electrophoresis (SDS-PAGE) and the membrane was blocked with 5%

skim milk for 1 h and then incubated with the primary antibodies and

secondary antibodies. Protein was determined with the Ultra High

Sensitivity ECL Kit. All antibodies are listed in Table S2.
PLX5622 administration

Mice were fed PLX5622 formulated in the AIN-76A diet for

microglia depletion (1,200 parts per million (ppm); Plexxikon)

according to a previous description (32, 33). A standard AIN-76A

diet was provided as a control diet [standard diet (SD)]. Mice were

fed PLX5622 for 7 days to deplete microglia and fed SD as a control.

After that, the mice were treated with MPTP and fed the PLX5622

diet or Standard Deviation (SD) for 7 consecutive days.
Statistics

Data were analyzed with GraphPad Prism version 9 (San Diego,

CA, USA). Image-Pro Plus 6.0 software (Media Cybernetics Inc.,

Bethesda, MD, USA) was used for quantification analysis. The

statistical analyses were performed with Student’s t-test or one-

way ANOVA with Tukey’s multiple comparisons test. The results

are shown as the mean ± Standard Deviation. P < 0.05 was

statistically significant.
Results

Notch signaling could be activated in microglia of PD mice.

Many studies, including ours, have reported that Notch signaling

can regulate macrophage activation and function (34–38). To assess

whether Notch signaling can be activated in microglia in PD, we

first established an acute PD model with MPTP treatment using

CX3CR-1
GFP/+ mice, in which CX3CR1+ microglia can be traced by

GFP signal (Figure 1A). Then, immunofluorescence staining of

brain sections was performed to observe the pathological phenotype

of MPTP mice. As shown in Figures 1B, C, TH+ DA neurons were

reduced significantly in the SNpc, where microglia (CX3CR1+ or

TMEM119+) adjacent to TH+ neurons transformed to amoeboid

activated microglia as previously reported (11) (Figures 1B, D,

Figure S1A). Meanwhile, FACS analysis further identified that

CD11b+CD45lo microglia were indeed tissue-resident microglia by

staining with CX3CR1, TMEM119, F4/80, and Ly6C (Figures S1B,

C). Furthermore, more proliferated CX3CR1+ microglia in PD mice

were confirmed by Ki-67 staining (Figures 1D, E). Enthusiastically,

compared with the control mice, more NICD translocated into the

nuclei of microglia in PD mice accompanied by the reduced TH+

DA neurons, suggesting that Notch signaling was activated in

microglia of PD mice (Figures 1F, G, Figure S1E). This result was

further supported by a higher expression of Notch signal–related

molecules, such as Notch1, Hes1, and Hes5, in the brains of PD

mice (Figure 1H). Collectively, these results indicated that Notch
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signaling was activated in microglia of MPTP-induced acute

PD mice.
Myeloid-specific RBP-J deficiency
alleviated dopaminergic
neurodegeneration in MPTP mice

Next, to address whether activated Notch signaling in microglia/

macrophages could influence PD progression, Lyz2-cre+/−:RBP-Jf/f

(RBP-JcKO) mice, in which Notch signaling was specifically blocked in

myeloid cells, were adopted. In some cases, RBP-JcKO mice were

crossed with CX3CR1GFP mice. After MPTP treatment, the number

of TH+ DA neurons in the SNpc was recorded by

immunofluorescence staining in CX3CR1GFP/+RBP-JcKO and

CX3CR1GFP/+ PD mice. The results showed that the number of

TH-positive cells in myeloid-specific RBP-J–deficient mice was

greater than that in control mice (Figures 2A, B). Correspondingly,

the mean density of TH-positive axon fibers in the striatum of RBP-

JcKO PD mice was higher (Figures 2C, D). Moreover, the movement

behaviors of the mice were examined using the open-field test and the

elevated plus-maze test. In the open-field test, RBP-JcKO mice showed

better movement ability, as reflected in the moved distance, average

speed, and the moved distance in the central area (Figures 2E-H). In

the elevated plus-maze test, RBP-JcKO mice also presented better

movement behaviors based on the total time of entries and

immobility count, but there was no obvious difference in the

percentage of open arm entries compared with that of the control

PDmice (Figures 2I-L). Together, these results demonstrated that the

disruption of RBP-J in myeloid cells could alleviate DA

neurodegeneration in PD mice.
Myeloid-specific RBP-J deficiency inhibited
microglial activation and reduced the
inflammatory response in PD mice

Because of the role of inflammation in neurodegeneration (3, 11,

12, 39), we next analyzed the phenotype of immune cells, especially

myeloid cells, in RBP-JcKO and control PD mice by FACS (Figure 3A,

Figure S2A). Meanwhile, as shown in Figure S3, the RBP-J knockout

efficiency in sorted CD11b+CD45hi-infiltrated IMs could reach more

than 50%, whereas that in sorted CD11b+CD45lo microglia was

around 25%. Consequently, the FACS results indicated that the

number of CD11b+CD45hi IMs was significantly reduced in

myeloid-specific RBP-J–deficient PD mice compared with control

PD mice (Figures 3A, B). The total cell number of CD11b+CD45lo

microglia showed no difference between the two groups (Figure 3C,

Figure S2), although the microglia numbers increased both in RBP-

JcKO and control mice following MPTP treatment (Figures S2B, C).

Expectedly, Notch signal blockade in myeloid cells showed no effect

on microglial proliferation and apoptosis, as demonstrated by Ki-67

and Annexin V staining (Figure S3). Because IMs in the brain have

been reported to originate from blood monocytes, we further
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confirmed their phenotype with more cell surface markers, such as

Ly6C and CX3CR1 (16, 26, 40–42). The FACS analysis showed that

the number of Ly6C+CX3CR1+ IMs showed no difference between

the two groups, but the Ly6CloCX3CR1+ IMs decreased obviously in

myeloid-specific RBP-J–deficient mice (Figures 3D–F), suggesting
Frontiers in Immunology 06131
that RBP-J deficiency in myeloid cells could mainly affect the

differentiation of Ly6Clo IMs during PD progression. Because more

activated microglia occurred during PD progression (Figure 1D) and

RBP-J deficiency in myeloid cells did not influence the total cell

number of microglia, we proposed that Notch signaling might
B
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FIGURE 1

Notch signaling was activated in amoeboid microglia in MPTP-induced PD mice. (A) Mice were treated intraperitoneally with MPTP-HCl (20 mg/kg) or PBS
every 2 h for four times and then sacrificed on day 7 for subsequent analysis. (B) Representative immunofluorescence images of tyrosine hydroxylase (TH)
staining in the SNpc of CX3CR1GFP/+ mice suffering from PD and control mice. (C) The TH+ neurons in (B) were quantitatively compared (n = 3).
(D) Representative immunofluorescence images of Ki-67 staining in the SN of CX3CR1GFP/+ PD mice and control mice. (E) The Ki67+ CX3CR1+ microglia in
(D) were measured using Image-Pro Plus and then quantitatively compared (n = 3). (F) Representative immunofluorescence images of Notch intracellular
domain (NICD) expression in the SN of CX3CR1GFP/+ PD mice and control mice. (G) The NICD-activated microglia in (F) were counted and quantitatively
compared (n = 4). (H) Mononuclear cells of the whole brain were isolated by gradient centrifugation using 70%/30% Percoll. The mRNA expression of
Notch-related molecules (Notch1, Hes1, and Hes5) was determined by qRT-PCR (n = 4). The Student’s t-test was used for the statistical analyses. Bars =
mean ± SD; **P < 0.01; ***P < 0.005 ****p< 0.0001..
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regulate microglial activation. As expected, the MHC II+ activated

microglia in RBP-JcKO PD mice indeed showed a marked decrease

(Figures 3G–I). Consistently, proinflammatory cytokines, including

TNF-a and IL-6, in the serum of RBP-JcKO PD mice showed a

remarkable decrease, whereas anti-inflammatory cytokines such as

TGF-b showed no difference between the two groups (Figure 3J), and

IL-10 was undetectable (data not shown). Collectively, these results

indicated that myeloid-specific RBP-J deficiency alleviated

neuroinflammation and DA neurodegeneration, which might be

attributed to the decreased number of infiltrated IMs and less

activated microglia during PD progression.
Frontiers in Immunology 07132
CCR2 depletion contributed less to the
attenuated dopaminergic
neurodegeneration in myeloid-specific
RBP-J–deficient mice

Ly6Chi monocytes are recruited to the CNS in a CCR2-dependent

manner (43–45). Combined with our previous studies, in which

myeloid-specific Notch signaling blockade ameliorated murine renal

fibrosis and lung fibrosis by regulating CCR2+ monocyte-derived

macrophage recruitment (37, 38), we wondered whether the

attenuated DA neurodegeneration in RBP-JcKO mice also depended
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FIGURE 2

The disruption of RBP-J in myeloid cells alleviated dopaminergic neurodegeneration after MPTP treatment in mice. (A) Representative
immunofluorescence images of TH staining in the SN of CX3CR1GFP/+RBP-JcKO and CX3CR1GFP/+ (Ctrl) mice after MPTP treatment. (B) The number
of TH+ neurons was counted and quantitatively compared (n = 8). (C) Representative immunohistochemistry staining of TH in the striatum of RBP-
JcKO and control PD mice (n = 8). (D) The density of TH+ axon fibers in striatum was measured by IOD/area with Image-Pro Plus and quantitatively
compared (n = 8). (E-H) The open-field experiment was performed (E). Locomotor activity—namely, distance moved (F), average speed (G), and
distance moved in the central area—was counted and quantitatively analyzed between RBP-JcKO and control (Ctrl) PD mice (n = 8). (I-L) The
elevated plus-maze test was performed (I). The total arm entries (J), immobility time (K), and percentage of open arm entries (L) were calculated and
quantitatively compared. The Student’s t-test was used for the statistical analyses. Bars = mean ± SD; *P < 0.05.
g

https://doi.org/10.3389/fimmu.2023.1193081
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liang et al. 10.3389/fimmu.2023.1193081
on the reduction in CCR2+ monocyte recruitment. To address this

question, we crossed RBP-JcKO mice with CCR2−/−mice to gain RBP-

J and CCR2 double-knockout mice (CCR2−/−RBP-JcKO), in which the

migration of CCR2+ monocytes was blocked. After MPTP treatment,

FACS assays showed that the Ly6Chi monocytes in peripheral blood

were dominantly diminished in CCR2−/− and CCR2−/−RBP-JcKO

mice when compared with the Ly6Chi monocytes in control and

RBP-JcKO mice, whereas Ly6Cint-lo monocytes increased in CCR2−/−

and CCR2−/−RBP-JcKO mice (Figures S4A, B), indicating that CCR2

deficiency can successfully deplete blood Ly6chi monocytes but not

Ly6Cint-lomonocytes. Next, immunofluorescence staining showed

that CCR2 deficiency could not enhance the numbers of TH+ DA

neurons in the SNpc between RBP-JcKO and CCR2−/−RBP-JcKO mice
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(Figures 4A, B). Meanwhile, compared with the control PD mice, the

numbers of TH+ DA neurons were not changed in CCR2−/−PD mice,

which was consistent with previous reports in which CCR2 blockade

does not prevent striatal dopamine loss in the MPTP-induced PD

model (46–48). Moreover, although CD11b+CD45hi-infiltrated IMs

decreased significantly in CCR2−/− PD mice compared with control

mice, CCR2 knockout did not result in significantly decreased IMs in

RBP-JcKO PD mice (Figures 4C, D), indicating that myeloid-specific

RBP-J deficiency alleviated DA neurodegeneration independent of

CCR2+ monocyte recruitment. More importantly, regardless of

whether CCR2 was knocked out, the total number of MHC II+

activated microglia was decreased significantly in the RBP-JcKO mice

(Figures 4E–G). Meanwhile, the expression of some inflammatory
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FIGURE 3

Myeloid-specific RBP-J deficiency inhibited microglial activation and reduced the inflammatory response in PD mice. Single-cell suspensions were
prepared from the brains of RBP-JcKO and control (Ctrl) PD mice. (A) The myeloid cell population were analyzed by FACS. (B, C) The number of
CD11b+CD45hi-infiltrated inflammatory macrophages (IMs; B) and CD11b+CD45lo microglia (C) in (A) were analyzed and quantitatively compared,
respectively (n = 14). (D) Infiltrated IMs were further analyzed with Ly6c and CX3CR1 staining by FACS. (E, F) The total cell number of
CD11b+CD45hiCX3CR1+Ly6c+ (E) and CD11b+CD45hiCX3CR1+Ly6clo (F) IMs in brain was quantitatively compared (n = 14). (G) The microglia
(CD11b+CD45loCX3CR1hi) and the activated microglia (MHCII+CD11b+CD45loCX3CR1hi) were analyzed by FACS. (H, I) The total cell number of
microglia (H) and activated microglia (I) in (G) was quantitatively compared; (J) The levels of IL-6, TNF-a, IL-1b, and TGF-b in serum of RBP-JcKO and
Ctrl PD mice were detected using ELISA (n = 11 in IL-6, TNF-a, and IL-1b; n = 10 in TGF-b). The Student’s t-test was used for the statistical analyses.
Bars = mean ± SD; *P < 0.05; **P < 0.01 ns, no significance.
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factors, including TNF-a and IL-6, was also decreased significantly in

the serum of RBP-JcKO mice or CCR2−/−RBP-JcKO mice. However,

the level of the anti-inflammatory factor TGFb showed no difference

among the groups (Figure 4H). Together, these results indicated that

CCR2+ monocytes might not contribute to the attenuated DA

neurodegeneration in RBP-JcKO PD mice.
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Microglia depletion increased TH+

neuron cells slightly in myeloid
RBP-J deficient PD mice

As mentioned above, Notch signaling might regulate microglial

activation during PD progression, and we further depleted
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FIGURE 4

CCR2 depletion contributed less to the attenuated dopaminergic neurodegeneration in myeloid-specific RBP-J–deficient PD mice. (A) Ctrl, RBP-JcKO,
CCR2−/−, and RBP-JcKO/CCR2−/− mice were treated intraperitoneally with MPTP-HCl as mentioned above to induce the acute PD model. Brains were
dissected and stained with TH, IBA-1, and Hoechst on tissue sections using immunofluorescence staining. (B) The numbers of TH+ neurons were counted in
five areas and quantitatively compared among each group (n = 8). (C) Single-cell suspensions were prepared from the brain, and infiltrated IMs were
analyzed by FACS. (D) The CD11b+CD45hi-infiltrated IMs in (C) were quantitatively compared (n = 7 in the CCR2−/−group; n = 8 in the other groups). (E) The
total microglia and activated microglia were analyzed by FACS. (F, G) The total cell number of microglia (F) and MHCII+ activated microglia (G) in (E) was
quantitatively compared (n = 7 in the CCR2−/−group; n = 8 in the other groups). (H) The levels of TNF-a, IL-6, and TGF-b in serum among each group were
measured using ELISA (n = 11 in TNF-a; n = 10 in IL-6 and TGF-b). One-way ANOVA with Tukey’s multiple comparisons test was used for the statistical
analyses. Bars = mean ± SD; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1193081
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liang et al. 10.3389/fimmu.2023.1193081
microglia by feeding mice commercial food containing a small-

molecule inhibitor of CSF1R signaling, namely, PLX5622, to assess

its contribution (32, 33, 49, 50). First, we confirmed the efficiency of

microglia depletion by feeding mice a PLX5622-formulated AIN-

76A diet (PLX) or AIN-76A diet [standard diet (SD)] for 7 days.

The results showed, via immunofluorescence staining and FACS
Frontiers in Immunology 10135
assays, that PLX5622 administration effectively depleted Iba1+

microglia (CD11b+CD45low) (Figures S4C–F). Next, as shown in

the scheme in Figure 5A, RBP-JcKO and control mice were fed the

PLX5622 diet or standard diet for 7 days and then treated with

MPTP to induce the PD model and fed the PLX5622 diet or SD for

another 7 consecutive days. Immunofluorescence staining showed
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FIGURE 5

The depletion of microglia showed a resistance role in neurodegeneration of myeloid-deficient RBP-J PD mice. (A) Mice were fed a commercial PLX5622
diet or standard diet for 7 days and then treated with MPTP to induce a PD model accompanied by a PLX5622 diet for another 7 days. (B) Brain sections
were made from RBP-JcKO or control mice fed the above diet and then subjected to immunofluorescence staining with anti-TH and IBA-1 antibodies.
Nuclei were stained with Hoechst (n = 3). (C) The number of TH+ neurons in (B) was counted and quantitatively compared among each group (n = 3).
(D) Single-cell suspensions from the brains of PD mice in (A) were prepared and analyzed by FACS (n = 3). (E, F) The number of microglia (E) and infiltrated
myeloid cells (F) in (D) was quantitatively compared among each group (n = 3). (G) MHC II+ microglia from different groups were analyzed by FACS (n = 3).
(H) The number of MHC II+ microglia was quantitatively compared among each group (n = 3). (I) The levels of TNF-a, IL-6, and TGF-b in serum among
each group were detected using ELISA (n = 5). One-way ANOVA with Tukey’s multiple comparisons test was used for the statistical analyses. Bars = mean ±
SD; *P < 0.05; **P < 0.01; ***p< 0.001; ns, no significance.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1193081
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liang et al. 10.3389/fimmu.2023.1193081
that mice with continuous administration of the PLX5622 diet

showed a remarkable decrease in the number of microglia and

exhibited improved DA neurodegeneration in both RBP-J–deficient

and control PD mice (Figures 5B, C). In addition, FACS results

showed that CD11b+CD45lo microglia and CD11b+CD45hi-

infiltrated IMs, especially Ly6CloCD11b+CD45hi-infiltrated IMs,

decreased significantly in the PLX5622-treated groups

(Figures 5D–F, Figures S5). As expected, MHC II+ activated

microglia were decreased remarkably in PLX5622-treated RBP-J–

deficient and control mice (Figures 5G, H). Correspondingly, the

serum TNF-a and IL-6 but not TGF-b were decreased obviously in

PLX5622-treated RBP-J–deficient and control mice (Figure 5I).

Collectively, these results demonstrated that myeloid-specific

RBP-J deficiency could ameliorate DA neurodegeneration by

reducing MHCII+ microglial activation.
RBP-J–deficient primary microglia
exhibited reduced proinflammatory
cytokine secretion through NF-kB signaling

To further explore the mechanism of Notch signaling-regulated

microglial activation in PD progression, primary microglia were

isolated from RBP-JcKO and control mice according to the described

protocol (28, 51). The purity of isolated primary microglia was

approximately 96.7%, as determined by immunofluorescence

staining and FACS assay (Figures S6A, B). Then, the primary

microglia were stimulated with LPS for 24 h, and the mRNA and

protein levels of proinflammatory factors, including TNF-a, IL-6,
and IL-1b, as well as anti-inflammatory cytokines, including TGF-b
and IL-10, were measured by qRT-PCR, ELISA, and

immunofluorescence staining. The results showed that the protein

levels of TNF-a and IL-6 decreased markedly, whereas the IL-10

level increased significantly in RBP-JcKO microglia (Figures 6A, B,

Figures S6C, D). Furthermore, we first observed the effect of LPS-

stimulated microglia on dopamine neurons by coculture

experiments. The results showed that CD45−AnnexinV+PI+

apoptotic neurons decreased remarkably in RBP-J–deficient

microglia, which might be due to fewer proinflammatory

cytokines and more anti-inflammatory cytokines secreted by

RBP-JcKO microglia after LPS stimulation (Figures 6C, D).

Because of the cytotoxin effect of LPS on primary microglia, we

further performed the coculture experiments using primary

microglia and MPP(+)-induced DA neurons as shown in

Figures 6E, F. The results were consistent with the coculture

experiment using LPS-treated microglia and neuron. Meanwhile,

bone marrow–derived macrophages (BMDMs) were cultured as

previously described (34) and stimulated with LPS for 24 h; then,

the mRNA and protein levels of inflammatory factors were

detected, and the results showed that RBP-J deficiency in

BMDMs could not alleviate inflammatory response significantly

(Figures S7A, B); in line with this, the experiment that cocultures

BMDMs with DA neurons showed a little effect on the apoptosis of

DA neurons (Figures S7C, D). These results were consistent with

the previous reports that microglia and BMDM showed different

gene profiles in neurodegeneration (52, 53). As Notch signaling can
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cooperate with Toll-like receptors (TLR) signaling to defend against

pathogen infection through NF-kB signaling, we further examined

the downstream molecules of NF-kB signal ing using

immunofluorescence staining and Western blotting with an anti-

p65 antibody. All results showed that the nuclear expression of p65

was significantly reduced in RBP-J–deficient microglia after LPS

stimulation (Figures 6G-J). Together, these results indicated that

myeloid-specific blockade of Notch signaling could participate in

PD progression by mainly affecting the microglia-mediated

neuroinflammation through NF-kB signaling.
Discussion

Microglia are the most abundant innate immune cells in the CNS

that can mediate synaptic pruning and remodeling by interacting with

neurons in physiological and pathological conditions (54–56). In the

past few decades, the heterogeneity of microglial phenotype and

function in neurodegenerative diseases such as PD has received great

attention, but the mechanisms that regulate microglia from the

physiological state to the pathological state are still unclear. Notch

signaling has been reported to play a critical role in regulating

microglial activation and neuroinflammation-related disorders such

as cerebral ischemia and epilepsy (57, 58). Our previous studies have

further shown that inhibition of Notch signaling in myeloid cells could

significantly alleviate spinal cord injury or Guillain-Barré syndrome by

reducing proinflammatory macrophage polarization or promoting

inflammatory monocyte conversion (23, 24). In this study, we found

that Notch signaling can be greatly activated in microglia of theMPTP-

induced acute PD mouse model accompanied by decreased TH+

neurons in the SNpc. As expected, myeloid-specific blockade of

Notch signaling inhibited DA neuron death and improved mouse

motor behavior by reducing MHCII+ microglial activation and IM

infiltration. Moreover, we demonstrated that myeloid-specific RBP-J

deficiency could attenuate PD progression by reducing inflammatory

factor secretion through NF-kB signaling. On the basis of our findings,

targeting Notch signaling in myeloid cells might be a potential

therapeutic strategy for neuroinflammation-related diseases,

including PD, in the future.

The brain macrophage population demonstrates increasing

heterogeneity and plasticity following the application of single cell

RNA sequencing (scRNA-seq), which includes tissue-resident

microglia, border-associated macrophages, and recruited monocyte-

derived macrophages (14, 15, 59). Although the contribution of both

activated microglia and infiltrated monocytes in neuroinflammation

has been widely studied, the conclusion remains controversial (46–48,

60). Here, using myeloid-specific RBP-J–deficient mice combined with

an acute PDmodel, we found that Notch signaling blockade inmyeloid

cells could ameliorate the symptoms of murine PD. On the one hand,

Notch signaling blockade could regulate microglial activation as the

total microglia number was not affected; on the other hand, Notch

signaling blockade could reduce monocyte infiltration. In general, the

CCR2–CCL2 axis is a popular chemokine axis for recruiting peripheral

monocytes into the CNS during neuroinflammation (61, 62). Our

recent studies have shown that myeloid-specific Notch signaling

disruption could alleviate renal or lung fibrosis progression by
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FIGURE 6

RBP-J–deficient primary microglia exhibited reduced proinflammatory cytokine secretion through NF-kB signaling. (A) Primary microglia were isolated from
RBP-JcKO and control mice and then cultured and stimulated with LPS or PBS (100 ng/mL) for 24 h. After that, cells were collected for RNA extraction, and
the relative mRNA expression levels of TNF-a, IL-1b, IL-6, IL-10, and TGF-b were determined by RT-PCR [primary microglia from Ctrl mice: n = 3; primary
microglia from cKO mice: TNF-a (n = 4), IL-6 (n = 5), IL-1b (n = 5), TGF-b (n = 5), and IL-10 (n = 5)]. (B) The protein levels of TNF-a, IL-1b, IL-6, IL-10, and
TGF-b in cultured medium collected from primary microglia in (A) were detected by ELISA (n = 3 in groups treated with PBS, n = 9 in groups treated with
LPS except IL-10, in which n = 8 in LPS-Ctrl group). (C) LPS-stimulated primary microglia from RBP-JcKO or control mice were cocultured with HT-22 cells
for 24 h, and, then, the apoptotic HT-22 cells in CD45-negative cells were examined by Annexin V/PI staining. (D) The AnnexinV+PI+ apoptotic HT-22 cells
in (C) were quantitatively compared (n = 3). (E) Cocultured primary microglia from RBP-JcKO or control mice with MPP+ (1 mM)–treated SH-SY5Y for 48h,
and, then, the apoptotic SH-SY5Y cells in CD45-negative cells were examined by AnnexinV/PI staining. (F) The Annexin V+ PI+ apoptotic HT-22 cells in
(E) were quantitatively compared (n = 3). (G) Primary microglia were isolated from RBP-JcKO/CX3CR1GFP/+ and Ctrl/CX3CR1GFP/+ mice and then cultured on
coverslips overnight. After stimulation with LPS (100 ng/mL) for 6 h, cells on coverslips were subjected to immunofluorescence staining with anti-p65
antibody and Hoechst. (H) The ratio of P65 nucleus/cytoplasm was calculated depending on the fluorescence intensity (n = 4). (I) Primary microglia in
(A) were lysed, and, then, the nucleic and cytoplasmic proteins were extracted. The expression of P-p65 in the nucleic was measured by Western blot, with
H3 as an internal control (n = 4). (J) The relative protein level of nuclear p65 was quantitatively compared (n = 4). One-way ANOVA with Tukey’s multiple
comparisons test was used for the statistical analyses. Bars = mean ± SD. n.d., not detectable. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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regulating monocyte-derived macrophage recruitment via the CCR2–

CCL2 axis (37, 38). Unexpectedly, in the current study, CCR2

knockout did not result in significantly decreased IMs in RBP-JcKO

PD mice and contributed less to the increased numbers of TH+ DA

neurons in RBP-JcKO PD mice, suggesting that Notch signaling

blockade in myeloid cells alleviated DA neurodegeneration

independent of CCR2+ monocyte recruitment. However, Ly6Clo IMs

decreased significantly in RBP-JcKO PDmice, which was reminiscent of

the contribution of Ly6cloCX3CR1hiCCR2lo patrolling monocytes to

infiltrated macrophages in MPTP-treated mice (48, 63). Whether

Notch signaling in myeloid cells could regulate these patrolling

monocytes involved in PD progression still needs to be investigated.

Microglial activation has been demonstrated to be a key

regulator of PD pathogenesis (10). MHC II is a hallmark of

microglial activation and was first reported by McGeer et al. in

1988. They found large numbers of Human leukocyte antigen DR

(HLA-DR)–positive reactive microglia (macrophages) along with

Lewy bodies in the substantia nigra of patients with PD (64).

Recently, Williams et al. further suggested that targeting MHC II

expression by shRNA against CIITA in microglia could attenuate

inflammation and neurodegeneration in an a-synuclein model of

PD (65). In our study, we also found that, regardless of whether

CCR2 was knocked out, the total number of MHC II+ activated

microglia decreased significantly in RBP-JcKO PD mice. Moreover,

RBP-J–deficient microglia exhibited less proinflammatory factor

secretion and neuronal apoptosis, suggesting that Notch signaling

might dominantly regulate microglial activation involved in PD

pathogenesis rather than CCR2-depenedent monocyte recruitment.

To address the role of microglia under pathological conditions,

researchers usually adopt microglia depletion experiments using

clodronate liposomes, anti-colony stimulating factor 1 receptor

(CSF1R) antibodies, or CSF1R inhibitors. Intracerebral

administration of clodronate liposomes into the brain

parenchyma can cause macrophage apoptosis but can also

damage other brain cells, including blood vessels (66). CSF1R is

expressed on microglia/macrophages and is responsible for their

survival and proliferation (67, 68). Although genetic deletion of

CSF1R can be used to deplete microglia, other cells expressing

CSF1R are often affected (69). Recently, one CSF1R inhibitor,

PLX5622, has been largely assumed to be microglia-specific with

few off-target effects, which have beneficial effects on motor and

non-motor symptoms in a PD model (70). On the basis of 90%

microglia depletion efficiency, we utilized a PLX5622-formulated

diet to evaluate the contribution of RBP-J–deficient microglia to PD

progression and found that microglia depletion could inhibit DA

neurodegeneration. However, in addition to microglia depletion, in

our system, we also found that CD11b+Ly6Clo monocytes were

depleted (data not shown). This phenomenon is consistent with a

previous report in which CX3CR1hily6Clo monocytes could be

severely depleted by CSF1R inhibition, whereas CX3CR1loly6Chi

monocytes could not be depleted in the peripheral immune system

(69). Because myeloid-specific RBP-J deficiency reduced the

infiltration of Ly6cloCXCR1hi IMs in MPTP-treated mice
Frontiers in Immunology 13138
(Figures 3D, F), the effect of PLX5622 on this population may not

be an ideal method for investigating microglial function under a

Notch signaling disruption background. In addition, the study of

Orthgiess et al. founded that, targeting microglia in vivo using the

LysM promoter is less efficient than that using the CX3CR1

promoter and neurons that exhibit LysM promoter activity (71).

Therefore, in the future, more genetically modified mice, such as

microglia-specific Notch-activated mice (CX3CR1-Cre or

TMEM119-Cre combined with NICD stop-flox), should be used to

clarify the importance of Notch signaling in regulating microglial

activation in PD progression.

In summary, our present study first demonstrates that myeloid-

spec ific Notch s igna l ing b lockade can a l l ev ia te DA

neurodegeneration in PD mice. The underlying cellular

mechanism may be attributed to reduced MHC II+ activated

microglia and infiltrated Ly6cloCX3CR1hi macrophages.

Meanwhile, the molecular mechanism may be related to the

alleviation of neuroinflammation regulated by NF-kB signaling.
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Memory B cells and antibody-secreting cells are the two prime effector B cell

populations that drive infection- and vaccine-induced long-term antibody-

mediated immunity. The antibody-mediated immunity mostly relies on the

formation of specialized structures within secondary lymphoid organs, called

germinal centers (GCs), that facilitate the interactions between B cells, T cells,

and antigen-presenting cells. Antigen-activated B cells may proliferate and

differentiate into GC-independent plasmablasts and memory B cells or

differentiate into GC B cells. The GC B cells undergo proliferation coupled to

somatic hypermutation of their immunoglobulin genes for antibody affinity

maturation. Subsequently, affinity mature GC B cells differentiate into GC-

dependent plasma cells and memory B cells. Here, we review how the NFkB
signaling system controls B cell proliferation and the generation of GC B cells,

plasmablasts/plasma cells, and memory B cells. We also identify and discuss

some important unanswered questions in this connection.

KEYWORDS

B cell, memory B cell, plasma cell, NFkB, and cell signaling
Introduction

Following an infection or vaccination, secondary lymphoid organs undergo profound

structural changes to form extrafollicular foci and germinal centers (GCs) (1, 2). Antigen-

activated B cells within extrafollicular foci proliferate and differentiate into GC-

independent plasmablasts (PBs), which generate short-lived immunity and memory B

cells (MBCs) (1, 2). Antigen-activated B cells that enter the GC proliferate and undergo

somatic hypermutation (SHM) of the B cell receptor (BCR) with an average of 10-3

mutations per base pair in each proliferative cycle to enhance affinity for antigens (3–5).
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High-affinity B cells capture more antigen than low-affinity B cells,

present the antigen to T cells, and subsequently receive strong T cell

help. GC B cells that receive strong T cell help (mediated through

the interaction of the CD40 receptor on GC B cell and the CD40

ligand on T cell) become affinity mature and differentiate into long-

lived plasma cells (PCs). GC B cells that receive weak T cell help

(weak activation through CD40) differentiate into MBCs, while

others receiving a little/no T cell help undergo apoptosis (1, 2).

However, this affinity-based selection model of PCs and MBCs

generation has recently been challenged (1–5). Our single-cell

lineage tracking study found that B cells show cell-to-cell

variability in their proliferative capacity in response to BCR-

independent stimulation, even when they express the same BCR

(HEL transgenic BCR) (6). Both computational modeling and

experimental results show that variable proliferative capacity is

due to preexisting variation in the molecular networks, which is

independent of BCR affinity. Hence, the selection of GC B cells may

be a combinatorial effect of BCR affinity, preexisting variation in the

molecular networks of the GC B cells during recruitment to the GC,

and the complex environment of GC itself.

Mice deficient in T cells produce class-switched IgG antibodies

upon viral infection and T cell-independent immunization (7, 8). A

recent study has shown that “TLR-BCR linked co-engagement”

with TLR-ligand and antigen generates T cell-independent class-

switched and hypermutated high-affinity antibodies and GC-like

structure (9). Another genetic fate mapping study shows that T cell-

independent immunization develops transient GCs and generates

GC-derived PCs and MBCs (10). Thus, both T cell-dependent and

independent pathways generate GC and high-affinity antibodies,

though the T cell-dependent pathway generates GC and high-

affinity antibodies more efficiently.

GC B cells circulate between the two distinct anatomical zones

of GC viz the light zone (LZ) and the dark zone (DZ). GC B cells

undergo rapid proliferation (6-8 h) and SHM within the DZ to

acquire affinity-improving mutations and return to the LZ, where

they are tested for antigen affinity and the affinity-damaging

mutation lead to apoptosis (2, 11, 12). Affinity-matured GC B

cells differentiate into PCs within the LZ (2). Whether the

generation of MBCs requires affinity maturation or not is

controversial (1, 2, 5). The diversity and affinity of antibodies

generated in response to an immune challenge are largely GC-

dependent. The success of vaccination and protection from re-

infection depends on the longevity of the generated antibodies and

MBCs. As a result, GC B cells play a key role in generating long-

lasting protective humoral immunity. However, chronic infection

and other pathological conditions may disrupt GC B cell

differentiation and contribute to lymphoid malignancy and

autoimmunity (13). Therefore, precise regulation of GC B cell

differentiation is needed to generate effective humoral immunity

without generating B cell lymphoma/autoimmunity. The accurate

regulation of GC B cell differentiation is controlled by the

coordination of cell signaling pathways (such as NFkB, PI3K/
AKT, MAPK, and STAT) and transcription factors (such as

NFkB, IRF, Myc, Bcl-6, OCA-B, Bach2, etc.) (1, 14). The

transcription factor NFkB is a direct stimulus-responsive
Frontiers in Immunology 02142
transcription factor. Stimulation leads to nuclear translocation of

NFkB within a few minutes to an hour and activates the

transcription of many key regulators essential for GC B cells, PCs,

and MBCs (1, 14–21) (discussed below). It has been shown that

NFkB and its upstream signaling (defined here as the NFkB
signaling system) are dysregulated in many B cell lymphomas and

immune disorders (13, 22–25).
Overview of the NFkB
signaling system

In mammals, the transcription factor NFkB family comprises

homo- and heterodimers formed combinatorially by five Rel family

proteins RelA/p65, cRel, RelB, p50 (NFkB1), and p52 (NFkB2) (26–
28). The five NFkBmonomers can theoretically generate 15 possible

dimers (29, 30). The three Rel family members, RelA, cRel, and

RelB, have a DNA binding domain and function as transcriptional

activators (30–33). The other two Rel family members, NFkB1 and
NFkB2 have a DNA binding and an ankyrin repeat domain (ARD)

(30, 33, 34). The ARD of NFkB1 and NFkB2 inhibits the activation
of NFkB. Constitutive or stimulus-responsive proteolytic cleavage

of the ARD generates p50 and p52 from NFkB1 and NFkB2,
respectively. p50 and p52 contain a DNA binding domain but not

a transcription activation domain and may inhibit transcription as

homodimers (p50:p50 and p52:p52) (26, 29, 35, 36). However, p50:

p50 and p52:p52 dimers may form a complex with co-activators

(e.g., Bcl3 and IkBz) to activate transcription (37, 38). The detail of

NFkB signaling has been extensively studied and summarized in

several excellent reviews (29, 39, 40). Here, we have briefly

described the NFkB signaling system, primarily in the context of

B-cells.

In the absence of extra-cellular stimuli, NFkB is associated with

inhibitors of NFkB (IkBa, IkBb, IkBe, and IkBsome) in the cytosol.

The activation of B cells by exogenous (foreign materials: e.g.,

protein/peptide antigen, LPS, etc.) and endogenous (host-derived

materials: e.g., CD40-ligand, BAFF, etc.) stimuli causes degradation

of IkBs by proteolysis and releases IkB-bound NFkB dimers for

their translocation to the nucleus where they activate transcription

(15) (Figure 1) (details below). Naïve B cells are enriched for nuclear

p50:p50 homodimer, which may function as a transcriptional

inhibitor; B cell activation replaces inhibitor NFkB (p50:p50) with

activator NFkB (cRel:p50/RelA:p50) (35, 44). IgM-mediated BCR

signaling and TLR signaling in B cells predominantly activate RelA:

p50, cRel:p50, and p50:p50 through the canonical pathway (15–18,

45–47). IgD-mediated BCR signaling induces expression of NFkB2
and generates p52, suggesting activation of the non-canonical NFkB
pathway (41). CD40 signaling in B cells activates both canonical and

non-canonical pathways, leading to nuclear translocation of RelA:

p50, cRel:p50, and RelB:p52 (15, 48, 49). BAFF signaling alone

predominantly activates the non-canonical pathway more than the

canonical one (15, 50, 51) (Figure 1).

Canonical NFkB signaling is transduced by a NEMO-

dependent kinase (IKK) complex composed of IKK1, IKK2, and

NFkB essential modulator (NEMO). The activation of this IKK
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complex is NEMO-dependent and mediated by phosphorylation-

dependent activation of IKK2 (29, 52, 53). The activated IKK2

phosphorylates IkBa, IkBb, and IkBe, leading to their degradation

and freeing NFkB dimers for nuclear translocation (26–28). The

canonical NFkB signaling pathway in B cells predominantly

activates RelA:p50, cRel:p50, and p50:p50 dimers (15–17, 35).

Non-canonical NFkB signals are transduced in a NEMO-

independent but NIK (NFkB inducing kinase) and IKK1-

dependent manner (29, 52). The non-canonical pathway has dual

functions. The first function is to process the p100 monomer to p52,

leading to the formation of RelB:p52 dimer (43, 54). Unprocessed

p100 oligomerizes and forms the IkBsome inhibitory complex (55).

The second function is to degrade the IkBsome and release IkBsome

bound NFkB, including RelA:p50 and cRel:p50 (16, 43). The non-

canonical NFkB in B cells predominantly activates RelB:p52;

however, in a context-dependent (e.g., anti-IgM and BAFF co-

stimulation, discussed below) and cell type-specific manner, the

non-canonical pathway also activates RelA:p50, and cRel:p50

dimers (15, 16, 56).
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The NFkB signaling system in B cell
proliferation and survival

Naïve B cells are activated by antigen/ligand binding to cell-

surface receptors, e.g., BCR signaling is activated by an antigen, TLR

signaling is activated by TLR-ligand (e.g., LPS, CpG, etc.), CD40

receptor signaling is activated by CD40-ligand, and BAFF receptor

signaling is activated by BAFF (Figure 1). BCR, CD40, and TLR

signaling- all result in B cell activation, proliferation, and survival,

while BAFF signaling, without co-stimulation, results in B cell

survival (15, 22, 57). These signals activate NFkB, as discussed

above (Figure 1). Activated B cells enter the growth phase and

increase in cell size, and during the growth phase, they are protected

from cell death (Figure 2) (60, 66). It has been shown that mature B

cells stimulated for 24 hour activate the proliferative program, and

these activated B cells are programmed to divide multiple times

without further stimulation, suggesting that induction of key

regulators within the first few hours may control division number

(67). In line with this, Heinzel et al. showed that Myc expression
FIGURE 1

Schematic of canonical and non-canonical NFkB activation in B cell. TLR and IgM-mediated BCR signaling activate the canonical NFkB pathway (15,
35). IgD-mediated BCR signaling may activate both the canonical and non-canonical NFkB pathway (41, 42). CD40 and BAFF activate the canonical
and non-canonical NFkB pathways (15). The canonical signaling activates NEMO and IKK1/2 containing complex. The activated IKK1/2
phosphorylates members of the IkBs (IkBa, IkBb, and IkBe here referred as IkBa/b/e) bound with NFkB, leading to the degradation of IkBa/b/e. The
degradation of IkBa/b/e releases IkB-bound NFkB, which translocates to the nucleus. The activated IKK1/2 phosphorylates IkB-like molecule p105,
and ubiquitin-mediated degradation of p105 generates p50 with the formation of RelA:p50, cRel:p50 and p50:p50 (15, 22, 35). RelA:p50 and cRel:
p50 dimers are transcriptional activators. p50:p50 dimer may function as a transcriptional inhibitor and are present in naïve mature B cell (35). B cell
activation by canonical pathway replaces p50:p50 with RelA:p50 and cRel:p50 (15, 35). The non-canonical signaling stabilizes NIK and subsequent
activation of IKK1. The activated IKK1 phosphorylates IkB-like molecule p100 and generates p52. The degradation of RelB-bound p100 generates
RelB:p52 dimer, and its nuclear translocation (15). The multimeric association of p100 generates IkBd. IkBd remains predominantly bound with cRel:
p50 and RelA:p50 dimers. The activated IKK1 degrades IkBd and releases cRel:p50 and RelA:p50 dimers to the nucleus (16, 43).
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before the 1st division determines the maximum division number

(68). Myc is a cRel target gene (58). Therefore, it is possible, but as

yet unproven, that the extent of NFkB activation before 1st division

can control the maximum division number.

IKK2 deficiency leads to diminished NFkB activation. IKK2-

deficient B cells show reduced mature B cell numbers and impaired

B cell activation/proliferation upon mitogenic stimulation with LPS,

anti-IgM, or anti-CD40 (69). NEMO-deficient B cells also show

reduced NFkB activation and reduced generation of mature B cells,

and the phenotype is similar to IKK2 deficiency (69). Constitutive

activation of the canonical NFkB pathway, using constitutively

active IKK2 (IKK2ca mutant), enhances B cell survival, leading to

B cell hyperplasia (70). NIK-inactivating mutations impair the non-

canonical NFkB pathway, leading to reduced p100 degradation and

reduced generation of p52 (71, 72). It has been shown that NIK-

inactivating mutant mice (aly/aly mice) have reduced B cell

proliferation following LPS and anti-CD40 stimulation (71, 72),

suggesting NIK activity is required for B cell proliferation. The
Frontiers in Immunology 04144
activation of canonical NFkB results in the degradation of IkBa and

IkBe, and the activation of non-canonical NFkB results in the

degradation of IkBsome (IkBd, p100 oligomer) (Figure 1). It has

been shown that individual knockout of IkBa and IkBe enhances B
cells proliferation and survival upon LPS and anti-IgM stimulation

(17, 73, 74). Similarly, IkBsome reduction, caused by NFkB2
heterozygosity, enhances B cell proliferation and survival upon

anti-IgM stimulation (16). Thus, hyper NFkB activation enhances

B cell proliferation and survival. Both the canonical and non-

canonical NFkB pathways are required for complete mitogen-

induced B cell proliferation and survival.

All mitogens that activate the canonical NFkB pathway in B cells

need cRel for proliferation, although the extent of cRel dependency

varies, IgM-mediated signaling more dependent on cRel than LPS

(Figure 2) (46). IgD-mediated signaling generates p52, although it

fails to activate p65 (41). B cells deficient in NFkB2 show moderate

defects in B cell proliferation in response to IgD signaling (75). B cells

double deficient in p65 and p50 (p65-/-p50-/-) show impaired
FIGURE 2

Antigen-specific naïve B cells following antigen binding activate and grow in size. cRel:p50 dimer control activation/B cell growth (58, 59). Activated
B cells proliferate in the extrafollicular foci or differentiate in GC B cells. cRel is required for B cell proliferation (15, 58, 60, 61). Whether cRel is
required in B cells for GC initiation or formation is not yet clear (62). Proliferating B cells in the extrafollicular foci differentiated into memory B cells
and plasmablast. cRel inhibits plasmablast differentiation (21), and BAFF signaling needed for GC-independent memory B cell generation suggests
NFkB could control GC-independent memory B cell generation (63). GC has anatomically two distinct zones: dark and light zone. Activated B cells
that enter GC and differentiate into GC B cells undergo proliferation coupled with somatic hypermutation in the dark zone. GC B cells in the dark
zone rapidly proliferate and undergo somatic hypermutation of B cell receptors. GC B cells in the light zone acquire antigen from follicular dendritic
cell (FDC). Light zone B cells present the antigen to the T follicular helper (TFH) cell and receive T cell help mediated by CD40 signaling (Note: TFH
cell also provides other modes of help such as IL21, IL4, etc. Here, we emphasize only the CD40 signal). Long-lived plasma cells are generated from
affinity-selected GC B cells. It is controversial whether affinity-based selection is required for the generation of GC-derived memory B cells. cRel is
required for GC maintenance and likely control the light to dark zone transition (20). cRel may control BCR-mediated GC survival as BCR-activated
light zone B cells show NFkB target gene expression (64). RelA is required, but cRel inhibits, for GC-derived plasma cell generation (20). RelB:p52 is
required for cell cycle entry of GC B cells and likely control the interaction of GC B cells with TFH cells (19). Thus, RelB:p52 control re-entry of GC B
cells from light to dark zone. Both cRel and RelA control GC-derived memory B cell generation (65), and the conclusion is based on an induced GC-
B cells culture system.
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proliferation in response to IgD signaling, although B cells deficient in

either p65 or p50 have a little/no proliferative defects (42). Tonic BCR

signaling mediated canonical pathway (cRel/RelA) activation is

required to induce NFkB2 (16, 76). Thus, IgD signaling may

activate both canonical and non-canonical NFkB (41, 42). NFkB1
is crucial for TLR4-dependent B cell proliferation (46, 77),

presumably by enabling Tpl2-MAPK signaling (35). cRel deficient

B cells show reduced expression of transcription factor IRF4, which is

required for B cell proliferation (20, 78, 79). Although cRel deficient B

cells still grow (enter the G1 phase), their transition from the G1 to S

phase of the cell cycle is impaired (58, 60, 61). The failure to transit

from the G1 to S phase has been attributed to impaired induction of

transcription factor E2F3, which is required for G1 to S phase

transition (80). Further, cRel-deficient B cells fail to upregulate the

standard metabolic program associated with cell growth (20). The

transcription factor Myc is required for B cell growth (81). cRel and

NFkB1 double deficient B cells failed to grow in size (Figure 2) and

have reduced Myc expression, suggesting both cRel and NFkB1 are

required for G0 to G1 transition (58, 59). Transgenic Myc expression

rescues B cell growth defects in cRel and NFkB1 double deficient B

cells, though restoring Myc activity failed to drive proliferation upon

stimulation (58). Therefore, NFkB plays multiple roles in the different

phases of the cell cycle, and each NFkB subunit has distinct functions.

cRel deficient B cells, upon BCR stimulation, failed to upregulate pro-

survival regulators BclA1 and Bcl-xL, and Bcl2 transgenic expression

inhibits BCR-induced cell death (80). Both cRel and NFkB1 are

required to protect TLR4-stimulated B cells from apoptosis by

blocking proapoptotic protein Bim (35, 82).
The NFkB signaling system
in isotype switching

Immunoglobulin is also known as BCR when present on the cell

surface. Class switching shifts immunoglobulin class, for example,

from the isotype IgM to IgG. Naïve B cells express IgM and IgD

(41). Class switching produces multiple isotypes of antibodies with

the same variable domains but differing in the constant domains of

heavy chains (83). LPS activates NFkB and promotes class

switching to IgG3, while CD40L+IL4 promotes class switching to

IgG1 and IgE, suggesting both canonical and non-canonical NFkB
pathways could control class switching (84, 85). The deletion of

NFkB1 in B cells, or the transactivation domain of cRel in B cells,

leads to defects in the transcription of heavy chain constant region

(86, 87). Class switch recombination (CSR) occurs within the region

of the repeat sequence of the constant region, and mitogen-

activated NFkB promotes transcription of the repeat sequence,

thereby promoting isotype switching (88–90). It has also been

shown that isotype switching depends on NFkB binding to the 3’

IgH enhancer region (91, 92). CSR strictly depends on activation-

induced cytidine deaminase (AID) (93–95). AID is also required for

SHM (details below). AID expression must be tightly controlled as

AID-mediated off-target activity poses a serious risk to the genome

integrity and translocations, mutations, and oncogenesis (96).

NFkB signaling is a key inducer of AID, mediated by the co-
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activation of TLR and BCR and by the interaction of CD40 receptor

and ligand (41, 97). At least during CSR, p52 and RelA are recruited

to the promoter and upstream enhancer regions of the AICDA gene,

respectively, which encodes AID (98). Co-factors are also involved

in NFkB-mediated AID activation, including HoxC4, SP1, and SP3

(93, 99). Xu et al. have shown that radiation-sensitive 52 (Rad52) is

required to mediate IgD class switching through the

downregulation of ZFP318, and Rad52 phosphorylation is

strongly linked with high levels of IgD autoantibodies in mice

models of lupus as well as SLE patients (100).

Cytokines released by T cells, such as IL-4 and TGF-b, act as
secondary inducing stimuli directing isotype switching (101).

Cytokines are crucial for class switching; for instance, IL-4 causes

IgG1 and IgE synthesis (102, 103), while TGF-b causes IgA class

switching (104, 105). The induction of the T cell-dependent IgA

class switch requires TFG-b and CD40 ligand (106–108), while T

cell-independent IgA class switch requires LPS along with TFG-b or

BAFF and APRIL produced by DCs (108–110). CD40, LPS, and

BAFF activate NFkB, suggesting NFkB could be essential for the

IgA class switch. Mice lacking NIK produce less homeostatic IgA

and exhibit defective SHM (111–113) and reduced synthesis of

antigen-specific antibodies (72, 111, 114). Patients with B cell

lymphopenia, who experience lower frequencies of class-switched

MBCs and hypogammaglobulinemia, are frequently shown to carry

a biallelic mutation of NIK (115). BAFF and APRIL promote the

binding of MyD88 to TACI, which is necessary to activate NFkB
and induce AID to promote CSR (116). Therefore, the picture

emerges that NFkB is essential for CSR by directly controlling the

transcription of immunoglobulin and then in an indirect way by

controlling the transcription of AID.
The NFkB signaling system in
germinal center B cells and
somatic hypermutation

BCR functions as both a signaling molecule and an endocytic

receptor to capture antigens for T cell help. BCR signaling in GC B

cells is short-lived and attenuated by high phosphatase activity (117,

118). A recent study showed that IgA BCR transduces stronger BCR

signaling than IgM BCR in intestine-generated GC B cells, and IgA

BCR signaling is required for GC B cell survival (119). In line with

this, BCR signaling in GC B cells has been shown to prolong

survival and thus primes for selection (120). IgM BCR signaling fails

to induce nuclear translocation of NFkB in GC B cells, although it

induces nuclear translocation of NFkB in mature B cells (121, 122).

CD40 signaling induces nuclear translocation of NFkB in both GC

B cells and mature B cells (15, 121). However, a recent study

revealed that both BCR and CD40 signaling induce the expression

of NFkB target genes (such as nfkbia and nfkbie) in human tonsillar

GC B cells, though the amplitude of NFkB target gene expression is

much higher with CD40 signaling than BCR signaling (64).

A constitutively active IKK2 (IKK2ca mutant) leads to elevated

constitutive NFkB activity and shows enhanced B cell survival.

However, immunization of the IKK2ca mouse results in reduced
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GC B cells, although PC numbers and antibody production remain

unaltered (123). Deletion of Blimp1 (a master regulator of PC

differentiation) in IKK2ca mice enhances the generation of GC B

cells upon immunization but reduces the generation of PCs.

Interestingly, IKK2ca mice develop PC hyperplasia at an older

age, and deletion of Blimp1 in IKK2ca mutant mice leads to the

development of activated B cell-like diffuse large B cell lymphoma

(123). Similarly, adoptive transfer of IkBa knockout fetal liver cells

(which have elevated constitutive NFkB activity) and subsequent

immunization of the recipient mice results in impaired GC

formation (73). Conversely, IkBe knockout enhances the

generation of GC B cells (124). IkBa and IkBe inhibit cRel and

RelA differentially, suggesting cRel and RelA could have distinct

roles in controlling GC B cell formation (17, 125). Further, a recent

study identified cRel- and RelA-specific target genes in BCR-

stimulated B cells and found new cRel-specific target genes

(Hhex/Bcl6b) that are known to play a critical role in GC B

cells (126).

It is well established that cRel and RelA are critical for

physiological B cell responses, and their misregulation leads to B

cell-mediated diseases such as immune deficiencies, B cell

lymphoma, and autoimmune disorders (13, 127). Mice with

conditional deletion of cRel in B cells (CD19-Cre), upon TD

immunization, fail to generate GC B cells 5 days after TD

immunization (62), suggesting cRel is required for GC formation/

initiation (Figure 2). Mice with conditional deletion of cRel in GC B

cell (Cg1-Cre), upon TD immunization, develop GCs (day 7, when

the GC consists of predominantly DZ cells), which then start to

involute and collapse (at 14 days). This study suggests that cRel in

GC B cells is not required for the DZ establishment but is required

for GC maintenance either by facilitating the recirculation of LZ to

DZ or by priming LZ B cells through BCR signaling (Figure 2) (20).

cRel-deficient B cells are known to have defective survival, and Bcl2

transgenic expression blocks BCR-induced cell death in cRel-

deficient B cells (80). Therefore, it was anticipated that cRel-

deficient GC B cells failed to maintain the GC due to impaired

survival of GC B cells. However, cRel-deficient GC B cells do not

show impaired expression of survival regulators (Bcl2, Bcl2L1, and

Mcl1), and importantly, cRel-deficient GC B cells expressing the

Bcl2-transgene fail to rescue GC collapse, suggesting GC collapse is

not due to impaired survival in cRel deficiency. Interestingly, cRel-

deficient GC B cells fail to upregulate the metabolic programming

required for B cell growth, suggesting that cRel-dependent B cell

growth could cause GC collapse (20). Myc is required for B cell

growth (58). cRel-deficient B cells reduce Myc target gene

expression signature (58), and cRel overexpression upregulates it

(24), suggesting that Myc induction is cRel-dependent. It would be

interesting to test whether transgenic expression of Myc in cRel-

deficient GC B cells could rescue GC collapse. These effects are

predominantly cRel-specific as RelA deficiency is associated with

unaltered GC formation (20).

NFkB1 p105 has two functions. The first function is that the N-

terminal domain of p105 generates p50, which forms a dimer with

other NFkB family monomers, and the second function is that the

C-terminal domain of p105 functions as an IkB and inhibits
Frontiers in Immunology 06146
activation of NFkB (128) and Tpl2-MAPK signaling (35).

Canonical pathway activation leads to proteolysis of the C-

terminal domain of p105 and the formation of p50 hetero- or

homodimers (129). To investigate the effect of p105 proteolysis on

the GC and TD-dependent antibody production, Jacque et al.

studied a signal-induced proteolysis-resistant mutant of p105

(NFkB1SSAA, mutation of NFkB1 in the IKK2-target serine to

alanine) which shows a block in p50 formation but retain a

dominant IkB function (130). NFkB1SSAA B cells show reduced

nuclear p50, RelA, and cRel, whereas an unaltered level of RelB and

p52 upon CD40 stimulation, suggesting NFkB1SSAA is deficient in

canonical NFkB activation but likely not in non-canonical NFkB
activation. NFkB1SSAA mice have a normal number of follicular B

cells, although the number of marginal zone B cells is reduced.

NFkB1SSAA follicular B cells show impaired survival and

proliferation upon IgM and CD40 stimulation. The TD

immunization of NFkB1SSAA mice shows reduced antigen-specific

GC B cell formation and antibody production. Interestingly,

increasing p50 levels in NFkB1SSAA mice restores antigen-specific

GC B cell and antibody generation upon TD immunization (130).

The increased survival of NFkB1SSAA B cells by Bcl-XL

overexpression was unable to rescue TD antibody production.

Therefore, the above study suggests that p50 (created by the

proteolysis of p105) has multilayer functions in generating GC B

cells and antibody production, beyond the role of p50-containing

dimers in increasing B cell survival and proliferation.

NFkB2 (p100), similar to NFkB1, has two functions. The N-

terminal domain of p100 generates p52, which predominantly

forms a dimer with RelB (RelB:p52), and the C-terminal domain

of p100 functions as an IkB (known as IkBd) within the IkBsome

and inhibits activation of NFkB (16, 43). Almaden et al. have shown

that anti-IgM and BAFF co-stimulation leads to the degradation of

IkBd and enhances cRel activity with the subsequent enhancement

of B cell proliferation (16). The authors have reduced the expression

of IkBd using NFkB2 heterozygosity, and the NFkB2 heterozygous

B cells prolong stimulus-induced cRel activation and enhance B cell

proliferation and antibody production upon TD immunization. The

increased antibody production in NFkB2 heterozygosity could be

due to increased GC formation. De-Silva et al. generated GC B cell-

specific knockout of NFkB2 and RelB:p52 dimer to test the function

of NFkB2 and RelB in GC B cell formation (19). NFkB2-deficient
GC B cells show a partial defect in GC formation, though NFkB2
heterozygosity has no effect (19). Interestingly, the combined

deficiency of NFkB2 and RelB in GC B cells led to the collapse of

established GCs, whereas RelB deficiency alone shows no defect.

However, precursor GC B cells in the peri-follicular region show

higher RelB expression and nuclear translocation (131). The

combined deficiency of NFkB2 and RelB in GC B cells results in

reduced cell cycle entry and expression of Inducible T Cell

Costimulator Ligand (ICOSL), which is required for the optimal

interactions between B cells and T cells in the GC (Figure 2) (19).

The increased antibody production in NFkB2 heterozygous mice

could be due to the increased generation of antibody-producing

cells from the GC-independent pathway. The above studies indicate

that NFkB2 inhibits sustained cRel activation by forming IkBd,
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thereby reducing B cell proliferation and antibody production,

while NFkB2-derived p52 generates RelB:p52 dimer, promoting

GC maintenance. Thus, NFkB2 seems to have two opposite

functions in humoral immunity. It is possible that the inhibitory

function of NFkB2 (mediated by IkBd) controls the GC-

independent response, while transcription factor NFkB2
(mediated by RelB:p52) controls the GC-dependent response.

GC B cells undergo SHM to improve the affinity of the antibody

to the cognate antigen and become affinity mature. SHM involves

programmed mutations in variable regions, while CSR modifies the

constant region of immunoglobulin genes (132). SHM occurs in DZ

of GC, and nuclear translocation of NFkB has only been observed in

LZ but not in DZ GC B cells (19, 133). However, both SHM and

CSR are controlled by AID, which itself is controlled by NFkB
(discussed above). cRel-deficient GC B cells show reduced affinity

maturation and SHM of GC B cells (20). However, transgenic cRel

expression in GC B cells does not significantly affect affinity

maturation and SHM (24). The reduced SHM in cRel-deficient

GC B cells could be either due to impaired AID expression or GC

collapse. RelA and p52 contribute to AID expression in mature B

cells (98). RelA-deleted GC B cells undergo normal affinity

maturation, suggesting that RelA is not required for affinity

maturation (20). It is possible that RelA controls AID expression

in mature B cells, which is critical for CSR but not in GC B cells.

Alternatively, it is possible that cRel compensates for RelA in RelA

deficient GC B cells and facilitates SHM. Further investigations are

needed to determine the role of NFkB systems in SHM and

affinity maturation.
The NFkB signaling system in
plasmablast/plasma cell
development and survival

When stimulated by an antigen, activated B cells proliferate and

differentiate into more specialized antibody-secreting cells.

Antibody-secreting cells are generated by T cell-dependent and

independent immunization and are heterogeneous in terms of their

origin, secretory function, and lifespan (134). Antibody-secreting

cells are broadly characterized in two types: PBs and PCs. PBs are

cycling and short-lived antibody-producing cells, whereas PCs are

terminally differentiated antibody-producing cells with life spans

that can be short, long, or very long (135, 136). The gene regulatory

network of short-lived PCs gradually changes to long-lived PCs

over time (136–138). PCs reside in secondary lymphoid organs for a

shorter duration and in the bone marrow for decades (139). A

recent study showed that short-lived PCs were progressively

differentiated into long-lived ones after arriving in bone

marrow (140).

The expression of Blimp1, a master regulator for antibody-

secreting cell generation, can distinguish cycling PBs and quiescent

PCs. PBs express a low level of Blimp1, whereas PCs express a high

level of Blimp1 in both mice and human (137, 141, 142). IRF4 is a

key transcription factor for PC generation and enhances Blimp1
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expression by creating a positive feedback loop with Blimp1 (143,

144). Both cRel and RelA induce IRF4 expression (21). RelA is

required for Blimp1 expression and PC generation (Figure 2) (20,

145). RelA and IRF4 are induced during the early phase of B cell

activation. However, activated B cells do not differentiate during

early B cell activation, suggesting Blimp1 expression is inhibited

during the early phase of B cell activation. It was not clear how

Blimp1 expression was inhibited during B cell activation until Roy

et al. discovered that cRel inhibits Blimp1 expression by Bach2 (21).

It is well established that cRel promotes cell cycle progression,

whereas Blimp1 inhibits cell cycle progression (59, 80, 146). Based

on these observations and computational modeling of the molecular

gene regulatory network, Roy et al. hypothesized that cRel inhibits

Blimp1 expression. Indeed, cRel was found to be gradually

downregulated from GC B cell> PB>PC, and the level of cRel

expression was correlated with active cell cycle states (21). The

expression of Blimp1 and cRel are inversely correlated, suggesting

cRel downregulation may be a requirement for Blimp1 expression

and PC generation. To determine whether cRel downregulation is a

requirement to become PCs, cRel was overexpressed, and it was

observed that cRel overexpression inhibits the generation of PCs by

inhibiting Blimp1 expression, and cRel knockout enhances the

generation of PCs and Blimp1 expression (Figure 2) (21). Further,

Roy et al. investigated the mechanism of cRel downregulation in

PCs and found that when Blimp1 was deleted, activated B cells

failed to downregulate cRel. Mutation of Blimp1 binding site in cRel

promoter impaired cRel downregulation, indicating that Blimp1

represses cRel by directly binding to cRel promoter (21). Our study

showed that cRel inhibits PCs generation by repressing Blimp1, a

RelA target gene, suggesting cRel and RelA antagonize B cell

differentiation to PCs. A recent study also showed that functional

antagonism of cRel and RelA in BCR stimulated B cells (126).

Studies have also revealed that human tonsillar PCs and

precursor PCs in the GC express high levels of NFkB2 compared

to other tonsillar lymphocyte populations (19). The deletion of

NFkB2 leads to reduced antigen-specific antibody production in a

mouse model (19, 147). NFkB2-deficient mice show IgA

downregulation and significantly elevated IgM in the small

intestine mucosa. The lamina propria of the small intestine of

NFkB2 deficient mice had fewer CD138+ PCs that produced IgA

(148). Almaden et al. showed that germline NFkB2 heterozygosity

enhanced antibody production and proposed that NFkB2
heterozygosity leads to disruption of IkBd and sustains cRel

activity leading to enhance B cell proliferation and subsequent

antibody production (16). Overall, the above studies suggest

NFkB2 deficiency reduces antibody production, whereas NFkB2
heterozygosity enhances antibody production. The role of NFkB2 in
these under-expression systems is likely a complex combination of

the effects of p100 and p52. It is possible that the inhibitory function

of NFkB2 (mediated by IkBd) controls extrafollicular antibody

production, whereas the transcription factor NFkB2 (mediated by

RelB:p52) controls GC-dependent antibody production. The role of

RelB:p52 in GC response is discussed above in detail.

PCs may not be naturally long-lived; their ability to access and

interact with particular niches is essential to their survival.
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Specialized bone marrow niches support the survival of PCs by

producing APRIL, BAFF, IL-6, CD44, and CXCL12 (149). PCs

upregulate the expression of cell surface receptor BCMA, which

provides survival signals upon binding with APRIL and BAFF

(150). Both BAFF and APRIL activate NFkB signaling (151). T

cell costimulatory receptor type CD28 is also essential for PC

survival (152). The authors showed that CD28 selectively

transmits pro-survival signaling to PCs. Reactive oxygen species

(ROS) generation, mitochondrial mass/respiration, and glucose

absorption were all elevated by CD28 signaling in PCs. In PCs,

CD28 activation elevates the NFkB target gene IRF4, and IRF4

levels are associated with glucose absorption, mitochondrial mass,

ROS, and CD28-mediated survival. Multiple myeloma, a plasma cell

cancer, shows constitutive activation of both canonical and non-

canonical NFkB pathways. The growth and survival of a subset of

multiple myeloma depends on RelA alone, suggesting a RelA-

mediated gene expression program could be critical for PC

survival (13). Another study identified that tumor-promoting

cytokines, such as tumor necrosis factor, activates RelB:p50 in

multiple myeloma cell line. RelB:p50 is necessary and sufficient to

provide pro-survival and anti-apoptotic signals in multiple

myeloma (153). Inhibition of NIK results in apoptosis in multiple

myeloma cells through reduced expression of anti-apoptotic

proteins Bcl2L1, Bcl2A1, and Mcl1 (154). Overall, the NFkB
pathway seems to play an important part in creating favorable

conditions for PC survival, and the requirement of RelA/RelB in PC

survival seems context-dependent.
The NFkB signaling system
in memory B cells

MBCs develop both GC-dependent and -independent

pathways. They constitute an essential part of the adaptive

immune system as they circulate in the bloodstream for an

extended time (155). MBCs remember the antigen and unleash a

stronger secondary immune response upon exposure to the same

antigen later in life (156). MBCs could mutate their

immunoglobulin gene, differentiate into antibody-secreting cells,

and produce an antibody with altered antigen specificity and

affinity. Therefore, MBCs could protect against the same

pathogen as well as antigen-drifted pathogens such as COVID-19

and influenza (157, 158). Despite the outstanding success of some

vaccines, not all generate long-lasting humoral immunity; for

example, influenza and COVID-19 vaccines require periodic

administration (159). The vaccine goal for a highly mutating

pathogen (e.g., influenza, SARS-Cov-2) is to generate higher

numbers of MBCs. Influenza vaccine effectiveness drops even

within a season due to both short-lived antibody production and

higher antigen drift of the influenza virus (159, 160). Influenza

vaccine development aims to produce more MBCs (159).

MBCs are comprised of phenotypically distinct MBC subsets

with specialized functions. MBCs are present in the blood,

lymphoid organs (e.g., tonsils), and barrier tissues, including the

gut, lungs, and skin, in both human and mice (161, 162). MBC
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subsets can be characterized based on the expression of BCR

isotypes, unswitched IgM/IgD MBCs, and switched IgG, IgE, and

IgA MBCs. IgG transduces stronger BCR signaling than IgM in

MBCs; thus, IgG lowers the activation threshold of MBC and

enhances the propensity of PC generation than IgM (163).

Antibody isotype-independent MBC subsets are characterized by

differential expression levels of PDL2 and CD80 in mice. PDL2

+CD80+ MBCs preferentially differentiate into PCs upon

rechallenge, and PDL2-CD80- MBCs preferentially seed in the

GC (156, 164). Therefore, MBCs are reactivated by both BCR

intrinsic and extrinsic pathways. Human MBCs can be identified

based on the expression of CD27, a marker of antigen-experienced

B cells (156, 165, 166). Interestingly, the number of human MBCs

(CD27+ B cells) is higher than naïve B cells in the peripheral blood

of aged individuals (167). Moroney et al. have identified the

proportion of different human MBC subsets; IgD+CD27+ MBCs

are about 10%, IgG+CD27+MBCs are about 6.5%, and IgA+CD27+

MBCs are about 5% of total CD19+ B cells present in the peripheral

blood of healthy human subject. The transcriptional signature of

IgG+CD27+ and IgA+CD27+ MBCs are distinct from naïve B

cells (165).

Lau et al. showed that B cell-intrinsic BAFF/BAFFR signaling is

required for the GC-independent MBC generation, though BAFF/

BAFFR signaling is not required for the GC-dependent MBC

generation (63). BAFF is required for the survival of naïve mature

B cells. The role of BAFF in MBC survival was unclear until Muller-

Winkler et al. used a genetic knockout BAFF/BAFFR mouse model

to study the function of BAFF/BAFFR signaling on the survival of

MBCs (168). The authors found that knockout of BAFF/BAFFR

leads to the loss of MBCs, and BAFF depletion by anti-BAFF

monoclonal antibody treatment reduces lung-resident influenza-

specific MBCs. BAFF predominantly activates the non-canonical

(IKK1) NFkB pathway, though, under certain circumstances, it

activates the canonical (IKK2) pathway. The author shows that

IKK1 is partially required for IgM+ MBCs survival, and IKK2 is

required for the survival of both IgM+ and IgG1+ MBCs. The

combined BAFF and BCR signaling activates cRel in mature B cells

(16). Studies have shown that RelB deficiency in humans results in

impairment of B cell development, with an absence of CD27+

MBCs leading to severe B cell immunodeficiency and shortage in

the secretion of antibodies (169). Overall, BAFF is required for GC-

independent MBC generation, and MBC survival depends on the

synergy of BCR- and BAFF-mediated activation of the NFkB
pathway (170).

A recent study shows that CD40 signaling controls the

generation of phenotypically defined MBCs, namely CD80hi and

CD80lo MBC (65). A low CD40 signal leads to the generation of

CD80lo MBCs, and a relatively high CD40 signal leads to the

generation of CD80hi MBCs. CD40 signaling in GC B cells leads

to the activation of cRel and RelA (121). Knockdown of cRel or

RelA in “induced GC B cells” reduces the generation of CD80hi

MBC (Figure 2). NFkB activation may depend on the dose of CD40.

A high CD40 signal activates NFkB and promotes the generation of

CD80hi MBCs, whereas a low CD40 signal fails to activate NFkB
and promotes the generation of CD80lo MBCs. CD40 activates both
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canonical and non-canonical NFkB pathways in B cells (Figure 1)

(15, 48). It would be interesting to study whether the CD40 dose

differentially activates canonical and non-canonical NFkB pathways

in GC B cells and the impact of these pathways on MBC generation.

The non-canonical NFkB pathway generates RelB:p52 dimer,

although it could generate cRel:p50 and RelA:p50 dimers

(discussed above). In-vitro “induced GC culture system” revealed

that cRel and RelA are required for MBC generation (65). Further

studies are required to identify the role of the NFkB system in the

generation and reactivation of MBC subsets.
Conclusion and future direction

With the advancement of cell type-specific conditional

knockouts, we know that the NFkB system is essential for

generating healthy humoral immunity, and each NFkB monomer

has a unique role in the generation of GC B cells and PCs. The basic

understanding of the function of the NFkB system in the regulation

of GC B cell and PC generation improved our understanding of the

NFkB system function in B cell pathology (B cells lymphoma,

autoimmunity, and immune deficiency). However, several

questions remain unanswered and need to be addressed. (1) The

role of NFkB system in the generation and reactivation of MBCs

and their subsets are not known. (2) Antibody-secreting cells are

highly heterogenous both phenotypically and functionally. The role

of NFkB system in the generation of heterogenous antibody-

secreting cells are not known. (3) It is unclear how GC B cells

respond to receiving multiple cell surface receptor (BCR, CD40,

ICOSL, etc.) signals sequentially and combinatorially.

Understanding how these signals integrate into the NFkB system

and push the cell fate decision towards PC, MBC, cell division, and

cell death will be interesting. Integrating mathematical modeling

with experiments will be essential to understand this process.
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