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Prevalent Pest Management
Strategies for Grain Aphids:
Opportunities and Challenges
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Cereal plants in natural ecological systems are often either sequentially or simultaneously
attacked by different species of aphids, which significantly decreases the quality and
quantity of harvested grain. The severity of the damage is potentially aggravated by
microbes associated with the aphids or the coexistence of other fungal pathogens.
Although chemical control and the use of cultivars with single-gene-based antibiosis
resistance could effectively suppress grain aphid populations, this method has
accelerated the development of insecticide resistance and resulted in pest resurgence.
Therefore, it is important that effective and environmentally friendly pest management
measures to control the damage done by grain aphids to cereals in agricultural
ecosystems be developed and promoted. In recent decades, extensive studies have
typically focused on further understanding the relationship between crops and aphids,
which has greatly contributed to the establishment of sustainable pest management
approaches. This review discusses recent advances and challenges related to the
control of grain aphids in agricultural production. Current knowledge and ongoing
research show that the integration of the large-scale cultivation of aphid-resistant wheat
cultivars with agricultural and/or other management practices will be the most prevalent
and economically important management strategy for wheat aphid control.

Keywords: wheat, ecological regulation, resistant cultivar, induced defenses, RNA interference

INTRODUCTION

Common wheat (Triticum aestivum L.) is the third most important staple food crop worldwide,
and it is widely cultivated in more than 150 countries throughout the world, occupying
approximately 220 million hectares worldwide and feeding approximately 4.5 billion of the
world population (FAOSTAT: Food and Agriculture Organization of the United Nations,
2019). Under the scenario of a rapid increase in the human population and a decrease in
the area of cropland worldwide, the major challenge for current wheat grain production
is reaching a steady annual increase of 2% (Crespo-Herrera et al., 2015). Moreover, wheat
plants in agroecosystems are exposed to different pests that cause substantial damage to
wheat and severely threaten global food safety. Among them, wheat aphids severely threaten
wheat production worldwide; the English grain aphid Sitobion avenae Fabricius, the bird
cherry-oat aphid Rhopalosiphum padi L., the greenbug Schizaphis graminum Rondani, and
the Russian wheat aphid Diuraphis noxia Kurdjumov (Hemiptera: Aphididae), are the most
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destructive and most commonly occurring grain aphid species
(Elbert et al., 2008; Liu et al., 2012; Crespo-Herrera et al., 2015).
These aphids exhibit parthenogenesis and the typical features of
R-strategists, which could significantly increase their populations
in a short time. Their feeding behaviors involve ingestion of wheat
phloem sugar at a high rate and transfer of most phloem sap from
their bodily fluids into honeydew (Douglas, 2006), resulting in
significant wheat grain yield and quality losses in many wheat
production areas around the world (Rabbinge et al., 1981; Liu
et al., 2012). In addition, grain aphids are a common vector of
barley yellow dwarf virus (BYDV), which causes wheat yellow
dwarf disease, one of the most destructive cereal diseases in
Europe, Asia and Africa (Fiebig et al., 2004; Tanguy and Dedryver,
2009; Sadeghi et al., 2010). This viral disease further aggravates
the problem in cereal crops by increasing the fecundity of grain
aphids feeding on virus-infected plants (Fereres et al., 1989; Hu
et al., 2013).

Currently, chemical control is still the most important
measure to combat grain aphids in agricultural production as
it can effectively suppress wheat aphid populations in a short
time. Among these chemical insecticides, the neonicotinoid
and pyrethroid insecticides are the main option for controlling
grain aphids on the global market (Foster et al., 2014; Miao
et al., 2014). The widespread and frequent use of neonicotinoid
and pyrethroid insecticides in farming significantly stimulates
grain aphids to develop insecticide resistance (Foster et al.,
2014). The resistance of grain aphids to pesticides has caused
a gradual resurgence of these pests. Thus, the damage caused
by grain aphids has become a continuous problem in most
wheat-producing regions of the world.

To guarantee food safety worldwide, it is imperative to find
efficient pest management measures to control the damage
from grain aphids. Moreover, over recent decades, genetic and
biochemical information used for developing resistance to
grain aphids has greatly contributed to a comprehensive way
of developing more practical and environmentally friendly
control of grain aphids. Therefore, current knowledge
and ongoing research about strategies and approaches for
sustainable grain aphid management will be synthesized and
discussed in this review.

ECOLOGICAL REGULATION OF GRAIN
APHIDS

The growing desire for sustainable agriculture has prompted the
need to develop more sustainable pest management approaches,
such as ecological regulation. Ecological regulation generally
refers to the use of agronomic-based management for mediating
tripartite plant-pest-biological control agent interactions in
agricultural ecosystems, which provides the most economic and
environmentally friendly pest management measure (Zhou et al.,
2012). Predators or parasitoids therefore play a dominant role
in the ecological regulation of pest population growth. There
are several biological control agents of grain aphids, including
lady beetles (Adalia bipunctata L. and Coccinella septempunctata
L.), green lacewings (Chrysoperla carnea Stephens), parasitic

wasps (Aphelinus abdominalis Dalman and Aphidius avenae
Haliday), marmalade hoverflies (Episyrphus balteatus De Geer),
and trombidiid mites [Allothrombium ovatum Zhang & Xin
(Acari: Trombidiidae)] (Ma et al., 2007; Vandenborre et al., 2011).
However, in many cases, the number of predators or parasitoids
present in agricultural ecosystems may be insufficient to provide
economic management of pests on crops (Ma et al., 2007).

It was demonstrated that intercropping could change the
environmental conditions, in a way that increases natural enemy
activity, regulates pest population dynamics and minimizes
crop damage (Ma et al., 2007; Vandenborre et al., 2011).
Intercropping is a traditional agricultural technique of cultivating
two or more crop species within the same field. In comparison
with monocropping, intercropping could greatly contribute to
increased crop production by effectively using environmental
resources and suppressing pest outbreaks (Ma et al., 2007).
Intercropping of wheat and alfalfa (Medicago sativa L.)
provides the most practical and economical approach for
controlling wheat aphids. For instance, wheat–alfalfa strip
cropping significantly increased both the abundance ofA. ovatum
larvae and the parasitization rate of S. avenae compared to
wheat monoculture (Ma et al., 2007). This could be explained
by the fact that strip cropping provided a wetter, shadier soil
surface microclimate that caused adult female mites to lay more
egg pods and that the non-furrowed areas of the intercropped
fields provided a more suitable habitat for mite overwintering
(Brust et al., 1986; Zhang and Li, 1996; Ma et al., 2007). The
intercropping of wheat and oilseed rape (Brassica napus L.)
could improve the effective biological control of wheat aphids by
increasing the species richness of natural enemies of S. avenae,
including E. balteatus and A. avenae, which may control wheat
aphid infestation during the early wheat filling stage (Wang
et al., 2010). Wheat intercropping with pea (Pisum sativum L.) or
mung bean (Vigna radiata L.) could also support these findings
(Xie et al., 2012). This control is likely because the odor of
non-hosts could attract a greater number of lady beetles and
parasitic wasps to regulate the population dynamics of S. avenae
colonization on wheat plants than could wheat monoculture.
Moreover, intercropping could interfere with the host preference
and locating abilities of aphids because the odor released from
the non-host overlaps with the odor of the host. Experimental
evidence in wheat intercropping with resistant wheat cultivars
confirmed that intercropping could be an economic agricultural
practice to reduce aphid populations (Zhou et al., 2009).
Therefore, intercropping of wheat and other crops or vegetables
could be an alternative measure to increase the populations of
predators or parasitoids to control the population growth of grain
aphids; however, it is challenged by the rapid increase in aphid
populations, especially during the filling stage of wheat plants.

In addition, the practice on management of the aphids species
of vegetable and crops relied heavily on entomopathogenic fungi,
including Beauveria bassiana, Metarhizium anisopliae, and so
on (Kim and Kim, 2008; Bayissa et al., 2017). This could be
one of the cost-effective aphid management measures when
aphid populations are low, similarly, it is challenged by the
rapid increase in aphid populations as well. Moreover, increasing
concern regarding the beneficial effects of soil microorganisms
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on plant growth and resistance to biotic stresses has led to
the widespread use of beneficial microorganisms as biocontrol
agents in agricultural practice. The genus Trichoderma, such as
Trichoderma harzianum or T. atroviride strain P1, are biocontrol
agents for the potato aphid (Macrosiphum euphorbiae Thomas).
Tomato seeds soaked in a fresh spore suspension of either
T. harzianum or T. atroviride strain P1 resulted in adverse effects
on the development period and longevity of aphids by triggering
plant resistance responses and/or the release of volatile organic
compounds to attract the aphid parasitoid braconid Aphidius
ervi Haliday (Coppola et al., 2017, 2019). Although few studies
have reported that the genus Trichoderma of soil microorganisms
could mediate the population of grain aphids, the above evidence
provides important clues that the soaking cereal seeds in a spore
suspension of Trichoderma could enhance the resistance of cereal
seedlings to grain aphids.

HIGH-VOLTAGE ELECTROSTATIC FIELD
(HVEF)-MEDIATED CONTROL
MEASURES OF GRAIN APHIDS

Attempts to utilize artificial HVEFs for economical pest control
have attracted increasing attention. Initially, direct exposure of
seeds to HVEFs was utilized to improve the germination rate, and
this practice continues to be used today. In general, crop seeds
lose viability during storage, and the longer the storage period
prior to cultivation, the greater the amount of reactive oxygen
species (ROS) that accumulate (Wang et al., 2009). Directly
exposing seeds to an HVEF could activate the antioxidative
defense system by increasing antioxidant enzyme activities to
increase the viability of seeds (Wang et al., 2009). Moreover, in
a recent study, Luo K. et al. (2016) reported that the use of wheat
seeds directly exposed to an HVEF could induce biological and
physiological changes in the plants, which adversely affected the
population growth of the grain aphid S. avenae.

In recent decades, large-scale electrical utilization, including
long-distance electric power transmission, medical equipment,
communication appliances, and so on, has seriously increased
the intensity of electrostatic fields that are pervasively present
in the environment. Herbivore insects are not only particularly
sensitive to environmental alterations but also typically exhibit
strong adaptation traits, such as short generation times, high
reproductive rates, genetic plasticity, and small body sizes.
Therefore, extensive studies have focused on characterizing the
adverse effects and adaptive strategies of herbivorous insects to
novel electric environments. With direct exposure of herbivorous
insects to extreme static electric fields, multitudinous adverse
effects can be induced, including chromosome aberrations,
paralysis, increased mortality, abnormal propolization, reduced
longevity, and possible impairment of colony growth (He et al.,
2016). For instance, in our previous studies, when S. avenae
was directly exposed to an HVEF with an intensity of 4 kV/cm
for 20 min, the aphids experienced a significant increase in
development time and a reduction in total longevity (He et al.,
2016). Those studies have suggested that direct exposure of
herbivorous insects to an HVEF is a possible alternative measure

to prevent damage caused by these insects. However, the intensity
of the current electrostatic environment could not pose serious
adverse effects on insects, and establishing extreme static electric
fields in agroecosystems would greatly increase production costs.
In comparison, direct exposure of seeds to HVEFs is a more
reasonable method in agricultural production. To better evaluate
the possibility of HVEF exposure as a pest control measure, the
direct exposure of seeds and newborn nymphs of S. avenae to a
4 kV/cm HVEF for 20 min significantly increased the superoxide
dismutase activity but reduced the peroxidase and catalase
activities, which indicates that the production of H2O2 exceeds
the amount that antioxidant enzymes can gradually digest (Luo
et al., 2019a). The extensive accumulation of H2O2 increases
the oxidative stress and even cellular cytotoxicity and reduces
the performance of the aphids. Therefore, direct exposure of
seeds to HVEFs has the potential to play an important role in
the development of alternative economic and environmentally
friendly integrated pest management strategies for grain aphids.

PLANT LECTINS AS DEFENSE
PROTEINS AGAINST GRAIN APHIDS

Building aphid resistance into wheat plants is considered to be
an ideal measure for combating aphids in agricultural production
because it is less detrimental to the environment. Compared with
cumbersome and time-consuming traditional breeding, adopting
recombinant DNA technology to insert resistance into crops is
a reliable and effective method to accelerate the breeding of
cultivars with substantial insect resistance (Smith and Chuang,
2014). It was demonstrated that plant lectins have the potential
to play an important role in the development of integrated
pest management strategies (Michiels et al., 2010). Plant lectins
are a specific group of proteins with at least one non-catalytic
domain that can competitively bind specific carbohydrates, either
simple monosaccharides or more complex glycans, resulting in
inhibition of the assimilation of sugars in the gut of herbivores
(Peumans and Damme, 1995). In addition, plant lectins are
highly resistant to proteolysis and can bind to insect proteins,
mainly in the gut, and as a consequence, they can be retained
within the insect body (Michiels et al., 2010). The above findings
suggest that plant lectins can cause adverse effects on the
development or fecundity of insects. Thus, genetically modified
wheat plants expressing plant lectins have become an important
focus in wheat molecular breeding programs.

Snowdrop lectin (Galanthus nivalis agglutinin; GNA) is the
first plant lectin gene successfully engineered into elite wheat
cultivars to combat grain aphids in agricultural production
(reviews by Michiels et al., 2010). Over the past few decades,
considerable progress has been achieved in the genetic expression
of GNA in different wheat cultivars through callus bombardment,
which gives the plants a higher level of resistance against cereal
aphids (Stoger et al., 1999; Hogervorst et al., 2009; reviews by
Michiels et al., 2010; Vandenborre et al., 2011). For instance,
introducing the GNA gene into the wheat cultivar Bobwhite was
shown to exert severe entomotoxic effects on the development
and survival of the grain aphid S. avenae (Stoger et al., 1999).
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In addition, the genetic modification of rice, maize, sugarcane,
potato or tobacco plants to express GNA has successfully
conferred resistance against different species of aphids (Wang
et al., 2005; reviews by Vandenborre et al., 2011).

Although feeding lectins to insects via transgenic plants
seems to be a relatively natural system, the potential risk of
exposing larvae of different aphid predators, such as lady beetles
(A. bipunctata and C. septempunctata) and green lacewings
(C. carnea), to GNA has been explored for a long time
(Hogervorst et al., 2006). The transfer of entomotoxic effects
of GNA along the food chain has potentially increased the
intensity of exposure of predators or parasitoids to GNA. The
novel environment induced by GNA exposure significantly
reduced the fecundity, egg viability and longevity of those
aphid predators/herbivores when either feeding on an artificial
diet containing GNA or preying on aphids reared on GNA-
producing transgenic plants (reviews by Vandenborre et al.,
2011). Moreover, feeding on grains or vegetables carrying
entomotoxic lectins could trigger local and systemic allergic
reactions in many species of mammals (reviews by Vandenborre
et al., 2011). Taken together, these results suggest that prior
to the development of genetically modified crop varieties
expressing plant lectins, it will be necessary to fully understand
the mechanism of toxicity of GNA and assess the potential
risks of adverse GNA effects on predators and dietary uptake
by animals or humans. Unfortunately, relatively few studies
have investigated this issue, and the agricultural use of wheat
germplasms genetically modified with plant lectins remains
relatively rare.

BREEDING PEST-RESISTANT WHEAT
CULTIVARS FOR GRAIN APHID
CONTROL

In natural agroecosystems, some wheat germplasms have
coevolved a range of constitutive defenses to control the
damage caused by aphid attackers. The identification of
suitable genotypes with constitutive resistance to pests and the
introduction of these genotypes into cultivars has resulted in
reduced pesticide usage and lower production costs worldwide
by controlling damage from pests (Christou et al., 2006). In the
last few decades, vast efforts have focused on identifying aphid-
resistant genotypes by adopting the terminology of Painter as
well as subsequent revisions, and many accessions of common
wheat and wheat relatives have been identified as resistant to
grain aphids, providing abundant germplasm resources with
durable and active resistance to breed wheat cultivars with
substantial aphid resistance (Wang et al., 2015). Prior to
developing new cultivars, screening suitable aphid-resistant traits
from aphid-resistant germplasms would facilitate plant breeders
in selecting cultivars with qualified aphid-resistant traits or
preferred categories of aphid resistance. These resistance traits
include morphological and structural features as well as the
synthesis of chemical compounds.

Three major commonly accepted categories exist for the insect
resistance traits of plants: tolerance, antibiosis, and antixenosis

(War et al., 2012). Among the types of resistance, tolerance
is often a complex and polygenic trait that enables plants to
compensate or withstand infestation from aphid damage and
yield significantly more biomass than a susceptible plant under
similar conditions (Figure 1). The evaluation of aphid tolerance
always adopts the artificial aphid infestation method under field
conditions (Hu et al., 2016; Luo et al., 2019b). During the
pregenomics era, tolerance has been the preferred type of trait
for conventional wheat breeding to obtain high-quality, high-
yield, highly resistant cultivars without detrimental effects on
human health (Inayatullah et al., 1990). In past decades, the
molecular mechanisms of tolerance to many aphid species have
been exploited in cultivars of alfalfa, barley, maize, rice, rye,
sorghum and wheat (Smith and Chuang, 2014). For instance,
wheat plants tolerant to the Russian wheat aphid, D. noxia,
often exhibit increased photosynthetic rates, growth rates, stored
root carbon and/or abilities to shunt stored carbon from roots
to shoots (Kerchev et al., 2012; Smith and Chuang, 2014). The
gene expression data in D. noxia-tolerant plants suggest that
photosystem and chlorophyll genes involved in photosynthesis
are highly expressed in the foliage of these plants. In a recent
study, the results showed that winter wheat plants with higher
tolerance to grain aphid infestation upregulated the relative
expression of genes associated with photosystem I assembly
protein and carbohydrate transfer and conversion several-fold
(Luo et al., 2014, 2019b). During the grain-filling stage, large
amounts of photoassimilates are transported into the endosperm,
contributing to the grain yield, which compensates for the yield
loss from the infestation of grain aphids.

Antibiosis is a type of resistance in which the plant produces
allelochemicals or toxins, including plant phenolics, flavonoids,
tannins, DIMBOA, and proteinase inhibitors, which significantly
reduce herbivore growth and development (Figure 1).
Antixenosis is a type of resistance in which certain characteristics
of a plant, such as leaf surface wax, trichomes and cell walls,
make it less attractive to herbivores (Figure 1; War et al., 2012).
In many cases, the resistance of wheat germplasm to aphid
feeding is classified into antibiosis resistance and/or antixenosis
resistance; however, these effects are always difficult to separate
in a single wheat germplasm because the traits associated with
antibiosis and antixenosis resistance exhibit cooccurrence or
coinheritance in the germplasm (Smith and Chuang, 2014).

To accelerate the process of breeding wheat cultivars with
antibiosis resistance and/or antixenosis resistance to grain
aphids, molecular marker technologies, such as simple sequence
repeats (SSR), have been used in marker-assisted selection (MAS)
to screen for aphid-resistant genes in wheat aphid-resistant lines
(Bertin et al., 2004; Liu et al., 2012). When considering the
closely linked loci of resistance genes, near-isogenic populations
developed from crosses between aphid-resistant and aphid-
susceptible parents have been successfully used to map and
link the loci of aphid resistance genes to various types of
molecular markers and develop chromosome maps of resistance
genes (Smith and Chuang, 2014). In recent decades, over 10
D. noxia-resistant genes and 17 S. graminum-resistant genes were
identified on wheat chromosomes by different molecular markers
(Liu et al., 2001, 2005; Smith et al., 2004; Ricciardi et al., 2010).
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FIGURE 1 | Proposed features and compounds associated with constitutive defense in response to grain aphids in resistant wheat lines. Most of the antibiosis and
antixenosis traits exhibited in resistant lines are classified as qualitative traits (controlled by one or a few genes), while the tolerance traits are considered quantitative
traits (controlled by numerous genes).

Most aphid resistance characterized in wheat is monogenic and
inherited as a dominant trait. For example, the single dominant
genes Dn1, Dn2, Dn4, Dn5, Dn6, Dn7, Dn8, Dn9, Dn2412, and
Dnx were reported to confer resistance to Russian wheat aphids
(Liu et al., 2001, 2005; Smith et al., 2004; Ricciardi et al., 2010);
the candidate genes Gb2, Gb3, Gb4, Gb5, Gb6, Gb7/Gbx1, Gb8,
Gba, Gbb, Gbc, Gbd, Gbx, Gbx1, Gby, Gbz, and GbSkl confer
resistance to S. graminum (Boyko et al., 2004; Zhu et al., 2005;
Aradottir and Crespo-Herrera, 2021). The recessive gene dn3
from Aegilops tauschii (Coss.) has been linked to resistance to
D. noxia, and the recessive gene gb1 was the first identified
resistance gene to greenbug and originated from T. durum
(Miller et al., 2001; Dogimont et al., 2010). Recently, one of the
S. avenae resistance genes RA-1 was closely linked to the SSR
molecular markers Xwmc179, Xwmc553 and Xwmc201 in the
T. durum wheat line C273 (Liu et al., 2012). Our recent study
revealed that the SSR molecular markers Xgwm350 and Xbarc70
are closely linked to an S. avenae resistance gene (Sa2) in the
winter wheat genotype XN98-10-35 (Wang et al., 2015). Both
SSR markers are monogenic and inherited as a dominant trait.
Previous studies revealed that most of the characterized D. noxia,
S. graminum or S. avenae resistance genes present in resistant
cultivars have been located on wheat chromosome 7D based on
evidence from molecular markers (Wang et al., 2015; Aradottir
and Crespo-Herrera, 2021). It was reported that Ae. tauschii is the
diploid progenitor of the D genome of common wheat and has
carried a multitude of resistance genes, including those against
wheat stripe rust, powdery mildew, wheat aphids, and so on

(Zhu et al., 2005). In addition, these SSR markers will be valuable
in MAS for accelerating the process of breeding wheat cultivars
with resistance to grain aphids. Moreover, the candidate genes
Rdy2, Rdy3, Rdy4, Bdv1, Bdv2, Bdv3, and Bdv4 for resistance
to BYDV have been identified by different molecular markers
in barley and wheat cultivars or genotypes (Jarošová et al.,
2016; Aradottir and Crespo-Herrera, 2021). However, few studies
reported the identification or cloning of the dominant genes
associated with R. padi resistance in wheat by adopting molecular
markers, probably because of the polyphagy and wide host
adaptation of R. padi (Crespo-Herrera et al., 2014). In addition,
most of characterized R. padi resistance genes are controlled
by quantitative trait loci (QTLs). For instance, Crespo-Herrera
et al. (2014) reported three QTLs in the first report on the
genetic mapping of R. padi resistance in wheat; QRp.slu.4BL
exhibited antibiosis resistance to R. padi, while QRp.slu.5AL and
QRp.slu.5BL exhibited tolerance to R. padi. In the same study,
QTL QGb.slu-2DL located on chromosome 2DL was shown
to be associated with S. graminum resistance (Crespo-Herrera
et al., 2014). More recently, continuing advances in genome-
wide association (GWAS) studies have accelerated the pace of the
identification of significant markers or QTLs in aphid resistance
genes (Joukhadar et al., 2013).

Taken together, the above findings suggest that true resistance
genes to grain aphids were naturally found in wheat gene pools,
either by introduction, closely related species or coevolution.
Notable examples of aphid resistance genes bred into wheat
cultivars resistant to D. noxia, for instance Dn4 derived from
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wheat line PI 372129, was transferred into several cultivars by
adopting cross and backcross techniques, resulting in the release
of new wheat cultivars, including “Halt,” “Prowers 99,” “Prairie
Red,” and “Yumar” (Smith and Chuang, 2014). Unexpectedly, the
transfer of other candidate genes associated with resistance to
grain aphids into elite bread wheat lines to construct high-quality
wheat germplasm has been relatively unsuccessful.

Similar to chemical control, the practice of breeding for high
levels of antibiosis resistance often promotes the development of
aphid virulence (reviews by Dogimont et al., 2010; Smith and
Chuang, 2014). Additionally, many of the characterized aphid-
resistant cultivars are resistant to one species of wheat aphid
but are susceptible to other species of aphids (Zhu et al., 2005;
reviews by Aradottir and Crespo-Herrera, 2021). For instance,
the T. monococcum line REB81044 (TM44) is highly resistant to
S. avenae but susceptible to R. padi and Metopolophium dirhodum
Walker (Tanguy and Dedryver, 2009). These results strongly
suggest the need to identify new and diverse aphid resistance
genes and genes that confer tolerance or more moderate levels
of antibiosis resistance in aphid management, which could be
an important hallmark of building plant resistance to aphids,
especially in combination with ecological control.

HERBIVORE-MEDIATED INDUCED
DEFENSES IN PLANTS IN RESPONSE TO
APHID FEEDING

Cereal plants in agroecosystems are often either sequentially
or simultaneously attacked by different species of grain aphids
(Ni and Quisenberry, 2006). During feeding and probing, their
digestive saliva and honeydew always present a multitude of
unknown functions of elicitors derived from the aphid itself
or their primary endosymbionts, including EF-Tu, chaperone
proteins GroEL, and flagellin, which trigger chemical and
morphological responses in attacked plants (War et al., 2012;
Sabri et al., 2013; Chaudhary et al., 2014; Jaouannet et al., 2014).
Among those plant defense responses, the signaling molecules
jasmonic acid (JA) and salicylic acid (SA) play a critical role
in mediating the signaling networks involved in the induced
defense responses to grain aphids and subsequent conspecific
or heterospecific colonizers (Smith and Boyko, 2007). Based on
most of the present literature available, JA and its derivatives
MeJA are the primary phytohormones in plant defense against
chewing insects, while the SA signaling pathway is always
involved in defense against piercing-sucking insects (Smith
and Boyko, 2007; War et al., 2012). Experimental evidence in
sorghum and wheat has suggested that aphid infestation induces
rapid and transient emission of SA in host plants (Smith and
Boyko, 2007). In seedlings, SA can be perceived and bound by
a multitude of SA-binding proteins, including catalase (CAT)
and ascorbate peroxidase (APX), resulting in the accumulation
of H2O2 in the apoplastic and symplastic regions of the host
(Durner and Klessig, 1995; Tian et al., 2012; Kumar, 2014).
H2O2 could trigger systemic acquired resistance, which often
coincides with a programmed cell death (PCD)-type response
and a hypersensitive response (HR) that isolates subsequent

aphid colonizers and deprives them of nutrients required for
subsequent infestation (Johnson et al., 2003; Mou et al., 2003;
Tian et al., 2012; Wu et al., 2012). For instance, our latest study
suggested that infestation with R. padi significantly increased
the expression level of the PR-1 gene associated with SA-
dependent responses in the resistant winter wheat line 35-E4 (Luo
et al., 2020). Meanwhile, increasing experimental evidence has
revealed that aphid infestation triggers the expression of genes
related to JA and SA synthesis (Figure 2; Zhao et al., 2009;
Cao et al., 2014; Luo et al., 2020). For instance, the relative
expression of JA synthesis genes, including the LOX and AOS
genes, significantly increased after R. padi preinfestation in wheat
seedlings of lines 35-E4 and susceptible lines 35-A20 (Luo et al.,
2020). The accumulation of JA in wheat seedlings may then
be conjugated with the amino acid isoleucine (Ile) to form JA-
Ile conjugation with jasmonate-resistant1 (JAR1) (Staswick and
Tiryaki, 2004). JA-Ile can be bound by coronatine insensitive
1 (COI1), which promotes the degradation of jasmonate-ZIM
domain (JAZ) repressors through the 26S proteasome-mediated
pathway (Luo J. et al., 2016). After that, the transcription
factor MYC2 in JA signaling was released and positively
regulated the transcription of its downstream MYC2-targeted
transcription factors to activate JA-induced defense responses,
including the expression of the PDF1.2 (plant defensin 1.2) or
VSP2 (vegetative storage protein 2) genes (Luo J. et al., 2016;
Du et al., 2017). However, that study did not determine the
expression profiles of marker genes associated with JA-induced
defense responses.

Additionally, in many herbivore-plant systems, the
interactions between the signaling pathways for SA and JA have
been shown to be antagonistic (Shigenaga and Argueso, 2016; Xu
et al., 2019; Tan et al., 2021). Over the past decades, a multitude
of regulators associated with the antagonistic interaction between
SA and JA signaling pathways in plant immune responses have
been identified (Pandey et al., 2016; Shigenaga and Argueso,
2016). For instance, MPK4 (mitogen-activated protein kinase
4) positively regulates JA-induced genes such as PDF1.2 and
promotes JA responses while simultaneously suppressing SA
biosynthesis and the SA signaling pathway (Petersen et al., 2000;
Gao et al., 2008). The central positive regulator of SA signaling,
NPR1, can suppress the expression of the genes PDF1.2 and
VSP2, markers of the JA signaling pathway (Spoel et al., 2003;
Pandey et al., 2016). Additionally, the transcription factor
TGA2 acts as an activator of the SA-signaling pathway and as
a repressor of JA-responsive genes, probably because TGA2 can
bind to the promoter region of ORA59 (octadecanoid-responsive
Arabidopsis apetala 2/ethylene response factor domain protein
59), which is the master regulator of the JA/ET-induced defense
response (Ndamukong et al., 2010; Zander et al., 2014; Pandey
et al., 2016). Moreover, herbivore-induced responses in host
plants can potentially have a species-specific effect because
cultivars generally confer constitutive defense to different
species of herbivores at varying levels. For instance, R. padi
and/or S. avenae induced different expression profiles of host
JA- and SA-dependent responses in resistant and susceptible
winter wheat lines (Luo et al., 2020). Therefore, advances in our
understanding of hormone-mediated signaling cascades have
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FIGURE 2 | Schematic of the Sitobion avenae-wheat interaction during infestation. The colonization of S. avenae induces the accumulation of phytohormone
molecules, including salicylic acid (SA) and jasmonic acid (JA). SA-mediated defense signaling plays a dominant role in plant defense against subsequent attackers.
To diminish SA-dependent responses, JA may promote the synthesis of serotonin. In addition, S. avenae could release effectors, and the plant virus carried by the
aphids could diminish the host immune response as well. The solid arrow lines represent the pathways supported by experimental evidence from the literature, while
the dotted arrow lines represent the pathways predicted from the literature. The red blunt-ends indicate a negative interaction (inhibition) on the SA-mediated plant
defense. Red question marks represent the pathways predicted from the literature. H2O2, hydrogen peroxide; NPR1, non-expressor of pathogenicity-related genes
1; TGA2, transcription factor TGACG binding II; PRs, pathogenicity-related genes; TAM, tryptamine; and VSP2, vegetative storage protein 2.

FIGURE 3 | Model summarizing sustainable pest management approaches for cereal aphids in agricultural production. Pyramiding different aphid resistance genes
into elite wheat lines to develop aphid-resistant wheat plants and integrating breeding with HVEF exposure of the seeds and intercropping with other crops will be
the most promising and effective management strategy for wheat aphid control. The direct transfer of the dsRNA of aphid genes into grain aphids could be a
promising aphid control approach.

laid the foundation for understanding the role of these hormones
in wheat resistance to aphids.

Moreover, herbivorous insects can elicit low-molecular-
weight salivary proteins, known as effector proteins, and release
them into the tissue of the attacked plants during feeding
(Figure 2). Although dozens of salivary proteins have been
identified in different species of grain aphids, only a small number

of candidate effectors have been characterized (Elzinga and
Jander, 2013; Jaouannet et al., 2014). The experimental evidence
of the identified effectors in other piercing-sucking pests has
shown their function in suppressing plant defenses (Elzinga et al.,
2014; Xu et al., 2019). For instance, knocking down the salivary
effector Bt56 in Bemisia tabaci significantly reduced the transcript
level of marker genes involved in SA signaling in Nicotiana
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tabacum while upregulating the transcription of the JA response
gene PDF1.2 (Xu et al., 2019). Moreover, the predicted functions
of effectors including Mp55 and Mp10 in Myzus persicae (Sulzer)
were found to suppress plant defenses (Elzinga and Jander, 2013;
reviews by Jaouannet et al., 2014). Thus, additional effort is
required to study the significance and molecular mechanism of
salivary proteins in plant-wheat interactions.

In addition, advances in understanding the interactions
between wheat and Fusarium graminearum Schwabe (anamorph,
Hypocreales: Nectriaceae), an economically important cereal
pathogen, provide important clues for understanding the role
of JA in the suppression of SA-mediated plant defense during
wheat-aphid interactions (Drakulic et al., 2015; De Zutter
et al., 2017; reviews by Luo et al., 2021). For instance,
F. graminearum inoculation leads to an upregulation of candidate
genes associated with auxin and serotonin biosynthesis in wheat
tissue (Qi et al., 2016; Brauer et al., 2019; Su et al., 2021).
Based on the available literature, the accumulation of these
two compounds probably occurs because of changes in the JA
levels in the environment (Qi et al., 2016; Lu et al., 2018; Yang
et al., 2018; Su et al., 2021). The potential role of auxin in
wheat–F. graminearum interactions revealed that auxin and JA
acted synergistically to attenuate the SA-dependent responses.
Moreover, the experimental evidence attained from a rice-
planthopper system revealed that serotonin could enhance the
fitness of planthoppers by establishing a competition between the
same precursor chorismite and SA (Lu et al., 2018). However,
the underlying molecular mechanism of auxin and serotonin in
the suppression of SA signaling remains unknown (Luo et al.,
2021). Therefore, the significance of JA in the biosynthesis of
serotonin and/or auxin after wheat aphid infestation and its
role in enhancing the performance of wheat aphids remain to
be investigated.

In response to plant immune cascades, aphids and their
transmitted viruses attempt to suppress host plant defenses. For
instance, wheat plants infected either by S. graminum or S. avenae
carrying BYDV-GAV significantly reduced the expression level of
genes associated with JA- and SA-dependent responses in their
hosts, including LOX, AOS, NPR1, and PAL genes (Kang et al.,
2021). In addition, the viral suppressor of RNAi (VSR) 2b protein
of cucumber mosaic virus (CMV), carried by the green peach
aphid Myzus persicae Sulzer (Hemiptera: Aphididae), contributes
to ROS production and directly interacts with the JAZ protein,
thereby suppressing JA-responsive genes such as transcription
factors MYC2, MYC3, and MYC4 in Arabidopsis (Wu et al., 2017;
Guo et al., 2019). However, more experimental evidence will be
required to confirm the possibility and mechanism by which
wheat aphids and their transmitted viruses suppress SA-mediated
defense responses in host plants.

Altogether, those regulators and growth-promoting
phytohormones triggered by different attackers could fine-
tune the plant immune responses, which further aggravates the
problem caused by grain aphids in agroecosystems (Figure 2).
Therefore, wheat cultivars that incorporate qualified constitutive
and induced defenses are preferable for plant breeders to develop
novel cultivars with more stable and durable resistance.

RNA INTERFERENCE-BASED APHID
CONTROL

Since the discovery that double-stranded RNA (dsRNA) can
suppress the transcript abundance of target genes, plant- and
insect-mediated RNA interference (RNAi) has been developed
as a novel potential approach for pest control (Pitino et al.,
2011; Xu et al., 2014; Chung et al., 2018; Yang et al., 2019).
Over the past decades, plant-mediated RNAi has knocked down
the transcript abundance of critical pest genes in numerous
herbivore-plant systems, including cotton bollworm-cotton,
corn rootworm-maize, planthopper-rice, aphid-tobacco, and
aphid-wheat systems, resulting in the disruption of herbivore
performance on plants (Pitino et al., 2011; Xu et al., 2014; Yang
et al., 2019). For instance, transgenic wheat plants expressing
dsRNA of the carboxylesterase E4 (CbE E4) gene fragment of
S. avenae showed decreased transcript levels of the CbE E4 gene
and impaired herbivore tolerance to phoxim (O,O-diethyl-O-
α-oximinophenyl cyanophosphorothioate) insecticides (Xu et al.,
2014). Furthermore, rapid advances in wheat genome sequencing
and analysis will facilitate the expression of the dsRNA of many
target genes involved in the growth, survival or development of
grain aphids in transgenic wheat plants.

In addition, dsRNA could be directly delivered via artificial
diets or injected into the hemolymph of insects (Pitino et al.,
2011). The preference of those two methods depends largely on
the size of the herbivores and the skill of the operator. Previous
work confirmed that injection is the most widely adopted method
to deliver dsRNA molecules into herbivores such as mosquitoes,
beetles, honeybees and grasshoppers, and this method achieves
more efficient target gene suppression than the dietary method
(Xu et al., 2014). In comparison, delivery via an artificial diet is a
non-disruptive technique, preserving the integrity of the treated
herbivores, but the precise amount of dsRNA taken up cannot
be monitored, resulting in low-efficiency suppression (Sapountzis
et al., 2014). Although experimental evidence demonstrated
successful direct injection of dsRNA of Ap-crt and Ap-cath-L
genes into the salivary glands of the pea aphid A. pisum for
silencing the salivary gland proteins, in most cases, the delivery
of dsRNA into aphids can be achieved following the oral delivery
of RNAi in a filter-sterilized liquid diet, similar to plant phloem
sap, supplemented with dsRNA. Attempts to transfer dsRNA
into pea aphids have successfully knocked down the expression
of aphid genes and suppressed their performance, probably
because the pea aphid genome sequence is available. Although
the sequences of most grain aphid genomes are not available, the
accessibility of the wheat and pea aphid genome sequences would
provide valuable evidence for constructing dsRNA of crucial
genes of grain aphids.

Endosymbionts are harbored by almost all aphids. Buchnera
aphidicola is the obligate species, that can synthesize missing
essential amino acids and B vitamins and improve the nutritional
composition of the restricted diet acquired from plant phloem
sap (Douglas, 2014). When bacterial symbionts are eliminated
from their insect host by antibiotic treatment, the insects grow
poorly and produce few or no offspring (Douglas, 2014). It is,
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therefore, very probable that targeting symbiosis-related insect
genes by RNAi in the symbiotic aphid-Buchnera system may
reduce aphid damage. The amiD and ldcA1 genes present in
A. pisum, associated with protecting Buchnera from host attack,
were used as templates, and dsRNA fragments were synthesized
for use in liquid artificial diets (Chung et al., 2018). The dsRNA
fragments, once distributed within aphids, led to a reduction
in the amount of the bacterial symbiont Buchnera in the pea
aphid, with poor aphid performance (Chung et al., 2018). Taken
together, feeding of dsRNA molecules targeting critical aphid
genes, either by artificial spraying or specifically expressing
them in transgenic plants, may be a promising aphid control
approach in the future.

CONCLUSION AND FUTURE
PERSPECTIVES

In the present review, we summarize the present literature on
diverse measures known to suppress grain aphid populations.
Based on the available data, we propose that the use of aphid-
resistant crop plants integrated with agricultural and/or other
management practices will be the most promising and effective
management strategy for wheat aphid control (Figure 3).
In addition, for developing aphid-resistant wheat cultivars,
identifying the diverse genes that confer tolerance or more
moderate levels of antibiosis resistance is essential for future
efforts to improve aphid plant resistance. Moreover, RNAi-
mediated aphid control may be an alternative approach for
restricting the performance of aphids.

The newly released sequences of common wheat genomes
have begun to provide the first real insights into the function
and location of grain aphid resistance genes, which will be
integrated into elite bread wheat lines to construct high-quality
wheat cultivars (Appels et al., 2018). Moreover, the expense
and time associated with high-throughput sequencing have
been significantly reduced. This will accelerate the process of
identifying and utilizing candidate genes with clear molecular
mechanisms related to aphid resistance in wheat germplasms.
Unfortunately, most of the characterized aphid-resistant cultivars
are resistant to one species of wheat aphid but not others.
However, wheat aphids are more likely to coinfest different
parts of the same plant to obtain nutrients. For example,
S. avenae prefers to colonize the upper, mature leaves and heads
of wheat plants, whereas R. padi prefers to colonize the leaf
sheaths and the lower leaves (Ni and Quisenberry, 2006). More
recently, CRISPR–Cas9 technology has been successfully applied
to inactivate crucial genes in cereal crops (Zhang et al., 2016;
Kim et al., 2018). Therefore, the combined use of MAS and
other molecular breeding measures (pyramiding breeding) is
essential for accelerating the breeding of superior cultivars that
can withstand attack from different species of grain aphids.

In addition, genetic plasticity not only stimulates grain aphids
to evolve insecticide resistance but also serves as the genetic basis
for aphids to express virulence to plant genes used in monogenic-
based antibiosis resistance. During the plant immune response,
the novel feeding effectors secreted by avirulent aphids are

sometimes not recognized by the defense system of the resistant
plant, and then the virulent aphid overcomes the plant resistance
gene or genes in resistant wheat varieties, resulting in outbreaks
of grain aphids (Smith and Chuang, 2014). The biotype variation
among different RWA isolates and greenbug biotypes supports
this conclusion. Historically, more than 11 RWA biotypes and
eight greenbug biotypes have been described worldwide (Smith
and Chuang, 2014). Although breeding resistant cultivars with
multiple, quantitative loci or recessive loci offers a promising
approach to delay or avoid aphid virulence, this is a long-term
process that can be extremely challenging for plant breeders and
entomologists. Altogether, based on the present literature, wheat
aphids rapidly evolve virulence to resistant wheat hosts during
wheat-aphid interactions, resulting in a need to develop novel
strategies for aphid control. Although this method improves the
efficiency of downregulation of the expression of grain aphid
genes, alternative methods of transferring dsRNA into grain
aphids should be explored.

In addition, in agroecosystems, wheat plants are often
challenged by different species of pests, including aphid-
transmitted viral or other pathogenic diseases, either sequentially
or simultaneously. In most cases, there is a “synergistic”
relationship between the different species of colonizers. For
instance, S. avenae pre-exposure significantly facilitates the
disease progression of fusarium head blight, a destructive
cereal disease. Although the feeding behavior of wheat aphids
could trigger hormone-dependent responses in host plants, the
role and mechanism of phytopathogen-elicited phytohormones
coordinated with other JA or SA signaling pathways to fine
tune the plant defense response of wheat remain rudimentary,
and further research is required on the crosstalk of complex
phytohormonal pathways involved in plant immune responses
(Luo et al., 2021). If confirmed, the hormonal crosstalk induced
by multiple colonizers would further aggravate the challenge of
the ecological regulation of wheat aphid pests in agroecosystems.
Therefore, the above working hypothesis triggers important
questions for future research and the elucidation of the
interaction between aphids and different species of colonizers
in ecological regulation of grain aphids and the maintenance of
wheat production and grain quality.
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Xiaofeng Dai2, Jieyin Chen2* , Zhiqiang Kong2* and Jianxin Tan1*

1 College of Food Science and Technology, Hebei Agricultural University, Baoding, China, 2 State Key Laboratory for Biology
of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China,
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The effect of pathogenic fungal infestation on berry quality and volatile organic
compounds (VOCs) of Cabernet Sauvignon (CS) and Petit Manseng (PM) were
investigated by using biochemical assays and gas chromatography-ion mobility
spectrometry. No significant difference in diseases-affected grapes for 100-berry weight.
The content of tannins and vitamin C decreased significantly in disease-affected grapes,
mostly in white rot-affected PM, which decreased by 71.67% and 66.29%. The
reduced total flavonoid content in diseases-affected grape, among which the least and
most were anthracnose-affected PM (1.61%) and white rot-affected CS (44.74%). All
diseases-affected CS had much higher titratable acid, a maximum (18.86 g/100 ml)
was observed in the gray mold-affected grapes, while only anthracnose-affected grapes
with a higher titratable acid level (21.8 g/100 mL) were observed in PM. A total of
61 VOCs were identified, including 14 alcohols, 13 esters, 12 aldehydes, 4 acids, 4
ketones, 1 ether, and 13 unknown compounds, which were discussed from different
functional groups, such as C6-VOCs, alcohols, ester acetates, aldehydes, and acids.
The VOCs of CS changed more than that of Petit Manseng’s after infection, while
gray mold-affected Cabernet Sauvignon had the most change. C6-VOCs, including
hexanal and (E)-2-hexenal were decreased in all affected grapes. Some unique VOCs
may serve as hypothetical biomarkers to help us identify specific varieties of pathogenic
fungal infestation.

Keywords: Cabernet Sauvignon, Petit Manseng, GC-IMS, volatile organic compounds, pathogenic fungal
infestation
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INTRODUCTION

Grape (Vitis vinifera L.) is one of the oldest horticultural plants
in the world that existed since prehistoric times and have
survived to the present day (Aşçi et al., 2021; Taskesenlioglu
et al., 2022). This species, apart from being one of the most
extensively cultivated fruit trees in the world due to its rich
biochemical content, is also a fascinating subject for history and
evolutionary studies (Kupe et al., 2021). The grape has also been
the source of not only nutrition but also of beliefs and symbols
in people’s daily lives throughout history. Pathogenic fungal
infestation is one of the main reasons affecting the development
of the grape and wine industry, causing serious economic losses
(Alkan et al., 2021). Common pathogenic fungal infestations
include gray mold (Botrytis cinerea), white rot [Coniothyrium
diplodilla (Speg.) Sacc], anthracnose (Colletotrichum sp.), and
others. Gray mold, which is caused by Botrytis cinerea, usually
kills and destroys berries, resulting in serious losses to many
crops (Agudelo-Romero et al., 2015; Rastgou et al., 2022). Grape
anthracnose, commonly known as grape bitter rot, causes the
fruit to rot and the leaves to develop leaf spots because of
infection. White rot often induces serious harm to fruit, which
occurs in high temperature and high humidity environments.
These pathogenic fungal infestations seriously affect the yield and
quality of grapes, resulting in potential harm to the human body
and commercial losses in the grape industry. However, precise
interactions between various pathogenic fungal infestations and
grapes have not been fully explored. Investigating various
pathogenic fungal infestations of grapes during growth is critical
for exploring the effects of the pathogenic fungal infestations and
offering further information on interactions between pathogenic
fungi and grapes.

As two popular wine grape varieties in the world, Cabernet
Sauvignon (CS) and Petit Manseng (PM) have the exquisite
aroma and noble quality as raw materials for red wine and
white wine. At present, the serious problem is that pathogenic
fungal infestations have negative impacts on the berry’s quality
and composition. Pathogenic fungal infestations usually lead
to rapid physiological changes in berries, such as weight loss,
skin color fading, tissue softening, and shortening of shelf-
life, which badly reduces the market value of grapes (Vazquez-
Hernandez et al., 2018). In addition to such visible quality
characteristics, the nutritional value and chemical constituents
of grapes will be changed, including more microbial metabolites,
sugar degradation, and acid production (Solairaj et al., 2021).
Santos et al. (2022) found that Trincadeira wine grapes showed
serious symptoms after Botrytis cinerea infection, the content of
total phenol and total anthocyanin was greatly lower than in
healthy samples. An infection experiment conducted by Pons
et al. (2018) confirmed that, for Merlot wines, pH and total
acidity were the parameters that were systematically influenced
by P. viticola infection. However, changes in fruit quality are
sometimes associated with defensive behavior. Braga et al. (2019)
found that phenolic compounds accumulate in infected areas
compared with healthy areas, thus, indicating the accumulation
of total phenols in resistance response.

Wine aroma is a key criterion for assessing the quality
of wine, and the sources of aroma substances in wine are

diverse. Among them, variety aroma is the aroma that comes
directly from the grapes and characterizes the wine’s typicality
and origin style. Wine aroma is primarily influenced by the
aroma of the varieties, such as volatile organic compounds
(VOCs), which are produced by grape metabolism (Dudareva
et al., 2013). VOCs include organic categories, such as alcohols,
aldehydes, esters, fatty acids, and benzenes, which contribute to
producing subtle aroma differences. Simultaneously, pathogenic
fungal infestations change the aroma components of grapes by
altering VOCs. Pinar et al. (2017) reported that bunch rot mainly
caused an increase in the intensities of peach-like/fruity, floral,
and liquor-like/toasty aroma notes, which were shown to be
related to variations in aroma composition, mainly a modest
increase of esters and alcohols. A previous study (Guerche et al.,
2006) showed that Botrytis cinerea could promote to metabolize
some trace volatile substances to produce odor in wine, the
volatile metabolites detected in infected grape were mainly
2-methylisoborneol, 1-octene-3-ol, 1-octene-3-one, 2-octene-1-
ol, and 2-heptanol. Also, Gadoury et al. (2007) found that
powdery mildew accelerated the formation of other pathogenic
fungal infestations and increased the contents of ethyl acetate,
acetic acid, and ethanol in wine. On the other hand, some
experimental trials have demonstrated the capacity of various
VOCs produced by plants to inhibit germination and growth of
plant pathogens. It has been reported that Botrytis cinerea was
highly sensitive to the in vitro application of monoterpenes, such
as (+)-limonene (Simas et al., 2017). However, exposure to (+)-
limonene stimulated in vitro growth of Penicillium digitatum,
whereas this fungus was highly inhibited by the application of
citral (Simas et al., 2017). Lazazzara et al. (2018) demonstrated
that P. viticola infection was inhibited in leaf tissues by some
VOCs, such as 2-ethylfuran, 2-phenyl ethanol, β-cyclocitral,
or trans-2-pentena. In addition, the growth of Colletotrichum
acutatum, causing citrus post-bloom fruit drop, was moderately
inhibited in vitro when exposed to linalool (Marques et al., 2015).
Consequently, the elucidation of the changes in VOCs of grapes
suffering pathogenic fungal infestations during growth is a task
of highly practical significance to further explore the impact of
pathogenic fungal infestations on grapes.

Gas chromatography-ion mobility spectrometry (GC-IMS)
is an advanced technology for the analysis of VOCs, which
combines the high separation ability of GC with the rapid
response characteristics of IMS (Tuzimski et al., 2016). GC-IMS
has the advantages of fast detection speed, simple operation,
and easy sample preparation steps (Rousserie et al., 2020).
GC-IMS shows rapid response and high sensitivity in the
detection of trace volatile and semi-volatile organic compounds
in different matrices. Zhao et al. (2022) used GC–IMS with
gas chromatography-mass spectrometry technology to identify
the flavor components qualitatively and quantitatively, under
the various treatment of chiral tebuconazole on the flavor of
Merlot and Cabernet Sauvignon wines. GC-IMS shows good
application value in flavor analysis, and it is a new technology
to detect the changes in volatile components during food
processing and storage.

This study aims to investigate the impacts of the various
pathogenic fungal infestations on two wine grapes during
their growth. To be more specific, biochemical assays and
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GC-IMS were used to further explore the effects of pathogenic
fungal infestations on berry quality and VOCs in Cabernet
Sauvignon and Petit Manseng, then evaluate the influences
of gray mold, white rot, and anthracnose. In addition, the
VOCs were analyzed from three aspects: (1) pathogenic fungal
infestations, (2) volatile compound types, and (3) wine grape
varieties. The obtained results provide comprehensive and
reliable information for assessing the impacts of pathogenic
fungal infestations in wine grapes.

MATERIALS AND REAGENTS

Chemicals and Reagents
The gallic acid, hesperidin, and L (+)-ascorbic acid analytical
standards with purities of > 99% were provided by Dr.
Ehrenstorfer GmbH (LGC Standards, Augsburg, Germany).
Acetone, sodium carbonate, Folin-phenol, diethylene glycol,
citric acid, glacial acetic acid, boric acid, metaphosphoric acid,
sodium acetate trihydrate, o-Phenylenediamine, thymol blue,
activated carbon, sodium tungstate dihydrate, sodium molybdate
dihydrate, lithium sulfate, NaOH, HCl, H3PO4, and H2SO4
were purchased from Sinopharm Chemical Reagent Co., Ltd.
(Beijing, China); all chemicals were analytical grade (> 99%)
unless otherwise stated. All standard solutions were stored in
brown glass bottles wrapped in aluminum foil to avoid light
exposure. Before analysis, the bottles were stored at 4◦C. Under
these conditions, no degradation was observed for 3 months.

Plant Materials and Treatments
The Cabernet Sauvignon and Petit Manseng grapes used in
this study were cultivated in Yantai, Shandong Province, China
(E121.39, N37.52). The grapevine trees of Cabernet Sauvignon
and Petit Manseng were both 6 years old, with row spacing
of 1.8 m × 0.5 m and 1 m × 2 m, respectively. Naturally
infected berries with similar severity collected from the vineyard
were used to identify consistent berry responses to pathogenic
fungal infestations across natural conditions. Grapes were
taken after veraison when the berry started to show fungal
infection symptoms, and each selected bunch was submitted to
a pathological examination for identifying the fungal infection
before sample collection. After this, the infection degree of the
grapes we chose was as follows: corresponding to healthy tissues
and clusters of small lesions (diameter < 2 mm), there were
hyphae in the early stage of development and hyphae structure
in the middle stage (rarely visible and carefully observed). For
CS and PM, the treatment group consisted of grapes with
three pathogenic fungal infestations: gray mold (CS-GM, PM-
GM), anthracnose (CS-AN, PM-AN), and white rot (CS-WR,
PM-WR). The healthy samples were selected as the control
groups (CS-CK, PM-CK). Grapes were wrapped in wet gauze
after harvest and brought back to the laboratory immediately
after refrigeration in a preservative box. The samples were
placed in a 4◦C-refrigerator before measurement and crushing.
All measurements include three replicates, each containing
three random clusters. For each grape cluster, the grapes were
randomly selected from the shoulder, middle, and bottom of the

cluster. One hundred-berry weight, particle size, soluble solids
content, titratable acid, and the content of total phenolics, total
flavonoids, vitamin C, and tannins were determined.

Determination of Physicochemical
Parameters
One Hundred-Berry Weight and Particle Size
One hundred grape berries in each group were chosen randomly
to measure 100-berry weight (g), then washed with distilled
water and dried by the filter. It was measured by an electronic
balance; measurements were repeated three times. Vernier
calipers were used to measure the particle size of ten grape
berries in each group.

Soluble Solid Content and Titratable Acid
The clear juice (supernatant) extracted was used to determine
SSC by using a manual refractometer (ATAGO Company,
Fukuoka, Japan) and the results were recorded as the degree
of◦Brix. TA was determined by titration using 10 ml of diluted
juice with the addition of NaOH (0.1 N) and two drops of
phenolphthalein until a light pink color was formed (30 s
without fading). Finally, the numerical value was expressed by the
predominant acid.

Determination of the Phenolic
Compounds and Vitamin C in Grapes
Total Phenolics
Total phenolics (TP) content was determined by the modified
Folin method (Thimmaiah, 1999). The gallic acid standard
sample was dissolved in distilled water and diluted to obtain
a standard solution of 0.05 mg/ml. Then, 1 mL (1.2, 1.4, 1.6,
1.8, and 2) of the standard solution was accurately measured,
and 0.5 mL of Folin-phenol reagent and 0.5 mL of 10% sodium
carbonate solution were added. The distilled water was diluted to
10 ml, and the solution was reacted in a water bath at 25◦C for 1 h.
The absorbance was measured at 765 nm with the blank reagent
as the control to establish the standard curve.

Four-gram sample was weighed, 16 ml of 70% acetone was
added, and then, the supernatant was extracted for 3 h and
centrifuged for 10 min at 10,000 rpm. A total of 0.2 ml of the
sample solution was taken, added with 0.5 ml of Folin-phenol
reagent. Then,0.5 ml of 10% sodium carbonate solution was
added and was reacted in a water bath at 25◦C for 2 h. The
absorbance was measured at 765 nm to obtain the TP content.

Total Flavonoids
The experiment was designed to determine Total flavonoids
(TF) content following the guideline (NY/T, 2010-2011). The
standard solutions of 0 ml, 1 ml, 2 ml, 3 ml, 4 ml, and 5 ml
of hesperidin (200 mg/L) were absorbed into the test tubes,
and then, 5 ml of 90% diethylene glycol solution and 0.1 ml
of NaOH (4 M) solution were added. The standard solution
(0 mg/L, 20 mg/L, 40 mg/L, 60 mg/L, 80 mg/L, and 100 mg/L)
was incubated in a water bath at 40◦C for 10 min, and then cooled
for 5 min. The absorbance was measured at 420 nm by ultraviolet
spectrophotometer (Shimadzu UV-2450, Kyoto, Japan), and the
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standard curve was drawn. Five grams of sample was mixed with
NaOH solution, and the PH was adjusted to 13.0. The PH was
adjusted by the citric acid solution (20% w/v) to 6 after 30 min,
and 5 ml of the solution was mixed with 5 ml of diethylene glycol
solution and 0.1 ml of NaOH solution. The absorbance value
was determined using the standard curve to calculate the mass
concentration of TF.

Total flavonoids (TF) was calculated by hesperidin mass
fraction ω, and the value was expressed as mg/100 g using the
following formula:

ω =
ρ× 10× 100× 1000

m× V × 100
(1)

where ρ is hesperidin mass concentration (mg/L); V is
determination of absorbed test liquid volume (mL); m is sample
weighing mass (g); 10 is color constant volume (ml); 100 is sample
extraction volume (ml).

Vitamin C
The VC content of grapes was measured by using the
fluorescence method based on (GB 5009.86, 2016). One hundred
grams of the grape extract was homogenized after adding
100 g of metaphosphate-acetic acid solution, diluted with the
metaphosphate-acetic acid solution, or metaphosphate-acetic
acid-sulfuric acid solution. The pH was adjusted to 1.2, 50 ml of
supernatant was mixed with 2 g of activated carbon after filtering,
and two groups of 10-ml filtrates were taken and added with 5 ml
of sodium acetate solution (50% w/v) and 5 ml of boric acid-
sodium acetate solution as “sample solution and “sample blank
solution,” respectively. The ascorbic acid’s standard working
solution was treated in the same way as “standard solution” and
“standard blank solution.”

First, 0.5 ml, 1 ml, 1.5 m, and 2 ml of standard solution
were absorbed and supplemented with water to 2 ml. In
addition, 2 ml of “standard blank solution” was mixed with
5 ml of phthalediamine solution in the darkroom, and the
reaction was carried out at room temperature for 35 min.
Finally, the fluorescence intensity was measured at 338 nm and
420 nm, and the standard curve was drawn. Two milliliters of
“sample solution” and “sample blank solution” with 5 ml of
phthalediamine solution were reacted in the darkroom for 35 min
reaction at room temperature. The result was measured and the
total amount of L (+)-ascorbic acid was determined according to
the standard curve. The results were expressed as mg/100 g using
the following formula:

X =
c× V
m
× F ×

100
1000

(2)

where X is total L (+)-ascorbic acid in sample (mg/100 g); c is
L (+)-ascorbic acid mass concentration (µg/mL); V is sample
volume (mL); m is actual sample quality (g); F is the sample
solution dilution ratio; 100 is conversion coefficient; 1,000 is
conversion coefficient.

Tannins
The tannins content of grapes was measured by using a
spectrophotometric method based on (NY/T, 1600-2008).

Sodium tungstate-sodium molybdate mixed solution was
configured, then 1 ml of 0.00 mg/L, 10 mg/L, 20 mg/L, 30 mg/L,
40 mg/L, and 50 mg/L gallic acid standard solution was absorbed,
5 ml water was added, 1 ml of sodium tungstate-sodium
molybdate mixed solution, and 3 ml of sodium carbonate
solution (7.5% w/v) were mixed with 0 mg/L, 1 mg/L, 2 mg/L,
3 mg/L, 4 mg/L, and 5 mg/L standard solution. After coloration,
the absorbance at 765 nm was measured and the standard curve
was plotted. Five grams of sample centrifuged at 8,000 rpm for
4 min after hot water bath extraction, 1 ml of extract was taken
and added with 5 ml of water, 1 ml of sodium tungstate-sodium
molybdate mixed solution, and 3 ml of sodium carbonate
solution. The absorbance at 765 nm was measured, and the
concentration of tannin was calculated according to the standard
curve. The tannin content in the sample (calculated by gallic
acid) was calculated as follows:

ω =
ρ× 10× 10× A

m
(3)

where ω is tannin content in samples (mg/100 g); ρ is gallic acid
concentration in the determination solution (mg/L); 10 is the
constant volume (ml); 10 is the conversion coefficient; A is the
sample dilution multiples; m is the sample quality (g).

Volatile Analysis by Gas
Chromatography-Ion Mobility
Spectrometry
For volatile analysis, the grape sample was homogenized, and
5 g was accurately weighed, then placed in a 20-ml headspace
vial and incubated at 40◦C for 20 min before sampling. The
analysis was performed by using headspace-gas chromatography-
ion mobility spectrometry (HS-GC-IMS) (FlavourSpec

R©

, G.A.S.,
Dortmund, Germany). The grape samples were incubated at 500
r/min for 20 min at 40◦C. Thereafter, 500 µL of gas from the
headspace was automatically infused into the heated injector
by a syringe in a splitless mode at 85◦C. At that point, the
samples were directed into an MXT-WAX capillary column
(30 m × 0.53 mm × 1 µm, Restek Corporation, Bellefonte, PA,
United States). Purified nitrogen (99.999% purity) with a flow rate
of 150 ml/min was used as the drift gas for IMS. The temperature
of the column and the IMS was 60◦C and 45◦C, respectively.
The carrier gas followed a programmed flow: 2 ml/min for
2 min, increased to 100 ml/min within 20 min, then kept at
100 ml/min for 10 min.

The eluted analytes ionization source was 3H ionization,
driven to a drift tube which was run at a constant temperature
of 45◦C and voltage of 5 kV. C4-C9 n-ketones (Sinopharm
Chemical Reagent Beijing Co., Ltd., China) was used as
references when the retention index (RI) was calculated. Volatile
compounds were analyzed according to the differences in their
RI and drift time (DT) in the GC × IMS Library from
different perspectives.

Date Analysis
A significant difference was evaluated by one-way analysis of
variance (ANOVA) followed using Duncan’s multiple range test
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with a significant level (P < 0.05). IBM SPSS statistics (version
20.0, SPSS Inc., Chicago, IL, United States) was employed
for significance analysis. The scattered boxplot and principal
component analysis (PCA) were implemented by Origin 2021
from Origin Laboratories (available at www.originlab.com).
Heatmap with clustering analysis was made by TBtools software
(Chen et al., 2020).

The instrument analysis software was composed of
Laboratory Analytical Viewer (version 2.2.1, G.A.S. Dortmund,
Germany) with its plug-ins: Reporter and Gallery Plot, and
GC × IMS Library Search, which were applied to qualitative and
comparative detection.

RESULTS AND DISCUSSION

Effects of Pathogenic Fungal Infestations
on Physicochemical Parameters of
Cabernet Sauvignon and Petit Manseng
One Hundred-Berry Weight and Particle Size
Berry size is widely considered to be a factor in determining
the quality of wine grapes. As shown in Figures 1A–D. In our
study, there were no significant differences between the disease-
infected grapes and healthy grapes for the 100-berry weight
of CS and PM, while most infected groups decreased slightly.
The results showed that the grape infected with anthracnose
decreased slightly compared with other disease groups, CS-AN
and PM-AN were decreased by 14.03% and 20.02%, respectively.
On the other hand, a slight increase was observed in 100-berry
weight and particle size for PM, which were 4.49% and 0.34%,
respectively, after infection with Botrytis cinerea. The effect of
pathogenic fungal infestation on berry weight depends on the
degree of ontogenic resistance expressed by berries when infected
by pathogenic fungi. Gadoury et al. (2003) showed that once the
berries reached the diameter of 3 mm (28 days after flowering),
powdery mildew did not significantly reduce the weight of the
berries. However, the weight of berries was significantly reduced
and colonized by the pathogen heavily when berries were infected
before resistance. It is speculated that the unobvious change
of berry weight may be related to the resistance of grapes
when pathogenic fungal infections occurred. The comparison of
100-berry weight and particle size showed that CS-WR > CS-
GM > CS-AN and PM-GM > PM-WR > PM-AN.

Soluble Solid Content and Titratable Acid
Soluble solid content (SSC) and TA are related to the taste of
wine, which served as important indexes to reflect the quality of
the berry and the disease resistance. Figures 1E–H show the SSC
and TA of the two wine grapes infected with various pathogenic
fungi. In CS, the SSC of the infected samples was lower than CS-
CK, and CS-AN and CS-GM significantly decreased (P < 0.05)
by 11.29% and 5.25%, respectively, compared with the healthy
samples. Meanwhile, different pathogenic fungal infestations
cause a rise of TA content in CS to variable degrees: gray mold
(18.86 g/100 ml)>anthracnose (16.01 g/100 ml) > white rot
(14.25 g/100 ml). However, the SSC increased after infection
in PM, and the maximum (21.80 g/100 ml) of the TA was

observed in the PM-AN, and other disease groups were lower
than in the healthy group. In a previous study conducted by
Stummer et al. (2003), for Cabernet Sauvignon infected with
powdery mildew in 2001, the SSC with infection degree greater
than 30% has decreased significantly, which was speculated to be
related to the high level of powdery mildew infection hindering
sugar accumulation, and the TA increased or decreased under
different infection degrees. On the other hand, the explanation
for the increase in sugar concentration after infection may be
associated with the decrease in the volume of diseased berries
and the increase in transpiration water loss (Calonnec et al.,
2004). Moreover, Girardello et al. (2020) showed that the acidity
of Chardonnay grapes increased after infection with erythema,
which was supposed to be related to the high concentration of
potassium (K) in juice. In summary, it was inferred that our
results may be caused by many reasons such as the fruit year,
grape variety, pathogenic fungal infestation, the degree of the
infection, and so on.

Effects of Pathogenic Fungal Infestation
on the Content of the Phenolic
Compounds and Vitamin C in Cabernet
Sauvignon and Petit Manseng
Total Phenolics
Grape is rich in phenols, and plant polyphenols have been
proven to have potential antibiosis activity, which is mainly
distributed in the skin, stems, leaves, and seeds of the grape,
rather than the juicy middle part (Bruno and Sparapano, 2007).
The phenolic compounds mainly include proanthocyanidins,
anthocyanins, flavonols, resveratrol, and phenolic acids. As
shown in Figures 2A,B, for healthy grapes, the TP of CS
(13.62 mg GAE/g) was much higher than PM (5.80 mg GAE/g).
In CS and PM, a significant difference (P < 0.05) was observed in
all disease groups compared to the healthy grapes. In comparison
to CK, the TP content of the grapes infected with anthracnose
increased by 8.25% and 21.61% significantly, while it decreased
after infection with white rot. It is worth noting that the TP
content in CS and PM presented the opposite effects after
infection with gray mold, which showed that CS decreased by
5.02 mg GAE/g but PM increased by 2.02 mg GAE/g compared
with CK. A study reported that total phenolic extracted in
methanol had a visible downward tendency after infection, and
total phenolic extracted in water, mainly hydrophilic compounds
such as hydroxybenzoic acid, anthocyanin, flavonoids, or tannin,
decreased after infection (Santos et al., 2022). However, wines
made from powdery mildew-affected grapes generally have
higher phenolic levels than wines made from unaffected grapes
(Steel et al., 2013). Bruno and Sparapano (2007) reported that
the content of total phenol in grape skins varies with species, soil
composition, climate, geographical origin, cultivation methods,
and infection exposure. Therefore, it is speculated that different
changes were impacted by a range of factors.

Total Flavonoids
Flavonoids have strong antioxidant properties and could
be measured to reflect the antioxidant capacity of plants
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FIGURE 1 | The scattered boxplots show physicochemical parameters of Cabernet Sauvignon and Petit Manseng grapes: (A, B) 100-berry weight; (C, D) Particle
size; (E, F) Soluble Solid Content (SSC); (G, H) Titratable acid (TA). Different letters (lower case) on the top of the bars represent significant differences among the
investigated grape samples. Scattered boxplots show individual data points, median, average value, 25th, and 75th percentile.
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FIGURE 2 | The scattered boxplots show the content of the phenolic compounds and vitamin C in all samples of Cabernet Sauvignon and Petit Manseng grapes:
(A, B) Total phenolics (TP); (C, D) Total flavonoids (TF); (E, F) Vitamin C; (G, H) Tannins. Different letters (lower case) on the top of the bars represent significant
differences among the investigated grape samples. Scattered boxplots show individual data points, median, average value, 25th, and 75th percentile.
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(Figures 2C,D). The CS-CK (38 mg/100 g) and PM-CK
(20.67 mg/100 g) both had the highest content of TF, and
almost infected grapes were significantly decreased (P < 0.05),
except for PM-AN. The TF content decreased to a similar
extent after infection with anthracnose and gray mold, the
results showed that the content of CS-AN and CS-GM was
30.33 mg/100 g, 30 mg/100 g, and PM-AN and PM-GM were
20.33 mg/100 g, 19.33 mg/100 g, respectively, which suggested
that anthracnose and gray mold might have similar effects on
the TF. Moreover, flavanols are the most ubiquitous flavonoids in
foods, previous study focused on the determination of flavonols
of Zinfandel grapes, the findings proved that infected grapes
had a lower flavonol content compared to the control group
(Blanco-Ulate et al., 2017).

Vitamin C
Vitamin C (VC) is the primary aqueous antioxidant that
effectively reduces the damage that reactive oxygen species (ROS)
produced. The maximum was found in the control group both in
the PM and CS (Figures 2E,F). After being invaded by pathogenic
fungi, the content of VC in CS and PM decreased significantly
(P < 0.05), which indicated that the invasion of pathogenic
fungi caused a great deal of degradation of VC in grapes, which
damaged the nutritional quality. Murria et al. (2018) found that
the contents of chlorophyll, carotenoids, and ascorbic acid in
infected leaves are lower than those in healthy leaves.

Tannins
Tannins are one of the key factors determining the quality of
grapes and wines, which can decide the sensory attributes of
wines, such as color, taste, astringency, and bitterness by the
content and proportion (Rousserie et al., 2020). As shown in
Figures 2G,H, There was a significant difference (P < 0.05) in
tannins of infected grapes compared to healthy grapes in the
CS and PM, pathogenic fungal infestation reduced the tannins
to a great extent. The grape berry analyses performed in 2010
showed that it greatly decreases skin procyanidins concentrations
after infection; it should be noted that the total tannin content in
pericarp tissue is considered to contribute to the pre-resistance of
berries to pathogenic fungal infestation (Deytieux-Belleau et al.,
2009). Previous reports speculated that the tannins were closely
related to climatic factors, resulting in stronger responses of
plants and more tannins in a warmer environment (Cauduro
Girardello et al., 2020). Moreover, tannin has also a certain
correlation with grape maturity (Rousserie et al., 2020).

Volatile Organic Compounds Analysis by
Gas Chromatography-Ion Mobility
Spectrometry
Volatile organic compounds (VOCs) play an indispensable
role in the key metabolic pathways involved in plant growth,
development, reproduction, and defense (Bouwmeester et al.,

FIGURE 3 | (A, B) Comparison of GC-IMS spectra and (C) Heatmap with clustering analysis of VOCs. The numbers in panel (A, B) represent VOCs with large
differences (the compound names are shown in Supplementary Table 1). (C) shows the changes in VOCs induced by pathogenic fungal infestation with the control
group in Cabernet Sauvignon and Petit Manseng wine grapes.

Frontiers in Plant Science | www.frontiersin.org 8 July 2022 | Volume 13 | Article 94248724

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-942487 July 14, 2022 Time: 17:52 # 9

Li et al. Effect of Pathogenic Fungal Infestation

2019). Once the fruit was infected by pathogenic fungal, VOCs
can be used as toxins, defense compounds, energy sources, and
infection enhancers (Santos et al., 2022). Understanding the
alterations of fruit to pathogenic fungal infestation is essential
for the improvement of grapes and for the sustainability of
wine production. In this study, VOCs were analyzed from three
different aspects: pathogenic fungal infestation, VOC types, and
wine grape varieties.

Effects of Pathogenic Fungal Infestations on Volatile
Organic Compounds
The GC-IMS spectra of the VOCs in the samples are shown
in Figures 3A,B, each spectrum represents the sample for each
treatment, the Y-axis represents the retention time (s) of gas
chromatography, and the X-axis represents the ion migration
time. The red vertical line at X-axis 1 is the reactive ion peak
(RIP), on both sides of this peak, each point represents a volatile
organic compound. The concentration of VOCs was determined
by color, blue was the background color, white represents low
concentration, and red represents high concentration, that is,
the deeper the color, the greater the concentration. It can be
intuitively found from the spectrum that after pathogenic fungal
infestations, the VOCs of CS and PM both had significant
changes. A total of 61 volatile compounds, composed of 14
alcohols, 1 ether, 12 aldehydes, 4 acids, 4 ketones, 13 esters, and 13
unknown compounds, were simultaneously identified (including
monomers and polymers) in the samples of CS and PM (Table 1
and Supplementary Table 1), and most of the volatile substances
were alcohols, esters, and aldehydes. Among all infected grapes,
the variation of VOCs in CS-GM has the greatest difference
compared with others. In this group, the concentrations of 9
VOCs decreased, including 6 aldehydes, 2 alcohols, and 1 ether.
The concentrations of 19 VOCs increased, including 8 esters, 3
ketones, 3 acids, 4 alcohols, and 1 aldehyde. Among them, 2-
methylpropanoic acid, ethyl isobutyrate, 3-hydroxy-2-butanone,
acetic acid, and propionic acid increased significantly. As for
PM-GM, the concentration of 14 VOCs reduced, including 8
esters, 2 alcohols, 3 aldehydes, and 1 ether, and 11 VOCs were
raised, including 4 alcohols, 3 acids, 2 esters, and 2 ketones.
Notably, previous studies had explanations for the reduction in
1-hexanol, it is reported that this may be due to the production
of noble root wines, which is the result of a unique physiological
process (Tosi and Azzolini, 2013). Noble root wine is a sweet wine
formed by Botrytis cinerea infecting grapes under specific growth
conditions. Therefore, we speculated that the grapes infected with
Botrytis cinerea would generate noble root wine due to certain
development circumstances.

In CS-WR, 17 VOCs had a higher level, and 5 VOCs had
a lower level compared with healthy grapes, the changes in
substances were similar to CS-AN. At the same time, the changes
of VOCs in PM-WR and PM-AN were also very close, which
speculated that there are some common points in understanding
the effects of white rot and anthracnose on grapes. Meanwhile,
the contents of acetic acid, 3-hydroxy-2-butanone, propan-2-one,
2-methyl-1-propanol, 1-penten-3-ol, and 1-propanol increased
in the CS-WR and PM-WR, which inferred that the changes
in aroma components were closely related to the pathogenic

fungal infestation. Most esters, dimethyl sulfide, propanal, and
n-hexanol increased in CS but decreased in PM, and propionic
acid increased only in infected PM. On the other hand, in
the grapes with anthracnose, heptanal and methanol decreased
greatly in CS, and some substances, such as 1-penten-3-ol,
n-hexanol, and propanal were raised in CS while decreased in
PM. According to the results, it is speculated that the specific
marker VOCs can be further found for specific varieties infected
with specific pathogenic fungi. Finally, there was the same change
rule in the two grapes, in which the content of hexanal and (E)-2-
hexenal decreased and acetone increased for all infected grapes.

Effects of Pathogenic Fungal Infestations on Various
Types of Volatile Organic Compounds
Heatmap with clustering analysis was shown to clarify the
changes of all VOC among the diseases-affected grapes and
the control group. In Figure 3C, each row showed volatile
substances, and M, D, and T in parentheses behind the name of
the substance represent the monomer, dimer, and trimer of the
substance, respectively. Each column indicated different samples,
and the number indicated temporarily unknown compounds.
We compared the color difference to determine the variation of
VOCs. Blue represents low concentration and red represents high
concentration; the more obvious the color was, the more VOC
was in the corresponding sample. The samples clustered into the
same category indicated a high degree of correlation.

The Changes in C6-Volatile Organic Compounds
In VOCs, green leaf aroma C6-VOCs as one of the main
families are derived from the lipoxygenase (LOX) pathway,
which is usually induced by biological stress, the precursors
are linoleic acid and α-linolenic acid (Gong et al., 2019). In
this study, hexanal, (E)-2-hexenal, and 1-hexanol are typical
C6-VOCs. Among them, hexanal and (E)–2-hexenal are C6
unsaturated aldehydes and 1-hexanol is C6 alcohol, which have
the characteristics of green grass flavor. The concentrations
of hexanal and (E)-2-hexenal in all infected grapes decreased,
and C6-VOCs were generally associated with plant defense
behavior. Shiojiri et al. (2006) showed that overexpression
of hydroperoxide lyase (HPL) in Arabidopsis led to higher
resistance of transgenic plants to Botrytis cinerea, which may be
due to the increasing contents of C6 VOCs emitted by plants after
infection, reflecting the assumed role of VOCs metabolism in
grape defense mechanism. However, our results are in agreement
with those reported by Santos et al. (2022), who found that
hexanal and (E)-2-hexenal decreased greatly both in free or
glycosylated after infection with Botrytis cinerea, suggesting that
C6-VOCs can be used as a stress signal for plant biological stress.
Schueuermann et al. (2018) also confirmed the concentration of
(E)-2-hexenal in V. vinifera cv. Chardonnay grapes decreased
after infection with Botrytis cinerea in two out of three
vintages. We speculated that pathogenic fungal infestation could
manipulate the level of C6-VOCs to reduce the defense effect of
fruit, because low concentrations of (E)-2-hexenal may promote
mycelium growth (Santos et al., 2022). Moreover, previous
studies also showed that green aroma gradually decreased with
fruit maturation, which was also a possibility for the decrease
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TABLE 1 | Compositions of the volatile substances determined by gas chromatography-ion mobility spectrometry (GC-IMS) analysis.

Count Compound CAS# Formula MW RIa Rtb Dtc

1 2-Methylpropanoic acid C79312 C4H8O2 88.1 1566.6 1717.688 1.15764

2 Propanoic acid C79094 C3H6O2 74.1 1538.4 1499.028 1.10708

3 acetic acid C64197 C2H4O2 60.1 1462.8 1049.26 1.05129

4 acetic acid* C64197 C2H4O2 60.1 1464.7 1058.641 1.15766

5 1-Hexanol C111273 C6H14O 102.2 1368.4 701.683 1.32825

6 1-Hexanol* C111273 C6H14O 102.2 1369.6 704.455 1.65395

7 1-Hexanol** C111273 C6H14O 102.2 1368.9 702.792 1.99559

8 3-hydroxy-2-butanone C513860 C4H8O2 88.1 1298.6 557.923 1.07285

9 3-hydroxy-2-butanone* C513860 C4H8O2 88.1 1297.0 555.075 1.33145

10 hexyl acetate C142927 C8H16O2 144.2 1280.5 528.631 1.3847

11 hexyl acetate* C142927 C8H16O2 144.2 1281.0 529.388 1.90012

12 Ethyl hexanoate C123660 C8H16O2 144.2 1238.9 468.485 1.3433

13 (E)-2-hexenal C6728263 C6H10O 98.1 1226.5 451.975 1.1769

14 (E)-2-hexenal* C6728263 C6H10O 98.1 1227.1 452.709 1.52571

15 1-Penten-3-ol C616251 C5H10O 86.1 1168.0 382.14 0.94552

16 isoamyl acetate C123922 C7H14O2 130.2 1131.6 344.798 1.30098

17 isoamyl acetate* C123922 C7H14O2 130.2 1131.3 344.509 1.74028

18 2-methyl-1-propanol C78831 C4H10O 74.1 1104.4 319.339 1.17187

19 2-methyl-1-propanol* C78831 C4H10O 74.1 1103.4 318.471 1.36777

20 Hexanal C66251 C6H12O 100.2 1101.5 316.735 1.2624

21 Hexanal* C66251 C6H12O 100.2 1094.7 311.238 1.56219

22 2-methylpropyl acetate C110190 C6H12O2 116.2 1023.4 268.504 1.28717

23 2-methylpropyl acetate* C110190 C6H12O2 116.2 1021.6 267.449 1.61112

24 2-pentanone C107879 C5H10O 86.1 992.8 252.367 1.36789

25 ethanol C64175 C2H6O 46.1 935.2 230.801 1.13103

26 propyl acetate C109604 C5H10O2 102.1 985.8 249.652 1.47729

27 Propanoic acid ethyl ester C105373 C5H10O2 102.1 964.8 241.659 1.45393

28 Ethyl isobutyrate C97621 C6H12O2 116.2 973.6 244.977 1.55908

29 ethyl acetate C141786 C4H8O2 88.1 888.0 214.512 1.32965

30 3-Methylbutanal C590863 C5H10O 86.1 922.4 226.276 1.40082

31 Methyl acetate C79209 C3H6O2 74.1 850.8 202.498 1.19096

32 Propan-2-one C67641 C3H6O 58.1 835.8 197.824 1.11461

33 2-Methyl propanal C78842 C4H8O 72.1 831.2 196.433 1.28088

34 Propanal C123386 C3H6O 58.1 819.6 192.921 1.06504

35 Propanal* C123386 C3H6O 58.1 822.0 193.65 1.14125

36 methanol C67561 CH4O 32.0 912.2 222.721 0.98563

37 Acetaldehyde C75070 C2H4O 44.1 778.2 180.93 0.98633

38 butyl acetate C123864 C6H12O2 116.2 1081.9 303.09 1.23772

39 3-Methyl-1-butanol C123513 C5H12O 88.1 1213.8 435.646 1.24493

40 3-Methyl-1-butanol* C123513 C5H12O 88.1 1214.1 435.999 1.49095

41 3-Methyl-1-butanol** C123513 C5H12O 88.1 1215.8 438.118 1.78823

42 1-propanol C71238 C3H8O 60.1 1047.9 282.482 1.11188

43 1-propanol* C71238 C3H8O 60.1 1048.5 282.816 1.25422

44 (E)-2-octenal C2548870 C8H14O 126.2 1418.6 852.241 1.34901

45 (E)-2-octenal* C2548870 C8H14O 126.2 1418.5 851.636 1.81337

46 heptanal C111717 C7H14O 114.2 1191.7 408.576 1.34677

47 butan-1-ol C71363 C4H10O 74.1 1152.9 366.206 1.18015

48 dimethyl sulfide C75183 C2H6S 62.1 799.5 187.004 0.95792

Dt, drift time; MW, Molecular mass; RI, retention index; Rt, Retention time.
aRetention index.
bRetention time.
cDrift time.
“*” Represents dimer.
“**” Represents trimer.
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of hexanal and (E)-2-hexenal (Agudelo-Romero et al., 2013).
Finally, these changes in C6-VOCs are likely to affect the green
aroma of grapes.

The Changes in Alcohol
After pathogenic fungal infestations, alcohol-VOCs also changed
greatly. Alcohols have physical-chemical properties, which can
lead to membrane rupture and interfere with cell metabolism
(Yalage Don et al., 2020). In this study, the results showed that
3-Methyl-1-butanol only increased in infected CS, 3-Methyl-
1-butanol has the aroma of fusel alcohol and antibacterial
properties. Pinar et al. (2017) showed that its presence is usually
related to the activity of laccases in B. cinerea. Moreover, the
existence of fusel alcohol is usually one of the reasons for the
rotting smell of grapes. On the other hand, we also observed that
increasing ethanol only in PM after pathogenic fungal infestation,
and it was at a high level. we speculated that spontaneous
fermentation could explain it because there were more yeasts in
the microbial group of infected grapes compared with healthy
grapes (Magyar, 2011).

The Changes in Ester Acetates
Esters play an important role in wine aromas, as most esters
present pleasant aromas. The results showed that acetate
accounted for a large proportion of VOCs in this study. Ethyl
acetate showed higher levels only in CS after pathogenic fungal
infestation, which always contains ethyl acetate. Ethyl acetate

presents a strong fruit flavor, which is beneficial to the production
of acetic acid, it usually acts as a common adverse metabolite that
exists in fruit infected by fungi (Barata et al., 2011). We speculated
that infected grapes produce a certain degree of fermentation, and
the increase of acetate compounds may promote the colonization
of fungi (Boss et al., 2015). In the PM infected with gray
mold, white rot, and anthracnose, esters were decreased by 8,
7, and 6, respectively. Only 2 esters increased, which contains
ethyl isobutyrate. Ethyl isobutyrate is formed by esterification
of ethanol and isobutyrate under acidic conditions, which has
an apple aroma. Ethyl isobutyrate may be a specific biomarker
for PM after pathogenic fungal infestation, which needs further
confirmation in the following experiment.

The Changes in Aldehydes and Acids
In CS, heptanal decreased remarkably and acetic acid increased
after pathogenic fungal infestation. Usually, acetic acid is
the symbolic volatile of fruit decomposition and decay, which is
the pathway to produce ethyl acetate and may be caused by the
co-infection of acetic acid bacteria and acid rot (Hall et al., 2018).

The Changes of Unknown Volatile Compounds
In this study, 13 volatile compounds were unidentified from
the fingerprints due to information limitations in the built-in
NIST database of GC-IMS. The unknown volatile compounds
were analyzed deeply for the integrity and reliability of the
experiment. Terpenes and norisoprenoids are two of the most

FIGURE 4 | (A, B) Principal component analysis (PCA) score plot and (C, D) nearest neighbor fingerprint (NNA) of Cabernet Sauvignon and Petit Manseng wine
grapes. The bottom area of NNA shows the normal distribution of each sample.
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important aromatic chemicals found in grapes, both in volatile
and non-volatile forms, and are known for contributing fruity
or flowery notes (González-Barreiro et al., 2015). However, these
compounds are found in low concentrations as most of them
have very low perception threshold levels (Diéguez et al., 2003).
The results showed that the detected unknown compounds had
low concentrations, so we speculated that these compounds
might be terpenes and norisoprenoids. In CS and PM after
infection, compound 10 increased, compound 6 decreased, and
compounds 4, 5, 7, and 12 did not change greatly; other
numbered compounds may not change consistently and may be
due to varietal differences. Among them, in grapes suffering from
a pathogenic fungal infestation, compound 11 increased in PM
and slightly decreased in CS and compounds 1, 2, and 3 decreased
in CS but did not change more in PM.

Differences in Volatile Organic Compounds Present in
Different Varieties of Grapes Resulting From
Pathogenic Fungal Infestations
The principal component analysis (PCA) and nearest neighbor
fingerprint (NNA) (Figures 4A–D) intuitively showed the
differences between different samples. Different color points
represent different samples, the greater the distance between
sample points is, the greater the difference is. The PCA of volatile
compounds in both healthy and different infected samples was
demonstrated in Figures 4A,B. The accumulative contribution
of the first and second principal components in CS and PM was
82.5% (PC1 was 53.2% and PC2 was 29.3%) and 79.9% (PC1
was 50.3% and PC2 was 29.6%), respectively. The score map
clearly illustrated the PCA, comparing the healthy and infected
grapes of CS and PM; where the PC1 score variation could be
considered as the positive and negative ranges. Meanwhile, the
difference in infected samples with different pathogenic fungi
could be separated by the different scores of PC1 and PC2.
Moreover, the NNA was conducted for further analysis. The
fingerprint of the aromatic components of CS and PM was shown
in Figures 4C,D, according to the similarity of aroma profiles, the
samples were divided into various groups. The results showed
that the VOCs of CS-GM had the most significant difference
compared with others. The difference between VOCs in CS was
as follows: gray mold > anthracnose > white rot, while the
difference between VOCs in PM was as follows: white rot > gray
mold > anthracnose. Also, the VOCs of CS had more alterations
after infection than PM. It is not difficult to explain because
of the difference in varieties. The strong antibiosis resistance
and freshness of PM may indicate that the VOCs have fewer
changes after infection, and the total phenolics, total flavonoids,
and tannins of healthy grapes in CS are higher than in PM.
Therefore, it is normal to explain the different results when two
grape varieties were infected with the same pathogenic fungal.

CONCLUSION

In this work, the effect of different pathogenic fungal infestations
was investigated on berry quality and VOCs of CS and PM. The
quality changed after pathogenic fungal infestation, including the

content of VC, TF, and tannins, showed a downward tendency
in most of the infected grapes, which is likely because the
infestations interfered with the normal physiological metabolism
of grapes and changed their composition. Meanwhile, higher
levels of TA only appeared in disease-affected CS, and SSC
decreased in disease-affected CS but increased in a disease-
affected PM; these inconsistent results were speculated to be due
to various factors such as varieties and resistance. The results of
100-berry weight showed that there was no significant difference,
indicating that pathogenic fungal infestations had little effect
on it. The VOCs were investigated by GC-IMS to determine
the types and comparative content, a total of 61 VOCs were
identified and then investigated from different functional groups,
including C6-VOCs, alcohols, ester acetates, aldehydes, and acids.
Hexanal and (E)-2-hexenal decreased in all infected grapes, which
may be due to the C6-VOCs being manipulated to reduce the
defense effect of the berry after pathogenic fungal infestation.
In disease-affected CS, a higher level of 3-Methyl-1-butanol
was related to the activity of laccases in B. cinerea., and only
increasing ethanol in disease-affected PM, which was speculated
that spontaneous fermentation could explain it because there
were more yeasts after infection. These unique VOCs may serve
as hypothetical biomarkers to help us identify specific varieties
of pathogenic fungal infestations. Furthermore, the results of
PCA and NAA showed differences in VOCs present in different
varieties of grapes resulting from pathogenic fungal infestation,
which indicated that the VOCs of CS changed more than PM
after infection, and the VOCs produced by different pathogenic
fungal infestations were also different. The difference between
VOCs in CS was as follows: gray mold > anthracnose > white rot,
while the difference between VOCs in PM was as follows: white
rot > gray mold > anthracnose. Finally, this study is beneficial
for us to strengthen the understanding of pathogenic fungal
infestations during the growth and development of grapes and
explore the interaction between pathogenic fungal infestations
and grapes. However, the mechanism of VOCs between grapes
and pathogenic fungal infestations still needs further research.
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Root rot disease caused by Fusarium oxysporum is a devastating disease of 

Salvia miltiorrhiza and dramatically affected the production and quality of Sa. 

miltiorrhiza. Besides the agricultural and chemical control, biocontrol agents 

can be utilized as an additional solution. In the present study, an actinomycete 

that highly inhibited F. oxysporum was isolated from rhizosphere soil 

and identified as based on morphological and molecular characteristics. 

Greenhouse assay proved that the strain had significant biological control 

effect against Sa. miltiorrhiza root rot disease and growth-promoting 

properties on Sa. miltiorrhiza seedlings. To elucidate the biocontrol and plant 

growth-promoting properties of St-220, we employed an analysis combining 

genome mining and metabolites detection. Our analyses based on genome 

sequence and bioassays revealed that the inhibitory activity of St-220 against 

F. oxysporum was associated with the production of enzymes targeting fungal 

cell wall and metabolites with antifungal activities. Strain St-220 possesses 

phosphate solubilization activity, nitrogen fixation activity, siderophore and 

indole-3-acetic acid production activity in vitro, which may promote the 

growth of Sa. miltiorrhiza seedlings. These results suggest that St. albidoflavus 

St-220 is a promising biocontrol agent and also a biofertilizer that could 

be used in the production of Sa. miltiorrhiza.
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Introduction

Salvia miltiorrhiza is a well-important traditional Chinese 
medicinal plant with terrific economic, social, and medicinal 
benefits (Su et al., 2015). Its dried root, called Danshen for its 
medicinal use, has been used for hundreds of years (Jiang et al., 
2019), primarily for the treatment of various cardiovascular and 
cerebrovascular diseases in China and other Asia countries. In 
addition, Sa. miltiorrhiza is also used as a health-promotion food 
(Shi et  al., 2019). To fit the large demand of Danshen, the 
planting areas of Sa. miltiorrhiza has reached to 100 thousand 
hectares in China by the year of 2020. However, the production 
of Sa. miltiorrhiza was severely limited by root rot disease caused 
by Fusarium oxysporum. The average incidence of Sa. 
miltiorrhiza root rot disease in China is 10% ~ 30%. Moreover, in 
some plots where the disease severely happened, the incidence 
could reach to 80%, causing irreversible losses to farmers (Wang 
et al., 2018a).

Currently, the root rot disease on Sa. miltiorrhiza cannot 
be effectively controlled by using physical and chemical methods 
(Ye et al., 2003). Additionally, the long-term overuse of fungicides 
has caused many adverse effects on environment, animal and 
human health, soil quality, and pathogen controlling (Wang et al., 
2014, 2018a; Raza et al., 2017). Consequently, it is important and 
urgent to develop alternative methods and agents that are less 
toxic and more effective in controlling root rot. Utilization of 
functional microbes that not only antagonistic to phytopathogens 
but also friendly to environment is considered an economical and 
effective method to control root rot disease and improve plant 
health. The use of functional microorganisms and their biological 
products can provide growers an option to not only avoid the 
problem of chemical residues on plants and soil, but also to reduce 
pathogen resistance (Handelsman and Stabb, 1996; Abbas et al., 
2020; Sun et al., 2020). Strains of Streptomyces are considered as 
biocontrol agents due to their production of various active 
compounds with agricultural applications. In addition, they are 
able to survive in harsh environments and colonize the root of 
plants belonging to multiple species including Sa. miltiorrhiza 
(Suárez-Moreno et al., 2019; Jose et al., 2021; Wu et al., 2021). 
Moreover, Streptomyces strains have multiple strategies to suppress 
fungal pathogens such like nutrients competition, cell wall 
degradation, virulence factors degradation and plant immunity 
induction (Chen et  al., 2018). Certain Streptomyces can also 
improve nutrient absorption and in turn boost plant development 
by producing auxins, solubilizing inorganic phosphate, fixing 
nitrogen and other methods (Goudjal et al., 2013; Vijayabharathi 
et al., 2015; Liu et al., 2016; Raaijmakers and Mazzola, 2016; Jones 
and Elliot, 2017). Streptomyces SCA2-4 T, isolated from the 
rhizosphere soil of prickly pear (Opuntia stricta), exhibited a 
strong antagonistic activity against F. oxysporum f. sp. cubense 
tropical race 4 causing banana Fusarium wilt (Qi et al., 2021). 
Streptomyces NEAU-S7GS2 isolated from the root of soybean does 
not only prevent Sclerotinia stem rot of soybean, but also promotes 
the soybean growth (Liu et  al., 2019). Therefore, Streptomyces 

species offers abundant resources of biofungicides or biofertilizers 
for agricultural usage (Liu et al., 2019).

In the present study, St. albidoflavus strain St-220 was 
isolated from the rhizosphere soil of Sa. miltiorrhiza, and was 
identified based on its morphological and molecular 
characteristics. Additionally, the plant growth-promoting activity 
and antifungal activity of St-220 was also evaluated in vitro and 
in greenhouse conditions. To demonstrate the antifungal and 
growth-promoting mechanisms, we  carried out an analysis 
combining genome mining and metabolites detection based on 
the genome sequence of St-220.The pathways for synthesis of 
secondary metabolites including antibiotics and plant growth-
promoting compounds were investigated, and genes encoding 
the antifungal enzymes were also predicted. These results 
provided essential and deep insights into the biocontrol 
properties of St. albidoflavus St-220.

Materials and methods

Actinomyces and Fusarium strains

Salvia miltiorrhiza along with the rhizosphere soil were 
collected from Sa. miltiorrhiza plantation in Laiwu City, Shandong 
Province, China (36°18′N 117°50′E). The rhizosphere soil of Sa. 
miltiorrhiza were obtained from the root surface. The isolation of 
actinomycetes was performed according to the methods described 
previously with modifications (Wang et al., 2021). Briefly, 10 ml of 
soil suspension containing 1 g rhizosphere soil and 10 ml sterile 
water was incubated in a shaker at 100 rpm for 30 min, then 
diluted into 10−3 g/ml, 10−4 g/ml, and 10−5 g/ml. Two hundred 
microliters of the diluted suspension were added to Gause’s agar 
medium (containing 2% soluble starch, 0.051% K2HPO4, 0.025% 
MgSO4, 0.001% FeSO4, and 2% Agar B, pH 7.2–7.4) amended with 
20 μg mL−1 nalidixic acid, respectively, and cultured at 28°C. For 
purification, single colonies grown on the plates were separately 
transferred to another plates and then stored at −80°C in 20% 
glycerol. The phytopathogenic fungi F. oxysporum was isolated 
from plant tissues of Sa. miltiorrhiza with root rot disease collected 
from a field in Yuzhou, Henan, in August 2019.

Antagonistic effects of Streptomyces 
strains on Fusarium oxysporum

The inhibition ability of Streptomyces against F. oxysporum was 
determined using the conventional improved scribe inoculation 
method (Chen et al., 2018). A mycelium plug of F. oxysporum in 
the center of potato dextrose agar (PDA) plates. Streptomyces 
strains were inoculated by streaking symmetrically at the two sides 
of the plug, 25 mm to the plate center. Petri dishes not inoculated 
with Streptomyces were used as controls, and three times each 
experiment was performed. After incubation for 5 ~ 7 days at 
28°C, the colony diameters were measured, and the growth 
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inhibition (GI) was calculated according to the following formula 
(Qi et al., 2019):

 
Growthinhibition GI D d D( ) = -( )éë ùû ´/ %100

where D and d represented the diameters of fungal colonies on the 
control and treated plates, respectively.

Control effect of St-220 on Salvia 
miltiorrhiza root rot disease in 
greenhouse condition

Before planting, Sa. miltiorrhiza seeds were soaked in 75% 
ethanol for 5 min, and then soaked in 5% bleach for 10 min for 
surface disinfection. After rinsed with sterile water for three times, 
the seeds were placed in a culture bottle with a sterile mixture of 
soil and vermiculite (2:1). To make inoculum, a mycelium plug of 
F. oxysporum was inoculated in PDA liquid culture and incubated 
in a dark shaker at 28°C 180 rpm for 10 days, then the culture was 
cloth-filtered and the flow-through was saved as spore suspension, 
which was then adjusted to 1 × 107 cfu/ml for use. To make cell 
suspensions of strain St-220, 500 μl of glycerol suspension was 
inoculated in 500 ml Gause’s liquid medium and incubated at 
28°C 160 rpm for 10 days. The two-leaf Sa. miltiorrhiza seedlings 
were inoculated by drenching with 10 ml inoculum of 
F. oxysporum (Fo), 10 ml St-220 cell suspension mixed with 10 ml 
inoculum of F. oxysporum (Fo + St), and 10 ml of sterile water 
(CK), respectively. The inoculated seedlings were grown in a 
growth chamber with temperature of 30°C/26°C, photoperiod of 
12/12 h and 50% humidity. At 30 days after inoculation (DAI), 
disease symptoms were observed and evaluated using a severity 
scale: 0 for no symptoms; 1 was suffered disease symptoms less 
than 20% (only 1 leaf yellowing or wilting); 2 and 3 were plants 
suffering from disease symptoms in the range of 20%–40% (more 
than 2 but less than half of the leaves turn yellow or wither) and 
40%–80%, respectively; 4 was Sa. miltiorrhiza showing severe 
disease symptoms with only the top 1 to 2 leaves being healthy; 
level 5 was plants that have died (Li et al., 2022). The disease index 
(DI) was calculated based on the formula 
DI A B C% / ,( ) = å ´( )´éë ùû ´( )´100 4 100  where A is the 

disease scale (0, 1, 2, 3, 4, and 5), B is the number of seedlings at 
each level of the scale, and C is the total number of seedlings for 
each treatment. Disease incidence and control efficiency were 
calculated according to the following formulas:

Disease incidence
number of yellow leaves

total plant 
%( ) = ( )

lleaves( )
´100

Control 

efficiency

DI of control group

DI of treatment gr

%( ) =

-
ooup

DI of control group

æ
è
ç

ö
ø
÷

( )
´100

 
(Li et al., 2022).

Plant traits including fresh and dry weight of the root and 
shoot of the seedlings, and the diameter and length of the roots 
were measured at 30 DAI. Ten seedlings in five culture bottles 
were inoculated for each treatment, and the experiment was 
repeated for three times.

In vitro assessment of plant growth 
promotion traits

To evaluate the growth-promoting properties, the Phosphate 
solubilization, biological nitrogen fixation, siderophore and 
indoleacetic acid (IAA) production of the St-220 strain was 
determined. For this purpose, St-220 was cultured in 100 ml 
Gause’s liquid medium for 5 days at 28°C in an orbital shaker 
(150 rpm.), and each assay was performed with three biological 
replicates for each strain.

Phosphate solubilization
An improved Pikovskaya (PVK) solid medium was used to 

evaluate the ability of strain St-220 on insoluble organic phosphate 
solubilization. The plate was inoculated with strain St-220 and 
kept at 28°C for 7 days. Positive phosphate solubilization was 
evident by a clear halo around strain St-220 (Gupta et al., 1994). 
Plates inoculated with sterile water were as control. The 
experiment was repeated three times.

Biological nitrogen fixation
Assay for nitrogen-fixing activity of the strains was performed 

according to a modified procedure described previously (Roy, 
1958): strain St-220 colony was inoculated on nitrogen-free agar 
medium (Ashby’s Nitrogen-free medium) and then incubated at 
28°C 7 days for 3 times. That the strain grew after three consecutive 
transfers indicated nitrogen fixation activity.

Siderophore production
Chrome azurol blue agar was used to assess siderophore 

production, and the pH was adjusted to 7.2 with KOH as suggested 
previously (Schwyn and Neilands, 1987). The presence of a yellow 
halo indicates the production of siderophores.

Indoleacetic acid production
The IAA production activity of St-220 was determined by the 

method of Salkowski colorimetry (Tang and Bonner, 1948). The 
activated St-220 was inoculated to 0.5 g/L Gause’s agar liquid 
medium containing tryptophan, and then cultured at 28°C, 
150 r/min in a shaker for 7 days to obtain the fermentation broth. 
One milliliter of the broth was centrifuged at 12,000 rpm for 
5 min, then the supernatant was mixed with 2 ml Salkowski 
reagent containing 15 ml concentrated H2SO4, 25 ml distilled 
water and 0.75 ml of 0.5 M FeCl3.6H2O (de Oliveira-Longatti 
et al., 2014).

After incubation in darkness at room temperature for 30 min, 
the mixture turned pink when IAA was generated. Serial dilutions 

33

https://doi.org/10.3389/fpls.2022.976813
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Du et al. 10.3389/fpls.2022.976813

Frontiers in Plant Science 04 frontiersin.org

of a standard IAA solution (0, 5, 10, 15, 20, 25, 30, 35, and 40 μg/ml) 
were used to construct the calibration plot (Abbasi et al., 2019).

Plant growth-promotion experiments

Seeds of Sa. miltiorrhiza were disinfected as described 
previously, and then planted in pots (7 cm × 7 cm × 10 cm) 
containing 100 g of sterilized soil substrate (nutrient soil: 
vermiculite = 1:1) for germination. When grew two leaves, 
seedlings that are similar in height were selected for use. To make 
inoculum, strain St-220 was grown on Gause’s liquid medium and 
incubated at 28°C 160 rpm for 10 days, then the harvested cell 
suspension was adjusted to 1 × 107 cfu/ml. For inoculation, 20 ml 
of St-220 inoculum were applied to each pot, and 20 ml of sterile 
water was separately applied as negative control. The seedlings 
were inoculated every 10 days until the plant traits were 
investigated. Five replicates for each treatment, and the experiment 
was repeated three times. All the pots were placed in growth 
chamber at 30/26°C and 12/12 h, 50% humidity. Plant traits 
including root and shoot fresh weight, total dry weight, length and 
diameter of the root was measured at 40 DAI.

Sequencing, assembly, annotation, and 
bioinformatics analysis of the genome  
of St-220

DNA extraction
To obtain the genomic DNA, a single colony of St-220 was 

transferred to Gause’s liquid medium and then incubated at 28°C 
at 160 rpm for 5 days. The obtained cell suspension was then 
centrifuged and the supernatant was yield for DNA extraction by 
the SDS method (Lim et al., 2016). The DNA purity and quantity 
were examined by using Qubit® 2.0 Fluorometer (Thermo 
Scientific). The 16 s rDNA of St-220 was sequenced and compared 
to existing databases for identification.

Sequencing, assembly, and annotation
The obtained genomic DNA of St-220 was used for the whole 

genome sequencing by using the Illumina NovaSeq PE150 
sequencing platform at Novogene Technology Co., Ltd. (Beijing, 
China). A series of de novo assemblies were carried out with different 
software (SOAP, SPAdes; Li et  al., 2008; Simpson et  al., 2009; 
Bankevich et al., 2012). The protein coding genes (CDSs), rRNA and 
tRNA were predicted by Glimmer version 3.02, RNAmmer 1.2 and 
tRNA-scan-SE version 2.0, respectively, (Lowe and Eddy, 1997; 
Delcher et  al., 2007; Lagesen et  al., 2007). For gene annotation, 
BLAST searches was carried out in several databases including NCBI 
Non-redundant (NR), Clusters of Orthologous Groups (COG; 
Jensen et al., 2007), Pfam (Finn et al., 2014), Swiss-Prot (Zhou et al., 
2021), Carbohydrate-Active enZYmes (CAZy; Zhang et al., 2018), 
Kyoto Encyclopedia of Genes and Genomes (KEGG; Kanehisa and 
Goto, 2006) and Gene Ontology (GO; Ashburner et al., 2000). The 

online software antiSMASH version 6.0 was employed to definite 
antibiotic and secondary metabolite gene clusters (Blin et al., 2021).

Identification and characterizations of 
strain St-220

Phylogenetic analyses
For identification of St-220, a phylogenetic tree was constructed 

based on the 16S rDNA and five housekeeping genes (atpD, gyrB, 
recA, rpoB, and trpB) concatenated sequences. Multiple alignment 
of the sequences and construction of phylogenetic tree using 
maximum likelihood were generated by using Clustal X (Larkin 
et al., 2007) and PhyloSuitev1.2.2 (Zhang et al., 2020), respectively. 
Calculation of orthoANI values (orthologous average nucleotide 
identity) was performed by JSpeciesWS (Richter et al., 2016) and an 
online tool ANI-Blast (ANIb) Calculator. The ANIb values were 
used for assessing two strains are same species. A Genome-to-
Genome Distance Calculator (GGDC) web server version 3.0 
(Rigden and Fernández, 2022) was used to determine DNA–DNA 
hybridization (DDH) values in silico.

Cultural and morphological characterizations
The morphological characteristics of the St-220 strain were 

observed under scanning electron microscopy (SEM; model 
S-3400 N, Hitachi, Ltd., Tokyo, Japan) when grown on PDA 
medium for 14 days. The mycelium and substrate mycelium 
characteristics of St-220 were investigated after incubation at 28°C 
for 14 days on PDA and Gause’s agar medium, respectively.

Statistical analysis

Statistical analyses including Student’s t-tests and ANOVA 
with Dunnett’s test were performed with R scripts. Difference was 
considered significant when the p value was <0.05.

Results

In vitro antagonistic effects of 
streptomyces strains against Fusarium 
oxysporum

A total of 163 strains of actinomycetes were isolated from the 
rhizosphere soil of Sa. miltiorrhiza in the plantation, and 11 strains 
showed an inhibitory effect on F. oxysporum, of which strain St-220 
showed the most obvious inhibitory effect on mycelia growth of 
F. oxysporum (Supplementary Table S1). After 7 days incubation, 
the F. oxysporum incubated with St-220 showed narrow and oval 
colonies compared to the negative control (Figure 1A). To calculate 
the inhibition rate, the mean diameters of mycelia colonies were 
estimated by measuring the perpendicular length of each colony. 
The mean diameter of F. oxysporum mycelia colonies reached to 
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8.50 cm, while that of F. oxysporum grown with St-220 reached to 
3.46 cm, with an inhibitory rate of 53.40% (Figure 1B).

Control effect of St-220 on root rot 
disease of Salvia miltiorrhiza in 
greenhouse condition

After treated with cell suspension of strain St-220 for 30 days, 
Sa. miltiorrhiza seedlings in the pathogen treatment group 
displayed morphological indications of disease, with leaves 
turning yellow and wilting and roots rotting (Figure 2A). The 
disease incidence and disease index of the treatment group 
inoculated with F. oxysporum (Fo) were 86.67% and 68.00%, 
respectively, while the disease incidence and disease index of the 
treatment group inoculated with F. oxysporum and strain St-220 
(Fo + St) were 20% and 22.66%, respectively. Strain St-220 
significantly (p < 0.05) reduced disease incidence by 76.92% and 
disease index by 66.67% (Supplementary Table S2). Compared 
with the treatment Fo, the total fresh weight (Figure 2C), dry 
weight (Figure 2D), shoot height and root length (Figures 2B,E) 
of the Fo + St treatment significantly increased by 138.45%, 
39.73%, 137.43%, and 72.12%, respectively. Meanwhile, root fresh 
weight, root dry weight, and root diameter were also increased 
(Figures  2C–F). Therefore, St-220 has the biological control 
impact on Sa. miltiorrhiza root rot in greenhouse condition.

Biological characteristics involved in 
plant growth-promoting activity of 
St-220

To explore the potential mechanism of St-220 on plant 
growth-promoting activity, four biological characteristics of strain 

St-220 were tested. In phosphate solubilizing activity assay, a 
distinct circle around the colony was generated after 7 days  
of strain St-220 growing on PVK medium (Figure  3A), 
demonstrating that strain St-220 possessed phosphate solubilizing 
activity. Strain St-220 was able to grow on Ashby’s nitrogen-free 
medium after 3 successive transfers suggesting nitrogen-fixing 
activity (Figure 3B). The siderophore generating carrier activity of 
strain St-220 was indicated by the creation of a prominent yellow 
halo surrounding the colony after 7 days of growth in Chrome 
Azurol Blue agar (Figure 3C). The IAA production activity of 
strain St-220 was also determined (Figure  3D). Strain St-220 
produced maximum 30.40 μg/ml of IAA at 7 DAI, according to a 
standard curve based on series dilution [y = 0.0094x + 0.0430 
(R2 = 0.9735, where y is the absorbance value at wavelength of 
530 nm, x is the concentration of IAA)] (Supplementary Figure S1).

Plant growth-promotion activity of 
St-220 on Salvia miltiorrhiza

To investigate the growth-promoting impact of strain St-220 
on Sa. miltiorrhiza, a greenhouse experiment was performed and 
the plant traits was assessed at 40 DAI. The results suggested that 
strain St-220 was able to stimulate Sa. miltiorrhiza growth in 
contrast to non-inoculated plants, since it exhibited increases in 
shoot height and fresh weight in roots and plants. St-220 
significantly increased the root fresh weight, total fresh weight, 
total dry weight and root dry weight of Sa. miltiorrhiza seedlings 
by 85.22%, 105.50%, 60.88%, and 36.72%, respectively (Figure 4A). 
Shoot length and root length also showed an increase 
(Figures 4B-D).

Identification of St-220 strain

After 2-week incubation on PDA, the colony morphology of 
St-220 revealed a firm surface with white aerial mycelia and faintly 
whitish-yellow spores (Figure 5A), which is consist with typical 
morphological characteristics of the Streptomyces genus. Both 
substrate and aerial mycelia were grown well without 
fragmentation. The flexuous spore chains formed by cylindrical 
spores were observed under our scanning electron microscope 
observation (Figure 5B).

The 16S rDNA sequence of St-220 was amplified by PCR and 
sequenced, and in turn searched in the EzTaxon database, and the 
strains with high similarity were screened. The sequences of the 
16S rDNA and 5 housekeeping genes (atpD, gyrB, recA, rpoB, and 
trpB) were concatenated and used to construct a phylogenetic tree 
using the Maximum-Likelihood method with 1,000 bootstraps. 
The results suggested that strain St-220 and St. albidoflavus 
clustered into a same clade (Figure 5C). To further confirm our 
result, the Average Nucleotide Identity (ANI) and DNA–DNA 
hybridization (DDH) values between St-220 and other 13 
Streptomyces strains were calculated. The genome of  

A B

FIGURE 1

The antifungal activity of strain St-220 against Fusarium 
oxysporum. (A) F. oxysporum colony grew on PDA plate alone 
(upper) and with St-220 (lower) at 7 days after inoculation. 
(B) Colony diameter of F. oxysporum in each treatment. Bars with 
∗ above are statistically different (p < 0.05).
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St. albidoflavus showed the highest ANI and DDH value of  
98.87% and 93.90, among the test strains, respectively, 
(Supplementary Table S3), which was greater than the threshold 
value of 95% ~ 96% and 70 for species delineation (Richter and 
Rosselló-Móra, 2009). Altogether, strain St-220 is recognized as a 
new member of the St. albidoflavus species.

Genome features of St-220

To have a deep insight in the molecular mechanisms of 
inhibitory effect and plant growth-promoting, the whole genome 
of St-220 was sequenced and analyzed. After adapter trimming, 
the reads were de novo assembled into 175 contigs. The genome 

A B

C D

E F

FIGURE 2

Control effect of St-220 on root rot disease of Salvia miltiorrhiza seedlings. (A) Symptoms of root rot developed on seedlings inoculated with 
Fusarium oxysporum (Fo) and mixture of F. oxysporum and St-220 (Fo + St) at 30 DAI, while no symptoms were observed on seedlings inoculated 
with sterile water (CK). (B) The entire plant of the seedlings in CK, Fo, and Fo + St treatment. Measurement of the fresh weight (C), dry weight (D), 
shoot height, root length (E), and root diameter (F) of seedlings inoculated. Data are mean ± SE (n = 10). Means were compared with ANOVA analysis 
in combination with Tukey post-test. Means were considered statistically different when p < 0.05, Bars with ∗ above are statistically different, ns 
above are not statistically different.
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size of St-220 is 7,310,412 bp with G + C content of 73.41%. The 
whole genome sequence for St-220 have been deposited in the 
GenBank database with accession number of JAMFMD000000000. 
Genomic analysis revealed that the genome of St-220 contained 
6,327 CDSs accounting for ~85.43% of the genome (Table 1).

Functional analysis revealed that 5,148, 4,152, 4,798 out of the 
6,244 identified CDSs were assigned to COG, GO, and KEGG 
categories, respectively. In COG categories, the highest ratio the 
metabolism process was assigned gene numbers with ratio of 
36.77%, followed by the category of information storage and 
processing (17.89%), and the category of cellular processes and 
signaling (28.61%; Figure 6A). Gene ontology analysis revealed 
that the category of biological process contained the most GO 
terms and genes (8,166), followed by molecular function (5,437) 
and cellular component (2,872; Figure  6B). KEGG pathway 
analysis showed that the metabolism pathway had the most genes 
involved, followed by the pathway of environmental information 
processing (Figure 6C). Additionally, 274 genes were identified in 
CAZy database and classified into six families. A total of 111 
proteins were predicted as belonging to the Glycoside Hydrolase 
family, of which 88 to Carbohydrate-Binding Modules, 47 to 
Glycosyl Transferases, 20 to Carbohydrate Esterases, 7 to Auxiliary 
Activities, and 1 to the Polysaccharide Lyases family (Figure 6D).

Genome analysis of secondary 
metabolite clusters

In our genome mining analysis, the strain St-220 was predicted 
on produce a plenty of secondary metabolites. By using the 
antiSMASH, 21 gene clusters for secondary metabolites biosynthesis 
were predicted and found located in the chromosome of St-220 
(Supplementary Table S4), of which 10 gene clusters were involved 
in the biosynthesis of metabolites antimicrobial activities including 
ectoine, desferrioxamine B, surugamide A, antimycin, geosmin, 
indigoidine, isorenieratene, and candicidin (Figure 7). Furthermore, 
the Region 12.1 was predicted as involved in the desferrioxamine B 
and E biosynthesis (Supplementary Table S4), which participated 
the removal of excess iron in the environment.

Genes associated with fungal cell wall 
degrading enzymes

The genome of strain St-220 harbors 15 genes encoding 
enzymes involved in chitin degrading, including six β-N-acetyl 
hexosaminidase, eight chitinases, and one chitosanase. In 
addition, St-220 has four chitin-binding proteins belonging to the 
AA10 family, which enhance the binding abilities of enzymes to 
insoluble substrates. Four genes in the genome of St-220 were 
further found to encode endo-1, 3-β-glucanase for degradation of 
glucan (Supplementary Table S5). Moreover, St-220 contains 
various genes encoding enzymes that play roles in the degradation 
of cellulose, protein, and lipids (Supplementary Table S5).

Genes associated with plant 
growth-promotion

Our genomic analysis identified several genes related to the 
plant growth-promoting activities of St-220. These genes 
participated in 3 trp-dependent biosynthesis pathways of indole-
3-acetic acid, including the indole acetamide (IAM), the 
tryptamine (TAM) and the indole-acetonitrile (IAN) pathways. In 
the IAM pathway, tryptophan is converted to IAM by tryptophan 
monooxygenase enzyme, and then amidase enzyme converts IAM 
to IAA. Nine encoding genes associated with the IAM pathway 
were found in the St-220 chromosome, of which six encoding 
tryptophan 2-monooxygenase and three encoding amidas 
(Supplementary Table S6). In the TAM pathway, tryptophan is 
firstly converted to TAM, then amine oxidase converts TAM to 
indole-3-acetaldehyde (IAAld), and finally IAAd is converted to 
IAA by aldehyde dehydrogenase. Two genes encoding monoamine 
oxidase and four genes encoding aldehyde dehydrogenase were 
found to be present in the genome of St-220. The fact that St-220 
harbors two separate pathways for IAA biosynthesis suggested 
that the IAA production plays a role in life maintenance and plant 
growth-promoting activity. Moreover, St-220 also contains a  
gene encoding putative1-aminocyclopropane-1-carboxylic acid 
(ACC) deaminase involved in the decomposition of ACC 

A B C D

FIGURE 3

Evaluation of strain St-220 for key traits related to direct plant growth-promotion. (A) Qualitative phosphate solubilization assay. (B) Biological 
nitrogen fixation activity assay. (C) Siderophores qualitative production assay. (D) Production of indole acetic acid activity assay.
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(Supplementary Table S6) and we made a case that the St-220 
could improve the ability of plants to survive under stress 
conditions by inhibiting ethylene synthesis.

The genome of strain St-220 contains multiple genes involved 
in the degradation of inorganic polyphosphates and the 
dissolution of organic phosphates, including a ppx gene encoding 
exopoly phosphatase, a ppa gene encoding inorganic 
pyrophosphatase, and three phoD genes encoding alkaline 
phosphatase. Furthermore, a pstABCS cluster involved in the 

transport and degradation of phosphonates is found in the 
chromosome of St-220 (Supplementary Table S7).

The genome of Strain St-220 contains one nitrogen fixation 
protein NifU, and an ammonium transporter protein that  
was involved in the ability of nitrogen fixation. The strain  
St-220 genome also contains nine nitrate reductase genes 
(Supplementary Table S8).

The St-220 genome harbors plenty of genetic elements 
involved in siderophore biosynthesis and iron complex transport 

A B

C D

FIGURE 4

The growth-promoting effect of St-220 on Salvia miltiorrhiza seedlings. The growth-promoting activity of strains St-220 was measured under 
greenhouse conditions, and the data were recorded at 40 days after inoculation. (A) the biomass of Sa. miltiorrhiza seedlings. (B) overall 
development of Sa. miltiorrhiza seedlings inoculated with sterile water (left) and St-220 (right). The shoot height, root length (C) and root diameter 
(D) of Sa. miltiorrhiza seedlings inoculated with sterile water and cell suspension of St-220. Data are mean ± SE (n = 10). Means were considered 
statistically different when p < 0.05, Bars with ∗ above are statistically different, ns above are not statistically different.
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(Supplementary Table S9). Moreover, one cluster involved in 
siderophore biosynthesis is also present in the chromosome 
sequence of St-220.

Discussion

Root rot disease caused by F. oxysporum is one of the most 
severe soil-borne disease worldwide, and also the main 
constraint of Sa. miltiorrhiza production in China. In the 
present study, an actinomycete strain St-220 with biocontrol 

activity was isolated from roots of Sa. miltiorrhiza and 
identified as Streptomyces albidoflavus. The strain showed 
inhibition rate of 53.40% against F. oxysporum in the dual 
culture assay and control effect of 77.33% on root rot disease 
incidence in greenhouse condition. In addition, St. 
albidoflavus St-220 strain also promoted the growth of Sa. 
miltiorrhiza by increasing biomass including total fresh 
weight, root fresh weight, total dry weight and root dry 
weight, as well as shoot and root length. These results indicate 
that St. albidoflavus St-220 is a promising biocontrol agent for 
the control of root rot disease and biofertilizer for Sa. 
miltiorrhiza.

A

C

B

FIGURE 5

Morphological and molecular identification of strain St-220. (A) Colony morphology of the strain St-220 on PDA medium after 14 days of 
incubation at 28°C. (B) Spores of St-220 observed under scanning electron microscope after incubated on PDA medium for 14 days at 28°C. (C) A 
phylogenetic tree using the maximum likelihood method based on the sequences of 16S rDNA and 5 housekeeping genes with 1,000 bootstraps.
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Streptomyces albidoflavus St-220 have 
both biological control activity and plant 
growth-promoting activity

Some Streptomyces strains could significantly improve the 
biocontrol of Fusarium root rot disease and promote the 
growth of plant seedlings (El-Tarabily et al., 2009; Goudjal 
et al., 2016; Tamreihao et al., 2016; Chen et al., 2021). They 
were generally identified by three properties: IAA production, 
the abilities to solubilize phosphate and fix nitrogen, and 
siderophores production (Vurukonda et al., 2018). IAA is a 
phytohormone that regulates the growth of plant roots by 
stimulating the development of root (Lwin et al., 2012), and 
is also an important trait of plant growth-promoting 
microorganism. Tomato seedlings significantly increased in 
fresh and dry weight after treated with IAA producing strain 
S. fradiae (Myo et al., 2019). Phosphorus as a macronutrient 
is dispensable for plants (Ågren and Weih, 2020). Most of the 
phosphorus, however, present in the form of insoluble in the 
soil, and cannot be directly utilized by plants (Rawat et al., 
2021). The Streptomyces strains with growth-promoting 
activity can dissolve the insoluble phosphate for plant growth. 
Inoculation of Streptomyces sp. strain 7.1 with inorganic 
phosphate solubilizing activity significantly increased the 
fresh weight of roots and stems of rice (Suárez-Moreno et al., 
2019). Nitrogen is critical to whole life cycle of plants. The 
atmospheric nitrogen was transformed into ammonia that 
could be  utilized by plants through nitrogen fixation 
(Dobbelaere et  al., 2003). The siderophores secreted by 
biocontrol agents could suppress the pathogen and protect 
plants from pathogen infection by iron-competition and 
restructuring rhizosphere microbiome (Amano et al., 2011; 
Yu et al., 2013; Gu et al., 2020). For example, the endophytic 
Streptomyces strains SNL1 and SNL2 producing siderophores 
have antagonistic activities against F. oxysporum f. sp. 

cubenese causing Fusarium wilt of banana (Cao et al., 2005). 
Streptomyces can further promote plant mineral nutrient 
supply by synthesizing siderophores. Streptomyces sp. GMKU 
3100 producing siderophore was able to promote the growth 
of rice and mung bean, whereas its siderophore-deficient 
mutant did not differ from the uninoculated control (Rungin 
et al., 2012).

Previous studies have revealed that Streptomyces strains with 
above properties showed plant growth-promoting activity. 
S. violaceusniger AC12AB was found to have properties of IAA 
production, siderophores production, nitrogen fixation and 
phosphates solubilization. It significantly promoted the potato 
crop up to 26.8% in field trial (Sarwar et al., 2019). Barley plants 
inoculated with S. roseocinereus MS1B15, a strain with 
IAA-producing, phosphate solubilizing, and nitrogen-fixing 
activity, significantly increased shoot and spike length (Chouyia 
et al., 2020). In this study, application of the St-220 resulted in a 
significant increase in the biomass of Sa. miltiorrhiza seedlings. To 
elucidate the way that the St-220 promotes the growth, the 
activities of IAA production, phosphorus solubilization, nitrogen 
fixation and siderophores production was determined and the 
synthesis pathway was found in further genomic analysis.

Genomic analysis revealed the potential 
antifungal and root growth-promoting 
mechanism of St-220

The strains of Streptomyces genus employ their secondary 
metabolites as weapons to inhibit phytopathogenic fungi (Amin 
et al., 2021; Hotta, 2021; Mahasneh et al., 2021; Terra et al., 2021). 
In this study, genome sequencing revealed that the chromosome 
of the St. albidoflavus St-220 contained 21 conserved biosynthesis 
gene clusters (BGCs), of which 10 showed high similarities in 
structure with known BGCs encoding terpenes, non-ribosomal 
peptides, polyketides, siderophores, and ectoines, which had been 
proven to participate in the regulation of antimicrobial activities 
of Streptomyces strains (van Bergeijk et al., 2020). Among these 
compounds, the surugamide A, indigoidine Antimycin and 
Candicidin SF2768 were found to have antifungal activities (Xu 
et al., 2017; Santos-Beneit et al., 2022), indicating the potential 
mechanism of the inhibitory effect of St-220 against F. oxysporum.

Chitin, the most important component of fungal cell wall, is 
the preliminary target that biocontrol agents aim at. Streptomyces 
strains produce chitinases to break through the fungal cell wall. 
For instance, S. griseus secret ChiIS, which belongs to glycosyl 
hydrolase family 19, to inhibit the growth of Aspergillus nidulans, 
F. culmorum, and S. sclerotiorum (Hoster et al., 2005). Chitinase 
produced by Streptomyces sp. TK-VL_333 showed antifungal 
activity against F. oxysporum (Kavitha and Vijayalakshmi, 2011). 
The purified and crude chitinase from S. luridiscabiei U05 
inhibited the growth of F. oxysporum and Alternaria alternata 
(Swiontek Brzezinska et al., 2019). In this study, multiple genes 
(chitinases, β-N-acetyl hexosaminidase, chitosanase) encoding 

TABLE 1 Genome features of Streptomyces albidoflavus St-220.

Features Genome

Genome size (bp) 7,310,412

Gene Number 6,327

Gene total length 6,245,418

G + C content (%) 73.58

Genome coverage 85.43

Contings 175

Contings N50 (bp) 71,800

Number of ORFs 6,327

tRNA genes 65

rRNA genes 6

CRISPRs 48

Genomic island 10

Genome accession number JAMFMD000000000
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enzymes involved in chitin degradation were found in the genome 
of St. albidoflavus St-220, indicating that the St-220 deployed 
several weapons targeting the fungal cell wall for its 
biocontrol effect.

The genome mining has also confirmed the potential 
mechanism of St. albidoflavus St-220 on promoting root growth 
of Sa. miltiorrhiza. In our greenhouse assay, St. albidoflavus 
St-220 promoted the growth of Sa. miltiorrhiza seedlings by 
increasing the plant biomass, especially the length, diameter, 
fresh and dry weight of the plant roots (Figure 4). To have a 
deep perspective on the root promoting mechanism, we tested 
and found that St. albidoflavus St-220 has the biological 
characteristics involved in plant promoting activity including 

phosphate solubilization, nitrogen fixation, IAA production and 
siderophore production. The actinobacterial strains, such as  
St. alfalfae strain XN-04, Streptomyces sp. NEAU-S7GS2, and  
St. chartreusis strain WZS021, have root growth-promoting 
activities on cotton, soyabean and sugarcane, respectively, and 
genes related to IAA, siderophores, phosphate solubilization 
were identified in their genomes (Wang et al., 2018b, Liu et al., 
2019, Chen et al., 2021). In various studies, IAA has been shown 
to increase plant root size and distribution, as well as root hairs, 
resulting in higher nutrient uptake from the soil (Datta and 
Basu, 2000; Gumiere et al., 2014; Liao et al., 2017; Ulrich et al., 
2021). A number of encoding genes directly involved in the 
synthesis of indoleacetic acid were found in the genome of 

A

C

D

B

FIGURE 6

Analysis of genome structure and metabolic pathway of strain Streptomyces albidoflavus St-220. (A) COG annotation of strain St. albidoflavus 
St-220. genome. (B) GO functional categories of St. albidoflavus St-220. (C) Pathway annotation of strain St. albidoflavus St-220 genome 
according to the KEGG database. The vertical axis represented the level two classification of KEGG pathway. The horizontal axis represented the 
gene number annotated in this classification. Different colors of the columns represented different classifications of KEGG pathway. (D) Gene 
count distributions of carbohydrate-active enzyme (CAZy) families.
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St-220, including two genes encoding monoamine oxidase and 
four genes encoding aldehyde dehydrogenase. Many plant-
associated actinomycetes are able to solubilize phosphorus into 
a form that can be used by plants by secreting phosphatases and 
phytases (Suárez-Moreno et al., 2019). In our present study, the 
genomic sequences of strain St-220 were found to encode acid 
and alkaline phosphatases, as well as phytases, suggesting a 
potential root stimulation of St-220. Additionally, 12 genes 
related to nitrogen fixation were also found in the genome of 
strain St-220. The nitrogen fixation plays a key role in the 
promoting activity of biocontrol agents on plant root growth 
and development (Dobbelaere et al., 2003). Our genome mining 
confirmed that the St. albidoflavus St-220 harbors predicted 
genes involved in pathways regarding IAA and siderophores 
production, phosphate solubilization and nitrogen fixation, 
which may play roles in simulating growth and development of 
plant roots. Therefore, we speculated that St. albidoflavus St-220 
promotes plant growth in greenhouse condition through 

employing genes involved in a variety of metabolites synthesis 
pathways that may related to growth-promoting effects. Our 
results revealed the antifungal and growth-promoting activities 
of the St. albidoflavus St-220, and suggested the St-220 could 
be developed as a promising biological fertilizer.

Conclusion

Strain St-220 has inhibitory activity against F. oxysporum 
causing root rot disease of Sa. miltiorrhiza, and also promotes the 
growth of Sa. miltiorrhiza seedlings. The strain was identified as 
St. albidoflavus by its morphological and molecular 
characteristics. Our genome sequencing identified many 
pathways involved in synthesis of secondary metabolites with 
antifungal and growth-promoting activities, indicating the 
versatility of St-220 for being developed as a BCA against 
Fusarium wilt of Sa. miltiorrhiza.

FIGURE 7

Genome-wide analysis of gene clusters related to the biosynthesis of secondary metabolites using the online antiSMASH v6.0 software.
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Acylsugars are secondary metabolites that are produced in the trichomes

of some solanaceous species and can help control several herbivorous

insect pests. Previously, knockout mutations (asat2 mutants) were shown to

significantly reduce the acylsugar content of Nicotiana benthamiana, and

significantly improve the fitness of six generalist insect herbivores. The current

study compared the significant mortality and fitness costs in Spodoptera

litura conferred by acylsugar protection of N. benthamiana (wild-type plants)

compared to S. litura strains reared in acylsugar-deficient plants with depleted

acylsugar biosynthesis. Acylsugar protection prolonged the developmental

duration and decreased viability in the larval stages. Further, the fecundity of

females and the hatching rate of eggs significantly decreased under acylsugar

protection. For F1 o�spring, acylsugar protection still exerted significant

negative e�ects on larval survival rate and fecundity per female. The net

reproductive rate and relative fitness of the S. litura strain were strongly

a�ected by acylsugar. Altogether, these results indicate that acylsugar could

contribute to plant protection due to toxicity to pests, di�used availability, and

low environmental persistence. This could represent a complementary and

alternative strategy to control populations of insect pests.

KEYWORDS

acylsugar, Nicotiana benthamiana, chemical defenses, Spodoptera litura, toxicity,

fitness cost, transgenerational e�ects

Introduction

Plants generate molecules with low-molecular mass that are considered secondary

metabolites, and they show various mechanisms of defense against different herbivores

(Schuman and Baldwin, 2016). In addition to physical characteristics such as low

digestibility, spines, and leaf toughness, it has been reported that, in plants, many

published metabolites could be used to control insect pests (Bérdy, 2005). However,

many insect pests display the ability to resist the defensive traits from metabolites

in their preferred species of plants which could be against by more sporadically
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distributed chemical defenses. For example, the extensively

investigated Brassicaceae provides outstanding instances of

plants that generate extra chemical defenses beyond the

canonical glucosinolates characteristic of this plant family

(Fahey et al., 2001). Two lineages of Barbarea vulgaris,

glabrous (G-type) and pubescent (P-type), display different

content of triterpenoid saponins, and show distinct levels of

resistance against Plutella xylostella (Agerbirk et al., 2003).

Erysimum contains cardiac glycosides which negatively affect

feeding behavior and oviposition of Pieris rapae (Sachdev-Gupta

et al., 1990, 1993). Other cases of chemical defenses, such

as cucurbitacins in Iberis umbellate, alliarinoside in Alliaria

petiolate, and tropane alkaloids in Cochlearia officinalis have

been demonstrated previously (Nielsen et al., 1977; Haribal

et al., 2001; Brock et al., 2006). These kinds of deterrent or

toxic metabolites from various plants can be utilized to enhance

resistance to insect pests in crops if reasonable and rational

strategies are established with current biotechnologies (Zhou

and Jander, 2021).

Acylsugars are insect-deterrent metabolites generated by the

family Solanaceae, and are produced and exuded from glandular

trichomes of the plants (Goffreda et al., 1988, 1989; Wagner,

1991), resulting in significant negative effects like antibiosis

or insect-repellent on various tomato herbivores (Hawthorne

et al., 1992; Rodriguez et al., 1993; Juvik et al., 1994; Leckie

et al., 2012; Ben-Mahmoud et al., 2018). Similarly, although

Nicotiana benthamiana has been extensively utilized in the

study of plant–microbe interactions (Goodin et al., 2008; Bally

et al., 2018), it may not be the most appropriate host plant

for studying herbivore–plant interactions (Hagimori et al.,

1993; Simón et al., 2003) and the undesirable performance

of herbivores on N. benthamiana could be partially ascribed

to acylsugars (Feng et al., 2021). Specifically, the Nicotiana

species showing resistance to aphids contained acylsugars, yet

acylsugars cannot be measured in the more susceptible species

of the genus (Hagimori et al., 1993). Similarly, compared with

Solanum lycopersicum, the cultivated tomatoes, acylsugars could

be detected in the wild tomato species S. pennellii, which

displayed higher resistance to the pest species Bemisia tabaci

and Myzus persicae (Rodriguez et al., 1993; Marchant et al.,

2020). Recently, Feng et al. (2021) reported that changed profiles

of acylsugar could reduce levels of resistance to six insect

pests such as B. tabaci, M. persicae, Macrosiphum euphorbiae,

Trichoplusia ni, Heliothis virescens, and Helicoverpa zea. This

type of plant resistance to herbivore pests could be strengthened

via bioengineering to enhance amounts of defensivemetabolites,

alter available biochemical pathways, or transfer the biosynthesis

of novel types of defensive metabolites into target plants.

Nevertheless, present strategies of bioengineering are limited

owing to several factors, such as inadequate references for

the biosynthetic pathways of plant metabolites, unexpected

byproducts originating from plant metabolites, and demands

for the spatial specificity of metabolite production to increase

resistance to insect pests.

Spodoptera litura (Fabricius), the tobacco cutworm, is one

notorious polyphagous and destructive herbivore pest that feeds

on various economic and horticultural crops, including cotton,

soybeans, tobacco, tomatoes, and peanuts. The extensive range

of host plants suggests that S. litura could neutralize the traits

of resistance of different plants (Shi et al., 2022), and some

specific secondary metabolites of the plants significantly inhibit

the growth of S. litura in the larval stages (Kundu et al.,

2018). Because the application of chemical agents has been the

primary step against S. litura for the most recent few decades,

an increasing number of studies has indicated that several

field-collected S. litura populations have evolved significant

levels of resistance to a variety of chemical agents such as

carbamate, organophosphate, chlorantraniliprole, pyrethroids,

abamectin, indoxacarb, and emamectin benzoate, and the wide

application of these chemical agents is no longer a suitable

strategy for environment-friendly plant protection (Tong et al.,

2013; Saleem et al., 2016; Wang et al., 2018; Xu et al.,

2020). Considering that N. benthamiana acylsugars showed

defensive effects of metabolites against lepidopteran pests, it

may be possible to enhance resistance of plant by transgenic

methods of transferring biosynthetic pathways (Feng et al.,

2021). Typically, establishment of the life-table has been shown

as one important method for evaluating and understanding

the effects of exogenous elements on the individual and the

entire population of insect pests. The analysis of the life-table

could be used for precisely estimating the growth rate of the

population and the fitness costs, and on this basis, strategies of

pest management could be formulated more reasonably (Kliot

and Ghanim, 2012). In the present work, mortality and fitness

costs in a lab-reared population of S. litura with acylsugar

protection ofN. benthamianawere systematically examined, and

the results indicated the plant chemical defenses conferred by

acylsugar, and these results can supply important data for using

acylsugar for controlling pests via chemical plant defenses in

the field.

Materials and methods

Insects and plants

The reference strain of S. litura, Lab-S strain, was used in this

study and was reared on an artificial diet in one insect-rearing

room without exposure to chemical agents for over 5 years

(Zhang et al., 2022). The wild-type (WT) and the acylsugar-

deficient asat2-1 line (ASAT2) plants of N. benthamiana were

obtained from the Boyce Thompson Institute, Ithaca, New York,

USA, and the ASAT2 plants showed an almost complete absence

of acylsugar compared to the WT plants (Feng et al., 2021). All

plants of WT and the ASAT2 mutant of N. benthamiana were

reared at 23◦C and a 16:8 h light:dark photoperiod in a well-

controlled chamber. All bioassays and fitness cost evaluation
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work were performed at 26◦C under a 16:8 h light:dark

photoperiod in a well-controlled growth chamber.

Bioassays

The lethal activity of acylsugar toward various stages of

larvae was examined by bioassays. S. litura eggs were maintained

on an artificial diet, and five larval stages (the 2nd, 3rd, 4th,

5th, and 6th stages), were measured. For each tested instar of

larvae, one hundred 12-h-old larvae were selected and fed with

the leaves ofWT or ASAT2 plants. Ten larvae were placed on one

WT or ASAT2 plant as one tested group, and 10 of the tested

groups were set as replicas for each bioassay. The immobile

larvae in each stage were considered as dead, and the number of

larvae that survived was recorded after 48 h. Comparisons were

made between the WT and ASAT2 using the Student’s t-test.

Defensive e�ects of acylsugar on S. litura

of F0

This study evaluated the defensive effects of acylsugar on

second-instar larvae of S. litura. Six hundred one-day-old

second-instar larvae were randomly collected, and 300 of them

were fed with N. benthamiana leaves of WT plants, while the

other 300 were fed with N. benthamiana leaves of ASAT2 plants.

The total number of deformed pupae was counted, and, within

24 h, all healthy pupae were weighed, and the rate of pupation

was recorded. After the adults emerged, 15 pairs of female and

male adults were coupled in the first 12-h after emergence, and

each couple was placed into one plastic cup (3-cm diameter and

5-cm height). Each of the tested couples was introduced into new

plastic cups daily, and the fecundity of each female, oviposition,

and egg hatching rate was recorded every day. Comparisons

were made between the plants of WT and ASAT2 using the

Student’s t-test.

Transgenerational defensive e�ects of
acylsugar on F1 o�spring

To determine whether acylsugar exerts transgenerational

defensive effects on the F1 population, the egg hatching rate

was assessed by sampling 20 egg masses (more than 250 eggs

per mass) on the fourth day of the oviposition duration for

F0 females, which were fed on acylsugar (the WT plants) or

acylsugar-depleted (the ASAT2 plants) from the second larval

instar. Further, 100 collections from four masses of eggs (20–

30 eggs from each mass) were utilized to establish the life table

for each tested population of S. litura. Neonates of the F1

generation were transferred individually into one plastic tube

and fed with artificial diet in the tube. The developmental time

of larval-instar stages and survival rates were checked daily,

and pupation rate, duration of pupae, the longevity of adults,

and emergence rate were recorded every day. Newly emerged

males and females of the F1 generation were coupled and put

into one plastic cup for oviposition. The fecundity of females,

oviposition duration of females, and hatchability of the eggs

were checked daily. Comparisons were made between the WT

and ASAT2 using the Student’s t-test. Net reproductive rate (R0)

and the relative fitness were evaluated according to a previously

published method (Wang and Wu, 2014).

Results

Toxicity of acylsugar on di�erent instar
larvae in S. litura

To confirm if the depletion of acylsugar in the ASAT2

mutants enhances the adaptability of S. litura on Nicotiana

benthamiana, we performed bioassays with the 2nd, 3rd, 4th,

5th, and 6th instars of S. litura. When each of the specific instar

larvae was put onto the leaves of the ASAT2 mutant or wildtype

(WT), survival rates of S. litura on WT plants were significantly

lower compared to their counterparts reared on the ASAT2

plants (Figure 1). The 2nd instar larvae of S. litura onWT plants

had the lowest survival rate,∼53%, while the survival rate of 2nd

instar larvae on ASAT2 plants was ∼96% (Figure 1). For other

stages of larvae in the bioassays, survival rates of S. litura on

WT plants decreased more significantly than on ASAT2 plants

(Figure 1).

E�ect of acylsugar on larvae and adults
of S. litura F0 generation

Biological components including survival rate and

developmental time, larval, and pupal weight, the fecundity

of females, duration of oviposition, and egg hatching rate for

the F0 generation grown from 2nd instar larvae fed with or

without acylsugar were studied. Compared to those fed on

ASAT2 plants, the survival rate of the second- to sixth instar

larvae from the F0 group fed with WT significantly decreased in

each stage (Figure 2A), and their weight significantly decreased

in each stage from second instar larvae to pupae (Figure 2B). In

comparison with the ASAT2 group, the development time of

second- to sixth instar larvae of F0 fed withWTwas significantly

prolonged by 2.2 days (Figure 3A). However, pupal duration

and female and male longevity were not significantly different

between those reared on WT and ASAT2 plants (Figures 3A,B).

Further, compared to the mean fecundity of ASAT2-fed

females (3,815.53 eggs per female), WT-fed females displayed

significantly reduced fecundity, with 2,565.93 eggs per female

(Figure 4A). Similarly, a significant decrease in the egg hatch
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FIGURE 1

Survival rate of bioassays using specific stages of larval instars on WT and ASAT2 plants of N. benthamiana. Values are presented as means ± SE.

Asterisks above error bars indicate significant di�erences (P < 0.05).

rate of WT-fed females (79.58%) was observed compared with

ASAT2-fed females (94.20%; Figure 4C). However, there was no

detectable difference in the duration of oviposition between the

two populations (Figure 4B).

Transgenerational defensive e�ects of
acylsugar on the F1 generation

No significant defensive effects of acylsugar on the period

of various stages of life were detected between ASAT2-fed

and the WT-fed group (Figure 5A). In addition, the pupation

and emergence rate did not significantly differ between the

two groups (Figure 5B). However, in comparison with the

ASAT2-fed group, the larval survival of the WT-fed plant

group significantly decreased (Figure 5B). Further, a significant

difference in eggs laid per female of F1 was observed between the

ASAT2-fed (4,188.87 ± 267.29) and WT-fed groups (3,356.87

± 207.54; Figure 6A). On the contrary, no significant difference

was observed in other reproduction parameters, such as

oviposition duration (Figure 6B) and hatchability of the eggs

(Figure 6C). All fitness parameters of F1 offspring are displayed

in Table 1. Relative to the net replacement rate (R0) of the

ASAT2-fed group, the fitness of the WT-fed group was 0.51

(Table 1).

Discussion

Acylsugars exuded by glandular trichomes are considered

powerful natural pesticides (Puterka et al., 2003), and can

directly kill some species of insect pests (Feng et al., 2021). In this

study, we found that although larvae of S. litura grow well on the

ASAT2 mutant line of N. benthamiana, significant insecticidal

effects of acylsugar against larvae of S. litura were observed in

the WT line of N. benthamiana. In particular, a 50% lethality

effect was detected for the 2nd instar larvae. Similarly, it has

been reported that knockout of acylsugar biosynthesis conferred

a significantly higher survival rate for M. persicae and B. tabaci

on the ASAT2 mutant line compared with their high mortality

in wildtype N. benthamiana (Feng et al., 2021). Considering

that acylsugars are defensive metabolites generated by various

Solanaceae species, in which they provide deterrence against

a large range of herbivores, acylsugar-associated herbivore

resistance has huge promise against insect pests of tomato such

as whiteflies, thrips, and aphids (Goffreda et al., 1988, 1989;

Hawthorne et al., 1992; Rodriguez et al., 1993; Juvik et al., 1994;

Liedl et al., 1995; Leckie et al., 2012).
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FIGURE 2

Survival rate (A) and weight of individual (B) in each larval stage of the F0 generation on WT and ASAT2 plants of N. benthamiana. Values are

presented as means ± SE. Asterisks above error bars indicate significant di�erences (P < 0.05).

FIGURE 3

Development time (A) and longevity of adults (B) of the F0 generation on WT and ASAT2 plants of N. benthamiana. Values are presented as

means ± SE. Asterisks above error bars indicate significant di�erences (P < 0.05), and n.s. indicates not significant (P > 0.05).

Further, acylsugars can negatively affect the fitness of various

insect pests by interfering with behaviors such as feeding

and oviposition and have detrimental effects on their growth

(Simmons et al., 2003; Resende et al., 2006). To investigate

the underlying ecological effects of acylsugar on insect pests,

we conducted systematic work on the defensive effects on S.

litura. We observed that acylsugar shows insecticidal effects

against S. litura larvae from the 2nd to the 6th stage, and it was

previously observed that there was a high death rate of sucking

insect pests such as B. tabaci and M. persicae on wild-type

plants of N. benthamiana (Feng et al., 2021). In the acylsugar-

fed group, S. litura larvae showed decreased body weight in

each larval and pupal stage. They also displayed significant

prolongation of the larval period, suggesting that acylsugar

not only acts against larvae directly but also suppresses their

development. More importantly, fecundity of females and egg

hatching rate of the S. litura F1 generation were significantly

affected by acylsugar. Similarly, these effects were also observed

in Tetranychus urticae and Frankliniella occidentalis (Lucini

et al., 2015; Ben-Mahmoud et al., 2019). It has also been

reported that acylsugar could interfere with the oviposition and

feeding of M. persicae and Tuta absoluta, and have detrimental

effects on their growth (Simmons et al., 2003; Resende et al.,

2006).

In addition to reducing the fitness of S. litura during the

F0 generation, the transgenerational effects of acylsugar were
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FIGURE 4

Fecundity (A), oviposition duration (B), and egg hatching rate (C) of the F0 generation of S. litura on WT and ASAT2 plants of N. benthamiana.

Values are presented as means ± SE. Asterisks above error bars indicate significant di�erences (P < 0.05), and n.s. indicates not significant (P >

0.05).

FIGURE 5

Development time (A) and survival rate (B) of the F1 generation on WT and ASAT2 plants of N. benthamiana. Values are presented as means ±

SE. Asterisks above error bars indicate significant di�erences (P < 0.05), and n.s. indicates not significant (P > 0.05).

detected. Here, we found that in the F1 generation of the WT-

fed group, the larval survival rate and female fecundity were

still significantly suppressed, even though the F1 generation of

S. litura was reared on an artificial diet from hatching. A variety

of studies have suggested that various chemical agents can

affect insect pests by damaging their behavioral or physiological

characteristics including longevity, duration of growth, host

locating, feeding ability, and fecundity (Desneux et al., 2006;

Biondi et al., 2013; Wang et al., 2016, 2017; Qu et al., 2017; Fang

et al., 2018; Jam and Saber, 2018; Zhou et al., 2021). Most of

these effects could also be transgenerational, indirectly affecting

their offspring (Cui et al., 2018), and they could cause alterations

in communities and ecosystems (Lu et al., 2012; Mohammed

et al., 2019). Thus, the transgenerational effects induced by

acylsugar might be contributed to delaying the outbreak of

acylsugar in a short term. Recently, biopesticides (natural

products) have emerged as a better alternative for pest control

(Mostafiz et al., 2020), and acylsugars, one of the products of

glandular trichomes that secrete secondary metabolites, could

be repellent, toxic, and disturb oviposition and feeding of

insect pests. They are involved in tritrophic interactions in

plant defenses by tagging herbivores for predation through

breaking down volatile acylsugar products (Weinhold and

Baldwin, 2011) and efficiently protecting plants from attacks

from microbes (Luu et al., 2017). In tomato plants, breeding

measures have attempted to control the composition and

content of acylsugar for increasing resistance to herbivores, and

more enhanced breeding lines have been generated (Leckie et al.,
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FIGURE 6

Fecundity (A), oviposition duration (B), and egg hatching rate (C) of the F1 generation of S. litura on WT and ASAT2 plants of N. benthamiana.

Values are presented as means ± SE. Asterisks above error bars indicate significant di�erences (P < 0.05), and n.s. indicates not significant (P >

0.05).

TABLE 1 Life tables and relative fitness of two tested populations of

Spodoptera litura.

Life-history parameter ASAT2 WT

Number of neonates 150 150

Number of pupae 124 98

Number of adults 104 74

Number of female moths 59 40

Mean eggs laid female−1 4,188.87 3,356.87

Egg viability (%) 93.66 88.79

Predicted neonate number of next generation 231,474 119,222

Net replacement rate (R0) 1,543.16 794.81

Relative fitness 1 0.52

Relative fitness= R0 (WT-fed)/R0 (ASAT2-fed).

2012, 2013, 2014; Smeda et al., 2016). Accordingly, acylsugars

can provide an alternative to synthetic insecticides for the future

environmentally-friendly control of insect pests.

In recent years, novel advances in ecotoxicology have been

impacting the assessment of xenobiotic effects (Godfray, 1993;

Sedaratian et al., 2013). Demography has been considered as one

approach for evaluating the overall effects of xenobiotics because

it can illustrate all the impacts of a xenobiotic on a population

of insect pests (Hamedi et al., 2010). In addition, combining

demography with biological parameters could better predict

the impacts of xenobiotics at the population level. Fitness cost

is considered as one essential biological component that must

be assessed when formulating xenobiotics pest management

strategies. The fitness cost can be observed when organisms face

niche alteration and must adapt to novel surroundings (Kliot

and Ghanim, 2012). In the present study, compared with the

ASAT2-fed group, significant the fitness costs resulting from

acylsugar displayed a fitness value of 0.52 in theWT-fed group. It

has been shown that the more significant fitness cost, the longer

it takes for insect pests to develop their populations, which is one

vital element of the Integrated Pest Management (IPM) program

(Kliot and Ghanim, 2012). Therefore, an overall understanding

of fitness costs associated with defensive metabolites of plants

could contribute to the design of more effective strategies for

pest management against herbivore pests.
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The tropical fruit industry in Malaysia makes up a large proportion of the

agriculture sector, contributing to the local economy. Due to their high sugar

and water content, tropical fruits are prone to pathogenic infections, providing

optimal microorganism growth conditions. As one of the largest exporters of

these fruits globally, following other Southeast Asian countries such as

Thailand, Indonesia and the Philippines, the quality control of exported

goods is of great interest to farmers and entrepreneurs. Traditional methods

of managing diseases in fruits depend on chemical pesticides, which have

attracted much negative perception due to their questionable safety.

Therefore, the use of natural products as organic pesticides has been

considered a generally safer alternative. The extracts of aromatic plants,

known as essential oils or plant extracts, have garnered much interest,

especially in Asian regions, due to their historical use in traditional medicine.

In addition, the presence of antimicrobial compounds further advocates the

assessment of these extracts for use in crop disease prevention and control.

Herein, we reviewed the current developments and understanding of the use of

essential oils and plant extracts in crop disease management, mainly focusing

on tropical fruits. Studies reviewed suggest that essential oils and plant extracts

can be effective at preventing fungal and bacterial infections, as well as

controlling crop disease progression at the pre and postharvest stages of the

tropical fruit supply chain. Positive results from edible coatings and as juice
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preservatives formulated with essential oils and plant extracts also point

towards the potential for commercial use in the industry as more

chemically safe and environmentally friendly biopesticides.
KEYWORDS

essential oils, plant extracts, tropical fruits, plant diseases, protection, biopesticides
Introduction

In 2020, the agriculture industry recorded a contribution of 7.4%

of Malaysia’s Gross Domestic Product (GDP) (Mahidin, 2021).

Following rubber, oil palm and paddy, tropical fruits make up a

large proportion of the agriculture landscape in Malaysia (Abu

Dardak, 2019). It is estimated that roughly 192,000 hectares of

agricultural land in Malaysia are used to cultivate tropical fruits.

Fruit export inMalaysia is valuedatRM1.46billion(USD347million)

in 2020,making it oneof themost important exportedproducts in the

agriculture sector (Abu Dardak, 2022). The fruits exported from

Malaysia include seasonal fruits suchasdurian, rambutan,mangoand

mangosteen, and thosegrownall year round likepapayas,watermelon

and bananas (Arope, 1992). Among the fruits exported, bananas,

pineapples, and watermelon make up the majority, with production

exceeding 200 metric tons per year (Rozana et al., 2017).

Tropical fruits are prone to diseases such as anthracnose,

rotting and mould. Currently, Malaysia’s conventional way of

managing and treating these diseases is concentrated on the use

of chemical pesticides, with more than 50% of farmers preferring

this approach instead of other alternatives (Chang, 2021). The

inclination for farmers to opt for chemical means may be

attributed to their effectiveness and accessibility (Sharifzadeh

et al., 2018). However, pesticide residue is increasingly becoming

a major safety concern after recorded chemical poisoning and

environmental pollution cases. For example, the commonly used

pesticides such as propiconazole and various organophosphorus

pesticides were found to wind up in Malaysian rivers (Wee et al.,

2016; Elfikrie et al., 2020). The loosely regulated use of chemical

pesticides thus can pose as threats to the local communities. As a

result, research has been actively looking into using nature-

derived compounds as alternative organic pesticides.

Essential oils are obtained from distilling aromatic plants

and have been gaining interest for their use in aromatherapy.

Plant extracts have traditionally been used as flavoring agents

and fragrances throughout history. Essential oils often contain

bioactive constituents such as esters, terpenes, phenols,

aldehydes and ketones, which possess antimicrobial activity

(Pauli, 2001). They are relatively safer than commonly used

chemical pesticides (Moharramipour and Negahban, 2014;

Bhavaniramya et al., 2019; Singh et al., 2019); hence, research
02
56
has been focused on understanding how the antimicrobial

properties of essential oils and plant extracts can be utilized in

agriculture as organic biopesticides (Lahlali et al., 2022).

Therefore, this review aims to cover the literature on using

essential oils and plant extracts as potential pesticides, focusing

on plant diseases caused by fungi and bacteria. Bioactive

compounds believed to contribute to the antimicrobial activity

of essential oils and plant extracts in the management of crops

are also reviewed (Figure 1). The review will also summarize how

they can be used at different points in the supply chain of getting

tropical fruits from the farm to consumers pre and postharvest

stages, including processed products such as fresh-cut fruit and

fruit juices.
Tropical fruit production in Asian
countries and Malaysia

Asian countries have been the main producers and exporters

of tropical fruits globally, especially in the European market.

Tropical fruits such as banana, mango and pineapple are among

the largest cultivated and can be widely found in international

markets. Meanwhile, more seasonal tropical fruits such as durian,

guava, jackfruit, and mangosteen have lower cultivation and

trading activities. According to the Food and Agriculture

Organisation of the United Nations, FAO (2021), 2.2 million tons

of mangoes were globally exported in 2020, increasing by 2.9%

compared to 2019. Similarly, global papaya exports reached

353,000 tons, increasing by 2.7% from 2019. However, global

exports of pineapple decreased to 3.1 million tons, representing

an 8.2% fall from 2019. The decrease may be due to COVID-19

constraints that negatively impacted the global market in early

2020. Despite the fall in exportation rates, pineapple still recorded

the highest global export among the three most cultivated

tropical fruits.

The FAO (2021) also reported the gross exportation of

tropical fruits in Asian countries from 2018 to 2019. As the

largest exporter of mangoes, mangosteen and guava, Thailand

recorded 260,100 tonnes of exports in 2018, which increased to

479,600 tonnes in 2019. Meanwhile, India exported 153,300

tonnes in 2018, decreasing to 147,200 tonnes in 2019. Since the
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fall was recorded before the COVID-19 pandemic took off, the

decrease in exportation might be due to postharvest diseases,

resulting in the loss of quality of fruits to be exported (Jat et al.,

2020). The Philippines is the largest pineapple exporter, with

exports reaching 442,100 tonnes in 2018. This number increased

to 625,500 tonnes in 2019, while Malaysia exported 19,600

tonnes in 2018, reducing to 17,900 tonnes in 2019. India was

the biggest exporter of papaya in 2018 at 18,000 tonnes which

further increased in 2019 to 19,000 tonnes, followed by China

and Malaysia.

Tropical fruits are important for Malaysia as they are the

major source of local income. Over the years, the efforts to

produce tropical fruits in Malaysia have been elevated to

accommodate an increase in demand in the global market,

contributing to the higher revenue recorded from tropical fruit

trading activities. As shown in Table 1, Malaysia produced

more than 1.5 million tonnes of fruits valued at close to RM 10

million (USD 2.28 million) in 2019. Based on the production

and product value, durian has the highest product value

than the other 20 local fruits listed. Banana production

(325,447 mt) was higher than pineapple production (314,627

mt) but had a lower product value. Since banana can be easily

damaged during its harvesting to its transportation process

(Cao et al., 2018), the decrease in production value might be

due to the quality losses of postharvest fruits during storage

and transportation that eventually lead to reduced prices in

the market.

From Figure 2, the production trend of tropical fruits in

Malaysia can be seen to generally increase over the years from

year 2019 to year 2021. This indicates an increased demand for

tropical fruits where it will be globally exported to different
Frontiers in Plant Science 03
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countries. According to Cao et al. (2018), tropical and

subtropical fruits are very vulnerable to the surrounding

temperature which will make it further susceptible to fungal
TABLE 1 Production value of major tropical fruits in Malaysia, 2019.

Fruits Production (mt) Production Value (RM’000)

Durian 377,251 7,493,882

Banana 325,447 579,295

Pineapple 314,627 621,389

Watermelon 144,147 212,617

Rambutan 55,891 124,489

Papaya 53,681 118,630

Guava 35,962 117,740

Jackfruit 31,281 107,863

Mangosteen 28,764 99,843

Cempedak 27,893 86,096

Duku 24,446 61,058

Dokong 22,913 51,118

Langsat 18,993 40,335

Mango 16,509 39,561

Pomelo 15,133 38,588

Sweet orange 11,006 31,300

Starfruit 8,054 26,415

Dragon fruit 6,879 20,535

Salak 3,443 6,541

Sapodilla 1,828 5,209

Pulasan 966 2,897

Total 1,525,051 9,885,315
Source: Department of Agriculture, Malaysia (2019).
FIGURE 1

Selected tropical fruits and bioactive compounds present in essential oils and plant extracts responsible for observed antimicrobial properties.
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infections, leading to reduced quality and decay. FAO (2022)

reported the decrease of papaya exportation in Malaysia by

approximately 4% in year 2022 was partly due to a phytopathogenic

bacteria causing the bacterial dieback disease in papaya. Since

fluctuations in temperature are inevitable during storage and

transportation, there is a need to protect the postharvest

tropical fruits to enhance their longevity and consequently,

preserve the quality.

Fruits and vegetables are generally considered more

perishable than other mass-produced commercial crops like oil

palm and rubber. A study of 284 participants found that 93% of

consumers consider freshness the top criterion when purchasing

and consuming fresh fruits and vegetables (Chamhuri and Batt,

2015). Physical attributes of fruits and vegetables, such as the

size, shape, color, and texture, all affected by infections, also

contribute to how consumers perceive product quality. This

presents a significant challenge for local farmers and exporters to

ensure the freshness of crops between getting them from the

farm to the consumers. Infections and diseases are also one of

the main factors contributing to poor crop yield in Malaysia

(Chang, 2021). Due to their higher water content (70-95%), a

higher concentration of polysaccharides and significantly

increased respiration rate; fruit crops provide a more favorable

environment in which microorganisms can thrive. With an

average shelf life of 3-5 days, there is a pressing need for the

development of highly effective, yet sustainable and safe methods

of preserving the freshness of tropical fruits (Wongs-Aree and

Noichinda, 2014).

Data and information above indicate the increasing trend in

the production of tropical fruits in Malaysia and reveal tropical

fruits as important trade products in Southeast Asian countries.
Frontiers in Plant Science 04
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In the case of more exotic fruits such as rambutan and durian,

the low availability of high-quality fruits as a result of prolonged

export times may ultimately drive market prices up, especially in

regions where they are not locally cultivated. This then, may

affect customer demand, which is inversely proportional to the

market price of a product, according to the law of demand.

Therefore, the decline in fruit quality during transport and

storage necessitate action as the tropical fruit industry play a

significant economic role for developing countries in the

Southeast Asian region.
Application of essential oils or plant
extracts to protect selected
tropical fruits

Essential oils and extracts from plants have been studied

in various ways for tropical fruit disease management from

cultivated to postharvest processing and storage (Supplementary

Table 2). The majority of the research done on preharvest

disease prevention and treatment is centred around in vitro

studies. Herein, we reviewed in vitro studies utilising a variety of

tests. The disc volatilisation method is a popular method of

studying the antimicrobial activity of essential oils and extracts

(Kloucek et al., 2012). It involves the use of the vapour phase of

essential oil of interest through drying on to a piece of material,

typically a filter paper. However, to study the effects of essential

oils in liquid form, with or without dilution, other techniques

such as agar diffusion assays, the poisoned food technique and

the broth dilution method can be employed (Balouiri et al.,

2016). A small number of studies on the use of these extracts
FIGURE 2

Tropical fruit production in Malaysia, 2019-2021. Source: Department of Agriculture, Malaysia (2021).
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during cultivation in vivo were also reviewed, mainly in the form

of a protective vapour treatment. Next, plant extracts and

essential oils have been assessed to help prevent spoilage and

improve the longevity of postharvest fruit products (El Khetabi

et al., 2022). The preferred method of utilising essential oils to

increase the shelf life of freshly harvested and cut fruits is

through the incorporation into edible coating. Various

formulations coatings with essential oils and extracts have

previously been studied such as nano-emulsions and

biopolymer-based coatings. Finally, they have also been

studied as potential preservatives in fruit juices, with an

additional focus on the potential effects on the sensory

attributes like taste and appearance.
Durian

Durian (Durio zibethinus) is an edible fruit belonging to the

genus Durio. It is grown in the tropics and is characterized by its

hard, spiky outer shell. Durian is often exposed to fungal

infections, causing various diseases to the crop. Phytophthora

palmivora is a type of fungus that causes stem canker;

Rhizoctonia solani is a soil-borne pathogenic fungus that

causes leaf blight in durian trees; meanwhile, stem rot in

durian trees is caused by Fusarium solani. Several studies have

been conducted to evaluate the potential antifungal activity of

essential oils and plant extracts against these types of fungi in

vitro. However, to the best of our knowledge, the utilization of

essential oils or plant extracts to protect durian in vivo has not

been studied.

Some essential oils and plant extracts have the potential to be

formulated into organic fungicides to prevent stem canker in

durian trees by inhibiting the growth of P. palmivora as tested in

vitro. A recent study shows that the vapour of clove and

citronella oils can slow down P. palmivora growth in vitro

(Istianto and Emilda, 2021). This is due to the presence of

eugenol, a major constituent of volatile clove oil that is believed

to possess antifungal properties. Phenolic compounds in clove

oil can inhibit the mycelial growth of P. palmivora by

penetrating the fungal cell membrane and lipids. Hence, the

compounds can access the cell’s internal contents and disrupt

the protein syntheses in the fungal cell (Ansari et al., 2013). At 10

mg/mL concentration, the n-hexane extract of clove buds and

clove oil exhibited 90.0% and 72.7% growth inhibition,

respectively, against P. palmivora. This study also concluded

that despite having the same major antifungal compound, the n-

hexane extract of clove buds is more suitable for using organic

fungicide than clove oil due to its stronger antifungal activity.

The synergistic effect of eugenol and other antifungal

compounds in the n-hexane extract might contribute to higher

efficacy in fungal growth inhibition (Aulifa et al., 2015). Also, the

extract of Cosmos caudatus, commonly known as king’s salad, in

ethyl acetate recorded only 15.6% germination of P. palmivora
Frontiers in Plant Science 05
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compared to the control. This might be due to the ability of ethyl

acetate to isolate secondary metabolites such as sesquiterpenes,

lactones, stigmasterol and lutein from the crude extract that may

contribute to the antifungal activity (Mohd Salehan et al., 2013).

According to Garcia-Rellán et al. (2016), P. palmivora is sensitive

to the essential oil extracted from Satureja cuneifolia, an

aromatic plant used in Turkey to make herbal tea, as it

inhibited 77.1% of the fungal growth at 1 mg/mL

concentration. The extract from Hydnocarpus anthelminthicus,

a tree found in the rainforests of Southeast Asia, also showed

complete growth inhibition against P. palmivora and R. solani at

a concentration of 10 mg/mL (Jantasorn et al., 2016). The

extract’s antifungal properties were mainly attributed to

flavonoids, isoflavonoids, phenolics, phenol acids, coumarins

and alkaloids.

Apart from preventing stem canker, essential oils and plant

extracts can also potentially protect durian trees from leaf blight

by inhibiting R. solani growth. According to a study carried out

by Osman Mohamed Ali et al. (2017), the development of nano

emulsions based on a combination of neem and citronella oils is

proven to be potential organic fungicides that can control

diseases caused by R. solani. It was reported that neem and

citronella nano emulsions inhibited 40-80% growth of R. solani

after four days of incubation. Another study reported that more

than 80% of R. solani growth was inhibited when treated with

Asarum heterotropoides var. mandshuricum essential oil in vitro

(Dan et al., 2010). The antifungal activity of Hypericum

linarioides Bosse essential oil against R. solani was also

evaluated. The acetone and methanol extracts of H. linarioides

inhibited 43-70% growth of R. solani, while pure H. linarioides

essential oil showed 87.5% growth inhibition at 5 mg/mL (Cakir

et al., 2005). In contrast to the previous study by Cakir et al.

(2004) that showed a-pinene might contribute to the antifungal

properties possessed by H. linarioides essential oil, this present

study recorded the absence of a-pinene, suggesting the

antifungal properties of this essential oil may be contributed

by other compounds.

Stem rot and leaf blight caused by F. solani and R. solani are

considered vital diseases in durian cultivation. A study reported

that Piper chaba Hunter extract containing a-humulene,

caryophyllene oxide, viridiflorol, globulol, b-selinene,
spathulenol, (E)-nerolidol, linalool and 3-pentanol as

antifungal components inhibited 70.3% growth of R. solani

and 56.6% growth of F. solani when tested in vitro (Rahman

et al., 2011). In another study, the essential oil from Cuminum

cyminum oil possessed significant antifungal activity against F.

solani due to pinene, cineole and linalool (Naeini et al., 2010).

Myrcia ovata Cambessedes essential oil may also be an

alternative fungicide to control F. solani to prevent stem rot in

durian trees. An in vitro study showed thatM. ovata essential oil

completely inhibited mycelial growth at a concentration of 30

mL/mL. The authors suggested that this observation may be due

to the oil components such as linalool, nerolic acid, geraniol,
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neral, geranial, (E)-nerolidol, 1,8-cineole and isopulegol

(Sampaio et al., 2016). These studies illustrate that essential

oils and plant extracts have the potential to be commercialized as

botanical fungicides to protect durians from fungal infections.

The efficiency of essential oils and plant extracts to inhibit fungal

growth in vitro suggests that they may be used as an alternative

to synthetic fungicides to control the durian trees’ diseases

caused by these phytopathogenic fungi.
Banana

Banana (Musa paradisiaca, Musa acuminaia or Musa

balbisiana) is an edible fruit produced by plants of the genus

Musa and grown in the tropics. The banana fruit is commonly

eaten raw and is one of the most economically important tropical

fruit crops. However, anthracnose and crown rot are postharvest

diseases in banana fruits that reduce their quality. These postharvest

diseases are caused by Colletotrichum spp. and Fusarium spp.,

respectively. Postharvest decay reduces the quality of banana

fruits and is one of the biggest factors of economic losses. Several

studies have been carried out in vivo and in vitro to investigate the

efficacy of using essential oils and plant extracts in protecting

banana fruits from postharvest diseases.

An in vitro study reported that the ethanolic extract of

Eucalyptus camaldulensis at the concentrations of 0.5 mg/mL

and 5 mg/mL inhibited the growth of C. gloeosporioides by 50%

and 98%, respectively (España et al., 2017). Another in vitro

study reported that the vapours of essential oil extracted from

Cinnamomum cassia, commonly known as Chinese cinnamon,

at volumes of 5 mL and 6 mL per 90x15 mm plate could

completely inhibit the growth of Lasiodiplodia theobromae and

Colletotrichum musae respectively. Holy basil oil also recorded

complete inhibition against L. theobromae growth at 6 mL per

90x15 mm plate. The study used a modified disc volatilization

method where a fixed concentration of tested essential oils (200

mg/mL) were added onto filter paper discs and were let to

vaporize in sealed Petri plates containing agar inoculated with

L. theobromae and C. musae. It was proposed that eugenol,

cinnamyl acetate, humulene, trans-calamenene and caryophyllene

present in bothCinnamomum cassia essential oil and holy basil oil,

can damage the fungal cell wall and cellmembrane, thus altering the

membrane potential, which eventually leads to growth inhibition

(Kulkarni et al., 2021).

In vivo studies need to be done to demonstrate further the

potential of using essential oils and plant extracts as organic

fungicides against anthracnose. A study showed that the

methanolic extract of ginger containing a-curcumene and

zingerone as active compounds inhibited more than 80% of C.

musae growth at a concentration of 5 mg/mL when tested in

vitro. Banana fruits treated with the extract also recorded a low

score of anthracnose severity of 2.2 after five days of storage,

compared to the untreated control, which scored 4.8 (Bhutia
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et al., 2016). Monoterpenes such as citral, L-carvone and

citronellal may be used as the active compounds for synthetic

fungicides, which completely inhibit C. musae conidia

germination at concentrations as low as 2 mg/mL, 4 mg/mL,

and 2mg/mL, respectively. They are significantly more potent

compared to benomyl; a synthetic fungicide commonly used in

agriculture that was found to be only able to inhibit 79% of the C.

musae conidia germination in vitro. This shows that these

monoterpenes can be formulated into synthetic or chemical

fungicides such as benomyl, to enhance their efficacy in killing

fungi. Bananas treated with citral showed a 60% reduction of

anthracnose lesion diameter compared to the untreated control.

It was previously found that citral can negatively affect the

tricarboxylic acid cycle, alter mitochondrial morphology, and

cause metabolic disorders in pathogenic cells, inhibiting fungal

growth and sporulation (Garcia et al., 2008). According to

Vilaplana et al. (2018a), bananas treated with 500 mL/L thyme

oil showed a 46.4% decay reduction compared to the

commercially available fungicide Imazalil, which showed only

a 29.4% decay reduction. The authors proposed that the

synergistic effect of thymol and carvacrol in thyme oil induced

the leakage of the fungal cell membrane, leading to fungal cell

tissue deterioration. The fruits also showed better firmness,

sensory qualities, and higher weight loss reduction during cold

storage than bananas treated with Imazalil. A study reported that

incorporating 4 mg/mL cinnamon oil into 100 mg/mL gum

arabic can control 80% of anthracnose incidence in postharvest

bananas and significantly reduced the weight loss by 89%

compared to untreated bananas after 28 days of cold storage.

It was also reported that this mixture inhibited 88% of C. musae

growth when tested in vitro (Maqbool et al., 2011). Aloe vera

incorporated with garlic oil inhibited 87.7% mycelial growth and

91.2% spore germination when tested in vitro against C. musae.

The mixture was also tested as an antimicrobial coating,

which was then found to reduce the incidence and severity

of anthracnose by 92.5% and 81%, respectively (Khaliq

et al., 2019a).

Crown rot disease is a type of fungal infection that initially

occurs at the crown part of bananas and may spread to other

parts of the fruit. It is often caused by Colletotrichum musae or

Lasiodiplodia theobromae. Some essential oils and plant extracts

have been found to have a similar antifungal activity to

commercial fungicides used against crown rot disease. Jahan

et al. (2019) reported that the methanol extract of garlic, A.

sativum, has similar fungicidal activity as chemical fungicides

like carbendazim and kanamycin B against crown rot. Spraying

emulsions of basil oil on bananas was observed to control

anthracnose and crown rot in bananas stored for 21 days.

Interestingly, no significant differences were reported

compared to benomyl treatment. It also did not affect the

physicochemical and sensory properties of treated bananas

(Anthony et al., 2003). In another study, eugenol in basil oil

controlled crown rot by inhibiting appressorium formation
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of C. musae, which is crucial to initiating an infection

(Siriwardana et al., 2017). Moreover, the synergistic effects of

Cymbopogum nardus oil and basil oil in a liquid medium are

more effective in controlling crown rot in bananas than in

benomyl treatment. This may be attributed to various

antifungal components such as a-pinene, citronellol,

citronellal, eugenol and geraniol (Anthony et al., 2004).

Spraying 40 mg/mL cinnamon and 40 mg/mL thyme oil

completely controlled crown rot incidence in bananas. The

study also found an 87.1% and 78.7% reduction in crown rot

incidence when bananas were treated with sweet almond and

bitter almond oil, respectively, without altering the organoleptic

properties (Abd-Alla et al., 2014). Complete inhibition of crown

rot disease in bananas was recorded when treated with a 250 mg/

mL concentration of Zimmu leaf extract without altering

organoleptic properties. The extract treatment also was found to

have better fungicidal activity than the benomyl in reducing

crown rot severity (Sangeetha et al., 2013). The cinnamon

extract inhibited 25% of crown rot disease in bananas without

affecting postharvest quality (Win et al., 2007). An in vitro study

carried out by Kamsu et al. (2019) found that cinnamon oil

inhibited 100% conidial germination of C. musae, Fusarium

incarnatum and Fusarium verticillioides at concentrations of

1025, 950 and 9088 mL/L respectively. C. musae, F. incarnatum

and F. verticillioides conidial germination were also completely

inhibited by lemongrass oil at 200, 185 and 275 mL/L, respectively.
The germination inhibition may be due to the terpenes that act as

antifungal compounds, disrupting fungal germination in essential

oils. The previous results were validated when Ranasinghe et al.

(2002) also found that cinnamon and clove oils possess fungicidal

properties against C. musae, L. theobromae and F. proliferatum

when tested in vitro.

These studies suggested that essential oils and plant extracts

have the potential to be organic fungicides in controlling

anthracnose and crown rot disease in postharvest bananas.

They also can extend the shelf life of postharvest bananas by

improving the physicochemical properties without interfering

with the organoleptic properties or sensory qualities.
Pineapple

Pineapple (Ananas comosus) is a tropical plant from the

family Bromeliaceae. It has spiky leaves on top and tough

leathery skin. Fusariosis is a type of fungal infection that

commonly affects pineapple plants. Fusarium spp. is the

common fungus responsible for fusariosis in pineapples.

Fresh-cut pineapples and pineapple juices are susceptible to

mould and yeast contamination that causes spoilage. Several

studies have been conducted to evaluate the uses of essential oils

and plant extracts as natural fungicides to protect pineapples

from fusariosis and as alternative preservative methods to

control postharvest spoilage.
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Essential oils and plant extracts can be used to control

fusariosis in pineapples. A recent study reported that

monoterpenes such as citral, L-carvone, and citronellal could

be a potential alternative for synthetic fungicide as they

completely inhibited Fusarium subglutinans f.sp ananas

germination at a concentration as low as 4 mg/mL, 8 mg/mL

and 6 mg/mL respectively compared to commercially available

chemical fungicide, benomyl that has lower conidia germination

inhibition of 42% when tested in vitro (Garcia et al., 2008). It

shows that citral has a very high antifungal characteristic. It was

proposed that citral enter the cell by inducing malondialdehyde,

reducing cell membrane elasticity. Then it alters the citric acid

cycle and mitochondria morphology which subsequently

inhibits fungal growth and sporulation (Luo et al., 2004). A

study reported that thyme oil inhibited 100% of Fusarium

verticillioides mycelial growth at a concentration as low as 250

mL/L when tested in vitro. As for in vivo study, postharvest

pineapples treated with 1000 mL/L thyme oil showed 50.1%

disease reduction in 7 days of storage without affecting the

sensory quality, higher than fruit treated with chemical

fungicide, prochloraz, which showed 32.7% disease reduction

(Vilaplana et al., 2018b).

Cutting fruits increases their metabolic activity, thus

reducing their shelf life. It also increases the susceptibility to

microbial contamination and lowers the quality of the fruit. The

development of edible coatings incorporated with essential oils

or plant extracts can act as a barrier that protects fresh-cut

pineapples from microbial contamination, prolongs shelf life

and maintains their quality. Somemajor essential oil compounds

are difficult to incorporate into food due to their lipophilic

nature. To overcome this challenge, lipophilic compounds

must be emulsified into nano emulsions to be easily

incorporated into edible coatings for fruit protection. A study

conducted by Prakash et al. (2020) reported that edible alginate

coatings incorporated with 0.5 mL/100mL and 1 mL/100mL of

citral nano emulsions inhibited Salmonella typhimurium and

Listeria monocytogenes total plate count growth by 4.68 log

CFU/g and 2.77 log CFU/g respectively compared to control

which recorded higher than 7 log CFU/g. It was also observed

that the colour and appearance of the coated cut pineapples were

enhanced, which may be contributed by citral inhibiting

polyphenol oxidase activity in the coated fruits. This shows

that the major compound citral found in various plant essential

oils, such as lemongrass essential oil has antimicrobial activity.

Another study showed that incorporating 3 mg/mL lemongrass

essential oil into alginate coating reduced the weight loss in

coated fresh-cut pineapples during storage. It was proposed that

the lipophilic nature of essential oils can reduce respiration rate,

reducing the weight loss in coated fruits (Azarakhsh et al., 2014).

de Araujo et al. (2021) reported that the shelf life of fresh-cut

pineapples coated with chitosan incorporated with black pepper

(Piper nigrum) and Brazilian pepper (Schinus terebenthifolia)

essential oil was improved by 45 days and recorded 98.4%
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efficiency in reducing microbial counts such as E. coli and

S. aureus.

Pineapple juice is susceptible to spoilage caused by mould or

yeast contamination. A study reported that sodium benzoate and

citrus extract could be used during fruit juice homogenization as

antimicrobial preservatives to reduce spores of Fusarium

oxysporum. Curiously, F. oxysporum is a type of fungus that is

typically resistant to homogenization. The citrus extract reduced

spore counts to 1.14 CFU/mL at a concentration of 1.5 mg/mL

and completely removed the spores at a concentration of 3 mg/

mL compared to the control, which recorded 6 CFU/mL spore

counts. It was proposed that terpenes in the citrus extract can

increase peroxide concentration, causing the breakdown of the

cell wall and destroying the fungus’s vegetative reproduction

(Bevilacqua et al., 2012). An investigation by da Cruz Almeida

et al. (2018) reported that essential oils from spearmint (Mentha

spicata L.) and Bowles mint (Mentha × villosaHuds) can be used

in the preservation of pineapple juices against spoilage yeasts. A

reduction of Pichia anomala and Saccharomyces cerevisiae was

observed when pineapple juices were treated with 3.75 mL/mL of

M. spicata essential oil (MSEO) after 48 h of exposure. A

reduction in S. cerevisiae was observed when treated with 15

mL/mL ofM. x villosa essential oil (MVEO). This might be due to

the antifungal components found in MSEO and MVEO, such as

carvone and piperitone oxide. It was proposed that carvone

inhibits the proton pump, and the biosynthesis pathway of

ergosterol in fungal cells eventually disturbs the cell integrity

(Samber et al., 2015). At the same time, piperitone oxide could

disrupt the cell membrane hence altering the metabolic activity

of the fungus (Ait-Ouazzou et al., 2012; Guerra et al., 2015).

These studies present that the antifungal activity of essential oils

and plant extracts can be utilized to protect pineapple plants

from fusariosis, improve the quality of processed pineapples and

control the spoilage in pineapple juices.
Watermelon

Watermelon (Citrullus lanatus) is a flowering fruit from the

family Cucurbitaceae. The crop is cultivated globally but thrives

in tropical climates such as that near the equator. It is commonly

characterized by a large round fruit protected by a hard outer

skin painted with green stripes. Watermelons are exposed to

pests and viral infections, while processed watermelons tend to

get spoiled due to higher enzymatic reactions. A few studies

that have been carried out over the past few years found that

essential oils and plant extracts can be utilized to protect fresh

and processed watermelons from harmful pests and

pathogenic microbes.

Bactrocera cucurbitae, commonly known as the melon fly, is

a watermelon pest that causes significant losses to farmers.

Melon flies lay their eggs on the watermelon fruit and once

hatched, maggots will feed on the fruit, damaging it internally
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and causing it to quickly rot. Instead of using chemical

insecticides to control the infection of B. cucurbitae, some

plant extracts can be utilized as potential biopesticides that

could target the pests at their earlier stage of development. A

study was carried out to investigate the larvicidal and pupicidal

activities of neem (Azadirachta indica), Chinese chaste tree

(Vitex negundo) and water pepper (Persicaria hydropiper)

methanolic extracts against B. cucurbitae in vitro. It was

shown that exposure to A. indica, V. negundo and P.

hydropiper recorded high mortality degrees of B. cucurbitae

(LD50 1.161 mg/cm2, 2.213 mg/cm2 and 0.853 mg/cm2

respectively) in the larvicidal test. A. indica and P. hydropiper

extracts also recorded significantly high pupicidal activities

against B. cucurbitae (LD50 0.26 mg/cm2 and LD50 8.70 mg/

cm2 respectively) (Hossain and Khalequzzaman, 2018).

Apart from the damage caused by B. cucurbitae, watermelon

crops are also susceptible to viral infections such as the

watermelon mosaic virus which affects their overall physical

features such as yellow spots on leaves, stunted growth, severe

discolouration and in extreme cases, necrosis (Xu et al., 2004;

Desbiez and Lecoq, 2021). Some plant extracts have been

discovered to effectively prevent viral diseases in watermelons

by activating defence mechanisms in the treated fruits. A study

demonstrated that seed treatment of watermelons followed by

six foliar sprays using Boerhaavia diffusa root, Clerodendrum

aculeatum leaf, Azadirachta indica leaf, and Terminalia arjuna

bark extracts recorded 54.2%, 45.6%, 52.0% and 34.8% viral

disease reduction, respectively. Increments in vine length, fruit

diameter and weight in watermelons treated with these extracts

were also observed. The authors proposed that phytoproteins

present in the extracts induced a viral resistant mechanism in

treated plants by stimulating the production of a viral inhibiting

agent (VIA) in the host cells. However, the details of which

remain to be fully elucidated. It was also reported that B. diffusa

may be able to alter the morphology of plant cells to inhibit viral

multiplication in host cells (Sharma et al., 2017).

Since fresh-cut and watermelon juices are susceptible to

yeasts and mould growth, cinnamaldehyde, mostly found in the

essential oil of cinnamon bark, can be used as an antimicrobial

agent and employed as an edible coating and preservative.

Trans-cinnamaldehyde incorporated into alginate-based

coating can act as an antimicrobial compound in multi-layered

edible coating to protect fresh-cut watermelons. It was shown

that coated fresh-cut watermelons have lower yeasts and mould

growth than uncoated fresh-cut watermelons. The coatings also

act as a barrier to prevent the respiration rate of the fruit, hence

delaying the softening of fresh-cut watermelons and reducing

weight loss (Sipahi et al., 2013). Another study also proved the

antimicrobial effect of trans-cinnamaldehyde when used as

a preservative in watermelon juices, where the solubility

was enhanced by nano-emulsification. The study showed that

8 mg/mL trans-cinnamaldehyde inhibited Salmonella

typhimurium and Staphylococcus aureus growth in watermelon
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juices and extended the shelf life (Jo et al., 2015). These studies

show that essential oils and plant extracts can be used as

alternative synthetic pesticides and further developed in food

preservation techniques.
Papaya

Papaya (Carica papaya) is a tropical fruit from the family

Caricaceae. It has a sweet taste and juicy flesh, turning orange

when ripe. Postharvest papaya is commonly infected by the

Colletotrichum spp., the fungus which causes anthracnose;

meanwhile fresh-cut papayas are prone to mould and yeast

contamination. The use of essential oils incorporated into edible

coatings has been studied to avoid quality losses of postharvest

and fresh-cut papayas.

Coating papayas with Aloe vera (AV) can lower the

respiration rate of the fruit which subsequently slows down

the metabolic process. This helps to delay ripening and increase

the shelf life during storage. A study reported that postharvest

papayas coated with 50 mL/100 mL of AV gel diluted in distilled

water recorded a 2.05% weight loss and 52.29 N of firmness

compared to uncoated papayas with a significantly higher 13.2%

weight loss and lower firmness of 12.7 N during 15 days of

storage. No disease incidence is reported for papayas coated with

50 mL/100 mL AV gel diluted in distilled water after 15 days of

storage at a temperature of 28 ± 2°C and 68–70% relative

humidity (Mendy et al., 2019). However, a slight increase of

relative humidity to a range between 82 to 84%, and decrease of

room temperature to 25°C led to 27% disease incidence despite

being coated with 100% AV (Brishti et al., 2013). This suggests

that although effective, the antimicrobial property of AV gel may

be sensitive to fluctuations in room humidity and temperature.

Water is generally lost from the papaya fruit through its peel. AV

gel coating was found to act as a barrier for water loss, which also

contributes to the reduction in fruit weight loss. It was proposed

that AV can extend the shelf life of stored fruits by altering their

internal environment (Serrano et al., 2005; Valverde et al., 2005).

AV gel coating reduces the oxygen availability for oxygen

degradation, allowing carotenoid retention.

Another study showed that 20 mg/mL ginger oil

incorporated into 100 mg/mL gum arabic used as an edible

antimicrobial coating for postharvest papayas recorded lower

anthracnose incidence (21%) compared to control (100%)

during 28 days of storage. This observation was accompanied

by the amelioration of the quality of postharvest papayas without

any significant effect on the sensory properties. Using a disease

severity scoring scale of 0 to 5, the fungicidal activity of ginger oil

was demonstrated when it scored 2.2, less than half compared to

the control which reached a maximum score of 5 in vivo. This is

believed to be due to the antifungal compounds such as a-
pinene, 1,8-cineole and borneol present in ginger oil (Ali et al.,

2016). These antifungal compounds can lower pathogenic
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infection by blocking lenticels and cuticles, reducing the

respiration and ripening rate of fruits (Martıńez-Romero et al.,

2006). Limited oxygen availability also reduced the enzyme

activity responsible for fruit softening and maintaining fruit

firmness (Salunkhe et al., 1991). Postharvest papayas with

mesquite-gum based edible coating incorporated with 0.1%

(w/w) thyme oil and 0.05% (w/w) Mexican lime essential oil

recorded 100% reduction of C. gloeosporioides and Rhizopus

stolonifer infection (Bosquez-Molina et al., 2010). Comparing

these two essential oils, Mexican lime oil exhibits higher

fungicidal activity than thyme oil, especially when utilized at

high concentrations. However, a concentration too high may be

poisonous to the fruit which can consequently alter the fruits’

tissue ability to inhibit microbial growth. It is then vital to

identify the optimal concentration with maximum antifungal

properties yet tolerable to the fruits.

Treating postharvest papayas using carboxymethyl cellulose

associated with Lippia sidoides essential oil delayed rotting and

recorded the lowest minimum inhibitory concentration (0.0753

mg/mL) against C. gloeosporioides (Zillo et al., 2018). This is due

to the presence of thymol and carvacrol in the essential oil that

can modify the fungal cell wall and cell membrane to the point of

disrupting the essential growth process of the fungus. Maqbool

et al. (2011), incorporated of 4 mg/mL cinnamon oil into 100

mg/mL gum Arabic, which controlled anthracnose incidence by

up to 71% in postharvest papayas and significantly reduced 81%

of the fruit weight loss compared to untreated papayas. Apart

from that, it also inhibited 85% of C. gloeosporioides growth

when tested in vitro. These effects are ascribed to the presence of

cinnamaldehyde, which limits microbial growth by disrupting

the electron transport chain and reacting with nitrogen-

containing compounds (Gupta et al., 2008).

Apart from protecting postharvest papayas, essential oils are

also useful in reducing mould and yeast contamination in fresh-

cut papayas. Fresh-cut papayas coated with cassava starch-based

edible coating and 10 mg/mL lemongrass essential oil effectively

suppressed yeasts and mould growth by up to 1.48 log CFU/g.

They recorded greater weight preservation than uncoated fresh-

cut papayas (Praseptiangga et al., 2017). Another study showed

that encapsulated trans-cinnamaldehyde could act as an

antimicrobial compound when incorporated into multi-layered

edible coating without altering the flavour of fresh-cut papayas

(Brasil et al., 2012). Moreover, when fresh-cut papayas were

coated with 10 mg/mL psyllium gum and sunflower oil, 5 log

CFU/g of mould and yeast count was recorded. Contrarily, more

than 10 log CFU/g was recorded for the uncoated counterpart. In

addition, the hydrophobic property of sunflower oil is can act as

a barrier to water vapour loss, leading to reduced weight loss in

the coated fruits (Yousuf and Srivastava, 2015). However, it is

important to note that the effectiveness of essential oils in

protecting fresh-cut papayas only applies to specific time

points. Based on these studies, it is shown that essential oils

can be utilized to improve the quality in postharvest and fresh-
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cut papayas upon storage, mainly through incorporating them

into edible external coatings.
Guava

Guava (Psidium guajava) is a tropical fruit from the family

Myrtaceae. It is a small-sized fruit with a crunchy texture with

high contents of vitamin C. Guavas are exposed to fruit pests

such as Bactrocera cucurbitae, leading to fruit rot and spoilage.

Yeasts such as Pichia anomala and Saccharomyces cerevisiae

affect the quality of guava juices. Therefore, essential oils and

plant extracts’ effectiveness in protecting guava from pests,

extending the shelf life of postharvest guavas, and reducing

spoilage in guava juices were studied.

Incorporating essential oils and plant extracts into edible

coating can improve the quality and extend the shelf life of

postharvest guavas. Formulation of 10 mg/mL pomegranate peel

extract in chitosan coating reduced the transpiration rate in

coated guavas due to its lipophilic properties. The low

transpiration rate maintains the concentration of internal

compounds, resulting in only 29% of ascorbic acid, 8% of total

phenol and 12% total flavonoid being lost, thereby delaying of

the ripening process during storage (Nair et al., 2018). It was also

recorded that postharvest guavas coated with aloe vera gel

maintained total flavonoid contents, total antioxidant capacity

and sensory properties after 12 days of storage at 27 – 29°C

(Kumar et al., 2017). Treating guavas with 2.5 mL/100 mL Tulsi

extract incorporated into Arabic gum and sodium caseinate

inhibited mould growth during seven days of storage at 28°C

(Murmu and Mishra, 2017). Another study reported that 2%

cinnamon oil and 20 mg/mL lemongrass oil incorporated into 50

mg/mL Arabic gum and 10 mg/mL sodium caseinate extended

guava shelf life up to 40 days. It was proposed that geraniol in

lemongrass can slow down polyphenol oxidase (PPO) activity by

forming hydrogen bonds with active enzymes which reduce

browning in treated guavas (Murmu and Mishra, 2018).

Aloe vera can be used as an edible antimicrobial coating to

protect fresh-cut guavas. Lower weight loss and microbial count

were reported on fresh-cut guavas coated with aloe vera than on

uncoated fresh-cut guavas. This is due to the antimicrobial

compounds such as pyrocatechol, cinnamic acid and p-

coumaric acid in aloe vera. The coating can also attract and

hold water, preventing water loss and weight loss of guavas

(Nasution et al., 2015). In addition to the improvement in the

quality of pineapple juice post-storage described above, da Cruz

Almeida et al. (2018) reported that the essential oils from

spearmint (Mentha spicata L.) and Mentha × villosa Huds are

also able to preserve guava juice against spoilage yeasts in the

same manner. This is due to the fact that these different fruit

juices are susceptible to infection by a common pathogen,

namely Saccharomyces cerevisiae.
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Based on these studies, it is believed that essential oils

and plant extracts are able to prevent the degradation of

phytochemicals leading to extended shelf life of postharvest

guavas and prevent contamination in the processed fruit juice.

The observations also further illustrate the flexibility of essential

oil in preventing a range of unrelated crops from postharvest

spoilage. However, pre-cautions need to be taken into account

during formulation process, especially when incorporating

essential oils into secondary products as high concentrations

of essential oil or plant extract can be unfavourable to the

sensory attributes of the fruit juice.
Mangosteen

Mangosteen (Garcinia mangostana) is a small tropical fruit

from the family Clusiaceae. It has a purple rind that is both thick

and hard to protect a slightly sweet and sour flesh. Postharvest

losses of mangosteen can be caused by fungal infections such as

Glomerella cingulata or gradual fruit ripening and decaying.

Several studies have been carried out to investigate the effect of

essential oils on mangosteen in vitro and in vivo.

In vitro studies carried out by Permana et al. (2021) showed

that emulsions incorporating virgin coconut oil and

cinnamaldehyde can impede the growth rate of Glomerella

cingulata and can potentially be used as an edible coating for

mangosteen. In addition, extracts from various plants such as

clove buds, pepper, cinnamon, turmeric, ginger, oregano and

thyme may also be potentially used in organic fungicides due to

their content of eugenol. Due to its poor stability, Velho et al.

(2019) studied the nanoencapsulation of eugenol and the

synthetic fungicide, mancozeb, and the consequent antifungal

activity against G. cingulata. It was found that this mixed

formulation had increased antifungal efficacy compared to the

free forms of eugenol and mancozeb. The toxicity of the

resulting formula was tested, and the authors found that it was

safe for plant cells and relatively non-toxic in the soil (da Silva

Gündel et al., 2019). Mangosteen treated with 2 mL/L of

citronella oil also recorded 20% lower scarring symptoms

and a lower ant attack percentage compared to untreated

mangosteen. Citronella oil can cause death to ants by

damaging its integument. Not only that, the presence of

odorous compounds such as citronellal, citronellol and

geraniol naturally carry the ability to repel insects (Istianto

and Emilda, 2021).

According to Owolabi et al. (2021b), postharvest

mangosteen treated with peppermint oil and lime oil

formulated with a ratio of 1:3 led to fewer fungal infections.

They are also observed to ripen slower which can contribute to

prolonged shelf life. Another study also noted that tapioca starch

incorporated with peppermint oil and lime oil could be applied

on rubberwood boxes to preserve postharvest mangosteen
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during transportation (Owolabi et al., 2021a). Limonene,

g-terpinene, terpinolene, eucalyptol, menthone, and menthol

are predicted to be the major components of the mixture that

contributed to the remarkable antifungal activity. The process of

postharvest ripening can also be influenced by the concentration

of ethylene. Previously, it was found that essential oils can

suppress the 1-aminocyclopropane-1-carboxylic acid synthase

oxidase (ACO) transcription gene that is responsible for

ethylene production (Owolabi et al., 2021b). This genetic

alteration is one of the many notable modes of action in which

essential oils can be utilised to improve the longevity of

perishable crops. Hence, it is proven that essential oils can be

used as natural pesticides and fungicides to maintain the quality

of mangosteen.
Mango

Mango (Mangifera indica) is a sweet tropical fruit belonging

to the family Anacardiaceae. It varies greatly in shape, colour

and taste. The flesh is typically sweet when ripe. In some Asian

regions, the fruit is enjoyed when not fully ripened, where it

carries a sharp sour taste. Colletotrichum sp. is a common

anthracnose-causing agent in many fruit crops, including

mangoes. Several studies have elaborated on applying essential

oils as edible coating to protect and improve the quality of

postharvest mangoes. Antifungal properties and the ability of

essential oils and plant extracts incorporated into edible coatings

to control respiration rate and act as a barrier to water vapour

have also been studied in the management of diseases in

postharvest mangoes.

Coatings formulated with essential oils and plant extracts

were found to reduce diseases in coated mangoes. A test carried

out by de Oliveira et al. (2017) evaluated the antifungal effect of

Mentha piperita essential oil (MPEO) on Colletotrichum

asianum, Colletotrichum dianesei, Colletotrichum fructicola,

Colletotrichum tropicale and Colletotrichum karstii. The

synergistic effect of the chitosan coating (5 or 7.5 mg/mL) and

M. piperita essential oil (MPEO) (0.3, 0.6 or 1.25 mL/mL)

inhibited 100% of all Colletotrichum sp. growth tested on

mango fruits. A large portion of MPEO is made up of

monoterpenes, such as menthol and isomenthone, which can

disrupt the cellular metabolism of fungal cells (dos Santos et al.,

2012). The authors proposed that chitosan may be able to alter

the fungal cell membrane permeability, allowing antifungal

compounds present in MPEO to act on the fungal cell.

Mycelial growth percentages of Colletotrichum sp. in the range

of from 13.5-85.2% were inhibited by 0.3-2.5 mL/mL of MPEO

respectively, in vitro. This indicates that the antifungal activity of

MPEO is concentration dependent, at least up to a concentration

of 2.5 µL/mL. Interestingly, mangoes coated with 5 mg/mL and
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0.6 mL/mL of chitosan/MPEO recorded lower anthracnose lesion

severity than the synthetic fungicide, difenoconazole. Next,

ginger oil was investigated as an antimicrobial additive when it

was incorporated into a hydroxypropyl methylcellulose coating.

When tested for C. gloeosporioides growth, the coating showed

42.6% inhibition and consequently, a 38% anthracnose

reduction compared to untreated controls after being stored at

25°C for five days. Weight and firmness were also better

preserved compared to uncoated mangoes (Klangmuang and

Sothornvit, 2018). According to Zhou et al. (2021), 80 mg/mL

galangal essential oil incorporated into carboxymethyl chitosan

and pullulan coating also prolonged the shelf life of coated

mango up to 9 days. After 15 days of storage, mangoes treated

with the carboxymethyl chitosan/pullulan coating incorporated

with 80 mg/mL galangal essential oil recorded lower weight loss

(8.7%) and greater firmness (3.82N) than uncoated mango.

These results were able to indicate the uses of essential oils in

the disease control in mangoes at the postharvest stage. Further

studies can be done to evaluate the potential of utilising these

natural extracts at different points of the mango supply chain. It

may be of interest to fully understand how essential oils can

affect the sensory properties of mangoes preharvest due to the

fact that mangoes are highly variable in taste.
Sweet orange

Sweet orange (Citrus X sinensis) is a hybrid fruit resulting

from the cross cultivation of mandarin orange and pomelo.

The overall appearance is similar to the typical orange, but

sweet oranges are comparably smaller. Penicillium digitatum is

a type of fungus that causes green mould in postharvest oranges

while Penicillium italicum causes blue mould. Some fungi such

as Issatchenkia orientalis , Meyerozyma caribbica and

Meyerozyma guilliermondii are responsible for spoilage in

processed orange juice. Several studies evaluated antifungal

activity against these postharvest pathogenic fungi by

incorporating essential oils or plant extracts into edible

coating and preservation methods.

Essential oils incorporated into edible coatings can reduce

the disease severity of coated oranges. 0.361 g/mL of

pomegranate peel extract incorporated into chitosan and

locust bean gum also recorded a green mould incidence

reduction (95% and 75%, respectively) when used as coatings

for sweet orange compared to uncoated control. The high phenol

content in the pomegranate peel extract is believed to be driving

the reduction in green mould incidence (Kharchoufi et al., 2018).

Another study reported the incorporation of tea tree oil into

chitosan coating reduced 50% of P. italicum growth on

artificially inoculated oranges compared to uncoated fruits.

The authors also incorporated bergamot oil into the coating,
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which added the effects of preserving the weight and firmness of

the fruit (Cháfer et al., 2012).

Adeogun et al. (2016) reported that ethanolic extract of a

herbaceous plant in Africa, commonly known as the miracle

berries or Thaumatococcus daniellii, could potentially be used to

protect sweet orange juice against spoilage yeasts in vitro. It was

reported that the minimum inhibitory concentration for the

ethanolic extract of T. danielli against I. orientalis, M. caribbica

and M. guilliermondii are as low as 0.1, 0.5 and 0.1, respectively.

Ethanol can be a useful solvent in extracting plants’

antimicrobial compounds of plants to be used as antimicrobial

preservatives in fruit juices. As ethanol is acidic, it can make a

medium more acidic by donating a hydrogen ion in the aqueous

state. Microorganisms present in the medium tend to take up the

hydrogen ion, leading to increased concentration of hydrogen

ions inside the microbial cells and subsequently, death. Hence,

the potency of essential oils or plant extracts to replace chemical

fungicides in agriculture and food preservation is proven.
Other tropical fruits: Rambutan, jackfruit,
dragon fruit, salak and sapodilla

Rambutan, jackfruit, dragon fruit, salak and sapodilla are

fruits that are mostly cultivated in tropical climates, typically

within the Southeast Asian region. They, like many other fruit

crops, are highly prone to fungal infections. Several studies have

been carried out to investigate the efficiency of essential oils and

plant extracts against phytopathogenic fungi in the form of

edible coating and organic fungicides.

Rambutan (Nepphelium lappaceum) has a juicy white flesh

protected by typically a red or yellow hairy outer skin. Oidium

nephelii, is a pathogen of the rambutan fruit, causing powdery

mildew at the preharvest stage of cultivation. In addition,

rambutan is also susceptible to other more common fungal

infections that cause postharvest diseases, such as Colletotrichum

gloeosporioides, Gliocephalotrichum microchlamydosporum, and

Botryodiplodia theobromae leading to anthracnose, brown spot

and stem end rot, respectively.

The extracts of wood vinegar and Curcuma longa

(turmeric) were previously studied as alternatives to

chemical fungicides in controlling powdery mildew. An

in vitro study showed that O. nephelii germination was

completely inhibited when treated with 0.5 µL/mL of wood

vinegar extract and 0.5 g/mL extract of Curcuma longa. The

fungicidal effects of both extracts were further investigated

through in vivo studies when treatment with Curcuma longa

and wood vinegar extract recorded 13.8% and 9.3% of

infection severity, respectively. This pales in comparison to

the untreated control which recorded an infection severity of

61.1% (Preecha et al., 2017). Rambutan fruits treated with
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clove oil for 13 days exhibited complete inhibition of powdery

mildew infection compared to the untreated control in vitro,

where the latter grew by 40-fold in colony size (Istianto and

Emilda, 2021). The reason for this inhibition is believed to

result from the alteration of fungal cell surface and structure

by clove oil which inhibits the development of the fungus.

However, the study also found that at high concentrations (4

mg/mL), rambutan fruit damage was observed, suggesting a

potential phytotoxic effect of the clove oil. In postharvest

rambutan, cinnamaldehyde was reported to be effective

against common pathogens such as C. gloeosporioides, G.

microchlamydosporum and B. theobromae . Complete

inhibition of mycelial growth and spore germination of all

three fungi were recorded when treated with cinnamaldehyde

at 0.03 mg/mL and 0.05 mg/mL in vitro; meanwhile, an in vivo

study recorded reduced disease severity in rambutan when

treated with the same concentration (1.5 cm lesion diameter)

compared to untreated control (4 to 4.5 lesion diameter)

(Sivakumar et al., 2002).

Jackfruit (Artocarpus heterophyllus) is a tropical fruit

characterized by bumpy outer skin, stringy core and multiple

seeds with yellow coloured flesh. The fruit has been gaining

much attention as a meat replacement in vegetarian and vegan

communities, making it an economically important export.

They are, however, extremely prone to rotting and spoilage,

hence the immediate need for effective control measures during

transport and storage. Postharvest rot in jackfruits caused

by Penicillium notatum may be prevented by using basil

(Ocimum basilicum), and Vetiveria zizanioides essential oils. A

study carried out by Atif et al. (2020) reported that vapour

treatment using the mixture of O. basilicum and V. zizanioides

essential oils at 25 µL concentration reduced P. notatum colony

area to 4.2 ± 1 cm2. It completely suppressed the spore

germination after seven days when tested in vitro. P. notatum

growth was also reduced when postharvest jackfruit was

treated using the essential oil vapour. The presence of L-

carvone and phenolic compounds in the essential oils may

play significant roles in the mycelial growth inhibition of

P. notatum.

Dragon fruit (Hyelocereus megalanthus) is a sweet-tasting

fruit with small edible seeds. The fruit possesses a soft, scaly

outer skin of various colours ranging from red, and purple to

yellow. Alternaria alternata is a common fungus that causes

postharvest disease in dragon fruit; meanwhile, anthracnose in

dragon fruit is caused by C. gloeosporioides and Colletotrichum

fructicola. Cinnamon (Cinnamomum zeylanicum) and clove

(Eugenia caryophyllus) essential oils visually inhibited A.

alternata growth in vitro with concentrations as low as 0.25

mg/mL and 0.5 mg/mL, respectively. Meanwhile, dragon fruit

treated with 500 mg/mL E. caryophyllus essential oil recorded a

31% reduction of mycelial growth compared to untreated fruit
frontiersin.org

https://doi.org/10.3389/fpls.2022.999270
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Mohd Israfi et al. 10.3389/fpls.2022.999270
in vivo. A separate study against C. gloeosporioides showed that

10.0 mg/mL of ginger extract in ethanol inhibited 88.5% of

mycelial growth and 87.5% of conidial germination. Gingerol,

the compound responsible for the distinctive ginger taste, may

be responsible for the antifungal activity of ginger oil. While

effective at controlling the growth of C. gloeosporioides, a higher

concentration of ginger oil is needed when compared to the

commercial fungicide, mancozeb, which recorded an inhibition

of 80.7% at a much lower dosage of 2 mg/mL. Dragon fruit

treated with 10 mg/mL of turmeric extract and “dukung anak”

extract controlled anthracnose incidence postharvest during 28

days of storage compared to control due to the action of

curcumin and alkaloids present in the extracts. Gingerol,

curcumin and alkaloids can disrupt the fungal cell wall,

causing the leakage of electrolytes which leads to the death of

the fungus. However, at higher concentrations, “dukung anak”

extract and turmeric extract can exhibit phytotoxicity by

damaging the fruit’s cell tissue and allowing phytopathogenic

organisms to attack the damaged fruit (Bordoh et al., 2020).

Next, another study reported that 400 mL/L of carvacrol essential
oil completely inhibited C. fructicola in vitro when treated fruits

recorded a lower lesion (7.6 mm) than untreated fruits (27.33

mm). It was also reported that treatment with carvacrol

increased the concentration of malondialdehyde, a marker for

oxidative stress. The authors proposed that carvacrol can

increase the production of reactive oxygen species, leading to

lipid peroxidation and increased membrane permeability in C.

fructicola. It also can modify cell permeability, leading to the

unintentional exchange of intracellular components and

eventually causing death in fungal cells (Pei et al., 2020).

Salak (Salacca zalacca) is a fruit with tough, scaly, and

prickly reddish-brown outer skin. The white flesh tastes sweet

when fully ripened but tastes sour if consumed unripe. A recent

study showed that application of 0.08% (w/w) orange oil

vapour in a closed air system completely inhibited

Marasmius palmivorus and Thieviolopsis sp. growth on

salacca fruit due to the presence of l imonene and

subsequently extended the shelf life up to 28 days. Due to its

ability to pass through the fungal cell membrane, limonene can

disrupt protein synthesis in the fungus and subsequently

inhibit fungal sporulation and germination. (Phothisuwan

et al., 2021).

Sapodilla (Manilkara zapota) is a brown and round or

oblong-shaped fruit with a sweet taste with gritty textured

flesh, almost like that of a kiwi. Plant extracts can be

incorporated into coatings to preserve postharvest sapodilla.

Khaliq et al. (2019b) reported that the formulation of 100%

aloe vera and 10 mg/mL Fagonia indica extract could be

applied as a coating to extend the shelf life and preserve

sapodilla during storage. Treated sapodilla recorded 9.3%

weight loss, higher firmness level (6.67N) and lower decay
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incidence (4.3%) compared to untreated sapodilla (22.1%,

3.65N and 34.7% respectively). Rambutan, jackfruit, dragon

fruit, salak and sapodilla are considered rather exotic fruits,

even in regions where they are cultivated. Therefore, studies

looking into the use of natural preservatives for the disease

management of sapodilla crops remain scarce. With that being

said, the limited studies are convincing to demonstrate the

versatility of using essential oils and plant extracts as natural

disease-controlling mechanisms in a range of tropical

fruit crops.
Conclusion and future directions

Essential oils and plant extracts have shown the potential to

protect and enhance the quality of pre and postharvest fruits

owing to their antimicrobial properties. Some of the essential oils

and plant extracts can be used to be formulated as organic

fungicides to control diseases in preharvest fruits. As for

postharvest fruits, essential oils and plant extracts can be

developed into edible coatings incorporated with antimicrobial

agents for protection during storage and transportation.

Coatings can also be designed for shorter-term storage to

prevent rapid spoilage of processed products such as fresh-cut

fruits. As essential oils are generally lipophilic while plant

extracts are typically extracted in organic solvents, the

respiration rate of coated postharvest fruits may be

significantly reduced due to the limited exchange of gases.

This, in turn, results in the extension of their shelf life,

allowing exporters to limit the use of synthetic preservatives.

Essential oils and plant extracts may be utilized as organic

preservatives for fruit juices, apart from protecting preharvest,

postharvest and processed fruits. Hydrophilic compounds with

antifungal activities present in essential oils and plant extracts

can distribute evenly in fruit juices due to the high water content,

increasing their chances of interaction with microorganisms.

The effectiveness of essential oil or plant extract-based edible

coating is still, however, dependent on the humidity and

temperature of the storage environment; thus, more studies

are needed to design more reliable and robust protective

coatings effectively. More studies are also warranted to

understand the formulation of essential oils and plant extracts

and organic pesticides without diminishing their antimicrobial

properties. Experiments investigating the antimicrobial

properties of these oils and extracts are also concentrated on

the direct implications to the pathogens; thus, the effects on the

actual fruit need to be thoroughly understood through in vivo

studies. Finally, although generally considered less toxic than

chemical pesticides, the safety of essential oils and plant extracts

in formulated coatings must be confirmed before they can be

applied in the fruit industry.
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Bosquez-Molina, E., Jesús, E.-d., Bautista-Baños, S., Verde-Calvo, J. R., and
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(2018). Carboxymethylcellulose coating associated with essential oil can increase
papaya shelf life. Sci. Hortic. 239, 70–77. doi: 10.1016/j.scienta.2018.05.025
frontiersin.org

https://doi.org/10.1016/j.postharvbio.2007.01.020
https://doi.org/10.1093/jhered/esh076
https://doi.org/10.1016/j.carbpol.2020.117579
https://doi.org/10.1016/j.scienta.2018.05.025
https://doi.org/10.3389/fpls.2022.999270
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Minmin Li,
Institute of Food Science and
Technology (CAAS), China

REVIEWED BY

Lin Jin,
Nanjing Agricultural University, China
Zhaojiang Guo,
Institute of Vegetables and Flowers
(CAAS), China

*CORRESPONDENCE

Jin-da Wang
jdwang@fafu.edu.cn
Ran Wang
rwang1105@126.com

SPECIALTY SECTION

This article was submitted to
Plant Metabolism and Chemodiversity,
a section of the journal
Frontiers in Plant Science

RECEIVED 09 August 2022
ACCEPTED 23 September 2022

PUBLISHED 12 October 2022

CITATION

Lin D-j, Fang Y, Li L-y, Zhang L-z,
Gao S-j, Wang R and Wang J-d (2022)
The insecticidal effect of the
botanical insecticide chlorogenic
acid on Mythimna separata
(Walker) is related to changes in
MsCYP450 gene expression.
Front. Plant Sci. 13:1015095.
doi: 10.3389/fpls.2022.1015095

COPYRIGHT

© 2022 Lin, Fang, Li, Zhang, Gao, Wang
and Wang. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 12 October 2022

DOI 10.3389/fpls.2022.1015095
The insecticidal effect of the
botanical insecticide
chlorogenic acid on Mythimna
separata (Walker) is related to
changes in MsCYP450 gene
expression

Dong-jiang Lin1, Yong Fang2, Ling-yun Li1, Li-zhao Zhang1,
San-ji Gao1, Ran Wang3* and Jin-da Wang1*

1National Engineering Research Center for Sugarcane, Fujian Agricultural and Forestry University,
Fuzhou, China, 2Hunan Agricultural Biotechnology Research Institute, Hunan Academy of
Agriculture Science, Changsha, China, 3Institute of Plant Protection, Beijing Academy of Agriculture
and Forestry Sciences, Beijing, China
The oriental armywormMythimna separata (Walker) (Lepidoptera: Noctuidae) can

feed on the leaves of many crops, resulting in vast areas of damage and severe

losses. Therefore, this insect has become a significant agricultural pest in north

Asia. In this study, we fed 3rd instar larvae with artificial diets containing different

concentrations of chlorogenic acid and found a significant lethal effect and the

mortality increased with increasing chlorogenic acid concentration. Next, we

measured the sublethal effect of chlorogenic acid at LC20 on the growth and

development of M. separata larvae. The durations of the 4th and 5th instar were

longer than those of the control group (prolonged by 0.8 and 0.6 days,

respectively), and the 6th instar was shorter (by 1.1 days). The total survival rate,

pupation rate, eclosion rate, sex ratio, and oviposition amount in the LC20

chlorogenic acid-treated group were significantly lower than those in the

control group. Furthermore, transcriptome analysis of 3rd instar larvae fed

various concentrations of chlorogenic acid revealed that several MsCYP450

genes were significantly up-regulated, and this finding was further validated by

qRT-PCR. In addition, various concentrations of chlorogenic acid and different

treatment times significantly affected the enzyme activity of CYP450 in 3rd instar

larvae. Importantly, dietary ingestion of dsMsCYP450 significantly reduced the

mRNA level of MsCYP450 genes and increased mortality in the presence of

chlorogenic acid. Our results revealed that MsCYP6B6, MsCYP321A7, and

MsCYP6B7-like play an essential role in the detoxification of chlorogenic acid by

M. separata. This study provides evidence of control effect by botanical insecticide

chlorogenic acid on M. separata, and potential detoxification mechanism

mediated by P450 of botanical insecticide in arthropods.
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chlorogenic acid, sublethal effect, P450, RNAi, mythinma seperata
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1. Introduction

Through long-term co-evolution, insects and plants have

formed a relatively stable ecological relationship. Plants not only

provide nutrients for phytophagous insects, but also initiate a

series of physical and chemical defenses to resist insect feeding.

Generally, these defense mechanisms can be divided into two

categories: constitutive defense and induced defense (Fornoff

and Gross, 2014; Chen, 2015; Fyllas et al., 2022; Sobhy et al.,

2022). Both defense mechanisms mainly include physical and

chemical defenses. Physical defenses specifically include plant

morphology, leaf thickness, and fluff, which negatively impact

insect feeding behavior (Gary et al., 2006; Whitehill et al., 2016).

Chemical defense refers to physiological and biochemical

changes, such as induction of plant phytohormone signaling, a

decrease in nutritional components, and production of defense

proteins and plant secondary metabolites (Ahn et al., 2007; Body

et al., 2019; Shen et al., 2021; Divekar et al., 2022). However,

insects have also evolved several behaviors to overcome plant

defenses, such as changing feeding strategies and regulating

growth rhythm and development. In addition to these

behavioral changes, biochemical and molecular characteristics

also contribute greatly to adaptation to plant defense systems.

For example, phytophagous insects regulate the composition,

quantity, and quality of digestive enzymes to overcome the

protease inhibitors in plants (Cloutier et al., 2000). Other

strategies, such as the inhibition of plant defense injury signals

and the detoxification to plant secondary substances, also enable

insects to escape from the plant defense system.

Insect cytochrome P450 (CYP450) is a terminal oxidase in

the multifunctional oxidase system, and it has a catalytic activity

on various substrates. Metabolic resistance is an important

mechanism underlying insect resistance to traditional

insecticides, and CYP450 plays a crucial role in the

detoxification of endogenous and exogenous toxic compounds

because of its broad-spectrum substrate specificity (Schuler,

2012; Bao et al., 2016; Xu et al., 2020). It has been reported

that plant secondary metabolites and insecticides can induce

insect CYP450 gene expression; for example, coumarin can

induce overexpression of CYP6B2, CYP6B6, and CYP6B7 in

Helicoverpa armigera and reduce the sensitivity of the insect to

methomyl (Chen et al., 2018). Gossypol can induce high

expression of CYP6AB14 and CYP9A98 in Spodoptera exigua,

and after RNA interference (RNAi)-mediated silencing of these

genes, larvae are more sensitive to deltamethrin (Hafeez

et al., 2019).

The oriental armyworm, Mythimna separata (Walker), is a

serious polyphagous and migratory insect pest with strong

adaptability, and it shows a preference for high-temperature

and -humidity environments (Jiang et al., 2011; Kong et al.,

2019). Local outbreaks have caused significant damage to crops,

such as corn, rice, and sugarcane (Mishra et al., 2021; Yang,

2021). In addition, some economically important crops such as
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cotton, beans, and vegetables have also suffered damage (Krempl

et al., 2021). The long-term continuous cropping of gramineous

crops will increase the probability of crop pests and diseases of

M. separata (Pang et al., 2021). Chemical treatments are the

most common and effective method to control M. separata

(Wang et al., 2018). However, frequent use of pesticides often

leads to serious environmental problems and insecticide

resistance (Song et al., 2017). Therefore, there is an urgent

need to develop new methods and materials with low toxicity

to beneficial organisms and high specificity for target insects.

Plant secondary metabolites, including phenolics and

flavonoids, play essential roles in insect resistance (Chen et al.,

2015; Chen et al., 2018; Xu et al., 2019). The results from various

studies have demonstrated that plant phenolic metabolites such

as chlorogenic acid (CGA), methyl jasmonate, and tannic acid

negatively affect insect feeding behavior, growth, development,

and reproduction, and they may have lethal effects on specific

insects (Kundu and Vadassery, 2019; Li et al., 2019; Lin et al.,

2021). CGA (C16H18O9) is a dihydroxy phenolic compound

that is a common secondary metabolite in plants, including

higher dicotyledons and ferns (Xi et al., 2014). CGA has been

shown to be involved in plant chemical defenses against insect

herbivores (Kundu and Vadassery, 2019); for example, it can be

used as a resistance factor for thrips in chrysanthemum (Leiss

et al., 2009), and induced biosynthesis of CGA in sweet potato

confers resistance against sweet potato weevil (Liao et al., 2020).

In addition, CGA is the main component in the anti-insect

defenses of Vernonia anthelmintica Willd (Liu et al., 2020).

Besides protecting plants from herbivores, CGA is also involved

in plant growth and development processes, such as shoot

organogenesis and fruit ripening (A. Nes ̧e Çokuğraş, and Ebru,

2003; Liu, 2016). In our previous research, we found that the

attack of M. separata on sugarcane induced significant

accumulation of CGA and that CGA has lethal effect on larvae

(Wang et al., 2021). Therefore, CGA is a promising

environmentally friendly insecticide that is safer for biological

use compared with traditional synthetic pesticides.

Although several studies have focused on CGA-mediated

plant chemical defenses against insects and the lethal effect of

CGA on target insects (Kundu and Vadassery, 2019; Pan et al.,

2020), there is no solid evidence of the role of CGA in inhibiting

herbivore attack, and the sublethal effects of CGA on insect

development and reproduction remain to be determined. In

addition, the effect of the CGA regulatory mechanism on an

insect is poorly understood. This study aimed to elucidate the

lethal and sublethal effects of CGA onM. separata larval growth

and development. The effect of CGA on detoxification enzyme

activity in M. separata and the potential key detoxifying genes

were investigated by RNA sequencing (RNA-seq). The findings

of this study provide the basis for further understanding the

detoxification mechanism of CGA in arthropods and a new

method in the management of pes t s wi th P450-

mediated resistance.
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2. Materials and methods

2.1 Insects

M. separata larvae were raised in the lab of National

Engineering Research Center for Sugarcane, Fujian A&F

University, in a controlled temperature (26 ± 1°C) and fixed

photoperiod (L16:D8). Preparation of artificial feed and feeding

were performed using the feeding method of Lepidoptera insects

described by Cao et al. (Cao et al., 2014).
2.2 Bioassays

In this study, the concentrations of CGA (purchased from

Beijing Solarbio Science & Technology Co., Ltd., purity ≥98%) in

the artificial diet were 5mg/mL, 10mg/mL, 20mg/mL, 40mg/mL,

and 80mg/mL. During the preparation of the artificial diet, all

the main materials were mixed under liquid conditions. To

prepare the 80mg/mL CGA artificial diet, 0.4 g of CGA was

dissolved in 5 mL of 25% absolute ethanol at room temperature,

and 15 g of artificial diet was added. The other artificial diets

with different concentrations of CGA were prepared in the same

way with the appropriate amounts of CGA, and the artificial diet

supplemented with 5 mL of 25% absolute ethanol was used as

the control. A piece of the artificial diet was placed in each well of

a 24-well plate, and one pre-starvation (12 h) 2nd instar larva was

placed on the surface of the diet. Three replicates of 24 larvae

were tested for every concentration. The same treatment was

also for 3rd and 4th instar larvae. Feeding conditions were the

same as those in section 2.1. Each day the artificial diet was

checked for freshness, and stale food was replaced, and the death

of larvae was recorded. The experiment was terminated after five

days of treatment, and the statistical data were collected. Larvae

were considered dead when they did not respond when

stimulated with an ink brush. The LC50 for each treatment

was determined by Probit analysis in SPSS 18.0.
2.3 Sublethal effects of CGA on the larval
development, eclosion rate and
fecundity of M. separata

The 3rd instar larvae were collected to determine the

sublethal effects of CGA on larval growth and development

parameters as described by Wang et al. (Wang et al., 2014). LC20

was chosen as the concentration for CGA treatment because it

resulted in a specific amount of mortality. Healthy 3rd instar

larvae were starved for 12 h, then a single 3rd instar larva was

placed on the surface of the artificial diet containing the LC20

dose of CGA in an individual 25 ml plastic cup and sealed with a
Frontiers in Plant Science 03
74
lid. Each treatment was performed with 30 larvae, and the

treatment was replicated three times. Similarly, twenty 3rd

instar larvae were placed on the artificial diet without CGA as

a control group, and the treatment was repeated three times.

Larvae were examined every day till pupation, and the

developmental stage, including molting, pupation, and death,

of the larvae was recorded every day. Then we determined the

sex of each M. separata by pupa and calculated the sex ratio

(Chen et al., 2019). After eclosion, the male and female adults

were paired and transferred to a cage for mating. After eggs were

laid, the egg masses were counted. The date was analysis by t-test

in SPSS 18.0.
2.4 Transcriptome analysis

The artificial diets with CGA at LC20, LC50, and LC80 were

fed to healthy 3rd instar larvae for 5 days, then four to six

surviving larvae were randomly selected for further

transcriptome analysis with three biological replicates. RNA

isolation, cDNA synthesis, library construction, and Illumina

sequencing were all performed at Berry Genomics Co., Ltd.

(Beijing, China) (Hansen et al., 2010). The RNeasy Micro Kit

(Qiagen, Hilden, Germany) was used to isolate total RNA from

each sample. RNA purity and concentration were then examined

using the NanoDrop 2000, and RNA integrity and quantity were

measured using the Agilent 2100 system. Next, an NEB library

was established for each sample using mRNA as a template. All

libraries were pooled together and subjected to Illumina

sequencing with paired-end sequencing. Trinity was used to

assemble clean reads, Benchmarking Universal Single-Copy

Orthologs (BUSCO) was used to evaluate the integrity of

transcript assembly, and Corset program transcripts were used

for hierarchical clustering. All unigenes were obtained after

assembly, and unigene functional annotation was based on the

non-redundant protein sequence (Nr), nucleotide sequence

(Nt), protein families (PFAM), KOG and Swiss-Prot databases.

Open reading frames (ORFs) were predicted by TransDecoder

software with the default setting. Then, paired-end reads were

aligned to the unigene sequence using bowtie, and RSEM was

used to count the number of reads mapped to each gene and

estimate gene expression levels. Differential expression was

analyzed using EdgeR. P-values of the results were adjusted to

control for the false discovery rate. Genes with |log2 (Fold

Change)| > 1 and q value < 0.05 were designated as

differentially expressed. Finally, Gene ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analyses of differentially expressed gene (DEG)

sets were performed using GOseq R and KOBAS 3.0,

respectively. GO terms with an adjusted p-value below 0.05

were considered significantly enriched in DEGs.
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2.5 Identification and bioinformatics
analysis of CYP450 genes

The assembled unigenes were used as queries in searches

against the Nr database with a cut-off E-value < 1.0 E−5. The

unigenes found in the same BLAST search or that shared high

homology with other unigenes were regarded as allelic variants

or as different parts of the same gene. The gene with hit result of

CYP450 was screened from the Nr results after BLAST. All

CYP450 genes of M. separata were identified by sequence

alignment, and the amino acid sequences were aligned using

the default settings in ClustalW 2.0. Then, the CYP450s genes of

M. separata were compared with those of H. armigera and

Spodoptera litura (obtained from InsectBase 2.0) by performing

phylogenetic analysis in MEGA-X.
2.6 Enzyme assays of P450
monoxygenases in M. separata larvae
treated with CGA

Healthy 3rd instar larvae were starved for 12 h, then

transferred to an artificial diet with different concentrations

(LC20, LC50, and LC80) of CGA. Feeding conditions were the

same as those in section 2.1. Healthy 3rd instar larvae were fed an

artificial diet with 25% absolute ethanol as a control. After

feeding for 1, 3, 5, and 7 days, ten surviving larvae were

randomly selected with three replicates per group to analyze

the effects of different concentrations of CGA in the artificial diet

and different treatment times on P450 enzyme activities using

the CYP450 enzyme assay kit (CK-E93532, Shanghai Enzymatic

Biotechnology Co., Ltd.) according to the kit instructions.
2.7 Validation of expression profiles
using qRT-PCR

RNA-seq analysis and assays of detoxification-related

CYP450 protein activities in M. separata treated for different

times with different concentrations of CGA revealed that

MsCYP450 genes and CYP450 detoxification proteins were

significantly up-regulated. Therefore, we selected seven

MsCYP450 genes that were up-regulated considerably in

response to different concentrations of CGA for validation by

qRT-PCR using the same RNA that was used in RNA-seq.

Primer 5 was used to design specific primer pairs (Table S1),

and primers were synthesized by Tsingke Biotechnology Co.,

Ltd. in China. The cDNA synthesis reaction was performed

using the HiScript® II Q RT SuperMix kit with gDNA wiper

(Vazyme, China) according to the manufacturer’s protocol using

1 mg of total RNA as a template per reaction. QRT-PCR was

performed with Hieff® qPCR Green Master Mix (Yeasen,
Frontiers in Plant Science 04
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China). Finally, data were analyzed using the 2-DDCT method

(Sun et al., 2017), and EF-1a was used as a control to correct for

sample-to-sample variation. Three technical replicates were

performed for each replicate, and the data were expressed as

mean ± standard error (SE).
2.8 RNAi in M. separata

Fragments of MsCYP321A7, MsCYP6k1-like, MsCYP6B6,

MsCYP324A1, MsCYP4V2-like, MsCYP6B7-like, MsCYP6AE88,

and green fluorescent protein gene (GFP) were amplified by

PCR using specific primers (Table S2) conjugated with the T7

RNA polymerase promoter (TAATACGACTCACTATAGGG).

The T7 Ribomax ™ Express RNAi System (Promega, Madison,

WI, USA) was used to synthesize double-stranded RNAs

(dsRNAs) as described in the manual. Thirty M. separata larvae

at the late 2nd instar stage were fed an artificial diet containing 100

mg dsRNA in a 24-well plate for 3 days, and fresh dsRNA was

added every day. The control group was treated with the same

amount of ddH2O. After 3 days, five living larvae in each group

(control, MsCYP321A7-dsRNA, MsCYP6k1-like-dsRNA,

MsCYP6B6-dsRNA, MsCYP324A1-dsRNA, MsCYP4V2-like-

dsRNA, MsCYP6B7-like-dsRNA, MsCYP6AE88-dsRNA, and

GFP-dsRNA) were collected for total RNA extraction for

determination of gene expression. The approximately 25 larvae

remaining in each treatment were used for bioassays with CGA at

LC50 as described above (section 2.3). The number of dead larvae

was recorded after CGA application for 6 days. The experiment

was replicated three times. After dsRNA treatment with the same

method, the growth and development period were determined by

2.3 method that using LC20 CGA mixed artificial diet.
3. Results

3.1 The effects of CGA on M. separata

The toxicity of CGA against M. separata larvae was

determined using the feeding method. The mortality was

calculated after feeding the 2st, 3rd and 4th instar larvae with

an artificial diet containing various concentrations of CGA for 5

days. The results (Table S3) showed that the mortalities of 3rd

larvae fed diets with different concentrations of CGA were

significantly different after 5 days (P<0.05). The higher the

concentration of CGA, the higher the mortality. The mortality

rate of the 5mg/mL CGA treatment group was 13.33% ± 6.67%,

while the mortality rate of the 80mg/mL CGA treatment group

reached 80.00% ± 13.33%. Based on the bioassay results, 74.48

mg/mL CGA (LC80 dose), 26.29 mg/mL CGA (LC50 dose) and

7.15 mg/mL CGA (LC20 dose) for 3rd larvae were used for

further treatment of larvae.
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3.2 Effects of CGA on the growth and
development of larvae

The LC20 concentration 7.15 mg/mL was used to assess the

sublethal effects of CGA on M. separata development and

reproduction. The duration of development for each instar is

shown in Table 1. The results showed that there was no

significant difference in the duration of the 3rd instar stage of

larvae treated with LC20, but there were significant differences in

the durations of the 4th and 5th instars, which were prolonged by

36.87% (0.8 days) and 38.22% (0.6 days), respectively (P <

0.0001). However, the duration of the 6th instar larval stage

was significantly shortened by 18.15% (1.1 days), and the overall

developmental duration of the 3rd to 6th instars was extended by

about 0.5 days. Measurement of other growth and development

indices of larvae showed that the total survival rate of larvae

(90%), eclosion rate (34.09%), sex ratio (0.86), and the number

of eggs laid per female (427.8 ± 48.88) of the CGA treatment

group were significantly lower than those of the control group. It

can be seen that CGA harms the growth, development, and

reproduction of larvae.
3.3 Transcriptome analysis of M. separata

To assess the potential mechanism underlying the lethal

effects of CGA on M. separata and potential detoxification

pathways, RNA-seq was carried out to identify genes encoding

target proteins and potential insecticide detoxification enzymes.

TwelveM. separata libraries were sequenced on the Illumina

platform and pooled together for assembly. All reads were

cleaned, and Trinity was used to conduct quality checks. A

total of 310,336,443 reads were assembled into 257,014

transcripts with an N50 length of 1,892. The contigs were

assembled into 134,240 unigenes with an average length of

1,176 bp (Table 2) using paired-end joining and gap-filling
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methods. The length distribution was mainly between 300 and

500 bp (35.66% of sequences); there were no sequences < 300 bp,

and 14.91% of sequences were longer than 2 kb (Figure S1).

To annotate unigenes, a BLASTX search of the Nr protein

database of the National Center for Biotechnology Information

(NCBI), was performed with a cut-off E-value of 10−5. A BLAST

hit was obtained for 27,039 distinct sequences (20.1% of the

total). Sequences were also used as queries in searches against

several other databases, including the Nt, Swiss-Prot, PFAM

protein, GO, and KOG databases (Table 2). Based on the best hit

in the Nr database, 7300 (27.0%) annotated unigenes had the

highest homology to sequences in H. armigera. In comparison,

fewer matched sequences in S. litura (19.7%) and Heliothis

virescens (16.5%). The fewest sequences matched hits in the

more distantly related species Trichoplusia ni (6.3%) and Chilo

suppressalis (5.5%) (Figure S2).

Expression levels of genes in M. separata treated with

artificial diets containing one of three different concentrations

of CGA (LC20, LC50, and LC80) were compared with those of

genes in the control group (CK). The comparison LC20vsCK had

the most significant DEGs, 1764 (1015 up-regulated and 749

down-regulated). LC80vsCK had the least number of DEGs, of

which 967 were up-regulated and 319 were down-regulated.

There were 671 up-regulated DEGs and 696 down-regulated

DEGs identified in the LC50vsCK comparison (Figure 1A).

Analysis of the intersection of DEGs revealed that 229 genes

were up-regulated and 173 genes were down-regulated in

response to all three CGA treatments (Figures 1B, C).

GO and KEGG enrichment analyses were performed for all

DEGs to understand the possible mechanisms underlying gene

expression differences between control and CGA-treated M.

separata larvae. DEGs from the LC20vsCK, LC50vsCK, and

LC80vsCK comparisons were all mainly enriched in the GO

biological process (BP) term transmembrane transport, the

cellular component (CC) term extracellular region, and the

molecular function (MF) term oxidoreductase activity (Figure S3).
TABLE 1 Sublethal effects of CGA at LC20 on growth and developmental indices of M. separata.

Index Treatments

CK Chlorogenic acid

Developmental duration (days) 3rd instar larva 3.52 ± 0.01ns 3.56 ± 0.03

4th instar larva 2.17 ± 0.03 2.97 ± 0.07****

5th instar larva 1.57 ± 0.02 2.17 ± 0.06****

6th instar larva 7.03 ± 0.09**** 5.95 ± 0.09

Larval duration from the 3rd instar (days) 14.27 ± 0.10 14.75 ± 0.11**

Total survival rate of larvae (%) 98%** 90%

Pupation rate (%) 100%ns 97.78%

Eclosion rate (%) 44.9%** 34.09%

Sex ratio (♀/♂) 2.14**** 0.86

Number of eggs laid per female 524.8 ± 80.02**** 427.8 ± 48.88
Data in the table are mean ± SE. Significance level(t-test):**p<0.01, ****p<0.0001, ns: not significant.
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In KEGG enrichment analysis, DEGs from LC20vsCK, LC50vsCK,

and LC80vsCK were all enriched primarily in the metabolism of

xenobiotics by cytochrome P450, drug metabolism - cytochrome

P450, and chemical carcinogenesis (Figure 2).
3.4 Analysis of the P450 genes
responding to CGA in M. separata

P450 enzyme activity assays showed that P450 activity was

induced by different concentrations of CGA (Figure 3A). P450

activity significantly increased with increasing CGA

concentration and reached the maximum at LC50. In addition,

we also assessed the effect of duration of LC20 CGA treatment on

M. separata P450 enzyme activity (Figure 3B). The P450 enzyme

activity increased significantly post-treatment and reached the

maximum at 7 days.

From our transcriptome data, 139 sequences encoding

CYP450s were identified, and these sequences corresponded to

61 non-redundant unigenes. Of these, 44 CYP450 genes encoding

proteins with more than 200 amino acids identical to annotated

CYP450 proteins were used for further analysis (Table S4). The

lengths of these CYP450 genes ranged from 662 to 4858 bp. Then,

from phylogenetic tree analysis, the CYP450 genes were

categorized into four CYP450 (CYP) clans: CYP2, CYP3, CYP4,

and the mitochondrial clan (Figure 4). Twenty-eight genes were

assigned to the CYP3 clan, which was the most prominent clan;

the CYP4 clan was the second largest with 8 genes; 2 genes were

assigned to the CYP2 clan; and 6 genes were assigned to the

mitochondrial clan, which is only found in animals (Figure 4).
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To verify the accuracy of the expression profiles obtained by

RNA-seq, we used the same RNA sample as template in qRT-PCR

analysis to determine the expression levels of seven MsCYP450

DEGs. As shown in Figure 5, the RNA-seq expression patterns of

the DEGs were similar to those determined by qRT-PCR. After

treatment with CGA at LC20, LC50 and LC80, gene expression was

up-regulated. Of the MsCYP450 genes, MsCYP321A7 was the

most significantly up-regulated. MsCYP6k1-like, MsCYP324A1,

andMsCYP6AE88 were all expressed at high levels after treatment

with different concentrations of CGA. MsCYP4V2-like was the

most highly expressed after treatment with CGA at LC20, and its

expression then decreased with increasing CGA concentration.

We also found that the seven MsCYP450 genes had high

expression levels after being treated with CGA at LC50. This is

consistent with the observation of the highest activity of CYP450

detoxification enzymes in M. separata treated with CGA at LC50.

After continuous ingestion of dsGFP and dsMsCYP450 genes

for three days, the late 2nd instar molted to the 3rd instar. Few larvae

died after being fed dsRNA, but the level of MsCYP450 gene

expression decreased significantly (43.89%–69.39%) compared

with the control group (Figure 6). The lowest expression level

was found in larvae fed dsMsCYP6B6, with a 56.11% reduction in

expression. Next, approximately 25 surviving larvae exposed to CK

(ddH2O), dsGFP, or dsMsCYP450 genes were used for further

bioassay experiments. After 2 days, larval mortality among the

dsMsCYP6B6, dsMsCYP321A7, and dsMsCYP6B7-like treatment

groups (60.71%, 57.94%, and 47.22%, respectively) was much

higher than that in the CK and dsGFP treatment groups (36.45%

and 36.90%, respectively, Figure 7). The larval mortality in the

dsMsCYP6k1-like, dsMsCYP324A1, dsMsCYP4V2-like, and

dsMsCYP6AE88 groups was not significantly different compared

with that in the CK and dsGFP treatment groups. After 5 days, the

largest larval mortality was dsMsCYP6B6 treatment groups

reached 78.97% (Figure S4).

In addition, we also tested larvae growth and development

parameter of M. separata larvae after different dsRNA treatment

showed that (Table S5). Compared with the control group, the 3rd

instar duration of the treatment groups was not significantly

different, while the 4th and 5th instars began to be significantly

prolonged. The longest of 4th instar duration was dsMsCYP321A-7

treatment (3.19 days) and the 5th instar duration was dsMsCYP6B7-

like treatment (2.53 days). Compared with the control group, the 6th

instar duration of the treatment groups were all shorten and the

shortest was dsMsCYP6B6 treatment (5.32 days).
4. Discussion

4.1 Analysis of the insecticidal activity of
CGA against M. separata larvae

In this study, the effects of different concentrations of CGA

on M. separata larvae were investigated by adding different
TABLE 2 An overview of the Illumina sequencing of the M. separata
transcriptome.

Parameter Value

Total number of raw reads 322,402,739

Total number of clean reads 310,336,443

Total number of clean bases 85.47G

GC percentage 47.78%

Number of transcripts 257,014

Total transcript nucleotides 302,148,057

Mean length of transcripts (bp) 1,176

Number of unigenes 134,240

Total unigene nucleotides 128,131,440

Mean length of unigenes 954

Annotated in NR 27,039

Annotated in NT 30,108

Annotated in KEGG 14,852

Annotated in SwissProt 13,607

Annotated in PFAM 21,624

Annotated in GO 21,623

Annotated in KOG 7,329
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concentrations of CGA to an artificial diet. The larvae in the

CGA treatment group started to die after 3 days, and peak death

was observed between days 3 and 5. This indicates that CGA has

no acute insecticidal effect on M. separata larvae within the

experimental concentration range of this study, but with

prolonged feeding time, CGA may accumulate in larvae and

have an insecticidal effect. Similar results have been obtained

when treating 3rd instar larvae of Plutella americana with 0.500%

CGA. The mortality of 5th instar larvae of P. americana in the

treatment group increased with increasing CGA concentration

in the artificial diet and was significantly higher than that in the

control group (Pan et al., 2020). Similar results were also

obtained when 2nd instar larvae of Plutella viridis were treated

with 0.3% CGA. The mortality rate increased rapidly from 20%
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to 50% after 20 days of treatment and reached 100% after 34 days

of treatment (Wang et al., 2014).

Generally speaking, botanical insecticides are thought to be

eco-friendly and relatively safe. These insecticides have the

following main properties: pest selectivity, low risk to non-

target organisms, biodegradability, and low risk of inducing

insect resistance (Benelli et al., 2019; Zainab and Manfred,

2020). In recent years, many studies have concentrated on the

use of plant extracts, particularly biologically active compounds

of plant-derived and essential oils, as potential alternatives to

commercial insecticides (Isman and Grieneisen, 2014).

Therefore, it is necessary to pay attention to the excavation

and use of botanical pesticides. Other phenolic substances have

shown insectidal activity; for example, 50 mg/mL kaempferol
A

B C

FIGURE 1

The number of DEGs in M. separata larvae treated with different concentrations of CGA. (A) The number of DEGs in different treatment. The
number in the column indicates the number of DEGs. (B) The number of DEGs up-regulated by all treatments. (C) The number of DEGs down-
regulated by all treatments.).
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FIGURE 2

KEGG enrichment analyses of DEGs from different comparisons. (A) LC20vsCK comparison. (B) LC50vsCK comparison. (C) LC80vsCK comparison.
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FIGURE 4

Phylogenetic analysis of the CYP450 genes from M. separata, H. armigera, and S. litura. The tree was constructed from multiple sequence
alignments using MEGA-X software.
A B

FIGURE 3

The activity of CYP450 proteins in the 3rd instar larvae of M. separata fed artificial diets containing CGA. (A) Artificial diet containing different
concentrations of CGA; (B) Artificial diet containing CGA at LC20 with different treatment times. Different letters above the bars show significant
differences between groups according to Tukey’s multiple comparisons tests at P < 0.05. Error bars represent the standard deviation (SD) of the means.).
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treatment for 72 h, caused 82% mortality of 4th instar larvae of

Culex quinquefasciatus (Huang et al., 2014); 10 mg/mL

periplocosides treatment for 24 h resulted in 76.2% mortality

of Schizaphis graminum (Rondani) and 37.5% mortality of M.

separata (Li et al., 2019). The essential oils of Schinus areira and

Thymus hyemalis (in the family Lamiaceae) had insecticidal

activity against Rhipibruchus picturatus (F.) (Coleoptera:

Bruchinae) and Eceratoniae ceratoniae Zeller (Lepidoptera:

Pyralidae), respectively (Mattar et al., 2022; Adouane

et al., 2022).
4.2 Analysis of the sublethal effect of
CGA on M. separata larvae

Studies to date have shown that CGA has adverse effects on

the growth and development of insects and can even be oxidized

to more toxic quinones in insects, which have a direct poisoning

effect. (Hu et al., 2009; Kundu and Vadassery, 2019) In this

study, feeding the 3rd instar larvae with a LC20 CGA diet

prolonged the duration of M. separata larval development

(instars 4–5), probably due to a fitness penalty from resisting

CGA. Part of the energy intake is used for growth and

development, while the other part is used for detoxification

metabolism of CGA. But the developmental duration of the

mature larvae (6th instar) was shortened, which may be related to

the tendency of Lepidoptera to survive poor environments as
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pupae and the premature pupation of the mature larvae caused

by CGA treatment (Deng, 2018). This result was similar to that

of previous studies in Lepidoptera, which showed that the

duration of Helicoverpa zea development was significantly

prolonged after ingesting artificial diets containing CGA and

caffeic acid (Summers and Felton, 1994), and that CGA reduces

the growth, development, and fecundity of Hyphantria cunea

larvae (Pan et al., 2020). All the results mentioned above show

that CGA can prolong the growth period of insects, thereby

reducing rate of insect reproduction and the occurrence of

disease. In addition, CGA reduced the pupation rate, eclosion

rate, sex ratio, and the number of eggs laid per female, indicating

that dietary CGA can negatively affect larval development and

insect reproduction. These results were consistent with the

conclusions reached for other lepidopteran insects. For

example, egg production by the gypsy moth is inversely

proportional to the phenolic acid content of its food (Tod

et al., 2000). Lymantria dispar larvae could not complete

normal growth and development after feeding on an artificial

diet containing tannic acid or CGA. The body weights of the

larvae were about 67.2%–75.0% lower than that of the control,

and the duration of the larval stage was prolonged by 2–4 times.

(Wang et al., 2014). This provides new evidence supporting the

hypothesis proposed by Caroline and Simon (Caroline and

Simon, 2002) that insects can adapt to different foods by

adjusting their reproductive capacity during long-term

evolution. After being treated with sulfoxaflor at sublethal
A B

D E F
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C

FIGURE 5

Comparison of relative fold change determined from RNA-seq and qRT-PCR analysis of the same samples. (From A–G the genes are
MsCYP321A7, MsCYP6k1-like, MsCYP6B6, MsCYP324A1, MsCYP4V2-like, MsCYP6B7-like, and MsCYP6AE88, respectively).
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concentrations, fatty acids, amino acids, and the composition

and content of carbohydrates all changed to different degrees,

indicating these energy substances mentioned above participate

in detoxification metabolism of M. persicae to some extent

(Zhang et al., 2021). We speculate that the effect of CGA on

the growth and development of M. separata might be related to

some energy substances involved in detoxification metabolism,

which needs further research.
4.3 The role of P450 genes in
CGA detoxification

Plant secondary metabolites can induce changes in

detoxification-related protein activities in phytophagous

insects, which may improve the adaptability of these insects

(Chen et al., 2015; Wang et al., 2022). CYP450 enzymes are the

primary detoxifying enzymes in many organisms. Multiple

signaling pathways and critical effector molecules are involved

in regulating insect P450s. CYP450 genes play a significant role

in detoxification in insects, and insecticide resistance largely

depends on the metabolism of exogenous toxic substances by

CYP450s (Nauen et al., 2021; Lu et al., 2020). Increased P450

activity is a key mechanism inducing insect resistance (Ye et al.,
Frontiers in Plant Science 11
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2022). Wang et al. demonstrated that AmCYP9q1 plays an

important role in the metabolic detoxification of imidacloprid

by Apis mellifera larvae (Wang et al., 2022). The expression

levels of CYP4L13 and CYP4M14 genes in the midgut and fat

bodies of Spodoptera frugiperda increased significantly after

larvae were fed exogenous insecticides such as nicotine and

flavonoids (Wang et al., 2022). Here, we performed assays of

P450 enzyme activity in M. separata larvae treated with CGA to

investigate the role of MsCYP450 genes. We found that CGA

could induce P450 enzyme activity inM. separata larvae fed with

different concentrations of CGA for different amounts of time

(Figure 3). Studies have shown that P450 can add various

chemical groups, including hydroxyl, carboxyl, and amino

groups, to toxic secondary metabolites in the insect digestive

tract. They can improve the water solubility and reactivity of

toxic secondary metabolites and degrade them into less harmful

forms (Chung et al., 2007; Cui et al., 2016). In this study, we

found evidence that CYP450 enzymes are essential for the

detoxification metabolism of CGA in M. separata.

In transcriptome analysis, we found 139 McCYP450 genes,

which is a much higher number than those in the lepidopteran

insects H. armigera (112) and S. litura (67) (Zhang, 2018 and

Zhang, 2019). Fewer MsCYP450 genes were identified in this

study than in our previous transcriptome sequencing study
A B D

E F G

C

FIGURE 6

The relative gene expression levels of MsCYP450 genes after dsMsCYP450 gene treatment for 3 days. (From A–G, the genes are MsCYP321A7,
MsCYP6k1-like, MsCYP6B6, MsCYP324A1, MsCYP4V2-like, MsCYP6B7-like, and MsCYP6AE88, respectively. Different lowercase letters above the
bars indicate a significant difference (p < 0.05) based on one-way ANOVA followed by Tukey’s HSD test for multiple comparisons. Means ± SE
from three replicates are shown).
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(Wang et al., 2018), possibly because of insufficient sequencing

depth or redundant sequencing. According to phylogenetic tree

analysis, the 139 MsCYP450 genes were divided into four clans,

of which the CYP3 clan was most closely related to drug

resistance metabolism (Wan et al., 2013). By comparing the

transcriptomes of M. separata treated with different

concentrations of CGA with that of the control group, 179

commonly up-regulated genes were identified. Among these up-

regulated genes, seven wereMsCYP450 genes and five were from

the CYP3 clan. Therefore, we speculated that the seven

MsCYP450 genes might be involved in metabolism. To further

confirm the function of these genes, we used the RNAi to knock

down their expression. Insect RNAi has been widely used to

identify or validate insecticide target genes (Young et al., 2015;

Dulbecco et al., 2021) and the use of this technology in M.
Frontiers in Plant Science 12
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separeata has been reported (Wang et al., 2019). Also this

method is widely used in identification of insecticide target. In

our study,M. separata larvae were continuously fed dsRNA for 3

days, and the mRNA level ofMsCYP450 genes were significantly

lower after treatment. The surviving larvae were then exposed to

the CGA at LC50 for 6 days, and treatment with dsMsCYP6B6,

dsMsCYP321A7, and dsMsCYP6B7-like caused a significant

reduction in survival compared with the CK and the dsGFP

treatment groups. These three MsCYP450 genes all belonged to

the CYP3 clan, which indicates they might play an important

role in the detoxification of CGA. The same results have also

been observed for similar genes in other insects. Bagchi et al. also

demonstrated that CGA significantly induces the CYP450 genes

of Amyelois transitella and increases the tolerance to CGA

(Bagchi et al., 2016), and silencing of the cytochrome P450
A

B

FIGURE 7

The larval mortality and survival rates for M. separata larvae after dsRNA treatment. (A) Larvae were continuously fed dsRNA for 3 days, and
mortality was evaluated for 2 days; (B) The survival rates of larvae scored for 2 days after dsMsCYP450 gene treatment for 3 days. Different
lowercase letters (a, b and c) above the bars indicate significant differences (p < 0.05) based on one-way ANOVA followed by Tukey’s HSD test
for multiple comparisons. Means ± SE from three replicates are shown).
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gene CYP321A1 was found to affect tannin detoxification in S.

litura (Zhao et al., 2021). CYP6B6 was shown to be involved in

esfenvalerate detoxification in the polyphagous insect H.

armigera (Tian et al., 2017), and CYP6B7 was shown to play

an important role in the resistance of H. armigera to fenvalerate

(Tang et al., 2007). In this study, we confirmed that MsCYP6B6,

MsCYP321A7, and MsCYP6B7-like play an essential role in the

detoxification of CGA in M. separata.

In this study, we found that CGA had a lethal effect on M.

separata and that a sublethal concentration harmed larval

growth and development. Seven MsCYP450 genes that may be

involved in the detoxification process were identified by

performing P450 enzyme assays and transcriptome analysis.

By treating larvae with dsMsCYP450 genes, we determined

that MsCYP6B6, MsCYP321A7, and MsCYP6B7-like play a

vital role in the detoxification of CGA by M. separata. The

findings of this functional study of the CGA detoxification genes

of this major phytophagous insect provides new insight into this

biological process and new targets for agricultural pest control.

This study also provides a new method for managing P450-

mediated resistance in insect pests.
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Protocorm-like-body extract of
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Bacterial fruit blotch, caused by the seedborne gram-negative bacterium

Acidovorax citrulli, is one of the most destructive bacterial diseases of

cucurbits (gourds) worldwide. Despite its prevalence, effective and reliable

means to control bacterial fruit blotch remain limited. Transcriptomic analyses

of tissue culture-based regeneration processes have revealed that

organogenesis-associated cellular reprogramming is often associated with

upregulation of stress- and defense-responsive genes. Yet, there is limited

evidence supporting the notion that the reprogrammed cellular metabolism of

the regenerated tissued confers bona fide antimicrobial activity. Here, we

explored the anti-bacterial activity of protocorm-like-bodies (PLBs) of

Phalaenopsis aphrodite. Encouragingly, we found that the PLB extract was

potent in slowing growth of A. citrulli, reducing the number of bacteria

attached to watermelon seeds, and alleviating disease symptoms of

watermelon seedlings caused by A. citrulli. Because the anti-bacterial activity

can be fractionated chemically, we predict that reprogrammed cellular activity

during the PLB regeneration process produces metabolites with antibacterial

activity. In conclusion, our data demonstrated the antibacterial activity in

developing PLBs and revealed the potential of using orchid PLBs to discover

chemicals to control bacterial fruit blotch disease.

KEYWORDS

Acidovorax citrulli, bacterial fruit blotch (BFB), protocorm-like-body, Phalaenopsis
orchids, antibacterial activity
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Introduction

Bacterial fruit blotch (BFB) is a serious seedborne pathogen

for watermelon and melon worldwide and its outbreaks have

caused severe fruit loss in the Americas, Asia, Europe, the

Middle and Far East, and Australia (Burdman et al., 2005;

Bahar and Burdman, 2010; Burdman and Walcott, 2012). In

Taiwan, BFB disease was first reported in 1992-1993 (Tzeng

et al., 2010). The recurrence of BFB in 1994 caused more than

60% loss of the watermelon crop nationwide (Tang, 1997; Cheng

et al., 2000; Cheng, 2009; Tzeng et al., 2010). The primary source

of inoculum is often contaminated seeds (Assouline et al., 1997).

Because of the destructive nature of BFB disease, evaluation of

pathogen contamination in seed lots prior to their sale and

distribution has become a critical practice for seed companies.

Based on the National Seed Health System USDA standard

(http://www.seedhealth.org/cb1-1), one infected seedling in

30,000 tested seeds can be sufficient to lead to rejection of the

entire seed lot. However, seed disinfestations and chemical

control only have limited efficacy in controlling BFB

(Burdman and Walcott, 2012). Even though seedling grow-out

assay is widely used to evaluate seed health, infected seedlings

may or may not show disease symptoms. It has been reported

that the amount of bacteria present on a seed, environmental

conditions, virulence levels of the strains, and the susceptibility

of host plants as a whole affect BFB outbreaks (Schaad et al.,

2003; Bahar and Burdman, 2010). If infected seedlings are not

detected, they might be transplanted into the field and become

the primary source of inoculum for field outbreaks. To date, no

BFB disease resistant plants have been developed and BFB

management remains a major challenge to global watermelon

and melon agriculture (Bahar and Burdman, 2010; Islam et al.,

2020). Hence, an innovative plan for a BFB management

program is a pressing need.

The Orchidaceae represents one of the largest angiosperm

families comprising more than 25,000 species that grow in wide

range of habitats ranging from rainforest and mountain, to

swamp and arctic tundra (Stokstad, 2015). Considering the

rich diversity of the orchid species, it is likely that orchids

provide a substantial resource of novel compounds for

potential application. In fact, orchids have been utilized by

humans for thousand years. For example, vanilla orchid

Vanilla planifolia, probably endemic to tropical forests in

Eastern Mexico, is a major source of vanilla (Bory et al., 2008).

Additionally, orchids such as Gastrodia elata, Bletilla striata, and

Dendrobium species have been used for medicinal purposes in

China and other Asian countries for thousands of years (Bulpitt

et al., 2007). Despite this background, only a few phytochemicals

have been characterized from orchids and the potential of orchid

derived-phytochemicals has not been fully explored.

Protocorm-like bodies (PLBs) morphologically resemble the

orchid germinated structures, protocorms, but are derived from
Frontiers in Plant Science 02
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somatic explants via a de novo regeneration pathway (Jones and

Tisserat, 1990; Chugh et al., 2009; Fang et al., 2022). Because

each PLB has the ability to regenerate into an individual plant,

PLB-based micropropagation is often used to produce clonal

plantlets in the orchid industry (Yam and Arditti, 2009). Our

previous comparative transcriptomic studies to dissect the

developmental origin of PLB supported that PLB and

protocorm share similar molecular s ignatures and

unexpectedly revealed that many genes involved in plant

defense responses are specifically enriched in the developing

PLB (Fang et al., 2016; Fang, 2021; Fang et al., 2022).

Considering the potential functions of PLB-enriched defense

related genes, we explored the antimicrobial activity of PLB

extract and tested its effects on BFB of watermelon. Our results

demonstrate the antibacterial activity of PLB extract and suggest

the potential of using the orchid PLBs for developing a reagent to

control BFB.
Materials and methods

Pathogen

Acidovorax citrulli Aac153 (A. citrulli Aac153), isolated by

the Laboratory of Phytopathogenic Bacteria, Department of

Plant Pathology, National Chung Hsing University, Taiwan

was a kind gift from Dr. Yi-Hsien Lin from National Pingtung

University of Science and Technology. A. citrulli Aac153 has

been shown to cause watermelon fruit blotch disease (Chang

et al., 2019). A. citrulli Aac153 was stored at -75°C in tryptic soy

broth (TSB) supplemented with 15% glycerol (v/v) and allowed

to grow on selective medium AacG containing 0.5g/l KH2PO4,

2g/l Na2HPO4·12H2O, 2 g/l (NH4)2SO4, 5 g/l L-glutamic acid,

12.5 mg/l bromothymol blue, 15g/l agar, 20 mg/l ampicillin, 25

ppm/l cycloheximde as described previously (Chen, 2014). The

single colony was used as inoculum for the primary culture. For

subculture, single colony of primary culture was used to

inoculate TSB and allowed to grow overnight at 28°C. The

overnight culture was then grown on a selective AacG agar

plate and the single colony was used as inoculum for the

secondary culture. Only the primary and secondary cultures

were used for inoculation in all the experiments. This strain

produces reproducible, severe symptoms on the commercialized

watermelon cultivar China Baby (Chang et al., 2019).
PLB extraction

PLB tissues were homogenized by pestle and mortar in the

presence of liquid nitrogen. One gram of pulverized PLB tissues

was sonicated in the presence of 5 ml of ethyl acetate (EtOAc) for

30 mins (Branson 8510 DTH). The EtOAc-based PLB extract
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was incubated at 55°C for 10 min. Large tissue debris was

removed by centrifugation at 3220 x g for 10 min. Supernatant

was transferred to a new tube and concentrated by a rotary

evaporator (EYELA, USA). The pellet was resuspended in 1 ml

100%MeOH. The PLB extract was then filtered by a 0.2 mm filter

(13 mm Acrodisc Syringe filter, Pall) followed by concentration

using a CentriVap Vacuum Concentrator (Labconco). The

concentrated PLB-extract was flash frozen and stored at -80°C.

Frozen PLB extract was resuspended in 2 ml 30% MeOH.

The 1 cc 50 mg Sep-PaK C18 cartridge (Waters) was first

equilibrated with 1 ml of 100% MeOH followed by 1 ml of

H2O once and then 1 ml of 30% MeOH once. For fractionation,

solid phase extraction (SPE) was carried out by applying 1 ml

PLB-based extract onto the equilibrated Sep-PaK C18 cartridge

using a step gradient of MeOH-water mixture at a concentration

of 30%, 45%, 60%, 80%, and 100% MeOH PLB and the eluents

were collected individually. Methanol was allowed to evaporate

by CentriVap Vacuum Concentrator (Labconco) and the

fractionated PLB extract from 1 g tissues was pooled and

resuspended in 100 ml 100% MeOH for seed infestation and

pathogenicity assays as described below.
Bacterial growth inhibition assay

Frozen PLB extract from 1 g of PLB tissues (see above) was

resuspended directly in 1 ml 100%MeOH. The overnight A. citrulli

Aac153 culture was pelleted by centrifugation and washed once

with 5 ml TSB medium, and diluted to OD600 = ~0.05 with TSB

medium. The diluted culture was mixed with crude PLB extract

(933 ml bacterial culture + 67 ml PLB extract) and aliquoted into 6

technical replicates (100 ml each) to a 96-well microtiter plate and
Frontiers in Plant Science 03
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allowed to incubate at 28°C. The OD600 was recorded at 0, 15, 19

hours after incubation. For each biological replicate, the absorbance

measurements of OD600 were recorded in three technical replicates.

This experiment was repeated three times.
Disease index scale

Disease symptoms of seedlings at 12 days after

transplantation (DAT) were recorded. Normally, 12 DAT

watermelon seedlings have two expanded true leaves. Disease

index was rated as follows (Figure 1): 0, no symptoms; 1, slight

(< 20%) water-soaking or necrotic spots on cotyledons or

hypocotyls; 2, increased water-soaking or necrotic spots

(>20%) on cotyledons or hypocotyls; 3, expanded water-

soaking and necrosis (>50%) on cotyledons or hypocotyls, true

leaves often failed to emerge from infected seedlings, for

seedlings with emerging true leaves, leaves failed to expand

and were often distorted; 4, bent seedlings with necrotic

cotyledons and hypocotyls, no true leaves were observed; 5,

falling-over seedlings with complete necrotic cotyledons and

hypocotyls. Disease severity was calculated as DS (%) = [sum

(class frequency × score of rating class)]/[(total number of

plants) × (maximal disease index)] × 100.
Seed infestation and pathogenicity
assays

Watermelon seeds (China Baby) were purchased from

Known-You Seed Company (Taiwan). For seed sterilization,

seeds were imbibed in distilled water supplemented with 0.1%
FIGURE 1

The represented disease severity index used to categorize disease symptoms of watermelon seedlings infected with A. citrulli Aac153. The
numbers indicate the disease index described in Materials and Methods.
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Triton X100 and gently shaken for 30 min. Imbibed seeds were

sterilized by incubating with 75% ethanol for 5 min followed by

washing with sterilized water 5 times. Seeds were allowed to dry

in a laminar hood overnight.

For bacterial culture preparation, A. citrulli Aac153 culture that

grew in 4 ml TSB overnight was pelleted by centrifugation at 3220 x

g at 25°C for 10 min, washed once with 5 ml 0.5% carboxymethyl

cellulose (CMC), resuspended in 0.5% CMC, and adjusted to OD600

to ~0.3. This preparation was used as the bacterial stock for seed

infestation and seedling pathogenicity assays.

For seed infestation assay, five sterilized seeds were

incubated with A. citrulli Aac153 culture in the presence (933

ml diluted bacterial culture + 67 ml fractionated PLB extract) or

absence (933 ml diluted bacterial culture + 67 ml methanol) of

PLB extract with gentle shaking (200 rpm) at 28°C for 2 h. The

infested seeds were allowed to dry in a laminar flow hood

overnight. The infected seeds were then resuspended in 1 ml

AacG selective medium, incubated at 4°C for 30 min followed by

incubation at 37°C for 1 h as described previously (Chen, 2014).

Bacteria were concentrated by centrifugation at 15871 x g at 4°C

for 10 min. The supernatant was carefully removed and the

bacterial pellet was resuspended in 1 ml distilled water. The

bacterial suspension was diluted 10 or 100 times by distilled

water, plated on AacG selective plates, and allowed to grow at

28°C for three days. For each biological repeat, measurement of

colony forming units was performed in three technical

replicates. This experiment was repeated three times. A two-

tailed Student’s t-test was applied. *, 0.05 > p > 0.01; **, p < 0.01.

Only the treatments showing statistically significant reduction of

bacteria were marked.

For seedling pathogenicity assay, the diluted A. citrulli Aac153

culture (OD600 to ~0.3) was further diluted 500 times with 0.5%

CMC immediately before infection experiment. Eight sterilized

seeds were incubated with 1 ml of diluted A. citrulli Aac153

culture in the presence (933µl diluted A. citrulli Aac153 + 67µl

fractionated PLB extract, treatment) or absence (933 µl diluted A.

citrulli Aac153 + 67µl MeOH, control) of PLB extract at 28°C with

gentle shaking (200 rpm) for 24 h. The infested seeds were allowed

to germinate in a humidity chamber at 32°C in the dark for 72 h.

The germinated seedlings were then transferred to soil and allowed

to grow in a growth chamber with a 16-h:8-h light:dark cycle under

illumination of ~300 mmol photons m-2s-1 at 32°C. Plastic wrap was

used to cover soil pots to maintain humidity and removed 5 days

after transplantation. Disease symptoms were rated and recorded

based on disease index scale (Figure 1) as described previously. The

experiment was conducted three times. A two-tailed Student’s t-test

was applied. **, 0.01 > p > 0.001; ***, p < 0.001.
RNA extraction and RT-qPCR

RNA was extracted as described previously (Fang et al.,

2016). Three micrograms of DNA-free RNA were reverse
Frontiers in Plant Science 04
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transcribed in the presence of a mixture of oligo(dT) and

random primers in a 9:1 ratio using the GoScript Reverse

Transcription System (Promega) based on the manufacturer’s

instructions. Ten microliters of reverse transcription-PCR

reaction contained 2.5 mL of 1:20 diluted cDNA, 0.2 mM of

primers, and 5 mL of 2x KAPA SYBR FAST master mix (KAPA

Biosystems). The amplification program was as follows: 95°C for

1 min, and 40 cycles at 95°C for 5 s and 58°C to 60°C for 20 s.

PCR was performed in triplicate. Data are from technical

triplicates and the error bars are presented as standard error of

the mean. The RNA samples used for RT-qPCR analysis were

independent from those for RNA-seq analyses. Primer pairs and

the specified annealing temperature used for quantitative PCR

are listed in Supplementary Table 1. UBIQUITIN was used as an

internal control (Lin et al., 2014). The nomenclature of chalcone

synthases was based on the previous study (Kuo et al., 2019). List

of gene IDs used in this study and their corresponding IDs in the

P. aphrodite databases are listed in Supplementary Table 2.
Statistical analysis

All experiments were performed three times or as otherwise

mentioned in the figure legends. The data are presented as

means and standard deviations obtained from at least three

replicates of a single experiment. The significant difference

between the treatments was analyzed by running a Student’s t-

test in IBM SPSS v.20.
Results

Plant defense-related genes are
specifically upregulated in PLBs

Our previous RNA-seq study invest igat ing the

developmental origin of PLBs revealed that Gene Ontology

(GO) terms such as oxidation-reduction process, terpene

synthase activity, and stress responses are overrepresented in

developing PLBs (Fang et al., 2016). The biochemical and

biological properties of these GO terms are generally

associated with plant defense responses (Field et al., 2006;

Almagro et al., 2009; Ton et al., 2009; Gonzalez et al., 2010;

Denance et al., 2013; Yang et al., 2013; Savatin et al., 2014).

Among them, Phalaenopsis chalcone synthase (CHS) and

flavonoid 3’ hydroxylase (F3’ H) genes, PaCHS4, PaCHS5, and

PaF3’ H1, were preferentially upregulated in developing PLBs

(Table 1). Chalcone synthase and flavonoid 3’ hydroxylase act at

the initial steps to produce flavonoids- and isoflavonoid-type

phytoalexins (Bak et al., 2011; Dao et al., 2011; Ahuja et al., 2012)

that are part of plant defense responses (Ahuja et al., 2012). A
frontiersin.org
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PLB-enriched PaCYC71A1, which is related to Arabidopsis

CYP71A12 (Bak et al., 2011), encodes a putative cytochrome

P450 monooxygenase (Table 1). Arabidopsis CYP71A12 takes

part in biosynthesis of camalexin, a major phytoalexin important

for disease resistance (Millet et al., 2010; Klein et al., 2013;

Pastorczyk et al., 2020). Additionally, two PLB-enriched WRKY

transcription factors, PaWRKY3 and PaWRKY4, were identified.

PaWRKY3 belongs to the group III WRKY transcription factors

(Supplementary Figure 1) and is related to Arabidopsis

WRKY70 (Wu et al., 2005). Arabidopsis WRKY70 modulates

salicylic acid (SA)- and jasmonic acid (JA)-mediated defense

pathways to regulate plant immunity against bacterial pathogens

(Li et al., 2004; Li et al., 2006; Zhou et al., 2018). PaWRKY4, on

the other hand, encodes a group I WRKY transcription factor

that is related to Arabidopsis WRKY33 (Supplementary

Figure 1), which is an important regulator for biosynthesis of

camalexin and pathogen-associated molecular patterns

(PAMP)/pathogen-triggered reactive oxygen species (ROS) and

ethylene production (Qiu et al., 2008; Mao et al., 2011; Li et al.,

2012; Zhao et al., 2020; Zhou et al., 2020).

These PLB-enriched genes (Table 1) are also associated with

other aspects of plant defense responses. For example, PaECR1

encodes a potential enoyl-coA reductase that has been shown to

play roles in plant defense responses in cotton and P. amabilis

orchid (Fu et al., 2012; Mustafa et al., 2017). A potential PLANT

NATRIURETIC PEPTIDE (PEP) encoded by PaPEP1A belongs

to a family of peptides involved in regulation of defense

responses and ion and water homeostasis (Gehring and Irving,

2013; Ficarra et al., 2018). MAJOR LATEX PROTEIN1

(PaMLP1) and NORCOCLAURINE SYNTHASE1 (PaNCS1)

belong to pathogen-related 10 (PR10) and Bet v1 proteins
Frontiers in Plant Science 05
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(Radauer et al., 2008). MLP proteins are known to be involved

in various abiotic and biotic responses (Yang et al., 2015; Wang

et al., 2016; Holmquist et al., 2021). NCS proteins catalyze the

first committed step of biosynthesis of benzylisoquinoline

alkaloids (BIAs) that possess antimicrobial activity (Lee and

Facchini, 2010). PaRALF1, on the other hand, encodes a protein

that is related to Arabidopsis RAPID ALKALINIZATION

FACTOR (RALF) peptides, which are found to interact with

receptor-like kinase FERONIA to modulate ROS production and

plant immune responses (Stegmann et al., 2017; Li et al., 2018;

Abarca et al., 2021). The PLB-enriched genes, PaCOMT1 and

PaCOMT2, encode putative caffeic acid O-methyltransferases.

Rice COMT is reported to have N-acetylserotonin O-

methyltransferase (ASMT) activity that converts N-

acetylserotonin to melatonin (Byeon et al., 2015), which

modulates ROS and SA levels to improve plant responses to

various abiotic and biotic stresses (Lee et al., 2015; Khan et al.,

2020). Additionally, PaPRX1 encodes a PLB-enriched

peroxidase, which may take part in plant defense responses

(O’Brien et al., 2012). The expression patterns of the described

PLB-enriched genes have been documented in an independent

RNA-seq dataset (Fang et al., 2022) and validated by RT-qPCR

analysis in a separate set of samples (Figure 2).
Crude PLB extract slows growth of A.
citrulli Aac153

Because many plant defense-relates genes were specifically

induced in developing PLBs, we hypothesized that the dynamic

metabolomic reprogramming of developing PLBs leads to
TABLE 1 Plant defense-related genes are enriched in developing PLBs as shown by RNA-seq analysis.

FPKM values

Transcript ID Annotation 30/40
DAP

50/60
DAP

70/80
DAP

90/100/
120 DAP

140/
160
DAP

180/
200
DAP

PLB Protocorm Young
leaves

Stalk
buds

Floral
stalks

orchid.id124284.tr400924 PaCHS4 1.7 0.6 0.2 0.4 2.0 2.3 185.9 10.7 1.4 0.8 0.9

orchid.id121282.tr400924 PaCHS5 0.6 0.4 0.1 0.3 2.3 2.2 186.2 15.1 1.3 0.5 0.6

orchid.id17741.tr406385 PaF3’ H1 7.56 9.43 25.19 11.91 5.96 10.07 194.62 5.43 7.90 6.39 4.89

orchid.id115099.tr56794 PaCYP71A1 0.2 0.1 0.1 0.7 1.9 1.4 395.4 23.6 0.1 0.2 0.1

orchid.id36575.tr215222 PaWRKY3 0.0 0.0 0.0 0.0 0.0 0.0 6.1 0.0 0.0 0.0 0.0

orchid.id184974.tr136611 PaWRKY4 0.0 0.0 0.0 0.0 0.0 0.0 9.1 1.1 0.0 0.0 0.0

orchid.id154271.tr406853 PaECR1 1.1 0.1 0.6 1.2 2.9 1.2 313.0 3.4 0.8 0.8 3.1

orchid.id163617.tr122100 PaPNP1 3.7 1.8 1.5 9.6 0.6 0.3 106.6 3.6 0.9 3.6 0.5

orchid.id156327.tr422593 PaRALF1 1.4 0.6 0.0 0.3 1.2 0.0 159.4 0.2 26.2 20.7 1.4

orchid.id133178.tr112803 PaMLP1 3.1 1.3 0.5 2.4 0.9 2.2 1046.2 7.6 0.2 7.1 6.9

orchid.id148348.tr112803 PaMLP2 4.3 1.4 0.6 3.1 0.9 2.6 1318.7 8.4 0.2 10.6 10.9

orchid.id136038.tr32844 PaPRX1 0.3 0.5 0.1 0.4 0.5 0.3 253.7 27.6 0.1 0.1 0.5

orchid.id123338.tr499847 PaCOMT1 1.4 1.1 1.4 3.0 4.0 3.7 645.1 28.4 1.8 15.0 8.7

orchid.id21743.tr69582 PaCOMT2 0.0 0.0 0.0 0.2 0.0 0.2 28.8 0.0 0.0 0.0 0.0
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synthesis of antimicrobial metabolites. Ethyl acetate (EtOAc),

which is commonly used for plant metabolite extraction

(Tamokou et al., 2012; Oliveira et al., 2013; Lien et al., 2014;

Yang et al., 2022), was used to prepare PLB crude extract. The

crude extract was then tested for its effect on growth of three
Frontiers in Plant Science 06
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plant pathogens including Acidovorax citrulli Aac153

(watermelon bacterial fruit blotch disease), Pectobacterium

carotovorum subsp. carotovorum (bacterial soft rot disease),

and Xanthomonas citri pv. mangiferaeindicae (mango bacterial

black spot disease). Because PLB crude extract showed

consistent inhibitory effect on growth of A. citrulli Aac153 in

the preliminary test (data not shown), we decided to focus on

A. citrulli Aac153. To confirm this inhibitory effect, bacterial

growth was monitored over 19 hours. In three separate

experiments, PLB crude extract slowed the growth of A.

citrulli Aac153 15 hours after treatment (Figure 3), indicating

the presence of anti-bacterial activity in the developing PLBs.

However, growth of A. citrulli Aac153 eventually caught up 19

hours after incubation, suggesting other substances may

interfere with the inhibitory activity.
PLB extract reduces number of A. citrulli
Aac153 bacteria associated with
watermelon seeds

To enrich and separate the active metabolites from

interfering substances, PLB crude extract was fractionated by

solid phase extraction (SPE) based on the chemical polarity.

Chemicals eluted with different concentrations of MeOH were

collected for seed infestation test. Watermelon seeds were

inoculated with A. citrulli Aac153 in the presence of different

PLB eluents (see Materials and Methods). Interestingly, 30%

MeOH PLB eluent was shown to be most effective in reducing

the number of bacteria associated with watermelon seeds

(Figure 4). Only 2.1% to 6.5% of bacterial cells remained after

co-incubation with 30% MeOH-water PLB eluent. Co-

incubating seeds with the 100% MeOH PLB eluents was also

effective in reducing bacterial number but to a lesser extent

(between 7.9% to 53.2%) with relatively large variations as

compared to the 30% MeOH-water PLB eluents. This indicates
FIGURE 3

Crude PLB extract affected growth of A. citrulli Aac153. Aac153, A. citrulli Aac153 culture. TSB, cells were allowed to grow in TSB medium.
MeOH, cells were allowed to grow in TSB medium containing 6.7% MeOH. PLB, cells were allowed to grow in TSB medium supplemented with
6.7% PLB extract. hr, hour after incubation. I, II, and III represent three independent experiments.
FIGURE 2

Expression profiles of the selected PLB-enriched genes in
developing ovaries of P. aphrodite collected at 30 to 200 days
after pollination (DAP), and developing PLBs and protocorms.
Small PLBs (PLBS), medium PLBs (PLBM), large PLBs (PLBL), 10-
d-old protocorms (protocorm10), 20-d-old protocorms
(protocorm20), and 30-d-old protocorms (protocorm30) are
defined as previously described (Fang et al., 2016) by RT-qPCR
analysis. Expression was normalized to the Ubiquitin (PaUBI)
signal. Data are from technical triplicates and the error bars are
presented as standard error of the mean. Similar expression
pattern was observed in RNA-seq data from two independently
collected samples (Fang et al., 2016; Fang et al., 2022).
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that compounds with the potent antibacterial activity were

enriched in 30% MeOH-water PLB eluent.
PLB extract alleviates disease symptoms
caused by A. citrulli Aac153

Because 30%MeOH PLB eluent was effective in reducing the

number of bacteria attached to the watermelon seeds, we then

investigated whether it can protect watermelon seedlings from

A. citrulli Aac153 infection. To this end, watermelon seeds were

incubated with A. citrulli Aac153 culture in the presence of 1x or

1/5x of 30% MeOH PLB eluent.

Watermelon seedlings from seeds incubated with CMC or

CMC + 6.7% MeOH were used as controls, and no disease

symptoms were observed on these seedlings (Figure 5A;

Supplementary Figure 2). On the other hand, watermelon

seedlings inoculated with A. citrulli Aac153 inoculation,

showed water-soaking spots and necrotic lesions on the

hypocotyl or cotyledons, typical BFB symptoms (Walcott,

2008; Bahar and Burdman, 2010), at 12 days after

transplantation (DAP). Co-treatment of 1x 30% MeOH PLB

eluent alleviated disease symptoms on the A. citrulli Aac153-

infected seedlings. Moreover, 1/5 x 30% MeOH PLB eluent was

also potent in protecting the A. citrulli Aac153-infected

seedlings. This experiment was conducted three times and

similar results were obtained each time. Disease assessment

was quantified by the disease index scale as detailed in

Materials and Methods. Disease severity of the A. citrulli

Aac153-infected seedlings ranged from 65.5% to 81%

(Figure 5B). The disease severity of the A. citrulli Aac153-

infected seedlings treated with 1x 30% MeOH PLB eluent was

reduced to 38.0% to 46%. Even 1/5 x 30% MeOH PLB eluent

was able to protect the A. citrulli Aac153-infected seedlings and
Frontiers in Plant Science 07
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disease severity was reduced to 46% to 48.2%. Importantly, PLB

treatment at the higher concentration only slightly affected

seed germination (p value = 0.03, Table 2). Together, we

conclude that PLB-derived metabolites possess the

antibacterial activity that protects watermelon seedlings from

A. citrulli Aac153 infection.
Discussion

Phalaenopsis orchid PLBs possess the
antibacterial activity

Accumulated studies have provided molecular evidence

linking pluripotency acquisition of plant regeneration processes

to activation of defense responses (Chupeau et al., 2013; Ikeuchi

et al., 2017; Iwase et al., 2021; Li et al., 2021). Furthermore,

defense- or stress-associated pathways are proposed to be part of a

gene regulatory network for cell proliferation and organ

regeneration (Heyman et al., 2018; Wu et al., 2020a; Zeng et al.,

2021). However, there is little evidence to support the notion that

the rewired gene regulatory network of regenerated tissues is

capable of synthesizing antimicrobial metabolites. Here, we

showed that orchid PLB contains antibacterial substances that

are potent in slowing the growth of A. citrulli Aac153, reducing

the number of A. citrulli Aac153 associated with watermelon

seeds, and protecting watermelon seedlings from severe infection

by A. citrulli Aac153. Why would the developing PLBs possess the

antibacterial activity? PLB is a regenerated structure induced by

cutting during tissue culture (Yam and Arditti, 2009). Tissue

injury caused by cutting during tissue culture triggers wounding-

induced responses that mimic mechanical wounding triggered by

herbivores and insects. It is therefore possible that wounding

activates responses that contribute to production of antibacterial

activity in PLBs. Wounding induced by herbivores and insects is
FIGURE 4

Watermelon seed infestation assay. CFU, colony forming unit. CFU Data were collected from 5 pooled watermelon seeds. C, no PLB extract
control. 30%, PLB extract eluted by 30% MeOH-H2O. 45%, PLB extract eluted by 45% MeOH-H2O. 60%, PLB extract eluted by 60% MeOH-
H2O. 80%, PLB extract eluted by 80% MeOH-H2O. 100%, PLB extract eluted by 100% MeOH-H2O. The experiment was repeated three times
with similar results. I, II, and III represent three independent experiment. A two-tailed Student’s t-test was applied. *0.05 > p > 0.01; **p < 0.01.
Only the treatments showing statistically significant reduction of bacteria were marked.
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known to trigger de novo synthesis of ethylene, jasmonic acid, and

abscisic acid (Hyodo et al., 1983; Peña-Cortés et al., 1995; Bergey

et al., 1996; Bouquin et al., 1997) that subsequently induce plant

immunity responses to protect plants from infection by microbial

pathogens (Savatin et al., 2014). Wounding also induces an array

of immunity-related transcription factors such as WRKY

transcription factors whose functions are to activate plant
Frontiers in Plant Science 08
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defense responses and prevent bacterial and fungal infection (Li

et al., 2004; Li et al., 2006; Zheng et al., 2006; Pandey et al., 2010;

Sarris et al., 2015; Zhou et al., 2018). Coincidently, some of the

WRKY transcription factors also play a role in tissues regeneration

(Che et al., 2006; Xu et al., 2012; Iwase et al., 2021). In this study,

we showed that PaWRKY3 and PaWRKY4 (Table 1, Figure 2) are

PLB-enriched transcription factors. PaWRKY3 and PaWRKY4 are
TABLE 2 Germination rate of watermelon seeds.

CMC CMC + MeOH Aac153 Aac153 + PLB Aac153 + 1/5 PLB

Germination rate 100.0 ± 0.0% 90.0 ± 9.1% 87.9 ± 8.0% 89.4 ± 6.1% 93.9 ± 3.0%

p value N/A 0.42 0.15 0.03 0.18
CMC, seeds incubated with CMCmedium before germination. CMC+MeOH, seeds incubated with 6.7%MeOH in CMCmedium before germination. Aac153, seeds incubated with A. citrulli Aac153
in the presence of 6.7% MeOH. Aac153 + PLB, seeds incubated with A. citrulli Aac153 in the presence of 30% MeOH PLB extract. Aac153 + 1/5 PLB, seeds incubated with A. citrulli Aac153 in the
presence of one-fifth 30%MeOH PLB extract. Twenty-two seeds were used in each experiment except CMC and CMC +MeOH control experiments. For CMC and CMC +MeOH treatments, eleven
seeds were used in each experiment. The experiment was repeated three times. N/A, not applicable. p values were derived from SPSS Student’s t-test analysis.
A

B

FIGURE 5

Thirty percent MeOH PLB eluent alleviates disease symptoms of watermelon bacterial blotch disease. (A) Disease symptoms of A citrulli Aac153-
infested seedlings at 12 days after transplantion (DAT). (B) Disease severity index (DSI) of 12 DAT watermelon seedlings after treatments. CMC +
MeOH, seeds were incubated with 6.7% MeOH in CMC medium. Aac153, seeds were incubated with A citrulli Aac153 in the presence of 6.7%
MeOH. Aac153 + PLB, seeds were incubated with A citrulli Aac153 in the presence of 30% MeOH PLB extract. Aac153 + 1/5 PLB, seeds were
incubated with A citrulli Aac153 in the presence of one-fifth 30% MeOH PLB extract. The experiment was repeated three times. I, II, and III
represent three independent experiments. Twenty-two seeds were used in each experiment except CMC and CMC + MeOH treatments. A two-
tailed Student’s t-test was applied. **0.01 > p > 0.001; ***p < 0.001.
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the homologs of Arabidopsis defense response regulators,

WRKY70 and WRKY33, respectively (Li et al., 2017; Zhou et al.,

2018). Arabidopsis WRKY70 is directly regulated by the key

immunity signaling regulator NONEXPRESSOR OF PR

GENES1 (NPR1) and wrky70 mutant displayed reduced

resistance to the oomycte Hyaloperonospora parasitica (Wang

et al., 2006; Knoth et al., 2007). Arabidopsis WRKY33, on the

other hand, is required for pathogen-induced biosynthesis of

camalexin and ethylene response (Mao et al., 2011; Li et al.,

2012). Considering the antimicrobial activity of PLB extract, we

hypothesize that PaWRKY3 and PaWRKY4 may be part of cell

reprogramming networks in developing PLBs that contribute to

the defense activation and accumulation of antimicrobial

metabolites. The functions of these PaWRKY3 and PaWRKY4

transcription factors remain to be determined.

Phytoalexins are reported to play important roles in

combating a broad range of bacterial and fungal pathogens

(Glazebrook and Ausubel, 1994; Graham et al., 2007; Ahuja

et al., 2012; Schmelz et al., 2014). Because wounding has been

reported to induce phytoalexin biosynthesis (Guillet and De

Luca, 2005; Naoumkina et al., 2007; Farag et al., 2008), we

speculated that phytoalexins make up part of the PLB-based

antibacterial metabolites. Since chalcone synthases (PaCHS4

and PaCHS5) and flavonoid 3’ hydroxylase (PaF3’ H1) were

specifically upregulated in PLBs, it is possible that flavonoids-

and isoflavonoid-type phytoalexins were accumulated to

provide the antimicrobial activity. However, we cannot

exclude the possibility that other types of phytoalexins or

cellular processes provide the inhibitory effect against A.

citrulli Aac153. The active substance(s) remain to be purified

and identified.
Orchid PLBs may enable discovery of
novel antimicrobial metabolites

Plants possess a rich repertoire of phytochemicals that are

important for plants to combat pathogens and predators, and

adapt to biotic and abiotic stresses in the natural environment

(Pichersky and Lewinsohn, 2011; Moghe and Last, 2015). The

fact that the stress-activated plant regeneration program is often

associated with defense-associated cellular activity suggests that

the molecular wiring of development and plant immunity

processes is overlapping. This notion is supported by a recent

study showing that plant development and immunity share a

signaling network (Wu et al., 2020b). In addition to a signaling

network, we hypothesize that the cellular metabolism is also

reprogrammed to accommodate stress-associated organogenesis

and plant immunity functions. The available genome and

transcriptome databases of P. aphrodite (Chao et al., 2017;

Chao et al., 2018) provide the molecular basis to discover

pathways and to decode the molecular wiring of PLB-

associated antimicrobial metabolites (Owen et al., 2017). We
Frontiers in Plant Science 09
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suggest that PLBs may be used as a metabolite tap for identifying

novel antibacter ia l compounds. Ident ificat ion and

characterization of the PLB-associated antimicrobial

metabolites may provide a new route to harness the chemical

diversity of orchid species.

Bacterial fruit blotch disease is a serious threat to the

cucurbit (gourd) industry. Even though seed sanitation with

hydrochloric acid or peroxyacetic acid have been proven to be

effective at eradicating pathogens from infested seeds, seed

quality is affected substantially (Hopkins et al., 1996; Hopkins

et al., 2003). Moreover, seed disinfestation treatments and

chemical control in the field are limited in their ability to

reduce the yield losses associated with BFB (Burdman and

Walcott, 2012), most likely because the applied chemicals

cannot reach bacteria that are associated with developing

embryos and seed coats (Rane and Latin, 1992; Hopkins and

Thompson, 2002; Dutta et al., 2016). Since PLB-based extract

did not affect the viability or germination rate of the watermelon

seeds (Table 2), it may serve as an alternative to control

watermelon fruit blotch disease.
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Acetylcholinesterase inhibitory
activity of sesquiterpenoids
isolated from Laggera pterodonta

Jinliang Li1,2†, Fengchao Li3†, Guoxing Wu1, Furong Gui1,
Hongmei Li1, Lili Xu2, Xiaojiang Hao2, Yuhan Zhao2*,
Xiao Ding2* and Xiaoping Qin1*

1State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant
Protection, Yunnan Agricultural University, Kunming, China, 2State Key Laboratory of Phytochemistry
and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences,
Kunming, China, 3College of Water Conservancy, Yunnan Agricultural University, Kunming, China
Plant-derived natural products are important resources for pesticide discovery.

Acetylcholinesterase (AChE) is a well-validated pesticide target, and inhibiting

AChE proves fatal for insects. Recent studies have shown that the potential of

various sesquiterpenoids as AChE inhibitors. However, few studies have been

conducted with eudesmane-type sesquiterpenes with AChE inhibitory effects.

Therefore, in this research, we isolated two new sesquiterpenes, laggeranines A

(1) and B (2), along with six known eudesmane-type sesquiterpenes (3–8) from

Laggera pterodonta, and characterized their structures and the inhibitory effect

they exerted on AChE. The results showed that these compounds had certain

inhibitory effects on AChE in a dose-dependent manner, of which compound 5

had the best inhibitory effect with IC50 of 437.33 ± 8.33 mM. As revealed by the

Lineweaver-Burk and Dixon plots, compound 5 was observed to suppress AChE

activity reversibly and competitively. Furthermore, all compounds exhibited certain

toxicity levels on C. elegans. Meanwhile, these compounds had good ADMET

properties. These results are significant for the discovery of new AChE targeting

compounds, and also enrich the bioactivity activity repertoire of L. pterodonta.
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1 Introduction

Acetylcholinesterase (AChE) is a critical enzyme performing important functions

associated with nerve conduction, involving the catalysis of the degradation process of

neurotransmitter acetylcholine and the subsequent termination of its stimulating effect on

post-synaptic membrane excitation, through which the enzyme maintains normal nerve

impulse transmission in organisms (Fournier and Mutero, 1994). In recent years, AChE has

been studied in medicine, chemistry, pesticide and plant protection.

In pest control, AChE is a well-validated pesticide target, and inhibiting AChE proves

fatal for insects (Rajashekar et al., 2014). Organophosphorus and carbamate insecticides are

the most common AChE inhibitors (Fukuto, 1990). Although they play a great role in pest
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control, they can also cause harm to non-target organisms such as

humans (Vale, 2015). In addition, due to the long-term use of the

same insecticide, pests tend to develop resistance and make the

inhibitors ineffective (Vaughan et al., 1997). So, we need to find

new inhibitors to solve these problems. Many studies have shown that

plant secondary metabolites are the main source of AChE inhibitors.

In our previous study, 15 flavonoids isolated from Eupatorium

adenophorum were discovered to suppress AChE in Spodoptera

litura and C. elegans (Li et al., 2020), and 13 flavonoids isolated

from Ginkgo biloba were found to inhibit AChE (Ding et al., 2013).

Furthermore, we screened more than 200 compounds and the two

sesquiterpenoids, parthenolide and tirotundin, extracted from

Chrysanthemum parthenium and Tithonia diversifolia, respectively,

elicited a strong inhibitory effect on nematode AChE (Lan et al.,

2022). We think this work can provide some ideas for finding new

inhibitors from natural products.

Laggera pterodonta (DC.) Benth. which grows in India, the

Indochina Peninsula and tropical Africa (Gu et al., 2014), also

extensively exist in southwestern China, particularly the Sichuan

and Yunnan Provinces. This plant has long been used as folk

medicine in China, and has been widely used clinically, with

antioxidant, anti-tumor, antibacterial and analgesic effects. Previous

studies on its constituents revealed that eudesmane-type

sesquiterpene are one of the main secondary metabolites of this

plant (Zhao et al., 1997; Yang et al., 2007; Lu et al., 2014; Xie et al.,

2021). Sesquiterpenes are an important class of terpenoids with

extensive biological activities, which have attracted our attention. A

survey conducted by researchers found that 58 sesquiterpenes from

various plants showed varying degrees of inhibitory activity against

AChE in multiple studies over the past decade, and these findings

shed light on the potential of sesquiterpenes to inhibit AChE (Arya

et al., 2021). Therefore, we studied the chemical constituents of L.

pterodonta and took the eudesmane-type sesquiterpene as the

research object, trying to find the active compounds that

inhibit AChE.

In this research, we isolated two new sesquiterpenes, laggeranines

A (1) and B (2), along with six known sesquiterpenes (3–8), and

characterized their structures and the inhibitory effect they exerted on

AChE. At the same time, in order to understand the mechanism by

which these compounds inhibit AChE, only compounds with strong

activity levels were selected for kinetic studies. In addition, ADMET

prediction is very important for early drug research and development.

We also used the admeatSAR platform to make ADMET prediction

for these compounds. This study provides experimental and

theoretical foundations for novel acetylcholinesterase inhibitors in

L. pterodonta.
2 Materials and methods

2.1 General experimental procedures

This study obtained chlorpyrifos (≥98% purity) from Sigma

Chemical Co. (St. Louis, MO, USA), 5,5′-dithiobis-2-nitrobenzoic
acid (DTNB, ≥98% purity) from Biological Engineering Co. (Huzhou,

Zhejiang, China) and acetylcholine iodide (ATChI) (≥98% purity)

from Fluka Chemical Co. (Milwaukee, WI, USA). Ultra-pure water
Frontiers in Plant Science 02100
(Milli-Q purification system, Millipore, MA) and acetonitrile (HPLC-

grade, J.T. Baker, Phillipsburg, NJ) were utilized in semi-preparative

HPLC. Additionally, petroleum ether, ethanol, acetone, ethyl acetate,

methanol (MeOH), and chloroform of reagent grade were provided

by Qingdao Marine Chemical Inc., China.

Bruker 500 and 600 MHz spectrometers were used to measure

NMR spectra, using TMS as the endogenous reference. The BioRad

FTS-135 spectrometer was utilized to survey IR spectra using KBr

pellets, JASCO P-1020 digital polarimeter was employed for analyzing

optical rotations, and the Shimadzu UV-2401A for recording UV

spectra. The HR-ESI-MS were recorded on a triple quadrupole mass

spectromete (Agilent, America). Furthermore, this study utilized

silica gel (60–80, 200–300 and 300–400 mesh, Qingdao Marine

Chemical Inc, China), SBC MCI gel (75–150 μm, Sci-Bio Chem Co.

Ltd., Chengdu, China), Sephadex LH-20 (40–70 μm, Amersham

Pharmacia Biotech AB) and silica gel H (10–40 μm, Qingdao

Marine Chemical Inc, China) for Column Chromatography (CC).

The YMC Luna C18 reversed-phase column (5 μm; 10 × 250 mm) was

utilized for semi-preparative HPLC.
2.2 Plant material

For this study, aerial parts of L. pterodonta were collected in July

2017 from Baoshan, Yunnan, China (25°5′N, 99°6′E). Prof. Hua Peng

from the Kunming Institute of Botany, Chinese Academy of Sciences

(CAS), identified each of our collected samples. Meanwhile, we

deposited one voucher specimen (No. 1707016) at the State Key

Laboratory of Phytochemistry and Plant Resource in West China,

Kunming Institute of Botany, CAS.
2.3 Extraction and isolation

Ethanol was added to the extract, containing dried aerial L.

pterodonta (5 kg), thrice under room temperature (RT), followed by

solvent evaporation in a vacuum. The obtained products were then

filtered and evaporated to obtain 8 L extracts, which were divided,

using equivalent amounts of ethyl acetate and petroleum ether (thrice

with each), to obtain ethyl acetate extracts (55 g) and petroleum ether

extracts (68 g). Later, a silica gel column (10 × 100 cm) was used for

the chromatography of EtOAc extracts and eluted using petroleum

ether-acetone (100:1-1:1) to obtain 8 fractions (1–8).

MCI chromatography was conducted to purify fraction 3 (278

mg) and eluted using the MeOH–H2O mixed solution, which

generated 4 fractions (3A–3D). We utilized silica gel to purify

fraction 3B (102 mg) using petroleum ether-ethyl acetate (50:1–

10:1), generating Fr.3B2 (14 mg), which was subsequently purified

by semi-preparative HPLC (54% CH3CN within the water) to yield

compound 1 (3.4 mg, tR = 15 min).

MCI chromatography was also utilized to purify fraction 4 (45.6 g),

which was eluted using the MeOH-H2O mixed solution to yield eight

corresponding fractions (4A–4H). Of these, we purified fraction 4D

(10.5 g) using the silica gel column and performed the elution using

petroleum ether-ethyl acetate (40:1–4:1, stepwise) to obtain another 5

fractions (4D1–4D5). Sephadex LH-20 CC was performed for the

chromatography of Fr.4D2 (3.9 g) under MeOH elution, followed by
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semi-preparative HPLC, using the 58% acetonitrile solvent system (3

mL/min), to obtain compound 3 (226 mg, tR = 55 min), compound 4

(1.9 g, tR = 59 min) and compound 5 (213 mg, tR = 65 min). Similarly,

we used the silica gel column to purify fraction 4E (221mg), and elution

was performed using petroleum ether-ethyl acetate (70:1–4:1, stepwise)

to obtain three further fractions (4E1–4E3). Later, Sephadex LH-20 CC

was employed to purify Fr.4E2 (46 mg), fraction 4F (2.1 g), and fraction

4G (104 mg) under MeOH elution, followed by semi-preparative

HPLC, using the 55%, 47% and 45% acetonitrile solvent systems (3

mL/min), respectively, to yield compound 7 (10.5 mg, tR = 60 min),

compound 6 (1.3 g) and compound 8 (76 mg, tR = 19

min), respectively.

The silica gel column was then utilized to purify fraction 7 (708

mg) and eluted using petroleum ether-ethyl acetate (40:1–5:1,

stepwise) to generate fractions 7A-7G. Sephadex LH-20 CC was

then performed to purify fraction 7C (56 mg) using a mobile phase
Frontiers in Plant Science 03101
of [dichloromethane-methanol (1:1)], which yielded two fractions

(7C1–7C2). Semipreparative HPLC was adopted to purify Fr.7C2 (15

mg) with the 57% acetonitrile solvent system (3 mL/min) to yield

compound 2 (2.8 mg, tR 45 min).

2.3.1 laggeranine A (1)
½a�20D − 159:13 (c 0.16, MeOH); UV (MeOH) Lmax (log e): 195

(4.17) nm; IR (KBr): 3429, 2930, 2874, 1695, 1623, 1461, 1434, 1384,

1264, 1189, 1151, 1081 cm-1; 1H and 13C NMR data, see Table 1. HR-

ESI-MS: m/z 249.1495 [M-H]- (calcd for C15H22O3, 249.1496).

2.3.2 laggeranine B (2)
½a�20D − 4.76 (c 0.14, MeOH); UV (MeOH) Lmax (log e): 195 (3.64)

nm; IR (KBr): 3434, 2927, 2855, 1714, 1627, 1448, 1383, 1263, 1171,

1123, 1047 cm-1; 1H and 13C NMR data, see Table 1. HR-ESI-MS:m/z

301.1773 [M + Na] + (calcd for C17H26O3, 301.1774).
TABLE 1 1H and 13C NMR Data of Compounds 1 and 2 (d in ppm, J in Hz, 600 MHz for 1H and 150 MHz for 13C, in Methanol-d4).

Position
1 2

dH (J in Hz) dC, type dH (J in Hz) dC, type

1a
5.50, d (4.8) 123.9, CH

1.89, td (4.2, 13.8)
37.8, CH2

1b 1.18, d (13.8)

2a
4.00, m 65.1, CH

1.51, m
23.2, CH2

2b 1.61, m

3a 1.56, dt (1.5, 14.4)
37.5, CH2

2.14, d (13.8)
34.2, CH2

3b 1.69, m 2.52, td (4.8, 13.8)

4 1.90, m 32.4, CH – 150.8, C

5 – 39.9, C – 76.2, C

6a 1.62, dd (9.7, 13.4)
41.8, CH2

1.57, m
39.0, CH2

6b 1.68, m 2.09, d (12.8)

7 2.64, m 34.3, CH 2.87, m 38.1, CH

8a 1.74, m
31.1, CH2

1.52, m
27.4, CH2

8b 1.83, m 1.67, ddd (3.3, 13.2, 25.8)

9a 2.05, ddd (2.2, 8.1, 13.7)
29.2, CH2

1.82, td (3.3, 13.2)
34.5, CH2

9b 2.49, m 1.10, d (13.2)

10 – 149.8, C – 39.7, C

11 – 148.0, C – 147.0, C

12 – 171.6, C – 168.8, C

13a 5.56, br. s
122.5, CH2

5.61, br. s
123.1, CH2

13b 6.09, br. s 6.14, br. s

14a
0.87, d (6.8) 16.1, CH3

4.97, br. s
111.7 CH2

14b 5.26, br. s

15 0.88, s 19.6, CH3 1.04, s 23.1, CH3

16 – – 4.21, m 61.8, CH2

17 – – 1.30, t (6.0) 14.5, CH3
fro
The NMR signal abbreviations:br, broad; s, singlet; d, doublet; t, triplet; m, multiplet; dt, doublet of triplets; td, triplet of doublet; dd, doublet of doublets; ddd, doublet of dd.
"–" represents quaternary carbon.
ntiersin.org

https://doi.org/10.3389/fpls.2023.1074184
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2023.1074184
2.4 Nematode

This investigation acquired C. elegans from the Insect Toxicology

Laboratory of Yunnan Agricultural University, Kunming, Yunnan,

China, and cultivated them using an oat medium under RT.
2.5 Determination of IC50 of compounds to
AChE

Third-instar juvenile stage samples of C. elegans were thoroughly

ground using a glass homogenizer. The homogenate was then

dissolved in PBS (pH 7.0, which contained 0.1% Triton X-100)

using a suitable volume, followed by a 30-min centrifugation at

6000 r/min under 4°C to harvest supernatants to analyze the

enzymes (Ellman et al., 1961; Zhao et al., 2018) [Nematode (3rd

instar): 4000 individuals/mL].

After dissolving the eight compounds and chlorpyrifos in acetone,

multiple dilutions were made to obtain test concentrations at 5 levels.

Thereafter, the test solution of every level (4 μL) was blended with the

enzyme solution (96 μL), followed by 2-h incubation at 37°C in a 96-

well plate. The final concentrations of compounds were 29.25, 58.50,

117.00, 234.00, and 468.00 μg/mL, respectively. Thereafter, 1.5 mM

acetylthiocholine iodide (ATCHI) (50 μL) was added for a further 0.5-

h incubation at 37°C. The reaction was finally terminated by adding

0.3 mM 5,5′- dithiobis (2 - nitrobenzoic acid) (DTNB) (50 μL).

Afterward, the residual activity of acetylcholinesterase was measured

with a microplate reader at 405 nm. Corresponding treatments were

then applied to different groups as given below:
Fron
1. Treatment group:
Enzyme solution + compound + ATCHI(1:5mM, 50mL)

+ DTNB(0:3mM, 50mL) :
2. Compound control group:
Enzyme solution + compound + PBS(50mL) + PBS(50mL) :
3. Substrate control group:
Enzyme solution + ATCHI(1:5mM, 50mL)

+ DTNB(0:3mM, 50mL) :
4. PBS control group:
Enzyme solution + PBS(50mL) + PBS(50mL) :

The inhibition rate (%) was calculated follows:

I % = ½1 − (Treatment group

− Compound control group)=(Substrate control group

− PBS control group)� � 100%
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2.6 Kinetic study on the inhibitory effect of
AChE by compound

This study prepared the enzyme solution at multiple gradients

(0.125, 0.25, 0.5, and 1.0 U/mL). After adding compound 5 (29.25,

58.50, 117.00, 234.00, and 468.00 μg/mL), the mixed sample was then

subjected to a 1-h incubation on a 96-well plate at 37°C (the buffer

was used as a substitute for the control group). Later, 1.5 mM ATCHI

(50 μL) was added and incubated for a 30-min period, followed by an

addition of the 0.3 mM DTNB (50 μL). After 30 s, a microplate reader

was utilized to record the OD value at 405 nm (five times at 1-min

intervals). The change in the OD value every minute was used to

calculate the reaction rate (DA/min). Later, the reaction rate curve, as

a function of enzyme concentration, was plotted to compare reaction

rates (v) among diverse test compound levels. Associations between

diverse enzyme levels were utilized to evaluate the inhibitory effect of

the compound on nematode AChE (Xiong et al., 2016). In addition,

the Lineweaver-Burk double reciprocal graph, demonstrating the

reaction rate as a function of enzyme level, was plotted to infer the

inhibition type (Guo et al., 2018).
2.7 Toxic effects of compounds on
C. elegans

In the toxicity analysis, 95 μL of the nematode solution

(containing approximately 80 C. elegans) along with 5 μL of each

compound was added to a 96-well plate. The final concentration of

each compound was 0.5 mg/mL, and chlorpyrifos (20 μg/mL) was

used as the positive control. The samples were mixed sufficiently,

followed by 48-h incubation of plates under RT, and subsequently, the

dead nematodes were counted to determine the lethality rate (Roh

and Choi, 2008).
2.8 ADMET prediction of compounds

Will compound SMILES format into admetSAR web site (http://

lmmd.ecust.edu.cn/admetsar1) prediction module, the small

molecule ADMET forecast information can be obtained by clicking

on Predict.
2.9 Data analysis

GraphPad Prism 8 was employed for kinetics analysis and

IC50 value determination of AChE, while SPSS18 was employed

for calculating the statistical significance. Data in the bar graph

are represented as the mean ± SD. Duncan’s new multiple range

analysis was conducted to compare and analyze the significance of

the difference, where p<0.05 indicated for a significant difference.

Each experiment was conducted in three independent replicates.
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3 Results and discussion

3.1 Structural elucidation of compounds 1-8

This study identified compound 1 as a colorless oily substance,

whose molecular formula was determined to be C15H22O3 based on

HR-ESI-MS at m/z 249.1495 ([M-H] −, calcd, 249.1496). Besides, its

IR absorption bands were detected at 3429 cm–1 and 1695 cm–1,

implying the presence of one conjugated carboxylic acid group. As

observed from the 1H NMR spectrum (Table 1), there were signals for

three olefinic protons (dH 5.50, 5.56, and 6.09) and two methyls

groups (dH 0.87, 0.88). Both DEPT and 13C NMR spectroscopy

analyses (Table 1) identified 15 carbon signals, which included two

methyl (dC 16.1 and 19.6), five methylenes (dC 29.2, 31.1, 37.5, 41.8,

and 122.5), four methines (dC 32.4, 34.3, 65.1, and 123.9) and four

quaternary carbons (dC 39.9, 148.0, 149.8, and 171.6). Correlations in

the 1H-1H HSQC and COSY diagrams suggested that there were 2

pro ton -bea r ing f r agment s , CHCHCH2CHMe (a ) and

CH2CHCH2CH2 (b) (Figure 1). In the HMBC spectrum, 2 methyl

groups [dH 0.87 (3H, d, J = 6.8 Hz) and dH 0.88 (3H, s)] exhibited

HMBC associations with C-4 and C-5, which indicated their positions

within nearby carbons. Meanwhile, the HMBC associations between

H3–14 and C-3 as well as H3–15 with C-6 revealed the C-14/C-4/C-5

(C-15)/C-6 association. Besides, HMBC associations between H3–15

and C-10; H-1 and C-9, C-10; H-9 and C-7, C-8, revealed the C-1/C-

10(C-5)/C-9 connection. Therefore, as per the associations of H-6

with C-7 and C-11, and H-13 with C-7, C-11, as well as C-12, we

determined the compound skeleton. (Figure 1).

As indicated by further HMBC analyses, 1 had a close structural

resemblance to tessaric acid, a known eremophilane sesquiterpene

(Marcela et al., 1997). The only major discrepancy was the

replacement of C=0 group of tessaric acid, with a hydroxyl group of

1, which was inferred from H-1, H-3, H-4 with C-2 cross-peaks in

HMBC. The ROESY spectrum (Figure 2) was used to assign the

relative configuration for 1, where H-2/H-4 and H-4/H-7 associations

suggested that they were co-facial with an a-orientation. Since 1 had a
specific rotation (½a�20D –159.1), similar to that of tessaric acid (½a�20D –

156.2). The specific rotation of tessaric acid was determined by X-ray

single-crystal diffraction (Zheng et al., 2003), and the absolute

configuration of compound 1 was be the same as that of tessaric

acid. Therefore, the structure of compound 1 could be inferred

through the above rationale (Figure 3).
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Compound 2 was also identified as a colorless oily substance.

Based on HR-ESI-MS at m/z 301.1773 ([M + Na] +, calcd, 301.1774),

we determined the molecular formula to be C17H26O3. As revealed by

the IR spectrum, the typical absorption bands were observed for

hydroxy (3434 cm−1) and ester carbonyl (1714 cm−1) functional

groups. Signals for four olefinic protons (dH 4.97, 5.26, 5.61, and

6.14) and two methyls (dH 1.04 and 1.30) were observed from the 1H

NMR spectrum (Table 1). Besides, 17 carbon signals, which included

2 methyl (dC 14.5, 23.1), nine methylenes (dC 23.2, 27.4, 34.2, 34.5,

37.8, 39.0, 61.8, 111.7, and 123.1), one methine (dC 38.0) and five

quaternary carbons (dC 39.7, 76.2, 147.0, 150.8, and 168.8), were

observed from DEPT and 13C NMR spectroscopy (Table 1). Besides,
1H along with 13C NMR spectroscopy for 2 (Table 1) displayed close

resemblance to 5a-hydroxycostic acid (Sanz et al., 1990), but with an

additional C2H5O group (dC 61.8 and dC 14.5). 2D NMR data was

utilized for subsequent analysis. According to 1H-1H COSY

associations, 3 fragments: a (C-1–C-3), b (C-8/C-9), and c (C-16-

C17), were present (Figure 1). Moreover, the C2H5O group existed in

carboxyl (C-12), according to the HMBC association of H-13 with C-

7, C-11, C-12; H3–17 with C-16, as well as H-16 with C-12. The

structure of 2 was thereby characterized this way (Figure 3).

For known compounds, 1H NMR and 13C NMR spectra were

determined and compared with the data in the literature, the

structures were determined to be eudesma-5,12-dien-13-oic acid (3)

(Xu et al., 2006), isocostic acid (4) (Cruz and Martinez, 1982), costic

acid (5) (Bawdekar and Kelkar, 1965), 5a-hydroxy-4a,15-
dihydrocostic acid (6) (Xie et al., 2011), 5a-hydroxycostic acid (7)

(Xie et al., 2011), and 3-oxo-di-nor-eudesma-4-en-11-oic acid (8)

(Wang et al., 2013). 1H NMR and 13C NMR spectra can be found in

supporting materials.
3.2 Determination of IC50 of compounds
to AChE

To evaluate the inhibitory activity of these compounds on AChE

activity, we measured their IC50 values with respect to C. elegans AChE

(chlorpyrifos being utilized as the positive control). IC50 represents the

compound dose required for 50% inhibition of AChE activity, where a

lower value would indicate a more potent inhibition on AChE (Wang

et al., 2021). The results showed that those eight compounds inhibited

C. elegans AChE in a dose-dependent manner, such as compound 5
FIGURE 1

Key HMBC, 1 H-1 H COSY, and HMBC correlations of compounds 1 and 2.
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(Figure 4), and the most effective inhibitory effects were compound 5

(IC50 = 437.33 ± 8.33 mM), followed by compound 3 (IC50 = 464.0 ±

14.74 mM), compound 6 (IC50 = 470.33 ± 15.57 mM), compound 7

(IC50 = 485.0 ± 11.53 mM), compound 1, compound 4 (IC50 < 530 mM),

and compounds 2 and 8 (IC50 < 710 mM) (Table 2).

Among the 8 compounds, compound 2 showed the worst inhibitory

activity, and except compound 2, all the other compounds were

eudesmane-type sesquiterpene acids. Therefore, we hypothesized that

the carboxyl group in the compound should increase the activity.

Compounds 3, 4, and 5 are isomers, while compound 5 shows better

activity. Before this, the cytotoxic activity of compounds 4 and 5 against

SF9 was also reported, and the same compound 5 showed better activity

(Azucena et al., 2005). The difference in their structure lies in the different

positions of a double bond. Therefore, we believe that the change of the

position of the double bond has certain influence on the activity, and the

terminal double bond of the compound should have better activity. The

only structural difference between compound 4 and compound 8 is that

the C-3 of compound 8 is a carbonyl group, but the activity of compound
Frontiers in Plant Science 06104
4 is significantly higher than that of compound 8. In addition, we found

that the hydroxyl group is connected to the skeletons of compounds 1, 6

and 7, but their activities are also not ideal. Can the presence of hydroxyl

and carbonyl groups on the eudesmane-type sesquiterpene acid skeleton

reduce the inhibitory activity of the compound against AChE? For this

purpose, we reviewed studies in the last decade on the inhibition of AChE

activity by sesquiterpenoids. However, prior to this study, there were no

studies on the inhibition of AChE by the eudesmane-type sesquiterpene

acid. Therefore, we hypothesized that the addition of hydroxyl or

carbonyl groups to the backbone of eudesmane-type sesquiterpene acid

may weaken the inhibitory effect of the compounds on AChE, but this

needs to be verified by more experiments.

Compared with various sesquiterpenoids with acetylcholinesterase

inhibitory activities reported in the literature, 8 compounds in this

study showed unsatisfactory inhibitory activities. Meanwhile, we found

that other eudesmane-type sesquiterpenes and their derivatives

reported in the literature also showed poor inhibitory activity against

AChE, while among the various constituents with AChE inhibitory
FIGURE 2

Key ROESY correlations of compound 1.
FIGURE 3

Chemical structures of the eight compounds.
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activity, various sesquiterpene lactones seemed to be the most

promising AChE inhibitors.
3.3 Kinetic study on the inhibitory effect of
AChE by compound

To further explore the inhibition mechanism against AChE, we

conducted a kinetics analysis on compound 5. The relationship between

the maximal reaction initial speed (v) and diverse enzyme levels was

analyzedbyevaluatingthereversible inhibitoryeffectexertedbycompound

5 (Figure 5A). According to Figure 5A, the fitting curve indicated the

original rate under diverse levels of compound 5 and a straight line was

observed for the enzyme level. Moreover, every straight line intersected at

the origin, with the slope dropping as the compound level increased,

implying that compound 5 was a reversible inhibitor of AChE.

Under the scenario of compound 5 being identified as a reversible

inhibitor, we adopted the double-reciprocal graph (Lineweaver-Burk)

to model the maximal original velocity and substrate level to explore
Frontiers in Plant Science 07105
the inhibition patterns. According to Figure 5B, each straight line had

a unique intercept and slope but intersected within the second

quadrant in the Lineweaver-Burk diagram. Meanwhile, as the

compound level increased, fitted curves had elevated X-intercepts

(-1/Km), Y-intercept (1/Vmax) and slopes, which indicated an

increase in the Michaelis constant Km, but a decrease in Vmax.

Consequently, compound 5 inhibited AChE in a mixed-type

competitive manner, and could be an AChE inhibitor with dual

binding sites (Shaik et al., 2019; Tang et al., 2019).

The Dixon plot was made to ascertain the AChE inhibition

pattern as well as the dissociation constant (Ki) of our tested

compounds. Typically, the Ki value represents the dissociation

constant of the enzyme-inhibitor complex, where a lower value

indicates a higher affinity of the compound to AChE. Based on the

Dixon plot (Figure 6) and the slope in the double reciprocal graph

(regarding compound 5 level with maximal original velocity),

compound 5 had a Ki value of 24.668 μg/mL (Figure 6).
3.4 Toxic effects of compounds
on C. elegans

To evaluate the level of toxicity on C. elegans, we chose eight

compounds for analysis. According to the results, the compounds had

a potential toxicity level with respect to C. elegans at the experimental

concentration, where compounds 3 and 5 were highly toxic, with median

lethality rates of 60.83 ± 2.6% and 72.92 ± 3.15%, respectively (Table 3).

Similarly, compound 2 still showed the lowest toxicity level, which further

proved that the carboxyl group in the compound could increase the

activity. Compounds 3, 4, and 5 as isomers also showed different toxicity

levels, which further confirmed that the change of double bond position

had a certain effect on the activity, and the terminal double bond of the

compound should have a better activity. At the same time, the toxicity of

compounds 1, 6, 7, and 8 with hydroxyl or carbonyl groups in the

skeleton is still not ideal, which increases the possibility that the addition

of hydroxyl or carbonyl groups to the main chain of the eudesmane-type

sesquiterpene acid may reduce the toxicity of the compounds.
FIGURE 4

The inhibitory effect of compound 5 on the AChE. Concentrations of compound 5 (29.25, 58.50, 117.00, 234.00, and 468.00 mg/mL) for curves are
indicated in the column.
TABLE 2 IC50 of AChE inhibition by compounds.

Compounds IC50 (mM)

1 518.33 ± 5.90b

2 701.33 ± 14.74a

3 464.00 ± 10.00d

4 527.67 ± 8.96b

5 437.33 ± 8.33e

6 470.33 ± 15.57cd

7 485.00 ± 11.53c

8 696.67 ± 12.42a

Chlorpyrifos 7.33 ± 0.58f
The effects of the tested compounds on AChE were repeated in triplicates; IC50 values represent
the means ± SD; different letters indicate significant differences (p< 0.05).
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The in vivo toxicological results of these compounds were similar

to those of AChE inhibition experiments, suggesting that the toxic

effects of these compounds on C. elegans may be related to their

inhibitory activity on AChE to some extent. However, this is not

enough to conclude that there was a causal relationship between

them. Previous studies have shown that drug toxicity to nematodes

occurs in multiple biological tissues (Roh and Choi, 2008). To

understand the relationship between AChE activity and toxicity,

further experiments are needed for verification.
3.5 ADMET prediction of compounds

The main indexes of ADMET prediction were Blood Brain Barrier

(BBB), Human Intestinal Absorption (HIA), Caco-2 permeability

(CCP) and Ames mutagenesis (ATT), Carcinogenicity and
A B

FIGURE 5

Acetylcholinesterase inhibition kinetics analysis of compound 5. (A) Hydrolytic activity of acetylcholinesterase concentration under the action of different
concentrations of compound 5 (29.25, 58.50, 117.00, 234.00, and 468.00 mg/mL). (B) Lineweaver-Burk plots for the inhibition of compound 5 (29.25,
58.50, 117.00, 234.00, and 468.00 mg/mL).
FIGURE 6

Dixon diagram. Dixon plot showing the inhibitory activities of compound 5 against AChE in the presence of different concentrations of substrate. Red
and blue lines indicate concentrations of 3 and 6 mM, respectively.
TABLE 3 The lethality of eight compounds to C. elegans.

Compounds Lethality rate (%)

1 38.75 ± 2.50d

2 31.67 ± 0.72e

3 60.83 ± 2.60b

4 30.83 ± 1.91e

5 72.92 ± 3.15a

6 48.75 ± 2.50c

7 50.83 ± 1.91c

8 34.58 ± 1.44e

Chlorpyrifos 81.67 ± 2.60f
The effects of the tested compounds on C. elegans were repeated in triplicates; the values
represent the means ± SD; different letters indicate significant differences (p< 0.05).
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cytochrome CYP2D6 are shown in Table 4. The 8 compounds

isolated from L. pterodonta were easy to be absorbed or assimilated

by the human intestine and could penetrate human intestinal cell

lines without mutagenic toxicity or carcinogenicity. This indicates

shown that these compounds have good ADMET properties. In

addition, except for compounds 1, 6, and 7, which could not easily

cross the blood-brain barrier, all other compounds could easily cross

the blood-brain barrier. Comparing the structural differences between

compounds 1, 6, and 7 and other compounds, it was found that this

might be related to the hydroxyl group connected to the skeleton of

these three compounds.
4 Conclusions

This study tested novel sesquiterpenes and six known

eudesmane-type sesquiterpene acid isolated from L. pterodonta,

to analyze their inhibitory activity on C. elegans AChE. The results

showed that all these compounds had certain inhibitory effects on

AChE in a dose-dependent manner, of which compound 5 had the

best inhibitory effect with IC50 of 437.33 ± 8.33 mM. Meanwhile, as

revealed by the Lineweaver-Burk and Dixon plots, compound 5

was observed to suppress AChE activity reversibly and

competitively. Furthermore, all 8 compounds exhibited certain

toxicity levels on C. elegans. Finally, the ADMET prediction was

carried out for these 8 compounds, and it was found that all

compounds had good ADMET properties. Collectively, we believe

that these results are significant for the discovery of new AChE

targeting compounds, and also enrich the bioactivity activity

repertoire of L. pterodonta.
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Zheng, Q. X., Xu, Z. J., Sun, X. F., Guéritte, F., Cesario, M., Sun, H. D., et al. (2003).
Eudesmane derivatives and other sesquiterpenes from Laggera alata. J. Nat. Prod. 66,
1078–1081. doi: 10.1021/np0205856
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2023.1074184/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2023.1074184/full#supplementary-material
https://doi.org/10.3390/BIOM11030350
https://doi.org/10.1515/znc-2005-11-1207
https://doi.org/10.1016/s0040-4020(01)98315-2
https://doi.org/10.1071/CH9820451
https://doi.org/10.1155/2013/645086
https://doi.org/10.1016/0006-2952(61)90145-9
https://doi.org/10.1016/1367-8280(94)90084-1
https://doi.org/10.1289/ehp.9087245
https://doi.org/10.1002/cbdv.201400051
https://doi.org/10.1016/j.ejmech.2017.12.057
https://doi.org/10.1080/03601234.2021.2022945
https://doi.org/10.1080/03601234.2021.2022945
https://doi.org/10.1016/j.pestbp.2020.104701
https://doi.org/10.13863/j.issn1001-4454.2014.05.022
https://doi.org/10.1016/s0031-9422(96)00590-0
https://doi.org/10.1016/s0031-9422(96)00590-0
https://doi.org/10.1155/2014/187019
https://doi.org/10.1016/j.ecoenv.2007.11.007
https://doi.org/10.1016/j.ecoenv.2007.11.007
https://doi.org/10.1021/np50070a024
https://doi.org/10.1016/j.bioorg.2019.102960
https://doi.org/10.1016/j.ijbiomac.2019.05.132
https://doi.org/10.1016/j.ijbiomac.2019.05.132
https://doi.org/10.1016/B978-0-444-62627-1.00010-X
https://doi.org/10.1006/expr.1997.4244
https://doi.org/10.1016/j.phytochem.2013.07.014
https://doi.org/10.13386/j.issn1002-0306.2021040243
https://doi.org/10.1016/J.BSE.2020.104222
https://doi.org/10.1016/J.BSE.2020.104222
https://doi.org/10.1007/s10600-011-9916-2
https://doi.org/10.1016/j.foodchem.2016.02.045
https://doi.org/10.1016/j.foodchem.2016.02.045
https://doi.org/10.1107/S1600536806012529
https://doi.org/10.16438/j.0513-4870.2007.05.011
https://doi.org/10.16438/j.0513-4870.2007.05.011
https://doi.org/10.1016/j.chroma.2018.04.041
https://doi.org/10.1016/S0031-9422(96)00521-3
https://doi.org/10.1016/S0031-9422(96)00521-3
https://doi.org/10.1021/np0205856
https://doi.org/10.3389/fpls.2023.1074184
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Arpita Roy,
Sharda University, India

REVIEWED BY

Geraldo Luiz Gonçalves Soares,
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Insecticidal and biochemical
effects of Dillenia indica L. leaves
against three major stored grain
insect pests

Kabrambam D. Singh1,2, Arunkumar S. Koijam1, Rupjyoti Bharali 1

and Yallappa Rajashekar1*

1Insect Bioresource Laboratory, Animal Bioresources Programme, Institute of Bioresources and
Sustainable Development, Department of Biotechnology, Government of India, Imphal,
Manipur, India, 2Department of Biotechnology, Gauhati University, Guwahati, Assam, India
The Last four decades have witnessed the banning of several synthetic insecticides

mainly due to the development of resistance to the target pests and due to

hazardous effects on humans and the environment. Hence, the development of a

potent insecticide with biodegradable and eco-friendly nature is the need of the

hour. In the present study, the fumigant property, and biochemical effects of

Dillenia indica L. (Dilleniaceae) were studied against three coleopterans stored-

products insects. The bioactive enriched fraction (sub-fraction-III) was isolated

from ethyl acetate extracts of D. indica leaves and found toxic to rice weevil,

Sitophilus oryzae (L.) (Coleoptera); lesser grain borer Rhyzopertha dominica (L.)

(Coleoptera) and red flour beetle, Tribolium castaneum (Herbst.) (Coleoptera) with

the LC50 values of 101.887, 189.908 and 115.1 µg/L respectively after 24 h

exposure. The enriched fraction was found to inhibit the function of

acetylcholinesterase (AChE) enzyme when tested against S. oryzae, T.

castaneum, and R. dominica with LC50 value of 88.57 µg/ml, 97.07 µg/ml, and

66.31 µg/ml respectively, in in-vitro condition. It was also found that the enriched

fraction caused a significant oxidative imbalance in the antioxidative enzyme

system such as superoxide dismutase, catalase, DPPH (2,2-diphenyl-1-

picrylhydrazyl), and glutathione-S-transferase (GST). GCMS analysis of the

enriched fraction indicates three major compounds namely, 6-Hydroxy-4,4,7a-

trimethyl-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one, 1,2-Benzisothiazol-3(2H)-

one, and Benzothiazole, 2-(2-hydroxyethylthio)-. Finally, we concluded that the

enriched fraction of D. indica has insecticidal properties and the toxicity may be

due to the inhibition of the AChE enzyme in association with oxidative imbalance

created on the insect’s antioxidant enzyme systems.

KEYWORDS

Dillenia indica L., biofumigant, stored grain pests, acetylcholinesterase, antioxidant
enzyme system
Abbreviations: GSH, Reduced glutathione; DPPH, 2, 2, diphenyl, 1, picrylhydrazyl; CDNB, 1, chloro, 2, 4,

dinitrobenzene; DTNB, 5, 5, dithio, bis, 2, nitrobenzoic acid; HPLC, High performance liquid

chromatography; GCMS, Gas Chromatography Mass Spectrometry; AChE, acetylcholinesterase enzyme;

SOD, Superoxide dismutase activity; GST, Glutathione S, transferase
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1 Introduction

Every year there is a loss of 5-30 percent of the world’s total

agricultural food production due to insect infestation on food grains

(Rajashekar et al., 2010). The stored grain insects are known to

inflict huge damage to stored grains and pulses through the

consumption of kernels or accretion of exuviae, webbing, and

cadavers (Rajashekar et al., 2012). Sitophilus oryzae (L.)

(Coleoptera), commonly called rice weevil, and Rhyzopertha

dominica (L.) (Coleoptera) (common name lesser grain borer),

are two of the many primary pests which cause severe global

economic losses while red flour beetle, Tribolium castaneum

(Herbst.) (Coleoptera), is one of the secondary pests that inflicts

damage to stored grain pests in many parts of the world. Generally,

chemical-based fumigants are widely used to control the damage

caused by insects. But it also brings along several shortcomings such

as toxicity to humans and livestock, as well as other non-target

organisms, secondary pest outbreaks, pest resurgence, adulteration

of food products due to indiscriminate use, erratic supplies, and

unavailability at critical periods, high price while also causing

several environmental hazards such as ozone depletion. Persistent

use of such chemicals also leads to the emergence of resistant strains

of the targeted pests (Abubakar et al., 2020). Excessive exposure to

chemical pesticides could cause oxidative stress to the human being

that ultimately leads to many neurodegenerative diseases such as

Parkinson’s disease, Alzheimer’s disease, etc. (Huang et al., 2016;

Nandipati and Litvan, 2016; Sabarwal et al., 2018). For instance,

methyl bromide (now banned) was an effective fumigant used for

neutralizing insects on soil and storage structures. Many studies

have indicated that prolonged exposure to it has a high effect on the

human central nervous system (de Souza et al, 2013; Park et al.,

2020). Considering the problems, scientists all over the world are

constantly exploring for a safer source for developing eco-friendly

bioinsecticides. Plants being one of the richest sources of bioactive

molecules may provide potential alternatives to currently used

chemical-based approaches (Rajashekar et al., 2012; Singh et al.,

2021). Available literature highlights the use of plant-derived

botanicals as a source for new insecticides (Miresmailli and

Isman, 2014; Rajashekar et al., 2016; Devi et al., 2020; Singh et al.,

2021). Therefore, there is a great scope for botanical insecticidal

compounds. Providing the best quality seeds for cultivation will

enhance productivity thereby providing the best economic and

social return. Insect infestation is one of the major factors that

affect the viability of seeds meant for prolonged storage. Sometimes

the insecticides used to control the stored insects also hamper seed

germination. Such things need to be taken care of before deciding

the class and dose of the insecticide to be used.

Dillenia indica L. (elephant apple), is a perennial middle-size

tree found in tropical, subtropical, and temperate zones. The genus

‘Dillenia’ spreads from Madagascar to Fiji Island, and from there it

is distributed to Northern and Southern Himalayan slopes, and

Southwestern China (Hoogland, 1952). In India, this tree is

distributed in the sub-Himalayan tracts, West Bengal, Madhya

Pradesh, Assam, North-Eastern India, and South Indian States.

This plant has several important biological activities including

insecticidal properties (Reddy et al., 2010). They are known to
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have antidiabetic, antioxidant activity, anti-inflammatory, as well as

anticancer properties (Barua et al., 2018). Some literature reported

that the spreading of D. indica leaves over the stored rice repelled

rice weevil (S. oryzae) (Bhattacharjee and Ray, 2010). No scientific

validation has been provided till date in this aspect. The present

study tried to explore the potential insecticidal property of the

plant-derived product along with its effect on the antioxidant

enzyme system. The study also intended to analyze the

phytochemical composition of the bioactive fraction responsible

for the fumigant activity. Further, the possible mode of action

mechanism was studied with respect to the inhibitory effect on

acetylcholinesterase enzyme.
2 Materials and methods

2.1 Collection and preparation of sample

The fresh and matured leaves of D. indica were collected from

Imphal West, Manipur (N24°49.258 ’, E093°56.411’) and

authenticated by Dr. Biseshwori Thongam, Scientist-E

(Taxonomist), Institute of Bioresources and Sustainable

Development, Imphal, Manipur, with voucher number IBSD/M-

284. They were properly washed and semi-dried in shade for 4-5

days. The samples were finely powdered using an electric grinder

and packed in air-tight poly bags for further use.
2.2 Chemicals

Pyrogallol, Catalase, reduced glutathione (GSH), 2,2- diphenyl-

1-picrylhydrazyl (DPPH), 1-chloro-2,4-dinitrobenzene (CDNB),

Acetylthiocholine chloride, and 5,5-dithio-bis-2-nitrobenzoic acid

(DTNB) were procured from Sigma Chemical Co. (St. Louis, MO,

USA); hydrogen peroxide, sodium hydroxide, sodium di-hydrogen

phosphate, L-ascorbic acid, and sodium carbonate were obtained

from Sisco Research Laboratory, Mumbai, India. Sodium Chloride,

Magnesium Chloride, and Tris-base were purchased from Himedia

Laboratories, Mumbai.
2.3 Extraction and isolation of bioactive
enriched fraction

One kilogram of powdered leaves samples was used for the

sequential extraction of phytochemicals in the Soxhlet apparatus.

The extraction was done for 8-9 h using different solvents of

increasing polarity viz., hexane, petroleum ether, ethyl acetate,

chloroform, acetone, and methanol. The solvent extracts were

filtered with Whatman paper No. 1 and solvents were evaporated

using a rotary vacuum evaporator {Rotavapor R100 (Buchi)

Switzerland} under low pressure, at a temperature of 45°C. Each

extract was tested for fumigant properties against three stored

product insects, viz., S. oryzae, T. castaneum, and R. dominica.

Extract with the highest mortality was further subjected to bioassay-

guided isolation of the bioactive enriched fraction using several
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chromatographic techniques. Silica gel column chromatography

with mesh size 60-120 mesh and glass column of 50 cm length

and 3 cm diameter was used for the separation of phytochemicals.

The active extract was first eluted with 100% hexane, followed by

hexane and ethyl acetate mixture, ethyl acetate, and acetone

mixture, and then acetone and methanol mixture at different

ratios (75:25; 50:50; 25:75; 0:100). Solvents from all 13 fractions

were evaporated under reduced pressure and the residue was

dissolved in a known volume of acetone. These solutions were

tested for fumigation activity against the three stored product

insects. Fractions showing the highest fumigant activity were

pooled and subjected to Flash chromatography (CombiFlash Rf+

Lumen, Teledyne ISCO, USA) with solvent system hexane and ethyl

acetate and 0.5% methanol as a modifier, for further separation of

bioactive compounds. The eluted sub-fractions were again tested for

fumigation activity against the test insects. The most active enriched

fraction based on corrected mortality (Sub-Fraction-III) (Figure 1)

was collected and used for further experimental purposes. The

enriched fraction was further subjected to semi-preparative high

performance liquid chromatography (HPLC) for purification and

characterization of the bioactive marker compound(s).
2.4 GCMS analysis of the bioactive
marker compounds

The marker compounds isolated from the enriched fraction were

identified by Gas Chromatography Mass Spectrometry (Thermo

Scientific Trace 1300 Gas Chromatograph & TSQ 8000 DUO Mass

Spectrometry) having Quadrapole detector analysis. GC detection

was performed at the ionization energy 70eV. The injector and mass

transfer line were set at 250°C and 280°C. the carrier gas used was

helium at the flow rate of 1ml/min and the injection volume was set at

0.5 ml. The initial column temperature was programmed from 40°C

for 1 min to 250°C at a rate of 5°C/min heating ramp and then held at

250°C for 20 min. The compounds were identified using the National

Institute of Standards and Technology (NIST) library 2017 based on

the comparison of their mass spectra with that of the library.
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2.5 Fumigant toxicity

Fumigant toxicity assays were performed following the

methodology from Rajashekar et al. (2016). Twenty adults of both

sexes of S. oryzae, T. castaneum, and R. dominica were separately

released inside the fumigation chamber of one liter volume capacity.

Each chamber was infused with different leaf extract solutions at a

fixed concentration of 50 mg/L air to a filter paper already placed

inside the chamber. The extract solutions were injected using a

Hamilton syringe through a rubber septum fitted to the chamber’s

lid and the infused filter papers were placed on the under surface of

the glass chambers which were checked from direct contact with the

insects. An equal volume of pure acetone was used as solvent

control. The number of dead insects was determined after 24 h.

Dose-response relationship was done for the most active enriched

fraction with concentration ranges from 50 to 400 mg/L air. The

percentage of corrected mortality was calculated using the Abbott

formula equation (Abbott, 1925).
2.6 In vitro acetylcholinesterase
activity assay

The effect of the enriched fraction on the insect ’s

acetylcholinesterase enzyme (AChE) was studied following Ellman’s

method with slight modification (Ellman, 1959). The AChE enzyme

hydrolyses the substrate acetylthiocholine to produce acetate and

thiocholine. Thiocholine reacts with Ellman’s reagent (DTNB) to

produce 2-nitrobenzoate-5-mercaptothiocholine and 5-thio-2-

nitrobenzoate which can be detected at 412 nm. The enzyme

activity was tested against crude enzyme extract of S. oryzae, R.

dominica, and T. castaneum in -vitro conditions. The insects (20

adults each) were homogenized using 0.5M Tris-HCl buffer and

stored at -200C. For the study, crude enzyme extract was pre-

incubated with the enriched fraction and with standard inhibitor

(Pyridostigmine bromide) at different doses of 25, 50, 75, and 100 mg/
ml of insect’s enzyme extract at 37°C for 30mins. Amicroplate reader

was used to measure the difference in the absorbance. In a microplate
FIGURE 1

Schematic diagram of the isolation of bioactive enriched fraction from ethyl acetate extract of D. indica leaves.
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well 200 μl of the reaction mixture, 3 μl of 0.1M acetylthiocholine

chloride, 10 μl of insect homogenate, and 87 μl of water were added to

make the total volume of 300 μl. The reaction mixture is prepared by

adding 10.5 ml of cocktail (13 ml of 1M NaCl, 2 ml 1MMgCl2, 10 ml

of 0.5M Tris-HCl, and 10 ml of 0.2M EDTA), 3 ml of 1mM DTNB

and 6.5 ml of water in a reagent bottle. The reaction is initiated either

by adding the treated enzyme or substrate and expressed as

percentage inhibition.

Inhibition (%) = 100 - Change of sample absorbance/Change of

blank absorbance X 100
2.7 Antioxidant enzymes

2.7.1 Superoxide dismutase activity
The pyrogallol (2mM) autooxidation method described by

Marklund and Marklund (1974) was followed for measurement of

SOD activity in the tested insects, S. oryzae and T. castaneum. The

reaction mixture contained 2 mM pyrogallol in 0.1M Tris buffer

(pH 8.2) and the enzyme. The addition of substrate in the reaction

mixture started the reaction and the absorbance was read at 420

nm for 3 min at an interval of 1 min. The SOD activity was

expressed as enzyme units/mg protein. The amount of enzyme

that inhibits auto-oxidation by 50% is referred to as one unit of

enzyme activity.
2.7.2 Catalase activity
The protocol given by Aebi (1983) was used to assay the catalase

activity in the tested insects. The reaction mixture contained 3%

H2O2 in 0.05M phosphate buffer (pH 7.0). The reaction was started

by the addition of enzymes and the change in the absorbance at 240

nm was read for 3 min and the activity was expressed as μmole

H2O2/min/mg protein.

2.7.3 Glutathione-S-transferase
Glutathione S-transferase (GST) activity was measured

following the method of Warholm et al. (1985) with CDNB as the

substrate. The reaction mixture contains 20 mM GSH and the

enzyme (supernatant) in 0.1M phosphate buffer (pH 7.4). The

reaction was started by adding 30 mM CDNB and the change in

absorbance at 344 nm was monitored in a UV-visible

spectrophotometer. The enzyme activity was expressed as μmole

CDNB conjugate/min/mg protein.

2.7.4 DPPH radical scavenging assay
The protocol given by Yamaguchi et al. (1998) was used to

measure the DPPH radical scavenging activity in in-vitro

conditions. Briefly, 1 ml of 0.1 mM DPPH solution in 95%

ethanol was treated with different concentrations of the active

enriched fraction, shaken, and incubated at room temperature for

20 min, and the absorbance was read at 517 nm against a blank.

Ascorbic acid was used as the standard to compare the inhibition

ability of the enriched fraction to that of the standard. The radical

scavenging activity was calculated using the following equation:
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Scavenging  effect ( % ) 

=  ½1 −  A Sample (517nm) =A Control (517nm)� x 100

Total protein content of the sample was measured by the

method of Lowry et al. (1951) using BSA as the standard.

2.7.5 Seed germination test
Wheat, Triticum aestivum L., and green gram, Vigna radiata

(L.) R. Wilczek seeds were surface sterilized using 1% sodium

hypochlorite for 10 minutes and washed properly with autoclaved

distilled water. The 50 sterilized seeds of wheat and green gram were

separately kept on Whatman filter paper no. 1 already treated with

100 mg/L and 500 mg/L of enriched fraction and placed in glass

petri plates (90X15 mm, borosil, India). The filter paper was kept

moist throughout the experimental period by spraying it with

distilled water. The germination test was performed for 48 h and

5 days. In the control petri plates, the Whatman filter paper was

only soaked with sterilized distilled water. The observation was

taken after 48 h and 5 days and the germination percentage was

calculated (Rajashekar et al., 2016).
2.8 Data analysis

LC50 values were determined using Probit analysis (Finney,

1971) and Statplus 2007 software and computer program SAS

(version 6.12, SAS Institute Inc. Cory, NC, USA) were used to

analyze the data using One-Way ANOVA (p<0.05) by Newman-

Keuls test.
3 Result

3.1 Fumigant toxicity test of extracts and
enriched fraction

Experimental results reveal that among all the extracts ethyl

acetate extract of D. indica leaves showed maximum fumigant

activities against S. oryzae, T. castaneum, and R. dominica

(Figure 2). Table 1 shows that the bioactive enriched fraction

isolated from ethyl acetate extract exhibited toxicity to S. oryzae,

T. castaneum, and R. dominica with the LC50 values of 101.88,

198.89, and 115.1 μg/L air respectively after 24 h exposure.
3.2 Compound identification by GCMS

Three major bioactive compounds were separated and eluted

from the enriched fraction using semi-preparative HPLC. Gas

chromatography mass-spectrometry analysis identified the

isolated bioactive as 6-Hydroxy-4,4,7a-trimethyl-5,6,7,7a-

tetrahydrobenzofuran-2(4H)-one (IUPAC name: 6-hydroxy-

4,4,7a-trimethyl-6,7-dihydro-5H-1-benzofuran-2-one), 1,2-

Benzisothiazol-3(2H)-one (IUPAC name: 1,2-benzothiazol-3-

one), and Benzothiazole,2-(2-hydroxyethylthio)- (IUPAC name:
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2-(1,3-benzothiazol-2-ylsulfanyl)ethanol) with reverse search index

(RSI) value of 905, 861, and 941 respectively (Figure 3).
3.3 In - vitro inhibition of AChE enzyme

In an in - vitro study, we investigated the influence of the

bioactive enriched fraction on the insect’s acetylcholinesterase

enzyme (AChE). The enriched fraction was found to significantly

inhibit the AChE activity of S. oryzae, T. castaneum, and R. dominica.

Table 2 reveals various percentage inhibitions of the AChE enzyme in

different doses of the enriched fraction. The percentage inhibition of

different doses of the enriched fraction was compared with

Pyridostigmine (standard AChE inhibitor) at equal concentration.

The percentage inhibition value ranges from 20.69% to 55.17%,

12.86% to 51.42%, and 26.28% to 66.67% for different doses with

IC50 values of 88.57 μg/ml, 97.07 μg/ml, and 66.31 μg/ml on S. oryzae,

T. castaneum, and R. dominica, respectively.
3.4 Effect of the enriched fraction on
insect’s antioxidant enzyme systems

In the present study, the effect of the enriched fraction on the

activities of antioxidant enzymes in the tested insects, viz., S. oryzae

and T. castaneum, were estimated. Figure 4 indicates that the active

enriched fraction caused significant impairment in the enzymatic

(SOD, Catalase, GST) as well as non-enzymatic (DPPH)
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antioxidant systems of both S. oryzae, and T. castaneum. The

results showed a significant increase in the activity of SOD,

Catalase, and GST. The percentage inhibition of the scavenging

activity of DPPH was also found to increase as we increase the

concentration of the active enriched fraction (Figure 4).
3.5 Seed germination test

The effect of the bioactive enriched fraction on percentage

germination of wheat and green gram seeds were determined. It

was found that both treatments i.e., 100 and 500 mg/l have no

significant effect on the seed germination at different exposure

periods. The percentage of seed germination ranged from 96% to

98.67% and 94.33% to 98.67% at different concentration and

exposure time on both wheat and green gram, respectively (Table 3).
4 Discussion

Medicinal and aromatic plants are good sources for many

biological activities. Several plant species are known to contain

phytochemicals that can be used as insecticides (Rajendran and

Sriranjini, 2008; Green et al., 2015; Devi et al., 2021). Natural

insecticides are preferable to synthetic chemical-based insecticides

because of their eco-friendly nature (Rajashekar et al., 2016; Samada

and Tambunan, 2020). Though many plants have been studied for

their insecticidal property, there are several more with huge

potential yet unexplored. D. indica has several important

biological properties as compiled and presented by Barua et al.

(2018). But no significant scientific research has been done

regarding its insecticidal property despite the claims that the

plant is traditionally used by farmers to control stored grain pests

in the Northeastern parts of India (Bhattacharjee and Ray, 2010). In

the present study, we tried to provide scientific validation to those

traditional approaches.

The present study revealed that ethyl acetate extract of D. indica

leaves has maximum fumigant toxicity against S. oryzae, T.

castaneum, and R. dominica. The LC50 values of most active

enriched fraction were relatively lower than methyl bromide

(MeBr), which is a commercially available grain fumigant, with

LC50 values of 0.67 mg/L and 1.75 mg/L against Sitophilus zeamais

Motschulsky and T. castaneum adults respectively (Liu and Ho,
TABLE 1 Insecticidal activity of the enriched fraction isolated from ethyl acetate extract of D. indica leaves against S. oryzae, T. castaneum and R.
dominica by using fumigant assay method. (n= 4).

Insects LC50 value
a,b Slope ± SE Chi square Degree of freedom

S. oryzae 101.88 ± 10.46
0.1446 ± 0.029
(0.077 – 0.211)

1.22 3

T. castaneum 198.89 ± 15.9
0.1674 ± 0.020
(0.12 – 0.21)

1.67 3

R. dominica 115.1 ± 8.63
0.148± 0.023
(0.096 – 0.2)

1.25 3
aLC50= μg/L air.
bValues in parenthesis represent confidence limits by probit analysis (Finney, 1971), n=4.
FIGURE 2

Fumigant toxicity of different extracts from D. indica leaves, at 50
mg/L, against S. oryzae, T. castaneum and R. dominica. (n= 4).
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1999). Several similar experiments have been performed on

different plants. In a study, Rajashekar et al., 2012 reveal that

Coumaran, a natural fumigant isolated from the methanolic

extract of leaves of Lantana camara (Verbenaceae) has fumigant

toxicity against S. oryzae, Callosobruchus chinensis (Fab.) and T.

castaneum with LC50 values of 0.45 μg/L, 0.38 μg/L, and 0.54 μg/L

respectively. The fumigant property of different solvent extracts of

Illicium verum Hook. f. against S. zeamais adults was also reported

with the LD50 values of the methanol, ethyl acetate, and petroleum

ether extracts treatment 7.10, 3.93, and 4.55 mg/l, respectively after

72 h exposure (Li et al., 2013). Essential oils from several aromatic

plants also showed fumigant activity. In a study, Devi et al. (2020),

reported that essential oils from Cymbopogon flexuosus Nees ex
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Steud. Wats (Poales: Poaceae), Cymbopogon winterianus Jowitt ex

Bor (Poales: Poaceae), Cymbopogon martini Roxb. Wats (Poales:

Poaceae), and Pogostemon cablin Blanco Benth. (Lamiales:

Lamiaceae) exhibited fumigant properties against S. oryzae.

Essential oils of the Chinese medicinal herb, Blumea balsamifera

(L.) (Asteraceae) leaves contain 8-cineole, 4-terpineol, and a-
terpineol as their main components and were reported to show

distinct fumigant toxicity against S. zeamais adults (Chu

et al., 2013).

The three identified bioactive marker compounds have low

molecular weight of 196, 151, and 211 for 6-Hydroxy-4,4,7a-

trimethyl-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one (commonly

called as loliolide), 1,2-Benzisothiazol-3(2H)-one, and Benzothiazole,
TABLE 2 Percentage inhibition of enriched fraction on AChE enzyme activity.

Concentration
(mg/ml)

Percentage inhibition of AChE enzyme

S. oryzae T. castaneum R. dominica

Pyridostigmine Enriched fraction Pyridostigmine Enriched fraction Pyridostigmine Enriched fraction

25 mg/ml 58.04 ± 1.1a 20.69 ± 1.7a 48.57 ± 2.4a 12.86 ± 1.4a 56.41 ± 2.5a 26.28 ± 2.8a

50 mg/ml 72.99 ± 2.3b 29.89 ± 2.3b 65.71 ± 1.9b 30 ± 3.8b 66.67 ± 1.2b 37.18 ± 1.3b

75 mg/ml 83.33 ± 2.0c 45.4 ± 1.2c 72.85 ± 1.4c 41.43 ± 1.4c 79.48 ± 1.2c 62.82 ± 2.7c

100 mg/ml 94.02 ± 1.0d 55.17 ± 1.5d 88.57 ± 2.8d 51.42 ± 1.4d 92.30 ± 1.0d 66.67 ± 2.6d
Data are given as Mean ± SEM (n=3). Values followed by different letters within the vertical columns are significantly different (P< 0.05) by Duncan’s multiple range test.
B

C

D

E

A

FIGURE 3

Isolation and characterization of the bioactive markers from the enriched fraction (A). Chromatogram from Flash chromatography, (B). Chromatogram
from Semi- preparative HPLC, and (C–E) Representative GC-MS ion chromatogram of the three isolated bioactive compounds, 6-Hydroxy-4,4,7a-
trimethyl-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one (commonly known as loliolide), 1,2-Benzisothiazol-3(2H)-one, and Benzothiazole,2-(2-
hydroxyethylthio)- respectively.
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2-(2-hydroxyethylthio)-, respectively, which supports its high volatile

property. Dias et al. (2020) reported the antioxidant property of

Loliolide isolated from Sargassum horneri. The mode of action study

was mainly based on the changes in the insect’s behavior when exposed

to the fumigant in the fumigation chamber. In the fumigation toxicity

experiment, it was observed that immediately after the treatment, the

insects start moving rapidly. This may indicate that the extract is acting

on the insect’s nervous system like those of organophosphates.

Acetylcholine (Ach) is the neurotransmitter that is involved in

cholinergic transmission in the brain. AChE enzyme is responsible

for the hydrolysis of the neurotransmitter ACh and it is required to

rapidly terminate the signaling at neuron junction. Inhibition of the

AChE enzyme will cause ACh to bind to the postsynaptic receptor for a

longer period causing excessive neuroexcitation. This leads to

restlessness, hyperexcitability, tremors, convulsions and paralysis

leading to death (Lionetto et al., 2013; Shivanandappa and

Rajashekar, 2014). Synthetic insecticides such as organophosphates

and carbamates are known to inhibit the acetylcholinesterase enzyme.

Therefore, the present study investigated the possible role of the AChE

enzyme in the toxicity of the active enriched fraction. The experimental
Frontiers in Plant Science 07115
data indicate that the AChE inhibition potential of the enriched

fraction was relatively lower than that of the standard. Similar

studies have been done by many researchers. In one of the studies,

Rajkumar et al., 2019 revealed that the essential oils ofMentha piperita

L. inhibited the AChE enzyme activity in S. oryzae, and T. castaneum

with LC50 values of 29.68%. In a similar study the essential oils of

Ocimum tenuiflorum (L.) (Lamiales: Lamiaceae) exhibited insecticidal

activity via inhibiting acetylcholinesterase activity against rice weevil

(Bhavya et al., 2018). Coumaran is an active ingredient extracted from

L. camara which has an inhibitory effect on the insect’s AChE enzyme

(Rajashekar et al., 2014).

Antioxidant enzyme system provides the primary defense

mechanism of a biological system. Any oxidative imbalance

could be detrimental to the normal functioning of many

metabolic pathways (FontagneÂ-Dicharry et al., 2014). Free

radicals or other reactive oxygen species (ROS) are products of

normal metabolism or a result of exposure to any external sources

such as rays, ozone, cigarette smoking, certain drugs, pesticides,

air pollutants, and industrial chemicals (Sule et al., 2022).

Oxidative stress is caused due to the imbalance between the
TABLE 3 Effect of the enriched fraction on seed germination of wheat and green gram.

Dosage (mg/l)
Percentage seed germination

48 h 5 d

Wheat Green gram Wheat Green gram

100 97.3 ± 0.6a 95.33 ± 1.3a 98.67 ± 1.2a 98.67 ± 1.3a

500 96 ± 1.2a 94.33 ± 1.2a 96.67 ± 0.6a 97.33 ± 1.7a

Control 99.33 ± 0.6a 98.67 ± 0.6a 99.33 ± 0.6a 98.67 ± 1.3a
Data are given as Mean ± SEM (n=4). Values followed by same letter within the vertical columns are not significantly different (P< 0.05) by Duncan’s multiple range test.
FIGURE 4

Effect of different concentrations of the enrich fraction eluted from ethyl acetate extract of D. indica leaves on the activity of enzymatic antioxidants
in S. oryzae, and T. castaneum. (n=4).
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production of free radicals and antioxidant defense in the body.

This may lead to chronic and permanent damage to the cell. The

bioactive enriched fraction may have caused the production of

more free radicals that in turn triggered the system to produce

more antioxidant enzymes. This causes a significant increase in

the enzymatic activity (SOD, Catalase, GST) as well as non-

enzymatic (DPPH) antioxidant systems of both S. oryzae, and T.

castaneum (Figure 4). The superoxide dismutase enzyme is

responsible for the removal of toxic ROS with the formation of

less toxic hydrogen peroxide and oxygen molecules. Catalase

enzymes further detoxify the hydrogen peroxide forming non-

toxic water and oxygen molecule (Felton and Summers, 1995; El-

Amier et al., 2019). Reduced glutathione (GSH) is a non-

enzymatic antioxidant that detoxifies the xenobiotics either

directly by interacting with reactive oxygen/nitrogen species

(ROS and RNS) and electrophiles or by operating as a cofactor

for various enzymes (Lushchak 2012). Glutathione-S-transferase

is the enzyme that catalyzes the oxidation of GSH to form

oxidized glutathione (GSSH). An increase in GST activity

indicated that more of the free radicals have been detoxified.

The increased activities of these antioxidant enzymes were dose-

dependent (Figure 4).

The important characteristic of natural antioxidants is their

ability to scavenge free radicals. Proton-radical scavenging action is

an important attribute of antioxidants, which is measured by the

DPPH radical scavenging assay. DPPH, a protonated radical, has a

characteristic absorbance maximum at 517 nm which decreases in

the presence of antioxidants due to the scavenging of the proton

radical (Yamaguchi 1998). In our study, the enriched fraction was

screened for DPPH radical scavenging activity. In-vitro experiment

results revealed that the enriched fraction isolated from the ethyl

acetate extract of D. indica leaves had relatively lower free radical

scavenging activity when compared with standard ascorbic acid.

The percentage scavenging activity was found to increase as we

increase the concentration of the fraction (Figure 4).

In addition, the present study also showed that the enriched

fraction has no significant effect on the seed germination of wheat

and green gram. This result is desirable as grain protectants should

not have any adverse effect on seed germination. In our previous

study, we evaluated the mammalian toxicity of the enriched fraction

on both male and female BALB/c mice through acute and sub-acute

toxicity and revealed no-observed-adverse-effect level (NOAEL) in

the experimental BALB/c mice (Singh et al., 2022). This

suggested that the enriched fraction of D. indica leaves is

significantly safer when compared to other commercially available

synthetic fumigants.
5 Conclusion

In the present study, for the first time, we have reported the

fumigant activity of D. indica against S. oryzae, T. castaneum and R.

dominica. The bioactive enriched fraction isolated from ethyl

acetate extract of D. indica leaves affected the AChE enzyme
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thereby causing hyperexcitation of the nerve impulse causing

paralysis which eventually leads to the death of the insects. The

bioactive enriched fraction also causes oxidative imbalance which

greatly affects the normal functioning of many metabolic pathways.

Three bioactive marker compounds were identified from the

enriched fraction, i.e. 6-Hydroxy-4,4,7a-trimethyl-5,6,7,7a-

tetrahydrobenzofuran-2(4H)-one (commonly known as loliolide),

1,2-Benzisothiazol-3(2H)-one, and Benzothiazole,2-(2-

hydroxyethylthio)-. Our research finding showed that D. indica

potentially offers a solution to problems associated with health risks,

availability, costs, and resistance as in the case of synthetic

pesticides. However, further research is needed to identify the

bioactive marker compounds, along with its mammalian toxicity

to ensure the safety of human and other non-target mammals.

Finally, we concluded that D. indica could be used as a source of

insecticides from plant origin and could be a viable alternative to

synthetic insecticides.
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Toxicity, baseline of
susceptibility, detoxifying
mechanism and sublethal
effects of chlorogenic acid, a
potential botanical insecticide,
on Bemisia tabaci

Ran Wang1†, Qinghe Zhang1†, Cheng Qu1, Qian Wang1,
Jinda Wang2* and Chen Luo1*

1Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China,
2National Engineering Research Center for Sugarcane, Fujian Agricultural and Forestry University,
Fuzhou, China
Bemisia tabaci is a threat to agriculture worldwide because of its potential to

cause devastating damage to crops. Chlorogenic acid is a bioactive pesticidal

phytochemical agent against various insect pests. We here determined the

susceptibility of a laboratory strain of B. tabaci to chlorogenic acid and other

popular insecticides, and the susceptibility of several field-collected populations

to chlorogenic acid. Also, cross-resistance to four common insecticides was

measured. Chlorogenic acid had the highest toxicity of all tested insecticides,

and all the field-collected populations were susceptible to chlorogenic acid, and

little cross-resistance was detected between chlorogenic acid and the other

tested insecticides. Furthermore, analysis of enzyme activities and expression of

P450 genes in B. tabaci after treatment with LC50 of chlorogenic acid suggested

that enhanced P450 activity could be involved in chlorogenic acid detoxification.

We subsequently evaluated sublethal effects of chlorogenic acid, and found that

treatment with LC25 of chlorogenic acid prolonged duration of two

developmental stages, reduced fecundity, and decreased survival rates of

treated B. tabaci compared to untreated insects. Overall, these findings

demonstrate strong toxicity and significant sublethal effects of chlorogenic

acid on B. tabaci, and suggest that overexpression of P450 genes may be

associated with chlorogenic acid detoxification.

KEYWORDS

Bemisia tabaci, chlorogenic acid, botanical insecticide, metabolic enzymes, cytochrome
P450 monooxygenases, sublethal effects
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1 Introduction

Pest management is a necessary aspect of agricultural

production. Chemical insecticides are a major pest control

measure, and have thus been extensively applied against insect

pests for decades, generally with high efficacy. However, this long-

term application of chemical insecticides has had detrimental side

effects, such as sublethal effects on non-target insects, high levels of

chemical residues in the environment and the food web, and

ecosystem destruction (Sharma et al., 2020). Bioinsecticides have

been suggested as appropriate alternatives to chemical agents owing

to their decreased toxicity, high biodegradability, excellent target

specificity, and minimal adverse effects on non-target organisms

(Wang S. et al., 2022). Plants have developed many environmental

adaptations, including physiological alterations, to cope with

herbivore attacks. Specialized metabolites are natural plant

products that play important roles in safeguarding plants against

insect pests; some such compounds have been screened for their

potential as commercial pest management products (Divekar et al.,

2022). For example, the alkaloid compound caffeine has insecticidal

properties; it causes paralysis and intoxication by inhibiting

herbivore phosphodiesterase activity, and is therefore regarded as

a potential biopesticide (Hollingsworth et al., 2002). Development

of botanically-derived pesticides may be a feasible and

environmentally sustainable strategy of preventing insect damage

to crops.

Several key types of phytochemicals, such as flavonoids and

phenolics, have important functions in herbivore resistance (Yao

et al., 2019; Xia et al., 2021). Plant phenolic metabolites including

chlorogenic acid, tannic acid, and methyl jasmonate show toxicity

against insect pests, adversely affecting key physiological processes

(Kundu and Vadassery, 2019; Lin et al., 2021; Lin et al., 2022).

Chlorogenic acid is reportedly associated with the phytochemical

defenses of plants such as Dendranthema grandiflora and Ipomoea

batatas against insect pests such as Frankliniella occidentalis and

Cylas formicarius, respectively (Leiss et al., 2009; Liao et al., 2020).

Recently, Wang et al. (2021) reported that chlorogenic acid content

was greatly increased as a result of Mythimna separate feeding, and

that chlorogenic acid displayed significant toxicity againstM. separate

larvae. In recent years, plant-derived pesticidal compounds have

become a focus of research attention due to their safety and lack of

general environmental toxicity. Chlorogenic acid is one potential

botanical insecticide that is highly environmentally friendly

compared to common synthetic insecticides.

Insect oxidase sys tems inc lude cytochrome P450

monooxygenases (P450s), which are multifunctional biocatalysts

with broad enzymatic activity on a variety of substrates. Metabolic

detoxification is one of the common mechanisms of resistance to

various xenobiotics, and P450s are critical in the detoxification of

natural and synthetic toxins (Lu et al., 2020; Nauen et al., 2021).

Insect exposure to xenobiotics such as pesticides and plant specialized

metabolites can induce high expression of P450 genes; for example, in

cotton bollworm, coumarin treatment up-regulates the P450 genes

CYP6B7, CYP6B6, and CYP6B2, and decreases bollworm

susceptibility to methomyl (Chen et al., 2018). Similarly, in
Frontiers in Plant Science 02120
Spodoptera exigua, gossypol treatment induces high expression of

CYP9A98 and CYP6AB14. It was recently reported that several

concentrations of chlorogenic acid can induce expression of P450

genes in M. separate, and that three P450 genes in particular

(CYP321A7, CYP6B6, and CYP6B7-like) may be responsible for

detoxifying chlorogenic acid (Lin et al., 2022).

The whitefly Bemisia tabaci (Gennadius) is an agriculturally

devastating insect pest with high genetic diversity that is distributed

worldwide. It has been known to infest more than 600 host plant

species, primarily feeding on the phloem (Wang et al., 2017). B. tabaci

damages plants not only directly but also indirectly; it is capable of

transmitting more than 100 different plant viruses through feeding

(Wei et al., 2017). Extensive and long-term employment of various

synthetic pesticides to control B. tabaci worldwide has led to

increasing reports of insect resistance to these pesticides (Horowitz

et al., 2020); it is thus urgent to identify an alternative that can be used

to delay the development of insecticide resistance in an

environmentally-friendly manner. In the present study, we

confirmed the toxicity of chlorogenic acid in B. tabaci, determined

the baseline susceptibility of field-sampled B. tabaci populations to

chlorogenic acid and other pesticides, and assessed pesticide cross-

resistance. We found that all field-sampled populations were highly

susceptible to chlorogenic acid, and no cross-resistance to the other

tested pesticides was observed. We then illustrated the biochemical

mechanism of chlorogenic acid action by measuring the activities of

glutathione S-transferase (GST), esterase (EST), and P450, and

assayed the expression of related genes. Finally, we assessed the

sublethal effects of chlorogenic acid on B. tabaci. In summary, this

study describes the optimal use of chlorogenic acid against B. tabaci

and lays the foundation for future research and development of

chlorogenic acid as a novel botanical pesticide.
2 Materials and methods

2.1 Insects

B. tabaci strain MED-S was originally collected from damaged

poinsettia plants (Euphorbia pulcherrima Wild. ex Klotz.) in Beijing,

China in 2009 (Pan et al., 2011). Four populations of B. tabaci that

were previously reported to be insecticide-resistant were tested for

cross-resistance; these were an abamectin-resistant strain (XZ), an

afidopyropen-resistant strain (HD-Afi), a cyantraniliprole-resistant

strain (CYAN-R), and a flupyradifurone-resistant strain (FLU-SEL)

(Wang et al., 2020a; Wang et al., 2020b; Wang et al., 2022b; Wang

et al., 2022c). Populations of B. tabaci were collected from six Chinese

provinces and tested for baseline susceptibility as previously

described (Wang et al., 2022b). All field-collected populations were

identified as Mediterranean (MED) cryptic species using a previously

published method (Luo et al., 2002). Insects were initially fed on

cotton plants Gossypium hirsutum (without pesticide exposure)

under a 14/10 h light/dark photoperiod at 26 ± 2°C and 55 ± 5%

relative humidity (RH). For all assays, adults that were 3 d old or

younger were sampled at random; approximately equal numbers of

male and female individuals were used.
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2.2 Insecticides

All chemical agents tested were of analytical standard

grade. Chlorogenic acid (Chemical Abstracts Service [CAS] #327-

97-9), abamectin (CAS #71751-41-2), flupyradifurone (CAS

#951659-40-8) , cyantrani l iprole (CAS #736994-63-1) ,

imidacloprid (CAS #138261-41-3), thiamethoxam (CAS #153719-

23-4), flonicamid (CAS #158062-67-0), acetamiprid (CAS #160430-

64-8), clothianidin (CAS #210880-92-5), nitenpyram (CAS

#150824-47-8), and dinotefuran (CAS #165252-70-0) were

purchased from Sigma Aldrich (Shanghai, China). Afidopyropen

(CAS #915972-17-7) and sulfoxaflor (CAS #946578-00-3) were

purchased from Dr. Ehrenstorfer (Augsburg, Germany).
2.3 Toxicity of chlorogenic acid to B. tabaci

All bioassays were carried out on adult B. tabaci individuals

using an artificial diet solution as described by Wang et al. (2023).

Five separate working concentrations were made for each

chemical agent with four replicates per concentration. Thirty to

forty B. tabaci adults were sampled at random and introduced

into a bioassay tube containing insecticide or artificial

diet solution without any insecticides (the control), which

constituted one replicate. After 96 h in the tube, B. tabaci were

considered to be dead if they did not move even when touched

with a fine-hair brush. Survival and death rates were then calculated

and recorded.
2.4 Detoxifying enzyme gene expression
and activity assays

Activities of three detoxifying enzymes (GST, EST, and P450)

were measured as previously described (Wang et al., 2020a) with

slight alterations. The median lethal concentration (LC50) treatment

comprised adults that survived treatment with the LC50

concentration for 96 h, and the control group was made of insects

treated with the control for the same period of time. For each group,

200 mixed-sex B. tabaci individuals were sampled as one replicate.

Three replicates were sampled for each of the three detoxifying

enzymes. Protein content was measured using bovine serum

albumin (BSA) as the standard with the method described by

Bradford (1976). Based on previous publications regarding P450-

mediated pesticide resistance in B. tabaci (Wang Q. et al., 2020; Zhou

et al., 2020), expression levels of 12 detoxifying genes were measured

via quantitative reverse transcription (qRT)-PCR as previously

described (Wang et al., 2020a): CYP6CX1v1, CYP6CX3, CYP6CX4,

CYP6CX5, CYP6CM1, CYP6DW2, CYP6DW3, CYP6DZ4,

CYP6DZ7, CYP303A1, CYP4C64, and CYP4G68. Expression

data were normalized using TUB1a and EF-1a as the internal

control genes, and the results were conducted in terms of the

2−△△Ct method (Pfaffl, 2001). Primer sequences are shown in

Supplementary Table S1.
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2.5 Sublethal effects of chlorogenic acid
on B. tabaci

The 25% lethal concentration (LC25) of chlorogenic acid was

calculated based on the results of the assay described in Section 2.3.

Several fitness parameters were then measured in B. tabaci in

control and LC25-treated groups. The experiments were carried

out as previously described (Wang et al., 2020a) with slight

alterations. Briefly, 12 clean cotton plants were evenly divided

between two separate insect-proof cages (one control [CK] cage

and one LC25-treatment cage). After 96h feeding with LC25 or the

control by the method of the bioassay, 120 adults of B. tabaci that

were treated (LC25) were then moved into the LC25 cage for egg

laying measurements, and 120 untreated B. tabaci adults were

moved into the CK cage as the control group. After 12 h of

oviposition, all the plants were moved out of the two cages, and

10 leaves were recorded from each of the cages. In each of the 20

leaves, 10 eggs were left on each leaf and kept with one leaf clip-

cage. All the spots of the eggs on the working leaves were marked,

and the cages were placed in the chamber with the room

temperature. Newly emerged adults of B. tabaci were put onto

new leaves with clip cages for fecundity measurements that

continued until all tested ones died, and after that the hatch rate

of eggs was recorded.
2.6 Statistical analysis

Probit analysis was conducted in PoloPlus (2002) to confirm the

significance of the death rate statistics for insects exposed to the

series of working concentrations of chlorogenic acid. Resistance

ratio (RR) was calculated as LC50 (field-collected population)/LC50

(MED-S), and levels of pesticide resistance is reported by the

published method (Zhang et al., 2022). Specifically, susceptibility

with the RR less than 5-fold, low level of resistance with RR from 5-

to 10-fold, moderate level of resistance with RR from 10- to 40-fold,

high level of resistance with RR from 40- to 160-fold, and very high

level of resistance with RR over 160-fold. Significant differences in

B. tabaci growth duration, viability, fecundity, duration of

oviposition, and egg hatchability between the CK and treatment

groups were assessed using Student’s t-test. Differences in

detoxifying enzyme activity and gene expression were also

assessed with Student’s t-test. All statistical analyses were

conducted using SPSS (2011).
3 Results

3.1 Lethal effects of chlorogenic acid and
popular insecticides on B. tabaci

The toxicity of chlorogenic acid and 11 other popular chemical

agents were confirmed in the susceptible MED-S strain of B. tabaci

using a feeding method as previously published (Wang et al., 2023)

(Table 1). The death rate of the control group was < 5%. The
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chemical agent with the highest lethal effect against B. tabaci adults

was chlorogenic acid (LC50 = 0.930 mg/L), followed by

cyantraniliprole (LC50 = 1.347 mg/L) and flonicamid (LC50 =

1.398 mg/L), which also showed excellent toxicity against B.

tabaci. The other chemical agents had significantly lower toxicity

than chlorogenic acid: 3.5 times lower for dinotefuran (LC50 = 3.259

mg/L), 3.9 times lower for clothianidin (LC50 = 3.656 mg/L), 4.6

times lower for acetamiprid (LC50 = 4.299 mg/L), 6.0 times

lower for nitenpyram (LC50 = 5.574 mg/L), 8.2 times lower for

afidopyropen (LC50 = 7.617 mg/L), 10.7 times lower for sulfoxaflor

(LC50 = 9.950 mg/L), 11.3 times lower for flupyradifurone (LC50 =

10.495 mg/L), 12.3 times lower for thiamethoxam (LC50 = 11.449

mg/L), and 23.1 times lower for imidacloprid (LC50 = 21.489 mg/L).
3.2 Baseline susceptibility of field-
collected B. tabaci to chlorogenic acid
and other pesticides

We next tested the baseline chlorogenic acid susceptibility of 12

B. tabaci MED populations collected in the field and one

laboratory-maintained susceptible strain (MED-S) (Figure 1 and

Table S2). Of the field-collected strains, ZZ showed the highest

susceptibility to chlorogenic acid (LC50 = 0.723 mg/L), whereas the

MED-S strain displayed the highest susceptibility overall (LC50 =

0.962 mg/L). WQ had the lowest susceptibility to chlorogenic acid

(LC50 = 3.306 mg/L), followed by TA (LC50 = 3.241 mg/L). The

resistance ratios of all field-collected strains were less than five-fold

different than that of the MED-S strain, indicating a lack of

chlorogenic acid resistance in field populations. XZ was

confirmed as an abamectin-resistant strain (41.6-fold resistance),

HD-Afi was afidopyropen-resistant (174.9-fold resistance), CYAN-

R was cyantraniliprole-resistant (99.3-fold resistance), and Flu-R

was flupyradifurone-resistant (160.4-fold resistance). However,

none of these strains showed chlorogenic acid resistance,
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suggesting that chlorogenic acid displayed little cross-resistance

with these four other pesticides (Table 2).
3.3 Biochemical mechanism of B. tabaci
response to chlorogenic acid treatment

Chlorogenic acid-treated and control B. tabaci were assayed to

measure the activity of three detoxifying enzymes: P450, GST, and

EST. Compared with the control group, P450 activity was

significantly elevated (by 1.9-fold) in the group treated with the

LC50 concentration of chlorogenic acid; GST and EST activities

were increased compared to the control group by 1.3-fold and 1.1-

fold, respectively, but the differences were not significant (Table 3).

In the control and LC50 groups, expression patterns were also

analyzed via qRT-PCR for 12 P450 genes that have previously

been reported as involved in detoxification: CYP6CX1v1,

CYP6CX3, CYP6CX4, CYP6CX5, CYP6CM1, CYP6DW2,

CYP6DW3, CYP6DZ4, CYP6DZ7, CYP303A1, CYP4C64, and

CYP4G68. In comparison to the control group, CYP6CX3,

CYP6CX4, CYP6DW3, CYP4C64, and CYP4G68 were significantly

up-regulated in the treated insects by 1.9-fold, 2.1-fold, 1.9-fold,

2.4-fold, and 2.0-fold, respectively. In contrast, CYP6DZ4 was

significantly down-regulated (by 10.0-fold) in the LC50-treated

group (Figure 2).
3.4 Sublethal effects of chlorogenic acid
on B. tabaci

In the work of cross-resistance, we assessed the lethality of

various concentrations of chlorogenic acid in the MED-S strain, and

as shown in the Table 2, LC50 value was 0.888 with the Slope ± SE

was 1.192 ± 0.133, and X2 (df) was 0.827 (3). Based on the

calculation, the value of LC25 was 0.241 mg/L, and it was used for
TABLE 1 Median lethal concentration (LC50) of chlorogenic acid and 11 popular insecticides on Bemisia tabaci.

Population N a LC50 (95% CL) (mg L-1) b Slope ± SE X2 (df)

Chlorogenic acid 614 0.930 (0.656 - 1.200) 1.134 ± 0.135 2.542 (3)

Cyantraniliprole 615 1.347 (1.083 - 1.631) 1.281 ± 0.132 1.036 (3)

Flupyradifurone 617 10.495 (8.248 - 12.794) 1.297 ± 0.135 2.758 (3)

Imidacloprid 621 21.489 (16.285 - 26.696) 1.261 ± 0.134 1.492 (3)

Thiamethoxam 619 11.449 (9.160 - 13.822) 1.347 ± 0.134 1.942 (3)

Sulfoxaflor 626 9.950 (8.373 - 11.815) 1.425 ± 0.131 2.534 (3)

Afidopyropen 612 7.617 (6.095 - 9.164) 1.430 ± 0.140 2.296 (3)

Flonicamid 610 1.398 (1.080 - 1.728) 1.188 ± 0.131 1.605 (3)

Acetamiprid 611 4.299 (3.425 - 5.322) 1.122 ± 0.128 1.188 (3)

Clothianidin 624 3.656 (2.730 - 4.728) 1.596 ± 0.137 3.130 (3)

Nitenpyram 611 5.574 (4.317 - 6.876) 1.203 ± 0.132 1.410 (3)

Dinotefuran 607 3.259 (2.590 - 4.310) 1.067 ± 0.129 1.319 (3)
fron
aNumber of insects used. b CL, confidence limit.
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further evaluation of the sublethal effects of chlorogenic acid on B.

tabaci development and reproduction. The results showed that

treatment of B. tabaci adults with the LC25 dose significantly

decreased the survival rates of F1 progeny in the neonate to

pseudopupae stage and in the pseudopupae to adult stage

(Figure 3A). The F1 progeny of treated insects also showed greatly

extended durations of these two developmental stages (Figure 3B).

Moreover, treatment with the LC25 dose greatly decreased fecundity

in female whiteflies; treated females produced 110.93 ± 11.40 eggs

each, compared to the 136.87 ± 9.89 eggs produced by females in

the control group (Figure 4A). However, there were no

significant differences in the duration of oviposition (Figure 4B),

11.57 ± 1.23 days in the treatment group vs. 12.92 ± 1.31 days

in the control group, and also in egg hatchability (Figure 4C), 90.11

± 2.18% in the treatment group vs. 91.93 ± 1.46% in the

control group.
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4 Discussion

Plant specialized metabolites are considered important

candidate compounds in development of botanical insecticides as

alternatives to conventional chemical pesticides. However, there is

still a dearth of information regarding the bioactivity of botanical

toxins against whiteflies. In the present study, we found that the

specialized metabolite chlorogenic acid showed higher toxicity than

11 popular commercial insecticides against B. tabaci adults

(laboratory strain MED-S). Using B. tabaci samples collected

from the field, we then established the baseline susceptibility of

12 separate populations to chlorogenic acid and assessed cross-

resistance to the pesticides abamectin, afidopyropen,

cyantraniliprole, and flupyradifurone. All of the tested field-

sampled populations were highly susceptible to chlorogenic acid,

and chlorogenic acid showed little cross-resistance with abamectin,
TABLE 2 Cross-resistance of Bemisia tabaci against chlorogenic acid and four popular insecticides.

Insecticide Strain N a LC50 (95% CL) (mg/L) b Slope ± SE c2 (df) RR c

Chlorogenic acid MED-S 615 0.888 (0.663 - 1.114) 1.192 ± 0.133 0.827 (3)

XZ 615 1.573 (1.156 - 1.986) 1.218 ± 0.136 1.204 (3) 1.8

HD-Afi 630 1.723 (1.219 - 2.218) 1.172 ± 0.135 1.823 (3) 1.9

CYAN-R 619 1.011 (0.753 - 1.266) 1.257 ± 0.136 1.211 (3) 1.1

FLU-SEL 611 2.381 (1.838 - 2.951) 1.155 ± 0.130 0.775 (3) 2.7

Abamectin MED-S 622 0.10 (0.070 - 0.120) 1.427 ± 0.169 2.701 (3)

XZ 615 4.159 (3.130 - 5.180) 1.274 ± 0.137 0.950 (3) 41.6

Afidopyropen MED-S 617 5.581 (4.140 - 7.075) 1.043 ± 0.128 1.007 (3)

HD-Afi 632 976.163 (779.027 - 1221.122) 1.067 ± 0.125 1.289 (3) 174.9

Cyantraniliprole MED-S 610 1.071 (0.837 - 1.312) 1.266 ± 0.134 1.581 (3)

CYAN-R 609 106.402 (83.674 - 129.673) 1.311 ± 0.135 2.828 (3) 99.3

Flupyradifurone MED-S 616 9.969 (6.770 - 13.134) 1.001 ± 0.130 2.946 (3)

FLU-SEL 623 1599.386 (1250.543 - 1957.451) 1.265 ± 0.132 1.140 (3) 160.4
frontier
aNumber of insects used. b CL, confidence limit. c Resistance ratio (RR) = LC50(strain XZ, HD-Afi, CYAN-R, or FLU-SEL)/LC50(strain MED-S).
FIGURE 1

Susceptibility of Bemisia tabaci populations collected from fields in China to chlorogenic acid.
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afidopyropen, cyantraniliprole, and flupyradifurone. Although

there have been few previous investigations into the toxicity of

chlorogenic acid against B. tabaci, chlorogenic acid reportedly

exerts excellent lethal effects against various insect pests such as

M. separata, Hyphantria cunea, and Lymantria dispar (Wang et al.,

2014; Pan et al., 2020; Lin et al., 2022). These characteristics make

chlorogenic acid a promising candidate botanical pesticide for use

as a more environment-friendly option in field applications

compared to synthetic insecticides.

Previous studies of B. tabaci have indicated that metabolic

resistance to popular chemical agents involves increased activity

of P450 enzymes and up-regulation of P450 genes (Zhou et al.,

2020; Wang et al., 2020a; Wang et al., 2020c). Here, we selected 12

candidates of detoxifying P450 genes and measured expression

levels after chlorogenic acid treatment. After treatment with the

LC50 dose for 96 h, P450 enzyme activity was greatly induced;

furthermore, five P450 genes were significantly up-regulated and

one was down-regulated in comparison with the untreated control

group. We thus concluded that those six genes (CYP6CX3,

CYP6CX4, CYP6DW3, CYP4C64, CYP4G68, and CYP6DZ4) were

involved in detoxifying chlorogenic acid. P450 genes have crucial

detoxification functions in many insects; pesticide resistance relies

primarily on xenobiotic metabolism via cytochrome (CY) P450s
Frontiers in Plant Science 06124
(Lu et al., 2020; Nauen et al., 2021). Similarly, phytochemicals can

induce changes in the expression levels of detoxification-related

P450 genes. For example, two P450 genes, CYP4M14 and CYP4L13,

are significantly up-regulated in Spodoptera frugiperda larvae after

exposure to flavonoids and nicotine (Wang et al., 2022c). It was

recently reported that chlorogenic acid can induce P450 enzyme

activity and that the genes CYP6B7-like, CYP321A7, and CYP6B6

are responsible for chlorogenic acid detoxification in M. separata

(Lin et al., 2022). We therefore speculate that these genes, some of

which were significantly up-regulated in B. tabaci after chlorogenic

acid treatment, may be detoxification genes; furthermore, the

insecticidal effects of chlorogenic acid against B. tabaci may be

due to P450 gene suppression, preventing detoxification and thus

resulting in insect death.

Plant-derived pesticides not only have lethal capacity, but also

affect insect physiological functions such as behavior, viability,

reproduction, and development at sub-lethal concentrations

(Toledo et al., 2019; Piri et al., 2020). For example, treatment of

B. tabaci with the LC25 dose of the phytochemical compound b-
asarone can prolong the developmental duration, decrease viability,

and significantly reduce the rate of reproduction (Wang et al.,

2022a).We here found that treatment with the LC25 dose of

chlorogenic acid had several effects on B. tabaci: it prolonged the

duration of two developmental stages; decreased survival rates of

nymphs, pseudopupae, and adults; and significantly decreased

female fecundity. These results were consistent with those of

previous publications, which have indicated that the duration of

M. separate larval growth is significantly prolonged after treatment

with the LC20 dose of chlorogenic acid (Lin et al., 2022). Moreover,

inHelicoverpa zea, the developmental duration can be prolonged by

exposure to caffeic acid and chlorogenic acid (Summers and Felton,

1994). These previous findings combined with the results of the

present study indicate that chlorogenic acid can extend the duration

of insect developmental stages, decrease rates of pupation and

eclosion, and alter the sex ratio of populations and the fecundity

of females; chlorogenic acid thus negatively affects development and

reproduction of multiple insect pests.

In conclusion, we found that chlorogenic acid displays excellent

lethal effect on B. tabaci in the both lab-rear strain and field-

collected populations. No cross-resistance to four popular

insecticides, and five P450 genes that may be involved in the

detoxification process was identified in the work. Moreover, it is

important to clarify the sublethal effects of a pesticidal agent as part

of an overall assessment of its suitability for field applications. The

present study reveals novel insights into the sublethal effects of
FIGURE 2

Expression profiles of 12 cytochrome P450 genes that may be
involved in chlorogenic acid detoxification in Bemisia tabaci adults.
Red, control (CK) individuals. Green, individuals treated with the
median lethal concentration (LC50) of chlorogenic acid. Values are
presented as the mean ± standard error. *p < 0.05 (Student’s t-test).
TABLE 3 Metabolic enzyme activity in control (CK) Bemisis tabaci individuals and those treated with the median lethal concentration (LC50) of
chlorogenic acid.a.

Treatment P450s activity ESTs activity GSTs activity

pmol min-1 mg-1 Ratio b nmol min-1 mg-1 Ratio b nmol min-1 mg-1 Ratio b

CK 0.68 ± 0.16 311.06 ± 18.93 40.26 ± 10.31

LC50 1. 32 ± 0.24 * 1.9 329.75 ± 25.32 1.1 51.07 ± 11.12 1.3
fron
aMean activity values in a single column followed by an asterisk are significantly different (p < 0.05). b Ratio = activity in individuals treated with the LC50 dose/activity in CK individuals.
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chlorogenic acid on whiteflies, promoting efficacious use of this

compound and contributing to decreased whitefly management

costs and crop yield losses due to herbivory.
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FIGURE 4

Fecundity (A), oviposition duration (B), and egg hatching rate (C) of the F1 generation of Bemisia tabaci. Dark red, control (CK) individuals. Gold,
individuals treated with the 25% lethal concentration (LC25) of chlorogenic acid. Values are presented as the mean ± standard error. *p < 0.05 and
n.s. indicates not significant (p > 0.05) (Student’s t-test).
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FIGURE 3

Survival rates (A) and developmental stage durations (B) in the F1 generation of Bemisia tabaci. Dark red, control (CK) individuals. Gold, individuals
treated with the 25% lethal concentration (LC25) of chlorogenic acid. Values are presented as the mean ± standard error. *p < 0.05 (Student’s t-test).
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