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Comprehensive analysis of the
prognostic and
immunotherapeutic implications
of STAT family members in
human colorectal cancer

Dingchang Li1,2†, Yanan Jiao1,2†, Wenxing Gao1,2†, Shidong Hu2,
Dingling Li3, Wen Zhao2, Peng Chen1,2, Lujia Jin1,2,
Yingjie Zhao1,2, Zhaofu Ma1,2, Xiansheng Wu2, Yang Yan2,
Wen Sun4, Xiaohui Du2* and Guanglong Dong1,2*
1Medical School of Chinese PLA, Beijing, China, 2Department of General Surgery, The First Medical
Centre, Chinese PLA General Hospital, Beijing, China, 3Medical College of Qinghai University, Xining,
China, 4Department of Anesthesiology, The Second Affiliated Hospital of Tianjin University of
Traditional Chinese Medicine, Tianjin, China

Background: Colorectal cancer (CRC) is the third most prevalent cancer

worldwide and the second leading cause of cancer mortality. Signal

transducer and activator of transcription (STAT) proteins are a group of

transcription factors implicated in cell signal transduction and gene

transcription in several cancer types. However, the level of expression,

genetic alterations, and biological function of different STATs, as well as

their prognostic and immunotherapeutic value in CRC remain unclear.

Methods: The mRNA and protein expression levels, genetic alterations,

prognostic value, gene–gene and protein–protein interaction networks, and

biological function of STATs in CRC were studied using the GEPIA, HPA,

cBioPortal, PrognoScan, Kaplan–Meier plotter, GeneMANIA, STRING, and

Metascape databases. The expression of STATs in CRC was confirmed using

immunohistochemistry (IHC). Finally, the relationship between STAT expression

and immune infiltration as well as immunotherapy-associated indicators was

also investigated.

Results: The expression levels of STAT2/5A/5B are downregulated in CRC, and

the STAT1/3/4/5B expressions were significantly associated with the tumor

stage of patients with CRC. The abnormal expression of STAT2/4/5B in patients

with CRC is related to the prognosis of patients with CRC. The STATs and their

neighboring proteins are primarily associated with lymphocyte activation,

cytokine-mediated signaling pathways, positive regulation of immune

response, regulation of cytokine production, and growth hormone receptor

signaling pathways in cancer. The expression of STATs was significantly

associated with immune infiltration and immunotherapy response-

associated indicators.
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Conclusion: This study may help further understand the molecular mechanism

of CRC and provide new prognostic biomarkers and immunotherapy targets in

patients with CRC.

KEYWORDS

colorectal cancer, STAT transcription factors, prognostic value, immune infiltration,
bioinformatics analysis, tumor immunotherapy

Introduction

Global cancer data in 2020 showed that colorectal cancer (CRC)

was the third most prevalent cancer globally and the second leading

cause of cancer mortality (Sung et al., 2021). Since the early

symptoms of colorectal cancer are not typical (Yoshioka et al.,

2014), 35% of patients are often found with metastatic disease when

they are diagnosed, and 50% of patients without metastasis

ultimately develop metastatic CRC (Zacharakis et al., 2010).

Despite advances in chemotherapy, targeted therapy, and

immunotherapy, the clinical outcome of CRC remains poor,

especially in metastatic CRC (Brenner et al., 2014). Thus,

exploring the possible pathogenetic mechanisms of CRC, as well

as discovering early diagnostic biomarkers and treatment targets, is

crucial for improving patients’ prognoses.

STATs are a group of transcription factors encoded by seven

members (STAT1/2/3/4/5A/5B/6) of the STAT gene family that are

involved in cell proliferation, differentiation, apoptosis, and

immune system regulation (Verhoeven et al., 2020). As a result,

dysregulation of their pathway would result in a variety of diseases,

including cancer (Bowman et al., 2000). Extensive studies have

already demonstrated that inappropriate activation of specific

STAT members contributes to oncogenesis, especially for the

Janus kinase (JAK)/STAT3 pathway, which has been linked to

many types of cancer (Johnson et al., 2018). For example, Li et al.

reported that long non-coding RNA RP11-468E2.5 could curtail

CRC development and promote apoptosis via the JAK/STAT

signaling pathway by targeting STAT5 and STAT6 (Jiang et al.,

2019).

Despite great importance of STATs in malignancies, there has

been no study to explore the implications of every STAT factor in

CRC, including their expression level, genetic variation, biological

function, and potential molecular mechanism. Furthermore, their

correlation with the prognosis, immune infiltration, and

immunotherapy response in patients with CRC also remains

unknown. Thus, it is necessary to comprehensively analyze the

significance of each STAT member in CRC development and

progression.

Multiple large-scale bioinformatics databases were used in this

study for comprehensive bioinformatics analysis of the expression of

STATs and their associations with tumor stage in patients withCRC.

In addition, immunohistochemistry (IHC) was used to confirm the

differential expressions of STATs in CRC and normal tissues.

Subsequently, the genetic variation, biological function, and

molecular mechanism of each STAT member in CRC were

explored. Ultimately, the relationship between the expression of

STATs and prognosis, immune infiltration, and immunotherapy

response in patients with CRC was analyzed.

Materials and methods

Data acquisition and analysis of differential
expression

The Genotype-Tissue Expression (GTEx) database (https://

commonfund.nih.gov/GTEx/) collects data from 54 normal

human tissues for sequencing, which can be used to compare the

differential level of gene expression between normal and diseased

tissues (GTEx Consortium, 2013). The Cancer Genome Atlas

(TCGA) (https://tcga.xenahubs.net) mainly contains data from

33 different types of tumors. The RNA sequencing data of

normal samples from the GTEx database and tumor samples

from TCGA were downloaded, and the Wilcoxon rank-sum test

method was used to compare the differential mRNA expressions of

STATs between 33 different types of cancers and corresponding

normal tissues. Threshold values were determined according to the

following values: ns, p ≥ 0.05, *p < 0.05, **p < 0.01, and ***p < 0.001.

The “ggplot2” R package was used for the boxplot.

Gene Expression Profiling Interactive
Analysis 2 (GEPIA2) dataset

GEPIA2 (http://gepia2.cancer-pku.cn) is the latest version of

GEPIA, which analyzes RNA sequencing expression data

including 9,736 tumors and 8,587 normal samples from TCGA

andGTEx projects using standard processing pipelines (Tang et al.

, 2019). GEPIA2 offers a variety of functions such as differential

gene expression analysis, cancer types and pathological staging,

similar gene detection, patient survival analysis, correlation

analysis, and dimensionality reduction analysis.

Human Protein Atlas (HPA) dataset and
immunohistochemistry (IHC)

HPA database (https://www.proteinatlas.org/) was used to

compare the STAT gene protein expression in the CRC tissues

and the corresponding normal tissues.
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IHC staining was used to further validate the reliability of

the above results. Clinical samples were collected from

21 patients with CRC who were undergoing surgical

treatment in our hospital, and their clinical information is

shown in Supplementary Table S1. Firstly, these samples

were made into 3 μm paraffin sections and incubated with

rabbit monoclonal antibodies of STAT1, STAT2, STAT3,

STAT4, STAT5A, STAT5B, and STAT6 (1:100, all from

Abcam, USA) at 4°C overnight. The sections were then

conjugated with horseradish peroxidase (HRP) secondary

antibody (Abcam, USA) at 1/500 dilution at room

temperature for 2 h. Subsequently, the conjugates were

stained with 3,3′-diaminobenzidine (DAB) reagent, and

ultimately counterstained with hematoxylin. The IHC score

of STATs was assessed manually and calculated by a

pathologist. The percentage of positive cells was scored as: 0

(0–10% positive); 1 (10–25% positive); 2 (26–50% positive); 3

(51–75% positive); and 4 (≥76% positive). The staining

intensity was scored as: 0 (no staining); 1 (weak); 2

(moderate); and 3 (strong). The overall IHC score was

calculated by multiplying the score of positive cells (0–4) by

the staining intensity (0–3).

Tumor–Immune System Interactions and
Drug Bank (TISIDB) database

TISIDB (http://cis.hku.hk/TISIDB) is a website for the tumor

and immune system interaction that integrates multiple types of

data in oncoimmunology and reports genes related to antitumor

immunity, tumor cell resistance or sensitivity to T cell-mediated

killing and immunotherapy, and relationships between genes

and immune features of 30 cancer types from TCGA (Ru et al.,

2019).

PrognoScan database and the
Kaplan–Meier plotter analysis

The prognostic value of STATs mRNA expression in patients

with CRC was assessed by the PrognoScan Database (http://

www.abren.net/PrognoScan/) (Mizuno et al., 2009). This could

be used for evaluating the correlation between gene expression

and patient survival including overall survival (OS) and disease-

free survival (DFS). Cox p < 0.05 was considered statistically

significant.

The Kaplan–Meier plotter (www.kmplot.com), an online

database containing gene expression data and clinical survival

information of cancer patients (Nagy et al., 2018), was further

used to validate the relationship between STAT expression in

rectal adenocarcinoma (READ) and OS. The hazard ratio (HR)

with 95% confidence intervals and log-rank p-value were also

calculated.

cBioPortal

cBioPortal (http://www.cbioportal.org) is an online database

that can conduct multidimensional cancer genomics studies

(Gao et al., 2013). A colorectal adenocarcinoma dataset

(TCGA, PanCancer Atlas) containing 524 patients was

selected to analyze the expression of STATs. The genomic

profiles included mutations, putative copy-number alterations

from Genomic Identification of Significant Targets in Cancer

(GISTIC) scores, and mRNA expression z-scores (RNA Seq

V2 RSEM). The z-score threshold was set at ±1.8.

Network analysis

GeneMANIA (www.genemania.org), an online analysis tool

that provides protein and genetic co-expression, co-localization,

interactions, pathways, and shared protein domains of submitted

genes (Franz et al., 2018), was used to perform a gene–gene

interaction network for STATs. STRING (https://string-db.org),

an online dataset that collects and integrates all publicly available

protein–protein interaction (PPI) data and predicts potential

functions (Szklarczyk et al., 2019), was used to construct a

PPI network for STATs.

Functional enrichment analysis

Firstly, GEPIAwas used to identify the top 30 similar genes in

CRC for each STAT family member. Metascape was

subsequently used to perform Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment pathway analysis of the STATs and similar genes

(Zhou et al., 2019). Only terms with p < 0.01, minimum count >3,
and enrichment factor >1.5 were considered significant.

Tumor Immune Estimation Resource
(TIMER) dataset

TIMER (http://timer.cistrome.org/), an online dataset that

provides tumor immune infiltrating abundances estimated by

multiple immune deconvolution methods (Li et al., 2020), was

used in this study to evaluate the correlation between STAT

expression levels and immune cell infiltration.

Statistical analysis

The difference between STAT IHC scores in normal and

tumor tissues was tested using a two-tailed Student’s t-test with

unpaired analysis. The correlation between STAT gene

expressions and immune infiltration level, tumor purity,
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immune checkpoints, tumor mutation burden (TMB),

microsatellite instability (MSI), and mismatch repair (MMR)

genes in CRC was assessed using Spearman’s correlation

coefficients, and a p < 0.05 was considered statistically

significant.

Results

The expression levels of STATs in pan-
cancer

STAT expression levels in 33 types of tumors were

evaluated using data from TCGA database (n = 9,379) and

GTEx database (n = 8,293). In most types of tumors, all STAT

family members had significantly abnormal levels of

expression compared to normal tissues (Figure 1). Tumors

of the digestive system were concentrated on since this study is

mainly about CRC. The STAT1 gene was highly expressed in

most tumors, including cholangiocarcinoma (CHOL), colon

adenocarcinoma (COAD), esophageal carcinoma (ESCA),

liver hepatocellular carcinoma (LIHC), pancreatic

adenocarcinoma (PAAD), READ, and stomach

adenocarcinoma (STAD) (Figure 1A). The STAT2 gene

expression levels were high in CHOL and PAAD but low in

COAD and READ (Figure 1B). The STAT3 gene was highly

expressed in CHOL, ESCA, PAAD, and STAD but not in

COAD, LIHC, or READ (Figure 1C). The expression of STAT4

was high in CHOL, ESCA, PAAD, and STAD but low in

COAD, LIHC, and READ (Figure 1D). The STAT5A gene

expression was high in CHOL, LIHC, PAAD, and STAD but

low in COAD, ESCA, and READ (Figure 1E). The expression

of STAT5B was high in CHOL and PAAD but low in COAD,

ESCA, and READ (Figure 1F). STAT6 presented high

expression in CHOL and PAAD but low expression in

COAD, ESCA, LIHC, and READ (Figure 1G).

FIGURE 1
Transcription levels of signal transducer and activator of transcription (STAT) factors in different types of cancers from The Cancer Genome
Atlas (TCGA) database and the Genotype-Tissue Expression (GTEx) database.
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FIGURE 2
Transcription levels of signal transducer and activator of transcription (STAT) factors in colorectal cancer (CRC) from the Gene Expression
Profiling Interactive Analysis 2 (GEPIA2) dataset.
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Transcriptional and translational
expression levels of STATs in CRC patients

The GEPIA dataset was used to compare the transcriptional

levels of STATs between CRC and normal tissues (Figure 2A and

Figure 2B). The results showed that the expression level of STAT1

in CRC tissues was higher than in normal colon tissues, and the

transcriptional levels of STAT2 and STAT5B in CRC were lower

than in normal tissues significantly. The expressions of STAT3/4/

5A/6 genes were lower in CRC than in normal samples, although

there was no statistical significance.

The HPA database and IHC staining were used to further

confirm the protein expression of STATs in CRC and normal

tissues. The HPA database results indicated that the STAT1

protein was more highly expressed in the CRC tissues than in

the normal tissues, while STAT2/5A/5B/6 were significantly less

expressed in CRC tissues than in normal tissues (Figure 3). The

IHC results and scores from clinical samples showed the protein

levels of STAT1 were higher, and levels of STAT2/5A/5B were

lower in CRC tissues than in the adjacent normal tissues with

great significance (Figure 4 and Supplementary Figure S1).

The prognostic value of STATs in CRC
patients

The relationship between transcriptional levels of STATs and

CRC stage was investigated using the TISIDB. The results showed

that the expression levels of STAT1/3/4/5B were significantly

associated with the tumor stage of patients with CRC. However,

there was no significant correlation between the STAT2/5A/6

expression and tumor stage (Figure 5).

The correlation between STAT expression and clinical outcome

was evaluated using the PrognoScan database and the Kaplan–Meier

plotter analysis to assess the value of STATs expression levels in the

prognosis of CRC (Figure 6). The PrognoScan database analysis

results showed that higher STAT2/4/5B mRNA levels were

significantly associated with better OS (p < 0.05) and increased

STAT2/3/4/5B transcription levels were significantly associated with

longer DFS (p < 0.05) (Figure 6A). In addition, the correlation

between STAT expression levels and OS in patients with READwas

further validated using the Kaplan–Meier plotter, which indicated

that high expression of STAT1/4/5B favored OS (p < 0.05)

(Figure 6B).

FIGURE 3
Translation levels of signal transducer and activator of transcription (STAT) factors in colorectal cancer (CRC) from the Human Protein Atlas
(HPA) dataset.
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Gene mutations, co-expression, and
interaction analyses of STATs in CRC
patients

The cBioPortal online tool was used to evaluate genetic

alterations and STAT factor correlations in patients with CRC.

STATs were found to be altered in 224 (43%) of 524 patients

(Figure 7A). The genes with the highest and lowest mutation rates in

STATs are STAT5B (15%) and STAT4 (7%), respectively. The others

are STAT1 (9%), STAT2 (9%), STAT3 (12%), STAT5A (9%), and

STAT6 (12%) (Figure 7A). It was also found that patients with

colorectal mucinous adenocarcinoma were most likely to have

STAT gene alterations (53.57% of 56 cases) (Figure 7B). The

analysis results from cBioPortal showed that patients in the

unaltered group seemed /to have a better prognosis than those in

the altered group but without statistical significance (Supplementary

Figure S2A). The potential effects of every single STAT factor on

prognosis were then evaluated and the results showed that patients

with altered STAT4 had significantly poorer prognostic outcomes

compared with unaltered patients (Supplementary Figure S2E).

TIMER dataset analysis was used to evaluate the effect of STAT

mutations on five types of immune cell infiltration, and the

outcomes indicated that mutated STAT1 correlates with a higher

level of neutrophil infiltration; mutated STAT4 correlates with more

B cells, CD8+ T cells, and neutrophil infiltration; mutated STAT5A

correlates with a higher level of CD4+ T cells and neutrophils;

mutated STAT5B correlates with more B cells and; mutated STAT6

correlates with lower B cell infiltration with significance

(Supplementary Figure S3).

We further explored the co-expression of STAT members in

patients with CRC, and there were strong or moderate positive

relationships between STAT1 and STAT2, STAT3, STAT4, and

STAT5A; STAT2 and STAT3, STAT4, STAT5A, STAT5B, and

STAT6; STAT3 and STAT4, STAT5A, and STAT5B and; STAT5A

and STAT5B and STAT6 (p < 0.05) (Figure 7C).

The gene–gene interaction (GGI) network of STATs was

established using the GeneMANIA database (Figure 7D). Based

on shared protein domains, co-localization, physical interactions,

co-expression, pathways, and genetic interactions, 20 related genes

were enriched in this network. These genes are involved in a variety

of functions such as receptor tyrosine kinase binding, receptor

signaling pathway via STAT, signaling receptor complex adaptor

activity, signaling adaptor activity, phosphoprotein binding,

protein phosphorylated amino acid binding, and growth

hormone receptor signaling pathway. STRING was used to

explore the potential interactions between STATs at the protein

FIGURE 4
Translation levels of signal transducer and activator of transcription (STAT) factors in colorectal cancer (CRC) with immunohistochemistry (IHC).
Scale bar = 50 µm.
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level, as shown in Figure 7E, where the PPI network diagram had

seven nodes and 21 edges. The analysis results of PPI network

indicated that each STAT factor has known or predicted

interactions with the others, especially STAT3, which has

experimentally determined interactions with each of the other

factors. The top four molecular pairs with strong functional links

based on combined scores were STAT1 and STAT2, STAT1 and

STAT3, STAT3 and STAT5B, and STAT1 and STAT5A.

Functional enrichment analysis of STATs
and the genes similar to them in CRC
patients

GEPIA2 datasets were used to identify the top 30 genes that

have a similar expression pattern to each STAT family member.

The GO and KEGG enrichment pathway analyses of STATs and

their similar genes were then performed using Metascape. The

top 20 GO enrichment items were composed of 16 biological

processes (BP) items, three molecular functions (MF) items, and

one cellular component (CC) item (Figure 8A, Figure 8B, and

Table 1). The first five projects are all in the BPs, and they are

lymphocyte activation, cytokine-mediated signaling pathway,

positive regulation of immune response, regulation of cytokine

production, and growth hormone receptor signaling pathway via

JAK/STAT. MFs that were significantly related to STATs and

similar genes were kinase binding, GTPase regulator activity, and

CCR5 binding. The only one CC was side of the membrane.

The first 16 KEGG pathways are displayed in Figure 8C,

Figure 8D, and Table 2. The results indicated the involvement of

STATs in pathways such as Th17 cell differentiation, chemokine

signaling pathway, T cell receptor signaling pathway, and

cytokine–cytokine receptor interaction.

The relationship between STAT expression
levels and immune infiltration levels
in CRC

According to the results of GO and KEGG enrichment analysis,

it was found that STATs were closely related to immune functions

such as lymphocyte activation, positive regulation of immune

response, Th17 cell differentiation, and T cell receptor signaling

pathway. The results indicated that STATs were involved in the

regulation of the tumor immunemicroenvironment, which is closely

related to the initiation and progression of tumors.

FIGURE 5
Correlation between signal transducer and activator of transcription (STAT) factor expression and tumor stage in patients with colorectal cancer
(CRC) from the Tumor–Immune System Interactions and Drug Bank (TISIDB) database.
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FIGURE 6
Relationship between signal transducer and activator of transcription (STAT) factor expression and prognosis in patients with colorectal cancer
(CRC). (A) Prognostic value of STATs in patients with CRC in the OS and DFS curves (PrognoScan). (B) Prognostic value of STATs in rectal
adenocarcinoma (READ) patients in the OS curve (Kaplan–Meier plotter).
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FIGURE 7
Genetic mutations, co-expression, and interaction analysis of signal transducer and activator of transcription (STAT) factors at gene and protein
levels in patients with colorectal cancer (CRC) (cBioPortal, GeneMANIA, and STRING). (A) Analysis of genemutations of STAT family members in CRC.
(B) Summary of alterations in expressed STATs in CRC. (C) Correlation heatmap of expressed STATs in CRC. The numbers in the color blocks
represent Spearman’s correlation coefficient. (D)Gene–gene interaction network among STATs predicted by GeneMANIA. (E) Protein–protein
interaction network among STATs predicted by STRING.

Frontiers in Genetics frontiersin.org10

Li et al. 10.3389/fgene.2022.951252

14

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.951252


As a result, we used TIMER online dataset to evaluate the

relationship between STAT expression and immune cell

infiltration in CRC. As shown in Figure 9, the outcomes, as

expected, revealed that STATs were involved in many types of

immune cell infiltration and influenced the clinical outcome of

patients with CRC. STAT1/2/3/4 expressions had a positive

correlation with the infiltration of B cells, CD8+ T cells, CD4+

T cells, macrophage, neutrophil, and dendritic cells (Figures

9A–D). The expressions of STAT5A/5B/6 were positively

correlated with the infiltration of CD4+ T cells, macrophage,

neutrophil, and dendritic cells, and STAT5A expression was also

positively related to the infiltration of B cells (Figures 9E–G).

The correlation between STATs and
immunotherapy response-related
indicators in CRC

The tumor microenvironment (TME) includes tumor cells,

stromal cells, immune cells, and extracellular matrix. Stromal

cells have been reported to promote tumorigenesis in many

ways, and infiltration levels of different immune cells are also

linked to tumor prognosis. As a result, the correlation between

STAT gene expressions and stromal cells and immune cell

content in CRC was subsequently evaluated. The results

showed that the expressions of STAT1, STAT2, STAT3,

STAT4, and STAT5A were positively related to stromal

score, immune score, and ESTIMATE score with great

significance (p < 0.001) (Figures 10A–E). Also, the

expression of STAT5B was positively related to the stromal

score and the ESTIMATE score, but there was no relationship

between STAT6 expression and these scores as shown in

Figure 10F and Figure 10G. The correlation analysis showed

that STAT gene expressions were strongly positively related to

eight immune checkpoints, including CD40LG, ADORA2A,

TNFSF14, ICOSLG, TNFRSF8, CD27, VSIR, and TNFRSF4 (r >
0, p < 0.001) (Figure 10H and Table 3). In addition, the

expressions of STAT genes were also correlated with most

chemokines and their receptors (Figure 11).

TMB is a predictive biomarker of response for cancer

patients receiving immune checkpoint blockade. The study

results revealed a positive relationship between TMB score

and STAT1, STAT2, and STAT4 expression (p < 0.001), and a

negative relationship between TMB score and STAT5B

FIGURE 8
Functional enrichment analysis of signal transducer and activator of transcription (STAT) factors and the genes similar to them in patients with
colorectal cancer (CRC) (Metascape). (A)Heatmap of GO enriched terms colored by p-values. (B)Network of GO enriched terms colored by p-value,
where terms containing more genes tend to have amore significant p-value. (C)Heatmap of KEGG enriched terms colored by p-values. (D)Network
of KEGG enriched terms colored by p-value, where terms containing more genes tend to have a more significant p-value.

Frontiers in Genetics frontiersin.org11

Li et al. 10.3389/fgene.2022.951252

15

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.951252


expression (p < 0.001) (Figure 12A). The MSI status is also

closely linked to the response to immune checkpoint blockade,

especially in patients with CRC. As a result, the correlation

between STAT expression and MSI score was also assessed,

and the results indicated that STAT1, STAT2, STAT3, and

STAT4 were positively correlated with MSI score (p < 0.001),

TABLE 1 Gene Ontology (GO) functional enrichment analysis of signal transducer and transcription (STAT) factors and neighbor genes in colorectal
cancer (CRC) (Metascape).

GO Category Description Count % Log10 (P) Log10 (q)

GO:0046649 GO biological processes Lymphocyte activation 39 21.08 -23.76 -19.41

GO:0019221 GO biological processes Cytokine-mediated signaling pathway 27 14.59 -17.78 -13.90

GO:0050778 GO biological processes Positive regulation of immune response 27 14.59 -15.59 -11.84

GO:0001817 GO biological processes Regulation of cytokine production 29 15.68 -13.88 -10.49

GO:0060397 GO biological processes Growth hormone receptor signaling pathway via JAK/STAT 6 3.24 -11.87 -8.86

GO:0009615 GO biological processes Response to virus 18 9.73 -10.80 -8.00

GO:0031347 GO biological processes Regulation of defense response 22 11.89 -10.32 -7.56

GO:0046631 GO biological processes Alpha-beta T-cell activation 12 6.49 -9.60 -6.96

GO:0019900 GO molecular functions Kinase binding 23 12.43 -9.55 -6.93

GO:1901652 GO biological processes Response to peptide 19 10.27 -9.41 -6.79

GO:0000165 GO biological processes MAPK cascade 23 12.43 -9.27 -6.67

GO:0043368 GO biological processes Positive T-cell selection 7 3.78 -8.60 -6.06

GO:0030695 GO molecular functions GTPase regulator activity 17 9.19 -7.98 -5.50

GO:0098552 GO cellular components Side of membrane 19 10.27 -7.79 -5.34

GO:0031730 GO molecular functions CCR5 binding 4 2.16 -7.03 -4.64

GO:0010506 GO biological processes Regulation of autophagy 13 7.03 -7.00 -4.62

GO:0032615 GO biological processes Interleukin-12 production 7 3.78 -6.98 -4.61

GO:0030099 GO biological processes Myeloid cell differentiation 14 7.57 -6.94 -4.57

GO:0030036 GO biological processes Actin cytoskeleton organization 18 9.73 -6.35 -4.06

GO:0050900 GO biological processes Leukocyte migration 13 7.03 -6.27 -3.99

TABLE 2 Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis of signal transducer and transcription (STAT) factors and
neighbor genes in colorectal cancer (CRC) (Metascape).

GO Category Description Count % Log10 (P) Log10 (q)

ko04659 KEGG pathway Th17 cell differentiation 16 8.65 -17.27 -14.39

hsa04062 KEGG pathway Chemokine signaling pathway 19 10.27 -16.55 -14.25

ko04917 KEGG pathway Prolactin signaling pathway 9 4.86 -9.33 -7.76

hsa05166 KEGG pathway HTLV-I infection 12 6.49 -7.17 -5.78

ko04660 KEGG pathway T-cell receptor signaling pathway 8 4.32 -6.61 -5.26

hsa04060 KEGG pathway Cytokine–cytokine receptor interaction 11 5.95 -5.21 -3.96

ko04612 KEGG pathway Antigen processing and presentation 6 3.24 -5.10 -3.87

hsa04810 KEGG pathway Regulation of actin cytoskeleton 9 4.86 -4.79 -3.62

ko04666 KEGG pathway Fc gamma R-mediated phagocytosis 6 3.24 -4.68 -3.53

ko04620 KEGG pathway Toll-like receptor signaling pathway 6 3.24 -4.35 -3.23

ko05340 KEGG pathway Primary immunodeficiency 4 2.16 -4.12 -3.04

hsa04520 KEGG pathway Adherens junction 5 2.70 -3.85 -2.79

hsa04371 KEGG pathway Apelin signaling pathway 6 3.24 -3.54 -2.54

ko04144 KEGG pathway Endocytosis 7 3.78 -2.94 -2.01

hsa04931 KEGG pathway Insulin resistance 4 2.16 -2.28 -1.49

ko04670 KEGG pathway Leukocyte transendothelial migration 4 2.16 -2.27 -1.48
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FIGURE 9
Correlation between signal transducer and activator of transcription (STAT) factor expression levels and immune infiltration levels in colorectal
cancer (CRC) from the Tumor Immune Estimation Resource (TIMER) dataset. The relationship between the abundance of immune cells and the
expression of (A) STAT1, (B) STAT2, (C) STAT3, (D) STAT4, (E) STAT5A, (F) STAT5B, and (G) STAT6 in CRC.

Frontiers in Genetics frontiersin.org13

Li et al. 10.3389/fgene.2022.951252

17

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.951252


whereas STAT5B and STAT6 were negatively correlated with

MSI score (p < 0.01) (Figure 12B). The relationship between

STAT expression and MMR genes such as MLH1, MSH2,

MSH6, PMS2, and EPCAM was evaluated using TCGA

expression profile data. The results showed that the

expressions of STAT1, STAT2, STAT4, and STAT5A were

FIGURE 10
Relationship between signal transducer and activator of transcription (STAT) factor expression and stromal score, immune score, ESTIMATE
score, and immune checkpoints in colorectal cancer (CRC). The correlation between the expression of (A) STAT1, (B) STAT2, (C) STAT3, (D) STAT4, (E)
STAT5A, (F) STAT5B, and (G) STAT6, and stromal score, immune score, and ESTIMATE score in CRC. (H) Correlation heatmap of STATs with immune
checkpoints in CRC.
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positively correlated with MSH2, MSH6, and PMS2 (p < 0.05);

STAT3 and STAT5B were also positively correlated with all

these genes, whereas STAT2 and STAT4 were negatively

correlated with EPCAM (p < 0.01) (Figure 12C).

Discussion

Extensive studies have indicated that the abnormal

regulation of STATs, especially for STAT1/3/5, is closely

TABLE 3 Relationship between signal transducer and transcription (STAT) factor expression and immune checkpoints in colorectal cancer (CRC).

R Immune checkpoint

CD40LG ADORA2A TNFSF14 ICOSLG TNFRSF8 CD27 VSIR TNFRSF4

STAT1 0.311 0.315 0.501 0.189 0.488 0.429 0.325 0.282

STAT2 0.326 0.483 0.618 0.257 0.576 0.497 0.460 0.372

STAT3 0.373 0.261 0.409 0.194 0.433 0.378 0.409 0.234

STAT4 0.536 0.444 0.647 0.152 0.544 0.572 0.383 0.329

STAT5A 0.234 0.241 0.336 0.237 0.409 0.405 0.478 0.366

STAT5B 0.178 0.335 0.224 0.233 0.307 0.199 0.173 0.158

STAT6 0.133 0.163 0.139 0.158 0.199 0.254 0.263 0.187

The p-value of immune checkpoints (CD40LG, ADORA2A, TNFSF14, ICOSLG, TNFRSF8, CD27, VSIR, and TNFRSF4) is less than 0.001.

FIGURE 11
Relationship between signal transducer and activator of transcription (STAT) factor gene expression and chemokines as well as their receptors.
(A) Correlation between STAT expression and multiple chemokines. (B) Correlation between STAT expression and multiple chemokine receptors.
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associated with the progression of various tumors, including

solid tumors and hematologic malignancies, such as prostate

cancer, breast cancer, CRC, and leukemias (Ferrajoli et al.,

2006; Lassmann et al., 2007; Benekli et al., 2009; Gu et al.,

2010; Koptyra et al., 2011). JAK/STAT signaling has also been

identified as one of the key pathways affected by the majority

of cancer gene mutations (Vogelstein and Kinzler, 2004).

Although some studies have reported the role of certain

STAT factors in cancer progression, there have been no

studies that have comprehensively analyzed the role of

different STATs in CRC. For the first time, bioinformatics

analysis was used to investigate the transcription and

translation levels, genetic variation, biological function, and

molecular mechanism of STATs in CRC, as well as their

correlation with prognosis, immune infiltration, and

immunotherapy response.

Some studies demonstrate that activated STAT1, as a tumor

suppressor, is lost in several types of malignant cells (Adámková

et al., 2007), including breast cancer (Koromilas and Sexl, 2013),

lung cancer (Chen et al., 2015), and esophageal squamous cell

carcinoma (Zhang et al., 2014), and many reports indicate that

high STAT1 expression means better clinical prognosis

(Widschwendter et al., 2002; Deng et al., 2012; Hosui et al.,

2012). However, contradictory results have also been reported,

showing that high STAT1 expression levels are found in some

cancers and correlate with poor prognosis compared to those

with low expression levels, such as breast cancer, glioblastoma,

lymphoma, and renal cell carcinoma (Khodarev et al., 2004;

Duarte et al., 2012; Greenwood et al., 2012; Zhu et al., 2012; Arzt

et al., 2014). In this study, database analysis showed that the

transcription and translation levels of STAT1 in CRC were higher

than those in normal tissues, which was further verified by IHC

staining. Furthermore, the expression of STAT1 in patients with

CRC was found to be significantly related to the tumor stage. A

survival analysis revealed that a high STAT1 transcription level

had no correlation with the prognosis of patients with CRC but

led to better OS in READ.

Previous reports suggest that STAT2, like STAT1, may play

a dual role in cancer progression. Clifford et al. reported that

sustained STAT2 expression was required for interferon

alpha-induced tumor-suppressive effects in skin squamous

cell carcinoma cells, and the tumor-suppressive activity was

also demonstrated in mice models (Clifford et al., 2003; Wang

et al., 2003). The role of STAT2 in the tumorigenesis of CRC

and skin cancer has also been described (Gamero et al., 2010).

The results of data analysis and IHC in this study indicated

that STAT2 was less expressed in CRC than in normal tissues

at the transcription and translation level. However, STAT2

expression in patients with CRC had no relationship with the

tumor stage. A survival analysis showed that high STAT2

expression was related to better OS and DFS in patients

with CRC.

The bulk of evidence indicates that STAT3 significantly

correlates with cancer development and immune escape

(Bromberg, 2002; Yu et al., 2009). Abnormal elevated STAT3

activity has been found in a variety of hematological and solid

malignancies such as acute myeloid leukemia (AML), multiple

myeloma, and cancers of the bladder, head and neck, kidney,

FIGURE 12
(Continued).
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pancreas, uterus, ovary, esophagus, and breast (Chen et al.,

2008; Sahu and Srivastava, 2009; Bar-Natan et al., 2012; Li et al.,

2013; Suh et al., 2015; Geiger et al., 2016; Subramaniam et al.,

2016; Zhang et al., 2016). In addition, high levels of

phosphorylated STAT3 expression often result in a poor

prognosis in many types of cancer (Kusaba et al., 2006;

Macha et al., 2011; Chen et al., 2013). However,

controversial evidence has emerged showing that STAT3

plays a negative role in the tumorigenesis of KRAS-induced

lung cancer in mice models (Grabner et al., 2015). A high

STAT3 expression correlates with a better clinical outcome in

patients with CRC and nasopharyngeal carcinoma (Hsiao et al.,

2003; Gordziel et al., 2013). The analysis of the GEPIA dataset

and IHC in this study showed that the expression level of

STAT3 in CRC was not different from that in adjacent normal

tissues, but was associated with the tumor stage of patients with

CRC. Survival analysis indicated that high STAT3 expression

was associated with better DFS, but did not affect OS in patients

with CRC.

The exact role of STAT4 in tumorigenesis remains unclear

because high levels of STAT4 expression have been shown to

promote invasion and metastasis in gastric cancer and ovarian

cancer (Zhou et al., 2014; Zhao et al., 2017), and potentially

predict a favorable outcome in these cancers (Li et al., 2017;

FIGURE 12
(Continued). Correlation between signal transducer and activator of transcription (STAT) factor expression and TMB score, MSI score, and MMR
genes. (A)Correlation between STAT expression and TMB score. (B)Correlation between STAT expression andMSI score. (C)Correlation heatmap of
STAT expression with MMR genes in CRC.
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Nishi et al., 2017). The results from this study demonstrated

that although there was no significant difference in STAT4

expression between CRC tissues and normal tissues, its

expression was related to tumor stage, and increased

STAT4 expression level favored OS and DFS in patients

with CRC.

STAT5, which consists of STAT5A and STAT5B, has

been reported to be implicated in multiple malignancies.

Hassel et al. (2008) reported that STAT5, a tumor promoter,

aided cell proliferation and survival in melanoma by

activating the antiapoptotic protein Bcl-XL. It also has

been suggested that activated STAT5 signaling promotes

tumor growth, invasion, and epithelial-to-mesenchymal

transition (EMT) in squamous cell carcinoma of the head

and neck (SCCHN), leading to resistance to chemotherapy

(Koppikar et al., 2008). Furthermore, highly activated

STAT5 results in poor prognosis in patients with prostate

cancer (Li et al., 2005). However, increasing evidence

suggests that STAT5 proteins also regulate the activities

of tumor suppressor genes, and activated STAT5 is

associated with a favorable prognosis in patients with

breast cancer and nasopharyngeal cancer (Hsiao et al.,

2003; Nevalainen et al., 2004). This study found that

STAT5A and STAT5B were significantly less expressed in

CRC compared to normal tissues at both the mRNA and

protein levels. In patients with CRC, STAT5B had a

significant relationship with tumor stage and exerted a

favorable effect on OS and DFS but STAT5A did not.

Some studies have reported that activated STAT6

signaling is important for IL-4 and IL-13-induced EMT

and CRC cell aggressiveness (Cao et al., 2016; Chen et al.,

2018). Furthermore, inhibition studies have indicated that

targeting STAT6 signaling can suppress tumor growth and

metastasis in gastric cancer (Lu et al., 2018). The data

analysis revealed that there was no significant difference

in STAT6 expression between CRC tissues and normal

tissues, and STAT6 expression level did not affect tumor

stage and prognosis.

The analysis outcomes showed that there was a high

mutation rate (43%) of STATs in patients with CRC, and the

genes with the highest and lowest mutation rates in STATs are

STAT5B (15%) and STAT4 (7%), respectively. Besides, the

mutation of STATs had some relationship with certain types

of immune cells infiltration, but showed little effect on

prognosis in patients with CRC. The co-expression

relationships between different STAT members in patients

with CRC indicated that these factors may play a synergistic

role in the progression of CRC. To evaluate the potential

interactions between STAT factors and their neighboring

genes at different levels, GGI and PPI networks were

constructed. GO and KEGG enrichment analyses were also

performed to explore the functions of STATs and their similar

genes, which are primarily related to lymphocyte activation,

cytokine-mediated signaling pathway, positive regulation of

immune response, and T-cell receptor signaling pathway.

These pathways have a close relationship with the immune

system, indicating the possible role of STATs in regulating the

tumor immune microenvironment.

The study results indicated that STAT transcription levels

were closely correlated with levels of immune infiltration in

CRC. STAT1/2/3/4 expressions were positively correlated with

the infiltrations of B cells, CD8+ T cells, CD4+ T cells,

macrophages, neutrophils, and dendritic cells. The

expressions of STAT5A/5B/6 were positively associated with

infiltrations of CD4+ T cells, macrophages, neutrophils, and

dendritic cells, and STAT5A expression was also positively

correlated with the infiltration of B cells. Also, the

expressions of STAT1/2/3/4/5A were positively correlated

with the stromal score, immune score, and ESTIMATE score

with great significance. The close relationship between the

expression levels of STATs and infiltration of multiple types

of immune cells further demonstrates that STATs may be the

regulators of tumor immunity in CRC.

Another significant finding of this study is that STATs

may be possible predictors of treatment response to

immunotherapy in CRC because of the close relationship

between STATs and indicators associated with

immunotherapy response, such as immune checkpoint

genes, TMB score, MSI score, and MMR genes. Our results

showed that seven STAT members were positively co-

expressed with eight immune checkpoints including

CD40LG, ADORA2A, TNFSF14, ICOSLG, TNFRSF8,

CD27, VSIR, and TNFRSF4. From literature searches, it

was found that CD40LG and CD27, both of which are

stimulatory immune checkpoints, are more likely to be

used clinically. Extensive studies have been conducted to

investigate the underlying mechanism by which CD40LG

and CD27 modulate tumor immunity. Additionally, various

types of strategies targeting them, such as agonistic/

antagonistic monoclonal antibodies, cellular vaccines, and

protein antagonists, have been developed and demonstrated

to be safe and efficacious in early clinical trials (Starzer and

Berghoff, 2020; Tang et al., 2021). Coincidentally, the factor

that is most closely related to both CD40LG and CD27 is

STAT4 based on their correlation coefficient (Table 3). It was

discovered that almost all the STAT factors were positively co-

expressed with certain MMR genes such as MSH2, MSH6, and

PMS2. A positive relationship between the TMB score and

STAT1/2/4 expression and a negative relationship between

the TMB score and STAT5B expression were observed.

Moreover, STAT1/2/3/4 expression had positive correlations

with the MSI score, but STAT5B and STAT6 had a negative

relationship with the MSI score.

This study indicates that the expression levels of STAT2/

5A/5B are downregulated in CRC and could inhibit the

initiation and development of CRC. The close relationship
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between the CRC stages and expression levels of STAT1/3/4/

5B reveals their potential as molecular biomarkers for tumor

stage classification. Moreover, the abnormal expressions of

STAT2/4/5B have the potential to be used as prognostic

predictors in patients with CRC. Besides, the strong

association between the expression of STAT and infiltration

of multiple types of immune cells in CRC, including B cells,

CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and

dendritic cells, demonstrates that STATs may play a role in the

regulation of CRC tumor immunity. More importantly, the

significant correlation between STAT expressions and

immunotherapy response-associated indicators showed that

they had the potential to predict response to immunotherapy

in patients with CRC and could be used to assist the physician

in deciding on a therapeutic regimen. These findings aid in

better understanding the molecular landscape of CRC

progression, providing new prognostic biomarkers, and

promoting the development of more immunotherapeutic

strategies for patients with CRC. However, further

investigations are still needed to validate the results of this

study to facilitate the clinical application of STATs as therapy

targets, prognostic biomarkers, and immunotherapy

predictors in CRC.
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Purpose: This study aimed to compare the clinical outcomes of camrelizumab

in hepatitis B virus-related hepatocellular carcinoma (HBV–HCC) patients and

non-HBV, non-HCV hepatocellular carcinoma (NBNC–HCC) patients in China.

Materials and methods: A total of 54 patients with hepatocellular carcinoma

who received camrelizumab were included in this retrospective study from

January 2019 to December 2021. The patients were assigned to the HBV–HCC

group (n = 28) and the NBNC–HCC group (n = 26). The primary endpoints were

overall survival (OS) and progression-free survival (PFS), and the secondary

endpoints were the objective response rate (ORR), disease control rate (DCR),

and adverse events (AEs). Multivariate analysis using Cox proportional hazard

regression was used to identify independent prognostic factors. A nomogram

model was subsequently established based on independent prognostic factors.

Results: The mean duration of follow-up was 12.7 ± 3.6 months. The median

OS was not determined. The median PFS in the HBV–HCC group was

significantly longer than that in the NBNC–HCC group (9.2 vs.

6.7 months, p = 0.003). The ORR and DCR in the HBV–HCC group were

significantly higher than those in the NBNC–HCC group (ORR, 28.6% vs.

7.7%, p = 0.048; DCR, 71.4% vs. 42.3%, p = 0.031). No significant differences

in the total incidence of AEs were found between the HBV–HCC group and

the NBNC–HCC group (75.0% vs. 69.2%, p = 0.224). Multivariate regression

analysis identified etiology, AFP level, and vascular invasion as independent

prognostic factors (all p < 0.05).

Conclusion: Our findings demonstrate that camrelizumab is more effective in

HBV–HCC patients than in NBNC–HCC patients, with manageable safety.
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Introduction

Hepatocellular carcinoma (HCC) is the seventh most

common malignancy and the third most common cause of

cancer death worldwide. Specifically, HCC cases in China

comprise approximately more than half of the total number of

cases globally (Zheng et al., 2018; Sung et al., 2021; Xia et al.,

2022).

Chronic infection with the hepatitis B virus (HBV) and

hepatitis C virus (HCV) is a major risk factor for HCC; in

China, HCC caused by HBV comprises approximately 70%–

80% (Wang et al., 2017). With the recent popularization of the

HBV vaccine and the widespread application of antiviral drugs,

the proportion of HBV-related hepatocellular carcinoma

(HBV–HCC) is expected to gradually decrease, whereas that

of non-HBV non-HCV hepatocellular carcinoma (NBNC–HCC)

is expected to gradually increase (Thomas, 2019). The

pathogenesis of NBNC–HCC is yet to be fully understood, but

nonalcoholic steatohepatitis (NASH) and metabolic syndrome

are regarded as important pathogenic factors (Anstee et al.,

2019).

HCC is typically insidious and mostly diagnosed in the

intermediate to advanced stages (Maluccio and Covey, 2012).

Less than 30% of those diagnosed with the disease undergo

radical resection (Ikeda et al., 2018). Immunotherapy provides

an option for patients with advanced HCC (Cabibbo et al.,

2010; Yoon et al., 2018). Results of the IMbrave150 study show

that atezolizumab combined with bevacizumab (T + A)

significantly improved overall survival (OS) and

progression-free survival (PFS) (Cheng et al., 2022). In

addition, the combination (T + A) was approved for the

first-line treatment of advanced HCC (Finn et al., 2020;

Cheng et al., 2022). It is the first treatment regimen

significantly superior to sorafenib in more than 10 years

since the approval of sorafenib for first-line treatment of

HCC (Sangro et al., 2021). On the basis of the results of

the Checkmate040 and KEYNOTE224 trials, two

programmed cell death protein 1 (PD-1)

inhibitors—nivolumab and pembrolizumab—were approved

by the United States Food and Drug Administration (FDA) for

second-line therapy of HCC (El-Khoueiry et al., 2017; Zhu

et al., 2018). Qin et al. (2020) found that camrelizumab could

yield an objective response rate (ORR) of 14.7% and a 6-

month OS rate of 74.4% in 217 HCC patients. This finding

indicates that camrelizumab could achieve clinical efficacy

comparable to that of similar PD-1 inhibitors. Thus,

camrelizumab became the first PD-1 inhibitor approved in

China for the treatment of intermediate and advanced HCC.

In addition, the most significant advantage of camrelizumab

for Chinese patients is its relatively low price, hence its wide

use in China (Chen et al., 2020).

Although immunotherapy has achieved satisfactory efficacy

in HCC patients, international multicenter phase III studies

showed that the response rate of NBNC–HCC to

immunotherapy was lower than that of viral hepatitis-related

HCC (Pfister et al., 2021; Ji and Nguyen, 2022; Kelley et al., 2022).

The efficacy of immunotherapy may be influenced by different

underlying etiologies of HCC, and different hepatic

environments can significantly affect HCC cell induction and

immune responses (Roderburg et al., 2020). Compared with non-

viral-related HCC, the tumor immune microenvironment of

HBV–HCC had a stronger immunosuppressive effect, which

was reversed by PD-1 inhibitors (Liu et al., 2021). In addition,

viral antigens expressed by tumor cells have been found to

increase the number of antigen-specific T cells and enhance

response to immunotherapy (Yarchoan et al., 2017).

However, research is lacking on immunotherapy for

NBNC–HCC in China. Therefore, in order to identify

clinically relevant factors potentially influencing the response

to immunotherapy in HCC patients, this study aims to compare

the effectiveness and safety of camrelizumab for HBV–HCC and

NBNC–HCC in China and to further select HCC patients

suitable for immunotherapy by etiology.

Materials and methods

Study design and patients

We retrospectively reviewed the medical records of patients

with HCC who underwent camrelizumab from January 2019 to

December 2021 at the Affiliated Hospital of Xuzhou Medical

University.

The inclusion criteria were as follows: (Sung et al., 2021)

diagnosed advanced HCC with clinical and histopathological

evidence; (Zheng et al., 2018) aged 18 years or older; (Xia et al.,

2022) at least one measurable lesion as defined by modified

Response Evaluation Criteria in Solid Tumors (mRECIST);

(Wang et al., 2017) received at least two cycles of

camrelizumab; (Thomas, 2019) Child–Pugh class A or B;

(Anstee et al., 2019) Barcelona Clinic Liver Cancer (BCLC)

stage B or C; and (Maluccio and Covey, 2012) Eastern

Cooperative Oncology Group Performance Status

(ECOG PS) ≤ 2.

The exclusion criteria were as follows: (Sung et al., 2021)

patients with other malignant tumors; (Zheng et al., 2018)

intrahepatic cholangiocarcinoma, and combined

hepatocellular–cholangiocarcinoma; (Xia et al., 2022)
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coinfection with hepatitis C or other hepatitis viruses; and (Wang

et al., 2017) incomplete clinical data.

Grouping and treatment protocol

All included patients were assigned to two groups—the

HBV–HCC group and the NBNC–HCC group—on the basis

of serum hepatitis B surface antigen, serum hepatitis C surface

antigen, HBV–DNA, and HCV–DNA. The HBV–HCC group

consisted of patients with positive serum hepatitis B surface

antigen or positive serum HBV–DNA, and the NBNC–HCC

group consisted of patients with negative serum hepatitis B

surface antigen, negative serum hepatitis C surface

antigen, negative serum HBV–DNA, and negative serum

HCV–DNA.

Camrelizumab (200 mg/branch) was administered

intravenously, one branch at a time, once every 3 weeks.

Assessment

The patients underwent contrast-enhanced chest

computed tomography (CT) or contrast-enhanced magnetic

resonance imaging (MRI) of the upper abdomen at baseline

and every 6–8 weeks thereafter. The long-term efficacy of

treatment was measured by OS and PFS. OS was defined as

the time from the start of camrelizumab treatment to death

from any cause, and PFS was defined as the time from the start

of camrelizumab treatment to disease progression or death

from any cause. The short-term efficacy was assessed in

accordance with the mRECIST criteria, including complete

response (CR), partial response (PR), stable disease (SD), and

progressive disease (PD). All adverse events (AEs) were

recorded in detail, and AEs were evaluated based on the

National Cancer Institute Common Terminology Criteria

for Adverse Events (version 5.0).

Statistical analysis

All data were statistically analyzed using the software SPSS

23.0 and R 4.2.0. Normally distributed continuous variables

were presented as the mean ± standard deviation and analyzed

using the independent t-test. Categorical data were expressed

as counts and percentages and then analyzed using the chi-

squared test or Fisher’s exact probability test. The Kaplan-

Meier method was used to estimate median OS and PFS. Log-

rank tests were used in univariate analysis, and variables with

a p value less than 0.1 were used in multivariate analysis.

Multivariate Cox proportional hazard regression analysis was

used to clarify the independent prognostic factors of PFS. A

nomogram prediction model was constructed using the

independent prognostic factors from multivariate analysis.

Nomograms for 6-month PFS and 9-month PFS were also

developed and then compared with the actual scenario.

Internal validation and the accuracy of the nomogram were

determined using the bootstrap method and the calculated

concordance index (C-index). p value <0.05 was considered

statistically significant.

Results

Patient characteristics

A total of 54 patients with HCC classified as BCLC stage B

or C and who are receiving camrelizumab from January

2019 to December 2021 were included in this retrospective

study. The HBV–HCC group consisted of 28 patients, and the

NBNC–HCC group had 26 patients. The mean follow-up time

was 12.7 ± 3.6 months as of March 2022. Fifteen patients were

excluded for the following reasons: HCV-infected (n = 3), with

incomplete clinical data (n = 3), lost to follow-up (n = 4), and

accepted other PD-1 inhibitors during follow-up (n = 5)

(Figure 1). The causes of NBNC–HCC were NAFLD (non-

alcoholic fatty liver disease) (n = 22), alcoholic liver disease

(n = 3), and autoimmune liver diseases (n = 1). Patient data,

including age, gender, tumor size, cirrhosis, vascular invasion,

extrahepatic metastasis, ECOG PS, Child–Pugh class, BCLC

stage, previous treatment, and laboratory parameters are

summarized in Table 1. No significant differences in

baseline characteristics were found between the two groups

(all p > 0.05).

Tumor response

In the HBV–HCC group, 1 patient had CR, 7 patients had

PR, 12 patients had SD, and 8 patients had PD. In the

NBNC–HCC group, no patients showed CR, 2 patients

exhibited PR, 9 patients had SD, and 15 patients had PD

(Table 2). The ORR and disease control rate (DCR) of the

HBV–HCC group were greater than those of the NBNC–HCC

group (ORR, 28.6% vs. 7.7%, p = 0.048; DCR, 71.4% vs. 42.3%,

p = 0.031).

Progression-free survival and overall
survival

Median PFS was 9.2 months (95%CI: 7.4–11.0) in the

HBV–HCC group and 6.7 months (95%CI: 5.0–8.4) in the

NBNC–HCC group (Figure 2). The median PFS of the

HBV–HCC group was significantly longer than that of the

NBNC–HCC group (p = 0.003). As of follow-up time,
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21 patients died, including 11 from the HBV–HCC group and

10 from the NBNC–HCC group. The median OS of the

HBV–HCC group was 13.3 months (95%CI: 11.4–15.2),

which was significantly longer than that of the

NBNC–HCC group (i.e., 11.1 months) (95%CI: 9.7–12.5)

(p = 0.018) (Figure 3). The median OS still required further

observation and follow-up because of the short enrollment

time of patients.

Univariate and multivariate analyses of
Progression-free survival

The results of the univariate and multivariate Cox

proportional hazard regression analyses for PFS are

summarized in Table 3. In multivariate Cox proportional

hazard regression analysis, etiology (HR = 0.192, 95%CI:

0.088–0.418, p = 0.001), the AFP level (HR = 2.893, 95%CI:

1.233–6.787, p = 0.015), and vascular invasion (HR = 3.158,

95%CI: 1.436–6.942, p = 0.004) were identified as independent

prognostic factors for the PFS of HCC patients. These

independent prognostic factors were considered taken in

the construction of a nomogram prediction model

(Figure 4). The C-index of the nomogram prediction model

was 0.781. The calibration curves indicated consistency

between the actual and the predicted survival rates of the

patients (Figure 5).

Adverse events

The two groups of patients mainly reported Grade

1–2 AEs, with reactive cutaneous capillary endothelial

proliferation (RCCEP), proteinuria, hyperbilirubinemia,

elevated aspartate aminotransferase (AST), elevated alanine

aminotransferase (ALT), and thrombocytopenia as the most

frequent AEs (Table 4). Grade ≥3 AEs occurred in 13 patients

(7 in the HBV–HCC group and 6 in the NBNC–HCC group),

and 1 patient in the HBV–HCC group discontinued

camrelizumab treatment because of severe AEs (Grade

3 myocarditis). No significant differences in the total

incidence of AEs and incidence of grade ≥3 AEs were

found between the HBV–HCC group (75.0%, 25.0%)

and the NBNC–HCC group (69.2%, 23.1%) (p = 0.224, p =

0.869).

Discussion

To the best of our knowledge, this research represents the

first retrospective study in China that compares the tumor

response, survival benefit, and tolerability of camrelizumab

treatment for HBV–HCC and NBNC–HCC patients. The

results demonstrated that relative to the NBNC–HCC

group, the HBV–HCC group showed significant

improvement in ORR and DCR. PFS was significantly

FIGURE 1
Patient flowchart.
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longer in the HBV–HCC group than in the NBNC–HCC

group, and HBV infection was a significant independent

predictor of better PFS. In addition, tolerability was similar

between the two groups, and no adverse reaction-related

deaths occurred.

In 2007, the molecularly targeted drug sorafenib was

approved as a first-line treatment for advanced HCC;

however, the median survival time was extended by only

about 3 months, compared with the placebo (Boland and

Wu, 2018). With the understanding of the tumor immune

microenvironment and immune targets in recent years,

immunotherapy has developed rapidly and achieved ideal

efficacy in HCC treatment. Both National Comprehensive

Cancer Network (NCCN) Guidelines for Hepatobiliary

Cancers and Guidelines for Diagnosis and Treatment of

Primary Liver Cancer recommend PD-1/L1 inhibitors as

TABLE 1 Baseline characteristics of the HBV–HCC and NBNC–HCC groups.

Variable HBV–HCC (n = 28) NBNC–HCC (n = 26) t/χ2 p

Age (years) 55.9 ± 11.5 59.5 ± 10.9 −1.192 0.239

Gender 1.327 0.249

Male 24 (85.7) 19 (73.1)

Female 4 (14.3) 7 (26.9)

Tumor size 0.059 0.808

<5 cm 12 (42.9) 12 (30.8)

≥5 cm 16 (57.1) 14 (53.8)

Cirrhosis 0.017 0.897

Yes 23(82.1) 21(80.8)

No 5(17.9) 5(19.2)

Vascular invasion 0.247 0.619

Yes 10 (35.7) 11 (42.3)

No 18 (64.3) 15 (57.7)

Extrahepatic metastasis 0.051 0.821

Yes 11 (39.3) 11 (42.3)

No 17 (60.7) 15 (57.7)

ECGO PS 0.044 0.835

0-1 18 (64.3) 16 (61.5)

2 10 (35.7) 10 (38.5)

Child-Pugh class 0.027 0.869

A 21 (75.0) 20 (76.9)

B 7 (25.0) 6 (23.1)

BCLC stage, n (%) 1.169 0.280

B 6 (21.4) 9 (34.6)

C 22 (78.6) 17 (65.4)

Previous treatment 0.974 0.968

First-line 9 (32.1) 8 (30.8)

Second-line 13 (46.4) 10 (38.5)

Third-line or more 6 (21.4) 8 (30.8)

Laboratory parameters

AFP 0.350 0.554

<400 ng/ml 15 (53.6) 16 (61.5)

≥400 ng/ml 13 (46.4) 10 (38.5)

AST (U/L) 42.1 ± 13.9 36.9 ± 16.1 1.268 0.210

ALT (U/L) 35.1 ± 20.3 29.0 ± 14.5 1.264 0.212

ALB (g/L) 39.8 ± 5.0 40.9 ± 5.3 −7.490 0.457

TBIL (µmol/L) 18.1 ± 9.0 17.1 ± 8.2 0.460 0.648

PT (s) 12.62 ± 1.45 11.97 ± 1.01 1.907 0.062

Data in brackets represent percentages. HBV–HCC, hepatitis B virus-related hepatocellular carcinoma; NBNC–HCC, non-HBV; non-HCV, hepatocellular carcinoma; ECOG PS, Eastern

Cooperative Oncology Group Performance Status; AFP, a-fetoprotein; AST, aspartate aminotransferase; ALT, alanine aminotransferase; TBIL, total bilirubin; PT, prothrombin time.
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first-line drugs for systemic treatment of HCC (Du et al., 2022;

Llovet et al., 2022). Camrelizumab, a PD-1 inhibitor, inhibits

the immune escape of liver tumor cells by blocking the binding

of PD-1 on CD8 T cells to programmed death ligand-1 (PD-

L1) on Kupffer cells (Shen et al., 2019). However, PD-1/

L1 inhibitors have exhibited only a 15%–23% response rate

in HCC patients (Pinter et al., 2021). HBV infection is the

most important cause of HCC; however, baseline HBV loads

may not affect the clinical prognosis of PD-1 inhibitor therapy

in HCC. Sun et al. (2020) found no significant correlation

between clinical outcomes and HBV loads in HCC patients

receiving the PD-1 inhibitor. In addition, Yuan et al. (2021)

found that HBV loads did not affect the short-term efficacy of

the PD-1 inhibitor combined with antiangiogenic therapy for

HCC patients.

NAFLD refers to a clinical syndrome characterized by

excessive deposition of fat in liver cells, apart from alcohol and

other definite liver damage factors (Eslam et al., 2020). Among

NAFLD, NASH is considered the most serious; up to 30% of

NASH patients may develop liver inflammation and fibrosis,

and some patients may further develop to HCC (Stine et al.,

2018). NASH activates innate and adaptive immune cells, as

well as increases metabolites and endoplasmic reticulum

stress, causing hepatic necroinflammation and regenerative

cycles, which may lead to HCC (Shen et al., 2017; Xu et al.,

2017). Compared with HCC related to viral hepatitis,

NBNC–HCC (NAFLD and/or NASH–HCC) is more

insidious, and its lesions are mostly single and larger, and

the prognosis of patients is worse (Li and Wang, 2022). In

addition, several studies have reported that HBV–HCC and

NBNC–HCC have significant differences in histopathological

characteristics and prognosis (Salomao et al., 2012; Xue et al.,

2020). The pathogenesis of NBNC–HCC remains unclear and

is currently related to factors such as genetics, metabolism,

oxidative stress, immunity, and intestinal flora imbalance (Li

and Wang, 2022).

Whether viral infection affects the efficacy of

immunotherapy in HCC patients remains inconclusive. In

the study by Ho et al. (2020), no noticeable differences in ORR

existed between virally infected and uninfected HCC patients

receiving PD-1/PD-L1 inhibitors, and viral status could not be

a criterion for PD-1/PD-L1 inhibitors. However, recent

studies suggest that NBNC–HCC, particularly NASH–HCC,

may weakly respond to immunotherapy. Kelley et al. (2022)

reported that the benefit of cabozantinib plus atezolizumab

treatment to PFS was mainly observed in the HBV–HCC

group. Pfister et al. (2021) also found that in a mouse

model of NASH, CD8/PD-1 double-positive T cells were

unconventionally activated and gradually accumulated in

NASH-infected livers (Dudek et al., 2021). Treatment with

TABLE 2 Tumor response between the HBV–HCC and NBNC–HCC groups.

Variable CR PR SD PD ORR DCR

HBV–HCC (n = 28) 1 (3.6) 7 (25.0) 12 (42.9) 8 (28.6) 8 (28.6) 20 (71.4)

NBNC–HCC (n = 26) 0 (0.0) 2 (7.7) 9 (34.6) 15 (57.7) 2 (7.7) 11 (42.3)

χ2 3.895 4.676

P 0.048 0.031

Data in brackets represent percentages. HBV–HCC, hepatitis B virus-related hepatocellular carcinoma; NBNC–HCC, non-HBV; non-HCV, hepatocellular carcinoma; CR, complete

response; PR, partial response; SD, stable disease; PD, progressive disease; ORR, objective response rate; DCR, disease control rate.

FIGURE 2
Kaplan–Meier plot of progression-free survival in the
HBV–HCC and NBNC–HCC groups.

FIGURE 3
Kaplan–Meier plot of overall survival in the HBV–HCC and
NBNC–HCC groups.
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PD-1 inhibitors increased the number of activated CD8/PD-

1 double-positive T cells in NASH–HCC mice but failed to

shrink tumors. These results indicate that activated abnormal

T cells may not play a role in immune surveillance and cannot

kill tumor cells. Thus, Pfister conducted a meta-analysis of

three large randomized controlled phase III trials of

immunotherapies in patients with advanced HCC

(CheckMate-45911, IMbrave1505, and KEYNOTE-24010).

The results showed that although immunotherapy

improved survival in HBV–HCC patients (HR = 0.64; 95%

CI = 0.49–0.83), survival in NBNC–HCC patients was not

significantly improved (HR = 0.92; 95%CI = 0.77–1.11)

(Pfister et al., 2021). In the current study, similar results

were obtained: the median PFS of the HBV–HCC group

was significantly longer than that of the NBNC–HCC group

(9.2 vs. 6.7 months, p = 0.003).

In this study, the incidence of AEs was similar in the two

groups—that is, mainly low-grade AEs. One patient in the

HBV–HCC group needed to discontinue camrelizumab

treatment because of Grade 3 myocarditis; the patient received

symptomatic treatment such as hormones and nutritional

myocardium. For camrelizumab, RCCEP was the most

TABLE 3 Univariate and multivariate analyses of the prognostic factors for progression-free survival.

Factors Univariate Multivariate

HR 95% CI P HR 95% CI P

Age (≥60 vs. < 60), year 1.282 0.693–2.370 0.429 — — —

Gender (male vs. female) 0.606 0.275–1.335 0.214 — — —

Etiology (HBV vs. NBNC) 0.386 0.202–0.735 0.004 0.192 0.088–0.418 0.001

Tumor size (≥5 vs. < 5), cm 1.304 0.703–2.422 0.400 — — —

AFP level (≥400 vs. < 400), ng/ml 2.418 1.236–4.733 0.010 2.893 1.233–6.787 0.015

ECOG PS (0–1 vs. 2) 1.121 0.594–2.115 0.724 — — —

Child–Pugh class (A vs. B) 1.183 0.574–2.439 0.648

BCLC stage (B vs. C) 1.057 0.540–2.070 0.870 — — —

Vascular invasion (yes vs. no) 2.889 1.528–5.461 0.001 3.158 1.436–6.942 0.004

Extrahepatic metastasis (yes vs. no) 0.703 0.372–1.326 0.276

Cirrhosis (yes vs. no) 0.562 0.255–1.241 0.154

HBV, hepatitis B virus; NBNC, non-HBV, non-HCV; AFP, a-fetoprotein; ECOG PS, eastern cooperative oncology group performance status.

FIGURE 4
Graph showing the prognostic model for predicting 6- and 9-months progression-free survival.
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commonAE. The incidence rates of Grade 1–2 RCCEP in the two

groups were 46.4% and 42.3%, respectively. No grade ≥3 RCCEP
occurred, which was basically consistent with other studies (Qin

et al., 2020). The AEs of the two groups were generally

controllable, and no fatal AEs occurred.

The results of multivariable Cox proportional hazard

regression analysis showed that etiology, AFP level, and

vascular invasion were independent prognostic factors for

PFS. We then constructed a nomogram prediction model by

using these independent risk factors. The nomogram showed

that etiology exerted the most effect on PFS, whereas the AFP

level exerted the least effect on PFS. To validate the nomogram

prediction model, we calculated the C-index and plotted the

calibration curve. The C-index of the nomogram model in this

FIGURE 5
Calibration plots for 6-months progression-free survival.

TABLE 4 Treatment-related adverse events in patients with hepatocellular carcinoma.

Effect All grades Grade ≥3

HBV–HCC (n = 28) NBNC–HCC (n = 26) HBV–HCC (n = 28) NBNC–HCC (n = 26)

RCCEP 13 (46.4) 11 (42.3) 0 (0.0) 0 (0.0)

Proteinuria 6 (21.4) 6 (23.1) 0 (0.0) 1 (3.8)

Thrombocytopenia 5 (17.8) 4 (15.4) 0 (0.0) 1 (3.8)

Neutropenia 3 (10.7) 2 (7.7) 0 (0.0) 0 (0.0)

Leukopenia 3 (10.7) 2 (7.7) 0 (0.0) 0 (0.0)

Hypothyroidism 3 (10.7) 4 (15.4) 0 (0.0) 1 (3.8)

Hypertension 4 (14.3) 5 (19.2) 0 (0.0) 1 (3.8)

Rash 2 (7.1) 3 (11.5) 1 (3.6) 0 (0.0)

Nausea 4 (14.3) 3 (11.5) 0 (0.0) 0 (0.0)

Diarrhea 5 (17.9) 4 (15.4) 1 (3.6) 0 (0.0)

Fatigue 4 (14.3) 3 (11.5) 0 (0.0) 0 (0.0)

Myocarditis 1 (7.1) 0 (3.8) 1 (3.6) 0 (0.0)

Hyperbilirubinemia 5 (17.9) 6 (23.1) 1 (3.6) 0 (0.0)

Elevated ALT 7 (25.0) 4 (15.4) 2 (7.1) 1 (3.8)

Elevated AST 6 (21.4) 6 (23.1) 1 (3.6) 1 (3.8)

Data in brackets represent the percentages of patients. HBV–HCC, hepatitis B virus-related hepatocellular carcinoma; NBNC–HCC, non-HBV; non-HCV, hepatocellular carcinoma;

RCCEP, reactive cutaneous capillary endothelial proliferation; AST, aspartate aminotransferase; ALT, alanine aminotransferase.
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study was 0.785, and the calibration curve indicated that

our model was consistent with the actual observations,

proving the reliability and precision of our model. However,

owing to the limited number of cases, no external validation was

performed.

This study had several limitations. First, the patients in this

study were only treated with camrelizumab, and our conclusions

for other PD-1/PD-L1 inhibitors require verification. Second, a

stratified analysis of NBNC–HCC etiologies could not be

performed because of the small sample size. Third, the

median OS for the majority of the population was not

determined because of the relatively short follow-up period.

We intend to extend the follow-up time in the future. Fourth,

only 54 patients were included in the study; the sample size needs

to be expanded in the future. Fifth, this study was a single-center

retrospective study, and all patients included in this study were

from China, where HBV is the main cause of HCC. Finally, some

patients had received transarterial chemoembolization and

targeted therapy, among others, which might have affected the

efficacy of camrelizumab.

Conclusion

Compared with HBV–HCC patients, NBNC–HCC patients

may exhibit a weaker response to PD-1 inhibitors, suggesting that

clinicians can screen HCC subgroups suitable for

immunotherapy on the basis of etiology to obtain improved

efficacy. Large randomized controlled trials are needed in the

future to prove our conclusions.
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Background: Tumor-associated macrophages as important members of the

tumor microenvironment, are highly plastic and heterogeneous. TAMs can be

classified into two preliminary subtypes: M1 and M2 macrophages.

M2 macrophages are significantly associated with the progression of lung

adenocarcinoma. However, no study has investigated the heterogeneity

among M2 macrophages and their differentiation-related genes at the

single-cell level to guide the clinical treatment of lung adenocarcinoma.

Methods: Using the available annotation information from the Tumor Immune

Single-cell Hub database, we clustered and annotated 12 lung adenocarcinoma

samples using the R package ‘Seurat’. Subsequently, we extracted

M2 macrophages for secondary clustering analysis and performed cell

trajectory analysis using the R package ‘monocle2’. Based on heterogeneous

genes associated with the differentiation trajectory of M2 macrophages, we

established a prognostic lung adenocarcinoma model using Lasso-Cox and

multivariate stepwise regression. In addition, we also performed

immunotherapy and chemotherapy predictions.

Results: M2 macrophages exhibit heterogeneity among themselves.

M2 macrophages in different differentiation states showed significant

differences in pathway activation and immune cell communication.

Prognostic signature based on heterogeneous genes can be used to classify

the prognostic status and abundance of immune cell infiltration in lung

adenocarcinoma patients. In addition, the calculation of the Tumor Immune

Dysfunction and Exclusion (TIDE) algorithm and the validation of the

GSE126044 database indicated that lung adenocarcinoma patients with

high-risk scores had poorer treatment outcomes when receiving immune

checkpoint inhibitors treatment.
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Conclusion: Based on scRNA-seq and Bulk-seq data, we identified

M2 macrophage-associated prognostic signature with a potential clinical

utility to improve precision therapy.

KEYWORDS

lung adenocarcinoma, tumor microenvironment (TME), M2macrophages, ScRNA-seq,
immunotherapy

Introduction

Lung cancer is one of the most common malignancies and

the leading cause of cancer-related deaths. There are

approximately two million new cases and 1.76 million deaths

each year (Thai et al., 2021). It can be divided into two types: non-

small cell lung cancer (NSCLC) and small cell lung cancer

(SCLC) (Thai et al., 2021). NSCLC is the leading type of lung

cancer, accounting for about 85% of the total lung cancers

(Srivastava et al., 2022). Meanwhile, Lung adenocarcinoma is

the most common histological subtype of NSCLC. Lung

adenocarcinoma has a strong heterogeneity and a complex

tumor microenvironment (TME) (He et al., 2021). Traditional

pathological stages do not fully determine the prognosis of

NSCLC patients. Therefore, the development of novel and

reliable prognostic models can help stratify the risk of lung

adenocarcinoma patients and provide targeted

immunotherapy and chemotherapy strategies (Shi et al., 2021).

TME, an ecosystem with a complex communication network,

consists of tumor cells, cancer-associated stromal and immune

cells, and other non-cellular components (Wu and Dai, 2017;

Maacha et al., 2019). Numerous studies have shown that the

development, progression, and metastasis of lung

adenocarcinoma are closely related to TME (Kamata et al.,

2020; Kim et al., 2020; Li et al., 2021). Macrophages are

monocyte-derived immune cells with many biological

functions and are also essential members of the TME (Varol

et al., 2015). Tumor-associated macrophages are functionally

heterogeneous and can be classified into two subtypes:

M1 macrophages and M2 macrophages (Yunna et al., 2020).

M1 macrophages inhibit angiogenesis and tumor progression. A

growing body of literature has reported that, unlike

M1 macrophages, M2 macrophages significantly promote

angiogenesis, metastasis, and tumor growth (Guo et al., 2019;

Zhang et al., 2019; Pan et al., 2020). Furthermore, crosstalk

between M2 macrophages and immune cells (or molecules)

can also promote tumor escape. Therefore, M2 macrophages

are key components in the development of the tumor

immunosuppressive microenvironment (Zhou et al., 2020)

and would be of great scientific value to investigate the effects

of M2 macrophages on lung adenocarcinoma patients (Pan et al.,

2020). Traditional transcriptome sequencing techniques lose

information on heterogeneity between cells as all cells in a

tumor sample are treated as a whole. Thus, single-cell

sequencing is a good way to characterize heterogeneity

between cells (Wu F. et al., 2021). Exploring the key genes

that determine cell heterogeneity in the differentiation

trajectory of M2 macrophages using single-cell sequencing

might help determine the prognosis of lung adenocarcinoma

patients and provide valuable guidance for clinical strategies.

In this study, we first uncovered genes associated with the

heterogeneity of M2 macrophages based on single-cell

sequencing data. Next, we performed a univariate Cox

analysis of all heterogeneous genes and extracted prognostic

genes which might be relevant to lung adenocarcinoma

development and progression. Based on prognostic-related

genes, we performed a Lasso-Cox and multivariate stepwise

regression analysis and constructed a prognostic model for

lung adenocarcinoma patients (Long et al., 2021). In this

model, the risk score was an independent prognostic factor

for lung adenocarcinoma patients and had a higher prognostic

accuracy than clinical factors. After combining the clinical

factors, we constructed a nomogram for a more accurate

prognostic evaluation. Together, our results showed that

heterogeneous genes associated with the differentiation of

M2 macrophages uncovered from single-cell sequencing data

could characterize the prognostic status of lung adenocarcinoma

patients. The prognostic signature we established has clinical

potential to predict the efficacy of immunotherapy (ICIs) and

chemotherapy.

Materials and methods

Data collection

Twelve single-cell RNA sequencing samples from five lung

adenocarcinoma patients in the GSE127465 database were

included in this study. Bulk sequencing data, mutation data,

and clinical information for lung adenocarcinoma patients were

downloaded from The Cancer Genome Atlas (TCGA, https://

portal.gdc.cancer.gov/) database. Microarray sequencing data

and clinical information of the GSE31210 database were

downloaded from Gene Expression Omnibus (GEO, https://

www.ncbi.nlm.nih.gov/geo/) as an external independent

validation set for the prognostic signature. Furthermore, the

GSE126044 database was used as the immunotherapy

response validation cohort (anti-PD-1 treatment). Detailed

clinical information for TCGA and GSE31210 database is

listed in Supplementary Table S1.
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Processing and analysis of single-cell RNA
sequencing (scRNA-seq) data

The available cell clustering and cell type annotation

information of GSE127465 was used in the Tumor Immune

Single-cell Hub (TISCH) database (http://tisch.comp-genomics.

org/) (Sun et al., 2021), and single-cell analysis was performed

using the R package ‘Seurat’ (Hao et al., 2021). Based on the

annotation results, M2 macrophages were extracted for further

analysis. In this study, the number of hypervariable genes was set

to 2000, and the resolution for cell clustering to 0.6. Principal

component analysis (PCA) was conducted based on

2000 hypervariable genes. In addition, dimensionality

reduction of single-cell data was used by the t-distributed

stochastic neighbor embedding (tSNE) method (Kobak and

Berens, 2019), and the ‘FindAllMarkers’ algorithm was

performed to search for characteristic differentially expressed

genes among different cell clusters. R package ‘monocle2’ was

used for differentiation trajectory and pseudotime analysis of

M2 macrophages (Zhou et al., 2022). Subsequently, the ‘BEAM’

(branched expression analysis modeling) statistical algorithm

was used to identify heterogeneous genes that play a key role

in the differentiation of M2 macrophages (Wang et al., 2022). R

package ‘GSVA’ and ‘scMetabolism’ determined the enrichment

of signaling pathways at the single-cell level (Hanzelmann et al.,

2013; Wu et al., 2022). Finally, cell-to-cell communication

analysis was performed using the R package ‘iTALK’ (Wang

Y. et al., 2019).

Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment assays were performed using the

R package ‘clusterprofiler’ (Wu T. et al., 2021; Kanehisa et al.,

2021). GO analyses include three parts: biological process (BP),

cell composition (CC), andmolecular function (MF). In addition,

the R package ‘limma’ was used to identify differentially

expressed genes in the prognostic signature between high- and

low-risk groups (Ritchie et al., 2015). Gene Set Variation Analysis

(GSVA), an unsupervised algorithm, was performed to calculate

enrichment scores of hallmark gene sets (Molecular Signatures

Database (MSigDB), http://www.gsea-msigdb.org/gsea/msigdb/

collections.jsp).

Construction of prognostic signature

Univariate Cox analysis of heterogeneous genes associated with

M2 macrophage differentiation was performed using the R package

‘survival’ to screen for prognostic genes associated with lung

adenocarcinoma among them. In addition, the TCGA datasets

were randomly grouped on a 3: 2 scale by the “sample_frac”

function in the R package “dplyr” to obtain the training and

testing datasets. Based on these prognostic genes, a Lasso-Cox

regression analysis was performed using the R package ‘glmnet’

(Friedman et al., 2010; Wang H. et al., 2019). Next, a multivariate

Cox stepwise regression approach was performed to construct a

prognostic model related to the differentiation trajectory of

M2 macrophages. The formula for the signature was: risk

score = [Coef (gene 1) x gene Exp (1)] + [Coef (gene 2) x gene

Exp (2)] +. . . . . . + [Coef (gene 1) x gene Exp (i)]. R packages

‘survival’ and ‘survminer’ were used for Kaplan-Meier prognostic

analysis. The R package ‘timeROC’ was used to assess AUC values

for time-dependent ROC curves. To further improve the prediction

efficiency of the risk score, the R package ‘rms’ was used to combine

the pathological stage with the risk score to construct a more

accurate nomogram (Balachandran et al., 2015).

Immune infiltration analyses of prognostic
signature

Estimate, EPIC, MCPcounter, TIMER, and ssGSEA algorithms

were used to calculate immune infiltration abundance in lung

adenocarcinoma patients with different risk scores. Among these

five algorithms, the Estimate algorithm calculated the Estimate

score, tumor purity, immune score, and stromal score (Yoshihara

et al., 2013). The EPIC algorithm calculated the abundance of seven

immune cell types (Racle et al., 2017). The MCPcounter algorithm

calculated the abundance of 10 immune cell types (Becht et al.,

2016). The TIMER algorithm calculated the abundance of six

immune cell types (Li et al., 2020). Subsequently, the ssGSEA

algorithm was utilized to calculate the enrichment score of

24 immune cell gene sets (Bindea et al., 2013). These algorithms

revealed differences in immune cell infiltration abundance between

high- and low-risk groups.

Mutation analysis, and prediction of
immunotherapeutic and chemotherapy
responses

Based on the TCGA mutation data (maf format), mutations

in the high- and low-risk groups were analyzed using the R

package ‘Maftools’ andmapped waterfall plots (Mayakonda et al.,

2018). In addition, the TIDE algorithmwas utilized to analyze the

sensitivity of high- and low-risk groups to immune checkpoint

inhibitors (ICIs) (Jiang et al., 2018). Based on the signature

formula constructed above, the risk score of lung

adenocarcinoma patients was calculated in GSE126044 to

assess differences in immunotherapy efficacy. Subsequently,

the chemotherapeutic drug sensitivity (IC50) of patients in the

high- and low-risk groups was analyzed using the R package

‘pRRophetic’ (Geeleher et al., 2014). These studies helped provide

personalized treatment strategies.
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Statistical analysis

Statistical analyses were performed using R software (v 4.1.3),

and the results were visualized using the R packages. For non-

normally distributed data, Wilcoxon rank-sum test, as a non-

parametric test method, was used to examine the differences

between the two groups of continuous variables, while for three

and more groups we used the Kruskal–Wallis test for statistical

testing. Using the Cox regression method, Kaplan-Meier prognostic

analysis calculated the hazard ratio (HR). A two-sided p < 0.05 was

considered statistically significant. Spearman method was applied

for correlation analysis (*p < 0.05, **p < 0.01).

Results

scRNA-seq and cell annotation of lung
adenocarcinoma samples

To better understand the heterogeneity of M2 macrophages

in the TME of lung adenocarcinoma and its potential value for

prognosis and drug treatment screening, we extracted and

analyzed lung adenocarcinoma samples at the single-cell level.

Based on the meta-information and cell type annotation

information from the GSE127465 database on the TISCH

website, we extracted 12 lung adenocarcinoma samples that

FIGURE 1
Annotation of single-cell data and extraction of M2macrophage. (A) The tSNEmap shows the distribution of 12 lung adenocarcinoma samples
from the single-cell database GSE127465. (B) The tSNE plot shows that all the cells in the 12 lung adenocarcinoma samples can be classified into
24 clusters. (C) The tSNE map indicating that lung adenocarcinoma samples can be annotated as 13 cell types in the tumor microenvironment
(different colors represent different cell types). (D) The histogram showing the proportion of 13 cell types in each of the 12 samples (“Patient7 T2”
indicates the second tissue of patient7). (E) M2 macrophages classified into 9 clusters. (F) The bubble chart highlights the characteristic genes of
different clusters (G) The bar chart shows the proportion of 9 clusters in each lung adenocarcinoma sample (“Patient7 T2” indicates the second tissue
of patient7). (H,I) Biomarker genes in the 9 clusters of M2 macrophages.
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had been quality-controlled and standardized. To overcome

technical noise in scRNA-seq data, we performed Principal

Component Analysis (PCA), and each principal component

(PC) was considered a “meta-feature” (Supplementary Figure

S1A).We identified themost suitable number of PCs (24 PCs) for

downstream analysis by calculating the standard deviation of

each principal component (Supplementary Figure S1B). In

addition, we used tSNE, a nonlinear dimensionality reduction

algorithm, to demonstrate the distribution of single-cell data

from 12 lung adenocarcinoma samples (Figure 1A). We also

FIGURE 2
Identification of heterogeneous genes associated with differentiation trajectories of M2 macrophages. (A) Differentiation trajectory analysis of
M2 macrophages. (B,C) Pseudotime analysis of M2 macrophages. (D) The proportion of each state in the differentiation trajectory of
M2macrophages. (E) The heat map revealed that M2 macrophages could exhibit four expression patterns after differentiation. (F) KEGG enrichment
analysis of heterogeneous genes associated with differentiation of M2 macrophages. (G–I) GO enrichment analysis of heterogeneous genes
associated with M2 macrophage differentiation.
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examined the cell distribution of lung adenocarcinoma patients

of different ages and clinical stages (Supplementary Figure S1C,

D). Subsequently, we used the R package ‘Seurat’ to classify the

cells in 12 samples into 24 clusters (Figure 1B). These 24 clusters

can also be categorized into 13 cell types: B cells, CD4+ Tn cells,

CD8+ Tex cells, endothelial cells, fibroblasts, M2 macrophages,

malignant cells, mast cells, monocyte cells, neutrophils cells, NK

cells, and plasma cells (Figure 1C). We counted the frequency of

these 13 types of immune cells and found a higher proportion of

M2 macrophages in each of the 12 samples (Figure 1D). We then

extracted the M2 macrophages and re-clustered them using the

‘Seurat’ package (Figure 1E). The result suggested that

M2 macrophages can be classified into 9 clusters (0–8) based

on different molecular markers (Figure 1F). M2 macrophages of

lung adenocarcinoma patients showed considerable

heterogeneity in the different clusters. Patient seven had a

more significant proportion of cluster0 and cluster4 in the

M2 macrophages (Figure 1G). Patient six and patient four

had a high percentage of cluster1. Patient five had a larger

ratio of cluster5 and cluster6. However, patient three had a

greater portion of cluster3 and cluster6. Based on the above

clustering results, we analyzed the signature genes of the

9 clusters of M2 macrophages using the ‘FindAllMarkers’

algorithm and visualized the results with scatter plots and

heat maps (Figures 1H,I). We observed that the genes had

distinct expression differences between different clusters.

Differentiation trajectory of
M2 macrophages in tumor immune
microenvironment

The heterogeneity among M2 macrophages was intriguing,

and to further investigate the biological functions of essential

genes in the differentiation of M2 macrophages, we performed

differentiation trajectory analyses. We found that

M2 macrophages can be divided into five differentiation states

(Figure 2A). Meanwhile, we found that subpopulations of M2-

type macrophages were differentially distributed on

differentiation trajectory (Supplementary Figure S1E).

Subsequently, we performed pseudotime analysis on

M2 macrophages (Figures 2B,C). Purple indicated the initial

state of cell differentiation, and yellow indicated the terminal

state. Since state2 had a smaller number of cells and a high

overlap with state4 in differentiation trajectory and pseudotime,

we merged state2 with state4 as a whole. State1 accounted for

32%, state2&4 accounted for 11%, state3 accounted for 31%, and

state5 accounted for 26% of all M2 macrophages (Figure 2D). In

addition, we found that heterogeneous genes associated with the

differentiation trajectory of M2 macrophages illustrated four

expression patterns (Figure 2E).

We performed KEGG and GO analysis based on these

statistically significant heterogeneous genes (p < 0.0001).

KEGG enrichment analysis indicated that these heterogeneous

genes were involved in activating numerous signaling pathways

(Figure 2F). Examples include the Chemokine, IL-17, HIF-1,

B cell receptor, and PI3K-Akt signaling pathway. The diverse

activation levels of these pathways suggested that the different

states of M2 macrophages might play distinct roles in the

progression of lung adenocarcinoma. GO analysis phenotyped

the heterogeneous genes in biological processes, cellular

components, and molecular functions (Figures 2G–I,

Supplementary Table S2). The results revealed that these

genes activate multiple immune cells in the TME, suggesting

crosstalk between M2 macrophages and immune cells.

Differential states of M2 macrophages
reveal the heterogeneity of function
characteristics and cellular
communication levels

To further examine the functional differences between the

different classes of M2 macrophages we distinguished, we

performed a GSVA enrichment analysis. First, we verified the

potential differences in molecular mechanisms among the

9 clusters of M2 macrophages. Although M2 macrophages

exhibited pro-oncogenic activity, the different clusters of

M2 macrophages showed significant differences in the

activation levels of the 50 gene sets contained in Hallmark

(Figure 3A). For instance, cluster7 and cluster8 have lower

activation levels in numerous pathways than the other seven

types of clusters. This suggested that cluster7 and cluster8 might

be relatively weak in oncogenic activities. To better understand

this heterogeneity withinM2macrophages, we also performed an

enrichment analysis of the different states in the differentiation

trajectory (Figure 3B). The results confirmed substantial

heterogeneity among the different states. It was found that

state1 had significantly higher enrichment levels in the

epithelial-mesenchymal transition (EMT). In comparison,

states2&4 had significantly higher activation levels in the

reactive oxygen species (ROS) pathway, mitotic spindle, and

interferon-gamma response. State3 was significantly activated

on the apical junction and notch signaling and had the lowest

activation on E2F targets, G2M checkpoint, and the genes

upregulated by ultraviolet (UV) radiation. State5 was notably

enriched in angiogenesis, hypoxia, and genes upregulated by

KRAS signaling. Subsequently, we analyzed the differences in the

metabolic activities of M2 macrophages in these states using the

R package ‘scMetabolism’ (Figure 3C). The red color in the heat

map corresponds to the higher activation level, and we can

identify that the different states of M2 macrophages have

distinct metabolic levels. This heterogeneity in metabolic levels

may reveal differences in the functional levels of the

M2 macrophages in different states. Finally, we analyzed the

cellular communication between M2 macrophages and the other
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cells in the TME (immune checkpoints, cytokines, and growth

factors). Regarding immune checkpoints (Figures 3D,E), we

found that the M2 macrophages of state1 mainly

communicated with NK cells, neutrophils, monocyte cells, and

cDC2 cells. M2 macrophages in state2&4 communicated with

malignant cells, CD4+ Tn cells, and CD8+ Tex cells in addition to

FIGURE 3
Enrichment analyses of M2macrophages in different differentiation states and cell communication analyses in the TME. (A) The GSVA algorithm
demonstrates different enrichment levels of 9 clusters (M2 macrophages) in the Hallmark pathway. (B) The GSVA analysis of differentiation states of
M2 macrophages. (C) Enrichment scores of metabolism-related pathways in different differentiation states of M2 macrophages. (D,E)
Communication between M2macrophages of different differentiation states and various cell types in the tumor microenvironment at the level
of checkpoints. (F,G) Communication between M2 macrophages of different differentiation states and various cell types in the tumor
microenvironment at the level of cytokines. (H,I) Communication between M2macrophages of different differentiation states and various cell types
in the tumor microenvironment at the level of growth factors.

Frontiers in Genetics frontiersin.org07

Chen et al. 10.3389/fgene.2022.1010440

42

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1010440


the above 4 cells. M2 macrophages in state3 had extensive

communication with plasma cells and malignant cells. In

contrast, M2 macrophages in state5 communicated

predominantly with monocyte cells. In terms of cytokines, the

different states of M2 macrophages also have diverse levels of

cellular communication (Figures 3F,G). However, in terms of cell

FIGURE 4
Construction of M2 macrophage differentiation-related prognostic signature. (A) Lasso Cox analysis of prognostic genes associated with
M2macrophage differentiation. (B)Multifactorial stepwise regression to construct a 7-gene prognostic model. (C)Coefficients of seven genes in the
model formula. (D–G) Risk factor diagrams of signatures in the training, testing, whole TCGA, and GSE31210 dataset. (H–K) Kaplan-Meier prognostic
analysis of signatures in the training, testing, whole TCGA, and GSE31210 dataset. (L–O) Time-dependent ROC curves of signatures in the
training, testing, whole TCGA, and GSE31210 dataset.
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growth factors, there was no significant difference in the level of

communication between these states of M2 macrophages and

immune cells (Figures 3H,I). Together, the above results

demonstrated heterogeneity in the level of cellular

communication among different states of M2 macrophages.

Prognostic signature based on
heterogeneous genes associated with
differentiation of M2 macrophages can
accurately predict lung adenocarcinoma
patients’ outcome

After extracting heterogeneous genes associated with the

differentiation trajectory of M2 macrophages, we performed a

univariate Cox analysis in the TCGA database and obtained

289 prognosis-related genes of lung adenocarcinoma. Utilizing

Lasso-Cox with multivariate stepwise regression, we

constructed a prognostic model for lung adenocarcinoma in

the training set (Figures 4A,B). In addition, Figure 4C shows the

coefficients of the seven genes incorporated into the formula.

These seven genes were: CCL20, BIRC3, CRYL1, SLC46A3,

MAP3K8, TMED10, and CCR2. The formula of the model was:

risk score = [0.144635490549132 * CCL20 Exp] +

[0.343940732365844 * BIRC3 Exp] + [-0.291003194691483 *

CRYL1 Exp] + [-0.241116620394011 * SLC46A3 Exp] +

[-0.317179567218481 * MAP3K8 Exp] +

[0.813174718146032 * TMED10 Exp] +

[-0.353159490585916 * CCR2 Exp]. Using this formula, we

calculated the risk score values in the testing set, the entire

TCGA database, and the external validation dataset GSE31210.

Lung adenocarcinoma patients with high-risk scores had higher

deaths in these four datasets (Figures 4D–G). The heat map

results also indicated that the expression of the above seven

genes had significant differences in the two risk groups. We

then performed Kaplan-Meier prognostic analysis to explore

the potential value of our constructed model for patients with

lung adenocarcinoma. Patients with high-risk scores had a

worse prognosis in the training set (HR = 3.38, p < 0.001),

the testing set (HR = 2.48, p = 0.001), the entire TCGA set (HR =

2.89, p < 0.001), and the GSE31210 database (HR = 5.34, p <
0.001, Figures 4H–K). We also performed a time-dependent

ROC curve analysis on these four databases to judge our

model’s accuracy in predicting prognosis. The AUC values of

our model in the training set for 1-, 3-, and 5-years overall

survivals were 0.742, 0.762, and 0.758, respectively

(Figure 4L–O). In the testing set, the AUC values of our

model for 1-, 3-, and 5-years survival were 0.741, 0.739, and

0.741, respectively. In the entire TCGA dataset, the AUC values

of our model for 1-, 3-, and 5-years survival were 0.741, 0.753,

and 0.741, respectively. While, in the GSE31210 dataset, the

AUC values of our model for 1-, 3-, and 5-years survival were

0.784, 0.658, and 0.708, respectively.

Furthermore, we analyzed the relationship between

numerous clinical factors and risk scores (Figures 5A–D). It

was found that there was no statistical difference in the risk

score between the two groups of patients aged≥65 years and

those aged<65 years. The difference between the two risk

groups of patients with different gender and smoking history

was also not statistically different. However, the differences

among patients with different pathologic stages were

statistically significant. Patients with high pathological

stages tended to have higher risk scores. In addition, we

performed Kaplan-Meier prognostic analysis of lung

adenocarcinoma patients with different clinical

characteristics separately (Figure 5E–L). The results showed

that patients with high-risk scores had a poor prognosis in all

age groups (≥65, <65), all gender groups (Male, Female), and

all pathological stage groups (Pathological stage IandII,

Pathological stage IIIandIV). There was a significant

prognostic difference between the high- and low-risk

groups among the smoking group, with patients in the

high-risk group having a poor prognosis (HR = 2.83, p <
0.001), however, there was no significant prognostic difference

between the high- and low-risk groups in the non-smoking

group. We also performed the univariate and multivariate Cox

regression analyses regarding the risk scores. Our results

showed that the risk score is an independent prognostic

factor for lung adenocarcinoma and can be used as a

clinical parameter to determine the prognosis of patients

(Figure 5M, N).

Significant difference in molecular
mechanisms and immune infiltration
levels between high- and low-risk groups

As demonstrated in the above study, lung

adenocarcinoma patients had significantly different

prognoses between the high- and low-risk groups.

Differential expression analysis was performed for the

high-risk versus low-risk groups to investigate the

mechanisms involved. Firstly, we used the R package

‘limma’ to identify differentially expressed genes (|FC|>1.5,
FDR<0.05) and mapped the volcano (Figure 6A), Then, we

performed enrichment analysis using GO and KEGG

(Figure 6B, Supplementary Table S3). KEGG results

showed significant enrichment in the cell cycle and IL-17

signaling pathway (Figure 6C). In addition, we performed

GSVA enrichment analysis and plotted heat map and

histogram for lung adenocarcinoma patients in high- and

low-risk groups. Fifty gene sets from Hallmark were selected

for GSVA analysis. By comparing the enrichment scores of

the two groups in these 50 gene sets, 25 gene sets showed a

statistically significant difference (Figures 6D,E). These

results might explain the underlying mechanism for the
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difference in the prognosis of lung adenocarcinoma patients

with different risk scores.

To understand the differences in TME among patients

with different risk scores, we also analyzed the abundance of

immune infiltration in high- and low-risk groups. Analysis

using the Estimate algorithm showed that the high-risk group

had higher tumor purity but lower immune and stromal

scores (Figures 7A–D). This suggested that patients with

FIGURE 5
Relationship between risk score and clinical factors in themodel. (A–D) The risk score of patients with different clinical factors. (E,F) Relationship
between risk score and prognosis in different age groups. (G,H) Relationship between risk score and prognosis in different gender groups. (I,J)
Relationship between risk score and prognosis in different smoking history groups. (K,L) Relationship between risk score and prognosis in different
pathological stage groups. (M) Univariate and (N) multivariate Cox analysis of risk score and clinical factors.
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FIGURE 6
Enrichment analysis of differentially expressed genes between high- and low-risk groups. (A)Differentially expressed genes between high- and
low-risk groups (FDR <0.05, |FC| > 1.5). (B) GO and KEGG enrichment analysis for differentially expressed genes. (C) Visualization of KEGG
enrichment analysis results. (D,E) The heat map and bar chart shows the GSVA analysis results between the high- and low-risk groups.
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high-risk scores exhibited a state that promoted tumor escape

due to the lack of anti-tumor immune cells in the TME. Then,

to investigate the immune status of the two risk groups in

more detail, we used the ssGSEA algorithm to calculate the

infiltration abundance of 24 immune cell types (Figure 7E).

The results revealed that the high-risk group generally had a

lower infiltration abundance of immune cells, including

B cells, T cells, CD8+ T cells, NK cells, DC cells, and mast

FIGURE 7
Immune infiltration analysis between high- and low-risk groups. (A–D) Immune infiltration abundance between high- and low-risk groups by
Estimate algorithm. (E) The histogram displays differences in infiltrating abundance of 24 immune cell types in high- and low-risk groups analyzed by
the ssGSEA algorithm. (F) Correlation between the risk score and 24 immune cell types. (G) The heat map showing the immune infiltration analysis
results of EPIC, TIMER, MCPcounter, and ssGSEA.
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cells, compared to the low-risk group. Spearman correlation

analysis also showed that the abundance of immune cells was

negatively correlated with the risk scores for almost all

immune cell types except Th2 cells (Figure 7F). We also

used the MCPcounter, TIMER, and EPIC algorithms to

confirm these results. By plotting the heat map, we

visualized that lung adenocarcinoma patients in the high-

risk group had lower levels of immune infiltration

(Figure 7G).

Risk score can suggest disparities in gene
mutations and guide immunotherapy and
chemotherapy

Since gene mutation status significantly affects tumor

formation and progression, we performed a mutation

analysis of lung adenocarcinoma patients in high- and low-

risk groups. We further analyzed the differences between the

top 20 genes with the highest mutation frequencies in the high

FIGURE 8
Mutation status and prediction of immunotherapy and chemotherapeutic response between high- and low-risk groups. (A,B) Analysis of top
20 mutation genes in high-risk versus low-risk groups. (C) TIDE immunotherapy response prediction in high- and low-risk groups of LUAD TCGA
cohort. Chi-square test: no response to immunotherapy: high-versus low-risk, 68.8% versus 56.0%, OR = 1.731, p = 0.004. (D) The Independent
immunotherapy dataset (GSE126044) validated immunotherapy efficacy in high- and low-risk groups. (E) Screening of chemotherapeutic
agents sensitive to high- and low-risk groups.
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and low-risk groups respectively (Figures 8A,B). The

frequency of TP53 mutations in the high-risk group was

55.1%, while it was 48.2% in the low-risk group. The

frequency of KRAS mutations was 31.8% in the high-risk

group versus 27.3% in the low-risk group. The difference in

gene mutation frequency might be the reason for the poorer

prognosis in the high-risk group. Based on the above analyses,

we explored the treatment strategies for different risk scores in

depth. Since immunotherapy is commonly used in lung

adenocarcinoma, we first calculated the response to

immunotherapy in high- and low-risk groups using the

TIDE algorithm (Figure 8C). The results suggested that the

FIGURE 9
Building amore accurate nomogram. (A)Nomogramwas constructed by combining pathological stageswith risk scores. (B)Nomogram’s 1-, 3-
, and 5-years calibration curve. (C) The ROC curve shows AUC values for various clinical factors, risk scores, and nomogram scores. (D) ROC analysis
of nomogram score in TCGA database. (E) ROC analysis of nomogram score in GSE31210 database (validation set). (F) Kaplan-Meier prognostic
analysis of nomogram score in TCGA database. (G) Kaplan-Meier prognostic analysis of nomogram score in GSE31210 database.
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low-risk group had a better treatment response upon

immunotherapy (OR = 1.731, p = 0.004). We further

validated this result using the GSE126044 database. Results

showed that patients with CR/PR after immunotherapy had a

significantly lower risk score than SD/PD (p = 0.038),

suggesting that patients with a low-risk score are

susceptible to benefit from immunotherapy (anti-PD-

1 treatment) (Figure 8D). However, the high-risk group had a

worse prognosis, so we performed a prediction of response to

chemotherapeutic agents for patients in the high- and low-risk

groups. We utilized the R package ‘pRRophetic’ to calculate the IC50

of chemotherapeutic drugs (Figure 8E). We found that the high-risk

group had better sensitivity to A-443654, BIBW-2992, Docetaxel,

Paclitaxel, Embelin, and RO-3306. Taken together, we provided a

personalized treatment option for clinical reference by predicting the

treatment effect of patients in different subgroups and compensated

for the poorer effect of immunotherapy in the high-risk group.

A nomogram with a potential clinical
application can be constructed based on
risk score and pathological stage

The above study indicated that the risk score could act as an

independent prognostic factor that can be used to determine the

prognosis of patients. Therefore, to further improve our signature’s

predictive efficiency, we constructed a nomogram based on the

TCGA database, incorporating factors such as pathological stage

and risk scores (Figure 9A).We could visualize the risk assessment

by calculating the score and assessing the outcome probability for

each patient. In addition, we tested the predictive efficacy of the

nomogram using a calibration plot (Figure 9B). The nomogram’s

1-, 3-, and 5-years survival predictionsweremore accurate than the

theoretical values. To further compare the predictive efficacy of the

nomogram score with other clinical factors, we plotted the ROC

curve. The nomogram score had the highest AUC value, and the

predictive efficiency was further improved based on the risk score

(Figure 9C). By performing the time-dependent ROC curve based

on the nomogram score, we found that the AUC values of 1-, 3-,

and 5-years overall survival for lung adenocarcinoma patients were

0.786, 0.789, and 0.776, respectively. To verify the accuracy of the

nomogram, we constructed the nomogram again based on the

external dataset GSE31210. Time-dependent ROC analysis

showed that the AUC values of 1-, 3-, and 5-years overall

survival for lung adenocarcinoma patients were 0.918, 0.777,

and 0.744, respectively (Figures 9D,E). These results suggested

that the nomogram we constructed had good accuracy. We also

performedKaplan-Meier prognostic analyses using the TCGA and

external database GSE31210. The results indicated that the high

nomogram score group had a significantly worse prognosis than

the low score group (Figures 9F,G). In summary, the nomogram

significantly improved the accuracy of determining the survival

status of lung adenocarcinoma patients.

Discussion

The interconnection between tumor cells, immune cells, and

stromal cells in the TME substantially influences tumorigenesis

and tumor progression (Anderson and Simon, 2020). The spatial

interplay of immune cells and other cells in the TME determines

the immune response against tumors (Petitprez et al., 2020). As

immunotherapy of tumors has been intensively studied, immune

checkpoint inhibitors (ICIs) against tumor immune escape are

expected to be an essential strategy to improve the prognosis of

lung adenocarcinoma patients (Qiao et al., 2021; Liu et al., 2022;

Reda et al., 2022). However, due to the heterogeneity and

complexity of the TME, patients with the same pathological

stage may also exhibit different TME characteristics, resulting in

different therapeutic effects upon immunotherapy (Bagaev et al.,

2021). Therefore, developing a prognostic model to determine

the prognosis of lung adenocarcinoma patients early and to

provide targeted immunotherapeutic strategies has significant

potential for clinical application.

Tumor-associated macrophages, a vital member of the TME,

have been identified in two types with different functional

features, the classically activated M1 macrophages and the

alternative activated M2 macrophages (Cassetta and Pollard,

2020). M1 macrophages appear in the inflammatory

environment and are usually induced by cytokines from Th1,

whereas M2 macrophages are primarily induced by cytokines

from Th2 and counteract the inflammatory response

(Sedighzadeh et al., 2021). Previous studies have shown that

although all M2 macrophages exhibit anti-inflammatory and

immunomodulatory effects, there is still heterogeneity among

M2 macrophages. M2 macrophages can be further distinguished

into four subtypes. M2a macrophages are involved in tissue

fibrosis, M2b macrophages are shown to promote tumor

progression, M2c macrophages are exhibited to be involved in

tissue remodeling, and M2d macrophages promote angiogenesis

(Wang L. X. et al., 2019). A growing number of studies have

shown a significant correlation between M2 macrophages and

lung adenocarcinoma progression. Lung adenocarcinoma

patients with a higher density of M2 macrophages tend to

have a poorer prognosis (Cao et al., 2019; Guo et al., 2019;

Dai et al., 2020). M2 macrophages create an environment

conducive to tumor survival by releasing growth factors,

chemokines, and other inflammatory mediators (Solinas et al.,

2009; Lin et al., 2019). In addition, M2 macrophages can also

promote tumor metastasis and invasion by promoting

angiogenesis and other pathways (Jetten et al., 2014; Xie et al.,

2021). To further analyze the differences in composition and

function within M2 macrophages, we used bioinformatics to

perform an in-depth analysis at the single cell level.

Through annotation and clustering analysis of single-cell

data, we identified differences in the composition of

M2 macrophages in lung adenocarcinoma patients. These

differences might indirectly contribute to the discrepancy in
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biological processes and prognosis among patients. In addition,

we performed differentiation trajectory analysis and pseudo-time

analysis on M2 macrophages, identifying the different

differentiation states of M2 macrophages. Lung

adenocarcinoma patients exhibited four expression patterns

based on the heterogeneous genes in the differentiation

trajectory. The GSVA enrichment analysis helped us to

understand the functional differences between different states

of M2 macrophages. The GSVA results from our study above

showed that M2 macrophages in state5 had the highest

angiogenesis score, M2 macrophages in state1 had the highest

epithelial-mesenchymal transition (EMT) score, and

M2 macrophages in state2&4 had the highest interferon-

response score. In contrast, M2 macrophages in state3 had the

lowest G2M checkpoint score. This discrepancy reveals that

macrophages in different states may differ in their cancer-

promoting functions. Previous studies have also shown that

M2 macrophages are significantly associated with angiogenesis

and lymphangiogenesis, which contribute to the development of

lung cancer, and also support that M2 cells are a strong indicator

of poor prognosis in lung cancer (Hwang et al., 2020). Identifying

particular metastasis-promoting or EMT-promoting subtypes of

M2 macrophages also can help to explore the underlying

molecular mechanisms further. Additionally, this

heterogeneity of different states of M2 macrophages was also

reflected in the metabolic and cellular communication levels. Our

results provide a novel insight into the heterogeneity in

M2 macrophages. Whereas the previous classification of

M2 macrophages was based on different cytokine activation

patterns (Colin et al., 2014), we distinguished different

differentiation states of M2 macrophages based on single cell

analysis. In addition, our study investigated the role of

heterogeneous genes in the differentiation of M2 macrophages

to guide the clinical therapy of lung adenocarcinoma.

We extracted heterogeneous genes, essential in the

differentiation trajectory of M2 macrophages, and performed

a univariate Cox analysis to screen for prognosis-related genes in

lung adenocarcinoma. We constructed a prognostic model using

Lasso-Cox and multivariate stepwise regression methods based

on the prognosis-related genes in the training set. We measured

the predictive efficacy of the model and explored the potential

molecular mechanisms between high- and low-risk groups.

Previous studies have shown that the status of the tumor

microenvironment can be quantitatively assessed by risk

scores (Chong et al., 2021). In our research, we found that

patients in the high-risk group had an immunosuppressive

microenvironment while the low-risk group had an immune-

promoting microenvironment. Notably, the treatment of

immune checkpoint inhibitors (ICIs) has become a hot topic

in tumor therapy strategies. Immunotherapy targeting M2-type

macrophages is emerging as a new direction for tumor therapy

(Mills et al., 2016). The major molecules targeted by

immunotherapy are programmed death receptor 1 (PD-1) and

programmed death receptor ligand 1 (PD-L1). However, due to

the complexity of the in vivomicroenvironment, immunotherapy

has an obvious shortcoming in that only a fraction of tumor

patients respond to ICIs treatment (Wang et al., 2021). TIDE, as a

novel computational architecture, has been considered as an

alternative to single biomarkers for predicting the therapeutic

effect of ICIs (Jiang et al., 2018). With the dual validation of the

TIDE algorithm and GSE126044 set, we found that the low-risk

group benefited more from immunotherapy, and this also

directly indicated that the prognostic model we constructed

could advance the personalization of immunotherapy.

As the high-risk group was shown to have a poor prognosis, we

identified chemotherapeutic agents (A-443654, BIBW-2992,

Docetaxel, Embelin, Paclitaxel, RO-3306) with better sensitivity

for the high-risk group. A-443654 is an inhibitor of the AKT

pathway that induces apoptosis and inhibits tumor growth (Luo

et al., 2005). BIBW-2992 was reported to inhibit the kinase activity

of EGFRmutants and suppress lung adenocarcinoma development

(Li et al., 2008). Docetaxel and Embelin can induce the apoptosis of

lung adenocarcinoma tumor cells (Avisetti et al., 2014; Jeong et al.,

2021). Meanwhile, Paclitaxel, as first-line chemotherapy for

patients who do not benefit from immunotherapy, together

with RO-3306, can cause cell cycle G2/M phase arrest and lead

to apoptosis in lung adenocarcinoma cells (Vassilev et al., 2006; Cui

et al., 2020). The above chemotherapy drugs could compensate for

the deficiency in immunotherapy efficacy in the high-risk group. In

addition, to further improve the predictive performance of the

prognostic model, we constructed a nomogram by combining the

risk scores with the pathological stages. Nomogram has

significantly better prognostic efficacy than the pathological

stages and can be used as a complement to clinical factors by

providing a more refined risk assessment.

In summary, for the first time, this research constructed a

signature that can assess the prognosis of lung adenocarcinoma

patients based on heterogeneous genes related to the

differentiation trajectory of M2 macrophages. Our results

provide a new research idea for the precision treatment of

lung adenocarcinoma. However, our study still has some

shortcomings. More in-depth studies are needed in the future

to identify the potential molecular mechanisms of heterogeneous

genes associated with the differentiation of M2 macrophages.

Conclusion

M2 macrophages, as a critical component of the lung

adenocarcinoma microenvironment, promote tumor

progression and metastasis. In this study, we performed

differentiation trajectory and pseudotime analysis using

scRNA-seq data to identify different differentiation states of

M2 macrophages. By exploring the heterogeneous genes

associated with M2 macrophages’ differentiation, we

constructed a prognostic model to predict the prognosis and
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adjuvant treatment effect of lung adenocarcinoma patients,

which could potentially be used as a clinical parameter for

clinicians’ therapy decisions in the future.
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Lung adenocarcinoma (LUAD) is a malignant disease with an extremely poor

prognosis, and there is currently a lack of clinical methods for early diagnosis

and precise treatment and management. With the deepening of tumor

research, more and more attention has been paid to the role of immune

checkpoints (ICP) and long non-coding RNAs (lncRNAs) regulation in tumor

development. Therefore, this study downloaded LUAD patient data from the

TCGA database, and finally screened 14 key ICP-related lncRNAs based on ICP-

related genes using univariate/multivariate COX regression analysis and LASSO

regression analysis to construct a risk prediction model and corresponding

nomogram. After multi-dimensional testing of the model, the model showed

good prognostic prediction ability. In addition, to further elucidate how ICP

plays a role in LUAD, we jointly analyzed the immune microenvironmental

changes in LAUD patients and performed a functional enrichment analysis.

Furthermore, to enhance the clinical significance of this study, we performed a

sensitivity analysis of common antitumor drugs. All the aboveworks aim to point

to new directions for the treatment of LUAD.

KEYWORDS

lung adenocarcinoma, lncRNA, immune check point, tumor microenvironment,
bioinformatic analyse

OPEN ACCESS

EDITED BY

Chang Gu,
Tongji University, China

REVIEWED BY

Bian Chengyu,
Nanjing Medical University, China
Kui Hu,
Guizhou Provincial People’s Hospital,
China

*CORRESPONDENCE

Yongxiang Song,
Songtang2004@163.com

†These authors have contributed equally
to this work and share first authorship

SPECIALTY SECTION

This article was submitted to Cancer
Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

RECEIVED 11 August 2022
ACCEPTED 05 September 2022
PUBLISHED 21 September 2022

CITATION

Liu Y, Yu M, Cheng X, Zhang X, Luo Q,
Liao S, Chen Z, Zheng J, Long K, Wu X,
Qu W, Gong M and Song Y (2022), A
novel LUAD prognosis prediction model
based on immune checkpoint-
related lncRNAs.
Front. Genet. 13:1016449.
doi: 10.3389/fgene.2022.1016449

COPYRIGHT

©2022 Liu, Yu, Cheng, Zhang, Luo, Liao,
Chen, Zheng, Long, Wu, Qu, Gong and
Song. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Abbreviations: CAFs, cancer-associated fibroblasts; CAR, chimeric antigen receptor; CNV, copy
number variation; CTLA-4, cytotoxic T lymphocyte antigen-4; GDSC, genomics of drug sensitivity
in cancer; ICP, immune checkpoints; ICPDEGs, immune checkpoint genes; IL-2, interleukin 2;
lncRNAs, long non-coding RNAs; LUAD, lung adenocarcinoma; MDSCs, myeloid-derived
macrophages; NSCLC, non-small cell lung cancer; OS, overall survival; PD-1, programmed cell
death protein 1; SCLC, small cell lung cancer; TIDE, tumor immune dysfunction and exclusion;
TIL, tumor-infiltrating lymphocyte; TMB, tumor mutational burden; TME, tumor microenvironment;
Tregs, regulatory T cells.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 21 September 2022
DOI 10.3389/fgene.2022.1016449

55

https://www.frontiersin.org/articles/10.3389/fgene.2022.1016449/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1016449/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1016449/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1016449/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.1016449&domain=pdf&date_stamp=2022-09-21
mailto:Songtang2004@163.com
https://doi.org/10.3389/fgene.2022.1016449
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.1016449


Introduction

Lung cancer, as one of the most common types of cancer all

over the world, has gained much attention in recent years (Cao

et al., 2020; Ferlay et al., 2018). It was estimated that 2.09 million

new cases were newly diagnosed, and 1.76 million patients died

in 2018 (Bray et al., 2018). According to histological types, lung

cancer could be classified as non-small cell lung cancer (NSCLC)

and small cell lung cancer (SCLC) roughly, and lung

adenocarcinoma (LUAD) was the major subtype that

accounted for over one million worldwide deaths annually

(Zhang et al., 2020a). Smoking has become the most common

risk factor for LUAD (Gould et al., 2007). Several approaches

have been used in the clinical treatment of LUAD patients,

mainly including radiotherapy, chemotherapy, and surgical

resection according to the TNM system (Nasim et al., 2019).

When progressed to advanced stages, survival decreased monthly

sharply, so it is of great need for early diagnosis and intervention

(Steven et al., 2016). Along with the rapid growth of large-scale

genomic studies in recent decades, some somatic mutations

associated with LUAD have been noticed like TP53, KRAS,

EGFR, et al., which emphasized the importance of

immunotherapies (Campbell et al., 2016). Meanwhile, for

advanced LUAD, the effect of chemotherapy was greatly

limited by its malignant nature, and immunotherapy seed to

be the most effective approach to provide early diagnosis and

improve survival status (Zheng et al., 2021). So, more immune

therapeutic targets are needed for better and more precise clinical

diagnosis and prognosis.

With the growing development in immunotherapy, several

types with different mechanisms of action have been applied in

clinical treatment, like vaccinations, monoclonal antibodies, and

checkpoint inhibitors (Abbott and Ustoyev, 2019). Oncolytic

vaccines were created in the 1920s and shelved until 1976 due to

lake of understanding of the specific mechanism.

As an effective method for non-Hodgkin’s lymphoma,

rituximab has gradually been used in many types of cancer as

an important monoclonal antibody (Ribatti, 2014). The latest

immune checkpoint (ICP) proteins, like programmed cell death

protein 1 (PD-1) and antibodies against cytotoxic T lymphocyte

antigen-4 (CTLA-4) also have been fully investigated

(Thompson, 2018). The former is a cell-surface receptor

expressed on immune cell types, while the latter mainly

reduces interleukin 2 (IL-2) production and T-cell

proliferation (Kennedy and Salama, 2020). As for a novel T

cell-target method, chimeric antigen receptor (CAR) T cell

therapies have been developed and approved for clinical use

mainly in hematological cancers owing to the delivery barriers

faced by solid tumors (Fesnak et al., 2016). Therefore, it is of great

importance to explore novel targets for solid tumors,

especially LUAD.

Long non-coding RNAs (lncRNAs) represent a major class

of regulatory non-coding RNAs larger than 200 nt in length

(Peng et al., 2017). Altered immune infiltration is a hallmark

of the tumor, and it is well recognized that lncRNAs regulate

the immune response in cancer progression (Zhang et al.,

2020b). Some studies demonstrated that the ectopic

expression of lncRNA-cell division cycle six promoted

proliferation and metastasis of breast cancer cells via

regulation of the G1 phase checkpoint, demonstrating a

critical effect in tumor development (Kong et al., 2019).

Meanwhile, much emphasis has been put on the tumor

microenvironment (TME) to further elucidate the immune

alteration which influences tumor development apart from

tumor cells. In solid tumors, TME consists of several types of

immune cells and stromal cells, like cancer-associated

fibroblasts (CAFs), regulatory T cells (Tregs), myeloid-

derived macrophages (MDSCs), etc. (Mu and Najafi, 2021).

While the correlation between lncRNAs and TME remains a

mystery.

Thus, we conducted an overall immune checkpoint-

related lncRNAs risk and prognostic model in patients

with LUAD, trying to explore risk factors for cancer

clinical care through bioinformatics technique and survival

analysis, and provide potential therapeutic targets for clinical

treatment.

Materials and methods

Data acquisition and processing

All relevant LUAD patients’ information and data in this

study were downloaded from the TCGA database (Blum et al.,

2018). After excluding samples with missing prognostic

information or survival time of fewer than 30 days, finally,

490 LUAD samples were included in this study. These

samples are randomly divided into the training set and testing

set. A total of 246 samples in the training set were used to develop

a predictive risk model. The testing set included 244 samples used

to validate the established risk model. The 47 ICP genes were

derived from the latest research results of Liu et al. (2022)

(Supplementary Table S1). ICP-related lncRNAs were

obtained by Pearson’s correlation test (Pearson correlation

coefficient >0.4, p < 0.001), and 2,061 ICP-related lncRNAs

were identified.

Differential RNA screening

The expression levels of lncRNAs and mRNA were extracted

from the transcriptome data of LUAD and normal samples,

respectively, and lncRNA expression and differential analysis

were performed using the “limma” package, where genes with

FDR < 0.05 and |logFC| > 1 were considered to have significant

differences.
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Construction of risk models

Combined with the prognostic information of patients,

univariate regression analysis was used to screen the

differential ICP-related lncRNAs associated with prognosis.

Afterward, we used LASSO regression (R package “glmnet”,

version 4.1-3) to run 1,000 cycles of 10-fold cross-validation

with p < 0.05. Finally, through multivariate regression analysis, a

14 ICP-related lncRNAs risk model was constructed.

We calculated the risk score with the following formula:

Risk score � ∑n

k�1Coef(ln cRNA)pexpr(ln cRNAk)

where Coef (lncRNA) represents the correlation coefficient between

lncRNAs and survival, and expr (lncRNAK) represents the

expression of lncRNAs. All selected LUAD samples were divided

into high-risk and low-risk groups based on the mean risk scores.

Risk model testing and evaluation

Through univariate/multivariate regression analysis, ROC

curves were performed (“glment,” “survminer,” and “survival”

R packages) to test whether the risk model could be used as an

independent predictor of prognosis in LUAD patients. In total,

we calculated and plotted 1-, 3-, and 5-years ROC curves.

Survival analysis and principal component
analysis

Kaplan–Meier (K-M) survival analysis was used to determine

the overall survival (OS) of LUAD patients between two groups

by the “survival” package. Principal component analysis (PCA) is

used for efficient dimensionality reduction, model identification,

and group visualization of high-dimensional data.

Nomogram construction

To better guide the clinical diagnosis and treatment of

LUAD, we combined the risk scores, and other clinical

features to construct a nomogram by “rms” package.

Tumor microenvironment and
immunotherapy analysis

Using the “maftools” R package, tumor mutational burdens

(TMBs) in LUAD patients were assessed. Furthermore, the

CIBERSORT (Newman et al., 2015) and ssGSEA algorithm,

as well as TIMER (http://timer.comp-genomics.org) {Li,

2017 #21} were performed to evaluate the immune cell

infiltration status in different risk groups. To predict the

efficacy of clinical immunotherapy in LUAD patients, we

used Tumor Immune Dysfunction and Exclusion (TIDE)

prediction.

Drug sensitivity analysis

IC50 of each LUAD patient relative to a common

antineoplastic drug was determined as the patient’s sensitivity

to this drug using the Genomics of Drug Sensitivity in Cancer

(GDSC) platform (Yang et al., 2013) and used R package

pRRophetic (version 0.5) for calculation and visualization.

Functional analysis

GSEA analysis was done using gene set enrichment analyses

software (https://www.gsea-msigdb.org/gsea/login.jsp)

(Subramanian et al., 2005). GO and KEGG enrichment

analyses based on the differential genes between high and

low-risk groups were performed using DAVID online site

(version 6.8), where relevant annotations with p < 0.05 and

FDR < 0.05 were considered significantly different.

Additionally, competitive endogenous RNA (ceRNA)

networks were constructed and visualized using Cytoscape

(version 3.6.1).

Statistical analysis

All statistical analyses were performed in R software (version

4.1.1). Differences between groups were compared using the

Wilcoxon rank-sum test. K-W tests were used to compare

differences between three or more groups. Statistical

significance was defined as a p < 0.05 if the above methods

were not specifically stated.

Results

Expression and copy number variation of
immune checkpoints-related genes in
LUAD

The workflow is shown in Figure 1. Forty-seven ICP-related

genes were obtained for further analysis (Supplementary Table

S1) as well as LUAD patients’ clinical features can be found in

Supplementary Table S2. Differences in the expression of ICP-

related genes between 535 tumor tissues and 59 normal tissue

samples are shown in Figure 2A. Additionally, somatic copy

number variation (CNV) among 47 ICP genes was studied

(Figure 2C). The ICP-related lncRNAs interaction network is

shown in the form of the Sankey diagram (Figure 2B, r > 0.4, p <
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FIGURE 1
Workflow chart.

FIGURE 2
Genetic and expression variation of the MRDEGs in LUAD patients. (A) ICP-related gene expression profile. (B) Sankey relation diagram for ICP-
related genes and lncRNAs. (C) The CNV frequency of 47 ICP genes in the LUAD cohort. (D) Heatmap for the correlations between randomly ICP-
related genes and lncRNAs.
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0.001), and the correlation between ICP-related genes and

lncRNAs is shown in Figure 2D.

Risk model construction and validation

In this study, 248 ICP-related lncRNAs were screened by

using univariate Cox regression analysis (Supplementary Table

S3). To prevent overfitting prognostic features, we further

performed LASSO Cox analysis and 32 lncRNAs that were

highly correlated with LUAD prognosis (Figures 3A,B).

Finally, 14 ICP-related lncRNAs with the strongest prognostic

predictive ability were identified by multivariate COX regression

analysis (Supplementary Table S4) for risk model construction.

The formula for the risk score is:

Risk scores = AL355472.3p(1.7297898132188) + SLC16A1-

AS1p (2.02045359749171) + AC104971.3p(−0.861884680221223) +

AL021026.1p(−1.92527800701289) +

AC018529.1p(−1.41451695188048) +

AL606489.1p(0.484465069923853) +

AC090517.2p(−0.67755983967278) +

AP000346.1p(−1.34031276829931) +

AC024075.1p(−0.456581688150894) +

AC008840.1p(−1.67186147401095) +

AL589743.3p(1.01756516292608) +

AC026355.2p(−0.383441820151563) +

AC090825.1p(−0.894102424172019) +

AC068792.1p(−0.778661427765015).

With the above signatures, the patient’s prognostic risk score

was calculated. For each patient, the relative expression levels of 14

ICP-related lncRNAs are presented in Figure 3C. Based on themean

risk scores, we divided all LUAD patient samples into high-risk and

low-risk groups, where the patient distribution in the high-risk and

low-risk groups of the training set is shown in Figure 3D. Figure 3E

demonstrates the survival status and survival time of patients in the

high-risk and low-risk groups in the training set. Figure 3F shows

FIGURE 3
Risk model construction and validation. (A,B) Result of LASSO regression analysis. (C) Heatmap to show the expression of 14 lncRNAs between
high- and low-risk groups in the training set. (D) Expression differences of 14 ICP-related lncRNAs in different risk groups in the training set. (E)
Distribution of sample risk score and different patterns of survival status/time between the high-risk and low-risk groups in the training set. (F)
Kaplan-Meier curve of high-risk and low-risk patients in the training set.
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the prognosis and survival of patients in different risk groups in the

training set (based on K-M survival analysis). It can be seen that the

prognosis of patients can be clearly distinguished in the training set

after changing the risk model (p < 0.001).

To validate the predictive capability of the constructed model,

we calculated the risk scores of LUAD patients by using a uniform

formula. We examined the expression of ICP-related lncRNAs,

survival status scores, and risk scores in LUADpatients in the testing

set (Figures 4A–D) and the entire set (Figures 4E–H). In addition,

the K-M analysis of the two sets also showed that patients in the low-

risk group had a longer OS time than those in the high-risk group

(Figures 4D,H p = 0.009 and p < 0.001).

Nomogram and independent prognostic
factor analysis

To explore the independent predictive power of risk models

and various clinical characteristics for patient outcomes, we

performed univariate and all-factor Cox regression analyses,

respectively. Univariate Cox regression analysis suggested that

age, T/N grade, clinical stage, and risk score were prognostic

factors for LUAD patients (Figure 5A, p < 0.001), and further

multivariate Cox regression analysis showed that the risk score

was an independent predictor of prognosis in LUAD patients, the

prediction results were reliable, and the confidence level was

FIGURE 4
Risk model construction and validation in testing and entire sets. (A–D) The expression of 14 key prognostic lncRNAs in the testing set, the
survival status of LUAD patients, the risk score, and the results of K-M analysis of survival analysis. (E–H) The expression of 14 key prognostic lncRNAs
in the entire set, the survival status of LUAD patients, the risk score, and the results of K-M analysis of survival analysis.

Frontiers in Genetics frontiersin.org06

Liu et al. 10.3389/fgene.2022.1016449

60

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1016449


higher than that of other clinical characteristics (Figure 5B, p <
0.001). Therefore, it is reasonable to believe that a risk model

based on 14 ICP-related lncRNAs has a significant impact on the

survival and prognosis of LUAD patients and were independent

prognostic factors. The nomogram (Figure 5C) was constructed

with a risk score, survival rate, and other clinical features. Then

the calibration curve analysis in Figures 5E–G shows the accuracy

of the nomogram in predicting the 1-, 3-, and 5-years prognosis

of LUAD patients. Furthermore, DCA also indicated that a

nomogram has a higher prediction accuracy than a risk model

alone (Figure 5D).

Otherwise, ROC curve analysis and PCA verify the efficacy

of the risk model. The AUC values of the 1-, 3-, and 5-years of

OS were 0.729, 0.753, and 0.735, respectively (Figure 6A),

which were much higher than other clinical features

(Figure 6B). This suggests that these 14 ICP-related

lncRNAs are relatively reliable in the prognostic risk model

of LUAD. Besides, we applied principal component analysis

(PCA) to test the differences between the high-risk and low-

risk groups (Figures 6C,D) to further assess the group ability

of ICP-related lncRNA models. At the same time, we used

PCA to verify the authenticity of the risk model constructed

based on the entire gene expression profiles, ICP genes, ICP-

related lncRNAs, and risk model according to the 14 hub

lncRNAs (Figures 6E–H). The results confirmed that the

distributional patterns of the high-risk and low-risk groups

were significantly different, which elucidated that the risk

model was competent to distinguish the two groups with high

accuracy.

Somatic mutation landscape

We further analyzed the somatic mutation landscape of

LUAD patients. As shown in Figures 7A,B, compared with the

low-risk group, the high-risk group showed a higher rate of

somatic mutation (92.92% vs. 83.75%), and also had a higher

tumor mutational burden (TMB, Figure 7C, p = 0.054, with

FIGURE 5
Nomogram and independent prognostic factor analysis. (A,B) Result of univariate/multivariate Cox regression analyses. (C)Nomogram predicts
the probability of the 1-, 3-, and 5-years OS. (D) Result of DCA. (E–G) 1-, 3-, and 5-years predicted prognosis.
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marginal statistical significance). As a classic indicator for

evaluating tumor behavior, TMB has been considered reliable

in evaluating the prognosis of tumor patients in the past.

However, in the survival analysis, we were pleasantly

surprised to find that TMB alone could not predict the

prognosis of LUAD patients in the high and low TMB

groups (Figure 7D, p = 0.082), but the combination of the

TMB and risk score model can effectively distinguish the

prognosis of patients with different risk levels (Figure 7E,

p < 0.0001).

Immune signature analysis based on ICP-
related lncRNAs

Figures 8A,B shows the proportion of 22 immune cells in

different risk groups in the LUAD samples (Supplementary

Table S5). Further ssGSEA immunoassays revealed that a

variety of immune cells, including CD8+ T cells, and

B cells, were less infiltrated in the high-risk group samples,

and more diverse in the high-risk group. The immune process

activity was also lower than that of the low-risk group (Figures

8C,D). In addition, we found that all three immune scores

(stromal score, immune score, and ESTIMATE score) were

significantly higher in the low-risk group of LUAD patients,

indicating that the TME was different from the high-risk

group (Figures 8E–G). The above results suggest that

patients at high risk of LUAD were in a more severe

immunosuppressed state.

Interestingly, we found that monocytes and plasma cells

could well predict the prognosis of patients in different risk

groups (Figures 8H,I). Meanwhile, we also found that combined

with risk scores, all LUAD samples could be classified into

different immune subtypes (Figure 8J), which means that

FIGURE 6
Assessment of the predictive risk model and Principal component analysis. (A) The entire set’s 1-, 3-, and 5-years ROC curves. (B) ROC curves of
the clinical characteristics and risk score. (C,D) PCA results of testing and training sets. (E–H) The PCA result of entire gene expression profiles,
ICPDEGs, ICP-related lncRNAs, and risk model according to the 14 hub lncRNAs, respectively.
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more precise treatment strategies may be adopted for different

subtypes in clinical practice.

Clinical immunotherapy analysis

For a better clinical therapeutic strategy in LUAD, a drug

sensitivity analysis was conducted. The result showed that LUAD

patients in the high-risk group had higher IC50s for AS601245,

ATRA, ABT.888, and AP.24534, which indicated that these drugs

may be clinically less effective for patients in the high-risk

group. On the contrary, AG.014699, AUY922, AZD.0530, and

A.443654 showed higher IC50 in the low-risk group (Figure 9A).

Furthermore, we found that patients in the high-risk group had

lower TIDE scores (Figure 9B), whichmay explain the differences

in susceptibility to these drugs.

Functional enrichment analysis

To deeply explore how ICP-related lncRNAs produce

biological effects, functional enrichment analysis based on

differential genes between high and low-risk groups with

multi-dimension was performed. The results of the GO

analysis suggested that the changes of LAUD involved

changes in a variety of immune processes, including

humoral immunity and immune complex production

(Figure 10A), and the KEGG results also suggested that the

FIGURE 7
TMB analysis. (A,B) The waterfall plot of somatic mutation features established with high- and low-risk groups. (C) Tumor mutation burden in
the high-risk and low-risk groups. (D,E) Kaplan-Meier curve of the OS among the high- and low- TMB groups.
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disease was highly correlated with humoral immune

pathways (Figure 10B). In addition, through GSEA

analysis, we found that the B cell receptor pathway and

cell adhesion pathway were highly enriched in the low-risk

group, while those in the high-risk group were highly

correlated with cell cycle and metabolic cycle (Figures

10C,D). These potential mechanisms may point to new

directions for the future treatment of LUAD.

Discussion

Immunotherapy was defined as the use of materials to

moderate the function of the immune system to prevent and

fight disease (Lizée et al., 2013). It has been widely applied in

clinical treatment for cancer like metastatic urothelial

carcinoma (Sharma et al., 2016), advanced renal cell

carcinoma (Motzer et al., 2015), and other types of cancer.

FIGURE 8
Immune infiltration discrepancy in different risk groups. (A)Heatmap of 22 tumor-infiltrating immune cell types in low-risk and high-risk groups.
(B) Bar chart of the proportions for 22 immune cell types. (C) The ssGSEA scores of immune functions in low-risk and high-risk groups. (D) Immune
cells in low-risk and high-risk groups. (E–G) The TME scores between high-risk and low-risk groups. (H,I) Survival analysis of combined immune
cells. (J) Immune subtype.
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With the growing investigation into immune infiltration,

there was gradually reaching a consensus that long non-

coding RNAs (lncRNAs) have been associated with cancer

immunity regulation and the tumor microenvironment

(TME) (Zhou et al., 2021a). Some researchers suggested

that immune-related lncRNAs could predict immune cell

infiltration and immunotherapy response in patients with

liver cancer (Zhou et al., 2021b; Huang et al., 2021), and

bladder cancer (Wu et al., 2020), while the association in

patients with LUAD is still not understood. At the same time,

TME, as a novel hotpot in cancer research, has gained much

attention in recent years. Unlike tumor cells, stromal cells also

a participant in the initiation, progression, and metastasis of

cancer, inducing both beneficial and adverse consequences for

tumorigenesis (Stepaniak et al., 1986). Current most advanced

TME-directed therapies including antiangiogenic drugs and

treatment directed against cancer-associated fibroblasts and

the extracellular matrix were already approved or evaluated in

trials (Bejarano et al., 2021). Therefore, it is of great

importance to investigate the correlation between lncRNAs

and immune response in patients with LUAD.

Based on the above characteristics, we conducted a

prognostic model aimed at evaluating the association

between ICP-related lncRNAs and TMB in patients with

LUAD through bioinformatics techniques and survival

analysis, providing potential treatment targets for clinical

therapy and prognosis.

In this study, we found that 14 ICP-related lncRNAs were

significantly associated with LUAD by Cox analysis. Of course,

most of them were rarely studied and there were already several

investigations about some lncRNAs. Firstly, lncRNA SLC16A1-

AS1 has been identified to play a vital role in the metabolic

reprogramming as targeting and co-activating of E2F1 in patients

with bladder cancer (Logotheti et al., 2020). A study by Tian and

Hu (2021) also demonstrated that SLC16A1-AS1 was

upregulated in hepatocellular carcinoma and might

downregulate miR-141 through methylation to promote

cancer cell proliferation. Similarly, in patients with

glioblastoma, SLC16A1-AS1 might promote cancer cell

proliferation by regulating miR-149 methylation and could be

considered a potential diagnostic marker in glioblastoma (Long

et al., 2021). Also, there were several studies about the function of

FIGURE 9
Clinical immunotherapy analysis. (A) Results of drug sensitivity analysis. (B) Result of TIDE.
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SLC16A1-AS1 in oral squamous cell carcinoma (Feng et al., 2020;

Li et al., 2022), and triple-negative breast cancer (Jiang et al.,

2022). As for lung cancer, Liu et al. (2020) have proved that the

expression of SLC16A1-AS1 was significantly lower in NSCLC

tissue than that in adjacent tissue, and SLC16A1-AS1 over-

expression could block the cell cycle and promote cell

apoptosis in vitro, suggesting that it might act as a potential

biomarker for patients with NSCLC. Then, when it comes to

lncRNAAL606489.1, some investigations have proved that it was

associated with ferroptosis in LUAD (Guo et al., 2021; Song et al.,

2021;Wu et al., 2021) as well as oncosis (Chen et al., 2022), which

all demonstrating a relationship between non-apoptotic cell

death and LUAD and provide important predictive value for

the prognosis of LUAD as well as potential clinical therapeutic

targets. Similarly, AC026355.2, a vital immune-associated

lncRNA, also showed its prognostic value for identifying

immune and necroptosis characteristics in LUAD patients (He

et al., 2021; Lu et al., 2022). As for lncRNA AC068792.1, a study

by Zhou et al. (2022) proved that this TME-related lncRNA could

be acted as a biomarker of clear cell renal carcinoma prognosis

and immunotherapy response, while the effect in LUAD still

warrants further exploration.

The GO and KEGG enrichment analysis showed that the

ICP-related genes were mainly enriched in humoral immune

response, immunoglobulin production, and production of the

molecular immune response, emphasizing the significance of

immune response in cancer development. Then the bioplot

showed that the expression of immune cells in the high- and

low-risk subgroups mainly focused on plasma cells, monocytes,

T cells gamma delta, T cells CD4 memory resting, dendritic cells,

and mast cells resting. Subsequent K-M survival analysis

demonstrated that the survival probability in plasma cells

high-expression subgroup was much higher than that in a

low-expression subgroup, illustrating a potential protective

value for patients with LUAD. Actually, in a study about the

role of tumor-infiltrating B cells and intratumorally-produced

antibodies in cancer-immunity interactions, Isaeva et al. (2019)

found that plasma cells produced a great number of clonal IgG1,

which was not much effective on prognosis, suggesting that

IgG1+ tumor-infiltrating B cells might exert a beneficial effect

in KRAS mutation cases. While, for the subgroup with higher

expression of monocytes, the survival probability also showed the

same result as that of plasma cells. As an important component in

TME, monocytes were tightly connected with cancer initiation

FIGURE 10
Functional enrichment analysis. (A) Result of GO enrichment. (B) Result of KEGG enrichment. (C,D) Result of GSEA.

Frontiers in Genetics frontiersin.org12

Liu et al. 10.3389/fgene.2022.1016449

66

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1016449


and development. However, an investigation aiming at

constructing an immune-related lncRNAs signature in

patients with LUAD showed that this signature corrected

negatively with B cells, CD4+ T cells, and monocytes immune

infiltration, and patients with low-risk scores had a higher

abundance of immune cells and stromal cells around the

tumor (Chen et al., 2021). This contrary result mainly could

be explained that the function of tumor-associated monocyte/

macrophage lineage cells (MMLCs) might be different in human

tumors, especially in the early stages of the disease (Singhal et al.,

2019). Classical “inflammatory” monocytes promote tumor

growth and metastasis, however, nonclassical “patrolling”

monocytes contribute to cancer immunosurveillance and may

be targeted for cancer immunotherapy (Qian et al., 2011; Hanna

et al., 2015). Thus, further studies are warranted to explore

specific mechanisms in patients with LUAD.

Then we analyzed the immune score between high-risk and

low-risk subgroups and found that significant differences were

shown in tumor-infiltrating lymphocyte (TIL), cytolytic activity,

and major histocompatibility complex. Indeed, the efficacy of

clinical immunotherapy varies and depends on the amount and

properties of TILs, and in general, TILs represent a favorable

prognostic factor in NSCLC (Guo et al., 2018; Gueguen et al.,

2021). Federico et al. (2022) demonstrated that though the

number of infiltrating T cells was not associated with patient

survival, the nature of the infiltrating T cells could have a

prognostic value in NSCLC and became potential therapeutic

approaches for clinical care. As for HLA, Datar et al. (2021)

claimed that patients with cancer cell-selective HLA-B, HL-C or

HLA class-II downregulation displayed decreased T cells and

NK-cell infiltration, then associated with shorter overall survival,

which broaden a novel insight into clinical therapeutic targets.

While, for advanced NSCLC treated with immune checkpoint

blockade, HLA class-I genotype was not correlated with survival,

which emphasizes the correlation between immune checkpoints

and HLA (Negrao et al., 2019). Further studies are needed to

claim deeper relationships and provide novel insights.

In addition, there are still some limitations in our study. First,

our current study was limited to the bioinformatics level and no

external experiments were conducted to validate the results.

Second, although we validated the model by constructing a

valid prediction model, the model construction relied only on

the TCGA database, which could potentially lead to less credible

study results.

In conclusion, to explore the connection between lncRNAs

and immune infiltration in patients with LUAD, we conduct a

relatively overall and comprehensive prognostic model to

evaluate the expression of various immune cells and survival

probability through bioinformatics techniques, confirming that

immune response played a vital role in the progression of cancer

and the crosslink between immune infiltration and lncRNAs,

which could provide potential therapeutic targets for

clinical care.
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Cuproptosis, as a novel copper-dependent and non-apoptotic form of cell

death, is induced by aggregation of lipoylated mitochondrial proteins and

the instability of Fe-S cluster proteins. However, the role of cuproptosis-

related long noncoding RNAs (CRLncRNAs) in hepatocellular carcinoma

(HCC) has not been clearly elucidated. In this study, we identified and

characterized cuproptosis-related lncRNAs in HCC. 343 HCC cases from

The Cancer Genome Atlas (TCGA) with gene transcriptome data and

clinical data were obtained for analysis after the screening. Univariate

and multivariate Cox proportional hazards analyses were performed to

establish a prognostic cuproptosis-related lncRNA signature (CRlncSig).

We established a prognosis-related model consisting of nine cuproptosis-

related lncRNAs: GSEC, AL158166.1, AC005479.2, AL365361.1,

AC026412.3, AL031985.3, LINC00426, AC009974.2, AC245060.7, which

was validated in the internal cohort. High-risk group stratified by the

CRlncSig was significantly related to poor prognosis (p < 0.001). The

area under the receiver operating characteristic curve (AUC) of 1 year,

3 years, and 5 years of survival were 0.813, 0.789, and 0.752, respectively.

Furthermore, a prognostic nomogram including CRlncSig with

clinicopathologic factors was built with favorable predictive power. In

addition, GO and KEGG enrichment analysis suggested that CRlncSig

was involved in many carcinogenesis and immune-related pathways.

Additionally, we found that tumor microenvironment, immune

infiltration, immune function, and drug response were significantly

different between the high-risk and low-risk groups based on the risk

model. These results highlight the value of cuproptosis-related lncRNAs

on prognosis for HCC patients and provide insight into molecular and

immune features underlying cuproptosis-related lncRNAs, which might

play an important role in patient management and immunotherapy.

KEYWORDS

hepatocellular carcinoma, cuproptosis, prognostic signature, tumor
microenvironment, immunotherapy
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Introduction

Hepatocellular carcinoma (HCC) is the third leading

cause of cancer-related death and ranks sixth among all

cancers (Forner et al., 2018). Curative therapeutic

approaches including liver transplantation, resection, or

ablation could only be applied to patients with early-stage

disease, while most patients fail to meet the criteria and have

a poor prognosis (Lau et al., 2001). The mortality of HCC

roughly matches its incidence because of its aggressive

nature and limited treatment options (Sung et al., 2021).

Thus, uncovering novel therapeutic targets and prognostic

factors is an urgent need to improve treatment efficiency and

prognosis.

Copper is a basic trace element for human beings, which

is involved in various biological processes such as

mitochondrial respiration, oxidative stress, and

cytotoxicity (Ruiz et al., 2021; Ge et al., 2022). As to

cancer, several studies have reported that the Cu

concentration in cancer is much higher than that in

normal tissues (Blockhuys et al., 2017; Ge et al., 2022).

The dysregulation of copper homeostasis has been related

to proliferation, angiogenesis, and metastasis, which

indicates copper might play a role in tumorigenesis and

tumor progression (Babak and Ahn, 2021; Shanbhag et al.,

2021; Oliveri, 2022). Moreover, it also had been reported that

copper might play a part in immunity and affect the

expression levels of programmed death-ligand 1 (PD-L1)

(Jones, 1984; Voli et al., 2020). Recently, Tsvetkov et al.

found a novel form of cell death termed cuproptosis. The

study revealed that increment of copper in cells could induce

the aggregation of lipoylated dihydrolipoamide

S-acetyltransferase (DLAT) and then affect mitochondrial

tricarboxylic acid (TCA) cycle, which finally leads to

proteotoxic stress and cell death (Tsvetkov et al., 2022).

Metabolic reprogramming of the tricarboxylic acid (TCA)

cycle usually comes with the progression of HCC, promoting

tumor survival and proliferation in the context of nutrient

deprivation and hypoxia (Todisco et al., 2019). So

cuproptosis-related genes might be involved in tumor

development and progression.

Long noncoding RNAs (lncRNAs) are a type of

transcripts longer than 200 nucleotides lacking protein-

coding capacity (Clark et al., 2012). And they are closely

related to the development of oncogenesis, progression,

metastasis, and prognosis in various tumors (Bhan et al.,

2017; Wong et al., 2018). However, there are few studies on

cuproptosis-related lncRNAs (CRLncRNAs) in HCC

patients.

The present study identified cuproptosis-related

lncRNAs and constructed a prognostic signature from

these lncRNAs, which was associated with mutation

landscape, the tumor microenvironment, and

immunotherapy response of HCC patients. Gene

enrichment analysis was also carried out to explore

potential mechanisms.

Materials and methods

Data collection and processing

First, RNA-sequence data (50 normal samples and 374 tumoral

samples), gene mutation data (n = 364), and clinical data (n = 377) of

HCC patients were derived from the TCGA database (https://portal.

gdc.cancer.gov/). The transcripts/genes expression abundance are

estimated by STAR and RSEM. After eliminating the normal

samples, 19895 mRNA and 16773 lncRNAs were identified in

LIHC data using annotation of GENCODE project (v22)

(Frankish et al., 2019). We then screened 19 cuproptosis-related

genes from previous literature (Supplementary Table S1), and

expression data were obtained for these genes in TCGA LIHC

(Supplementary Table S2). 977 CRLncRNAs whose expression was

correlated to cuproptosis-related genes were identified by Pearson

correlation analysis (|R2 |> 0.4, p< 0.001). Clinicopathological factors,
including age, gender, TNM stage, pathologic grade and complete

survival information were also extracted. Disease-free survival (DFS)

was obtained from the previous study (Liu et al., 2018). Samples with

survival time < 30 days were excluded. Finally, 343 cases with gene

transcriptome data and clinical data were obtained for analysis.

Development of the cuproptosis-related
lncRNAs signature

A total of 343 samples with the survival data and expression data

were randomly allocated to the training sets (n = 241) and validation

set (n = 102) in a 7:3 ratio. Univariate Cox regression analysis was

performed to screen CRLncRNAs associated with prognosis in the

training set. Then these lncRNAs were analyzed by the least absolute

shrinkage and selection operator (LASSO) algorithmwith 1000 cycles

for the best subset of prognostic lncRNAs, and a cuproptosis-related

lncRNAs signature (CRlncSig) was constructed. Risk score =∑ (coef

(β)*EXPβ), where β represents each selected lncRNA. Patients were

assigned to high-risk and low-risk groups with the median risk score

as the cutoff value. Kaplan-Meier survival analysis was performed to

validate the clinical relevance between the two groups. TheROCcurve

and c-index were used to assess the predictive power of the model.

Stratified analysis was conducted to further assess the additional

prognostic value of CRlncSig.

Validation of the CRlncSig

Baseline characteristics were checked between training sets

and validation set. The patients in the validation set were grouped
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with the same method in the training set and validated using

Kaplan-Meier survival analysis and risk plot.

The independently prognostic value of
CRlncSig

Univariate and multivariate Cox regression analyses were

used to confirm predictive power. Additionally, the correlation

between CRlncSig and clinical characteristics was explored by

chi-square test using TCGA.

Construction of nomogram

Risk score combined with the clinicopathological factor of

age, gender, grade, and stage were used to construct a

nomogram to predict the 1-, 3-, and 5-year survival of

HCC patients. The calibration curve was used to test

agreement between the actual overall survival (OS) and

those predicted by the nomogram.

Functional enrichment analysis of risk
score-associated genes

Gene Ontology (GO) enrichment and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analysis were performed

to identify significant module using the “clusterprofiler” R

package with adjusted p value <0.05.

Prognostic analysis of the tumor
mutational burden

Somatic mutations were analyzed by “maftools” R package

and illustrated in waterfall plots. TMB of each sample was

calculated according to the definition of the total number of

variations per million bases via Perl script (version: 5.30.2)

(https://www.perl.org/). According to the median value of the

TMB, patients were divided into the high-TMB group and the

low-TMB group. Then we merged the mutation data with

survival information and performed the Kaplan-Meier survival

analysis for the two groups.

Immune-related analysis of CRlncSig

We used the single-sample gene set enrichment analysis

(ssGSEA) algorithm via R packages (limma, GSVA and

GSEABase) to assess immune function between high- and

low-risk groups based on CRlncSig (Hänzelmann et al.,

2013). ESTIMATE and CIBERSORT algorithm was

performed to assess the proportions of components in the

tumor microenvironment (TME) and immune cell

infiltration (Yoshihara et al., 2013; Newman et al., 2015).

Then we explored the relationship between the expression

level of immune checkpoint genes and the two groups.

Immunophenoscore (IPS) was further obtained from The

Cancer Immunome Atlas (https://tcia.at/home) and used to

assess the clinical response to immunotherapy between the

two groups (Charoentong et al., 2017).

Significance of the CRlncSig in drug
sensitivity

Fifty percent maximum inhibitory concentration (IC50)

values of different groups for various antitumor drugs

recommended for hepatocellular carcinoma were calculated

via “pRRophetic” and “ggplot2” R package. The IC50 was then

compared between low- and high-risk groups by Wilcoxon

signed-rank test.

Statistical analysis

R version 4.0.2 was used to analyze the data and visualize

the results. Clinicopathological parameters were compared

using t-tests and chi-square tests. Spearman or Pearson

correlation coefficients were performed to evaluate

relationships between variables. Survival curves were

created by the Kaplan-Meier method and compared by log-

rank test. Univariable and multivariable analyses were

performed using Cox regression models to determine

prognostic factors for DFS and OS. Statistical significance

was set at p < 0.05.

Results

Construction of the CRLncRNAs
predictive signature

The flow chart of this study is shown in Figure 1A. We

curated a catalog of 19 cuproptosis-related genes from

previous reports (Supplementary Table S1) (Huang et al.,

2015; Deigendesch et al., 2018; Tsvetkov et al., 2022).

Functional annotations are shown in Supplementary Table

S1. Fifteen of these genes showed significant differences (p <
0.05) between tumor and normal tissues in LIHC patients

from TCGA (Figure 1B). The correlation between

cuproptosis-related genes and prognosis of HCC patients

is shown in Supplementary Figure S1.

We identified 977 CRLncRNAs (Figure 1C,

Supplementary Table S2). Supplementary Table S3 showed
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the correlation result between lncRNAS and cuproptosis

genes. Then 211 CRLncRNAs were found as prognostic

factors using univariate COX analysis (Supplementary

Table S4). Subsequently, we performed LASSO Cox

regression intending to reduce the risk of over-fitting and

13 robust genes were obtained (Figures 2A,B). Multivariate

Cox regression was applied to analyze the thirteen genes and

nine of them (GSEC, AL158166.1, AC005479.2, AL365361.1,

AC026412.3, AL031985.3, LINC00426, AC009974.2,

AC245060.7) were then used to construct a prognostic

signature for HCC. Supplementary Figure S2 showed the

correlation between cuproptosis-related genes and their

associated lncRNAs.

Correlation between CRlncSig and
prognosis of HCC patients

The coefficients of the nine CRlncSig were used to assess the

scores for each patient. The risk score was calculated as follows: Risk

score = (0.319,888 × expression value of GSEC) + (0.332,438 ×

expression value of AL158166.1) + (0.40166 × expression value of

AC005479.2) + (-0.59091 × expression value of AL365361.1) +

(0.764,221 × expression value of AC026412.3) + (0.457,035 ×

expression value of AL031985.3) + (-0.95334 × expression value of

LINC00426) + (-1.61518 × expression value of AC009974.2) +

(0.958,349 × expression value of AC245060.7). Then patients were

assigned to low- and high-risk groups according to the median value

of the risk score. Seventy percent of the 343 patients were randomly

divided into the training group and the rest were in the validation

group. No significant differences were found in clinical characteristics

between the low- and high-groups (Supplementary Table S5). In the

training set, patients in high-risk group had shorter overall survival

than patients in low-risk group (p < 0.001, Figure 2C). This was also

validated in the validation set (p< 0.001, Figure 2D).Next, we checked
the predictive performance in disease-free survival using the dataset

with DFS information (Liu et al., 2018). K-M analysis indicated

significantly reduced DFS in high-risk patients (p < 0.001, Figure 2E).

As shown in risk survival status plot, the survival of patients was

inversely proportional to the risk score both in training and validation

set (Figures 2F,G).

Evaluation of CRlncSig

The time-dependent ROC curve was used to assess the

performance of the signature. The area under the ROC curve

(AUC) of 1 year, 3 years, and 5 years of survival were 0.813, 0.789,

FIGURE 1
A screen of the differentially expressed cuproptosis-associated lncRNAs in hepatocellular carcinoma (HCC) (A) Flowchart of the present
research. (B) Differential expression of cuproptosis-related genes in normal and HCC tissue (C) Network graph of cuproptosis-associated lncRNAs.
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and 0.752, respectively (Figure 3A). The AUC of 1-year survival rate

suggested that risk score (0.813) and stage (0.713) possessed a

favorable prediction power (Figure 3B). The C-index of the risk

score was superior to clinicopathological factors as shown in

Figure 3C. The prognostic value of the risk score and other factors

were evaluated with univariate and multivariate Cox regression

analyses. The risk score and stage were identified as significant

independent prognostic factors in both univariate Cox regression

analyses (HR = 1.077, 95% CI = 1.055–1.099, p < 0.001 and HR =

1.804, 95% CI = 1.456-2.234, p < 0.001) and multivariate Cox

regression analyses (HR = 1.069, 95% CI = 1.046-1.092, p <
0.001 and HR = 1.775, 95% CI = 1.423-2.213, p < 0.001)

(Figures 3D,E).

Construction of nomogram

To provide a quantitative tool for clinical application, we

established a nomogram with age, gender, pathological

grade, stage, and risk score to predict the overall survival

of patients (Figure 4A). The calibration plot showed good

consistency between the actual versus predicted rates of the

1, 3, and 5-year OS (Figure 4B).

Subgroup analysis of clinicopathological
variables

At last, to explore the applicability of CRlncSig, patients

were assigned into groups according to age, gender, and stage.

For each subgroup, patients with high-risk scores had a poor

prognosis, which indicated that CRlncSig had good predictive

power for all patients (Figures 4C–H).

Functional and pathway analysis

GO and KEGG analyses were performed to explore the

underlying mechanisms of different prognoses between

high- and low-risk groups. 1090 differentially expressed

genes (DEGs) were obtained between two groups,

including 947 upregulated genes and 143 downregulated

genes (Supplementary Table S6). The cellular component

(CC) of GO enrichment analysis indicated that DEGs were

mainly enriched in “immunoglobulin complex”, and

“immunoglobulin complex circulating”. Biological process

(BP) showed DEGs were mainly associated with “nuclear

division”, “phagocytosis, recognition”, and “humoral

immune response”. While molecular function (MF)

indicated DEGs were mainly concentrated in “antigen

binding”, and “immunoglobulin receptor binding”

(Figure 5A). According to KEGG pathway analysis, DEGs

were found mainly connected with tumorigenesis and cancer

progression, such as “ECM-receptor interaction”,

“p53 signaling pathway”, “Central carbon metabolism in

cancer”, as well as immune-related pathways, such as

“HIF-1 signaling pathway” “Cytokine-cytokine receptor

interaction”, (Figure 5B). These results suggested that

DEGs are involved in both carcinogenesis and immune-

related pathways.

Risk score-associated mutation landscape

Various basic features of somatic mutation data for low-

and high-risk groups were shown in waterfall plot (Figures

5C,D). The top three mutated genes were TP53 (40%),

CTNNB1 (24%) and TTN (21%) in the high-risk group,

while CTNNB1 (26%), TTN (24%) and TP53 (14%) were

the most common mutation genes in low-risk

group. Missense mutation was the main variant

classification in both groups. Then patients were divided

into low- and high-TMB groups according to the median

value of TMB and a significant survival difference was found

between the two groups (Supplementary Figure S3A). The

risk score also showed good predictive power when patients

were stratified by TMB (Supplementary Figure S3B).

Immunity analysis of the risk score

To further explore the correlations between risk score and tumor

immune cell infiltration, the proportions of 22 immune cell typeswere

compared between the low- and high-risk groups with CIBERSORT

algorithm. The results showed that naïve B cells, CD8+ T cells (known

as main immune effector cells), resting memory CD4+ T cells had

higher fractions in low-risk group (all p < 0.05) while

M0 macrophages, M2 macrophages, which were known to exert

immunosuppressive functions, had higher fractions in high-risk

group (both p < 0.05) (Figure 6A). The ESTIMATE algorithms

suggested a higher proportion of immune and stromal cells in the

low-risk group (Figures 6B,C). Then the immune function was

inferred by ssGSEA algorithm. As shown in Figure 6D, Type II

IFN (IFN-γ) response, chemokine receptor (CCR), para-

inflammation, T cell co-inhibition, checkpoint, T cell co-

stimulation, cytolytic activity, inflammation-promoting, antigen-

presenting cell (APC) coinhibition and human leukocyte antigen

(HLA) were significant difference between two groups, which

indicated that immune function was more active in the low-risk

group. These results suggested that the signature was not only a

predictivemarker but also associatedwith immune function. Next, we

explored whether levels of immune checkpoint genes were associated

with risk scores. High-risk patients tended to express higher levels of

16 immune checkpoint genes, including HAVCR2, VTCN1, CD276,

TNFRSF4, CD27, TNFRSF14, TNFSF4, LGALS9, CD80, TNFRSF15,

CD47, HHLA2, TNFSF9, LAIR1, TNFRSF18, CD44, while low-risk
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patients tended to express higher levels of 10 immune checkpoint

genes, including LAG3, PDCD1LG2, IDO2, KIR3DL1, CD244,

CD48, CD40LG, TMIGD2, CD160, CD96 (Figure 6E). To access

the power of the signature for predicting the response to

immunotherapy, immunophenoscore (IPS) calculated and patients

in low-risk group had a higher IPS, suggesting that patients in this

groupmight have a better response to immunotherapy (Figures 6F–I).

Drug response features underlying the
CRLncRNAs

In addition to immunotherapy, we also explored the

association between the risk score and the efficacy of targeted

therapy and chemotherapy for HCC patients. The results

suggested that the IC50 of trametinib, talazoparib was

FIGURE 2
Identification of cuproptosis-associated lncRNAswith prognostic value in hepatocellular carcinoma (HCC) patients (A,B) LASSOCox regression
with a 10-fold cross-validation for the prognostic value of the cuproptosis-associated lncRNAs. (C) Kaplan-Meier analysis of the OS rate of training
set patients in the high- and low-risk groups (D) Kaplan-Meier analysis of the OS rate of validation set patients in the high- and low-risk groups. (E)
Kaplan-Meier analysis of the DFS rate of HCC patients in the high- and low-risk groups (F) Risk score distribution, survival status for patients in
high- and low-risk groups from training set. (G) Risk score distribution, survival status for patients in high- and low-risk groups from validation set.
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positively correlated with risk score and the IC50 of 5-

fluorouracil, doxorubicin, gemcitabine, mitomycin C,

paclitaxel, sorafenib, sunitinib, tipifarnib, tivozanib,

vinorelbine was negatively correlated with risk score

(Supplementary Figure S4), which helps explore individualized

treatment strategy HCC patients.

Discussion

HCC is the third leading cause of cancer-related death

worldwide. The high molecular and clinical heterogeneity of

HCC results in inefficient treatments and poor prognosis (Wörns

and Galle, 2014). Integrating multiple biomarkers and clinical

features into a single model could improve the accuracy of

prediction and help formulate individualized treatment plans

when compared with a single biomarker. In the present study,

we identified CRLncRNAs and constructed a prognostic signature,

which was associated with mutation landscape, the tumor

microenvironment, and immunotherapy response of HCC

patients. We also explore potential mechanisms through gene

enrichment analysis.

We identified 211 CRLncRNAs associated with the overall

survival of HCC patients via univariate regressions analysis. Then

nine lncRNAs were conformed and developed lncRNA signature

for prognostic prediction. Different kinds of predictive lncRNA

signatures for HCC patients have been reported in previous

studies (Huang et al., 2021; Li et al., 2021; Wang et al., 2021;

Yang et al., 2021). Li et al. reported an eight m6A-related lncRNA

signature with AUC of 0.633, 0.651, and 0.638 at 1-, 3–5-year (Li

et al., 2021). While the highest AUC of the immune- and

ferroptosis-related lncRNA signature in 5 years was 0.761 in

the study by Huang (Huang et al., 2021). In our study, the lowest

AUC in 5 years is 0.753, which indicates this CRLncRNAs

signature has strong predictive power.

The critical contribution of this study is to demonstrate the

relationship between CRLncRNAs signature and tumor

microenvironment. Notably, it is worth noting that TME not

only plays a vital role in the development of tumors but also has

an important impact on immunotherapy response and overall

survival (Hinshaw and Shevde, 2019; Fane and Weeraratna,

2020; Petitprez et al., 2020). Functional enrichment analysis

showed that CRLncRNAs were mainly related to cytokine-

cytokine receptor interaction, the phosphatidylinositol 3-

kinases/protein kinase B (PI3K-AKT) signaling pathway and

immune pathways. Cytokines are major regulators of the

innate and adaptive immune systems that allow cells of the

immune systems to communicate over short distances in

FIGURE 3
Evaluation of the prognostic cuproptosis-associated lncRNAs signature (A) ROC curve and AUCs at 1-year, 3-years and 5-years survival for the
predictive signature. (B) The ROC curve of the risk score and clinicopathological variables (C) C index of the risk score and clinicopathological
variables. (D) Forest plot for univariate Cox regression analysis. (E) Forest plot for multivariate Cox regression analysis.
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paracrine and autocrinefashion (Waldmann, 2018). Cytokine

and cytokine receptor interaction networks were regarded as

crucial effects on inflammation and oncogenesis (Dranoff, 2004).

Cytokines and its receptors, such as tumor necrosis factor and

interleukin 6, were important factors in the development of HCC

and affected the immunotherapy effect (Kern et al., 2018;

Derynck et al., 2021). PI3K-AKT signaling pathway was a

classical intracellular signaling receptor to react extracellular

stimulators. The PI3K/AKT pathway was dysregulated in both

initiation and progression of HCC (Whittaker et al., 2010). To

explore whether the signature could predict the efficiency of

immunotherapy for HCC patients, we first checked the

expression levels of 48 immune checkpoints genes and found

that more than half of these genes were related to the risk score.

Tumor immune microenvironment was also evaluated between

two groups. Patients with high-risk scores had lower proportions

of CD8+ T cells and higher proportions of M0 macrophages and

M2 macrophages, which indicated the roles of CRLncRNAs in

regulating the tumor microenvironment. As we know, CD8+

T cells are the main effectors in antitumor immunotherapy

while M2 macrophages, working as immunosuppressive cells,

promote tumor growth and invasion (Pitt et al., 2016). Patients in

high-risk group are more likely to be “cold” tumors characterized

by resistance to immune checkpoint therapy. IPS, derived from

four major gene categories, could work as a superior predictor for

immunotherapy (Charoentong et al., 2017). Then we calculated

IPS to predict immunotherapy response, patients in low-risk

group had a higher IPS, suggesting that patients in this group

might respond better to immunotherapy. This is consistent with

result of the tumor immune microenvironment analysis.

FIGURE 4
Clinical prognostic nomogram for survival prediction and subgroup analysis (A) A nomogram combining clinicopathological variables and risk
score predicts 1, 3, and 5 years OS of HCC patients. (B)Calibration plots for 1-, 3-, and 5-years survival predictions (C–H) Subgroup survival analysis in
the high- and low-risk groups, (C) Age ≤65 (D) Age > 65 (E) Male patients (F) Female patients (G) Stage Ⅰ-Ⅱ (H) Stage Ⅲ-Ⅳ.
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Recent studies show that cuproptosis is a promising new target for

cancer treatment. Copper ionophores have shown promising

applications in overcoming drug resistance of cancer cells and

targeting cancer stem cells. This is due to the intrinsic selectivity of

copper ionophores in preferential induction of cancer cell clusters

compared with normal cells (Oliveri, 2022). Another study by Voli

et al. showed that copper supplementation promotes PDL1 expression

and intratumor copper levels might enhance immunotherapy

response (Voli et al., 2020). Our study and previous studies

indicate that copper plays an important role in antitumor

treatment and immunotherapy. FDX1 is the key regulators of

copper ionophore–induced cell death, which encodes a reductase

known to reduce Cu2+ to its more toxic form, Cu1+, and is adirect

target of elesclomol (Tsvetkov et al., 2019; Tsvetkov et al., 2022).

Recent pan-cancer analysis revealed that FDX1 could be a novel

biomarker in the prognosis and immunotherapy in human tumors,

which could provide a basis for drug use in certain tumors (Ma et al.,

2022; Zhang et al., 2022).

FIGURE 5
Gene enrichment and TMB in high- and low-risk groups (A)GO enrichment analysis (B) KEGG enrichment analysis (C)Waterfall plots displaying
the mutation landscapes of the low-risk group. (D) Waterfall plots displaying the mutation landscapes of the high-risk group. TMB, tumor mutation
burden; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, Biological process; CC, Cellular component; MF Molecular
function.
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The current study had several limitations. First, we constructed

and validate the prognostic model with a single retrospective data

source. Second, some well-known prognostic factors for HCC such as

AFP and microvessel invasion were not involved in the nomogram

because of incomplete data for these parameters. Thus, a prospective

study is needed to verify the predictive value of the signature. In

addition, functional biological experiments should be carried out to

further validate the results.

In summary, the cuproptosis-related lncRNA signature

could effectively predict the prognosis and immunotherapy

response of HCC patients. Immune analysis verified the

association between the risk score and tumor

microenvironment. Thus, our results offer a reasonable

explanation for the distinct prognoses of patients and

provide a rationale for exploring biomarkers and

antitumor treatment strategies.

FIGURE 6
Immune related analysis in high- and low-risk groups (A) Differences in the infiltration of immune cells between the high- and low-risk groups.
(B–C)Comparison of immune score (B), and stromal score (C) between the high- and low-risk groups (D) The correlation between the signature and
13 immune-related functions. (E) Differential expression of immune checkpoint genes between the high- and low-risk groups (F–I) IPS values of
patients categorized according to risk score of four subtypes [IPS-CTLA4-neg-PD1-neg (F), IPS-CTLA4-neg-PD1-pos (G), IPS-CTLA4-pos-
PD1-neg (H), IPS-CTLA4-pos-PD1-pos (I)]. IPS, Immunophenoscore. *p < 0.05, **p < 0.01, ***p < 0.001.
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Lung adenocarcinoma (LUAD), a malignant respiratory tumor with an extremely

poor prognosis, has troubled the medical community all over the world.

According to recent studies, fatty acid metabolism (FAM) and long non-

coding RNAs (lncRNAs) regulation have shown exciting results in tumor

therapy. In this study, the original LUAD patient data was obtained from the

TCGA database, and 12 FAM-related lncRNAs (AL390755.1, AC105020.6,

TMPO-AS1, AC016737.2, AC127070.2, LINC01281, AL589986.2, GAS6-DT,

AC078993.1, LINC02198, AC007032.1, and AL021026.1) that were highly

related to the progression of LUAD were finally identified through

bioinformatics analysis, and a risk score model for clinical reference was

constructed. The window explores the immunology and molecular

mechanism of LUAD, aiming to shed the hoping light on LUAD treatment.

KEYWORDS

lung adenocarcinoma, long non-coding RNA, biomarker, fatty acid metabolism,
immune cells

Introduction

Lung cancer accounts for the largest share of cancer-related deaths worldwide (Thai

et al., 2021). It is worth noting that lung adenocarcinoma (LUAD) accounts for up to 85%

of lung cancers and is the most common subspecies (Pao and Girard, 2011) (Nicholson

et al., 2021). Based on different molecular and pathological features, LUAD can be
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subdivided into various subtypes (Inamura, 2018). There are

differences and connections between different subtypes, but the

commonalities between them are high malignancy, poor

prognosis, and greater difficulty in early diagnosis (Blandin

Knight et al., 2017) (Rami-Porta et al., 2018). From the

perspective of treatment, the current treatment methods for

LUAD mainly include surgery (Zappa and Mousa, 2016),

immunotherapy (Hellmann et al., 2018), targeted therapy

(Arbour and Riely, 2017), etc. However, various treatment

methods are limited by the histology of LUAD, mutated

genes, and differences in clinical stages, and the prognosis of

patients is often not exactly (Zappa and Mousa, 2016). Coupled

with the low sensitivity of LUAD to radiotherapy (Zappa and

Mousa, 2016) and the gradual emergence of resistance to targeted

therapy drugs (Remon et al., 2021), we are forced to have a deeper

understanding of LUAD.

Tumor cells are often in an abnormal metabolic

environment, depending on the imbalance between the rapid

proliferation of tumor cells and nutrient angiogenesis (Yi et al.,

2018; Han et al., 2021). Modern thinking holds that tumor cells

need to reprogram their metabolism to meet increased metabolic

and synthetic demands in conjunction with their own growth

needs, while simultaneously reducing the negative effects of

oxidative stress during growth (Martínez-Reyes and Chandel,

2021). Collectively, tumor metabolic reprogramming is

significant (Hanahan and Weinberg, 2011), and the change of

aerobic glycolysis (Warburg effect), glutamine metabolism, and

one-carbon de novo synthesis of fatty acids also confer the ability

of tumors to rapidly progress in a relatively nutrient-stressed

tumor microenvironment (TME) (Cluntun et al., 2017; Newman

and Maddocks, 2017; Ashton et al., 2018; Zhao et al., 2020; Li

et al., 2021a). Interestingly, changes in the metabolic level of

tumor cells often lead to changes in the components of the TME,

thereby having a significant impact on affecting the biological

effects of other cellular components of the TME, and these

changes will ultimately affect tumor progression (Dey et al.,

2021) (Broadfield et al., 2021). It is worth noting that fatty

acid metabolism (FAM), as one of the important pathways of

the three major nutrients metabolism, can be coupled with a

variety of metabolic pathways and participate in cell membrane

formation, intracellular signal transduction, hormone secretion,

and other processes, and is related with the disease and health

state in human (Kimura et al., 2020) (Bogie et al., 2020). At the

same time, the relationship between FAM and cancer

progression has received increasing attention (Koundouros

and Poulogiannis, 2020) (Bergers and Fendt, 2021). long non-

coding RNAs (lncRNAs) are a class of RNAs with regulatory

functions, and they have been extensively studied in the past

decade (Ali and Grote, 2020). Previous studies have illustrated

that lncRNAs are vital in cell cycle regulation (Jiang et al., 2021),

metabolic regulation (Tan et al., 2021), and even the immune

system (Fok et al., 2018), and have been recognized as playing a

significant role in cancer progression (Wu et al., 2020).

Here, we constructed a 12 FAM related-lncRNAs signature

risk model based on LUAD raw data in TCGA by bioinformatic

methods. Further immunological and functional analysis

indicated the possible mechanism of action of these lncRNAs

in LUAD and their impact on the first immunotherapy of LUAD.

And at the end of the study, polymerase chain reaction (PCR)

technology was conducted to verify the expression of the

screened lncRNAs.

Materials and methods

Data preparation and processing

All kinds of LUAD data were obtained from the TCGA

database (http://portal.gdc.cancer.gov/) (Blum et al., 2018).

With previous reports about FAM-related genes and Kyoto

Encyclopedia of Genes and Genomes (KEGG) databases

(Kanehisa et al., 2017), 1879 FAM-related lncRNAs were

obtained by using the correlation test between the FAM-

related genes and lncRNAs with R. The thresholds were set

as |cor|>0.4 and p < 0.001. LUAD patients without overall

survival (OS) values or whose OS was within 30 days were

excluded. Four hundred and ninety samples were divided into

training and testing sets randomly. 246 samples were

contained in the training set, while contained 244 in the

testing set.

Establishment and validation of the risk
signature

With survival information, we screened the prognosis of

FAM-related lncRNAs from 1879 differently expressed lncRNAs

(p < 0.05). Univariate Cox regression analysis was used to screen

lncRNAs related to survival. LASSO regression was performed by

R package “glmnet” (version 4.1-3) with 10-fold cross-validation,

1,000 cycles. With the Multifactor Cox regression, a 12 FAM-

related lncRNA risk model was finally built.

The risk score was calculated by the following formula:

Risk score � ∑n

k�1Coef(ln cRNA)* exp(ln cRNAk)

where Coef is the coefficient and exp is the expression level of

lncRNA.

The mean score was regarded as a standard to distinguish

LUAD subgroups.

Model performance estimation

The univariate and multivariate Cox (by “glment,”

“survminer,” and “survival” R packages) regression analyses

were developed to evaluate the independent predictive power
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of risk models. The 1-,3-, and 5-year ROC curves were used to

evaluate the effect of prognostic prediction. Principal component

analysis (PCA) and t-distributed Stochastic Neighbor

Embedding (t-SNE) analysis were further used to verify the

risk model.

Nomogram and calibration

A nomogram was established based on our risk score model

and various clinical characteristics by the “rms” R package. The

1-, 3-, and 5-year OS and ROC curves were performed to

illustrate the actual consistency of the model with the practical.

The investigation of the TME and
immunotherapy

The mutation data was the sum and analyzed by R package

maftools. The infiltration status of immune cells, TME scores,

and immune checkpoints activation between two different

subgroups were presented via CIBERSORT and ssGSEA

algorithm and visualized by the “ggpubr” R package. The

Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm was also used to predict the likelihood of the

immunotherapeutic response, Immunotherapeutic

treatment data from the website (http://tide.dfci.harvard.

edu/) (Wang et al., 2020). The data of the immune subtype

was downloaded on TIMER (http://timer.comp-genomics.

org/) (Li et al., 2017).

Exploration of the model in the clinical
treatment

The R package “pRRophetic” was used to evaluate the

therapy response of each LUAD patient on Genomics of Drug

Sensitivity in Cancer (GDSC) (Yang et al., 2013). Drug sensitivity

analyses are conducted online (https://discover.nci.nih.gov/

cellminer/home.do).

Functional analysis

Differentially expressed genes (DEGs) between two groups

were identified by using the package “limma” following the criteria

(|Log2FC| > 1.0, p-value < 0.05). GO and KEGG enrichment

analysis was applied using the package “clusterProfiler” in R. GSEA

analysis was conducted to further screen functional pathways by

using software GSEA 4.2.1 (http://www.gesa-msigdb.org/gsea/

index,jsp) (Powers et al., 2018). Furthermore, the competitive

endogenous RNA (ceRNA) network between lncRNAs and

mRNAs was visualized by Cytoscape (version 3.6.1).

RNA extraction and real-time
quantitative PCR

We extracted total RNA from the samples. We synthesized

cDNA using a ServicebioRT First Strand cDNA Synthesis

Kit (Applied Servicebio, China). Then, cDNA was subjected

to a Real-Time Quantitative Polymerase Chain Reaction

(RT-qPCR) by the bio-rad CFX (Applied Bio-rad, China).

We used b-actin mRNA as an internal reference to

normalize the nine lncRNAs by the comparative Ct

method. All three cell lines (H1299, A549, and BEAS-2B)

were purchased from Procell. The ambient temperature was

controlled at 37°C and the CO2 concentration was 5%. The

three cell lines were added to a 1640 medium containing 10%

fetal bovine serum and incubated in a constant temperature

incubator.

Statistical analysis

All statistical analyses were conducted in the R software

(Version 4.1.1). Wilcoxon rank-sum test was used to compare the

difference between the two groups. K-W test was performed to

compare three or more groups. Kaplan-Meier analysis was used

to evaluate the survival differences between the low- and high-

risk score groups.

If there is no special description for the above method,

statistical significance is defined as a p-value < 0.05.

Results

FAM-related lncRNAs in LUAD patients

The detailed process is shown in Figure 1. A total of

490 LUAD patients were included in this analysis, with

their clinical features in Table 1. 92 FAM-related genes

(Appendix D1) were obtained from previous research and

the KEGG database. By using Pearson correlation analysis,

1879 FAM-related lncRNAs were discerned as FAM lncRNAs

(Figure 2A). The relationship data between FAM-related

genes and lncRNAs were shown in Appendix D2, and their

correlation was shown in (Figure 2B) (Part of fatty acids

metabolism-related genes were selected for display and

Supplementary Figure S1 for all).

Construction and validation of a
prognostic model

Here, 164 FAM-related lncRNAs were identified through

univariate COX regression analysis (Figure 3A, results whose p <
0.01 were selected to show and all results were available in
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Supplementary Figure S2. The LASSO regression focused on

26 related lncRNAs while avoiding overfitting (Figures 3B,C).

Finally, 12 FAM-related lncRNAs (Table 2) were used to

construct this prognostic model (Figure 3D).

The risk score was evaluated as: risk score =

AL390755.1×(−1.54813752178063)+

AC105020.6×(−2.54915590358082)+ TMPO-

AS1×(0.645364340734862)+ AC016737.2×(−1.62529028103815)+

FIGURE 1
The entire analytical process of the study.

TABLE 1 The clinical characteristics of included samples.

Covariates Type Total Test Train p-value

Age ≤65 231 (47.14%) 111 (45.49%) 120 (48.78%) 0.5789

>65 249 (50.82%) 127 (52.05%) 122 (49.59%)

unknown 10 (2.04%) 6 (2.46%) 4 (1.63%)

Gender FEMALE 262 (53.47%) 136 (55.74%) 126 (51.22%) 0.3618

MALE 228 (46.53%) 108 (44.26%) 120 (48.78%)

Stage Stage I-II 378 (77.14%) 184 (37.55%) 194 (39.59%) 0.8546

Stage III-IV 69 (21.22%) 55 (11.22%) 49 (10%)

unknown 8 (1.63%) 5 (2.05%) 3 (1.22%)

T T1-2 426 (86.94%) 210 (42.86%) 216 (44.08%) 0.7023

T3-4 61 (12.45%) 32 (6.53%) 29 (5.92%)

unknown 3 (0.61%) 2 (0.82%) 1 (0.41%)

M M0 324 (66.12%) 165 (67.62%) 159 (64.63%) 0.7872

M1 24 (4.9%) 11 (4.51%) 13 (5.28%)

unknown 142 (28.98%) 68 (27.87%) 74 (30.08%)

N N0 317 (64.69%) 157 (64.34%) 160 (65.04%) 0.3002

N1-3 162 (33.06%) 82 (16.73%) 80 (16.33%)

unknown 11 (2.24%) 5 (2.05%) 6 (2.44%)
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FIGURE 2
Selection of FAM-related lncRNAs in LUAD patients. (A) Sankey relation diagram for target lncRNAs. (B) Heatmap of the correlation between
FAM-related genes and the 12 prognostic FAM-related lncRNAs in TCGA entire set.
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AC127070.2×(−1.1290227830944)+

LINC01281×(−1.21908027803503)+ AL589986.2×(1.97638163310763)+

GAS6-DT×(1.04880809216376)+ AC078993.1×(0.651117829305934)+

LINC02198×(−0.520620804335338)+

AC007032.1×(−1.43127474226429)+

AL021026.1×(−1.55257545730318)

FIGURE 3
Prognostic model in training set validation. (A) Univariate Cox regression analysis. (B) The LASSO coefficient profile. (C) The 10-fold cross-
validation for variable selection in the LASSO model. (D) Multivariate Cox regression analysis and 12 lncRNAs were finally selected. (E) Patient risk
score distribution for the training set. (F) Survival status time between two risk groups in the training set. (G) 12 FAM-related lncRNAs distributed for
each patient in the training set. (H) OS curve of the training set.
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The median value of the risk score was the standard to divide

LUAD samples. All samples were divided into two low-/high-risk

groups. The distribution of risk grades and survival information

between the two groups is shown in (Figures 3E,F). The relative

expression standards of the 12 FAM-related lncRNAs for each

patient are shown in (Figure 3G). The survival analysis

demonstrated that the OS of the low-risk group was longer

than that of the high-risk group (Figure 3H p < 0.001).

We calculated risk scores for LUAD patients to validate the

predictive capability of the established model by using the uniform

formula. Figure 4 shows the diffusion of risk scores, survival status

and time, and expression of the FAM-related lncRNAs in the testing

set (Figures 4A–C) and the entire set (Figures 4E–G). The K-M

survival curve based on the testing set and the entire set also showed

that the patients in the low-risk group had a longer OS than those in

the high-risk group (Figures 4D,H p < 0.05).

PCA

Heterogeneity between the two risk subgroups in the entry

set and test set was examined by PCA analysis. The whole gene

expression profiles, 92 FAM genes, as well as our risk model was

included (Figure 5). The analysis results according to the risk

model we constructed showed that the low- and high-risk groups

had different distributions (Figures 5C–E). This shows that the

risk model can distinguish between low- and high-risk groups.

Nomogram

The hazard ratio (HR) of the risk score and 95% confidence

interval (CI) were 1.189 and 1.140–1.240 (p < 0.001), respectively,

in univariate Cox (uni-Cox) regression while 1.176 and 1.126–1.229

(p < 0.001), respectively, in multivariate Cox (multi-Cox) regression

(Figures 6A,B). Univariate Cox regression analysis indicated that

disease stage, T stage, M stage, and risk score, were related to

prognosis (Figure 6A, p < 0.001). Furthermore, multivariate Cox

regression analysis presented that the risk score was an independent

factor affecting prognosis (Figure 6B, p < 0.001). Therefore, we are

reasonably confident that risk models based on FAM-related

lncRNAs have a significant impact on the survival and prognosis

of LUAD patients and are independent prognostic factors. To better

predict the 1-,3-, and 5-year survival for LUAD patients, we

established a nomogram combining gender, age, stage, TNM,

and risk score (Figure 6C). Using calibration curve analysis, the

prediction accuracy of the nomogram was assessed (Figure 6D).

Assessment of the risk model

ROC curves were utilized to evaluate the sensitivity and

specificity of the model on the prognosis. The AUC (1-, 3-, and

5-year) for the train set were 0.805, 0.779, and 0.845, of the test set

were 0.645, 0.576, and 0.483, and of the entire set were 0.722, 0.664,

and 0.688, respectively (Figures 7A–C). The AUC value illustrated

that the prognostic risk model of the 12 FAM-related lncRNAs for

LUAD was comparatively dependable (Figures 7D,E).

Figures 7F–I showed the OS of patients after sub-clustering

using clinical characteristics based on the risk score. Like the

previous results, the OS of the low-risk group was better than that

of the high-risk group.

Stratification analysis of the risk model in
immune features

The infiltration status of immune cells was evaluated by the

CIBERSORT algorithm. The proportions of 22 immune cells in

each sample were shown in Figures 8A,B. The high-risk group

TABLE 2 The 12 FAM-related prognostic lncRNAs.\

Id Coef HR HR.95L HR.95H p-value

AL390755.1 −1.548137522 0.196552779 0.049061185 0.787445217 0.021594278

AC105020.6 −2.549155904 0.031057225 0.004725325 0.204123802 0.000301471

TMPO-AS1 0.645364341 1.594883853 1.061457403 2.396379259 0.024635498

AC016737.2 −1.625290281 0.165930576 0.040164005 0.685513212 0.013077694

AC127070.2 −1.129022783 0.338535109 0.147220182 0.778466772 0.010790501

LINC01281 −1.219080278 0.243707993 0.075401385 0.787698871 0.018341205

AL589986.2 1.976381633 2.768161634 1.121511954 6.832489666 0.027193217

GAS6-DT 1.048808092 1.527058692 1.015808552 2.295617855 0.041813182

AC078993.1 0.651117829 2.36441459 1.252924785 4.461924947 0.007910449

LINC02198 −0.520620804 0.516815504 0.301364474 0.886296453 0.016458722

AC007032.1 −1.431274742 0.371231383 0.143127389 0.9628677 0.041572162

AL021026.1 −1.552575457 0.060826538 0.007094814 0.521489027 0.010653806
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FIGURE 4
Prognostic value of risk score model in testing and entire sets. (A–D) Distribution of risk score, survival status, 12 hub lncRNA expression levels,
and K-M survival curve (OS) in the testing set. (E–H)Distribution of risk score, survival status, 12 hub lncRNA expression levels, and K-M survival curve
(OS) in the entire set.
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was associated with significantly lower levels of B cells, T cells

follicular helper, and Tregs, but a higher level of eosinophils and

neutrophils (Figure 8C). Subsequently, the results of the ssGSEA

algorithm showed that the high-risk group had a lower mean

infiltration level than the low-risk group, with T helper cells

showing higher infiltration levels in both risk groups (Figures

8D,E). We obtained similar results in correlation analysis of

immune responses, and overall, patients in the high-risk group

had a lower immune response. In addition, LUAD patients in the

high-risk group had remarkably lower stromal, immune, and

ESTIMATE scores (Figures 8F–H).

We then analyzed the mutation data. Mutations were stratified

according to the constructed risk model. The results of mutations

analysis with those top 20 driver genes are shown in Figures 9A,B.

A higher level of TP53 mutations was correlated with a worse

survival state. The TMB in the high-risk group exceeded that in the

low-risk group, showing that the FAM-related risk model classifier

index had a high correlation with TMB (Figure 9C). Therefore, we

tested the correlation between FAM-related lncRNAs and TMB

based on the risk model using Spearman correlation analysis

(Figure 9D r = 0.13, p = 0.0056). The results suggested a strong

correlation between the FAM-based classifier index and the TMB.

We further investigated the impact of TMB status on the prognosis

of LUAD patients by analyzing the survival of the high and low

TMB groups. However, the survival curves were similar in both

groups, indicating that TMB failed to differentiate survival in

LUAD (Figure 9E, p > 0.05). Besides, the survival outcome

(OS) predictive validity of TMB was conducted, which shows a

weaker predictive power than our risk model (Figure 9F, p < 0.05).

The results show that our model may predict better than the TMB.

Furthermore, according to TIMER2.0 data (Appendix D3), we

divided all samples into different immune subtypes (Figure 9G).

FAM genes, 12 FAM-related lncRNAs, and risk types were included

in the Sankey network (Figure 9H). The above results illustrate the

high correlation of these 12 FAM-related lncRNAs with LUAD

immunity from another dimension.

FIGURE 5
Principal component analysis. (A,B) 2D PCA in training and the entire set. (C–E) PCA between two risk groups for entire gene expression profiles,
92 FAM related-genes, and profiles of the 12 FAM-related lncRNAs as an entire set.
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Clinical treatment and drug sensitivity
analysis

Given the differences in the immune microenvironment

between these two risk groups, we hypothesized that these

two groups might have different responses to drugs. We then

used the pRophetic algorithm to estimate treatment response

against potential drugs in our model based on the IC50 of each

sample in the GDSC database. The correlation between CI50 and

different risk groups were shown in Figure 10A. The IC50s for

AP.24534, ATRA, AS601245, and ABT.888 were significantly

higher in the low-risk group (Figure 10A), suggesting that

exposure to these drugs may be more appropriate for high-

risk patients. Then those model-related lncRNAs and

immunotherapeutic biomarkers were pooled to explore their

relationship. We were pleasantly surprised to find that

TMPO-AS1 was related to the sensitivity of multiple drugs

(Figure 10B, the entire result was available in Appendix D4).

Unsurprisingly, the high-risk group may effect better in

immunotherapy, which also means that our model might

serve as a potential signature for predicting TIDE

(Figure 10C).

Functional analysis

GO analysis illustrated that these risk model-related genes

mainly affect the modulation of axoneme assembly, motile

FIGURE 6
Construction and validation of the nomogram. (A) Univariate Cox regression analysis indicated that disease stage, T stage, M stage, and risk
score, were related to prognosis (p < 0.001) (B)Multivariate Cox regression analysis presented that the risk score was an independent factor affecting
prognosis (p < 0.001). (C) The nomogram predicts the probability of the 1-, 3-, and 5-year OS. (D) The calibration plot.
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FIGURE 7
Assessment of the prognostic risk model. (A–C) The 1-, 3-, and 5-year ROC curves of the training, testing set, and entire set. (D) ROC curves of
all included features. (E)CI of the risk score and clinical characteristics. (F–I)OS curve of difference clustered by LUAD clinical features between two
risk groups in the entire set.
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FIGURE 8
Stratification Analysis of the FAM-related lncRNA prognostic risk score in immune features. (A–C) Heatmap, bar chart, and relative infiltrating
proportion of 22 tumor-infiltrating immune cell types in two risk groups. (D,E) The score of immune functions comparing two risk groups by ssGSEA
or ssGSEA score. (F–H) The comparison of immune-related scores between high- and low-risk groups.
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cilium, chemokine activity, and so on (Figure 11A). KEGG analysis

illustrated that these genes were involved in multiple immune

pathways such as the chemokine signaling pathway, B cell receptor

signaling pathway, and so on (Figures 11B,C). KEGG analysis

results were shown in Figures 11D,E. Pathways such as aminoacyl

tRNAbiosynthesis and biosynthesis of unsaturated fatty acids were

significantly related to the high-risk group, while pathways such as

allograft rejection and asthma were significantly enriched in the

FIGURE 9
Exploration of TMB and lncRNAs networks visualization. (A,B) 20 genes with high mutation frequencies in different risk subgroups. (C) TMB
difference in two risk groups. (D) The correlation between risk score and TMB. (E) K-M curves of the patient OS in the high-TMB and low-TMB groups
in the entire set. (F) The survival outcome predictive validity of TMB. (G) The correlation between risk score and immune subtype. (H) Sankey diagram:
the connection degree between the FAM-related genes, FAM-related lncRNAs, and risk types.
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FIGURE 10
The investigation of tumor immune factors and immunotherapy. (A) The immunotherapy prediction of high-risk and low-risk groups. (B) The
correlation between 12 FAM-related lncRNAs and drugs. (C) TIDE prediction difference in the high-risk and low-risk patients.
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FIGURE 11
Functional analysis. (A) Result of GO functional enrichment (top 10). (B) KEGG enrichment terms (top 30). (C) Circle diagram in KEGG analysis.
(D) GSEA of the top 10 pathways significantly enriched in the high-risk group. (E) GSEA of the top 10 pathways in the low-risk group. (F) 12 FAM-
related lncRNAs and differential FAM genes networks.
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low-risk group. In addition, we also established an interaction

network for these key lncRNAs (Figure 11F).

Verification of expression level in vitro on
hub lncRNAs

To verify the expression level of 12 FAM-related lncRNAs in

LUAD cells, we used RT-qPCR analysis to detect BEAS-2B and

LUAD cells, including A549 and H1299 (Figure 12).

Unfortunately, the sequences of three lncRNAs (AC105020.6,

AC127070.2, AC078993.1) did not have suitable primers, so we

only verified the expression levels of the remaining nine FAM-

related lncRNAs (The PCR primer sequences were available in

Table 3). Among these lncRNAs, we found that the expression of

GAS6-DT in the A549 and H1299 cell lines was significantly

higher than that in the BEAS-2B cell line, and TMPO-AS1 was

significantly higher in the H1299 cell line. Combined with the

FIGURE 12
Expression of nine lncRNAs from the risk model in LUAD cell lines and bronchial epithelial cells.

Frontiers in Genetics frontiersin.org16

Liu et al. 10.3389/fgene.2022.990153

97

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.990153


previous research results, their high expression was associated

with a poorer prognosis, with HR < 1, suggesting that GAS6-DT

and TMPO-AS1 genes may be a risk factor in LUAD. The

expression levels of AL021026.1 and LINC01281 in the

A549 cell line were significantly lower than those in the

BEAS-2B cell line, and their average expression in the

H1299 cell line was lower than that in BEAS-2B, but the

difference was not significant (p > 0.05). Model coefficients

and patient outcomes are considered that they may be

protective factors for LUAD. Interestingly, we also noticed

that LINC02198, AC007032.1, AL589986.2, and

AL390755.1 were significantly overexpressed in the H1299 cell

line and significantly underexpressed in the A549 cell line, while

AC016737.2 was significantly overexpressed in H1299 cell line.

The high expression contradicts the result of its coefficient of less

than 0 in the risk model.

Discussion

With the deepening of tumor research, the role of metabolic

reprogramming in tumors cannot be underestimated any longer

(Faubert et al., 2020). Simply, tumor cells are different from

normal tissue cells, when tumor cells are ready to colonize other

organs, they need to compete with other normal cells for the

living environment and nutrients. Therefore, the metabolic

demands of tumor cells are regulated to meet the needs of

survival in the current environment (Schild et al., 2018).

Based on the above characteristics, the metabolic

reprogramming of tumor cells is also regarded as a hallmark

of tumor development (Ward and Thompson, 2012). In addition,

more and more evidence shows that in addition to protein-

coding RNA mutations, mutations and abnormal modifications

of non-coding RNAs represented by lncRNAs were also vital in

tumor progression (Bhan et al., 2017). Therefore, these non-

coding RNAs also play a key role in tumor progression. It is

regarded as a new marker for tumor diagnosis or a new

therapeutic target (Kong et al., 2019; Wang et al., 2019; Xing

et al., 2021). Here, we cannot help but want to explore whether

and how lncRNA can interact with the lipid metabolism

reprogramming of tumor cells, and how the interaction

between the two affects the process of LUAD and thus affects

the prognosis and survival of patients. At the same time, it is

hoped that more powerful biomarkers and therapeutic targets

can be found for the clinical diagnosis and treatment of LUAD.

In this study, LUAD data were obtained from the TCGA

database, while FAM-related lncRNA data were downloaded

from the KEGG database. After differential gene analysis,

1879 differential lncRNAs related to FAM were found, and

after survival analysis, univariate/multifactor and LASSO Cox

regression. A 12-hub FAM-related lncRNA prognostic model

with high reliability and validity was constructed. Further

exploration was performed to figure out how those hub

lncRNAs were involved in LUAD progression.

Among the 12 key FAM-related genes we finally screened

for risk score modeling, most lncRNAs have not been studied,

but some lncRNAs have also appeared in the construction of

prognosis prediction models for different diseases. For

example, AL390755.1 was used to construct a prognostic

prediction model for low-grade glioblastoma, and similar

LINC01281, AL589986.2, and AC007032.1 were also used

for laryngeal cancer (Zhang et al., 2019), cervical cancer

(Ye et al., 2021), dilated cardiomyopathy (Zhang et al.,

2020) and proliferative vitreoretinopathy respectively (Ni

et al., 2021), which were also considered a potential

diagnostic marker. At the same time, we also noticed that

GAS6-DT and TMPO-AS1 have been shown to have

regulatory axes in previous studies, which can interact with

another coding/non-coding RNAs, and these two lncRNAs

were proved to be possible risk factors for LUAD in our PCR

validation. For example, the study of Zilin Li et al. pointed out

that in liver cancer cells with incomplete radiofrequency

ablation, the expression of GAS6-DT is often up-regulated

and can competitively inhibit the binding of microRNA-3619-

5p to ARL2, thereby promoting the proliferation and

migration of liver cancer cells (Li et al., 2021b). The

TABLE 3 The PCR primer sequences.

Gene F 59-39 R 59-39

TMPO-AS1 5ʹ-CAGACCTCTACAATCGGGCACTTA-3′ 5ʹ-ATTCTTGCGGGTGGTGGGAT-3′
AC016737.2 5ʹ-CTGGAGATGGACTTTGGCT-3′ 5ʹ-CTTGTGAGGTGGCTGTTATTATC-3′
LINC01281 5ʹ-CAGCCCAGAGTGAAGATAAGAATAC-3′ 5ʹ-GAAGCCACCAGCAGAATGACA-3′
GAS6-DT 5ʹ-TAGCTATTATTTCCTAAGGGTTCCAG-3′ 5ʹ-TCCATTAACTCTCTTCTCCAAAACTACA-3′
LINC02198 5ʹ-ACTTCTGTCACCCCCTTGATTACC-3′ 5ʹ-CCAAAGACTGGTCCTCCTCTATCC-3′
AC007032.1 5ʹ-TGATGACTTCACCCAAATACAGACC-3′ 5ʹ-ACTTTTTCCTGGCTACTTTTATCCG-3′
AL021026.1 5ʹ-ATATCTGAGCCTGAGTTTCCCATTC-3′ 5ʹ-TTCCATAGCCGCCAATACAAGC-3′
AL390755.1 5ʹ-GGAAAGCTATGAGGAAGAAGAAACAGA-3′ 5ʹ-CAACCTGTGCTGTGATGAATGG-3′
AL589986.2 5ʹ-CCTGATACTGGTTTTTCTACATGCTTC-3′ 5ʹ-TCCAAGGTTGTGCTATGGTAATCTG-3′
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relevant research on TMPO-AS1 is relatively sufficient. The

study of Xiaoqian Mu et al. (Mu et al., 2020) pointed out that

TMPO-AS1 is highly expressed in LUAD samples and

knocking down this gene negatively regulates the cell cycle

of tumors and reduces the invasiveness of tumors. Targeted

binding to TMPO-AS1 plays a role similar to gene knockout.

A similar study by Qiu L et al. (Li et al., 2021c) also pointed out

that TMPO-AS1 can also interact with miR-143-3p, ultimately

affecting the expression of CDK1 and regulating the cell cycle

of LUAD. Interestingly, the study by Jie Yao et al. (Yao et al.,

2021) pointed out that TMPO-AS1 is also involved in the

regulation of iron metabolism in LUAD.

When conducting drug sensitivity analysis, we were

pleasantly surprised to find that the expression level of

TMPO-AS1 is highly correlated with the sensitivity of

various drugs, including ifosfamide, thiotepa, irinotecan,

and other antitumor drugs that have been approved for

clinical LUAD use. Among them, the expression level of

this lncRNA is highly positively correlated with the CI50 of

ifosfamide, which means that the higher the expression level

of TMPO-AS1 (which also means a higher risk score), the

worse the effect of ifosfamide for LUAD treatment. At the

same time, we also noticed that trametinib showed a negative

correlation. The experimental study by Toshiyuki Sumi et al.

indicated that trametinib can reduce survivin expression in

RB1+/KRAS-mutated LUAD cells, thereby improving

prognosis (Sumi et al., 2018), and there was a similar case

study by Maurício Fernando Silva Almeida Ribeiro et al.

(Ribeiro et al., 2021). However, the latest clinical study by

Luo J, Makhnin A et al. pointed out that in the drug-resistant

EGFR-mutant LUAD that had previously appeared with a

tyrosine kinase inhibitor, the addition of trametinib could not

reverse the sensitivity of the tumor to the drug (Luo et al.,

2021), which means that TMPO-AS1 may be a potential target

to solve this problem, which is worthy of further study.

In addition, in the PCR validation of these hub lncRNAs, we

found that the expression levels of the four lncRNAs LINC02198,

AC007032.1, AL589986.2, and AL390755.1 were not consistent

in the H1299 and A549 cell lines, and they were all expressed in

the H1299 cell line. Moderately high expression, but low

expression in the A549 cell line. We speculate that this may

be related to the differences in the genomes of the two cells

themselves. H1299 is a lymph node-derived human NSCLC cell

line (Giaccone et al., 1992), while A549 cells are human

adenocarcinoma alveolar basal epithelial cells (Foster et al.,

1998). The different sources of the two may be one of the

possibilities leading to this contradiction. Secondly, the

H1299 cell line is considered to be a p53 wild-type cell, while

the A549 is a p53-null cell (Dorandish et al., 2021). Several

studies have also pointed to heterogeneity between the two types

of cells, and our findings may add some new evidence to this

topic (Yang et al., 2018) (Sidorova and Petrikaitė, 2022). In

addition, we also noticed that AC016737.2 was significantly

highly expressed in the H1299 cell line, but the coefficient of

this lncRNA in the risk model was negative. This contradiction

may require more basic experiments to explain.

Furthermore, with the deepening of research, there is a lot

of evidence that there is a close relationship between the

metabolic reprogramming of tumor cells and the tumor

immune response (Cronin et al., 2018). In a broad sense,

lipid metabolites include phospholipids, fatty acids, and

cholesterol, and the impact of FAM on immune cells is

particularly well-studied, for example, during the

transformation of monocytes like neutrophils, the demand

for fatty acid synthesis is significantly increased (den Hartigh

et al., 2010). In regulatory T cells (Tregs), there is high fatty acid

oxidation for energy, but in effector T cells, this oxidative

activity is inhibited, which also maintains the relative

stability of the immune system (Amersfoort et al., 2021).

When we jointly analyzed the immune characteristics of

LUAD samples of different risk groups, we found that the

immune characteristics of the high-risk group were all

suppressed compared with the low-risk group. At the level of

immune cell infiltration, T helper cells (CD4+ T cells) were

infiltrated to a higher degree in both high and low-risk groups,

and there were significant differences between groups. Previous

studies have pointed out that FAM is closely related to the

phenotypic differentiation of T helper cells (Almeida et al.,

2016), but our study found that Th1/Th2 subtypes did not have

significant infiltration differences between the two risk groups,

so we guessed that the lipid metabolism of LUAD is important.

Programming may have more effect on the shift of T helper cells

towards Th17. Recent work by Panagiota Mamareli indicated

that de novo synthesis of fatty acids is necessary for the

differentiation of the Th17 phenotype (Mamareli et al.,

2021), In contrast, Ran You et al. observed that TIL in early-

stage NSCLC was biased towards IL17A expression, whereas

Th17 cells were reduced in tumor-infiltrating regional lymph

nodes in advanced NSCLC (You et al., 2018). The clinical study

by Chen G et al. also showed that Th17 and IL-17 increased in

the peripheral blood of LUAD patients (Chen et al., 2020).

Interestingly, in the functional enrichment analysis, we found

that the IL-17 signaling pathway was enriched to the top

position, which confirmed our conjecture to a certain extent.

All the above evidence suggested that lipid metabolism

reprogramming in LUAD may lead to the differentiation of

T helper cells inclined towards Th17, which affects the LUAD

process.

Interestingly, in the functional enrichment analysis, we

found that the IL-17 signaling pathway was enriched to the

top position, which confirmed our conjecture to a certain

extent.

Overall, based on the lncRNA regulation of lipid

metabolism in LUAD, we constructed a prognostic

prediction model with good prediction results, and the

model has high reliability and validity. In addition, we also
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conducted a preliminary study on how these key lncRNAs

participate in the LUAD process and affect LUAD

immunotherapy. Everything we do aims to improve the

understanding of LUAD and shed a hoping light on early

clinical diagnosis and treatment of LUAD.

Limitations

Of course, almost all studies face certain challenges of

limitations. Our study is no exception. First, we need to

complete further validation experiments to provide reliable

support for this study. Second, traditional statistical analysis

methods may be of limited value in building and assessing

prognostic risk models. We hope to open the door for lung

adenocarcinoma research, and more questions to follow will

require more investigators to join the study.
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Peripheral blood markers predict
immunotherapeutic efficacy in
patients with advanced
non-small cell lung cancer: A
multicenter study

Shuai Liu1†, Liuyuan Zhao1,2† and Guohua Zhou3,4*
1Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University,
Nanjing, China, 2Department of Pain Medicine, Harbin Medical University Cancer Hospital, Harbin,
China, 3Department of Anesthesiology, Ningbo First Hospital, Zhejiang, China, 4Department of
Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China

This study aims to investigate the prognostic impact of peripheral blood

markers in patients with advanced non-small cell lung cancer (NSCLC)

undergoing immunotherapy. In the current multicenter study, 157 advanced

NSCLC cases treated by immunotherapy at three institutions were included.

Biochemical parameters in baseline peripheral blood were collected. The

associations between biochemical parameters and prognosis were

investigated by the Kaplan–Meier survival analyses and Cox regression, and

the predictive performances of biomarkers were evaluated via receiver

operating characteristic analysis. The neutrophil-to-lymphocyte ratio (NLR)

(progression-free survival [PFS]: hazard ratio [HR], 1.766; 95% confidence

interval [CI], 1.311–2.380; p < 0.001; overall survival [OS]: HR, 1.283; 95% CI,

1.120–1.469; p < 0.001) and red blood cell distribution width (RDW) (PFS: HR,

1.052; 95% CI, 1.005–1.102; p = 0.031; OS: HR, 1.044; 95% CI, 1.001–1.091; p =

0.042) were revealed as independent predictors for both PFS and OS. In

addition, NLR ≥3.79 (1-year PFS, 24.2% [95% CI, 15.2%–38.4%] versus 27.3%

[95% CI, 18.2%–41.1%], p = 0.041; 1-year OS, 44.2% [95% CI, 32.5%–60.1%]

versus 71.8% [95% CI, 60.6%–85.2%], p < 0.001) or RDW ≥44.8 g/L (1-year PFS,

19.2% [95% CI, 11.4%–32.3%] versus 31.7% [95% CI, 21.9%–46.0%], p = 0.049; 1-

year OS, 54.0% [95% CI, 42.7%–68.3%] versus 63.1% [95% CI, 50.6%–78.6%], p =

0.014) was significantly correlated to poorer PFS and OS than NLR < 3.79 or

RDW <44.8 g/L. Moreover, NLR and RDW achieved areas under the curve with

0.651 (95% CI, 0.559–0.743) and 0.626 (95% CI, 0.520–0.732) for predicting

PFS, and 0.660 (95% CI, 0.567–0.754) and 0.645 (95% CI, 0.552–0.739), for OS.

Therefore, PLR and RDW could help predict the immunotherapeutic efficacy of

advanced NSCLC.

KEYWORDS

non-small cell lung cancer, biomarker, peripheral blood, neutrophil-to-lymphocyte
ratio, red blood cell distribution width
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Introduction

Immune checkpoint inhibitors (ICIs), which target

programmed cell death 1 (PD-1) and its ligand (PD-L1), are

capable of inducing sustained antitumor effects, ushering in the

therapeutic era for multiple malignant neoplasms (Okazaki et al.,

2013; Ribas and Wolchok, 2018). In spite of this significant

breakthrough, potent immunotherapeutic responses were only

observed in approximately 20% advanced non-small cell lung

cancer (NSCLC) population (Borghaei et al., 2015; Brahmer et al.,

2015; Reck et al., 2016). Hence, precise recognition of patients

who have the potential to derive additional benefits from ICIs is

essential for the personalized treatment of advanced NSCLC.

Several biomarkers for immunotherapeutic efficacy of

advanced NSCLC, such as tumor mutation burden (TMB),

PD-L1, and tumor-infiltrating lymphocytes, have been

revealed in previous publications (Kerr et al., 2015; Meng

et al., 2015; High TMB Predicts Immunotherapy Benefit,

2018). However, in the current clinical practice, recognizing

these signatures primarily resorts to core biopsy, which is

unable to quantify the whole heterogeneity of tumors

attributable to the limited specimens and simultaneously

brings about a significant morbidity risk considering its

invasive manipulation (Kerr et al., 2015; McLaughlin et al.,

2016). As a result, a reliable and noninvasive instrument to

predict the immunotherapeutic efficacy of advanced NSCLC is

urgently needed.

Previous studies indicated that tumor-related inflammation

played an important role in regulating tumor progression and

immune infiltration (Jomrich et al., 2021). Moreover,

biochemical parameters in peripheral blood provide a

convenient and cost-effective path for reflecting the

inflammatory status and their predictive potentials for

immunotherapeutic efficacy have been investigated in various

types of cancers receiving ICIs (Fukui et al., 2019; Nenclares et al.,

2021; Valero et al., 2021). However, pieces of evidence for the

value of biochemical parameters in peripheral blood in advanced

NSCLC are insufficient. Therefore, this study, based on a

multicenter population, proposes to explore the associations

between pretreatment peripheral blood markers and prognosis

in advanced NSCLC populations treated with ICIs.

Materials and methods

Study population

Approval of the institutional review boards and ethics

committees of Harbin Medical University Cancer Hospital,

Affiliated Drum Tower Hospital, and The First Affiliated

Hospital of Dalian Medical University and a waiver for

informed consent were obtained. Consecutive advanced

NSCLC patients who underwent ICIs treatment in the

abovementioned institutions between January 2016 to

December 2020 were reviewed (Figure 1). Patients were

included in this study when meeting the following criteria: 1)

pathologically confirmed NSCLC; 2) stage III–IV; 3)

administration of treatment ICIs, regardless of pretreatment

line. The exclusion criteria included incomplete baseline data

and lost to follow-up. All patients completed the follow-up

survey before August 2022.

Data collection

Clinicopathologic information was collected from electronic

medical systems. Follow-up data were obtained through

outpatient visits and telephone surveys. Overall survival (OS)

was determined as the interval from initial ICI treatment to death

or last follow-up. Progression-free survival (PFS) was calculated

as the duration between initial ICI treatment and disease

progress, death, or last follow-up.

Baseline peripheral blood samples were acquired within

7 days before immunotherapy, and routine blood biochemical

parameters were collected. The inflammatory indexes were

obtained based on the following formula: platelet-to-

lymphocyte ratio (PLR) and absolute platelet count/absolute

lymphocyte count; neutrophil-to-lymphocyte ratio (NLR) and

absolute neutrophil count/absolute lymphocyte count; derived

NLR (dNLR) and absolute neutrophil count/(white blood cell

count-absolute neutrophil count); monocyte-to-lymphocyte

ratio (MLR) and absolute monocyte count/absolute

lymphocyte count; and systemic immune-inflammation index

(SII), absolute neutrophil count×absolute platelet count/absolute

lymphocyte count.

FIGURE 1
Flow chart illustrating patient inclusion. NSCLC, non-small
cell lung cancer; ICI, immune checkpoint inhibitor.
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TABLE 1 Baseline characteristics of patients.

Characteristics Entire
cohort (n = 157)

PD + SD (n = 117) PR + CR (n = 40) p value

Age (years), mean ± SD 60.82 ± 10.45 60.59 ± 10.89 61.50 ± 9.16 0.636

Sex, n (%) 0.562

Male 97 (61.78) 71 (60.68) 25 (62.50)

Female 60 (38.22) 46 (39.21) 15 (37.50)

Smoking, n (%) 0.030

Ever 95 (60.51) 65 (55.56) 30 (75.00)

Never 62 (39.49) 52 (44.44) 10 (25.00)

ECOG PS, n (%) 0.551

0 12 (7.64) 7 (5.98) 5 (12.50)

1 136 (86.62) 103 (88.03) 33 (82.50)

2 8 (5.10) 6 (5.13) 2 (5.00)

3 1 (0.64) 1 (0.85) 0 (0.00)

Stage, n (%) 0.335

Ⅲ 23 (14.65) 38 (32.48) 11 (27.50)

Ⅳ 134 (85.35) 67 (57.26) 27 (67.50)

Histology, n (%) 0.431

Squamous cell carcinoma 94 (59.87) 67 (57.26) 27 (67.50)

Adenocarcinoma 49 (31.21) 38 (32.48) 11 (27.50)

Others 14 (8.90) 12 (10.26) 2 (5.00)

Treatment line, n (%) 0.856

First 84 (53.50) 62 (53.00) 22 (55.00)

Not first 73 (46.50) 55 (47.00) 18 (45.00)

Peripheral blood index

PLR, mean ± SD 194.97 ± 103.36 196.66 ± 100.63 190.00 ± 112.17 0.726

NLR, mean ± SD 4.47 ± 2.86 4.68 ± 3.03 3.85 ± 2.24 0.113

dNLR, mean ± SD 2.75 ± 1.74 2.80 ± 1.68 2.61 ± 1.93 0.546

MLR, mean ± SD 0.47 ± 0.31 0.49 ± 0.33 0.40 ± 0.22 0.112

SII, mean ± SD 1,182.14 ± 943.78 1,215.66 ± 1,000.62 1,084.06 ± 756.06 0.448

HGB (g/L), mean ± SD 120.25 ± 19.10 118.56 ± 19.51 125.21 ± 17.14 0.057

RBC (10̂12/L), mean ± SD 4.11 ± 0.61 4.06 ± 0.62 4.24 ± 0.56 0.122

WBC (10̂9/L), mean ± SD 8.35 ± 3.33 8.39 ± 3.56 8.25 ± 2.56 0.820

NEUT%, mean ± SD 68.55 ± 12.27 68.93 ± 12.58 67.46 ± 11.40 0.514

LYM%, mean ± SD 20.28 ± 9.24 19.70 ± 9.12 21.98 ± 9.50 0.179

MONO%, mean ± SD 8.08 ± 3.28 8.09 ± 3.20 8.06 ± 3.55 0.962

EOS%, mean ± SD 2.36 ± 2.86 2.40 ± 3.15 2.24 ± 1.79 0.755

BASO%, mean ± SD 0.29 ± 0.28 0.27 ± 0.19 0.34 ± 0.44 0.202

PLT (10̂9/L), mean ± SD 263.72 ± 96.82 259.38 ± 103.41 276.43 ± 73.91 0.338

HCT (%), mean ± SD 36.96 ± 5.34 36.47 ± 5.44 38.41 ± 4.83 0.047

MCV (fL), mean ± SD 90.26 ± 5.42 90.03 ± 5.69 90.92 ± 4.52 0.369

MCH (pg), mean ± SD 29.34 ± 1.94 29.24 ± 2.04 29.62 ± 1.62 0.287

MCHC (g/L), mean ± SD 324.82 ± 12.23 324.55 ± 13.45 325.60 ± 7.71 0.640

RDW (g/L), mean ± SD 46.10 ± 5.94 46.55 ± 5.98 44.80 ± 5.73 0.110

PCT (%), mean ± SD 26.01 ± 9.21 25.50 ± 9.69 27.53 ± 7.56 0.230

PDW (fL), mean ± SD 11.18 ± 1.77 11.16 ± 1.86 11.23 ± 1.53 0.830

P-LCR (%), mean ± SD 24.39 ± 7.47 24.30 ± 7.56 24.65 ± 7.26 0.804

PD, progressive disease; SD, stable disease; PR, partial response; CR, complete response; ECOG PS, Eastern Cooperative Oncology Group Performance Status; PLR, platelet-to-lymphocyte

ratio; NLR, neutrophil-to-lymphocyte ratio; MLR, monocyte-to-lymphocyte ratio; SII, systemic immune-inflammation index; HGB, hemoglobin; RBC, red blood cell count; WBC, white

blood cell count; NEUT, neutrophil; LYM, lymphocyte; MONO, monocyte; EOS, eosinophils; BASO, basophil granulocytes; PLT, platelet; HCT, hematocrit; MCV, mean corpuscular

volume; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; RDW, red blood cell distribution width; PCT, plateletcrit; PDW, platelet distribution

width; P-LCR, platelet-larger cell ratio; SD, standard deviation.
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Statistical analysis

Pearson’s chi-squared test and Student’s t-test were

implemented to compare the categorical and continuous

parameters, respectively. Cox regressions and Kaplan–Meier

survival analyses were conducted to recognize predictors for

OS and PFS via the backward stepwise selection. The

abovementioned statistical analyses were done using SPSS

(version 23.0, IBM, Armonk, NY, United States) R software

(version 4.1.1, http://www.R-project.org). A p value less than

0.05 was considered statistically significant.

Results

Clinicopathologic characteristics

The clinicopathologic characteristics were displayed in

Table 1. The entire cohort included 97 (61.78%) men and 60

(38.22%) women, and the mean age for the whole population was

60.82 years. Smoking history was identified in 95 (60.51%)

patients. ECOG PS 1 (n = 136, 86.62%) accounted for the

largest proportion. Most patients were diagnosed as stage Ⅳ
(n = 134, 85.35%) and squamous cell carcinoma (n = 94, 59.87%).

Regarding the peripheral blood indexes, the mean level of PLR,

NLR, dNLR, MLR, SII, hemoglobin (HGB), red blood cell count

(RBC), white blood cell count (WBC), percentage of neutrophil

(NEUT%), percentage of lymphocyte (LYM%), percentage of

monocyte (MONO), percentage of eosinophils (EOS),

percentage of basophil granulocytes (BASO), platelet (PLT),

hematocrit (HCT), mean corpuscular volume (MCV), mean

corpuscular hemoglobin (MCH), mean corpuscular

hemoglobin concentration (MCHC), red blood cell

distribution width (RDW), plateletcrit (PCT), platelet

distribution width (PDW), and platelet-larger cell ratio

(P-LCR) were 194.97, 4.47, 2.75, 0.47, 1,182.14, 120.25 g/L,

4.11 × 10̂12/L, 8.35 × 10̂9/L, 68.55%, 20.28%, 8.08%, 2.36%,

0.29%, 263.72 × 10̂9/L, 36.96%, 90.26 fL, 29.34 ng, 324.82 g/L,

46.10 g/L, 26.01%, 11.18 fL and 24.39%. In addition, in subgroup

analyses between 117 patients evaluated as progressive disease

(PD) or stable disease (SD) and 40 patients with partial response

(PR) or complete response (CR), patients classified as PR or CR

were associated with a significantly higher proportion of smoking

history (75% versus 55.56%, p = 0.030) and a higher level of HCT

(38.41% versus 36.47%, p = 0.047).

Prognostic impact of peripheral blood
markers

In the Cox survival analyses (Table 2), smoking history

(hazard ratio [HR], 0.457; 95% confidence interval [CI],

0.306–0.683; p < 0.001), ECOG PS ≥ 1 (HR, 3.040; 95% CI,

1.386–6.668; p = 0.006), stage Ⅳ (HR, 0.465; 95% CI,

0.267–0.812; p = 0.007), NLR (HR, 1.766; 95% CI,

1.311–2.380; p < 0.001), dNLR (HR, 0.489; 95% CI,

0.321–0.744; p = 0.001), MLR (HR, 0.203; 95% CI,

0.044–0.929; p = 0.040), HGB (HR, 0.002; 95% CI,

0.001–0.171; p = 0.010), HCT (HR, 2.220; 95% CI,

1.183–4.166; p = 0.013), MCV (HR, 0.678; 95% CI,

0.525–0.876; p = 0.003), and RDW (HR, 1.052; 95% CI,

1.005–1.102; p = 0.031) were independent predictors for PFS.

Similarly, smoking history (HR, 0.440; 95% CI, 0.250–0.775; p =

0.004), stageⅣ (HR, 0.445; 95% CI, 0.209–0.947; p = 0.036), NLR

(HR, 1.283; 95% CI, 1.120–1.469; p < 0.001), MCH (HR, 0.852;

95% CI, 0.752–0.965; p = 0.012), and RDW (HR, 1.044; 95% CI,

1.001–1.091; p = 0.042) independently predicted OS.

As illustrated in Figure 2, ever-smoking patients achieved

significantly better PFS (1-year PFS, 31.2% [95% CI, 22.2%–

43.9%] versus 16.3% [95% CI, 8.3%–31.7%], p = 0.003) and OS

(1-year OS, 64.0% [95% CI, 53.8%–76.3%] versus 49.1% [95%

CI, 34.8%–69.1%], p = 0.042) compared with never-smoking

patients. However, ECOG PS and stage failed to stratify the

prognosis after immunotherapy. Moreover, as shown in

Figure 3, by utilizing the median value as the cut-off,

NLR ≥3.79 (1-year PFS, 24.2% [95% CI, 15.2%–38.4%]

versus 27.3% [95% CI, 18.2%–41.1%], p = 0.041; 1-year OS,

44.2% [95% CI, 32.5%–60.1%] versus 71.8% [95% CI, 60.6%–

85.2%], p < 0.001) or RDW ≥44.8 g/L (1-year PFS, 19.2% [95%

CI, 11.4%–32.3%] versus 31.7% [95% CI, 21.9%–46.0%], p =

0.049; 1-year OS, 54.0% [95% CI, 42.7%–68.3%] versus 63.1%

[95% CI, 50.6%–78.6%], p = 0.014) was significantly correlated

to poorer PFS and OS than NLR< 3.79 or RDW< 44.8 g/L. In

addition, patients with dNLR ≥2.41 (1-year OS, 48.5% [95% CI,

36.6%–64.4%] versus 67.8% [95% CI, 56.3%–81.5%], p = 0.013)

or HGB <120 g/L (1-year OS, 51.1% [95% CI, 39.6%–65.9%]

versus 67.6% [95% CI, 56.0%–81.7%], p = 0.046) showed

inferiority only in OS than those with dNLR< 2.41 or

HGB ≥120 g/L. However, other blood biochemical

parameters did not stratify the prognosis of NSCLC

receiving immunotherapy.

Predictive performance of peripheral
blood markers

Considering PLR and RDW were two independent

inflammatory biomarkers for both PFS and OS, the receiver

operating characteristic analysis was implemented to quantify

the predictive performance of PLR and RDW (Figure 4). For

predicting PFS, NLR and RDW achieved areas under the curves

(AUCs) with 0.651 (95% CI, 0.559–0.743) and 0.626 (95% CI,

0.520–0.732). Similarly, in the prediction for OS, the

performances of NLR and RDW were shown to have AUCs

of 0.660 (95% CI, 0.567–0.754) and 0.645 (95% CI,

0.552–0.739).
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Discussion

Despite immunotherapy having revolutionized the treatment

paradigms of NSCLC (Okazaki et al., 2013; Ribas and Wolchok,

2018), the low response rate, therapy-related adverse effects, and

high medical expense emphasize the significance of biomarkers

for immunotherapeutic efficacy (Borghaei et al., 2015; Brahmer

et al., 2015; Reck et al., 2016). In this study based on a multicenter

population, we demonstrated that higher NLR and RDW in

baseline peripheral blood were significantly correlated with poor

PFS and OS in NSCLC patients undergoing ICIs treatment.

Previously, a number of studies have made investigations on

this topic and revealed that TMB, PD-L1, and tumor-infiltrating

lymphocytes derived from core biopsy specimens were correlated

with immunotherapy prognosis of NSCLC (Kerr et al., 2015;

Meng et al., 2015; High TMB Predicts Immunotherapy Benefit,

2018). However, these biomarkers suffered from biopsy-related

morbidities due to their invasive nature. To overcome this

limitation, further studies found that these markers in the

peripheral blood also hold the potential to predict

immunotherapy efficacy (Gandara et al., 2018; Wang et al.,

2019; Bratman et al., 2020). Despite this breakthrough, these

TABLE 2 Cox analyses for progression-free survival and overall survival.

Variables Progression-free survival Overall survival

Univariable Multivariable Univariable Multivariable

HR (95% CI) p value HR (95% CI) p value HR (95% CI) p value HR (95% CI) p value

Age 0.998 (0.980–1.018) 0.872 1.001 (0.974–1.030) 0.917

Sex (Male) 0.649 (0.407–1.036) 0.070 0.613 (0.329–1.141) 0.123

Smoking history (Ever) 0.562 (0.384–0.822) 0.003 0.457 (0.306–0.683) < 0.001 0.627 (0.369–1.066) 0.085 0.440 (0.250–0.775) 0.004

ECOG PS (≥1) 1.796 (0.870–3.709) 0.113 3.040 (1.386–6.668) 0.006 1.474 (0.583–3.731) 0.413

Stage (Ⅳ) 0.664 (0.399–1.105) 0.115 0.465 (0.267–0.812) 0.007 0.698 (0.340–1.433) 0.327 0.445 (0.209–0.947) 0.036

Histology (SCC) 0.687 (0.470–1.005) 0.053 0.689 (0.406–1.169) 0.167

PLR 1.001 (1.000–1.003) 0.135 1.002 (1.000–1.004) 0.040

NLR 1.077 (1.012–1.147) 0.020 1.766 (1.311–2.380) < 0.001 1.162 (1.076–1.255) < 0.001 1.283 (1.120–1.469) < 0.001

dNLR 1.023 (0.935–1.121) 0.617 0.489 (0.321–0.744) 0.001 1.127 (1.008–1.260) 0.035 0.823 (0.650–1.041) 0.103

MLR 2.526 (1.433–4.452) 0.001 0.203 (0.044–0.929) 0.040 2.845 (1.392–5.816) 0.004

SII 1.000 (1.000–1.000) 0.060 1.000 (1.000–1.001) < 0.001

HGB 0.990 (0.979–1.000) 0.053 0.002 (0.001–0.171) 0.010 0.980 (0.966–0.994) 0.005

RBC 0.807 (0.593–1.099) 0.173 0.663 (0.434–1.012) 0.057

WBC 1.029 (0.970–1.093) 0.342 1.070 (0.994–1.153) 0.073

NEUT% 1.007 (0.991–1.022) 0.403 1.023 (1.000–1.047) 0.053

LYM% 0.978 (0.958–0.999) 0.044 0.956 (0.926–0.987) 0.006

MONO% 1.017 (0.966–1.071) 0.528 0.971 (0.897–1.051) 0.466

EOS% 1.043 (0.967–1.126) 0.271 0.950 (0.837–1.077) 0.421

BASO% 0.611 (0.297–1.258) 0.181 0.349 (0.086–1.413) 0.140

PLT 1.000 (0.998–1.002) 0.773 1.001 (0.998–1.004) 0.512

HCT 0.962 (0.927–0.998) 0.037 2.220 (1.183–4.166) 0.013 0.937 (0.893–0.983) 0.008

MCV 0.968 (0.934–1.003) 0.069 0.678 (0.525–0.876) 0.003 0.961 (0.918–1.007) 0.093

MCH 0.911 (0.824–1.008) 0.072 0.853 (0.759–0.960) 0.008 0.852 (0.752–0.965) 0.012

MCHC 0.999 (0.980–1.018) 0.894 1.020 (0.999–1.041) 0.065 0.974 (0.949–0.998) 0.036

RDW 1.016 (0.987–1.047) 0.282 1.052 (1.005–1.102) 0.031 1.038 (0.998–1.079) 0.064 1.044 (1.001–1.091) 0.042

PCT 0.998 (0.976–1.020) 0.844 1.010 (0.980–1.041) 0.509

PDW 0.959 (0.864–1.064) 0.431 0.977 (0.845–1.129) 0.751 0.577 (0.308–1.080) 0.085

P-LCR 0.988 (0.964–1.012) 0.333 1.002 (0.969–1.036) 0.915 1.148 (0.993–1.327) 0.062

CEA 0.796 (0.386–1.634) 0.533 0.865 (0.367–2.130) 0.755

ECOG PS, Eastern Cooperative Oncology Group Performance Status; SCC, squamous cell carcinoma; PLR, platelet-to-lymphocyte ratio; NLR, neutrophil-to-lymphocyte ratio; MLR,

monocyte-to-lymphocyte ratio; SII, systemic immune-inflammation index; HGB, hemoglobin; RBC, red blood cell count; WBC, white blood cell count; NEUT, neutrophil; LYM,

lymphocyte; MONO, monocyte; EOS, eosinophils; BASO, basophil granulocytes; PLT, platelet; HCT, hematocrit; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin;

MCHC, mean corpuscular hemoglobin concentration; RDW, red blood cell distribution width; PCT, plateletcrit; PDW, platelet distribution width; P-LCR, platelet-larger cell ratio; CEA,

carcinoembryonic antigen; HR, hazard ratio; CI, confidence interval.
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blood biomarkers were quantified based on peripheral blood

mononuclear cells, which are too costly and time-consuming to

acquire. In contrast, peripheral blood markers derived from

routine complete blood count (CBC) are easily accessible and

cost-effective, and thereby could be utilized as a convenient

instrument in routine clinical practice.

Findings in our study were in line with previous publications that

higher NLR was an adverse factor for the prognosis of NSCLC

receiving immunotherapy (Fukui et al., 2019; Valero et al., 2021).

In addition, Diem et al. (2017) concluded that PLR also played an

important role in predicting immunotherapy response and prognosis

and NSCLC patients with higher PLR tended to have an inferior

prognosis. However, our study failed to validate the predictive

efficiency of PLR: we speculated it might be attributable to that our

study also included other biochemical parameters in the routine

peripheral blood examination. Interestingly, we proved that

increment of RDW significantly predicted poorer PFS and OS in

NSCLC treated by immunotherapy, whichwas also observed in diffuse

FIGURE 2
Survival analyses for patients with different smoking history (A,B), ECOG PS (C,D), and tumor stage (E,F). ECOG PS, Eastern Cooperative
Oncology Group Performance Status.
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large B-cell lymphoma receiving immunotherapy (Beltran et al., 2019),

but limited previous studies demonstrated its value in the NSCLC

population. As such, we first indicated the capability of RDW as the

biomarker for immunotherapeutic efficacy, and this finding might

imply further insight into the prediction of immunotherapy response.

In addition to clinical implications, it is important to

understand the biological basis underlying the prediction of

NLR and RDW. The predictive mechanism of NLR might be

rooted in its contributions to an immunosuppressive tumor

microenvironment. On the one hand, as neutrophils were

capable of releasing components mediating

immunosuppression and tumor angiogenesis, neutrophil

infiltration, thereby, established a microenvironment

promoting cancer initiation, proliferation, and metastasis

(Gonzalez et al., 2018; Shaul and Fridlender, 2019). On the

other hand, reduced densities of lymphocyte infiltration

contributed to the decreased response of antitumor T-cell, and

the high level of neutrophils might further restrain T-cell

response (Restifo et al., 2012; Zito Marino et al., 2017).

RDW, as an indicator representing the variations in the shape

and size of red blood cells, is easily accessible in a routine CBC

examination. The increased level of RDW implies a sign of

impairments in erythropoiesis and red blood cell metabolism.

The mechanism underlying the correlation of RDW with

FIGURE 3
Survival analyses for patients with different NLR (A,B), dNLR (C,D), MLR (E,F), HGB (G,H), HCT (I,J), MCV (K,L), MCH (M,N), and RDW (O,P). NLR,
neutrophil-to-lymphocyte ratio; MLR, monocyte-to-lymphocyte ratio; HGB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular volume; MCH,
mean corpuscular hemoglobin; RDW, red blood cell distribution width.

Frontiers in Genetics frontiersin.org07

Liu et al. 10.3389/fgene.2022.1016085

109

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1016085


immunotherapeutic efficacy has not been clarified. However,

several publications revealed that increasing RDW might

result from oxidative stress, inflammation, and poor

nutritional status via variation of erythropoiesis (Salvagno

et al., 2015), and emerging pieces of evidence indicate that

RDW was an adverse predictor for the prognosis of multiple

malignancies (Koma et al., 2013; Albayrak et al., 2014; Ay et al.,

2015).

Still, several limitations existed in the current study. First,

despite the inclusion of a multicenter population, this study was

limited by its retrospective nature, which suffered from selection

bias and potential confounders. We utilized the multivariable

regression to adjust prognostic predictors, but the impact of some

known biomarkers, such as TMB, could not be evaluated. Thus,

future prospective studies are required to validate our

conclusions. Second, the small sample size reduces the power

of the current study, and to be confirmed, further follow-up

studies enrolling a larger sample size need to be performed.

Finally, the underlying mechanism of the biomarkers has not

been elucidated, and future studies focusing on the biological

basis of NLR and RDW are warranted.

Conclusion

Our study demonstrated that NLR and RDW in baseline

peripheral blood could help stratify the prognosis of advanced

NSCLC patients receiving immunotherapy. Thus, NLR and

RDW harbor the potential to serve as effective biomarkers for

immunotherapeutic efficacy in NSCLC.
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ERBB2 as a prognostic biomarker
correlates with immune
infiltrates in papillary thyroid
cancer
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Epidermal growth factor receptor 2 (ERBB2) is commonly over-expressed in

advanced or metastatic tissues of papillary thyroid cancer (PTC) with poor

prognosis, while it remains unknown whether ERBB2 plays a role in the

progression of PTC. Thus, we analyzed the data derived from online

repositories, including TCGA, KEGG, GO, GeneMANIA, and STRING, to

explore the relationship between ERBB2 expression and prognosis, tumor

phenotypes of interest, and immune infiltrates in PTC. Compared to normal

thyroid tissue, ERBB2 was up-regulated in PTC samples (p < 0.001); In

comparison with the group with low expression of ERBB2, the group with

high expression of ERBB2 had poorer progression-free interval in stage III/IV

patients (p = 0.008) and patients aged >45 years (p = 0.019). The up-regulated

ERBB2 was associated with iodine metabolism dysfunction, proliferation,

metastasis, angiogenesis, and drug resistance. The expression of ERBB2

negatively correlated with enrichment scores of B cells (r = −0.176, p <
0.001), CD8+ T cells (r = −0.160, p < 0.001), cytotoxic cells (r = −0.219, p <
0.001), NK CD56dim cells (r = −0.218, p < 0.001), plasmacytoid dendritic cells

(r = −0.267, p < 0.001), T cells (r = −0.164, p < 0.001), T follicular helper cells

(r = −0.111, p= 0.012), gamma delta T cells (r = −0.105, p= 0.017), and regulatory

T cells (r = −0.125, p = 0.005). In conclusion, ERBB2 may serve as a prognostic

biomarker and an immunotherapeutic target in PTC, deserving further

exploration.

KEYWORDS

ERBB2, prognosis, biomarker, immune microenviroment, papillary thyroid cancer

Introduction

Thyroid cancer is one of the most common endocrine neoplasms, and the incidence

rate is overgrowing, with 53,815 new cases expected in the US (Siegel et al., 2021) and

224,023 in China (Xia et al., 2022) in 2022. Papillary thyroid cancer (PTC) is the most

widely recognized thyroid tumor, accounting for around 84% of all thyroid cancer

patients (Fagin and Wells, 2016). Alarmingly, the incidence of invasive and metastatic
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PTC has risen 1.5–5-fold over the past 30 years (Lim et al., 2017).

Within 10 years after initial surgery and radioiodine therapy,

approximately 1/10 to 1/5 of PTCs developed local recurrence

and distant metastasis; Once distant metastases of PTC occurred,

the 5-year survival rate of patients would decrease from 98% to

63–75% (Cancer Facts 2022). The high rates of recurrence,

metastasis, and radioiodine refractoriness have become the

key bottleneck, stymying the cure of PTC (Jin et al., 2018).

Epidermal growth factor receptor 2 (ERBB2), a well-known

oncogene of multiple cancers, such as breast cancer and ovarian

cancer (Baxevanis et al., 2004), was found to be firmly connected

with cancer occurrence, proliferation, metastasis, drug resistance,

immune escape and poor prognosis (Dawood et al., 2009; Bates

et al., 2018). Owe to the research on ERBB2, multiple diagnostic

and therapeutic methods were established for tumor

management (Mitri et al., 2012). In thyroid cancer, however,

the deep-going research on ERBB2 is limited. Although ERBB2 is

over-expressed in progressive and metastatic PTC cases

(Kremser et al., 2003), and high expression of ERBB2 was

found to be responsible for resistance to mitogen-activated

extracellular signal-regulated kinase inhibitors (MEKi)

(Montero-Conde et al., 2013), the ERBB2 upregulation-related

unfavorable phenotypes, such as tumor occurrence, proliferation,

metastasis, and poor progression-free interval (PFI), have not

been comprehensively explored in PTC, and the relations

between ERBB2 expression and the immune

microenvironment in PTC remains unknown.

Given that the application of ERBB2-related management

approaches, such as imaging probes and immunotherapeutic

drugs, is limited by lacking knowledge of the association

between ERBB2 expression and oncological features of PTC;

we, therefore, conducted the bioinformatic study with integrated

data from online repositories, including TCGA, KEGG, GO,

GeneMANIA, and STRING to explore the potency and

translational value of ERBB2 as a prognostic biomarker and

immunotherapeutic target for PTC management.

Materials and methods

Data collection

The mRNA data and clinical characteristics of PTC patients

were downloaded from the TCGA database (https://www.cancer.

gov/tcga/), an open data portal that compiled clinical

information and RNA-Seq data of 33 cancers. The thyroid

cancer (THCA) project of the TCGA database includes

568 samples (510 PTC and 58 paracancerous normal

samples). Clinical data collection for the THCA project was

mainly completed in 2014; thus, PTC staging was adopted in

AJCC 7th edition (Agrawal et al., 2014). The mRNA sequencing

data of all samples were converted to the format of transcripts per

million (TPM) for subsequent analysis.

OncoPrint analysis online

OncoPrint is a method for visualizing samples by integrating

gene expression heat map and gene variant distribution map. The

gene expression and gene mutation data in OncoPrint analysis

were derived from the TCGA-THCA dataset and analyzed online

(https://www.cbioportal.org). The OncoPrint analysis was

utilized to show the association between ERBB2 expression

and BRAF and RAS mutant PTC sample distribution.

Progression-free interval analysis

The Kaplan-Meier Progression-free interval (PFI) curve

compared prognosis differences between patients with high and

low expression of ERBB2. Since the death reports of PTC in the

TCGA database were few (n = 16), the clinical prognosis data

included in this study were PFI. Due to the limited number of

patients with distant metastases in the database (n = 9), we could

not analyze PFI in the subgroup of patients with distantmetastases.

Co-expression heat map

Co-expression heat map assesses the correlation between the

expression of ERBB2 and gene sets, including the iodine

metabolism-related gene set of TSHR, SLC5A8, SLC26A4, and

TPO (Portulano et al., 2013), the tumor angiogenesis gene set of

VEGFA, FLT1, KDR, FLT4, PECAM1, VWF, TIE1, TEK, ANGPT1,

ANGPT2, CDH5, and CLDN5 (Smith et al., 2010; Haibe et al.,

2020), Lymph node metastasis gene set of EVA1A, TIMP1,

SERPINA1, FAM20A, FN1, TNC, and MXRA8 (Wu et al., 2021),

distant metastatic gene sets of MMP2, PTTG1, VEGFC, CXCR4,

and FGF2, tumor cell proliferation set of MKI67, PCNA, and

MCM2) (Liang et al., 2011), and MEKi resistance marker gene

set of SPRY2, SPRY4, ETV4, ETV5, DUSP4, DUSP6, CCND1,

EPHA2, and EPHA4 (Mazzoni et al., 2019; Degirmenci et al., 2021).

Analysis of immune infiltrates

The enrichment scores of 24 immune cells were based on the

reported literature (Bindea et al., 2013). The correlation analysis

between ERBB2 expression and enrichment scores of immune

infiltration was tested with a single sample gene set enrichment

analysis (ssGSEA) with R packages of clusterProfiler (version 3.8.0).

Analysis of ERBB2-related differentially
expressed genes (DEGs)

To further understand the role of ERBB2 in the progression

of PTC, we screened the DEGs between samples with high and
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low expression of ERBB2. We applied Log2(fold change) >
1.5 and adjusted p < 0.001 to select DEGs. The analysis is

performed using the R package of DESeq2 (version 3.8). All

the DEGs were graphed in a volcano plot.

Enrichment analysis of KEGG and GO
terms

GO analysis is a widely applied bioinformatics tool for

determining ERBB2-related biological processes, cellular

components, and molecular functions. KEGG analysis is used

to analyze ERBB2- related signal path changes. We applied GO

and KEGG to analyze the biological function of ERBB2 in PTC.

To understand how ERBB2 is involved in tumorigenesis, we used

KEGG and GO online tools to analyze the signaling pathways and

gene functions in which ERBB2-related DEGs participated. Gene

set enrichment analysis (GSEA) with R package clusterProfiler

(version 3.8.0) evaluated the ERBB2- related DEGs contributing

to annotated gene functions, cell phenotypes, signal pathways,

and diseases.

GeneMANIA and string analysis online

The network of gene-gene relations was constructed with

the online tool GeneMANIA (https://genemania.org/).

The website extensively integrated data on gene-gene

interactions, gene co-expression networks, and gene

function enrichment. To understand the ERBB2-involved

mechanisms, the STRING tool (version 11.5, https://string-

db.org/) was utilized to analyze the protein-protein

interaction (PPI) network of corresponding proteins of

ERBB2-related DEGs. The PPI network was displayed with

Cytoscape software (version 3.9.1).

Statistical analysis

All statistical analyses and graphs were performed using R

software (version 3.6.3). The ERBB2 expression in unpaired and

paired samples was analyzed with Wilcoxon rank-sum test and

Wilcoxon signed-rank test, respectively. Kruskal-Wallis test

was tested to assess the relationship between clinical/

cytogenetic features and ERBB2 expression. The differences

in enrichment scores of immune infiltrate were analyzed using

the Wilcoxon rank sum tests. The Spearman statistical method

was adopted for the correlation analysis between

ERBB2 expression and the gene expression of interest or

enrichment scores of 24 immune cells. Hazard ratio,

log-rank tests, and the Kaplan-Meier curve were applied to

assess the role of ERBB2 as a prognostic biomarker. P < 0.05 was

considered statistically significant.

Results

Aberrantly upregulated ERBB2 expression
in PTC samples

By analyzing the RNA-Seq data downloaded from TCGA

data, we found that the ERBB2 expression in PTC samples

was generally higher than that in normal thyroid tissue

(unpaired test: p < 0.001, Figure 1A; paired test: p < 0.001,

Supplementary Figure S1). OncopPrint plot displayed that

PTC tissues with high expression of ERBB2 were mainly

distributed in BRAF mutation samples rather than RAS

mutation samples (Figure 1B). Subgroup analysis showed

that the ERBB2 expression in BRAF mutant PTC, classic

PTC, and PTC with bilateral foci were significantly higher

than those in corresponding subgroups of RAS mutant PTC

(p < 0.001), follicular variant PTC (FVPTC) (p < 0.001), and

PTC with unilateral foci (p = 0.02), respectively (Figure 2). To

determine the ERBB2-related clinical value and the

underlying mechanism, PTC samples with high and low

expression of ERBB2 were divided based on the median

TPM value. The characteristics of patients with the high

and low expression of ERBB2 were summarized in

Supplementary Table S1.

Elevated ERBB2 expression was
associated with the poor prognosis

The relations between ERBB2 expression and PFI were

analyzed using the Kaplan-Meier curve. As is shown in

Figure 3, the group with high expression of ERBB2 had a

significantly poorer prognosis than that with low expression of

ERBB2 in stage III/IV patients (HR: 2.7, CI: 1.29–5.66, p =

0.008) and patients aged >45 years (HR: 2.22, CI: 1.09–4.54, p =

0.019) (Figure 3); the detailed subgroup analyses of PFI

Kaplan-Meier curves were plotted in Supplementary

Figures S2–4.

Highly expressed ERBB2was correlated to
unfavorable tumor phenotypes

The association between ERBB2 expression and clinical

phenotypes was performed with correlation analysis. The co-

expression heat map showed that the expression of ERBB2

positively correlated with TSHR but negatively correlated with

SLC5A8, SLC26A4, and TPO (Figure 4A); In addition, the

expression of ERBB2 positively correlated with gene sets of

tumor angiogenesis (VEGFA, FLT1, KDR, FLT4, PECAM1,

VWF, TIE1, TEK, ANGPT1, ANGPT2, CDH5, and CLDN5)

(Figure 4B), lymph node metastasis (Gene sets: EVA1A,

TIMP1, SERPINA1, FAM20A, FN1, TNC, and MXRA8)
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(Figure 4C), distant metastases (Gene sets: MMP2, VEGFC,

CXCR4, and FGF2) (Figure 4D), tumor cell proliferation

(Gene sets: MKI67, PCNA, and MCM2) (Figure 4E),

and MEKi resistance (Gene sets: SPRY2, SPRY4, ETV4,

ETV5, DUSP4, DUSP6, CCND1, EPHA2, and EPHA4)

(Figure 4F).

Up-regulated ERBB2 was associated with
suppressed tumor-infiltration of immune
cells

The tumor-infiltrating immune cells were quantified by

ssGSEA. Compared to the samples with low expression of

ERBB2, the enrichment scores of T cells, CD8+ T cells,

cytotoxic cells, NK CD56dim cells, plasmacytoid dendritic

(pDC) cells, gamma delta T cells (Tgd), and regulatory T cells

(TReg) were lower in samples with high expression of ERBB2

(Figure 5A). The correlation analysis showed that ERBB2

expression was negatively correlated with the enrichment

scores of B cells, CD8+ T cells, cytotoxic cells, NK CD56dim

cells, pDC, T cells, follicular helper T cells (TFH), Tgd cells, and

TReg cells (Figure 5B, Supplementary Table S2).

Identification of DEGs between samples
with high and low expression of ERBB2

A total of 146 DEGs between samples with high and low

expression of ERBB2 were yielded (Supplementary Table S3).

The five most up-regulated genes and the five most

downregulated genes were shown in the volcano plot

(Figure 6). Spearman correlation analysis found that the

expression of ERBB2 negatively correlated with KLK15, KLK1,

ARSF, and FGF21; and positively correlated with TAGLN3,

GLRA1, RSPO1, SPAG11B, and SPAG11A (Supplementary

Figure S5).

ERBB2-related DEGs participated in the
primary immunodeficiency signaling
pathway

Annotations from KEGG and GO were enriched with

146 ERBB2-related DEGs, showing that the ERBB2-related

DEGs were involved in the KEGG term of primary

immunodeficiency and GO term of the humoral immune

response, regulation of execution phase of apoptosis, and

FIGURE 1
The mRNA expression of ERBB2 in pan-cancers and tumor-adjacent normal samples. (A) Compared with paired normal tissues, mRNA
expression of ERBB2 was upregulated in 16 cancer datasets: BLCA (p = 0.007), BRCA (p < 0.001), CESC (p = 0.034), CHOL (p < 0.001), GBM (p =
0.002), LIHC (p=0.008), LUAD (p < 0.001), STAD (p < 0.001), and THCA (p < 0.001) and UCEC (p < 0.001). (B) TheOncoPrint plot displays an overview
of gene alterations of the BRAF, KRAS,NRAS, and HRAS, and the expression of ERBB2 in papillary thyroid cancer samples from TCGA. *p < 0.05,
**p < 0.01, ***p < 0.001.

Frontiers in Genetics frontiersin.org04

Jin et al. 10.3389/fgene.2022.966365

115

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.966365


negative regulation of execution phase of apoptosis

(Figure 7A). Thereinto, the majority of ERBB2-related DEGs

(n = 23) were enriched into the primary immunodeficiency

signaling pathway, attracting more attention. GSEA analysis

adds more insight into the 23 ERBB2-related DEGs and

primary immunodeficiency signaling pathway, showing that

ERBB2-related DEGs associated with primary

immunodeficiency were mainly down-regulated ERBB2-

related DEGs, such as CD79A, CD19, CD3D, CD3E, CD8A,

and CD4 (Figure 7B).

ERBB2-related DEGs constructed the core
PPI networks

Network analysis showed that the 23 ERBB2-related DEGs

had gene interaction and co-expression relationships with each

other; the functional enrichment found that the 23 ERBB2-

related DEGs involved in the function of a variety of immune

cells, including the functions of B cells, monocytes, and T cells

(Supplementary Figure S6). The PPI network of corresponding

proteins of the ERBB2-related DEGs was screened with the

FIGURE 2
ERBB2 expression in papillary thyroid cancer classified by characteristics: (A) mutation, (B) T stage, (C) N stage, (D) M stage, (E) pathological
stage, (F) gender, (G) race, (H) age, (I) histological type, (J) residual tumor, (K) extrathyroidal extension, (L) primary tumor focus type, (M) tumor
location, (N) overall survival event, (O) progression-free interval event, and (P) thyroid gland disorder history. *p < 0.05, **p < 0.01, ***p < 0.001.
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STRING tool with a confidence threshold of 0.4. In total,

84 nodes and 127 edges were connected, and the networks

with nodes ≥3 were displayed with Cytoscape (Supplementary

Figure S7A). The core network was analyzed with the Cytoscape-

MCODE function, showing the networks with an MCODE score

of 4.815 (Supplementary Figure S7B) and 4.612 (Supplementary

Figure S7C); the proteins of NPY and ESR1 were located in the

center of the PPI network (Supplementary Figure S7).

Discussion

Despite ERBB2 being a well-known oncogene and regarded

as a crucial diagnostic/prognostic biomarker and therapeutic

target in multiple tumors, such as breast cancer (Wynn and

Tang, 2022), the exact function of ERBB2 in tumors remains

largely unknown. Only a few data are available in PTC, showing

an 18%–100% rate of positive expression of ERBB2 protein via

immunohistochemistry in 43–45 cases (Kremser et al., 2003;

Ruggeri et al., 2016). Thus, expression profiles of the ERBB2 gene

in the PTC need to be comprehensively investigated in the

context of a large-scale study. In the present study, we took

advantage of a large-scale analysis of gene expression profiles in

510 PTC patients in the TCGA database. The bioinformatic

analysis adds the knowledge of detailed relations between ERBB2

expression and the clinical characteristics, prognosis, and

immunoenvironment of PTC. Moreover, it is a novel finding

that the expression levels of ERBB2 were significantly correlated

to the markers of the immune cells in the PTC tissues, suggesting

that ERB2 may play a crucial role in regulating the tumor-

immunoenvironment. The present study uncovered the

biological and clinical roles of ERBB2 in PTC, which might

help imply novel ERBB2-based management strategies to

improve the prognosis of PTC patients.

ERBB2 is up-regulated in multiple tumors located in breast,

bladder, pancreas, ovary, and esophagus, especially in tumors

with poor prognostic characteristics; in breast cancer, high

expression of ERBB2 has become one of the hallmarks of

poor prognosis (Dawood et al., 2009). Similarly, our study

showed that the expression of ERBB2 in PTC was aberrantly

up-regulated. A step further, we found that ERBB2 expression in

patients with bilateral PTCs was higher than that in those with

unilateral foci, which may be related to the fact that bilateral PTC

is more aggressive and metastatic than the PTC with unilateral

foci (Qu et al., 2016). Meanwhile, we found that the expression of

ERBB2 in classic PTCwas higher than that in FVPTC, whichmay

be related to the poorer prognosis of PTC than that of FVPTC

(Liu et al., 2018). The prognosis analysis in our study uncovered

that the high expression of ERBB2 is a risk factor for poor

prognosis in PTC.

The highly expressed ERBB2 was deemed to participate in

cancer progression, promoting tumor proliferation, invasion,

and metastasis (Mitri et al., 2012). PTC patients with high

expression of ERBB2 were prone to suffer from distant

metastasis (Kremser et al., 2003). In our study, the expression

of ERBB2 was found to be positively correlated with VEGF-

associated genes of VEGFA, FLT, KDR, and FLT4 (Shibuya,

2011), vascular endothelial cell markers of PECAM1 and VWF

(Bauer et al., 2015), and vascular support-related genes of TEK,

ANGPT1, ANGPT2, CDH5, CLDN5, and JAM2 (Oshi et al.,

2021). Furthermore, the expression of ERBB2 was positively

correlated with lymph node metastatic signature genes such as

EVA1A, TIMP1, SERPINA1, FAM20A, FN1, TNC, and MXRA8

(Wu et al., 2021), and distant metastatic signature genes of

FIGURE 3
Kaplan-Meier curves of progression-free interval comparing the high and low expression of ERBB2 in thyroid cancer patients. (A) In stage III/IV
patients, the progression-free interval of the high ERBB2 expression group was poorer than that of the low expression group (p = 0.008). (B) In
patients aged >45 years, the progression-free survival of the high ERBB2 expression group was poorer than that of the low expression group (p =
0.019).
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MMP2, PTTG1, VEGFC, CXCR4, and FGF2 (Liang et al., 2011).

Besides, ERBB2 expression was also positively correlated with

proliferation-related genes, such as MKI67, PCNA, and MCM2

(Juríková et al., 2016). Collectively, highly expressed ERBB2 is

involved in progressive oncological behaviors of PTC, which

might be responsible for the poor prognosis.

Interestingly, high expression of ERBB2 was found to be

associated with dysfunction of iodine metabolism of PTC in our

study. The expression of ERBB2 was negatively correlated with

SLC5A8, SCL26A4, and TPO, which relate to iodine absorption,

transport, and organization. The downregulated SLC5A8 was

associated with impaired resorption of organic iodine (Porra

et al., 2005), making it challenging to transport iodine across the

basal membrane to cell cytoplasm in thyroid follicular cells

(Anekpuritanang et al., 2021). Meanwhile, TPO is the crucial

protein to organize iodine with the participation of H2O2, and

TPO deficiency would prevent iodine from taking part in the

organization process (Kessler et al., 2008). Although the

expression of ERBB2 was positively correlated with that of

TSHR, the role of TSHR in radioiodine refractoriness remains

FIGURE 4
Co-expression analysis of ERBB2 and genes related to unfavorable thyroid cancer phenotypes. (A) the expression of ERBB2 is negatively
correlated with iodine metabolism genes of SLC5A8, SLC26A4, and TPO. (B) the expression of ERBB2 was positively correlated with the tumor
angiogenesis gene set. (C) the expression of ERBB2 is positively correlated with the gene set of lymph node metastasis. (D) the expression of ERBB2
was positively correlated with the distant metastasis gene set. (E) the expression of ERBB2 was positively correlated with the gene set of cell
proliferation. (F) the expression of ERBB2 was positively correlated with the MEK inhibitor resistance gene set. *p < 0.05, **p < 0.01, ***p < 0.001.
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debated because the highly expressed TSHR is not only associated

with high radioiodine uptake (Hou et al., 2010) but also causes

fast thyroid tumor growth (Lu et al., 2010). Therefore, the high

expression of ERBB2 is likely to associate with the poor efficacy of

radioactive iodine to some extent, and this mechanism needs to

be further studied.

In recent years, targeted drugs, including commonly applied

receptor tyrosine kinase inhibitors (RTKi) and novel MEKi, have

become valuable antitumor drugs for advanced or progressive

thyroid cancer (Jin et al., 2018). Notwithstanding the broad

application of RTKi, the occurrence of RTKi-related severe

adverse events is frequent, and drug resistance eventually

develops in almost all PTC patients (Cheng et al., 2020).

Compared to RTKi, the MEKi has the additional capability of

inducing tumor differentiation, activating immune recognition,

and possesses the characteristic of a lower incidence of severe

adverse events (Neuzillet et al., 2014), attracting more attentions

and expectations in the field of anti-PTC. Still, MEKi resistance is

the typical scenario, often calling for a combination of MEKi and

other therapeutics; nevertheless, the improvement of efficacy by

the combination is generally limited (Shah et al., 2017), requiring

a crucial key to solving the most pressing challenge. MEKi

resistance has been proven to be closely related to the high

expression of ERBB2 (Sa et al., 2022). For instance, high ERBB2

expression is one characteristic phenotype of thyroid cancer

resistance to MEKi selumetinib (Montero-Conde et al., 2013).

Our study further explored the correlation between the

expression of ERBB2 and MEKi resistance genes of SPRY2,

SPRY4, ETV4, ETV5, DUSP4, DUSP6, CCND1, EPHA2, and

EPHA4 (Wagle et al., 2018). In BRAF or RAS mutant tumor

cells, DUSP4, DUSP6, SPRY2, and SPRY4 tend to be highly

expressed, allowing tumors to evade regular MAPK signaling

pathway feedback (Pratilas et al., 2009). Other genes, such as

ETV4, ETV5, CCND1, EPHA2, and EPHA4, also play a role in

FIGURE 5
Immune cell enrichment scores in thyroid cancer tissues with different ERBB2 expression. (A) The enrichment scores of T cells, B cells, CD8+

T cells, cytotoxic cells, NK CD56dim cells, pDCs, Tgd, and TReg in the ERBB2 high expression group were lower than those in the ERBB2 low
expression group. (B) Correlation analysis between the expression of ERBB2 and the enrichment scores of immune infiltrating cells in the tumor.
ERBB2 expression negatively correlated with the enrichment scores of CD8+ T cell, cytotoxic cell, NK CD56dim cell, pDC, T cell, TFH, Tgd, and
TReg. DC, dendritic cell; aDC, activated dendritic cell; pDC, plasmacytoid dendritic cell; iDC, interdigitating dendritic cell; Tcm, central memory
T cell; Tem, effectormemory T cell; TFH, follicular helper T cell; Tgd, T gamma delta, γδ; Th1, T helper type 1; Th17, T helper type 17; Th2, T helper type
2; Treg, regulatory T cells; NK, natural killer. *p < 0.05, **p < 0.01, ***p < 0.001.
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activating the MAPK pathway, promoting tumor resistance to

MEKi (Chesnokov et al., 2022). Together with the previous study

(Montero-Conde et al., 2013), our study confirmed the

relationship between highly expressed ERBB2 and MEKi

resistance in PTC.

Over the past decade, immune-related diagnostic techniques

have successfully become new tools in tumor management. For

instance, Michael D Farwell et al. conducted a phase I trial of

PET/CT scan with 89Zr-labeled IAB22M2C minibody targeting

CD8+ cells, which visualized the biodistribution of tumor-

infiltrating CD8+ T cells and predicted early response to

immunotherapy (Farwell et al., 2021). In the present research,

ERBB2 expression was inversely correlated with the enrichment

scores of CD8+ T cells. Therefore, radioactive or non-radioactive

probes, such as 68Ga-labeled anti-ERBB2 Nanobody (Keyaerts

et al., 2016) or polyethylene glycol-conjugated anti-ERBB2

peptides targeting ERBB2 protein (Guan et al., 2018) might be

of value for predicting the response to immunotherapy in PTCs.

In addition, ERBB2-targeted imaging would overcome the false

positive uptake of 89Zr-labeled IAB22M2C in CD8+ normal

tissues, such as the bone marrow and lymphnodes.

The finding, ERBB2 overexpression related to suppressed

T cell infiltration in tumors, is not unique to PTC. Liu et al.

(2021) also found that ERBB2 expression was negatively

correlated with the infiltration of B cells and CD8+ T cells in

cutaneous melanoma, similar to our findings. In breast cancer,

ERBB2 is related to low expression of MHC class I surface

antigen, causing impaired recognition between tumor cells

and CD8+ T cells (Herrmann et al., 2004; Seliger and

Kiessling, 2013). Besides, the PD-1/PD-L1 antibodies have

been used in clinical trials to treat advanced, progressive, or

metastatic thyroid cancer. However, the results were

unsatisfactory; most patients still have an unfavorable

response to PD-1 antibody therapy (Mehnert et al., 2019),

related to the limited T-cell infiltration in PTC (Bastman

et al., 2016). DEG analysis showed that in PTC samples with

high expression of ERBB2, KLK15 and KLK1 were

downregulated. The down-regulated KLKs were previously

reported to be responsible for impaired immune

microenvironment reprogramming during an antitumor

immune response (Srinivasan et al., 2022). In our research,

KEGG and GO annotation analysis found that the DEGs were

mainly associated with the primary immunodeficiency pathway,

which is closely related to tumor occurrence and the failure of

antitumor immunotherapy (Tangye et al., 2020). Therefore,

increasing tumor-infiltrating immune cells by applying

bispecific antibodies or adding cytokines, e.g., PD-L1×CD3

bispecific antibody (Yang et al., 2021) or interleukin-17

(Nagaoka et al., 2020), in ERBB2 highly expressed tumors

may be beneficial to improving the response to

immunotherapy in PTC patients.

In addition, we found that NPY and ESR1 were located at the

center of the ERBB2-related PPI network. NPY is a pleiotropic

gene initially thought to be an endogenous anxiolytic peptide

whose expression can be regulated by stress; however, NPY has

been found to promote the growth andmigration of breast cancer

cells in recent years (Lin et al., 2021). ESR1 encodes an estrogen

receptor, plays a crucial role in the occurrence and progression of

breast and endometrial cancer, and is the main reason for

resistance to estrogen suppression therapy (Piscuoglio et al.,

2018). These results suggest that ERBB2 may be involved in

the occurrence and progression of PTC together with NPY and

ESR1; the mechanism needs further investigation.

Despite the fact that our data analysis enhanced the

understanding of the roles of ERBB2 associated with PTC

progression, there remain some limitations. First, the role of

ERBB2 in follicular thyroid cancer, poorly differentiated thyroid

cancer, and anaplastic thyroid cancer could not be investigated

because those pathological types or endpoint information were

lacking in online databases. Second, despite large sample studies in

public databases prone to possess the superiority of strong

evidence, public databases remain to lack some clinical

information on PTC tissue around the prognostic tumor status

of radioiodine uptake, angiogenesis, proliferation, drug resistance,

and serum thyroglobulin levels; Therefore, we cannot perform a

clinically based analysis comparing those prognostic factors above,

and directly investigating their relations with ERBB2 expression.

FIGURE 6
Volcano plot of differentially expressed genes (DEGs)
between high and low ERBB2 expression groups. The significantly
up-regulated genes are red dots; the significantly down-regulated
genes are blue dots. The dots marked with gene names are
the most up-regulated five DEGs and the most down-regulated
five DEGs.
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Thus, a more comprehensive prospective study is of value in the

future to detail the role of ERBB2 in thyroid cancer. Lastly, this

research mainly relied on mRNA data from the TCGA database;

therefore, it is necessary to further experimentally investigate the

direct evidence of ERBB2-related mechanisms in PTC

tumorigenesis and progression in vitro or in vivo.

Because of the complex interaction between ERBB2 and

mutant genes, we didn’t separate poor prognosis contributed

by ERBB2 overexpression and gene mutations. To step further,

we have planned a more profound analysis in the subsequent

study to separate their contributions to poor prognosis. As is

known, BRAFmutation is a driver gene for tumorigenesis, which

causes ERBB2 overexpression and poor prognosis of PTC

(Kebebew et al., 2007; Caria et al., 2016). It remains unknown

whether ERBB2 overexpression independently contributes to the

poor prognosis of PTC, which need further validation.

The present work, the first to document, provides a

comprehensive study of the relationship between the ERBB2

expression and clinical characteristics of a large-scale PTC

cohort. We found that ERBB2 was highly expressed in PTC, and

FIGURE 7
KEGG and GO enrichment analysis of differentially expressed genes between high and low expression of ERBB2 groups. (A) 146 ERBB2-related
differentially expressed genes were enriched in KEGG signaling pathways and GO annotations, such as the primary immunodeficiency. (B) GSEA
analysis of 19433 protein-coding genes and 146 ERBB2-related differentially expressed genes showed that the genes involved in the primary
immunodeficiency pathway were mainly 23 down-regulated genes in the ERBB2 high expression group; Gene expression was sorted by log2
(fold change).
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elevated ERBB2 expression was associated with iodine metabolism

dysfunction, tumor proliferation, metastasis, angiogenesis, MEKi

resistance, and poor prognosis. Meanwhile, ERBB2 expression was

inversely correlated with the infiltration of immune cells in PTC

tissues. It seems that ERBB2might be a prognostic biomarker and an

immunotherapeutic target in PTC, warranting further clinical

validation. The study might also be a new start to expect future

investigations on the latent mechanisms that bridge ERBB2

expression, clinical characteristics, and immunosuppressive

environment in PTC.
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An original cuproptosis-related
genes signature effectively
influences the prognosis and
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Xiwang Zheng1,2‡, Chunming Zhang1,2,3‡, Defei Zheng4,
Qingbo Guo1,2, Mijiti Maierhaba1,2, Lingbin Xue5,6,
Xianhai Zeng  5,6*†, Yongyan Wu  5,6*† and Wei Gao  5,6*†

1Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi
Medical University, Taiyuan, Shanxi, China, 2Shanxi Province Clinical Medical Research Center for
Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan,
Shanxi, China, 3Department of Otolaryngology Head andNeck Surgery, First Hospital of Shanxi Medical
University, Taiyuan, Shanxi, China, 4Department of Hematology/Oncology, Children’s Hospital of
Soochow University, Suzhou, Jiangsu, China, 5Department of Otolaryngology Head and Neck Surgery,
Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China, 6Shenzhen Institute of
Otolaryngology and Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital,
Shenzhen, Guangdong, China

Background: Recently, a non-apoptotic cell death pathway that is dependent

on the presence of copper ions was proposed, named as cuproptosis.

Cuproptosis have been found to have a strong association with the clinical

progression and prognosis of several cancers. Head and neck squamous cell

carcinoma (HNSC) are among the most common malignant tumors, with a 5-

year relative survival rate ranging between 40% and 50%. The underlying

mechanisms and clinical significance of cuproptosis-related genes (CRGs) in

HNSC progression have not been clarified.

Methods: In this study, expression pattern, biological functions,

Immunohistochemistry (IHC), gene variants and immune status were

analyzed to investigate the effects of CRGs on HNSC progression. Moreover,

a 12-CRGs signature and nomogram were also constructed for prognosis

prediction of HNSC.

Results: The results revealed that some CRGs were dysregulated, had somatic

mutations, and CNV in HNSC tissues. Among them, ISCA2 was found to be

upregulated in HNSC and was strongly correlated with the overall survival (OS)
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annotation format; OS, Overall survival; PPIs, Protein-protein interactions; PFI, Progression-free
interval; PCA, Principal component analysis; ROC, Receiver operating characteristic; ssGSEA, Single
sample gene set enrichment analysis; TCGA, The cancer genome atlas; TISIDB, Tumor and immune
system interaction database.
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of HNSC patients (HR = 1.13 [1.01–1.26], p-value = 0.0331). Functionally, CRGs was

mainly associated with the TCA cycle, cell cycle, iron-sulfur cluster assembly,

p53 signaling pathway, chemical carcinogenesis, and carbonmetabolism in cancer.

A 12-CRGs signature for predicting the OS was constructed which included, CAT,

MTFR1L, OXA1L, POLE, NTHL1, DNA2, ATP7B, ISCA2, GLRX5, NDUFA1, and

NDUFB2. This signature showed good prediction performance on the OS (HR =

5.3 [3.4–8.2], p-value = 3.4e-13) and disease-specific survival (HR = 6.4 [3.6–11],

p-value = 2.4e-10). Furthermore, 12-CRGs signature significantly suppressed the

activation of CD4+ T cells and antigen processing and presentation. Finally, a

nomogram based on a 12-CRGs signature and clinical features was constructed

which showed a significantly adverse effect on OS (HR = 1.061 [1.042–1.081],

p-value = 1.6e-10) of HNSC patients.

Conclusion: This study reveals the association of CRGs with the progression of

HNSC based onmulti-omics analysis. The study of CRGs is expected to improve

clinical diagnosis, immunotherapeutic responsiveness and prognosis prediction

of HNSC.

KEYWORDS

head and neck squamous cell carcinoma, cuproptosis, ISCA2, immune infiltration,
prognosis

Introduction

Copper is a transition metal that is required for essential

enzymes and has a key role in cellular metabolism and bioenergy

conversion (Kim et al., 2021). Aberrant levels of copper ions have

been associated with anemia, cell proliferation and death, metabolic

disease and cancer (Ren et al., 2019; Ge et al., 2022). Various forms of

cell death, such as apoptosis, necroptosis, pyroptosis and ferroptosis,

have been explored in recent years. However, there is limited

knowledge on the mechanism of copper overdose-induced cell

death (Li et al., 2022). A recent study by Tsvetkov et al.

proposed a novel concept of copper-dependent cell death and

termed it as cuproptosis (Tsvetkov et al., 2022). The study

revealed that copper toxicity was highly associated with

mitochondrial activity since key components in mitochondrial

metabolism participated in copper ions-induced cell death. The

genes coding for key components in copper-dependent cell death

have been identified, and may provide a new strategy for the

diagnosis, therapy and outcomes prediction of cancers.

Head and neck cancer is one of the most common malignant

tumor, accounting for 5.7% of the global cancermortality (Qin et al.,

2022). Head and neck squamous cell carcinoma (HNSC) is the

major histological subtype of head and neck cancer, with a 5-year

relative survival rate of only 40%–50% (Dai et al., 2020). Analysis of

clinical cases revealed that copper levels were significantly correlated

with the initiation and progression ofHNSC (Ressnerova et al., 2016;

Kudva et al., 2021). Although cuproptosis is just a recent concept,

there are already studies exploring the ability of cuproptosis-related

genes (CRGs) to predict cancer prognosis and their effects on cancer

progression (Bian et al., 2022). However, the role CRGs in HNSC is

yet to be determined.

In the current study, we comprehensively investigated the effects

of CRGs onHNSCprogression based onmulti-omics analysis, and a

multi-genes CRGs signature and nomogram for HNSC prognosis

prediction were also constructed. Briefly, we first analyzed the

expression profiles of the CRGs and carried out differential

expression analysis of CRGs between HNSC and normal tissues.

We also analyzed the somatic mutations and copy-number variation

(CNV), as wells as protein-protein interactions (PPIs) and biological

functions of CRGs. ISCA2 was chosen for further analysis and was

found to be up-regulated at the RNA and protein levels, and

significantly associated with the prognosis of HNSC. A 12-CRGs

gene signature, including CAT, MTFR1L, OXA1L, POLE, NTHL1,

DNA2, ATP7B, ISCA2, GLRX5, NDUFA1, NDUFB2, and DLAT,

was developed, and exhibited significant ability to predict overall

survival (OS) and disease-specific survival (DSS). The 12-CRGs gene

signature was also associated with the immune status of HNSC,

particularly, the suppression of CD4+ T cells activation and antigen

processing and presentation. Finally, a nomogram consisting of the

12-CRGs gene signature and clinical features was constructed for

clinic utility. In conclusion, the significant association between the

expression of CRGs andHNSC progression indicate that CRGs have

potential roles as diagnostic, therapeutic and prognostic biomarkers

for HNSC.

Methods and materials

Data collection

Forty-three cuproptosis-related genes (CRGs) involved in

lipoic acid pathway, mitochondria complex I and Fe-S cluster
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regulation were manually identified from published literature

(Tsvetkov et al., 2022). RNA expression and somatic mutation

data of 499 head and neck squamous cell carcinoma (HNSC)

samples and 45 normal tissues samples were obtained from The

Cancer Genome Atlas (TCGA) database (https://portal.gdc.

cancer.gov/). The corresponding clinical features of the TCGA

samples were downloaded from UCSC Xena database (https://

xenabrowser.net/). Firstly, the TCGA samples were first sorted

based on the length of overall survival (OS) time, and then

pseudo-randomized into two groups in an alternating fashion,

designated TCGA-first cohort and TCGA-second cohort. Data

for another HNSC cohort consisting of 270 tumor samples and

corresponding clinical features (GSE65858) were downloaded

from the Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/gds/). The TCGA-first cohort was used as

the training cohort, whereas TCGA-second and GSE65858 were

used as the validation cohorts. The clinical features of the three

cohorts are summarized in the Supplementary Table S1.

Expression pattern analysis

The expression profile of 43 CRGs was visualized using a heat

map that was generated using the pheatmap package (v1.0.12) in

R (v4.1.0) based on unsupervised clustering. Principal

Component Analysis (PCA) was used to determine the ability

of the 43 CRGs to discriminate between HNSC and normal

tissues, and was carried out using the stats (v4.1.0) and pca3d

(v0.10.2) packages in R. The correlation amongst the 43 CRGs

was analyzed using the stats and corrplot (v0.92) packages in R.

The boxplot showing the expression of the 43 CRGs was

generated using the ggpubr package in R (v0.4.0), while

Student’s t-test was used for statistical analysis between HNSC

and normal tissues.

Somatic mutation analysis

The maftools (v2.8.05) package in R was used to visualize and

analyze the somatic mutation of the 43 CRGs based on Mutation

Annotation Format (MAF) from TCGA database. In addition,

GISTIC2 (v2.0.23) for Linux (Ubuntu; v20.04.3) was utilized to

analyze the somatic copy-number variations (CNV) of HNSC

tissues.

Protein-protein intersections and
biological function analysis

Protein-protein intersections (PPIs) among the 43 CRGs

were built in the STRING database (v11.5; https://string-db.

org/). In addition, PPI networks for 479 additional proteins

together with the 43 CRGs were also generated from the

STRING database, and visualized using Cytoscape (v3.7.1).

Functional enrichment analysis including Gene Ontology

(GO) and KEGG analysis of CRGs was implemented using R

package clusterProfiler (v4.0.5) and the results visualized using

the ggplot2 package (v3.3.6) in R.

Cox regression and survival analysis

First, univariate Cox regression analysis was used to determine

the effects of the 43 CRGs and clinical features on survival of the

patients. Next, the risk factors that showed significant effect on

survival in the univariate analysis including CRGs ISCA2, gender,

age, pathologic stage and alcohol history, were used for multivariate

Cox regression analysis. Cox regression analysis was carried out

using the survival (v3.3–1) package in R, while the results were

visualized using the forestplot (v2.0.1) package. Kaplan-Meier

estimate curves were used for estimation of survival probability

over 5 years and were generated and visualized using survival and

survminer (v0.4.9) packages, respectively. Wald test in Cox

regression and log-rank test in Kaplan-Meier estimate were

applied to assess the statistical differences among different

groups. OS probability of ISCA2 was also verified in all TCGA

HNSC samples using GEPIA2 webserver (http://gepia2.cancer-pku.

cn/).

Immunohistochemistry analysis

Immunohistochemistry (IHC) was used to validate the

expression of ISCA2 at proteome level. IHC images of

ISCA2 in HNSC and normal tissues were obtained from the

Human Protein Atlas (https://www.proteinatlas.org/). The

ISCA2 antibody used for immunohistochemistry was

HPA030492 (Atlas antibodies, Bromma, Sweden).

Least absolute shrinkage and selection
operator analysis and construction of
CRGs risk score model

Least absolute shrinkage and selection operator (LASSO) was

used to shrink the data dimensionality, extract representative

features and build the CRGs risk-score model. LASSO analysis

was carried out using the glmnt (v4.1–4) package in R. We then

calculated the risk score for each individual using the following

formula: risk score � ∑n
i�1(coCRGsi × exCRGsi), where exCRGsi is

expression level of the risk factor CRGsi; coCRGsi is the coefficient

of the risk factor CRGsi; n is the number of the risk factors in the

CRGs risk score model. A Kaplan-Meier curve was used to

validate the predictive ability of upper risk score model. The

time-independent Receiver Operating Characteristic (ROC)

curve and area under time dependent ROC curve (AUC) were
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utilized to evaluate the sensitivity and specificity of the risk score

model. The calculation and visualization of the time-independent

ROC was done using the timeROC (v0.4) and ggplot2 packages,

respectively.

Validation of CRGs expression in tumor
tissues

To validate the expression levels of genes in CRGs risk score

model, expression of selected genes in 57 paired laryngeal

squamous cell carcinoma (LSCC, one of the most common

HNSC) and matched adjacent normal mucosa (ANM) tissues

were analyzed using RNA sequencing technology and

bioinformatic analysis, of which detailed workflows and

methods were described in our previous study (Wu et al., 2020).

The effects of CRGs risk score model on
immune infiltration

The 28 immune cell types and the 21 immune-related pathways

analyzed in this study were identified from the tumor and immune

system interaction database (TISIDB; http://cis.hku.hk/TISIDB) and

the Kyoto Encyclopedia of Genes and Genomes (KEGG; https://

www.kegg.jp/), respectively. The single sample gene set enrichment

analysis (ssGSEA)was employed to estimate the immune infiltration

levels based on HNSC expression profile. Enrichment scores of

ssGSEAwere calculated using the GSVA (v1.40.1) package in R, and

Student’s t-test was used to compare immune infiltration level and

CRGs risk score model.

Nomogram construction

A nomogram that combined the CRGs risk score model and

clinical features was built using the rms (v6.3–0) package in R. The

nomogram was used to predict the 1-, 2-, three- and 5-year OS

probability. The calibration curve used to evaluate the prediction

ability of nomogram was generated using the rms package in R.

Furthermore, decision curve analysis was employed to assess the

clinical utility of the nomogram, and was visualized using the rmda

(v1.6) package in R. The nomogram score of each patient was

calculated, and the patients were divided into high risk and low risk

groups based on the median nomogram score. Cox regression

analysis and Kaplan-Meier estimate curves were utilized to

estimate the effects of nomogram risk score on 5-year OS.

Statistical analysis

All statistical analyses were performed in R program in this

study. Student’s t-test was used for statistical analysis of CRGs

expression between HNSC and normal tissues. Wald test was used

for assessing the statistical significance in Cox regression analysis.

Significance was tested using the Log-rank test in Kaplan-Meier

estimate. Over-representation test that is the default testing method

in clusterProfiler package in R language was used to significant

analysis in enrichment analysis. Unless the significant cutoff was

specifically indicated, it was assumed to be p-value < 0.05.

Results

The expression patterns of CRGs was
significantly correlated with HNSC

A total of 43 CRGs were manually identified and used to

investigate the effects of cuproptosis in HNSC in current study

(Supplementary Table S2). The workflow of the bioinformatics

analysis is shown in Supplementary Figure S1. The heat map

revealed that there was significant difference in the expression

patterns of CRGs between HNSC and normal tissues (Figures 1A,

B). Moreover, the 3D plot of PCA showed that the expression

pattern of CRGs in HNSC was distinct from that in normal tissues

(Figures 1C,D). To investigate the internal correlation of CRGs, the

expression correlation analysis was performed. Figures 1E, F

indicate that internal correlation of CRGs was similar in both

TCGA-first and TCGA-second cohort. Especially, genes in Fe-S

cluster complex I were highly correlated with each other. Results of

statistical analysis showed that eleven CRGs (POLD1, NTHL1,

MTFR1, CDK5RAP1, TIMMDC1, NDUFA8, PPAT, DNA2,

ISCA2, POLE, RTEL1) were upregulated in HNSC compared

with normal tissues, while eight genes (NDUFC1, MTFR1L,

LIAS, FDX1, DLAT, PDHB, ETFDH, IDH2) were

downregulated expression in HNSC tissues in both TCGA-first

and TCGA-second cohorts (Figures 1G, H). Moreover, statistical

analysis based on paired samples extracted from all TCGA HNSC

samples also validated the expression difference of the above

nineteen CRGs between HNSC and normal tissues

(Supplementary Figure S2). In addition, GO enrichment analysis

revealed that the CRGs were mainly enriched in the tricarboxylic

acid cycle, iron-sulfur cluster assembly, copper ion response/

transport/homeostasis process and other pathways related to

respiratory metabolism (Figure 1I), which was consistent with

the results of the previous study (Tsvetkov et al., 2022).

CRGs had somatic mutations in HNSC

To investigate the mutational patterns of CRGs in HNSC,

MAF files of HNSC samples were used for somatic mutation

analysis. Oncoplots showed that thirteen genes (MTFR1, DNA2,

ACO2, PDHA1, CDK5RAP1, RTEL1, CAT, POLD1, DLAT,

POLE, ATP7B, DLST, ATP7A) had at least one somatic

mutation in both TCGA-first and TCGA-second cohorts
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FIGURE 1
Expression patterns of CRGs in HNSC (A,B) The heatmap of CRGs in TCGA-first (A) and TCGA-second (B) cohort (C,D) 3D PCA plots of CRGs in
TCGA-first (C) and TCGA-second (D) cohorts, red: HNSC tissues; blue: normal tissues (E,F) The correlations analysis of CRGs in TCGA-first (E) and
TCGA-second (F) cohorts (G–H) Boxplot showing of CRGs expression in TCGA-first (G) and TCGA-second (H) cohorts (I) Enrichment analysis of GO
biological process terms. *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; ****p-value < 0.0001.
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FIGURE 2
Analysis of gene variants of CRGs in HNSC (A,B)Mutational oncoplot of CRGs in TCGA-first (A) and TCGA-second (B) cohorts (C,D) Changes in
proteins structure of CRGs due to somaticmutations in TCGA-first (C) and TCGA-second (D) cohorts (E,F) Amplification of chromosomal sub-bands
of CRGs in TCGA-first (E) and TCGA-second (F) cohort (G,H) Chromosomal deletion of sub-bonds of CRGs in TCGA-first (G) and TCGA-second (H)
cohorts.
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FIGURE 3
Construction of PPIs network and functional enrichment analysis (A) Internal PPIs network of CRGs obtained from STRING database (B) PPIs
network of 522 CRPs from the STRING database, red: proteins coded by CRGs; blue: additional proteins obtained from the STRING database (C)
KEGG enrichment analysis of CRPs (D) Enrichment analysis for CRPs based on GO biological process terms (E) Enrichment analysis for CRPs based
on GO cellular component terms (F) Enrichment analysis for CRPs based on GO biological function terms.
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(Figures 2A, B). The altered ratios in TCGA-first and TCGA-

second cohorts were 18.22% (45 of 247 samples) and 12.55%

(31 of 247 samples), respectively. Further, the mutational lollipop

plots indicated that the gene mutations affected the spatial

structure of proteins (Figures 2C, D). Since CNV affects gene

expression (Fang et al., 2016), we also investigated the

amplifications and deletions of genes in CRGs. The heat map

of raw CNV number indicated that TCGA-first and TCGA-

second cohorts had a similar CNV landscape (Supplementary

Figures S3A, B). Figures 2E, F show the somatic chromosomal

amplifications of genes in CRGs. Deletion analysis revealed that

there were clear copy number deletions in the chromosomal sub-

bands where SDHB, CISD1, FDX1, DLAT ATP7B, and OXA1L

are located (Figures 2G, H). It should be noted that FDX1 and

DLAT had chromosomal deletions as well as downregulated

expression, indicating that chromosomal deletions of FDX1 and

DLAT might influence their expression levels.

Construction of PPIs networks and
functional enrichment analysis

To study the intrinsic interactions amongst CRGs, the

PPIs network was built in STRING database. The PPIs

network in Figure 3A revealed the potential connection

among CRGs based on diverse interactions. Proteins in

lipoic acid pathway and Fe-S cluster complex I were highly

respective correlation. Further, 479 additional proteins that

interacted with CRGs were also obtained from the STRING

database, and their PPIs network are shown in Supplementary

Table S3 and Figure 3B. The up- and downstream

collaboration of various proteins in a signaling pathway is

one of the important PPIs ways. All cuproptosis-related

proteins (CRPs) included proteins coded by 43 CRGs and

479 additional proteins were subsequently utilized for

functional enrichment analysis. KEGG analysis revealed

that CRPs were mainly enriched in p53 signaling pathway,

TCA cycle, cell cycle, glycolysis/gluconeogenesis, chemical

carcinogenesis, carbon metabolism in cancer and other

diseases and metabolism pathways (Figure 3C). Similarly,

GO of biological process analysis showed that CRPs were

enriched in p53-related pathway, TCA cycle and cell cycle

pathway. In addition, CRPs were also enriched in iron ion

regulation, iron-sulfur cluster assembly, immune-related

regulation, synthetic and repair of DNA and energy

metabolism signaling pathway in biological process analysis

(Figure 3D). Figures 3E,F show the enrichment results of

CRPs in the cellular component terms and molecular

function terms of GO analysis. The similar biological

functions, such as TCA cycle, mitochondrial components,

DNA polymerase complex, ATPase activity, DNA helicase

activity and iron-sulfur cluster binding, have validated the

analysis process of GO biological process terms.

ISCA2 was upregulated and strongly
associated with prognosis of HNSC

To investigate the prognostic effects of CRGs in HNSC,

univariate Cox regression was used to analyze the correlation

between the single gene expression of CRGs and the OS of HNSC.

Figure 4A shows that ISCA2 and POLE were significantly

correlated with OS of HNSC, with ISCA2 being a poor

prognostic factor for HNSC OS (Hazard ratio (HR) =

1.5 [1.0–2.3], p-value = 0.038). Expression of ISCA2 was

upregulated in HNSC at the transcriptome level (Figures 1G,

H, 4B,C). Moreover, IHC analysis was utilized to validate the

expression of ISCA2 in proteome. IHC results in the Human

Protein Atlas database showed that ISCA2 was lowly expressed in

normal tissues, while high level of ISCA2 was observed in HNSC

tissues (Figure 4D). We also analyzed the effects of clinical

features on the prognosis. Results of Cox regression analysis

indicated that age, gender, pathologic stage and alcohol history

were risk factors (Figure 4E). We further investigated the

synergistic effects of ISCA2 and clinical features using

multivariate Cox regression analysis (Figure 4F). In the

multivariate Cox model, ISCA2 (HR = 1.13 [1.01–1.26],

p-value = 0.0331), age (HR = 0.44 [0.24–0.82], p-value =

0.0098), pathologic stage (HR = 2.23 [1.06–4.66], p-value =

0.0337) and alcohol history (HR = 0.54 [0.3–0.99], p-value =

0.0447) demonstrated significant effects on the OS of HNSC. The

Kaplan-Meier method was employed to validate the effects of

ISCA2 in different prognosis. Results in Figures 4G–I indicate

that ISCA2 had significant effects on the probability of OS,

progression-free interval (PFI; HR = 1.9 [1.2–2.9], p-value =

0.0042) and diseases-specific survival (DSS; HR = 2.1 [1.3–3.6],

p-value = 0.0046) in the training cohort. The effect trends of

ISCA2 on prognosis in TCGA-first cohort was validated in the

TCGA-second and GSE65858 cohorts (Supplementary Figure

S4). In addition, effects of ISCA2 on OS probability of all TCGA

HNSC samples was also verified in GEPIA2 webserver

(Figure 4J).

Construction of a 12-CRGs signature for
OS prediction of HNSC

Multi-gene-combination signatures have a higher sensitivity

than the single index in prediction of clinical outcomes (Ekanem

et al., 2019). Forty-three CRGs were used to construct a multi-

genes signature based on LASSO algorithm. A 12-CRGs

signature, including CAT, MTFR1L, OXA1L, POLE, NTHL1,

DNA2, ATP7B, ISCA2, GLRX5, NDUFA1, NDUFB2, and

DLAT, was finally developed (Figure 5A). Risk scores based

on the expression levels of the 12-CRGs signature for each patient

were calculated utilizing follow formula: risk scores = 0.1407 ×

exCAT + −0.0002 × exMTFR1L + 0.0179 × exOXA1L + −0.2615 ×

exPOLE + −0.0043 × exNTHL1 + −0.0667 × exDNA2 + 0.0628 ×
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FIGURE 4
ISCA2 was upregulated and significantly correlated with HNSC progression (A) Univariate Cox regression analysis of CRGs (B,C) Boxplot
showing ISCA2 expression in TCGA-first (B) and TCGA-second (C) cohorts (D) Validation of ISCA2 expression by IHC in HNSC and normal tissues (E)
Univariate Cox regression analysis of clinical features (F) Multivariate Cox regression analysis of risk factors consisting of ISCA2, gender, age
pathologic stage, and alcohol history (G–I) Kaplan-Meier curve showing the association of ISCA2 expression with the 5-year OS (G), PFI (H), and
DSS (I,J) Association of ISCA2 with the OS in all TCGA HNSC samples as verified GEPIA2 webserver. ****p-value < 0.0001.
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FIGURE 5
Construction and validation of 12-CRGs signature for OS prediction of HNSC (A) Schematic diagram of 12-CRGs signature construction (B)
Kaplan-Meier curve showing the OS predicted by the 12-CRGs signature over 5 years (C) AUC values of the time-dependent ROC curves showing
the predicted ability of the 12-CRGs signature for OS in 2-, 3- and 5-year (D) Kaplan-Meier curve showing the PPI predicted by the 12-CRGs signature
over 5 years (E) AUC values of the time-dependent ROC curves showing the predicted ability of the 12-CRGs signature for PPI in 2-, 3- and 5-
year (F) Kaplan-Meier curve showing the DSS predicted by the 12-CRGs signature over 5 years (G) AUC values of the time-dependent ROC curves
showing the predicted ability of the 12-CRGs signature for DSS in 2-, 3- and 5-year (H–J) Kaplan-Meier curve of OS (H), PPI (I) and DSS (J) predicted
by 12-CRGs signature over 5 years in TCGA-second cohort (K,L) Kaplan-Meier curve of OS (K) and progression-free survival (L) predicted by 12-
CRGs signature over 5 years in GSE65858 cohort.
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exATP7B + 0.1622 × exISCA2 + 0.0890 × exGLRX5 + −0.0733 ×

exNDUFA1 + −0.0589 × exNDUFB2 + −0.0045 × exDLAT. In TCGA-

first cohort, patients were divided into high and low risk groups

based on the median risk score of the 12-CRGs signature. Figures

5B, D,F show that patients in the high-risk group had the more

adverse outcomes of OS (HR = 5.3 [3.4–8.2], p-value = 3.4e-13),

PFI (HR = 3.2 [1.9–5.3], p-value = 9.9e-06), and DSS (HR =

6.4 [3.6–11], p-value = 2.4e-10). The AUC of time dependent

ROC was used to evaluate the sensitivity and specificity of 12-

CRGs risk scores in prognostic prediction. The AUC for OS, PFI

and DSS was 72.52%, 71.32% and 88.16%, 67.12%, 68.22% and

80.39, 71.73, 70.32% and 80.13% in the time period of 2-, three-

and 5-year, respectively (Figures 5C,E,G). Unsurprisingly, 12-

CRGs signature also had the significant effects on the probability

of OS (HR = 1.8 [1.1–3.1], p-value = 0.029), and DSS (HR =

2.1 [1.1–4.2], p-value = 0.029) in TCGA-second cohort (Figures

5H,J). In addition, although its effect on PFI in TCGA-second

cohort was not significantly different (HR = 1.6 [0.92–2.7],

FIGURE 6
Association of the 12-CRGs signature with immune status (A–C) Association of the 12-CRGs signature with immune-related cells in TCGA-first
(A), TCGA-second (B) and GSE65858 (C) cohorts (D–F) Association of the 12-CRGs signature with the immune-related pathways in TCGA-first (D),
TCGA-second (E) and GSE65858 (F) cohorts. *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; ****p-value < 0.0001.
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p-value = 0.096), the 12-CRGs risk scores have showed a

tendency toward being a risk factor based on the clear

separation of probability curves between high and low risk

group (Figure 5I). Further, the trend of 12-CRGs as the risk

factor was also validated in the prognosis analysis of

GSE65858 cohort that included OS (HR = 1.6 [0.96–32.6],

p-value = 0.07) and progression-free survival (PFS; HR =

1.6 [1.0–2.4], p-value = 0.029) analysis (Figures 5K,L).

The interactions between cancer cells and immune cells plays

an important role in regulation of cancer progression (Hara et al.,

2021). To investigate the correlation between 12-CRGs risk

scores and immune status in patient with HNSC, ssGSEA was

used to calculate the immune scores for each patient based on

28 immune cell types and 21 immune-related pathways. In the

TCGA-first and TCGA-second cohort, CD8+ T cell, CD4+ T cell

and B cell immune scores were negatively correlated with high

12-CRGs risk group (Figures 6A,B). Moreover, the activation of

CD4+ T cell was significantly suppressed in all three cohort

(Figures 6A–C). Analysis of the effects of the 12-CRGs

signature on the immune-related pathways revealed that

antigen processing and presentation were impaired in high

12-CRGs risk group (Figures 6D–F).

Construction and validation of nomogram
for HNSC clinical utilization

The combination of multi-genes signature and clinical features

can improve the prognosis prediction of cancer patients (Yang

et al., 2021). A visual nomogram that combined the 12-CRGs risk

scores and clinical characters was built to predict the OS of HNSC

patients (Figure 7A). Calibration curves were used to assess the

predictive ability of nomogram, with the 45° line in the calibration

plot represents the best prediction (Figure 7B). The nomogram

scores of each HNSC patient were calculated using the nomogram,

and then a nomogram risk model was developed based on

FIGURE 7
Construction of a nomogram for clinic utilization (A) A visual nomogram for predicting the OS at 1-, 2-, three- and 5-year after diagnosis (B)
Calibration curve for assessing the predictive ability of the nomogram (C) Decision curve for evaluating the clinic use of the nomogram (D–F)
Association of the nomogram scores with OS in TCGA-first (D), TCGA-second (E) and GSE65858 (F) cohorts.
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nomogram scores. The decision curve verified that the nomogram

risk model and 12-CRGs risk scores were clinically useful

(Figure 7C). Finally, effects of nomogram scores on OS

probability were also validated, and results showed that the OS

probability of patients in high nomogram score was significantly

decreased in all cohorts: TCGA-first (HR = 1.061 [1.042–1.081],

p-value = 1.6e-10), TCGA-second (HR = 1.028 [1.007–1.049],

p-value = 0.0096) and GSE65858 (HR = 1.028 [1.009–1.048],

p-value = 0.0042) cohort (Figures 7D–F).

Validation of genes expression in 12-CRGs
signature

In 12-CRGs signature, POLE, NTHL1, DNA2 and

ISCA2 was upregulated expression in HNSC tissues while

MTFR1L and DLAT was downregulated expression in

HNSC tissues in both TCGA-first and TCGA-second cohort

(Figures 1G, H). In order to validate the aberrant expression of

POLE, NTHL1, DNA2, ISCA2, MTFR1L and DLAT in HNSC

tissues, we analyzed the expression levels of these genes using

RNA sequencing data of 57 LSCC and paired ANM tissues.

The results showed that POLE, NTHL1, DNA2 and ISCA2 was

upregulation and MTFR1L was downregulation in LSCC

tissues compared to ANM tissues, however, DLAT was not

statistically significant difference between LSCC and ANM

tissues (Figure 8A–F).

Discussion

To the best of our knowledge, there were no reports about

the analysis of the potential correlation between CRGs and

progression of HNSC so far. In current study, we investigated

the effects of CRGs on HNSC development, examined the

genes variation of CRGs in HNSC, analyzed the biological

functions of CRGs, explored the immune influence of CRGs on

HNSC, and finally developed a 12-CRGs signature and

nomogram for HNSC prognosis prediction and clinic use,

respectively.

FIGURE 8
Expression validation of genes in 12-CRGs signature using RNA-Seq data of LSCC and ANM tissues (A–F) Expression levels of NTHL1 (A),
DNA2 (B), DLAT (C), ISCA2 (D), MTFR1L (E) and POLE (F).
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Previous studies have indicated that CRGs have potential as

diagnostic, and predictive biomarkers as well as therapeutic

targets of cancers in clinic (Bian et al., 2022; Tsvetkov et al.,

2022). In our study, we found that eleven CRGs (POLD1,

NTHL1, MTFR1, CDK5RAP1, TIMMDC1, NDUFA8, PPAT,

DNA2, ISCA2, POLE, RTEL1) were upregulated in HNSC

compared with normal tissues, while eight genes (NDUFC1,

MTFR1L, LIAS, FDX1, DLAT, PDHB, ETFDH, IDH2) were

downregulated in HNSC tissues compared with normal tissues.

Particularly, overexpression of ISCA2 in HNSC was observed at

the RNA and protein levels, and ISCA2 was strongly correlated

with OS (HR = 1.5 [1.0–2.3], p-value = 0.038), PFI (HR =

1.9 [1.2–2.9], p-value = 0.0042) and DSS (HR = 2.1 [1.3–3.6],

p-value = 0.0046) of HNSC. ISCA2 is required for Iron-Sulfur

cluster assembly and plays an essential role in the pathogenesis of

multiple mitochondrial dysfunction syndromes (Weiler et al.,

2020; Lebigot et al., 2021). The inhibition of ISCA2 can

significantly reduce the xenograft growth of clear cell renal

cell carcinoma. Mechanistically, the suppression of

ISCA2 both decreases HIF-α levels and induces ferroptosis

through triggering singal pathways that does not rely on

ISCA2’s role in mitochondrial [4Fe-4S] assembly (Green et al.,

2022), indicating that ISCA2 may be one of the potential

regulators of HNSC progression.

Given that genetic mutations are one of the direct causes of

cancers (Cheek and Naxerova, 2022). We investigated the

mutational status of CRGs in HNSC. Thirteen genes,

including MTFR1, DNA2, ACO2, PDHA1, CDK5RAP1,

RTEL1, CAT, POLD1, DLAT, POLE, ATP7B, DLST and

ATP7A, had somatic mutations in both training and

validation cohort. Previous study reported that POLE p.

L424V mutation was more frequent in patients with

polyposis, colorectal cancer and oligodendroglioma, and four

POLD1 variants (p.D316H, p. D316G, p. R409W, and p. L474P)

were identified in non-polyposis colorectal cancer families.

Moreover, POLE/POLD1 variants carriers direct to associated

phenotype characterized by attenuated or oligo-adenomatous

colorectal polyposis, colorectal cancer, and brain tumors (Bellido

et al., 2016). Furthermore, POLE/POLD1 mutations were also

found to be a promising predictive biomarkers for positive

Immune-checkpoint inhibitor outcomes (Wang et al., 2019).

ATP7B tag SNPs rs9535828 and rs9535826 were found to be

correlated with platinum resistance in Chinese Han lung cancer

patients (Li et al., 2014). The recurrent variant c.1121G>A
(p.Gly374Glu; dbSNP: rs1270341616) in TCA-cycle-related

gene DLST was more frequent in pheochromocytomas and

paragangliomas (Remacha et al., 2019). It has been reported

that the mutations in DNA2 (Zheng et al., 2020), ACO2 (Sajnani

et al., 2017), and ATP7A (Li et al., 2017) were correlated with the

initiation or poor clinical outcomes of cancers. CNV is another

type of genetic variation in cancer (Dixon et al., 2018). We found

that the chromosomal sub-bands where FDX1 and DLAT are

located had deletions, and the expression levels of FDX1 and

DLAT were downregulated. The downregulation of DLAT has

been associated with its chromosomal deletions in liposarcoma

(Crago et al., 2012), thus suggesting that the chromosomal

deletions of FDX1 and DLAT may affect their own expression

levels. Gene variants of CRGs may have the potential correlations

with the initiation and poor clinical outcomes of HNSC.

PPIs govern a majority of cellular pathways and processes in

organism (Lenz et al., 2021). We analyzed the internal

interactions amongst CRGs and constructed a PPIs network

consisting of 522 CRPs that were obtained from STRING

database. PPIs have a non-substitutable role in all relevant

biological processes, and functional enrichment analysis is an

important method to investigate the collaboration of various

proteins in a signaling pathway (Zhang et al., 2021). All CRPs

were utilized for functional enrichment analysis based on GO

and KEGG method. We found that CRPs were mainly enriched

in p53 signaling pathway, TCA cycle, cell cycle, chemical

carcinogenesis, carbon metabolism in cancer, iron-sulfur

cluster assembly, immune-related regulation, synthetic and

repair of DNA and energy metabolism signaling pathway. The

enrichment of the CRGs in the TCA cycle and iron-sulfur cluster

assembly was consistent with reports from a previous study by

Tsvetkov et al. (Tsvetkov et al., 2022). Components required by

TCA cycle and iron-sulfur cluster assembly are mainly regulatory

targets for key proteins in cuproptosis process (Li et al., 2022;

Tsvetkov et al., 2022). The enrichment of CRPs in p53 signaling,

chemical carcinogenesis and carbon metabolism in cancer

pathways might bring the potential research perspective in the

relation between cuproptosis and cancers.

Multi-gene signatures have been employed for predicting

prognosis and have exhibited a significantly effective ability in

classifying individuals with multiple clinical-pathological risk

factors, such as total mortality, chemotherapy response, and

metastasis risk (Ahluwalia et al., 2021). In our study, we

constructed a 12-CRGs signature consisting of CAT, MTFR1L,

OXA1L, POLE, NTHL1, DNA2, ATP7B, ISCA2, GLRX5,

NDUFA1, NDUFB2, and DLAT for OS prediction of HNSC.

The 12-CRGs signature had the significantly adverse effects on

OS (HR = 5.3 [3.4–8.2], p-value = 3.4e-13) of HNSC patients.

Moreover, the 12-CRGs signature also exhibited the trends of

poor effect on PFI (HR = 1.6 [0.92–2.7], p-value = 0.096) and DSS

(HR = 6.4 [3.6–11], p-value = 2.4e-10). Some components in 12-

CRGs signature have been found to have high correlation with

development and progression of cancers. DNA2 have functions

as both a tumor promoter and suppressor in cancers. On the one

hand, DNA2 can suppress the initiation of tumors by

maintaining the genomic integrity, on the other hand, it can

promote the cancer cells survival through counteracting

replication stress (Zheng et al., 2020). The suppression of

GLRX5 activates iron-starvation response, increase

intracellular free iron and in turn results in Fenton reaction

and ferroptosis. In addition, GLRX5 inhibition predisposes

therapy-resistant HNSC cells to ferroptosis (Lee J et al., 2020).
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DLAT can catalyze the conversion of pyruvate into Acetyl CoA,

promote oxidative phosphorylation, ATP generation and

catabolic reactions, which are important in the development

of cancer (Goh et al., 2015). In addation, CAT (Galasso et al.,

2021), POLE (Bellido et al., 2016), NTHL1 (Magrin et al., 2021),

ATP7B (Li et al., 2017), ISCA2 (Weiler et al., 2020; Green et al.,

2022), NDUFA1 (Mamelak et al., 2005) and NDUFB2(Shan

et al., 2020) have also been reported to play a key role in the

development of cancers. The combination of multi-genes

signature and clinical characters can improve the predictive

ability of prognosis for cancer patients (Yang et al., 2021). A

nomogram for clinic utilization was constructed based on the 12-

CRGs signature and clinical features including gender, age and

pathologic stage. The nomogram scores were significantly

associated with OS of HNSC in TCGA-first (HR =

1.061 [1.042–1.081], p-value = 1.6e-10), TCGA-second (HR =

1.028 [1.007–1.049], p-value = 0.0096) and GSE65858 (HR =

1.028 [1.009–1.048], p-value = 0.0042) cohorts. In 12-CRGs

signature, POLE, NTHL1, DNA2 and ISCA2 was upregulated

while MTFR1L and DLAT was downregulated in HNSC tissues

in both TCGA-first and TCGA-second cohort. Furthermore, the

aberant expressions of POLE, NTHL1, DNA2, ISCA2 and

MTFR1L were validated by our RNA-Seq data. These results

indicated that POLE, NTHL1, DNA2, ISCA2 and MTFR1L may

have greater potential for clinical applications.

Immune cell response to cancer cells plays a crucial role in

the regulation of cancer progression (Hara et al., 2021). In this

study, correlation analysis between the 12-CRGs signature and

immune status of HNSC revealed that CD4+ T cell activation and

antigen processing and presentation were suppressed in high risk

group of 12-CRGs signature. CD4+ T cells are a class of T helper

cells, which are strongly correlated with the biological process of

antitumor, and can improve the activity of other antitumor

immune cells, such as CD8+ T cells and macrophages

(Miggelbrink et al., 2021). Antigen processing and

presentation are most important events in the recognition of

antigens by T cells. Moreover, specific T cell tumor antigens

generated through antigen processing and presentation are

potential agents in the field of cancer immunotherapy (Lee

MY et al., 2020). The above results demonstrated that 12-

CRGs signature might influence the progression of HNSC by

regulating the immune response.

Besides, some limitations should be noted in this study.

Firstly, the numbers of CRGs under investigated were still

limited in this study. When more CRGs are identified in the

literature, a more representative number of CRGs will be

included in the study. Secondly, the CRGs risk score model

was constructed and validated in public database in this study.

We will govern prospective multi-center clinical data to vertify

the ability of CRGs risk score model in the future. Further,

the effects of 12-CRGs signature on immune status of HNSC

will be further investigated at the level of molecular

mechanism.

Conclusion

We comprehensively investigated the effects of CRGs on

progression of HNSC at multi-omics levels, and constructed a 12-

CRGs signature and nomogram for the prediction of HNSC

prognosis and clinical use, respectively. Our study demonstrated

that there was significant difference in expression and genes

variants of CRGs between HNSC and normal tissues. ISCA2 is a

CRG chosen for further analysis and was found to be upregulated

in HNSC and was closely related to the prognosis of HNSC

patients. Importantly, the 12-CRGs signature and nomogram

had significant effects on prognosis of HNSC patients. The 12-

CRGs signature was significantly associated with suppression of

CD4+ T cell activation and antigen processing and presentation.

The significant association between the expression of CRGs and

HNSC progression indicated that CRGs may potential roles as

diagnostic, therapeutic and prognostics biomarkers for HNSC.
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Grade II and III gliomas are heterogeneous and aggressive diseases. More efficient

prognosismodels and treatmentmethods are needed. This study aims to construct

a new risk model and propose a new strategy for grade II and III gliomas. The data

were downloaded from The Cancer Genome Atlas (TCGA), the Gene Expression

Omnibus (GEO), gene set enrichment analysis (GSEA), and the EMTomewebsite for

analysis. The Human Cell Landscape website and the Genomics of Drug Sensitivity

in Cancer website were used for single-cell analysis and drug susceptibility analysis.

Gene set enrichment analysis, gene function enrichment analysis, univariate and

multivariate Cox regression analyses, Pearson’s correlation analysis, log-rank test,

Kaplan–Meier survival analysis, and ROC analysis were performed.We constructed

an immune-related prognostic model associated with the isocitrate

dehydrogenase 1 (IDH1) mutation status. By analyzing the immune

microenvironment of patients with different risk scores, we found that high-risk

patients weremore likely to have an inflammatory immunemicroenvironment and

a higher programmed death ligand-1 (PD-L1) expression level.

Epithelial–mesenchymal transition (EMT)-related gene sets were significantly

enriched in the high-risk group, and the epithelial–mesenchymal transition

phenotype was associated with a decrease in CD8+ T cells and an increase in

M2 macrophages. Transforming growth factor-β (TGF-β) signaling was the most

important signaling in inducing epithelial–mesenchymal transition, and TGFB1/

TGFBR1 was correlated with an increase in CD8+ T cytopenia and

M2 macrophages. Survival analysis showed that simultaneous low expression of

TGFBR1 and PD-L1 had better survival results. Through single-cell analysis, we

found that TGFB1 is closely related to microglia and macrophages, especially

M2macrophages. Finally,wediscussed the sensitivity of TGFB1 inhibitors in gliomas

using cell line susceptibility data. These results demonstrated a potential

immunotherapy strategy in combination with the TGFB1/TGFBR1 inhibitor and

PD-1/PD-L1 inhibitor for grade II and III gliomas.
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1 Introduction

Grade II and III gliomas are the most common primary brain

tumors and proved to be with substantial heterogeneity in terms

of pathological features and clinical outcomes (Louis et al., 2021).

In order to distinguish the different pathological features of

patients and develop individualized treatment strategies,

glioma-related biomarkers have been identified. The

IDH1 was reported to mutate frequently in gliomas (Yan

et al., 2009). It had been proved that gliomas with the

IDH1 mutation were more sensitive to chemotherapy and

radiotherapy, resulting in a better prognosis (Sanson et al.,

2009). Other biomarkers, for example, codeletion of 1p and

19q (1p/19q) (Smith et al., 2000), Capicua (CIC)

transcriptional repressor mutation (Gleize et al., 2015), loss of

chromosome 9p, mutation of phosphatidylinositol-4,5-

bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) and

phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1)

(Draaisma et al., 2015), and deletion of cyclin-dependent

kinase inhibitor 2 A (CDKN2A) (Reis et al., 2015), were

confirmed to have prognostic value and important for rational

selection of surgery, radiotherapy, and chemotherapy treatment.

However, over 50% of grade II and III gliomas eventually develop

into highly aggressive gliomas, indicating the need for a more

efficient prognosis model and treatment methods (Zhu et al.,

2021).

In the past decades, there has been little progress in the

treatment of gliomas. Although immunotherapy successfully

promoted the treatment results of other cancer types and was

the major research direction for gliomas, limited progression had

been made in immunotherapy treatment of gliomas (Yang et al.,

2022). In CheckMate-498, a randomized clinical trial, nivolumab

combined with bevacizumab and nivolumab combined with

chemoradiotherapy in newly diagnosed glioma patients with O6-

methylguanine DNA methyltransferase (MGMT) promoter

unmethylation were both ineffective (Reardon et al., 2020).

Comparing with IDH-wild gliomas, the IDH-mutant gliomas

have significantly low tumor-infiltrating lymphocytes and PD-L1

expression (Berghoff et al., 2017). Numerous studies had

demonstrated that gliomas were infiltrated by immune cells that

made up to 30% of a tumor’s mass (Kaminska et al., 2021). Such

extensive accumulation of innate immune cells in gliomas might be

misleading as these events did not reflect the effective anti-tumor

immunity. This phenomenon enlightened us that tumor immune

infiltration in gliomas might be accompanied by other pathological

processes that promote tumor progression.

As mentioned previously, the construction of a new risk

model and improving the efficacy of immunotherapy are

essential for the treatment of gliomas. In this study, we

attempted to construct an immune-related risk model and

proposed a feasible strategy for improving the immunotherapy

efficacy for gliomas.

2 Materials and methods

2.1 RNA sequencing data

The IDH1 somatic mutation status for 500 samples, gene

expression data for 525 samples, and the corresponding clinical

datasheets for 515 samples were obtained from TCGA website

(https://portal.gdc.cancer.gov/). Among these grade II and III

glioma samples, 493 samples with RNA sequencing data and

IDH1 mutation information were subjected to subsequent

analyses. Log2 (x+1) normalization was performed for all gene

expression data. Rows and columns with more than 50% missing

values were removed. The study report fully met TCGA

publication requirements.

2.2 Microarray data

The gene expression profile matrix files from GSE107850

(including 195 samples) and GSE43388 (including 43 samples,

15 from GSE43388-GPL570 and 28 from GSE43388-GPL8542)

were downloaded from the GEO database (https://www.ncbi.

nlm.nih.gov/geo/). We used the R package inSilicoMerging

[DOD: 10.1186/1471–2105–13–335] to merge the datasets.

Also, we used empirical Bayes methods (Johnson et al., 2007)

to remove batch effects.

2.3 Construction and validation of the risk
model

GSEA was performed to determine how the immunological

pathways and corresponding immune genes differ between

IDH1-wild (IDH1-wt) (n = 117) and IDH1 mutation (IDH1-

mut) (n = 376) samples in TCGA cohort. An annotated gene set

file (c7. immunesigdb.v7.4. symbols.gmt; downloaded from the

Molecular Signatures Database) was selected for use as the

reference gene set. The expression profiles of the top 50 genes

expressed in the IDH1-wt and IDH1-mut groups were analyzed

via univariate Cox regression analysis. In this analysis, genes were

regarded as significant at p < 0.05. For the significant genes, least

absolute shrinkage and selection operator (LASSO) Cox analysis

was performed by using the glmnet R package. Then, the nine

candidate genes were analyzed by multivariate Cox regression

analysis based on progression-free survival (PFS). Finally, two

independent prognostic factors for PFS were analyzed by

multivariate Cox regression analysis based on overall survival

(OS) to construct the risk model

(Risk Score � ∑
i

Coefficient of(i)*Expressionofgene(i)).
The log-rank test and Kaplan–Meier survival analysis were used

to assess the predictive ability of the prognostic model. The

maxstat R package was applied to determine the best cutoff value,
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and then patients were classified into low-risk and high-risk

groups. We performed ROC analysis using the R package pROC.

2.4 Correlation of immunophenotype with
the risk model

Using the deconvo_CIBERSOR method of the IOBR R

package, the immune cell infiltration score was calculated. The

R package ESTIMATE was used to calculate the immune scores

for each patient based on gene expression. Pearson’s correlation

coefficients for risk scores and immune infiltration were

calculated. The rank sum test was used to compare differences

in immune cells and immune-related molecules between high-

risk and low-risk groups. p < 0.05 was considered significant.

2.5 Functional enrichment analysis

The STRING website (https://cn.string-db.org/) was used to

construct a 32-gene functional protein association network. We

used the Kyoto Encyclopedia of Genes and Genomes Application

Programming Interface (KEGG API) to obtain genetic

annotations for the latest KEGG pathway. Enrichment

analysis was performed using the R package clusterProfiler.

2.6 Epithelial–mesenchymal transition
(EMT) gene set-related analysis

The 61 EMT gene sets were downloaded from the EMTome

website (http://emtome.org/) (Vasaikar et al., 2021). GSEA was

performed between the high-risk and low-risk groups. The

enrichment scores of the EMT gene sets were analyzed by

univariate Cox analysis through the EMTome website. The gene

set with the highest prognostic significance and the highest GSEA

enrichment score was selected for gene set variation analysis (GSVA)

to obtain the enrichment scores of samples. Pearson’s correlation

coefficients for enrichment scores, risk scores, immune cells, and

immune-related molecules were calculated. The log-rank test and

Kaplan–Meier survival analysis were applied to assess the predictive

ability of the enrichment score. By reviewing the literature, we

identified five EMT phenotype-related signaling pathways and

downloaded corresponding gene sets from the GSEA website

(http://www.gsea-msigdb.org/), namely, REACTOME_

SIGNALING_BY_TGFB_FAMILY_MEMBERS, GOBP_

CANONICAL_WNT_SIGNALING_PATHWAY, BIOCARTA_

RAS_PATHWAY, GOBP_NOTCH_SIGNALING_PATHWAY,

and GOBP_PHOSPHATIDYLINOSITOL_3_KINASE_

SIGNALING (Dongre and Weinberg, 2019). We divided the

samples into two groups according to the enrichment score, with

263 samples in the high-enrichment score group and 262 samples in

the low-enrichment score group, and performedGSEA to obtain the

most significant enrichment signaling pathway.

2.7 Effects of transforming growth factor-
β (TGF-β)-associated molecules, PD-L1
(CD274), and CTLA-4 on immune cell
infiltration and prognosis

Pearson’s correlation coefficients for enrichment scores,

TGFB1, TGFBR1, TGFB2, and TGFB3 were calculated, and

the correlation matrix was plotted. Multivariate Cox

regression analysis was performed on TGFB1, TGFBR1,

TGFB2, TGFB3, PD-L1, and cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4). For TGFB1, TGFBR1,

CD274, CTLA-4, and immune cells, we calculated the

Pearson’s correlation coefficient and plotted the correlation

scatterplot. The log-rank test and Kaplan–Meier survival

analysis were used to assess the predictive ability of

TGFBR1 and PD-L1. The maxstat R package was applied to

determine the best cutoff value, and then patients were

classified into the low-expression group and the high-

expression group. The samples were then divided into four

groups (TGFBR1-H+CD274-L, TGFBR1-H+CD274-H,

TGFBR1-L+CD274-L, and TGFBR1-l+CD274-H) for

survival analysis, and the differences in immune cell

infiltration between groups were compared by the rank sum

test, and violin charts were plotted.

2.8 Single-cell analysis was performed to
determine cell localization of TGF-β
signaling-related molecules

This analysis was conducted through the Human Cell

Landscape website (https://db.cngb.org/HCL/index.html) (Han

et al., 2020). Platform creators analyzed >700,000 single cells

from >50 human tissues (2–4 replicates per tissue in general)

and cultures. Through the brain section of the Gallery module,

we can acquire the single-cell data matrix and analysis results related

to brain tissue.

2.9 Anti-TGFB1 drug susceptibility analysis

We adopted the Genomics of Drug Sensitivity in Cancer

website (https://www.cancerrxgene.org/) and the EMTome

website (http://emtome.org/) for drug sensitivity analysis. The

two websites provided drug susceptibility data on the

TGFB1 inhibitor LY2109761 in different cell lines, as well as

online analysis tools. Using online tools from both websites, we

performed drug susceptibility analysis.
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2.10 Data processing platform

All the data processing was performed on Sangerbox (http://vip.

sangerbox.com/home.html), a powerful platform based on R (Shen

et al., 2022), including RNA sequencing data normalization,

merging of datasets, removing batch effects, gene set enrichment

analysis, gene set variation analysis, gene function enrichment

analysis, univariate and multivariate Cox regression analyses,

LASSO-Cox regression analysis, Pearson’s correlation analysis,

log-rank test, Kaplan–Meier survival analysis, ROC analysis, the

immune cell infiltration score and immune infiltration score

calculation, and KEGG enrichment analysis.

3 Results

3.1 Construction and validation of a risk
model associated with IDH1 and immune
status

We applied GSEA between IDH1-wt (n = 117) and IDH1-

mut (n = 376) groups using c7. immunesigdb.v7.4.

symbols.gmt as the reference gene set. All 3919 immune-

related gene sets with FDR < 0.05 were enriched in the

IDH1-wt group, suggesting that the IDH1-wt group was

more correlated with immune response than the IDH1-mut

group. The top 50 genes enriched in the two groups were used

for univariate Cox regression analysis. The results showed that

all 100 genes were significantly associated with prognosis

(Figure S1). These 100 genes were then analyzed by LASSO

Cox, and nine candidate genes were obtained for risk

modeling (Figures 1A–B). In order to better predict PFS,

we performed multivariate analysis on PFS for nine genes

and obtained two genes with independent prognostic value for

PFS, NOG, and IGFBP2 (Figure 1C). Through multivariate

analysis of NOG and IGFBP2 in OS, we obtained the

expression coefficients of these two genes and constructed a

risk model (Figure 1D). Risk score = -0.4253 * expression of

NOG + 0.3954 *expression of IGFBP2.

We calculated the risk scores of all 493 TCGA samples and

performed survival analysis, plotting K-M curves and ROC

curves. The results showed that the risk model was a good

predictor of patients’ OS (p = 1.3e-24, HR = 5.52) and PFS

(p = 3.2e-13, HR = 3.20) (Figures 2A–D). Clinically, the

FIGURE 1
Construction of a risk model associated with IDH1 and immune status. (A–B) Nine candidate genes for risk modeling by LASSO Cox regression
analysis; (C) multivariate analysis of nine genes on PFS; and (D) multivariate analysis of two genes on OS.
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IDH1 mutation status was used to determine patient prognosis,

and we explored whether our risk model could further stratify the

IDH1 mutation status. In both the IDH1-mut and IDH1-wt

groups, a high-risk score indicates a worse prognosis (Figures

2E–F), whereas the IDH1 status in the low-risk group does not

affect prognosis (Figure 2G). Multivariate analysis of IDH1 and

risk score suggested that risk score is an independent prognostic

factor relative to IDH1 (Figure 2N).

GSE107850 (including 195 samples) and GSE43388

(including 43 samples) were used to validate the risk

prediction capabilities of risk models. Among them, the

study endpoint of the GSE107850 sample was PFS after

radiotherapy (RT) and temozolomide (TMZ) treatment,

and the study endpoint of the GSE43388 sample was OS, so

we used these two sets of sample data to verify the predictive

efficacy of risk models on PFS and OS, respectively.

Furthermore, we used the GSE107850 dataset to analyze

the predictive power of risk models for response to

radiotherapy and chemotherapy treatment. As shown in

Figures 2H–M, the risk model can predict not only the

patient’s OS (p = 3.2e-6, HR = 7.89) and PFS (p = 8.8e-8,

HR = 2.84) but also the patient’s response to radiation (p =

7.7e-6, HR = 3.45) and chemotherapy (p = 1.9e-3, HR = 2.39).

3.2 High-risk patients are more likely to
have a “hot” immune microenvironment

We analyze the correlation of the risk model with immune

infiltration scores, immune cell infiltration, and expression of

immune molecules. There is a significant positive correlation

between immune risk scores and immune infiltration scores,

including stromal score (p = 6.2e-36, r = 0.52), immune score (p =

1.8e-18, r = 0.38), and ESTIMATE score (p = 1.0e-25, r = 0.45)

(Figures 3A–C). The high-risk group had higher expression of

immunosuppressive molecules (CD274, CTLA-4, IDO1, and

IL10) and also had higher expression of immunostimulant

molecules (CD27, CD28, CD40, CD40LG, and ICOS) (Figures

3D–E). Regulatory T cells (Tregs) were elevated in the high-risk

group (p = 1.1e-6). However, B naïve cells (p = 4.0e-4), mast

resting cells (p = 4.3e-3), CD4+ T memory resting cells (p = 6.1e-

10), CD8+ T cells (p = 6.6e-5), neutrophils (p = 4.4e-5), and M0

(p = 3.7e-5) and M1 (p = 2.2e-6) macrophages were also elevated

in the high-risk group. Risk stratification did not appear to affect

M2 macrophage infiltration results (p = 0.62) (Figure 3F). From

these results, a higher level of inflammation coexisted with a

higher level of immunosuppression, but unfortunately, although

this immunosuppression was accompanied by increased PD-L1

FIGURE 2
Validation of the two-gene risk model. (A) K-M survival curve for OS of TCGA cohort; (B) ROC curve for OS of TCGA cohort; (C) K-M survival
curve for PFS of TCGA cohort; (D) ROC curve for PFS of TCGA cohort; (E) high-risk patients in the IDH1-mut group have shorter OS; (F) high-risk
patients in the IDH1-wt group have shorter OS; (G) K-M curve combining the IDH1 mutation status and risk score; (H–I) validation of the two-gene
risk model in GSE43388; (J–M) validation of the two-gene risk model in GSE107850; and (N) multivariate analysis of IDH1 and risk score.
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expression, it could not be reversed by PD-L1 inhibitors and

transformed into clinical benefit. We hypothesized that along

with this immunosuppressive process, there were other

malignant phenotypes that promoted tumor progression.

3.3 EMT-related signaling pathways are
closely related to the risk model

In order to explore the signaling pathways related to the risk

model, we first used the STRING website to construct a gene

regulatory network of 32 genes for the risk model (Figure 4A),

and then we performed KEGG enrichment analysis on this

regulatory network (Figure 4B). Some signaling pathways that

are closely related to EMT had been enriched, including TGF-β
signaling pathway (Hao et al., 2019), signaling pathways

regulating pluripotency of stem cells (Mani et al., 2008;

Shibue and Weinberg, 2017), Hippo signaling pathway

(Cordenonsi et al., 2011), PI3K-Akt signaling pathway, and

mTOR signaling pathway (Song et al., 2014). This suggested

that the EMT phenotype may be also formed at the same time as

the tumor formed an inflammatory immune microenvironment.

3.4 EMT phenotypes are significantly
associated with M2 macrophages and are
regulated by the TGF-β signaling pathway

The EMTome website provided 61 gene sets that are

associated with the EMT phenotype, and we downloaded all

of them for GSEA between the two risk groups. At the same time,

we used the online tool of the EMTome website to perform

univariate Cox regression analysis of each gene set enrichment

score. The top gene sets are listed in Table 1; Table 2.

PMID29212455: Wang_et_al. 2017 was the gene set with the

most significant prognostic value and highest normalized

enrichment score (NES), and we plotted the GSEA

enrichment curve for this gene set (Figure 5A).

We then performed GSVA with the PMID29212455: Wang_

et_al. 2017 gene set and obtained an enrichment score for each

FIGURE 3
Immunocorrelation analysis of the risk model. (A–C) Correlation of the risk model with immune infiltration scores; (D–E) correlation of the risk
model with the expression of immune molecules; and (F) correlation of the risk model with immune cell infiltration.
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sample. Enrichment scores had a significant positive correlation

with risk scores (p = 1.1e-29, r = 0.48) (Figure 5B), and high

enrichment scores indicated shorter survival (p = 1.0e-9, HR =

2.92) (Figure 5C). The enrichment score was positively correlated

with immunosuppressive cells and immunosuppressive

molecules, for example, Tregs, M2 macrophages, PD-L1, and

CTLA-4, but negatively correlated with B memory cells and

CD4+ T cells, suggesting the immunosuppressive properties of

the EMT phenotype (Figures 5D–J). In particular, unlike risk

scores, EMT enrichment scores were positively correlated with

M2 macrophage infiltration (p = 2.1e-8, r = 0.25) but not with

CD8+ T-cell infiltration (p = 0.45, r = -0.03).

In order to determine the main signaling pathways that

induce EMT phenotypes, we reviewed the relevant literature,

identified five candidate signaling pathways, downloaded the

gene sets of each pathway through the GSEA website, and

FIGURE 4
Risk model-related gene function enrichment analysis. (A) Gene regulatory network of 32 genes related to the risk model and (B) KEGG
enrichment analysis of this regulatory network.

TABLE 1 Univariate Cox regression analysis for EMT gene sets by the EMTome website.

Signature Cox coefficient Hazard ratio Log-rank p-value

PMID29212455: Wang_et_al. 2017 1.38 4 (2.6–6.1) 8.00E-12

PMID26061747: Huang_et_al. 2015 1.22 3.4 (2.2–5.1) 5.40E-10

PMID29700419: Liang_et_al. 2018 1.16 3.2 (2.1–4.8) 3.90E-09

PMID29440769: Chae_et_al. 2018 1.15 3.1 (2.1–4.7) 6.00E-09

PMID20215510: Choi_et_al. 2010 1.13 3.1 (2.1–4.6) 4.80E-09

PMID24004852: Cieslik_et_al. 2013 1.13 3.1 (2.1–4.7) 1.40E-08

PMID19666588: Creighton_et_al. 2009 1.11 3 (2–4.5) 1.50E-08

PMID26088755: Kim_et_al. 2015 1.09 3 (2–4.4) 1.20E-08

PMID26771021: MsigDB_v7.0 1.1 3 (2–4.4) 1.30E-08

Note: By the online tool of the EMTome website, univariate Cox regression analysis was applied to determine the effects of different EMT phenotypes and gene set enrichment scores on the

survival of grade II and III gliomas. p < 0.05 was considered statistically significant.
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then divided the samples into two groups according to the EMT

enrichment score for GSEA. The TGF-β signaling pathway,

WNT signaling pathway, Notch signaling pathway, and PI3K

signaling pathway were all significantly enriched in the high-

enrichment score group, with the TGF-β signaling pathway

having the largest NES (|NES| = 2.0875), and we believed that

TABLE 2 GSEA rank list for EMT gene sets.

Term ES NES p-value FDR FWER

PMID29212455: Wang_et_al. 2017 0.5657 2.3413 0.0000 0.001 0.001

PMID25744723: Schliekelman_et_al. 2015 0.4556 2.2449 0.0000 0.0005 0.001

PMID30728376: Soo Min_et_al. 2019 0.5228 2.2231 0.0000 0.0003 0.001

PMID24510113: Reka_et_al. 2014 0.7297 2.2166 0.0000 0.0003 0.001

PMID29346386: Hollern_et_al. 2018 0.5984 2.2083 0.0000 0.0002 0.001

PMID20713713: Taube_et_al. 2010 0.6191 2.1953 0.0000 0.0001 0.001

PMID23734191: Zarkoob_et_al. 2013 0.6186 2.1953 0.0000 0.0002 0.001

PMID19340593: Joyce_et_al. 2009 0.6535 2.184 0.0000 0.0001 0.001

PMID25214461: Tuan_et_al. 2014 0.594 2.175 0.0000 0.0001 0.001

PMID29700419: Liang_et_al. 2018 0.6864 2.1655 0.0000 0.0003 0.002

Note: EMT gene sets were acquired from the EMTome website, and GSEA was performed between the high-risk and low-risk groups. FDR <0.05 was considered significantly different in

gene set enrichment between the two groups.

FIGURE 5
EMT phenotypes are significantly associated with M2 macrophages and are regulated by the TGF-β signaling pathway. (A) GSEA enrichment
curve for the PMID29212455:Wang_et_al. 2017 gene set; (B) enrichment score and risk score are significantly positively correlated; (C) K-M curve for
the enrichment score; (D–J) correlation analysis of enrichment scores and immunity; and (K–O) GSEA enrichment curve for EMT-related signaling
pathways.
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TGF-β signaling played an important role in inducing EMT

phenotypes in gliomas (Figures 5K−O).

3.5 Compared with PD-L1 and CTLA-4,
TGFB1/TGFBR1 is much associated with
the immunosuppressive
microenvironment

In this section, we explored specific molecules of the TGF-β
signaling pathway, and we selected TGFB1, TGFBR1, TGFB2,

and TGFB3 as research subjects because the drugs targeting these

molecules are currently in the clinical research stage (Tauriello

et al., 2022), and exploring them will make our research

conclusions more likely to guide clinical practice. First, we

analyzed the correlation between four candidate molecules

and EMT enrichment scores, and the results showed that all

four molecules were significantly correlated with EMT

enrichment scores, among which TGFBR1 had the highest

correlation (p < 0.001, r = 0.55) (Figure 6A). We then

performed multivariate Cox regression analysis on four

candidate molecules together with PD-L1 and CTLA-4, and

the results suggested that PD-L1, TGFB2, and TGFBR1 were

independent prognostic factors (Figure 6B). Based on the

previous conclusions, we selected TGFB1/TGFBR1 for

subsequent analysis.

Next, we focused on the correlation between TGFB1/

TGFBR1, PD-L1, CTLA-4, and immune cell infiltration. With

the increase in TGFB1/TGFBR1 expression, the infiltration of

CD4+ T naïve cells and CD8+ T cells (p = 8.0e-5, r = -0.18; p =

FIGURE 6
TGFB1/TGFBR1 may be a suitable target in the treatment of gliomas. (A) Correlation between TGFB1/TGFBR1, TGFB2, TGFB3, and enrichment
score and (B) multivariate survival analysis of TGFB1/TGFBR1, TGFB2, TGFB3, PD-L1, and CTLA-4.
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3.6e-7, r = -0.23) decreased significantly, while the infiltration

of M2 macrophages (p = 8.8e-15, r = -0.34; p = 1.0e-13, r =

0.33) and Tregs increased significantly (Figures 7A–K).

Although CD4+ T naïve cell infiltration was decreased with

PD-L1 expression, there was no significant change in CD8+

T cells and Tregs. In addition, M1 macrophage infiltration was

also increased (p = 8.5e-6, r = 0.20), while M2 macrophage

infiltration was relatively low (p = 0.01, r = 0.12), suggesting

that M0 macrophages were more likely polarized toward

M1 macrophages (Figures 7L–P). As for CTLA-4, CD4+ T

naïve cell infiltration also decreased, while CD8+ T cell (p =

0.02, r = 0.11) and M1 macrophage (p = 2.4e-6, r = 0.21)

infiltration increased, and M2 macrophages and Tregs showed

no significant changes (Figures 7Q–U). Compared with PD-L1

and CTLA-4, TGFB1/TGFBR1 was tightly associated with a

decrease in CD8+ T cells and an increase in M2 macrophages

and Tregs infiltration, suggesting that TGFB1/TGFBR1 may

have more powerful immunosuppressive properties.

3.6 Simultaneous blocking of TGFB1/
TGFBR1 and PD-L1 might significantly
improve survival

We calculated the optimal cutoff value for TGFBR1 and PD-

L1 using the R package maxstat (maximally selected rank

statistics with several p-value approximations, version: 0.7-25).

We then grouped the samples according to cutoff values and

performed survival analysis. Patients with higher PD-L1 and

TGFBR1 expression had shorter survival (p = 1.4e-9, HR = 2.92;

p = 1.0e-7, HR = 2.58) (Figures 8A–B). Patients with both high

expression of TGFBR1 and PD-L1 had the worst prognosis, and

those with low expression of both TGFBR1 and PD-L1 had the

best prognosis, while those with high expression of one of the two

molecules had a moderate prognosis (Figure 8C; Supplementary

Table S1). The group with the best prognosis tended to have more

CD4+ T naïve cells and CD8+ T-cell infiltration (although no

statistically significant difference was achieved) and less

FIGURE 7
Compared with PD-L1 and CTLA-4, TGFB1/TGFBR1 is more associated with the immunosuppressive microenvironment. (A–E) Correlation of
TGFBR1 with immune cell infiltration; (F–K) correlation of TGFB1 with immune cell infiltration; (L–P) correlation of PD-L1 with immune cell
infiltration; and (Q–U) correlation of CTLA-4 with immune cell infiltration.
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M2 macrophage and Tregs infiltration (Figures 8D–H). These

results suggested that simultaneous blocking of TGFB1/

TGFBR1 and PD-L1 is more likely to confer a survival benefit

than blocking PD-L1 alone.

3.7 TGFB1 is closely related to microglia
and macrophages in brain tissues

We analyzed the cellular localization of TGF-β-related
molecules in brain tissue through Human Cell Landscape, a

single-cell analysis website. In four single-cell samples of brain

tissue, we found that TGFB1 and TGFBI (transforming growth

factor-beta induced, a protein induced by TGFB1) were mainly

expressed in microglia and macrophages, especially

M2 macrophages. The results of the clustering analysis with

marker genes are shown in Figures 9A–D and Table 3.

3.8 Gliomas may be one of the tumors
most sensitive to the TGFB1 inhibitor

LY2109761 is an inhibitor of TGFB1 and is widely used in

in vitro studies of various tumors. Through the Genomics of

Drug Sensitivity in Cancer website and the EMTome website, we

analyzed the susceptibility results of LY2109761 in various

tumors. Figure 10A shows the IC50 values of LY2109761 in

different LGG cell lines, and the IC50 values of LY2109761 in

all available tumor cell lines are shown in Figure 10B. After

standardizing the susceptibility data of all tumor cell lines, we

found that LGG ranked sixth in drug sensitivity among 29 tumor

species (Figure 10C). This suggested that TGFB1/

TGFBR1 inhibitors may be sensitive in gliomas.

4 Discussion

Previous studies had demonstrated that the IDH1 mutation

status has a significant effect on the immune microenvironment

of diffuse glioma, and IDH1 wild-type patients generally have

higher lymphocyte infiltration and PD-L1 expression (Yan et al.,

2009; Berghoff et al., 2017). Also, the IDH1 mutation status has a

significant correlation with prognosis (Sanson et al., 2009).

Therefore, we can utilize these features of IDH1 to construct a

risk model related to the inflammatory immune

microenvironment and survival. Through GSEA, we found

that the 3,919 immune-related gene sets with significant

differences between the two groups were enriched in the

FIGURE 8
Survival analysis of PD-L1 and TGFBR1 and comparison of immune cell infiltration between groups. (A) K-M curve for PD-L1; (B) K-M curve for
TGFBR1; (C) K-M curve for patients with different TGFBR1 and PD-L1 expression levels; and (D–H) immune cell infiltration between groups.

Frontiers in Genetics frontiersin.org11

Luo et al. 10.3389/fgene.2022.1070630

151

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1070630


IDH1-wild group, suggesting that the IDH1-wild type is more

related to immune response, which is consistent with the

conclusions mentioned previously. According to the gene rank

list of GSEA, top 50 genes in each group were selected for

univariate analysis, and the results showed that these

100 genes had significant prognostic value. By performing

LASSO Cox and multivariate Cox regression analyses on

100 genes, we constructed a two-gene risk model consisting of

IGFBP2 and NOG.

IGFBP2 is a pleiotropic oncogene and plays a role in the

occurrence and development of a variety of tumors (Brouwer-

Visser and Huang, 2015). It has been confirmed that IGFBP2 can

induce tumor epithelial–mesenchymal transformation and

metastasis through the NF-κB signaling pathway (Gao et al.,

2016). NOG is a natural inhibitor of bone morphogenetic protein

(BMP), especially BMP2 and BMP4, which are the members of

the TGF-β family. BMPs suppressed the tumorigenic function of

human glioma-initiating cells by inducing cell differentiation, cell

cycle arrest, and apoptosis (Bao et al., 2013). Several reports have

shown that BMP4 is expressed in low-grade gliomas and that it

serves as a favorable prognostic marker in gliomas (Bao et al.,

2013; Nayak et al., 2020; Zhou et al., 2020). In addition,

BMP4 was able to abolish cancer stem cell populations in

human cancers, including malignant gliomas (Piccirillo et al.,

2006; Piccirillo and Vescovi, 2006). Interestingly, as an inhibitor

of BMPs, the expression of NOG and BMP2/4 was positively

correlated. The high-risk group had lower levels of BMPs,

consistent with the studies mentioned previously. We verified

that the risk model has good prognostic value in TCGA cohort

and two GEO cohorts and can further stratify the IDH1-mut and

IDH1-wt groups. The multivariate Cox regression analyses

further confirmed the independent prognostic value of the

FIGURE 9
(A–D) Clustering analysis for brain tissues.

TABLE 3 TGFB1 and TGFBI are the top markers for microglia/macrophage in the brain.

Cluster Annotation Gene p_value avg_diff pct.1 pct.2

Adult-Cerebellum1_Cluster16 Macrophage TGFBI 5.82E-63 1.8518 0.367 0.011

Fetal-Brain_Zhong_Cluster3 Microglia TGFB1 1.46E-48 1.1991 0.284 0.013

Fetal-Brain4_Cluster10 Macrophage TGFBI 1.33E-15 0.8792 0.158 0.005

Fetal-Brain5_Cluster11 M2 macrophage TGFBI 4.94E-30 1.6913 0.348 0.016

Fetal-Brain5_Cluster6 Fibroblast TGFBI 6.48E-91 1.5493 0.254 0.011

Note: Single-cell differential gene expression analysis for four brain tissues was performed on the Human Cell Landscape website; p < 0.05 was considered statistically significant.
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risk model. Thus, this model might be used as a risk indicator in

clinical practice.

To further investigate the relationship between the risk

model and the immune microenvironment, we analyzed the

correlation between immune infiltration scores, immune-

related molecules, and immune cell infiltration with immune-

related prognostic models. The stromal score, immune score, and

ESTIMATE score were positively correlated with the risk score.

The high-risk group had higher expression of

immunosuppressive molecules and also had higher expression

of immunostimulant molecules. Tregs were elevated in the high-

risk group. However, B naïve cells, mast resting cells, CD4+ T

memory resting cells, CD8+ T cells, neutrophils, and M0 and

M1 macrophages were also elevated in the high-risk

group. Similar conclusions had been reached in other people’s

studies. Berghoff et al. (2017) found significantly higher levels of

PD-1-positive tumor-infiltrating lymphocytes and PD-L1

expression in IDH-wild-type gliomas than IDH-mutant

gliomas. Liu et al. (2020) demonstrated higher CTLA-4

expression in higher-grade IDH-wild-type tumors than lower-

grade IDH-mutant tumors. We would summarize these

phenotypes as “hot” tumor microenvironments. “Hot” tumors

and high expression of PD-L1 were known as hallmarks of

sensitivity to immunotherapy (Xiong et al., 2018; Gao et al.,

FIGURE 10
Drug susceptibility analysis of the TGFB1 inhibitor. (A) IC50 values of LY2109761 in different LGG cell lines; (B) IC50 values of LY2109761 in all
available tumor cell lines; and (C) LGG ranked sixth in drug sensitivity among 29 tumor species.
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2022), while inexplicably, the efficiency of immunotherapy was

limited in gliomas, regardless of the IDH1 status and tumor

grades (Blumenthal et al., 2016; Bouffet et al., 2016; Johanns et al.,

2016; Lukas et al., 2018; Reardon et al., 2020). We hypothesized

that the patient’s inflammatory immune microenvironment is

accompanied by other malignant phenotypes.

We then established a 32-gene functional protein association

network for NOG and IGFBP2 on the STRING website. These

32 genes were analyzed for gene function enrichment using the

KEGG database. The TGF-β signaling pathway, Hippo signaling

pathway, PI3K-AKT–mTOR pathway, and signaling pathways

regulating pluripotency of stem cells were found to be closely

linked to the risk model. It had been reported that stem cell

properties could be acquired by tumor cells through EMT.

Induction of EMT in immortalized human mammary

epithelial cells was sufficient to induce the expression of stem

cell markers, enhance self-renewal, and increase the number of

tumor-initiating cells (Mani et al., 2008; Shibue and Weinberg,

2017). TGF-β had been thought to be the most important factor

inducing EMT via the classic Smad and non-Smad pathways

(Lamouille et al., 2014; Hao et al., 2019). The Hippo pathway and

PI3K-AKT–mTOR pathway had also been proved to be related to

EMT (Cordenonsi et al., 2011; Song et al., 2014). It had been

reported that there exists a strong correlation between EMT and

immune activation. Further analysis demonstrated high

expression of immune checkpoints and other druggable

immune targets such as PD-1, PD-L1, CTLA-4, OX40L, and

PD-L2 in patients with the EMT phenotype (Mak et al., 2016).

Therefore, we speculated that the inflammatory immune

microenvironment of gliomas is accompanied by the EMT

phenotype.

In subsequent analyses, we found that EMT enrichment

scores were significantly positively correlated with risk scores,

M2 macrophage infiltration, Tregs, PD-L1, and CTLA-4

expression and negatively correlated with CD8+ T-cell

infiltration. Although Mak et al. (2016) discovered that the

EMT phenotype is always accompanied with immune

activation and higher expression of immune checkpoint

molecules and declared that immunotherapy might have

potential, the reality was far from that (10). The inflammatory

immune microenvironment is accompanied by EMT, which in

turn induces immunosuppression against the inflammatory

immune microenvironment. Reversing the EMT phenotype

might be necessary for immunotherapy treatment.

Dongre and Weinberg (2019) reviewed the main signaling

pathways that induce EMT, including the TGF-β signaling

pathway, the WNT signaling pathway, the Notch signaling

pathway, the PI3K signaling pathway, and the RAS signaling

pathway. Through the enrichment analysis of the

aforementioned pathway, we found that the TGF-β
signaling pathway is the most important. TGFB1/TGFBR1,

TGFB2, and TGFB3 were elected for further investigation.

Among these four molecules, TGFBR1 not only had the

highest correlation with EMT enrichment scores but also

was an independent prognostic factor relative to PD-L1.

Immunocorrelation analysis showed that TGFB1/

TGFBR1 had more powerful immunosuppressive properties

than PD-L1 and CTLA-4, especially in inducing

M2 macrophage infiltration and CD8+ T-cell depletion.

According to the different expressions of TGFBR1 and PD-

L1, we performed survival analysis in groups, and the results

showed that patients with both TGFBR1 and PD-L1

expression had obvious survival advantages, and the high

expression of either molecule led to poor prognosis. This

indicates that the combined inhibition of TGFB1/

TGFBR1 and PD-1/PD-L1 has a good clinical application

prospect.

Through single-cell analysis, we further determined that

TGFB1 and TGFBI are mainly derived from microglia and

M2 macrophages. As resident macrophages of the central

nervous system (CNS), microglia are associated with diverse

functions essential to the developing and adult brain during

homeostasis and disease (Borst et al., 2021). Microglia-derived

TAM (tumor-associated macrophages) increased angiogenesis

and suppressed T-cell proliferation. Depletion of TAM provides

survival advantages and delays recurrence when combined with

standard-of-care treatment such as irradiation (Akkari et al.,

2020). Numerous studies have demonstrated that gliomas are

infiltrated by immune cells that make up to 30% of a tumor’s

mass (Nduom et al., 2015). The predominant population consists

of glioma-associated microglia and macrophages, and their

numbers inversely correlate with patients’ survival (Gieryng

et al., 2017). We speculated that by synthesizing and secreting

TGFB1, microglia and M2 macrophages simultaneously induced

EMT phenotype and immunosuppression.

Finally, we explored the relative drug sensitivity of the

TGFB1 inhibitor in glioma cell lines through the Genomics of

Drug Sensitivity in Cancer website and the EMTome website.

Although these studies are in vitro experiments, the relative

sensitivity between different tumor species can still give us

some hints that gliomas have relatively good sensitivity

relative to most tumors.

In this study, we constructed an immune-related prognostic

model associated with the IDH1 mutation status. This model

enables further risk stratification of patients with different

IDH1 mutation states. By analyzing the immune

microenvironment of patients with different risk scores, we

found that high-risk patients were more likely to have an

inflammatory immune microenvironment and a higher PD-L1

expression level, although clinical studies showed that patients

with different IDH1 mutation states did not benefit from PD-1/

PD-L1 inhibitors. We speculated that there were other malignant

phenotypes that accompanied the inflammatory immune

microenvironment, so we performed KEGG analysis on the

risk model gene and found that it may be closely related to

the EMT phenotype. This hypothesis was confirmed because
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EMT-related gene sets were significantly enriched in the high-

risk group. Subsequently, we found that the EMT phenotype was

associated with a decrease in CD8+ T cells and an increase in

M2 macrophages, which is different from the risk model. By

analyzing the main signaling pathways that induce the EMT

phenotype, we found that TGF-β was the most important one in

gliomas, and TGFB1/TGFBR1 showed stronger

immunosuppressive properties than PD-L1 and CTLA-4,

especially in inducing an increase in CD8+ T cytopenia and

M2macrophages. It is clinically instructive that simultaneous low

expression of TGFBR1 and PD-L1 has obvious survival

advantages over other expression modes. Through single-cell

analysis, we also found that TGFB1 is closely related to microglia

andmacrophages, especially M2macrophages, which can explain

why the increase in TGFB1/TGFBR1 expression is accompanied

by a significant increase in M2 macrophages. Finally, we

discussed the sensitivity of TGFB1 inhibitors in gliomas using

cell line susceptibility data. From these analyses, we

demonstrated a viable clinical strategy in combination with

TGFB1/TGFBR1 inhibitors and PD-1/PD-L1 inhibitors for the

treatment of high-risk gliomas.
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Ovarian cancer (OC) has the lowest survival rate among gynecologic malignancies.
Ectopic lymphocyte aggregates, namely tertiary lymphoid structures (TLSs), have
been reported as positive biomarkers for tumor prognosis. However, the related
gene signature of tertiary lymphoid structure in ovarian cancer was less understood.
Therefore, this study first exhibited the organizational patterns of tertiary lymphoid
structure by H&E staining and immunohistochemistry (IHC), and confirmed the
improved survival values of tertiary lymphoid structure and quantified tumor-
infiltrating lymphocytes (CD20+ B cells and CD8+ T cells) in ovarian cancer
patients. Secondly, we collected the genes involved in tertiary lymphoid structure
from databases. By the univariate regression analysis, the tertiary lymphoid structure
gene signature (CETP, CCR7, SELL, LAMP3, CCL19, CXCL9, CXCL10, CXCL11, and
CXCL13) with prognostic value, characteristically of ovarian cancer, was constructed
in the TCGA dataset and validated in the GSE140082 dataset. Thirdly, by performing
CIBERSORT and Tumor Immune Dysfunction and Exclusion (TIDE) analysis, we
found that the high expression of this gene signature was positively correlated
with developed immune infiltration and reduced immune escape. The improved
IPS score and application in the IMvigor210 dataset received PD-L1 proved the
predictive value of immunotherapy for this gene signature. Furthermore, this
signature showed a better correlation between tumor mutation burden and
classical checkpoint genes. In conclusion, Tertiary lymphoid structure plays
important role in tumor immunity and the gene signature can be evaluated as a
biomarker for predicting prognosis and guiding immunotherapy in ovarian cancer.

KEYWORDS

tertiary lymphoid structures, gene signature, prognosis, immunotherapy, ovarian cancer

1 Introduction

Ovarian cancer is just like a “secluded killer,” menacing the health of the female
reproductive system. The classical treatment regimens for ovarian cancer focus on tumor-
reducing surgery and platinum-based chemotherapy (Marchetti et al., 2021). However,
accounting for tardy diagnosis, extensive metastasis, recurrence, and resistance to
chemotherapy drugs, the 5-year survival rate is less than 50% (Torre et al., 2018; Yang
et al., 2018; An and Yang 2021). The poly-ADP-ribose polymerase (PARP) inhibitors
(PARPi) and bevacizumab have been approved as first-line maintenance therapy. Despite

OPEN ACCESS

EDITED BY

Chang Gu,
Tongji University, China

REVIEWED BY

Brian Piening,
Earle A. Chiles Research Institute,
United States
Wenji Ma,
Columbia University, United States

*CORRESPONDENCE

Hongluan Mao,
hongluanmao@sdu.edu.cn

SPECIALTY SECTION

This article was submitted to Cancer
Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

RECEIVED 05 November 2022
ACCEPTED 27 December 2022
PUBLISHED 10 January 2023

CITATION

Hou Y, Qiao S, Li M, Han X, Wei X, Pang Y
and Mao H (2023), The gene signature of
tertiary lymphoid structures within ovarian
cancer predicts the prognosis and
immunotherapy benefit.
Front. Genet. 13:1090640.
doi: 10.3389/fgene.2022.1090640

COPYRIGHT

© 2023 Hou, Qiao, Li, Han, Wei, Pang and
Mao. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 10 January 2023
DOI 10.3389/fgene.2022.1090640

157

https://www.frontiersin.org/articles/10.3389/fgene.2022.1090640/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1090640/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1090640/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1090640/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.1090640&domain=pdf&date_stamp=2023-01-10
mailto:hongluanmao@sdu.edu.cn
mailto:hongluanmao@sdu.edu.cn
https://doi.org/10.3389/fgene.2022.1090640
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.1090640


the prolonged progression-free survival, patients did not show a
significant long-term survival benefit (Mirza et al., 2020; Shoji
et al., 2022). Therefore, increasing treatment trials attempt to
extend overall survival.

In recent years, immunotherapy has presented new opportunities.
Studies of various cancers have confirmed that immunotherapy
significantly improves the outcomes of patients. Emerging Immune
checkpoint inhibitors (ICI) rejuvenate CD8+ T cells by targeting PD-1,
PD-L1, or CTLA4, which can deliver rapid and durable effects for
patients with advanced tumors (Mahoney et al., 2015; Van Allen et al.,
2015; Sharpe and Pauken 2018). As the treatment of ovarian cancer
turns to immunotherapy, new challenges also emerge. The therapeutic
of experimental drugs, such as CD274 antibody and CAR-T, are very
limited. Ovarian cancer is defined as a “cold” tumor without marked
lymphocytic infiltration, which indicates that failure to effectively
stimulate the immunity to benefit from the treatment of
immunosuppressive checkpoint inhibitors. Immunosuppression
networks composed of myeloid-derived suppressor cells (MDSCs),
Tregs, TAMs, cancer-associated fibroblasts (CAFs), and adipocytes
may negatively affect the immunotherapy (Yang et al., 2020). The
tumor immune microenvironment plays a key role in balancing
immune escape and immune invasion. Herein, identifying reliable
markers based on the relationship between tumor biology and TME
characteristics is a crucial development for OC.

Tertiary lymphoid structures (TLS) are ectopic lymphoid organs
stimulated by inflammatory signals (Dieu-Nosjean et al., 2014). The
character of TLS diverges in different inflammatory atmospheres
(Sautes-Fridman et al., 2019; Lutge et al., 2021). When the body is
exposed to an infection or tissue damage, TLS invokes powerful
immune responses by mobilizing lymphocytes to antigen sediment,
while SLO grapples ineffectively (Aloisi and Pujol-Borrell 2006;
Moyron-Quiroz et al., 2006). Conversely, TLS would locally
generate auto-reactive T and B cells, accelerating the progression of
autoimmune disease or incapacitating functions of grafts (Thaunat
et al., 2010; Lucchesi and Bombardieri 2013). Increasing evidence
substantiated that TLS favorably impacts the prognosis of cancer
patients. The superior TLS density positively correlated with overall
survival and disease-free survival has been observed in studies of oral
squamous cell carcinoma, lung cancer, invasive breast cancer, and
colorectal cancer (Gu-Trantien et al., 2013; Di Caro et al., 2014;
Germain et al., 2014; Li et al., 2020). As for ovarian cancer,
previous studies proposed that TLS coordinates the infiltration of
T cells, such as the cytotoxic T cell and CXCL13-producing CD4+

T cells, and antibody-producing PCs to advance antitumor responses
(Kroeger et al., 2016; Yang et al., 2021; Ukita et al., 2022). However, the
impact of TLS on gynecologic malignancies, especially ovarian cancer,
demands a better understanding.

Similar to SLO, typical TLSs are organized by T cell zones and
B cell zones containing germinal centers (GCs). Multitudinous
techniques can be implemented to describe the landscape of TLS.
HE staining is the earliest approach to distinguish TLS from
morphological mirrors (Barmpoutis et al., 2021). Afterward,
various studies clarified the highlights of TLS as a niche for T and
B cells responding antagonistically to tumors by performing H&E
staining, multi-immunohistochemistry (mIHC), gene expression
analysis, and flow cytometry on considerable series of cancer
samples (Silina et al., 2018). Nevertheless, there is no unified expert
consensus on the presence and quantification of TLS. Subjective
factors such as cell markers selected by investigators and working

experience in morphological probes increased the experiment bias.
Recent research on TLS progressed to the genetic sequencing level. In a
study of malignant melanoma, the TLS signature containing nine
genes was determined through differential analysis of transcriptome
data of B cells and T cells (Cabrita et al., 2020). The gene signature
reflected the predicted value of TLS in superior clinical outcomes and
better response to ICI therapy. One review constructed TLS hallmark
genes by summarizing the TLS features (Dieu-Nosjean et al., 2014).
Another study reported a 12-chemokine signature associated with TLS
(Lin et al., 2020). Considering the formation of TLS is a combination
of lymphocytes and stromal cells under the action of a series of
cytokines in the TME, the three gene sets could be generalized as
the original collection of TLSs for subsequent analysis.

Therefore, our study was designed to define the appearance and
prognostic significance of TLS. Then we established and examined the
TLS gene signature of OC strongly correlated to prognosis. Our study
discusssed the prognostic impact of the TLS gene signature in OC
patients and further examined its predictive value for immunotherapy
baed on the immune landscape. The relationship between the gene
signature and representative biomarkers was also explored.

2 Materials and methods

2.1 Data collection and pre-processing

A retrospective study was performed on 60 ovarian cancer patients
treated at Qilu Hospital of Shandong University (between 2014 and
2017). The Ethics Committee of Qilu Hospital of Shandong University
has approved the collection of experimental specimens. Inclusion
criteria were as follows: initial diagnosis of ovarian cancer,
unaccepting of neoadjuvant chemotherapy, complete clinical data,
and denial of other tumors. We interviewed the patient cohort until
1 June 2022. All patients’ information was anonymized.

RNA-seq and clinical data of ovarian cancer (OC) patients were
downloaded from The Cancer Genome Atlas (https://portal.gdc.
cancer.gov/). After eliminating the expression profile data with a
high degree of variation and incomplete clinical information,
finally, 362 patients were selected. Another part of ovarian cancer
patients (n = 380, GSE140082, GPL14951) from Gene Expression
Omnibuswere (https://www.ncbi.nlm.nih.gov/geo) also were recruited
for verification.

2.2 HE and immunohistochemistry protocol

The HE-stained sections were directly derived from the Pathology
Department of Qilu Hospital of Shandong University. After being
heated at a stationary temperature of 65° for 1.5 h, paraffin-embedded
slides were dewaxed by xylene and immersed in decreasing ethanol
concentrations for hydration. We applied heat-induced epitope
retrieval for 15 min to expose the antigen. These slices were
separately covered in hydrogen peroxide solution and goat serum
for 30 min. Primary antibodies (CD20, 1:200, Rabbit mAb, Cell
Signaling Technology, United States; CD3, 1:100, Rabbit mAb,
Abcam, Cambridge, United Kingdom; CD8, 1:200, ab3516, Abcam,
United Kingdom) were used to specifically bind to antigens under 4°C
lasting for 12 h. And we applied immunopotentiator and secondary
antibody modified by horseradish peroxidase to combine the primary
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antibody. Samples stained by 3,3′-diaminobenzidine (DAB) and
dehydrated under alcohol were continued to be counterstained by
hematoxylin. Lastly, these slices were faxed by neutral gum. All images
of sections were analyzed by three mature pathological professors. The
organized dense lymphocyte aggregates in HE-stained samples were
identified as tertiary lymphoid structures. Histology of CD20+ B cells
and CD3+ T cells were evaluated to judge the maturity of TLS. The
evaluation criteria are Semi-quantitative of lymphocytes: a. Proportion
of lymphocytes in stroma: <5% = 0; 5%–25% = 1; 26%–50% = 2; 51%–

75% = 3; 76%–100% = 4; b. The staining intensity: without any
staining = 0; faint yellow = 1; claybank or brown = 2; The total
scores = a+b. The cohort was divided into high and low groups
according to average scores.

2.3 The establishment of TLS gene signature
of ovarian cancer

There are 25 genes in the three published TLS-associated datasets, but
only 21 genes were found in the TCGA-OC expression profile data. These
21 genes were used as a background set (Dieu-Nosjean et al., 2014; Cabrita
et al., 2020; Lin et al., 2020). We implemented univariate cox regression
analysis to screen the genes signature related to the prognosis of ovarian
cancer patients in the TCGA database (p < .05). Simple sample Gene Set
Enrichment Analysis (ssGSEA) is an algorithm to calculate the
enrichment fraction of the pairing of each sample and gene set, whose
most common application is to calculate immune infiltration (Barbie
et al., 2009; Chen et al., 2022). Mimicking its computational process in
immune infiltration, we take the established TLS gene set as the target
gene set. The enrichment score of each sample was calculated through the
R package “GSEA,” and used as the score of the TLS gene signature. Then
the study cohort (the TCGA dataset as train set, the GSE140082 dataset as
test set) were divided into high and low expression groups based on
median scores.

2.4 Analysis of CIBERSORT and ESTIMATE

CIBERSORT and ESTIMATE are the two most common
algorithms for assessing immune infiltration. CIBERSORT is a tool
for deconvolution of the expression matrix of human immune cell
subtypes based on the principle of linear support vector regression
(Chen et al., 2018). ESTIMATE is a method developed to evaluate
tumor purity by using gene expression characteristics to infer the ratio
of stromal cells to immune cells in tumor samples (Yoshihara et al.,
2013). We discussed the functional lymphocytes among 22 kinds of
immune cells by the R package “CIBERSORT” based on the TLS
signature respectively (Newman et al., 2015). And the R package
“ESTIMATE” were used to compare the differences in immune scores,
stromal scores and ESTIMATE scores between high and low TLS
signature groups (Yoshihara et al., 2013).

2.5 The analysis of TIDE scores and IPS scores

The developers of TIDE proposed two mechanisms of immune
escape: 1) Dysfunction: T cells are inhibited by high levels of CTL; 2)
Exclusion: suppression of T cell at low levels of CTL infiltration (Jiang
et al., 2018). Higher TIDE score means a greater likelihood of immune

escape and thus a poorer response to ICI. Data of OC patients were also
downloaded from The Cancer Immunome Atlas (TCIA) (https://tcia.at/
home). The IPS score (0–10 score) of each sample was standardized by the
gene expression in four antibodies as immunotherapy (Gui et al., 2021). If
the IPS score is higher, ICI is more effective.

2.6 The prediction of PD-L1 efficacy of the TLS
signature

Most solid tumors can be classified into three immunological
phenotypes: immune-inflamed, immune-excluded, or immune desert
(Hegde et al., 2016). Cohered with the RECIST (1.1) criteria, the
patients were assessed as responders with complete remission rate
(CR), or partial remission rate (PR), and non-responders with stable
disease (SD) or progressive disease (PD). We extracted the expression
profile and clinical data from the IMvigor210 dataset, in which
patients with locally advanced or metastatic urothelial carcinoma.
The nine genes established before were applicated again to excogitate a
risk score equation by the same route to compare the differences in
risk scores and survival among immune subtypes and response
subgroups (Mariathasan et al., 2018).

2.7 Mutation and check point genes analysis

The mutation frequency of TCGA-OC patients was calculated by
the “maftools” package. These samples were divided into high and low
TMB groups based on median of per/MB of mutation. And the onco-
plot waterfall plot was analyzed to summarize the details of the single-
nucleotide variant (SNV), including the top 10 genes, the base of the
mutation site, and types of mutation. Copy number variations (CNV)
of samples was also calculated. And we used PD-L1 and CTLA-4 as
representatives of immune checkpoint genes to analyze the
relationship with TLS gene characteristics.

2.8 Statistical analysis

Statistical analyses were conducted using R software (version4.0.3)
and SPSS (23.0, IBM). The samples were grouped according to
median. The relationship between TLS and clinical characteristics
was assessed by chi-square test. Wilcoxon test was employed to
analyze differences between two TLS signature groups. Differences
in Overall Survival (OS) and Progression-Free Survival (PFS) between
different groups were evaluated by Kaplan—Meier survival curve and
verified by the log-rank test. The prognostic capability of the
emergence of TLS and gene signature were evaluated by singular
and multiple Cox regression analysis. A two-sided p-value of <.05 was
considered statistically significant.

3 Results

3.1 TLSs are organized structures in ovarian
cancer

Our study defined tertiary lymphoid structures (TLSs) as
organized clusters of lymphocytes present in HE-stained tumor
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specimens from OC patients (31/60 36.67%). We categorized TLS into
two classes according to the number of CD20+ B cells and CD3+ T cells,
and the formation of lymphoid follicles through IHC images. Scattered
lymphocytes were found in TLS-negative specimens. The samples with
small concentrations of B and T cells in the stroma are judged of
immature TLS (12/31 38.71%) (Figure 1A). When CD20+ B cells
assemble and evolve into lymphoid follicles, surrounded by CD3+

T cells marginal zone, mature TLS (19/31 61.29%) were settled down
(Figure 1B). This phenomenon suggested that the maturation of TLS is
a dynamic process. TLSs recruit lymphocytes to form dense ectopic
tissue at the tumor boundaries. We observed that in TLS-positive
samples, most mature TLS were located in the tumor margin
(Figure 1C), while immature TLS were nearly shown to be
intratumoral TLS (Figure 1D). Compared to TLS-negative cases,
the high CD20+ B cells, CD3+ T cells, and CD8+ T cells groups
accounted for significantly more in those with TLS (Figure 1E, all
p < .001). Further, the infiltration of CD20+ B cells, CD3+ T cells, and
CD8+ T cells were strongly correlated with each other (Figure 1F, all
p < .001).

3.2 The existence of TLSs represents a
superior survival outcome

The correlation between TLS and clinical factors is shown in
Supplementary Table S1. These variables were included in the
univariate regression analysis through the log-rank test. Stage I/II

and TLS-positive exhibited a favorable trend towards advanced 5-year
OS. Furthermore, TLS-positive plays a role of independence in
multivariate analysis (Supplementary Table S2). Correspondingly,
TLS-positive also is an independent factor for 5-year PFS
sequentially by univariate and multivariate analyses (Supplementary
Table S3). As portrayed in Figures 2A, B, the TLS-positive group
performed the superior 5-year overall survival and progression-free
survival (5-year-OS: p = .0078; 5-year-PFS: p = .041). However, the
survival curves showed no significant difference in 5-year OS and 5-
year PFS between immature andmature TLS groups (Figures 2C, D, 5-
year-OS: p = .54; 5-year-PFS: p = .6). And the better prognosis of high
expression of CD20+ B cells and CD8+ T cells groups than low
expression groups interpreted that TLS achieves an anti-tumor
immune response through the synergistic performance of critical
immune cells (Figures 2E, F).

3.3 The correlation of TLS signaturewith OS in
OV patients

Our study established the gene signature (CETP, CCR7, SELL,
LAMP3, CCL19, CXCL9, CXCL10, CXCL11, and CXCL13) of TLS
associated with the prognosis of ovarian cancer patients after
including 21 genes in univariate regression analysis (Supplementary
Figure S1, Figure 3A). Based on the matched scores of the genes set,
OC patients were separated into TLS signature high (above 50%) and
low queues (below 50%). As exhibited in Figure 3B, the high

FIGURE 1
TLSs are dense clusters of lymphocytes in ovarian cancer. (A) Representative IHC images of immature TLS, scattered CD20+ B cells without any follicular
structure and CD3+T cells. (B) Representative IHC images of mature TLS, CD20+ B zone form a follicular structure surrounded by the CD3+ T-cell zone. (C)
Representative HE images of intratumoral TLS, immature TLS. (D) Representative HE images of peritumoral TLS, mature TLS. (E) Comparison of lymphocyte
distribution between TLS-positive and negative groups, p-valuewas determined by the chi-square test. (F)Correlation between lymphocyte distribution,
p-value was determined by the chi-square test. (Scale bar, 200 μm in “4X” pictures, 100 μm in “10X” pictures; p < .05).
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expression group presented a superior trend towards improved OS
(p = .00044). Univariate and multivariate regression analyses were
evaluated by comparing the effect of the gene feature with other
parameters on the overall survival of patients. Age, the recurrence and

progression of the tumor, and TLS gene signature were screened as a
statistically prognostic factor in univariate analysis (Figure 3D).
Furthermore, the TLS signature was associated with a significantly
better OS in multivariate analyses (Figure 3F). Considering the lack of

FIGURE 2
The existence of TLSs represents superior survival outcome Survival analysis of OV patients between the positive and negative TLS subgroups (A,B): (A)
The 5-year overall survival. (B) The 5-year progression-free survival. Survival analysis of OV patients between the immature andmature TLS subgroups: (C) The
5-year overall survival. (D) The 5-year progression-free survival. Survival analysis of OV patients between the high and low TIL subgroups (E,F): (E) The 5-year
overall survival of CD20. (F) The 5-year overall survival of CD8. (p < .05).
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significance of tumor stage in the prognosis of OC patients in the
TCGA-OC database, we used the GSE140082 database as the
validation cohort. Likewise, the TLS gene signature was also an
independent predictor of OS (Figures 3C, E, G). Besides, the
prognostic significance of this TLS gene signature in PFS is
illustrated in Supplementary Figure S2.

3.4 The relationship between TLS signature
and immune cells infiltration

As displayed in Figure 4A, the distribution of 22 kinds of immune
cells differs with the TLS signature subgroups. The degree of CD8+

T cells, activated and resting memory CD4+ T cells, regulatory T cells

FIGURE 3
Analysis of the independence of TLS gene signature on prognosis. (A) The nine genes associated with better prognosis in TCGA-OV dataset. Survival
analysis of OV patients between the high and low TLS signature subgroups (B,C): (B) The TCGA cohort as training set. (B) The GSE queue as validation set.
Univariable analysis (D) and multivariable analysis (F) of the overall survival in TCGA-OV cohort. Univariable analysis (E) and multivariable analysis (G) of the
overall survival in GSE140082 cohort. (tumor status: No = without-tumor; P = progression; R = recurrence, p < .05).
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(Tregs), and M1 phenotype macrophages in the high TLS expression
group was statistically higher than in the low group. Similarly, the TLS
signature high group obtained distinctly higher immune score,
stromal score, and estimate score, which indicated that gene
expression levels associated with TLS prominently affect the
infiltration situation of immune cells and stromal cells (Figure 4B).

Correspondingly, the TIDE score in the low-risk group was notably
higher than in the lowgroups, indicating the existence of tumor
immune evasion in the low-risk group (Figure 4C). We further
discovered that the immunosuppressive cell expression models,
namely T cell exclusion, dominated the immune escape of the low
TLS signature group. Meanwhile, the degree of IFNG, CD274, and

FIGURE 4
The landscape of Immune infiltration based on TLS signature. (A) The distribution of 28 immune cells between high and low TLS signature groups. (B) Box
plots of TLS signature score in stromal, immune, and estimate score. (C) Violin plot of the differences in calculated TIDE scores between high and low TLS
signature groups. (D) Differences in immune escape mechanisms and immunosuppressive cells between the two groups of TIDE. (NS: no significance, pp <
.05, ppp < .01, and pppp < .001).
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CD8 in the high TLS signature group was significantly higher than in
the low TLS signature group (Supplementary Figure S3). Conclusively,
our study indicated the high TLS signature group as the cohort most
potentially benefiting from immunotherapy (Figure 4D).

3.5 The predictive value of TLS features in
immunotherapy response

The results showed that the IPS, IPS-CTLA4, IPS-PD1, and IPS-
PD1-CTLA4 scores were higher in the high TLS signature group
(Figure 5A). Additionally, the difference reinforces the better response
of the high-expression group to immunotherapy. Based on the above

results, we applied the TLS signature to the urothelial carcinoma
patients who received the treatment of PD-L1 inhibitors (at-
eculizumab) to inspect the estimation of TLS signature in ICI. The
results displayed that the high TLS signature exhibited the prognostic
value (Figure 5B). Meanwhile, the prediction of the TLS signature in
immunological phenotype was investigated. In this cohort, the TLS
signature score of immune-inflamed phenotype was more
distinguished than that of the immune-desert or the immune-
excluded phenotype (Figure 5C). Then, we further discussed the
differences in PDL1 immune checkpoint inhibitor benefits between
high- and low TLS signature groups. It turned out that patients in the
high group performed a higher complete response (CR)and partial
response (PR) rate (Figure 5D).

FIGURE 5
The prognostic value of TLS features in immunotherapy response. (A) The association between IPS analysis and TLS signature score. The analysis of TLS
signature in the IMvigor210 cohort (B,D): (B) The survival analysis between the high and low TLS signature subgroups; (C) Box plots of TLS signature score in
the desert, excluded and inflamed immune phenotypes; (D) Distribution of ISS in groups with different anti-PD-L1 clinical response statuses. (NS: no
significance, pp < .05, ppp < .01, and pppp < .001).
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3.6 The relationship between TLS gene
signature and existing markers of
immunotherapy

Except for tumor-infiltrating lymphocytes, tumor mutational
burden (TMB) and immune checkpoints, such as PD-1, PD-L1,
and CTLA4, have been developed to predict immunotherapy.
Hence our study proceeded to estimate the diversity between the

landscape of tumor mutation and typical checkpoint genes between
high and low TLS signature groups. In total, 235 samples were
genetically altered. The top 10 genes with mutation frequency
between TLS high group and the low group were generalized in
Figure 6A. The most common variant classification is a missense
mutation. SNP ranks first in variant type, and C>A is the most
frequent SNV class (Figure 6A, Supplementary Figure S4). In
addition, we found that the gene signature was characterized by a

FIGURE 6
The relationship between TLS gene signature and existingmarkers of immunotherapy. (A) The landscape of genetic variation of the TLS gene signature in
the OV cohort. (B) The CNV variation frequency of the TLS gene signature in the OV cohort. The proportion (C) and frequency (D) of tumor mutation load
between high and low TLS gene signature groups. (E) The distinction of PD-L1 and CTLA-4 between high and low TLS gene signature groups. (pp < .05, ppp <
.01, and pppp < .001).
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precise copy number amplification (Figure 6B). The high TLS
signature group occupied an increased proportion of high-TMB
than the low group, despite the statistically significant difference in
TMB between the two groups being not shown (Figures 6C, D).
Moreover, the expression of two representative checkpoint genes, PD-
L1 and CTLA4, significantly increased in the high TLS signature group
(Figure 6E).

4 Discussion

Considering that the effect of immunotherapy on ovarian cancer is
restricted, exploring biomarkers or targets to filtrate ideal beneficiaries
is a future development. The three objectives of this study are as
follows. First and foremost was to assess the presence of TLS and its
prognostic impact on ovarian cancer. Identification of an independent
signature of TLS associated with prognosis is the second goal. The
third aspect is to explore the immune landscape and predictiveness of
immunotherapy of this gene signature.

Recently the remarkable manifestation of tertiary lymphatic
structures in the tumor microenvironment has begun to be noticed.
Various studies on neoplasms have confirmed the prognostic value of TLS
(Cabrita et al., 2020; Vella et al., 2021). Consistent with their results, our
study revealed that TLS is strongly associated with prolongedOS and PFS.
Beyond that, the higher density of CD20+ B cells, and CD8+ T cells play an
excellent role in advanced 5 years overall survival. These data suggest that
TLSs exert efficient antitumor response by recruiting activated B cells and
T cells in TME. Tumor-infiltrating lymphocytes accumulate orderly in
ectopic organs to form TLS, but the specific antitumor immune reactivity
remains obscure. As the most abundant cells in TLS, B cells progressively
enrich into GC as TLS develops. Moreover, B cells within GC tend to
mature into the IgG and IgA-producing plasma cells (PCs), which can
migrate along the fibroblast track to the nest of tumor (Meylan et al.,
2022). Driven bymemory B cells and a range of cytokines (including TNF,
IL-2, IL-6, and IFNγ), T cells home to the tumor bed and release perforin
and granzyme or Fas/FasL pathways to destroy tumor cells. However, the
single presence of TIL was suboptimal. Researches confirmed that tumor-
infiltrating CD8+T cells showed their cytotoxic capacity function only
when B cells were enhanced within the tumor (Kroeger et al., 2016). The
simultaneous occurrence of intratumoral CD8+ T cells and CD20+ B cells
was also found to be independently associated with improved survival
(Wouters and Nelson 2018; Cabrita et al., 2020). Noticeably, the
maturation stage of TLS could significantly affect the prognosis in
theory, but this study found no significant imparity between immature
and mature TLS groups. Finite-sized and single-center samples of this
study may contribute to the dispute. However, these results showed that
the tumor immunology advantage of TLS is that it increases the
opportunity of binding tumor antigen by the recruitment of TIL,
while serving as a collection point, strengthening the interaction
between TIL and cytokines. For immune-deficient ovarian cancer, TLS
brings positive forces for increasing sensitivity to ICI. TLS-related drugs or
vaccines can improve the effect of ICI under development at OC.

To date, there is no unified expert consensus on the identification and
quantification of TLSs. Consistent with previous studies, this study also
conducted H&E staining and immunohistochemistry (IHC) with selected
markers to detect TLS, while these measures are inconvenient and
subjective. In the context that TLS is a combination of lymphocytes
and cytokines, this study innovatively selected and constructed the TLS
signature related to prognosis in ovarian cancer from background genes.

Satisfactorily, ovarian cancer patients in public datasets with high TLS
signature performed a preferable survival outcome. The established
genetic traits include CETP, CCR7, SELL, LAMP3, CCL19, CXCL9,
CXCL10, CXCL11, and CXCL13. CXCL13 acts as a B lymphocyte
chemoattractant in TLS, mediating the recruitment of B cells and
promoting T/B separation and the formation of a germinal center
(GC) within TLS (Rodriguez et al., 2021). The consequence of
CXCL13 in ovarian cancer is gradually understood. A large study of
high-grade serous ovarian cancer found CXCL13 enhanced immune
efficacy in combination with PDL1 by promoting the expansion and
activation of CXCR5 +CD8 +T cells.We also observed that the CXCL13-
producing CD4 + T cells could facilitate the formation of TLS and
strengthen the cooperative antitumor activity of cellular and humoral
immunity in ovarian cancer (Ukita et al., 2022). CXCL9, CXCL10.
CXCL11/CXCR3 axis contains the four genes of this gene signature.
The excellent performance of the axis in TME reflects in the migration,
differentiation, and activation of immune cells. In in vitro experiments of
mice, as the downregulation or inhibition of the expression of the
CXCR3 axis, the migration of Th1, NK, and CTL cells were all
significantly decreased, and the survival outcome also worsened
(Tokunaga et al., 2018; House et al., 2020). In high density of
LAMP3-DC-mature-type TLS, CXCL9, 10 and 11 are involved in the
migration of Th1 cells by binding to the CXCR3 receptor on tumor-
infiltrating T cells (Sautes-Fridman et al., 2019). A sequencing analysis for
1,310 breast cancer patients demonstrated the relevance of CXCL10 and
HRD, identifying CXCL10 as biomarker for anti-PD-1/PD-L1 therapy
(Shi et al., 2021). Paradoxically, this axis induces the onset of
immunosuppression by attracting Treg migration to the focal site. In
the context of the contribution of HRD in ovarian cancer,
CXCL10 provides a neoteric perspective on markers of
immunotherapy. Improved survival, a preferable anti-PD-L1 therapy
caused by the overexpression of CXCL9 in ovarian cancer, determined
it as a stable predictive target (Seitz et al., 2022). The role of CETP, CCR7,
and SELL in ovarian cancer is less studied. The chemokine ligand
CCR7 and the adhesion molecule CD62L (expressed by the SELL,
L-selectin) act as lymph node homing receptors that regulate T cells’
activation and migration patterns. The loss of KLF2 resulted from the
activation of PI3K and mTOR and subsequently prevented the target
genes, such as CD62L, and the reduction of CCR7 (Sinclair et al., 2008).
L-selectin shedding and transcriptional shutdown allow terminal
differentiation of naive T cells to effector memory T cells (TEM),
while TEM flow from secondary lymphoid organs to peripheral tissues
for repositioning (Ivetic et al., 2019). And the downregulation of KLF
2 and its target gene S1PR1 antagonistically prompted the upregulation of
the type-C lectin CD69. Meanwhile, the locally produced TGF-βis all
involved in the expression of CD103, leading to the retention of T cells in
the tissue, namely the generation of tissue-resident T cells (TRM).Workel
et al. (2019) found that TGF-βprompted CD8CD103+ T cells to secrete
CXCL13, which recruits B cells in TME and is essential for the formation
of TLS. Therefore, we hypothesize that there is a strong association
between the expression of SELL andCCR7, TRM, and TLS, and exploring
their interactions may provide new ideas for tumor treatment. For
example, a new immunotherapy concern is restoring control of
selectins to modulate tumor immune expansion. In a mouse model of
adoptive T cell cancer immunotherapy, overexpression of L-selectin
improved the control of tumor cells by promoting infiltration and
proliferation of T cells (Watson et al., 2019). Retrospecting the existing
achievement, this gene signature is feasible for predicting prognosis and
immunotherapy efficacy. However, the specific mechanisms and how to
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adequately activate its potency in immunotherapy still have a long way
to go.

As noted above, tumor-infiltrating lymphocytes are extensively
involved in the antitumor response of TME and are considered a
positive indicator of the prognosis and efficacy of immune checkpoint
inhibitors (Germain et al., 2014). Our data discovered that the
percentage and distribution of immune cells is positively correlated
with the expression level of the TLS gene signature. And interestingly,
this study also found that immunosuppressive subsets also occupied a
high proportion in the TLS high expression group. This result revealed
that immunosuppressive subsets are also essential parts of TLSs. TLSs
undertake the regulator in balancing immune infiltration and immune
tolerance of TME. One must be vigilant that TLS may also produce
auto-reactive lymphocytes with self-mediated immune toxicity, which
cripple immune checkpoint blockade.

PD-L1 has been reported to be negatively correlated with prognosis in
malignancy (Nakanishi et al., 2007). Atezolizumab, as the PD-L1 inhibitor,
is currently the only FDA approved for BCa treatment. Combined with
TIDE, IPS analysis, we found that TLS signature is correlated with a better
response to ICB. The high TLS signature group are determined as a
potentially beneficial population for TLS immunotherapy after verification
in BCa data. Considering the ICB only provides remission in a small
percentage of patients (Gong et al., 2018), the TLS signature developed by
our study would help clinicians stratify patients to select those with
potential benefit from ICB. Due to the lack of public data on ovarian
cancer immunotherapy, the accuracy of this feature prediction is subject to
further debate. Now molecular profiling that guides ovarian cancer
immunotherapy includes tumor mutational burden (TMB),
homologous repair deficient and proficient (HRD, HRP) phenotypes,
neoantigen intratumoral heterogeneity (ITH), and tumor-infiltrating
lymphocytes (TILs) (Yang et al., 2020; Morand et al., 2021).
Considering the ovarian cancer is a “cold” tumor without high TMB,
combining TMB and other potential markers is redefined as necessary to
improve the predictive ability. Interestingly, this study discovered that the
mutation burden, PDL1 and CTLA4 in high TLS gene signature group are
higher than in the low group. So, these could be applied to the combined
prediction of OC. As for HRD, it is mainly used to predict the response to
poly-(ADP ribose) polymerase (PARP) inhibitors and platinum
chemotherapy in OC. Several groups have generalized the HRD gene
set, including MMR, BRCA1/2, POLD1 or POLE, MUTYH, and ERCC1
(Zhang et al., 2020). Research on the relationship between mutational
details of these genes and TLS may lead to new directions for OC
immunotherapy.

5 Conclusion

This study proved the existence of TLS s and its application as a
positive prognostic marker in ovarian cancer. And we constructed an
ovarian cancer-associated TLS gene signature, which has a high
predictive value in the prognosis and response to immunotherapy.
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Objective: Emerging evidence revealed that super-enhancer plays a crucial role in
the transcriptional reprogramming for many cancers. The purpose aimed to
explored how the super-enhancer related genes affects the prognosis and
tumor immune microenvironment (TIME) of patients with low-grade
glioma (LGG).

Methods: In this study, the differentially expressed genes (DEGs) between LGG
cohorts and normal brain tissue cohort were identified by the comprehensive
analysis of the super-enhancer (SE) related genes. Then non-negative matrix
factorization was performed to seek the optimal classification based on the DEGs,
while investigating prognostic and clinical differences between different subtypes.
Subsequently, a prognostic related signature (SERS) was constructed for the
comprehensive evaluation in term of individualized prognosis, clinical
characteristics, cancer markers, genomic alterations, and immune
microenvironment of patients with LGG.

Results: Based on the expression profiles of 170 DEGs, we identified three SE
subtypes, and the three subtypes showed significant differences in prognostic,
clinicopathological features. Then, nine optimal SE-related genes were selected
to construct the SERS through the least absolute shrinkage and selection operator
Cox regression analysis. Survival analysis showed that SERS had strong and stable
predictive ability for the prognosis of LGG patients in the The Cancer Genome
Atlas, China Glioma Genome Atlas, and Remdrandt cohorts, respectively. We also
found that SERS was highly correlated with clinicopathological features, tumor
immune microenvironment, cancer hallmarks, and genomic alterations in LGG
patients. In addition, the predictive power of SERS for immune checkpoint
inhibitor treatment is also superior. The qRT-PCR results and
immunohistochemical results also confirmed the difference in the expression
of four key genes in normal cells and tumors, as well as in normal tissues and tumor
tissues.

Conclusion: The SERS could be suitable to utilize individualized prognosis
prediction and immunotherapy options for LGG patients in clinical application.
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1 Introduction

Gliomas are the most common intracranial malignant tumor,
accounting for more than 80% of primary malignant tumor in
central nervous system (Ostrom et al., 2022). Low-grade gliomas
(LGG), also known as WHO grade II and III tumors defined by the
World Health Organization, are composed of diffuse low-grade and
intermediate-grade gliomas (Brat et al., 2015). Compared with
patients with glioblastoma (GBM), LGG patients have a relatively
low degree of malignancy (Chen et al., 2022). However, even with
comprehensive treatment including surgical resection, radiotherapy
and chemotherapy, some LGG patients still have the characteristics
of high recurrence and progression rates (Liu et al., 2018; Jiang et al.,
2021). Significant heterogeneity in patient outcomes and treatment
response remains a major clinical challenge for neurosurgeons.
Traditionally, WHO grade II gliomas were considered to have a
better prognosis than WHO grade III gliomas, but since the WHO
reclassification of gliomas in 2016, molecular alterations have been
considered more objective and precise than grading (Gittleman
et al., 2020). Although there have been some progress in the
onlooker research on LGG in recent years (Xu et al., 2021a), few
drugs are currently approved for the treatment of LGG patients, and
the prognosis has not been significantly improved (Ye et al., 2021).
Therefore, there is an urgent need to explore new biomarkers to
predict the prognosis of LGG patients and find potential therapeutic
targets.

Gene regulation plays a major role in tumor pathogenesis, and
the regulation of long non-coding RNAs (lncRNAs) on tumors is the
hotspot of current research (Lou et al., 2020). Aberrant gene
expression promotes tumorigenesis, progression and metastasis
(Mansour et al., 2014). Enhancers in gene regulatory elements
can bidirectionally transcribe enhancer RNA, a non-coding RNA
transcribed by enhancers, that not only drives tumorigenesis, but
also regulates genes and immune checkpoints (Lee et al., 2020).
Super-enhancers (SE) are clusters of enhancers formed by
contiguously arranged enhancers in tandem. SE usually appear
near most of the key genes that determine cell identity and
function, and play a more effective role than typical enhancers
(Hnisz et al., 2013; Whyte et al., 2013). They have the ability to
flexibly regulate, by combining unneeded regions to form highly
concentrated regional transcriptional machinery, thereby affecting
epigenetics and regulating tumorigenesis and progression (Chen
et al., 2018). The researchers also found that SE operate covertly in a
particularly latent manner, but control across multiple cancer
lineages, with cancer cells assembling their own super-enhancers,
thereby overproducing malignant oncogenes, exhibiting cancer
hallmarks of hyperplasia, invasion and metastasis (Whyte et al.,
2013). Yang believed that identifying, mapping out, and disrupting
SE has the potential to transform how clinical cancer is managed
(Whyte et al., 2013). Hence, as we concentrated on personalized
therapy for patients with cancers, SE can serve as the potential
biomarkers to track and understand the evolution of individual
cancers, and ultimately may become important targets in
therapeutic interventions.

The lncRNA HCCL5 in human tissue cells was identified as a
SE-driven oncogenic factor that promotes the malignant
development of hepatocellular carcinoma by promoting HCC cell
viability, migration, and classical epithelial-mesenchymal transition
(Peng et al., 2019). TCOF1 depletion in triple-negative breast cancer
patients significantly inhibited the growth and invasiveness of triple-
negative breast cancer cells (Hu et al., 2022a). Heparanase (HPSE) is
a cancer metastasis protein that is regulated by the hnRNPU/p300/
EGR1/HPSE axis, promotes high expression of HPSE enhancer
RNA, is an independent prognostic factor for poor prognosis in
cancer patients (Jiao et al., 2018). Regarding whether SE affect
progression and overall survival in patients with LGG, the jury is
still out.

Therefore, to solve the above problems, this study investigated
the effect of different types of SE-related genes on the survival of
patients with LGG by collecting data from The Cancer Genome
Atlas (TCGA), China Glioma Genome Atlas (CGGA) and
Rembrandt Database for LGG. At the same time, we constructed
and evaluated prognostic score (SERS) based on 8 SE-related genes
for patients with LGG. On top of that, the relationship was also
explored between SERS and prognosis, clinicopathological features,
tumor immune microenvironment, cancer hallmarks, genomic
alterations and immunotherapy efficacy in patients with LGG.
We provided a new strategy for predicting the prognosis of and
assessing treatment effects for patients with LGG, and thus the
findings of this study will help individualized prognosis prediction
and immunotherapy decisions in patients with LGG.

2 Materials and methods

2.1 Data collection and study population

The RNA sequencing data and clinical information of LGG
patients were extracted from TCGA (https://portal.gdc.cancer.gov/),
CGGA (http://www.cgga.org.cn/) and Rembrandt (http://gliovis.
bioinfo.cnio.es/) databases. A total of 5 LGG cohorts were gather
in this study, namely, the TCGA, CGG693, CGGA325,
CGGA301 and Rembrandt cohorts, respectively. Patients with no
survival data or overall survival (OS) < 30 days were excluded from
further analysis. Zakharova et al. (Zakharova et al., 2022) had re-
classified the TCGA sampling according to the updated WHO CNS
Tumor Classification in 2021, we therefore used the updated glioma
diagnoses for analysis in this study. The transcriptome data with
normal brain tissue were also obtained from Genotype-Tissue
Expression (GTEx; https://gtexportal.org/home/). Furthermore,
SE-related gene can be downloaded from the SEA v. 3.0 database
(http://sea.edbc.org). The clinicopathological characteristics of LGG
patients in five cohorts are generalized in Table 1.

The differential expression analysis firstly performed based on
GTEx dataset and TCGA dataset, and finally 1,672 differentially
expressed genes (DEGs) were extracted with the cutoff values of
log2 fold-change |logFC|>2 and p-value < 0.05. Then, in the same
way, 285 DEGs were extracted between GTEx dataset and TCGA
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dataset. Eventually, the differentially expressed SE-related genes
were shared by two cohorts were considered eligible.

2.2 Identification of SE subtypes of LGG
patients

Based on the above DEGs, non-negative matrix factorization
(NMF) consensus clustering analysis was performed to obtain the
optimal SE subtypes of LGG patients (Hillman et al., 2018). The
commonality, dispersion and contour indicators are used to judge
the optimal number of subtypes. The t-distributed stochastic neighbor

embedding (tSNE) algorithm we applied to confirm the reliability of
clustering results by naked eyes. The Kaplan-Meier survival curves were
then used to identify differences in survival difference among different
SE subtypes. In addition, we compared differences in
clinicopathological features among different SE subtypes.

2.3 Construction and validation of a
prognostic SERS

The univariate Cox regression was conducted to select the
prognostic SE-related DEGs. Then the least absolute shrinkage

TABLE 1 Characteristics of glioma patients in training and validation cohorts.

Clinicopathological characteristics Training cohort Validation cohorts

TCGA CGGA693 CGGA325 CGGA325 Rembrandt

Number of patients 331 420 170 158 119

Age (mean ± SD; years) 41.3 ± 13.2 40.3 ± 10.4 40.4 ± 10.9 39.6 ± 10.6 NA

Gender

Female 146 185 65 68 37

Male 185 235 105 90 59

NA 0 0 0 0 0

Survival status

Alive 272 223 82 85 34

Dead 59 197 88 73 85

Preoperative KPS

<80 50 NA NA NA NA

≥80 93 NA NA NA NA

NA 188 NA NA NA NA

Histology

Astrocytoma 193 254 110 102 80

Oligoastrocytoma 0 29 0 18 0

Oligodendroglioma 138 137 60 38 34

NA 0 0 0 0 0

WHO grade

II 179 172 97 105 63

III 152 248 73 53 56

NA 0 0 0 0 0

IDH status

Mutant 331 288 125 104 NA

Wild type 0 94 44 1 NA

NA 0 38 1 53 NA

1p19q codeletion

Codeletion 138 125 55 16 8

Non-codeletion 193 257 113 33 13

NA 0 38 2 109 98

MGMT promoter status NA

Methylated 271 200 84 43 NA

Unmethylated 60 129 70 106 NA

NA 0 38 16 9 NA

TERT status NA

Mutant 116 NA NA NA NA

Wild type 137 NA NA NA NA

NA 78 NA NA NA NA
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and selection operator (LASSO) Cox regression analysis was
performed to identify the SE-related prognostic signature (SERS)
in the TCGA cohort (Friedman et al., 2010). The prognostic risk
score of each LGG patient was calculated with the regression
coefficient and the expression of the corresponding gene. The
calculation formula of SERS was shown below:

Risk score � ∑
n

i�1
Coefi*Xi( )

where n represents the number of all the selected gene; i represents
the serial number of each gene; Xi and Coefi refer to the expression
level of each selected gene and corresponding coefficient,
respectively. The cut-off value, defined as the median risk score
was divide the patients into high- or low-risk group. The Kaplan-
Meier survival curve analysis were conducted to evaluate the
accuracy of prognosis of LGG patients between the high- and
low-risk groups. The receiver operating characteristic (ROC)
curves and the area under the ROC curves (AUC) were plotted
and calculated to describe the accuracy of predicting OS. The above
analyses were performed simultaneously in the TCGA cohort and
four independent validation cohorts. What is more, we finally
conducted meta-analysis to calculate the pooled hazard ratio
of SERS.

2.4 Development of a nomogram

Initially, the univariate Cox regression analysis were
performed based on SERS and clinicopathological features,
and then multivariate Cox regression analysis was used to
identify independent predictors in the TCGA cohort. The
nomogram was developed in the TCGA cohort to
individually predict 1, 3, and 5-year survival probabilities in
LGG patients. And the predicted outcomes for LGG patients
were presented in the form of ROC curves. To evaluate the
stability of this nomogram, a 10-fold cross-validation algorithm
was performed in the TCGA cohort for the internal validation,
and the external validation was conducted in the other four
independent cohorts. In addition, calibration curves and
C-index were performed in the TCGA and validation cohorts
to evaluate the usability of this nomogram.

2.5 Evaluation of genomic alterations

Tumor mutational burden (TMB) was calculated as the total
number of somatic, coding, base substitution, and indel mutations
examined per megabase of genome (Mayakonda et al., 2018). The
somatic mutation profile ordered in Mutation Annotation Format
(MAF) was obtained from the TCGA database. The mutation
spectrum and frequency differences were analyzed between high
and low risk genes (Bi et al., 2020). In addition, copy number
alteration (CNA) data in LGG patients were obtained from the
TCGA database. We used GISTIC2.0 to identify significant
amplifications or deletions genome-wide. CNA burden was
defined as the total number of genes with copy number changes
at the focal and arm levels (Shen et al., 2019).

2.6 Assessment of TIME and
immunotherapeutic responses

For the purpose of better understanding the underlying
biological functions of DEGs between high-risk and low-risk
groups, the Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analyses were performed to
identify annotated functions and gene enrichment pathways (Hu
et al., 2022b). DEGs between high- and low-risk groups were set the
cutoff values of |log2FC|>2 and the BH method adjusted p < 0.05.

There has been an increasing recognition that the interaction of
cancer cells and tumor microenvironment may best be
conceptualized as an ecological process (Kenny et al., 2006).
Hence, the ESTIMATE algorithm was used to calculate the
immune score, stromal score, ESTIMATE score and tumor purity
in LGG patients (Yoshihara et al., 2013) for assessing the difference
of stromal and immune cells in LGG. Simultaneously, CIBERSORT
was performed to calculate the proportions of 22 immune cells from
LGG based on gene expression (Newman et al., 2015). In addition,
Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was
also applied to assess potential response to immune checkpoint
inhibitions (ICI) therapy for LGG patients (Jiang et al., 2018).

2.7 Quantitative real-time polymerase chain
reaction (qRT -PCR) and
immunohistochemistry (IHC)

The normal human astrocyte line HA1800 and glioma cell lines
U87, U251, A172 and LN229, were purchased from the Cell Bank of
the Chinese Academy of Sciences. The clinical specimens of 10 LGG
patients were collected in the Department of Neurosurgery of
Wuhan Union Hospital from June 2021 to December 2021. Ten
non-tumor brain tissues were obtained from patients with brain
tissue resection due to craniocerebral injury from June 2021 to
December 2021. The study was approved by the Medical Ethics
Committee of our hospital, and the informed consent was obtained
from each patient. Total RNA was extracted from cell lines and
sample tissues using RNAiso Plus (Takara 9109). According to the
instruction, cDNA was synthesized by reverse transcription through
using HiScript® III RT SuperMix for qPCR (+gDNAwiper) (Vazyme
R323-01). The qRT-PCR analyses were performed using the AceQ®

qPCR SYBR Green Master Mix (Vazyme Q111-02) with PCR
LightCycler480 (Roche Diagnostics, Basel, Switzerland). All
expression data was normalized to GAPDH as an internal
control using the 2−ΔΔCT method. All primers used were
synthesized by GeneCreate Biological Engineering Co., Ltd.
(Wuhan, China). The protein levels of the selected genes were
then verified by IHC experiments. In addition, the relations
between the selected gene and tumor immune features also
analyzed in LGG patients.

2.8 Statistical analysis

The PERL language (version, 5.30.2, http://www.perl.org) was
used to preprocess RNA-seq transcriptome information. The R
software (version 4.0.1, http://www.R-project.org) were conducted
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for statistical analyses and graph visualization. Continuous variables
are described as mean ± standard deviation, and categorical
variables are described as frequency (n) and proportion (%). Chi-
square test or Fisher’s exact test was performed to compare
categorical variables between two groups. Student’s t-test or one-
way ANOVA was used to compare continuous variables with
normal distribution between two or among more groups. The
Mann-Whitney U test was used to compare non-normally
distributed continuous variables between two groups, while the
Kruskal Wallis test was used to compare non-normally
distributed continuous variables among three or more groups.
Survival differences between groups were assessed using Kaplan-
Meier curves. Univariate and multivariate cox proportional hazards
models were applied to estimate hazard ratios for variables and to
identify independent prognostic factors. The cutoff value with
statistical significance was set at two-tailed p < 0.05.

3 Results

3.1 Overall structure of this study

First of all, the GTEs between LGG and normal brain tissues were
screen out. Based on the expression profiles of theses selectedGTEs, NMF
consensus clustering was performed to construct SE subtypes of LGG
patients. Then, we explored the heterogeneities of prognosis and
clinicopathological features for SE subtypes. Subsequently, the
Univariate Cox regression analysis LASSO Cox algorithm were
combined to screen for robust SERS and presented as a nomogram.
The effectiveness of SERS was assessed in multiple dimensions. The
overall flow diagram of this study was presented in Figure 1.

3.2 Identification of SE subtypes in TCGA
cohort based on the DEGs

The differential expression analysis based on GTEx dataset and
TCGA dataset was shown as the volcano in Figure 2A, and
differential expression analysis based on GTEx dataset and
CGGA693 dataset was also shown as the volcano in Figure 2B.
Then, a total of 170 DEGs (Figure 2C) shared by two cohorts were
used for subsequent analysis, they can be found in Supplementary
Table S1.

Based on the expression profiles of 170 SE associated DEGs, the
NMFwas performed in the TCGA cohort to identify SE subtypes. As
shown in Figure 2D, we chose 3 as the optimal number of clusters
based on common, scatter, and contour metrics. Then, a total of
469 LGG patients were divided into three subtypes (Figure 2E),
named SE1 (n = 125), SE2 (n = 75), and SE3 (n = 125). The heatmap
of the consensus matrix exhibits clear boundaries, indicating the
accuracy and robustness of the clustering results. t-SNE plot showed
clear differences in the distribution between the three SE subtypes
(Figure 2F). Significant differences in the expression of
170 prognostic SE-related DEGs can also be observed in the
heatmap in Figure 2G. Kaplan-Meier survival curves showed
obvious survival differences among the three SE subtypes
(Figure 2H). The LGG patients in SE1 subtype had the best
survival outcome, while SE2 had the worst survival outcome. At

the same time, the heterogeneity of clinicopathological
characteristics of these three subtypes were analyzed and found
interestingly no significant differences among these
clinicopathological characteristics (Supplementary Figure S1).

3.3 Development and validation of the SERS

The Univariate Cox regression analyses were conducted based on
DEGs to identify prognostic SERG. The results of the analysis indicated
33 genes were obviously related to the OS of LGG, and detailed
information for these prognostic SERG was shown in Supplementary
Table S2. Then, the LASSO analysis was performed on above
33 prognostic SERG in the TCGA cohort to explore simplest and
most accurate model. Finally, a total of 9 optimal prognostic SERG
(AQP7, MYOD1, CDCA2, FAM92B, HOXA11-AS, E2F7, KIF18A,
MC5R, and SKOR2) were stood out and incorporated in the SERS
(Figures 3A, B). Figure 3C exhibited the LASSO coefficients of each
selected gene in this signature. Among them, the coefficients of seven
genes (CDCA2, FAM92B, HOXA11-AS, E2F7, KIF18A, MC5R, and
SKOR2) are positive number, which means that they are related to bad
prognosis for LGG patients, whereas the coefficients AQP7 and
MYOD1 are negative number, indicating a good prognosis. The
Kaplan-Meier survival curves of these nine optimal genes were shown
in Supplementary Figure S2. The risk score of each patient was calculated
as follows: SERS score = (−0.408 × AQP7) + (−0.107 × MYOD1) +
0.186 × CDCA2 + 0.625 × FAM92B + 0.163 × HOXA11 −AS + 0.454 ×
E2F7+0.344×KIF18A+0.130×MC5R+0.201× SKOR2. Subsequently,
the median SERS score in was set as the cut-off value to stratified the
325 LGGpatients into the high- and low-risk groups.Heatmap analysis of
nine genes showed markedly different distributions between high- and
low-risk groups, the risky genes were upregulated in the high-risk group
and the protective genes were upregulated in the low-risk group
(Figure 3D).

The SERS was calculated with LASSO coefficients obtained from the
TCGA cohort to stratified into with the median score high- and low-risk
groups in other 4 cohorts. The Kaplan-Meier survival curves
demonstrated that patients with high-SERS showed worse OS than
low-SERS in the TCGA cohort (log-rank test p < 0.001; Figure 3E).
Consistent results were also observed in four other independent validation
cohorts (log-rank test p< 0.001; Figures 3F–I). The distribution plot of the
risk score and survival status showed that the SERS had the positively
correlation with the deaths of LGG patients (Supplementary Figures
S3A–E). Furthermore, the ROC curves confirmed the satisfactory
predictive performance of the of SERS in predicting 1-, 3-, and 5-year
OS (Supplementary Figures S3F–I). Thus, SERS were sufficiently
discriminative on both the validation cohorts. In addition, a meta-
analysis was performed to assess the overall predicting accuracy, and
the results indicated that the overall pooled HR for SERS was 3.2 (95%
CI = 1.69–6.08; Figure 3J).

3.4 Relationship between SERS and
clinicopathological characteristics, genomic
alterations

The clinical relationships of SERS were attempted to explore
in the TCGA cohort. As shown in Figure 4A, SERS were arranged
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from low to high to show the correlation between SERS and
clinicopathological characteristics. There were significant
differences in, survival status, Histology, 1p19q status, and SE

subtype between high and low SERS groups, but no significant
differences in -age, gender, WHO grade, MGMT status, TERT
status and Transcriptome subtype. Furthermore, SERS levels

FIGURE 1
The overall flow chart of the study.
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between LGG patients stratified by various clinicopathological
features were compared. The results of the analyses showed that
LGG patients with, death status, Oligodendroglioma and

SE2 subtype showed significant higher SERS, while no
significant differences of SERS were observed in other
subgroups (Figures 4B–K). Likewise, the relationship between

FIGURE 2
Identification of SE subtypes of LGG by using NMF algorithm. (A) Volcano plot showed DEGs (p < 0.05 and |log2FC|>2) between LGG tissues in TCGA
cohort and normal brain tissues in GTEx database. (B) Volcano plot showed DEGs (p < 0.05 and |log2FC|>2) between LGG tissues in CGGA cohort and
normal brain tissues in GTEx database. (C) Venn diagram identified prognostic super-enhancer related DEGs. (D) The NMF rank survey of TCGA cohort
using theSE-related DEGs. (E) Consensus map of NMF clustering. (F) tSNE plot of 170 SE-related DEGs to distinguish SE subtypes. (G) Heatmap
showed the expression levels of 170 SE-related DEGs among SE subtypes. (H) Kaplan–Meier survival analysis exhibited significantly different OS among
three SE subtypes.
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FIGURE 3
Construction of the SERS for LGG patients. (A,B) The LASSO regression was performed to minimize the risk of overfitting with the minimum criteria.
(C) LASSO coefficients of selected the SERS. (D) Heatmap was represented expression levels of 8 SE-related genes in the high- and low-risk groups,
respectively. (E–I) The Kaplan–Meier survival curves of SERS in TCGA, CGGA693, CGGA325, CGGA301, and Rembrandt cohorts, respectively. (J) Meta-
analysis with random_effects showed a pooled hazard ratio (HR) of SERS.
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SERS and clinicopathological characteristics of LGG patients in
the CGGA693, CGGA325, CGGA301 and Rembrandt cohorts
was also identified the similar results to the TCGA cohort
(Supplementary Figures S4–S7).

To better address the prognostic features associated with SERS,
the correlation between common cancer markers and SERS were
also explored. The correlation heatmap showed that SERS was
significantly positively correlated with many well-known cancer
hallmarks including DNA repair, cell cycle, hypoxia, and
metabolism (Figure 5A). The correlation between SERS and
29 immune signatures was illustrated by a correlation heatmap in
TCGA cohort (Figure 5B). Subsequently, further analysis showed
that SERS was significantly positively associated with TMB,
mutation count, copy number gain and loss burden at the focal
level, and copy number gain burden at the arm level (Figures 5C–H).
The distribution of TMB, mutation counts, copy number burdens at
focal and arm levels between high and low-risk groups were also
compared in TCGA cohort (Supplementary Figures S10A–F). Based
on the above data, it is indicated that high SERS may represent a
higher frequency of genomic alterations to some extent.

3.5 Establishment and evaluation of a
nomogram

The univariate Cox regression and multivariate Cox regression
analyses were performed to identify independent prognostic factors in
the TCGA (Figures 6A, B), CGGA693, CGGA325, CGGA301, and
Rembrandt cohorts (Supplementary Figures S8A–H). As we expected,
SERS including nine selected genes was confirmed as an independent
prognostic factor in all cohorts. The nomogramwas established to predict
1-, 3-, and 5-year survival time in LGGpatients based on the independent
prognostic factors (age, WHO grade, and SERS) identified in the TCGA
cohort (Figure 6C). The nomogramwas firstly internally assessed, and the
C-index was 0.862 (95% CI: 0.811–0.896), 0.833 (95% CI: 0.786–0.896),
0.812 (95% CI: 0.761–0.856) at 1, 3, and 5 years, respectively. The 1-year,
3-year and 5-year ROC curves showed that compared with SERS or age,
the nomogram had the highest AUC values with the 1-year, 3-year and 5-
year AUC values were 0.911, 0.913, and 0.812, respectively, which
indicating that the nomogram had the optimal prediction effect
(Figures 6D–F). The calibration curves showed a good fit between the
actual and nomogram-predicted results for 1-, 3-, and 5-year OS
(Figure 6G). In the same way, external validation of this nomogram
was performed in the CGGA693, CGGA325, CGGA301 and Rembrandt
cohorts. The accuracy in predicting 1-, 3-, and 5-year survival was good,
and calibration curve analysis showed that the predicted and actual
outcomes were basically conformity in all 4 cohorts (Supplementary
Figures S9A–P). Therefore, this nomogram has potential as a quantitative
predictor of prognosis in LGG patients.

3.6 Correlation of SERS with the LGG
immune microenvironment and
immunotherapy

Based on the differential expression analysis of high and low risk
groups in the TCGA cohort, there were 462 DEGs (|log2FC|>2 and
the BH method adjusted p < 0.05.) We then further performed

functional enrichment analysis to characterize the biological
functions of DEGs between the two risk subgroups. The results
of GO analysis revealed that DEGs are enriched in several immune-
related biological processes, such as regulation of T cell activation,
positive regulation of T cell activation, negative regulation of
immune system process, and positive regulation of lymphocyte
activation (Figure 7A). Following, KEGG pathway analysis also
showed significant enrichment of immune-related pathways,
including cytokine-cytokine receptor interactions and chemokine
signaling pathways (Figure 7B).

Given the findings that DEGs are enriched in immune-
related functions, we further investigated the correlation of
SERS with the immune microenvironment of LGG in the TCGA
cohort. It turned out that SERS was significantly positively
correlated with immune, stromal, and ESTIMATE scores, but
negatively correlated with tumor purity, suggesting that the
infiltration levels of immune cells and stromal cells increased
with SERS (Figures 7C–F). The distribution of ESTIMATE
scores, immune scores, stromal scores and tumor purity were
no significant between high and low-risk groups in TCGA
cohort (Supplementary Figures S10G–J). Further correlation
analysis was performed between SERS and the infiltration levels
of 22 immune cells quantified by the CIBERSORT algorithm.
The results showed that the expressions of cells CD4 memory
resting, T cells CD4 memory activated, NK cells activated,
Monocytes, Macrophages M1, Mast cells activated and
Neutrophils were significantly different in high and low risk
groups. Among of them, the abundance of T cells CD4 memory
resting, Macrophages M1, and Neutrophils was lower in the
high-risk group, but the abundance of T cells CD4 memory
activated, NK cells activated, Mast cells activated and
Monocytes was higher in the high-risk group (Figure 7G).

In addition, we evaluated the correlation of SERS with
immune checkpoints (PD-1, PD-L1, LAG-3, and B7-H3) and
macrophage-associated molecules (CCL2, CCR2, CXCR4, and
CSF1). The results showed that all immune checkpoints and
macrophage-associated molecules were upregulated in the high-
risk group except for LAG-3 (Figure 8A). We next determined
whether there is a correlation between immune checkpoints and
prognostic SERGs. The heat map showed that immune
checkpoint proteins were significantly positively correlated
with CDCA2, FAM92B, HOXA11-AS, E2F7, KIF18A, MC5R,
and SKOR2, and significantly negatively correlated with
AQP7 and MYOD1 (Figure 8B). In the TCGA cohort, SERS
was positively correlated with TIDE and T-cell exclusion score,
and negatively correlated with MSI score and T-cell dysfunction
score (Figure 8C). The distribution difference can also be clearly
observed in the high and low risk groups (Supplementary Figures
S10K–N). In view of the TIDE algorithm, the distribution of SERS
for the non-responder and responder groups to ICI indicated that
the non-responder group had a significantly higher SERS, which
just happened to explain the poorer prognosis of LGG patients
who did not respond to ICI (Figure 8D). The high SERS subgroup
had a lower proportion of responders to ICI treatment compared
with the low SERS subgroup (p < 0.05, Figure 8E). Figure 8F
showed that SERS had a satisfactory prediction in
immunotherapy effect, which can provide a reference for
whether patients should undergo immunotherapy.
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FIGURE 4
Correlation analysis between the prognostic SERS and clinicopathological characteristics in the TCGA cohort. (A) A heatmap was represented
expression levels of eight selected SERS and the distribution of clinicopathological characteristics in the high- and low-risk groups, respectively. (B–K)
Different levels of risk scores in glioma patients stratified by age, gender, Survival status, WHO grade, Histology, 1p19q codeletion, MGMT status, SERS
subtype, TERT status and Transcriptome subtype. *p < 0.05, **p < 0.01, ***p < 0.001, and ns No significance.
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FIGURE 5
Correlation of SERS with clinicopathological features, genomic alterations and TIME patterns in TCGA cohort. (A)Correlation between SERS and the
known cancer hallmarks of LGG patients. (B) Correlation between SERS and the 29 immune signatures. (C–H) Correlation of SERS with TMB, mutation
counts, and copy number burdens at focal and arm levels. *p < 0.05, **p < 0.01, and ***p < 0.001.
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3.7 The expression levels of selected SE-
related genes

Two SE-related genes (AQP7, and E2F7) were selected to detect
their transcriptional levels in cell lines, LGG tissues and normal
brain tissues. The qRT-PCR results showed that compared with
HA1800, the mRNA expression levels of AQP7 in human glioma cell

lines were generally decreased, while the mRNA expression levels of
E2F7 were generally increased (Figure 9A). Subsequently, we also
detected their expression levels in 10 normal brain tissues and
10 glioma tissues. The qRT-PCR results of the tissue samples
were consistent with those of the cell lines (Figure 9B). The
representative IHC staining images of AQP7 and E2F7were
shown in Figure 9C.

FIGURE 6
Establishment and evaluation of a nomogram in the TCGA cohort. (A, B) The univariate Cox regression and multivariate Cox regression were
performed on SERS and other clinicopathological features TCGA cohort. (C) Nomogram based on SERS, WHO grade and age. (D–F) The receiver
operating characteristic (ROC) curves of the nomogram predicted 1-, 3-, and 5-year OS in the TCGA cohort, respectively. (G) Calibration curves showed
the good consistency between predicted and observed 1-, 3-, and 5-year overall survival (OS) in the TCGA cohort.
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In addition, the relations between the selected gene
(AQP7 and E2F7) and tumor immune features also analyzed.
It turned out that AQP7 was significantly positively correlated
with immune, stromal, and ESTIMATE scores, but negatively
correlated with tumor purity (Figure 10A). While E2F7 was not
significantly related with immune, stromal, and ESTIMATE

scores, and tumor purity (Figure 10C). Further correlation
analysis was also performed between the selected gene and the
infiltration levels of 22 immune cells. The results showed that the
expressions of 22 immune cells were significantly different
whatever in high and low expression of AQP7 or E2F7 groups
(Figures 10B, D).

FIGURE 7
Functional enrichment analysis and immune landscape of glioma microenvironmental in the TCGA cohort. (A, B) Go analysis and KEGG analysis in
the TCGA cohort. (C–F) Correlation of SERS with immune scores, stromal scores, ESTIMATE scores, tumor purity and SERS. (G) The abundance of
22 immune cells in the high- and low-risk groups. *p < 0.05, **p < 0.01, ***p < 0.001, and ns No significance.
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FIGURE 8
Evaluation of immune checkpoints and immunotherapy responsiveness in the TCGA cohort. (A) The expression levels of immune checkpoints and
macrophage associated molecules in the high- and low-risk groups. (B) Correlation analysis between the prognostic SERS and immune checkpoints. (C)
Correlation of SERS with T-cell dysfunction score, TIDE, MSI score and T-cell exclusion score. (D) The distributions of risk scores between non-respond
and respond groups. (E) Comparative analysis of the response rates to ICI treatment in the high- and low-risk groups. (F) The ROC curve of
predicting immunotherapeutic benefit.
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4 Discussion

LGG patients, with the better prognosis than GBM patients, account
for about half of all glioma patients. But their survival time varies widely,
ranging from 1 year to more than 10 years (Chen et al., 2022),
notwithstanding LGG patients with the same WHO grade had same
standardized sequential therapy including surgery, radiotherapy, and
chemotherapy. The high heterogeneity of LGG, which results in
inconsistent treatment effects and prognosis, is a clinical conundrum
faced by most neurosurgeons. And so, there is an urgent need to develop
accurate and robust prognostic predictionmodels for data-assisted clinical
decision-making. With the rapid development of bioinformatics and
sequencing technologies, some studies have reported gene markers as
prognostic indicators to predict the prognosis of LGG, such as hypoxia-
related genes (Dao et al., 2018), ferroptosis-related genes (Wan et al.,
2021), immune-related genes (Zhou et al., 2018) and the corresponding
lncRNAs. Compared with other biomarkers, SE, as important distal
regulatory DNA elements, are direct drivers of carcinogenesis and are
highly tissue-specific. Therefore, SE are good candidates for predicting
prognosis in various cancers. Ropri et al. (2021) and Huang et al. (2022)
performed mechanistic exploration and prognostic prediction in breast
cancer and hepatocellular carcinoma, respectively. However, whether
super-enhancer related genes can serve as prognostic markers for LGG
needs further discussion.

In this study, the NMF algorithm was used to identify three LGG
subtypes in 325 LGG patients based on the expression profiles of
DEGs between LGG and NBT. Then, significant differences in
prognostic, clinicopathological features of the three LGG subtypes
were observed with the naked eyes. A prognostic signature, called
SERS, was constructed by univariate Cox regression and LASSO Cox
regression for an individualized comprehensive assessment. The
results showed that SERS was significantly associated with the
prognosis, clinicopathological features, genomic alterations and
TIME pattern of LGG patients, and the predictive ability of SERS
for ICI treatment was also outstanding. In addition, a clinically
accessible nomogram was constructed based on SERS, age, and
WHO classification, which maintained excellent predictive accuracy
in both the internal cohort and 4 external cohorts (CGGA693,
CGGA325, CGGA301, and Rembrandt). So, it can provide a good
net clinical benefit for screening LGG patients at high risk of death.

The SERS was constructed on 9 SE-related genes in our study,
incorporating AQP7, MYOD1, CDCA2, FAM92B, HOXA11-AS,
E2F7, KIF18A, MC5R, and SKOR2. Among these genes, CDCA2,
FAM92B, HOXA11-AS, E2F7, KIF18A, MC5R, and SKOR2 were
risky genes, which are associated with poor prognosis for LGG
patients. Whereas the remaining two genes with good prognosis.
Conversely, AQP7 and MYOD1 are related to good prognosis.
AQP7, named Aquaporin 7, is a water and glycerol channel.
Chen et al. demonstrated that low expression of AQP7 correlates
with tumor grade and aggressive features of hepatocellular
carcinoma (Chen et al., 2016). In a mouse model of breast
cancer, lower AQP7 expression resulted in a reduction in
primary tumor burden and lung metastases, thus suggesting that
AQP7 is a prognostic indicator of overall survival in breast cancer
patients (Dai et al., 2020). Myogenic differentiation 1 (MYOD1), as a
transcription factor, promoted expression of muscle-specific genes.
Wu et al. (2020) found that the expression of MYOD1D is positively
correlated with the migration and invasion of gastric cancer cells.

The cell division cycle associated 2 (CDCA2) has been proved to
play an important role in the tumorigenesis of some cancers. The
study showed that the high expression of CDCA2 was significantly
correlated with the expression of related components of cell cycle
phase transition and G2/M phase transition pathway, and suggested
that CDCA2 could be a potential target for regulating tumor growth
and radiation resistance in patients with oesophageal square cell
carcinoma (Xu et al., 2021b). FAM92B, HOXA11-AS, E2F7, MC5R,
and SKOR2 are important epigenetic regulators that can be targeted
for cancer therapy. Specifically, E2F7 is an atypical E2F transcription
factor family member with two independent DNA-binding
domains. Some studies have found that E2F7 is upregulated in
endometrial cancer, skin squamous cell carcinoma and other
malignant tumors, promote tumor progression and metastasis in
these cancers (Endo-Munoz et al., 2009; Li et al., 2015). KIF18A, a
member of the kinesin-8 subfamily, has low expression in most
human normal tissues and abnormally high expression in a variety
of malignant tumor tissues (Marquis et al., 2021), which is associated
with malignant pathological features and poor prognosis of cancer
patients, and it promotes the proliferation, invasion and metastasis
of tumor cells (Sepaniac et al., 2021). KIF18A may be a novel
molecular targeted therapy for cancers. PTCRA (pre-T cell
antigen receptor) is a protein-coding gene, together with the
TCRB and CD3 complexes, encodes a protein that forms the
T-cell pre-receptor complex, which regulates early T cell
development (Liu et al., 2010).

The SERS is very effective in predicting prognosis of LGG
patients in this study. To further explore the specific mechanism,
we identified DEGs in high- and low-risk groups without hesitation.
Then, the GO and KEGG analysis were performed to explore the
detailed biological processes and pathways of these genes affecting
the prognosis of LGG patients. Functional enrichment analysis
revealed that DEGs between different risk subgroups were
enriched in many immune-related biological processes and
pathways. Therefore, we subsequently analyzed immune scores
and immune cell infiltration between the two risk subgroups.
Further analysis found that high risk was positively correlated
with immune score, the abundance of T cells CD4 memory
resting, and T cells CD4 memory activated. On the contrary,
activated NK cells (tumor killer cells) showed higher abundance
in the low-risk group. These results suggest that super-enhancer-
related genes are related to the LGG immunemicroenvironment to a
certain extent. From the above results, it can be concluded that the
anti-tumor immunity of LGG patients in the high-risk group is
significantly weakened, so we speculated that this may be one of the
important reasons for their poor prognosis. The research of cancer
immunotherapy has been very hot in recent years, especially
immune checkpoint inhibitors have been quite mature as the first
generation of immunotherapy, they play a therapeutic role in
various cancers through mainly blocking PD-1/PD-L1 pathway
and molecular receptors and/or ligands such as CTLA-4
(Topalian et al., 2015). Several previous studies have described
therapeutic effect for immune checkpoints in some cancers, with
findings consistent with favorable clinical outcomes in patients with
many cancers, such as glioma (Puigdelloses et al., 2021),
hepatocellular carcinoma (Sangro et al., 2020), lung cancer
(Kartolo et al., 2021), and more. Therefore, we also evaluated the
relationship between SERS and the expression levels of immune
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checkpoints, macrophage-related molecules, and immunotherapy
response. It found that SERS was positively correlated with the
expression levels of immune checkpoints and macrophage-related

molecules. The response rate to ICI was significantly lower than that
of the low-risk group. Therefore, we surmised that this may be
another reason for the poor prognosis of LGG patients in the high-

FIGURE 9
Validation of the expression levels of selected super-enhancer related genes. (A) Scatter plots of differential transcript levels between AQP7 and
E2F7 in glioma cell lines and normal human astrocytes cell lines (HA1800). (B) Scatter plots of differential transcript levels between AQP7 and E2F7 in LGG
and NBT. (C) The representative IHC staining images of AQP7 and E2F7. LGG low-grade glioma, NBT non-tumor tissues. *p < 0.05, **p < 0.01, ***p <
0.001, and ns No significance.
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FIGURE 10
The relations between the selected gene and tumor immune features. (A) The abundance of 22 immune cells in the high-expression and low-
expression of AQP7. (B) Correlation of the expression of AQP7 with immune scores, stromal scores, ESTIMATE scores, and tumor purity. (C) The
abundance of 22 immune cells in the high-expression and low-expression of E2F7. (D)Correlation of the expression of E2F7 with immune scores, stromal
scores, ESTIMATE scores, and tumor purity. *p < 0.05, **p < 0.01, ***p < 0.001, and ns No significance.
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risk group. Taken together, the SERS proposed in our study can be
used to screen clinically high-risk LGG patients, and then to
prescribe professionally-informed treatment.

Without doubt, there are some inevitable shortcomings in this
study. Firstly, this is a retrospective study based on public databases,
thus yielding more reliable results in a prospective study. Secondly,
the five cohorts of LGG patients have varying degrees of lack of
clinical information, which may lead to varying degrees of selection
bias. Thirdly, GO and KEGG enrichment analysis and subsequent
immune microenvironment and immune checkpoint analysis were
not validated in the other 4 cohorts. Fourthly, we only analyzed
transcriptome information and did not perform multi-omics
analysis including methylation and gene copy number. Finally,
further experiments are needed to explore the specific
molecular mechanism of super-enhancer related genes for further
elucidation.

5 Conclusion

In conclusion, three novel LGG subtypes were established
based on SE-related genes. Subsequently, an accurate and
independently validated model were proposed for predicting
overall survival in LGG. In addition, we also found that SERS
was associated with prognosis, clinicopathological features,
tumor immune microenvironment, cancer hallmarks, and
genomic alterations and the effect of immunotherapy in
patients with LGG. The findings can be as the novel
biomarkers for predicting prognosis and potential
therapeutic targets for LGG, which will help physicians and
patients to evaluate prognosis, determine follow-up period, and
make immunotherapy decisions.
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SUPPLEMENTARY FIGURE S1
Comparisons of age, gender, KPS, survival status, histology, WHO grade,
MGMT status, Transcriptome subtype and TERT status among SE subtypes in
TCGA cohord.

SUPPLEMENTARY FIGURE S2
The Kaplan–Meier curves of TCGA cohort showed that there is different
overall survival for patients with different expression levels of nine selected
super-enhancer related prognostic genes.

SUPPLEMENTARY FIGURE S3
Risk scores, survival status in high and low-risk group and Kaplan–Meier
survival curves of SERS in TCGA, CGGA693, CGGA325, CGGA301 and
Rembrandt cohorts, respectively.

SUPPLEMENTARY FIGURE S4
Correlation analysis between the prognostic SERS and clinicopathological
characteristics in the CGGA693 cohort. *p < 0.05, **p < 0.01, ***p < 0.001,
and ns No significance.

SUPPLEMENTARY FIGURE S5
Correlation analysis between the prognostic SERS and clinicopathological
characteristics in the CGGA325 cohort. *p < 0.05, **p < 0.01, ***p < 0.001,
and ns No significance.

SUPPLEMENTARY FIGURE S6
Correlation analysis between the prognostic SERS and clinicopathological
characteristics in the CGGA301 cohort. *p < 0.05, **p < 0.01, ***p < 0.001,
and ns No significance.

SUPPLEMENTARY FIGURE S7
Correlation analysis between the prognostic SERS and clinicopathological
characteristics in the Rembrandt cohort. *p < 0.05, **p < 0.01, ***p < 0.001,
and ns No significance.

SUPPLEMENTARY FIGURE S8
The univariate Cox regression and multivariate Cox regression were
performed on SERS and other clinicopathological features CGGA693,
CGGA325, CGGA301, Rembrandt cohorts, respectively.

SUPPLEMENTARY FIGURE S9
The ROC curves of the nomogram predicted 1-, 3-, and 5-year OS and
corresponding calibration curves in CGGA693, CGGA325, CGGA301,
Rembrandt cohorts, respectively.
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SUPPLEMENTARY FIGURE S10
The distribution of TMB, mutation counts, copy number burdens at
focal and arm levels, immune scores, stromal scores, ESTIMATE

scores and tumor purity, TIDE, T-cell exclusion score, MSI score and
T-cell dysfunction score between high and low-risk groups in TCGA
cohort. *P < 0.05, **P < 0.01, and ***P < 0.001.
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