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Editorial: Nanomaterials for
biology and medicine

Guannan Wang*

College of Medical Engineering and the Key Laboratory for Medical Functional Nanomaterials, Jining
Medical University, Jining, China

KEYWORDS
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Editorial on the Research Topic
Nanomaterials for biology and medicine

The desire for novel technology applications in biology, chemistry, engineering, physics,
and medical science has fueled nanomaterials research. Nanomaterials have risen to
prominence in technological breakthroughs due to their adjustable thermal, mechanical,
electronic, and biological properties and superior performance over bulk equivalents (Baig
et al., 2021; Mazari et al., 2021). Accordingly, numerous strategies have been projected to
construct various functional structures by the integration of various types of nanomaterials,
ranging from metals, metal oxides, alloys, and semiconductive materials to multifarious
inorganic and organic polymers (Hao et al., 2010; Wagner et al., 2019). Specifically,
nanomaterials offer the virtues as the therapeutic and diagnostic tools, which is owing to
their small sizes, design flexibility, large specific surface area, and simple surface modification
to enhance avidity for the targeting molecule (Yu et al., 2021; Qiao et al., 2022; Pourmadadi
et al., 2023). There has been an explosive development in the use of nanomaterials for
biomedical applications to probe biological processes, diagnose and treat medical conditions.
The distinguishing characteristics of nanomaterials enable them to preferentially penetrate
and be retained by cells and tissues of living organisms, thereby achieving developments in
new approaches to target in biological cells and biological tissues. Additionally, the size scale
of nanomaterials will provide the inspiration to build complexity into the nanoprobes that
endow them versatility with both diagnostic, therapy, and drug delivery function. Moreover,
diversified surface modification strategies have broadened the application of nanomaterials
for biomedical applications, which adds the property of stability, biocompatibility,
biodistribution, solubility, biological or therapeutic effects (Sztandera et al., 2019; Liu
et al., 2021).

In this Research Topic, the authors were invited to contribute their research works,
which enable the better explanation on the recent advances in diversified applications of
nanomaterial in the biology and medicine. Yu et al. have contributed a literature review on
the current progress on the nanomaterials’ application in diagnosing and treating of
glioblastoma (GBM). They discussed the nanomaterials-based nano-diagnosis or
treatment mechanisms. Additionally, the advanced application progress of nanomaterial
combination diagnostic and therapeutic tools for GBM was summarized. Nano-catalytic
therapy, acting as an innovative strategy, has been extensively explored. Shi et al. group
synthesized a multi-functional magneto-gold nano-enzyme AuNC@Fe3O4 and evaluated
their anti-cancer ability in the hepatocellular carcinoma (HCC cells) in vitro. The preparative
nano-enzyme AuNC@Fe3O4 with a small size was characterized using various techniques
and demonstrated with high peroxidase (POD)-like activity, good photothermal conversion
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efficiency, and can inhibit cell proliferation and enhance cell
apoptotic ability in cancer cells, providing a potential anti-cancer
method for HCC. Responding to the oxidation state of the micro-
environment of bacterial infection, Dorma Momo et al. explored a
near-infrared (NIR) photothermal bacterial inactivation by
reasonably designing a Metal organic Framework (MOF)-based
nano-composite, offering a novel inspiration for constructing
precise nano-therapeutic systems. They systematically studied the
strong deactivation effect on the Gram-negative and -positive
bacteria and intense therapeutic effectiveness on the mouse skin
wound infection model of the designed nano-system.

Native and synthetic nanomaterials have drawn a lot of research
interests and been projected as the key components for construction
of drug delivery systems for healing patients in clinical. Ravelo-Nieto
et al. constructed a cellular drug delivery system by using silanized
fullerenol and silica nanoparticles (SN) as the nano-structured
supports to conjugate potent cell-penetrating agents. The nano-
bioconjugates showed distinct intracellular trafficking and
endosomal escape behavior in the cell lines, which indicated the
potentiality to address the challenge of cytoplasmic drug delivery
and the development of therapeutic methods for lysosome storage
disease. You et al. developed a monodispersed and biocompatible
mesoporous SN (MSN) divergent porous channel for loading
dapagliflozin (DAPA). They constructed a drug delivery system
through the surface-modification of the cardiac-targeting peptides
to release drug for the hypoxic and weak acid damaged
cardiomyocytes. This MSN-based nanocarriers for the DAPA
delivery system can achieve the efficacious cardiac repair and
regeneration in vivo. Gui et al. research group exploit a
pH responsive antibacterial delivery system (Imi@ZIF-8) for the
antibiosis treatment of A. baumannii. They found that at an
imipenem concentration of 10 mg/kg, the Imi@ZIF-8 nano-
system manifested the outstanding therapeutic efficacy against A.
baumannii in the mice with celiac disease.

Intended as a one-stop reference, this Research Topic provides
the reader with the most-up-to-date and comprehensive
exploration of a variety of the nanomaterial applications for
biology and medicine. Briefly, these nanomaterials can be
applied to perspective to advance in intrinsic nano-therapy
across the biomedical area, from cancer therapeutics to
microbial infection treatment and tissue regeneration. As such,
this Research Topic provides the most comprehensive coverage of
this intriguing field of study. Currently, this Research Topic has
published 11 articles and received over 2,900 downloads and
14,000 readings worldwide.
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Recent advances in
enzyme-related biomaterials for
arthritis treatment

Xin-Hao Liu1,2†, Jia-Ying Ding1,2†, Zhi-Heng Zhu1,2,
Xi-Chen Wu1,2, Yong-Jia Song1,2, Xiao-Ling Xu3* and
Dao-Fang Ding1,2*
1Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese
Medicine, Shanghai, China, 2School of Rehabilitation Science, Shanghai University of Traditional
Chinese Medicine, Shanghai, China, 3Shulan International Medical College, Zhejiang Shuren University,
Hangzhou, China

Arthritis is a group of highly prevalent joint disorders, and osteoarthritis (OA) and

rheumatoid arthritis are the two most common types. The high prevalence of

arthritis causes severe burdens on individuals, society and the economy.

Currently, the primary treatment of arthritis is to relieve symptoms, but the

development of arthritis cannot be effectively prevented. Studies have revealed

that the disrupted balance of enzymes determines the pathological changes in

arthritis. In particular, the increased levels of matrix metalloproteinases and the

decreased expression of endogenous antioxidant enzymes promote the

progression of arthritis. New therapeutic strategies have been developed

based on the expression characteristics of these enzymes. Biomaterials have

been designed that are responsive when the destructive enzymes MMPs are

increased or have the activities of the antioxidant enzymes that play a protective

role in arthritis. Here, we summarize recent studies on biomaterials associated

with MMPs and antioxidant enzymes involved in the pathological process of

arthritis. These enzyme-related biomaterials have been shown to be beneficial

for arthritis treatment, but there are still some problems that need to be solved

to improve efficacy, especially penetrating the deeper layer of articular cartilage

and targeting osteoclasts in subchondral bone. In conclusion, enzyme-related

nano-therapy is challenging and promising for arthritis treatment.

KEYWORDS

biomaterials, nano-therapy, arthritis, matrix metalloproteinases, endogenous
antioxidant enzymes

Introduction

Arthritis, which is a group of musculoskeletal diseases, is one of the leading causes of

disability in the elderly population (Woolf and Pfleger, 2003). Osteoarthritis (OA) and

rheumatoid arthritis (RA) are the most prevalent types of arthritis and affected

344 million people and 13 million people, respectively, globally in 2019 (Cieza et al.,

2021). OA is characterized by joint degeneration, especially in the knee, and involves

multiple joints, such as the hand, hip, knee and foot. A large-scale survey in the
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United Kingdom in 2017 showed that the prevalence of OA in

adults was 10.7% (Swain et al., 2020-06). The increases in obesity

and the ageing population contribute to the prevalence of OA

(Briggs et al., 2020-10). RA is an immunization-induced systemic

disease characterized by synovial inflammation and joint

destruction, and the prevalence of RA is 0.5–1.0% in the US

(Palmer et al., 2019).

OA and RA are both inflammatory joint diseases that involve

joint and synovial destruction and immune cell infiltration

(Zhang et al., 2019-03) and is associated with joint pain,

swelling, and limited movement, resulting in a decline in

physical function, increased dependence and reduced quality

of life. Furthermore, the prevalence of OA and RA is expected to

increase significantly as the global population ages. The

treatment of arthritis is often a long and complex process due

to irreversible damage and the risk of comorbidities, resulting in

extremely high medical and economic burdens on society, and

these burdens continue to increase globally (Briggs et al.,

2020-10).

To date, there is no effective cure for OA or RA. The current

interventions include medications, physical therapy, and surgical

intervention, all of which are aimed at alleviating symptoms and

reducing joint damage and disability. Medications for OA,

including topical, oral and intra-articular (IA) injectable

drugs, are palliative and limited to controlling symptoms of

joint swelling, pain and stiffness (Tschon et al., 2020-06). A

randomized clinical trial has even shown that IA corticosteroids

may accelerate the destruction of articular cartilage (McAlindon

et al., 2017-05). Currently, non-steroidal anti-inflammatory

drugs (NSAIDs), glucocorticoids (GCs) and disease-modifying

anti-rheumatic drugs (DMARDs) are mainly used in the clinical

treatment of RA. The targets of traditional DMARDs are not

clear, and approximately 30%–50% of patients respond poorly to

these drugs (Sparks, 2019). As a result of the poor bioavailability

and short half-lives of anti-rheumatic drugs, prolonged repeated

use can cause serious adverse reactions such as vomiting, drug

resistance and bone marrow suppression.

Physical therapy for OA and RA includes weight loss,

moderate exercise and knee joint distraction. Knee joint

distraction can improve symptoms and promote tissue repair

in severe knee joint degeneration, but there is frequent infection

during the follow-up (Jansen and Mastbergen, 2022-01; van der

Woude et al., 2017-01). When conservative treatment is not

feasible for end-stage arthritis, surgical intervention, such as total

joint replacement, can be considered, but this treatment strategy

is related to persistent postsurgical pain and infection (Wylde

et al., 2011-03; Chung et al., 2021-11).

Currently, new therapeutic strategies and drugs primarily

alleviate symptoms to treat arthritis, and critically unsolved

problems, such as how to restore abnormal cellular function

in arthritis, should be considered. Cellular activity depends on

various proteins, and some of these proteins are important

enzymes for physiological and pathological processes. Herein,

we summarized the essential enzymes that are involved in

pathological changes in arthritis.

Arthritis-related enzymes

The pathological changes in OA and RA are mainly

characterized by cartilage destruction and synovial

inflammation (Trachana et al., 2019; Scherer et al., 2020). Cell

metabolism is often regulated by different enzymes, and

abnormal levels of enzymes are typically associated with the

occurrence of various diseases. In cartilage, different matrix

metalloproteinases (MMPs) are responsible for destroying

chondrocytes by degrading collagen and proteoglycans.

1 matrix metalloproteinases linked with arthritis
There is increasing evidence that these inflammatory

mediators are involved in the pathogenesis of both OA and

RA (Malemud, 2017; van Dalen et al., 2017). Neutrophils,

monocytes and macrophages infiltrate cartilage and synovial

tissue after inflammation occurs, releasing various

inflammatory factors and chemokines, which cause an

increase in MMPs.

The destruction or degradation of articular cartilage is

regulated by MMPs, which are a family of proteolytic

enzymes that hydrolyse extracellular matrix (ECM). Different

types of MMPs are involved in degrading proteoglycans and

collagens, which are the main components of ECM in cartilage,

especially MMP-1, MMP-2, MMP-3, MMP-9 and MMP-13

(Itoh, 2017; Mehana et al., 2019). MMPs can degrade

collagen, elastin, and other substances in the ECM of articular

cartilage that maintain the structure of cartilage and ultimately

destroy the integrity of ECM structure and function.

Under pathological conditions, the expression level of MMP-

1 was significantly increased in OA and RA, and this factor

degraded ECM collagen and mediated cartilage destruction

(Wang et al., 2020a). In cartilage and synovium, MMP-1

expression increased steadily during the progression of OA in

a rabbit model of anterior cruciate ligament transection (ACLT)

(Wu et al., 2008). MMP-1 could lead to the degeneration of

primary collagen (type Ⅱ collagen) in cartilage, and this effect was
irreversible (Macdonald et al., 2018).

The development of OA and RA is associated with the

increased secretion and activity of MMP-2 in synovial cells

and the joints of RA patients, respectively (Kim et al., 2011;

Galasso et al., 2012). Furthermore, MMP-2-sensitive peptide was

shown to be specifically released in inflammatory joints in vitro

and in vivo, which might be an important approach for drug-

targeted treatment of RA (Yu et al., 2022).

Significantly increased levels of MMP-3 in the serum of OA

patients were positively correlated with the severity of knee OA

and RA in patients (Ma et al., 2014; Georgiev et al., 2018; Pengas

et al., 2018). Furthermore, serum MMP-3 levels were closely
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correlated with disease activity scores, suggesting that serum

MMP-3 levels could be used as an indicator of structural damage

and monitor disease progression (Galil et al., 2016; Tuncer et al.,

2019).

MMP-9 was also positively correlated with disease severity in

OA patients (Lipari and Gerbino, 2013). A meta-analysis showed

that MMP-2 and MMP-9 protein expression levels were

significantly higher in the OA group than in the control

group, indicating that MMP-2 and MMP-9 are involved in

the pathogenesis of OA (Zeng et al., 2015). Multiple studies

have shown that the expression of MMP-9 in synovial fluid and

synovial cells of RA patients is increased (Silosi et al., 2015; Ma

et al., 2019). The degree of inflammation in RA patients

correlated with Toll-like receptor 2 (TLR2) expression in

peripheral blood monocytes. The increased expression of

TLR2 led to the increased expression of MMP-9 (Chen et al.,

2015). MMP-9 could participate in the synovial cell-mediated

inflammatory response and the degeneration of ECM, especially

proteoglycans, which might directly cause joint destruction

(Metzger et al., 2012).

MMP-13 is a crucial enzyme leading to the degradation of

collagen types I, II and III and the cartilage proteoglycan

aggrecans and is considered a significant factor in the

pathogenesis of OA (Fosang et al., 1996). MMP-13 attracted

much attention due to its obvious overexpression in the

articular cartilage of OA patients, but it was almost

undetectable in normal adult tissues (Kaneva, 2022).

Interfering with the expression of MMP-13 in a surgically

induced OA model could efficiently alleviate OA severity

(Hoshi et al., 2017). Given its critical role in ECM

degradation, MMP-13 has been a promising target in OA

treatment (Hu and Ecker, 2021). K/BxN serum-induced

arthritis increases MMP-13 expression in C57BL/6 mice, and

MMP-13-deficient (MMP-13−/−) mice exhibit reduced

inflammation and joint destruction (Singh et al., 2013). In

addition, MMP-13 was also associated with the progression

of RA, providing crucial predictive information about future

structural damage and severity in early RA patients (Tatematsu

et al., 2018).

2 Endogenous antioxidant enzymes linked with
arthritis

Apart from the direct effect of MMPs on ECM degradation in

cartilage and promoting the progression of arthritis, endogenous

antioxidants such as superoxide dismutases (SODs), glutathione

peroxidase (GPx), catalase (CAT), and glutathione reductase

(GR) also affect the occurrence of arthritis by scavenging

intracellular reactive oxygen species (ROS) and alleviating

cellular oxidative stress.

ROS are key signalling molecules in the progression of

inflammatory diseases (Mittal et al., 2014). Under

inflammatory conditions, the oxidative stress induced by

macrophages, monocytes, and neutrophils leads to the

formation of interendothelial junctions, accelerating the

crossing of the endothelial barrier and ultimately promoting

inflammation (You et al., 2018).

The levels of intra-articular ROS (including H2O2, O2
−, OH−,

and HOCl) are significantly increased in OA patients, while ROS

are maintained at low levels in normal articular tissue (Lepetsos

and Papavassiliou, 2016; Yao et al., 2019). The overproduction of

ROS causes overoxidation, protein carbonylation, and DNA

damage and is considered the primary mechanism of

chondrocyte loss and tissue damage (Hosseinzadeh et al.,

2016). The associated ROS, including nitric oxide (NO),

superoxide anion (O2
−) and hydrogen peroxide (H2O2), are

present in the articular cavities of RA patients in large

quantities (Datta et al., 2014). When the local inflammatory

response in RA joints is accelerated and ROS levels exceed

physiological tolerance, they not only damage proteins, lipids,

and nucleic acids but also act as important endogenous signalling

regulators that amplify the synovial inflammatory response (Bala

et al., 2017; Phull et al., 2018). Li et al. found that ROS

significantly promoted the proliferation of RA synovial

fibroblasts and the production of inflammatory factors and

that inhibiting ROS significantly downregulated the

inflammatory factors secreted by RA synovial fibroblasts,

ultimately improving RA conditions (Li et al., 2018).

Therefore, a potent antioxidant compound that can reduce

ROS in inflammatory cells may be a key factor in the

treatment of chronic inflammatory diseases.

ROS clearance is regulated by SODs, GPx, CAT and GR (He

et al., 2017). CAT and GPx are involved in the decomposition of

intracellular hydrogen peroxide and maintain normal ROS levels to

reduce toxic reactions. SOD can catalyse O2
− into O2 and H2O2. GR

catalyses the reduction of glutathione disulfide (GSSG) to the

sulfhydryl form of glutathione (GSH), which plays an important

role in the tissue oxidative stress response (Deponte, 2013). The levels

of SOD, CAT and other antioxidant enzymes in OA chondrocytes

were significantly lower than those in normal chondrocytes,

indicating that insufficient antioxidant capacity might cause

cartilage damage (Zhuang et al., 2018). Unlike the expression

pattern of other antioxidant enzymes, the expression of GR was

increased in arthritis (Meshkibaf et al., 2019; Idzik et al., 2022).

The proliferation and activation of osteoclasts (OCs) are key

factors leading to bone damage and bone metabolism disorders

in RA (Auréal et al., 2020). Recent studies have shown a close

correlation between bone destruction and oxidative stress in the

pathogenesis of RA. ROS promote osteoclast differentiation

(Gamal et al., 2018). Decreased expression of SOD, CAT and

GPx was found in the ankle joints of RA rats (Ren et al., 2019a).

ROS-induced peroxidation is inhibited by antioxidant enzymes,

among which superoxide dismutase 3 (SOD3) is the key enzyme

that protects cells from oxidative stress (Nguyen et al., 2020).

SOD3 reduced proinflammatory cytokines (IL-1β, IL-2, IL-4, and
TNF-α) and the release of MMPs (MMP-2, MMP-3 and MMP-

9), ultimately inhibiting inflammatory responses (Xie et al.,
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2021). Icariin protects synoviocytes induced by

lipopolysaccharide (LPS) by inhibiting ferroptosis by

activating the Xc/GPX4 axis (Luo and Zhang, 2021).

Considering the importance of MMPs and oxide reductase

associated with ROS in the occurrence of arthritis, biomaterials

that target endogenous enzymes have become a hot research

topic in recent years. Next, we will introduce the application of

biomaterials that are linked with these enzymes.

Nanotherapies that target enzymes in
arthritis

Enzymes that play critical roles in arthritis pathology are

categorized into two groups according to their expression

characteristics: upregulated enzymes and downregulated

enzymes, which are listed in Figure 1. Enzyme homeostasis is

critical for the human body. Both the upregulated and

downregulated expression of these enzymes disrupt the

balance of cell metabolism and can cause diseases. Therefore,

therapeutic strategies have been designed according to the

expression of these enzymes. If the expression of these

enzymes is upregulated, nanomaterials can respond and

release an effective drug to inhibit pathological changes, or

nanomaterials can be fabricated to simulate the effects of

downregulated enzymes. Next, we described two different

functional enzymes in arthritis treatment.

1 Nanomaterials associated with upregulated
enzymes in arthritis treatments

It is well known thatMMPs are themain destructive enzymes

in chondrocytes that degrade ECM components, such as

proteoglycans and collagen networks. Degradation of the

ECM leads to functional destruction of chondrocytes and

cartilage erosion. Therefore, MMPs have become an important

molecular target for studies on the treatment of OA. In particular,

MMP-13, a critical protease in chondrocytes, is responsible for

the degradation of type II collagen and proteoglycans.

OA is a chronic inflammatory disease. Growing evidence

reveals that the changes in the OA microenvironment include

excessive inflammation and MMP overexpression (Latourte

et al., 2017; Li et al., 2017; Stocco et al., 2019). The

microenvironment is an important factor in maintaining joint

homeostasis. Long-term inhibition of MMP enzymatic activity

may lead to adverse reactions. Therefore, it is necessary to design

materials that are highly selective for MMPs and can adapt to the

changes in MMP levels in vivo. When MMP expression is

upregulated, MMP-responsive nanoparticles (NPs) work, and

they are inactive when MMPs are at low levels.

The increased expression of MMPs in inflamed tissues may

be a promising breakthrough for arthritis therapy. A

commercially available, Food and Drug Administration

(FDA)-approved molecule known as triglycerol monostearate

(TGMS) has been shown to be responsive to MMPs (Wen et al.,

2019).

FIGURE 1
Upregulated enzymes (red) and downregulated enzymes (green) in arthritis pathology.
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MMP-responsive PEGylated lipid NPs (TGMS/DSPE-

PEG2000 NPs) can be produced through the coassembly of

TGMS and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-

poly (ethylene glycol) (DSPE-PEG2000). Dexamethasone

(Dex)-loaded MMP-responsive NPs were obtained by loading

TGMS/DSPE-PEG2000 NPs with Dex, and Dex can be rapidly

released from the lipid NPs after TGMS is cleaved byMMP-3 and

MMP-9. Dex-loaded MMP-responsive NPs significantly reduced

the degree of joint swelling and inhibited the production of TNF-

α and IL-1β in the joint (He et al., 2020).

In another study, the nanozyme-like role of the hydrogel

form of TGMS(TG-18) was further confirmed in RA treatment.

A hydrogel platform that exhibits disassembly and drug release

controlled by the concentration of enzymes during arthritis flares

was constructed. In this study, a triglycerol monostearate

hydrogel (TG-18) loaded with the corticosteroid triamcinolone

acetonide (TA) exhibited drug release in response to the

increased activities of arthritis-related enzymes in vitro

(MMP-2, MMP-3, MMP-9) or synovial fluid from patients

with RA (Joshi et al., 2018).

In addition to synovial inflammation and joint swelling,

obvious cartilage damage and bone erosion are often observed

in RA. Synovial macrophages mediate joint inflammation once

activated, and OCs are responsible for arthritic bone erosion and

resorption of the bone matrix. Both OCs and synovial

macrophages express high levels of αvβ3 integrin, which plays

an important role in activated macrophage-dependent

inflammation and OC-dependent bone resorption.

Macrophages and OCs fail to undergo apoptosis in the RA

joint, leading to persistent inflammation and joint destruction.

Therefore, inducing OC and macrophage apoptosis in RA joints

represents a promising strategy for advanced RA treatment.

According to the characteristics of OCs and synovial

macrophages, novel CEL-loaded PRNPs (CEL-PRNPs) were

synthesized that contained celastrol (CEL), which can induce

apoptosis in OCs and macrophages, RGD, which is a ligand of

αvβ3 that targets OCs and inflammatory macrophages, and

polyethylene glycol (PEG), which is cleaved by MMP-9. In an

adjuvant-induced arthritis rat model, CEL-PRNPs efficiently

reduced the number of OCs and inflammatory macrophages

and relieved various symptoms, including ankle and paw swelling

and bone erosion, in the inflamed joints of AIA rats with

advanced arthritis (Deng et al., 2021).

To determine the inflammatory condition and investigate the

therapeutic effects of MMP-responsive biomaterials,

fluorescence imaging was considered for diagnosis and therapy.

Inflamed cartilage is characterized by MMP-13

overexpression and an acidic microenvironment. Therefore,

MMP-13/pH-responsive ferritin nanocages (CMFn) loaded

with an anti-inflammatory drug (hydroxychloroquine, HCQ),

termed CMFn@HCQ, were constructed for OA imaging and

therapy. CMFn is a marker for imaging diagnosis that emits light

in response to MMP-13 overexpression. The intensity of CMFn

light increases with the severity of OA. However, in normal

joints, this compound emits no light. The release of HCQ causes

an anti-inflammatory effect in OA joints to reduce synovial

inflammation, and the retention time lasts up to 14 days

(Chen et al., 2019a).

Cartilage-targeting C-PPL was created by grafting collagen

type II-targeting peptides with the sequence WRYGRL onto the

polymer poly (2-ethyl-2-oxazoline)-poly (ε-caprolactone) (PPL).
Additionally, PPL was conjugated with a specific peptide

substrate of the MMP-13 enzyme (H2N–GPLGVRGC–SH)

that was labelled with a fluorescent dye (Cy5.5) and was

subsequently coupled with the black hole quencher-3 (BHQ-3)

that can quench Cy5.5 fluorescence to obtain an MMP-13-

responsive and pH-sensitive polymer (MR-Cy5.5-BHQ-3-

PPL). A cartilage-targeting and OA-specific theragnostic

nanoplatform (MRC-PPL) was obtained by the self-assembly

of C-PPL and MR-PPL. Finally, MRC-PPL was loaded with the

traditional Chinese medicine psoralidin (PSO) to form MRC-

PPL@PSO nano-micelles, which specifically target and protect

cartilage (Lan et al., 2020). The synthesis and mechanism of

MRC-PPL@PSO nano-micelles to treat OA are shown in

Figure 2.

In addition to MMP overexpression in arthritis tissue, the

intrinsic properties of the OA microenvironment, especially

synovial fluid, are also considered when designing novel

nanomaterials. The increased activity of the GR enzyme was

reported in the synovial fluid of RA and OA patients, and a

selectively controlled drug release that is sensitive to the GR

enzyme was designed for the treatment of arthritic diseases

(Ostalowska et al., 2006; Sredzińska et al., 2009). Polymeric

micelles were made of methoxypolyethylene glycol amine-

glutathione-palmitic acid (mPEG-GSHn-PA) polymers. Dex

was loaded into the cores of the polymeric micelles. The

release of Dex was slow under physiological conditions, while

the presence of the GR enzyme stimulated a burst release via a

thiol−disulfide exchange between GSH and GSSG (Lima et al.,

2021). The above biomaterials associated withMMPs are listed in

Table 1.

2 Nanomaterials associated with downregulated
enzymes in arthritis treatments

Apart from the destruction of cartilage tissue induced by the

increased expression of MMPs, the decreased expression of oxide

reductase associated with ROS showed a similar effect on

cartilage. To reduce the expression of oxide reductase, the

strategy was to supply these enzymes directly or mimic the

activities with special biomaterials.

Supplementation with antioxidant enzymes such as SOD has

been shown to be effective in treating arthritis. Chitosan was

chemically conjugated with SOD to generate the nanoparticle-

like conjugate 6-O-2′-hydroxylpropyltrimethyl ammonium

chloride chitosan-SOD (O-HTCC-SOD), which was superior

to unmodified SOD in bioavailability, prolonged half-life and
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residence in the rat joint cavity. After IA injection of O-HTCC-

SOD into rats with MIA-induced OA, mechanical allodynia was

greatly reduced, and changes in the gross morphological and

histological lesions of articular cartilage were dramatically

inhibited (Wang et al., 2020b).

Although the nanosized conjugate O-HTCC–SOD has

exhibited higher enzyme activity and superior membrane

permeability to native SOD, natural enzymes are unstable,

expensive and difficult to store. Currently, biomaterials called

nanozymes have been designed to mimic the effects of these

oxide reductases. Nanozymes are a specific kind of nanomaterial

that have the activities of intrinsic enzymes and possess unique

advantages, such as high efficiency, increased compatibility with

specific environments, such as high temperatures and

pH variations, cyclic use, and a large surface area, and these

materials can be conjugated to multiple ligands to achieve

multifunctionality. These features give rise to their promising

applications in a variety of fields (Pirmohamed et al., 2010).

Recently, numerous nanomaterials with enzyme-like

properties have been discovered for OA treatment, including

metals, metal oxides, and carbon-based materials.

As a representative metal oxide, cerium oxide has been

evaluated in RA treatment. Engineered cerium oxide (CeO2)

nanoparticles (CeONPs), which are also known as nanoceria,

have attracted much attention for exhibiting SOD−, CAT−, and

oxidase-like activity (Heckert et al., 2008; Baldim et al., 2018;

Kalashnikova et al., 2020). In reduction reactions, SOD

catalyses O2
•− into H2O2, which may undergo catalysis by

CAT into H2O.

Given that albumin is a natural protein and scavenging

receptors are widely distributed in the inflamed joints of RA,

albumin-nanoceria NPs (A-nanoceria) were synthesized by

connecting albumin to nanoceria and further conjugated with

near-infrared, indocyanine green (ICG) dye. Enzymatic

properties and ROS scavenging activities against a monocyte

cell line and systemic targeting potential were evaluated in a

collagen-induced arthritis (CIA) mouse model. Such a design has

the advantages of targeting inflammation, assessing severity, and

controlling inflammation with imaging guidance in RA

(Kratschmer et al., 1990).

Moreover, carbon-based materials have also exhibited the

activities of nanozymes in scavenging ROS. Fullerene (C60) is a

FIGURE 2
Schematic illustration of the synthesis and working mechanism of MMP-13 and pH responsive theranostic MRC-PPL@PSO nano-micelles for
OA (Lan et al., 2020). Copyright, 2020, BMC.
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spherical carbon molecule with a unique cage structure that

functions as a free-radical scavenger. Apart from inhibiting ROS-

induced catabolism in cartilage, fullerene also decreases friction

on the cartilage surface and subsequently prevents the further

development of cartilage degeneration. With these advantages,

fullerene has been used to synthesize biomaterials for the

treatment of arthritis. For example, fullerene-like MoS2
(F-MoS2) NPs are efficient lubricants and antioxidants for

artificial synovial fluid. These NPs possess intrinsic dual-

enzyme-like activity, mimicking SOD and CAT under

physiological conditions (pH 7.4, 25°C) and regulating the

ROS level in artificial synovial fluid containing HA (Chen

et al., 2019b).

Prussian blue (PB) has been approved by the U.S. FDA as a

commonly used dye and medicine due to its excellent

biocompatibility and biosafety. The peroxidase, CAT, and

SOD activities of PBzymes mediate the scavenging of •OH,

•OOH, and H2O2, exhibiting outstanding anti-inflammatory

and antioxidative bioactivities (Long et al., 2016; Zhang et al.,

2016; Dacarro et al., 2018; Qin et al., 2018).

A hollow PBzyme (HPBzyme) with a mesopore structure and

a high specific surface area was produced that could remodel the

OAmicroenvironment by mitigating the inflammatory response,

protecting against chondrocyte ECM degradation, and exhibiting

therapeutic efficacy in vivo (Hou et al., 2021).

PB has also been integrated into other therapeutic

approaches, such as exosomes and ultrasound, for arthritis

treatment. Low-density ultrasound is a noninvasive

biophysical treatment that can reduce joint swelling and

inflammation in OA models (Iwabuchi et al., 2014). The

combined therapeutic effects of PB and low-density

ultrasound on animal OA by scavenging oxygen free radicals

TABLE 1 The biomaterials that target the upregulated enzymes in arthritis.

Arthritis Enzymes-responsive
group

Nanomaterial Platform Components Responsive
enzymes

Drug Ref

RA TGMS Dex-loaded TGMS/DSPE-
PEG2000

NPs 1.TGMS MMP-3 Dex He et al.
(2020)

2.Dex MMP-9

3.PEG2000

4.DSPE

RA TGMS TA-loaded TG-18 hydrogel hydrogel 1.TGMS MMP-2 TA Joshi et al.
(2018)2.TA MMP-3

MMP-9

RA PEG CEL-PRNPs NPs 1.celastrol (CEL) MMP-9 Deng et al.
(2021)2.RGD

3.PEG

4.PLGA

OA H2N–GPLGVRGC–SH CMFn@HCQ nanocages 1.MMP-13 cleavble
peptide

MMP-13 HCQ Chen et al.
(2019a)

2.HCQ

3.collagen type II targeting
peptides

4.BHQ3

5.Cy5.5

6.ferrritin

OA H2N–GPLGVRGC–SH MRC-PPL@PSO micelles 1.MMP-13 cleavble
peptide

MMP-13 PSO Lan et al.
(2020)

2.PSO

3.collagen type II targeting
peptides

4.PPL

5.Cy5.5

6.BHQ-3

OA GSSG Dex-loaded mPEG-
GSHn-PA

micelles 1.PEG GR enzyme Dex Lima et al.
(2021)2.GSH

3.PA

4.Dex
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was investigated. It was found that this treatment could

significantly remove ROS, alleviate ROS-induced apoptosis,

and reduce the degeneration of articular cartilage (Zuo et al.,

2021). Furthermore, neutrophil-derived exosomes engineered

with ultrasmall PB nanoparticles (uPB-Exo) have been shown

to be effective in treating RA. uPB-Exo selectively accumulated in

activated fibroblast-like synoviocytes and acted as mimics of

SOD2 and NOX2 in inflamed joints of RA in vivo, subsequently

neutralizing proinflammatory factors, alleviating inflammatory

synovitis and protecting against cartilage damage in an advanced

RA mouse model (Zhang et al., 2022).

Selenium (Se) is an essential dietary nutrient and has been

reported to have lower serum concentrations in RA patients than

healthy individuals (Yu et al., 2016). Supplementation with Se is

controversial in the treatment of arthritis is controversial due to

its toxicity. Nanosized Se is known to have superior antioxidant

effects and reduced toxicity (Malhotra et al., 2016). In a rat RA

model, SeNPs exhibited potent anti-inflammatory effects and

promoted the expression of CAT, SOD and GPX (Ren et al.,

2019b).

Ultrasound, which is a noninvasive biophysical therapy and a

common mode of sonodynamic therapy (SDT), can strongly

penetrate inflammatory tissues and kill inflammatory cells, thus

reducing synovial hyperplasia and minimizing oxidative damage

to surrounding normal tissues. SDT is hampered by the hypoxic

microenvironment of RA caused by fibroblast-like synoviocyte

(FLS) proliferation. Rhodium NP (Rh) nanozymes with concave-

cube shapes could compensate for the deficiency of ultrasound

therapy by exhibiting the activities of POD and CAT, which

generate O2 and •OH to alleviate hypoxia. In addition to its

remarkable sonosensitive properties, the antibacterial drug

sparfloxacin (SPX) can reside for a long time in joint tissues

after systemic administration, which makes it possible to target

the abnormal proliferation of FLSs in synovial tissue in the joint

and block the development of RA. A small glycoprotein rich in

cysteine known as SPARC is overexpressed in the synovial fluid

and synovium from RA patients and increased in mice with CIA

(Liu et al., 2019). SPARC has high affinity for human serum

albumin (HAS) (Park et al., 2019). Therefore, HSA-modified Rh/

SPX nanozyme was fabricated for RA treatment by combining

the advantages and characteristics of these components (Li et al.,

2021). The preparation of Rh-SPX/HSA and its related

mechanisms in the treatment of RA are shown in Figure 3.

In addition to the combination of ultrasound and nanozymes

to treat arthritis, a promising technique that combines near-

infrared (NIR) with nanozymes for the treatment of OA was

proposed. Epigallocatechin gallate (EGCG)-coated Au-Ag

nanojars (E@Au-Ag) were produced based on the POD-like

activity of Au-Ag and the scavenging of oxygen free radicals

by EGCG, which is sensitive to NIR. These multifunctional

enzyme-like nanomaterials can repair mitochondrial damage,

promote cartilage migration, and reduce chondrocyte apoptosis

(Xu et al., 2022). Biomaterials associated with antioxidant

enzymes for arthritis treatment are listed in Table 2.

Discussion

OA and RA are both inflammatory diseases. RA is a systemic

disease that affects joints all over the body, especially the

overloaded knee joints, and affects normal movement (Radu

and Bungau, 2021). OA is a local joint disease, which is common

in patients with metabolic syndrome, trauma, and aging

(Whittaker et al., 2021). In comparing OA and RA, a striking

similarity in gene expression is found. For example, the increased

levels of MMPs and the decreased expression of antioxidant

enzymes occur in OA and RA, but the differences also exist.

MMP-9 is the main enzyme that causes RA while MMP-13 is

reported to be the most important enzyme for the development

of OA. Meanwhile, in terms of pathological changes, the

proliferation of synovial tissue and blood vessels in RA was

more obvious than that in OA. Macrophages distributed in

synovial tissue and osteoclasts from subchondral bone were

the main sources of inflammation, ultimately leading to the

destruction of cartilage. Therefore, chondrocytes, osteoclasts

and macrophages have been the main targets for arthritis

treatment with different biomaterials.

RA is a systemic inflammatory disease, and joint destruction

is generally more intense than that in OA. Compared to IA

injection, oral drug delivery for arthritis causes severe side effects.

Recently, pain has been primarily controlled with corticosteroids

and hyaluronic acid via IA injection. It is possible to deliver high

drug concentrations directly to osteoarthritic joints through

FIGURE 3
Schematic illustration of the synthesis and working
mechanism of MMP-13 and pH responsive theranostic MRC-PPL@
PSO nano-micelles for OA (Li et al., 2021). Copyright, 2021,
Elsevier.
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direct IA delivery. The administration of IA corticosteroids

efficiently reduces articular pain and synovitis, but high

concentrations of corticosteroids can also damage chondrocyte

metabolism, causing changes in ECM composition and articular

cartilage structure. A novel treatment for arthritis is urgently

needed.

Enzymes are involved in various physiological reactions and

participate in the proteolytic degradation of proteins and

complex regulatory signalling pathways. Aberrant expression

of these enzymes in the human body plays a critical role in

pathological processes, especially inflammatory reactions.

Different types of MMPs were upregulated by inflammatory

factors and subsequently degrade the ECM. In addition to

MMPs, ROS also participate in the development of arthritis.

The generation of ROS is inhibited by endogenous antioxidants

such as SOD, CAT, GPX, and heme oxygenase (HO-1). Despite

the complex pathological process of arthritis, different types of

arthritis including OA and RA share the common features: the

increased levels of MMPs and the decreased expression of

antioxidant enzymes. Hence, it is extremely feasible to design

nanomaterials based on these enzymes as molecular targets for

arthritis therapy.

Although nanomaterials have the advantages of high

biocompatibility and bioavailability due to their structural

and functional characteristics, the biosafety of nanomaterials

cannot be ignored (Chen et al., 2021-09). Nanomaterials enter

the body through ingestion, injection, inhalation and skin

contact and subsequently accumulate in organs through

blood flow, affecting the structure and function of organs

(Ai et al., 2011-01). For arthritis treatment, intra-articular

injection of enzyme-related biomaterials can guarantee the

controlled release and targeted therapy without affecting

other tissues or organs through blood circulation. Natural

polymers are more suitable and safer for clinical application

due to their biodegradation. Especially, hyaluronic acid from

cartilage tissue has been commonly used for biomaterial. It is a

promising strategy for arthritis treatment through discovering

more biologically active materials from the human body in the

future and combining them with drugs to regulate the

expression of the enzymes mentioned above.

Given that cartilage and the synovium are affected in

arthritis, various NPs that target these upregulated or

downregulated enzymes mainly act on these sites, especially

macrophages from the synovium and OCs from the

subchondral bone. Both macrophages and osteoclasts are

inflammatory cells with the same receptor on the surface of

the membrane and release inflammatory factors. Therefore,

biomaterials that target these inflammatory cells or

chondrocytes are the current options for arthritis treatment.

For the treatment of inflammatory arthritis, nano-drug delivery

technologies that respond to subchondral enzymes are rare.

There are technical challenges, such as how to penetrate the

TABLE 2 Biomaterials that mimic the downregulated enzymes in arthritis.

Arthritis Nanomaterial Platform Components Enzyme mimics Drug Ref

RA A-nanoceria-ICG NPs 1.Albumin SOD metal oxides Kratschmer et al. (1990)

2.cerium oxide CAT

3.ICG POD

OA F-MoS2 NPs 1.Fullerene SOD carbon-based materials Chen et al. (2019b)

2.MoS2 CAT

OA HPBzyme NPs Prussian blue POD Prussian blue Hou et al. (2021)

CAT

SOD

OA PBNPs NPs Prussian blue POD Prussian blue Zuo et al. (2021)

CAT

SOD

RA uPB-Exo NPs 1.neutrophil-derived exosomes SOD2 Prussian blue Zhang et al. (2022)

2.Prussian blue NOX2

RA SeNPs NPs Selenium SOD metal Ren et al. (2019b)

CAT

GPx1

RA HSA-modified Rh/SPX nanocube 1.human serum albumin (HSA) POD noble metal Li et al. (2021)

2.Sparfloxacin (SPX) CAT

3.Rhodium (Rh)

OA E@Au-Ag nano-jars 1.EGCG POD noble metal Xu et al. (2022)

2.Au-Ag
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cartilage and reach the deep layer to target OCs that destroy the

subchondral bone. Second, aside from MMPs and endogenous

reductase, many enzymes are also involved in the pathological

processes of arthritis. The expression of cyclooxygenase-2

(COX-2) in joints has also been linked to synovial

inflammation in arthritis, and COX-2 inhibitors (celecoxib)

have been frequently used and have shown therapeutic benefits

in arthritis. Synergistic treatments targeting several enzymes

may obtain better results. Finally, avoiding rapid clearance after

IA injection is critical for maintaining drug concentrations and

guaranteeing efficacy.

It should be noted that the current studies regarding

enzyme-related biomaterials in the field of arthritis are not

numerous; nanotherapies are extremely challenging and are

also promising based on the molecular mechanism underlying

arthritis.
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The combination of graphene-based materials and inorganic nanoparticles for

the enhancement of the nanomaterial properties is extensively explored

nowadays. In the present work, we used a sonochemical method to

synthesize a copper/reduced graphene oxide (Cu/RGO) nanocomposite using

Australian honey and vitamin C as capping and reducing agents, respectively. The

honey-mediated copper/reduced graphene oxide (H/Cu/RGO) nanocomposite

was then characterized through UV-visible, XRD, HRTEM, and FTIR analysis. The

copper nanoparticles (Cu-NPs) in the nanocomposite formed uniform spherical

shapes with a size of 2.20 ± 0.70 nm, which attached to the reduced graphene

oxide (RGO) layers. The nanocomposite could suppress bacterial growth in both

types of bacteria strains. However, in this study, the nanocomposite exhibited

good bactericidal activity toward the Gram-positive bacteria than the Gram-

negative bacteria. It also showed a cytotoxic effect on the cancer colorectal cell

line HCT11, even in low concentrations. These results suggested that the H/Cu/

RGO nanocomposite can be a suitable component for biomedical applications.

KEYWORDS

sonochemical method, copper/reduced graphene oxide nanocomposite, honey,
antibacterial, cytotoxicity assay

Introduction

In the past 50 years, pathogenic bacteria have caused a plethora of diseases in the

human population. Some of these major emerging bacteria include Staphylococcus aureus

(S. aureus), Escherichia coli (E. coli), Clostridium difficile, Campylobacter spp., and

Helicobacter pylori (Vouga and Greub, 2016). Although some commensal bacteria

such as Lactobacillus and Bifidobacterium may exist as part of the human microbiota,
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which might play beneficial roles in maintaining homeostasis

(Wang et al., 2017), many of these bacteria could also cause

various illnesses such as liver diseases, infection, respiratory

diseases, gastrointestinal malignancy, and metabolic disorders

(Wang et al., 2017). The emergence of bacterial antimicrobial

resistance (AMR) has even aggravated this issue and poses a

major threat to global health. According to a recent systematic

analysis, the six leading pathogens responsible for death

associated with AMR are E. coli, S. aureus, Klebsiella

pneumoniae, Pseudomonas aeruginosa (P. aeruginosa),

Streptococcus pneumoniae, and Acinetobacter baumannii

which are the combination of both Gram-positive and Gram-

negative strains (Murray et al., 2022).

The second main cause of death in the United States is

cancer, and among different cancer types, lung cancer is the

leading cause of cancer mortality (Siegel et al., 2022). For both

sexes, the highest incidence of cancer is led by breast cancer,

followed by prostate and lung/bronchus cancers (Siegel et al.,

2022). Similarly, chemo- and/or radio-resistance presented by

the patient’s tumor remains the main barrier to effectively

eradicating tumor from the body. On top of this, off-target

side effects suffered by the patients due to cancer therapy are

another obstacle (Miller et al., 2022). Hence, it is vital to look for a

novel anticancer drug or therapeutic strategy to treat cancer more

effectively.

Recently, nanomaterial has been widely explored for their

special properties to mitigate these problems. There are various

factors that may affect the biological activities of the

nanomaterial, such as the shape, size, electronic structure,

surface properties, and some additional factors related to the

interaction conditions between the materials and the target cells

(Sengupta et al., 2019). Copper nanoparticles (Cu-NPs) have

been widely assessed for their properties. Aside from its low-cost

production, copper also exhibits good thermal and electrical

conductivity, and biological and antimicrobial activities (Zhou

et al., 2019; Noman et al., 2020; Merugu et al., 2021). Recently, the

United States Environmental Protection Agency recognized

copper as the first solid antimicrobial material (Ouyang et al.,

2013; Arendsen et al., 2019). However, researchers found that

pure metallic Cu-NPs are difficult to obtain as copper tends to

oxidize easily when exposed to the air, and it will also tend to

agglomerate without proper protection (Rostami-Tapeh-Esmaeil

et al., 2021). Hence, the usage of green material as a capping agent

or stabilizer has gained researchers’ attention since it is reported

to produce monodispersed pure Cu-NPs by a fast and green

method (Nagar and Devra, 2018).

Graphene is a unique structure that attracts great attention

due to its interesting physical and chemical characteristics (Luo

et al., 2020), including large surface area, good conductivity,

and high thermal properties (Ouyang et al., 2013). Graphene

and its derivatives are used in extensive applications such as

electronic devices (Moozarm Nia et al., 2017), energy storage

(Rawal et al., 2020), and biomedical applications (Kumar et al.,

2017). The presence of oxygen functional groups such as

epoxide, carboxyl, and hydroxyl in the structure of the

graphene oxide (GO) and reduced graphene oxide (RGO)

makes them suitable for the production of nanocomposites

(Gan et al., 2019a). These groups act as bioactive molecules that

could functionalize the graphene sheet with other materials

such as metal and metal oxide nanoparticles (Gan et al., 2019b;

Jang et al., 2020).

Graphene oxide can be decorated with some materials

through chemical reduction (in situ), hydrothermal, and

electrochemical processes, and through the attachment of

the premade nanoparticles to the graphene surface (ex situ)

to form graphene-based nanomaterials (Sarkar and Dolui,

2015; Yin et al., 2015; Iranshahi and Iranshahi, 2022; Thy

et al., 2022). Luo et al. (2020) used refluxed process in

synthesizing the reduced graphene oxide/copper

nanocomposites (RGO/Cu-NCs) in an oil bath at 100°C for

24 h with hydrazine hydrate. This method involved a long

processing time and hazardous material. In fact, nowadays,

researchers are interested in using simple and green materials

to synthesize the Cu/RGO nanocomposite since it is a much

eco-friendlier method. Rios et al. (2019) used an in situ

reduction method to produce reduced graphene oxide/

copper nanoparticles (RGO/Cu-NPs) in the presence of

ascorbic acid for 12 h at 80°C. Fahiminia et al. (2019)

synthesized Cu/RGO nanocomposites using plant extract

(Euphorbia cheiradenia Boiss) and applied it as a catalyst for

dye removal. Yang et al. (2019) produced cuprous oxide/

reduced graphene oxide (Cu2O-RGO) nanocomposites

through chemical reduction by using polyethylene glycol

(PEG) and ascorbic acid with the addition of sodium

hydroxide (NaOH), and used them for the antibacterial study.

Indeed, Tu et al. (2021) reported that the Cu/RGO

nanocomposite exhibited better biological activity compared

to the reduced graphene oxide (RGO) alone. Generally, the

combination of RGO and copper ions happened by the

cation-π interaction between copper ions and π-electrons that

coming from the aromatic rings of RGO (Xu et al., 2019; Yan

et al., 2019; Ismail et al., 2021; Tu et al., 2021). This functionalized

RGO could enhance the antibacterial activity where both

participated in killing the bacteria cells through electrostatic

interaction between the positive charge of copper ions from

the nanocomposite and the negatively charged membranes of

bacteria (Sanchez-Lopez et al., 2020). RGO could also kill

bacteria through the sharp edge of its structure (Prasad et al.,

2017). The aggregation of the RGO due to the π–π stacking

would have a hydrophobic structure which is known to give

strong bacteria absorption that could help in better releasing

copper ions and attacking the bacteria cell efficiently (Szunerits

and Boukherroub, 2016). This will show excellent results in

antibacterial activity compared to the copper ion and RGO

alone. Up until now, few studies for anticancer using Cu/RGO

nanocomposite were reported. Kodous et al. (2022) found that
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Cu/RGO nanocomposites produced by using the ultrasonication

method could inhibit human breast cancer cells (MCF-7 cancer

cells).

Honey is considered a green material since it is a non-toxic

substance that possesses rich sugar source carbohydrate

components (Balasooriya et al., 2017). It is also a simple

material that does not have to undergo any extraction

process, unlike plants and microorganisms. Most

importantly, it was also reported for its biological activity

properties and its potential as a capping agent (Ismail et al.,

2019). Eucalyptus flower species is usually one of the main

sources of nectar for the Australian honeybees (Apis mellifera)

to produce honey. The source of nectar, the combination of

proteins secreted by the bee for the honey-ripening process, and

protein from plant pollen will affect the honey’s chemical

composition. According to Beiranvand et al. (2021), the

major component in pure Australian honey was

carbohydrates, which could act as a capping and reducing

agent. However, the chemical component such as

carbohydrate in honey is considered a weak reducing agent

so it needs another booster to enhance the reducing process of

the nanoparticles, and for this, vitamin C (ascorbic acid) was

chosen in this study since it is also a green material. Hence, in

this work, we produced a honey-mediated copper reduced

graphene oxide (H/Cu/RGO) nanocomposite using a

sonochemical method, where Australian honey and ascorbic

acid were served as capping and reducing agents, respectively,

during the process. The sample was analyzed by using UV-

visible, XRD, HRTEM, and FTIR, and it was then tested for

antibacterial and cytotoxicity properties.

Materials and methods

Materials

The source of honey was from the Capilano Honey Limited

(Australia). Standard graphene oxide (water dispersion, 4 mg/

ml) was purchased from Graphene (U-Malaya). Copper II nitrate

trihydrate (Cu(NO3)2.3H2O, AR grade), ascorbic acid (C6H8O6,

AR grade), and sodium hydroxide (NaOH) were purchased from

R&M Chemical, United Kingdom. All the chemicals were of

analytical grade without further purification. Two Gram-positive

bacteria, methicillin-resistant Staphylococcus aureus (MRSA,

clinical isolate) and Enterococcus faecalis (E. faecalis, ATCC

33186), and two Gram-negative bacteria, Escherichia coli

(E. coli, ATCC 11775) and Pseudomonas aeruginosa (P.

aeruginosa, ATCC 10145), were used for antibacterial

assessment. They were cultured and maintained in sterile

Mueller–Hinton agar and broth media (Becton Dickinson,

United States). The colorectal cancer cell line HCT116 (ATCC

CCL-247) and human normal colon cell CCD112 (ATCC CRL-

1541) were used for the cytotoxicity assay.

Synthesis of reduced graphene oxide
(RGO) and honey-mediated copper/
reduced graphene oxide (H/Cu/RGO)
nanocomposite

RGOwas produced through the reduction of graphene oxide.

For this, 2 ml of GO was added to 50 ml of deionized water. After

vigorous stirring for around 30–40 min, 7.5 ml ascorbic acid

(1 M) was slowly added to the solution using a dropper, while

the sample was treated with ultrasonic irradiation for 10 min

with a fixed setting parameter (amplitude 80%, pulse on 1s and

pulse off 1 s). The mixture was then cooled down to room

temperature (RT), centrifuged, washed with distilled water,

and dried in the oven. The H/Cu/RGO nanocomposite was

synthesized following the method by Zhang et al. (2016) with

some modifications. In brief, Australian honey (15 w/v %) was

dissolved in 50 ml of 0.025 M Cu(NO3)2.3H2O, and the pH was

adjusted between pH 7 to 8. Afterward, 1 ml of the RGO (1.5 mg/

ml) was mixed with the combination of honey and copper salt

solution under continuous stirring at RT for 30–40 min. The

mixture solution was then treated with ultrasonic irradiation for

10 min by adding 7.5 ml of 1 M ascorbic acid dropwise

simultaneously. The compound was finally cooled down to

RT, centrifuged, washed with distilled water, and dried in

the oven.

Characterizations of the H/Cu/RGO
nanocomposite

The synthesis H/Cu/RGO nanocomposite was determined

using ultraviolet-visible (UV-vis) spectroscopy (UV-2600,

SHIMADZU) in the range of 220–800 nm. X-ray diffraction

(XRD, Philips, X’pert, Cu Ka) was used to analyze the

structure of the H/Cu/RGO nanocomposite in the range of

5°–80° (2θ). The size and the shape of the nanocomposite

were evaluated by using high-resolution transmission electron

microscopy (HRTEM, JEM-2100F). Fourier transform infrared

(FTIR) spectra were obtained using an attenuated total

reflectance (ATR) IRTracer-100 spectrophotometer

(Shimadzu, Malaysia). The spectra were set within a range of

400–4,000 cm−1.

Antibacterial activity

To determine the minimum inhibitory concentration (MIC)

values, the broth micro-dilution method was used for the H/Cu/

RGO nanocomposite against Gram-positive (MRSA and E.

faecalis) and Gram-negative (E. coli and P. aeruginosa)

bacteria using the Clinical and Laboratory Standards Institute

(CLSI) protocols. For this, a single colony of fresh bacterial

culture (12–18 h) was isolated from the Mueller–Hinton agar
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(MHA) plates and inoculated into the Mueller–Hinton broth

(MHB). The culture was grown overnight (16–18 h) prior to the

experiments. The next day, the bacterial concentration was

standardized to an optical density (OD) of 600 nm

(approximately 1 × 108 CFU/ml) with MHB. Two-fold serial

dilutions of the H/Cu/RGO nanocomposite were prepared in 96-

well plates to get the final test concentrations of 0, 7.8, 15.6, 31.3,

62.5, 125, 250, 500, and 1,000 μg/ml per well. Thereafter, 10 μl of

bacterial suspension equivalent to 106 CFU/ml of exponentially

growing bacterial cells were added to the wells followed by 18 h of

incubation at 35 ± 2°C. The plate was then read for absorbance at

600 nm using a microplate reader (GloMax Discover Instrument,

Promega). The percentage of cell viability was calculated using

Equation (1), and the minimum inhibitory concentration which

inhibits 50% bacterial growth (MIC50) value was then

determined.

%Viability � ODof sample well (mean)/ODof control well (mean) × 100. (1)

Cytotoxic effect of the H/Cu/RGO
nanocomposite

Cell proliferation assay (Promega) was used to determine the

cytotoxic properties of the H/Cu/RGO nanocomposite. Briefly, 5 ×

103 human colorectal cancer cell line HCT116 and human normal

colon cell CCD112 were seeded in a 96-well plate (100 μL/well)

and incubated at 37°C overnight in a 5% CO2 humidified

incubator. The next day, 2-fold serially diluted nanocomposites

(500, 250, 125, 62.5, 31.3, 15.6, 7.8, and 0 μg/ml) were added into

the wells (100 µl/well). After 72 h incubation at 37°C in a 5% CO2

humidified incubator, the wells were treated with 20 µl MTS (3-

(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium) reagent followed by an additional

3 h incubation at 37°C in the 5% CO2 incubator. Optical density

(OD) was thenmeasured at 490 nm using a multimodemicroplate

reader (Tecan). The dose–response graph was plotted by

calculating the percent of cell viability using Eq. 1, and half

maximal inhibitory concentration (IC50) was then calculated.

Results and discussion

Synthesis of the H/Cu/RGO
nanocomposite

As illustrated in Scheme 1, we used copper nitrate solution as

a precursor for Cu-NPs synthesis. To accelerate the process,

NaOH was added to form an intermediate which is copper

hydroxide Cu(OH)2. The pH of the solution was controlled

between pH 7 to 8 since it is the preferred environment to

produce smaller sizes of pure Cu-NPs. According to Amjad et al.,

when the pH increased (between pH 6 and pH 10), the size of

nanoparticles decreased (Rajesh et al., 2016; Amjad et al., 2021).

Since the aim of this study is to produce pure metallic Cu-NPs,

the pH needs to be in a basic medium. The reduction process of

SCHEME 1
Schematic illustration of H/Cu/RGO nanocomposite synthesis and its applications.
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the compound was furthered with the addition of the ascorbic

acid as a reducing agent and assistance of ultrasonic irradiation to

enhance the reaction process. Honey acts as a capping agent to

control the size and shape of the nanoparticles in the solution.

The nanocomposite was then tested against the bacteria and

cancer cell line to observe its biological activities.

Meanwhile, Eqs 2–5 described the possible chemical

formation of H/Cu/RGO nanocomposite.

Cu2+(aq) +Honey(1) �������→Stirring

T�25 °C
[Cu(Honey)]2+(aq), (2)

[Cu(Honey)]2+(aq)

+ 2OH−(aq) �������→Stirring

T�25 °C
[Cu(OH)2/Honey](s), (3)

[Cu(OH)2/Honey](aq) + GO(aq) �������→Stirring

T�25 °C
[Cu(OH)2/Honey]

−GO(aq), (4)
[Cu(OH)2/Honey] − GO(aq)

+ 2H2O(1) ���������������������������������������������→C6H8O6

Ultrasonic Irradiation, t�10
[H/Cu/RGOnanocomposite](aq)

+C6H6O6(aq). (5)

The formation of the reaction process of the Cu(OH)2/

honey complex (Eq. 2) resulted in a blue-colored solution as

previously reported study (Ismail et al., 2019). Cu(OH)2 was

obtained by adding the sodium hydroxide (NaOH), and it acts

as nuclei during the process. A mutarotation process occurs

during this phase since OH− in the solution could change the

α-glucose into β-glucose by opening the chain structure and

forming the aldehyde group (-CHO) (Upadhyay and Kumar,

2017; Alejandro et al., 2017). This aldehyde group with the

presence of the energy from the ultrasonic irradiation process

was then oxidized by the complex copper ions to form the

gluconic acid. This initiates the nucleation and growth of the

Cu-NPs in the solution. In addition, the Cu2+ ion growth could

also occur at the nucleation site of the GO substrate as the

reduction of Cu2+ takes place through galvanic displacement

and redox reaction (Eq. 4). The GO and copper ions were

further reduced to H/Cu/RGO nanocomposites with the

presence of ascorbic acid and the assistance of the

ultrasonic irradiation process. It could be concluded that

GO acts as a substrate and could also help as a reducing

agent for the copper ions (Zhang et al., 2016). The GO sheets

might bind with the copper ion by electrostatic interaction of

the copper ion and through the cation-pi (cation-) interaction

of the benzene ring with the cation (Cu2+) (Alayande et al.,

2020).

Characterization of GO, RGO, and H/Cu/
RGO nanocomposite

Figure 1 shows the UV-vis spectra of the honey, GO, RGO,

and H/Cu/RGO nanocomposite samples. The absorption peak of

the honey appeared around 277 nm due to the origin and age of

the honey itself (Posudin, 2016; Zhang et al., 2016). The π − π*

FIGURE 1
UV-visible spectra of (A) honey, (B) GO, (C) RGO, and (D) H/Cu/RGO nanocomposite.
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transition of the C=C bond and n–π* transition of the C=O bond

could be seen in Figure 1B for GO at 238 and 305 nm,

respectively. The shifting peak at 260 nm to a higher

wavelength and the peak around 305 nm disappeared for the

RGO (Figure 1C) indicating the reduction of GO to RGO by the

ascorbic acid. This phenomenon occurred because of the

restoration of the aromatic system conjugation and the

decrease of the carboxyl groups in the RGO layer (Navya

Rani et al., 2019; Kang et al., 2020). The higher the

conjugation degree, the lower the energy required in order to

produce the electronic transition, and hence, the peak is shifted to

a higher value associated with less energy involved (Rios et al.,

2019). Figure 1D depicts the surface plasmon resonance of

metallic phase copper nanoparticles (Cu-NPs) exhibited at

569 nm which proved the reduction of Cu2+ to Cu0 occurs

during the synthesis process (Fahiminia et al., 2019).

XRD analysis was conducted for the honey, GO, RGO, and

H/Cu/RGO nanocomposite. Figure 2A shows that the XRD

diffraction pattern of honey at 2θ = 17.64° with a broad peak.

The shifting of the diffraction peak in Figures 2B,C for GO and

RGO from 9.43° to 24.87° indicated that the reduction of GO to

RGO occurred under sonication treatment with the presence of

the ascorbic acid. The interspacing distance between the layer of

the GO and RGO was calculated by using Bragg’s law equation as

in Eq. 6

nλ � 2d sin θ, (6)
where n = 1, λ is the wavelength of the X-ray beam (0.154 nm), d

is the distance between adjacent GO or RGO sheets, and θ is

Bragg’s angle. The values of interspacing distance were 0.937 and

0.357 nm, respectively, for GO and RGO. The decrement of the

value shows that the formation of RGO occurs according to the

previous study (Rana et al., 2018). The changes in the

interspacing distance reveal the exfoliation of the RGO layer

happened after the reduction process and the decrease of the

oxygenated functional groups on the surface (Kumar et al., 2019).

For the H/Cu/RGO nanocomposite (Figure 2D), three diffraction

peaks at 2θ = 43.4°, 50.5°, and 74.4° could be assigned to the (111),

(200), and (220) crystal planes corresponding to the cubic

structure of Cu which signified the formation of metallic

copper on the RGO. These diffraction peaks of Cu were

matched with the standard reference of the metallic Cu for

FIGURE 2
XRD patterns of (A) honey, (B) GO, (C) RGO, and (D) H/Cu/RGO nanocomposite.
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the cubic structure which is JCPDS 04-0836. The peak for RGO

could not be seen in the XRD pattern of the H/Cu/RGO

nanocomposite, which could be related to the aggregation and

restacking layer of the RGO with the insertion of the Cu-NPs in

the nanocomposite (Guo et al., 2016; Kumar et al., 2019; Chen

et al., 2020).

In the HRTEM images (Figure 3), GO showed a fine-layer

structure like a sheet, while RGO revealed a wrinkled structure.

This phenomenon is related to the reduction of the GO to RGO,

where the GO layer was exfoliated and tended to be decreased in

size as it was treated with the ultrasonic. The thermal treatment

through the ultrasound irradiation process can lead to the

wrinkling of the RGO due to the reduction of the amount of

oxygen-containing functional groups during sheet exfoliation

(Rana et al., 2018; Khan et al., 2020). The Cu-NPs in the

nanocomposite formed uniform spherical particles with a size

of 2.20 ± 0.70 nm on the RGO layers. The exfoliation of the RGO

layers into smaller scale with a fine particle of Cu-NPs that either

are decorated between or on the surface of RGO layers happened.

It concludes that Cu-NPs can bind to the graphene-based

materials to form Cu/RGO nanocomposite (Zhu et al., 2017;

Menazea and Ahmed, 2020).

Through the FTIR spectra (Figure 4), the honey peak

(Figure 4A) illustrated a strong and broad peak at 3,291 cm−1

related to a hydroxyl group (-OH) stretching vibration which also

might overlap with the -NH stretching vibration of primary

amine protein (Boldeiu et al., 2019). Two weak peaks appeared at

2,924 cm−1 and 2,883 cm−1, matched to the C-H stretching bands

of the aldehyde group of glucose. Carbonyl group (-C=O)

stretching vibration of protein could be seen at 1,636 cm−1,

and the peak at 1,427 cm−1 and 1,334 cm−1 were related to

C-H bending and C-O bending of glucose. While, at

1,017 cm−1, the peak correlated to C-O-C stretching, C-O

stretching, and C-N stretching amine of glucose, fructose, and

protein in honey. The GO spectrum (Figure 4B) demonstrated

O-H stretching vibration with a broad peak between 3,200 cm−1

to 3,600 cm−1. The peaks at 1734, 1,618, 1,394, 1,161, and

1,033 cm−1 were correlated to the C=O stretching vibration of

carbonyl groups presented in the GO sheet, C=C skeletal

vibration, the sp3 C-H stretching vibration of saturated

carbon, the epoxy C-O stretching vibration, and the alkoxyl

C-O stretching vibration, respectively (Nguyen et al., 2019;

Sengupta et al., 2019). However, in RGO, the disappearance of

the carboxyl group at 1,734 cm−1 and sp3 C-H stretching

vibration of saturated carbon at 1,394 cm−1 demonstrated the

reduction of GO to RGO during the synthesis process. For the

Cu/RGO nanocomposite (Figure 4D), the C=C vibration of the

graphene skeleton peak could be observed at 1,539 cm−1,

indicating that the GO was reduced to form the Cu/RGO

nanocomposite (Navya Rani et al., 2019). In addition, the

FIGURE 3
HRTEM images of (A) GO, (B) RGO, and (C) H/Cu/RGO nanocomposite.
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FIGURE 4
FTIR spectra of (A) honey, (B) GO, (C) RGO, and (D) H/Cu/RGO nanocomposite.

FIGURE 5
Antibacterial activity of H/Cu/RGO nanocomposite (A) E. faecalis, (B) MRSA, (C) E. coli, and (D) P. aeruginosa.
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weak peak band area around 900 cm−1 in Figure 4D could be due

to the shifting of the C-O/C-N stretching of protein and

carbohydrate of honey biomolecules presented in the H/Cu/

RGO nanocomposite (Ismail et al., 2019).

Antibacterial activity of the H/Cu/RGO
nanocomposite

Antibacterial activity of the H/Cu/RGO nanocomposite

toward bacterial strains was tested using the minimum

inhibitory concentration (MIC) assay, where the selected

Gram-positive (MRSA and E. faecalis) and Gram-negative

(P. aeruginosa and E. coli) bacteria were found to be affected

by the nanocomposite. Figure 5 illustrates that the inhibition

activity of the nanocomposite was better toward Gram-

positive bacteria compared to the Gram-negative strains.

As shown in Table 1, the lowest MIC50 value was detected

toward E. faecalis, where the nanocomposite could inhibit

the growth of less than a quarter of the bacteria at a low

concentration of 6.12 μg/ml, while for MRSA, the MIC50 was

detected at the concentration of 67.96 μg/ml. For Gram-

negative strains, the MIC50 was at 134.16 μg/ml and

greater than 1,000 μg/ml for E. coli and P. aeruginosa,

respectively.

The value of Cu-NPs as antibacterial agents has been studied

for a long time (Lv et al., 2020). However, the H/Cu/RGO

nanocomposite gave better antibacterial activity performance

compared to the Cu-NPs only. In a prior study where honey-

mediated Cu-NPs was tested on E. faecalis and E. coli, the values

of MIC50 were 15.6 μg/ml and 250 μg/ml, respectively, which

were higher than the value gained from the nanocomposite in

current work. This is most possibly due to the toxic effects of

Cu-NPs and the RGO that influenced the bacteria cells. It might

be due to the Cu-NPs that affect bacteria by the generation of

reactive oxygen species, lipid peroxidation, protein oxidation,

and DNA degradation through liberating nascent Cu ions from

the Cu-NP surface (Chatterjee et al., 2014). The cell membrane

stress due to the graphene sheet layer structure itself is also

possibly among the factors for the bactericidal activity to change

(Prasad et al., 2017).

A possible explanation for the variation in antibacterial

activity against different bacterial strains can be related to the

difference in the bacteria cell envelope (Sriramulu et al.,

2020). In contrast to Gram-positive strains which consist

of the layers of peptidoglycan, Gram-negative bacteria,

besides the inter thin peptidoglycan cell wall, are

surrounded by an outer membrane containing

lipopolysaccharide (LPS), which can act as an additional

protection shield for the cell. It could be one of the

possible reasons why P. aeruginosa could tolerate the H/

Cu/RGO nanocomposite, even at high concentrations.

Cytotoxic effect of the H/Cu/RGO
nanocomposite

Cytotoxic activity of the nanocomposite was tested in both

normal and cancer colorectal cell lines (Figure 6), where the H/

Cu/RGO nanocomposite showed a higher cytotoxic effect

compared to RGO, even at low concentrations. This could be

due to the combination of Cu-NPs and RGO that enhanced the

properties of the cytotoxic activity. This enhancement might also

be attributed to the size of the Cu-NPs attached to the RGO,

which is smaller in size with a spherical shape that makes them

easier to interact with the cells and kill them. Similar to the

TABLE 1 MIC50 values of H/Cu/RGO nanocomposite against four
bacteria strains.

Sample MIC50 of sample (µg/ml)

Bacterial strains

H/Cu/RGO nanocomposite MRSA E. faecalis P. aeruginosa E. coli

67.96 6.12 >1,000 134.16

FIGURE 6
Cytotoxicity activity of H/Cu/RGO nanocomposite. (A)
Normal colorectal cell line (CCD1 112). (B) Colorectal cancer cell
line (HCT 116).
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antibacterial study, in comparison with our previous work, the

H/Cu/RGO nanocomposite showed higher anticancer action

(IC50–7.7 μg/mL as shown in Table 2) than honey-mediated

Cu-NPs without RGO (IC50–46.11 μg/ml) in HCT116 cells

(Ismail et al., 2019). A previous study reported that Cu-NPs

killed SW480 human colon cancer cells at an IC50 value of 68 μg/

ml by inducing reactive oxygen species (ROS)-mediated

apoptosis (Ghasemi et al., 2022). As this is the first study

reporting potential anticancer action of the H/Cu/RGO

nanocomposite, their exact mechanisms of cancer cell killing

are not known and warrant further investigations.

In both graphs (Figures 6A,B), at a concentration of 31.2 μg/

ml, the nanocomposite killed both cells at 100%, which indicates

that this compound is not selective toward cancer cells. This

could be seen in Table 2, where both RGO and H/Cu/RGO

nanocomposite are non-selective toward cancer cells. Thus,

further modifications are needed to enhance the selectivity of

the nanocomposite toward cancer cells. For example, the

nanocomposite can be conjugated to target-specific aptamers,

peptides, antibodies, or other ligands to allow the nanocomposite

to specifically bind to the surface molecules of cancer cells and

enhance the drug localization, retention effect, and cellular

uptake (Sutradhar and Amin, 2014; Martinelli et al., 2019).

Conclusion

In conclusion, the green synthesized Cu/RGO

nanocomposite using honey and ascorbic acid as capping and

reducing agents, respectively, resulted in small-sized and

spherical-shaped Cu-NPs attached to the RGO sheet. Our

data proved that the agglomeration of copper could be

prevented by combining the Cu-NPs with graphene-based

materials in the presence of eco-friendly capping and reducing

agents. The nanocomposite revealed good antibacterial and

cytotoxicity activities, making them suitable for biomedical

applications. However, the nanocomposite needs to be further

studied to improve its specificity toward cancerous cells.
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Samples IC50 of sample (µg/ml)

CCD 112 (normal cell) HCT 116 (cancer cell)

RGO 33.70 141.50

H/Cu/RGO nanocomposite 2.14 7.7

Frontiers in Molecular Biosciences frontiersin.org10

Ismail et al. 10.3389/fmolb.2022.995853

28

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.995853


Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Alayande, A. B., Obaida, M., and Kima, I. S. (2020). Antimicrobial mechanism of
reduced graphene oxide-copper oxide (rGO-CuO) nanocomposite films: The case
of Pseudomonas aeruginosa PAO1. Mat. Sci. Eng. C Mat. Biol. Appl. 109, 110596.
doi:10.1016/j.msec.2019.110596

Alejandro, J., Gonzalez, F., Juan, A., and Di Nezio, M. S. (2017). Synthesis and
characterization of silver nanoparticles prepared with honey: The role of
carbohydrates. Anal. Lett. 50 (5), 877–888. doi:10.1080/00032719.2016.1199558

Amjad, R., Mubeen, B., Ali, S. S., Imam, S. S., Alshehri, S., Ghoneim, M. M., et al.
(2021). Green synthesis and characterization of copper nanoparticles using
Fortunella margarita leaves. Polymers 13 (24), 4364. doi:10.3390/polym13244364

Arendsen, L. P., Thakar, R., and Sultan, A. H. (2019). The use of copper as an
antimicrobial agent in health care, including obstetrics and gynecology. Clin.
Microbiol. Rev. 4 (32), e00125–e00128. doi:10.1128/CMR.00125-18

Balasooriya, E. R., Jayasinghe, C. D., Jayawardena, U. A., Ruwanthika, R. W. D.,
Mendis de Silva, R., and Udagama, P. V. (2017). Honey mediated green synthesis of
nanoparticles: New era of safe nanotechnology. J. Nanomater. 2017, 1–10. doi:10.
1155/2017/5919836

Beiranvand, S., Williams, A., Long, S., Brooks, P. R., and Russell, F. D. (2021). Use
of kinetic data to model potential antioxidant activity: Radical scavenging capacity
of Australian Eucalyptus honeys. Food Chem. 342, 128332. doi:10.1016/j.foodchem.
2020.128332

Boldeiu, A., Simion, M., Mihalache, L., Radoi, A., Banu, M., Varasteanu, P., et al.
(2019). Comparative analysis of honey and citrate stabilized gold nanoparticles: In
vitro interaction with proteins and toxicity studies. J. Photochem. Photobiol. B 197,
111519–111610. doi:10.1016/j.jphotobiol.2019.111519

Chatterjee, A. K., Chakraborty, R., and Basu, T. (2014). Mechanism of
antibacterial activity of copper nanoparticles. Nanotechnology 25 (13),
135101–135112. doi:10.1088/0957-4484/25/13/135101

Chen, M., Li, Z., and Chen, L. (2020). Highly antibacterial rGO/Cu2O
nanocomposite from a biomass precursor: Synthesis, performance,
and mechanism. Nano Mater. Sci. 2, 172–179. doi:10.1016/j.nanoms.2019.
09.005

Fahiminia, M., Shamabadi, N. S., Nasrollahzadeh, M., and Sajadi, S. M. (2019).
Phytosynthesis of Cu/RGO using Euphorbia cheiradenia Boiss extract and study of
its ability in the reduction of organic dyes and 4 nitrophenol in aqueous medium.
IET Nanobiotechnol. 13 (2), 202–213. doi:10.1049/iet-nbt.2018.5175

Gan, C., Liang, T., Li, W., Fan, X., and Zhu, M. (2019a). Amine-terminated ionic
liquid modified graphene oxide/copper nanocomposite toward efficient lubrication.
Appl. Surf. Sci. 491, 105–115. doi:10.1016/j.apsusc.2019.06.141

Gan, L., Li, B., Chen, Y., Yu, B., and Chen, Z. (2019b). Green synthesis of reduced
graphene oxide using bagasse and its application in dye removal: A waste-to-
resource supply chain. Chemosphere 219, 148–154. doi:10.1016/j.chemosphere.
2018.11.181

Ghasemi, P., Shafiee, G., Ziamajidi, N., and Abbasalipourkabir, R. (2022).
Copper nanoparticles induce apoptosis and oxidative stress in SW-480 human
colon cancer cell line. Biol. Trace. Elem. Res. 63, 1–10. doi:10.21203/rs.3.rs-
1885906/v1

Guo, M., Zhao, Y., Zhang, F., Xu, L., Yang, H., Song, X., et al. (2016). Reduced
graphene oxide-stabilized copper nanocrystals with enhanced catalytic activity and
SERS properties. RSC Adv. 6, 50587–50594. doi:10.1039/C6RA05186C

Iranshahi, S., and Iranshahi, S. (2022). Cobalt/graphene oxide nanocomposites:
Electro-synthesis, structural, magnetic, and electrical properties. Ceram. Int. 9 (48),
12240–12254. doi:10.1016/j.ceramint.2022.01.086

Ismail, N. A., Shameli, K., Ali, R. R., Sukri, S. N. A., and Isa, E. D. M. (2021).
Copper/graphene based materials nanocomposites and their antibacterial study: A
mini review. J. Res. Nanosci. Nanotech. 1 (1), 44–52. doi:10.37934/jrnn.1.1.4452.1.1.
4452

Ismail, N. A., Shameli, K., Wong, M. M., Teow, S. Y., Chew, J., and Sukri, S. N. A.
(2019). Antibacterial and cytotoxic effect of honey mediated copper nanoparticles
synthesized using ultrasonic assistance. Mat. Sci. Eng. C Mat. Biol. Appl. 104,
109899. doi:10.1016/j.msec.2019.109899

Jang, J., Choi, Y., Tanaka, M., and Choi, J. (2020). Development of silver/graphene
oxide nanocomposites for antibacterial and antibiofilm applications. J. Ind. Eng.
Chem. 83, 46–52. doi:10.1016/j.jiec.2019.11.011

Kang, X., Teng, D., Wu, S., Tian, Z., Liu, J., Li, P., et al. (2020). Ultrafine copper
nanoparticles anchored on reduced graphene oxide present excellent catalytic
performance toward 4-nitrophenol reduction. J. Colloid Interface Sci. 566,
265–270. doi:10.1016/j.jcis.2020.01.097

Khan, M. S., Yadav, R., Vyas, R., Sharma, A., Banerjee, M. K., and Sachdev, K.
(2020). Synthesis and evaluation of reduced graphene oxide for supercapacitor
application. Mater. Today Proc. 30, 153–156. doi:10.1016/j.matpr.2020.05.403

Kodous, A. S., Atta, M. M., Abdel-Hamid, G. R., and Ashry, H. A. (2022). Anti-
metastatic cancer activity of ultrasonic synthesized reduced graphene oxide/copper
composites. Chem. Pap. 76, 373–384. doi:10.1007/s11696-021-01866-7

Kumar, S. K., Mamatha, G., Muralidhara, H., Anantha, M., Yallappa, S.,
Hungund, B., et al. (2017). Highly efficient multipurpose graphene oxide
embedded with copper oxide nanohybrid for electrochemical sensors and
biomedical applications. J. Sci. Adv. Mater. Devices 2, 493–500. doi:10.1016/j.
jsamd.2017.08.003

Kumar, S., Ojha, A. K., Bhorolua, D., Das, J., Kumar, A., and Hazarika, A. (2019).
Facile synthesis of CuO nanowires and Cu2O nanospheres grown on rGO surface
and exploiting its photocatalytic, antibacterial and supercapacitive properties. Phys.
B Condens. Matter 558, 74–81. doi:10.1016/j.physb.2019.01.040

Luo, G., Zhu, L., Tan, B., Wang, T., Bi, X., Li, W., et al. (2020). A facile one-step
chemical synthesis of copper@reduced graphene oxide composites as back contact
for CdTe solar cells. Sol. Energy 211, 90–99. doi:10.1016/j.solener.2020.08.066

Lv, P., Zhu, L., Yu, Y., Wang, W., Liu, G., and Lu, H. (2020). Effect of NaOH
concentration on antibacterial activities of Cu nanoparticles and the antibacterial
mechanism. Mat. Sci. Eng. C Mat. Biol. Appl. 2020, 110669. doi:10.1016/j.msec.
2020.110669

Martinelli, C., Pucci, C., and Ciofani, G. (2019). Nanostructured carriers as
innovative tools for cancer diagnosis and therapy. Apl. Bioeng. 3 (1), 011502. doi:10.
1063/1.5079943

Menazea, A. A., and Ahmed, M. K. (2020). Silver and copper oxide nanoparticles-
decorated graphene oxide via pulsed laser ablation technique: Preparation,
characterization, and photoactivated antibacterial activity. Nano-Structures
Nano-Objects 22, 100464. doi:10.1016/j.nanoso.2020.100464

Merugu, R., Garimella, S., Velamakanni, R., Vuppugalla, P., Chitturi, K. L., and
Jyothi, M. (2021). Synthesis, characterization and antimicrobial activity of
bimetallic silver and copper nanoparticles using fruit pulp aqueous extracts of
moringa oleifera.Mater. Today Proc. 44, 153–156. doi:10.1016/j.matpr.2020.08.549

Miller, K. S., Nogueira, L., Devasia, T., Mariotto, A. B., Yabroff, K. R., Jemal, A.,
et al. (2022). Cancer treatment and survivorship statistic, 2022. CA Cancer J. Clin.
2022, 1–28. doi:10.3322/caac.21731

Moozarm Nia, P., Woi, P. M., and Alias, Y. (2017). Facile one-step
electrochemical deposition of copper nanoparticles and reduced graphene oxide
as nonenzymatic hydrogen peroxide sensor.Appl. Surf. Sci. 413, 56–65. doi:10.1016/
j.apsusc.2017.04.043

Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A.,
et al. (2022). Global burden of bacterial antimicrobial resistance in 2019: A
systematic analysis. Lancet 399, 629–655. doi:10.1016/S0140-6736(21)02724-0

Nagar, N., and Devra, V. (2018). Green synthesis and characterization of copper
nanoparticles using Azadirachta indica leaves.Mat. Chem. Phys. 213, 44–51. doi:10.
1016/j.matchemphys.2018.04.007

Navya Rani, M., Murthy, M., Shyla Shree, N., Ananda, S., Yogesh, S., and Dinesh,
R. (2019). Cuprous oxide anchored Reduced Graphene oxide ceramic
nanocomposite using Tagetes Erecta flower extract and evaluation of its
antibacterial activity and cytotoxicity. Ceram. Int. 45, 25020–25026. doi:10.1016/
j.ceramint.2019.04.195

Nguyen, M. D., Phuong Linh, V. N., Huy, L. A., Huong, N. T., Tu, T. H., Lien
Phuong, N. T., et al. (2019). Fabrication and antibacterial activity against
Pseudomonas aeruginosa and Staphylococcus aureus of silver nanoparticle

Frontiers in Molecular Biosciences frontiersin.org11

Ismail et al. 10.3389/fmolb.2022.995853

29

https://doi.org/10.1016/j.msec.2019.110596
https://doi.org/10.1080/00032719.2016.1199558
https://doi.org/10.3390/polym13244364
https://doi.org/10.1128/CMR.00125-18
https://doi.org/10.1155/2017/5919836
https://doi.org/10.1155/2017/5919836
https://doi.org/10.1016/j.foodchem.2020.128332
https://doi.org/10.1016/j.foodchem.2020.128332
https://doi.org/10.1016/j.jphotobiol.2019.111519
https://doi.org/10.1088/0957-4484/25/13/135101
https://doi.org/10.1016/j.nanoms.2019.09.005
https://doi.org/10.1016/j.nanoms.2019.09.005
https://doi.org/10.1049/iet-nbt.2018.5175
https://doi.org/10.1016/j.apsusc.2019.06.141
https://doi.org/10.1016/j.chemosphere.2018.11.181
https://doi.org/10.1016/j.chemosphere.2018.11.181
https://doi.org/10.21203/rs.3.rs-1885906/v1
https://doi.org/10.21203/rs.3.rs-1885906/v1
https://doi.org/10.1039/C6RA05186C
https://doi.org/10.1016/j.ceramint.2022.01.086
https://doi.org/10.37934/jrnn.1.1.4452.1.1.4452
https://doi.org/10.37934/jrnn.1.1.4452.1.1.4452
https://doi.org/10.1016/j.msec.2019.109899
https://doi.org/10.1016/j.jiec.2019.11.011
https://doi.org/10.1016/j.jcis.2020.01.097
https://doi.org/10.1016/j.matpr.2020.05.403
https://doi.org/10.1007/s11696-021-01866-7
https://doi.org/10.1016/j.jsamd.2017.08.003
https://doi.org/10.1016/j.jsamd.2017.08.003
https://doi.org/10.1016/j.physb.2019.01.040
https://doi.org/10.1016/j.solener.2020.08.066
https://doi.org/10.1016/j.msec.2020.110669
https://doi.org/10.1016/j.msec.2020.110669
https://doi.org/10.1063/1.5079943
https://doi.org/10.1063/1.5079943
https://doi.org/10.1016/j.nanoso.2020.100464
https://doi.org/10.1016/j.matpr.2020.08.549
https://doi.org/10.3322/caac.21731
https://doi.org/10.1016/j.apsusc.2017.04.043
https://doi.org/10.1016/j.apsusc.2017.04.043
https://doi.org/10.1016/S0140-6736(21)02724-0
https://doi.org/10.1016/j.matchemphys.2018.04.007
https://doi.org/10.1016/j.matchemphys.2018.04.007
https://doi.org/10.1016/j.ceramint.2019.04.195
https://doi.org/10.1016/j.ceramint.2019.04.195
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.995853


decorated reduced graphene oxide nanocomposites.Mat. Technol. (N. Y. N. Y). 34,
369–375. doi:10.1080/10667857.2019.1575555

Noman, M. S. M., Ahmed, T., Niazi, M. B. K., Hussain, S., Song, F., Manzoor, I.,
et al. (2020). Use of biogenic copper nanoparticles synthesized from a native
Escherichia sp. as photocatalysts for azo dye degradation and treatment of textile
effluents. Environ. Pollut. 257, 113514. doi:10.1016/j.envpol.2019.113514

Ouyang, Y., Cai, X., Shi, Q., Liu, L., Wan, D., Tan, S., et al. (2013). Poly-L-lysine-
modified reduced graphene oxide stabilizes the copper nanoparticles with higher
water-solubility and long-term additively antibacterial activity. Colloids Surf. B
Biointerfaces 107, 107–114. doi:10.1016/j.colsurfb.2013.01.073

Posudin, Y. (2016). Spectroscopic analysis of honey. Ukr. Food J. 5 (3), 437–450.
doi:10.24263/2304-974x-2016-5-3-3

Prasad, K., Lekshmi, G. S., Ostrikov, K., Lussini, V., Blinco, J., Mohandas, M., et al.
(2017). Synergic bactericidal effects of reduced graphene oxide and silver
nanoparticles against gram-positive and gram-negative bacteria. Sci. Rep. 7,
1591. doi:10.1038/s41598-017-01669-5

Rajesh, K. M., Ajitha, B., Reddy, Y. A. K., Suneetha, Y., and Sreedhara Reddy, P.
(2016). Synthesis of copper nanoparticles and role of pH on particle size control.
Mater. Today Proc. 3 (6), 1985–1991. doi:10.1016/j.matpr.2016.04.100

Rana, S., Sandhu, I. S., and Chitkara, M. (2018). “Exfoliation of graphene oxide via
chemical reduction method,” in Proceeding of the 2018 6th edition of international
conference on wireless networks & embedded systems (WECON), Rajpura, India,
2018 november 16-17, 54–57.

Rawal, N., Solanki, S., and Shah, D. (2020). Green synthesis of reduced graphene
oxide with in situ decoration of metal nanoparticles for charge storage application.
Mater. Today Proc. 21, 2066–2071. doi:10.1016/j.matpr.2020.01.325

Rios, P. L., Povea, P., Cerda-Cavieres, C., Arroyo, J. L., Morales-Verdejo, C.,
Abarca, G., et al. (2019). Novel in situ synthesis of copper nanoparticles supported
on reduced graphene oxide and its application as a new catalyst for the
decomposition of composite solid propellants. RSC Adv. 9, 8480–8489. doi:10.
1039/C9RA00789J

Rostami-Tapeh-Esmaeil, E., Golshan, M., Salami-Kalajahu, M., and Roghani-
Mamaqani, H. (2021). Synthesis of copper and copper oxide nanoparticles with
different morphologies using aniline as reducing agent. Solid State Commun. 334,
114364. doi:10.1016/j.ssc.2021.114364

Sanchez-Lopez, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A.
L., Galindo, R., et al. (2020). Metal-based nanoparticles as antimicrobial
agents: An overview. Nanomaterials 10 (2), 2922–E339. doi:10.3390/
nano10020292

Sarkar, C., and Dolui, S. K. (2015). Synthesis of copper oxide/reduced graphene
oxide nanocomposite and its enhanced catalytic activity towards reduction of 4-
nitrophenol. RSC Adv. 5, 60763–60769. doi:10.1039/C5RA10551J

Sengupta, I., Bhattacharya, P., Talukdar, M., Neogi, S., Pal, S. K., and Chakraborty,
S. (2019). Bactericidal effect of graphene oxide and reduced graphene oxide:
Influence of shape of bacteria. Colloid Interface Sci. Commun. 28, 60–68. doi:10.
1016/j.colcom.2018.12.001

Siegel, R. L., Miller, K. D., Fuchs, H. E., and Jemal, A. (2022). Cancer statistics,
2022. Ca. Cancer J. Clin. 1 (72), 7–33. doi:10.3322/caac.21708

Sriramulu, M., Shanmugam, S., and Ponnusamy, V. K. (2020). Agaricus bisporus
mediated biosynthesis of copper nanoparticles and its biological effects: An in-vitro
study. Colloid Interface Sci. Commun. 35, 100254. doi:10.1016/j.colcom.2020.
100254

Sutradhar, K. B., and Amin, M. L. (2014). Nanotechnology in cancer drug delivery
and selective targeting. ISRN Nanotechnol. 2014, 1–12. doi:10.1155/2014/939378

Szunerits, S., and Boukherroub, R. (2016). Antibacterial activity of graphene-
based materials. J. Mat. Chem. B 4 (43), 6892–6912. doi:10.1039/C6TB01647B

Thy, L. T. M., Tai, L. T., Hai, N. D., Cong, C. Q., Dat, N. M., Trinh, D. N., et al.
(2022). Comparison of in-situ and ex-situ methods for synthesis of iron magnetic
nanoparticles-doped graphene oxide: Characterization, adsorption capacity, and
Fenton catalytic efficiency. FlatChem 33, 100365. doi:10.1016/j.flatc.2022.100365

Tu, Y., Li, P., Sun, J., Jiang, J., Dai, F., Wu, Y., et al. (2021). Remarkable
antibacterial activity of reduced graphene oxide functionalized by copper ions.
Advance functional materials 31, 1–16. doi:10.1002/adfm.202008018

Upadhyay, L. S. B., and Kumar, N. (2017). Green synthesis of copper nanoparticle
using glucose and polyvinylpyrrolidone (PVP). Inorg. Nano-Metal Chem. 47 (10),
1436–1440. doi:10.1080/24701556.2017.1357576

Vouga, M., and Greub, G. (2016). Emerging bacterial pathogens: The past and
beyond. Clin. Microbiol. Infect. 1 (22), 12–21. doi:10.1016/j.cmi.2015.10.010

Wang, B., Yao, M., Lv, L., Ling, Z., and Li, L. (2017). The human microbiota in
health and disease. Engineering 1 (3), 71–82. doi:10.1016/J.ENG.2017.01.008

Xu, X., Shen, J., Qin, J., Duan, H., He, G., and Chen, H. (2019). Cytotoxicity of
bacteriostatic reduced graphene oxide-based copper oxide nanocomposites. JOM 71
(1), 294–301. doi:10.1007/s11837-018-3197-1

Yan, Y., Li, C., Wu, H., Du, J., Feng, J., Zhang, J., et al. (2019). Montmorillonite-
modified reduced graphene oxide stabilizes copper nanoparticles and enhances
bacterial adsorption and antibacterial activity. ACS Appl. Bio Mat. 2 (5), 1842–1849.
doi:10.1021/acsabm.8b00695

Yang, Z., Hao, X., Chen, S., Ma, Z., Wang, W., Wang, C., et al. (2019). Long-term
antibacterial stable reduced graphene oxide nanocomposites loaded with cuprous
oxide nanoparticles. J. Colloid Interface Sci. 533, 13–23. doi:10.1016/j.jcis.2018.
08.053

Yin, P. T., Shah, S., Chhowalla, M., and Lee, K-B. (2015). Design, synthesis, and
characterization of graphene–nanoparticle hybrid materials for bioapplications.
Chem. Rev. 115, 2483–2531. doi:10.1021/cr500537t

Zhang, W., Chang, Q., Xu, L., Li, G., Yang, G., Ding, X., et al. (2016). Graphene
oxide-copper nanocomposite-coated porous CaP scaffold for vascularized bone
regeneration via activation of hif-1α. Adv. Healthc. Mat. 5, 1299–1309. doi:10.1002/
adhm.201500824

Zhou, Y., Wu, S., and Liu, F. (2019). High-performance polyimide
nanocomposites with polydopamine-coated copper nanoparticles and nanowires
for electronic applications. Mat. Lett. 237, 19–21. doi:10.1016/j.matlet.2018.11.067

Zhu, J., Wang, J., Uliana, A. A., Tian, M., Zhang, Y., Zhang, Y., et al. (2017).
Mussel-inspired architecture of high-flux loose nanofiltration membrane
functionalized with antibacterial reduced graphene oxide-copper
nanocomposites. ACS Appl. Mat. Interfaces 9, 28990–29001. doi:10.1021/acsami.
7b05930

Frontiers in Molecular Biosciences frontiersin.org12

Ismail et al. 10.3389/fmolb.2022.995853

30

https://doi.org/10.1080/10667857.2019.1575555
https://doi.org/10.1016/j.envpol.2019.113514
https://doi.org/10.1016/j.colsurfb.2013.01.073
https://doi.org/10.24263/2304-974x-2016-5-3-3
https://doi.org/10.1038/s41598-017-01669-5
https://doi.org/10.1016/j.matpr.2016.04.100
https://doi.org/10.1016/j.matpr.2020.01.325
https://doi.org/10.1039/C9RA00789J
https://doi.org/10.1039/C9RA00789J
https://doi.org/10.1016/j.ssc.2021.114364
https://doi.org/10.3390/nano10020292
https://doi.org/10.3390/nano10020292
https://doi.org/10.1039/C5RA10551J
https://doi.org/10.1016/j.colcom.2018.12.001
https://doi.org/10.1016/j.colcom.2018.12.001
https://doi.org/10.3322/caac.21708
https://doi.org/10.1016/j.colcom.2020.100254
https://doi.org/10.1016/j.colcom.2020.100254
https://doi.org/10.1155/2014/939378
https://doi.org/10.1039/C6TB01647B
https://doi.org/10.1016/j.flatc.2022.100365
https://doi.org/10.1002/adfm.202008018
https://doi.org/10.1080/24701556.2017.1357576
https://doi.org/10.1016/j.cmi.2015.10.010
https://doi.org/10.1016/J.ENG.2017.01.008
https://doi.org/10.1007/s11837-018-3197-1
https://doi.org/10.1021/acsabm.8b00695
https://doi.org/10.1016/j.jcis.2018.08.053
https://doi.org/10.1016/j.jcis.2018.08.053
https://doi.org/10.1021/cr500537t
https://doi.org/10.1002/adhm.201500824
https://doi.org/10.1002/adhm.201500824
https://doi.org/10.1016/j.matlet.2018.11.067
https://doi.org/10.1021/acsami.7b05930
https://doi.org/10.1021/acsami.7b05930
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.995853


A metal–organic framework
nanocomposite with oxidation
and near-infrared light cascade
response for bacterial
photothermal inactivation

Christopher Dorma Momo Jr.1†, Yuan Zhou2,3†, Lanxin Li1,4†,
Weisheng Zhu1, Luyao Wang4, Xingping Liu5, Wei Bing4 and
Zhijun Zhang1*
1Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province,
Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China, 2Department of Pharmacy,
Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China, 3College of Pharmacy, Hubei
University of Traditional Chinese Medicine, Wuhan, China, 4School of Chemistry and Life Science,
Changchun University of Technology, Changchun, China, 5School of Pharmaceutical Science,
University of South China, Hengyang, China

Photothermal treatment is an effective and precise bacterial disinfection

method that can reduce the occurrence of bacterial drug resistance.

However, most conventional photothermal treatment strategies have the

problem that the photothermal response range does not match the

infection area. Herein, a metal–organic framework (MOF) nanocomposite

responding to the oxidation state of the bacterial infection

microenvironment was constructed for near-infrared (NIR) photothermal

bacterial inactivation. In this strategy, the MOF was used as a nanocarrier to

load tetramethylbenzidine (TMB) and horseradish peroxidase (HPR). The high

oxidation state of the bacterial infection microenvironment can trigger the

enzyme-catalyzed reaction of the nanocomposite, thereby generating

oxidation products with the NIR photothermal effect for bacterial

disinfection. The synthesis and characterization of the nanocomposite,

oxidation state (H2O2) response effect, photothermal properties, and

antibacterial activities were systematically studied. This study provides a new

idea for building a precision treatment system for bacterial infection.

KEYWORDS

metal–organic framework, cascade response, antibacterial materials, photothermal
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Introduction

Bacterial infection seriously threatens human life and

health. As a traditional medicine for treating bacterial

infections, antibiotics have saved countless lives. However,

the use of antibiotics will lead to the emergence of bacterial

resistance, which greatly reduces the therapeutic effect of

antibiotics and even makes antibiotics ineffective

(Laxminarayan et al., 2013; Mamun et al., 2021). The abuse

of antibiotics in recent years has accelerated the emergence of

bacterial drug resistance. Unfortunately, the speed at which we

develop new antibiotics is far lower than the speed at which

bacterial drug resistance develops (Hutchings et al., 2019).

According to the World Health Organization (WHO), around

7 00,000 people die of drug-resistant bacterial infections every

year worldwide. If effective measures are not taken, it is

estimated that 10 million people will die of drug-resistant

bacterial infections every year by 2050. In the face of such a

severe situation, on one hand, it is necessary to accelerate the

development of antibiotics and meanwhile avoid the abuse of

antibiotics; on the other hand, it is necessary to develop new

antibacterial strategies.

Nanoparticle-mediated physical stimulation therapy is a

promising bacterial therapy strategy that can partially replace

antibiotics (Ji et al., 2022; Wang et al., 2022). In such a strategy,

special nanoparticles are utilized as antennas to convert

physical stimulation (e.g., light, magnetic, X-ray, and

ultrasound) into heat energy or free radicals for bacterial

inactivation (Jia and Zhao, 2021; Zhang et al., 2022b; Deng

et al., 2022; Ji et al., 2022). For example, most of the noble

metal nanoparticles, nano-carbon materials, magnetic

nanomaterials, some nanopolymers, etc. can be heated

under light, magnetic, ultrasonic, or other physical

stimulations to generate high temperature for bacterial

inactivation; photosensitizers and nanosemiconductor

materials (such as titanium dioxide, bismuth vanadate, and

quantum dots) can generate free radicals under light, X-ray, or

even ultrasound irradiation for bacterial disinfection (Karami

et al., 2021; Du et al., 2022; Fan et al., 2022). Among these

strategies, the photothermal strategy has obvious advantages

such as easy access to light sources, high bacterial inactivation

efficiency, and low toxic side effects. In addition, photothermal

treatment is not easy to induce bacterial resistance (Zhang

et al., 2020; Mu et al., 2022). Therefore, in recent years,

photothermal antibacterial therapy has attracted wide

attention, and many progresses have been achieved in this

field (Han et al., 2020). Achieving high antibacterial efficiency

is no longer a major problem of photothermal methods.

Improving the accuracy of treatment is currently a

development trend in this field. Although modifying

targeted molecules such as antibodies and antimicrobial

peptides can improve the accuracy of nanophotothermal

therapy to a certain extent, the modification also brings

high cost problems. Using the special microenvironment of

the lesion site to construct a responsive photothermal

treatment strategy is an effective means to improve the

accuracy of treatment. Such a strategy is expected to be a

good solution to improve the accuracy of nanoparticle-

mediated photothermal therapy.

In this study, a metal–organic framework (MOF)

nanocomposite responding to the oxidation state of the

bacterial infection microenvironment was constructed for

near-infrared (NIR) photothermal bacterial inactivation. In

this strategy, MOF (UiO-66) was used as a nanocarrier to

load tetramethylbenzidine (TMB) and horseradish peroxidase

(HPR) (Scheme 1). The high oxidation state of the bacterial

infection microenvironment can trigger the enzyme-catalyzed

reaction of the nanocomposite, thereby generating oxidation

products with the NIR photothermal effect for bacterial

disinfection.

Materials and methods

General information

1,4-Dicarboxybenzene, 70% zirconium propoxide [Zr(OnPr)

4] solution in 1-propanol, and tetramethylbenzidine (TMB) were

purchased from Shanghai Aladdin Bio-Chem Technology Co.,

Ltd. Horseradish peroxidase (HPR) was purchased from Sigma-

Aldrich. The transmission electron microscopy (TEM) image

was captured with a 120-KV JEM-1400 microscope with a Gatan

Rio16 digital camera. The sample for TEM was prepared by

dropping the dilute UiO-66 solution onto carbon-coated copper

grids. Powder X-ray diffraction (XRD) patterns were recorded

with a Bruker D8 diffractometer (Bruker, Germany). UV-vis

adsorption spectra were detected using a UV-1900 spectrometer

(SHIMADZU, Japan). Fluorescence images were captured using

a NIB900-FL fluorescent microscope with a Nexcan-T6CCD

digital camera (Nexcope, China). A homemade 900-nm NIR

light source was used for NIR light irradiation, and the power

density was measured with a power density meter. A colony

counter icount 11 (Xun Shu, China) was used to count colony-

forming units.

Synthesis of the metal–organic
framework and the nanocomposite

MOF UiO-66 was synthesized according to the previous

literature with some slight modifications (DeStefano et al.,

2017). A measure of 3.5 ml of DMF, 2 ml of acetic acid (2.1 g,

35 mmol), and 30.5 μl of a 70% zirconium propoxide [Zr(OnPr)4]

solution (in 1-propanol) (26 mg, 0.079 mmol) were mixed in a 10-

ml scintillation vial. The solution was heated in an oil bath at 130°C

for 2 h and then allowed to cool to room temperature. The color of
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the mixture changed from colorless to yellow during heating. To

the solution, 37.5 mg of 1,4-dicarboxybenzene was added, and

after sonication for 30 s, the solution was stirred at room

temperature for 18 h. Then, the MOF was separated by

centrifugation and washed several times with DMF and water

and finally dispersed in water for further use. The nanocomposite

(UiO-66@TMB-HRP, UTH) was synthesized by simple

incubation of UiO-66 with TMB and HRP. Briefly, to a 5 ml

solution of 5 mg/ml UiO-66, the TMB stock solution was added

with a final concentration of 0.5 mM; after incubation for 3 h, 25U

HRP was added and stirred at 4°C for another 8 h. After then, the

nanocomposite was separated by centrifugation, washed several

times with water, and finally dispersed in water for further use.

Photothermal measurement

The photothermal effect of UTH in different conditions

under 900 nm light (0.5 w/cm2) irradiation was measured by

using a thermal imaging camera. The heating and cooling

temperature changes were recorded, and the photothermal

conversion efficiency (η) was calculated according to the

following equations:

η � hs(Tmax − Tsuur) − Q0

I(1 − 10−A900 ) , (1)

τs � mdcd
hs

, (2)
Qs0 � hs(Tmax .water − Tsuur), (3)

where τs was observed by linearly fitting the plot of the cooling

time versus −Lnθ. md is the mass of the UTH solution, and Cd is

the heat capacity of water (4.2 J g−1 K−1). Tmax is the equilibrium

temperature; Tsurr is the surrounding ambient temperature;

Tmax, water is the maximum temperature of the heated water.

Antibacterial test

Escherichia coli (E. coli) and Staphylococcus aureus (S.

aureus) were selected as Gram-positive and -negative model

strains, respectively. Monocolonies of the bacteria on a solid

agar plate were transferred to 2 ml LB medium and shaken

under 150 rpm at 37°C for 12 h. In the photothermal

antibacterial experiments, the bacterial solution (with an

optical density at 600 nm of 0.5) was mixed with UTH and

1 mMH2O2 was added; after incubation for 5 min, the mixture

was irradiated under 900-nm light for another 5 min. After

then, the treated bacterial solution was diluted and transferred

to the solid agar plate. After being placed in an incubator at

37°C for 12 h, the plates were photographed and colonies were

counted.

Therapeutic effect against mouse skin
wound infection

Kunming mice were used for skin wound infection model

fabrication, which has been approved by the Ethics Committee of

Animal Experiments in Zhejiang Sci-Tech University, and all

procedures followed the guidelines for animal experiments in

Zhejiang Sci-Tech University. The hair of the mouse’s quilt was

removed with depilation cream. A small piece of the back skin

was cut off to construct a wound model. A measure of 10 μl of the

S. aureus solution with the OD600 of 1 was dropped to the

wound for the infection. Then, 10 μl of UTH was dropped to the

infected wound once a day for the first 3 days, followed by

irradiation with 900-nm light for 5 min. Photographs of the

wound were taken every day to record the changes.

Results and discussion

Synthesis and characteristics

Considering the porous characteristics and high stability, zr-

mof (UiO-66) was chosen as the nanocarrier for TMB and HRP

loading. The prepared UiO-66 is milky white and has good

stability and dispersion in water. TEM characterization results

show that UiO-66 has a size of about 100 nm and good dispersion

(Figure 1A). The crystalline and phase information were

investigated by powder X-ray diffraction (XRD), and the

patterns are shown in Figure 1B. The appearance of sharp

peaks in the XRD patterns indicates that UiO-66 has good

crystallinity. The size and zeta potential of UiO-66 and UiO-

66 loaded with TMB and HRP (UiO-66@TMB-HRP, UTH) were

measured with a DLS machine. The main size was around

110 nm; after TMB and HRP loading, the obtained

nanocomposite UTH showed a larger size of around 210 nm

(Figure 1C). UiO-66 shows a positive zeta potential of 26.3 mV;

after loading with TMB and HRP, the zeta potential increased to

46.1 mV (Figure 1D). The positive zeta potential of UiO-66 is

ascribed to the positive charge of the Zr4+ cation. Both TMB and

HRP are positive structures; therefore, after the loading, the zeta

potential of the nanoparticles increased to 46.1 mV. The pore

structure and the intermolecular interactions of aromatic

molecules are mostly responsible for the loading of TMB. The

coordination between the Zr4+ cation of UiO-66 and chelating

groups (e.g., −COOH and −SH) of HRP would be the reasons for

HRP loading. The changes in the size and zeta potential clearly

indicated the successful preparation of the nanocomposite UTH.

Moreover, the presence of the characteristic peaks of TMB and

HRP in the absorption spectrum of the nanocomposite also

indicated the successful loading of TMB and HRP by UiO-66

(Supplementary Figure S1).
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Response characteristics to H2O2

Then, we studied the response characteristics of the

nanocomposite to H2O2 (Figure 2). The nanocomposite UTH

contains both the enzyme (HRP) and the substrate (TMB); in the

presence of H2O2, the HRP will catalyze H2O2 to generate an

intermediate that can oxidize TMB to a colored state. As

expected, the color of the nanocomposite solution changes

from light milky to dark turquoise, and the absorption spectra

clearly indicate the generation of the oxidized product of TMB

(Figure 2A). After being treated with H2O2, two strong

absorption peaks around 650 nm and near 900 nm appeared.

The intensity of the absorption peak increases with the increase

in the concentration of the nanocomposite (Figure 2A). Even

FIGURE 1
Characteristics of the nanocomposite preparation. TEM (A) image and XRD patterns (B) of the MOF (UiO-66), the size distribution (C), and zeta
potential (D) of the MOF and the obtained nanocomposite UiO-66@TMB-HRP (UTH).

FIGURE 2
(A) Absorption spectra of the UTH before and after incubation with H2O2. (B) Change of the absorption value at 650 nm with time in the
UTH–H2O2 system.
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when the concentration of H2O2 is as low as 0.1 mM, it can

obviously cause discoloration of the nanocomposite in a short

time, indicating that the nanocomposite has a high sensitivity to

H2O2 (Figure 2B). It is worth mentioning that the photothermal

effect of nanomaterials is often closely related to the intensity of

their absorption peaks, which means that the oxidized

nanocomposites will likely produce a strong photothermal

effect under near-infrared light (900 nm) irradiation.

Photothermal effect

As shown in Figures 3A,B, under 900-nm light irradiation, the

solution of 0.2 mg/ml UTH showed a very slight temperature

increase. However, in the presence of 1 mM H2O2, even a low

concentration of UTH (0.05 mg/ml) could be sharply heated up

by a 900-nm light irradiation. The heating rate and the maximum

temperature increased with the increase in the concentration of

nanocomposites. The temperature of the solution with 0.2 mg/ml

UTH and 1mM H2O2 can reach above 45°C within 3 min with

900 nm light irradiation, clearly indicating the excellent

photothermal effect. It is worth mentioning that the concentration

of H2O2 in the bacterial infection area is usually about 1 mM. In

addition, during light irradiation, the local temperature of the

nanoparticle surface is much higher than the solution

temperature. These indicate that the nanoparticles provide

the necessary basis for the sensitive response to H2O2 and

efficient antibacterial activity in the infected area. Then, we

calculated the photothermal efficiency by detecting the heating

and cooling rates (Figures 3C,D), and the results showed that

the photothermal efficiency of the nanocomposite UTH in the

presence of H2O2 reached 18%. The photothermal conversion

efficiency of most organic nanomaterials is between 20 and 50%

(Li et al., 2020). Compared with these photothermal materials,

the photothermal efficiency of 18% is slightly lower.

Nevertheless, it is worth mentioning that indocyanine Green

(ICG), as an organic molecule frequently used in photothermal

therapy, has a photothermal efficiency of only 9% (Li et al.,

2020). It indicates that 18% is enough for effective photothermal

therapy.

FIGURE 3
(A) Photo thermal effect of the UTH 0.2 mg/ml (i), UTH 0.05 mg/ml with 1 mM H2O2 (ii), UTH 0.1 mg/ml with 1 mMH2O2 (iii), and UTH 0.2 mg/
ml with 1 mMH2O2 (iv) under 900-nmNIR light irradiation. (B)Corresponding thermal image in (A). (C) “On-off” temperature change of UTH 0.2 mg/
ml with 1 mM H2O2 under 900-nm light irradiation. (D) Liner cooling time data versus −Ln (θ) vs. negative natural logarithm of driving force
temperature with τs = 172.63933 s.
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Antibacterial effect

After verifying the sensitive response to H2O2 and the

good photothermal effect of UTH, we then investigated the

cascade antibacterial effect. We selected E. coli and S. aureus

as Gram-negative and -positive bacterial models,

respectively. The plate counting method was used to

measure the antibacterial efficiency. The results showed

that in the presence of only H2O2 (1 mM) or UTH

(Supplementary Figure S2), NIR light irradiation could

not cause significant antibacterial activity. However, in the

presence of both H2O2 and UTH, NIR light irradiation can

cause obvious antibacterial activity, and the antibacterial

activity increases with the increase in the concentration of

UTH. The IC50 values of UTH on E. coli and S. aureus under

NIR light irradiation with 1 mM H2O2 were around 150 and

450 μg/ml, respectively (Figures 4A,B). The significant

antibacterial effect was observed in both Gram-positive

and -negative bacteria, indicating such a cascade nano-

system has broad-spectrum antibacterial properties.

Notably, the antibacterial effect of the photothermal

system on the two stains is slightly different, and E. coli

was more sensitive to the photothermal effect. The different

antibacterial efficiencies may be related to the different

structures of the two bacteria. S. aureus has a cell wall

composed of peptidoglycan, which is relatively stable

(Zhang et al., 2022a). However, the surface of E. coli is a

cell membrane composed of phospholipid molecules, which

is more fragile than the cell wall of S. aureus. Therefore, the

photodynamic system has a stronger inactivation efficiency

for E. coli. Subsequently, the antibacterial mechanism was

primarily discussed by live/dead staining with a LIVE/DEAD

bacterial viability kit. In such an assay, the green fluorescence

(SYTO 9 dye) indicates the live bacteria and the red

fluorescence (PI dye) indicates the cell wall-damaged dead

bacteria. As shown in Figure 4C, most of the treated bacteria

FIGURE 4
(A) Photograph of the colonies of E. coli and S. aureus treated with different concentrations of UTH in the presence of 1 mM H2O2 under 900-
nm light irradiation. (B)Corresponding bacterial viabilities by counting (A). (C) Fluorescence images (stained with SYTO 9 and PI) of E. coli before (left)
and after (right) being treated with UTH in the presence of H2O2 under 900-nm light irradiation.
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FIGURE 5
Therapeutic effect against mouse wound infection (caused by S. aureus) under different conditions.

SCHEME 1
Schematic illustration of the preparation and antibacterial mechanism of the nanocomposite.
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have strong red fluorescence, indicating that the cascade

nano-system can cause cell wall damage to kill bacteria.

Therapeutic effect against mouse wound
infection

Finally, in order to verify the therapeutic effect on real

wound infection, we constructed a mouse skin infection

model. As shown in Figure 5, after being treated by NIR

light irradiation or UTH, the mouse skin wounds infected

by S. aureus showed obvious symptoms such as suppuration,

and the wounds healed slowly. Even 10 days later, the wounds

still had obvious dents. However, after being treated with UTH

and NIR light irradiation, the wound purulent symptoms were

less and the wound healing was faster. After 10 days, the

wound basically healed. These results show that the cascade

nano-system has a good therapeutic effect on skin wound

infection.

Conclusion

In this study, the MOF nanocomposite with the

characteristics of H2O2 and NIR light cascade response

was successfully constructed, and the photothermal

antibacterial activities were verified. The nanocomposites

can respond sensitively and quickly to H2O2. Due to the

catalytic oxidation, the color of the nanocomposite changes

to dark turquoise in the presence of H2O2; meanwhile, a

strong absorption peak in the near-infrared region around

900 nm appeared. The oxidized nanocomposite can convert

near-infrared photons into thermal energy with an efficiency

of 18%. This nano-system showed a strong inactivation effect

on both Gram-negative and -positive bacteria. Under the

conditions of 1 mM hydrogen peroxide and 0.5 W/cm2 NIR

light intensity, the IC50 values of the MOF nanocomposite on

E. coli and S. aureus were 150 and 450 μg/ml, respectively.

This cascade response nanomedicine also showed a strong

therapeutic effect on the mouse skin wound infection model.

This study not only provides an effective photothermal

antibacterial strategy but also offers a new idea for

building precise nano-therapeutic systems.
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Precise dapagliflozin delivery by
cardiac homing peptide
functionalized mesoporous silica
nanocarries for heart failure
repair after myocardial infarction

Lijiao You†, QingWang†, Yuhui Ma†, Yunfeng Li, Hui Ye, Lingli Xu*
and Ming Lei*

Department of Critical Care Medicine, Seventh People’s Hospital Affiliated to Shanghai University of
TCM, Shanghai, China

Myocardial infarction (MI) may cause irreversible damage or destroy to part of

the heart muscle, affecting the heart’s ability and power to pump blood as

efficiently as before, often resulting in heart failure (HF). Cardiomyocyte death

and scar formation after MI may then trigger chronic neurohormonal activation

and ventricular remodeling. We developed a biocompatible and mono-

dispersed mesoporous silica nanoparticles (MSN) divergent porous channel

for dapagliflozin (DAPA) loading. After surface modification of the cardiac-

targeting peptides, the novel drug delivery systemwas successfully homed, and

precisely released drugs for the hypoxic and weak acid damaged

cardiomyocytes. Our biocompatible MSN- based nanocarriers for

dapagliflozin delivery system could effective cardiac repair and regeneration

in vivo, opening new opportunities for healing patients with ischemic heart

disease in clinical.

KEYWORDS

myocardial infarction, dapagliflozin, nano-targeted drugs delivery system, heart failure
repair, hypoxia-inducible factor 1-α (HIF-1α)

1 Introduction

Myocardial infarction (MI) contributes to more than 40% of sudden cardiac deaths

and represents the leading cause of morbidity and mortality worldwide (Sathisha et al.,

2011; Nigam 2007; Anwar et al., 2016). In myocardial ischemia area, broadscale

myocardium tissue are impaired with apoptotic/necrotic cardiomyocytes. Due to the

low proliferation capability of myocardial cells, the damaged myocardium tissue is always

unable to be effective regeneration and restoration (Zhao, et al., 2022). Meanwhile,

complications of heart failure (HF) after MI hospitalization may cause cardiomyocyte

apoptosis and scar formation, subsequently triggering chronic neurohormonal activation

and ventricular remodeling (Dudas et al., 2011; Roger 2013; Desta et al., 2015; Jenča D

et al., 2021). The high prevalence of HF complications after hospital discharge greatly
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reduces the quality of life of MI patients. It is estimated that

approximately 13% of patients will experience HF complications

30 days post-discharge, with this number increasing to 20–30% in

the first year after discharge (Hung et al., 2013; Sulo et al., 2016).

Thus, HF is associated with three alarmingly high rates: high

incidence rate, high mortality rate, and high rehospitalization rate.

Scientists recently reported that the sodium-glucose cotransporter

two inhibitor, dapagliflozin (DAPA) is a promising new drug for

the treatment of HF. DAPA is approved by the Food and Drug

Administration (FDA)—could reduce the risk of cardiovascular

death and hospitalization for cardiac deterioration, increase

survival rate and improve symptoms of HF in patients with

decreasing ejection fraction (McMurray et al., 2019b, a). DAPA

can effectively improve cardiac structure and function, weaken

cardiac fibrosis and myocardial apoptosis, as well as inhibit

inflammatory cytokines (Wang K et al., 2021). While the low

selectivity, poor biodistribution and high systematic toxicity of

DAPA greatly restrict its further clinical application (Wilczewska

ZA, et al., 2012). Furthermore, treatment for MI is expensive and

extensive, the prognosis is poor. Frequent episodes of HF and

repeated emergency treatment in MI patients further increase the

cost of treatment (Cowper et al., 2019). This situation led to the

urgent construction of a novel drug delivery system (DDS) for HF

repair. The novel DDS can be loaded with DAPA, which improves

HF symptoms and increases patient survival. In addition, the novel

DDS should be targeted precisely to improve drug utilization.

Novel drug delivery systems have been rapidly developed over

the past few decades. Both native and synthetic nanomaterials have

been extensively explored and proposed as the main components

of DDS (Rodrigues et al., 2016; Swamy and Sinniah 2016;Mohanty

et al., 2017). Recently, synthesized nanomaterials, including carbon

materials (Bao R et al., 2017; Sun X et al., 2017), dopamine

nanoparticles (Chakroborty et al., 2011; Das and Jana 2015),

inorganic silica (Yang et al., 2010; Zhu et al., 2011), and

polymeric assembly nanohybrids (Syed et al., 2012; Kerr et al.,

2022), have been employed as nanocarriers for DDS. Porous silica

has been recommended as an ideal DDS based on the

biocompatibility of silica’s drug embedding ability in the

mesoporous channel (Meng et al., 2010; Che et al., 2014; Chen

K et al., 2020; Chen YJ et al., 2020). Furthermore, mesoporous

silica nanospheres (MSNs) have been widely used for drug delivery

because of their optimal surface area for drug loading, their facile

synthesis and surface functionalization by anchoring targeting

ligands, stimuli-responsive agents and sensing molecules (Sahoo

et al., 2014; Sapino et al., 2015; Ugazio et al., 2016; Jafari et al.,

2019). MSNs are considered biocompatible with the human body,

as indicated by numerous investigations. The therapeutic dose of

MSNs for DDS is well below the toxic level for humans, making

MSN an excellent option for clinical applications.

Cardiac homing peptide (CHP) is a short peptide that

preferentially binds to ischemic myocardium, and its sequence

is CSTSMLKAC. CHP was first screened in a study of selective

targeting of random peptides to ischemic tissue in vivo and was

shown to be a safe peptide that did not cause any significant

impairment of left ventricular systolic function. CHP has the

potential to be used in the development of targeted therapy drugs

for ischemic lesions of myocardial tissue (Kanki et al., 2011; Won

et al., 2013; Vandergriff et al., 2018).

FIGURE 1
Dapagliflozin-loaded biocompatible mesoporous silica nanoparticles with surface functionalization of cardiac homing peptide fabrication for
precise heart failure repair after myocardial infarction.
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Here, we propose a conventional bi-phase approach for MSN

synthesis for DAPA loading in heart failure repair. The

hydrophobic and cation-π interaction properties of DAPA

facilitate the efficient encapsulation of this drug in

mesoporous channels (DAPA@MSN). Moreover, a CHP was

functionalized on the surface of DAPA@MSN (DAPA@MSN-

CHP). After intravenous injection of DAPA@MSN-CHP in a

mouse model of HF after MI, this DDS efficiently and precisely

accumulated in the HF site. DAPA-loaded MSNs have a slightly

negative charge under normal physiological conditions but

transform to a positive charge in the intracellular

microenvironment of apoptotic cardiomyocytes because of the

protonation effect under acidic conditions (Figure 1) (Wang

et al., 2020). The results indicate that our DDS can effectively

inhibit the apoptosis of cardiomyocytes, leading to viable

myocardium preservation and cardiac function augmentation,

laying a solid foundation for clinical HF repair.

2 Materials and characterization

Materials: Hexadecyltrimethylammonium bromide (CTAB),

decahydronaphthalene, 1-octadecene (ODE) were purchased

from Sigma-Aldrich. NaOH, cyclohexane and NH4NO3 were

obtained from Shanghai Chemical Co., Ltd. Ammonia aqueous

solution (28 wt%), tetraethyl orthosilicate (TEOS), (3-

Aminopropyl) triethoxysilane (APTES), triethanolamine

(TEA), decahydronaphthalene (98%) were purchased from

Aladdin Industrial Inc. All chemicals were used as received

without further purification.

Characterization: Transmission electron microscopy (TEM)

measurements were carried out on a JEM 2100F microscope

(Japan) operated at 200 kV. The samples were first dispersed in

ethanol and then collected by using copper grids covered with

carbon films for measurements. UV–vis–NIR absorption spectra

were measured on a Shimadz spectrophotometer (UV-3150)

(Japan) with wavelength range of 300 –1,200 nm, unless

otherwise specified, all spectra were collected under identical

experimental conditions. All animals underwent transthoracic

echocardiography under anesthesia at 4 weeks after treatment

using a VisualSonics Vevo 2,100 imaging system. The results

were obtained by detecting Si content with inductively coupled

plasma mass spectrometer in main organs.

2.1 Synthesis of mesoporous silica
nanoparticles loading with DAPA and
targeting peptides modification

2.1.1 Mesoporous silica fabrication
The mesoporous silica nanoparticles were synthesized as the

procedure reported previously. Briefly, 16 ml of (25 wt%) CTAB

solution and 90 mg of triethanolamine were added to 20 ml of

water and stirred gently at 60°C for 1 h in flask, then 1.5 ml of

TEOS and 1 ml of cyclohexane was added to the solution and

kept at 60°C with magnetic stirring for 24 h. The products were

collected by centrifuging and washed by water and ethanol for

several times, and then were dispersed in 30 ml of acetone and

refluxed for 8 h to remove CTAB templates. The final products

were washed with ethanol and dried in vacuum at 45°C for 8 h.

2.1.2 Loading of dapagliflozin (DAPA)
DAPA was dissolved in DMSO (2.0 ml). Mesoporous silica

nanoparticles (5.0 mg) were added to the solution and the

suspension was stirred at room temperature for 48 h. The

DAPA molecules could be adsorbed in the mesopore

channels. The as-prepared DAPA-loaded mesoporous silica

nanoparticles were collected by centrifugation. The amount of

the adsorbed guests was determined from the difference between

the initial amounts of DAPA by measuring the UV absorbance

from the supernatant liquid and quantified from a standard

curve.

2.1.3 Cardiac homing peptides modification
To functionalization of DAPA@MSN, 3.0 g of silica was

placed in a 100-ml round bottom flask with 50 ml of dry

toluene and 2.4 g of 3-aminopropyltriethoxysilane (APTES).

The mixture was stirred and refluxed at 110°C for 48 h under

the protection of nitrogen. The white 3-aminopropyl functional

silica washed with toluene, n-hexane and dichloromethane,

respectively, and dried at 25°C for 12 h.

2.1.4 DAPA@MSN-CHP fabrication
First, 20 mg CHP, 10 mg EDC and 8 mg NHS were dissolved

in 20 ml anhydrous DMF, and incubated at room temperature

overnight to activate the carboxyl groups of FA. Then, DAPA@

MSN with NH2 modification (20 mg) was added. The mixed

solution was allowed to react for 12 h, and the DAPA@MSN-

CHP were obtained by centrifugation at 12,000 rpm for 20 min,

and then washed with methanol three times.

2.2 In vitro cellular targeting and cell
viability of DAPA@MSN-CHP

2.2.1 Cell viability
All experiments were carried in 96-well plates. Cytotoxicity

of MSN-CHP was tested via CCK-8 assay. Briefly, the primary

cardiomyocytes isolated through enzymatic digestion were

seeded into plate at 5×103/well in 100 μL of DMEM/Low

glucose (10% FBS, 100 units/mL of penicillin and 100 μg/ml of

streptomycin), and incubated for 24 h. Then, 10 μL CCK-8

solution was added followed by12 h incubation. After 12 h

incubation, the absorbance of each well at wavelength of

450 nm was measured using a microplate reader. Data were

presented as mean ± SD (n = 3).
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2.2.2 CLSM images of cellular uptake
The cellular uptake of DAPA@MSN-CHP was observed

and imaged by confocal laser scanning microscopy (CLSM).

Briefly, primary cardiomyocytes were seeded into 6-well plates

at a density of 1×105/well with 1 ml of DMEM/Low glucose

(10% FBS, 100 units/mL of penicillin and 100 μg/ml of

streptomycin) media and incubated for 24 h. After the

treatment with DAPA@MSN-CHP, DAPA@MSN at a final

concentration of 100 μg/ml, the cardiomyocytes were

incubated for 12 h. Then, the cardiomyocytes were washed

with PBS for three times and DAPI (1 μg/ml in PBS) was

used to stain nuclei for 30 min prior to being observed

under CLSM.

2.2.3 Western-blot analysis
Cells were collected after 12 h incubation with PBS, DAPA,

DAPA@MSN, and DAPA@MSN-CHP. Samples containing

equal amounts of protein were electrophoresed using 10%

SDS-PAGE, transferred onto polyvinylidene fluoride

membranes and then incubated with specific primary

FIGURE 2
TEM image (A), magnification TEM image (B) and SEM image of the bi-phase prepared MSN (C). DLS result of size distribution of MSN (D). Zeta-
potential data of MSN, DAPA@MSN, MSN-CHP and DAPA@MSN-CHP (E). DAPA release curve of DAPA@MSN-CHP under different pH values (F). The
corresponding physical and chemical parameters of the DDS (G).
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antibodies. The blots were reacted with horseradish peroxidase-

conjugated secondary antibodies and were detected using the

enhanced chemiluminescence system (Santa Cruz

Biotechnology, Inc.). The density of the band was quantified

by densitometry and exposed to X-ray film (Eastman-Kodak,

Rochester, NY, United States) using GAPDH levels as a control.

2.3 In vivo HF repair capability of DAPA@
MSN-CHP

2.3.1 In vivo HF repair
Animal experiments were approved by the Animal Research

Ethics Committee of Shanghai Seventh People’s Hospital. Animal

experiments were performed according to the animal use and care

regulation and the animal management rules of the ministry of

health of the People’s Republic of China. C57BL/6mice (8–10 weeks

old) were bought from Shanghai Institute of Family Planning

Science Laboratory Animal management Department. (Shanghai,

China). All efforts were made to minimize animal suffering. The

myocardial ischemia model was constructed based on previously

reported works. A total of 70 male 8- to 10-week-old C57 mice were

used for this work (Luo L et al., 2016; Snider JC et al., 2021). For the

myocardial ischemia model construction, all mice were received

permanent coronary artery ligation. Mice were anesthetized with

160 mg/kg barbital sodium via intraperitoneal injection. Typically,

before preparing the surgical model, ventilation system after

endotracheal intubation is recommend to use when coronary

artery ligation can be successfully and routinely performing the

within 3 min. Subsequently, a 1.2 cm of small skin cut was

conducted over the left chest according previously reported. After

the dissection, both pectoral major andminormuscle retracted, then

the fourth intercostal space can be successfully observed.

Simultaneously, in order to open both the pleural membrane and

pericardium, a mosquito clamp was used to cut a small hole at this

intercostal space. When the clamp was slightly opened, partial heart

section was gently squeezed out through this hole. The coronary

artery ligation was carefully located, sutured, and ligated (from its

origin ≈3 mm) by a commonly used 6–0 silk suture. The surgical

ligation was confirmed successfully when the anterior wall from left

ventricular changed to pale. Immediately, the heart was put back to

form the intrathoracic space followed by air manual evacuation and

muscle and the skin closure through the previously used purse-string

suture. During the recovery durations, the mice were allowed to

breathe and carefully monitored, which was usually completed

within 3–5 min. The artificial respiratory aid was not allowed

during the recovery period. For the DAPA@MSN-CHP induced

therapy, the C57BL/6 mice with myocardial ischemia were divided

into four groups including the MI, DAPA, DAPA@MSN, and

DAPA@MSN-CHP. Meanwhile, health mice were set as control

group. Each group contained 4 mice. Each group contained 4 mice.

TheMI,MI +DAPA,MI +DAPA@MSN, andMI +DAPA@MSN-

CHP groups were treated with 100 μL of PBS, DAPA, DAPA@

MSN, and DAPA@MSN-CHP solutions via tail injection,

respectively one time every day for 3 days. Meanwhile, the

control groups were also received tail vein injection of PBS one

time every day for 3 days.

2.3.2 Cardiac function assessment
All animals underwent transthoracic echocardiography

under anesthesia at 4 weeks after treatment using a

VisualSonics Vevo 2,100 imaging system. During ultrasound

process, mice were anesthetized with 3% isofluorane via a

R500-Comapct Small Animal Anesthesia Machine (Shenzhen,

China). Hearts were imaged 2D in long-axis views at the level of

the greatest left ventricular diameter. Estimation of the function

and fractional shortening were determined by measurement

from views taken from the infarcted area. All measurements

were done in random order, with the surgeon and

echocardiographer being blind to the treatment groups.

2.3.3 Histopathological evaluation
Hearts were harvested and cut into 10 μm-thick tissue

sections. H&E and Masson’s trichrome staining of normal,

MI, DAPA, DAPA@MSN, and DAPA@MSN-CHP was

performed. Image analysis related to viable myocardium and

scar size was performed using NIH ImageJ software.

3 Results and discussion

3.1 DAPA@MSN-CHP fabrication and
characterization

MSNs were fabricated using a novel biphase approach in a

cyclohexane and water stratification system (Shen et al., 2014). The

biphase stratification approach enables hydrolysis precursors in the

interface. It conveniently regulates the nanoparticle assembly in the

biphase interface by adding or changing other reactants in two

different phases without affecting interfacial tension. The

hydrophobic upper layer consisted of 25% tetraethyl orthosilicate

(TEOS) solution in cyclohexane. The lower hydrophilic layer was a

pure water solution mixed with cationic cetyl trimethylammonium

cetyl bromide (CTAB) as the template and surfactant and 25%

organic weak base triethanolamine (TEA) as a reducing agent. The

dendritic hierarchical mesostructure with monodispersion was

obtained via continuous interfacial growth in a facile one-pot

strategy for 48 h (Figure 2A). A divergent mesoporous channel

could be observed in the magnification transmission electron

microscope (TEM) image (Figure 2B). The MSN pore size can

be altered by changing the type of hydrophobic solvent in the upper

layer.

The surface morphology of the MSN was also investigated

using a scanning electronmicroscope (Figure 2C). The properties

of the mesoporous channels and their uniform size were detected.

The size distribution of our MSNs were also estimated by
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dynamic light scattering (DLS). Results showed that the drug

delivery carriers had a narrow unimodal size distribution with a

~96.2 nm peak, suggesting superior dispersity and uniform

practical diameter (Figure 2D). Subsequently, the MSN surface

was modified with the amino group in the ethanol solution

through aminopropyltriethoxysilane hydrolysis. In the

following step, DAPA was encapsulated in the mesoporous

channels. Then, CHP could be anchored on the silica surface

by EDC/NHS reaction between the MSN amino group and the

carboxyl group of the targeting peptides.

FIGURE 3
CLSM images of DAPA@MSN-CHP and DAPA@MSN with 12 h incubation (A). Western blot result of HIF-1α expression in HF tissues and normal
tissue (B). Cell viabilities of cardiomyocytes toward MSN-CHP under hypoxia and normoxia conditions (C). Cell viabilities of cardiomyocytes after
different treatments in hypoxic conditions. Pure normoxia condition was set as the control group (D). Bax, cleaved Caspase-3, Caspase-3 and BCL-2
expressions of cardiomyocytes after different treatments under hypoxia conditions (E). All error bars represent mean ± SD (n = 4). Data analysis
was performed using one-way ANOVA, **p < 0 01, ***p < 0 001.
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Zeta potential of MSN presents ~ -25 mV, contributing to the

massive silicon hydroxyl group on the silica surface (Figure 2E).

Interestingly, compared with free MSN, DAPA@MSN exhibits a

weaker negative charge, mainly due to the positive charge of the

amino group modification. DAPA@MSN-CHP has a positive

charge in the aqueous solution, mainly because of the amino

group consumption after the condensation reaction. The

dominant positive charge of our DDS may originate from

CHP, which facilitates the endocytosis of the DDS. The

corresponding physical and chemical parameters of the DDS

are listed in Figure 2G, showing all the sizes fluctuate minimally

after drug loading or CHPmodification. Loading efficiency meets

theoretical efficiency estimations, further demonstrating that

MSNs are the ideal nanocarriers for drug delivery. Li ZX et al.

reported that small nanoparticles (< 200–300 nm) are normally

taken up by cells via the endocytic pathway. Particle size, particle

shape, and particle surface charge have a certain impact on the

endocytic uptake of cells. Generally, particles with small particle

size, rough surface and positively charged surface are more likely

to be phagocytosed by cells (Li et al., 2012). The characterization

results of the above materials suggest that DAPA@MSN-CHP

may have good biocompatibility thanks to its small nanoparticle

size, rough mesoporous surface, and positive charge

characteristics.

MI leads to changes in the microenvironment at the site of

cardiac injury. Constructing acidic pH-responsive DDS based on

the weakly acidic microenvironmental characteristics of lesions

can improve the value of drug utilization (Li et al., 2021). Finally,

we investigated the drug release ability of DAPA@MSN-CHP

under different pH conditions. Compared with the normal

pH value of ~7.2, 92.1% of DAPA can be released after 24 h

incubation in biological buffers with pH values of ~5.5

(Figure 2F). These results suggest that DAPA can

continuously release under the weak acid in the HF site after

MI which is beneficial to improve the utilization value of drugs.

3.2 In vitro investigation of DAPA@
MSN-CHP

Following the excellent performance of DAPA@MSN-CHP,

we then estimated the intracellular localization of DDS in

cardiomyocytes. DAPA@MSN and DAPA@MSN-CHP were

co-loaded with Fluorescein isothiocyanate (FITC) for intuitive

FIGURE 4
M-mode echocardiogram representative images of MI, MI + DAPA, MI + DAPA@MSN and MI + DAPA@MSN-CHP treatments. The healthy mice
were set as controls (A). Estimation of the function of MI hearts by ejection fraction (B) and fractional shortening (C) after MI, MI + DAPA, MI + DAPA@
MSN and MI + DAPA@MSN-CHP treatments. The healthy mice were set as controls. All error bars represent mean ± SD (n = 4). Data analysis was
performed via one-way ANOVA, **p < 01, ***p < 001.
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observation under a Confocal Laser ScanningMicroscope (CLSM).

They were then added to two groups of cardiomyocytes for 12 h

before CLSM observation. FITC signals at 550 nm were collected

under 488 nm excitation. As shown in Figure 3A, DAPA@MSN-

CHP presents stronger fluorescent spots than DAPA@MSN with

no targeted proteinmodification. The fluorescent spots of DAPA@

MSN-CHP were mainly localized in the cytoplasm. At present, the

target receptor of CHP and the mechanism of its specific targeting

to ischemic tissue are not yet clear, but CHP has been proved to

have good targeting delivery ability in a number of studies on

ischemic myocardial targeted substance delivery systems. In a gene

delivery study, Young-Wook Won et al. used CHP as a guide to

achieve increased gene expression in H9C2 cells under hypoxic

conditions (Won et al., 2013). Another study reported CHP as a

targeting peptide to increase the uptake of peptide-labeled

exosomes by oxidatively damaged H9C2 cells (Vandergriff

et al., 2018). Our findings also indicate the precise binding

ability of CHP to the receptor on the membrane of

cardiomyocytes.

Previous reports indicate that hypoxia also affects most sites of

heart diseases such as HF, cardiac arrest and heart attack

(Jianqiang et al., 2015; Amofa et al., 2017; Hesse et al., 2018).

The hypoxic conditions may originate from inadequate blood

oxygen concentration delivery following vessel impairment in

the damaged tissues. Furthermore, Hypoxia-inducible factor 1-α
(HIF-1α) promotes the adaptation to hypoxia-related stress

through increasing oxygen delivery and decreasing oxygen

consumption (Anand et al., 2007; Kumar et al., 2020; Nguyen

et al., 2021). Accordingly, H9C2 cells were treated with hypoxia,

and than the expression level of HIF-1αwas significantly increased
(Figure 3B), indicating the successful establishment of myocardial

hypoxia model. Based on this, we used the cardiomyocyte hypoxia

model to study the effect of DAPA@MSN-CHP in vitro.

We then explored cell viability of cardiomyocytes under

conditions of both normoxia and hypoxia based on our MSN-

CHP. Figure 3C shows negligible cytotoxicity with the DDS

concentration as high as 400 μg/ml in both normoxia and

hypoxia, compared with a control group. These findings

further demonstrate the superior biocompatibility of the MSN.

Cell viability of our DDS was also studied under various

conditions. Our DDS promoted significantly higher cell

activity in hypoxia (~77%). In contrast, only ~51%, 61%, 70%

of hypoxic cells survived in the solvent, DAPA, and DAPA@

MSN incubation conditions, respectively (Figure 3D). This result

derives from the efficient and precise release of our DDS. DAPA

successfully transported and gradually released the drug in the

weak acid intracellular microenvironment of HF cells in DAPA@

MSN-CHP. Simultaneously, western-blot results demonstrated

that our DDS improved the expression of cell survival-promoting

factor (BCL-2) while reducing the expression of apoptotic factors

Caspase-3 and BAX (Figure 3E). DAPA has been found to be

effective in reducing cardiotoxicity and inhibiting apoptosis

in vitro (Chang et al. 2022). Our results suggesting that the

precise targeted delivery of DDS enhanced the intervention effect

of DAPA on hypoxia-induced cardiomyocyte apoptosis.

3.3 In vivo HF repair capability of DAPA@
MSN-CHP

Since the targeting mechanism of CHP is not yet clear, the

in vitro results are insufficient to demonstrate the targeting ability

of DAPA@MSN-CHP. Therefore, we investigated HF repair

efficiency using an MI mice model. The MI model was

constructed with a temporary ligation of the left anterior

descending coronary artery for 0.5 h. These mice were divided

into four groups: pureMI, free DAPA, DAPA@MSN andDAPA@

MSN-CHP groups, with normal mice as the control group

(Figure 4A). Body distribution of DAPA@MSN-CHP results

shows that the novel DDS had the highest cardiac-targeting

efficiency compared with DAPA and DAPA@MSN

(Supplementary Figure S1). Studies have reported changes in

FIGURE 5
Representative H & E images (A)Masson’s trichrome stain images (B) of cardiac sections after MI, MI + DAPA, MI + DAPA@MSN andMI + DAPA@
MSN-CHP treatments. The healthy mice were set as controls.
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protein expression and protein distribution in cardiomyocytes

under ischemia and hypoxia conditions (Liu et al., 2014),

suggesting that the unknown receptor protein of CHP may

increase its binding to CHP through these changes to play a

specific targeting role. In the study of Young-WookWon et al. and

Adam Vandergriff et al., CHP as a component of a drug delivery

system was also reported to play an active role in targeting MI

tissue in vivo (Won et al., 2013; Vandergriff et al., 2018).

Studies have shown that DAPA reduces heart failure

exacerbations and improves symptoms in patients with heart

failure and reduced ejection fraction (Kosiborod et al., 2020).

After 1 month, the therapeutic efficiency of DDS was evaluated

by detailed echocardiography analysis. The heart functions were

carefully estimated by conventional M-mode echocardiography.

Compared with the healthy group, the interventricular septum of

the MI group without any administration became weak as septal

amplitude decreased, proving the persistent and serious avascular

necrosis in myocardium tissue. Compared with the no treatment

condition, the morphology of the myocardial layer gradually

improved in the echocardiogram image of the DAPA and

DAPA@MSN groups. DAPA@MSN-CHP treatment significantly

restored hearts, as shown by comparison with healthy hearts.

The conventional indicators of heart function were

subsequently evaluated. The ejection fraction values of the left

ventricle in normal, MI, DAPA, DAPA@MSN and DAPA@

MSN-CHP groups were 69.2%, 22.3%, 44.6%, 50.8% and

63.1%, respectively (Figure 4B). Similar trend was also

detected in the ultrasound photographs of whole heart that

MI + DAPA@MSN-CHP displayed most effective MI repair

capability with highest ejection fraction values (Supplementary

Figure S2). The fractional shortening values of the left ventricle in

healthy, MI, DAPA, DAPA@MSN and DAPA@MSN-CHP

groups were 42.3%, 12.3%, 24.8%, 29.7% and 37.6%,

respectively (Figure 4C). In contrast with the MI, DAPA, and

DAPA@MSN groups, the DAPA@MSN-CHP treatment resulted

in optimal performance in restoring both ejection fraction and

fractional shortening. There was no significant difference

between the normal group and the DAPA@MSN-CHP

groups, demonstrating the superior repair capability of the DDS.

3.4 Histopathological evaluation of
DAPA@MSN-CHP for HF repair

In the process of heart failure, pathological changes in cardiac

tissue occur, mainly manifested as myocardial remodeling and

inflammatory infiltration (de Boer et al., 2019). After various

administrations, heart sections were stained with hematoxylin

and eosin (H & E). The DAPA@MSN-CHP administration

group was similar to the healthy mice and demonstrated a

normal histoarchitecture with intact myocardial membranes,

similar oval nuclei and regular cross striations (Figure 5A). In

FIGURE 6
H&E-stained photographs ofmajor organs after 3 days treatment of PBS andMSN-CHP (A). Blood biochemistry results fromPBS andMSN-CHP
treated mice, respectively (B).
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contrast, other groups showed histological alterations with

myocardial separation and few scattered inflammatory cells.

These atypical pathological phenomena were mainly caused

by inflammatory leukocytes and wavy fibers. Masson’s

trichrome staining of heart tissue was also used to validate the

associated collagen deposits and fibrotic transformation

associated with MI. Pure MI, DAPA, and DAPA@MSN

showed thick and dense interstitial collagen fibrils (blue)

related to necrotic myocytes. DAPA@MSN-CHP and control

groups exhibited normal heart histoarchitecture with slight

interstitial collagen fibrils stained with blue (Figure 5B). All

histopathological examination results demonstrated the

superior therapeutic efficiency of MSN-based DDS to repair

cardiac function following MI.

3.5 Biocompatibility evaluation in vivo

Finally, we herein evaluate the systematic toxicity of our

MSN-based DDS via H&E tissue staining analysis and blood

biochemistry assesement. The tissue of main orans including

heart, liver, lung, spleen and kidney were dissected after the tail

vein injection of MSN-CHP and then they were stained by H&E.

As shown in Figure 6A, there was ignorable tissue damage in MI,

DDS treated group, as compared with the control group (normal

mice), testifying the superior biocompatibility of our MSN-based

nanocarriers. For the blood biochemistry analysis, as displayed as

liver functional makers including ALT (alanine

aminotransferase), AST (asparatate aminotransferase), ALP

(alkaline phosphatase), TBIL (total bilirubin), BUN (Blood

urea nitrogen) and CRE (creatinine), no any variations of

hepatic toxicity were found after MSN-CHP administration

(Figure 6B). As indicator for heart muscle damage, CK

(creatine kinase) value in the blood of MSN based DDS

treated mice was also maintained at normal level (Figure 6B).

The above results provide a validation that MSN-based

nanocarriers bore no remarkable side effect in vivo.

4 Conclusion

We developed a straightforward approach to fabricate

biocompatible and monodispersed MSNs of negligible toxicity.

Their large surface area facilitated the DAPA encapsulation in the

mesoporous channel, and the nanocarrier surface was then

functionalized for cardiac-targeting peptides. The DDS was

highly efficient in MI region in HF, and the DAPA could be

precisely released in the hypoxic, apoptotic and weak acid

intracellular environment. DAPA@MSN-CHP demonstrated

optimal therapeutic efficiency toward MI model mice, restoring

the MI hearts and making them comparable with those of the

healthy group. MSN-based DDS provides a possible application of

precise and effective repair of MI in clinical.
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Diagnosing and treating glioblastoma patients is currently hindered by several

obstacles, such as tumor heterogeneity, the blood-brain barrier, tumor

complexity, drug efflux pumps, and tumor immune escape mechanisms.

Combining multiple methods can increase benefits against these challenges.

For example, nanomaterials can improve the curative effect of glioblastoma

treatments, and the synergistic combination of different drugs can markedly

reduce their side effects. In this review, we discuss the progression and main

issues regarding glioblastoma diagnosis and treatment, the classification of

nanomaterials, and the delivery mechanisms of nanomedicines. We also

examine tumor targeting and promising nano-diagnosis or treatment

principles based on nanomedicine. We also summarize the progress made

on the advanced application of combined nanomaterial-based diagnosis and

treatment tools and discuss their clinical prospects. This review aims to provide

a better understanding of nano-drug combinations, nano-diagnosis, and

treatment options for glioblastoma, as well as insights for developing new tools.

KEYWORDS

glioblastoma, glioma, tumor targeting, nanomaterial, blood-brain barrier

1 Introduction

Glioblastoma (GBM) is a general term for tumors derived from glial cells and

neuronal cells. It is the most common malignant tumor in the brain, accounting for

40%–50% of all intracranial tumors (Chen et al., 2017). The World Health Organization

(WHO) classifies gliomas by cell type: astrocytoma, glioblastoma, and oligodendroglioma,

and by malignancy grade (WHO I, II, III, IV). In 2021, the WHO CNS5 updated the

molecular biomarkers for different tumor types, bringing more benefits and meaningful

guidance to clinical practice. The WHO CNS5 has taken a new approach to classifying

gliomas, glioneuronal tumors, and neuronal tumors, dividing them into six families:

adult-type diffuse gliomas, pediatric-type diffuse low-grade gliomas, pediatric-type diffuse

high-grade gliomas, circumscribed astrocytic gliomas, glioneuronal and neuronal tumors,

and ependymomas (Louis et al., 2021). At present, temozolomide chemotherapy

combined with radiotherapy after maximum feasible resection is the primary clinical
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treatment for adult primary GBM. With the emergence of many

targeted therapies, bevacizumab and programmed death -1 (PD-

1) have also been used in the standardized treatment of GBM

(Khasraw et al., 2012; Cloughesy et al., 2019; Zhao M. et al., 2020;

Detti et al., 2021). However, GBMs grow infiltratively and are not

clearly demarcated from normal tissues. They are, therefore,

difficult to completely remove surgically and have high

recurrence rates. Meanwhile, the blood-brain barrier (BBB), a

highly selective semipermeable structural and chemical barrier

(Cai et al., 2018), hinders drug delivery to the brain. Thus, drugs

rarely reach effective therapeutic concentrations at the tumor

site, limiting the effect of radiotherapy and chemotherapy. Due to

these obstacles, GBMs have high mortality rates. To overcome

this, nanomaterials have been used as a new treatment modality.

They have many interesting characteristics, such as small size and

targetable transport, making them good delivery tools for drugs,

genes, or proteins across cells or the BBB.

Nanomaterials are materials with at least one dimension in

the three-dimensional space in the nanoscale or composed of

such materials as basic units. Nanomaterials have small particle

sizes, controllable texture, and strong plasticity. In GBM

treatment, nanomaterials are mainly used as carriers for

radiotherapy and chemotherapy drugs (Zhao M. et al., 2020),

helping drugs cross the BBB and maintain the necessary blood

drug concentration. Additionally, nanomaterials can cause

tumor cell necrosis by affecting the tumor microenvironment

(Zanganeh et al., 2019). For example, a nanocomposite drug

consisting of a polyglycerol functionalized doxorubicin-

containing nanodiamond was designed to re-adjust the

inhibitory glioblastoma immune microenvironment. This

nanocomposite provided GBM with immunosuppressive

microenvironment by activating autophagy. This rebuilding

promoted the anti-GBM immune response and strengthened

the activation of dendritic cells (Li et al., 2019).

The primary purpose of nanomaterials is to improve the

solubility, stability, and effective concentration of drugs and

reduce their systemic toxicity (Zhao M. et al., 2020). The

main nanomaterials used in current research are nanoparticles

(NPs). They can be inorganic, polymeric, or bionic. Each type has

its advantages. Inorganic NPs, for example, are highly stable, and

their physical and chemical properties can be adjusted by using

suitable materials and sizes (Bharti et al., 2019). In addition,

polymeric nanoparticles can encapsulate drugs by electrostatic or

covalent bonding, maintaining their blood concentration and

thereby improving the bioavailability of drugs. Most importantly,

modified polymeric NPs can aggregate at specific sites.

Biomimetic nanocomposites have higher biological stability

and can escape the immune system, allowing drugs to act on

the target continuously without being cleared by the liver and

kidney. Besides nanoparticles, other nanomaterials (e.g.,

liposomes, quantum dots, cellular and extracellular vesicles, or

virus-like particles) are frequently used in GBM treatment

research.

The emergence of nanomaterials has brought opportunities

for the diagnosis and treatment of GBM, and their various

characteristics can help overcome the current clinical

challenges of GBM. Here, we review the current progress on

the applications of nanomaterials in GBM treatment research to

provide insights for developing new nano-drug combinations,

nano-diagnosis, and GBM treatment schemes.

2 Blood brain barrier and delivery
mechanism of nanomaterials

2.1 Blood brain barrier

The blood-brain barrier (BBB) is a specialized structure

within the central nervous system that acts as a physical and

metabolic barrier restricting transport between the blood and

neural tissues. It consists of brain microvascular endothelial

cells, pericytes, astrocytes, neurons, and a basement membrane.

This physical barrier protects the brain and maintains the

stability of the intracranial environment. The excellent

barrier properties of the BBB protect the brain from harmful

macromolecules and pathogens present in the blood (Xie et al.,

2019). However, this barrier also hinders traditional drug

delivery and affects drug efflux. Currently, most small-

molecule drugs and almost all macromolecular drugs (e.g.,

recombinant proteins, therapeutic antibodies, and nucleic

acids) cannot cross the BBB (Baratta, 2018). Thus, more and

more researchers pay attention to nanomaterials, as shown in

many clinical trials on the diagnosis and treatment of GBM

(Dong, 2018). The delivery mechanisms of nanomaterials can

be divided into passive targeting and active targeting (Zhao M.

et al., 2020).

2.2 Passive targeting

In passive targeting, a drug of a specific size is injected

through the BBB into the abnormal, porous vascular

endothelium of the tumor. Since the tumor vascular

endothelium lacks appropriate drainage, the drug remains in

the tumor area for a long time. This phenomenon is also known

as the enhanced permeability and retention (EPR) effect and

was first proposed by Matsumura and Maeda in 1986

(Matsumura and Maeda, 1986). However, current studies

have shown that the EPR effect is unstable and varies

significantly among different tumors. Besides, the EPR effect

achieved in rodent models cannot be reproduced clinically

because human tumors have heterogeneity or lack

fenestrations in the tumor endothelium, acidic and anoxic

areas, low and heterogeneous pericyte coverage, and high

interstitial fluid pressure induced by a dense extracellular

matrix (Danhier, 2016).
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2.3 Active targeting

Active targeting is a non-invasive approach that involves

transporting drugs to target organs using site-specific ligands. In

particular, drug-loaded nanocarriers that can target brain

capillary endothelial cells and brain tumor cells show potential

in oncology (Béduneau et al., 2007). In active targeting,

nanocarriers enter cells by taking advantage of ligand-receptor

interactions. So far, active targeting nanomaterials have been

applied to the diagnosis and treatment of various malignant

tumors, such as liver cancer, lung cancer, and lymphoma (Falgàs

et al., 2020; Kaps and Schuppan, 2020). Developing active

targeting nanomaterials able to cross the BBB requires

understanding how to use the brain capillary endothelium.

Nevertheless, the active targeting of the BBB represents a

promising non-invasive strategy for improving anti-

glioblastoma drug delivery (Miranda et al., 2017). Active

targeting can be further subdivided into adsorptive-mediated,

carrier-mediated, receptor-mediated, and cell-mediated delivery,

which target cells in different ways.

2.3.1 Adsorptive-mediated delivery
Adsorptive-mediated endocytosis (AMT) can deliver drugs

to the brain through the BBB by allowing cationic molecules to

bind to and be adsorbed onto the surface of the endothelial cell

lumen. Adsorption-mediated transcytosis is initiated by the

electrostatic interaction between positively charged ligands

and negatively charged cell membranes. Nanocarriers then

enter cells through clathrin-dependent endocytosis (Patel

and Patel, 2017). Cationic proteins combined with cell-

penetrating peptides (CPPs) can improve transport. With

their short amino acid sequence, CPPs can interact with cell

membranes and pass through cell membranes by energy-

dependent and energy-independent mechanisms. Studies

have shown that cationic CPPs have significantly more flux

to the brain parenchyma than amphiphilic CPPs in vivo

(Komin et al., 2017). Due to electrostatic interactions,

cationic CPPs are easily captured by intracellular organelles

to some extent. The drug-CPP linkage type substantially affects

their ability to cross the BBB. Liu et al. (2014) compared the

effects of amide, maleimide, and disulfide linkers linking the

endorphin 1 to the CPP synB3 on BBB crossing efficiency. The

disulfide linkage was the most efficient, and it was able to

release the free drug in the brain. The adsorption-mediated

transcytosis combined with a targeting strategy can effectively

improve the EPR effect and reduce nonspecific uptake.

Srimanee et al. (2018) developed a non-covalent CPP-

targeting peptide (CPP-TP) complex with the CPP PepFect

14 and a hexaglutamate-modified angiopep-2 (ANG), as a

targeting peptide. This complex showed enhanced

penetration ability and glioblastoma cell specificity as an

siRNA carrier. During the last decades, nanoparticles with

various compositions have been developed, such as polymeric

nanoparticles (PPs), gold NPs, gadolinium NPs, selenium NPs,

or protein-based NPs (Gupta and Sharma, 2019).

2.3.2 Carrier-mediated delivery
Carrier-mediated delivery is initiated by combining a

designed nanocarrier and a specific transporter protein

(Bourganis et al., 2018). This drug delivery system consists of

nanocarriers (such as liposomes, NPs, polymeric micelles,

dendrimers, or polymersomes) and ligands for various

receptors, including transferrin receptor (TfR), lactoferrin

receptor (LfR), low-density lipoprotein receptor (LDLR), and

folate receptor (FR) (Chen et al., 2014; Wang et al., 2015).

Ligand-modified drug carriers deliver drugs to the receptor-

containing target cells like “guided missiles” (Liu et al., 2021).

Based on transport direction and substrate, transport modes

can be divided into three categories: 1) The system pumping

blood into the brain, which transports essential nutrients to the

brain, including glucose, amino acids, and nucleotides. 2) The

drug efflux pumps expelling exogenous substances out of the

peripheral circulation to prevent them from entering the brain. 3)

The efflux system from the brain to the blood, which mainly

removes metabolic waste and neurotoxic substances in the

interstitial fluid of the brain. Among them, the pumping

system is the breakthrough point of carrier-mediated delivery.

Nanocarriers going through the pumping system are generally

designed as nutritional analogs with a high affinity for

transporters, so their molecular weight is generally small. Cell-

mediated delivery can be used in anticancer therapy (Naik et al.,

2021). For example, Naik et al. (2021) developed doxorubicin-

containing liposomes and confirmed that conjugating these

liposomes with a ligand mimic increased their antiproliferative

activity on cancer cells overexpressing the corresponding

receptor.

2.3.3 Receptor-mediated delivery
Targeting receptors that mediate endocytosis allows more

robust targeting than with adsorption-mediated and carrier-

mediated delivery because of the high specificity of the ligand-

receptor interaction. In one study, cationic liposomes loaded with

temozolomide were encapsulated in a multilayer crown of

plasma proteins with a natural affinity for the folic acid (FA)

receptor, which is highly expressed in the BBB (Tang et al., 2021).

In an in vitro BBB model, these cationic liposomes with

multilayered biomolecular crowns exhibited high ingestion by

endothelial cells of human umbilical vein, which promoted the

anticancer effect of temozolomide in U-87 MG cells (Arcella

et al., 2018). Mram Alho et al. (Ramalho et al., 2018) developed

stable polylactic acid-co-glycolic acid nanoparticles

functionalized with the OX26 monoclonal antibody for the

transferrin receptor. These nanoparticles delivered

temozolomide, an anti-glioma agent.

Up to now, researchers have used many ligands of receptors

on the BBB or glioma cells as targeting moieties for BBB
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crossover and/or glioma-targeted drug delivery, such as peptides

(Wang et al., 2015). In addition, more and more studies have

proved that BBB/glioma-specific targeting nanocarriers can help

drugs selectively target glioma cells, increasing their therapeutic

efficiency while reducing systemic toxicity (Wang et al., 2017;

Ramalho et al., 2018). Receptor-mediated drug delivery may

allow membrane-impermeable drugs to penetrate target cells

and activate natural signaling cascades (McPherson et al., 2001).

Besides directly targeting tumor surface receptors, the

receptor-mediated pathway includes three important steps,

including the formation of ligand-receptor complexes,

transport through the cytoplasm of endothelial cells, and

extracellular secretion outside the base of the BBB (Azarmi

et al., 2020). In the second step, the lysosomal system may

threaten the integrity of the drug. This can be bypassed by

using cationic molecules and pH-sensitive drug carriers (Shir

et al., 2006). However, receptor-mediated transfer also faces some

problems. The high affinity leads to strong interactions between

multiligand receptors on the lumen side of the BBB, limiting the

entry of therapeutic molecules into the brain parenchyma. By

contrast, using ligands with lower affinities can lead to higher

drug release into the brain, but this requires administering higher

doses, which is usually not applicable (Clark and Davis, 2015).

2.3.4 Cell-mediated delivery
In recent years, cell-mediated transcytosis has received

increasing attention because immunogenicity and instability

can hinder the use of antibodies and peptides (Yu et al.,

2016). Neural stem cells, mesenchymal stem cells, neutrophils,

macrophages, and exosomes, among others, have an intrinsic

tumor-homing ability, allowing them to target malignant GBMs

for drug delivery (Cho et al., 2019). Neutrophils have been widely

studied in the treatment of brain tumors, especially for the

treatment of postoperative recurrent tumors. For example,

inspired by the ability of macrophages to cross the BBB,

Tingting et al. encapsulated catalase into silica nanoparticles

to produce a nanoplatform called CAT@SiO2-ICG (CSI). Next,

they further encapsulated CSI into AS1411 aptamer-modified

macrophage exosomes to form CSI@Ex-A (Wu et al., 2022)

(Figure 1). Similarly, recent studies have confirmed that cell-

mediated delivery systems can contribute to the clinical

treatment of gliomas. Xue et al. (2017) have shown that

neutrophils carrying liposomes that contain paclitaxel, can

penetrate the brain and inhibit GBM recurrence in mice

whose tumors have been surgically removed. Similarly, one

study demonstrated that the dendritic cell-mediated delivery

of doxorubicin-polyglycerol-nanodiamond composites

stimulated GBM cells immunogenicity and elicited an anti-

glioblastoma immune response (Li et al., 2018). These

researches have revealed the feasibility of cell-mediated

delivery for GBM treatments and laid the foundation for a

translational study of this therapeutic paradigm to improve

clinical outcomes in patients with malignant brain tumors.

2.4 Nano-assisted GBM diagnosis

Besides treating tumors, nanomaterials can be used in

combination with imaging modalities, such as computed

tomography (CT), functional magnetic resonance imaging

(FMRI) (Richiardi et al., 2011), and positron emission

tomography (PET) (Fink et al., 2015) to increase the

FIGURE 1
Delivery mechanism of nanomaterials.
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sensitivity and accuracy of tumor detection. Moreover,

ultrasound (Imbault et al., 2017) and fluorescence imaging (Li

et al., 2017) have been widely used in the clinical diagnosis and

treatment of GBM. First, under normal physiological conditions,

the physical and chemical barriers of BBB can efficiently

transport necessary particles to human brain and selectively

discharge harmful or excessive materials (Wu et al., 2019).

Under pathological situations, practically all kinds of

macromolecular drugs (proteins, antibodies, peptides,

developers, etc.,) and small molecular drugs can pass through

the BBB (Umlauf and Shusta, 2019). Although multiple brain

tumor diagnosis strategies exist, their various limitations have

affected their efficacy in the diagnosis of GBM. Second, the

perpetual drainage and circulation of blood-cerebrospinal fluid

and interstitial fluid stopmost macromolecules from entering the

bloodstream and diagnostic drugs from entering the brain.

Moreover, tumor-acquired characteristics of the brain prevent

drug from penetrating into tumors. In particular, tumor-induced

endothelial cell tight junction damage increases drug penetration,

leading to a heterogeneous distribution (Groothuis, 2000; Roose

et al., 2003; Arvanitis et al., 2020).

Magnevist, an extensively used clinical contrast agent, plays

an important role in evaluating tumors and their recurrence in

magnetic resonance imaging (MRI) (McDannold et al., 2012;

Kim, 2020). However, due to its short half-life, maintaining a

sufficient concentration in the tumor requires repeated high-dose

injections. Vascular leakage (Zhao H. L. et al., 2020),

pseudoprogression (Brandsma et al., 2008), and

pseudoreaction (Batchelor et al., 2007; Dhermain et al., 2010)

after radiotherapy or anti-angiogenesis therapy also affect MRI

accuracy. Besides, magnetic resonance spectroscopy and PET are

often used to quantify and describe the development of cerebral

tumors. Integrated with tracers and positron radionuclides in

existence, they will achieve evaluable and reliable tissue

autoradiography (Kratochwil et al., 2019), providing important

information needed in diagnosis on tumors. But it is the

requirements for accurate diagnosis of cerebral tumors that

still cannot meet. In response to these hurdles (substandard

specificity and accuracy, ephemeral contrast agent half-life,

large requirement for imaging, etc.,), and to improve imaging

sensitivity in diagnosis, nanoparticles have been developed.

2.4.1 Nanomaterials for MRI
The properties of nanomaterials greatly help overcome the

difficulties faced by traditional radiographic agents. For example,

Self-assembled nanoparticles of amphiphilic gadolinium chelates

show extremely high Gd3 + loading capacity for enhanced

imaging (Othman et al., 2011). Coupling gadolinium to

interleukin 13 (Li et al., 2015), an arginine-glycine-aspartate

(RGD) peptide (Zhan et al., 2010; Sun et al., 2014; Richard

et al., 2017), an epidermal growth factor receptor (EGFR)

mutant antibody (EGFRvIII) (Hadjipanayis et al., 2010) or

anti-gd2 antibody (Shah et al., 2013) can markedly enhance

tumor targeting. Gadolinium metal fullerene nanoparticles

have a cage surface charged by amino (-NH3+), showing

incredible 1H MR relaxation. These data suggest that

composite nanoprobes can serve as alternatives to magnetic

resonance contrast agents (Lajous et al., 2018). The clinical

applications of nanodiagnostic agents consisting of other

magnetic materials especially iron and manganese, have also

been researched. Superparamagnetic iron oxide nanoparticles

(SPIO) have been paid tremendous clinical attention due to their

magnetic properties. For example, the tungsten-doped iron oxide

crystal (WFe) contrast agent has a sterling T1-weighted effect.

The WFe nanoparticles possessed high average T1, 22% shorter

than that of ferritin at the injection site (Clavijo Jordan et al.,

2014). In addition, the superparamagnetism of SPIO is beneficial

to the aggregation of the magnetic target. For example, the

synergistic release of SPIO by focused ultrasound and

magnetic targeting notably increases its accumulation in the

brain parenchyma (Lee et al., 2019). In addition, modifying

SPIO with a brain tumor-targeting peptide cRGD (Richard

et al., 2017), a targeting antibody EGFRvIII (Hadjipanayis

et al., 2010), or the targeting toxin chlorotoxin (Stephen et al.,

2014) can enhance its tumor-targeting specificity. Finally,

manganese, chelated with albumin-binding molecules, has

been evaluated as a new contrast agent in both subcutaneous

and in situ brain tumor models (Zhou et al., 2019).

2.4.2 Nanomaterials for CT imaging and Surface
Enhanced Resonance Raman Scattering

Gold nanoparticles have incredible biosafety properties and

are readily synthesized. Thus, a series of gold NPs with Surface

Enhanced Resonance Raman Scattering (SERRS) signals were

developed to guide brain tumor resection (Saha et al., 2012;

Karabeber et al., 2014). These nanoparticles show strong signal

intensity in SERRS after 24 h of injection, yielding a clear tumor

contour. Besides gold nanoparticles, a new PET/CT imaging

reagent named 68galliumBNOTA-PRGD2 (68 Ga-PRGD2)

showed some GBM diagnosis success (Li et al., 2014). Since

GBM cells overexpress avb3, the target integrin of 68 Ga-PRGD2,

the nanoparticle accumulates in GBM cells. The sensitivity and

specificity of 68 Ga-PRGD2 for GBM grading were respectively

12% and 25% superior to those of the clinical PET/CT agent 18F-

fluorodeoxyglucose (FDG). Moreover, Zhao et al. (2016) used the

integrin a5b1 to enhance the specificity of 99mTc-HisoDGR

SPECT/CT probes. 99mTcHisoDGR yielded precise contours

in subcutaneous and in situ models 1.5 and 2 h after injection,

respectively.

2.4.3 Nanomaterials for optical imaging
Currently, fluorescence imaging surgery guidance is widely

used in clinical practice. Nanoparticles can be used as fluorescent

dye carriers or fluorescent dyes to enhance optical imaging,

dramatically reducing the failure rate of surgery (Wu et al.,

2019). Several nanoparticles, including liposomes and polymer

Frontiers in Chemistry frontiersin.org05

Yu et al. 10.3389/fchem.2022.1063152

56

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1063152


NPs, can effectively deliver live imaging fluorescent dyes to brain

tumor sites during the operation. Indocyanine green, a near-

infrared fluorescent probe approved by the FDA, is widely used

in tumor tracking and photothermal therapy. Liposome

nanoparticles (LP-iDOPE) combined with VEGF-bevacizumab

can enhance brain tumor imaging. One day after injection and

before surgery, LP-iDOPE enhanced tumor localization

(Suganami et al., 2015). Biodegradable polymers, such as

polyalkylcyanoacrylate (Vauthier et al., 2003) and poly (lactic-

co-glycolic acid) (Han et al., 2016; Guan et al., 2017; Orunoğlu

et al., 2017), are widely used to prolong the retention period of

nanoparticles in vivo. Besides, polymer nanoparticles can load

cerebral tumor targeting particles like chlorotoxin or anti-

PDGFRD antibody (Monaco et al., 2017). A novel optical

contrast agent with good biocompatibility was developed by

modifying a polymer nanomatrix with fluorescent dyes and

silver nanosheet clusters. The contrast of these nanoparticles

was 90% higher than that of the control (Ray et al., 2014).

Being activated by light at a particular wavelength, some

nanoparticles can emit light at another (such as quantum dots

(Liu M. X. et al., 2017; Tang et al., 2017) and upconversion

luminescent materials (Wang et al., 2020)), making them ideal

fluorescent dyes for cancer targeting and imaging. Quantum dots

are widely used for biological imaging diagnosis due to their

excellent water solubility, low fluorescence quenching rate, high

fluorescence quantum yield, and stable chemical properties (Wu

and Yan, 2013). Thus, quantum dots modified with tumor-

targeting molecules can achieve specific biological imaging.

Moreover, near-infrared technology can increase their

fluorescence and Raman signals by several orders of

magnitude (Gill and Le Ru, 2011), making them more

sensitive for imaging in preclinical and clinical studies.

Upconversion nanoparticles have considerable light stability,

no fluorescence scintillation, deep tissue penetration, and low

light damage effects (Gu et al., 2013; Liu et al., 2021; Mohan and

Poddar, 2021), making them promising in vivo imaging probes

(Idris et al., 2012; Yang et al., 2012). However, although these

nanoparticles have strong tissue penetration ability, they cannot

penetrate brain tissue like traditional fluorescent dyes (Li and

Wang, 2018). To overcome this problem, research on second

near-infrared transparent window (NIR-II, 1,000–1700 nm)

fluorescent nanoprobes has gradually developed. NIR-II

fluorescent nanoprobes have a stronger ability to penetrate

tissues and achieve higher image fidelity. Ag2S quantum dots

are one of the typical NIR-II fluorescent probes. Coupled to cyclic

RGD peptides, the biocompatible NIR-II Ag2S fluorescent probe

can achieve targeted labeling and imaging of U87 cells (Zhang

et al., 2012). Considering the enhanced penetration depth of

fluorescence signals, Qi et al. (2018) further analyzed the tissue

penetration depth of NIR-II imaging probes. Near-infrared

aggregation-induced emission under excitation with a

1,300 nm NIR-ii laser allowed the group to observe 5 mm

blood vessels at a depth of 1,065 mm in the brain.

2.4.4 Nanomaterials for multimodal imaging
Since each diagnostic method has its own advantages and

disadvantages, combining different diagnostic methods can

optimize the outcomes. The development of dual-mode

imaging nanoparticles has majorly impacted biomedical

research. Angiopep-2 (ANG, TFFYGGSRGKRNNFKTEEY)

coupled with upconversion dual-mode imaging nanoparticles

(ANG/PEG-UCNPs) and Gd were constructed for targeting

GBM. Compared with non-ANG and Gd-DTPA imaging, the

nanoprobe yielded a significantly enhanced T1-weighted

magnetic resonance contrast for glioblastoma. T2-weighted

MRI also shows great potential for identifying clear

glioblastoma borders (Ni et al., 2014). These results confirmed

the advantage of MRI combined with fluorescent nanoprobes in

GBM diagnosis. However, although dual-mode imaging

improves the accuracy of high-resolution information, it still

does not achieve overall tumor visualization. To improve the

diagnosis accuracy and sensitivity, various imaging nanoparticles

have been explored. For example, gold silicon-based SERS

nanoparticles were used for three-mode imaging applications,

where gold NPs were encapsulated by Gd3+ ions. MRI,

photoacoustic imaging, and SERS showed clear tumors. The

three-dimensional rendering of the magnetic resonance and

photoacoustic images showed good co-expression signals in

the tumor (Kircher et al., 2012; Neuschmelting et al., 2018).

2.4.5 Summary
Traditional GBM diagnosis faces some tough obstacles, such

as the BBB and tumor heterogeneity. Although nanotechnologies

have solved these problems to a certain extent, single-dimension

diagnosis remains extremely limited due to the complexity of

GBM. Combining multiple diagnostic methods will become a

critical research field. Therefore, it is essential to construct

various nanomaterials meeting the requirements for multi-

mode combinations. Table 1 lists existing diagnosis

nanomaterials and their related mechanisms.

2.5 Nano-assisted GBM therapy

2.5.1 Ferroptosis
Ferroptosis is an iron-dependent programmed cell death

distinct from apoptosis, necrosis, pyroptosis, and autophagy

(Bogdan et al., 2016; Zheng et al., 2017; Shen et al., 2018;

Zhang et al., 2020). Excessive iron reacts with hydrogen

peroxide (H2O2), generating hydroxyl radicals and singlet

oxygen in cells (this process is known as the Fenton reaction).

High hydroxyl radical levels eventually lead to cytotoxic lipid

peroxidation. Since ferroptosis and apoptosis are radically

different in mechanism and phenotype, combination therapy

targeting these two processes may be a strategy for treating GBM.

Based on this idea, Yulin et al. proposed an innovative local

chemotherapy approach. They constructed iron oxide
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nanoparticles (IONPs) based on gene therapy to treat patients

with glioblastoma via ferroptosis and apoptosis after surgery. By

modifying the porous structure of carboxyl-linked IONPs, they

co-transferred small interfering RNA (siGPX4, targeting

glutathione peroxidase 4) and cisplatin with a high drug

loading efficiency. During intracellular degradation, IONPs

markedly increased iron (Fe2+ and Fe3+) levels and activated

reductive nicotinamide adenine dinucleotide phosphate

(NADPH) oxidase (NOX), increasing H2O2 levels. The Fenton

reaction between Fe2+, Fe3+, and intracellular H2O2 produced

reactive oxygen species and initiated ferroptosis, while cisplatin

destroyed nuclear and mitochondrial DNA, leading to apoptosis.

Simultaneously, si-GPX4 was released, inhibiting

GPX4 expression and produced a synergistic effect through

mechanisms related to ferroptosis. Therefore, this system

achieved an excellent therapeutic effect and low systemic

toxicity both in vitro and in vivo (Zhang et al., 2020).

2.5.2 Gene therapy
Gene therapy is a potential method for the treatment of GBM.

In this context, nanomaterials are mainly used as carriers for genes

designed to treat tumors. The designed genes can be suicide genes

(that convert nontoxic prodrugs into cytotoxic drugs),

immunoregulatory genes (that stimulate the immune system),

or tumor suppressor genes (Dixit and Kumthekar, 2017). In

addition, Qiang et al. constructed lipid-polymer hybrid

nanoparticles (LPHNs-cRGD) to efficiently and specifically

deliver a CRISPR/Cas9 plasmid targeting the temozolomide

resistance gene O-6-methylguanine-DNA methyltransferase

(MGMT). To facilitate the entry of the genes into the GBM in

vivo, they non-invasively and locally gained access into the BBB

using focused ultrasound microbubbles. The nanocarrier

successfully mediated the transfection of pCas9/MGMT,

downregulating MGMT expression and increasing the

sensitivity of GBM cells to temozolomide (Yang et al., 2021).

TABLE 1 Nanomaterialbased diagnostic for glioma.

Application Nanomaterial Highlight

MR imaging Self-assembling nanoparticles of amphiphilic gadolinium
chelates

High loading capacity of Gd3+ ions, enhanced imaging effect

conjunction of gadolinium with interleukin (IL)-13, the
arginine–

Significantly enhanced tumor targeting ability

Glycine–aspartic acid (RGD) peptide, the epidermal growth
factor receptor (EGFR) deletion mutant (EGFRvIII) antibody or
the anti-GD2 antibody

Gadolinium metallofullerene nanoparticles Excellent 1H MR relaxivity

Tungsten doped iron oxide crystal Excellent T1-weighted effect

Superparamagnetic iron oxide nanoparticles Magnetically controlled target accumulation

SPIO with brain tumor targeted peptides cRGD, targeted
antibody EGFRvIII and targeted toxin chlorotoxin (CTX)

Specific targeting in tumors

Surface Enhanced Resonance Raman
Scattering (SERRS) and CT imaging

Au NPs A stronger SERRS signal intensity 24 h postinjection, and then
an accurate outline of the tumor

68 Ga-PRGD2 Enhanced sensitivity and specificity of glioma grading

99 mTc-HisoDGR SPECT/CT Clear visualization in both subcutaneous and orthotopic
models respectively 1.5 h and 2 h post injection

Optical imaging Indocyanine green (ICG) loaded liposomal formulated
nanoparticles (LP-iDOPE)

Enhanced imaging effect of brain tumors, excellent tumor-
specific localization

Poly-alkyl-cyano acrylates (PACA) and poly lacticcoglycolic acid
(PLGA)

Extending the circulation time of nanoparticles in the body

Polymer nano matrix loaded with silver nanoplate clusters and a
fluorescent dye

Better biocompatibility and contrast

Multimodal imaging Quantum dots (QDs) Good solubility in water, high fluorescence quantum yield, low
fluorescence quenching rate and stable chemical properties

Quantum dots modified with tumor targeting molecules Specific bioimaging

Upconversion nanoparticles (UCNPs) Good photostability, no fluorescence scintillation, deep tissue
penetration and small photo damage

Ag2S QDs Deeper penetration potential through tissues, higher fidelity of
images

Angiopep-2 (ANG) dual-targeting simultaneously Gd-doped
upconversion dual-mode imaging nanoparticles (ANG/PEG-
UCNPs)

Enhanced T1-weighted MR contrast of glioblastoma, great
potential in T2-weighted MRI, ability to show a clear
glioblastoma boundary

Gold–silica-based SERS nanoparticles Ability to show clear tumor visualization by three modalities in
triple-modality imaging
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2.5.3 Radiotherapy
Radiotherapy is a common treatment method for malignant

tumors. However, radiation damages normal tissues and tumor

hypoxia can lead to radiation resistance. There are two solutions

to overcome these problems: the first is to use more advanced

radiotherapy technology, and the second is to develop a new

generation of therapeutic agents able to sensitize tumor cells to

ionizing radiations to improve their effect. Nanomaterials can be

used as radiosensitizers or their carriers. They have achieved

good results as radiosensitizers or carriers after photon and

particle radiation (Caban-Toktas et al., 2020; Chung et al.,

2020; Kazmi et al., 2020; Ruiz-Garcia et al., 2021). Some

nanoparticles, such as gadolinium, gold, hafnium, bismuth,

and platinum nanoparticles, can also achieve good results as

sensitizers (Lux et al., 2019). The principle is that when photons

and particles activate the nanoparticles, a photoelectric effect

(Kazmi et al., 2020) amplifies the radiation effect (Lacombe et al.,

2017; Kuncic and Lacombe, 2018). Gold nanoparticles became an

important radiosensitizer due to their biocompatibility, tunable

optical properties, and high stability. Kunoh et al. (2019)

compared the radiosensitivity of gold nanoparticle-treated and

untreated cells. Their experiments showed that pre-treating cells

with gold NPs prevented radioresistance development in cancer

cells. Interestingly, the gold NPs did not induce apoptosis but

increased the number of abnormal nuclei, causing mitotic cell

catastrophe.

2.5.4 Photothermal therapy
Photothermal therapy consists in injecting materials with

high photothermal conversion efficiency into the body, making

them accumulate around the tumor by targeted recognition

technology, then irradiating them with an external light

source (generally infrared light) to convert light into heat and

kill cancer cells. Based on the above ferroptosis treatment, Yulin

et al. blended gallic acid with Fe2+ to form gallic acid/Fe2+

nanoparticles with excellent photothermal conversion ability.

Near-infrared light irradiation (808 nm) can drastically

improve the Fe2+ release efficiency of nanoparticles and

induce ferroptosis in tumor cells while releasing a large

amount of heat to kill tumor cells (Zhang et al., 2021).

2.5.5 Magnetothermal therapy
Magnetothermal therapy-mediated cancer therapy (MHCT)

consists in exposing magnetic nanomaterials to an alternating

magnetic field to heat tumor tissue and alter cellular mechanisms.

A temperature rise from 37°C to 42°C–45°C can induce tumor cell

death by activating specific intracellular and extracellular

degradation mechanisms (Krawczyk et al., 2011; Zhang and

Calderwood, 2011; Gupta and Sharma, 2019). At 42°C, tumor

cells undergo irreversible damage leading to apoptosis, while

achieving the same effect in normal cells requires at least 55°C.

However, magnetothermal therapy has not yet become one

of the main GBM therapy because some challenges remain. First,

the safety, efficacy, and appropriate dose range of MHCT are

unclear, and this needs to be taken into account to determine the

magnetic nanomaterial dose. Moreover, the choice of magnetic

parameters and the appropriate magnetic field strength are also

undetermined. Second, injecting effective drugs into targeted

GBM cells through clinically feasible methods remains

challenging. Most small-molecule drugs cannot penetrate the

BBB, which dramatically hinders the delivery of drugs to tumor

sites. In addition, some physical limitations affect hyperthermia

performance. These include heat distribution, toxicity, magnetic

nanosensors efficiency, and the reduction of hyperthermia

performance of magnetic nanoparticles (MNPs) in the cellular

environment, that is, once they are internalized by the cell

(lysosomal aggregation phenomenon) (Di Corato et al., 2014;

Soukup et al., 2015). Besides, the lack of methods to accurately

measure local body temperature is another obstacle to MNP

treatment evaluation (Dewhirst et al., 1997; Arthur et al., 2005).

More importantly, achieving the precise targeting of tumor cells

by MNPs is also one of the main challenges for GBM treatment.

According to a recent meta-analysis, less than 1% of injected

particles accumulate at the tumor site. Thus, the use of targeted

strategies to attach specific targeted moieties to the surface of

nanomaterials has also become an important unsolved question.

However, in some techniques, only 4% of the targeted portion of

the used ligand is recognized by its targeted receptor, which may

lead to heterogeneity and poor results (Herda et al., 2017). In

addition, converting targeted strategies from basic research to

clinical research is ineffective, especially MHCT. A study

reported that in mouse xenograft models, the accumulation of

antibodies usually varies between 0.5% and 50% of the injection

dose per Gram of tumor tissue. Meanwhile, we observed that the

accumulation of antibodies per Gram of tumor tissue in human

tumors was less than 0.01% of the injection dose (Björnmalm

et al., 2017). Gupta and Sharma. (2021) proposed magnetic dots

coated with carboxymethyl-stevioside as a magnetic

hyperthermia agent for GBM treatment. These magnetic dots

showed significant water stability, and their specific absorption

rate was 209.25 W/g under an alternating magnetic field of

359 kHz and 188 Oe. They also induced notable anti-

migration and anti-invasive effects on GBM C6 cells by

inhibiting the gene expression of matrix metalloproteinases

2 and 9. The key to solving these problems is controlling the

amount of magnetic materials that can reach the tumor

microenvironment. For this, doping in an appropriate

proportion can improve the magnetism of MNPs (Li et al.,

2021). Due to the high specific surface area volume ratio, van

der Waals force, and strong dipole-dipole interaction, MNPs

tend to agglomerate, resulting in increased particle size and

reduced magnetism. The high polydispersity of nanoparticles

can also reduce the magnetic heating capacity of MNP systems.

Therefore, nanoparticle size crucially affects the magnetic and

thermal efficiency of nanosystems. In biomedical applications,

MNPs with a small diameter (10–100 nm) and narrow size
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distribution are preferred to prevent their rapid removal from the

systemic circulation by the reticuloendothelial system (Cheng

et al., 2021). In addition, surface coatings of nanoparticles [such

as inorganic materials (alumina or silica), polymers (dextran,

chitosan, polyethylene glycol, or stevioside), fatty acids (oleic

acid), and liposomes] prevent aggregation and may contribute to

colloidal stability through space and electrostatic repulsion

(Karimi et al., 2013; Jamari et al., 2020).

Heat shocks can induce the expression of various heat shock

proteins (HSPs), which act as molecular chaperones to protect

proteins from thermal denaturation, assist protein folding, and

induce heat tolerance in cells (Gong et al., 2012). HSP 27, 70, 73,

and 90 are considered the key constitutively overexpressed HSPs

in GBMs and play an essential role in cancer cell heat resistance

against MHCT (Lee Titsworth et al., 2014). Thus, besides

improving effective magnetism at the tumor

microenvironment, methods targeting these heat shock

proteins can also make tumor cells sensitive to magnetic

hyperthermia therapy. Possible strategies include specifically

inducing an immune response towards these tumor-specific

overexpressed HSPs in GBM cells or using HSP gene

inhibitors. The heat-induced antitumor immune response is

also a new research direction.

2.5.6 Immunotherapy
To date, the standard high-grade GBMs therapy concerns

multidisciplinary approaches, containing maximum surgical

resection, radiotherapy, and chemotherapy. But the complete

resection is nearly impossible because of the invasiveness of

GBM, and the recurrence of tumor is practically inevitable even

in patients undergoing multimodal therapy. Moreover, these

recurrent tumors are often resistant to chemotherapy and

radiotherapy (Leiva-Salinas et al., 2017). Thus, it is necessary to

develop new therapeutic approaches against GBM.

Immunotherapy consists in stimulating the patient’s immune

system to make it identify and attack malignant tumors

through continuous anti-tumor immunity. However, many

obstacles hinder the application of immunotherapy in the

clinical practice. The first is the complexity of tumors. Tumors

have various immune escape mechanisms. Second, the immune

environment of brain is distinct from that in other organs, which is

unable to produce an immune response against tumors (Zanganeh

et al., 2019). Due to the BBB, the transport of immune effectors

from the blood to the brain is limited. Moreover, although

activated circulating T lymphocytes are present in the central

nervous system, there are few naive T cells (Su et al., 2017).

Another challenge limiting immunotherapy against GBM is

that various mechanisms promote immunosuppression inside and

around the tumor. GBM is classified as a cold immune tumor, and

its microenvironment represents an immune desert with little to

no immune effector cell infiltration. Key factors of the

glioblastoma-mediated immune cold microenvironment contain

the abundance of CD4+CD25+FOXP3+ regulatory T cells (Tregs)

and myeloid cells, as well as immunosuppressive cytokines and

secretory factors produced by tumor cells like transforming growth

factor-β, interleukin 6 and interleukin 10 (Reardon et al., 2017).

GBM grading is related to Treg infiltration into tumors. In

malignant GBM, tumor-resident Tregs express high levels of

PD-1 (Lowther et al., 2016), an essential inhibitory receptor

expressed in activated T cells which is significant in the

immune response (Sharpe and Pauken, 2018). Thus, although

there is a small amount of immune cell infiltration, immune cells

are often in a low response state due to immunosuppressive signals

(Woroniecka et al., 2018).

A primary mediator of immunosuppression in GBM patients

is tissue hypoxia, which activates signal transducers and activators

of transcription 3 (STAT3) and an immunosuppressive signaling

pathway which promotes the production of hypoxia-inducible

factor-1-alpha (HIF1A). However, it then induces Treg

activation and vascular endothelial growth factor (VEGF)

synthesis (Almiron Bonnin et al., 2018).

In the face of the many challenges in immunotherapy,

nanomaterials can be used as a breakthrough point.

Nanomaterials can deliver drugs to tumors and induce

cytotoxic anti-tumor T cell responses. Cancer vaccines with

better efficacy can be designed by combining

immunomodulators and antigens, direct targeting and T cell

functionalization, nucleic acid delivery, adjuvants, immune

checkpoint inhibitors, and inhibitory tumor microenvironment

regulation (Riley et al., 2019). In a current research, poly (lactic-co-

glycolic acid) nanoparticles modified by Angiopep-2 and IP10-

EGFRvIIIscFv fusion proteins crossed the BBB and amassed in

brain tissue. After binding to cytotoxic T lymphocytes, the

nanoparticles notably increased the immune response and

antitumor activity in a GBM model (Wang et al., 2018).

To re-adjust the inhibited GBM immune microenvironment,

Tong Fei et al. designed a nanocomposite drug based on a

polyglycerol functionalized doxorubicin-containing

nanodiamond. The nanocomposite regulated the

immunosuppressive microenvironment of GBM by activating

autophagy, thereby stimulating the immune response. This

rebuilding promoted the anti-glioblastoma immune response

and strengthened the activation of dendritic cells (Li et al., 2019).

The tumor vascular laminin-411 (α4β1γ1) is associated with

the high expression of tumor stem cell markers (Notch, CD133,

Nestin, c-Myc) and a shorter survival time for GBM patients. Tao

et al. designed a nano-bioconjugate which is able to cross the BBB

to inhibit laminin-411. This nanobioconjugate targeting the

tumor microenvironment prolonged animal survival and

inhibited cancer stem cell markers in mice carrying

intracranial GBM (Sun et al., 2019).

The low accumulation of antigens in antigen-presenting cells

is another obstacle to effective immunotherapy against brain

tumors. This is related to the low activation of antigen-presenting

cells in GBM. Two approaches could solve this problem:

enhancing the antigen-loading capacity of nanovaccines or
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adding substances that can sensitize antigen-presenting cells to

nanomedicines. A hybrid “cluster bomb” nanovaccine, based on

zinc oxide and triblock-copolymer nanoparticles, stimulated

cellular and humoral immunity and increased the survival

time of tumor-bearing mice (Shen et al., 2019). Another study

combined exosomes derived from GBM with α-
galactosylceramide (natural killer T-cell activator). Used

subcutaneously in glioblastoma-bearing rats, it increased

interferon γ and tumor necrosis factor α production and

promoted the immune response (Liu H. et al., 2017).

2.5.7 Summary
Because of the heterogeneity, the complexity of the tumor

microenvironment, the multiple immune escape mechanisms,

and the weak sensitivity of the brain immune system, handling

GBM from a single dimension is limited. GBM treatments need

to be multimodal. However, combining different methods for

killing glioma cells is insufficient. Comprehensive glioblastoma

treatments should also target the tumor microenvironment, and

stimulate immune cells of the brain (Figure 2).

3 Summary and outlook

This article reviews the definition, classification, diagnosis,

and therapeutic applications of nanomaterial-based GBM

treatments. Currently, the clinical application of

nanoparticles and the complexity of GBM itself still face

numerous challenges. Designing nanomaterials more

suitable for clinical applications require optimizing

nanomaterials by understanding the transport regulation

mechanism of the BBB, the composition of the GBM tumor

microenvironment and its influence on the BBB. Carefully

studying the mechanisms of action of nanomaterials on the

brain, discovering new properties of nanomaterials,

improving their synthesis, and exploring new and

promising drug delivery systems are crucial for developing

clinical applications of nanomaterials in the diagnosis and

treatment of glioblastoma. Most importantly, since single-

dimension diagnostic and treatment methods are limited,

future studies should focus on multi-dimensional

nanomaterials. With further research, the clinical nano-

FIGURE 2
Glioblastoma therapy mechanism of nanomaterials.
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diagnosis and treatment system for GBM is expected to

improved.
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Purpose: The recent emergence of Plasmodium falciparum (Pf) parasites resistant
to current artemisinin-based combination therapies in Africa justifies the need to
develop new strategies for successful malaria control. We synthesized,
characterized and evaluated medical applications of optimized silver
nanoparticles using Alchornea cordifolia (AC-AgNPs), a plant largely used in
African and Asian traditional medicine.

Methods: Fresh leaves of A. cordifolia were used to prepare aqueous crude
extract, which was mixed with silver nitrate for AC-AgNPs synthesis and
optimization. The optimized AC-AgNPs were characterized using several
techniques including ultraviolet-visible spectrophotometry (UV-Vis), scanning/
transmission electron microscopy (SEM/TEM), powder X-ray diffraction (PXRD),
selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy
(EDX), Fourier transformed infrared spectroscopy (FTIR), dynamic light scattering
(DLS) and Zeta potential. Thereafter, AC-AgNPs were evaluated for their
hemocompatibility and antiplasmodial activity against Pf malaria strains
3D7 and RKL9. Finally, lethal activity of AC-AgNPs was assessed against
mosquito larvae of Anopheles stephensi, Culex quinquefasciatus and Aedes
aegypti which are vectors of neglected diseases such as dengue, filariasis and
chikungunya.

Results: The AC-AgNPs were mostly spheroidal, polycrystalline (84.13%), stable
and polydispersed with size of 11.77 ± 5.57 nm. FTIR revealed the presence of
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several peaks corresponding to functional chemical groups characteristics of
alkanoids, terpenoids, flavonoids, phenols, steroids, anthraquonones and
saponins. The AC-AgNPs had a high antiplasmodial activity, with IC50 of
8.05 μg/mL and 10.31 μg/mL against 3D7 and RKL9 Plasmodium falciparum
strains. Likewise, high larvicidal activity of AC-AgNPs was found after 24 h- and
48 h-exposure: LC50 = 18.41 μg/mL and 8.97 μg/mL (Culex quinquefasciatus),
LC50 = 16.71 μg/mL and 7.52 μg/mL (Aedes aegypti) and LC50 = 10.67 μg/mL
and 5.85 μg/mL (Anopheles stephensi). The AC-AgNPs were highly
hemocompatible (HC50 > 500 μg/mL).

Conclusion: In worrying context of resistance of parasite and mosquitoes, green
nanotechnologies using plants could be a cutting-edge alternative for drug/
insecticide discovery and development.

KEYWORDS

Alchornea cordifolia, silver nanoparticles, green synthesis, characterization,
hemocompatibility, biocidal activities, Plasmodium falciparum, culicidae mosquitoes

1 Introduction

Nanotechnology has profoundly changed several aspects of
human life through technological and health advances made in
sectors such as new technologies, energy, cosmetics and health.
This term encompasses a set of activities from development
research to evaluation of materials sized 1–100 nm—also
known as nanomaterials (Subedi, 2013; Bayda et al., 2020). In
developed countries such as the United States of America, Japan
and China, nanotechnologies are greatly funded, studied and
evaluated for their ability to solve diverse problems (Dong et al.,
2016; Qiu, 2016). In developing countries, studies are more
focused on green nanotechnologies which rely on the
development of nanomaterials using living organisms such as
plants and microorganisms (Kojom Foko et al., 2019; Kojom
Foko et al., 2021).

Green nanotechnologies are very attractive as these are cheaper
to implement, safer and eco-friendly as compared to their chemical
and physical counterparts (Tran et al., 2013; Gahlawat and
Choudhury, 2019). Indeed, chemical and physical methods are
time-consuming, costly and request reagents which are harmful
to humans and environment (Shakeel et al., 2016). By blending
living organisms (e.g., fungi, viruses, bacteria, alga, plants) or derived
products with metal source, green metallic nanoparticles (MNPs)
are synthesized and then can be tested for different biological and
non-biological activities (Honary et al., 2013; Kojom Foko et al.,
2019; Bayda et al., 2020; Chugh et al., 2021; Araújo et al., 2022). Also,
the utilization of plants is more advantageous than with
microorganisms due to increased risk of biohazard and cost to
isolate, purify and maintain microbial cultures (Kalishwaralal et al.,
2010; Shakeel et al., 2016).

Regarding biological activities, many studies reviewed
biocidal potential of green MNPs against non-communicable
diseases (e.g., diabetes, cancer), oxidative stress, diverse
pathogens (e.g., bacteria, viruses), and disease vectors (e.g.,
mosquitoes, ticks) (Benelli et al., 2017; Patil and
Chandrasekaran, 2020; Araújo et al., 2022). Roughly, plant-
based MNPs show a high biocidal potential, and thus were
proposed as new avenues for control of infectious diseases,
especially mosquito-borne diseases (e.g., malaria, dengue and

chikungunya) for which current control methods are jeopardized
due to i) their toxicity to humans and environment, and ii)
emergence and spread of drug-resistant parasites and
insecticide-resistant mosquitoes (Kojom Foko et al., 2019;
Kojom Foko et al., 2021). Thus, synthesis of plant-based
MNPs could be interesting to develop new drugs and
insecticides to control and eliminate mosquito-borne diseases.
Malaria is the predominant vector-borne disease globally with an
estimated 247 million cases and 619,000 deaths in 2021 (World
Health Organization, 2022). Africa bears the bulk of this global
malaria burden, with children under 5 years of age and pregnant
women being most vulnerable groups (Dongang Nana et al.,
2022; World Health Organization, 2022). Resistance of
pathogens and mosquito vectors is a great threat to malaria
control and elimination efforts (Arya et al., 2021). Recent
studies pointed out independent emergence of malaria
parasites resistant to current most effective antimalarial drugs
(i.e., artemisinin-based combination therapies - ACTs) in two
African countries (Rwanda and Uganda) (Uwimana et al., 2021,
2020; Balikagala et al., 2021).

There is paucity of data on biological activities of green MNPs in
Cameroon where vector-borne diseases such as malaria are causes of
concern (Lehman et al., 2018; Antonio-Nkondjio et al., 2019;
Mbohou et al., 2019). In the present study, silver NPs were
synthesized using leaves of Alchornea cordifolia (AC-AgNPs),
optimized, characterized and evaluated for hemocompatibility
and lethal activity against Plasmodium falciparum—Pf (the main
and deadliest human malaria species) (Kojom Foko et al., 2021;
Kojom Foko et al., 2022b; World Health Organization, 2022), and
three mosquito species, i.e., Anopheles stephensi, Culex
quinquefasciatus and Aedes aegypti, involved in human
transmission of parasites and viruses (dengue, Zika, malaria and
lymphatic filariasis) (Benelli et al., 2017; Wang et al., 2017; Patil and
Chandrasekaran, 2020). Alchornea cordifolia Schumach. and
Thonn.) Müll. Arg. (Euphorbiaceae) is largely distributed in sub-
Saharan African countries (e.g., Cameroon, Ghana, Nigeria) where
its leaves and root bark are traditionally used by populations for
nutritional purposes and treating several infectious and
inflammatory ailments such as rheumatism, pain and arthritis
(Ngaha Njila et al., 2016; Cesar et al., 2017).
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2 Materials and methods

2.1 Study design

This was an experimental study aimed at determining
antiplasmodial, hemocompatibility and larvicidal potential of
biosynthesized silver NPs using A. cordifolia leaves. The plant
was harvested and authenticated taxonomically. Crude extract of
A. cordifolia leaves (AC-CE) was screened for phytochemical
composition and used for AgNPs synthesis. The optimization of
AC-AgNPs was made, and the optimized AC-AgNPs were
characterized and tested for antiplasmodial, hemocompatibility
and larvicidal potential (Figure 1). The study was approved by
ethical committee of the National Institute of Malaria Research
(NIMR), India (N°PHB/NIMR/EC/2020/55).

2.2 Collection and authentication of plant
material

Healthy and fresh leaves of A. cordifolia (AC) were collected at
Faculty of Sciences (FS), main campus, University of Douala (UD),
Littoral Region, Cameroon (Figure 2). Malaria is highly prevalent in

Cameroon, and P. falciparum is the main malaria species. Other
species including Plasmodium vivax, Plasmodium ovale spp have
also been reported across the country (Kojom Foko et al., 2021;
Kojom Foko et al., 2022a). The taxonomic authentication was done
by Dr Tchiengue Barthelemy at Cameroon National Herbarium,
Yaounde, in comparison with voucher specimen number 9657/SRF/
Cam previously deposited.

2.3 Preparation of A. cordifolia aqueous
extract

About 500 g of fresh A. cordifolia leaves were washed with
running tap water and distilled water to remove dust and surface
contaminant, and thereafter air-dried for 2 weeks at room
temperature. The dried material was introduced in an electric
grinder to obtain a fine powder. Ten grams of powder was taken
in a conical flask containing 100 mL of distilled water, heated at
80°C for 10 min in a water bath under static conditions (Eya’ane
Meva et al., 2016). The mixture was allowed to cool at room
temperature, and then filtered using a Whatman paper n°1 to
remove particulate matter. The filtrate obtained (crude extract,
AC-CE) was used to perform phytochemical screening and AC-
AgNPs biosynthesis. The AC-CE was not used more than a week
following its preparation in order to avoid gradual loss of viability
due to long storages (Eya’ane Meva et al., 2016). The AC-CE was
lyophilized and stored for biological assays. The yield of
extraction of AC-CE was 41% (w/v).

2.4 Phytochemical screening of A. cordifolia
aqueous extract

The AC-CE was subjected to gas chromatography-mass
spectrometry (GC-MS) analysis to identify the composition
and percentage abundance of phytochemical constituents. The
GC-MS was carried out on a Perkin Elmer Turbo Mass
Spectrophotometer (Norwalk, CTO6859, NY, United States)
which includes a Perkin Elmer Auto sampler XLGC. The
column used was a Perkin Elmer Elite-5 capillary column
measuring 30 m × 0.25 mm with a film thickness of 0.25 mm
composed of 95% dimethyl polysiloxane. The carrier gas used was
helium at a flow rate of 1.21 mL/min 1 μL sample injection
volume was utilized. The inlet temperature was maintained at
260°C. Oven temperature was programmed initially at 100°C for
2 min, and then programmed to increase to 290°C at a flow rate of
10°C/min (Supplementary Figure S1). The total run time was
39.98 min. The Mass Spectrometry transfer line was maintained
at a temperature of 200°C. The source temperature was
maintained at 220°C. The GC-MS was analyzed using electron
impact ionization at 70 eV. Full scan mode was used to detect
analytes. Data were evaluated using total ion count for compound
identification and quantification. Measurement of peak areas and
data processing were carried out by Turbo-Mass-OCPTVS-
Demo SPL software, and spectrums of the components were
compared with database of spectrum of known components
stored in the GC-MS library.

FIGURE 1
Flowchart depicting the study design. AC-AgNPs, Alchornea
cordifolia silver nanoparticles; GC-MS, Gas chromatography—Mass
spectrometry; DLS, Dynamic light scattering; EDX, Energy dispersive
X-ray spectroscopy; FTIR, Fourier transformed infrared
spectroscopy; PXRD, Powder X-ray diffraction; SAED, Selected area
electron diffraction; SEM, Scanning electron microscopy; TEM,
Transmission electron microscopy; UV-Vis, Ultraviolet—Visible
spectrophotometry.
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2.5 Phytofabrication and optimization
studies of AC-AgNPs

AC-AgNPs were synthesized by blending AgNO3 aqueous
solution with freshly prepared AC-AE and incubated in dark
until color change. The determination of optimal conditions for
AC-AgNPs biosynthesis was performed by recording UV-Visible
spectra of reaction mixtures after varying four parameters, namely,
incubation temperature (35°C–85°C), incubation time (10 min–5 h),
AgNO3 concentration (0.5–5 mM), and AgNO3/AC-CE volume
ratio (10–100 µL) as described earlier (Hawadak et al., 2022).
Thereafter, the optimized reaction mixture was centrifuged at
15,000 rpm for 10 min, the pellet was washed twice with distilled
water and once with 95% ethanol, filtered using sterile syringe filter
(MICRO-POR®, 0.22 µm), and then lyophilized for further AC-
AgNPs characterization and biological assays.

2.6 Characterization of AC-AgNPs

The characteristics of green synthesized AC-AgNPs (i.e., surface
plasmon resonance-SPR, size, shape, aggregation, functional
chemical groups and crystallinity) were determined using several
techniques (Figure 1). The formation of AC-AgNPs was monitored
by visual inspection of the solution and then followed by UV–Vis
spectrum measurement using a double beam spectrophotometer
(Model n.o., BRI-2700, BR BIOCHEMLife Sciences Pvt., Ltd., India)
operating at 1 nm resolution. Milli Q ultrapure water was used as
blank. The selected area electron diffraction (SAED) and powder
X-ray diffraction (XRD) were used to determine the physical nature
of the AC-AgNPs. The PXRD was made at 45 kv voltage, 40 mA
current, 2θ range of 10–80 and speed of 2°/minute (PANanalytical,

Xpert Pro model). The PXRD patterns of optimized AC-AgNPs
were compared to Joint Committee on Powder Diffraction
Standards files (JCPDS 65-2871 and 31-1238). The size, shape
and aggregation patterns of AC-AgNPs were determined using
scanning electron microscopy—SEM coupled with EDX (Bruker
AXS Microanalysis GmbH Berlin, Germany) and transmission
electron microscopy—TEM coupled with SAED (TECNAI TF20,
Fei, Electron Optics, Oregon, United States) operating at a potential
of 20 kv and 200 kv, respectively. The size of NPs was calculated
using the Scherrer equation: D � Kλ

βCos θ, where D is diameter (nm) of
the crystallite (i.e., NPs in this regard), K is the Scherrer constant
(range values = 0.68–2.08) depending on shape of nanoparticles
(e.g., K = 0.94 for spherical NPs); λ is the X-ray wavelength (in our
study PXRD analysis was performed at wavelength for copper,
CuKα = 1.5406 Å), β is the line broadening at full width at half
maximum (FWHM) which is expressed in radians, and θ is the
Bragg’s angle of PXRD-related peaks which is expressed in degrees
(Muniz et al., 2016). The atomic composition of the NPs was
determined using energy dispersive X-ray (EDX). Fourier
transformed infrared spectroscopy (FTIR) was used to determine
functional chemical groups capped on the AC-AgNPs surface
through potassium bromide method. Sample was grinded with
KBr in an infrared path and the spectrum was recorded in the
range 400–4000 cm-1 using a FTIR spectrophotometer (Perkin
Elmer, Frontier Model). Zeta potential and dynamic light
scattering (DLS) were performed to evaluate NPs stability and
size distribution using particle size analyzer (Zetasizer nano ZS,
Malvern Instruments Ltd., U.K.). In practice, zeta potential
of ±30 mV is considered as a good indicator of the stability of
colloidal suspensions such as NPs while values outside the range
indicate phenomena such as flocculation, aggregation and
sedimentation (Kojom Foko et al., 2019).

FIGURE 2
Maps of Africa, Cameroon and Douala (Littoral region) where fresh leaves of Alchornea cordifolia (Euphorbiaceae) were harvested. Maps were
created using the QGIS software v3.10 (https://qgis.org/en/site/). Photograph of A. cordifolia is provided by author PBEK.
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TABLE 1 Phytochemical screening of the AC-AE using GC-MS analysis.

Peak Retention
time

Area
(%)

Name of the compounds

1 6.76 2.58 4-Methylmannitol

2 9.22 0.29 Dodecanoic acid, methyl ester

3 9.52 0.48 2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro-4,4,7a-trimethyl-, (R)-

4 10.04 0.57 1-Hexadecene

5 10.99 0.41 8-Pentadecanone

6 11.59 0.36 1,1,4,7-Tetramethyldecahydro-1H-cyclopropa[e]azulene-4,7-diol

7 12.08 1.42 6-Hydroxy-4,4,7a-trimethyl-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one

8 12.31 0.58 1-Nonadecene

9 12.37 0.51 2(4H)-Benzofuranone, 5,6,7,7a-Tetrahydro-6-hydroxy-4,4,7a-trimethyl-

10 12.51 1.00 (S,E)-4-Hydroxy-3,5,5-trimethyl-4-(3-oxobut-1-en-1-yl)cyclohex-2-enone

11 12.77 1.28 Neophytadiene

12 12.84 1.08 2-Pentadecanone, 6,10,14-trimethyl-

13 13.02 0.16 2-hexadecen-1-ol, 3,7,11,15-tetramethyl-, [R-[R*,R*-(E)]]-

14 13.08 0.32 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester

15 13.58 0.60 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester

16 13.69 1.86 Hexadecanoic acid, methyl ester

17 14.22 2.36 n-Hexadecanoic acid

18 14.36 0.22 1-Octadecene

19 14.84 1.99 Hexadecanoic Acid, trimethylsilyl ester

20 15.33 0.43 9,12-Octadecadienoic acid (Z,Z)-, methyl ester

21 15.39 3.64 9,12,15-Octadecatrienoic acid, methyl ester, (Z,Z,Z)-

22 15.51 25.17 2-Hexadecen-1-Ol, 3,7,11,15-Tetramethyl-, [R-[R*,R*-(E)]]-

23 15.62 0.56 Methyl stearate

24 15.99 1.40 Phytol, TMS derivative

25 16.40 0.54 Phytol, acetate

26 17.63 0.21 4,8,12,16-Tetramethylheptadecan-4-olide

27 19.09 1.41 Bis(2-ethylhexyl) phthalate

28 20.31 0.36 Tetracontane

29 21.14 1.70 Squalene

30 21.57 0.40 .alpha.-Tocospiro B

31 21.78 0.52 Hexatriacontane

32 22.52 1.11 9,12-Octadecadienoic Acid (Z,Z)-, 2,2-Dimethyl-1,3-Dioxolan-4-Ylmethyl Ester

33 24.12 0.81 Vitamin E

34 24.84 3.32 Ethanone, 1-(2,3,4,7,8,8a-hexahydro-3,6,8,8-tetramethyl-1H-3a,7-methanoazulen-5-yl)-

35 25.93 3.65 STIGMASTA-5,22-DIEN-3-OL

36 26.87 4.69 .gamma.-Sitosterol

37 27.32 4.03 9,19-Cyclolanostane-3,7.beta.-diol, diacetate (20R,14.beta.)

38 28.25 0.99 9,19-Cyclolanostan-3-ol, 24-methylene-, (3.beta.)-

(Continued on following page)

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Kojom Foko et al. 10.3389/fbioe.2023.1109841

70

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1109841


2.7 Assessment of antiplasmodial potential
of AC-AgNPs

Chloroquine-sensitive 3D7 and chloroquine-resistant RKL9 of
Pf strains were used for antiplasmodial assays for AC-AgNPs, AC-
CE, and chloroquine (CQ). The Pf culture was maintained using
standard protocols (Trager and Jensen, 1976; Schuster, 2002).
Briefly, parasite cultures were maintained in fresh AB positive
human erythrocytes suspended at 5% hematocrit in RPMI-1640
culture medium supplemented with L-glutamine and HEPES
buffer (0.2% sodium bicarbonate, 0.4% albumax, 50 μg/L
hypoxanthine, 200 U/mL penicillin and 200 μg/L streptomycin)
and incubated at 37°C under a gas mixture of 1% O2, 5% CO2 and
94% N2. Culture of infected erythrocytes were transferred daily
into fresh complete culture medium and checked microscopically
for parasite growth.

The in vitro evaluation of antiplasmodial activity was performed
using culture-adapted Pf strains: i) 3D7, sensitive to CQ, artemisinin
and its derivatives and ii) RKL9, resistant to CQ. Antimalarial drug
screening was done based on SYBR green I-based fluorescence assay
as described previously (Smilkstein et al., 2004). Parasite culture
(0.5%–0.8%) was synchronized at ring stage with 5% sorbitol. A
volume of 100 µL of complete medium were introduced into each
well of 96-well microplate, then dilutions were performed for AC-
AgNPs and AC-CE (4, 8, 16, 31.25, 62.5, 125, 250 and 500 μg/mL)
and CQ (4, 6.25, 12.5, 25, 50, 100, and 200 μg/mL) were added. Ten
microliters (10 µL) of synchronized blood were thereafter added in
each well, mixed and kept in an incubator at 37°C for 48 h in 96-well
flat bottom tissue culture-grade plates under reduced O2

atmosphere. Each experiment was replicated thrice. CQ was used
as standard drug, while complete medium was considered as
negative control. After 48 h-incubation, 100 µL of SYBR Green I
in lysis buffer (0.2 µL of the fluorochrome/mL of buffer) was added
into each well, mixed gently twice, and the plate was then covered
with foil and incubated in a dark chamber for 1 h at room
temperature. The buffer lysis consisted of Triton X-100 (0.08% v/
v), Tris (20 mM), EDTA (5 mM), and saponin (0.008% wt/v). The
fluorescence counts were read using an ELISA reader (Synergy HTX
1708152, Agilent BioTek, Santa Clara, California, United States)
with excitation and emission wavelength bands centered at 485 and
530 nm.

2.8 Validation of antiplasmodial assay

The SYBR Green based antiplasmodial assay was validated by
inspecting microscopic slides of parasite cultures treated with
negative control, standard drug, AC-CE and AC-AgNPs (Kaushik
et al., 2015; Hawadak et al., 2022). After 48 h-incubation, thick and
thin blood films were made, air-dried and stained with 10% Giemsa
stain for 20 min. The number of schizonts with ≥2 nuclei out of
200 asexual parasites was noted. Also, fluorescence counts of
untreated and treated Pf cultures were compared to detect any
quenching effect-related measurement artefacts which may due to
chemical compounds of AC-AgNPs and AC-CE (Kaushik et al.,
2015).

2.9 Hemocompatibility investigation

The method described by Wang and others was used to
evaluate hemocompatibility of biosynthesized AC-AgNPs
(Wang et al., 2010). Human red blood cells (RBCs) were
obtained from the ICMR-NIMR malaria parasite bank, washed
with incomplete media, and diluted with phosphate-buffered
saline (PBS) to obtain a suspension (Hematocrit = 1%).
Different concentrations (2, 4, 8, 16, 30, 62.5, 125, 250 and
500 μg/mL) of AC-AgNPs and AC-CE were incubated with
RBCs in Eppendorf tubes (20 µL of each concentration in
180 µL blood) at 37°C for 30 min and 24 h at pH of 7.40. The
reaction was stopped by placing tubes at 4°C for 15 min. The
mixtures were then centrifuged at 3,000 g for 4 min, and 100 µL of
supernatant was loaded into a 96-well plate to measure the released
hemoglobin at 540 nm (SPECTROstarNano, BMG LABTECH
GmbH, Ortenberg Germany). Saponin was used as positive
control, inducing 100% hemolysis, while PBS was considered as
negative control. The experiment was performed in triplicate.
RBCs hemolysis at each concentration after 30 min and 24 h
was calculated as follows:

% hemolysis � As − ANC( )
APC − ANC( ) × 100

where AS, ANC and APC are the absorbance of the sample, negative
control (PBS) and positive control (saponin).

TABLE 1 (Continued) Phytochemical screening of the AC-AE using GC-MS analysis.

Peak Retention
time

Area
(%)

Name of the compounds

39 31.55 14.53 Phytyl tetradecanoate

40 35.11 3.40 Methanesulfonic Acid 2-(3-Hydroxy-4,4,10,13,14-Pentamethyl-2,3,4,5,6,7,10,11,12,13,14,15,16,17-Tetradecahydro-1h-
Cyclopenta[A]Phenan

41 37.27 3.92 1-Eicosanol

42 37.77 5.12 9,10,12,13-Tetrabromooctadecanoic acid

Total 100.00
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2.10 Mosquito rearing

The eggs ofAn. stephensi,Cx. quinquefasciatus andAe. aegyptiwere
obtained from NIMR Insectarium, New Delhi, India. The
characteristics of mosquitoes used are as follows: An.
stephensi—laboratory strain collected from Sonepat, Haryana, India
(established in 1996; black and brown, malathion-deltamethrin-
susceptible and DDT–resistant strain), Cx.
quinquefasciatus—laboratory strain collected from Sonepat, Haryana,
India (established in 1999; selected for permethrin resistance and is
resistant to DDT, malathion and deltamethrin), and Ae.
aegypti—laboratory strain collected from Delhi, India (established in
2006; DDT–malathion-deltamethrin strain). Adult Ae. aegypti were
derived from batches of 100 eggs in 18 cm × 13 cm × 4 cm trays
containing 500 mL of boiled and cooled water in a laboratory
maintained at 25°C–29°C temperature and 65%–70% Relative
humidity; 12:12 h Light/Dark photoperiod. Eggs were fed daily with
TetraBits fish food (Tetra GmbH, Herrenteich, Germany), and late 3rd
and 4th instar larvae were used for larval bioassays.

2.11 Larvicidal bioassays

The protocol described by the World health Organization (WHO)
was used for this experiment (WHO, 2016). Late 3rd and 4th instar larvae
were exposed to the AC-AgNPs with different concentrations (0–50 μg/
mL). Each concentration was tested in triplicate comprising of 25 larvae
placed into plastic bowls (8 cm diameter, 300 mL capacity) containing
distilled water. The larval mortality was monitored after 24 h, 48 h and
72 h post-treatment periods, and the lethal concentrations to cause
50%/90% mortality in treated larvae (LC50/LC90) and percentage
mortality after post-treatment periods were calculated as described
previously in the WHO procedures (WHO, 2016). Distilled water was
used as control. All experiments were performed under laboratory
conditions as described above.

2.12 Statistical analysis

Data was keyed into an Excel spreadsheet (Microsoft Office,
United States) and then exported to statistical package for social
sciences v16 (SPSS, IBM, Inc., Chicago, United States), and
GraphPad v5.03 (GraphPad PRISM, Inc., San Diego, California,
United States) for statistical analysis. Using GraphPad software
v8.03 (GraphPad PRISM, Inc., San Diego, CA, United States),
fluorescence counts of antiplasmodial assay were used to plot
graph of percent inhibition of Pf parasite growth against
concentrations of AC-AgNPs, AC-CE, and CQ to determine 50%
inhibition concentration (IC50). The dose/time mortality response
data of larvicidal assays was analyzed using log-probit regression
model to determine LC50 and LC90 with their confidence interval at
95% (95% CI). The Abbott’s formula was used to correct mortality
rate if comprised between 5% and 20% in the negative control group
(Sun and Shepard, 1947). Experiments were considered invalid
when mortality rate in negative control group was >20%.

FIGURE 3
AC-AgNPs solution andUV-Vis findings. Color of AgNO3, AC-AgNPs
and AC-CE solutions (A). The color change indicates Ag+ reduction to
elemental nanosilver. UV–visible spectrum of optimized AC-AgNPs for
incubation temperature (B), incubation time (C), AgNO3

concentration (D), and volume of AC-CE (E). AC-AgNPs, Alchornea
cordifolia silver nanoparticles; AC-CE, Alchornea cordifolia crude extract;
AgNO3, Silver nitrate; UV-Vis, Ultraviolet—Visible spectrophotometry.

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Kojom Foko et al. 10.3389/fbioe.2023.1109841

72

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1109841


Regarding hemocompatibility assay, the amount of NPs required to
lyse 50% of RBCs (hemolysis concentration, HC50) was determined.
Quantitative and qualitative variables were presented as mean ±
standard deviation (SD) and percentages, respectively. One-way
analysis (ANOVA), McNemar’s and Pearson’s independence chi
square tests were used to make comparisons. The level of statistical
significance was set at p-value <0.05.

3 Results

3.1 GC-MS analysis

GC-MS chromatogram of AC-CE revealed several peaks which
represent different compounds as shown in Supplementary Figure
S1. A total of 42 compounds were identified in AC-CE after
comparing the peaks with database of spectrum of known
components stored in the GC-MS library (Table 1). Two
compounds were predominantly represented, namely, 2-
hexadecen-1-ol, 3,7,11,15-tetramethyl-, [R-[R*,R*-(E)]]- and
phytyl tetradecanoate, with proportions of 25.14% and 14.53%,
respectively (Supplementary Figure S2; Table 1).

3.2 UV-Vis spectroscopy and AC-AgNPs
optimization

The synthesis of AC-AgNPs was noted after 2 minutes
following the incubation of plant extract and AgNO3 solution
as a dark brown color was observed (Figure 3A). The UV-Vis
spectrum analysis revealed a SPR at 445 nm wavelength (Figures
3B–E). The SPR did not change with the variation of four
parameters used to optimize AC-AgNPs synthesis (AgNO3

concentration, incubation time, incubation temperature and
volume of plant extract). In contrast, the amplitude of UV-Vis
curves gradually increased with increasing values of each
parameter (Figures 3B–E). Thus, the optimization of AC-
AgNPs was achieved for the following parameters: 100 µL of
fresh plant extract was mixed with 900 µL of AgNO3 (5 mM), and
then incubated at 85°C for 5 h under static conditions.

3.3 Electron microscopy analysis of green
AC-AgNPs

Analysis of SEM and TEM micrographs of AC-AgNPs is
depicted in Figure 4. Based on SEM, agglomeration of AC-
AgNPs was observed (Figures 4A, B). TEM images of silver
colloidal solution exhibited that AC-AgNPs were
polydispersed, predominantly spheroidal with various sizes
(Figures 4C, D). The size distribution when a section of these
NPs is considered is presented in Figure 4E. Following the
digitization phase of various images, size distribution using
ImageJ software was found to be within 5–25 nm range. The
distribution of AC-AgNPs size was large, with mean size ±SD of
10.89 ± 5.67 nm.

FIGURE 4
SEM and TEM analysis of AC-AgNPs. SEM images at 5.00 KX (A)
and 50.00 KX (B) of AC-AgNPs. Micrographs of the AC-AgNPs using
TEM at 20 nm (C) and 10 nm (D), and size distribution of the
nanocrystallites (E). AC-AgNPs, Alchornea cordifolia silver
nanoparticles; SEM, Scanning electron microscopy; TEM,
Transmission electron microscopy.

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Kojom Foko et al. 10.3389/fbioe.2023.1109841

73

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1109841


3.4 PXRD analysis, SAED patterns, and
composition of AC-AgNPs

The PXRD patterns outline that AC-AgNPs are face-centered
cubic. The intense and narrow diffraction peaks revealed the
formation of pure crystals of silver and silver chloride. The
nanosilver crystal peaks obtained at 2θ values of 38.07°, 46.20°,
64.33° and 77.40° which correspond to the (111), (200), (220) and
(311) planes of the face-centered cubic (fcc) structures,
respectively (JCPDS file 65-2871). Additional peaks
corresponding to silver chloride nanocrystallites were observed
at 2θ values of 27.8°, 32.2°, 54.8°, 57.4° and 67.4° indexed to (111),
(200), (311), (222) and (400) planes, respectively (JCPDS file 31-
1238). SAED suggests that the NPs are polycrystalline with
diffraction rings associated due to their stacking each other
due to their magnetite phase (Figures 5A, B). The crystallinity
percentage of AC-AgNPs was 84.13%. Using data from PXRD,
the size of silver nanocrystals and silver chloride nanocrystals
based on the Scherrer formula was 13.47 ± 5.81 nm and 10.42 ±
3.34 nm, respectively (Table 2). The overall mean size of AC-
AgNPs was 11.77 ± 5.57 nm.

The EDX profile of AC-AgNPs showed a strong signal due to
silver atom (Ag) which was involved in AC-AgNPs at a
percentage of 58.31%. Other signals due to chlorine (Cl),
cadmium (Cd), carbon (C) and oxygen (O) were also observed
at 5.56%, 0.36%, 9.31% and 26.46%, respectively (Figure 5C). The
identity of functional chemical groups at the interface of AC-
AgNPs were determined using FTIR which revealed strong
signals at 3,416 cm−1, 1630 cm−1, and 1023 cm−1 which are
characteristics of alcohols (O-H stretch), alkenes (C=O
stretch) and alkyl and Aryl Halides (C-F stretch), respectively.
Smaller signals corresponding to alkanes (C-H stretch) at
2927 cm−1, alkanes/aldehydes/alkenes (C-H stretch, C-O
stretch) at 2857/1739 cm−1, nitriles (C≡N stretch) at 2373/
2323 cm−1, aromatic compounds (C=C stretch) at 1458 cm−1,
and nitro compounds (NO2 stretch) at 1377 cm−1 were also
seen (Figure 5D; Table 3).

3.5 Zeta potential and DLS

The stability of AC-AgNPs was determined using zeta potential,
and the analysis revealed a zeta potential value of −18.1 mV which
outlines a good stability (Supplementary Figure S3). On analysis of
DLS results, the AC-AgNPs had a mean size ±SD of 89.77 ±
16.50 nm, with polydispersity index of 0.242 (Supplementary
Figure S4).

3.6 Antiplasmodial assays

High antiplasmodial activity was found for AC-AgNPs against
3D7 (CQ-sensitive) and RKL9 (CQ-resistant) Pf strains. Based on
IC50 values, AC-AgNPs exhibited higher antiplasmodial activity
as compared to that of AC-CE irrespective of plasmodial strain,
and differences were statistically significant (p < 0.0001): 8.05 μg/
mL vs. 20.27 μg/mL for 3D7, and 10.31 μg/mL vs. 32.55 μg/mL
for RKL9. The standard drug CQ exhibited IC50 values of 0.04 μg/

mL and 0.35 μg/mL against Pf strains 3D7 and RKL9 (Figures 6A,
B). The SYBR green assay findings were supported by
microscopic data. AC-AgNPs and AC-CE elicited no
quenching effects as no statistically significant difference was
found between fluorescence counts of NPs, standard drug and
plant extract (Supplementary Figure S5).

3.7 Hemolysis induced by the green AC-
AgNPs

We have noted that hemolysis rates were dependent on
substance, dose and time (Figures 7A, B). After 30 min,
hemolysis rates elicited by AC-AgNPs and AC-CE were
significantly higher than that of CQ at doses ≥62.5 μg/mL. At
these concentrations (125–500 μg/mL), hemolysis rates ranged
from 6.25%–13.15% for CQ, 14.55%–48.14% for AC-AgNPs, and
5.50%–40.95% for AC-CE (Figure 7A). To be noted, HC50 was
not achieved after 30-min incubation as hemolysis rate was below
50% at 500 μg/mL. After 24 hour-incubation, hemolysis rates
increased for all substances tested, with the highest values in AC-
AgNPs-treated samples (maximum hemolysis of 98.14% at
500 μg/mL). Statistically significant difference between AC-
AgNPs, AC-CE, and CQ were seen at doses ≥8 μg/mL
(Figure 7B).

3.8 Toxic effect of the AC-AgNPs against
mosquito species

Mortality of Cx. quinquefasciatus, Ae. aegypti and An. stephensi
larval stages was followed 24h, 48h and 72 h after treatment with
AC-AgNPs. Mortality rates of the three mosquito species increased
as a function of time and concentration (Supplementary Figure S6).
After 48 h incubation, larval mortality rates were 100% at doses
23.5 μg/mL for Cx. quinquefasciatus, 20 μg/mL for Ae. aegypti, and
15 μg/mL for An. stephensi (Supplementary Figure S6). AC-AgNPs
were more lethal against An. stephensi regardless of exposure time,
with LC50 values of 10.67 μg/mL and 5.85 μg/mL at 24 h- and 48 h-
exposure, respectively. These values were 16.71 μg/mL and 7.52 μg/
mL for Ae. aegypti; 18.41 μg/mL and 8.97 μg/mL for Cx.
quinquefasciatus, respectively. Regardless of exposure time, the
larvicidal activity of AC-AgNPs was much higher than that of
AC-CE for which LC50 of 231.41 μg/mL, 110.33 μg/mL and
53.15 μg/mL against Cx. quinquefasciatus, Ae. aegypti and An.
stephensi were found after 24 h exposure, respectively (Tables 4,
5). Interestingly, AC-CE did not cause any larval mortality at LC50

and LC90 concentrations found for AC-AgNPs.

3.9 Behavioral and morphological impact of
the AC-AgNPs on the larvae

The stereomicroscopic observations of Ae. aegypti, An.
stephensi and Cx. quinquefasciatus larval stages treated with
AC-AgNPs are depicted in Figure 8, and revealed the induction
of behavioral and morphological changes in mosquito larvae. It
was observed that swimming behavior of larvae was reduced,

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Kojom Foko et al. 10.3389/fbioe.2023.1109841

74

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1109841


with morbid larvae at the bottom of bowls and unable to swim to
the surface. Several morphological changes were noted in AC-
AgNPs-treated larvae and these included loss of external hairs/

bristles, swelling of the apical cells, pigmentation of the body,
shrinkage of the larvae, and necrosis and thickening of the
epidermis (Figure 8).

FIGURE 5
Patterns of the green synthesized AC-AgNPs using PXRD (A), SAED (B), EDX (C), and FTIR (D). In (A), intensity of peaks is presented as arbitrary units
(a.u). In (A), peaks with blue and black round shape indicate silver nanocrystals and silver chloride nanocrystals, respectively. AC-AgNPs, Alchornea
cordifolia silver nanoparticles; EDX, Energy dispersive X-ray spectroscopy; FTIR, Fourier transformed infrared spectroscopy; PXRD, Powder X-ray
diffraction; SAED, Selected area electron diffraction.
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4 Discussion

Vector-borne diseases such as malaria are an important public
health problem throughout the world especially in Cameroon. This
study demonstrated good hemocompatibility and high biocidal
potential of green synthesized AgNPs using A. cordifolia leaves
(Euphorbiaceae).

The synthesis of AC-AgNPs through green route was rapid as
color change was noted a few minutes after mixing AC-CE and
AgNO3 aqueous solutions, thereby outlining the onset of AC-AgNPs
synthesis through reduction of Ag+ ions into Ag⁰. This observation
was further confirmed upon analysis of UV-Vis spectra with a peak
at 445 nm wavelength. Karthik and others showed a close value

(434 nm) for Acalypha indica, another Euphorbiaceae plant
(Karthik et al., 2017). The UV-Vis peak corresponds to SPR
phenomenon during which electron on NPs surface enter into
resonance with the wavelength of incident light (Kojom Foko
et al., 2021). The SPR band was increasing with parameters used
for optimizing AC-AgNPs synthesis (i.e., AgNO3 concentration,
AC-CE volume, incubation time and incubation temperature), and
such findings were seen previously with plants growing in
Cameroon, especially Megaphrynium macrostachyum (Eya’ane
Meva et al., 2016), and Selaginella myosurus (Belle Ebanda Kedi
et al., 2018).

The biofabricated AC-AgNPs were small and mostly
spherical which is consistent with earlier reports using

TABLE 2 Principal characteristic values of the powder X-ray diffractogram of AC-AgNPs.

S.No. Position (2θ) Peak amplitude (a.u) FWHM (2θ) Cos (θ) Miller indices (HKL) Nature Size (nm)

1 27.83 64.55 1.1219 0.97065 (111) AgCl 7.62

2 32.31 146.69 1.2155 0.96051 (200) AgCl 7.11

3 38.15 66.67 0.6446 0.94509 (111) Ag 13.62

4 46.20 75.30 1.3896 0.91982 (200) Ag 6.49

5 54.81 19.36 0.9351 0.88778 (311) AgCl 10.00

6 57.41 16.20 0.7762 0.87710 (222) AgCl 12.19

7 64.59 20.41 0.4035 0.84531 (220) Ag 24.33

8 67.41 10.75 0.6573 0.83191 (400) AgCl 15.17

9 77.40 31.95 1.1259 0.78043 (311) Ag 9.44

a.u, Arbitrary units; FWHM, full width at half maximum; Cos, Cosinus.

TABLE 3 Functional groups at a given wavenumber for the FTIR spectra of AC-AgNPs.

Absorption (cm-1) Appearance Functional groups Compound class

3,416 Medium N-H stretching Primary amine

2,927 Sharp C-H stretching Alkane

2,857 Medium C-H stretching Alkane

2,373 Sharp O=C=O stretching Carbon dioxide

C≡N stretching Nitriles

2,323 Weak O=C=O stretching Carbon dioxide

C≡N stretching Nitriles

1,739 Sharp C=O stretching Ester, Aldehyde, Saturated aliphatic, or δ-lactone

1,630 Medium C=C stretching Conjugated alkene

1,458 Medium C-H bending Alkane (methylene or methyl group)

1,377 Medium C-H bending Aldehyde or Alkane (gem dimethyl)

1,023 Sharp C-O stretching Alcohol, Ether, Carboxylic acids

682 sharp C=C bending Alkene or Aromatics

600 sharp C-I stretching Halo compound

532 Sharp C-Br stretching Alkyl halides

Frontiers in Bioengineering and Biotechnology frontiersin.org11

Kojom Foko et al. 10.3389/fbioe.2023.1109841

76

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1109841


Morinda citrifolia and Adiantum raddianum (Suman et al., 2015;
Govindarajan et al., 2017a). Using a systematic review, we
previously reported that the bulk of NPs tested against
Plasmodium parasites and mosquito vectors were spherical
with a large range of size (Kojom Foko et al., 2019). Also, the
nucleation theory of NPs synthesis suggests that slow rate of seed
formation is expected to lead to broad size distribution of NPs
(Liu et al., 2020). This result suggests that AC-AgNPs nucleation
process was heterogeneous, and this can be influenced by several
factors such as mixing time and solvation dynamics (Thanh et al.,
2014; Deshpande et al., 2021). Size and shape of green NPs are
modulated by complex interactions of plant- and experiment
condition-related factors, and are crucial parameters that
determine their physico-chemical and biological activities (Pal
et al., 2007; Adams et al., 2014). Based on TEM analysis, AC-
AgNPs were polydispersed with varied size. Such variation is
commonly seen in AgNPs fabricated with plant extracts (Kojom
Foko et al., 2019; Kojom Foko et al., 2021).

The analysis of PXRD and SAED patterns outlined that AC-
AgNPs were polycrystalline with a crystallinity percentage of 84.13%
and presence of additional peaks on diffractogram. This finding
outlines that biosynthesized AC-AgNPs were not totally pure. At

nanoscale level, a large number of metals present as face-centered
cubic structures and tend to agglomerate due to high tension surface
of ultrafine NPs (Belle Ebanda Kedi et al., 2018), thereby explaining
the crystalline nature of AC-AgNPs. Also, with increasing
nucleation and growing over time, NPs form twinned structures
that then multiply with their surfaces bounded to cubic facets with
the lowest binding energy (Annamalai and Nallamuthu, 2016). The
SAED pattern clearly confirmed the crystalline nature of AC-
AgNPs.

Silver atom was mainly involved in AC-AgNPs synthesis while
other atoms such as oxygen and chlorine were also found, and these
could be due to phytochemical compounds in AC-CE. FTIR
spectrum revealed the presence of several peaks corresponding to
functional chemical groups (e.g., O-H, C≡N, C=C) attributable to
alkanoids, terpenoids, flavonoids, phenols, steroids, anthraquonones
or saponins, and confirmed results from GC-MS-based
phytochemical analysis done here and reported elsewhere
(Osadebe et al., 2012). These compounds are likely involved in
reducing silver ions during NPs synthesis along with their capping

FIGURE 6
Antiplasmodial activity of AC-CE and AC-AgNPs against
laboratory (A) P. falciparum 3D7 and (B) RKL9 strains. AC-AgNPs,
Alchornea cordifolia silver nanoparticles; AC-CE, Alchornea cordifolia
crude extract; CQ, Chloroquine; IC50, 50% Inhibition
concentration. CQ was used as standard drug. Reference P.
falciparum strains 3D7 (CQ-sensitive) and RKL9 (CQ-resistant) were
used. The experiments were triplicated.

FIGURE 7
Hemolysis effect of AC-CE and AC-AgNPs after 30 min (A) and
24 h (B). AC-AgNPs, Alchornea cordifolia silver nanoparticles; AC-CE,
Alchornea cordifolia crude extract; CQ, Chloroquine; IC50, 50%
Inhibition concentration. The experiment was performed in
triplicate. Saponin was used as positive control and PBS as negative
control. Statistically significant at *p < 0.05, **p < 0.01 and ***p <
0.0001.
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and stabilization (Hawadak et al., 2022).We found two predominant
compounds in plant extract (2-hexadecen-1-ol, 3,7,11,15-
tetramethyl-, [R-[R*,R*-(E)]]- (acyclic diterpene alcohol) and
phytyl tetradecanoate (fatty acid phytyl ester) using GC-MS.
Although mechanism of action of NPs reduction is uncertain, it
is likely these compounds, alone or in combination with other
compounds in plant extract, were involved in reduction, capping
and stabilization of AC-AgNPs.

Zeta potential defines the stability of colloidal suspensions such
NPs, and is a common parameter used to surface charge on a
particle. In this study, zeta potential of AC-AgNPs was −18.1 mV.
This value indicates a good stability of AC-AgNPs in dispersion

medium. Indeed, negative surface charge is due to the binding
affinity of AC-CE compounds with the NPs, conferring stability
of AC-AgNPs and preventing several phenomena such as
aggregation, sedimentation or flocculation which are known
impair stability of particles (Faisal et al., 2021).

High lethal activity of green AC-AgNPs against Pf strains
3D7 and RKL9 was observed, with IC50 < 10 μg/mL for 3D7 and
IC50 < 20 μg/mL for RKL9. This is consistent with value reported
by Hawadak et al. and Rajkumar et al. using green NPs mediated
by Eclipta prostrata and Azadirachta indica, respectively
(Rajakumar et al., 2015; Hawadak et al., 2022). In contrast,
our values are lower than those found previously with different

TABLE 4 Larval toxicity of AC-AE against larval stages of Cx. quinquefasciatus, Ae. aegypti and An. stephensi after 24h, 48h and 72 h exposure.

Time LC50 95% CI LC90 95% CI Regression equationa χ2 (p-value)

Culex quinquefasciatus

24 h 231.41 200.01–308.77 524.35 450.81–703.41 y = −1.16 + 0.004x 3.31 (0.85)

48 h 188.71 161.69–214.03 431.49 362.87–539.18 y = −0.92 + 0.005x 2.84 (0.78)

72 h 147.50 123.61–170.73 391.20 334.12–507.03 y = −0.76 + 0.005x 3.91 (0.69)

Aedes aegypti

24 h 110.33 85.44–214.11 160.14 141.00–348.11 y = −3.25 + 0.036x 8.44 (0.01)

48 h 90.30 71.80–109.37 141.42 123.02–241.88 y = −2.41 + 0.020x 5.15 (0.97)

72 h 71.52 66.27–100.11 113.11 91.76–199.44 y = −2.30 + 0.044x 4.01 (0.17)

Anopheles stephensi

24 h 53.15 47.33–60.01 121.88 87.14–199.01 y = −2.88 + 0.050x 5.86 (0.001)

48 h 41.57 37.51–50.43 102.11 75.55–111.77 y = −3.36 + 0.081x 8.30 (0.32)

72 h 37.23 28.83–52.68 57.01 41.15–63.52 y = −2.52 + 0.070x 0.71 (0.15)

Control no larval mortality recorded; LC50, LC90 Lethal concentration of the substance that kills 50%, 90% of the exposed larvae, respectively; LC50 and LC90 are expressed in µg/mL; 95% CI,

Confidence interval at 95%; χ2 Chi square; Statistical significance was set at p-value <0.05.
aDetermined using the probit model.

TABLE 5 Larval toxicity of AC-AgNPs against larval stages of Cx. quinquefasciatus, Ae. aegypti and An. stephensi after 24h, 48h and 72h exposure.

Time LC50 95% CI LC90 95% CI Regression equationa χ2 (p-value)

Culex quinquefasciatus

24 h 18.41 11.75–21.02 24.35 19.11–38.96 y = −9.16 + 0.59x 62.31 (<0.0001)

48 h 8.97 6.27–10.60 17.22 11.44–19.52 y = −7.32 + 0.52x 57.14 (<0.0001)

72 hb — — — — — —

Aedes aegypti

24 h 16.71 15.86–17.53 24.16 20.98–27.59 y = −2.27 + 1.36x 7.15 (0.52)

48 h 7.52 5.81–9.42 16.63 15.54–17.97 y = −1.35 + 1.50x 10.3 (0.24)

72 hb — — — — — —

Anopheles stephensi

24 h 10.67 7.59–13.75 21.62 12.49–28.76 y = −3.58 + 1.48x 5.35 (0.48)

48 h 5.85 3.75–8.94 12.06 10.55–19.80 y = −5.35 + 2.35x 8.30 (0.32)

72 hb — — — — — —

Control no larval mortality recorded; LC50, LC90 Lethal concentration of the substance that kills 50%, 90% of the exposed larvae, respectively; LC50 and LC90 are expressed in µg/mL; 95% CI,

Confidence interval at 95%; χ2 Chi square; Statistical significance was set at p-value <0.05.
aDetermined using the probit model.
bNo data were computed as all larvae were dead after 48 h
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Plasmodium strains (Kojom Foko et al., 2019). This antiplasmodial
activity exhibited by the AC-AgNPs is due to above mentioned
phytochemical compounds which served as bioreactors for NPs
reduction and capping. Several studies suggested potential
mechanisms of action of NPs against Plasmodium parasites (Cox-
georgian et al., 2019; Abubakar et al., 2020). The NPs could induce
parasite death by acting on several targets including cell membrane,
enzymes and internal organelles (Shakeel et al., 2016; Kamaraj et al.,
2017; Varela-Aramburu et al., 2020). Using in vivo model, Karthik and
others showed that antiplasmodial activity of marine actinobacterial-
mediated gold NPs was associated with increased production of tumor
growth factor but reduction in tumor necrosis factor, thereby
emphasizing an immunomodulatory role of NPs (Karthik et al.,
2013). Pf is highly prevalent in Cameroon (Kojom Foko et al., 2018;
Antonio-Nkondjio et al., 2019; Kojom Foko et al., 2021), and our
findings suggest that AgNPs could be interesting as antimalarial
drug. A large number of NPs-related chemical and/or physical
factors could explain discrepancies obtained between our findings

and those from previous studies. These included mainly size
distribution, shape, capping/reducing agents, aggregation and surface
charge. Even though AC-AgNPs synthesized in this study showed broad
size distribution (range 6–28 nm), these are still interesting for future
antimalarial drug development. Optimal NPs size for integration into
human drugs varies depending on the specific drug and its intended
application (Mitchell et al., 2021). This size distribution found here is
consistent with previous studies on potential of MNPs as either drug
delivery agent (i.e., passive targeting to enhance the accumulation of
drugs in tumors) or antimalarial drug (i.e., active targeting to specific
cells/tissues) (Santos-Magalhães and Mosqueira, 2010; Rahman et al.,
2019). It should be interesting to conduct more studies to define
consistent NPs size cut-offs for antimalarial therapy purposes.

It is known that antimalarial drugs such as ACTs, the current
medicines used for treating uncomplicated malaria in most of
endemic countries, can induce hemolysis in patients (Rehman
et al., 2014). Therefore, new antimalarial drug candidates should
be screened for hemocompatibility profile. The hemolysis rate was

FIGURE 8
Morphological deformities induced by the exposure to AC-AgNPs (LC50 dose) on larval stages of Ae. aegypti, Cx. quinquefasciatus, and An.
stephensi. (A) Ae. aegypti larvae (Control), (B–D) A. aegypti larvae (AC-AgNPs-treated), (E) Cx. quinquefasciatus larvae (Control), (F–H) Cx.
quinquefasciatus larvae (AC-AgNPs-treated), (I) An. stephensi larvae (Control), (J) An. stephensi larvae (AC-AgNPs-treated). Arrows indicate the
difference morphological abnormalities seen in AC-AgNPs-treated larvae: swelling of the apical cells (blue arrows), pigmentation of body (yellow
arrows), shrinkage of the larvae (red arrows), loss of external anal and head hairs/bristles (green arrows), necrosis and thickening of the epidermis (black
arrows).
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below at 50% after 30 minute-incubation, thereby underlining a
HC50 > 500 μg/mL for the AC-AgNPs. The biofabricated AC-
AgNPs were therefore highly hemocompatible, consistent with
findings of Hossain and coworkers, who reported HC50 of
700 and 800 μg/mL for green aqueous and ethanolic NPs
mediated by Andrographis paniculata stem (Hossain et al., 2019).
Hemolysis increased as a function of time for AC-CE and AC-
AgNPs which is in line with previous studies (Laloy et al., 2014;
Avitabile et al., 2020). Hemolysis activity of NPs is strongly
dependent on their size with higher hemolytic activity seen in
smaller NPs (Chen et al., 2015). Thus, the small size of AC-
AgNPs could likely explain their hemolytic activity (De La Harpe
et al., 2019). Also, the anti-hemolytic activity of AC-AgNPs can be
partially attributed to biomolecules coated on their surface. In fact,
polyphenols are known to delay solubilization and inhibit oxidation
of lipid frame; terpenes and flavonoids prevent interactions with
hydrophobic parts of proteins and lipids, resulting in protecting and
stabilizing cells membrane (Hoshyar et al., 2016; De La Harpe et al.,
2019).

The phytofabricated AC-AgNPs exhibited a high toxicity
against larval stages of Ae. aegypti, Cx. quinquefasciatus and
An. stephensi, with LC50 below 20 μg/mL. Consisting with
previous reports on diverse families of plants such as A.
raddianum (Pteridaceae), Hugonia mystax (Linaceae), Psidium
guajava (Myrtaceae), Holostemma ada-kodien (Apocynaceae)
and Aganosma cymosa (Apocynaceae) (Govindarajan et al.,
2017a, 2017b; Benelli and Govindarajan, 2017; Alyahya et al.,
2018; Ntoumba et al., 2020). In contrast, some authors reported
LC50 > 20 μg/mL for AgNPs fabricated with Ventilago
maderaspatana (Rhamnaceae), Naregamia alata (Meliaceae),
Hedychium coronarium (Zingiberaceae) and Sargassum wightii
(Sargassaceae) (Azarudeen et al., 2017a, 2017b; Kalimuthu et al.,
2017; Murugan et al., 2017). The discrepancy observed between
studies is likely due to a cocktail of factors including the
phytochemical composition of plant used for NPs synthesis,
size/shape of NPs and mosquito strains. The mechanisms
through which NPs induce larval mortality are still elusive,
but it is thought that nanosized materials such as NPs can
easily pass through insect exoskeleton and cell membrane,
bind to sulphur-containing proteins and/or DNA which then
lead to interference with homeostatic and physiological processes
essential for larvae (e.g., copper homeostasis, osmoregulatory
and spiracle-related respiratory systems) (Armstrong et al., 2013;
Kojom Foko et al., 2021; Araújo et al., 2022). Other authors
reported NP-induced physical and molecular degradation of
insect gut as additional death cause (Kalimuthu et al., 2017,
2016; Banumathi et al., 2017; Ishwarya et al., 2017; Suganya et al.,
2019). Also, these putative mechanisms could also explain
behavioral and morphological modifications in AC-AgNPs-
treated larvae seen in this study and by several earlier studies
on extracts and NPs (Banumathi et al., 2017; Ishwarya et al., 2017;
Suganya et al., 2019).

5 Conclusion

In this study, we synthesized, optimized, characterized and
evaluated some medical applications of green AC-AgNPs

including antiplasmodial, hemocompatibility and larvicidal
potential. The synthesis was rapid and the optimized AC-AgNPs
were mostly spheroidal, small-sized, dispersed, stable and
polycrystalline in nature. Several phytochemicals including
alkanoids, terpenoids, flavonoids, phenols and steroids were
responsible for reduction, capping and stabilization of AC-
AgNPs. The AC-AgNPs exhibited higher antiplasmodial and
mosquito larvicidal activities compared to plant extract. The AC-
AgNPs induced several mortality-associated behavioral and
morphological changes in larval stages of Ae. aegypti, An.
stephensi and Cx. quinquefasciatus. Finally, the AC-AgNPs
exhibited good hemocompatibility with HC50 > 500 μg/mL. In
worrying context of resistance of malaria parasites to current
drugs and mosquitoes to different classes of insecticides, green
nanotechnology could be a valuable and cutting-edge alternative
for advanced drug/insecticide development and research.
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Glossary

AC Alchornea cordifolia

ACT Artemisinin based combination therapy

AgNPs Silver nanoparticles

ANOVA Analysis of variance

a.u Arbitrary units

CE Crude extract

CI Confidence interval

Cos Cosinus

CQ Chloroquine

DDT Dichlorodiphenyltrichloroethane

DLS Dynamic light scattering

DNA Deoxyribonucleic acid

EDX Energy dispersive X-ray

ELISA Enzyme-linked immunosorbent assay

FCC Face centered cubic

FTIR Fourier transformed infrared spectroscopy

FWHM Full width at half maximum

GC-MS Gas chromatography coupled with mass spectrometry

HC50 50% hemolysis concentration

IC50 50% inhibition concentration

ICMR Indian Council of Medical Research

JCPDS Joint Committee on Powder Diffraction Standards

LC Lethal concentration

MNPs Metallic nanoparticles

NIMR National Institute of Malaria Research

PBS Phosphate-buffered saline

Pf Plasmodium falciparum

PI Polydispersity index

PXRD Powder X-ray diffraction

RBC Red blood cell

SAED Selected area electron diffraction

SD Standard deviation

SEM Scanning electron microscopy

SPR Surface plasmon resonance

TEM Transmission electron microscopy

UD The University of Douala

UV-Vis Ultraviolet-Visible

WHO World Health Organization
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Bacterial-mediated synthesis and
characterization of copper oxide
nanoparticles with antibacterial,
antioxidant, and anticancer
potentials
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Yasaman Abolhassani2 and Fatemeh B. Rassouli3*
1Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran, 2Department
of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical
Science, Mashhad, Iran, 3Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology,
Ferdowsi University of Mashhad, Mashhad, Iran

The application of novel bacterial strains for effective biosynthesis of nanoparticles
minimizes negative environmental impact and eliminates challenges of available
approaches. In the present study, cell-free extract of Stenotrophomonas sp. BS95.
was used for synthesis of copper oxide nanoparticles (CuONPs). Characterization of
crude and calcined CuONPs was carried out by UV-vis spectroscopy, X-ray diffraction
(XRD), fourier transform infrared (FTIR) spectroscopy, zeta potential, dynamic light
scattering, field emission scanning electron microscopy, transmission electron
microscopy, and atomic force microscopy. Afterward, biogenic CuONPs were
evaluated for antibacterial, antioxidant, and cytotoxic effects using broth micro-
dilution method, DPPH assay and alamarBlue assay, respectively. Finally, molecular
mechanisms behind anticancer effects of CuONPs was ascertained by real time PCR.
UV-vis absorbance spectra registered surface plasmon resonance peaks at 286 nm
and 420 nm for crude and calcined CuONPs, respectively. FTIR spectra exhibited
bands associated with organic functional groups of bacterial proteins, confirming
capping and functionalization of CuONPs. The average crystallite size of crude and
calcined CuONPs was determined as 18.24 and 21.3 nm by XRD, respectively. The
average zeta potentials of crude and calcined CuONPs were as −28.57 ±
5.13 and −29.47 ± 4.78mV, respectively, indicating their high stability. Electron
microscopy revealed that crude and calcined CuONPs were roughly spherical
particles with an average size of 35.24 ± 4.64 and 43.68 ± 2.31 nm, respectively.
Biogenic CuONPs induced antibacterial effects withminimal inhibitory concentrations
ranging from 62.5 to 1,000 μg/ml against Gram-negative and Gram-positive strains.
The antioxidant activity of crude and calcined CuONPs was found to be 83% ± 2.64%
and 78% ± 1.73%, respectively. More intriguingly, CuONPs exerted considerable
cytotoxic effects on human colon and gastric adenocarcinoma cells, while induced
low toxicity on normal cells. Anticancer effects of biogenic CuONPs were confirmed
by significant changes induced in the expression of apoptosis-related genes, including
P53, BAX, BCL2 and CCND1. Hence, biosynthesized CuONPs could be considered as
potential antimicrobial, antioxidant and anticancer agents.

KEYWORDS

stenotrophomonas sp. BS95, copper oxide nanoparticles, antimicrobial activity,
antioxidant effects, anticancer properties
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Introduction

Nanotechnology is as an evolving interdisciplinary research field that
focuses on nanoparticles (NPs) with improved size-dependent features,
such as robustness of the colloidal moiety, great surface area and high
bioavailability to name a few (Pan et al., 2021). Conventionally, synthesis
of NPs can be performed by physical, chemical and mechanical
approaches, however, high cost and toxicity of these methods have
shifted fabrication of NPs toward biological systems (Chandrasekaran
et al., 2020; Lahiri et al., 2021). Among all microorganisms, bacteria are
attractive candidates to synthesizeNPs because of remarkable benefits like
high stability, short generation time, mild experimental condition, easy
culture, resistance to most toxic heavy metals and their ability to produce
sustainable NPs at a large scale (Yusof et al., 2019; Waris et al., 2021).

Unique characteristics of metal oxide NPs made them suitable
candidates for various commercial and domestic applications, such as
energy harvesting, food processing and environmental protection
(Tsuzuki, 2021). In addition, there is a growing interest to develop
nano-scale pharmaceuticals for management of global health concerns.
For instance, antibiotic resistance crisis, which has placed a substantial
clinical and financial burden on healthcare systems, can be controlled by
antibacterial potential of NPs. Furthermore, increasing incidence and
mortality rate of cancer, which is due to poor diagnosis and low specificity
of common chemotherapeutics, can be reversed by novel nano-based
agents (Pearce et al., 2017; Fu et al., 2018; Zhang et al., 2018).

Copper oxide nanoparticles (CuONPs) have attracted much
attention because of appropriate redox potential, high specific
surface area, and excellent stability in different solutions (Nagajyothi
et al., 2017; Verma and Kumar, 2019). The aim of present study was to
synthesize CuONPs by a toxic-free, rapid, and eco-friendly approach
and evaluate its biological activities. To do so, CuONPs were first
synthesized by Stenotrophomonas sp. BS95, and then characterization
was carried out by well-established techniques; Optical properties were
defined by ultraviolet-visible (UV-vis) spectroscopy and fourier
transform infrared (FTIR) defined functional groups. X-ray
diffraction (XRD) was used to determin the crystallite size, while
physical stability and surface charge were measured by zeta
potential. Analysis of hydrodynamic particle size was carried out by
dynamic light scattering (DLS) and electrone microscopy was used to
study various surface phenomena such as morphology and roughness.
Then after, crude and calcined CuONPs were assessed for antibacterial,
antioxidant, and cytotoxic effects using broth micro-dilution method,
DPPH assay and alamarBlue assay, respectively. Finally, molecular
mechanisms behind anticancer effects of biogenic CuONPs was
unraveled by real time polymerase chain reaction (PCR).

Materials and methods

Biosynthesis of CuONPs by hydrothermal
cell lysate supernatant

Synthesis of CuONPs in the present study was carried out using
bacterial cell lysate supernatant (CLS), as previously described
(Nakhaeepour et al., 2019). A cold-tolerant bacterium, namely,
Stenotrophomonas sp. BS95 was isolated from alpine soil samples
collected in western Iran, and identified using 16s rRNA gene
sequencing analysis. The data presented in this study are

deposited in the GenBank repository, accession number
OQ253458. To synthesize CuONPs, this strain was cultured in
tryptic soy broth (TSB) medium (Merck) and incubated in a
shaking incubator at 28°C and 150 rpm for 72 h. Afterward, the
culture medium was centrifuged at 7,500 rpm for 15 min and the
pellet was washed with 1 mM NaCl solution (Merck). Then, the cell
pellet was resuspended in distilled H2O and after 24 h incubation, it
was placed in an ultrasonic bath sonicator for 20 min to obtain the
cell lysate. Upon centrifugation at 5,000 rpm for 20 min, the
supernatant was added to 0.01 M copper (II) sulfate pentahydrate
(CuSO4.5H2O) and heated at 121°C for 20 min. Followed by
centrifugation at 10,000 rpm for 10 min, biogenic CuONPs were
obtained and washed with distilled H2O and ethanol. Then, the
purified NPs were dried in a vacuum oven at 80°C for 4 h to achieve
crude CuONPs, and calcined CuONPs were obtained after
incubation in a muffle furnace (470°C) for 4 h.

Characterization of synthesized
CuONPs

UV-vis spectroscopy

To define optical properties of crude and calcined CuONPs, UV-
vis spectroscopy was used (Ssekatawa et al., 2022). In this regard,
1 mg of each sample was dispersed in distilled H2O and dispensed
into different cuvettes. Optical properties of samples were then
obtained by UV-vis spectrophotometer (Shimadzu UV-1700,
Japan), scanning at a resolution of 1 nm between 200 and
800 nm ranges.

FTIR spectroscopy

The organic functional groups of crude and calcined CuONPs
were identified by FTIR spectroscopy (Sarkar et al., 2020). In this
regard, 2 mg of biogenic CuONPs and 2 g of potassium bromide
(KBr) were mixed and compressed to obtain translucent circular
pellets. Then, samples were scanned through 4,000 to 400 cm-1

wavenumber range and a resolution of 4 cm-1 for at least
32 scans per sample using Thermo Nicolet 6700 FTIR
spectrometer (Nicolet Avatar, Madison, WI, United States of
America). To note, KBr pellet was used as control.

XRD analysis

To confirm crystallinity of crude and calcined CuONPs, XRD
analysis was performed (Nakhaeepour et al., 2019). To do so, GNR
Explorer X-ray diffractometer (Italy) fitted with Cu-Kα radiation
(λ = 1.5418 A°) and scanning from 2θ = 20°–80°, with a voltage of
40 kV, current of 30 mA and integration time of 0.2 s/step was used.
Obtained data was visualized in OriginPro 2019b software, and
validated by standard CuONPs 2θ values from the International
Center for Diffraction Data (ICDD) database. The average crystallite
size was calculated using the following formula:

d � 0.9 λ / β cos θ
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in which d is the average crystallite size, ß is full peak width at half
maximum, λ is the wavelength of X-ray (1.5418 Å) and θ is the 2θ
angle in peak.

DLS and zeta potential

The average size and stability of crude and calcined CuONPs
were determined at neutral pH and room temperature as previously
described (Sarkar et al., 2020). Briefly, to evaluate the average size
distribution, 100 μg/ml of each sample was dispersed in ethanol and
sonicated for 5 min. Afterward, samples were examined by DLS
analyzer (vasco3. Cordouan, France) for three times, and zeta
potential was determined by an electrophoretic light scattering
instrument (Zeta Compact, CAD, France).

FESEM, TEM and AFM analysis

To determine the particle size distribution and nanostructure
of crude and calcined CuONPs, FESEM was used (Ali et al.,
2020). In summary, each sample was spread onto an aluminum
tape and coated with gold to become a conductor. Micrographs
were taken at different magnifications using FESEM (Mira 3-FEG
TESCAN, Czech Republic), operating at around 30 kV
accelerating voltage. Morphological and topographical
characteristics of biogenic CuONPs were also studied by TEM
(Ssekatawa et al., 2022). In this regard, 1 mg/ml of each sample
was dispersed in ethanol, sonicated and finally loaded on copper
grid thin films. Micrographs were obtained by TEM (912AB,
LEO, Germany) operating at around 100 kV accelerating voltage.
The particle size distribution (PSD) plots were obtained by
determining the size of 50 particles for each sample using
ImageJ software.

The surface morphology of crude and calcined CuONPs was
investigated by AFM (Barani et al., 2021). To do so, NSC15-type
silicon probes with the radius of tip curvature less than 10 nm were
used and samples were analyzed by AFM device (Brisk model, Ara
Research, Iran). The height of each sample was finally estimated in
scanning areas of 1 × 1 μm.

Antibacterial activity

The antibacterial activity of biogenic CuONPs against
pathogenic bacteria including Bacillus subtilis PTCC 1023,
Staphylococcus aureus ATCC 25923, Pseudomonas putida
KT2440 and Escherichia coli PTCC 1860 was evaluated using
broth micro-dilution method (Binesh et al., 2021) The
suspension of 1.5 × 108 CFU/mL bacteria (according to the
0.5 McFarland standard) was prepared in nutrient broth (NB,
Merck). To assess minimum inhibitory concentration (MIC),
100 µl of CuONPs with serial dilutions (500–1.9 μg/ml) and 10 µl
of pathogenic bacteria were transferred to each well of 96-well
plates containing 100 μL Muller-Hinton broth medium (MHB,
Merck) and incubated at 37°C in a shaker incubator for 18 h. The
absorbance was then recorded at 630 nm using a
spectrophotometer (Stat Fax 2100, England). To evaluate

minimum bactericidal concentration (MBC), 5 µl from each
dilution was spread on Muller-Hinton agar (MHA, Merck)
plates and incubated at 37°C for another 24 h.

Analysis of antioxidant activity

The antioxidant activity of crude and calcined CuONPs was
assessed by measuring their capability to scavenge synthetic stable
radicals of 2,2-diphenyl-1-picrylhydrazyl (DPPH), as previously
reported (Barani et al., 2021). To do so, 0.14 mM DPPH in
methanol was added to each well of 96-well plates containing
different concentrations of CuONPs (31.2, 62.5, 125, 250, 500,
and 1,000 μg/ml) and incubated at 37°C for 30 min, while
ascorbic acid was used as a standard solution. Finally, the
absorbance (A) was recorded at 517 nm using spectrophotometer
(Awarness), and free radical scavenging activity of CuONPs was
calculated using the following formula:

DPPH radical scavenging activity %( ) � AS − AT − AB( )
AS

( ) × 100

in which AT is the absorbance of test wells, AB is the absorbance of
blank wells, and AS is the absorbance of standard solution.

Cell culture, treatment and viability assay

Human colon and gastric adenocarcinoma cells (LoVo and
MKN-45 cell lines, respectively) along with human dermal
fibroblasts (HDF cell line) were purchased from Pasteur
Institute (Tehran, Iran). MKN-45 and HDF cells were
cultured in Dulbecco’s modified Eagle’s medium (DMEM,
Biowest), whereas LoVo cells were grown in Roswell Park
Memorial Institute-1640 (RPMI-1640, Biowest). All media
were supplemented with 10% fetal bovine serum (FBS)
(Biowest) and 1% penicillin-streptomycin (Biowest). Cells
were maintained at 37°C in normoxic (95% and 5% CO2 in
air) and hypoxic (93% N2, 5% CO2 and 2% O2) conditions.

To evaluate cytotoxic effects of CuONPs and determine the half
maximal inhibitory concentration (IC50) values, alamarBlue assay
was performed (Movaffagh et al., 2021). To do so, LoVo and MKN-
45 cells were seeded at a density of 14,000 cell/well, in each well of
96-well plates, while HDF cells were seeded at a density of
10,000 cell/well. After 24 h incubation, cells were treated with 50,
100, and 200 μg/ml crude and calcined CuONPs, while untreated
cells were considered as control. At the end of treatments (24 h),
alamarBlue solution (Sigma-Aldrich) was added to each well (20 µl/
well) followed by 2 h incubation at 37°C. Then, the absorbance (A) of
each well was recorded at 600 nm using spectrophotometer
(BioTek), and the viability of cells was calculated based on the
following equation:

Cell viability %( ) � 100 –
AT –AU
AB − AU

( )[ ] × 100

in which AT is the absorbance of treated cells, AU is the
absorbance of untreated cells, and AB is the absorbance of
blank control.
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Gene expression analysis

To assess the effects of biogenic CuONPs on the expression of
apoptosis-related genes, real time PCRwas applied (Mirzaei et al., 2022).
In summary, total cellular RNA was extracted from LoVo cells treated
with 100 μg/ml crude and calcined CuONPs, as well as untreated cells,
using a total RNA isolation kit (DENAzist Asia). RNA purity was then
evaluated by spectrophotometer at 260 and 280 nm (Nanodrop
2000 Thermo). For synthesis of cDNAs, M-MuLV reverse
transcriptase (Parstous) was used according to the manufacturer’s
instruction. The validity of amplified cDNAs was then confirmed by
PCR usingTBP primers and final products were loaded on 1.5% agarose
gel for electrophoresis. Real time PCRwas conducted in an iQ5 real-time
PCR detection system (Bio-Rad) using SYBR green master mix
(BioFact) and specific primers listed in Table 1. To compare the
level of gene expression, TBP transcripts were used as internal
control and normalized values were plotted as relative fold change
over untreated cells. PCR cycling conditions were as follows: 95°C for
5 min [95°C for 20 s, 58°C for 30 s, 72°C for 30 s] (35 cycles) for P53,
BAX, BCL2 and CCND1 primers.

Statistical analysis

The data were analyzed by one-way ANOVA and Dunnett’s
multiple comparison tests using GraphPad Prism version
8.4.3 software. Values were expressed as mean ± SD, and p
values less than 0.05, 0.01, 0.001 and 0.0001 were considered to
be statistically significant.

Results

Biosynthesis of CuONPs

In the present study, synthesis of CuONPs was carried out
using CLS of a psychrotolerant Stenotrophomonas species. In
this approach, complicated downstream processes were
not required and thus, the risk of microbial contamination
was low. The biosynthesis of CuONPs was validated by
monitoring four flasks containing Stenotrophomonas
sp. BS95 after 48 h incubation, bacterial CLS, CuSO4

solution and the reaction mixture of bacterial CLS with
CuSO4 (Figure 1). The instant precipitation of green
aggregates, which did not change over 24 h incubation,
indicated the formation of CuONPs.

Optical properties of biogenic CuONPs

UV-vis spectroscopy was carried out to obtain optical properties
of crude and calcined CuONPs. As presented in Figure 2A, surface
plasmon resonance (SPR) peaks were recorded at 286 and 420 nm,
which were assigned to efficient bio-reduction of CuSO4 to
CuONPs. Since the shift of UV-vis absorbance toward short
wavelengths is mainly attributed to decrease in the NP size, the
left shift observed in UV spectrum was associated with the small size
of our biogenic crude CuONPs.

FTIR analysis

The FTIR spectra of crude and calcined CuONPs revealed
similar absorbance bands within the wavenumber range of
3,200–3,600, 1,652 and 1,235–1,360 cm-1 (Figure 2B). As shown,
three distinct bands were registered for crude CuONPs in the range
of 2,958, 1,080 and 547 cm−1, while two unique absorbance bands
were recorded for calcined CuONPs in the range of 521 and
620 cm−1.

Analysis of XRD pattern

Completely similar to the standard pattern of CuO nanocrystals
(JCPDS File No: 01-080-1917), analysis of XRD patterns revealed
that all peaks representing CuONPs were present in our biogenic
crude and calcined NPs (Figure 3). Bragg peaks positioned at 2θ
values of 32.5°, 35.7°, 38.7°, 46.2°, 53.5°, 65.8°, 66.2°, 68.08° and 72.3°

were registered for crude CuONPs, corresponded to the planes of
(100), (002), (101), (102), (110), (103), (200), (112) and (004),
respectively. However, diffraction peaks observed at 2θ values of
32.18°, 35.19°, 38.6°, 52.9°, 65.3°, 68.2° and 71.8° were registered for
calcined CuONPs, assigned to crystal planes of (100), (002), (101),
(110), (103), (112) and (004), respectively. The average crystallite
size, measured using the Debye–Scherrer equation, was as 18.24 nm
and 21.3 nm for crude and calcined CuONPs, respectively.

Measurement of stability and particle size

The average zeta potentials of crude and calcined CuONPs were
as −28.57 ± 5.13 mV and −29.47 ± 4.78 mV, respectively, indicating
their high stability (Figures 4A, B). The size distribution histograms
obtained from DLS analysis showed that the size of the crude

TABLE 1 List of primers, their sequence, and product length used in the present study.

Gene name Forward (5′ to 3′) Reverse (5′ to 3′) Product size (bp)

TBP ACAACAGCCTGCCACCTTA GAATAGGCTGTGGGGTCAGT 120

P53 GTTCCGAGAGCTGAATGAGG TTATGGCGGGAGGTAGACTG 123

BAX GGACGAACTGGACAGTAACATGG GCAAAGTAGAAAAGGGCGACAAC 150

BCL2 GATGACTGAGTACCTGAACCG CAGAGACAGCCAGGAGAAATC 124

CCND1 TGAAGGAGACCATCCCCCTG TGTTCAATGAAATCGTGCGG 151
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CuONPs ranged from 25 to 110 nm with a mean distribution
diameter of 55.92 nm, and from 38 to 128 nm with an average of
68.35 nm for calcined CuONPs. In addition, the calculated
polydispersity index (PDI) were as 0.26 nm and 0.13 nm for
crude and calcined CuONPs, respectively (Figures 4C, D).

Nanostructure analysis by FESEM, TEM
and AFM

FESEM was used to determine morphology and size details of
biogenic CuONPs. As presented in Figures 5A, B, crude and calcined
CuONPs were spherical particles with the average PSD of 37.73 ±
3.27 and 48.37 ± 5.17 nm, respectively. Likewise, TEM micrographs
revealed that crude and calcined CuONPs were roughly spherical
particles with PSD values of 35.24 ± 4.64 and 43.68 ± 2.31 nm,
respectively (Figures 5C, D).

To provide further insights into topological appearance and size
of CuONPs, AFM images were prepared. As presented in Figure 6,
crude and calcined CuONPs were detected as individual conical
grains extending upwards with the average height as 5.155 and
6.547 nm, respectively.

Antibacterial effects of biogenic CuONPs

The antibacterial activity of CuONPs was evaluated against
Gram-negative and Gram-positive bacteria using the broth
microdilution method (Table 2). Calculating MIC values revealed
that crude CuONPs inhibited the growth of B. subtilis, S. aureus, P.
putida and E. coli at 62.5, 125, 250, and 500 μg/ml, respectively.
Furthermore, the MIC values of calcined CuONPs were found to be
250 μg/ml for B. subtilis and S. aureus, and 500 and 1,000 μg/ml for
P. putida and E. coli, respectively. This observation demonstrated

FIGURE 1
Visual detection of biosynthesized CuONPs. Four conical flasks containing Stenotrophomonas sp. BS95 after 48 h incubation (A), bacterial CLS (B),
CuSO4 solution (C), and biogenic CuONPs (D).

FIGURE 2
The UV-vis spectrum of crude and calcined CuONPs (A); maximum absorbance bands were observed at 286 nm and 420 nm, respectively, FTIR
spectrum of crude and calcined CuONPs (B).
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that calcination reduced the bacterial inhibitory activity of CuONPs.
As also indicated in Table 2, MBC values for crude CuONPs in the
present study were 250 μg/ml for B. subtilis, S. aureus and P. putida

and 500 μg/ml for E. coli. Likewise, the MBC values of calcined
CuONPs were determined as 250 μg/ml for B. subtilis and S. aureus,
and 500 μg/ml for P. putida and E. coli.

FIGURE 3
XRD patterns for crude (A) and calcined (B) CuONPs.

FIGURE 4
Zeta potential histograms (A, B) and particle size distribution pattern (C, D) of crude (A, C) and calcined (B, D) CuONPs.
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Antioxidant activity of biogenic CuONPs

Evaluating the antioxidant activity of biogenic CuONPs in the
present study indicated that they scavenged DPPH radicals in a
dose-dependent manner. As presented in Figure 7, upon
administration of 2000 μg/ml crude CuONPs, 83% ± 2.64%
antioxidant activity was detected, while calcined CuONPs
exhibited lower activity (78% ± 1.73%) in the same
concentration. To note, in all concentrations, significant
difference (p < 0.0001) was detected in the scavenging activity
between ascorbic acid and biogenic CuONPs.

Anticancer properties of biogenic CuONPs

Assessment of cell viability revealed that CuONPs induced cytotoxic
effects in a dose-dependent manner. As shown in Figure 8, treatment of
LoVo, MKN-45 and HDF cells with 50, 100 and 200 μg/ml crude and
calcined CuONPs significantly reduced cell viability in comparison with
untreated cells. To note, toxic effects of CuONPs were also cell type-
dependent, as viability of LoVo cells reduced to lower amounts in
comparison with MKN-45 cells, and more interestingly, our biogenic
CuONPs induced lowest toxic effects on non-cancerous HDF cells.
Similarly, morphological alterations, in the form of dispersed cells
with cytoplasmic granulation, were apparent upon administration of

crude and calcined CuONPs when compared with untreated cells
(Figure 9). Calculated IC50 values of crude and calcined CuONPs on
LoVo, MKN-45 and HDF cells are presented in Table 3. Due to high
toxicity of CuONPs in LoVo cells, we also assessed their anticancer
potential in hypoxic condition. Our results demonstrated that in
comparison with untreated cells, biogenic CuONPs induced
considerable toxicity in hypoxic condition as well (Table 3; Figure 8).

To unravel mechanisms underlying anticancer effects of crude and
calcined CuONPs, alterations induced in the expression of apoptosis-
related genes was investigated by real time PCR. As shown in Figure 10,
upon 24 h treatment of LoVo cells with 100 μg/ml biogenic CuONPs,
significant (p < 0.0001) over expression of P53 and BAX was detected in
comparison with untreated cells. On the other hand, crude and calcined
CuONPs significantly (p < 0.001) downregulated the expression of BCL2
and CCND1 when compared with untreated cells.

Discussion

Biosynthesis of CuONPs was carried out in the present study by
an efficient non-toxic approach using Stenotrophomonas
sp. BS95 CLS. It has been shown that cellular biomolecules such
as enzymes and proteins presented in the bacterial CLS could reduce
copper ions into copper atoms leading to CuONPs formation
(Nakhaeepour et al., 2019; Bandeira et al., 2020). This

FIGURE 5
FESEM (A, B) and TEM (C, D) micrographs of crude (A, C) and calcined (B, D) CuONPs.
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mechanism might be involved in biosynthesis of CuONPs in our
study as well. The reduction of CuSO4 was subjected to spectral
analysis by the UV-vis spectroscopy. SPR peaks of crude and
calcined CuONPs were recorded between 286 and 420 nm,
respectively. In line with these findings, it has been reported that
UV-vis absorbance of biogenic CuONPs fall between 285 and
570 nm (Cheirmadurai et al., 2014; Duman et al., 2016).
Furthermore, changes in the SPR peak position after calcination
could be explained by elimination of capping agents, increased
crystallite size and/or agglomeration of metal oxide NPs, as
previously described (Tang et al., 2012; Kayani et al., 2015;
Gharibshahi et al., 2017).

FTIR spectrophotometry was carried out to analyze bacterial
biomolecules involved in reducing copper ions to CuONPs and
subsequent capping. The organic functional groups entrapping
CuONPs were determined as previously reported (Ali et al., 2020;
Chandrasekaran et al., 2020; Kouhkan et al., 2020). Strong peaks at

3,200–3,600 cm-1 demonstrated the N-H stretching vibrations of amine
group or amide linkages in the protein contents of bacterial plasma
membrane. The peak observed at 2,958 cm-1 was associated with
C-H stretching vibration of the aldehyde compound. The band at
1,652 cm-1 was corresponded to the stretching vibration of C=O,
usually found in proteins. The peaks seen at 1,080, 1,235 and
1,360 cm-1 were further associated with the stretching vibration of
C–N of aliphatic and aromatic amines. In this study, the bands at
547 and 521 cm-1 for Cu–O confirmed the synthesis of CuONPs.
To note, deletion of absorption peaks at 2,958 and 1,080 cm−1 in
calcined CuONPs might be due to the removal of peaks
corresponding to functional groups, including aldehyde and
amine.

The presence of sharp structural peaks in XRD patterns and
crystallite size <100 nm revealed the nanocrystalline nature of crude
and calcined CuONPs, which are in consistence with previous
studies (Ahamed et al., 2014; Shankar and Rhim, 2014; Duman

FIGURE 6
AFM images of crude (A, B) and calcined (C, D) CuONPs: 2D view (A, C) and 3D view (B, D).

TABLE 2 The MIC and MBC of biogenic CuONPs against different Gram-positive and Gram-negative bacteria.

MIC (μg/ml) MBC (μg/ml)

B. subtilis S. aureus P. putida E. coli B. subtilis S. aureus P. putida E. coli

Crude CuONPs 62.5 125 250 500 250 250 250 500

Calcined CuONPs 250 250 500 1,000 250 250 500 500
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FIGURE 7
The antioxidant activity of biogenic CuONPs at different concentrations. Ascorbic acid was used as a standard. ****p < 0.0001 indicate significant
difference with ascorbic acid.

FIGURE 8
Dose-response curves representing the effects of crude and calcined CuONPs on viability of LoVo cells in normoxic (A) and hypoxic conditions (B),
MKN-45 cells (C), and HDF cells (D). Results are shown as mean ± SD. *p < 0.05, **p < 0.01***p < 0.001 and ****p < 0.0001 indicate significant difference
with untreated cells.
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et al., 2016). Metal oxide NPs with zeta potential values higher than
+30 mV or lower than −30 mV typically have high degree of
stability, which is of utmost importance to avoid their
agglomeration in colloidal solution (Joseph and Singhvi, 2019).
In the present study, zeta potential measurement indicated higher
stability of crude and calcined CuONPs compared to previous
reports (Tiwari et al., 2016; Chandrasekaran et al., 2020).

Defining the morphology and PSD of biogenic CuONPs by
FESEM, TEM and AFM revealed their spherical shape, while crude
CuONPs presented smaller size in comparison with calcined
CuONPs. These observations confirmed results obtained from
XRD and DLS analysis, and are in consistence with previous
reports on biogenic CuONPs (Nasrollahzadeh et al., 2015; Gu
et al., 2018; Kouhkan et al., 2020; Sarkar et al., 2020).

Evaluating antibacterial activity of CuONPs implied on their
inhibitory effects on both Gram-negative and Gram-positive
pathogens, although antibacterial potential of crude CuONPs was
higher than calcined CuONPs. In consistence with current findings,
previous reports indicated thatmetal oxideNPs such asCuONPs induced
remarkable antimicrobial activity due to their small size and extremely
large surface area that provide better contact withmicroorganisms (Azam
et al., 2012; Laha et al., 2014). Various studies have also demonstrated
bactericide effects of CuONPs against same pathogenic bacteria, for
instance, MBC values of crude CuONPs on E. coli and S. aureus have

been reported as 250 and 2,500 μg/ml, respectively (Ren et al., 2009). In
addition, MBC of mechanochemically synthesized CuONPs against
E. coli and S. aureus were as 750 and 5,000 μg/ml, respectively
(Moniri et al., 2019). In another research, the MBC of phytofabricated
CuONPs was reported as 10,000 μg/ml for both E. coli and S. aureus
(Alavi et al., 2021). Based on our findings, biogenic CuONPs induced
higher growth inhibitory and toxic effects on Gram-positive bacteria
comparedwithGram-negative ones. In this regard, it has been shown that
lipopolysaccharide layer on the outer membrane of Gram-negative
bacteria acts as an effective protection against NPs (Franco et al.,
2022) that could explain, to some extent, observed effects in the
present study. CuONPs induce antibacterial effects through binding to
the bacterial cell membrane, production of reactive oxygen species and
release of Cu2+ ions that demolish DNA and cellular proteins, affect the
membrane permeability, and finally induce cell death (Obeizi et al., 2020).
Thus, considerable activity of biogenic CuONPs against B. subtilis, S.
aureus, P. putida, and E. coli in our study might be mediated through the
same mechanisms.

Current results also revealed high antioxidant activity of crude
and calcined CuONPs, which has been attributed to the binding of
transition metal ion catalysts to free radicals (Omran and Baek,
2021). Based on a recent report, the free radical scavenging activity
of CuONPs may be enhanced by various bio-reductive groups
(capping agents) of the bacterial proteins (Ssekatawa et al., 2022).
As explained above, FTIR analysis confirmed the capping of crude
CuONPs with aldehyde and amine groups, unlike calcined CuONPs.
Therefore, higher antioxidant activity of crude CuONPs in our study
was presumably due to bacterial-derived functional groups.

Malignancies of the gastrointestinal tract, including colorectal
and gastric carcinomas, account for 36.2% of cancer mortality
(Hong et al., 2022). Although use of chemical drugs is a systemic
treatment for cancer patients, low specificity of common

FIGURE 9
Morphological alterations of cells after administration of crude and calcined CuONPs. Phase contrast photomicrographs of LoVo (A–C) and HDF
(D–F) cells; untreated (A, D), treated with 200 μg/mL crude (B, E) and calcined (C, F) CuONPs.

TABLE 3 Calculated IC50 (µg/ml) values of crude and calcined CuONPs on
different cell lines.

LoVo MKN HDF LoVo-hypoxia

Crude CuONPs 48.36 90.23 158.2 50.84

Calcined CuONPs 44.96 117.5 222.8 92.43
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chemotherapeutics causes many side effects that are mostly
intolerable to patients and lead to reduced survival rates (Pearce
et al., 2017; Fu et al., 2018; Zhang et al., 2018). To introduce novel
and more effective therapeutics, we investigated anticancer potential
of CuONPs, and obtained findings revealed that cytotoxicity of our
biogenic CuONPs was dose- and cell type-dependent. Intriguingly,
crude and calcined CuONPs induced more toxic effects on human
colon and gastric adenocarcinoma cells than normal fibroblasts.
Current results are in consistence with previous reports. For instance, it
has been demonstrated that CuONPs synthesized by marine
endophytic actinomycete and Vibrio sp. VLC. induced toxic effects
on human lung and esophageal carcinoma cells in a dose-dependent
manner, with IC50 values of 500 and 37.52 μg/ml, respectively
(Nakhaeepour et al., 2019; Zhao et al., 2022). In addition, low
toxicity of CuONPs on normal HDF cells in the present study is in
line with another research, which reported minimal toxic effects of
CuONPs on human dermal fibroblasts (Sulaiman et al., 2018).

Hypoxia, a biological phenomenon in which oxygen level is
below the tissue demand, is a feature of solid tumors, and an
indicator of poor prognosis in many cancers including colon
and gastric adenocarcinomas (Qi et al., 2020; Pei et al., 2021).
Hypoxia causes a range of genetic, transcriptional, and
metabolic adaptations in advanced tumors that ultimately
promote survival and metastasis of cancer cells (Li et al.,
2020). Thus, it has been recommended to assess anticancer
effects of potent agents in hypoxic condition for accurate
evaluation of their therapeutic potential (Nobre et al., 2018).
Current findings that revealed considerable cytotoxicity of
biogenic CuONPs in hypoxic condition suggest that these
NPs have the potential to induce anticancer effects in vivo,
although more research on animal models is required.

Carrying gene expression analysis indicated significant induction in
P53 expression after administration of biogenic CuONPs. P53 is a tumor
suppressor gene with critical roles in the cell cycle regulation and
apoptosis (Vousden and Lu, 2002; Lacroix et al., 2006). Similar to our
results, it has been reported that CuONPs induced apoptosis in human
lung carcinoma cells through upregulation of P53 (Kalaiarasi et al., 2018).
In the present study, CuONPs effectively downregulated the expression of
BCL2, while induced the expression of BAX. Current findings are in
agreement with previous studies, which demonstrated that CuONPs
inhibited cell growth and induced apoptosis in acute myeloid leukemia,
breast, gastric, colon and lung cancer cells via significant induction of
BAX and downregulation of BCL2 (Shafagh et al., 2015; Gopinath et al.,
2016; Khan et al., 2017; Kalaiarasi et al., 2018). Present results also
revealed thatCuONPs significantly decreased the expression ofCCND1, a
core cell cycle regulator that promotes cell proliferation and plays amajor
role in oncogenesis (Qie and Diehl, 2016). Similar to our findings, it has
been shown that inhibited proliferation and induced apoptosis of oral
carcinoma cells upon administration of metal oxide NPs were mediated
by downregulation of CCND1 (Li et al., 2020).

Conclusion

Emergence of antibiotic-resistant strains is an intractable
challenge to public health worldwide. In addition, acquired
chemoresistance of cancer cells has vastly limited the clinical
outcome of current pharmaceutical drugs. Although inorganic
NPs could act as potent antibiotics and anticancer agents,
disadvantages of conventional methods for NP synthesis have
enforced to develop alternative approaches. In the present
attempt, we successfully used Stenotrophomonas sp. BS95 to

FIGURE 10
Analysis of gene expression by real-time PCR. The expression of P53, BAX (A), BCL2 and CCND1 (B) were normalized and plotted as relative fold
change compared with the untreated cells. Data are represented as mean ± SD. **p < 0.01, ***p < 0.001, ****p < 0.0001 indicate significant difference
with untreated cells.
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synthesize functional CuONPs. UV vis spectroscopy, XRD and DLS
analyses and electron microscopy revealed small size, crystallin
nature and spherical shape of CuONPs. In addition, good
dispersion and high stability of biogenic CuONPs were
confirmed by zeta potential analysis, and functional groups were
determined by FTIR spectroscopy. Evaluating biological effects of
CuONPs exhibited their antibacterial activity against B. subtilis, S.
aureus, P. putida, and E. coli. Furthermore, biogenic CuONPs
possessed remarkable antioxidant potential and induced
considerable anticancer effects on human colon and gastric
adenocarcinoma cells via modulation of apoptosis-related genes.
Interestingly, biogenic CuONPs induced low toxicity on normal
cells, and had the potential to exert cytotoxic effects in hypoxic
condition. According to the current findings, our biogenic CuONPs
could be considered as effective agents with potential medical
applications. Nevertheless, complementary studies on other
pathogenic bacteria, more cell lines and animal models are
required to better evaluate the efficacy and safety of biogenic
CuONPs. In addition, conjugation of biogenic CuONPs with
antibiotics and anticancer drugs might improve the clinical
outcome of current therapeutic modalities.
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Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed and
malignant cancers worldwide. Conventional therapy strategies may not
completely eradicate the tumor and may cause side effects during treatment.
Nano-catalytic therapy, as a novel strategy, has attracted a great deal of attention.
This study aimed to synthesize a multifunctional magneto-gold nanozyme
AuNC@Fe3O4 and evaluate its anti-cancer potential in HepG2 cells in vitro. The
characteristics of AuNC@Fe3O4 were assessed using a transmission electron
microscope, dynamic light scattering, and energy-dispersive X-ray. The
photothermal performance and peroxidase (POD)-like activity of AuNC@Fe3O4

were detected, using thermal camera and ultraviolet-visible spectrophotometer,
respectively. The anti-cancer potential of AuNC@Fe3O4 was examined using cell
counting kit-8, live/dead cell staining, and apoptosis analysis. Further research on
HepG2 cells included the detection of intracellular reactive oxygen species (ROS)
and lysosomal impairment. We observed that the AuNC@Fe3O4 had a small size,
good photothermal conversion efficiency and high POD-like activity, and also
inhibited cell proliferation and enhanced cell apoptotic ability in HepG2 cells.
Furthermore, the AuNC@Fe3O4 enhanced ROS production and lysosomal
impairment via the synergistic effect of photothermal and nano-catalytic
therapies, which induced cell death or apoptosis. Thus, the magneto-gold
nanozyme AuNC@Fe3O4 may offer a potential anti-cancer strategy for HCC.

KEYWORDS

POD-like, magneto-gold, nanozyme, photothermal effect, cell apoptosis, hepatocellular
carcinoma

1 Introduction

Data from Global Cancer Incidence, Mortality and Prevalence 2020 revealed that liver
cancer was the sixth commonly diagnosed and the third lethal cancer worldwide (Sung et al.,
2021). China accounted for 23.7% and 30% of the global morbidity and mortality from liver
cancer, respectively (Ferlay et al., 2021). It was predicted that between 2020 and 2040, there
would be a 55% increase in the number of new cases of liver cancer per year, and the
percentage of people who would die from the disease in 2040 would be more than 56.4% of
those in 2020 (Rumgay et al., 2022). Primary liver cancer can be classified into three types:
cholangiocarcinoma, hepatocellular carcinoma (HCC), and a combination of the two, with
HCC accounting for approximately 90% of all cases (Llovet et al., 2016). HCC progression is
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influenced by several risk factors, such as alcohol abuse, smoking,
toxic chemicals, and hepatitis virus (especially for HBV) infections
(Yang et al., 2019). Owing to the absolute number of HBV-infected
populations (Liu et al., 2016), the mortality rate of HBV-related liver
cancer was consistently higher than the global level (Liu et al., 2019),
which increased the burden of HCC in China.

In most cases, conventional treatments, such as surgery,
radiation, and chemotherapy, do not completely eradicate the
tumor and may cause side effects during treatment, such as
cancer palindromia and drug resistance (Zhu et al., 2016; Xu
et al., 2019; Raoul and Edeline, 2020; Liu and Song, 2021). For
example, the surgery was initially considered to be used for patients
with early-stage HCC; However, over 50% of patients experienced a
recurrence within a year following surgery (Gil et al., 2015; Weber
et al., 2015). Sorafenib was an option for patients with advanced-
stage cancer, however, it was only effective in less than a third of
them and caused drug tolerance or cytotoxicity (Llovet et al., 2008;
Cheng et al., 2009; Bruix et al., 2012; Anwanwan et al., 2020). Besides
surgery and chemotherapy, radiation therapy is a non-invasive and
local ablative treatment approach to kill cancer cells. However, the
efficiency of radiation therapy is easily limited by radioresistance,
due to the DNA damage response and cell cycle checkpoints
activation (Yoon and Seong, 2014; Wahl et al., 2016; Sun et al.,
2020). Although the traditional strategies of HCC control the growth
of HCC and prolong the survival time of patients, it still cannot
satisfy their needs. Thus, it is necessary to discover a more efficient
treatment approach to improve the quality of life for patients.

In recent years, nano-catalytic therapy, as a new tumor
treatment strategy, has attracted the attention of an increasing
number of researchers. Nanozymes are nanomaterials that
catalyze chemical reactions of substrates under physiological
states, obeying the patterns of enzyme kinetics (Wei et al., 2021).
In 2007, Yan’s team was the first to report that magnetic
nanoparticles Fe3O4 possessed peroxidase (POD)-like activity,
and proposed the concept of nano-catalysis (Gao et al., 2007).
Furthermore, Shi et al. innovatively paved the way for further
applications of nanoparticles in tumor nano-catalytic therapy, by
disrupting the Fenton reaction that induced H2O2

disproportionation for •OH generation (Zhang et al., 2016).
Currently, nano-catalytic therapy and photothermal therapy
(PTT) are frequently employed in the treatment of tumors. The
integration of PTT and nano-catalytic therapy has contributed to
improving their cancer therapy efficiency. For instance,
hyperthermia promoted the enzymatic activity of Fe3O4

nanozyme to generate more •OH, and simultaneously, •OH
heightened the therapeutic impact of PTT (Wu et al., 2019; Zuo
et al., 2022). It has also been reported that the Fe3O4@ZIF-8/GOx@
MnO2 hybrid nanozyme can enhance the efficiency of nanoparticles
in anti-tumor therapy by combining multiple therapeutics (Zhang
et al., 2021b).

Fe3O4 and Au nanoparticles, as is well known, demonstrated the
unique characteristics of a high photothermal effect and POD-like
activity (Zeng et al., 2013; Vallabani et al., 2017; Ghosh et al., 2022;
Huang et al., 2022). Encouraged by the aforementioned description,
we wonder if AuNC@Fe3O4 which has been employed as magnetic
resonance imaging/com-puterized tomography multimodal
imaging contrast agents of cancer owing to their high relaxivity
value and excellent contrast enhancement (Wang et al., 2016b), also

retains the photothermal and catalytic ability, or is beneficial to
cancer therapy.

In this study, we synthesized multifunctional magneto-gold
nanozyme AuNC@Fe3O4 and evaluated their anti-cancer ability
in HCC cells in vitro. The AuNC@Fe3O4 exhibited high
photothermal effect and POD-like activity. The results also
reflected the influence of AuNC@Fe3O4 on engendering cell
death and apoptosis. Furthermore, the synergistic effect of PTT
and nano-catalytic therapy on reactive oxygen species (ROS) and
lysosomal impairment in HepG2 cells were also studied.

2 Materials and methods

2.1 Materials and reagents

Ferric slat, gold (III) chloride (HAuCl4), other reagents related
to AuNC@Fe3O4 synthesis and 3,3′,5,5′-Tetramethylbenzidine
(TMB) were purchased from Sigma, Inc. (St. Louis,
United States). H2O2 solution and different pH buffer solutions
(pH = 2, 3, 4, 5, 6, 7, 8, and 9) were bought from Aladdin (Shanghai,
China). Human umbilical vein endothelial cells (HUVEC), human
HCC cell lines (HepG2 cells) and the specific culture mediums for
the two cell lines were purchased from Procell (Wuhan, China). Cell
Counting Kit-8 (CCK-8) was obtained from Sangon Biotech
(Shanghai, China). 2′,7′-Dichlorodihydrofluorescein diacetate
(DCFH-DA) was obtained from MedChemExpress (New Jersey,
United States). Calcein-AM/propidium iodide (PI) kit, Annexin
V-FITC apoptosis detection kit, Lyso-Tracker Red kit and
Hoechst 33342 staining solution were purchased from Beyotime.
Inc. (Shanghai, China).

2.2 AuNC@Fe3O4 synthesis

The AuNC@Fe3O4 was synthesized according to previous
methods (Wang et al., 2016b). AuNC was initially synthesized
and coated with poly (vinyl pyrrolidone) (PVP). Subsequently,
PVP was replaced with 2-aminoethanethiol, and AuNC was
transformed into AuNC-NH2 for interacting with carboxyl group
functionalized Fe3O4 nanoparticles. The ultra-small Fe3O4 particles
were prepared. To produce Fe3O4-COOH, ferric slats were
vigorously stirred in pre-prepared polymer poly (acrylic acid)
(PAA) solution. N-(3-Dimethylaminopropyl)-N-
ethylcarbodiimide and N-hydroxysuccinimide activated the
Fe3O4-COOH, which then reacted with AuNC-NH2 to generate
AuNC@Fe3O4. The AuNC@Fe3O4 was centrifugated, washed with
ethanol and water, and then dispersed in ddH2O with different
concentrations for further experiments.

2.3 AuNC@Fe3O4 characterization

The size of AuNC or AuNC@Fe3O4 nanoparticles was analyzed
using a transmission electron microscope (TEM). Dynamic light
scattering (DLS) was applied to detect hydrodynamic particle
diameter and intensity of AuNC@Fe3O4 nanoparticles on a
Malvern Zetasizer NANO ZS. Energy-dispersive X-ray (EDX)
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was utilized to analysis the element of AuNC@Fe3O4 nanoparticles
on a FEI TECNAI G20 high-resolution TEM.

2.4 AuNC@Fe3O4 photothermal
performance in vitro

To investigate the photothermal effect of the magneto-gold
nanoparticles, First, 200 μl of AuNC@Fe3O4 solution with
distinct concentrations (0, 50, 100, 200, 300, 400, and 500 μg/ml)
was exposed to 808 nm laser at 1.0 W for 720 s; Second, 200 μl of
AuNC@Fe3O4 solution with concentration of 50 μg/ml was exposed
to 808 nm laser at different powers (1.0, 1.2, and 1.4 W) for 720 s.
The thermal image and temperature change were recorded at
different times by an infrared (IR) thermal camera (Fotric 220).
As a control, ddH2O was irradiated under the same conditions.

To investigate the photothermal stability of the magneto-gold
nanoparticles, AuNC@Fe3O4 aqueous solution (500 μg/ml) was
irradiated under 808 nm laser at 1.0W for 420 s, then the
irradiation was turned off. After that, the temperature was further
measured for another 360 s. The experiment was then repeated four
more times. The thermal image and temperature change were recorded
at different times by the IR thermal camera (Fotric 220). As a control,
ddH2O was irradiated under the same operation.

To evaluate the photothermal conversion efficiency of AuNC@
Fe3O4, the data from the cooling periods were calculated, according
to previous report (Ren et al., 2015). Briefly, when the system
reached energy balance, the equation was:

∑
i
miCp,i

dT

dt
� QAuNC@Fe3O4 + Qs − Qloss (1)

where Cp and m were the heat capacity and mass of AuNC@Fe3O4

solution, respectively. T was the temperature of AuNC@Fe3O4

solution. QAuNC@Fe3O4 represented energy absorbed by AuNC@
Fe3O4 nanoparticles. Qs represented the energy absorbed by
ddH2O. Qloss was the heat lost to the surroundings.

The equation for QAuNC@Fe3O4 was:

QAuNC@Fe3O4 � I 1 − 10−Aλ( )η (2)
where I represented the laser power density, Aλ denoted the
absorbance of AuNC@Fe3O4 solution under 808 nm in a 96-well
plate, and η represented its photothermal conversion efficiency.

The equation for Qloss was

Qloss � hAΔT (3)
where A was the surface area of the container, h denoted the heat
transfer coefficient; ΔT represented the temperature changes,
expressed as T-Tsurr (where T and Tsurr represent the solution
and surrounding air temperature, respectively).

When heating ddH2O, the heat input and output reached energy
balance at the maximum steady-state temperature, therefore the
equation for Qs was:

Qs � Qloss � hAΔTmax ,H2O (4)
where ΔTmax ,H2O was the temperature changes of ddH2O.

When the system reached its maximum balanced temperature, the
energy input (the heat absorbed by AuNC@Fe3O4 and ddH2O) was
equal to the heat lost into the surrounding, and the equation could be:

QAuNC@Fe3O4 + Qs � Qloss � hAΔTmax ,mix (5)
where ΔTmax ,mix was the changed temperature of the AuNC@Fe3O4

solution.
According to Eqs 2, 4, 5, η was:

η � hAΔTmax ,mix − hAΔTmax ,H2O

I 1 − 10−Aλ( ) � hA ΔTmax ,mix − ΔTmax ,H2O( )

I 1 − 10−Aλ( )
(6)

To calculate the unknown hA, θ was introduced, and could be
expressed as following:

θ � ΔT
ΔTmax

(7)

Adding Eq. 7 into Eq. 1, the new equation could be:

dθ

dt
� hA

∑i miCp,i

QAuNC@Fe3O4 + Qs

hAΔTmax
− θ( ) (8)

During the cooling period, the QAuNC@Fe3O4 + Qs = 0 in Eq.
8 was:

dt � −∑i miCp,i

hA

dθ

θ
(9)

which could be changed as following:

t � −∑i miCp,i

hA
ln θ (10)

where
∑i

miCp,i

hA was calculated by time versus -ln(θ) plot. Since the mass
of AuNC@Fe3O4 (1 × 10−7 kg) was relatively small when compared to
that of ddH2O (m=2× 10−4 kg), itsm andCpwere neglected. The value
of hA was then calculated using mH2O of 2 × 10−3 kg; Cp,H2O of 4.2 ×
103 J/(Kg·°C). Furthermore, the η of AuNC@Fe3O4 was determined by
substituting the value of hA and other parameters into Eq. 6. The values
of other parameters were as follows: I = 2.3W/cm2, Aλ = 0.105,
ΔTmax ,mix = 25.3, and ΔTmax ,H2O = 0.1.

2.5 POD-like activity assay

To evaluate the catalytic properties of AuNC@Fe3O4, AuNC@
Fe3O4 (final concentration: 0, 5, 10, 20, 50, and 100 μg/ml), TMB
(final concentration: 0.4 mM), and H2O2 (final concentration:
50 μM) was added into a final volume of 500 μl of phosphate-
buffered saline (PBS) solution. The absorbance of the buffer was
measured using an ultraviolet-visible (UV-vis) spectrophotometer at
500–800 nm. The POD-like activity assay of AuNC@Fe3O4 at
varying pH levels (pH = 2, 3, 4, 5, 6, 7, 8, and 9) was performed
in the presence of H2O2 and TMB in PBS solution, and the
absorbance at 652 nm was detected by a microplate reader.

2.6 POD-like catalytic kinetic determination

When TMB was used as a substrate, the AuNC@Fe3O4 (final
concentration: 50 μg/mL), TMB (final concentration: 0.0, 0.2, 0.4,
0.6, and 0.8 mM), and H2O2 (final concentration: 50 μM) was added
into a final volume of 100 μl of PBS solution. The absorbance at
652 nm was detected by a microplate reader.
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When H2O2 was used as a substrate, the AuNC@Fe3O4 (final
concentration: 50 μg/ml), H2O2 (final concentration: 0, 10, 20,
30, 40, 50, 60, 70, and 80 μM) and TMB (final concentration:
0.4 mM) was added into a final volume of 100 μl of PBS
solution. The absorbance at 652 nm was detected by a
microplate reader.

Based on Michaelis-Menten Eq. 11 and saturation curve, the
Vmax and Michaelis-Menten constant could be calculated,

1
V
� Km

Vmax

1
s[ ] +

1
Vmax

(11)

and the V was calculated using Eq. 12:

V � A

b × Ɛ652 nm × t( ) (12)

where A was the absorbance of the reaction system at 652 nm. t =
600 s, which was the reaction time. b = 0.3125 cm, which was the
light path in the reaction solution, and Ɛ652 nm = 39,000 M−1 cm−1

(Dashtestani et al., 2019).

2.7 Cell viability assay

The HepG2 and the HUVEC cells were cultured to assess the
cytotoxicity of AuNC@Fe3O4 through CCK-8 assay. 4000 of cells
were cultured at 96-well plate well overnight at 37°C in a humidified
incubator with 5% CO2. Subsequently, 100 μl of fresh medium with
distinct concentrations of AuNC@Fe3O4 (0, 10, 20, 30, 40, and
50 μg/ml) was changed and cultured for 24 h. The CCK-8 solution
(final volume: 10 μl) was added into 100 μl of medium, and
incubated for 2 h. Then, the absorbance of medium was detected
at 450 nm.

2.8 Live/dead cell staining assay

HepG2 cells were cultured overnight in a 12-well plate with
500 μl of culture medium. The cells were then treated with PBS or
AuNC@Fe3O4 (50 μg/ml) for 12 h. Then, the cells were cultured
for an additional 12 h after either being irradiated by an 808 nm
laser for 5 min at 1.4 W or not. The culture medium was then
removed, and cells were washed once with PBS and incubated
with 500 μl stain solution for 15 min. Finally, the cells were
washed thrice with PBS and photographed by an inverted
fluorescence microscope.

2.9 Apoptosis analysis

To investigate the ability of AuNC@Fe3O4 for inducing cell
apoptosis, HepG2 cells were quantitatively detected by a flow
cytometer. The cells were initially seeded into a 6-well plate and
treated under different conditions for 24 h. They were collected with
0.25% trypsin and washed thrice with ice-cold PBS. Subsequently,
these cells were resuspended in 195 μl of binding buffer. Ten
microliters of PI and 5 μl of Annexin V-FITC were added, and
the mixture was incubated for 20 min at room temperature, and cells
were detected by flow cytometer.

2.10 Intracellular ROS detection

The intracellular POD-like catalytic ability of AuNC@Fe3O4 was
detected using DCFH-DA. Except for an additional 4 h of culture,
the method used for the laser-irradiated groups was similar to the
treatment described above. Furthermore, 1 ml of PBS with DCFH-
DA (5 μM) was added, and the mixture was incubated for another
30 min at 37°C in a humidified incubator with 5% CO2. The wells
were then washed thrice with PBS to remove the excess dye and
photographed by an inverted fluorescence microscope.

2.11 Lysosomal impairment assay

After treatment, lysosomes and cell nuclei were stained with
Lyso-Tracker Red and Hoechst 33342, respectively, according to the
manufacturer’s instructions. Subsequently, an inverted fluorescence
microscope was used to capture images of cells.

2.12 Statistical analysis

Statistical analysis was achieved by GraphPad Prism version 8
(GraphPad Software, United States). Results were represented as
mean ± standard deviation. The student t-test was used to compare
the means of multiple groups. The statistical significances were as
follows: * 0.01 < p < 0.05, ** 0.001 < p < 0.01, and ***p < 0.001.

3 Results and discussion

3.1 Synthesis and characterization of AuNC@
Fe3O4

The structure and characteristics of AuNC and AuNC@Fe3O4

were determined by TEM. The results demonstrated that the
diameter of AuNC and AuNC@Fe3O4 were 25–40 and
50–100 nm, respectively, with high uniformity and no
agglomeration (Figures 1A, B). DLS was used to confirm the size
of AuNC@Fe3O4, and the average hydrodynamic size distribution of
these nanoparticles was approximately 55 nm (Figure 1C). The
increase in the hydrodynamic size might be owing to the
attachment of Fe3O4 to the surface of the AuNC. Elemental
mapping analysis revealed the presence of the atoms Au, Fe and
O, proving that AuNC@Fe3O4 was successfully formed (Figure 1D;
Table 1). The “-CO-NH-”, that came from the reaction of Fe3O4-
COOH and AuNC-NH2 and the carbon-coated brace used during
sample preparation or analysis might have contributed to the
existence of C element that was also present (Phongtongpasuk
et al., 2016).

3.2 Photothermal performance of AuNC@
Fe3O4

The thermal camera was used to investigate the photothermal
conversion capabilities of AuNC@Fe3O4. The temperature changes
of AuNC@Fe3O4 solution with different concentrations under
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808 nm laser irradiation at 1.0 W for 360 s were recorded. As
depicted in Figure 2A, the temperature of the solution increased
in a concentration- and time-dependent pattern. For example, the
temperature of different concentrations of AuNC@Fe3O4 solution
reached steady statue at 8 min. The temperature of AuNC@Fe3O4

solution (500 μg/ml) was changed significantly from 25.9°C to
52.3°C compared with the neglected increase in that of ddH2O
(from 26.0°C to 26.5°C), indicating the good photothermal response
of AuNC@Fe3O4. For further investigation, the AuNC@Fe3O4

solution (50 μg/ml) was irradiation at different powers (1.0, 1.2,
and 1.4 W). The laser power was increased from 1.0 to 1.4 W, which
resulted in a significant increase in the temperature of the AuNC@
Fe3O4 solution. A temperature of 45.3°C was achieved after 10 min
of 808 nm laser irradiation at 1.4 W (Figure 2B). PTT, a promising
cancer treatment strategy, converts light energy into heat to generate
an area of hyperthermia, where tissues can be exposed to high
temperatures (from 42°C to 45°C), which can damage or kill tumor
cells (Tchouagué et al., 2019; Qu et al., 2022). The results of Figures
2A, B suggested a potential application of AuNC@Fe3O4 in anti-
tumor.

Additionally, five cycles of the “On and Off”model were used to
measure the temperature curve of the AuNC@Fe3O4 solution to
assess its photothermal stability. The AuNC@Fe3O4 showed
excellent photothermal stability since the temperature was raised
to 52.9 °C and there was no reduction in the temperature rise
following laser irradiation during the five cycles (Figure 2D).

Moreover, the average of the data from the five cooling periods
was used to get the photothermal conversion efficiency (η) of
AuNC@Fe3O4. The plot of the time value and −ln (θ) was
displayed in Figure 2E, and its slope was 99.526. Using Eqs 6, 10,
the η of AuNC@Fe3O4 was calculated to be 39.58%, which was
similar with or higher than the PPT reagents previously reported,
such as, EA-Fe@BSA NPs (31.2%) (Tian et al., 2020), Fe3O4@
Carbon@Platinum-Chlorin e6 (28.28%) (Xu et al., 2022b), Au
nanorods (22%) (Zeng et al., 2013), Au nanoshells (13%) (Hessel
et al., 2011), PANi@Au (40.4%) and Au nanoparticles (21.7%)
(Zhang et al., 2021a).

Collectively, these findings suggested that AuNC@Fe3O4

exhibited good photothermal conversion and photothermal
stability, which implied a promising application in PTT for tumors.

3.3 POD-like activity of AuNC@Fe3O4

It was reported that Au and Fe3O4 nanoparticles demonstrated
POD-like enzyme activity (Zandieh and Liu, 2021), therefore it was
necessary to investigate whether the AuNC@Fe3O4 possessed
similar characteristics. The peroxidase mimicking activity of
AuNC@Fe3O4 was validated by TMB. TMB could be oxidized to
blue oxTMB by •OH and detected at 652 nm, using UV-vis
spectrophotometer (Zhu et al., 2022). As presented in Figure 3A,

FIGURE 1
Characterization of AuNC@Fe3O4. (A) Transmission electron microscope (TEM) images of AuNC. Scale bar: 100 nm. (B) TEM images of AuNC@
Fe3O4. Scale bar: 50 nm. (C) Dynamic light scattering (DLS) result of AuNC@Fe3O4. (D) Energy-dispersive X-ray (EDX) result of AuNC@Fe3O4.

TABLE 1 The statistics of elements analysis for AuNC@Fe3O4 by energy-
dispersive X-ray (EDX).

Compound Element Weight (%)

AuNC@Fe3O4 Au 23.1

Fe 29.4

O 42.4

C 5.1
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the groups with different concentrations of AuNC@Fe3O4 had
varying absorbance intensities at 652 nm. The group of AuNC@
Fe3O4 with 100 μg/ml showed the strongest signal at 652 nm,

followed by the group with 50 μg/ml. The intensity of absorbance
tested with H2O displayed no peak at 652 nm. These findings, which
indicated that the AuNC@Fe3O4 possessed POD-like enzyme

FIGURE 2
Photothermal performance analysis of AuNC@Fe3O4. (A) Temperature change curves of water and AuNC@Fe3O4 aqueous solution after different
treatments (B) Temperature change curves of AuNC@Fe3O4 after different treatments (C) Photostability of AuNC@Fe3O4 solution under irradiation for
five cycles. (D) Time versus -ln(θ) plot of the AuNC@Fe3O4 solution.

FIGURE 3
POD-like activity assay of AuNC@Fe3O4. (A) Ultraviolet-visible (UV-vis) absorption spectra of the reaction system with different concentrations. (B)
Michaelis-Menten curve of AuNC@Fe3O4 for H2O2. (C) Lineweaver-Burk plotting of AuNC@Fe3O4 for H2O2. (D)Michaelis-Menten curve of AuNC@Fe3O4

for TMB. (E) Lineweaver-Burk plotting of AuNC@Fe3O4 for TMB. (F) The absorbance of the reaction system at 652 nm under different pH values.
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activity, were further verified by the inset digital photos (Figure 3A).
To further confirm the POD-like enzyme specificity of AuNC@
Fe3O4, the UV-vis absorption spectra of the reaction system with
varying conditions was collected. It was observed from
Supplementary Figure S1 that absorbance peak of the AuNC@
Fe3O4+TMB or AuNC@Fe3O4+H2O2 group was negligible. In the
absence of AuNC@Fe3O4, the TMB + H2O2, TMB or H2O2 group
showed no significant absorbance peak at 652 nm, which was
consistent with the AuNC@Fe3O4 only group. The results
suggested that, except AuNC@Fe3O4, other components in the
reaction system could hardly catalyzed the conversion of H2O2 to
•OH and oxidized TMB, which indicated AuNC@Fe3O4 exhibited a
specific activity of POD-like enzyme.

Kinetic parameters were analyzed to quantitate the POD-like
activity of AuNC@Fe3O4 using the initial rate method (Gao et al.,
2017). First, the absorbance of the system was measured, while
varying the concentrations of H2O2 concentrations from 0 to 80 mM
and maintaining a TMB concentration of 0.4 mM (Supplementary
Figure S2). Second, the velocity of reaction was calculated according
Eq. 12 and the plot was consistent with traditional Michaelis-
Menten curve (Figure 3B), which demonstrates that the catalytic
reaction rate increased with the growth of substrate concentration
and achieved steady state at high concentrations (Huang et al.,
2022). Third, after Lineweaver-Burk fitting, the enzyme kinetic
parameters, such as Michaelis-Menten constants (Km) was
calculated to be 47.65 mM and the maximum reaction velocity
(Vmax) was 3.18 × 10−7 M s−1 (Figure 3C). Forth, the absorbance
of the solution was measured at 652 nm while varying TMB
concentrations and maintaining H2O2 concentration as a
constant (Supplementary Figure S3). Last, the Km and Vmax were
0.25 mM and 9.03 × 10−8 M s−1 respectively, and the results were
presented in Figures 3D, E.

When the H2O2 was used as substrate, the velocity of AuNC@
Fe3O4 was faster than that of Fe3O4 (Vallabani et al., 2017), and Km

value that was lower than that of Fe3O4 (Vallabani et al., 2017).
Similarly, when the TMB was used as substrate, AuNC@Fe3O4 had a
velocity that was faster than that of Au NRT, Au NC, Au NS, and
horseradish peroxidase (Ghosh et al., 2022), and its value of Km was
also lower than those of them. In the catalytic reaction system, the
Km represents the affinity between the enzyme and substrates, and
the lower the Km, the higher enzyme affinity (Jiang et al., 2018).
Therefore, the results suggested that the catalytic ability and the
affinity between AuNC@Fe3O4 nanozyme and substrates (such as
TMB and H2O2) was stronger than that of Fe3O4 and Au
nanoparticles. The following factors may contribute to the
significant increase in POD-like activity of AuNC@Fe3O4

nanoparticles: the electronic structure of the interfaces between
the Fe3O4 and Au, the synergistic effect, and polarization effects
from Au to Fe3O4 (Lee et al., 2010; Sun et al., 2013; Wang et al.,
2016a).

Considering the complex tumor microenvironment, such as
hypoxia and weak acidity (Li et al., 2020; Zhao et al., 2021), it
was unclear whether AuNC@Fe3O4 exhibits POD-like enzyme
activity even at low pH. At low pH values ranging from 2 to 6,
the AuNC@Fe3O4 exhibited higher POD-like enzyme activity, and
the optional pH was 4. When the pH was higher than 7, the POD-
like enzyme activity was reduced dramatically (Figure 3F). The
results hinted that AuNC@Fe3O4 might have significantly varied

POD-like enzyme activity between distinct parts of normal (pH =
7.4) and cancer tissues (pH = 6.5), especially for lysosomes (pH =
4.5–5.5) and endosomes (pH = 5.5–6.8) (Kuppusamy et al., 2002;
Wojtkowiak et al., 2011).

Overall, these findings provided evidence for the high POD-like
catalytic activity of AuNC@Fe3O4 nanozyme and implied potential
catalytic ability in tumor.

3.4 In vitro anti-tumor effect of AuNC@
Fe3O4

It is important to examine the biocompatibility of AuNC@Fe3O4

before performing further clinical applications. Therefore,
HepG2 and HUVEC cells were incubated with AuNC@Fe3O4 at
varying concentrations for 24 h to estimate the cytotoxicity using
CCK-8 assay. Low concentrations of AuNC@Fe3O4 did not affect
the survival rate of HepG2 cells; however, at 40 and 50 μg/ml, the
viability of cells decreased to 77% and 60%, respectively (Figure 4A).
In contrast, the viability of HUVEC cells was not drastically affected
by AuNC@Fe3O4 after 24 h incubation at the varying treatments
(Figure 4B). The findings indicated that AuNC@Fe3O4 was not toxic
to normal cells at the concentration ranging from 0 μg/ml to 50 μg/
ml and demonstrated good biocompatibility. The reason why
AuNC@Fe3O4 showed more sensitive to HepG2 could be
attributed to the fact that the pH of the tumor was lower than
that of normal tissues (Kuppusamy et al., 2002; Wojtkowiak et al.,
2011) and that the AuNC@Fe3O4 had higher POD-like enzyme
activity in a lower pH reaction system, which meant it produced
more •OH, which could be lethal to cells (Cui et al., 2018; Malfanti
et al., 2022).

To explore the anti-tumor effect of AuNC@Fe3O4, the live/dead
cell staining assay was utilized. There were nearly no dead cells in the
PBS and PBS + NIR (near-infrared) groups; However, when the cells
were treated with AuNC@Fe3O4 or AuNC@Fe3O4+NIR, the
number of dead cells increased significantly, with the last group
having the most cell death (Figure 4C). To further verify this result,
the flow apoptosis assays of HepG2 cells with different conditions
was conducted. As depicted in Figures 4D, E; Supplementary Table
S1, the results indicated that approximately 51% apoptotic cells
(Q2+Q3) were observed in the AuNC@Fe3O4+NIR group, which
was greater than other groups.

The results revealed that AuNC@Fe3O4 displayed good
biocompatibility, and the laser irradiation augmented the anti-
tumor ability of AuNC@Fe3O4.

3.5 ROS and lysosomal impairment induced
by AuNC@Fe3O4

To confirm the synergistic effect of PTT and POD-like enzyme
catalytic activity of AuNC@Fe3O4, the production of the ROS in
HepG2 cells was validated using the DCFH-DA probe. As reported,
DCFH-DA crossed the cell membrane and was subsequently
oxidized to DCF with green fluorescence (Afri et al., 2004). It
was evident from Figure 5A that the HepG2 cells incubated with
AuNC@Fe3O4 exhibited a higher green fluorescence signal than PBS
and PBS + NIR, indicating the ability of AuNC@Fe3O4 to effectively
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FIGURE 4
Evaluation for anti-tumor effect of AuNC@Fe3O4 in vitro. (A) Cell viability of HepG2 cells treated with AuNC@Fe3O4 for 24 h. (B) Cell viability of
human umbilical vein endothelial cells (HUVEC) cells treated with AuNC@Fe3O4 for 24 h. (C) Calcein-Am/propidium iodide (PI) staining of HepG2 cells
under different conditions. Scale bar: 100 μm. (D) Apoptosis analysis of HepG2 cells with different treatments. (E) The histogram results of apoptotic
HepG2 cells derived from (D). * 0.01 < p < 0.05, ** 0.001 < p < 0.01, and ***p < 0.001.

FIGURE 5
Analysis for synergistic effect of photothermal therapy (PTT) and catalytic activity of AuNC@Fe3O4. (A) Reactive oxygen species (ROS) detection of
HepG2 cells with varying treatments. (B) Lysosomal impairment detection of HepG2 cells with varying treatments. Scale bar: 50 μm.
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catalyze the conversion of intracellular H2O2 into •OH in cancer
cells. Compared with the AuNC@Fe3O4 group, the signal of the
AuNC@Fe3O4+NIR group was stronger. The similar result was
collected by the detection of the absorbance intensities at 652 nm
of the reaction system with or without NIR irradiation, using UV-vis
spectrophotometer. We found the signal of reaction system with
NIR irradiation was higher than that of group without irradiation
(Supplementary Figure S4). The results confirmed that
photothermal effect enhanced the POD-like enzyme catalytic
activity of AuNC@Fe3O4.

The phenomenon could be attributed to the localized surface
plasmon resonance (LSPR), which was the collective oscillation of
surface free electrons in metal nanoparticles under light irradiation,
leading to local heating (also called photothermal effect) and hot
carriers (such as hot electrons and hot holes). One hand, energy of
hot electrons may transfer to local heating by electron-phonon
interactions, causing a rise in temperature (Brongersma et al.,
2015). Similar with natural enzymes, the catalytic ability of
nanozymes could be enhanced by elevated temperature (Wang
et al., 2021; Zhu et al., 2022). Another hand, hot electrons could
be transferred from AuNPs to empty orbits of H2O2, and activated
the H2O2 to generate •OH under NIR light irradiation (Wang et al.,
2017; Xu et al., 2022a).

It was reported that increased ROS could disrupt normal
structure of the lysosomes (Shyam et al., 2021); however, whether
the AuNC@Fe3O4 could induce lysosomal impairment remained
unknown. The fluorescence images (Figure 5B) demonstrate that the
PBS alone and PBS + NIR groups had negligible effects on the
lysosomal impairment and that there were more HepG2 cells with
lysosomal impairment following incubation with AuNC@Fe3O4. As
expected, the lysosomal signal was the weakest in the AuNC@Fe3O4

under laser irradiation group. The results confirmed the synergistic
effect of PTT and POD-like enzyme catalytic activity of AuNC@
Fe3O4 on lysosomal impairment. Additionally, lysosomal
impairment may contribute to an increase in lysosomal
membrane permeability, a decrease in lysosomal quantity, a
disruption in lysosomal enzyme activities, an increase in ROS
levels, and most importantly, the induction of cell apoptosis
(Abulikemu et al., 2022).

This at least partly, explained why AuNC@Fe3O4 with or
without laser irradiation could cause cell death or apoptosis.

4 Conclusion

In summary, this study aimed to synthesize magneto-gold
nanozyme AuNC@Fe3O4 and evaluate its anti-cancer effects for
HCC in vitro. The AuNC@Fe3O4 showed the typical small size of
about 55 nm. Additionally, it demonstrated a high photothermal
conversion efficiency and POD-like activity. The CCK-8 results
demonstrated that AuNC@Fe3O4 had good biocompatibility and
HCC cell-killing ability. Moreover, AuNC@Fe3O4 could
synergistically stimulate cell death or apoptosis. Finally, it was
observed that magneto-gold nanocomposites could facilitate
808 nm laser irradiation to increase their catalytic ability to
produce ROS. This might promote lysosomal impairment,
causing cell death or apoptosis. These results suggested that the

AuNC@Fe3O4 may offer a promising anti-cancer strategy for HCC
via the synergistic effect of PTT and nano-catalytic therapy. Further
research is required to investigate the therapeutic efficacy of AuNC@
Fe3O4 for HCC in vivo.
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Fullerenol inhibits tendinopathy
by alleviating inflammation
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Tendinopathy is a common disease in orthopaedics, seriously affecting tendon
functions. However, the effects of non-surgical treatment on tendinopathy are
not satisfactory and surgical treatments possibly impair the function of tendons.
Biomaterial fullerenol has been proved to showgood anti-inflammatory effects on
various inflammatory diseases. For in vitro experiments, primary rat tendon cells
(TCs) were treated by interleukin-1 beta (IL-1β) combined with aqueous fullerenol
(5, 1, 0.3 μg/mL). Then inflammatory factors, tendon-related markers, migration
and signaling pathways were detected. For in vivo experiments, rat tendinopathy
model was constructed by local injection of collagenase into Achilles tendons of
rats and fullerenol (0.5, 1 mg/mL) was locally injected 7 days after collagenase
injection. Inflammatory factors and tendon-related markers were also
investigated. Fullerenol with good water-solubility showed excellent
biocompatibility with TCs. Fullerenol could increase expression of tendon-
related factors (Collagen I and tenascin C) and decrease expression of
inflammatory factors (matrix metalloproteinases-3, MMP-3, and MMP-13) and
reactive oxygen species (ROS) level. Simultaneously, fullerenol slowed the
migration of TCs and inhibited activation of Mitogen-activated protein kinase
(MAPK) signaling pathway. Fullerenol also attenuated tendinopathy in vivo,
including reduction of fiber disorders, decrease of inflammatory factors and
increase of tendon markers. In summary, fullerenol is a promising biomaterial
that can be used to treat tendinopathy.

KEYWORDS

fullerenol, inflammation, ROS, MAPK, tendinopathy

1 Introduction

Tendinopathy is chronic disorders of tendons usually caused by overuse, with an
incidence of 0.2%–0.3% of adult patients (van der Vlist et al., 2020). Among them,
athletes are the riskiest ones to suffer from tendinopathy with a morbidity of
approximate 52% (Kujala et al., 2005) (Lagas et al., 2020). Tendinopathy causes pain,
diffuse or localized swelling, loss of tissue integrity and impaired performance (Millar et al.,
2021). The pathological mechanisms of tendinopathy are multiple, including apoptosis
disorder, mechanical overload, imbalance of matrix metalloproteinases (MMPs) and tissue
inhibitors of metalloproteinases (TIMPs), genetic factors, inflammation (Yuan et al., 2002)
(Arnoczky et al., 2004) (Mokone et al., 2006). Current managements of tendinopathy consist
of drug treatments, physical therapy, and surgery. However, curative effects of drug
treatments and physical therapies are short-term. Surgeries possibly lead to secondary
injury and tendon function postoperatively cannot recover to preoperative level. Thus, it is
necessary to develop a new treatment method with minor injury.
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Pathology of tendinopathy still remains controversial.
Inflammation plays a key role in the appearance of tendinopathy,
especially in the early phase (Legerlotz et al., 2012). From the
perspective of risk factors, injuries, repetitive mechanical
overloading and hypoxia all elevate inflammatory cytokines, such
as tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β),
prostaglandin E2 (PGE2) (D’Addona et al., 2017). Moreover,
hypoxic damage or increased oxygen demand of tendon cells
caused by mechanical stresses also tends to raise oxygen free
radicals like reactive oxygen species (ROS), leading to secondary
damage of tendon tissues. Simultaneously, Dakin et al. found that
both tendinopathic and ruptured Achilles tendons of human
expressed many CD14+ and CD68+ cells and showed a complex
inflammation signature, involving interferon, nuclear factor-kappa
B (NF-κB) and signal transducer and activator of transcription 6
(STAT-6) activation pathways, which also proved that inflammation
was a vital pathological process of tendinopathy (Dakin et al., 2018).
Therefore, inhibiting inflammation is possibly an effective method
to attenuate tendinopathy.

Fullerenol is a fullerene derivative with good water
solubility, which expands its use in biological and medical
fields. Structurally, there are numerous carbon-carbon double
bonds in fullerenol, contributing to its antioxidative activity of
scavenging reactive oxygen species (ROS) (Markelić et al., 2022).
A lot of studies have reported good protective effects of
fullerenol on cells under oxidative stress and DNA damage. It
was found that fullerenol showed excellent curative or
preventive effects on bleomycin-induced pulmonary fibrosis
(Zhou et al., 2018), intervertebral disk degeneration (Yang
et al., 2014a), myocardial ischemia-reperfusion injury (Ding
and Li, 2020), osteoarthritis (Pei et al., 2019). In the
meantime, fullerenol has the ability to rescue HaCaT human
skin keratinocytes and corneal epithelial cells from ultraviolet B
(wavelength between 280 and 320 nm) (Saitoh et al., 2011)
(Chen et al., 2022). Apart from these, fullerenol presents
promising results of osteogenic differentiation induction to
repair bone defect. Despite of the favorable therapeutic
benefits of fullerenol on multiple diseases, there is no study
on the effects of fullerenol on tendinopathy.

Since inflammation was an important feature of tendinopathy,
and fullerenol showed brilliant anti-inflammatory and antioxidant
effects in various diseases, we hypothesized that fullerenol could
mitigate tendinopathy by inhibiting inflammation. Therefore, this
study aims to explore the effects of fullerenol on tendinopathy and
investigate the potential mechanisms, in order to provide a new
treatment method of tendinopathy.

2 Materials and methods

2.1 Characterization of fullerenol

Fullerenol powder was purchased from Chengdu Zhongke
Times Nano Energy Tech Co., Ltd. The fullerenol powder was
tested by Transmission Electron Microscope (TEM, TF20) for
size and morphology and by Fourier transform infrared
spectrometer (FTIR, Thermo Scientific Nicolet iS20,
United States). At room temperature, fullerenol was suspended in

distilled water to make aqueous fullerenol with the concentration of
50 mg/mL. Then, size distribution and zeta potential were
investigated by Nano Sizer and Zeta potential Tester (Omni,
United States). 50 mg/mL aqueous fullerenol was stored at room
temperature shielded from light for further use. For cell treatment,
aqueous fullerenol was diluted with Dulbecco’s modified Eagle’s
medium (DMEM, Gibco, United States) to the concentration of 10,
5, 3, 1, 0.5, 0.3, 0.1 μg/mL and was sterilized with 0.22 μm filter
membranes (Millipore, United States).

2.2 Tendon cells isolation and culture

Tendon cells (TCs) were isolated from the Achilles tendons of
rats, as described previously (Jiao et al., 2022b). In brief, Achilles
tendons of one-week-old rats were cut after disinfection. And
tendons were immersed in 0.06% collagenase type I
(Worthington, United States) solution at 37°C overnight. Then,
the solution was centrifuged and the supernatant was discarded.
The sediment was suspended and incubated in DMEM
supplemented with 10% fetal bovine serum (FBS, Gibco,
United States ) and 1% antibiotics (penicillin and streptomycin,
Gibco, United States). Cells were subcultured when they reached
80%–90% confluence.

2.3 Cell Count Kit-8 assay

Cell Count Kit-8 (CCK-8) assay was performed using the kit
(Dojindo, CK04-05, Japan) according to the instruction. TCs were
seeded into 96-well plates with a density of 3 × 103 per well. Then,
TCs were incubated using DMEM containing fullerenol with
different concentrations (10, 5, 3, 1, 0.5, 0.3, 0.1 μg/mL). At
1 and 3 days, TCs were cultured in DMEM medium with 10%
CCK-8 reagent at 37°C for 2 h. The absorbance of the supernatant at
450 nm was measured using a microplate reader (Infinite M200 Pro,
Tecan, Switzerland).

2.4 Live/dead cell staining

Live/dead cell staining was performed using the kit (KeyGEN,
Nanjing, China) according to the manufacturer’s instruction. The
samples were observed using a confocal microscope (Leica,
Germany). Live (green) cells stained by Calcein AM were
detected with excitation at 488 nm, and dead (red) cells stained
by PI were observed with excitation at 555 nm.

2.5 RNA extraction and qRT-PCR

For inflammation induction and fullerenol treatment, TCs
were treated by 50 ng/mL IL-1β combined with aqueous
fullerenol. Then, total RNA was extracted using TRIzol reagent
(Thermo Scientific, United States). A NanoDrop
1,000 spectrophotometer (Thermo Scientific, United States)
was used to evaluate RNA purity and quantification. 1,000 ng
of the extracted RNA was reverse transcribed to cDNA using
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PrimeScript Master Mix (Takara, RR036A, Japan). The qRT-PCR
reaction was performed with 2× SYBR Green qPCR Master Mix
(Low ROX) (Bimake, B21703, China) and Applied Biosystems
7,500 Real-Time PCR System (Applied Biosystems, Foster City,
CA, United States). The relative mRNA levels were calculated
with 2−ΔΔCT method. Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) was used as internal control. The primers used in this
study are listed in Table 1.

2.6 Scratch assay

For scratch assay, TCs were seeded into 6-well plates and
cultured to reach 80% confluence. Then, a straight scratch was
scraped with a 200-μL pipette tip. And TCs were incubated with IL-
1β and aqueous fullerenol. Cell migration was determined by
measuring the distance at 0, 12 and 24 h.

2.7 Transwell assay

For the Transwell assay, Transwell chambers (BD Science,
United States of America) were used. In 24-well plate, TCs (5 ×
104) in 150 μL of serum-free basal medium were seeded into the
upper chamber, and 650 μL of DMEM supplemented with 10%
FBS, IL-1β and aqueous fullerenol was added into the lower
chamber. The Transwell system was placed in a 5% CO2

incubator at 37 C for 24 h. Then, the cells were fixed and
stained with crystal violet solution.

2.8 Protein extraction and Western blotting

For inflammation induction and fullerenol treatment, TCs
were treated by 50 ng/mL IL-1β combined with aqueous
fullerenol. For protein extraction, TCs were lysed using RIPA
lysis buffer (Beyotime, China) supplemented with 1% protease
and phosphatase inhibitor cocktail (100X) (Thermo Scientific,
United States). Then, the mixture was centrifugated at a speed of
14,000 RCF for 15 min. The supernatant was separated and
mixed with SDS-PAGE sample loading buffer (Beyotime,
China) and boiled at 99°C for 5 min. Protein samples were
electrophoresed on SDS gels and transferred onto
polyvinylidene fluoride membranes (Millipore, United States).
The membrane was then blocked in Tris-buffered saline Tween

20 (Solarbio, China) containing 5% non-fat milk (Sangon
Biotech, China) or 5% bovine serum albumin (MPbio,
United States) for 1 h at room temperature. After that, the
membrane was incubated with primary antibodies at 4°C
overnight and secondary antibodies for 1 h at room
temperature. Protein immunoreactivity was detected with LI-
COR Odyssey Fluorescence Imaging System (LI-COR
Biosciences, United States), and ImageJ was used to measure
the protein expression. The anti-bodies used were as follows:
p44/42 MAPK (Erk1/2) (Cell Signaling Technology,
United States), Phospho-p44/42 MAPK (Erk1/2) (Cell
Signaling Technology, United States), SAPK/JNK (Cell
Signaling Technology, United States), Phospho-SAPK/JNK
(Cell Signaling Technology, United States), p38 MAPK (Cell
Signaling Technology, United States), Phospho-p38 MAPK
(Cell Signaling Technology, United States), Anti-rabbit IgG
(H + L) (800 4X PEG Conjugate) (Cell Signaling Technology,
United States), Anti-mouse IgG (H + L) (800 4X PEG
Conjugate) (Cell Signaling Technology, United States).

2.9 Animal experiments

All animal experiments were approved by the Ethics
Committee of Shanghai Ninth People’s Hospital, Shanghai
Jiaotong University School of Medicine (Approval number:
SH9H-2021-A895-1). To establish tendinopathy models,
Sprague-Dawley (SD) rats (male, 8 weeks old), purchased from
Shanghai JieSiJie Laboratory Animals Co., LTD., were
anesthetized. Then, 50 mg/mL collagenase type I
(Worthington, United States) solution was injected into the
Achilles tendons to trigger inflammation. At 7 days after
injection, 50 μL aqueous fullerenol with the concentration of
0.5 mg/mL and 1 mg/mL were injected. At the 21st day after
collagenase injection, tendons were collected and used for
histological observation.

2.10 Histological observation

The histological observation methods were similar to those
previously reported (Jiao et al., 2022a). Briefly, after fixation,
embedding and section, Hematoxylin-eosin (HE) andMasson tri-
chrome staining were performed. The method of evaluating fiber
alignment was described in the previous studies (Adeoye et al.,

TABLE 1 Sequences of primers for qRT-PCR.

Primer Forward primer (5′ to 3′) Reverse primer (5′ to 3′)

GAPDH GGCAAGTTCAACGGCACAGT GCCAGTAGACTCCACGACAT

COL1A1 TGACTGGAAGAGCGGAGAGTA GGGGTTTGGGCTGATGTACC

TNC TGCCATAGCAACAACAGCCAT AACTCTCCACCTGAGCAGTC

MMP-3 TGCTCATGAACTTGGCCACT GTGGGAGGTCCATAGAGGGAT

MMP-13 GGGAACCACGTGTGGAGTTAT GACAGCATCTACTTTGTCGCC

Abbreviations:GAPDH, glyceraldehyde-3-phosphate dehydrogenase; COL1A1, collagen 1A1; TNC, tenascin C; MMP-3, matrix metalloproteinases-3; MMP-13, matrix metalloproteinases-13.
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2022) (Ozlu et al., 2019) (Erisken et al., 2013). For
immunohistochemical staining, we incubated sections
overnight with different antibodies (COL I, COX-2, IL-6;
Servicebio; China). On the next day, the sections
were incubated with the secondary antibody (HRP-anti-rabbit
IgG, Servicebio, China). After that, they were observed and
captured.

2.11 Statistical analysis

All results are shown as the mean ± standard deviation.
Student’s t-test was used for comparisons between two groups,
and one-way analysis of variance followed by Tukey’s post hoc

analysis was used for comparisons between three or more groups.
Statistical significance was set at p < 0.05.

3 Results

3.1 Characterization of fullerenol

To detect the characterization of fullerenol, we investigated the
size and morphology of fullerenol powder by TEM. Shown in
Figure 1A, the diameter of fullerenol powder was over 1 μm.
Furthermore, we detected characteristic absorption peaks of
fullerenol powder by FTIR spectra. In Figure 1B, four
characteristic absorption peaks existed. In detail, broad O–H

FIGURE 1
Characterization of fullerenol. (A) Transmission electron microscope (TEM) of fullerenol powder. Scale bar = 0.5 μm (left), 50 nm (right) (B) FTIR of
fullerenol powder. (C) Image of aqueous fullerenol (50 mg/mL). (D) Hydrodynamic size of fullerenol in aqueous solution.
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stretching vibration (νO-H) presented at 3,412.80 cm-1, C=C
stretching vibration (νC = C) was shown at 1,596.71 cm-1, O–H
in-plane deformation vibration (δsC-OH) existed at 1,354.07 cm-1,
and C–O stretching vibration (νC-O) was at 1,082.82 cm-1. Then, we
dissolved fullerenol by water into the concentration of 50 mg/mL,
which became brown to black liquid (Figure 1C). Although the
diameter of fullerenol powder was over 1μm, according to size
distribution, particles in aqueous fullerenol were mostly from 100 to
1000 nm (Figure 1D). Notably, there was another peak from 3,000 to
6000 nm, which was probably caused by agglomeration due to high
concentration. At the same time, the surface zeta potential
was −15.44 ± 1.93 mV (Table 2).

3.2 Fullerenol shows low cytotoxicity on
rat TCs

To detect the cytotoxicity of fullerenol, we performed CCK-8
assay. Shown in Figure 2A, at 1 day after fullerenol (10, 5, 3, 1, 0.5,
0.3, 0.1 μg/mL) treatment, no significant difference existed between
TCs treated with fullerenol and without fullerenol, indicating no
cytotoxicity at 1 day. However, at 3 days, optical density (OD) value
in the 10 μg/mL group was obviously lower than control group,
suggesting that 10 μg/mL fullerenol influenced cell viability of TCs at
3 days. Based on this, we chose three concentrations (5, 1, 0.3 μg/
mL) to conduct further experiments. Furthermore, we verified the
cytotoxicity of fullerenol with the three concentrations at 3 days via
live/dead cell staining (Figure 2B). It was found that almost no dead
TCs existed at the three concentrations. All the results showed that
low-concentration fullerenol had good cytocompatibility with TCs.

3.3 Fullerenol inhibits inflammation of TCs
caused by IL-1β and rescues the impairments
of TCs

Next, we investigated the effects of fullerenol on the
inflammation of TCs and the expression of tendon-related
markers. Collagen 1A1 (COL1A1) is the most important
component of tendon tissues and expresses lower in
tendinopathy (Cho et al., 2021; López De Padilla et al., 2021).
Tenascin C (TNC) is a glycoprotein abundantly expressed in
tendons subjected to high tensile and compressive stress
(September et al., 2007). TNC has been proved in the regulation
of cell-matrix interaction (September et al., 2007). Shown in
Figure 3A, after adding IL-1β, expression of COL1A1 and TNC
decreased, although there was no significant difference. Fullerenol
enhanced the RNA level of COL1A1 and TNC remarkably,
especially 5 μg/mL. Contrary to COL1A1 and TNC, IL-1β
augmented matrix metalloproteinases-3 (MMP-3) and matrix
metalloproteinases-13 (MMP-13) expression, which were closely
related to inflammation. As an anti-inflammatory material,
fullerenol lowered MMP-3 and MMP-13, suggesting that
fullerenol alleviated inflammation. Consistent with RNA, the
tendency of TNC, COL I and MMP-13 were increased by IL-1β
and decreased by fullerenol (Figure 3B). In view of anti-oxidant
effects of fullerenol, we also verified the anti-oxidant effect of
fullerenol in tendinopathy. In Figure 3C, IL-1β induced ROS
upregulation, showing that IL-1β exacerbated oxidant stress in
TCs. However, after fullerenol treatment, ROS level of TCs
diminished in a concentration-dependent manner and nearly
disappeared in the concentration of 5 μg/mL. All the above

TABLE 2 Zeta potential of aqueous fullerenol.

Repeat Zeta potential (mV) Mobility (μ/s)/(V/cm) Conductance (μS) Count rate (kcps)

1 −16.61 −1.30 25 586

2 −13.21 −1.03 26 601

3 −16.51 −1.29 26 601

FIGURE 2
Biocompatibility of fullerenol with different concentrations. (A)
Optical density (OD) value of TCs treated with different-concentration
(0, 0.1, 0.3, 0.5, 1, 3, 5, 10 μg/mL) fullerenol at 1 and 3 days tested by
CCK-8. (B) Live/dead cell staining of TCs treated with 0, 0.3, 1,
5 μg/mL fullerenol at 3 days. Scale bar = 25 μm. (Data are presented as
the mean ± standard deviation. *p < 0.05, **p < 0.01).
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results implied that fullerenol could attenuate inflammation and
ROS level in TCs induced by IL-1β.

3.4 Fullerenol inhibits migration of TCs

It was reported that migration of TCs increased in an
inflammatory environment (Jiao et al., 2022b) (Wang et al.,
2019). Next, we investigated the influences of fullerenol on TCs
migration through scratch assay and transwell assay. Shown in
Figures 4A,C, TCs in all the five groups migrated gradually at
12 and 24 h. The addition of IL-1β accelerated migration of TCs
to around 50% at 12 h and approximate 70% at 24 h. However,
fullerenol was able to inhibit the migration of TCs effectively.
Notably, the inhibitory effects were concentration dependent.
Extremely low concentration like 0.3 μg/mL did not depress the
migration of TCs, while 1 μg/mL and 5 μg/mL could suppress the
migration. Similarly, in transwell assay, the number of TCs in IL-1β
group increased obviously compared with control group (Ctrl). But
the number declined after fullerenol treatment in a concentration-

dependent manner (Figures 4B,D). The above results implied that
fullerenol could effectively inhibit migration of TCs.

3.5 Fullerenol inhibits tendinopathy via
MAPK pathway

Mitogen-activated protein kinase (MAPK) signaling pathway
was reported to play a key role in inflammation (Jiao et al., 2022b)
(Zhu et al., 2021). So, we explored the activation of MAPK signaling
pathway. P38 MAPK pathway was strongly activated in stress,
immune response and regulation of cell survival and
differentiation (Cuadrado and Nebreda, 2010). Apparently, in our
study, inflammation induced by IL-1β increased the
phosphorylation level of p38. Nevertheless, addition of fullerenol
availably hindered the activation of p38 (Figures 5A,B).
Interestingly, phosphorylation level of p38 decreased in a
concentration-dependent manner. Identically, Erk1/2 and JNK
was activated by IL-1β and the activation was inhibited by
fullerenol (Figures 5C–F). The results of Western blot suggested

FIGURE 3
Effects of fullerenol on inflammation of TCs induced by IL-1β. (A)mRNA level of COL1A1, TNC, MMP-3 and MMP-13 of TCs after fullerenol and IL-1β
treatment tested by qRT-PCR. (B) Protein level of TNC, COL1A1 and MMP-13 of TCs after fullerenol and IL-1β treatment tested by Western Blot (Left) and
quantitative results (Right). (C) ROS level of TCs after fullerenol and IL-1β treatment tested by ROS assay kit.
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that fullerenol could restrain the activation of MAPK pathway
induced by IL-1β.

3.6 Fullerenol inhibits tendinopathy in vivo

Next, we furtherly tested anti-inflammatory effects of fullerenol
on tendinopathy in vivo. Shown in Figure 6A, after collagenase I
injection, tendinous fibers were fractured and arranged disorderly
compared with Ctrl group in HE andMasson staining. But fullerenol
alleviated impairment of tendinous fibers. Meanwhile, we detected
expression of Collagen I (COL I), Cyclooxygenase 2 (COX-2) and
IL-6 by immunohistochemical staining (Figure 6B). In Collagenase
group, COL I decreased and inflammatory factors (COX-2 and IL-6)
increased in comparison with Ctrl group, showing that collagenase

induced inflammation of tendon tissues. Fullerenol could alleviate
severity of inflammation and promote expression of COL I. All these
data hinted that fullerenol reduced inflammation in tendinopathy
in vivo.

4 Discussion

Tendinopathy is a common overload injury, with an incidence
of two to three per 1,000 patients in general medicine practice (van
der Vlist et al., 2021). It is challenging to manage tendinopathy.
Current treatments have more or less limitations. For example,
conservative treatments like eccentric exercises and shockwave
therapy are not suitable for all kinds of tendinopathy (Figueroa
et al., 2016). Pharmacological management, especially injection, is

FIGURE 4
Migration of TCs after IL-1β (50 ng/mL) and fullerenol treatment. (A) Migration of TCs in control (Ctrl), IL-1β, IL-1β+0.3 μg/mL, IL-1β+1 μg/mL, IL-
1β+5 μg/mL groups tested by scratch assay. Scale bar = 250 μm. (B) Migration of TCs in Ctrl, IL-1β, IL-1β+0.3 μg/mL, IL-1β+1 μg/mL, IL-1β+5 μg/mL
groups tested by transwell assay. Scale bar = 100 μm. (C) Quantitative results of scratch assay. (D) Quantitative results of transwell assay. (Data are
presented as the mean ± standard deviation. *p < 0.05, **p < 0.01).
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another important way to treat tendinopathy. Unfortunately, no
standard procedure of treat tendinopathy pharmacologically is
established because there is a lack of comparative studies on
effects of various drug injections (Aicale et al., 2020).
Furthermore, surgical treatment impaired the function of tendons
and there is a need of high-quality evidence on the effects of
surgeries on different tendinopathy, such as chronic patellar
tendinopathy (Khan and Smart, 2016). Therefore, it is necessary
to develop a new method of tendinopathy management with low
side effects.

Fullerenol is a hydroxylated derivative of fullerene. Identical
to previous studies (Wang et al., 2016) (Zha et al., 2022), the
diameter of our aqueous fullerenol ranged from 100 to 1,000 nm.
Notably, fullerenol was also manufactured to be nanomaterial
with diameter lower than 100 nm (Chen et al., 2022). In terms of
biological function, fullerenol show good biocompatibility and
low side effects in numerous studies (Yang et al., 2021) (Yang
et al., 2014b) (Zhu et al., 2007). However, it was also reported that
fullerenol was cytotoxic toward human retinal pigment epithelial

(hRPE) cells at concentrations of 10–50 μM, and increased
phototoxicity on hRPE cells in particular (Wielgus et al.,
2010). So, in spite of good biocompatibility, fullerenol is not
absolutely safe to all the normal tissue cells. In our study, we
detected the cytotoxicity of fullerenol toward TCs. It was found
that after short-term (1 day) treatment, fullerenol showed no
cytotoxicity at concentrations of 0.1–10 μg/mL. Nonetheless, with
extension of treatment time to 3 days, fullerenol at high
concentration (10 μg/mL) became deleterious for cell viability
of TCs. Overall, fullerenol, consisting of carbon, hydrogen and
oxygen elements, exhibited good biocompatibility to TCs. But the
extremely high concentration also caused impairment on TCs. All
the results of cell viability are almost identical to previous studies.

Inflammation is one of the most features of tendinopathy and
suppressing inflammation has been a vital treatment for
tendinopathy. Mounting studies have employed anti-
inflammatory drugs and biomaterials to treat tendinopathy. Chen
et al. reported that ibuprofen-loaded hyaluronic acid nanofibrous
membranes could reduce inflammation to prevent postoperative

FIGURE 5
Expression of MAPK signaling pathway after IL-1β (50 ng/mL) and fullerenol (0.3, 1, 5 μg/mL) treatment. (A) The phosphorylation levels of p38 in TCs
of Ctrl, IL-1β, IL-1β +0.3 μg/mL, IL-1β+1 μg/mL, IL-1β+5 μg/mL groups were examined by Western Blotting. (B) Quantitative results of phosphorylation
levels of p38. (C) The phosphorylation levels of Erk1/2 in TCs of Ctrl, IL-1β, IL-1β +0.3 μg/mL, IL-1β+1 μg/mL, IL-1β+5 μg/mL groups were examined by
Western Blotting. (D) Quantitative results of phosphorylation levels of Erk1/2. (E) The phosphorylation levels of JNK in TCs of Ctrl, IL-1β, IL-1β
+0.3 μg/mL, IL-1β+1 μg/mL, IL-1β+5 μg/mL groups were examined by Western Blotting. (F) Quantitative results of phosphorylation levels of JNK. (Data
are presented as the mean ± standard deviation. *p < 0.05, **p < 0.01)
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tendon adhesion (Chen et al., 2019). In the study of Choi et al., they
synthesized lactoferrin-immobilized, heparin-anchored, poly
(lactic-co-glycolic acid) nano-particles (LF/Hep-PLGA NPs) and
also found that LF/Hep-PLGANPs enhanced tendon restoration via
inhibiting inflammation (Choi et al., 2020). In terms of drugs, plenty
of drugs like aspirin were found to be conducive to tendinopathy
treatment through many signaling pathways, such as JNK/
STAT3 pathway (Wang et al., 2019). In our study, we
investigated whether fullerenol helped mitigate tendinopathy.
From RNA to protein level, under inflammatory environment,
fullerenol increased expression of COL I and TNC and decreased
expression of MMP-3 and MMP-13. It might imply that fullerenol
played a key role in both reducing inflammation and protecting
tendon tissues. Furthermore, production of ROS is another factor of
damage to tendon. The results of our study showed that fullerenol
also had the ability to remove ROS, which was possibly due to many
carbon-carbon double bonds in fullerenol.

Stimulation of inflammation tends to change the behaviors of
localized cells in different tissues. Cell migration is one of the
most important behaviors affected by inflammation. In previous

studies, it was found that the migration of human bronchial
epithelial cells increased after being treated with TNF-α, which
was also a way to induce inflammation (Ren et al., 2021).
Similarly, migration of fibroblasts is also influenced by
inflammation. Fibroblast-like synoviocytes (MH7A cell) in
rheumatoid arthritis migrated faster than synoviocytes in
control group (Cai et al., 2021) (Cai et al., 2022). Zhang et al.
also reported that macrophage migration inhibitory factor, a
proinflammatory cytokine, promoted migration of joint
capsule fibroblasts (Zhang et al., 2021). Here, in our study, we
investigated the influence of fullerenol on TCs migration under
the inflammatory environment by scratch assay and transwell
assay. Obviously, IL-1β treatment induced inflammation of TCs
successfully and made migration of TCs faster, which was
consistent with our previous study (Jiao et al., 2022b). In view
of good anti-inflammatory and anti-oxidant effects of fullerenol
on TCs from mRNA level to protein level, it could inhibit
migration of TCs under inflammatory environment,
unsurprisingly. After tendons are injured, migration of TCs
may lead to formation of a fibrotic scar, causing loss of

FIGURE 6
Inhibition of fullerenol (0.5, 1 mg/mL) on tendinopathy in vivo. (A)HE andMasson staining of tendons in Ctrl, Collagenase, Collagenase+0.5 mg/mL,
Collagenase+1 mg/mL groups (Left). Statistical results of fiber alignment (Right). Scale bar = 50 μm. (B) Immunohistochemical staining (COL I, COX-2, IL-
6) of tendons in Ctrl, Collagenase, Collagenase+0.5 mg/mL, Collagenase+1 mg/mL groups. Scale bar = 20 μm.
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mechanical strength of the original tendon (Wang et al., 2019)
(Nichols et al., 2019). Based on our results, fullerenol slowed the
migration of TCs which was likely to reduce the impairment of
tendon tissues.

A series of signaling pathways is of great importance in
tendinopathy inhibition. Various inflammation-related
pathways such as NF-κB, c-Jun N-terminal kinase (JNK)/
STAT-3 signaling pathways (Wang et al., 2019) (Vinhas et al.,
2020). Besides, MAPK signaling pathways play a part in
tendinopathy (Wu et al., 2022) (Moqbel et al., 2020). MAPK
cascade consists of three protein kinases, including a MAPK and
two upstream components, MAPK kinase (MAPKK) and
MAPKK kinase (MAPKKK). So far, three MAPK pathways
are found in mammalian cells, namely, the extracellular
signal-regulated kinases (ERKs) pathway, the c-Jun amino
terminal kinase (JNK) pathway and the p38 MAPK pathway
(Kumar et al., 2003). Considering the importance of MAPK
signaling pathway in inflammation, we explored the activation
of MAPK pathway after fullerenol treatment. Excitingly,
fullerenol curbed the phosphorylation level of all p38, ERK,
and JNK, suggesting fullerenol could effectively inhibit
tendinopathy via MAPK pathway.

We furtherly detected the effects of fullerenol on
tendinopathy in vivo. Collagenase injection has been a
common method of constructing tendinopathy model (Liu
et al., 2021) (Wu et al., 2019). Collagenase injection caused
disorders and swelling of fibers in tendons. At the same time,
collagenase leads to increase of inflammatory factors and decrease
of Collagen I. Since fullerenol had good water-solubility, we
decided to inject fullerenol locally into Achilles tendons, which
had better effects for tendinopathy compared with
intraperitoneal injection. In our study, identical to results of
cell experiments, aqueous fullerenol alleviated disorders of
tendon fibers and decreased expression of inflammatory
factors like COX-2 and IL-6. The animal experiments showed
fullerenol was an excellent and convenient therapeutic approach
to tendinopathy.

Since tendinopathy is a localized inflammatory disease,
traditional drug administration is the most common
treatment. Here, we firstly injected aqueous fullerenol to treat
tendinopathy. In view of good biocompatibility and anti-
inflammatory effects, fullerenol shows good prospects in
treating localized inflammatory diseases like tendinopathy in
the future.

5 Conclusion

In conclusion, fullerenol is a promising biomaterial which has
brilliant biocompatibility and anti-inflammatory effects and can be
used to treat tendinopathy. Utilization of fullerenol helps reduce the

side effects caused by drug administration and lower the economic
burden.
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In recent years, the treatment of Acinetobacter baumannii infections has become
a pressing clinical challenge due to its increasing incidence and its serious
pathogenic risk. The research and development of new antibacterial agents for
A. baumannii have attracted the attention of the scientific community. Therefore,
we have constructed a new pH-responsive antibacterial nano-delivery system
(Imi@ZIF-8) for the antibacterial treatment of A. baumannii. Due to its pH-sensitive
characteristics, the nano-delivery system offers an improved release of the loaded
imipenem antibiotic at the acidic infection site. Based on the high loading capacity
and positive charge of themodified ZIF-8 nanoparticles, they are excellent carriers
and are suitable for imipenem loading. The Imi@ZIF-8 nanosystem features
synergistic antibacterial effects, combining ZIF-8 and imipenem to eliminate A.
baumannii through different antibacterial mechanisms. When the loaded
imipenem concentration reaches 20 µg/mL, Imi@ZIF-8 is highly effective
against A. baumannii in vitro. Imi@ZIF-8 not only inhibits the biofilm formation
of A. baumannii but also has a potent killing effect. Furthermore, in mice with
celiac disease, the Imi@ZIF-8 nanosystem demonstrates excellent therapeutic
efficacy against A. baumannii at imipenem concentrations of 10 mg/kg, and it can
inhibit inflammatory reaction and local leukocyte infiltration. Due to its
biocompatibility and biosafety, this nano-delivery system is a promising
therapeutic strategy in the clinical treatment of A. baumannii infections,
providing a new direction for the treatment of antibacterial infections.

KEYWORDS

Acinetobacter baumannii, Imi@ZIF-8, antibacterial infection, synergistic effect,
antibiofilm

Introduction

Acinetobacter baumannii is an aerobic, gram-negative coccobacillus and is a conditional
pathogen that can cause community-acquired and hospital-acquired infection (Whiteway
et al., 2022). In clinical settings, it is responsible for ventilator-associated pneumonia,
catheter-associated blood and urinary tract infections, sepsis, endocarditis, skin and wound
infections and meningitis (Chen, 2020). A. baumannii is ubiquitous in nature and persistent
in the hospital environment, where it often infects immunocompromised patients,
particularly those in intensive care units (Shan et al., 2022). According to worldwide
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data, the detection rate of A. baumannii in intensive care units rose
from 4% to 7% between 1986 and 2003. Moreover, ICU mortality
increased from 53.3% to 84.3% in patients with respiratory-
associated pneumonia due to extensively drug-resistant A.
baumannii (Saipriya et al., 2020). A. baumannii was regarded as
ESKAPE pathogens. In order to study and develop effective
antibacterial drugs against A. baumannii with acquired resistance
to antibiotics, the WHO has placed it on priority list (Tacconelli
et al., 2018). So, there is a need for research into combatting this
pathogen.

Genomic and phenotypic identification analyses were
performed, demonstrating the association between A. baumannii
infection and multiple virulence factors, including outer membrane
proteins, lipopolysaccharides, capsular polysaccharides,
phospholipases, protein secretion systems, quantum sensing and
biofilm production (Harding et al., 2018; Dehbanipour and
Ghalavand, 2022). These virulence factors contribute to the
colonization of pathogenic bacteria and exacerbate antibiotic
resistance. At present, antibiotics for the treatment of A.
baumannii infection are mainly selected based on the sensitivity
of pathogens to antibiotics, the severity of the disease and the
infection site. Based on its pathogenicity, the clinical treatments
of A. baumannii include sulbactams, carbapenems,
aminoglycosides, polymyxin, tegacycline and combined antibiotic
therapy (Fishbain and Peleg, 2010; Isler et al., 2019). Carbapenems
are highly effective broad-spectrum antibacterial drugs that exhibit
strong antibacterial activity against gram-positive bacteria, gram-
negative bacteria and anaerobes and are regarded as the “last line of
defense” of antibiotics. Their antibacterial mechanism is similar to
β-like lactam antibiotics, as they inhibit the formation of the
bacterial cell wall by binding with penicillin-binding proteins
(PBPs), leading to inactivation (Papp-Wallace et al., 2011;
Skariyachan et al., 2019). Imipenem is the most widely-used
carbapenem antibiotic in clinical practice and has high
bactericidal activity, fast bactericidal rate and excellent bacterial
inhibition against A. baumannii, especially for patients with
moderate to severe infections and multi-drug resistant bacterial
infections. Moreover, imipenem is a time-dependent antibacterial
drug with a post-antibiotic effect on bacteria. Imipenem
preferentially combines with PBP2, followed by PBP1a and
PBP1b, and has a weak affinity for PBP3. This mechanism of
action can reduce the release of lipopolysaccharide during
bacteriolysis, providing good biological safety (Rodloff et al.,
2006; Zhanel et al., 2007; Nowak and Paluchowska, 2016).
However, with the wide application of carbapenem antibiotics in
recent years, the drug resistance rate of A. baumannii to
carbapenems has increased year by year (Jiang et al., 2022).
Polymyxins are effective for treating A. baumannii infection, with
low rates of resistance, but are associated with a higher risk of
nephrotoxicity (Liu et al., 2021). The overall economic benefit of
high-dose sulbactam or combination therapy is poor, and clinical
data on the efficacy and resistance of the other antimicrobials
mentioned are limited (Betrosian et al., 2008; Chu et al., 2013).
Hence, finding new treatment schemes is an urgent problem.

The researcher has extensively studied and formulated
treatment plans against bacterial infection and drug resistance,
including the development of new antibiotic resistance inhibitors.
However, the research of new antibiotics is time-consuming and

costly, and the development of antibacterial resistance is
significantly faster than the research and development of new
antibiotics. Furthermore, drug-resistant inhibitors mainly inhibit
the severe evolution of bacteria into drug-resistant bacteria, but the
prevalence of drug resistance within a patient or in the population
remains a challenge (Baym et al., 2016; Chang et al., 2022). In recent
years, nanomaterials have attracted attention due to their physical
and chemical properties, such as structural stability, large specific
surface area, high porosity, easy surface modification, structural
diversity and biocompatibility. They have been applied to
biomedical engineering projects, such as biosensors (Singh et al.,
2022), drug carriers (Vangijzegem et al., 2019; Huang et al., 2021; Liu
et al., 2022), medical implants (Akgöl et al., 2021) and medical
imaging (Kalva et al., 2022). The rise of nanomedicine has enabled
advances in antimicrobial therapy.

Nanocarriers can selectively transport antibiotics to the site of
infection due to their targeting properties, thus improving drug
distribution, increasing the effectiveness of antibiotics, reducing
drug side effects and overcoming bacterial resistance (Nazli et al.,
2022). Many nanomaterials have been used in antimicrobial therapy,
such as inorganic metal nanomaterials (gold, silver, copper, zinc,
titanium), metal oxide nanoparticles (copper oxide, zinc oxide,
titanium oxide, iron oxide), carbon-based nanomaterials
(graphene and its derivatives, graphene quantum dots, carbon
quantum dots), and organic nanostructures (chitosan,
dendrimers, liposomes, micelles, vesicles), etc. (Modi et al., 2022).
The antibacterial mechanisms of nanomaterials involve 1) the use of
size, surface properties and other unique physicochemical properties
to damage important intracellular components and interfere with
the normal physiological metabolic processes of bacteria, ultimately
leading to bacterial death (Cheng et al., 2022); 2) the use of the
enzyme-like activity of nanomaterials, regulating the level of reactive
oxygen species (ROS) to exert a strong bactericidal effect by
disrupting bacterial biofilms (Godoy-Gallardo et al., 2021); 3)
smart response platforms based on nanomaterials, such as pH,
enzymes and temperature to enhance antimicrobial activity (Jiang
et al., 2020); 4) the use of external stimulus-response properties of
nanomaterials, such as light and microwaves, or synergistic
antimicrobial drugs to achieve an antimicrobial activity in a
single or combined treatment (Díez-Pascual, 2020; Nazli et al.,
2022). Zeolite imidazole ester skeleton—8 (ZIF—8) is a porous
crystalline material formed by the coordination self-assembly of
zinc ion and 2-methylimidazole. ZIF-8 has not only high loading
capacity but also has antibacterial activity, acid sensitivity, low
cytotoxicity, and good biocompatibility, providing broad
applications in biomedicine (Lian et al., 2022). The pH of the
microenvironment of infected tissues is slightly lower than that
of normal tissues due to acid production at the site of infection, so
ZIF-8 can be used as an acid-responsive drug carrier for
antimicrobial therapy with superior loading capacity, controlled
drug release and enhanced targeting (Abdelhamid, 2021; Tan
et al., 2022).

In summary, a novel antimicrobial nanodelivery system with
pH acid response function was constructed by synthesizing
positively-charged ZIF-8 (PEI@ZIF-8) and loading negatively-
charged imipenem onto ZIF-8 nanoparticles (Imi@ZIF-8) using
positive and negative charge adsorption forces under ultrasonic
stirring. The loaded imipenem is effectively released at the site of
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bacterial infection due to the acidic microenvironment, displaying
the antimicrobial synergy between imipenem and ZIF-8. In addition,
subsequent research and experiments found that the Imi@ZIF-
8 nanodrug system exerts a strong killing effect on A.
baumannii. The development of an antibacterial nanosystem with
good biocompatibility and biosafety provides a new strategy for the
clinical treatment of A. baumannii.

Materials and methods

Materials

Imipenem was purchased from Aladdin Technology (China).
Fetal bovine serum (FBS) and high glucose (Dulbecco’s modified
Eagle’s medium DMEM) were obtained from Life Technologies.
Dialysis membranes (2000 D), hematoxylin and eosin (HE),
crystal violet (CV), and phenazine methosulfate were
provided by Solarbio Technology (China). Mueller-Hinton
(MH) broth was obtained from Solarbio. Polycarbonate
porous membrane syringe filters (200 nm) were obtained
from Whatman. The bacterial stock solution and reactive
oxygen species (ROS) assay kits were purchased from
Beyotime Technology (China). The LIVE/DEAD backlight
bacterial viability kit was purchased from Yeasen
Biotechnology (China). Anti-IL-6 and anti-Ly6G antibodies
were manufactured by BOSTER Biological Technology
(China). The HRP-conjugated goat anti-mouse IgG was
purchased from BOSTER Biological Technology.

Experimental cells and experimental animals

The mouse lung epithelial (MLE-12) cell line was provided by
the Department of Laboratory Medicine, Xiangya Medicine
School, Central South University. MLE-12 cells were cultured in
a sterile environment at 37°C and 5% CO2. We prepared 5 mL of
10% fetal bovine serum, 45 mL of DMEM (high sugar type) and
1 mL of penicillin-streptomycin (1%) to form the complete
medium for the cells used. The 6-week-old female BALB/c mice
used in our experiments were purchased from Shrek Laboratory
Animals Ltd. in Hunan, China. All mice were kept in specific
pathogen-free conditions at the Animal Resource Center of
Xinxiang Medical University. All animal experiments were
approved by the Xinxiang Medical University Experimental
Animal Ethics Committee. The ethical approval code is XYLL-
20230027.

Bacterial strains and bacterial cultures

TheA. baumannii strains were obtained from the Department of
Laboratory Science, The Third Affiliated Hospital of Xinxiang
Medical University (Xinxiang, Henan, China). The bacteria were
stored in bacterial lyophilization solution at −80°C. A disposable
sterile inoculating loop was used to collect the lyophilized solution,
and the bacteria were allowed to grow on blood agar plates by triple
zoning, followed by incubation at 5% CO2 and 37°C for 24 h. Finally,

individual colonies from the plates were lysed in a sterile LB broth
liquid medium with a disposable sterile inoculating loop and
incubated overnight at 200 rpm at 37°C to allow bacterial to
growth to their logarithmic phase. The overnight culture was
added to a fresh, sterilized LB broth medium, and the OD600

value was measured using an enzyme marker at 0.6. All
experiments were repeated three times, and the average of the
three values was taken.

Preparation of PEI@ZIF-8

2-methylimidazole was dissolved in methanol to form
solution A, and zinc nitrate was dissolved in methanol to form
solution B. Solutions A and B were mixed and allowed to react for
a certain period of time, and ZIF-8 was obtained by
centrifugation (Wang et al., 2020). The precipitate was washed
then three times with water. ZIF-8 and PEI were mixed and
stirred for a certain period of time, and the PEI-modified ZIF-8
was collected by centrifugation. Finally, the precipitate was
washed three times with water.

Determination of encapsulation and loading
rates of imipenem in Imi@ZIF-8

1 mg of PEI@ZIF-8 was dissolved in 1 mL of deionized water
(ddH2O), and 1.2 mg of imipenem was added and stirred for 4–5 h
at room temperature with a magnetic stirrer. The solution was left
for 12 h in darkness, then the precipitate was centrifuged in darkness
to obtain Imi@ZIF-8. The maximum absorbance of imipenem in the
supernatant was determined by UV-visible spectrophotometry (Yu
et al., 2014; Wang et al., 2016). The standard concentration gradient
of imipenem was set, and the standard curve of concentration and
absorbance was established. Then, the content of unbound
imipenem in the supernatant was calculated.

The calculation formulas of encapsulation efficiency (EE) and
loading efficiency (LE) are as follows:

EE � imipenem added − imipenem remaining in supernatant

imipenem added
( ) × 100%.

LE � amount of imipenemadded − amount of imipenem remaining in the supernatant

total weight of Imi@ZIF − 8
( ) × 100%.

Characterization of Imi@ZIF-8

Transmission electron microscopy (TEM) was performed to
observe the particle size and morphology of ZIF-8, while the surface
morphology of ZIF-8 was assessed using Scanning electron
microscopy (SEM). A zeta potential-particle size analyzer was
used to evaluate imipenem, ZIF-8, and Imi@ZIF-8, whereas
dynamic light scattering instrument (DLS) was performed to
analyze the hydrated particle size of ZIF-8 and Imi@ZIF-8. The
characteristic absorption peak positions of ZIF-8, imipenem and
Imi@ZIF-8 were detected by a ultraviolet-visible (UV-vis)
spectrophotometer to further validate the successful construction
of the nano-delivery system.
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Release characteristics of Imi@ZIF-8

Imipenem release from Imi@ZIF-8 was monitored at pH =
7.4 and pH = 6.5 to investigate the acidic pH response properties of
Imi@ZIF-8. Specifically, 5 mL of Imi@ZIF-8 was packed into dialysis
bags, which were then immersed in 50 mL of PBS solution at pH =
7.4 and pH = 6.5, respectively (Zhou et al., 2022). The dialysate was
collected at 6, 12, 18, and 24 h. The absorbance value of imipenem in
the dialysate at 299 nm was measured using a UV-Vis
spectrophotometer to determine the cumulative release of
imipenem from the solution, and the percentage release—time
curves at pH = 7.4 and pH = 6.5 were plotted. All experiments
were repeated three times, and the average of the experimental
values was taken.

In vitro antibacterial and anti-biofilm effects
of Imi@ZIF-8

Minimum inhibitory concentration (MIC)
The minimum inhibitory concentration (MIC) of imipenem

and ZIF-8 against A. baumannii was determined using the broth
dilution method. A suspension of A. baumannii at a
concentration of 1.5 × 106 CFU/mL was added to a 96-well
plate. First, the imipenem solution was prepared by serial 2-
fold dilution to a final concentration of 0, 0.5, 1, 2, 4, and 8 μg/mL
of imipenem in each well and a volume of 100 μL. A suspension of
1.5 × 106 CFU/mL of A. baumannii was then prepared, and
100 μL of the suspension was added to each well using a
pipette. The suspensions were incubated for 16–20 h at 37°C
and 5% CO2. Similarly, the minimum inhibitory concentration of
ZIF-8 against A. baumannii was tested.

Disc diffusion method
After obtaining individual colonies, the concentration of A.

baumannii solution was adjusted to 0.5 MCF with physiological
saline, and the solution was applied to MH agar with a sterile cotton
swab in a flat layer. After placing a filter paper disc on the staining
medium, different contents of the imipenem, ZIF-8 and Imi@ZIF-
8 were injected into the paper. TheMH agar plates were incubated at
5% CO2, 37°C for 24 h, and the size of the inhibition circles was
observed and measured.

Live/dead backlight bacteria assay
A. baumannii was incubated with the corresponding

treatment group materials for 24 h, then centrifuged and
washed with sterile PBS 1–2 times, the precipitation was the
treated A. baumannii. The DMAO/EthD—Ⅲ mixed fluorescent
dye was prepared according to the manufacturer’s instructions,
and the bacteria were resuspended with the prepared fluorescent
dye mixture. The two mixtures were mixed and incubated at
room temperature for 15–20 min in darkness. Subsequently,
15 µL of the stained bacterial suspension was dropped onto a
sterile slide and covered with an 18 mm square sterile slide. The
survival of bacteria was observed under a laser confocal
microscope (CLSM).

Crystal violet staining
100 μL of drug culture solution was added to each well of a 96-

well cell culture plate, and 100 μL of an overnight culture of A.
baumannii was inoculated at 37°C for 24 h to allow the cells to
adhere to the wall. PBS was used to carefully wash three times to
remove planktonic bacteria, and the bacterial biofilm was fixed
with a formaldehyde solution. The samples were left to dry
naturally, and 200 μL of 1% crystal violet dye was added to

FIGURE 1
Characterization of ZIF-8 and Imi@ZIF-8. (A) TEM image of ZIF-8. (B) TEM image of Imi@ZIF-8. Scale bar is 150 nm. (C) SEM image of ZIF-8. (D) SEM
image of Imi@ZIF-8. Scale bar is 200 nm. (E) Particle sizes of Imi@ZIF-8 detected by TEM. (F)Dynamic light scattering (DLS) analyze the hydrated particle
size of ZIF-8 and Imi@ZIF-8. (G) UV-vis spectrometries of imipenem, ZIF-8 and Imi@ZIF-8. (H) Zeta Potential values of imipenem, ZIF-8 and Imi@ZIF-8.
Data are presented as means ± SD (n = 3).
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each well and left for 15 min at room temperature. The stain was
then washed off 2–3 times with PBS, left to dry, and lysed using
95% ethanol. Then, the solution was incubated in an incubator at
37°C for 25 min. The absorbance value of the lysate was measured
using an enzyme marker (570 nm) to determine the biofilm
biomass.

The percentage of biofilm eradication and inhibition was
calculated as follows:

Biofilm eradication/inhibition rate %( ) � 1 − ODexperiment

OD control
( ) × 100%.

Confocal laser scanning microscope analysis
The biofilms of A. baumannii were formed in laser-scanning

confocal Petri dishes, and the bacterial biofilms were fluorescently
stained with a live/dead bacterial fluorescent dye kit to observe the
survival of the biofilms under a CLSM.

In vitro antibacterial mechanism of Imi@
ZIF-8

Reactive oxygen species (ROS) measurement
PBS, Imipenem, ZIF-8 and Imi@ZIF-8 solutions were added to

the bacterial suspension (1 × 106 CFU), co-cultured for 24 h and
then resuspended in sterile saline. 1 μL of 2,7-
dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescent
dye was added in the dark and incubated at 37°C for 1 h. The
fluorescence value (excitation/emission wavelength 485/535 nm)
was measured with a fluorescence enzyme marker, with the
fluorescence intensity of 2,7-dichlorofluorescein (DCF) being
proportional to the level of ROS (Scott et al., 1998; Hsieh et al.,
2001).

Determination of malondialdehyde (MDA)
A. baumannii was incubated with each group of drug culture

solution for 24 h, centrifuged (12,000 rpm, 2 min), and the
supernatant was discarded and resuspended in 1 mL of 2.5% (w/
v) trichloroacetic acid. The solution was centrifuged (12,000 rpm,

20 min, 4°C) again to collect the supernatant, and 1 mL of 5%
thiobarbituric acid (TBA) solution was added for dilution. An
equal volume of 20% (w/v) TCA was added to the mixture; the
reaction was carried out in a water bath at 100°C for 30 min, and the
mixture was centrifuged (12,000 rpm, 20 min, 4°C). The final
absorbance value was measured at 532 nm, and the MDA
content (pg/mL) was calculated based on the molar extinction
coefficient (1.56 nM−1cm−1).

Construction of the mouse peritonitis model in
Acinetobacter baumannii

The 6-week-old female BALB/c mice were randomly divided
into four groups: the PBS group, imipenem group, ZIF-8 group,
and Imi@ZIF-8 group. The mice were infected with an
intraperitoneal injection of 150 μL containing 1 × 106 CFU/L
A. baumannii. After 12–24 h, inflammation, necrosis and
infiltration of inflammatory cells (neutrophils, lymphocytes
and macrophages) were observed in the liver tissue of the
mice, indicating the successful establishment of the abdominal
infection mouse model. After the successful construction of the
mouse model, the drug was administered once daily, and the
injection continued for 3 days. The dosing concentration for each
group was calculated based on the imipenem concentration,
achieving a final dose of 10 mg/kg per group. After the
seventh day of administration, whole blood was collected from
the mice, and the liver tissues were stained with hematoxylin and
eosin (HE) to observe the inflammatory infiltration and necrosis
of liver tissues. Immunohistochemical staining was performed to
detect the pro-inflammatory factors interleukin-6 (IL-6) and the
neutrophil-specific marker Ly6G.

Biocompatibility and biosafety of Imi@ZIF-8
The biocompatibility of Imi@ZIF-8 was assessed using the

CCK-8 method. MLE-12 cells (2 × 103/well) were inoculated in a
96-well plate and incubated for 24 h, washed 1–2 times with
sterile PBS solution, and ZIF-8 was prepared at a concentration
gradient of 10, 20, 40, 60, 80, 100, and 120 μg/mL (using DMEM
medium as solvent). After incubation with MLE-12 cells for
24 h, CCK-8 solution (10 µL) was added to each well for 3 h, and

FIGURE 2
Drug loading and release rate of Imi@ZIF-8. (A) EE and LE of Imi@ZIF-8. (B) Cumulative release rates of imipenem from Imi@ZIF-8 at different
pH values (6.5 and 7.4). Data are presented as means ± SD (n = 3). Intergroup comparisons: *p < 0.05.
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the absorbance value was measured at 450 nm. Healthy female
BALB/c mice at 6 weeks of age were randomly divided into four
groups and injected with PBS, Imipenem, ZIF-8 or Imi@ZIF-
8 via the tail vein. After 1 week, whole blood was collected, and
blood biochemical parameters (RBC, WBC, PLT, CRP, ALT,

AST, BUN, and CREA) were measured. Mice were executed by
cervical dislocation. The major organs (heart, liver, spleen,
lungs and kidneys) were taken for hematoxylin and eosin
(HE) staining, and the lesions were observed under the
microscope.

FIGURE 3
In vitro antibacterial effect of Imi@ZIF-8. (A) Different concentration of Imipenem and ZIF-8 inhibited on the growth of A. baumannii. (B)
Corresponding inhibition zone diameters of imipenem, ZIF-8 and Imi@ZIF-8 against A. baumannii. (C) Photographs of agar plates showing the
antibacterial activity for PBS, imipenem, ZIF-8 and Imi@ZIF-8 against A. baumannii. (D)CLSM imaging of death/live staining after A. baumannii exposure to
various treatments (PBS, imipenem, ZIF-8 and Imi@ZIF-8) for 24 h. Scale bar is 20 μm. Data are presented asmean ± SD (n = 3). Compared to ZIF-8:
***p < 0.001.
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FIGURE 4
Influence of Imi@ZIF-8 on the biofilm formation and damage of A. baumannii. (A) CV staining analysis after receiving different treatments for 24 h.
The absorbance value was detected using an enzymemarker (570 nm) to reflect biofilm formation. (B)CV staining analysis. Relative percentage of biofilm
inhibition. (C) CLSM images of A. baumannii biofilms treated with various treatments (PBS, imipenem, ZIF-8, or Imi@ZIF-8) for 24 h. Scale bar is 20 μm.
Data are indicated as mean ± SD (n = 3). Compared to the PBS group: ***p < 0.001; Compared to the imipenem group: ***p < 0.001.
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Statistical analysis

All data were expressed as mean ± standard deviation, and
statistical analysis was performed using SPSS 20.0 software.
Differences between groups were analyzed using oneway
ANOVA, followed by further analysis using Tukey’s post-test
(*p < 0.05, **p < 0.01, ***p < 0.001).

Results and discussion

Construction and characterization of the
Imi@ZIF-8 nano-drug delivery system

In this study, the new antibacterial nano drug delivery system
Imi@ZIF-8 was designed and synthesized. The particle size,
morphology and dispersion of the prepared nano-drug
delivery system were studied by TEM. The positively-charged
ZIF-8 synthesized in this experiment was spherical, with an
average particle size of about 80 nm and uniform distribution
(Figure 1A). The overall morphology of the imipenem-loaded
Imi@ZIF-8 showed no significant change, with a spherical shape
and a particle size of around 80 nm (Figures 1B, E). SEM
confirmed the TEM results, showing both ZIF-8 and Imi@ZIF-
8 with particle sizes of around 80 nm and good dispersion
(Figures 1C, D). DLS allows analysis of the hydrated particle
size of the nanoparticles, complementing the TEM results on
nanoparticle size. As shown in Figure 1F, the average hydrated
particle size of ZIF-8 and Imi@ZIF-8 was about 80 nm. Moreover,
the ζ-potential analysis of imipenem, ZIF-8, and Imi@ZIF-8 was
performed separately, as displayed in Figure 1H. The ζ-potential
of ZIF-8 after PEI modification showed a positive charge of
28.59 ± 1.39 mV, while imipenem was negatively charged
(−8.57 ± 0.59 mV). The zeta potential of Imi@ZIF-8 after
loading imipenem was 21.35 ± 1.35 mV. This lower value
indicated that ZIF-8 was successfully loaded with imipenem
and that the Imi@ZIF-8 nano-delivery system had good
stability and dispersibility. Subsequently, UV-vis spectroscopy
was performed to verify the encapsulation of imipenem in the

ZIF-8 nanoparticles. As illustrated in Figure 1G, ZIF-8 showed a
characteristic absorption peak at 216.5 nm, while imipenem had
a characteristic absorption peak at 299 nm. Imi@ZIF-8 exhibited
both characteristic absorption peaks in UV-vis, corresponding to
imipenem (299 nm) and ZIF-8 (216.5 nm), indicating that ZIF-8
was successfully loaded with imipenem. These results provide
strong evidence for the successful preparation of the Imi@ZIF-
8 nanodrug delivery system.

In vitro release study of the Imi@ZIF-8 nano
drug delivery system

ZIF-8 is an excellent nano-delivery vehicle due to its large
specific surface area and porous structure, and the ZIF-8
nanoparticles were further modified to be positively charged,
improving imipenem release. EE and LE of imipenem were
determined using a UV-vis spectrophotometer at 299 nm. As
shown in Figure 2A, the EE and LE of imipenem in the nano-
delivery system were 76.38% ± 2.05% and 33.68% ± 1.53%,
respectively. To investigate the pH response of the drug delivery
system, the release of imipenem from Imi@ZIF-8 in neutral (pH =
7.4) and acidic environments (pH = 6.5) were evaluated at different
time periods. Due to the anaerobic fermentation of bacteria at the
site of infection, large amounts of organic acids are produced,
creating an acidic microenvironment (Qiao et al., 2019). In this
experiment, pH = 6.5 was used to simulate the acidic
microenvironment of bacterial infection in vivo. The 24 h
cumulative release efficiency of imipenem was 48.58% ± 1.49% at
pH 7.4% and 59.36% ± 1.39% at pH 6.5 (Figure 2B), indicating that
the acidic microenvironment resulted in a higher imipenem release
rate. The facilitated release of imipenem from the nano-delivery
system at the site of bacterial infection leads to superior antibacterial
activity. This facilitated release is due to the protonation of the 2-
methylimidazole ligand in ZIF-8 under acidic conditions, resulting
in the breaking of the ligand bond between zinc and 2-
methylimidazole, releasing imipenem from the nano-loaded
system (Zheng et al., 2016; Soomro et al., 2019). The above
experimental results indicated that ZIF-8 is a good drug delivery

FIGURE 5
Antibacterial mechanism of Imi@ZIF-8. (A) The fluorescence intensity of A. baumanniiwas measured using a fluorometer to reflect ROS formation.
(B) MDA contents of A. baumannii treated with respective materials (PBS, imipenem, ZIF-8 or Imi@ZIF-8) for 24 h represents the extent of membrane
damage. Data are presented as mean ± SD (n = 3). Compared to the PBS group and the imipenem group: ***p < 0.001.
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vehicle, and Imi@ZIF-8 is responsive to acidic microenvironments,
providing superior antibacterial drug release at the site of bacterial
infection.

In vitro antibacterial and anti-biofilm effects
of Imi@ZIF-8

MIC is a measure of the antimicrobial performance of an
antimicrobial agent. A broth dilution method was used to
determine the MIC value of the free drugs. As shown in
Figure 3A, the MIC value of imipenem and ZIF-8 against A.
baumannii was 4 μg/mL and 256 μg/mL, respectively. Based on
the results, the fractional inhibitory concentration (FIC) index of
imipenem and ZIF-8 against A. baumannii was calculated to be less
than 0.5, which illustrates the synergistic antibacterial effect of
imipenem and ZIF-8 against A. baumannii. Furthermore, the
inhibition activity of free imipenem, ZIF-8 and Imi@ZIF-8 were
compared using the disc diffusion method, showing that Imi@ZIF-
8 had the largest inhibition circle diameter at similar levels. The
diameters of the inhibition circles of 15 μg Imi@ZIF-8, Imipenem

and ZIF-8 were 24.81 ± 0.73 mm, 21.39 ± 0.51 mm and 11.64 ±
0.63 mm, respectively (Figure 3B). Figure 3C shows the bacterial
counts of A. baumannii after 24 h treatment with PBS, ZIF-8,
imipenem, and Imi@ZIF-8. A lower number of colonies was
observed in the ZIF-8 group compared to the PBS group, but the
inhibition effect was not significant. In contrast, the bacterial growth
in the free imipenem and Imi@ZIF-8 groups was significantly
inhibited, with the Imi@ZIF-8 group showing the most obvious
effect. The above results indicate that ZIF-8 can enhance the
antibacterial ability of imipenem against A. baumannii.
Subsequently, the DMAO/EthD-III live/dead bacterial staining kit
was used to further observe the bacterial survival status of the free
drug and Imi@ZIF-8 groups. Each treatment group underwent live-
dead fluorescence staining and was observed under a CLSM. The
DMAO fluorescent dye stains dead and alive bacteria green, whereas
EthD-III only stains dead bacteria with a red fluorescent dye. The
PBS group showed basically no red fluorescence signal, indicating
that A. baumannii was alive (Figure 3D). However, the ZIF-8,
Imipenem, and Imi@ZIF-8 treated groups demonstrated an
increasing intensity of red fluorescence, indicating increasing A.
baumannii death. After 24 h of Imi@ZIF-8 treatment, nearly all A.

FIGURE 6
Anti-infection effects of Imi@ZIF-8 in vivo. After successful establishment of the mouse peritonitis model in A. baumannii, BALB/c mice were
intraperitoneal injected with PBS, imipenem, ZIF-8, or Imi@ZIF-8 (10 mg imi/kg). (A) Bacterial counting of liver tissues after treated with the respective
materials. Data are indicated as means ± SD (n = 3). (B) Representative images of liver tissues after H&E staining at 7 days after intraperitoneal injection of
different treatments. Scale bar is 100 μm. (C) Immunohistochemistry staining of Ly6G in liver tissues at 7 days after intraperitoneal injected with PBS,
imipenem, ZIF-8, or Imi@ZIF-8, respectively. (D) Immunohistochemistry staining of IL-6 in liver tissues. Scale bar is 100 μm.
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baumannii were dead. In summary, ZIF-8 and imipenem exerted
synergistic antibacterial effects against A. baumannii, with the Imi@
ZIF-8 nano-delivery system beingmore effective than free imipenem
and ZIF-8. Therefore, the nano-delivery system was effective against
A. baumannii infection.

Bacterial biofilms are associated with bacterial drug resistance, and
the ability to inhibit biofilm formation is an important indicator in
determining the clinical application of antimicrobial agents (Sharahi
et al., 2019). Crystalline violet staining (CV) is a commonly used assay
for early and mid-stage biofilm formation, with higher absorbance
values indicating higher amounts of biofilm production by bacteria. As
shown in Figure 4A, the absorbance value of the PBS group at 570 nm

after 24 h of treatment is 0.313 ± 0.0097, while the Imi@ZIF-8 group
had an absorbance value of only 0.092 ± 0.006; Figure 4B shows the
percentage of biofilm inhibition of A. baumannii by each treatment
group after 24 h of treatment. The Imi@ZIF-8 group demonstrated a
biofilm inhibition rate of about 71%, much higher than that of the
imipenem group (20.93%) and the ZIF-8 group (49.74%), indicating
that Imi@ZIF-8 exerted the strongest inhibitory effect on A. baumannii
biofilm formation. To investigate the killing ability of the Imi@ZIF-
8 nano-delivery system on A. baumannii biofilms, the “Live/Dead
Bacterial Staining Kit” was used, and the survival of the biofilms was
assessed under CLSM. The strongest red fluorescence was observed in
the Imi@ZIF-8 group, indicating a basically all-dead biofilm, showing a

FIGURE 7
The toxicity assessment of Imi@ZIF-8. (A)MLE-12 cells was treated with various concentration of ZIF-8 for 24 h; the cell viability (%) was assayed by
CCK-8. (B–J) Blood routine and blood biochemical indices of mice at 7 days after intraperitoneal injection of PBS, imipenem, ZIF-8 and Imi@ZIF-8. Data
are indicated as means ± SD (n = 3).
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significantly stronger killing effect on A. baumannii than the PBS,
imipenem and ZIF-8 groups (Figure 4C).

Antimicrobial mechanism of Imi@ZIF-8

Although small amounts of ROS are important for maintaining
the life cycle of cells, excessive ROS can lead to oxidative stress,
disrupting the integrity of bacterial cell membranes and interfering
with a range of normal physiological activities, ultimately inducing
bacterial death (Hui et al., 2020). Therefore, a DCFH-DA fluorescent
probe was used to detect intracellular ROS production in A.
baumannii. As shown in Figure 5A, the four groups, PBS,
Imipenem, ZIF-8 and Imi@ZIF-8, showed increasing ROS
production by A. baumannii, with the Imi@ZIF-8 group
inducing a significantly higher amount of ROS production than
the other treatment groups. In addition, nanomaterials may trigger
lipid oxidation reactions in bacteria, and the MDAmethod was used
to detect the lipid oxidation levels in A. baumannii to reflect the
extent of bacterial damage. A significant difference in MDA content
was observed between the different treatment groups (Figure 5B),
with the highest MDA content produced by A. baumannii after
Imi@ZIF-8 treatment. These findings suggested that Imi@ZIF-
8 induced the most severe damage to A. baumannii.

The above results indicated that the Imi@ZIF-8 nano-delivery
system effectively eliminated A. baumannii by interfering with the

normal physiological activities of bacterial cells, catalyzing the
production of ROS, inducing lipid oxidation and other
antibacterial mechanisms.

In vivo anti-infective effect of Imi@ZIF-8

To further investigate the in vivo anti-amastigotes effect of Imi@
ZIF-8, a celiac disease mouse model was constructed by infection with
A. baumannii. The mice with peritonitis were randomly divided into
the PBS group, imipenem group, ZIF-8 group and Imi@ZIF-
8 treatment groups. After 3 days of continuous tail vein
administration, the mice were removed and executed, and the liver
tissues were collected under aseptic conditions for bacterial counting.
The different treatment groups showed significantly different results.
Compared with the other treatment groups, the Imi@ZIF-8 group had
the lowest number of A. baumannii in the liver tissues, followed by the
imipenem group, the ZIF-8 group, and the PBS group (Figure 6A). The
pathological hepatic changes in mice with peritonitis were observed by
HE staining. Furthermore, the HE section results also provided good
evidence of the in vivo antibacterial effect of Imi@ZIF-8. As shown in
Figure 6B, severe inflammatory cell infiltration and congestion were
visible in the liver tissue sections of the PBS group, demonstrating a
significant inflammatory response.However, the liver tissue in the Imi@
ZIF-8 group was significantly milder than the other treatment groups,
with no significant inflammatory cell infiltration and mostly normal

FIGURE 8
Histological evaluation of heart, liver, spleen, lung, and kidney samples frommice at 7 days upon administration of (A) PBS, (B) imipenem, (C) ZIF-8
and (D) Imi@ZIF-8. Scale bar is 100 μm.
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liver morphology. Among all the treatments, Imi@ZIF-8 was the most
effective in combating A. baumannii infection. Subsequently,
immunohistochemical staining was used to detect inflammation in
the liver tissue following A. baumannii infection by determining the
expression levels of IL-6 and Ly6G, which was positive when brownish-
yellow particles were present. The immunohistochemical images
revealed that the increased expression of IL-6 and Ly6G in the
imipenem, ZIF-8 and PBS groups, in order, which were significantly
higher than those in Imi@ZIF-8 group (Figures 6C, D). These results
indicated that Imi@ZIF-8 effectively inhibited the infiltration and
inflammatory response of leukocytes and had excellent therapeutic
efficacy inmice with celiac disease caused byA. baumannii. Collectively,
the above in vivo and in vitro results demonstrated that Imi@ZIF-
8 could be an effective novel nano-delivery system against A.
baumannii.

Biocompatibility and biosafety of Imi@ZIF-8

To investigate the feasibility of ZIF-8 as a nanodrug carrier for
antimicrobial therapy, the biocompatibility and biosafety of the Imi@
ZIF-8 nanodrug delivery system were analyzed. MLE-12 cells were
treated with different concentrations (10, 20, 40, 60, 80, 100, and
120 μg/mL) of ZIF-8 for 24 h, and the cell viability of the MLE-12
cells was assayed using the CCK-8 method. The results are shown in
Figure 7A. MLE-12 cell activity decreased as the concentration of ZIF-8
was increased, but its cell survival rate remained higher than 80%,
indicating the good biocompatibility of Imi@ZIF-8. These results have
laid a foundation for clinical antibacterial treatment. To assess the in vivo
safety and toxic effects of ZIF-8 and Imi@ZIF-8, female BALA/c mice
were randomly divided into four groups and injected with PBS,
Imipenem, ZIF-8, and Imi@ZIF-8, respectively. Hematological
parameters were measured to detect the toxicity of the nanomaterials
in mice 1 week after tail vein administration, including whole blood
parameters such as white blood cells (WBC), red blood cells (RBC),
hemoglobin (HGB), and platelets (PLT), C-reactive protein (CRP), liver
function parameters alanine aminotransferase (ALT) and glutathione
aminotransferase (AST), and renal function parameters such as blood
urea nitrogen (BUN), and creatinine (CREA). As shown in Figures 7B–J,
no significant difference was observed in all hematological indicators
between the groups, indicating no significant toxic effect fromZIF-8 and
Imi@ZIF-8. In addition, the pathological changes in the major organs
(heart, liver, spleen, lung and kidney) were assessed by HE staining to
further clarify the in vivo toxicity of ZIF-8 and Imi@ZIF-8, as shown in
Figure 8, no inflammation, fibrosis, necrosis or histological abnormalities
were observed. The results suggest that ZIF-8 and Imi@ZIF-8 induce no
significant damage to the heart, liver, spleen, lungs and kidneys and that
they have good biosafety and low toxic side effects. In conclusion, the
Imi@ZIF-8 nano-delivery system has good biocompatibility and
biosafety.

Conclusion

The above experimental studies demonstrated the promising
potential of our novel antimicrobial nano-delivery system (Imi@ZIF-
8) in the treatment of A. baumannii infections, showing good

biocompatibility, high biosafety, pH acid responsiveness and efficient
antimicrobial action. Due to its response to acidic pH, the Imi@ZIF-
8 nano-delivery system features an improved release of the loaded
imipenem at the acidic bacterial infection sites. Therefore, a synergistic
antibacterial effect is achieved between the ZIF-8 and imipenem in the
nano-delivery system, further enhancing its antibacterial activity against
A. baumannii. When the loaded imipenem concentration reaches
20 µg/mL, Imi@ZIF-8 is highly effective against A. baumannii
in vitro. Moreover, Imi@ZIF-8 exerts excellent therapeutic efficacy
against A. baumannii at imipenem concentrations of 10 mg/kg and
facilitates the inhibition of inflammatory response and leukocyte
infiltration in mice with peritonitis, which promotes tissue recovery
after bacterial infection. Overall, the Imi@ZIF-8 nano-delivery system
provides a new clinical treatment strategy for the antimicrobial
treatment of A. baumannii and provides a strong foundation for
nano-antimicrobial therapy. More studies on the preventive effect of
this nanomaterial on bacterial infections can be conducted in the future.
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Unlocking cellular barriers: silica
nanoparticles and fullerenol
conjugated cell-penetrating
agents for enhanced intracellular
drug delivery
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Química, Universidad de Antioquia, Medellín, Colombia, 4Grupo de Diseño de Productos y Procesos
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The limited delivery of cargoes at the cellular level is a significant challenge for
therapeutic strategies due to the presence of numerous biological barriers. By
immobilizing the Buforin II (BUF-II) peptide and the OmpA protein on magnetite
nanoparticles, a new family of cell-penetrating nanobioconjugates was developed
in a previous study. We propose in this study to extend this strategy to silica
nanoparticles (SNPs) and silanized fullerenol (F) as nanostructured supports for
conjugating these potent cell-penetrating agents. The samemolecule conjugated
to distinct nanomaterials may interact with subcellular compartments differently.
On the obtained nanobioconjugates (OmpA-SNPs, BUF-II-PEG12-SNPs, OmpA-F,
and BUF-II-PEG12-F), physicochemical characterization was performed to
evaluate their properties and confirm the conjugation of these translocating
agents on the nanomaterials. The biocompatibility, toxicity, and internalization
capacity of nanobioconjugates in Vero cells and THP-1 cells were evaluated
in vitro. Nanobioconjugates had a high internalization capacity in these cells
without affecting their viability, according to the findings. In addition, the
nanobioconjugates exhibited negligible hemolytic activity and a low tendency
to induce platelet aggregation. In addition, the nanobioconjugates exhibited
distinct intracellular trafficking and endosomal escape behavior in these cell
lines, indicating their potential for addressing the challenges of cytoplasmic
drug delivery and the development of therapeutics for the treatment of
lysosomal storage diseases. This study presents an innovative strategy for
conjugating cell-penetrating agents using silica nanoparticles and silanized
fullerenol as nanostructured supports, which has the potential to enhance the
efficacy of cellular drug delivery.

KEYWORDS

nanobioconjugate, Buforin II, OmpA, silica nanoparticles, fullerenol, cellular uptake,
endosomal escape
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1 Introduction

One of the significant obstacles to the safe and efficient delivery
of pharmacological agents to the desired tissues or cells is the
development of carriers that can pass through different biological
barriers, such as the cellular membrane, while avoiding the immune
response, side-target effects, or degradative pathways, to ultimately
reach the target site while maintaining high availability of the
therapeutic cargo (McNeil, 2011; McNeil, 2018).

Carriers based on nanoparticles (NPs) have been evaluated due to
their multifunctionality, which results from their easily modifiable
particle shape and size, material composition, and structure,
according to the requirements of both the different cargoes and the
target sites, achieving not only high biocompatibility, bioavailability,
and biodistribution, but also on-target effects (Hossen et al., 2018;
Karabasz et al., 2020). For instance, Planque et al. (2011) reported that
membrane permeability and integrity are highly dependent on the size
and surface chemistry of the NPs. Silica nanoparticles (SNPs) are one of
the preferred nanomaterials for drug delivery due to their many
advantageous properties. This material is an excellent candidate for
drug carriers due to its high thermal stability, chemical inertness, high
hydrophilicity and biocompatibility, simple functionalization and high
loading capacity, and inexpensive synthesis (Gonçalves, 2018; Esim
et al., 2019). Recently, SNPs have been utilized for the diagnostic and
therapeutic delivery of contrast agents and drugs, biosensors, DNA
carriers, and enzyme immobilization (Kim et al., 2019). Fullerenes, on
the other hand, are an emerging class of carbon-based nanomaterials for
cellular-level cargo delivery (Bolskar, 2013). These materials exhibit a
structure with unique physicochemical properties and a highly
symmetric cage with different sizes. The C60 fullerene has the most
symmetrical structure. Fullerene-based systems have been used to
investigate the release of chemotherapeutic agents to eliminate the
side effects of drugs such as doxorubicin and paclitaxel, photosensitizers
for the activation of reactive oxygen species for the treatment of cancer
cells, nucleic acid release, drugs with anti-HIV-1 activity, transdermal
release, fullerenols with antioxidant activity, cardiovascular drugs and
release in the brain (Kazemzadeh and Mozafari, 2019).

In addition to the use of nanomaterials, known cell penetration
agents, such as the protein OmpA (López-Barbosa et al., 2019) or the
antimicrobial peptide BUF-II (Cuellar et al., 2018), are also used to
increase the membrane permeability of drugs. These agents have the
ability to translocate across biological barriers such as the cell
membrane or even the blood–brain barrier (Komin et al., 2017).
However, these molecules lack stability and have a short lifetime in
biological systems, a problem that can be resolved by immobilizing
them on nanomaterials (Alves and Olívia Pereira, 2014). Over the
past few years, we have developed a dual strategy to engineer the
surface of nanocarriers. This strategy involves functionalizing them
with cell-penetrating agents and combining their attributes to create
carriers that are more stable and have a higher loading capacity for
therapeutic agents. By doing so, we aim to enhance the release of
therapeutic agents from these carriers. The purpose of this study is to
examine the effect of changing the nanostructured support on the
translocation capacity and endosomal escape ability of cell-
penetrating agents. To accomplish this, we intend to combine
our knowledge of SNPs and fullerenol as potential
nanostructured supports for conjugating these agents. Our goal is
to determine if the resulting nanobioconjugates have the potential

for efficient cell penetration and endosomal escape, which is
essential for the success of many drug therapies.

Overall, the objective of our research is to determine the efficacy
of various nanostructured supports in enhancing the performance of
cell-penetrating agents. By investigating the translocation and
endosomal escape ability of these agents, we hope to gain
insights that will lead to the future development of more effective
drug therapies.

2 Materials and methods

2.1 Materials

Tetraethylorthosilicate (TEOS) (98%), methanol, ammonia
solution (30%–32%), tetramethylammonium hydroxide (TMAH)
(25%), (3-Aminopropyl)triethoxysilane (APTES) (98%),
glutaraldehyde (25%), amine-PEG12-propionic acid,
N-hydroxysuccinimide (NHS) (98%), N-[3-dimethylammino)-
propyl]-N′-ethyl carbodiimide hydrochloride (EDC) (98%),
dimethyl sulfoxide (DMSO), Fullerene C60, Tetra-n-
butylammonium hydroxide (TBAH) (40% in water), toluene,
hydrogen peroxide (H2O2), glacial acetic acid, 2-propanol, diethyl
ether, and hexane were purchased from Sigma-Aldrich (MO,
United States). Buforin II (BUF-II-
TRSSRAGLQFPVGRVHRLLRK) was purchased from GL
Biochem Shanghai (Shanghai, China). Vero Cells (ATCC® CCL-
81) and THP-1 Cells (ATCC® TIB-202) were used for delivery
assays. MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-
Diphenyltetrazolium Bromide), DAPI (4′,6-diamidino-2-
phenylindole, dihydrochloride), and Lysotracker Green DND-26
was purchased from Thermo Scientific (MA, United States).
Dulbecco’s modification of Eagle medium (DMEM), Roswell
Park Memorial Institute (RPMI) 1640 medium, and fetal bovine
serum (FBS) were obtained from Biowest (MO, United States).

2.2 OmpA overexpression in E. coli

OmpA protein was obtained from overexpression in Escherichia
coli, following the protocol developed by Aguilera-Segura et al.
(2014). E. coli K-12 W3110/pCA24N OmpA+34 was grown in
Luria-Bertani (LB) agar plates [yeast extract (5 g L−1), bacto
tryptone (10 g L−1), NaCl (10 g L−1)] supplemented with
chloramphenicol (50 μg mL−1), and incubated for 16 h at 37°C,
250 rpm. Fresh liquid LB medium (19.5 mL) was inoculated with
500 μL from the previous culture and incubated at 37°C, 250 rpm,
until reaching an optical density of 0.7 at 600 nm (OD600 nm).
OmpA was obtained by inducing with IPTG (isopropylthio-β-
galactoside) (2 mM) and by culturing for 3 more hours.

2.3 OmpA purification and characterization

The culture was centrifugated to obtain a pellet of OmpA
overexpressed E. coli. The pellet was resuspended in buffer lysis
in a ratio of 4 mL g-1, sonicated at 4°C for 40 min and 37%
amplitude, and centrifuged at 13,000 rpm and 4°C for 15 min.
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Since OmpA protein was cloned with a His-tag, purification was
attained by exposing the recovered supernatant to the Dynabeads®

TALON® kit (Invitrogen). Purified OmpA protein was verified by
SDS-PAGE, which showed a single 31 kDa band that agrees well
with the molecular weight of OmpA. Concentration was measured
via NanoDrop Spectrophotometer (Thermo Fisher Scientific) at
280 nm.

2.4 Synthesis and silanization of SNPs

SNPs were synthesized based on a Stober-like approach. The
method involves hydrolysis and polycondensation of TEOS in an
alcohol, water, and ammonia solution (Figure 1A) (Stober et al.,
1968; Edrissi et al., 2011). Briefly, Ultrapure (type I) water (ultrapure
water with a resistivity> 18 MΩ-cm and
conductivity <0.056 μS cm−1) (1.5 mL) and methanol (66.3 mL)
were mixed. TEOS (0.9 mL) was then added and sonicated for
20 min using an ultrasonic bath (Elmasonic EASY 60H, 37 kHz,
150 W), then 30% ammonia in an aqueous solution (4.5 mL) was
added, and the mixture was left in ultrasound for another 60 min in
which a cloudy white suspension formed. The SNPs were
centrifuged (Z-216, Hermle Labortechnik GmbH, German) and
washed with Ultrapure (type I) water (3 × 20 min, 14,500 rpm).
Silanized SNPs were synthesized using a ratio of TEOS 95% and
APTES 5% (Figure 1B) (Shafqat et al., 2019). Silanization with

APTES renders aminopropyl functionalities on the surface of the
NPs, which can be used to conjugate further BUF-II and OmpA or
crosslinkers to generate reactive groups for coupling them. The
silanized SNPs were centrifuged (Z-216, Hermle Labortechnik
GmbH, German) (4 × 20 min, 14,500 rpm) and washed with
Ultrapure (type I) water. BUF-II and OmpA were conjugated
according to the calculations presented in Supplementary Data
S1 (Rangel-Muñoz et al., 2020).

2.5 Synthesis and silanization of fullerenol

Fullerenol was prepared from fullerene C60 by hydroxylation
with H2O2 and TBAH as a phase transfer catalyst under organic-
aqueous bilayer conditions (Kokubo et al., 2011). Briefly, to a
solution of fullerene C60 (100 mg) in toluene (50 mL), an
aqueous solution of 30% H2O2 (10 mL) and TBAH (40% in
water, 500 µL) was added and stirred for 16 h at 60°C.
Subsequently, to eliminate residual TBAH, the aqueous phase
containing the fullerenol was separated, and fullerenol was
precipitated with a mix of 2-propanol, diethyl ether, and hexane
(7:5:5, 85 mL). Then, to complete the purification, we combined
dialysis (cellulose membrane dialysis tubing) and freeze-drying
(Conversion: 100%, yield after purification: 75%) (De Santiago
et al., 2019). Next, fullerenol (50 mg) was dissolved in 15 mL of
Ultrapure (type I) water. TMAH solution (500 μl, 25% (v/v)) and

FIGURE 1
Schematic of the synthesis and silanization of SNPs (A) Synthesis of SNPs by TEOS hydrolysis in alcohol, water, and ammonia solution (B) Silanization
of SNPs by TEOS hydrolysis in alcohol, water, and ammonia solution with the addition of APTES (Masalov et al., 2011; Shafqat et al., 2019).
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glacial acetic acid (25 μL) were then added to the solution and
sonicated for 10 min. APTES solution (500 μl, 20% (v/v)) was added
to the fullerenol solution for silanization. The silanized fullerenol
was washed with Ultrapure (type I) water to remove the APTES that
was not covalently attached to the fullerenol.

2.6 BUF-II and OmpA bioconjugation

Briefly, 100 mg of silanized SNPs or fullerenol were suspended
in 30 mL of Ultrapure (type I) water and sonicated for 10 min
(Elmasonic EASY 60H, 37 kHz, 150 W). This was followed by
adding 2 mL of glutaraldehyde 2% (v/v) and by letting the
mixture left to react in an orbital shaker for 1 h at 220 rpm. The
amine-PEG12-propionic acid spacer was utilized to impart flexibility
to BUF-II conjugated to SNPs or fullerenol, thereby increasing the
probability of interaction with the target sites. After adding 10 mg of
amine-PEG12-propionic acid, the mixture was shaken for 24 h at
220 rpm. Finally, 100 mg of functionalized nanomaterial was
resuspended in 30 mL of type I Ultrapure water. BUF-II was
conjugated to the carboxyl groups of the spacer by its N-terminal
using two equivalents of EDC and two equivalents of NHS
(concerning the carboxyl groups) (Figure 2; Supplementary
Figure S1). BUF-II (1 mg BUF-II per 100 mg of functionalized
nanomaterial) was added and the mixture was shaken at 220 rpm
for 24 h. The obtained nanobioconjugates were centrifuged (Z-216,
Hermle Labortechnik GmbH, German) (4 × 20 min, 14,500 rpm)

and washed with Ultrapure (type I) water (Cuellar et al., 2018; Perez
et al., 2019; Ramírez-Acosta et al., 2020).

Crosslinking of amine-terminal groups in the protein with
aminopropyl groups on the surface of silanized SNPs or
fullerenol facilitated by the addition of glutaraldehyde as the
crosslinking agent enabled immobilization of OmpA on SNPs or
fullerenol (Figure 3; Supplementary Figure S2) (López-Barbosa et al.,
2019; Rangel-Muñoz et al., 2020). Briefly, 100 mg of silanized SNPs
or fullerenol were suspended in 30 mL of ultrapure (type I) water
and sonicated for 10 min (Elmasonic EASY 60H, 37 kHz, 150 W).
This was followed by adding 2 mL of glutaraldehyde 2% (v/v) and by
letting the mixture left to react in an orbital shaker for 1 h at
220 rpm. Then, OmpA (30 mg OmpA/100 mg functionalized
nanomaterial) was added and shaken for 24 h at 220 rpm. The
obtained nanobioconjugates were centrifuged (Z-216, Hermle
Labortechnik GmbH, German) (4 × 20 min, 14,500 rpm) and
washed with ultrapure (type I) water.

2.7 Labeling of nanobioconjugates with
rhodamine B

For confocal microscopy evaluation of cellular uptake and
endosomal escape, the nanobioconjugates were labeled with the
fluorescent probe rhodamine B. This was accomplished through the
formation of amide bonds between the carboxylate group of
rhodamine B and the free amine groups of nanobioconjugates.

FIGURE 2
Synthesis of SNPs-PEG12-BUF-II nanobioconjugates via amulti-step reaction involving glutaraldehyde, amine-PEG12-propionic acid, and EDC/NHS
to form an amide bond between a carboxylate and N-terminal of the peptide BUF-II.
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Briefly, under dark conditions, 15 mg of EDC, 7.5 mg of NHS, and
1 mL of DMF were added to 5 mL of type I ultrapure water.
Subsequently, 2 mg of rhodamine B was added, and the solution
was heated to 40°C for 15 min with continuous magnetic stirring.
This enables the activation of the carboxylate groups of rhodamine B
to form amide bonds with the free amine groups of
nanobioconjugates. The mixture was then allowed to cool to
room temperature before being combined with 50 mg of
nanobioconjugates. To prevent photobleaching, it was stirred for
24 h at 220 rpm using a shaker at room temperature and in complete
darkness. The labeled nanobioconjugates were centrifuged (Z-216,
Hermle Labortechnik GmbH, German) (20 min, 14,500 rpm) and
washed several times with ultrapure (type I) water until no
rhodamine B was detected in the supernatant (López-Barbosa
et al., 2019).

2.8 Characterization of the
nanobioconjugates

Infrared spectra were collected from 4,000–500 cm−1 with a
spectral resolution of 2 cm−1 using a spectrometer ALPHA II
FTIR Eco-ATR (Bruker Optik GmbH, Ettlingen, Germany) and
an IRAffinity-1 spectrometer (Shimadzu Corporation). The
hydrodynamic diameter and ζ potential of the
nanobioconjugates were determined via Dynamic Light
Scattering (DLS) and Electrophoretic Moobility (Zeta-Sizer
Nano-ZS; Malvern Instruments, Malvern, UK).
Thermogravimetric analysis (TGA, TA Instruments, New
Castle, DE, United States) was used to estimate the amount of
material conjugated to the SNPs and the fullerenol,
implementing a linear temperature ramp at a rate of
10°C min−1 from 25°C to 890°C under an inert atmosphere.
Focused Ion Beam Scanning Electron Microscope (TESCAN

LYRA3 FIB-SEM, Czech Republic) and Transmission Electron
Microscope (TEM, FEI TECNAI G2 F20 Super Twin TMP,
Hillsboro, OR, United States) were used to obtain information
on the size, composition, and morphology of the nanomaterials.
XPS spectra were obtained using a SPECS near-ambient pressure
X-ray photoelectron spectrometer (NAP-XPS) with a PHOIBOS
150 1D-DLD analyzer, using a monochromatic source of Al-Kα
(1,486.7 eV, 13 kV, 100 W) (SPECS GmbH, Berlin, Germany).
The X-ray source and monochromator were aligned to get a
0.49 eV peak-resolution under a vacuum pressure of the chamber
below 10−9 m bar. The samples were previously mounted on a
non-conductive tape. The control of surface potential was
achieved by an electron flood gun at 3 kV over a tantalum
mesh with a nominal aperture of 0.43 mm. The spot size was
200 nm of diameter, the energy pass was fixed at 20 eV and the
scan number for the high-resolution measurements was 20. The
signals were calibrated to a binding energy of 284.6 eV for
adventitious carbon and a Ta4f7/2 peak from the tantalum
mesh was employed as reference. XPSPeak software was used
for fitting the XPS spectra using a Shirley-type single-peaks
background with a simultaneous GL peak-shape of 30% and
full-width at half maximum (FWHM) data from literature.

Delivery of nanobioconjugates in mammalian cells was
monitored using a confocal laser scanning microscope (Fluoview
FV1000, Olympus, Tokyo, Japan). The images were obtained with a
UPLSAPO 20x/0.75 NA objective and a PlanApo ×60/1.35 NA
objective. Excitation/Emission wavelengths of 405/422, 488/520, and
559 nm/575 nm were used to detect DAPI (nuclei), LysoTracker
green (acidic organelles: endosomes/lysosomes), and rhodamine B
(nanobioconjugates), respectively. Colocalization within biologically
relevant regions of interest (ROIs) was analyzed using the plugin
Coloc 2 of the Fiji® software (https://imagej.net/Fiji/Downloads). At
least 30 images were taken for each treatment (about 10 cells per
image were analyzed).

FIGURE 3
Synthesis of SNPs-OmpA nanobioconjugates using glutaraldehyde as the crosslinking agent.
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2.9 In vitro analysis of the
nanobioconjugates’ hemolytic effect

Hemolysis is the rapid destruction of erythrocyte membranes,
which results in the release of intra-erythrocyte contents into the
blood plasma. The hemolytic activity of the nanobioconjugates was
determined using the method described by previously Muñoz-
Camargo et al. (2018). Briefly, blood from healthy donors was
collected in BD Vacutainer® blood tubes using EDTA as an
anticoagulant. The samples were obtained with the approval of
the Ethical Committee at the Universidad de los Andes (minute
number 928-2018). Blood was centrifuged at 1,800 rpm for 5 min
(Micro Centrifuge Z 360, Hermle Laboratories GmbH) to collect red
blood cells, and the hematocrit level (lower layer, red) and plasma
(upper layer, yellow) were marked. The plasma was then removed,
and the tube was refilled to the mark with 150 mM NaCl, inverting
the tube gently to mix, and centrifuged again. Subsequently, the
supernatant was removed and replaced with PBS (Phosphate
Buffered Saline) (1X). A red blood cells stock was prepared by
adding 1 mL of isolated red blood cells (4.3 × 106 red blood cells
μL−1) in 9 mL of PBS (1X). Serial dilutions of nanobioconjugates
(300, 150, 75, 37.5, and 18.75 μg mL−1 in PBS) were prepared for the
test in a 96-well microplate. 100 μL of each treatment and 100 µL of
the diluted red blood cells were incubated for 1 h at 37°C and 5%
CO2. Finally, the microplate was centrifuged at 1,800 rpm for 5 min,
and 100 µL of each supernatant was measured (oxyhemoglobin,
450 nm) in amicroplate reader spectrophotometer (Multiskan™ FC,
Thermo Fisher Scientific Inc., United States). PBS (1X) and Triton
X-100 (1%) were used as negative and positive controls, respectively.

2.10 In vitro assessment of
nanobioconjugates’ blood coagulation
effect

The effect of the nanobioconjugates on platelet aggregation was
tested using platelet-rich plasma (PRP). Blood was obtained from
healthy donors in BD Vacutainer® tubes, anticoagulated with
sodium citrate. PRP was obtained by centrifugation of a human
blood sample at 1,000 rpm for 15 min (Micro Centrifuge Z 360,
Hermle Labortechnik GmbH), and the PRP was collected and
transferred to a fresh tube. Serial dilutions of nanobioconjugates
(300, 150, 75, 37.5, and 18.75 μg mL−1 in PBS) were prepared for the
test in a 96-well microplate. Subsequently, 100 µL of each treatment
and 100 µL of PRP were incubated for 15 min at 37°C and 5% CO2.
Thrombin (6U) was used as a positive control, while PBS (1X) was a
negative reference. Finally, the aggregation was measured by optical
density (OD) at 620 nm in a microplate reader spectrophotometer
(Multiskan™ FC, Thermo Fisher Scientific Inc., United States)
(Lopez-Barbosa et al., 2020).

2.11 MTT cytotoxicity test

The MTT (3-[4,5-dimethylthiazol-2-yl]-2.5 diphenyl
tetrazolium bromide) assay is based on the metabolic reduction
of MTT into formazan crystals by viable cells (Meerloo et al., 2011).
Briefly, Vero cells (ATCC® CCL-81) and THP1 cells (ATCC® TIB-

202) were plated in 96-well culture plates in DMEM (1.0 × 106 cells
100 μL−1 per well) and incubated at 37°C and 5% CO2 for 24 h.
Culture media was removed from wells, and DMEM 1% penicillin/
streptomycin (90 μL) (without FBS) was added to each well.
Subsequently, 100 µL of each treatment (300, 150, 75, 37.5, and
18.75 μg mL−1 in PBS) were added and incubated at 37°C, 5% CO2

for 24 h, and 48 h. The medium was removed, and DMSO (500 μL)
was used to dilute formazan crystals. Absorbance was read at
595 nm (reference 650 nm) in a microplate reader
spectrophotometer (Multiskan™ FC, Thermo Fisher Scientific
Inc., United States) and compared to the controls (Lopez-Barbosa
et al., 2020).

2.12 Cell translocation and endosome
escape

Vero Cells were seeded in a sterile glass slide previously placed in
a 6-well microplate and incubated in DMEMmedium supplemented
with 10% (v/v) FBS at 37°C and 5% CO2 for 24 h. Next, cells were
exposed to fluorescently labeled nanobioconjugates (18.75 μg mL-1),
and the samples were incubated for 30 min and 4 h at 37°C and 5%
CO2. Supplemented culture medium was removed, and then, the
cells were washed three times with DMEMmedium and exposed for
10 min to DAPI (1 µL, 1:1,000) used to stain nuclei, and Lysotracker
Green DND-26 (0.1 µL, 1:10,000) that labels acidic organelles
(lysosomes/endosomes) before capturing confocal images (López-
Barbosa et al., 2019). THP-1 Cells exposed to fluorescently labeled
nanoconjugates (18.75 μg mL-1) were incubated for 30 min and 4 h
at 37°C and 5% CO2. Then, the samples were exposed for 10 min to
DAPI (1 µL, 1:1,000) and Lysotracker Green DND-26 (0.1 µL, 1:
10,000) before capturing confocal images (López-Barbosa et al.,
2019).

2.13 Statistical analysis

Values (Hemolysis, platelet aggregation, cell viability) are
expressed as the means ± SDs of triplicates. Significance tests
were analyzed by nonparametric—the normality of data
distributions was assessed using the Shapiro–Wilk test—one-way
ANOVA (Kruskal–Wallis test) and Dunn’s multiple comparison
test, using the GraphPad Prism 8.0.1® software (GraphPad Software,
La Jolla, CA, United States). p values <0.05 were considered
statistically significant.

3 Results and discussion

3.1 Physicochemical characterization of
SNPs and nanobioconjugates based on SNPs

Figure 4A shows a schematic of the chemical structure of
silanized SNPs and BUF-II-PEG12-SNPs, and OmpA-SNPs
nanobioconjugates. Figure 4B compares the FT-IR spectra of bare
SNPs, silanized SNPs, free OmpA, free BUF-II, and
nanobioconjugates. The bare SNPs exhibit distinctive absorptions
at around 1,100 cm−1 (Si-O st as, asymmetrical stretching), 970 cm−1
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FIGURE 4
Spectroscopic and thermal analyses of silanized SNPs and the nanobioconjugates (A) Schematic of the chemical structure of silanized SNPs and the
nanobioconjugates (B) FT-IR spectra of (1) bare SNPs, (2) silanized SNPs, (3) BUF-II-PEG12-SNPs nanobioconjugates, (4) free BUF-II, (5)OmpA-SNPs, and
(6) free OmpA (C)DLS histogram for the size intensity distribution (D) TGA thermogram of SNPs, silanized SNPs, and nanobioconjugates (E) SEM and TEM
images of the silanized SNPs, and nanobioconjugates.
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(Si-OH st as), and 801 cm−1 (Si-O st sy, symmetrical) (Pretsch et al.,
2009; Edrissi et al., 2011). New bands were observed at 2,925 cm−1

(C-H st as), 2,852 cm−1 (C-H st sy), and 1,639 cm−1 (N-H b, bending
vibration), evidencing the presence of propylamine groups on the
surface of the silanized SNPs (Shafqat et al., 2019). On the free
OmpA, OmpA-SNPs, free BUF-II, and BUF-II-PEG12-SNPs
spectra, the presence of amide vibrational modes known as
amide I (1,700–1,600 cm−1) and amide II (1,570–1,540 cm−1) and
other vibrations specific that are absent on bare SNPs suggests
correct conjugation of protein or peptide (Pretsch et al., 2009;
Tatulian, 2013; López-Barbosa et al., 2019). The amide I mode is
generated mostly by contributions of the C=O st, CN st, CCN ob
(out-of-plane bending), and by the NH ib (in-plane bending) modes
(Tatulian, 2013). The amide II mode includes contributions of the
NH ib, CN st, CO ib, CC st, and NC st (Tatulian, 2013). Other
vibrational modes of the amide group of protein or peptide and
crosslinking agents overlap with the vibrational modes of SNPs.
Figure 4C shows particle size distribution by intensity determined by
DLS. Bare SNPs exhibited a mean hydrodynamic diameter
(Z-average size) of 41 nm with a Polydispersity Index (PdI) of
0.1. A ratio of 95% of TEOS and 5% of APTES produced two
populations of silanized SNPs with mean hydrodynamic diameters
around 40 and 220 nm (Z-average size: 176 nm, PdI: 0.2). Regarding
this, Li et al. (2019) demonstrated that the total uptake of SNPs in
Hela cells was higher in co-exposures of large and small SNPs— 50/
100 and 80 nm/150 nm—than in single exposures of the same. It can
also be observed that the Z-average size of the SNPs increased after
peptide and protein conjugation for BUF-II-PEG12-SNPs
(Z-average size: 212 nm, PdI: 0.05) and OmpA-SNPs (Z-average
size: 230 nm, PdI: 0.05). There is no consensus regarding the optimal
size that maximizes cellular uptake and maintains cell viability. A
number of experimental studies indicate that particle size reduction
does not necessarily increase cellular uptake (Barisik et al., 2014).
However, nanocarriers based on NPs in the size range of 10–200 nm
are frequently used to facilitate the delivery of cargoes at the cellular
level. These nanocarriers are not easily excreted by any of the
physiological systems designed for this purpose and therefore
reach target organs and tissues in sufficient concentrations (Selby
et al., 2017; Chenthamara et al., 2019). Thermogravimetric analysis
(TGA) was used to estimate the amount of material conjugated to
the SNPs (Figure 4D). The bare SNPs exhibited excellent thermal
stability, losing only about 1.1% of their weight when heated from
room temperature to 890°C. In contrast, weight loss was observed for
silanized SNPs and nanobioconjugates in three temperature ranges
(silanized SNPs: room temperature to 140°C, 140°C–450°C,
and >450°C; nanobioconjugates: room temperature to 140°C,
140°C–340°C, and >340°C). Silanized SNPs, BUF-II-PEG12-SNPs,
and OmpA-SNPs showed a first weight loss of 8.5%, 8.8%, and 6.2%,
respectively, that can be attributed to water loss. A second weight
loss of 5.6% was observed for the silanized SNPs and OmpA-SNPs,
whereas for BUF-II-PEG12-SNPs, it was 8.3%. These losses can be
assigned to the presence of non-hydrolyzed ethoxy groups of APTES
and residual alcohol within the silica nanostructure (Kunc et al.,
2019). Finally, the weight loss at the highest temperatures can be
assigned to the loss of aminopropyl groups (7.2%) for the silanized
SNPs, and the detachment of BUF-II, OmpA, and crosslinking
agents in the case of the BUF-II-PEG12-SNPs (11.0%) and
OmpA-SNPs (11.6%) nanobioconjugates (López-Barbosa et al.,

2019; Perez et al., 2019). SEM and TEM images were consistent
with the data obtained by DLS regarding the size and the presence of
two size populations of particles. In addition, it can be observed that
the nanoparticles have a predominantly spherical morphology.
Apparently, after conjugation, the roughness of the nanoparticles
changes; this could also affect their interaction with cells and their
loading capacity (Niu et al., 2015; Alan et al., 2020) (Figure 4E).
Additionally, ζ potential is indicative of the stability of the
suspension; if all the particles in suspension have ζ potentials
above +25 mV or below −25 mV, they repel each other, and
therefore show no tendency for aggregation, coagulation, or
flocculation (Shnoudeh et al., 2019). The ζ potential
measurements of the SNPs indicate that in aqueous
media—pH close to 7— it acquires a negative surface charge
of −37.6 ± 4.91 mV; this value indicates good SNPs stability in
water. The ζ-potential reached values of 4.41 ± 3.27 mV, 7.34 ±
3.36 mV, and 18.1 ± 5.13 mV for the silanized SNPs, and BUF-II-
PEG12-SNPs, and OmpA-SNPs nanobioconjugates (in aqueous
media—pH close to 7), respectively. At physiological pH, these
nanobioconjugates tend to precipitate.

The chemical surface characterization of the nanobioconjugates
was evaluated by XPS. The detailed experimental set-up carried out
for the samples is shown in Section 2.8. Here, SNPs and fullerenol
nanocarriers were considered. Figure 5 shows the high-resolution
(HR) spectra for the SNPs and the corresponding
nanobioconjugates under examination. The peak components
from the decomposition analysis are denoted from high to low
binding energy, and colored zones clearly distinguish them. The
binding energy (BE) values for all components that are part of the
overall fitting, marked as a red line over black dots related to the
experimental recorded data, are shown in Table 1. Starting at the C1s
core-level, four mean sub-peaks for functionalizing samples were
fitted, which correspond to O-C-O/C=O (red); C-O/C-N (blue);
C-C (green) and C-Si (magenta) bonds. For the silanized SNPs, there
were no highly oxidized species, which clearly indicate the successful
conjugation of OmpA and BUF-II on the NPs’ surface. Since these
biomolecules and their intermediate states are too complex due to
their chemistry and molecular weight (MW), it is not possible to
establish a stoichiometric ratio between the species; nevertheless, the
counts (Y-axis) for each core-level were normalized prior to their
placement on the plots. Conversely, a qualitative analysis can be
done. As a result, it is possible to determine that the oxidizing species
for C1s core-level in the OmpA-SNPs system are greater than those
in the BUF-II-PEG12-SNPs nanobioconjugates. In contrast, the
BUF-II-PEG12-SNPs exhibited a high (C-N/C-O)/C-C ratio due
to their low molecular weight and high C-N/C-O terminal bonds.
Consistent C-Si bonds were found in the studied systems, allowing
us to conclude that the SNPs were properly silanized and that the
biomolecules are bound to the inorganic nanoparticles via C-Si-O
covalent bonds. The O1s core-level was deconvoluted into four
mean sub-peak components associated with chemisorbed OH-
molecules: O-C-O/Si-O, C-O, and O=C species. Slight shifts in
binding energies and high similitudes of the integral intensity of
every peak as calculated from the area under the curve were
observed. Moreover, if we compare the overall peak intensity
with that of C1s for each compound, the corresponding ratio for
the nanobioconjugates is lower than for the SNPs. This is most likely
due to the lower concentration of C/O species on the surface of
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SNPs, where only the APTES chain is present. As peptide and
protein are conjugated, the proportion of atomic C species increases
dramatically, as does the C/O ratio. Now passing through the N1s
core-level, three mean sub-peak components for nanobioconjugates
were fitted. In the case of silanized SNPs, a weak signal of nitrogen
from the conjugated APTES can be assigned to a primary amine

(Talavera-Pech et al., 2016). For the nanobioconjugates, protonated
amines seem to be located at higher binding energies, followed by O-
C-N and N=N-/N-H- bonds. The Si2p sub-peaks components
corresponding to SiOx (red), Si-O- (blue), Si-O-C- (green) and
Si-C- (magenta) bonds are shown from left to right for bare SNPs
and nanobioconjugates (Talavera-Pech et al., 2016). Slight peak

FIGURE 5
XPS spectra of the C1s, O1s, N1s, and Si2p (left to right) core-level regions of silanized SNPs, BUF-II-PEG12-SNPs nanobioconjugates, and OmpA-
SNPs nanobioconjugates samples (bottom to top). Peak components for the XPS lines are differentiated by colors from high to low binding energy values
(left to right).

TABLE 1 Binding energy (BE) of the different XPS lines for C1s, O1s, N1s, and S2p peak components from silanized SNPs, BUF-II-PEG12-SNPs nanobioconjugates,
and OmpA-SNPs nanobioconjugates samples.

Sample C1s (BE- eV) O1s (BE- eV) N1s (BE- eV) Si2p (BE- eV)

Silanized SNPs 283.4 530.3 400.8 102.0

284.6 531.7 — 103.2

285.5 532.7 — 104.1

286.5 533.6 — 104.9

BUF-II-PEG12-SNPs 283.3 530.5 397.2 101.8

284.6 531.6 400.1 102.8

285.5 532.5 402.5 103.7

286.8 533.3 — 104.6

SNPs-OmpA 283.8 530.5 396.9 102.3

284.6 531.7 399.8 103.2

285.4 532.6 401.9 104.0

286.1 533.,3 — 104.7
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FIGURE 6
Spectroscopic and thermal analyses of fullerenol and the nanobioconjugates (A)UV–VIS spectra of C60 in toluene and aqueous solution of fullerenol
(B) Schematic of the chemical structure of fullerenol and the nanobioconjugates (C) FT-IR spectra of (1) fullerene, (2) fullerenol as produced (with TBAH
residues), (3) purified fullerenol, and (4) silanized fullerenol (D) FT-IR spectra of (1) BUF-II-PEG12-F nanobioconjugates, (2) free fullerenol, silanized
fullerenol, and nanobioconjugates (E) TGA thermogram of fullerenol, silanized fullerenol, and nanobioconjugates (F) DLS histogram for the size
intensity distribution (G) TEM images of the fullerenol, and nanobioconjugates.
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shifts and intensity changes can be attributed to conjugation of
OmpA and BUF-II and are likely related to conformational changes
upon conjugation.

3.2 Physicochemical characterization of
fullerenol and fullerenol-based
nanobioconjugates

Figure 6A shows a schematic of the chemical structure of
silanized fullerenol, OmpA-F, and BUF-II-PEG12-F
nanobioconjugates. Figure 6B shows UV–visible absorption
spectra of fullerene C60 in toluene and fullerenol in water. C60

fullerene dissolved in toluene has characteristic absorption bands
with maxima at 283, 335, and 408 nm, followed by a broad
absorption band in the range of 430–650 nm with reduced
absorptions for the blue region and red; this combination gives
the compound its distinctive purple color (Ajie et al., 1990).
Fullerenol dissolved in water is yellow and almost transparent in
the visible region due to its considerable perturbation of the π-
conjugation upon hydroxylation (Kokubo et al., 2008). Figure 6C
compares the FT-IR spectra of (1) fullerene, (2) fullerenol as
synthesized (with TBAH residues), (3) purified fullerenol, and (4)
silanized fullerenol. Fullerene C60 has four active infrared modes at
1,429, 1,182, 573, and 525 cm−1 due to C-C bonds (Krätschmer et al.,
1990). In the as-synthesized fullerenol, the two peaks observed at
2,963 and 2,873 cm–1 (C-H st) were attributed to residual TBAH
(Kokubo et al., 2011). Purified fullerenol showed a broad band at
around 3,424 cm–1(O-H st) and four characteristic bands at
1,598 cm–1 (C=C st), 1,410 cm–1 (O-H b), 1,352 cm–1 (C-O-H b),
and 1,112 cm–1 (C-O st), which agree well with previously reported
data (Kokubo et al., 2011; Ravelo-Nieto et al., 2020). Silanization was
confirmed by the presence of new bands at 2,964 cm–1 (C-H st as),
2,934 cm–1 (C-H st sy), 2,875 cm–1 (H-C (-N) st), 1,564 cm–1 (N-H
b), and 1,344 cm–1 (C-N st), which can be attributed to propylamine
groups. Moreover, absorption bands at 1,653 cm–1 (N-H b),
1,110 cm–1 (Si-O st), 1,052 cm–1 (Si-O-Si st), and 690 cm–1 (Si-C
st) overlap with the vibrational modes of fullerenol (Cuellar et al.,
2018). Figure 6D compares the FT-IR spectra of (1) OmpA-F, (2)
free OmpA, (3) BUF-II-PEG12-F, and (4) free BUF-II (Shafqat et al.,
2019). The free OmpA, OmpA-F, free BUF-II, and BUF-II-PEG12-F
spectra showed the amide I and amide II vibrational modes along
with other specific vibrations that are absent in the non-
functionalized fullerenol. However, these signals overlap with the
vibrational modes of fullerenol. Thermal stability of fullerenol and
nanobioconjugates was studied by TGA (Figure 6E). TGA results of
purified fullerenol show three main a weight loss stages: room
temperature to 100°C, 100°C–570°C, and >570°C. The initial
weight loss (~8.1%) corresponds to dehydration of the samples
(Kokubo et al., 2011). The second weight loss (~54.0%) corresponds
to the dehydroxylation before the structural degradation of the
fullerene nucleus that occurs at temperatures above 570°C
(~37.9% residual weight) (Goswami et al., 2004). Then, using the
method described by Goswami et al.( 2004), the number of −OH
groups per fullerene could be estimated at 30, which is similar to
results reported by others previously (Kokubo et al., 2011; Kovač
et al., 2018; De Santiago et al., 2019). Four main weight loss steps are
observed in silanized fullerenol, and BUF-II-PEG12-F, OmpA-F

nanobioconjugates: room temperature to 120°C, 120°C–340°C,
340°C–570°C and >570°C. Silanized fullerenol, BUF-II-PEG12-F,
and OmpA-F presented a first weight loss of ~12.1%, ~11.5%,
and ~12.1%, respectively. These can be attributed to the
dehydration of the samples. The second weight loss of ~34% was
observed for the silanized fullerenol, whereas for BUF-II-PEG12-F
and OmpA-F were ~21% and ~22%, respectively. Silanized
fullerenol, BUF-II-PEG12-F, and OmpA-F presented a third
weight loss of ~15.4%, ~14.1%, and ~15.0%, respectively. These
losses in the temperature range of 150°C–570°C can be assigned to
the decomposition of aminopropyl groups for the silanized
fullerenol and the detachment of the aminopropyl groups,
conjugating agents and the BUF-II and OmpA for the
nanobioconjugates (Goswami et al., 2004; Cuellar et al., 2018;
Perez et al., 2019). Figure 6F shows the particle size distribution
by intensity determined by DLS. The fullerenols should have a
diameter of ~1.0 nm but tend to form clusters in water easily (Brant
et al., 2007; Kokubo et al., 2011). The synthesized fullerenol, re-
dispersed by sonication, exhibited two populations of clusters with
mean hydrodynamic diameters at around 2 nm and 14 nm
(Z-average size: 8 nm, PdI: 0.2). After peptide and protein
conjugation, the polydispersity of the samples increased and
rendered them unsuitable for DLS measurements; consequently,
we performed TEM analysis. (Figure 6G). Fullerenol TEM images
were consistent with DLS data regarding cluster size and the
presence of two cluster population sizes. Furthermore, a change
in the morphology of the nanobioconjugates is evidenced after
peptide and protein immobilization, as well as aggregate
formation. The aggregation may be attributable to the use of
glutaraldehyde, a bifunctional reagent with a propensity for
uncontrolled polymerization during the conjugation process
(Hermanson, 2013). The ζ potential measurements of the
fullerenol indicate that in aqueous media—pH close to 7— it
acquires a negative surface charge of −20.4 ± 7.47 mV. The ζ-
potential varied to −12.9 ± 0.40 mV and −19.9 ± 0.65 mV for
BUF-II-PEG12-F and OmpA-F nanobioconjugates in aqueous
media—pH close to 7 —, respectively. These nanobioconjugates
tend to precipitate at physiological pH.

Figure 7 shows the high-resolution (HR) spectra of fullerenol
and the corresponding nanobioconjugates under examination. The
decomposed peak components are labeled from high to low binding
energy and depicted by colored zones. The color code employed is
similar to that utilized for SNPs. Table 2 presents the binding energy
(BE) values for all components integrated in the overall fitting,
represented as a red line over black dots related to the experimental
recorded data. Starting with the C1s core-level, the deconvolution
revealed a sub-peak at higher energies and the presence of the C-C
cage at 284.6 eV (Nurzynska et al., 2022). Following silanization and
conjugation of BUF-II or OmpA, the peak at the lowest energy
became weak or null. This may be due to the photoelectrons’
inability to escape the outermost surface layer. In contrast, the
pristine fullerenol sample exhibited an energy shift, most likely
due to the presence of highly oxidized species associated with the
hydroxyl binding onto conjugated pi bonding systems. A modified
fullerenol energy sub-peak was identified at 289 eV, which can be
also attributed to highly oxidized bonds such as O-C-OO (marine
blue) (Nurzynska et al., 2022). The presence of these bonds may
result from the chemisorption of oxygen molecules onto C-O-
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FIGURE 7
XPS spectra of the C1s, O1s, N1s and Si2p (left to right) core-level regions of Fullerenol, Silanized fullerenol (F), BUF-II-F and OmpA-F
nanobioconjugates samples (bottom to top). Peak components for the XPS lines are differentiated by colors from high to low binding energy values (left
to right).

TABLE 2 Binding energy (BE) of the different XPS lines for C1s, O1s, N1s and S2p peak components from Fullerenol w/o silanization, F, BUF-II-F and OmpA-F
nanobioconjugates samples.

Sample C1s (BE- eV) O1s (BE- eV) N1s (BE- eV) Si2p (BE- eV)

Fullerenol w/o silanization 283.3 529.8 — —

284.6 531.1 — —

285.9 532.2 — —

287.5 533.2 — —

Silanized fullerenol (F) 282.9 530.7 397.3 101.6

284.6 531.7 400.0 102.6

287.1 532.8 402.3 103.4

289.6 533.9 — 104.3

BUF-II-F 282.6 531.0 397.6 102.0

284.6 532.2 400.1 102.9

285.8 533.1 402.5 103.6

287.5 534.1 — 104.5

289.8 — — —

OmpA-F 284.6 531.1 396.7 101.3

285.7 532.3 400.0 102.2

287.3 533.2 402.2 103.1

289.5 534.,2 — 104.1
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radicals arising from the cleavage of C=C bonds and/or from C-O-
bonds present in the activated hydroxyls before silanization.
Crucially, BUF-II-PEG12-F and OmpA-F nanobioconjugates
exhibited a clearly differentiated C1s high-resolution spectra,
confirming the successful conjugation of BUF-II and OmpA. The
decreasing C-C/(C-O/C-N) ratio upon conjugation provided further
evidence of the superior conjugation efficiency of BUF-II.

Concerning the O1s-core level, a sharper peak with a slight
shift to higher energy was observed for silanized and
nanobioconjugates samples compared to the reference. The
larger full-width of half-maximum (FWHM) value of the
pristine sample is likely associated with the overall electric
field’s spread on the outer C60-cage surface due to defects that
are absent on functionalized samples. This permits the favored
ejection of O1s-photoelectron at lower kinetic energies. No
evidence of work function alteration due to surface charge
artifacts was found since the C1s-main peak of the cage was
located at 284.6 eV. Nevertheless, the C1s-peak of the reference
was also broader, without any evidence of a change in the peak
asymmetry compared to the functionalized samples. In contrast,

the main three N1s-subpeak components were detected for
silanized and nanobioconjugates samples, with a higher
intensity detected for the former due to the protonated amine
species of the covalently attached APTES molecules. This
contrasts with the observations for the SNPs discussed above.
The area under the curve for the nitrogen binding energy was
lower for the nanobioconjugates compared to the silanized
samples due to the lower C/N ratio after conjugation of the
peptide and protein molecules. Finally, the main Si2p-subpeak
components provided further evidence of the successful
silanization of fullerenol.

3.3 Biocompatibility

Biocompatibility is a crucial property in the development of
nanocarriers for biomedical applications. A material is
considered biocompatible if it does not elicit an undesired
response from the organism. Therefore, the assessment of
biocompatibility is a fundamental step in the design and

FIGURE 8
Evaluation of biocompatibility of the SNPs-nanobioconjugates (A) Evaluation of cytotoxicity of nanobioconjugates as tested by MTT assays after
24 and 48 h (B) In vitro evaluation of the hemocompatibility. Assessment of the hemolytic effect of nanobioconjugates (Positive control: Triton X-100,
negative control: PBS. In all cases, hemolysis was below 3%; thus, the nanobioconjugates are not hemolytic; and Assessment of nanobioconjugates
effects on blood coagulation (Positive control: Thrombin, negative control: PBS). There is no significant percent platelet aggregation induced by the
nanobioconjugates.
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development of nanocarriers for drug delivery and diagnostic
purposes. It is imperative to ensure that the nanocarriers are not
toxic to the body and do not cause any adverse reactions (Soares
et al., 2018). In order to ensure the biocompatibility of
nanomaterials, multiple tests are required as per established
standards such as the ISO 10993 series and ASTM F1903.
Hemocompatibility and cytotoxicity tests are among the
several necessary evaluations. The hemolytic properties, effects
on blood coagulation, and cytotoxicity of the tested samples were
assessed in vitro.

As shown in Figure 8A, cell viability was evaluated in THP-1
cells—a human leukemia monocytic cell line—and Vero cells—a
monkey kidney epithelial line—after 24 and 48 h of exposure to the
SNPs-based treatments. The outcomes demonstrated a
concentration-dependent decrease in cell viability for all
treatments and cell lines. Notably, at low doses of 18 and 37 μg/
mL, no significant reduction in cell viability was observed for either
cell type, implying the treatments’ safety profile at lower
concentrations. Moreover, it was observed that the cytotoxic
potential of OmpA-SNPs was comparatively lower than that of

BUF-II-PEG12-SNPs. The viability of cells treated with OmpA-SNPs
nanobioconjugates remained above 70% (dotted line) even at
concentrations as high as 75 μg mL-1. Conversely, at the same
concentration, the viability of THP-1 and Vero cell lines treated
with BUF-II-PEG12-SNPs nanobioconjugates was found to decrease.
(International Organization for Standardization., 2009). In all cases,
the covalent conjugation of BUF-II peptide and OmpA protein to
these nanostructured materials involves the use of surface spacers
(APTES, amine-PEG12-propionic acid, glutaraldehyde, EDC, NHS),
which has rendered the nanobioconjugates less cytotoxic than the
bare SNPs. Surface functionalization modified the properties of the
nanoparticles—e.g., the Z-average size, the ζ potential, the
roughness—and thus the interactions between nanoparticles and
biological components, such as proteins and cell membranes,
ultimately reducing cytotoxicity (Kim et al., 2013). Figure 8B
shows in vitro evaluation of the hemocompatibility. The
treatments revealed platelet aggregation values between 2% and
16% above the negative reference—values higher than 20% are
considered that induce platelet aggregation (dotted line) (Potter
et al., 2018). The silanized SNPs or nanobioconjugates induced no

FIGURE 9
Evaluation of biocompatibility of the fullerenol-nanobioconjugates (A) Evaluation of cytotoxicity of nanobioconjugates as tested byMTT assays after
24 and 48 h (B) In vitro evaluation of the hemocompatibility. Assessment of the hemolytic effect of nanobioconjugates (Positive control: Triton X-100,
negative control: PBS. In all cases, hemolysis was below 3%; thus, the nanobioconjugates are not hemolytic, and Assessment of nanobioconjugates
effects on blood coagulation (Positive control: Thrombin, negative control: PBS). There is no significant platelet aggregation induced by the
nanobioconjugates.

Frontiers in Bioengineering and Biotechnology frontiersin.org14

Ravelo-Nieto et al. 10.3389/fbioe.2023.1184973

147

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1184973


significant hemolytic effect, and the hemolysis values remained
below 3% — Percent hemolysis less than 2 means the test sample
is not hemolytic (dotted line); 2%–5% hemolysis means the test
sample is slightly hemolytic; and >5% hemolysis means the test
sample is hemolytic (Neun et al., 2018).

Similarly, in the case of nanobioconjugates that rely on
fullerenol, cell viability remained uncompromised in both cell
types, even at low doses of 18 and 37 μg mL-1 across all
treatments. There was no significant reduction observed in the
viability of the cells (Figure 9A). Figure 9B shows in vitro
evaluation of the hemocompatibility. The results of the
treatments showed platelet aggregation values that were 2%–15%
higher than the negative reference in the fullerenol and BUF-II-
PEG12-F treatment. Conversely, there was no significant difference
in platelet aggregation between the negative control and the OmpA-
F nanobioconjugates treatment (Potter et al., 2018). The silanized
fullerenol or nanobioconjugates did not induce a significant
hemolytic effect, as evidenced by the hemolysis values remaining
below 3% (Neun et al., 2018).

We recognize that the dosages used in our work may not exhibit
toxicity towards target cells, such as cancer or infected cells, and that

altering the dosage might change the mechanism of cellular uptake.
As such, future studies should investigate the potential biological
actions of these nanobioconjugates using a drug model to better
understand their efficacy and safety in diverse cellular contexts. This
will involve characterizing how the nanobioconjugates and their
cargoes are trafficked inside cells and determining the appropriate
cargo release concentrations for specific cell lines. Our current
research serves as a foundation for developing conjugation
strategies with known cell penetration agents and for exploring
the potential of silica nanoparticles and fullerenol as nanostructured
supports in targeted drug delivery applications.

3.4 Cellular uptake and endosomal escape

Figure 10 shows the cellular uptake of silanized SNPs, OmpA-
SNPs, and BUF-II-PEG12-SNPs nanobioconjugates by Vero cells.
Rhodamine B-labeled nanobioconjugates (red) were observed to be
homogeneously distributed within the cells, without significant
penetration of the cell nucleus (blue). The colocalization of the
nanobioconjugates with acidic organelles, such as endosomes/

FIGURE 10
Cellular uptake and endosomal escape of the SNPs-nanobioconjugates in Vero cells (A) Confocal microscopy images of effective cellular uptake of
BUF-II-PEG12-SNPs nanobioconjugates in Vero cells. A zoomed view of the insets is shown on the right (B) Confocal microscopy images of effective
cellular uptake of OmpA-SNPs nanobioconjugates in Vero cells. A zoomed view of the insets is shown on the right (C) Endosomal escape study via
colocalization analysis (D) Intracellular area percentage coverage by silanized SNPs and the nanobioconjugates for Vero cells after the two exposure
times (30 min and 4 h).
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lysosomes, was determined quantitatively through correlation
analysis, based on Pearson’s coefficient (PC). The PC value
ranges from 1 to −1, where 1 represents complete and positive
correlation between the intensity of fluorescence signals, −1 denotes
perfect but negative correlation, and 0 indicates no correlation
(Adler and Parmryd, 2010; Dunn et al., 2011). Intracellular area
percentage coverage by silanized SNPs and the nanobioconjugates
was also determined.

CP values after 30 min in Vero cells were 0.76 ± 0.07; 0.71 ± 0.10;
and 0.66 ± 0.10 for the silanized SNPs, BUF-II-PEG12-SNPs, and
OmpA-SNPs, respectively. These CP values decreased to 0.72 ± 0.09;
0.55 ± 0.12; and 0.54 ± 0.13; for the silanized SNPs, BUF-II-PEG12-
SNPs, and OmpA-SNPs, respectively, after 4 h of incubation. A
reduced level of colocalization with the endosomal/lysosomal
marker (green) is indicative of the propensity of
nanobioconjugates to evade endosomes in Vero cells. While the
precise mechanisms involved in endosomal escape are not fully
understood, it is likely that this occurs either through the formation
of temporary pores or via the proton sponge effect, as posited in
prior studies (Cho et al., 2009; Cardoso et al., 2019; López-Barbosa
et al., 2019; Lopez-Barbosa et al., 2020).

In the case of THP-1 cells (Figure 11), CP values after 30 min
were 0.76 ± 0.07; 0.70 ± 0.06; and 0.90 ± 0.05 for silanized SNPs,
BUF-II-PEG12-SNPs, and OmpA-SNPs, respectively. After 4 h of
incubation, the CP values approached 0.69 ± 0.77; 0.78 ± 0.06; and
0.91 ± 0.05; for the silanized SNPs, BUF-II-PEG12-SNPs, and
OmpA-SNPs, respectively, indicating a low tendency of
nanobioconjugates to escape from endosomes in THP-1 cells.
This behavior holds potential significance for the investigation of
enzyme replacement therapies in the management of lysosomal
storage diseases. Such diseases necessitate periodic intravenous
infusions of human recombinant lysosomal enzymes, produced
through recombinant DNA techniques. Following administration
of the treatment, the recombinant enzymes disperse throughout the
tissues, undergo internalization by cells, and are directed to the
lysosomal compartment for the purpose of substituting the deficient
protein in the patients (Parenti et al., 2013). Finally, the percentages
of the area covered by the nanobioconjugates were higher in THP-1
cells than in Vero cells and increased with incubation time.

Figure 12 provides evidence of the cellular uptake of OmpA-F
and BUF-II-PEG12-F nanobioconjugates by Vero cells. The
rhodamine B-labeled nanobioconjugates (red) were observed to

FIGURE 11
Cellular uptake and endosomal escape of the SNPs-nanobioconjugates in THP-1 cells (A) Confocal microscopy images of effective cellular uptake
of silanized SNPs and BUF-II-PEG12-SNPs nanobioconjugates in THP-1 cells. A zoomed view of individual cells is shown on the insets in the right panels
(B) Confocal microscopy images of effective cellular uptake of silanized SNPs and OmpA-SNPs in THP-1 cells. A zoomed view of individual cells is shown
on the insets in the right panels (C) Endosomal escape study via colocalization analysis (D) Intracellular area percentage coverage by silanized SNPs
and the nanobioconjugates for THP-1 cells after the two exposure times (30 min and 4 h).
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be homogeneously distributed within the cells but did not
significantly reach the cell nucleus (blue). In contrast to SNP-
based nanobioconjugates, fullerenol-based nanobioconjugates
tend to aggregate and form clusters, which could have significant
implications for their biological applications. CP values after 30 min
were 0.23 ± 0.11; and 0.28 ± 0.11 for BUF-II-PEG12-F and OmpA-F,
respectively. After 4 h of incubation, the CP values approached
0.37 ± 0.17; and 0.29 ± 0.08; for BUF-II-PEG12-F and OmpA-F,
respectively. CP values less than 0.5 indicate a low degree of
colocalization between the nanobioconjugates and the
endosomes/lysosomes. The extensive coverage of the cytoplasmic
area by the particles provides evidence for the internalization of the
nanobioconjugates. These results suggest that the mechanism of
entry of the nanobioconjugates into Vero cells is likely non-
endocytic.

In the case of THP-1 cells (Figure 13), CP values after 30 min
were 0.83 ± 0.07; and 0.77 ± 0.11 for BUF-II-PEG12-F and OmpA-F,
respectively. These CP values decreased to 0.74 ± 0.16; and 0.74 ±
0.12; for BUF-II-PEG12-F and OmpA-fullerenol, respectively, after
4 h of incubation. This suggests a tendency of BUF-II-PEG12-F
nanobioconjugates to escape from endosomes in THP-1 cells, which

is not observed for OmpA-F nanobioconjugates. The high coverage
of the cytoplasmic area confirms the internalization of the
nanobioconjugates.

In addition to the cell penetration and endosomal escape
capabilities of our nanobioconjugates, it is essential to highlight
their potential for targeted drug delivery to specific
subcellular compartments. By functionalizing the
nanobioconjugates with appropriate ligands, such as specific
peptide sequences or small molecules, these drug delivery
systems can be tailored to exhibit a high affinity for the
desired organelle. This customization enables enhanced
specificity in targeting organelles such as mitochondria or
others of interest. Moreover, we acknowledge the potential
benefits of non-endocytic mechanisms as a more
straightforward route for targeting subcellular compartments.
While endosomal escape is a crucial step in ensuring efficient
delivery of cargo to the cytosol, non-endocytic routes might offer
alternative advantages in achieving more targeted delivery to
specific organelles. Further exploration of these strategies and the
development of suitable ligands will be essential in optimizing the
nanobioconjugates for specific therapeutic applications.

FIGURE 12
Cellular uptake and endosomal escape of the fullerenol-nanobioconjugates in Vero cells (A) Confocal microscopy images of effective cellular
uptake of BUF-II-PEG12-Fnanobioconjugates in Vero cells. A zoomed view of individual cells is shown on the insets in the right panels (B) Confocal
microscopy images of effective cellular uptake ofOmpA-F nanobioconjugates in Vero cells. A zoomed viewof individual cells is shownon the insets in the
right panels (C) Endosomal escape study via colocalization analysis (D) Intracellular area percentage coverage by the nanobioconjugates for Vero
cells after the two exposure times (30 min and 4 h).
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4 Conclusion and outlook

In summary, our study demonstrates a comprehensive
approach for immobilizing translocating biomolecules on
SNPs and fullerenol. The success of this strategy was
confirmed by a range of analytical techniques including FT-IR,
TGA, DLS, Electrophoretic Mobility, SEM, TEM, and XPS. The
resulting nanobioconjugates, including OmpA-SNPs, BUF-II-
PEG12-SNPs, OmpA-F, and BUF-II-PEG12-F, exhibited high
biocompatibility in both Vero and THP-1 cell lines. Moreover,
our evaluations of hemolytic effects and platelet aggregation
demonstrated their safety at the tested concentrations. Our
confocal microscopy studies revealed efficient internalization
of the different nanobioconjugates in both Vero and THP-1
cells, with notable differences in endosomal escape. In
particular, OmpA-SNPs and BUF-II-PEG12-SNPs showed a
tendency to escape from endosomes in Vero cells, while
remaining trapped in THP-1 cells. On the other hand, OmpA-
F and BUF-II-PEG12-F were effectively internalized by both cell
lines, with a superior tendency to escape from endosomes in Vero

cells. These findings are significant, as they provide evidence for
the potential of our nanobioconjugates to enhance the stability
and half-life of translocating biomolecules and cross biological
membranes without affecting cell viability. The ability to develop
highly tunable cargo delivery systems is crucial for meeting the
needs of specific treatments and targeting cell or organelle types.
Overall, our study highlights the promise of our
nanobioconjugates as a platform for the development of
innovative therapeutic approaches. In our forthcoming
research, we aim to elucidate the intracellular trafficking
mechanisms of these nanobioconjugates and their cargoes, as
well as the targeted release of cargo within specific cell lines at
precise concentrations.
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FIGURE 13
Cellular uptake and endosomal escape of the fullerenol-nanobioconjugates in THP-1 cells (A) Confocal microscopy images of effective cellular
uptake of BUF-II-PEG12-F nanobioconjugates in THP-1 cells. A zoomed view of individual cells is shown on the insets in the right panels (B) Confocal
microscopy images of effective cellular uptake of OmpA-F nanobioconjugates in THP-1 cells. A zoomed view of individual cells is shown on the insets in
the right panels (C) Endosomal escape study via colocalization analysis (D) Intracellular area percentage coverage by the nanobioconjugates for
THP-1 cells after the two exposure times (30 min and 4 h).
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