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Editorial on the Research Topic

Incorporation of texture analysis in diagnosing and characterizing cancer
Cancer is a group of diseases which are aggressive, invasive, and sometimes metastatic.

It can affect people of all ages, even fetuses, and the risk increases with age. According to the

statistics of the American Cancer Society, it is estimated that there will be more than

600000 cancer deaths in the United States in 2023. Currently, in vivo diagnosis and

evaluation of cancer mainly rely on methods of medical imaging such as MRI and CT.

However, many small and hidden information in MRI and CT can not be detected by

naked eye observation. Radiomics is a new technology that can be used to automatically

mine large amounts of high-throughput data features from medical images. Although

many studies have reported the use of radiomics and texture analysis in the diagnosis of

cancer in recent years, further exploration of their potential in early cancer discrimination

and prognosis is still worth exploring.

In this Research Topic, the application of radiomics and texture analysis in the

diagnosis, differentiation, and prognostic evaluation of various cancers was focused.

Texture analysis could reflect the physiological and pathological changes of cancer by

extracting a large number of potential image features. The signal intensity features could

reflect the composition of a tissue, while texture features could reflect the consistency of

internal components within the tissue. Sun et al. investigated the potential of CT imaging

features and texture analysis to distinguish bronchiolar adenoma from adenocarcinoma in

situ and minimally invasive adenocarcinoma. They found that the multiple logistic

regression model based on six key texture features extracted from non-enhanced CT

could accurately identify them with the AUC of 0.977 and 0.976, respectively. The Six key

texture features were GLCMEntropy, LongRunLowGreyLevelEmphasis, GLCMEnergy,

ShortRunEmphasis VoxelValueSum, and Quantile. Q. Some pulmonary nodules may

gradually/grow and develop into lung cancer, while others may remain stable for many

years. Accurately predicting the growth of pulmonary nodules in advance is of great clinical

significance for early treatment (Shen et al.). The SVM, RF, MLP and AdaBoost models

developed by Yang et al. based on age and radiomic features demonstrated high accuracy in

predicting the growth of pulmonary nodules in the future next year, with AUCs of 0.81,

0.77, 0.81 and 0.71 respectively in the validation group. The rearrangement state of

anaplastic lymphoma kinase (ALK) plays a key role in targeted therapy of non-small cell
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lung cancer. However, how to accurately detect them is a great

challenge. Hao et al. proved that ALK rearrangement status could

be accurately predicted using a machine learning-based

classification model based on CT textural features and clinical

data. This study provided a non-invasive solution for accurately

identifying ALK gene status, which was an efficient and rapid new

method for clinical genetic diagnosis. Pancreatic ductal

adenocarcinoma (PDAC) accounts for more than 90% of

pancreatic cancer and is the seventh leading cause of cancer-

related death worldwide. Early identification of lymph node

metastasis around PDAC is very important for surgical treatment.

Li et al. successfully constructed a logistic regression model to detect

lymph node metastasis using radiomics features of enhanced CT,

and the AUC of the training group and the validation group were

0.937 and 0.851, respectively. This model may help clinicians

accurately assess the risk of lymph node metastasis before

surgery. Liver cancer is the sixth most common cancer in the

world and poses a serious threat to human health. Artificial

intelligence and radiomics has undergone rapid development and

has a wide application in the diagnosis and treatment of liver

diseases. Xiong et al. compiled a relative comprehensive and

quantitative report on the research of liver disease using artificial

intelligence by employing bibliometrics. They summarized the

current research progress, hotspots, and emerging trends of

cancer artificial intelligence. The microvascular invasion (MVI)

refers to the tumor invasion in small intrahepatic vessels,

covering portal veins, hepatic vessels, and lymphatic vessels.

Zhang et al. developed a nomogram to predict preoperative MVI

of HCC with an AUC of 0.884 by combining clinicoradiological

factors and radiomics features. This was crucial for accurately

identifying the malignancy of HCC and developing appropriate

treatment plans. Endometrial cancer (EC) is one of the three most

common malignant tumors in the female reproductive system. Its

incidence rate and mortality are on the rise and spread to young

people. Ki-67 and p53 are closely related to the proliferation and

apoptosis of tumor cells. Jiang et al. established a logistic regression

model based on the textural features and apparent diffusion

coefficient values of multimodal MRI to predict the expression

levels of Ki-67 and p53 before surgery. In the verification group, the

AUCs were 0.938 and 0.922, which had high auxiliary diagnostic

value for clinical application. Their method could non-invasive

evaluate the levels of Ki 67 and p53 in EC, and had important

potential in evaluating the malignancy of EC and guiding

appropriate treatment plans. Prostate cancer (PCa) occurs in
Frontiers in Oncology 026
middle-aged men aged 45-60 years and is the most common

malignant tumor of the male reproductive system. High-risk

prostate cancer (PCa) is often treated by prostate-only

radiotherapy (PORT) owing to its favourable toxicity profile

compared to whole-pelvic radiotherapy. Unfortunately, more than

50% patients still developed disease progression following PORT.

Ching et al. developed a Ridge regression model based on radiomics

and clinical characteristics of preoperative planned computed

tomography, which could predict the progression of high-risk

PCa patients at 5 years after prostate-only radiotherapy with an

AUC of 0.797. This study might help clinicians for the personalized

treatment of high-risk prostate cancer patients in the future.

Through this Research Topic, the important role of texture

analysis in cancer imaging was clearly presented, which provided

quantitative and objective support for various cancer detection and

treatment decision. Although there are still many difficulties in

achieving a complete cure for cancer, new treatment methods such

as targeted drugs have brought many new hopes. Radiomics and

texture analysis can greatly assist in the diagnosis, gene prediction,

and prognosis evaluation of tumors, and have the hope of being

used as a decision-making tool in future clinical applications.
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Yun Yao 1, Rongbing Jin 1, Jingqin Fang 3,5* and Xiao Chen 1,5*
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Purpose: This study aimed to investigate the potential of computed tomography (CT)

imaging features and texture analysis to distinguish bronchiolar adenoma (BA) from

adenocarcinoma in situ (AIS)/minimally invasive adenocarcinoma (MIA).

Materials and Methods: Fifteen patients with BA, 38 patients with AIS, and 36

patients with MIA were included in this study. Clinical data and CT imaging features of

the three lesions were evaluated. Texture features were extracted from the thin-section

unenhanced CT images using Artificial Intelligence Kit software. Then, multivariate logistic

regression analysis based on selected texture features was employed to distinguish BA

from AIS/MIA. Receiver operating characteristics curves were performed to determine

the diagnostic performance of the features.

Results: By comparison with AIS/MIA, significantly different CT imaging features

of BA included nodule type, tumor size, and pseudo-cavitation sign. Among them,

pseudo-cavitation sign had a moderate diagnostic value for distinguishing BA and

AIS/MIA (AUC: 0.741 and 0.708, respectively). Further, a total of 396 quantitative texture

features were extracted. After comparation, the top six texture features showing the most

significant difference between BA and AIS or MIA were chosen. The ROC results showed

that these key texture features had a high diagnostic value for differentiating BA from

AIS or MIA, among which the value of a comprehensive model with six selected texture

features was the highest (AUC: 0.977 or 0.976, respectively) for BA and AIS or MIA. These

results indicated that texture analyses can effectively improve the efficacy of thin-section

unenhanced CT for discriminating BA from AIS/MIA.

Conclusion: CT texture analysis can effectively improve the efficacy of thin-section

unenhanced CT for discriminating BA from AIS/MIA, which has a potential clinical value

and helps pathologist and clinicians to make diagnostic and therapeutic strategies.

Keywords: bronchiolar adenoma, texture analysis, computed tomography, lung adenocarcinoma, ground glass

nodule
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Sun et al. Texture Analysis for Bronchiolar Adenoma

INTRODUCTION

Bronchiolar adenoma (BA) is a recently recognized rare benign
tumor with good prognosis that corresponds to the anatomic
epithelial cellular component of bronchioles (1). According
to the proportion of mucous cells and ciliated cells on the
luminal surface, BA is divided into proximal type and distal
type. On computed tomography (CT) images, BA often presents
as a peripheral irregular-shaped small solid nodule, ground-
glass nodule (GGN), or subsolid GGN with a central cavity
(2, 3), which could be easily misdiagnosed as adenocarcinoma
in situ (AIS) or minimally invasive adenocarcinoma (MIA) (4).
As subtypes of lung adenocarcinomas, AIS or MIA requires
surgery and is not expected to recur if removed completely (5–7).
However, BA, a benign tumor, does not need surgery and just
needs follow-up observation. Thus, it is important to accurately
differentiate BA from AIS and MIA before operation. However,
conventional CT characteristics of pulmonary nodules such as
tumor size, density, shape, and margin are often insufficient
for evaluation.

Clinically, biopsy is used to preoperatively confirm the
diagnosis when lung cancer is suspected. This process requires
an invasive procedure, which has risks including bleeding,
pneumothorax, and infection (8, 9). And the pathological
diagnosis through biopsy is inherently prone to sampling
error due to tumor heterogeneity. Moreover, with the small
size and peripheral nature of BA, preoperative diagnosis with
transbronchial or percutaneous biopsy could be difficult. In
addition, previous studies reported that it was extremely
challenging to distinguish BA from adenocarcinoma on frozen
sections, even for experienced thoracic pathologists, which
results in overtreatment of patients (10). Thus, it is urgent to
develop non-invasive complementary approaches to accurately
discriminate BA from AIS and MIA prior to operation, which
could help pathologists and clinicians to make diagnostic and
therapeutic strategies.

Texture analysis is a novel imaging post-processing technique
used for the quantification of image grayscale distribution
features, pixel interrelationships, and spectral properties of
images (11–13). Compared with conventional imaging methods,
texture analysis can measure tumor heterogeneity that may not
be perceptible to the human eye. Recent studies have shown
potential clinical value of computer-aided texture analysis in
the field of oncology, primarily preoperative diagnosis, grading,
assessing progression, and response to therapy of cancer patients
(14–16). In particular, CT texture analysis has shown promising
results in lung cancer for subsolid/solid nodules and lung
masses (17–19). However, to our knowledge, no data is available
concerning the application of CT texture analysis to the BA.
Therefore, we aimed to identify quantitative texture features for
further evaluation as non-invasive biomarkers. Such biomarkers
could potentially be used to distinguish BA from AIS and MIA.

MATERIALS AND METHODS

Patients
This study was approved by the ethics committee of Daping
Hospital, and the informed consent requirement was waived.

In this retrospective study, from October 2017 to June 2020,
86 patients underwent surgical resection of tumors presenting
as solitary pulmonary nodule, including solid nodule, GGN,
or subsolid GGN, on CT images and pathologically diagnosed
as BA, AIS, or MIA. AIS and MIA were diagnosed according
to the World Health Organization 2015 criteria as confirmed
by surgery (20). BA was diagnosed based on morphologically
identifying a continuous basal cell layer, which was followed
by immunohistochemical confirmation using the basal cell
markers p40, p63, and CK5/6 (1, 21, 22). Tissue specimens
were reviewed by pathologists with 10 years of experience in
lung pathology. The inclusion criteria were as follows: (a) thin-
section CT scans were performed before surgery; (b) lesions
presented as solitary pulmonary nodule on thin-section CT
images; (c) biopsy, surgery, chemotherapy, and radiotherapy
were not performed for lesions before CT examination; (d)
there was surgical resection and histopathological confirmation
as BA, AIS or MIA; (e) the interval between CT scanning
and surgery was within 30 days. The exclusion criteria were
as follows: (a) tumor diameter was larger than 3 cm; (b)
there were severe respiratory artifacts on CT images. In total,
15 BA, 38 AIS, and 36 MIA were enrolled. The clinical
data including age, gender, smoking history, and surgical
extent were collected. Patient demographics are summarized
in Table 1.

CT Image Acquisition and Analysis
All CT images were obtained on a 64-detector CT scanner
(LightSpeed VCT, GE Healthcare) with a breath-held helical
acquisition of the entire thorax. CT parameters were as follows:
tube voltage = 120 kVp; tube current = 150 mAs; detector
collimation = 0.5mm × 64; pitch = 0.625; rotation time =

0.5 s; reconstruction slice thickness = 1mm; matrix = 512 ×

512; field of view = 407mm. All CT images were analyzed by
two radiologists (JF and XL, with 13 and 9 years of experience
in chest radiology, respectively) independently. Both radiologists
were informed of the location of each lesion but were blinded
to the pathological diagnosis. Lung nodules were divided into
three types, containing pure GGNs, subsolid GGNs, and solid
nodules based on thin-section unenhanced CT images. A pure
GGN was defined as a nodule occupied by ground-glass opacity
without solid regions. A subsolid GGN was defined as a nodule
that obscured underlying vascular signs and where <50% of the
nodule was observed at the mediastinal window. When more
than 50% of a nodule was seen at the mediastinal window, a
solid nodule was defined (3). At the lung window, we assessed
the tumor size, shape (round to oval or irregular), margin
(smooth, lobulated, or spiculated), tumor–lung interface (clear
or fuzzy), pseudo-cavitation, and distance to pleura of the lesion.
The tumor size was defined as the maximum length of the
lesion in any axis (23). Pseudo-cavitation presented as an oval
or round area of low attenuation in lung nodules, masses,
or areas of consolidation that represent spared parenchyma,
normal or ectatic bronchi, or focal emphysema rather than
cavitation (24). Any interobserver discordance resulted in
the radiologists reevaluating the image together and reaching
a consensus.
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TABLE 1 | Demographic and clinical data of the subjects.

Variable BA (n = 15) AIS (n = 38) MIA (n = 36) F-value (t/χ2) P-value

Age (years) 52.27 ± 15.91 55.95 ± 8.92 58.69 ± 11.70 1.728 0.184

Sex Male 5/15 (33.33%) 7/38 (18.42%) 11/36 (30.56%) 1.949 0.377a

Female 10/15 (66.67%) 31/38 (81.58%) 25/36 (69.44%)

Smoking Never 1/15 (6.67%) 2/38 (5.26%) 4/36 (11.11%) 0.908 0.635a

Former or current 14/15 (93.33%) 36/38 (94.74%) 32/36 (88.89%)

Wedge resection 2/15 (13.33%) 4/38 (10.53%) 2/36 (5.56%) 6.538 0.162a

Surgery Segmentectomy 0/15 (0%) 7/38 (18.42%) 2/36 (5.56%)

Lobectomy 13/15 (86.67%) 27/38 (71.05%) 32/36 (88.88%)

Quantitative variables are expressed as mean ± standard deviation. Qualitative variables are expressed as proportion. aChi-square test for sex, smoking, and surgery. The comparison

of age among three groups was performed with ANOVA. The level of significance for intergroup differences was set at P < 0.05. BA, bronchiolar adenoma; AIS, adenocarcinoma in situ;

MIA, minimally invasive adenocarcinoma.

Volume of Interest (VOI) Segmentation and
Texture Feature Extraction
The lesions were delineated on the thin-section unenhanced
CT images using the ITK-SNAP software (available at
www.itksnap.org) at the lung window. Two experienced
radiologists (JS and HT, both with 9 years of experience in
imaging) blinded to the clinical outcomes were involved in
region of interest (ROI) segmentation. The whole tumor volume
was determined by manually drawing an ROI along the border
of the tumor on each consecutive slice covering the whole lesion.
Therefore, a three-dimensional VOI was finally obtained. The
texture features were automatically calculated by the AK software
(Artificial Intelligence Kit, GE Healthcare). A total of 396 texture
features were extracted, including six types: histogram, gray-level
co-occurrence matrix (GLCM), gray-level size zone matrix
(GLSZM), gray-level run-length matrix (GLRLM), form factor
features, and Haralick features. The extracted texture features
were standardized to remove the unit limits of each feature. The
histogram described the distribution of voxel intensities within
the image region defined by the mask through commonly used
and basic metrics. GLRLM depicts the amount of homogeneity
in specific directions. GLCM and Haralick features provide
information about the gray-level value distribution of pixel pairs
in all directions. GLSZM is efficient for characterizing texture
homogeneity, non-periodicity, or a speckle-like texture (25).

Statistical Analysis
Statistical analyses were performed using the SPSS software
(version 20.0, IBM Corp., Armonk, NY). Kolmogorov–
Smirnov and Levene tests were used for the assessment of
normal distribution and equal variance. With regard to the
reproducibility of volumetric and texture analysis, inter-observer
reliability was assessed by an intraclass correlation coefficient
(ICC) test. In general, an ICC <0 indicates no agreement, 0–0.20
slight agreement, 0.21–0.40 fair agreement, 0.41–0.60 moderate
agreement, 0.61–0.80 substantial agreement, and 0.81–1 almost
perfect agreement. A one-way analysis of variance (ANOVA)
test was applied to assess the ability of CT imaging features to
differentiate between BA and AIS/MIA. The level of significance
for intergroup differences was set at P < 0.05. Post-hoc tests

with Bonferroni correction were performed after observing
statistical differences among the three groups. P < 0.017 (0.05/3)
was considered significant after Bonferroni correction. Feature
dimension reduction was performed as follows: first, a t-test
or Mann–Whitney U-test was performed; second, univariate
logistic analysis was conducted, and statistically significant
features (P < 0.05) were chosen; third, the minimal-redundancy
maximal-relevance method (mRMR) was used to remove the
redundant and less-relevant features. Multivariate logistic
regression analyses were performed to establish a comprehensive
model with the most valuable parameters to distinguish BA from
AIS or MIA. The diagnostic accuracy of different CT imaging
features, textural features, and comprehensive models were
evaluated by a receiver operating characteristic (ROC) analysis to
obtain area under curves (AUCs), sensitivity, and specificity. The
MedCalc Statistical Software (version 19.3.1, MedCalc Software
Ltd, Ostend, Belgium) was used to compare differences in AUCs.
Two-tailed P-values were calculated with a 0.05 significance level.

RESULTS

Patients’ Clinical Characteristics
The clinical characteristics of 15 BA, 35 AIS, and 38 MIA
patients are summarized in Table 1. No significant differences
were found in age, sex, smoking status, and surgery among
the three groups. In our study, women (66/89, 74.16%) and
patients who had smoking history (82/89, 92.13%) were more
common. Lobectomy was performed in the majority of the
patients (72/89, 80.90%).

Comparison of CT Imaging Features
Between BA and AIS/MIA
CT features of BA, AIS, and MIA are summarized in Table 2,
and examples of BA, AIS, and MIA are shown in Figure 1. BA
presented as pure GGN (2/15, 13.33%), subsolid GGN (3/15,
20.00%), or solid nodule (10/15, 66.67%), among which a solid
nodule was more common in this study, whereas subsolid
GGN was the common nodule type in AIS and MIA. Tumor
size was larger in MIA than in BA (16.11 ± 6.07 vs. 10.53
± 4.50, P < 0.001), but no significant difference was found
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TABLE 2 | Differences in CT findings among BA, AIS, and MIA.

Variable BA AIS MIA F-value (t/χ2) P-value

Diameter (mm) 10.53 ± 4.50 11.26 ± 3.54 16.11 ± 6.07 11.685 <0.001*#

Nodule type Pure GGN 2/15 (13.33%) 2/38 (5.26%) 8/36 (22.22%) 25.99 <0.001a*$

Subsolid GGN 3/15 (20.00%) 27/38 (71.05%) 26/36 (72.22%)

Solid nodule 10/15 (66.67%) 9/38 (23.69%) 2/36 (5.56%)

Shape Round to oval 1/15 (6.67%) 11/38 (28.95%) 8/36 (22.22%) 3.067 0.216a

Irregular 14/15 (93.33%) 27/38 (71.05%) 28/36 (77.78%)

Margin Smooth 9/15 (60.00%) 13/38 (34.21%) 12/36 (33.33%) 4.375 0.358a

Lobulated 5/15 (33.33%) 20/38 (52.63%) 17/36 (47.22%)

Spiculated 1/15 (6.67%) 5/38 (13.16%) 7/36 (19.45%)

Tumor–lung interface Clear 9/15 (60.00%) 25/38 (65.79%) 17/36 (47.22%) 2.658 0.265a

Fuzzy 6/15 (40.00%) 13/38 (34.21%) 19/36 (52.78%)

Pseudo-cavitation Absent 5/15 (33.33%) 31/38 (81.58%) 27/36 (75.00%) 12.624 0.002a*$

Present 10/15 (66.67%) 7/38 (18.42%) 9/36 (25.00%)

Distance to pleura 6.18 ± 7.47 8.26 ± 8.41 8.57 ± 8.26 0.475 0.623

Quantitative variables are expressed as mean ± standard deviation. Qualitative variables are expressed as proportion. aChi-square test for nodule type, shape, margin, tumor–lung

interface, and pseudo- cavitation. The comparison of tumor maximum diameter and distance to pleura among three groups was performed with ANOVA. The level of significance for

intergroup differences was set at P < 0.05. $P < 0.017 (0.05/3) BA vs. AIS, with post-hoc test, Bonferroni corrected. *P < 0.017 (0.05/3) BA vs. MIA, with post-hoc test, Bonferroni

corrected. #P < 0.017 (0.05/3) AIS vs. MIA, with post-hoc test, Bonferroni corrected. BA, bronchiolar adenoma; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma;

GGN, ground-glass nodules.

between BA and AIS (10.53 ± 4.50 vs. 11.26 ± 3.54, P =

0.624). Notably, a pseudo-cavitation sign was observed more
frequently in BA (10/15, 66.67%), compared to AIS (7/38,
18.42%) or MIA (9/36, 25.00%) (P = 0.002). No statistically
significant differences with respect to tumor shape (P = 0.216),
margin (P = 0.358), tumor–lung interface (P = 0.265), and
distance to pleura (P = 0.623) were observed among BA,
AIS, and MIA. Furthermore, ROC analysis was performed to
ascertain relevant CT imaging features in differentiating BA from
AIS/MIA. The results showed that the pseudo-cavitation sign
had a moderate diagnostic value (AUC: 0.741, sensitivity: 81.6%,
specificity: 66.7%, Supplementary Table 1) for distinguishing
BA and AIS, while others demonstrated no significance (P >

0.05). For BA and MIA, the nodule type, tumor size, and
pseudo-cavitation sign had moderate diagnostic values (AUC:
0.780, 0.763, and 0.708, respectively, Supplementary Table 2).
Overall, the pseudo-cavitation sign was the CT imaging feature
which had a moderate diagnostic value for differentiating BA
from AIS/MIA.

Comparison of CT Texture Analysis
Between BA and AIS/MIA
To improve the diagnostic value for BA and AIS/MIA, we
performed the CT texture analysis of these lesions. A total of 396
texture features were extracted from unenhanced CT images.
The ICC values of the inter-observer of our research were
0.82–0.98, which suggests great accordance between two readers
and the reliability of VOI sketching. Three representative sets of
CT texture features of patients with BA, AIS, and MIA are shown
in Figure 2, which have similar CT imaging features but different
characteristics of CT texture features. The histogram showed
that the gray distribution of BA is more concentrated than that
of AIS/MIA. The variation of GLRLM of BA is smaller than that

of AIS/MIA. And the distribution of GLCM indicated that the
heterogeneity of lesions in AIS/MIA was greater than that in
BA. The top six texture features showing the most significant
difference, namely, GLCMEntropy_AllDirection_offset1_SD (P
< e−4), LongRunLowGreyLevelEmphasis_angle45_offset7
(P = 0.00028), GLCMEnergy_AllDirection_offset1_SD
(P = 0.00042), ShortRunEmphasis_angle0_offset1 (P <

e−4), VoxelValueSum (P = 0.00310), and Quantile0.975 (P
= 0.00348), were calculated between BA and AIS (Figure 3). The
diagnostic performance of each texture is shown in Figure 5A.
Generally, an AUC > 0.9 indicates excellent diagnostic efficacy,
and between 0.8 and 0.9 good diagnostic efficacy. The ROC
results showed that three of these six texture features had
high diagnostic values for differentiating BA from AIS (AUC
> 0.8, Supplementary Table 3), among which the value of
GLCMEntropy_AllDirection_offset1_SD was the highest (AUC:
0.912, sensitivity: 93.3%, specificity: 78.9%, cutoff value: 0.0018).
Moreover, for BA vs. MIA, ClusterShade_AllDirection_offset1
(P < e−4), ClusterShade_angle0_offset1 (P < e−4),
LongRunLowGreyLevelEmphasis_angle0_offset7 (P < e−4),
ClusterShade_angle45_offset1 (P < e−4), VoxelValueSum (P
< e−4), and ClusterShade_angle90_offset7 (P < e−4) were the
top six texture features showing the most significant difference
(Figure 4). The ROC results showed that all these six texture
features had high diagnostic values for differentiating BA from
MIA (AUC > 0.85, Supplementary Table 4 and Figure 5B),
among which the value of ClusterShade_AllDirection_offset1
was the highest (AUC: 0.876, sensitivity: 80.0%, specificity:
91.7%, cutoff value: 28,505.6). Notably, among these features,
VoxelValueSum was the texture feature showing the most
significant difference in common for BA vs. AIS and BA vs. MIA.
This feature was significantly greater in AIS/MIA patients than in
BA patients, which had a high diagnostic value for differentiating
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FIGURE 1 | Representative CT images of patients with BA (A–C), AIS (D), and MIA (E). (A–C) Axial CT image of BA presenting as a solid nodule (A), subsolid GGN

(B), and GGN (C) with round to oval shape, pseudo-cavitation, smooth margins, and clear tumor–lung interface. (D) Axial CT image of AIS that presents as a subsolid

GGN with an oval shape, smooth margins, and clear tumor–lung interface. (E) Axial CT image of MIA appearing as a subsolid GGN with an oval shape, small

spiculated margin, shallow lobulation, and clear tumor–lung interface.

BA from AIS/MIA simultaneously (Supplementary Tables 3, 4).
Furthermore, there was no significant difference between the
AUC of pseudo-cavitation and the maximum AUC of texture
feature for distinguishing BA from AIS (Z = 1.885, P = 0.0595)
or MIA (Z = 1.628, P = 0.1035). However, a pseudo-cavitation
sign had a moderate diagnostic value for distinguishing BA
and AIS (AUC: 0.741) or MIA (AUC: 0.708), while texture
features had a high diagnostic value for differentiating BA from
AIS (highest AUC: 0.912) or MIA (highest AUC: 0.876). These
results indicate that the diagnostic values of texture features are
higher than those of CT imaging features for differentiating BA
from AIS/MIA.

Model Development and Analysis
Multivariate logistic regression analyses were performed to
establish a comprehensive model with six selected texture
features to distinguish BA from AIS or MIA. The sensitivity,
specificity, and AUC for differentiating BA from AIS were 93.3,
92.1, and 0.977 (95% CI 0.893–0.999), respectively (Figure 6A).
While the sensitivity, specificity, and AUC for differentiating
BA from MIA were 99.9, 85.7, and 0.976 (95% CI 0.885–0.999),
respectively (Figure 6B). Further, the performance of the
comprehensive model for distinguishing BA and AIS or MIA
was significantly better than that of the pseudo-cavitation
sign (BA vs. AIS: Z = 3.153, P = 0.0016; BA vs. MIA:
Z = 3.508, P = 0.0005).

DISCUSSION

The present study is the first to distinguish BA from AIS/MIA
using texture analysis on thin-section unenhanced CT images.
In our study, we evaluated the role of CT imaging and texture
analysis in differentiating BA from AIS/MIA. Pseudo-cavitation,
one of the CT imaging features, could help differentiate BA
from AIS and MIA. Key texture features showing the most
significant difference between BA and AIS or MIA have a
better distinguishing effect on disease than CT imaging features.

Our data indicate that CT texture analysis demonstrates great
potential in differentiating BA from AIS/MIA pre-operation.

BA, a rare benign tumor appearing as a peripherally solitary
small lung nodule, was first reported in 2018 by Chang et al. (1).
Although studies of BA havemade new progress, some difficulties
still exist in its differential diagnosis. Frozen-section diagnosis
is especially challenging for BA. Invasive adenocarcinoma and
BA are easily misdiagnosed based on frozen sections owing
to their irregular adenoid structures and widened stroma (21,
26). Misdiagnosis of BA as invasive adenocarcinoma may
lead to unnecessary interventional procedures, which leads to
overtreatment of patients with BA (10). A previous study
reported some CT imaging features, including pseudo-cavitation
and tumor–lung interface, could help differentiate BA from
AIS/MIA (2). In our study, the nodule type, tumor size, and
pseudo-cavitation sign showed significant differences between
BA and AIS/MIA. BA mainly manifested as a solid nodule type
(66.67%), which was consistent with previous studies (3, 27–29).
The pseudo-cavitation sign, which is a CT imaging feature of BA,
can also be seen in adenocarcinoma, bronchioalveolar carcinoma,
and infectious pneumonia (24). However, the pseudo-cavitation
sign was reported to be more frequently observed in BA than
in AIS and MIA (2). In our cohort, the pseudo-cavitation sign
was found in 66.67% of BA and 21.62% of AIS/MIA, similar
to what has been reported in a previous study. However, no
significant differences were found in tumor–lung interface and
tumor shape between BA and AIS/MIA, which was inconsistent
with the findings of Cao et al. (2). This inconsistency may be
explained by the small sample size because of the low morbidity
of BA. In future, a multicenter study with a larger sample size
is needed. Furthermore, we evaluated the value of nodule type,
tumor size, and pseudo-cavitation sign in differentiating BA
from AIS and MIA. The ROC results indicated that the pseudo-
cavitation sign had a moderate diagnostic value to differentiate
BA from AIS and MIA. Thus, it is necessary to develop non-
invasive complementary approaches to improve the diagnostic
accuracy for BA before surgery, since the diagnostic value of CT
imaging features were not sufficient.
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FIGURE 2 | Three representative sets of CT texture features of patients with BA (A–E), AIS (F–J), and MIA (K–O). (A,F,K) Thin-section unenhanced CT images.

(B,G,L) VOIs delineated by the ITK-SNAP software. (C,H,M) Histograms of texture parameters of the three lesions showed a marked difference. The distribution of (H)

and (M) were more dispersed than the distribution of (C). (D,I,N) GLRLM features of the three lesions. The frequency of grayscale changes of (D) was more stable

than that of (I,N). (E,J,O) GLCM features of the three lesions. The distribution of (E) was more concentrated than the distribution of (J,O).

Texture analysis is an emerging imaging-based post-
processing method that allows for quantification of tissue
heterogeneity (30). There has been a surge in recent years
in the research application of CT texture analysis in tumor
identification, staging, and therapy response assessment
(14–16). However, no studies have demonstrated the value
of CT texture analysis in differentiating BA from AIS/MIA.
Our data show that GLCMEntropy_AllDirection_offset1_SD,
LongRunLowGreyLevelEmphasis_angle45_offset7, GLCM
Energy_AllDirection_offset1_SD, ShortRunEmphasis_angle
0_offset1, VoxelValueSum, and Quantile0.975 were the
features showing the most significant difference between
BA and AIS. Meanwhile, ClusterShade_AllDirection_offset1,
ClusterShade_angle0_offset1, LongRunLowGreyLevelEmphasis
_angle0_offset7, ClusterShade_angle45_offset1, VoxelValueSum,
and ClusterShade_angle90_offset7 were the features showing
the most significant difference between BA and MIA. Moreover,
to find non-invasive imaging biomarkers for detecting BA
patients, we evaluated the discriminative ability of these texture
features. Three of these six features had high diagnostic
values in discriminating BA from AIS by performing
ROC analysis independently, among which the value of
GLCMEntropy_AllDirection_offset1_SD was the highest with
an AUC of 0.91, sensitivity of 93.3%, and specificity of 78.9%.
Meanwhile, for BA vs. MIA, the six obtained features also

had high diagnostic values in discriminating BA from MIA,
among which the value of ClusterShade_AllDirection_offset1
was the highest with an AUC of 0.88, sensitivity of 80.0%, and
specificity of 91.7%. All these AUCs of texture features were
higher than those of CT imaging features. Then, we established
a comprehensive model with six selected texture features and
studied the diagnostic value of the model for distinguishing BA
from AIS or MIA by ROC curve analyses. The comprehensive
model presented the best diagnostic value, with a significant
difference relative to the pseudo-cavitation sign. Moreover,
VoxelValueSum was the feature which could well-distinguish BA
from AIS and MIA, simultaneously. Therefore, texture analyses
can effectively improve the efficacy of thin-section unenhanced
CT in discriminating BA from AIS/MIA.

There are some limitations in our study. First, this is
a single-institution retrospective analysis, and the sample
size is rather small because of the low morbidity of BA.
Second, potential selection biases cannot be excluded since
this is a retrospective study. Third, manual segmentation of
GGN ROIs has a higher risk of observer bias compared to
delineation with semi-automatic regression. However, the ICC
values of the inter-observer of this study were 0.82–0.98,
suggesting great accordance between two readers and the
reliability of VOI sketching. Therefore, a multicenter program
to include more BA patients may be needed, and a validation
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FIGURE 3 | Key texture features of the most significant difference between BA and AIS. Six features, namely, GLCMEntropy_AllDirection_offset1_SD (A),

LongRunLowGreyLevelEmphasis_angle45_offset7 (B), GLCMEnergy_AllDirection_offset1_SD (C), ShortRunEmphasis_angle0_offset1 (D), VoxelValueSum (E), and

Quantile 0.975 (F), varied significantly between BA and AIS on thin-section unenhanced CT images.

FIGURE 4 | Key texture features showing the most significant difference between BA and MIA. Six features, namely, ClusterShade_AllDirection_offset1 (A),

ClusterShade_angle0_offset1 (B), LongRunLowGreyLevelEmphasis_angle0_offset7 (C), ClusterShade_angle45_offset1 (D), VoxelValueSum (E), and

ClusterShade_angle90_offset7 (F), varied significantly between BA and MIA on thin-section unenhanced CT images.

to confirm the potential value of CT texture analyses in
discriminating BA from AIS/MIA may also be needed in
the future.

In conclusion, our study indicated that CT texture analysis
can effectively improve the efficacy of thin-section unenhanced
CT for discriminating BA from AIS/MIA, which has a potential
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FIGURE 5 | ROC curve for distinguishing BA from AIS/MIA. (A) For BA vs. AIS, the AUC values of GLCMEntropy_AllDirection_offset1_SD, LongRunLowGrey

LevelEmphasis_angle45_offset7, GLCMEnergy_AllDirection_offset1_SD, ShortRunEmphasis_angle0_offset1, VoxelValueSum, and Quantile 0.975 were 0.912, 0.823,

0.813, 0.779, 0.763, and 0.760, respectively. (B) For BA vs. MIA, AUC values of ClusterShade_AllDirection_offset1, ClusterShade_angle0_offset1,

LongRunLowGreyLevelEmphasis_angle0_offset7, ClusterShade_angle45_offset1, VoxelValueSum, and ClusterShade_angle90_offset7 were 0.876, 0.876, 0.874,

0.870, 0.865, and 0.857, respectively.

FIGURE 6 | ROC curve of a comprehensive model with six selected texture features for distinguishing BA from AIS/MIA. (A) For BA vs. AIS, the AUC value, specificity,

and sensitivity were 0.997, 92.1, and 93.3%, respectively. (B) For BA vs. MIA, the AUC value, specificity, and sensitivity were 0.976, 85.7, and 99.9%, respectively.

clinical value and helps pathologist and clinicians to make
diagnostic and therapeutic strategies.
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Pancreatic Serous Cystic Neoplasms
and Mucinous Cystic Neoplasms:
Differential Diagnosis by Combining
Imaging Features and Enhanced CT
Texture Analysis
Hai-Yan Chen1,2, Xue-Ying Deng1,2, Yao Pan3, Jie-Yu Chen1,2, Yun-Ying Liu2,4,
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4 Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer
Hospital), Hangzhou, China, 5 Research Institute of Artificial Intelligence in Healthcare, Hangzhou YITU Healthcare
Technology Co. Ltd., Hangzhou, China, 6 Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang
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Objective: To establish a diagnostic model by combining imaging features with enhanced
CT texture analysis to differentiate pancreatic serous cystadenomas (SCNs) from
pancreatic mucinous cystadenomas (MCNs).

Materials and Methods: Fifty-seven and 43 patients with pathology-confirmed SCNs
and MCNs, respectively, from one center were analyzed and divided into a training cohort
(n = 72) and an internal validation cohort (n = 28). An external validation cohort (n = 28)
from another center was allocated. Demographic and radiological information were
collected. The least absolute shrinkage and selection operator (LASSO) and recursive
feature elimination linear support vector machine (RFE_LinearSVC) were implemented to
select significant features. Multivariable logistic regression algorithms were conducted for
model construction. Receiver operating characteristic (ROC) curves for the models were
evaluated, and their prediction efficiency was quantified by the area under the curve
(AUC), 95% confidence interval (95% CI), sensitivity and specificity.

Results: Following multivariable logistic regression analysis, the AUC was 0.932 and
0.887, the sensitivity was 87.5% and 90%, and the specificity was 82.4% and 84.6% with
the training and validation cohorts, respectively, for the model combining radiological
features and CT texture features. For the model based on radiological features alone, the
AUC was 0.84 and 0.91, the sensitivity was 75% and 66.7%, and the specificity was
82.4% and 77% with the training and validation cohorts, respectively.
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Conclusion: This study showed that a logistic model combining radiological features and
CT texture features is more effective in distinguishing SCNs from MCNs of the pancreas
than a model based on radiological features alone.
Keywords: pancreatic neoplasms, serous cystadenoma, mucinous cystadenoma, texture analysis, tomography
INTRODUCTION

Pancreatic serous cystic neoplasms (SCNs) originate from cuboidal
epithelial cells full of glycogen-rich components, and are the only
benign tumors of the pancreas, accounting for 10-16%ofpancreatic
cystic neoplasms (1, 2). The detection of SCNs is increasing, owing
to the more widespread use of abdominal imaging (3); typically,
however, SCNs only constitutes approximately 30% of all SCNs,
presenting with a microcystic appearance with a star-like fibrous
central scar with orwithout calcifications (4). Furthermore, as there
is a chanceful spectrum of performances for SCNs in radiology, up
to 60%of SCNpatients performed surgerywith uncertain diagnosis
(5); atypical SCNsmaymisdiagnosedasmucinous cystic neoplasms
(MCNs) or intraductal papillary mucinous neoplasms (IPMNs),
which have the potential for malignancy, so misdiagnosis can lead
to unnecessary surgery (6–8).

There is no consensus regarding the management of SCNs in
terms offollow-up and surgery (9, 10). Symptoms, initial tumor size
and growth rate are always taken into consideration when
determining whether surgery should be performed (11–13). Some
studies recommend surgery for SCNs measuring >4 cm regardless
of the symptoms due to its rapid growth rate and high risk of
symptoms onset (12), while others suggest resection only for SCNs
with associated symptoms (10). SCNs are very safe and develop an
indolent nature after long-term follow-up, while MCNs should be
treated with surgery once a diagnosis is made (14).

Imaging examinations such as CT and MRI, are a mainstay in
distinguishing SCNs and MCNs; however, their performance
remains unsatisfactory. The accuracy in discriminating certain
types of pancreatic cystic neoplasms is between 40-95% for MRI
and between 10-81% for CT (10). Texture analysis is a popular
technique for quantitatively assessing the heterogeneity of tissues
through the extraction, analysis, and interpretation of radiological
features and has been widely used in the treatment of pancreatic
lesions, such as differential diagnosis, tumor grading, and prognosis
prediction (15–18). Several studies related to the discrimination of
SCNs and MCNs or that differentiate SCNs from other pancreatic
cystic lesions (PCLs) using radiomics have been published (15, 19–
24). However, these studies are limited by the use of single center
data and small sample sizes, so multicenter studies with larger
sample are urgently needed to clarify the role of radiomics. Hence,
our study included the largest sample size to date and is the first to
as; MCNs, Mucinous cystadenomas;
neoplasms; PCLs, Pancreatic cystic
d selection operator; RFE_LinearSVC,
ort vector machine; ROC, Receiver
r the curve; CI, Confidence interval;
class correlation coefficient; SD,
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incorporate outside data to validate the performance of selected
features. Then, we combined imaging features and enhanced CT
texture analysis to distinguish SCNs fromMCNs.
MATERIALS AND METHODS

Patient Population
Ethical approval for this study was approved by the Second
Affiliated Hospital of Zhejiang University School of Medicine
and Zhejiang Cancer Hospital, and the requirement for informed
consent was waived. We retrospectively collected patients
diagnosed with pathologically confirmed SCNs (n = 57) or
MCNs (n = 43) from the Second Affiliated Hospital of
Zhejiang University School of Medicine from January 1, 2010
to October 30, 2019. A cohort to be used solely for external
validation was collected from Zhejiang Cancer Hospital from
January 1, 2009 to February 20, 2021 (SCN = 19, MCN = 9).

The inclusion criteria were as follows: (1) abdominal contrast-
enhanced CT scan performed within 2 months before the
operation; and (2) lesion diagnosis confirmed by surgery or
biopsy. The exclusion criteria were as follows: (1) incomplete
imaging or clinical information; (2) a lesion too small (≤ 5 mm)
to draw a region of interest (ROI); and (3) poor image quality or
contamination of the ROI by artifacts, preventing analysis.

Image Acquisition
All patients fasted from solid food for approximately 4-6 hours
before the examinations. The CT scans were performed with the
following equipment: Siemens Somatom definition AS 64、
Perspective (Siemens Medical Systems), TOSHIBA Aquilion 320
(TOSHIBA Medical Systems Corporation), and Optima CT680
Series (GE Medical Systems). The imaging parameters were as
follows: kVp/effective mA = 120 Kv/160-250 mAs, slice
thickness = 5 mm; and field of view = 320-380 mm. A plain
scan was performed, followed by intravenous injection of nonionic
contrast medium (Omnipaque 300 g/l; GE Healthcare; iopromide;
Ultravist 370, Bayer Schering Pharma, 120 mL) at a rate of 3 mL/s.
Images were obtained in the arterial phase (23-25 s), portal venous
phase (40 s) and equilibrium phase (70 s).

Image Analysis
The imaging features were evaluated by two radiologists (3 and 5
years of experience in pancreatic imaging) who were unaware of
the pathology of the lesions. Any arguments were settled by
consulting with a third radiologist with 31 years of experience in
pancreatic imaging. Demographic data, such as sex, age,
symptoms, and tumor markers, were collected. The following
radiologic features were included: maximum diameter, location,
December 2021 | Volume 11 | Article 745001
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central scar, calcification (on the cyst wall or septum vs on the
central scar or noncyst wall), the presence of small cysts
(extracapsular cystic sign: a small cyst outside the main cyst;
intracapsular cystic sign: a small cyst inside the main cyst), cystic
wall thickening (≥3 mm), and tumor morphology (single cyst or
multiple cysts) (Figure 1).

Feature Extraction
CT texture features were extracted from the portal venous phase
using MaZda software (version 4.6, www.eletel.p.lodz.pl/
programy/mazda) (25). Before extraction, all images were
processed with standardized grayscale levels to reduce the
impact of changes in imaging contrast and brightness. ROIs
were drawn in the maximum diameter of the lesion by consensus
of the two evaluating radiologists. The intraclass correlation
coefficient (ICC) was calculated to assess the stability and
reproducibility of the extracted features. Ten patients (5 SCNs
and 5 MCNs) were selected randomly, and the ROI was drawn
again two months later by two radiologists. An ICC value of at
least 0.9 was considered as stable (26).

Feature Selection
The group of 100 patients from center 1 was randomly divided
into a training cohort and an internal validation cohort at a 7:3
ratio, while patients from center 2 were used to construct an
external validation cohort (n = 28). The workflow is illustrated
in Figure 2.

A two-stepmethod was performed for texture features selection.
The training dataset was used to select the texture features.

The least absolute shrinkage and selection operator (LASSO)
algorithmminimizes the residual sum of squares, sets a bound on
the sum of the absolute values of the coefficients, and can be used
for reducing the dimensions of high-dimensional data (27).
Thus, LASSO was implemented by 10-fold cross-validation for
Frontiers in Oncology | www.frontiersin.org 319
feature reduction, and the minimum l value was calculated to
determine the number of selected features. According to the
weighted logistic regression coefficient corresponding to each
selected feature, the linear mathematical formula contained the
score of the radiomics label for each patient was obtained. The
formula is listed as follows:

Radiomics _ score = w0 + w1x1 + :::wnxn

where wn denotes to the respective coefficients and xn denotes the
selected features.

The selected features were analyzed by Student’s t-test or the
Mann-Whitney U test to eliminate features without significant
differences, and then a recursive feature-elimination linear
support vector machine (RFE_LinearSVC) was used for further
feature selection. RFE_LinearSVC is a powerful method for
identifying predictive factors accurately and has consistently
outperforms other algorithms in feature selection (28). The
internal and external validation cohorts were adopted to verify
the performance of the selected features in distinguishing SCNs
from MCNs.

Statistical Analysis
Continuous variables were presented as the median (25-75%), and
differences between them were assessed using the Mann-Whitney
U test. Categorical variables were expressed as frequencies (%),
using Chi test. Multivariable logistic regression with 5-fold cross-
validation was conducted for training both the mixed model
(radiological features combined with extracted texture features)
and the radiological model to identify independent factors and
establish diagnostic models. The corresponding receiver operating
characteristic (ROC) curves were evaluated, and the prediction
efficiency of the two models was quantified by the area under the
curve (AUC), the 95% confidence interval (95% CI), sensitivity
and specificity.
FIGURE 1 | Differences in the characteristics of SCNs and MCNs. (A) shows a macrocystic SCN in the head of the pancreas, and a small cyst can be seen outside
the mother cyst (white arrow), called the extracapsular cystic sign. (B) shows an SCN presenting as a central scar with dotted calcification, which is typical of this
kind of neoplasm. (C) presents an SCN with multiple cysts that is difficult to diagnose. (D) shows a septal wall inside an MCN, which forms a small cyst called the
intracapsular cystic sign. (E) depicts an MCN with calcification on the septal wall. (F) shows an MCN with a single cyst and a smooth contour.
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Clinical and imaging data were analyzed using SPSS 23.0
software, and p < 0.05 was considered as statistically significant. R
3.6.1 software with “glmnet”, “Matrix”, “foreach” and”ggplot2”
packages was used to implement the LASSO algorithm. The
YITU AI Enabler was applied to implement the RFE_LinearSVC
algorithm, and build models were built using python pyradiomics
(version 3.0.1) and the scikit-learn (version 0.22) package.
RESULTS

General Clinical Information and Imaging
Features Among SCNs and MCNs
The demographic data of the participants and their imaging
features are summarized in Table 1. SCNs were more frequently
observed among older women than MCNs (median age of 54 vs
47 years, p < 0.05). The vast majority of MCNs were found in
Frontiers in Oncology | www.frontiersin.org 420
women (90.7%) and were located in the body/tail (86%), while
SCNs could occur anywhere in the pancreas equally (p < 0.05).
The diameter of the SCNs was generally smaller than that of the
MCNs (38.3 mm vs 53.1 mm, p = 0.009), and SCNs were often
characterized by characteristic central scars, which could have
calcifications, while the calcifications of MCNs often occurred on
the cyst wall or septum (p < 0.05). The most characteristic
manifestation of MCNs was the intracapsular cystic sign, while
the extracapsular cystic sign was more frequent among SCNs.
MCNs were more prone to thickening of the cyst wall (14% vs
1.8%, p=0.024) than SCNs. Finally, there was no significant
difference between SCNs and MCNs in terms of symptoms,
tumor markers, or tumor morphology (p > 0.05).

Feature Extraction and Selection
A total of 271 texture features were extracted: 9 histogram
features, 220 gray-level cooccurrence matrix (GLCM) features,
FIGURE 2 | Workflow of the research. The workflow can be divided into four parts: image acquisition, texture feature extraction, texture feature selection
and model construction.
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5 gradient features, 5 autoregressive model-based features, 20
run-length matrix features and 12 wavelet features. The ICC
value was 0.952 for all features, which was considered stable.

Twenty-three texture featureswere extracted by theminimuml
value of 0.0106, which was determined through 10-fold cross-
validation method using the LASSO algorithm (Figure 3). The
linear formula contained the score of the radiomics label for each
patient was listed in SupplementaryMaterial 1. After removing 10
irrelevant statistical variables, 13 texture features were eventually
included in the RFE_LinearSVC algorithm as follows: Skewness, S
(2,2)DifVarnc, S(2,-2)InvDfMom, S(5,5)InvDfMom, S(4,4)
SumEntrp, S(5,5)SumAverg, S(5,5)SumVarnc, Vertl_GLevNonU,
45dgr_GLevNonU,GrNonZeros, Teta1,Teta2, andTeta4. The heat
map is shown in Supplementary Material Figure 1. Finally, 5
features (Skewness, GrNonZeros, S(2,-2)InvDfMom, S(5,5)
InvDfMom, and S(5,5)SumVarnc) were selected with
RFE_LinearSVC, and the corresponding decision curve is
depicted in Figure 4. For the training group, the AUC was 0.934
(95% CI: 0.848-0.980), sensitivity was 90%, and specificity was
76.7%. For the internal and external validation cohorts, the AUCs
were 0.855 (95% CI: 0.679-0.956) and 0.892 (95% CI: 0.716-0.977),
the sensitivity was 82.4% and 94.7%, and the specificity was 69.2%
and 77.8%, respectively (Figure 5).

Multivariable Logistic Regression Models
A multivariable logistic regression model combining radiological
features and selected texture features was established to
differentiate SCNs from MCNs. The AUC was 0.932 (95% CI:
0.845-0.978) and 0.887 (95% CI: 0.0.718-0.973), the sensitivity
Frontiers in Oncology | www.frontiersin.org 521
was 87.5% and 90%, and the specificity was 82.4% and 84.6%
with the training and validation cohorts, respectively. Another
model based on radiological features alone was also constructed.
The AUC was 0.84 (95% CI: 0.732-0.916) and 0.91 (95% CI:
0.747-0.983), the sensitivity was 75% and 66.7%, and the
specificity was 82.4% and 77% with the training and validation
cohorts, respectively (Figure 6).
DISCUSSION

Radiomics appeared to be superior to conventional clinical and
radiologic approaches in differentiating the type of PCLs, while
the combination of radiomic features and clinical or imaging
features may possibly optimize the predictive accuracy of the
model (24). Our most compelling result was that we successfully
built multiple logistic regression models to differentiate SCNs
from MCNs. The logistic model combining radiological features
and enhanced CT texture features had an excellent performance,
with an AUC of 0.932, compared with the model built with
imaging features only, with an AUC of 0.84.

Imaging performance is the most intuitive approach for
distinguishing SCNs from MCNs. SCNs can appear in any part
of the pancreas, while the vast majority of MCNs (>90%) occur
in the body or tail of the pancreas. Since SCNs have always been
misdiagnosed as MCNs or other malignant lesions, several
special radiologic features have been summarized to help make
an accurate diagnosis, such as the typical honeycomb sign (4),
petal sign (29), lobulation sign (30) and extracapsular cystic sign
(31). External lobulations appear more frequently in SCNs than
in MCNs, and the extracapsular cystic sign also suggests an SCN,
while the intracapsular cystic sign is a typical presentation of
MCNs, which corresponds to other studies (4, 30, 31).

Although radiological manifestations enable an accurate
diagnosis in characteristic cases or provide higher priority to
less typical cases, SCNs, especially oligocystic types, are difficult
to differentiate from MCNs (7, 32). MCNs present as mildly
septate, large cystic neoplasms with smooth unilocular contours,
and their cystic wall can be thick and enhanced and accompanied
by dotted or arcuate calcifications (33). Surgery should be
performed when certain MCN diagnoses are made because
these lesions have malignant potential (10). Our study
successfully established a diagnostic model based on imaging
features. After training the model through logistic regression, the
resulting AUC values were 0.84 and 0.91 with the training and
validation groups, respectively, suggesting good discriminability
when distinguishing SCNs from MCNs. Lee et al. (32) described
the MRI features of SCNs and MCNs and found that oligocystic
SCNs tended to be smaller lesions with a lobulated (85.7%)
contour and multiple clustered cystic configurations. Manfredi R
et al. (7) included 57 patients with SCNs and 26 patients with
MCNs in the body-tail of the pancreas, and they described
similar MR imaging features as previous studies. After analysis,
they found that a microcystic appearance, central scarring and
lack of peripheral wall enhancement were suggestive of SCNs,
whereas a macrocystic appearance, enhancement of the
peripheral wall and mural nodules were suggestive for MCNs.
TABLE 1 | Comparison of the clinical information and imaging features between
SCNs and MCNs.

Variables SCNs (n=57) MCNs (n=43) P value

Age (years) 54 (44.3-61.3) 47 (33-54) 0.009*
Gender 0.042**
Male 14 (24.6) 4 (9.3)
Female 43 (75.4) 39 (90.7)
Symptomatic 11 (19.3) 5 (11.6) 0.300
Tumor maker 4 (7.0) 4 (9.3) 0.476
Location <0.001**
Head/neck 26 (45.6) 6 (14.0)
Body/tail 31 (54.4) 37 (86.0)
Largest diameter (mm) 38.3 (23.9-52.7) 53.1 (32.2-69.5) 0.009*
Central scar 16 (28.1) 0 (0) <0.001**
Calcification <0.001**
None 42 (73.7) 34 (79.1)
On cyst wall 0 (0) 8 (18.6)
On non-cyst wall 15 (26.3) 1 (2.3)
Combined with small cyst 0.003**
None 53 (93.0) 32 (74.4)
Intracapsular cystic sign 0 (0) 8 (18.6)
Extracapsular cystic sign 4 (7.0) 3 (7.0)
Cystic wall thickening 0.024**
<3mm 56 (98.2) 37 (86.0)
≥3mm 1 (1.8) 6 (14.0)
Tumor morphology 0.194
Single cyst 12 (21.1) 14 (32.6)
Multiple cysts 45 (78.9) 29 (67.4)
*means P value has significance by using Mann-Whitney U test; **means P value has
significance by using Chi test.
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However, to overcome diagnostic radiological limitations,
radiomics has been recently suggested to differentiate SCNs
from MCNs. The combination of radiomics and imaging data
may lead to a more precise diagnosis, as described in our study.

Texture analysis has been extensively used for pancreatic
tumors as well as PCLs (15–18, 20–22). Yun et al. (17) used CT
texture analysis to predict the prognosis of pancreatic cancers and
found that texture parameters extracted from preoperative CT
images could be used as an independent predictive tool. The grade
of pancreatic neuroendocrine tumors could also be predicted
accurately; for example, higher skewness and lower kurtosis were
Frontiers in Oncology | www.frontiersin.org 622
identified as risk factors for a higher tumor grade (34). Texture
analysis could also identify high-risk disease in patients with
IPMNs (35, 36). Xie et al. (22) developed a radiomic model to
distinguish macrocystic SCNs (n = 26) from MCNs (n = 31), and
their combined model showed better calibration than a single
model, as our study showed; however, their sample size was too
small and lacked a validation group. Yang et al. (19) included 53
SCNs and 25 MCNs, without external validation, and extracted
radiomics features only. After implementing random forest and
LASSO methods, they built a diagnostic prediction model to
distinguish SCNs from MCNs and obtained AUCs of 0.73 and
A B

FIGURE 3 | Feature selection for the LASSO algorithm. (A) The figure shows binomial deviance (y-axis) plotted against log (l) (x-axis). The left dotted vertical line is
drawn at the optimal value of l (min l value = 0.0106, log (l) = -4.5468), where the model provides the best fit of the data, corresponding to the number of selected
features (23). The right vertical dotted line represents the value of l that yields the best minimum deviation value (minimum l standard deviation value = 0.1011, log
(l) = - 2.2912). (B) LASSO coefficient profiles for all features, which shows that the coefficients of 271 texture features changes with the final selections of different
numbers of features.
FIGURE 4 | Decision curve analysis for RFE_LinearSVC. The black line represents the true divisional capacity in distinguishing SCNs from MCNs.
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0.70 with the training group and the validation group, respectively.
Our study also developed a model based on texture features, which
achieved an AUC of 0.934 with the training group and 0.855 and
0.892 with the internal and external validation groups, respectively.
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Textural features derived from enhanced CT images are useful in
differentiating SCNs from MCNs and could provide a noninvasive
method to identify whether or not surgery is needed. However, the
combination of imaging characteristics and texture features
A B C

FIGURE 5 | ROC curves of texture features with the training, internal validation and external validation cohorts. (A) represents the training group with AUC of 0.934,
(B) represents the internal validation group with AUC of 0.855, while (C) represents with external validation group with AUC of 0.892.
A B

C D

FIGURE 6 | ROC curves of the two models with the training and validation cohorts. (A, B) represent the imaging model alone, respectively, and (C, D) represent the
imaging and radiomics models.
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outperformed morphological features or texture features alone in
Yang’s study (15), which achieved an AUC of 0.893 for the mixed
model. They used the LASSO algorithm to select 15 features, and
no further algorithm was applied, as in our study. For further
feature selection, we used the RFE_LinearSVC method, a machine
learning method with an excellent classification performance that
leads to superior discrimination (28). The external validation
cohort also demonstrated the remarkable capability of the model
to differentiate SCNs from MCNs. A radiomics-based method
could differentiate SCNs from other PCLs, with an AUC of
0.767, sensitivity of 0.686 and specificity of 0.709 in Wei’s study
(23). Shen et al. (20) performed similar work to differentiate SCNs,
MCNs and IPMNs, and their random forest classifier achieved the
highest accuracy of 84.35 and 79.59% in both the training and
validation cohorts. Another study designed an automatic
classification algorithm using random forest and conventional
neural network ensemble to classify the most common types of
PCLs, with an overall accuracy of 83.6% (21).

Several limitations should be emphasized in this study. First,
this was a retrospective study with unavoidably inherent
selection bias. Second, we only considered the maximal size of
the lesion, which may not represent the whole lesion due to
tumor heterogeneity. Finally, although the sample size was the
largest among similar studies, even larger numbers of patients
are required, especially for internal and external validation
cohorts, in future investigations.

In conclusion, this study showed that a logistic model
combining radiological features and CT texture features is
more effective in distinguishing SCNs from MCNs of the
pancreas than models built from radiological features alone.
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Purpose: To evaluate the feasibility of apparent diffusion coefficient (ADC) value combined
with texture analysis (TA) in preoperatively predicting the expression levels of Ki-67 and
p53 in endometrial carcinoma (EC) patients.

Methods: Clinical, pathological and MRI findings of 110 EC patients were analyzed
retrospectively. The expression levels of Ki-67 and p53 in EC tissues were detected by
immunohistochemistry. ADC value was calculated, and three-dimensional (3D) texture
features were measured on T2-weighted images (T2WI), diffusion-weighted images (DWI),
and contrast-enhanced T1-weighted images (CE-T1WI). The univariate and multivariate
logistic regression and cross-validations were used for the selection of texture features.
The receiver operating characteristic (ROC) curve was performed to estimate the
diagnostic efficiency of prediction model by the area under the curve (AUC) in the
training and validation cohorts.

Results: Significant differences of the ADC values were found in predicting Ki-67 and p53
(P=0.039, P=0.007). The AUC of the ADC value in predicting the expression levels of Ki-67
and p53 were 0.698, 0.853 and 0.626, 0.702 in the training and validation cohorts.
The AUC of the TA model based on T2WI, DWI, CE-T1WI, and ADC value combined with
T2WI + DWI + CE-T1WI in the training and validation cohorts for predicting the expression
of Ki-67 were 0.741, 0.765, 0.733, 0.922 and 0.688, 0.691, 0.651, 0.938, respectively,
and for predicting the expression of p53 were 0.763, 0.805, 0.781, 0.901 and 0.796,
0.713, 0.657, 0.922, respectively.

Conclusion: ADC values combined with TA are beneficial for predicting the expression
levels of Ki-67 and p53 in EC patients before surgery, and they provide higher auxiliary
diagnostic values for clinical application.
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January 2022 | Volume 11 | Article 805545126

https://www.frontiersin.org/articles/10.3389/fonc.2021.805545/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.805545/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.805545/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.805545/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.805545/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.805545/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.805545/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.805545/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:dongjn@163.com
https://doi.org/10.3389/fonc.2021.805545
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.805545
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.805545&domain=pdf&date_stamp=2022-01-20


Jiang et al. Preoperative Evaluation in Endometrial Carcinoma
INTRODUCTION

Endometrial carcinoma (EC) is one of the most common
malignancies of the female reproductive system worldwide (1),
and the morbidity and mortality of EC have been rising with a
trend towards a younger age (2). It has been suggested that the
occurrence and development of EC are related not only to
estrogen levels but also to the proliferation and apoptosis of
tumor cells (3). A necessary condition for normal functioning of
the body is to maintain the dynamic balance between cell
proliferation and apoptosis (4, 5). If this balance is broken, it
will promote the occurrence of tumors. Ki-67 and p53 are closely
related to the proliferation and apoptosis of tumor cells. Ki-67 is
a marker of cell proliferation, is mainly expressed in the nucleus
of proliferating cells, and is used to evaluate the proliferation
state of tumor cells (6). Higher values of Ki-67 indicate increased
malignancy and invasiveness of tumours (7). p53 is an important
tumor suppressor gene that controls the initiation of the cell
cycle, regulates cell division, inhibits cell growth, regulates
transcription, and induces apoptosis (8).

DWI determines the cell density of tissues by detecting the
diffusion of water molecules and quantifying it by using the ADC
value (9). It has been shown (10) that the ADC mean value is
related to the expression level of Ki-67 and p53 in esophageal
squamous cell carcinoma, which can be used as a noninvasive
biological indicator to predict the proliferation of esophageal
squamous cell carcinoma cells and to determine the prognosis of
patients. TA is a method to quantitatively measure the
distribution and (or) relationship between histogram, pixel
intensity or grey level of an image in the region of interest (11,
12). TA highlights subtle patterns of tissue distribution (texture
features) that cannot be recognized by human eyes and extends
the intrinsic value of images. Thus, in recent years, TA has been
used with various cross-sectional imaging modalities and shows
Frontiers in Oncology | www.frontiersin.org 227
clinical applicability in the detection, diagnosis, prognosis,
characterization and response evaluation of different cancers
(13–15). In the present study, five models were developed to
preoperatively predict the expression levels of Ki-67 and p53 in
EC. The purpose of this study was to noninvasively evaluate the
expression levels of Ki-67 and p53 in EC and to provide imaging
markers for the clinical diagnosis and treatment of EC.
MATERIALS AND METHODS

Patients
The Institutional Review Board approved the present retrospective
study, and informed consent was waived. Between January 2015
and December 2020, 172 patients who underwent conventional
1.5T MRI before surgery were enrolled by searching our pathology
and radiology database in the study. The patients were screened
through the medical record system of our hospital. The inclusion
criteria were as follows: (a) histologic confirmation of primary EC
according to the World Health Organization criteria; (b) no
history of preoperative treatment; (c) preoperative available
T2WI, DWI and CE-T1WI images; (d) available Ki-67 and p53
expression based on immunohistochemical detection; (e) lesion
that could be measured and segmented on MRI. Patients were
excluded for the following reasons: (a) incomplete medical records
or did not receive treatment in our hospital (n=18); (b) other
malignant tumors (n=2); (c) postoperative pathology of non-
endometrial carcinoma (n=15); (d) inadequate histopathological
reports (n=16); (e) without obvious lesions or maximal tumor
diameter of less than 1 cm on MRI (n=11). Finally, 110 patients
were included in the present study. The flowchart of the exclusion
criteria is shown in Figure 1.

Patients were divided into a training cohort and a validation
cohort at a ratio of 7:3. This division was based on the
FIGURE 1 | Flowchart shows selection of studying population and exclusion criteria.
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chronological order in which patients were examined to ensure
the randomness of the pathological results in the training and
validation cohorts. The prediction models of Ki-67 and p53 were
built with a training cohort and evaluated with a validation
cohort. In the p53 expression of EC, only 38 patients with
negative p53 expression and 72 patients with positive p53
expression were enrolled. The ratio of negative p53 expression
patients to positive p53 expression patients was about 1:1.89,
revealing a sample imbalance. Therefore, the synthetic minority
over-sampling technique (SMOTE) algorithm was used to
balance the minority class, so that the two classes of EC
patients were 1:1(72 negative p53 expression and 72 positive
p53 expression).

MR Imaging
All MR imaging studies were performed with 1.5T MR imaging
units (United Imaging Healthcare, uMR560, Shanghai) using a
6-channel body array coil. All patients were asked to fast for at
least 4 hours, and intramuscular injection of scopolamine butyl
bromide was given half an hour before the MRI examination to
reduce bowel peristalsis. Detailed scanning parameters are listed
as follows: (1) Axial fast spin echo (FSE) T1-weighted images
(T1WI): repetition time (TR)/echo time (TE): 391 ms/9.3 ms,
slice thickness: 6 mm, inter-slice gap: 2 mm, a field of view
(FOV): 38 cm × 28 cm, and matrix size: 320 × 224. (2) Axial FSE
T2-weighted images (T2WI): TR/TE: 4500 ms/93 ms, slice
thickness: 6 mm, inter-slice gap: 2 mm, FOV: 28 cm × 25 cm,
and matrix size: 320 × 224. (3) Axial DWI with b-values of 0 and
1000 s/mm2: TR/TE: 3201 ms/75.4 ms, slice thickness: 6 mm,
inter-slice gap: 2 mm, FOV: 38 cm× 28 cm, and matrix size:
128 × 128. (4) Three-dimensional volumetric interpolated quick
Frontiers in Oncology | www.frontiersin.org 328
gradient echo contrast-enhanced imaging on axial: TR/TE: 8 ms/
3 ms, slice thickness: 5 mm, inter-slice gap: 0 mm, FOV: 38
cm×28 cm, and matrix size 256×192. The image was exported in
DICOM format.

Image Analysis
For the measurement of ADC values, two subspecialty
radiologists (reader 1 and reader 2) with 8 and 10 years of
experience in imaging diagnosis independently examined the
images to obtain ADC values. The original ADC data were
directly analyzed in the postprocessing workstation (United
Imaging Healthcare). Under the guidance of T2WI, the region
of interest (ROI) was delineated in the solid part of the largest
tumor layer on the DWI image with b=1000 s/mm2, avoiding
hemorrhage and necrotic areas as much as possible. The averages
were obtained after the repetition of the measurement three
times. The ADC value extraction process is shown in Figure 2.

For the assessment of texture features, the conventional axial
T2WI image, DWI with a b value of 1000 s/mm2, and axial CE-
T1WI image were segmented by reader 2. The conventional axial
T2WI image, DWI with a b value of 1000 s/mm2, and axial CE-
T1WI image were imported into ITK-SNAP software (version
3.6.0, http://www.itksnap.org). The three-dimensional region of
interest (3D ROI) of the whole tumor was manually delineated
at each level of sequence, including areas of hemorrhage
and necrosis site. To reduce registration errors, a DWI map
with a b value of 1000 s/mm2 was used to assist segmentation.
The 3D ROI file was then imported into AK (Analysis
Kit, Kinetics Version 2.1, GE Health-care) software to extract
texture features. Finally, a total of 828 texture features of the
whole tumor were automatically extracted from each of the
A B

D E F

C

FIGURE 2 | (A-C) The patient is a 54-year-old female with EC. Ki-67 expression was 70%, and p53 expression was positive. (A) Axial T2WI showed an irregular
mass in the uterine cavity (arrow). (B) ROI of the largest lesion area on DWI. (C) The ADC values on ADC map. (D–F) The patient is a 58-year-old female with EC.
Ki-67 expression was 60%, and p53 expression is negative. (D) Axial T2WI showed an irregular mass in the uterine cavity (arrow). (E) ROI of the largest lesion area
on DWI. (F) The ADC values on ADC map.
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three MR scanning sequences. As an example, the texture feature
extraction process on T2WI is shown in Figure 3. After one
week, 30 patients were randomly selected, and the images of
30 patients were re-segmented by reader 1 and reader 2.
The intraclass correlation coefficients (ICCs) were used to
evaluate the stability of texture features between inter- and
intrareader segmentations. The texture features with ICC >
0.75 were preserved.

Pathological Examination
Postoperative Ki-67 and p53 testing were performed by two
professional pathologists with more than 8 years of pathological
diagnosis experience. The diagnostic criteria of immuno-
histochemical staining for p53 included non-staining (0), faint
staining (1+), moderate staining (2+) and strong staining (3+). 0
was viewed as negative expression, while 1+ ~ 3+ was viewed as
positive expression. The expression of Ki-67 was localized in the
nucleus of tumor cells, and five fields were randomly selected
under the high-power microscope. The tumor cells were
determined to be positive if there were brown particles in the
cytoplasm of the tumor cells, and the staining intensity was
higher than the background nonspecific staining. According to Li
et al. (16), Ki-67 < 50% is the low expression group, and Ki-67 ≥
50% is the high expression group.

Statistical Analysis
The data were analyzed by SPSS 26.0 (IBM Corporation, Armonk
NY, USA), IPMS (Version 2.4.0, GE Health-care) software, and
MedCalc Statistical Software version 15.2.2 (MedCalc Software
bvba, Ostend, Belgium). Data that had a normal distribution are
expressed as the mean ± standard deviation, while abnormally
distributed data are expressed as the median. Independent sample t-
tests or Mann-Whitney U-tests were used to compare the ADC
values and the texture features of each group. P < 0.05 was
considered statistically significant. Univariate and multivariate
logistic regression analyses and cross-validation were performed
Frontiers in Oncology | www.frontiersin.org 429
on the texture features with statistical significance between each
subgroup to select the optimal texture features. The ADC model,
TA model, and combined model were built in the training cohorts
and validation cohorts to predict the expression levels of Ki-67 and
p53. The ROC curves were plotted to assess the performance of the
five models in both cohorts. The AUCs were compared using
DeLong’s test of equality. P < 0.05 was considered as an
independent predictor. A calibration curve was plotted to evaluate
the agreement between the prediction result and gold standard.
RESULTS

Clinical and Pathological Findings
Among the 110 EC patients, there were 50 cases of low Ki-67
expression and 60 cases of high Ki-67 expression as well as 38
cases of negative p53 expression and 72 cases of positive p53
expression. The age, FIGO stage, and histological type are
presented in Table 1. Regarding Ki-67 expression, there was
no significant difference between the two groups in age
(P=0.319), but FIGO stage (P=0.020) and histological type
(P<0.001) were significant differences. Regarding p53
expression, age (P=0.634) and FIGO stage (P=0.063) were not
significantly different between the two groups, but histological
type (P=0.030) was statistically significant.

ICC Analysis of ADC Values
ICC analysis of measurements of ADC values by the two attending
physicians showed good agreement between the surveyors [ICC =
0.883, 95% CI (0.825-0.921), P<0.001]. Therefore, this study used
only the results of the first radiologist for a full-text analysis. The
ADC values of subgroups were compared by independent sample t-
test, and the results are shown in Table 2. The ADC values in EC
with high Ki-67 expression were lower than that of the low Ki-67
expression (P =0.007 and P<0.001) with AUCs of 0.698 and 0.853 in
the training and validation cohorts, respectively. The ADC value in
FIGURE 3 | Radiomic workflow.
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EC with positive p53 expression was significantly lower than that in
EC with negative p53 expression, and the difference was statistically
significant (P=0.039 and P=0.048). The AUC of the ADC values in
differentiating the level of p53 expression were 0.626 and 0.702 in
the training and validation cohorts, respectively.

Texture Feature Difference and TA
Prediction Model of the Expression Level
of Ki-67 and p53 in EC
A total of 828 texture features were obtained from AK software
based on T2WI, DWI and CE-T1WI. Sufficient dimension
reduction was obtained with the use of univariate and
multivariate logistic regression analysis and cross-validation in
the training cohort. Three texture features based on T2WI, DWI,
and CE-T1WI were extracted from Ki-67 expression, and the
detailed information for these texture features is listed in Table 3.
Four texture features based on T2WI, DWI, and CE-T1WI were
extracted from p53 expression, and the detailed information for
these texture features is listed in Table 4. The AUC, sensitivity,
and specificity of the models that MR imaging-based TA used to
predict the expression level of Ki-67 and p53 in the training and
validation cohorts are shown in Table 5.

Efficacy of Five Models in Predicting the
Expression Levels of Ki-67 and p53 in EC
ROC curves were used to evaluate the diagnostic efficacy of
prediction models based on ADC values, T2WI, DWI, CE-T1WI,
and ADC values combined with T2WI + DWI + CE-T1WI in
Frontiers in Oncology | www.frontiersin.org 530
predicting the expression levels of Ki-67 and p53 in EC. The AUC of
ADC values in predicting Ki-67 and p53 expression levels in the
training and validation cohorts were 0.698, 0.853 and 0.626, 0.702,
respectively. The AUC of the TA model based on T2WI, DWI, CE-
T1WI, and ADC value combined with T2WI + DWI + CE-T1WI in
the training and validation cohorts for predicting the expression of
Ki-67 were 0.741, 0.765, 0.733, 0.922 and 0.688, 0.691, 0.651, 0.938,
respectively, and for predicting the expression of p53 were 0.763,
0.805, 0.781, 0.901 and 0.796, 0.713, 0.657, 0.922, respectively, with
great performance. DeLong’s test was used to analyze the
improvement resulting from the combined model compared to
the other single models in the training and validation cohorts
(Table 6). The diagnostic efficiency of the combined model was
superior to that of the single prediction models based on ADC
values, T2WI, DWI and CE-T1WI in the training and validation
cohorts. In general, there was no statistical significance among each
single model, but the ADC values model was superior to DWI and
CE-T1WI in the training group for p53. The ROC curves for the
training cohorts are shown in Figure 4. The calibration curves for
each training group are shown in Figure 5, and the statistics of the
Hosmer–Lemeshow test in each group were not significant (P >
0.05), indicating good calibration.4.
DISCUSSION

In recent years, research on tumor biomarkers has increased, aiming
to improve the survival rate and quality of life of cancer patients.
TABLE 2 | The ADC value in relation to Ki-67 and p53 and its predictive performance.

Training cohort Validation cohort

n ADC value×10-3mm2/s P-value AUC n ADC value×10-3mm2/s P-value AUC

low Ki-67 expression 34 0.933 ± 0.125 0.007 0.698 16 0.974 ± 0.131 <0.001 0.853
high Ki-67 expression 43 0.844 ± 0.150 17 0.772 ± 0.160
negative p53 expression 28 0.929 ± 0.153 0.039 0.626 10 0.962 ± 0.183 0.048 0.702
positive p53 expression 49 0.858 ± 0.137 23 0.830 ± 0.163
January 2022 | Volum
e 11 | Article 8
TABLE 1 | Patients clinical and pathological characteristics.

Ki-67 (n=110) p53 (n=110)

Patients (n) Low expression (<50%) High expression
(≥ 50%)

P-value Patients (n) Negative expression (0) Positive expression
(1+ ~ 3+)

P-value

Total 110 50 (45.5%) 60 (54.5%) 110 38 (34.5%) 72 (65.5%)
Age 53.6 ± 8.3a 55.3 ± 9.1 0.319b 54.0 ± 8.6 54.8 ± 8.9 0.634
FIGOc stage
I-II 97 48 (96.0%) 49 (81.7%) 0.020d 97 37 (97.4%) 60 (83.3%) 0.063
III-IV 13 2 (4.0%) 11 (18.3%) 13 1 (2.6%) 12 (16.7%)
Histologic type
eEMC 89 48 (96.0%) 41 (68.3%) <0.001 89 35 (92.1%) 54 (75.0%) 0.030
fNEMC 21 2 (4.0%) 19 (31.7%) 21 3 (7.9%) 18 (25.0%)
aData are mean ± standard deviation.
bT-statistical test.
cFIGO, International Federation of Gynecology and Obstetrics.
dChi-square test.
eEMC, Endometrioid carcinoma.
fNEMC, Non-endometrioid carcinoma.
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At the same time, as early detection of EC is critical for treatment, it
is important to identify reliable histopathology markers to improve
diagnostic accuracy and prognosis. Previous studies have found that
Ki-67 and p53 may contribute to the accuracy of cytodiagnosis of
different EC lesions (17). However, Ki-67 and p53 are commonly
detected using immunohistochemistry, which was not only invasive,
but may also be influenced by subjective factors. In the present
study, a novel MRI analysis method was proposed to detect the
expression levels of Ki-67 and p53 in immunohistochemistry. Not
only is MRI noninvasive, but it adds texture features without
increasing the patient’s risk of side effects. Quantitative analysis of
the texture of the image may also have an advantage over more
targeted biopsies.

The ADC values reflect the diffusion of water molecules in the
gap between tumor tissues (18), and they have been shown to be
negatively correlated with the proliferation degree and cell
density of tumors. The present study suggested that the ADC
value in the high Ki-67 expression group was significantly lower
than that in the low Ki-67 expression group in EC, which was
Frontiers in Oncology | www.frontiersin.org 631
similar to previous studies in EC (19). With the increase in the
expression level of Ki-67, the proliferation activity of EC cells
increases, tumors grow vigorously, cell density increases, the
arrangement is closer, and the extracellular space decreases,
resulting in lower ADC values.

p53 is located on chromosome 17p13-p3 and can be divided
into two types, namely, wild type and mutant type, and the
pathologically detectable form is mutant p53. When the
expression of mutant p53 increases, it may give rise to higher
cell proliferative activity, poorer differentiation, and more
malignant degree in EC. The present study suggested that the
ADC value in the positive p53 group was significantly lower than
that in the negative p53 group in EC. Our results were expected
and consistent with most previously reported data (10, 20).
Although our study showed that the ADC value differed
between different subgroups of Ki-67 and p53, the AUC of
ADC value for Ki-67 and p53 were 0.698 and 0.626,
respectively, which indicated poor performance. This may be
because ADC values may not only be related to the movement of
TABLE 4 | Statistical results of texture features of p53 negative and positive expression groups in EC.

Texture features Negative p53 expression Positive p53 expression Multivariate logistic regression analysis AUC

OR P

T2WI- texture features
T2WI -wavelet-LLH_glszm_GLNN 0.021 ± 0.008 0.026 ± 0.009 57.716 0.002 0.696
T2WI-wavelet-HHH_firstorder_Skewness 0.058 ± 0.257 -0.054 ± 0.251 0.015 0.004 0.601
T2WI -wavelet-HHL_glszm_GLN 8.149 ± 3.764 7.402 ± 3.465 0.032 0.009 0.562
T2WI-wavelet-HHL_glcm_ClusterShade -0.004 ± 0.013 0.004 ± 0.022 56.545 0.023 0.645
DWI- texture features
DWI -wavelet-HLH_glszm_GLNN 0.605 ± 0.070 0.558 ± 0.054 0.008 <0.001 0.703
DWI -wavelet-LHH_glszm_GLNN 0.520 (0.501,0.571) 0.556(0.520,0.625) 20.397 0.004 0.611
DWI -wavelet-LHL_glrlm_LRLGLE 14.721 ± 5.226 19.409 ± 10.092 63.688 0.006 0.645
DWI -wavelet-LHL_glszm_SZN 2.088 (1.617,3.159) 1.588(1.000,2.582) 0.035 0.014 0.637
CE-T1WI- texture features
CE-T1WI-firstorder_Maximum 138.960 ± 30.666 116.564 ± 33.654 0.015 0.006 0.700
CE-T1WI-firstorder_Kurtosis 3.265 ± 0.836 3.000 ± 0.679 0.012 0.003 0.612
CE-T1WI-glszm_SAE 0.219 ± 0.085 0.241 ± 0.067 38.569 0.009 0.620
CE-T1WI-glcm_InverseVariance 0.435 ± 0.068 0.396 ± 0.053 0.048 0.022 0.690
January 2022 | Volume 11 | Article 8
OR, odds ratio; GLNN, GrayLevelNon-UniformityNormalized; GLN, GrayLevelNon-Uniformity; LRLGLE, LongRunLowGrayLevelEmphasis; SZN, SizeZoneNonUniformity; SAE,
SmallAreaEmphasis.
TABLE 3 | Statistical results of texture features of Ki-67 high and low expression groups in EC.

Texture features low Ki-67 expression high Ki-67 expression Multivariate logistic regression analysis AUC

OR P

T2WI- texture features
T2WI-wavelet-HLL_firstorder_Skewness -0.805 ± 0.622 -0.399 ± 0.440 48.597 0.011 0.701
T2WI-wavelet-LLL_firstorder_Minimum 1125.378 ± 359.711 1277.809 ± 309.657 24.502 0.024 0.648
T2WI-wavelet-HHL_glszm_SZN 2.867(1.782,3.522) 2.833(1.800,5.870) 14.557 0.047 0.530
DWI- texture features
DWI-glcm_Correlation 0.212 ± 0.225 0.312 ± 0.202 14.134 0.020 0.646
DWI-wavelet-HHL_glszm_HGLZE 1.757 ± 0.333 1.969 ± 0.362 40.908 0.008 0.662
DWI-wavelet-LHL_firstorder_IR 3.006 ± 1.488 3.690 ± 1.633 49.623 0.017 0.669
CE-T1WI- texture features
CE-T1WI-wavelet-HLL_glszm_SAE 0.315 ± 0.091 0.339 ± 0.088 20.763 0.042 0.625
CE-T1WI-wavelet-HLH_firstorder_Kurtosis 4.503 ± 1.212 3.924 ± 0.684 0.037 0.018 0.647
CE-T1WI-wavelet-LLH_glcm_Correlation 0.251 ± 0.177 0.344 ± 0.169 24.602 0.018 0.644
OR, odds ratio; SZN, SizeZoneNonUniformity; HGLZE, HighGrayLevelZoneEmphasis; IR, InterquartileRange; SAE, SmallAreaEmphasis.
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water molecules, but also affected by the microcirculation of the
blood and tumor heterogeneity; therefore, they cannot truly
reflect the movement of water molecules in tissues.

TA is a method that quantifies pixel intensity variations
(heterogeneity). TA quantifies tumor heterogeneity by
calculating the grey changes of pixels in the image (21).
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Some studies (22, 23) have found that magnetic resonance
imaging–based texture features show the association among
deep myometrial invasion, lymphovascular space invasion, and
histological high-grade EC. However, only first-order statistical
features were extracted and analyzed in these previous studies. In
the present study, comprehensive texture features, including
TABLE 6 | AUC of the five models was compared.

Ki-67 (P-value) p53 (P-value)

Training Validation Training Validation

Combined vs. ADC <0.001 0.069 <0.001 0.031
Combined vs. T2WI <0.001 0.009 0.010 0.114
Combined vs. DWI 0.003 0.007 0.013 0.040
Combined vs. CE-T1WI <0.001 0.006 0.007 0.054
ADC vs. T2WI 0.609 0.140 0.077 0.450
ADC vs. DWI 0.399 0.063 0.033 0.944
ADC vs. CE-T1WI 0.681 0.113 0.033 0.746
T2WI vs. DWI 0.771 0.975 0.585 0.545
T2WI vs. CE-T1WI 0.900 0.802 0.799 0.383
DWI vs. CE-T1WI 0.702 0.783 0.714 0.701
January 2022 | Volume 11 | Art
TABLE 5 | The predictive performance of the models in training and validation cohort.

Model Training cohort Validation cohort

AUCa (95%CIb) SENc (%) SPEd (%) AUCa (95%CIb) SENc (%) SPEd (%)

Ki-67 T2WI model 0.741 (0.629-0.835) 53.5 85.3 0.688 (0.503-0.837) 94.1 37.5
DWI model 0.765 (0.655-0.854) 90.7 55.9 0.691 (0.507-0.840) 52.9 87.5
CE-T1WI model 0.733 (0.619-0.827) 72.1 64.7 0.651 (0.466-0.808) 94.1 43.8
Combinede model 0.922 (0.838-0.971) 90.7 82.4 0.938 (0.795-0.992) 76.5 100.0

p53 T2WI model 0.763 (0.653-0.853) 57.1 85.7 0.796 (0.620-0.915) 65.2 100.0
DWI model 0.805 (0.699-0.887) 71.4 85.7 0.713 (0.530-0.856) 87.0 60.0
CE-T1WI model 0.781 (0.673-0.868) 57.1 92.9 0.657 (0.471-0.812) 73.9 70.0
Combinede model 0.901 (0.811-0.957) 83.7 85.7 0.922 (0.773-0.986) 100.0 80.0
ic
aAUC, area under the curve;
bCI, confidence interval;
cSEN: sensitivity;
dSPE, specificity;
eCombined, ADC value combined with T2WI + DWI + CE-T1WI.
A B

FIGURE 4 | (A) ROC curves to predict Ki-67 expression levels in EC. (B) ROC curves to predict p53 expression levels in EC. Equality of AUC was assessed by the
DeLong’s test.
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first-order statistics, shape-based, GLCM, GLRLM, and GLSZM
were extracted based on T2WI, DWI, and CE-T1WI, and they
were used to predict the expression levels of Ki-67 and p53 in
patients with EC. The texture feature parameters are different in
each sequence, and the area under the curve (AUC ≥ 0.7) of the
“wavelet-HLL_firstorder_Skewness” of Ki-67 and the
“firstorder_Maximum” and “wavelet-HLH_glszm_GLNN” of
p53 are more significant. In our study, the Skewness value of
the high Ki-67 expression group was higher than that of the low
Ki-67 expression group, which indicated that the distribution of
the tissue strength grade of the high Ki-67 expression group in
EC was more disordered and heterogeneous. Skewness measures
the asymmetry of the distribution of values about the mean
value. A high skewness value indicates a more asymmetrical the
strength grade distribution and greater heterogeneity. The
maximum value represents the maximum grey level intensity
within the ROI. In the present study, the maximum value of the
p53-negative group was higher than that of the p53-positive
group, indicating more tumor hemorrhage, secretion, and solid
components in the p53-positive group of EC. GLNN measures
the variability of grey-level intensity values in the image with a
lower value indicating a greater similarity in intensity values. In
the present study, the GLNN value of the p53-negative group was
lower than that of the p53-positive group, which indicated that
the ECs of the p53-positive group were more inhomogeneous
and complex than those of the p53-negative group.

Different from previous studies, several studies (24, 25) on TA
used one or twoMRI sequences. We included T2WI, DWI, and CE-
T1WI sequences of EC and established a series of models in which
the ADC value and TA predicted the expression levels of Ki-67 and
p53. When the ROC curve was used to evaluate the performance of
Frontiers in Oncology | www.frontiersin.org 833
the predictive model, the AUC of the TA model based on T2WI,
DWI, and CE-T1WI in the training cohort for predicting the
expression of Ki-67 were 0.741, 0.765, and 0.733, respectively, and
for predicting the expression of p53 were 0.763, 0.805, and 0.781,
respectively. The AUC performed well. The results showed that the
TA of T2WI, DWI, and CE-T1WI was helpful to evaluate the
expression levels of Ki-67 and p53 in EC. In three sequences ofMRI,
the AUC of the TAmodel based on DWI image texture features was
higher, which was different from the results reported by Dong et al.
(26) who distinguished solitary fibrous tumor/hemangiopericytoma
and angiomatous meningioma base on texture feature. One
explanation may be that DWI provides a better representation of
the microscopic geometry of the EC tissue and the diffusion of water
molecules inside and outside the cell and that the images contain
more differential texture features with discriminating value.
However, there was no significant difference in the TA diagnostic
efficiency among the three sequences (T2WI, DWI, and CE-T1WI).
It is noteworthy that the diagnostic efficiency of the combined
models was better than that of the single model (P < 0.05). The
combined model performed well in identifying the expression level
of Ki-67 and p53 in EC with AUCs of 0.922 and 0.938 for Ki-67
expression and 0.901 and 0.922 for p53 expression in the training
and validation cohorts, respectively. Thus, the present findings
suggested that the constructed model of multiparameter MRI TA
can capture higher-order interactions between data, reflect tumor
heterogeneity from different aspects, and achieve better predictive
efficiency. In addition, when using DeLong’s test to evaluate
improvements to the combined model, the diagnostic efficiency of
the combined models was better than that of the single ADCmodel,
T2WI model, DWI model and CE-T1WI model (P < 0.05). The
ADC value improved the diagnostic efficiency of the model, which
A B D

E F G H

C

FIGURE 5 | Calibration curves of the prediction model in training cohort. (A–D) Calibration curves for a model that predicts the expression level of Ki-67. (A) T2WI.
(B) DWI. (C) CE-T1WI. (D) ADC value combined with T2WI + DWI + CE-T1WI. (E–H) Calibration curves for a model that predicts the expression level of p53. (E) T2WI.
(F) DWI. (G) CE-T1WI. (H) ADC value combined with T2WI + DWI + CE-T1WI. The 45° dotted line represents the ideal prediction, while the blue line represents the
prediction performance of the prediction model. The closer the blue line is to the dotted line, the better the performance of the prediction model.
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was consistent with the results of previous studies (27) combining
the ADC value with radiomics in EC.

However, there were several limitations in the present study.
First, the sample size of this study was small, and it was a
retrospective study, indicating potential bias in the selection of
enrolled cases. Second, the ADC values were measured based on
the maximum level of solid tumor components, which did not
represent the overall tumor condition. Third, our model did not
include EC FIGO stage, grading, or other clinical indicators.
Therefore, future studies will be performed to further increase
the sample size.
CONCLUSIONS

In conclusion, a combination of ADC values and TA based on
three MRI sequences were developed to provide a noninvasive
method for preoperatively predicting the expression levels of Ki-
67 and p53 in EC. To some extent, this noninvasive imaging
marker can compensate for the limitation of endometrium
curettage biopsy and adverse impact of tumor heterogeneity,
and it provide an objective imaging basis for clinical and accurate
individualized treatment.
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Feasibility of a CT-based lymph
node radiomics nomogram in
detecting lymph node
metastasis in PDAC patients

Qian Li1,2,3,4, Zuhua Song4, Dan Zhang4, Xiaojiao Li4, Qian Liu4,
Jiayi Yu4, Zongwen Li4, Jiayan Zhang4, Xiaofang Ren4,
Youjia Wen4 and Zhuoyue Tang1,2,3,4*

1Department of Radiology, Chongqing Medical University, Chongqing, China, 2Chongqing Institute
of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China,
3Chongqing School, University of Chinese Academy of Sciences, Chongqing, China, 4Department
of Radiology, Chongqing General Hospital, Chongqing, China
Objectives: To investigate the potential value of a contrast enhanced

computed tomography (CECT)-based radiological-radiomics nomogram

combining a lymph node (LN) radiomics signature and LNs’ radiological

features for preoperative detection of LN metastasis in patients with

pancreatic ductal adenocarcinoma (PDAC).

Materials and methods: In this retrospective study, 196 LNs in 61 PDAC

patients were enrolled and divided into the training (137 LNs) and validation

(59 LNs) cohorts. Radiomic features were extracted from portal venous phase

images of LNs. The least absolute shrinkage and selection operator (LASSO)

regression algorithm with 10-fold cross-validation was used to select optimal

features to determine the radiomics score (Rad-score). The radiological-

radiomics nomogram was developed by using significant predictors of LN

metastasis by multivariate logistic regression (LR) analysis in the training cohort

and validated in the validation cohort independently. Its diagnostic

performance was assessed by receiver operating characteristic curve (ROC),

decision curve (DCA) and calibration curve analyses.

Results: The radiological model, including LN size, and margin and

enhancement pattern (three significant predictors), exhibited areas under the

curves (AUCs) of 0.831 and 0.756 in the training and validation cohorts,

respectively. Nine radiomic features were used to construct a radiomics

model, which showed AUCs of 0.879 and 0.804 in the training and validation

cohorts, respectively. The radiological-radiomics nomogram, which

incorporated the LN Rad-score and the three LNs’ radiological features,

performed better than the Rad-score and radiological models individually,

with AUCs of 0.937 and 0.851 in the training and validation cohorts,

respectively. Calibration curve analysis and DCA revealed that the

radiological-radiomics nomogram showed satisfactory consistency and the

highest net benefit for preoperative diagnosis of LN metastasis.
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Conclusions: The CT-based LN radiological-radiomics nomogram may serve

as a valid and convenient computer-aided tool for personalized risk

assessment of LN metastasis and help clinicians make appropriate clinical

decisions for PADC patients.
KEYWORDS

pancreatic ductal adenocarcinoma, lymph node metastasis, radiomics, nomogram,
computed tomography
Introduction

Pancreatic ductal adenocarcinoma (PDAC), an aggressive

malignancy, is expected to become the second leading cause of

cancer deaths worldwide by 2030, of which 5-year overall

survival rate is still as low as 9% (1). Despite advances

in therapeutic methods, radical resection with appropriate

lymphadenectomy remains the only curative method. Lymph

node (LN) metastasis, one of the strongest postoperative

prognostic indicators, is closely associated with poor prognosis

(2–5). In clinical practice, the extent of lymph node dissection in

pancreatic cancer remains controversial, including extended and

standard lymphadenectomies. Preoperative diagnosis of LN

metastasis plays a crucial role in selecting a reasonable LN

dissection method, which could not only avoid the omission of

metastatic LNs but also decrease postoperative complications

and prevent overtreatment. In addition, the National

Comprehensive Cancer Network guidelines recommend

preoperative neoadjuvant treatment in PDAC patients with

LN metastasis, which is associated with a survival benefit (6–

8). Therefore, accurate preoperative diagnosis of LN metastasis

plays an important role in providing individualized treatment

plans for PDAC patients.

Computed tomography (CT) is the primary examination

method for PDAC tumor staging in some clinical practice

guidelines (9, 10). Many studies (11, 12) proposed the short-

axis diameter of LN above 10 mm as a criterion to diagnose

metastatic LNs; however, its diagnostic accuracy is easily

influenced by enlarged LNs secondary to inflammatory

hyperplasia. Other CT image features (11, 13, 14), including

LN shape, border contour and heterogeneity, are utilized to

improve diagnostic performance for LN metastasis in PDAC. It

is worth noting that detecting these features relies on subjective

judgment and may be challenging for first-line radiologists with

no substantial diagnosis experience. Both qualitative and

semiquantitative analyses by visual evaluation on conventional

radiological features cannot accurately detect metastatic LNs, so
02
37
more studies are needed for exploring preoperative diagnostic

tools to detect LN metastasis in PDAC patients.

In recent years, computer-aided imaging analysis could be

applied in clinic because of the sustained and fast growth of

computer science. Radiomics is an emerging discipline that can

rapidly extract innumerable features frommedical images such as

CT, magnetic resonance and ultrasound images in an automated,

high-throughput manner. These features could reflect

tumor heterogeneity quantitatively and the underlying

pathophysiology, which are imperceptible to naked eyes

(15–17). This method has been used to evaluate the LN status

preoperatively in head and neck, colon, papillary thyroid, cervical

and prostate cancers, with ideal predictive accuracy (18–22). In

PDAC, current studies are mainly based on original tumor

radiomics to predict LN metastasis (23–25), and studies based

on LN radiomics to discriminate metastatic from non-metastatic

LNs are scarce. In this study, we hypothesized that LN radiomic

features may contribute to evaluating the LN status

preoperatively and attempted to develop a contrast-enhanced

CT (CECT)-based LN radiological-radiomics nomogram for

detecting LN metastasis in patients with PDAC.
Materials and methods

Patients and LNs

This retrospective study was approved by the ethics

committee of Chongqing general Hospital , and the

requirement for written informed consent was waived. From

January 2019 to October 2021, PDAC patients administered

surgical resection with lymph node dissection in Chongqing

General Hospital were retrospectively reviewed.

Inclusion criteria were (1): pathologically confirmed PDAC

and LN status; (2) thin-layer CECT examination within 2 weeks

before surgery. Exclusion criteria were: (1) a history of systemic

treatment before surgery; (2) other coexisting primary
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malignancies; (3) missed clinical appointment; (4) image quality

unsatisfactory for analysis.

The Japan Pancreas Society’s nodal classification of regional

lymph node stations of the pancreas was used throughout the

study to describe radiological and pathological LN groups (26).

The criteria for LN eligibility were: (1) when LNs in one group

were all pathologically confirmed to be metastatic or non-

metastatic, all the LNs of this group were included; (2) when

LNs in one group contained both metastatic and non-metastatic

LNs, all the LNs of this group were excluded; (3) LNs with a

short-axis diameter below 5 mm were excluded. The flowchart

for selecting the study population is shown in Figure 1.

A total of 196 LNs (113 non-metastatic and 83 metastatic)

with histological confirmation in 61 patients (31 males and 30

females; mean age, 62.3 ± 9.2 years; age range, 39–80 years) were

analyzed. The subjects were divided into the training (January

2020 to October 2021) and validation (January 2019 to

December 2019) cohorts at a ratio of 7:3 according to the time

of CT. The training cohort included 43 patients with 137 LNs,

and validation cohort included 18 patients with 59 LNs.
The CECT protocol

The CT images of 39 participants were acquired on a spectral

CT scanner (IQon Spectral CT, Philips Healthcare). Typical

imaging parameters were: tube voltage, 120 kV; smart mAs;

rotation time, 0.5 s; detector collimation, 64 × 0.625 mm; field of

view, 350 × 350 mm; matrix, 512 × 512; layer thickness, 5 mm;

reconstruction thickness, 1.25 mm. A nonionic contrast medium

(Iohexol, 350 mgI/ml, Schering, Berlin, Germany) was injected

with an automatic injector at a dose of 1.5 ml/kg at 3.5 ml/s,

followed by 30 ml of saline flashing at the same rate. Arterial

phase scans were started with a delay of 10s after passing the

predetermined threshold of 150 HU within the abdominal aorta
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(activated bolus tracking). Portal vein phase scans were started

20 s after the arterial phase.

The CT images of 22 participants were acquired on a 64-slice

CT scanner (Aquilion CX, Canon Medical Systems). The same

acquisition protocol was used: tube voltage, 120 kV; smart mAs;

rotation time, 0.5 s; detector collimation, 64 × 0.5 mm; field of

view, 350 × 350 mm; matrix 512 × 512; layer thickness, 5 mm;

reconstruction thickness, 1.25 mm. The nonionic contrast

medium Iohexol (350 mgI/ml) was injected with an automatic

injector at a dose of 1.5 ml/kg at 3.5 ml/s, followed by 30 ml of

saline flashing at the same rate. Arterial phase images were

obtained 28 s after contrast medium injection, while portal

venous phase scans were obtained 22 s after arterial phase

image acquisition.

All images were uploaded to the picture archiving and

communication system (PACS) for further examination.
Clinical and radiological characteristics

Preoperative demographic characteristics, laboratory findings

and CECT conventional features were obtained. The radiological

features of LNs, including size, shape, margin, and degree and

pattern of enhancement, were analyzed by two radiologists with 7

and 9 years of experience in abdominal imaging, respectively.

They were blinded to pathological data and research design. Inter-

reader agreement was investigated for evaluating the radiological

features by intraclass correlation coefficient (ICC). The sizes of

LNs were reflected by their maximal short-axis diameters. LN

shapes were categorized as regular (oval) and irregular (round,

spiculated or lobulated), and LN margin was blurred or clearly

delineated. The enhancement patterns of LNs were categorized as

homogenous or heterogeneous in the portal venous phase. The

degree of enhancement was estimated with reference to the soft

tissue (14, 27, 28).
FIGURE 1

Flowchart of patients’ selection.
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Image processing, VOI delineation, and
radiomic analysis

This study workflow is shown in Figure 2. The detailed steps

for Volume of Interest (VOI) segmentation and feature

extraction were as follows. ① The original portal venous phase

images were downloaded from the PACS (Carestream) and

saved as Digital Imaging and Communication in Medicine

(DICOM) files. ② The concrete steps for image normalization

were: (a) for image registration, every portal venous phase image

slice from the raw data was resampled to a standardized pixel

dimension size of 1.0 × 1.0 × 1.0 mm3; (b) for gray-level

discretization, the image intensity of every portal venous phase

image was normalized via the gray-level discretization method

with a fixed number of bins (256 bins); (c) portal venous phase

images were viewed in a fixed head window (level = 60

Hounsfield unit (HU); width = 400 HU). ③ VOIs were

acquired by sketching LN borders manually slice-by-slice

on axial sections, automatically merged into a 3D region using

an open source software (3D Slicer, version 4.13.0; Boston, MA,

USA), and adjusted on sagittal and coronal sections by a

radiologist with 7 years of abdominal diagnosis experience. ④

All VOIs were confirmed again by a senior radiologist with 20

years of abdominal diagnosis experience. ⑤ The radiomic

features were automatically extracted from the VOIs with

SlicerRadiomics (an extension for 3D-slicer).
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39
Finally, a total amount of 1037 radiomic features in eight

categories (first-order, shape-based histogram, gray-level

cooccurrence matrix (GLCM), grey level size zone matrix

(GLSZM), gray level run length matrix, gray level dependence

matrix, neighboring grey-tone difference matrix and wavelet-

based features) were extracted from each VOI automatically. A

two-step program was designed to reduce high-dimensional data

and avoid overfitting. First, features with ICC above 0.8 were

considered to be reproducible and stable. Secondly, the least

absolute shrinkage and selection operator (LASSO) algorithm

was used to select optimal features with nonzero coefficients,

with parameter tuning performed with 10-fold cross-validation

to screen optimal radiomic features.
Model building

The differences in CT radiological features between

metastatic and non-metastatic LNs were first compared by

univariate analysis. Subsequently, significant (P<0.05)

radiological features in the univariate analysis were entered

into multivariate analysis to determine independent predictors

of metastatic LNs and to develop a radiological model by

multivariate logistic regression (LR) analysis in the training

cohort. Odds ratio (OR) and 95% confidence interval (CI) for

each independent factor were calculated.
FIGURE 2

The workflow of the radiomics analysis of LNs in this study. Step 1: LNs were semi-automatically segmented slice by slice in portal venous phase
images. Step 2: Radiomics features were extracted from the identified VOIs. Step 3: The LASSO logistic regression with penalty parameter tuning
conducted by 10-fold cross-validation was used to select the optimal radiomics features. Step 4: The LN Rad-score and the nomogram
incorporating radiological features with Rad-score were established.
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A radiomics score (Rad-score) was calculated for each LN by

determining the linear combination of the optimal radiomic

features weighted by their respective LASSO coefficients in the

training cohort. The Rad-score model for assessing the metastatic

LNs of PDAC patients was first developed in the training cohort.

To provide a simple tool for clinicians to predict metastatic

LNs in PDAC, a radiological-radiomics nomogram, which

combined the LN Rad-score and independent LN ’s

radiological features, was built by multivariate LR analysis in

the training cohort.
Model evaluation

The diagnostic performances of the three models were

assessed in the validation cohort by receiver operating

characteristic (ROC) curve analysis. The area under the ROC

curve (AUC), sensitivity and specificity were all determined, and

the Delong test was performed to compare the AUCs of the three

models. The calibration ability of the radiological-radiomics

nomogram was assessed by calibration curve analysis in the

whole cohort, which could compare consistency between the

pathological findings of LNs and nomogram-evaluated

outcomes. The clinical values of the Rad-score model and the

radiological-radiomics nomogram were assessed using decision

curve analysis (DCA) by calculating the net benefits in the

training and validation cohorts for a range of threshold

probabilities (29).
Statistical analysis

Statistical analysis was performed with the R software

(http://www.R-project.org), MedCalc (version 18.2.1), SPSS
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(version 25.0) and empower (R) (www.empowerstats.com,

X&Y Solutions, Inc., Boston, MA). Baseline clinical

characteristics were expressed as mean ± standard deviation,

or number and percentage, as appropriate. The two-sample t

test was performed to compare continuous variables. The

chi-squared test was carried out to compare categorical

variables. A two-sided P value below 0.05 was considered

statistically significant. Inter-reader agreement was calculated

using ICC analysis.
Results

Patient characteristics and LNs’
radiological features

The clinical characteristics of the training and validation

cohorts are summarized in Table 1. There were no significant

differences between the training and validation cohorts in

clinical characteristics. The radiological features of metastatic

and non-metastatic LNs in the training cohort are summarized

in Table 2. Agreement for evaluating radiological features

between two radiologists was good to excellent overall. ICC of

LN margin, size, shape, density and pattern of enhancement

were 0.871, 0.906, 0.892, 0.963 and 0.906, respectively. After

univariate and multivariate analyses, LN size(odds ratio [OR],

5.025; 95% CI, 1.453 - 17.374; P = 0.011), LN margin(OR, 7.482;

95% CI, 2.705 - 20.696; P < 0.001)and enhancement pattern (OR,

7.039; 95% CI, 2.107 - 23.513; P = 0.002) showed statistically

significant differences, and were included as independent

predictors of LN metastasis to construct a radiological model.

The diagnostic performance of the radiological model was

moderate, with an AUC of 0.831(95% CI, 0.761 - 0.900), a

sensitivity of 0.632 and a specificity of 0.900 in the training
TABLE 1 Patients characteristics.

Characteristic Training Cohort (n = 43) Validation Cohort (n = 18) p

Gender, No. (%) 0.943

male 22 (51.2) 9 (50)

female 21 (48.8) 9 (50)

Age (Mean ± SD) 62.56 ± 8.797 62.11 ± 10.51 0.865

CA199 level, No. (%) 0.276

Abnormal 33 (76.7) 16 (88.9)

Normal 10 (23.3) 2 (11.1)

CA125 level, No. (%) 0.147

Abnormal 32 (74.4) 10 (55.6)

Normal 11 (25.6) 8 (44.4)

Location, No. (%) 0.924

Head and neck 12 (27.9) 5 (27.8)

body 21 (48.8) 8 (44.4)

tail 10 (23.3) 5 (27.8)
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cohort, and an AUC of 0.756(95% CI, 0.629 - 0.884), a sensitivity

of 0.615 and a specificity of 0.848 in the validation

cohort (Figure 4).
Rad-score and radiological-radiomics
nomogram construction and
performance evaluation

To identify PDAC patients with LN metastasis, a total of 9 most

predictive radiomic features with nonzero coefficients in

the LASSO algorithm were finally selected (Figure 3) and

incorporated into the Rad-score model. The formula was as

follows: Rad-score = 0.2098 × Original_glszm_ZonePercentage +

0.0366 × Original_shape_Maximum2DDiameterSlice

+ 0.0001Wavelet_LLL_firstorder_10Percentile + 0.029Wavelet_

HLH_firstorder_Mean + 0.2022 × Wavelet_LHH_glcm_Imc 1 +

(− 0.5354) × Wavelet_HLH_glszm_ZonePercentage + 0.0707 ×

Wavelet_LHL_glszm_ZonePercentage + 0.5903 × Wavelet_

LHH_glszm_ZonePercentage + 0.4772 × Wavelet_

LLH_glszm_SizeZoneNonUniformityNormalized. The Rad-score

model showed a better performance than the radiological model
Frontiers in Oncology 06
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the radiological model, with an AUC of 0.879(95%CI, 0.824 - 0.934),

sensitivity of 0.684 specificity of 0.838 in the training cohort, and an

AUC of 0.804(95%CI, 0. 685 - 0.924), sensitivity of 0.654, specificity

of 0.818 in the validation cohort (Figure 4). The DeLong test

displayed that there was no significant differences between the

AUCs of the radiological model and Rad-score models in the

training cohort (P = 0.258, DeLong test) and validation cohort

(P = 0.543, DeLong test).

Three radiological features (LN size, LN margin and

enhancement pattern) combined with the LN Rad-score were

used to build a radiological-radiomics nomogram by multivariate

LR analysis. The radiological-radiomics nomogram for identifying

PDAC patients with LN metastasis risk in the training cohort is

shown in Figure 5A. This nomogram showed an AUC of 0.937

(95%CI, 0. 900 - 0.974), a sensitivity of 0.772 and a specificity of

0.863 in the training cohort, and an AUC of 0.851(95%CI, 0.741 -

0.961), a sensitivity of 0.692 and a specificity of 0.909 in the

validation cohort (Figure 4). The DeLong test revealed that the

radiological-radiomics nomogram had enhanced predictive

performance than the radiomics and radiological models in the

training cohort(P = 0.010, DeLong test; P < 0.0001, DeLong test),

with no significant differences in the validation cohort(P = 0.228,

DeLong test; P = 0.084, DeLong test).
TABLE 2 Univariate and multivariable analysis of CT radiological features for LN metastasis evaluation in the training cohort.

Factors Univariate analysis Multivariate analysis

Odds ratio (95% CI) p Odds ratio (95% CI) p

Size 11.943 3.827-37.272 < 0.001 5.025 1.453-17.374 0.011

Shape 1.700 0.773-3.741 0.187

Margin 10.000 4.080-24.512 < 0.001 7.482 2.705-20.696 < 0.001

Degree of enhancement

Mild ref.

Moderate 2.273 0.930-5.554 0.072

Strong 1.773 0.718-4.377 0.214

Patterns of enhancement 11.401 3.768-34.500 < 0.001 7.039 2.107-23.513 0.002
frontier
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FIGURE 3

The framework for radiomics features selection. (A) The LASSO logistic regression was used to select LN radiomics. A tuning parameter was
selected via 10-fold cross-validation and nine with nonzero coefficients were selected finally. (B) Histogram shows the role of nine selected
radiomics features used to calculate the Rad-score. The y-axis represents individual radiomics features, with their coefficients in the LASSO
regression analysis plotted on the x-axis.
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Calibration curve analysis of the nomogram demonstrated the

prediction results were in good agreement with the actual

observations both in the training and validation cohorts (Figure 5B).

DCA of the Rad-score model and radiological-radiomics

nomogram in the training and validation cohorts are presented

in Figure 6. The curves demonstrated that the Rad-score model

and radiological-radiomics nomogram provided more benefit

than the treat all or none principle in PDAC patients for all

threshold probabilities in the training cohort and all most

threshold probabilities in the validation cohort.
Discussion

In this retrospective study, we developed a radiological-

radiomics nomogram that incorporated the LN radiomics

signature with LNs’ radiological features to evaluate the status

of LNs in patients with PDAC. In addition, the radiological-
Frontiers in Oncology 07
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radiomics nomogram performed better than the Rad-score and

radiological models. These findings indicated that LN radiomics

analysis could be effective for preoperative diagnosis of

metastatic LNs in patients with PDAC.

In the current study, we found LN size, LN margin and

enhancement pattern were the optimal radiological features to

detect LN metastasis. Heterogeneous enhancement, which may

reflect unevenly distributed tumor angiogenesis and internal

necrosis, is considered a reliable feature of LN metastasis (27,

28). Blurred margin may be caused by tumor cell infiltration into

peri-nodal adipose tissue. A short-axis diameter of LNs greater

than 10 mm is widely used to diagnose nodal involvement in

PDAC. In agreement, we also demonstrated that large LNs (>10

mm) are more prevalent in metastatic LNs compared with non-

metastatic LNs. Roche et al. also indicated this criterion could lead

to high diagnostic specificity in evaluating the LN status (30).

Based on these three predictors we constructed a radiological

model to identify metastatic LNs in patients with PDAC, which
A B

FIGURE 5

A radiological-radiomics nomogram was plotted combining independent radiological features with Rad-score in the training cohort (A).
Calibration curves for the radiological-radiomics nomogram in the training cohort and in the validation cohort (B). The 45° straight line indicates
the ideal performance of the radiological-radiomics nomogram. A closer distance between two curves indicates higher accuracy.
FIGURE 4

ROC curves of the radiological model, Rad-score model and radiological-radiomics nomogram for diagnosing metastatic LNs in the training
cohort and validation cohort.
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had a good diagnostic performance with AUCs of 0.831 and 0.756

in the training and validation cohorts. These results revealed that

the radiological model could be used for differential

diagnosis between metastatic and non-metastatic LNs. However,

texture heterogeneity as a fundamental feature of the LN itself

through naked-eye observation has not been applied (31, 32).

Radiomics can extract high-dimensional objective and

quantitative features from the segmented volumes and to

assess the spatial distribution of voxels that could profile

heterogeneity (17). The present study applied LN radiomics to

evaluate the LN status and found 9 radiomic features quantified

on portal-venous CT-image that could help diagnose metastatic

LNs in PDAC. Among these features, most were determined on

images preprocessed with wavelet filters (33), which indicated

that higher order statistics features are more valuable for

evaluating the LN status. Five GLSZM features could imply

the extent of the spatial correlation or uniformity of gray-levels.

GLCM Informational Measure of Correlation 1 was increased in

metastatic LNs, which indirectly indicated that metastatic LNs

have a higher degree of heterogeneity. First order features,

including mean and 10th percentile, significantly correlate with

the LN status, which provide statistical information on the

distribution and number of pixels with the same intensity in

the VOI (34). Furthermore, this study found that Maximum2D

Diameter Slice, which can express the largest pairwise Euclidean

distance between LN surface voxels in the slice plane, was larger

in the metastasis group. This was a reasonable evidence that

metastatic LNs are preferably larger.

The Rad-score model composed of the above radiomic

features showed better diagnostic performance compared with
Frontiers in Oncology 08
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the radiological model, with AUCs of 0.879 and 0.804 in the

training and validation cohorts, respectively.

By incorporating the radiological model and the Rad-score,

we built a LN radiological-radiomics nomogram, which had the

highest AUC (training cohort, 0.937; validation cohort, 0.851)

and diagnostic sensitivity (training cohort, 0.772; validation

cohort, 0.692). This nomogram showed significantly better

diagnostic efficacy for metastatic LNs in patients with PDAC

compared with the Rad-score and radiological models in the

training cohort (all P<0.05, DeLong test). This finding revealed

that combining the internal texture heterogeneity and

radiological features of LNs could be a prospective approach

to enhance precision medicine. Furthermore, this nomogram

could conveniently and visually estimate the status of LNs in

PDAC patients. With the help of the radiological-radiomics

nomogram, individualized risk assessment in terms of detecting

LN metastasis could be implemented for PDAC patients. Finally,

the calibration curve of the nomogram showed good agreement

between nomogram-evaluated and pathological results in the

training and validation cohorts. In addition, we performed a

decision curve analysis demonstrating a clinical net benefit for

the radiological-radiomics nomogram. This curve showed the

nomogram could confer enhanced net benefits than treating all

or no patients for all threshold probabilities in the training

cohort and almost all in the validation cohort.

There were several limitations in this study. Firstly, because

this was a single-center retrospective study, further refinements

with multicenter studies are needed to confirm these findings.

Secondly, VOIs were segmented semi-automatically in this

research and errors were inevitable due to segmentation
A B

FIGURE 6

DCA for the Rad-score model and radiological-radiomics nomogram in the training cohort (A) and validation cohort (B). The y-axis measures
the net benefit and the x-axis represents the threshold probability. The grey line that all patients had LN metastasis and the black line indicate
no patients had LN metastasis. The red line and the green line indicate the net benefit of the Rad-score model and the radiological-radiomics
nomogram at different threshold probabilities, respectively. The radiomics nomogram had a higher overall net benefit in differentiating LN
metastasis than Rad-score model.
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uncertainty even though good agreement in inter-observer and

intra-observer reproducibility was achieved. Deep learning for

automatic segmentat ion to increase efficiency and

reproducibility still needs further exploration (35). Thirdly,

tumor radiomics was not included in this study, so the

diagnostic value of combining the radiomics and tumor

radiomic features of LNs requires further investigation.

Fourthly, we only performed LN radiomics analysis based on

the portal venous phase images and didn’t compare or combine

with other phase images to definite which may have the potential

to improve diagnostic efficiency. This owns the significance for

further exploration.

Conclusion

This study developed and validated a radiological-radiomics

nomogram that integrated the LN Rad-score and LNs’

radiological features for preoperatively evaluating the LN

status in PDAC patients. This nomogram could serve as an

easy-to-use, noninvasive and effective tool to assist radiologists

in diagnosing metastatic LNs and to guide the clinical decision-

making process for PDAC patients.
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Predicting anaplastic
lymphoma kinase
rearrangement status in
patients with non-small cell
lung cancer using a machine
learning algorithm that
combines clinical features
and CT images

Peng Hao1†, Bo-Yu Deng2†, Chan-Tao Huang1, Jun Xu1,
Fang Zhou1, Zhe-Xing Liu3, Wu Zhou2* and Yi-Kai Xu1*

1Nanfang Hospital, Southern Medical University, Guangzhou, China, 2School of Medical Information
Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China, 3School of Biomedical
Engineering, Southern Medical Uinversity, Guangzhou, China
Purpose: To develop an appropriate machine learning model for predicting

anaplastic lymphoma kinase (ALK) rearrangement status in non-small cell lung

cancer (NSCLC) patients using computed tomography (CT) images and

clinical features.

Method andmaterials: This study included 193 patients with NSCLC (154 in the

training cohort, 39 in the validation cohort), 68 of whom tested positive for ALK

rearrangements and 125 of whom tested negative. From the nonenhanced CT

scans, 157 radiomic characteristics were extracted, and 8 clinical features were

collected. Five machine learning (ML) models were assessed to find the best

classification model for predicting ALK rearrangement status. A radiomic

signature was developed using the least absolute shrinkage and selection

operator (LASSO) algorithm. The predictive performance of the models

based on radiomic features, clinical features, and their combination was

assessed by receiver operating characteristic (ROC) curves.

Results: The support vector machine (SVM) model had the highest AUC of

0.914 for classification. The clinical features model had an AUC=0.805 (95% CI

0.731–0.877) and an AUC=0.735 (95% CI 0.566–0.863) in the training and

validation cohorts, respectively. The CT image-based ML model had an

AUC=0.953 (95% CI 0.913–1.0) in the training cohort and an AUC=0.890

(95% CI 0.778–0.971) in the validation cohort. For predicting ALK

rearrangement status, the ML model based on CT images and clinical

features performed better than the model based on only clinical information
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or CT images, with an AUC of 0.965 (95% CI 0.826–0.882) in the primary

cohort and an AUC of 0.914 (95% CI 0.804–0.893) in the validation cohort.

Conclusion: Our findings revealed that ALK rearrangement status could be

accurately predicted using an ML-based classification model based on CT

images and clinical data.
KEYWORDS

tomography, X-ray computed, anaplastic lymphoma kinase, gene mutation, non-
small cell lung cancer, machine learning, texture
Introduction

Lung cancer is the leading cause of cancer-related death

worldwide. In 2013, in women aged 40 to 59 years, lung cancer

surpassed breast cancer as the main cause of cancer death (1).

Non-small cell lung cancer (NSCLC) is the most common

histological subtype, accounting for 85%-90% of lung cancers

(2). In the past decade, the emergence of novel drugs that target

signalling pathways activated by genetic changes, for example,

EGFR mutations and ALK rearrangement status, has

revolutionized the treatment of NSCLC patients (3). The

presence of an ALK rearrangement protein has been

discovered in a small percentage of NSCLC patients, mostly in

those with lung adenocarcinoma (3). Approximately 5% of lung

adenocarcinomas have ALK rearrangement status, which is

mutually exclusive with EGFR mutations. Crizotinib is a

promising ALK fusion status inhibitor (4). Thus, identifying

ALK rearrangements in NSCLC patients is crucial for

therapy planning.

Because histologic and genetic information from invasive

biopsies is often taken from only a section of a generally

heterogeneous tumour, this characterization information does

not provide a thorough depiction of functional and physiological

aspects of lesions (5). The most common method for diagnosing

and assessing treatment response of lung malignancies is

computed tomography (CT). Thus, previous research has

examined the link between some gene mutations in lung

cancer and clinical features and radiological characteristics of

lung cancer (6). Some CT imaging features, such as central

tumour location, pleural effusion, lobulated margin, large mass

and distant metastases, have been linked to ALK gene

rearrangements in these studies (7–13). However, the

evaluation of these radiological characteristics of lung cancer,

is time-consuming and greatly dependent on the radiologist’s

knowledge. Machine learning (ML) is a computer-based method

for diagnosing lung cancer, predicting survival, and forecasting

gene mutations. It can help radiologists discover more about the

phenotype of a tumour including that is not obvious on CT scans
02
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(14–19). To avoid overfitting and develop robust predictive or

prognostic models, a successful radiomic prediction study

requires several phases, including accurate statistical analysis,

feature selection, and classification. To select a subset of features

that can be merged into a multiparametric model, a variety of

ML algorithms can be utilized. Although radiomic analysis has

used a variety of ML approaches for categorization, there is no

“one size fits all” solution because the effectiveness of different

ML processes has been proven to vary depending on the kind of

data or applicant (20).

As a result, the goal of this research was to investigate

effective radiomics-based ML algorithms that predict ALK

rearrangements in patients with NSCLC.
Materials and methods

Patients inclusion

From May 2012 to February 2020, we retrospectively

reviewed all CT scans of NSCLC patients from PACS system

at Nanfang hospital. This retrospective study examined 1002

patients with pathologically proven lung cancer who underwent

surgery or received a biopsy. The clinical features of the patients

were retrieved from the hospital information system. This study

included patients over the age of 18 who met the following

criteria: (1) had tumour specimens with confirmed ALK gene

rearrangements and pathological testing; (2) had pretreatment

CT images; and (3) had complete clinical data. The

exclusion criteria were as follows: (1) patients receiving

treatment before CT scan (2) the time between CT

examination and treatment was longer than one month; (3)

multiple tumour nodules were found in the lung; (4) tumour

lesions were near the hilar and could not be separated from

neighbouring hilar architecture. According to these criteria, 716

patients were included, 648 of whom were ALK negative and

68 of whom were positive for ALK rearrangements. Twenty

percent of the ALK negative patients were randomly chosen to
frontiersin.org
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participate in our study. Finally, this study included 193 patients,

125 ALK negative patients and 68 ALK positive patients. The

flowchart of patients selection for non-small cell lung cancer

(NSCLC) was show in Figure 1. The TNM system was utilized

for staging based on the American Joint Committee on Cancer

(AJCC) manual (21). The patients were divided into two groups:

a primary cohort (n=154 patients) and an independent

validation cohort (n=39 patients), were randomly chosen in a

ratio of 8:2 from patients with and without ALK rearrangements.

This study was approved by the Ethical Committee of the

Nanfang Hospital.

The patients were examined with 256-slice iCT (Philips

Health care, Best, Netherlands) or Siemens Medical Solutions’

Sensation 64, Definition AS (Forchheim, Germany) equipment.

The scanning parameters of the two scanners were as follows:

tube rotation time 0.5 s vs. 0.5 s, pitch 0.87 vs. 1.2, detector

collimation 128 0.625 vs. 64, tube voltage 120 kV, tube current

100-300 mA, field view 350 mm, matrix 512×512, slice thickness

1-5 mm, reconstruction interval 1 mm, and voxel spacing (X and

Y directions) 0.52-1.36 mm. Two different scanners from

different manufacturers were adopted. Standardization and

normalization were applied to all matrices before analysis (22).
Analysis of ALK rearrangement status

For genetic status determination, tissue samples acquired

from biopsy or surgical excision were employed. The tissue

specimens were prepared using formalin fixation and paraffin

embedding. Immunohistochemistry with the D5F3 antibody,

which has already been widely utilized for this purpose, was
Frontiers in Oncology 03
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employed to detect ALK rearrangement gene expression. Two

senior pathologists validated the findings. Wild-type ALK was

defined as a specimen that did not have the ALK fusion

gene present.
Radiomic analysis

The radiomic analysis included five steps, which was

illustrated in Figure 2.
Segmentation of tumours

For each patient, horizontal, coronal and sagittal views were

used for tumour segmentation by using ITK-SNAP software

(http://www.itksnap.org/). A chest radiologist with 8 years of

experience manually segregated the regions of interest (ROIs)

and a senior with ten years of expertise reviewed all the ROIs. To

ensure segmentation reproducibility, 30 patients were chosen at

random to validate the inter-observer agreement between two

observers’ delineations of ROIs using the dice similarity

coefficient (DSC) by using Matlab 2018b, average value:0.8349

(from 0.6680 to 0.9186).To illustrate,the level of volume

agreement the categorization scale below was used: DSC≥0.85

(High Agreement), 0.85>DSC≥0.70(Medium Agreement),

0.7>DSC≥0.5 (Low Agreement), DSC<0.5(Very Low

Agreement) (23) Some inappropriate segmentations for ROI

bounds were modified where necessary. An automatic active

contour segmentation method was used to refine the manually

segmented findings.
FIGURE 1

The flowchart of patients selection for non-small cell lung cancer (NSCLC).
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Radiomic features extraction

Radiomic characteristics were extracted from two-

dimensional region of interest (2D-ROI). Pyradiomics (http://

pyradiomics.readthedocs.io/en/latest/index.html) was utilized.

To be potentially clinically beneficial, we constructed classifiers

based on radiomic features acquired from each ROI. Grey level

co-occurrence matrix (GLCM), grey level run length matrix

(GLRLM), local binary pattern (LBP), histogram, and clinical

parameters were acquired from each ROI. The texture and

clinical features were then normalized.
Feature selection and classification
algorithms

The LASSO technique and 10-fold cross-validation were used

to obtain the best subset of radiomic characteristics. A variety of

classifiers, including support vector machine (SVM), eXtreme

gradient boosting (XGboost), tree-based ensemble classification

algorithm (Adaboost), decision tree (DT) and logistic regression
Frontiers in Oncology 04
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(LR), were assessed. Themodel’s performance was evaluated using

receiver operating characteristic (ROC) curves and the area under

the ROC curve (AUC) by 100 repeated tests. Accuracy, sensitivity,

F1, recall and mean absolute error were all calculated as well.
Statistics analysis

Data was analysed with IBM SPSS 25.0 (http://www.ibm.

com). For continuous variables, the two independent samples t-

test or the Mann–Whitney U test were used, and the significant

differences in the MLmodel between the ALK+ and ALK- groups

were investigated using the same statistical methodologies. For

categorical variables, such as gender, history of smoking,

smoking index, clinical stage, distant metastasis, and tumour’s

degree of pathological invasiveness and EGFR mutation of

tumour, the chi-square test or Fisher’s exact test was used. The

difference in AUCs between the two models was calculated

statistically using DeLong’s test. The ML model was

implemented using the Keras toolkit and Python (version

3.6.8, https://www.python.org/).
FIGURE 2

The radiogenomics framework of this study.
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Results

Patient Cohort

The clinical characteristics of the patients were described in

Table 1. The ALK rearrangement-positive patients were

significantly younger than the ALK rearrangement-negative

individuals (P < 0.001). In addition, more patients with stage III-

IV cancer were found in the ALK mutation group (P < 0.001).
Performance of the radiomic machine
learning algorithm

The best subset of radiomic characteristics was selected using

the LASSO technique and 10-fold cross-validation. The

radiomic features were retrieved from the 193 patients in the

training set to create the radiomic signature. (Figures 3–5). The

chosen radiomic properties were as follows: 37hist, 94hist,

99hist, 116hist, 117hist, 123hist, calcutes, homogeneity, Lbp1,

Lbp2, Lbp5, PR, SRE, SALGLE (Table 2). Age and phase are

proved significant clinical features.
Frontiers in Oncology 05
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Supervised learning classification

After applying SVM, XGboost, Adaboost, LBP, DT, and LR

to determine the optimal features, we identified the most

appropriate approach for generating the final classification

model based on their performances. We also used grid-search

cross-validation to find the best parameters for all of the ML

techniques discussed above. In terms of detecting ALK

mutations, SVM exceeded the other traditional ML methods as

shown in Tables 3, 4 and Figure 6.
Predictive performance of the machine
learning model

The SVM classifier had the highest AUC for classification

(Table 5). In the primary cohort, the ML model trained on both

CT scans and clinical features performed well AUC=0.965 (95%

CI 0.8257–0.8823), which was verified in the validation cohort

AUC=0.914 (95% CI 0.804–0.891; P<0.001). For the CT image-

based model, the AUC was 0.953 (95% CI 0.913–1.0) and 0.890

(95% CI 0.778–0.971) for the primary and validation cohorts,

respectively. The performance of the ML models trained on both
TABLE 1 Clinical characteristics of the ALK (+) and ALK (-) patients.

Characteristics ALK (+) ALK (-) P-valueb

(n = 68) (n = 125)

Age (yearsa) 50.94 ± 12 57.57 ± 10.3 <0.001*

Gender 0.748

Males 31 (46) 60 (48)

Females 37 (54) 65 (52)

Smoking status
Never
Former
Current

52 (76)
10 (15)
6 (9)

92 (74)
24 (19)
9 (7)

0.704

SI (pack-years)
SI ≤ 10
10 < SI < 20
SI ≥ 20

52 (76)
6 (9)
10 (15)

85 (68)
22 (18)
18 (14)

0.248

EGFR mutation
Positive
Negative

0 (0)
68 (100)

74 (59)
51 (41)

<0.001*

Pathology features
AIS
IVC

1 (1)
67 (99)

9 (7)
116 (93)

0.169

TNM stage
I-II
III-IV

7 (10)
61 (90)

57 (46)
68 (54)

<0.001*

DM
Positive
Negative

55 (81)
13 (19)

62 (49.6)
63 (50.4)

<0.001*
fron
aMean ± standard deviation (range).
bALK– group vs. ALK+ group.
*P < 0.05.
ALK, anaplastic lymphoma kinase; AIS, adenocarcinoma in situ; IAC, invasive adenocarcinoma; SI, smoking index; DM, distant metastasis.
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CT images and clinical characteristics was significantly higher

than that of the clinical model. The result for the primary cohort

trained on the clinical model was an AUC=0.805 (95% CI 0.731–

0.877; P<0.0001), and that for the validation cohort was an

AUC=0.735 (95% CI 0.566–0.863; P<0.005). The decision curves

are shown in Figure 7. The results indicated that ML models

trained on both CT images and clinical data performed better

than ML models trained by only CT images or the

clinical characteristics.
Discussion

Our findings demonstrated that using the SVM classifier to

predict ALK gene rearrangements based on both CT scans and
Frontiers in Oncology 06
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clinical characteristics was the most effective strategy. In our

study, the integrated model exhibited the highest AUC, which

exceeds the clinical models based on previously identified CT

characteristics (also known as morphological or semantic CT

features) (12, 24) and combined with clinical features, semantic

CT features, and radiomic features (25).

Among clinical features, we found ALK+ patients are often

younger than ALK- patients, which is consistent with prior

studies (7). Female sex and smoking history, on the other

hand, do not differ much between the two groups of patients.

The bulk of the patients in our ALK+ study was in advanced

stages of cancer (III-IV). ALK gene rearrangements were more

common in lung cancer at advanced stages, in accordance with a

prior study (10). Clinical information is useful in improving the

integrated model for ALK rearrangement status detection, as it
FIGURE 4

The tuning parameter in the LASSO model was chosen using a 10-fold cross-validation method based on minimum criterion. The LASSO
regression cross-validation model’s binomial deviances as a function of logs(l) were plotted.
A B

FIGURE 3

(A) Heatmap of the 157 radiomic features. (B) Heatmap of the 30 most important radiomic characteristics.
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increases the integrated model’s performance by incorporating

clinical characteristics for lesions in the primary and validation

cohorts. A previous study had proposed a predictive model for

detecting ALK rearrangements, using age as the only clinical

component selected and many semantic CT features

(AUC=0.846) (9).

Our findings imply that radiomics can be used to predict

ALK rearrangement status on CT images in patients with

NSCLC. The histogram and texture categories served as the

foundation for the radiomic model, which implies that the

intensity change of tumours was a potent predictor of the ALK
Frontiers in Oncology 07
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genetic mutation. In this study, we found that Rp, 37hist, and

calutes, that linked with ALK mutations. The AUC for

postcontrast CT radiomic characteristics detecting ALK

rearrangements was 0.829, according to Ma et al. (26).

However, their research was based on enhanced CT scans. The

radiomic model in our study demonstrates that radiomic

features extracted from nonenhanced CT images are sufficient

for developing a reliable ALK rearrangements prediction model

in NSCLC patients.

Radiomics is an emerging discipline attempting to bridge the

gap between medical imaging and personalized medicine (27,
TABLE 2 Selected features with descriptions.

Feature Name Description

Gray-level co-occurrence matrix (GLCM) Homogeneitycalutes Localization of regions with significant intensity changes; gradients detect edges and
quantify region boundaries

Gray-level run length matrix (GLRLM) Short-run emphasis (SRE)Short-Run
Low Gray-Level Emphasis (SRLGLE) Run percentage (RP)

Measure of the gray scale texture repeatability

Local binary pattern (LBP)
Lbp1
Lbp2
Lbp5

The lbp (local binary pattern) is an operator used to describe the local texture features of
an image.Reflects the content of each pixel to the surrounding pixels.

Histogram
37hist
99hist
94hist
116hist
117hist
123hist

Refect the distribution of voxel gray intensity
FIGURE 5

The final elements that were chosen to be maintained. The preserved characteristics were on the y axis, and the matching LASSO regression
coefficients were on the x axis. The log(l) coefficients of the features that have been fitted.
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28) by investigating the value of medical images in the diagnosis,

grading, and prognostication of diseases using medical image

analysis technologies and ML algorithms. However, the best way

to use certain medical images or objectives is unclear due to the

various feature selection approaches and ML algorithms (29).
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In recent years, researchers have investigated the efficacy of

various feature selection and ML algorithms in medical image

classification to determine whether they are appropriate for the

given medical image data. For example, Shiri I et al. (20)

examined radiomic characteristics from low-dose CT,
TABLE 4 Assessment of different classifier feature selection-based machine learning models for predicting ALK fusion type in the training cohort.

Accuracy Precision AUC F1 Mean absolute error Recall

LR 0.928 0.955 0.958 0.889 0.072 0.835

Adaboost 1 1 1 1 0 1

Decision Tree 0.894 0.913 0.906 0.836 0.106 0.778

XGBoost 0.989 0.990 0.996 0.983 0.011 0.977

SVM 0.943 0.985 0.953 0.911 0.057 0.851
frontie
TABLE 3 Assessment of different classifier feature selection-based machine learning models for predicting ALK fusion type in the validation cohort.

Accuracy Precision AUC F1 Mean absolute error Recall

LR 0.869 0.871 0.887 0.803 0.131 0.762

Adaboost 0.808 0.714 0.806 0.722 0.192 0.747

Decision Tree 0.812 0.790 0.806 0.708 0.188 0.665

XGBoost 0.842 0.822 0.875 0.759 0.158 0.720

SVM 0.849 0.932 0.890 0.747 0.151 0.63
FIGURE 6

The ROC curves of the top four models selected from the training phase on the testing dataset.
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diagnostic quality CT, and PET-CT as well as ML techniques

in NSCLC patients. Their results predicted mutation status of

EGFR and KRAS. Then, six feature selection procedures and 12

classifiers were used, and multivariate ML-based AUC

performances for EGFR and KRAS were improved to 0.82 and

0.83, respectively. Lan Song et al. compared the performance of

three feature selection approaches and two classification

methods for predicting ALK fusion in lung cancer patients

using clinical characteristics combined with conventional CT

and radiomic data (25). They extracted 1218 radiomic

characteristics from CT scans and discovered that the LR and

DT classifiers had the best prediction performance

(AUC=0.890). The optimal ML classifier and feature selection
Frontiers in Oncology 09
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method varied between studies, which could be related to a

variety of factors, such as visual modalities, feature extraction

algorithms, the number of features chosen, the goal task, and

cohort size. According to Han’s study, radiomics-based ML was

used to determine the best model for NSCLC histologic subtypes

(29), and SVM paired with LASSO produced the highest

prediction efficacy, similar to our study.

Even though our model’s performance was quite promising,

there are a few limitations in this study that need to be addressed.

First, although the results were favourable, the model’s ability to

handle imbalanced data must be improved to generalize the

prediction outcome to more datasets. Second, we may need to

employ a cutting-edge deep learning method to perform the
TABLE 5 Predictive performance of SVM in the primary and validation cohorts.

Model Cohorts Accuracy Precision AUC F1 Mean absolute error Recall

Clinacal features Primary 0.758 0.826 0.805 0.612 0.242 0.569

Validation 0.689 0.5 0.735 0.483 0.311 0.455

CT image Primary 0.923 0.946 0.953 0.877 0.077 0.792

Validation 0.858 0.938 0.890 0.769 0.142 0.675

CT image and clinigal features Primary 0.943 0.985 0.965 0.911 0.057 0.851

Validation 0.849 0.932 0.914 0.747 0.151 0.63
frontie
FIGURE 7

The ROC curve analysis of the CT radiomics models, clinical features, and combinations of CT radiomics and clinical features in the training
group and testing group.
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classification task is warranted. Several studies have successfully

constructed models to address this issue with positive results (30).

These findings have encouraged us to use neural networks to

construct the baseline model in future studies.

In conclusion, the ML model that combined CT scans and

clinical features are able to accurately identify the status of the

ALK gene. This study provides a noninvasive solution, which is a

quick and simple way to guide clinical genetic diagnosis.
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Prediction of single pulmonary
nodule growth by CT radiomics
and clinical features — a one-
year follow-up study

Ran Yang1†, Dongming Hui1†, Xing Li2, Kun Wang2,
Caiyong Li2* and Zhichao Li1*

1Department of Radiology, Second People’s Hospital of JiuLongPo District, Chongqing, China,
2Department of Radiology, Chongqing Western Hospital, Chongqing, China
Background: With the development of imaging technology, an increasing

number of pulmonary nodules have been found. Some pulmonary nodules

may gradually grow and develop into lung cancer, while others may remain

stable for many years. Accurately predicting the growth of pulmonary nodules

in advance is of great clinical significance for early treatment. The purpose of

this study was to establish a predictive model using radiomics and to study its

value in predicting the growth of pulmonary nodules.

Materials and methods: According to the inclusion and exclusion criteria, 228

pulmonary nodules in 228 subjectswere included in the study.During theone-year

follow-up,69nodulesgrew larger, and159nodules remainedstable.All thenodules

wererandomlydivided intothetraininggroupandvalidationgroup inaproportionof

7:3. For the training data set, the t test, Chi-square test and Fisher exact test were

used to analyze the sex, age and nodule location of the growth group and stable

group.Tworadiologists independentlydelineated theROIsof thenodules toextract

the radiomics characteristics using Pyradiomics. After dimension reduction by the

LASSO algorithm, logistic regression analysis was performed on age and ten

selected radiological features, and a prediction model was established and tested

in the validation group. SVM, RF, MLP and AdaBoost models were also established,

and the prediction effect was evaluated by ROC analysis.

Results: There was a significant difference in age between the growth group and

the stable group (P < 0.05), but therewas no significant difference in sex or nodule

location (P > 0.05). The interclass correlation coefficients between the two

observers were > 0.75. After dimension reduction by the LASSO algorithm, ten

radiomic features were selected, including two shape-based features, one gray-

level-cooccurence-matrix (GLCM), one first-order feature, one gray-level-run-

length-matrix (GLRLM), three gray-level-dependence-matrix (GLDM) and two

gray-level-size-zone-matrix (GLSZM). The logistic regression model combining

ageandradiomics features achievedanAUCof0.87andanaccuracyof0.82 in the

traininggroupandanAUCof0.82andanaccuracyof0.84 in theverificationgroup

for the prediction of nodule growth. For nonlinear models, in the training group,

the AUCs of the SVM, RF, MLP and boost models were 0.95, 1.0, 1.0 and 1.0,
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respectively. In the validation group, the AUCs of the SVM, RF, MLP and boost

models were 0.81, 0.77, 0.81, and 0.71, respectively.

Conclusions: In this study, we established several machine learning models

that can successfully predict the growth of pulmonary nodules within one year.

The logistic regression model combining age and imaging parameters has the

best accuracy and generalization. This model is very helpful for the early

treatment of pulmonary nodules and has important clinical significance.
KEYWORDS

pulmonary nodule, computed tomography, prediction, growth, radiomics, LASSO,
logistics regression
Introduction

According to the glossary of terms proposed by the

Fleischner Society, a pulmonary nodule is defined as an

approximately rounded opacity with a diameter of less than

3 cm (1). Recently, an increasing number of pulmonary nodules

have been found during screening. Studies have shown that

approximately 12.0% of the US population has incidental

pulmonary nodules (2). Pulmonary nodules may develop into

lung cancer. A total of 2.27% of incidental pulmonary nodules

developed into lung cancer during a 2-year follow-up (2).

According to data from the World Health Organization (3),

lung cancer was the leading cause of cancer death, with 1.8

million deaths in 2020. Early diagnosis can greatly help with

treatment (4) and improve the prognosis of millions of patients.

However, for single pulmonary nodules, there are many

difficulties in the selection of treatment methods and operation

time. Several societies, such as The American College of Chest

Physicians (5), The BritishThoracic Society (6), andTheFleischner

Society of theUnited States (7–9), have developed guidelines for the

management of pulmonary nodules. The American College of

Radiology has also developed a structured report template (Lung-

RADS) based on the needs of diagnostic radiology practice (10).

These guidelines provide recommendations for themanagement of

pulmonary nodules according to the classification of risk factors

and nodule morphology. For different types of nodules, it is

recommended to carry out a second CT test at different intervals,

and further treatment is determined according to the dynamic

changes of nodules. The practice intervals recommended by these

guidelines currently depend solely on the size of the nodules. For

example, the Fleischner Society’s 2017 guideline (9) recommends

review after 12 months for solid nodules smaller than 6 mm and

within 3-6 months for partially solid and ground-glass nodules

larger than 6 mm. If the growth of nodules can be predicted in

advance, the review interval can be adjusted according to the
02
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predicted results and biopsy/surgical pathology can be conducted

earlier and improve the prognosis of patients.

ConventionalHRCTcanreflect the size andgeneralmorphology

of nodules but cannot provide depth information based on the visual

information.RadiomicswasproposedbyPhilippeLambin in2011. It

refers to an automated and repeatable analysis that uses a high-

throughputmethod to extract a large number of image features from

radiographs (11). Since the concept of radiomics emerged, it has been

widely used in the identification, grading, efficacy evaluation and

prognostics of various tumors (12–15). For example, radiomics has

been successfully used to distinguish benign and malignant

pulmonary nodules (16, 17). Yu et al. also developed a transfer

learning radiomics (TLR) model for the prediction of lymph node

metastasisofpapillary thyroidcarcinomaandachievedhighaccuracy

(18). However, until now, there has been no study to predict the

growth of pulmonary nodules in one year using radiomics.

In this study, we intended to collect more than 200 patients

with incidental pulmonary nodules and to follow up with them

for one year to observe the dynamic changes in the nodules.

After that, the correlation between the high-throughput features

extracted by radiomics and the growth of pulmonary nodules

was then analyzed. On this basis, a model was proposed to

predict whether nodules are likely to grow within one year. This

model can help doctors operate on dangerous nodules in time

and reduce the number of re-examinations for stable nodules.
Materials and methods

Patients

From Jan 2020 to Dec 2021, a total of 314 patients from the

Second People’s Hospital of JiuLongPo District and Chongqing

Western Hospital were involved, and all of them were followed

up for one year. This study was approved by the ethics
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committees of the two hospitals. As a retrospective analysis, the

informed consent requirement was waived.

The inclusion criteria were as follows: (a) patients with high-

resolution chest CT images at baseline and at the one-year

follow-up. (c) The nodule was solitary, and the baseline

diameter of pulmonary nodules was ≥3 mm and ≤20 mm. The

exclusion criteria were as follows: (a) the patient’s information

was incomplete. (b) The image quality was low, (c) the nodules

disappeared during follow-up, and (d) multiple pulmonary

nodules were found in the baseline images. An overview of the

workflow of this study is shown in Figure 1.

The follow-up protocol were as follows: (a) the size of the

nodule was 6-8mm, and HRCT of lung scan was performed at 6-

12 months. (b) The nodules were 8-20mm in size and HRCT of

lung scans were performed every 3 months.

Through the exclusion criteria, 228 of 314 patients for follow-up

were finally included. All patients were randomly divided into a

traininggroupandavalidationgroupat a ratioof7:3.Thepulmonary

noduleswere labeledgrowthor stableaccording towhether theygrew

within the one-year follow-up. According to the literature (19),

growing nodules were defined as nodules that increased in

diameter by more than 1.8 mm in one year. Stable nodules were

defined as a change in size of less than 1.8 mm over a year.
CT scanning

The CT images were obtained on a dual source scanner (Siemens

SOMATOMDrive,SiemensHealthineers,Germany),a64-slicedetector
Frontiers in Oncology 03
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scanner (Canon Aquilion PRIME TSX-303A, Canon Medical, Japan)

and a 16-slice detector scanner (Philips Brilliance 16, Philips Medical,

Netherlands). The scanning parameters were as follows:
a. SOMATOM Drive: tube voltage: 120 kV; tube current:

automatic; detector collimation = 0.6 mm * 128; pitch:

1.2; rotation time = 0.5 s; reconstruction layer thickness:

1 mm; reconstruction matrix: 512 * 512.

b. Aquilion PRIME: tube voltage: 120 kV; tube current:

automatic; detector collimation = 0.5 mm * 64; pitch:

0.824; rotation time = 0.75 s; reconstruction layer

thickness: 1 mm; reconstruction matrix: 512*512;

c. Brilliance 16: tube voltage: 120 kV; tube current: 200-300

mAs; detector collimation = 0.75 mm * 16; pitch: 0.938;

rotation time = 0.75 s; reconstruction layer thickness:

1 mm; reconstruction matrix: 512*512.
The scan area was from the thoracic entrance to the lung

base, covering the whole lung. The scanning was started when

the patient held their breath at the end of inhalation.
Region-of-interest segmentation

All imageswere exported asDicomfiles from the scanners. The

DICOM images were converted to Nifft format by MRICroGL

software (version: 2.1.60). The Nifft format images were imported

into 3D-Slicer (an open-source software application for

visualization and analysis of medical image computing data sets)

(20). The regions of interest (ROIs) were independently segmented

by two radiologists with more than 6 years of clinical experience.

Two-dimensional ROIs were limned around the boundary of the

lesions on each layer of axial CT images. Three-dimensional ROIs

(volumeof interest)were conductedby the accumulationof all two-

dimensional region ROIs.
Radiomics features extraction

Radiomics features were extracted by an open-source python

package of Pyradiomics (21). The implementation of all radiomics

features followed the Imaging Biomarkers Standardization

Initiative recommendations (22). This process worked on the

original images, wavelet images and Laplacian of Gaussian

images. A total of 1316 features were extracted. The extracted

features are listed in Supplementary Table 1. The definitions of the

texture parameters are shown on the site of Pyradimics (https://

pyradiomics.readthedocs.io/en/latest/features.html). The

workflow of this process is shown in Figure 2.
Prediction model building

The radiomics signature was constructed in 4 steps. In step

one, all radiomic feature values were normalized. In step two, the
FIGURE 1

Overview workflow of this study (HRCT, high-resolution
computed tomography).
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algorithm of the least absolute shrinkage and selection operator

(LASSO) method was used to select the features with a nonzero

coefficient. In step three, the coefficients of the features from step

two were computed using multivariate logistic regression

analysis. In step four, the radscore was constructed by linearly

combining the coefficients of the features from the third step.

The support vector machine (SVM), random forest (RF),

adaptive boosting (Adaboost), and multilayer perceptron (MLP)

machine learning algorithms were used to train the model. The

algorithm deployment procedure was assessed by stratified 10-

fold cross-validation in the training group, which tested each

model ten times to maximize the use of data and promote the

accuracy of the models (23). The grid search was used to

optimize the parameters of the models. The ROC areas under

the receiver operating characteristic curve (AUC) and accuracy

were calculated to assess the differential ability of the models.

The ML algorithms were all programmed using the Python

(version 3.8) machine-learning library known as scikit-learn

(version 1.1) (24).

A simple threshold screening model was constructed and

was compared with the method using nodule size as a basis for

the follow-up in the guidelines. The length of the nodule along

the X, Y and Z axes was used to calculate the average nodule

length, and the average length was used as a screening index.

ROC curves were calculated under SPSS using average length.

The 1-specificity and sensitivity of different lengths were

calculated, and then the Jorden index was calculated to find

diagnostic thresholds. The average length of 6 mm from the

literature (9) was also used as the threshold for predicting

nodular growth. Statistical Analysis

Statistical analyses were performed using IBM SPSS Statistics

25.0. A two-sided p value < 0.05 was considered to indicate a

statistically significant difference. The approximate t test was

used for the intergroup comparison of continuous variables after
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the homogeneity test of variance. The chi-square test was used

for the intergroup comparison of categorical variables. To meet

the requirements of the chi-square test (R*C), the number of

nodules in the left inferior lobe anterior basal segment was

merged with the posterior basal segment, and the number of

nodules in the right inferior lobe anterior basal segment, medial

basal segment and posterior basal segment were merged. The

radiomics features between the two observers were assessed for

reproducibility with intraclass correlation coefficients.
Results

Clinical characteristics of the patients

A total of 228 nodules were finally included in the study.

Eighty nodules grew in one year (growth group), and 148 nodules

remained stable (stable group). The clinical characteristics of the

patients in the two groups are listed in Table 1. The age of the

stable group was 52.56 ± 12.14 and that of the growth group was

58.41 ± 14.02. An approximate t test was performed on age, as the

square difference between the two groups was even (Levene’s Test

F value =2.337 at p value = 0.128). There was a significant

difference in age between the two groups (t value =-2.26, p value

=0.025, 95% confidence interval (CI): -9.172~-2.522), and the age

of the growth group was older than that of the stable group

(Supplementary Figure 1). The sex ratios were 83:98 and 41:56

(male:female) for the stable and growth groups, respectively.

There was no statistically significant difference between the two

groups (c2 = 0.329 at p value = 0.566, Supplementary Figure 2).

The diameters of the nodules in the stable group and the growing

group were 5.56 ± 1.19 mm and 7.82 ± 2.58 mm, respectively,

showing a significant difference in theT test (t = -9.042 at p value <

0.001, 95%CI -2.75 ~ -1.77, Supplementary Figures 3–5). The chi-
FIGURE 2

The flow chart of radiomic feature extraction and model building.
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square test showed no significant difference in nodule location

between the two groups (c2 = 13.294 at p value = 0.425).
Characteristics of the radiomics parameters

A total of 1316 features were extracted from each nodule. A

total of 107 features were extracted from the original image, 465

features were extracted from the LOG filtered image, and 744
Frontiers in Oncology 05
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features were extracted from the wavelet filtered image. With the

least absolute shrinkage and selection operator (LASSO), ten

features were selected to form a radiomics signature for

predicting the growth of nodules. The ten selected features with

their contribution coefficients are shown in Figure 3. They

included two shape-based features, one gray-level-

cooccurrence-matrix (GLCM), one first-order feature, one gray-

level-run-length-matrix (GLRLM), three gray-level-dependence-

matrix (GLDM) and two gray-level-size-zone-matrix (GLSZM).
TABLE 1 Clinical characteristics of the patients in the training and validation cohort.

Characteristics Growth (n = 80) Stable (n = 148) F value (t/c2) P value

Sexy 0.055 0.815a

Male 36 69

Female 44 79

Age 56.75 (13.832) 52.73 (12.241) -2.26 0.025

Diameter(mm) < 0.001

Mean ± SD 7.82 ± 2.58 5.56 ± 1.19

Median 7.23 5.51

Range 3.87-17.11 3.25-9.08

Nodule Position 16.157 0.502a

LS1+2 11 15

LS3 4 1

LS4 0 5

LS5 1 5

LS6 7 7

LS7+8 3 10

LS9 5 11

LS10 3 2

RS1 10 27

RS2 10 10

RS3 5 10

RS4 4 7

RS5 2 4

RS6 6 12

RS7 0 1

RS8 2 9

RS9 5 9

RS10 2 4

Nodule Type Not analysis

Solid 24 47

PS 10 4

PGG 46 97

Morphology Not analysis

Smooth 53 109

Lobulated 15 29

Spiculated 12 10
fro
Quantitative variables are expressed as the mean ± standard deviation. Qualitative variables are expressed as proportion. aChi-square test was used for gender and nodule position analysis.
LS1+2, Left superior lobe Apical posterior segment; LS3, Left superior lobe Anterior segment; LS4, Left superior lobe Superior lingula segment; LS 5, Left superior lobe Inferior lingula
segment; LS6, Left inferior lobe Superior segment; LS7+8, Left inferior lobe Anterior basal segment; LS9, Left inferior lobe Lateral basal segment; LS10, Left inferior lobe Posterior basal
segment;RS1, Right superior lobe Apical segment; RS2, Right superior lobe posterior segment; RS3, Right superior lobe Anterior segment; RS4, Right middle lobe Lateral segment; RS5, Right
middle lobe Medial segment; RS6, Right inferior lobe Superior segment; RS7, Right inferior lobe Medial segment; RS8, Right inferior lobe Anterior segment; RS9, Right inferior lobe Lateral
segment; RS 10,Right inferior lobe Posterior segment; PS, Partly solid; PGG, Purely ground glass.
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Linear prediction model

The ten radiomics features selected by LASSO and the

clinical signature (age) were combined to establish a

classification model by logistic regression. The AUC and

accuracy attained by the combined model on the training

group and validation group were 0.87 (95% CI: 0.74–0.98),

0.82, 0.82 (95% CI: 0.68–0.95) and 0.84, respectively

(Figure 4B). The relationship between the predicted value and

the true value is shown in the line chart in the Supplementary

Materials (Supplementary Figure 6). The established logistics

classification formulation is stated in the Supplementary

Material, and the nomogram is described in Figure 5.

While using the nodule diameter line length as the screening

threshold, in the training group, the diagnostic threshold for

mean length was 6.3 mm (sensitivity: 0.778, specificity: 0.771,

AUC: 0.81). With 6.3 mm as the threshold, the accuracy and

AUC in the validation group were 0.754 and 0.777, respectively,

but when 6 mmwas used as the threshold to predict growth in all

278 patients, the accuracy and AUC were 0.705 and 0.728,

respectively (Figure 4A).
Nonlinear prediction models

In this study, four nonlinear methods were trained to predict

the growth of the nodules, including support vector machine

(SVM), random forest (RF), adaptive boosting (Adaboost), and

multilayer perceptron (MLP). The ROC curves of the four

nonlinear models in the training group and validation group
Frontiers in Oncology 06
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are shown in Figure 4, and the classification reports of these

models are listed in Table 2.

In the training group, the AUC of the SVM model was 0.95

(95% CI: 0.82-0.99, Figure 6A), the accuracy rate was 0.86, the

AUC of the RF model was 1.00 (95% CI: 0.76-1.0, Figure 6B), the

accuracy rate was 0.99, the AUC of the MLP model was 1.00

(95% CI: 1.00: 0.79-1.0, Figure 6C), and the accuracy was 1.00.

The AUC of the Adaboost model was 1.00 (95% CI: 0.84-1.0,

Figure 6D), and the accuracy was 1.00. In the validation group,

the AUC of the SVM model was 0.81 (95% CI: 0.64-0.89,

Figure 6A), the accuracy rate was 0.81, the AUC of the RF

model was 0.77 (95% CI: 0.660-0.83, Figure 6B), the accuracy

rate was 0.74, and the AUC of the MLP model was 0.81 (95% CI:

0.69-0.92, Figure 6C). The AUC of the Adaboost model was 0.71

(95% CI: 0.62-0.76, Figure 6D), and the accuracy was 0.78.
Discussion

Pulmonary nodules are very common, and it is difficult to

accurately predict their growth. Tumor growth kinetics (TGK)

have usually been used for the prediction of tumor growth in the

past. It is generally considered to have three well-defined phases:

the first (lagged phase) is associated with tumor establishment in

the host; the second stage (log or exponential) is associated with

rapid tumor growth; and the third stage (stationary phase)

shows slow growth of the tumor and gradual convergence to

the final volume (25). To describe tumor growth, the exponential

growth model (26), linear growth model and Gompertzian

growth model (27) have been proposed. These models require

pathological data of tumors, such as cell lines, cell surface
A B

FIGURE 3

Employing the least absolute shrinkage and selection operator (LASSO) algorithm to reduce the redundancy feature. (A) Regression coefficient
diagram of LASSO. (B) Features selected and their weight.
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diffusion, and cell proliferation, which cannot be obtained

before surgery.

In clinical practice, CT follow-up is of great clinical

significance to help manage pulmonary nodules without

pathological information. The Fleischner Society of the United

States, the American College of Chest Physicians, the British

Thoracic Society, and the American College of Radiology have

published their guidelines for the management of nodules based

on CT findings to help physicians develop an effective follow-up

protocol. However, even among the most widely applied

Fleischner guidelines, there was considerable heterogeneity in

the choice of nodule treatment in clinical practice (8).

Additionally, the CT findings adopted by these guidelines were

gross morphology, which was limited in information. Previous

studies have shown that radiomics features can be used to
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analyze the biological and pathophysiological information of

lung cancer and provide rapid and accurate noninvasive

biomarkers for its diagnosis, prognosis and treatment response

monitoring (28). This study was the first to use radiomics tools

to predict single pulmonary nodule growth within one year. The

results showed that our model performs well in both the training

group and the validation group. This model could help to

develop a follow-up plan for uncertain pulmonary nodules and

reduce the over treatment of nodules in clinical practice.

In this study, five different machine learningmethods were used

to develop prediction models of whether pulmonary nodules would

increase within one year. In general, the growth of nodules was

related to gender, adhesion, location, size, and characteristics of

nodules (29). The size and characteristics (such as solid, subsolid,

ground glass, and spiculated) in the guidelines were gross changes,
FIGURE 5

A nomogram was made to predict the one-year growth of single pulmonary nodules.
A B

FIGURE 4

The receiver operator characteristic (ROC) curves of the linear models for predicting the growth of the nodules within one year. (A) ROC curve
of the threshold prediction model (area under the ROC curve (AUC) = 0.73 as threshold at 6 mm, AUC = 0.77 as threshold at 6.3 mm). (B) ROC
curve of logistic regression (LR) (AUC = 0.87 in the training group, AUC =0.82 in the validation group).
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and high-throughput radiomics features could decompose these

features into more detailed texture features to determine more

nuanced information. These features included size and shape-based

features, first-order features of the image gray histogram, second-

order features of image voxel relations, such as gray-level

cooccurrence matrix (GLCM), run length matrix (RLM), size

zone matrix (SZM) and neighborhood gray tone difference matrix

(NGTDM), texture features extracted by wavelet and Gaussian

Laplacian filter, etc. (22). These high-dimensional data contained

information reflecting the underlying pathophysiology (30), which

can be revealed by quantitative image analysis (31, 32). In this study,

the 1316 radiomics features extracted from the CT images were

reduced to ten features with the LASSO algorithm. The ten features

and their weights are shown in Figure 3B. Among them, the

morphological features LeastAxisLength and MajorAxisLength

reflected the nodule size, which corresponded to the nodule

diameter adopted in the guidelines (5–7, 9). In a previous study

of portal phase expansive versus infiltrative tumor growth front,

wavelet_LHH_glrlm_ShortRun-LowGrayLevelEmphasis was

considered to be the best predictor of tumor growth (33, 34). The

pathological association of textural features derived from gray-level

cooccurrence matrices (GLCMs) has been proven and applied to

the diagnosis of breast cancer (35). The GLSZM and GLDM

features could reflect tumor heterogeneity and homogeneity (36).

Generally, age, sex and nodule location are related to

whether a nodule is benign or malignant (7, 9, 37), but

whether these factors could predict the growth of a nodule

within one year is unclear. In this study, the average age of the

patients with enlarged nodules was older than that of the

patients with stable nodules at the 1-year follow-up, and the

difference was statistically significant. These results indicated

that age was an independent predictor of nodule growth (38).
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There was no significant difference in sex or nodule location

between the two groups. This finding was inconsistent with

literature reports that women and nodules in the upper lobe of

the right lung were risk factors for lung cancer (39). A possible

reason was that this study focused on nodular growth rather

than benign or malignant nodules, and the growth curves of

benign and malignant nodules partially overlapped (40).

In this study, the logistic regression model has the best AUC

and accuracy compared to the SVM, RF, MLP and AdaBoost

models. It can help doctors predict whether the nodules will

grow after one year and has important clinical significance. In

previous studies, logistic regression models have been used to

predict the malignant degree of solitary pulmonary nodules (41),

showing good predictive performance. The nonlinear ML

algorithm can deal with multidimensional features and

identify some underlying patterns from data that are not linear

or polynomial. Previously, Jiang Yuming et al. found that an

SVM model can predict the survival rate of gastric cancer

patients (42). Mitra Montazeri found that the random forest

model is a useful tool for survival prediction and medical

decision-making of breast cancer (43). QZ et al. successfully

used the AdaBoost model to predict local prostate cancer

recurrence (44). MLP models have also been used to predict

mortality in elderly patients with hip fractures (45). In this study,

the LR model obtained the best AUC and F1 scores in the

validation group among the five models, so it was selected to

construct the prediction formula and nomogram. The SVM, RF,

MLP and AdaBoost models had high AUC and accuracy in the

training group but showed low performance in the validation

group. Therefore, overfitting may exist and could affect the

generalization of the model. According to previous studies, the

more complex the model is, the overfit is more likely, the more
TABLE 2 The classification report of the different models on the validation group.

Model Precision Recall F1-score Accuracy

Logistic Regression 0.84

Stable 0.89 0.90 0.90

Growth 0.69 0.65 0.67

SVM 0.81

Stable 0.88 0.87 0.87

Growth 0.61 0.65 0.63

MLP 0.68

Stable 0.88 0.67 0.76

Growth 0.41 0.71 0.52

RF 0.74

Stable 0.84 0.81 0.82

Growth 0.47 0.53 0.50

Adaboost 0.78

Stable 0.88 0.83 0.85

Growth 0.55 0.65 0.59
fro
The precision, recall, F1-score of the logistic regression, SVM,MLP and Adaboost model in the validation group. SVM, Support vector machine; RF, Random Forest; MLP,Multilayer perceptron.
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parameters need to be adjusted, and more samples are needed to

learn (46). Therefore, in this study, these models performed

worse than the LR models.

In conclusion, in this study, we found that the logistical

regression model combining high-resolution CT-derived radiomics

and age could accurately predict whether a lung nodule will increase

after one year. It has great potential clinical value inhelping clinicians

develop diagnostic and treatment strategies.

The study has several limitations. First, the sample size was

relatively small due to the strict inclusion/exclusion criteria,

nearly one-third of the patients were lost to follow-up, and

there may have been a potential selection bias. Second, patients

with multiple nodules were not included in the analysis. Third,

in the model construction, only the imaging features of high-

resolution CT plain scans were used, and other imaging data

were not considered. In the future, more patients need to be

followed up to verify the validity of the model, and different
Frontiers in Oncology 09
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imaging technologies, such as CT enhancement and MRI,

should be combined to further improve the prediction

efficiency of the model.
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FIGURE 6
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(MLP) model (AUC = 1.0 in the training group, AUC =0.81 in the validation group). (D) ROC curve of the Adaboost model (AUC = 1.0 in the
training group, AUC =0.71 in the validation group).
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Radiomics nomogram for
prediction of microvascular
invasion in hepatocellular
carcinoma based on MR
imaging with Gd-EOB-DTPA

Shuai Zhang1, Chongfeng Duan1, Xiaoming Zhou1, Fang Liu1,
Xin Wang1, Qiulin Shao1, Yuanxiang Gao1, Feng Duan1,
Ruirui Zhao2 and Gang Wang1*

1Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China,
2Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, China
Objective: To develop a radiomics nomogram for predicting microvascular

invasion (MVI) before surgery in hepatocellular carcinoma (HCC) patients.

Materials and Methods: The data from a total of 189 HCC patients (training

cohort: n = 141; validation cohort: n = 48) were collected, involving the clinical

data and imaging characteristics. Radiomics features of all patients were

extracted from hepatobiliary phase (HBP) in 15 min. Least absolute shrinkage

selection operator (LASSO) regression and logistic regression were utilized to

reduce data dimensions, feature selection, and to construct a radiomics

signature. Clinicoradiological factors were identified according to the

univariate and multivariate analyses, which were incorporated into the final

predicted nomogram. A nomogram was developed to predict MVI of HCC by

combining radiomics signatures and clinicoradiological factors. Radiomics

nomograms were evaluated for their discrimination capability, calibration,

and clinical usefulness.

Results: In the clinicoradiological factors, gender, alpha-fetoprotein (AFP) level,

tumor shape and halo sign served as the independent risk factors of MVI, with

which the area under the curve (AUC) is 0.802. Radiomics signatures covering

14 features at HBP 15 min can effectively predict MVI in HCC, to construct

radiomics signature model, with the AUC of 0.732. In the final nomogram

model the clinicoradiological factors and radiomics signatures were integrated,

outperforming the clinicoradiological model (AUC 0.884 vs. 0.802; p <0.001)

and radiomics signatures model (AUC 0.884 vs. 0.732; p < 0.001) according to
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Delong test results. A robust calibration and discrimination were demonstrated

in the nomogram model. The results of decision curve analysis (DCA) showed

more significantly clinical efficiency of the nomogram model in comparison to

the clinicoradiological model and the radiomic signature model.

Conclusions: Depending on the clinicoradiological factors and radiological

features on HBP 15 min images, nomograms can effectively predict MVI status

in HCC patients.
KEYWORDS

hepatocellular carcinoma, microvascular invasion, radiomics, gadoxetic acid-
enhanced mri, nomogram
Introduction

Hepatocellular carcinoma (HCC) is the most prevalent

cancer in China, with a high fatality rate (1, 2). Despite the

surgical resection adopted as an effective treatment for HCC,

recurrences remain common (3), which are experienced by

approximately 70% of liver resection patients within five years,

and approximately 25% of liver transplant patients (4). The

microvascular invasion (MVI) refers to the tumor invasion in

small intrahepatic vessels, covering portal veins, hepatic vessels,

and lymphatic vessels (5). MVI in HCC is considered a feature of

histologically generated case changes, implying the early

postoperative recurrence with correspondingly lower survival

(6). It is critical to accurately identify MVI in patients with HCC

for developing appropriate treatment options. Surgery with wide

margins is considered the best option for patients at high risk for

MVI (7). However, in contrast to macrovascular invasion that

can be detected by diagnostic imaging, MVI can only be

diagnosed by pathologic evaluation currently. Thus, a

quantitative method urgently required for preoperative

prediction of MVI.

It has been demonstrated that by converting medical images

into higher quality, quantifiable and mineable data, the radiomic

features can serve as the diagnostic and prognostic markers for

cancer phenotypes and tumor microenvironments (8, 9). Our

previous study (10) has indicated that MVI could be predicted

by radioactivity in the hepatobiliary phase (HBP) on Gd-EOB-

DTPA magnetic resonance imaging. However, further

integration with clinical data and radiological features is

required for physicians to accept its full and robust role in

patient management. As a direct extension of our previous work,

the objective of this study is to predict the state of MVI in HCC

patients by creating a nomogram that incorporated the

clinicoradiological factors and radiomics signatures.
02
69
Materials and methods

Patients

This retrospective study was approved by an institutional

review board, with the patient’s own informed consent waived.

189 consecutive HCC patients from the period January 2015 to

April 2022 were enrolled. The cohort was divided into a training

set from January 2015 to May 2020, with 82 MVI+ patients (76

men and 6 women; range, 37-79 years) and 59 MVI- patients (40

men and 19 women; range, 35-77 years) and a validation set

from May 2020 to April 2022, with 29 MVI+ patients (25 men

and 4 women; range, 38-76 years) and 19 MVI- patients (14 men

and 5 women; range, 39-75 years). The inclusion criteria were:

(1) Gd-EOB-DTPA-enhanced MRI performed within one

month before surgical resection; (2) The postoperative

pathological features met the clinical criteria for HCC. The

criteria for exclusion were: (1) patients receiving liver cancer-

related treatment before surgery; (2) patients with

macrovascular invasion on MRI; and (3) insufficient images

for radiomic analysis.
MR Techniques

MR imaging was performed on all participants with a 3.0 T

scanner (GEHCGEHC, GE medical systems, Waukesha, WI).

All patients received the GdEOB-DTPA (Primovist, Bayer

HealthCare, Berlin, Germany) with 0.1 mL/kg (0.025 mmol/

kg). After 5 minutes, 10 minutes, and 15 minutes (i.e., HBP are

the three different time periods mentioned above, respectively)

injected with the comparator agent, data on the inhibition of

liver production by 3D fat-suppressed Liver Acquisition with

Volumetric Acceleration (LAVA, GE Healthcare) sequence in
frontiersin.org
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the axial plane were collected. Contrasts for LAVA sequences

include TR/TE, 2.5/1.1; slice spacing, 2.5 mm; thickness, 5 mm;

reverse time, 5.0 ms; field of view, 380-450mm; Get the number

of characters, 0.70; and the bandwidth, 976.6 kHz.
Clinicoradiological risk factors

The clinical characteristics of the patients were recorded by

our hospital’s HIS system, including patient age, gender, alpha-

fetoprotein (AFP) level, presence of liver cirrhosis, and hepatitis

B and C surface antigen (HBsAg) status (positive or negative).

The MVI statue was obtained from the pathology report. The

imaging, including diameter, halo sign, shape, border,

radiocapsule, necrosis, and tumor/liver signal ratio, was carried

out based on MRI findings by two radiologists independently

through the collection of pictures and communication

systems (PACS).

Tumor diameter was defined as the largest diameter imaged

by transverse at HBP 15 minutes; Halo sign was defined as a

hypointense ring in the center of the lesion on HBP images;

Tumor shape was classified as round or non-round, with the

ratio of long diameter to short diameter less than 1.2 means

round, otherwise, it means not round; Radiological capsule

appearance was defined as hyperenhancing structures

surrounding the tumor in the portal vein or at extension;

tumor/liver signal ratio was expressed as the signal of the

tumor/surrounding liver parenchyma on HBP images; necrosis

was defined as high T2 and no enhancement in the tumor. To

identify the single factor for MVI discrimination, univariate

analysis was performed, and significant univariate factors

(P<0.1) were entered into a multivariate logistic regression

mode in the training cohort. P<0.05 was regarded as

significant in the multivariate analysis.
Frontiers in Oncology 03
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MR Radiomics analysis

Radiomics analysis mainly refers to tumor segmentation,

feature extraction, feature selection, and model building and

evaluation. The regions of interest (ROIs) were delineated on

HBP 15 min images by IBEX software (http://bit.ly/IBEX).

Tumor ROIs were manually segmented covering the whole

tumor by two abdominal radiologists blinded to the pathology

results (Figure 1). A total of 1768 MR image features of HBP 15

min from the tumor were analyzed using IBEX software.

Radiomic parameters were determined depending on IBEX

software, obtaining a total of 8 groups of parameters, each

with different radiomics. To analyze and examine the

reproducibility of the features extracted by repeated sequences,

30 tumor samples were randomly selected for the calculation of

the intra-group correlation coefficient (ICC), with the features

with ICC<0.80 excluded. The classification of images and the

main filtering process were detailed in a previous study (10). The

least shrinkage regression analysis and selection operator

(LASSO) were adopted to select the most critical parameters

obtained within 15 minutes of HBP. The combination of

radiological features calculated by the LASSO coefficient

weighting method was considered the radiomics score for

each patient.
Construction and evaluation of MVI
prediction models

After univariate and multivariate logistic regression, the

significant variables were selected to establish the

clinicoradiological model. Radiomics signature model was built

based on selected radiomics features. The nomogram model was

constructed combining the clinicoradiological risk factors and
FIGURE 1

Example of ROIs delineation on HBP 15 min images by IBEX software.
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radiomics signature. The potential predictive value of the three

models was first assessed in the training cohort and then

validated in the validation cohort by converted into

quantifiable data using the area under the curve (AUC) in the

receiver operating characteristic (ROC) curve, with the curves

expanded for multiple contrasts by performing the Delong test

on Bonferroni-adjusted p-values. AUC with 95% CI, precision,

sensitivity and specificity was calculated.
Construction and validation of the
radiomics nomogram

The nomogram is calibrated by drawing a calibration curve

in the training cohort. The Hosmer-Lemeshow test was carried

out to analyze and determine the agreement between the MVI

predicted by the nomogram and the actual MVI derived from

the calibration curve. Decision curves were plotted to assess the

clinical validity of nomogram in the combined training and

validation cohorts.
Statistical Analysis

SPSS (version 20, Chicago, IL, USA) and R (https://www.r-

project.org/) were utilized as the statistical analysis tool.

Only two-tailed in the case of p<0.05 was considered

statistically significant.
Frontiers in Oncology 04
71
Results

Construction of clinical radiological
characteristics and clinical radiological
models of patients

The clinicoradiological characteristics of the patients are

detailed in Table 1. After univariate and multivariate analysis,

it was determined that gender (odds ratio (OR) 6.06; 95%

confidence interval (CI) 1.93–18.99), AFP level (OR 3.44; 95%

CI 1.33–8.92), halo sign (OR 0.14; 95% CI 0.02–0.92), and shape

(OR 0.12; 95% CI 0.05-0.31) can be chosen to construct

clinical models.
Radiomics signature calculation

A total of 1768 features were obtained from MR image

features on HBP within 15 minutes. 356 radiomic features with

most significant difference were then selected from the MVI+

and MVI- groups and introduced into a LASSO logistic

regression model to screen out the most contributing features.

Finally, 14 features with significant relation to MVI status were

chosen for construction of the radiomics signature. Radiomics

scores were calculated with the following formulas:

Radiomics score = -0.0144246× MedianAbsoluteDeviation-

0.149397×5Percenti le+0.00529663×Mass-6.210769×S

phericalDisproportion-0.0005163601×4.7AutoCorrelation

+0.02526177×1.7Contrast-0.008745637×9.4Contrast-
TABLE 1 Comparisons of clinicoradiological characteristics in MVI (+) and MVI (-) patients.

Clinicoradiological characteristics MVI (+) (N=82) MVI (-) (N=59) Univariate analysis Multivariate analysis

Odd ratios (95%CI) p Odd ratios 95%CI) p

Clinical characteristics

Age, (Median [range]), year 57[37-79]] 55[35-77] 1 (0.96-1.03) 0.841 – –

Gender (male/female) 76/6 40/19 6.02 (2.23-16.25) <0.001 6.06 (1.93-18.99) 0.002

Cirrhosis (present/absent) 81/1 55/4 5.89 (0.64-54.17) 0.117 – –

HBsAg (positive/negative) 75/7 54/5 0.99 (0.3-3.29) 0.99 – –

HCsAg (positive/ngative) 4/78 1/58 2.97 (0.32-27.3) 0.335 – –

AFP (> 400 ng/mL≤ 400 ng/mL) 32/50 10/49 2.98 (1.32-6.72) 0.009 3.44 (1.33-8.92) 0.011

MR imaging features

Diameter (Median [range]), milimetre 20.95[6-167] 23[3.36-106.7] 1.01 (1-1.02) 0.136 – –

Halo sign (present/absent) 2/80 6/53 0.22 (0.04-1.13) 0.071 0.14 (0.02-0.92) 0.04

Shape (round/not round) 11/71 31/28 0.14 (0.06-0.32) <0.001 0.12 (0.05-0.31) <0.001

Boundary (clear/unclear) 74/8 55/4 0.67 (0.19-2.35) 0.534 – –

Radiologic capsule (present/absent) 13/69 7/52 1.4 (0.52-3.75) 0.504 – –

Necrosis (present/absent) 28/54 17/42 1.28 (0.62-2.65) 0.503 – –

Tumor/liver signal ratio (mean ± SD) 0.5585±0.1659 0.52±0.1581 1.87 (0.23-15.06) 0.555 – –
frontiersin.o
P values were obtained from univariate and multivariate regression analyses between the MVI (+) and MVI (-) patients.
AFP alpha-fetoprotein, HBsAg hepatitis B surface antigen status, HCsAg hepatitis C surface antigen status, MVI, microvascular invasion.
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1.448129×6.1DifferenceEntropy-0.1107169×4.7Dissimilarity-

15.27011×8.4InverseDiffNorm+3.353539×1.1InverseVariance

+4.034202×11.4InverseVariance-5.335912×12.4InverseVarian

ce-0.607462×8.4MaxProbability.
Performance of the models

As shown in Table 2 and Figure 2, In the training cohort, the

AUC of the clinicoradiological model was 0.802 (95% CI: 0.730-

0.875), radiomics signature model was 0.732 (95% CI: 0.650-

0.813), and the nomogram model was 0.884 (95% CI: 0.790-

0.924), with the Delong test results of the three models listed in

Table 2. In the training cohort, the nomogram model was

significantly better than the clinicoradiological model and

radiomics signature model (P<0.001). In the validation cohort,

the radiomics signature model and the nomogram model

showed comparable discriminative power (AUC, 0.770 vs.

0.878, P = 0.0990), while the final nomogram model was

significantly better than clinicoradiological model (AUC, 0.878

vs. 0.749, P = 0.0428).
Nomogram construction

The nomogram model integrating clinicoradiological factors

and radiomic signatures displayed robust predictive

performance, so the calculated nomogram was adopted as the

prediction graph (Figure 3). Acceptable calibrations of the

nomogram are shown in Figure 4. The Hosmer-Lemeshow test

suggested no significant difference between the predicted

calibration curve and the MVI ideal curve in the training and

validation cohorts (P = 0.450, P=0.761, respectively). In Figure 5

the DCA results of the above three models in the training and

validation cohorts are depicted. The nomogram model exhibited

a larger net benefit in comparison to clinicoradiological model

and radiomics signature model.
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Discussion

Previous studies indicated that MVI was the most robust

independent predictor of recurrence and poor outcome for HCC

(11, 12). Surgeons would be able to make better management

decisions and improve prognostication if they were aware of

MVI status before surgery. If the risk of predicted MVI indicates

high, other alternative treatment options, such as the adjuvant

therapy performed before surgery, should be considered or liver

transplantation may not suitable for the patient (13). But for

now, the predictive accuracy of MVI remains difficult, so we

attempted to address this problem with radiomics.

Radiomics analysis is currently considered as a potential bridge

connecting medical imaging and personalized medicine (14). The

quantitative image processing can contribute to effectively evaluating

the spatial relationship of pixel intensities (15) with a large role in

medical practice and application value (16). As a relatively novel

field, radiomics help to deeply mine medical imaging data by

applying advanced computational methods, and the collected data

can be further converted into quantitative data that can be applied to

diagnosing the parameters of cancer, stage, prognosis, predicting

treatment response, monitoring disease, etc. (8).

Some recent studies have demonstrated that the combined

radiomics features can also play a predictive role in preoperative

MVI in HCC patients (17–20). Consistently, we also found the

good discrimination shown by radiomics features, as the AUC

was 0.732. It is challenging to analyze and interpret the

relationship between radiomic features and MVI status,

considering more information maximized from radiographic

analysis in comparison to visual inspection.

We found that gender can serve as an independent risk

factor for MVI, which is obviously distinguished from previous

studies (18, 21). The value of gender in predicting MVI in HCC

has not been demonstrated, and further research is required.

HCC is often associated with a higher level of AFP, which

significantly increased in MVI patients. Our final study

demonstrated AFP level as an independent risk factor for

MVI, which is also consistent with previous conclusions (18,
TABLE 2 Predictive performance of the three models.

Training cohort Validation cohort

AUC (95%CI) SEN SPE P AUC (95%CI) SEN SPE P

(1) Clinicoradiological model 0.802(0.730-0.875) 0.627 0.878 0.749(0.601-0.896) 0.409 1.000

(2) Radiomics signature model 0.732(0.650-0.813) 0.797 0.573 0.770(0.613-0.928) 0.909 0.579

(3) Radiomics nomogram model 0.884(0.790-0.924) 0.829 0.938 0.878(0.773-0.983) 0.909 0.573

1 vs. 2 0.1868 0.8624

1 vs. 3 0.0002 0.0428

2 vs. 3 0.0003 0.0990
frontiers
1 indicates clinicoradiological model; 2 indicates radiomics score model; 3 indicates radiomics nomogram model.
SEN sensitivity, SPE specificity, AUC area under the curve, CI confidence interval.
*P < 0.05 indicates a significant difference.
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22). Previous studies have also concluded that larger tumors

significantly increased the risk probability of MVI in HCC (23,

24). However, this association was not indicated in our study,

probably due to the selection bias. In addition, we found that the

absence of halo signs and non-circular MR imaging features are

the key predictor of MVI, which is consistent with previous

studies (25–27). The results of observation on the pathological

data indicated that among the current cases of MVI+ HCC, the

most common is the single-nodular type and the multi-nodular

type with additional nodular growth or fusion (28), which means

the non-round tumor shape is the MR image feature of MVI+

HCC. In our previous study (10), HBP 15 minutes has better

radiomic characteristics in comparison to HBP 5 minutes and
Frontiers in Oncology 06
73
HBP 10 minutes. In addition, the case collection and analysis

were conducted at the same medical center with the same

research methods. Therefore, all feature scoring in our study

was based exclusively on HBP 15 min images in previous study.

Despite the good performance exhibited by radiomic signatures,

it remains a gap compared to clinical radiology models (AUC

0.732 vs. 0.802). We further incorporated radiomics signatures

into clinicoradiological model to enhance the predictive power.

The subsequence radiomic nomograms displayed modified

diagnostic performance, suggesting the higher usefulness of

combined approach in MVI prediction in comparison to

clinical radiology models. This was consistent with previous

study (22, 29), also showing that combined radiomics signatures
FIGURE 3

Radiomics nomogram combining the radiomics signature derived from HBP 15min MR images and clinicoradiological factors including gender,
AFP, halo sign and shape for predicting MVI in the training cohort.
A B

FIGURE 2

Comparison of receiver operating characteristic (ROC) curves for the prediction of microvascular invasion. ROC curves of the clinicoradiological
model, the radiomics signature model and the radiomics nomogram model in the training and validation cohort (A, B), respectively.
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and clinicoradiological factors should clearly be preferred over

clinical risk factors alone in predicting MVI in HCC. For further

comparison of the three models, we applied decision curve

analysis, which is used for constructing models capable of

assessing clinical outcomes and calculating the loss of gain

from the assessment model for each individual, largely

compensating for the shortcomings of traditional statistical

measures (30). In terms of decision curve analysis, the

radiomics nomogram proposed in our study is potentially

serving to estimate postoperative outcomes in clinic.

In conclusion, the radiomics nomogram successfully

presented in our study possesses significant utility in
Frontiers in Oncology 07
74
predicting MVI in HCC. It will contribute to providing an

important reference for clinicians to protocol the best

treatment plan, thereby improving clinical outcomes.
Limitations

There also exist some limitations in this study. First, this

study is a retrospective single-center study, which requires in-

depth prospective multicenter validation with a larger cohort.

Second, the complex relationship between radiomic signatures

and biological behavior fails to be effectively explained.
A B

FIGURE 5

The clinical utility of the nomogram was evaluated by decision curves in the training and validation cohort (A, B), respectively. In the decision
curves, the black line indicates the net benefit of assuming that there are no patients with microvascular invasion (MVI), and the grey line
indicates the net benefit of assuming all patients with MVI. The radiomics nomogram model (green line) provided a greater net benefit than the
clinicoradiological model (blue line) and radiomics signature model (red line).
A B

FIGURE 4

The performance of the nomogram was assessed by calibration curves in the training and validation cohort (A, B), respectively. The y-axis
represents the actual microvascular invasion (MVI) rate, the x-axis represents the predicted MVI possibility, and the diagonal dashed line
indicates the ideal prediction by a perfect model.
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Objective: To investigate a novel diagnostic model for benign and malignant

pulmonary nodule diagnosis based on radiomic and clinical features, including

urine energy metabolism index.

Methods: A total of 107 pulmonary nodules were prospectively recruited and

pathologically confirmed as malignant in 86 cases and benign in 21 cases. A

chest CT scan and urine energy metabolism test were performed in all cases. A

nomogram model was established in combination with radiomic and clinical

features, including urine energy metabolism levels. The nomogram model was

compared with the radiomic model and the clinical feature model alone to test

its diagnostic validity, and receiver operating characteristic (ROC) curves were

plotted to assess diagnostic validity.

Results: The nomogram was established using a logistic regression algorithm

to combine radiomic features and clinical characteristics including urine

energy metabolism results. The predictive performance of the nomogram

was evaluated using the area under the ROC and calibration curve, which

showed the best performance, area under the curve (AUC) = 0.982, 95% CI =

0.940–1.000, compared to clinical and radiomic models in the testing cohort.

The clinical benefit of the model was assessed using the decision curve analysis

(DCA) and using the nomogram for benign and malignant pulmonary nodules,

and preoperative prediction of benign and malignant pulmonary nodules using

nomograms showed better clinical benefit.
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Conclusion: This study shows that a coupled model combining CT imaging

features and clinical features (including urine energy metabolism) in

combination with the nomogram model has higher diagnostic performance

than the radiomic and clinical models alone, suggesting that the combination

of both methods is more advantageous in identifying benign and malignant

pulmonary nodules.
KEYWORDS

pulmonary nodules, nomogram, texture analysis, urine energy metabolism,
benign, malignant
Introduction

Lung cancer is one of the malignant tumors with high

morbidity and mortality, the incidence and mortality rates of

which have been on the rise in recent years. The incidence and

mortality of lung cancer in China ranked first among all

malignant tumors in 2015 with those in the world at about

11.4% and 18%, respectively (1). The 5-year survival rate can

approach 50% if early diagnosis and therapy are successful, and

early detection and treatment of lung cancer are the keys to

improving patient survival rates (2). With the wide application

of high-resolution CT, pulmonary nodules are ubiquitous in CT

screening. Benign and malignant pulmonary nodules have

different treatments and prognoses. Semantic characteristics of

pulmonary nodules such as size, attenuation, and margins are

often insufficient for characterization. Follow-up CT increases

the cost and radiation burden on the patient, in addition to the

patient’s concern about waiting too long to learn the results

(3–5). Therefore, the accurate diagnosis of lung nodules is

particularly important. Although conventional CT features are

helpful in identifying benign and malignant nodules, there is still

some controversy as to which morphological features are

valuable for the differential diagnosis of pulmonary nodules (6).

CT texture analysis can objectively and effectively evaluate

the CT value of each pixel in the lesion and can detect the subtle

density changes in the lesion that cannot be observed by the

naked eye, reflecting to some extent the heterogeneity of the

tumor (7). CT texture analysis has now been shown to

distinguish between tumor grade and genetic mutations (8–

10). Digumarthy et al. (11) performed CT texture analysis in 175

patients with pulmonary nodules prior to operation and showed

that CT texture analysis could reliably predict well-differentiated

and poorly differentiated pulmonary malignant tumors. Awe

et al. (12) analyzed the application of CT texture analysis in

pancreatic lesions, showing the clinical potential of CT texture

analysis in the diagnosis and risk classification of pancreatic

lesions. Despite the usefulness of CT texture analysis in tumor
02
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diagnosis and grading, results have been obtained in the

decision-making and efficacy assessment of treatment options,

but the lack of uniform standards for image texture feature

parameters has led to inconsistent conclusions (7).

The hallmarks of cancer were reported by Robert Weinberg

and Douglas Hanahan in 2000 (13, 14), which can intervene in

tumor stages. The main reason for this is abnormal cellular

energy metabolism. Cell energy metabolism technology has

played an important role in research recently, which

quantitatively and automatically reflects the status of the living

cells, such as mitochondrial oxygen consumption rate and

glycolytic acid production rate. Some earlier proteomic studies

in lung cancer diagnosis based on urine or serum specimens

have been investigated. Prospective biomarker studies have

shown elevated DNA methylation markers CDO1 and SOX17

in the urine of patients with non-small-cell lung cancer (NSCLC)

(15). Another prospective study showed that an untargeted

urinary metabolome was associated with a lower lung cancer

risk in never-smoking women and suggested that an abnormal

urine metabolome may be associated with a higher risk of lung

cancer (16). However, few studies have focused on the role of the

urocyte energy metabolome in the discrimination between

benign and malignant nodules.

In this study, morphological assessment, CT texture analysis,

and urine cell energy metabolism test were used to investigate

their values in the diagnosis of benign and malignant pulmonary

nodules and to compare the diagnostic effectiveness of each

feature alone and in combination.

Materials and methods

Ethical approval of the study protocol

The protocol of this prospective study was approved by the

ethics committee of Zhongshan Hospital Affiliated to Dalian

University (No. 2021029, Dalian, China). Informed consent was

obtained from each patient.
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Patients and study design

This was a single-institution prospective study with 107

patients eventually enrolled consecutively and urine collected

from September 2021 to August 2022 at the inpatient Thoracic

Surgery Department. All of the patients underwent a chest CT scan

within 7 days prior to surgery and were registered as patients with a

single pulmonary nodule. All patients received pulmonary surgery

(video-assisted thoracoscopic surgery), and pathology results were

obtained. Urine energy metabolism index was performed on all

patients (Dalian DeTecsen Biomedical Co., Ltd., Dalian, China).

Inclusion criteria: 1) All patients received plain CT scans and urine

energy level tests in our hospital before surgery; 2) Postoperative

pathological results were determined. Exclusion criteria: 1) Patients

with multiple nodules including pathologically confirmed benign

andmalignant lesions; 2) Poor image quality due to respiratory and

motion artifacts during scanning; 3) Lesions with other lesions that

do not properly depict the region of interest (ROI). A flowchart of

the study subjects is shown in Figure 1.
CT scanning techniques

The patient was scanned in the supine position after deep

inspiration in a breath-hold position. The scanning area was from

the apex of the lung to the level of the bilateral costophrenic angle
Frontiers in Oncology 03
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(including the whole lung). Siemens Somatom FLASH scanner was

used for CT scanning, with a tube voltage of 120 kV, tube current

automatic mAs technology, the pitch of 1.0, matrix of 512 × 512, a

layer thickness of 1.0 mm, and the bone reconstruction algorithm.
Urine cell energy metabolism test

The urine cell energy metabolism index was tested on all of

the patients (Dalian DeTecsen Biomedical Co., Ltd., Dalian,

China). Morning urine was collected within 3 days before

surgery, and all of the patients were asked not to eat or drink

for more than 8 h. By using enzymes and cofactors, the cellular

energy metabolites and their derivatives in the urine cell energy

metabolism can reflect a stable color reaction with the probe.

The qualitative results can be obtained by colorimetric

measurement at 450 nm wavelength. According to the color

reaction, urine energy metabolism results were classified into

four degrees: negative (0), weak positive (1), positive (2), and

strong positive (3).
Data preprocessing and analysis

In this work, 107 patients were enrolled; 80 cases were

randomly selected as the training cohort and 27 patients as the
FIGURE 1

Flowchart of the study subjects based on exclusion criteria.
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testing cohort. Clinical features including urine energy

metabolism results, age, gender, CT values, nodule diameter,

and edge and nodule position were collected. Images of all

nodules were independently segmented by two radiologists

and measured using a double-blind method. Calculation of

intraclass correlation coefficient (ICC) ≥0.75 was considered

robust. All of the features were divided into three groups: (I)

geometry, (II) intensity, and (III) texture. Geometric features

characterize the three-dimensional shape of the tumor. The

intensity features describe the voxel intensities within the

tumor. The texture features describe the patterns and higher-

order spatial distributions of the intensities.
Feature extraction, selection, and
model building

All radiomic features were extracted using Pyradiomic’s in-

house feature analysis program (http://pyradiomics.readthedocs.

io). Several different texture feature extraction methods were

used, including the gray-level run length matrix (GLRLM), gray-

level size zone matrix (GLSZM), gray-level co-occurrence matrix

(GLCM), and neighborhood gray-tone difference matrix
Frontiers in Oncology 04
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(NGTDM) methods. The least absolute shrinkage and

selection operator (LASSO) regression model was used for

signature construction of the discovery dataset. After LASSO

feature screening, the final retained features are put into machine

learning models, including logistic regression (LR), support

vector machine (SVM), random forest, and XGBoost, for risk

model construction.

Radiomic features were constructed from correlation filters,

and the most robust non-redundant and predictive features were

selected by LASSO. Finally, a combined nomogram model was

built with clinical signatures and radiomic signatures for final

interpretation and analysis. Figure 2 shows the workflow of

radiomic analysis in this study. To reduce the side effects of

outliers, all pixel values were sorted for each image and truncation

with an intensity range of 0.5–99.5 percentiles. Spatial

normalization was employed to reduce the voxel spacing

variation effect. A fixed resolution resampling method was used

in our experiment to handle the aforementioned problems.

The radiomic nomogram was established in combination

with radiomic signature and clinical signatures. The diagnostic

efficacy of the radiomic nomogram was tested in the test cohort,

and receiver operating characteristic (ROC) curves were drawn

to evaluate the diagnostic efficacy of the nomogram. The
FIGURE 2

Workflow of radiomic analysis in this study. Nodules were segmented by radiologists, and features were extracted and selected by LASSO based
on which the prediction model, DCA, Decision curve analysis, and nomogram were built.
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calibration efficiency of the nomogram was evaluated by plotting

calibration curves, and Hosmer–Lemeshow analytical fit was

used to evaluate the calibration ability of the nomogram.

Mapping decision curve analysis (DCA) was adopted to

evaluate the clinical utility of the predictive models.
Statistics

Clinical features, including urine energy metabolism results,

age, gender, CT values, nodule diameter, and edge and nodule

position, were analyzed by t-test, Mann–Whitney U test, or c2

test. P values<0.05 were significantly considered and ultimately

used. For the repeatability of the features, Spearman’s rank

correlation coefficient was also used to calculate the correlation

between features and to retain one of the features with a

correlation coefficient >0.9 between any two features. To

maximize the ability to retain the depicted features, we used a

greedy recursive deletion strategy for feature filtering, that is, the

feature with the greatest redundancy in the current set is

removed each time. The LASSO regression model was used for

the signature-constructed discovery dataset. Subsequently, we

obtained a radiomic score for each patient by retaining a linear

combination of features, weighted by their model coefficients.

The Python scikit-learn package was used for LASSO

regression modeling.
Frontiers in Oncology 05
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Results

Comparison of patient clinical
characteristics

A total of 107 cases of pulmonary nodules were analyzed and

separated into malignant and benign groups according to the

pathology results (80 vs. 27 cases). The mean age of the malignant

and benign groups was 63.84 ± 9.69 years vs. 56.57 ± 13.16 years,

respectively (P = 0.005). There was no significant difference in

terms of gender between the two groups (P = 0.389). Table 1

shows the baseline clinical characteristics of patients in our cohort.

Age, long diameter, short diameter, diameter, and energy level

showed significant differences (P< 0.05) in our cohort for clinical

feature construction, but the differences between CT value,

position, and edge were not significant (P > 0.05).
Feature selection and Rad score
establishment

All radiomic features were extracted, and prediction models

were constructed using the selected features. A total of 13

features with non-zero coefficients were selected to establish

the Rad score with a LASSO LR model. Figure 3 shows the

coefficients and mean standard error (MSE) for the 10-fold
TABLE 1 Baseline clinical characteristics of patients in our cohort.

Features All (n=107) Malignant (n=86) Benign (n=21) P value

Age (years) 62.41±10.79 63.84±9.69 56.57±13.16 0.005

Long diameter(mm) 23.24±17.73 25.06±18.14 15.78±13.97 0.031

Short diameter(mm) 16.08±11.77 17.45±12.37 10.45±6.49 0.014

Diameter(mm) 19.66±14.54 21.26±15.07 13.11±9.95 0.021

CT value (HU) -172.83±326.18 -154.69±333.26 -247.08±290.95 0.246

Gender 0.389

0 60 (0.561) 50 (0.581) 10 (0.476)

1 47 (0.439) 36 (0.419) 11 (0.524)

Position 0.222

0 27 (0.252) 24 (0.279) 3 (0.143)

1 24 (0.224) 18 (0.209) 6 (0.286)

2 5 (0.047) 4 (0.047) 1 (0.048)

3 32 (0.299) 28 (0.326) 4 (0.191)

4 19 (0.178) 12 (0.139) 7 (0.333)

Edge 0.744

0 39 (0.365) 32 (0.372) 7 (0.333)

1 68 (0.636) 54 (0.628) 14 (0.667)

Urine energy metabolism 0.048

Negative(0) 27 (0.252) 17 (0.198) 10 (0.476)

Weak positive(1) 22 (0.206) 19 (0.221) 3 (0.143)

Positive(2) 50 (0.467) 44 (0.512) 6 (0.286)

Strong positive(3) 8 (0.075) 6 (0.069) 2 (0.095)
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validation. Figure 3C shows the coefficient values for the final

selection of non-zero features.

Rad score is shown as follows:

Rad _ score = 0:21873191752687882 + 0:003986*
exp onential _ glszm _ SmallAreaEmphasis

−0:027538*lbp _ 3D _ k _ gldm _DependenceVariance +

0:037759*lbp _ 3D _ k _ glszm _ LowGrayLevelZoneEmphasis −

0:039335*lbp _ 3D _ k _ glszm _ SmallAreaHighLevelEmphasis −

0:015027*lbp _ 3D _m2 _ glszm _GrayLevelVariance −

0:041688*lbp _ 3D _m2 _ glszm _ SmallAreaLowGrayLevel

Emphasis + 0:056017*original _ firstorder _Minimum −

0:018478*wavelet _HHL _ firstorder _Kurtosis −

0:010406*wavelet _HLH _ firstorder _Kurtosis +

0:004868*wavelet _HLH _ glcm _ClusterShade −

0:013882*wavelet _HLH _ glcm _ Idn +

0:012870*wavelet _ LLH _ glcm _ClusterShade

+0:005921*wavelet _ LLL _ firstorder _Minimum

Several models were built and compared to find the best

performing model. Supplementary Table S1 shows all of the

models we used to predict benign and malignant pulmonary

nodules, and the XGBoost model had the best performance

compared to the other models. XGBoost achieved the best value

of area under the curve (AUC) in the training and testing

cohorts, with AUCs of 0.999 and 0.945 for predicting benign

and malignant lung nodules, respectively. Therefore, when

building clinical features, XGBoost was chosen as the base

model. The optimal model was obtained by comparing the

radiomic features with LR, SVM, k-nearest neighbor (KNN),

decision tree, random forest, extra trees, XGBoost, and

lightGBM classifier. Figure 4 showed the ROC analysis of

different models on radiomic signatures.
Comparison of clinical, radiomic, and
nomogram models

For the AUC, the clinical features [0.997, 95% confidence

interval (CI) = 0.990–1.000) and the radiomic features (0.999,

95% CI = 0.996–1.000) were perfectly fitted for the training

cohort. In the testing cohort, the clinical characteristics appeared

to be overfitted (0.700, 95% CI = 0.473–0.953), but the radiomic

signature remained well fitted (0.945, 95% CI = 0.858–1.000).

The nomogram using the LR algorithm, combining clinical

features and radiomic features, showed the best performance

(0.982, 95% CI = 0.940–1.000). In order to compare the clinical

signature and radiomic signature and nomogram, DeLong test

was used. The results indicated that the AUC comparison

between the nomogram and the clinical signature achieved

0.019 and that the nomogram model outperformed the clinical

model in the discrimination between malignant and benign

nodules. The AUC comparison between the nomogram and

radiomic achieved 0.457, which means that both models

performed well in differentiating malignant and benign
Frontiers in Oncology 06
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nodules. Figure 5 showed the AUC in both the training and

testing cohorts.

Nomogram calibration curves showed good agreement

between predicted and observed benign and malignant

pulmonary nodules in the training and testing cohorts. The P

values for the Hosmer–Lemeshow test were 0.109, 0.832, and

0.123 in respect of clinical signature, radiomic signature, and

nomogram, suggesting that the nomogram fitted perfectly in

both the training and testing cohorts. Figure 6 showed the

calibration curves in the training and testing cohorts.

In this study, we also evaluated each model through the

DCA. The DCA for the clinical features, radiomic features, and

radiomic nomogram is presented in Figure 7. Compared to the

scenario without the prediction model (i.e., all treatment or no

treatment regimen), the radiomic nomogram significantly

improved the patient’s intervention outcome with a prediction

probability of 0.05–0.78 compared to 0.05–0.38 for the clinical

features and 0.12–0.43 for the radiomic signature. Nomograms

were higher than other signatures. The preoperative use of

radiological nomograms to predict benign and malignant

pulmonary nodules showed better clinical benefit. Figure 8

shows the nomogram for clinical use, with the total score

reflecting the probability of malignancy in pulmonary nodules.
Discussion

This study showed that for the diagnosis of pulmonary

nodules, the combined model based on radiomic features and

clinical features including urine energy level had higher

diagnostic performance than the radiomic features and clinical

features alone. The prediction probability was higher than that of

a single method, suggesting that the combination of the two

methods is more advantageous in identifying benign and

malignant pulmonary nodules.

Radiomics aims to develop new imaging biomarkers to

better understand the microbiology of cancer (17) and to

provide additional data on the biological composition of lung

nodules, which is frequently used for lung cancer screening and

diagnosis. Multiple studies have demonstrated the effectiveness

of radiomics in discriminating between malignant and benign

nodules. Our study showed that the radiomic features performed

better than clinical features in both the training cohort and

testing cohort. Several radiomic features contribute to the

identification of malignant nodules, such as kurtosis and

entropy, which have a sensitivity of 83% and specificity of 69%

for assessing lung nodule identification. These findings were also

reported in previous studies by Sacconi et al. (9), and these CT

texture parameters (e.g., skewness and entropy) are also good

predictors of epidermal growth factor receptor (EGFR)

mutations and lung adenocarcinoma patient survival. Several

studies have demonstrated that radiomics was an effective tool in

differentiating between malignant and benign tumors, with an
frontiersin.org
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accuracy of 79.06%–81%, a sensitivity of 76.2%–78.00%, and a

specificity of 76.11%–91.7% (18, 19). Another study (20) showed

that radiomic signatures achieve an AUC of 72% for the

classification of malignant and benign nodules but with

limited accuracy (11). Radiomic texture analysis and CT

features are more effective in distinguishing persistent

pulmonary nodules from transient pulmonary tuberculosis

than clinical and CT features alone (21). In addition, it is

difficult to distinguish the invasion degree of lung

adenocarcinoma only by traditional CT features alone (22, 23).

This was consistent with the study by Kumar et al. (18), which

showed that the accuracy of differentiation between malignant

and benign nodules reached 79.06%, with a sensitivity of 78.00%

and specificity of 76.11%. In the study by Wu et al. (20),

radiomic signature allowed the classification of malignant and

benign nodules with an AUC equal to 72%.
Frontiers in Oncology 07
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In order to more accurately identify the macroscopic and

microscopic changes of lung nodules and comprehensively

demonstrate the changes of tumor heterogeneity in lung

nodules, the combined prediction method can not only absorb

the morphological changes of lung nodules but also reflect the

characteristics of the microstructure of lung nodules in

combination with radiomic features (24). In our investigation,

the clinical signature (0.997, 95% CI = 0.990–1.000) and

radiomic signature (0.999, 95% CI = 0.996–1.000) both achieve

the ideal fitting in the training cohort. Clinical signatures in the

testing cohort appear to be overfitting those who attained 0.700,

95% CI = 0.473–0.953, although radiomic signatures continued

to match well (0.982, 95% CI = 0.940–1.000). Several studies

have tried to compare the added value of clinical features with

these radiomic features. In fact, they could improve the

performance of machine learning methods to differentiate
A B

C

FIGURE 3

Radiomic feature selection based on LASSO algorithm and Rad score establishment. (A, B) Ten-fold cross-validated coefficients and 10-fold
cross-validated MSE. (C) The histogram of the Rad score based on the selected features.
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between focal pneumonia and adenocarcinoma (25) or NSCLC

(26). The addition of clinical features could not also produce an

improvement in the model performance (27), highlighting the

importance of the radiomic features. In nearly all cases, the

diagnostic accuracy is improved by combining the radiomic

model with clinical data, such as serum markers, demographics,

histopathology, and genomics (28). These results were consistent

with our results that the combined nomogram model based on

radiomic and clinical features performed best in the

differentiation of malignant and benign nodules.
Frontiers in Oncology 08
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Urinary tests had been used as noninvasive cost-effective

tools for cancer detection (29), the components of which can

reflect the circulome of the tumor. Studies have shown that urine

can indicate lung cancer by proteomic biomarker panels (30).

Urine cellular energy metabolism as a body fluid for lung nodule

diagnosis has several advantages. First, it can be easily obtained.

Second, urinary metabolism index was reliably detected by mass

spectrometry (MS) (31–33). Studies (34–37) have shown

significant differences between patients with lung cancer and

healthy subjects based on urine metabolomic profiles. A cross-
A B

FIGURE 4

Comparison of radiometric feature model predictions for the training (A) and testing cohorts (B). XGBoost achieved the best performance in
both the training and testing cohorts.
A B

FIGURE 5

AUC Comparison of clinical, radiological, and nomogram models in the training (A) and testing (B) cohorts. The combined nomogram
performed optimally in both the training and testing cohorts.
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validated model based on nuclear magnetic resonance (NMR)

spectroscopy differentiated lung cancer (n = 71) from healthy

controls (n = 54) with a sensitivity and specificity of 93% and

94%, respectively (35). Our result showed that the combined

model including clinical features and urine energy metabolism

index showed the best predicting performance. This is consistent

with the opinion of Zhang et al. (38) that urinary biomarkers

help discriminate lung cancer from control groups, which may

be an auxiliary diagnostic tool for lung cancer detection along

with radiology features. Considering the complexity of the

pathways and metabolites in the disease processes, many
Frontiers in Oncology 09
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biological explanations are hypothetical and unsupported by

evidence. Metabolites may increase during the initial stages of

the disease process but decrease rapidly as the disease progresses

(29). The urinary metabolomic test has promising clinical utility;

these studies still need additional distinct validation as the next

step toward clinical implementation.

This study has the following limitations: 1) the sample size is

small, and there may be selection bias; 2) The boundary of

lesions was manually delineated, and some small blood vessels or

bronchi may not be completely avoided, and human error is

unavoidable. In conclusion, radiomic analysis of pulmonary
A B

FIGURE 6

Calibration curves in the training and testing cohorts showing that the nomogram fits perfectly well in both the training (A) and testing cohorts (B).
FIGURE 7

Decision curves of the clinical, radiomic, and nomogram models in the testing cohort. Nomogram model shows the best clinical benefit in
predicting benign and malignant lung nodules compared to the clinical and radiological models.
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nodules and clinical features including urine energy levels are

valuable for the differential diagnosis of benign and malignant

pulmonary nodules, and their combined model has a high

diagnostic efficiency.
Conclusions

The combined nomogram model based on radiomic and

clinical signature-urine including cellular energy features is

helpful for the prediction of benign and malignant pulmonary

nodules. The model has higher predictive performance

compared with models based on radiomic and clinical features

only and is expected to provide more information for future

decisions on pulmonary nodules.
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Combination of ultrafast dynamic
contrast-enhanced MRI-based
radiomics and artificial neural
network in assessing BI-RADS 4
breast lesions: Potential to avoid
unnecessary biopsies

Yidong Lyu1, Yan Chen2, Lingsong Meng2, Jinxia Guo3,
Xiangyu Zhan1, Zhuo Chen1, Wenjun Yan1, Yuyan Zhang1,
Xin Zhao2* and Yanwu Zhang1*

1Department I of Breast, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China,
2Department of Radiology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,
3General Electric (GE) Healthcare, MR Research China, Beijing, China
Objectives: To investigate whether combining radiomics extracted from ultrafast

dynamic contrast-enhanced MRI (DCE-MRI) with an artificial neural network enables

differentiationofMRBI-RADS4breast lesionsandtherebyavoids false-positivebiopsies.

Methods: This retrospective study consecutively included patients with MR BI-

RADS 4 lesions. The ultrafast imaging was performed using Differential sub-

sampling with cartesian ordering (DISCO) technique and the tenth and fifteenth

postcontrast DISCO images (DISCO-10 and DISCO-15) were selected for further

analysis. An experienced radiologist used freely available software (FAE) to perform

radiomics extraction. After principal component analysis (PCA), a multilayer

perceptron artificial neural network (ANN) to distinguish between malignant and

benign lesions was developed and tested using a random allocation approach.

ROC analysis was performed to evaluate the diagnostic performance.

Results: 173 patients (mean age 43.1 years, range 18–69 years) with 182 lesions (95

benign, 87 malignant) were included. Three types of independent principal

components were obtained from the radiomics based on DISCO-10, DISCO-15,

and their combination, respectively. In the testing dataset, ANN models showed

excellent diagnostic performance with AUC values of 0.915-0.956. Applying the

high-sensitivity cutoffs identified in the training dataset demonstrated the potential

to reduce the number of unnecessary biopsies by 63.33%-83.33% at the price of

one false-negative diagnosis within the testing dataset.

Conclusions: The ultrafast DCE-MRI radiomics-based machine learning model

could classify MR BI-RADS category 4 lesions into benign or malignant,

highlighting its potential for future application as a new tool for clinical diagnosis.

KEYWORDS

ultrafast dynamic contrast-enhanced MRI, radiomics, neural network, breast imaging
reporting and data system, breast cancer
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Introduction

Breast cancer is the most common malignant tumor in women

and the second leading cause of cancer-related death in women (1).

Early cancer detection is beneficial to improve the prognosis of

patients with breast cancer (2). Breast magnetic resonance imaging

(MRI) plays an important role in the diagnosis (3), treatment (4), and

prognostic assessment (5) of breast cancer. American College of

Radiology (ACR) Breast Imaging Reporting and Data System (BI-

RADS) is helpful for clinical decision-making (6, 7). BI-RADS

category 4 lesions with a varying range of probability of malignancy

(2%-95%) (6, 8), however, are regarded as suspicious lesions and

usually recommended for biopsy (7), which may lead to a large

number of negative biopsies (9) as well as the psychological and

financial burden for patients. Therefore, it is necessary to find a

sensitive tool to improve the assessment of BI-RADS 4 lesions. In

order to avoid false positive BI-RADS 4 category assignments,

previous studies utilized either advanced MRI techniques (10–13)

or specific clinical decision rule incorporated morphological and

kinetic BI-RADS descriptors (14, 15). Although these approaches

showed encouraging results, additional measurements increase the

scan time and the decision rule require human image features

interpretation that may lead to inter-reader variation (16).

Radiomics is an emerging field that can non-invasively provide

rich information on lesions by quantitatively analyzing numerous

features extracted from traditional medical images (17). Different

from the conventional visual interpretations of radiologists, this

technique can objectively quantify the heterogeneity of diseases.

Consequently, radiomics has been successfully explored as a means

to aid decision-making for the diagnosis and risk stratification of

several kinds of cancers, for example, glioblastoma (18), lung cancer

(19), cervical carcinoma (20), and hepatocellular carcinoma (21).

Radiomics also shows encouraging results for improving the accuracy

of breast cancer diagnosis, prognosis, and prediction of recurrence

(22–25).

Ultrafast dynamic contrast-enhanced magnetic resonance

imaging (DCE-MRI) is a newly proposed imaging protocol that can

provide improved temporal resolution while maintaining reasonable

spatial resolution (26, 27). Several fast acquisition techniques have

played an important role in ultrafast imaging, consisting of view

sharing, sophisticated parallel imaging, and compressed sensing (27–

29). Differential sub-sampling with cartesian ordering (DISCO),

which utilizes pseudorandom segmentation of the k-space and two-

point Dixon fat-water separation, is a type of view-sharing technique

(30). All the methods with 3-10 s of temporal resolution can capture

kinetic information of a lesion in the very early post-contrast phase.

Many studies have demonstrated that the early image features of

ultrafast imaging are beneficial for breast cancer diagnosis and

characterization (27, 29, 31).

The radiomics models have been developed by some studies to

improve the assessment of BI-RADS 4 lesions (32–34). However, they

examined the features from conventional sequences including ADC

maps, T1W images, T2W images, or T1 contrast-enhanced images.

Few studies have reported the diagnostic efficiency of radiomics

features based on ultrafast imaging in distinguishing breast
Frontiers in Oncology 0289
suspicious lesions. Therefore, the purpose of this study was (a) to

investigate if combining radiomics features extracted from ultrafast

imaging (using the DISCO technique) with an artificial neural

network (ANN) can differentially diagnose the MR BI-RADS 4

breast lesions, (b) to determine whether and how many false-

positive biopsies could be potentially avoided by comparing the

results with prospectively prescribed biopsy indications by

experienced breast radiologists.
Materials and methods

Patients

This retrospective study was approved by the Institutional Review

Board of our institution and written informed consent was waived.

We consecutively reviewed 365 patients who presented suspicious

lesions by mammography or breast ultrasonography and underwent

breast MRI for diagnosis or preoperative staging from April 2020 to

May 2021. Samples of all lesions were obtained by biopsy or surgery

and analyzed subsequently by an experienced pathologist. The

pathological results of all lesions were regarded as the reference

standard. 192 patients were excluded due to the following reasons

(1): poor image quality fails to satisfy the diagnostic requirement (n =

10) (2); no pathological results available (n = 39) (3); prior biopsy or

chemotherapy before MRI examination (n = 60) (4) BI-RADS

category 3 or 5 lesions (n = 83). Finally, 173 patients with 182 MR

BI-RADS category 4 lesions were included. Nine patients had breast

lesions in both breasts. The flowchart of patient selection is shown

in Figure 1.
MRI acquisition protocol

All patients underwent breast MRI in a prone position using a 3.0-

T scanner (SIGNA Pioneer, GE Healthcare, Waukesha, WI, USA)

with an 8-channel breast coil. The MRI protocol included axial T1-

weighted imaging, axial T2-weighted imaging with fat suppression,

diffusion-weighted imaging, and dynamic contrast-enhanced (DCE)

imaging. DCE-MRI consisted of a pre-contrast image of conventional

DCE-MRI, followed by 15 phases of ultrafast DCE-MRI, and then five

conventional DCE-MRI. Ultrafast imaging that utilized the DISCO

technique was performed with the start of gadolinium-based contrast

medium injection. Utilizing an MR power injector, gadolinium

diamine (GE Healthcare, Shanghai, China) was administered at a

dose of 0.1 mmol/kg of body weight and a rate of 2.5 ml/s, followed

immediately by a 20-ml saline flush with the same rate. Only the

DISCO images were used for radiomics analysis. The acquisition

parameters are shown in Supplementary Material 1 Table S1.
Image segmentation and feature extraction

The tenth and fifteenth postcontrast DISCO images (hereafter

DISCO-10 and DISCO-15, respectively), which were acquired
frontiersin.org
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respectively at ~70 and ~105 seconds after contrast was injected,

were selected for analysis since the peak contrast time between the

lesion and the background peaked was approximately 60-120

seconds (35).

For lesion segmentation, three steps were performed: first, two

experienced radiologists (reader 1 with 5 years and reader 2 with 10

years of experience in reading breast images, respectively) reviewed

the images in consensus identifying the location of the targeted lesion

before sketching the region of interest (ROI). Both readers were

blinded to initial radiological reports and the pathologic outcomes.

Second, reader 1 manually sketched the ROI by using ITK-SNAP

software (version 3.6.0, www.itksnap.org). The ROI traced the borders

of each lesion and included the entire enhancing area. This step

yielded a 3-dimensional (3D) ROI. Third, all segmentations were

reviewed by a senior radiologist (reader 3 with more than 15 years of

experience) and revised as necessary by adding or replacing

seed points.

To evaluate the intra- and interobserver consistency of image

segmentation and feature, 50 cases were randomly selected. Reader 1

repeatedly draw the ROIs four weeks later. Reader 3 (with more than

experience of 15 years) who was blinded to pathological information

independently outlined the ROIs according to the same procedure.

The intraclass correlation coefficient (ICC) was used to evaluate intra-

and interobserver agreement and ICC > 0.75 was regarded as a

satisfactory result (20, 36).

In this study, radiomics extraction was performed by using a

freely available software named FeAture Explorer version 5.0 (FAE

5.0) (37). A total of 107 features were automatically extracted from

each lesion ROI, consisting of 18 histogram features, 14 shape

features, and 75 texture features. The texture features included gray

level co-occurrence matrix (GLCM) (24 features), gray-level

dependence matrix (GLDM) (14 features), gray level run length

matrix (GLRLM) (16 features), gray level size zone matrix

(GLSZM) (16 features), neighboring gray-tone difference matrix

(NGTDM) (5 features). The details of the features are summarized

in Supplementary Material 1 Table S2.
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Feature selection and model development

For feature selection, we performed the principal component

analysis (PCA) with varimax rotation using SPSS software (version

26.0, IBM) and utilized Kaiser’s criterion (eigenvalue > 1) to select the

components for further analysis. Three different kinds of principal

components were obtained from the features of DISCO-10, DISCO-

15, and their combination, respectively (Figure 2).

A multilayer perceptron (MLP) artificial neural network (ANN)

was performed to develop the predictive models using the selected

components as input. The output layer of the model was the

likelihood of malignancy using histological results as the gold

standard. The ANN architecture was determined using an

automatic selection method based on optimal diagnostic efficiency.

The number of units in the hidden layer was set between 1 and 50. To

improve inter-reader comparability, we set a seed of 20220928 as a

random number generator. The training was performed in batch

mode utilizing the scaled conjugate gradient as an optimization

algorithm. The initial lambda was set to 0.0000005, sigma to

0.00005, interval center to 0, and interval offset to 0.5. For stopping

rules, the maximum steps without a decrease in an error of 1, the

minimum relative change in training error of 0.0001, and the

minimum relative change in training error ratio of 0.001 were

adopted. The data of computing prediction error and the number

of training epochs were automatically chosen. The dataset was

randomly split into a training set and a testing set in a ratio of

approximately 7:3. All radiomics models were trained based on the

training set, and then tested based on the testing set. All analyses were

performed using SPSS software (version 26.0, IBM).
Statistical analysis

The receiver operating characteristic (ROC) curve analysis was

performed to assess the diagnostic performance using histopathology

as the reference standard. The area under the curve (AUC),
FIGURE 1

Flowchart of patient selection in this study.
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sensitivity, specificity, positive predictive value (PPV), and negative

predictive value (NPV) were calculated. The exploratory cutoff value

was selected within the training dataset with a sensitivity of

approximately 90% or above and validated using the testing dataset.

When the AUC in the training dataset is significantly higher than in

the testing dataset, the model is assumed to be overfitted. The

differences in AUCs and specificity for different models were

compared using the Delong test and McNemar test, respectively.

All statistical analyses were performed using the statistical software

SPSS version 26.0 (IBM) and MedCalc version 19.8 (MedCalc). P <

0.05 was considered statistically significant.
Results

Population and lesion descriptors

A total of 173 patients (mean age, 43.1 ± 11.7 years; range 18-69

years); with 182 lesions were included in the study. Histopathology

identified 95 (52.2%) benign and 87 (47.8%) malignant lesions,

including invasive ductal carcinoma 68 (78.2%), ductal carcinoma

in situ 14 (16.1%), mucinous carcinoma 4 (4.6%), invasive lobular

carcinoma 1 (1.1%). The mean lesion size was 2.3 ± 1.6 cm. After the

random split, approximately 70% (127/182) of cases were regarded as

the training dataset and 30% (55/182) as the testing dataset. The

detailed results are summarized in Table 1.
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PCA of radiomic features

We obtained excellent intra- and inter-observer consistency in

214 (107 × 2) features and no feature was removed. The mean ICCs

were 0.96 (P < 0.001) and 0.92 (P < 0.001) for intra- and inter-

observer, respectively.

PCA was performed and yielded three categories of principal

components (PC), consisting of eleven PC for DISCO-10, eleven PC

for DISCO-15, and sixteen PC for their combination, respectively.

The PC was utilized as input layers for the multilayer perceptron

ANN. The detailed results of the PCA are summarized in

Supplementary Materials 2–4.
Diagnostic performance of ANN

Figure 3 illustrates the ROC curves of different models within the

training and testing dataset. The AUC of DISCO-10, DISCO-15, and

their combination was 0.817 (95%CI, 0.739-0.880), 0.889 (95%CI,

0.821-0.938), and 0.902 (95%CI, 0.836-0.948) in training dataset and

0.937 (95%CI, 0.838-0.985), 0.915 (95%CI, 0.808-0.973), and 0.956

(95%CI, 0.864-0.993) in the testing dataset, respectively (Table 2).

Compared with the training dataset, the AUC values in the testing

dataset were higher for DISCO-10 (P = 0.012), DISCO-15 (P = 0.625),

and the combined method (P = 0.127), which indicated that

classification models were not overfitted. On the testing dataset, the
FIGURE 2

Flowchart of radiomics analysis in this study. DISCO, Differential sub-sampling with cartesian ordering; PCA, principal component analysis; MLP ANN,
multilayer perceptron artificial neural network.
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combined scheme yielded the highest AUC value compared with the

single sequence radiomics model based on DISCO-10 (P = 0.294), and

DISCO-15 (P = 0.122). DISCO-10 achieved a slightly higher AUC in

comparison with DISCO-15 (P = 0.411). The details of the ANN

architecture are provided in Supplementary Materials 5.
Potential of the ANN to avoid
unnecessary biopsies

In this study, three exploratory cut-off values (> 0.144, > 0.171, >

0.459) predicted probability of malignancy were identified in the

training dataset, yielding the sensitivity of 95.16%, 93.55%, 90.32%,

and the specificity of 20.69%, 38.46%, and 70.77%, respectively

(Table 3, Figure 4).

In the testing dataset, evaluating the diagnostic performance of

the DISCO-10 using the predefined cut-off value (> 0.144) showed a

sensitivity of 96% and a specificity of 63.33%. For the diagnostic

performance of DISCO-15, applying the cut-off value (> 0.171)

resulted in a sensitivity of 96% and a specificity of 70%. When

using the exploratory cut-off value of 0.459 of the combined
Frontiers in Oncology 0592
method, the sensitivity and specificity were 96% and 83.33%,

respectively (Table 3, Figure 4). By means of three ANN models,

nineteen of 30, twenty-one of 30, and twenty-five of 30 benign breast

lesions were correctly diagnosed, while leading to one false-negative

diagnosis respectively (Table 3). The combined scheme showed

slightly higher specificity compared with DISCO-10 (P = 0.109) and

DISCO-15 (P = 0.289), but not significantly. The false-negative and

false-positive diagnoses using different ANN models within the

testing set at a sensitivity of 96% are summarized in Table 4.

Representative clinical cases are illustrated in Figure 5.
Discussion

We demonstrated that the investigated ultrafast DCE-MRI-based

radiomics combined with ANN could be used to differentially

diagnose the MR BI-RADS 4 lesions. The constructed classifiers

showed good discriminative performance with the AUC values

ranging from 0.915 to 0.956. Rather than assigning a category that

was only associated with a variable range of malignant tumor rates,

the MLP classifier provided individually predicted likelihood of
BA

FIGURE 3

ROC curves of the ANN for the training (A) and testing (B) datasets.
TABLE 1 Histopathology results in this study.

Histology Training (n = 127) Testing (n= 55)

Malignant 62 (48.8%) 25 (45.5%)

Invasive ductal carcinoma 47 (75.8%) 21 (84%)

Ductal carcinoma in situ 10 (16.1%) 4 (16%)

Mucinous carcinoma 4 (6.5%)

Invasive lobular carcinoma 1 (1.6%)

Benign 65 (51.2%) 30 (54.5%)

Fibroadenomas 34 (52.3%) 19 (63.4%)

Adenosis 15 (23.1%) 8 (26.7)

Papilloma 9 (13.9%) 1 (3.3)

Inflammation 6 (9.2%) 1 (3.3)

Phyllodes tumor 1 (1.5%) 1 (3.3)
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malignancy. Applying the high-sensitivity cutoffs for breast cancer

might have avoided 63.33%-83.33% of all unnecessary biopsies at the

price of one false-negative diagnosis.

Although MR BI-RADS category 4 lesions show varying

malignancy rates, biopsies are usually recommended in clinical

practice, resulting in a substantial number of false positive lesions

and a waste of medical resources. Therefore, methods for improving

pre-interventional lesion assessment are warranted. Radiomics is

increasingly considered an important diagnostic tool, providing

quantitative multi-dimensional features extracted from imaging

data that may reflect the potential phenotype of tumor disease (17).

Many studies have shown that radiomics is useful in evaluating MR

BI-RADS 4 lesions. Hu et al. (32) developed a radiomics nomogram

based on an apparent diffusion coefficient map to differentially

diagnose BI-RADS 4 findings and found a moderate diagnostic

performance with an AUC of 0.79, which was lower compared to

our results. The possible reason may be that the ultrafast DCE series

could provide more information in differentiating breast lesions
Frontiers in Oncology 0693
compared with ADC (38). Zhang et al. (34) and Cui et al. (33)

applied MRI-based radiomics models to predict the benignity and

malignancy of BI-RADS 4 lesions and yielded a good diagnostic

efficiency with the AUC of 0.939 and 0.94, respectively, which were

comparable to our results. While in this study, the radiomics were

extracted from ultrafast DCE-MRI, which appeared to reduce greatly

magnet time.

Avoiding unnecessary biopsies remains a hot topic in the clinical

management of breast lesions. Currently, a clinical decision rule

named the Kaiser score has been proposed to assess breast lesions,

with improved diagnostic accuracy and the potential to avoid

unnecessary biopsies (14, 39–43). Although this method may

simplify the image interpretation compared with BI-RADS

assignment, differences resulting from experience at different levels

(44) and inter-observer variation (16) remain. Interestingly, our

results showed that there was no significant difference in the

diagnostic performance between the radiomics models and the

Kaiser score (Supplementary Materials 6). This indicated that the
TABLE 3 Diagnostic performance of the ANN models.

Criterion Sensitivity (%)
(TP/TP + FN)

95% CI Specificity (%)
(TN/TN + FP)

95% CI PPV NPV

Training (n = 127)

DISCO-10 >0.144 95.16
(59/62)

86.5-99.0 27.69
(18/65)

17.3-40.2 55.7 85.7

DISCO-15 >0.171 93.55
(58/62)

84.3-98.2 38.46
(25/65)

26.7-51.4 59.2 86.2

Combined >0.459 90.32
(56/62)

80.1-96.4 70.77
(46/65)

58.2-81.4 74.7 88.5

Testing (n = 55)

DISCO-10 >0.144 96.00
(24/25)

79.6-99.9 63.33
(19/30)

43.9-80.1 68.6 95.0

DISCO-15 >0.171 96.00
(24/25)

79.6-99.9 70.00
(21/30)

50.6-85.3 72.7 95.5

Combined >0.459 96.00
(24/25)

79.6-99.9 83.33
(25/30)

65.3-94.4 82.8 96.2
frontier
Comparison of specificity for different models within the testing set: Combined vs. DISCO-10 (P = 0.109); Combined vs. DISCO-15 (P = 0.289); DISCO-10 vs. DISCO-15 (P = 0.727).
TP, true positive; FN, false negative; TN, true negative; FP, false positive; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; DISCO, Differential sub-sampling with
cartesian ordering.
TABLE 2 Comparison for AUCs of different models within the training and testing set.

AUC SE 95%CI

Training (n = 127)

DISCO-10 0.817 0.037 0.739 - 0.880

DISCO-15 0.889 0.030 0.821 - 0.938

Combined 0.902 0.025 0.836 - 0.948

Testing (n = 55)

DISCO-10 0.937 0.030 0.838 - 0.985

DISCO-15 0.915 0.044 0.808 - 0.973

Combined 0.956 0.025 0.864 - 0.993
Pairwise comparison of ROC curves within the testing set: Combined vs. DISCO-10 (P = 0.294); Combined vs. DISCO-15 (P = 0.122); DISCO-10 vs. DISCO-15 (P = 0.411).
AUC, area under the curve; SE, standard error; CI, confidence interval.
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radiomics-based machine learning model might provide comparable

results compared with the Kaiser score method while not required to

perform image feature interpretation.

The exploratory cutoff at high sensitivity may be used to evaluate

the number of avoidable false-positive biopsies (15, 16, 45). Utilizing

the radiomics derived from ultrafast DCE-MRI combined with the

MLP ANN classifier, we identified that about 63.33%-83.33% of

unnecessary biopsies might have been avoided in the testing dataset

while maintaining a high sensitivity (96%, 24/25). This was an

encouraging result, which had the potential to provide more

valuable information to support clinical decision-making.

Currently, abbreviated breast MRI, which can substantially

shorten examination and reading times, has been proposed for

increasing access to screening for women at average risk of breast

cancer. Many studies have demonstrated that abbreviated MRI can

improve cancer detection in women with dense breasts (46, 47).

However, this protocol may result in unnecessary biopsies because of

the lack of kinetics information provided by DCE-MRI. Ultrafast

imaging can fill this gap. The features including maximum slope and

time to enhancement derived from ultrafast sequences have shown

important value in improving tumor characterization, identifying
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prognostic factors, and assessing treatment (29, 31, 48, 49). But the

calculation of these parameters requires commercial software that

may not be universally available. In the present study, we explored a

more intuitive and easy-to-apply method in a representative patient

population and analyzed its clinical utility. To make the proposed

approach available to every physician, open-source software was used

to perform radiomics extraction from the initial DICOM images.

Exporting the learned weights of a well-trained ANN classifier into

excel would allow our findings to be quickly integrated into clinical

workflows and make it easy to obtain personal predictions of the

malignant rates in patients with MR BI-RADS category 4 lesions.

However, it should be noted that this is only a preliminary study in

the investigated setting and larger patient cohorts are required to

validate the results.

While DISCO-15 might have avoided more unnecessary biopsies

compared with DISCO-10, not significantly. And the former showed

a higher AUC value. In addition, combining DISCO-15 features with

DISCO-10 did not yield significantly improved AUC and specificity.

This might suggest that the late postcontrast phase of ultrafast DCE-

MRI could provide little information for significantly improving

diagnostic performance.
TABLE 4 False-negative and false-positive diagnoses using different models within the testing set at high level of sensitivity (96%).

False negatives n False positives n

DISCO-10 1 11

Invasive ductal carcinoma 1 Fibroadenoma 7

Adenosis 3

Inflammation 1

DISCO-15 1 9

Invasive ductal carcinoma 1 Fibroadenoma 8

Adenosis 1

Combined 1 5

Invasive ductal carcinoma 1 Fibroadenoma 4

Adenosis 1
frontiersin
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FIGURE 4

Estimated proportion of sensitivity, specificity, PPV, and NPV (y-axis) at different predicted probability thresholds (x-axis) for training dataset (A-C) and
testing dataset (D-F). (A-C) The vertical blue lines indicate the cutoff values of 0.144, 0.171, and 0.459 at high sensitivity (>90%) for DISCO-10, DISCO-15,
and combined methods within the training dataset, respectively. (D-F) The vertical blue lines indicate the diagnostic performance within the testing
dataset using the predefined cutoff values. PPV, positive predictive value; NPV, negative predictive value.
.org

https://doi.org/10.3389/fonc.2023.1074060
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lyu et al. 10.3389/fonc.2023.1074060
There are several limitations in this study. First, the number of

cases was relatively small, and it was a retrospective study merely

performed in our institution. In order to validate the robustness of the

classifier, larger datasets from multicenter are needed in further

research. Second, only ultrafast imaging was used to perform
Frontiers in Oncology 0895
radiomics analysis, other sequences, such as DWI, T2WI, and high-

spatial-resolution DCE sequences were not included and required

further investigation. Third, we analyzed the features of BI-RADS 4

lesions, and other category lesions consisting of category 3 or 5 were

not included. We believe that the proposed ANN classifier might also
FIGURE 5

False-negative and false-positive results. (A, B) False-negative case: A 51-year-old female patient: MRI showed an irregular lesion in the left breast (white
arrow. The lesion demonstrated heterogeneous internal enhancement (A, B). (A) DISCO-10, (B) DISCO-15. The ANN classifiers predicted a low likelihood
of malignancy (14.3% for DISCO-10, 4.2% for DISCO-15, and 15.2% for combined, respectively). Histology revealed an invasive ductal carcinoma. (C–F)
False-positive cases. (C, D) A 34-year-old female patient: MRI showed an irregular lesion in the right breast (blue arrow). The lesion demonstrated
heterogeneous internal enhancement (C, D). (C) DISCO-10, (D) DISCO-15. The ANN classifiers predicted a high likelihood of malignancy (65.6% for
DISCO-10, 64.0% for DISCO-15, and 75.4% for combined, respectively). Histology revealed an adenosis. (E, F) A 35-year-old female patient: MRI showed
an irregular lesion in the left breast (red arrow). The lesion demonstrated heterogeneous internal enhancement (E, F). (E) DISCO-10, (F) DISCO-15. The
ANN classifiers predicted a high likelihood of malignancy (78.0% for DISCO-10, 97.2% for DISCO-15, and 78.7% for combined, respectively). Histology
revealed a fibroadenoma.
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be beneficial in evaluating these lesions and we are currently

examining this assumption (4). In this study, the risk factors such

as patient age, personal disease history, and gene mutation that are

highly associated with breast cancer were not included. The fusion of

these features with principal component analysis might yield more

stable and trustable diagnostic performance.

In conclusion, our preliminary results indicated that radiomics

extracted from ultrafast DCE-MRI imaging combined with the

multilayer perceptron artificial neural network could differentially

diagnose MR BI-RADS category 4 breast lesions with excellent

diagnostic performance, and have the potential to avoid more than

63.33% of unnecessary biopsies. Further investigation with larger

patient cohorts is warranted to validate our results in the future.
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Objective: To provide the current research progress, hotspots, and emerging

trends for AI in liver cancer, we have compiled a relative comprehensive and

quantitative report on the research of liver disease using artificial intelligence by

employing bibliometrics in this study.

Methods: In this study, the Web of Science Core Collection (WoSCC) database was

used to perform systematic searches using keywords and a manual screening

strategy, VOSviewer was used to analyze the degree of cooperation between

countries/regions and institutions, as well as the co-occurrence of cooperation

between authors and cited authors. Citespace was applied to generate a dual map

to analyze the relationship of citing journals and citied journals and conduct a

strong citation bursts ranking analysis of references. Online SRplot was used for in-

depth keyword analysis and Microsoft Excel 2019 was used to collect the targeted

variables from retrieved articles.

Results: 1724 papers were collected in this study, including 1547 original articles

and 177 reviews. The study of AI in liver cancer mostly began from 2003 and has

developed rapidly from 2017. China has the largest number of publications, and the

United States has the highest H-index and total citation counts. The top threemost

productive institutions are the League of European Research Universities, Sun Yat

Sen University, and Zhejiang University. Jasjit S. Suri and Frontiers in Oncology are

the most published author and journal, respectively. Keyword analysis showed that

in addition to the research on liver cancer, research on liver cirrhosis, fatty liver

disease, and liver fibrosis were also common. Computed tomography was the

most used diagnostic tool, followed by ultrasound and magnetic resonance

imaging. The diagnosis and differential diagnosis of liver cancer are currently the

most widely adopted research goals, and comprehensive analyses of multi-type

data and postoperative analysis of patients with advanced liver cancer are rare. The

use of convolutional neural networks is the main technical method used in studies

of AI on liver cancer.

Conclusion: AI has undergone rapid development and has a wide application in the

diagnosis and treatment of liver diseases, especially in China. Imaging is an

indispensable tool in this filed. Mmulti-type data fusion analysis and
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development of multimodal treatment plans for liver cancer could become the

major trend of future research in AI in liver cancer.
KEYWORDS

bibliometrics, VOSviewer, Citespace, artificial intelligence, liver cancer
Introduction

Liver cancer is an extremely aggressive malignant tumor, ranking

7th in incidence and 4th in mortality worldwide. Studies have revealed

that liver cancer has a high recurrence rate and low recovery rate,

especially after the middle and late stages, and the 5-year survival rate

of liver cancer is only 5-30% (1, 2). Therefore, it has become a global

health problem. Despite advances in diagnosis and treatment of liver

cancer, including improved diagnostic imaging accuracy and

improved survival after neoadjuvant or conversion therapy, but it is

limited. Accurate screening of early-stage liver cancer patients and

high-risk patients, and rational treatment decisions for patients with

advanced stage liver cancer are of great significance for improving the

quality of life of patients.

With the development of medical big data and computer

technology, artificial intelligence (AI) based on machine learning

and deep learning has been widely used in current medical research

(3–6). Through self-learning, summary, and induction of data, it can

produce an intelligent reasoning system and choose the optimal

solution to guide clinical decision-making (7). Original AI was

based on traditional machine-learning methods, including support

vector machine and random forest models, which all relied on

human experience for learning and simple summary. As early as

2003, Hussain constructed a predictive system consisting of 12

genes, with Fisher’s linear classifier, for predicting early

recurrence in patients with hepatocellular carcinoma (HCC) (8).

During this period, most studies have focused on simple analyses of

data, such as genes and molecules (9–11). With the standardization

of imaging diagnosis and its important role in the clinical diagnosis

of liver cancer, AI research based on imaging has emerged by

extracting high-throughput features that cannot be detected and

defined by human eyes from large-scale image data to establish an

intelligent decision -making model to assist clinical decision-

making (12, 13). In particular, deep learning based on

convolutional neural networks (CNNs) has promoted progress in

liver cancer research (14–19).

As more and more researchers are interested in the use of AI in

liver cancer, a large number of related studies have started being

published. For example, reviews describing an overview of deep

learning, convolutional neural networks and other AI technologies

applications in liver cancer (20–22), reviews on the applications of AI

on assisted imaging in diagnosis, prognosis and detection of liver cancer

(23–25), and explained the latest research, on limitations and future

development trends of AI have all been recently published. However,

current reviews may be unable to explore grasp the latest research

trends and hotspots in this field because of lack of a large number of

publications. Meanwhile, there is a lack of quantitative analysis of all
0299
literature in this field. Additionally, a summary and quantitative

analyses of the global development trend and research hotspots of AI

in liver cancer is of great importance for future research. Bibliometrics

is a method of information visualization which can achieve quantitative

analysis of literature in a specific research field in a worldwide context

through statistical methods and visualizing the results with the help of

software (26–29). Bibliometrics plays an important role in sorting out

development trends and research hotspots of a given field and has been

widely used in many fields (26–29).

Therefore, we aimed to quantitatively analyze existing studies

involving AI in liver cancer using bibliometrics to provide the current

research progress, hotspots, and emerging trends for AI in liver cancer

which may help researchers better understand grasp future research

interest. Information was collated regarding countries/regions,

institutions, authors, and journals with the highest citations and

publications and keywords.
Methods

Data sources and search strategies

The Web of Science Core Collection (WoSCC), which is a

standardized and comprehensive dataset, was used to compile the

publication dataset in this study. AI is a branch of computer science

and a technology that uses machines to simulate human intelligence.

AI in this paper mainly includes traditional machine learning and the

most popular deep learning algorithms. Therefore, the searching

query string was described as follows: TS = (((liver OR hepatic)

NEAR/1 (cancer* OR tumor* OR tumor* OR disease OR lesion* OR

carcinoma*)) OR “hepatocellular carcinoma” OR “HCC”) AND TS =

(((automated OR intelligent) NEAR/1 (classification OR diagnosis

OR segment* OR detect*)) OR “artificial intelligence” OR “deep

learning” OR “convolutional neural network*” OR “machine

learning” OR “CNNs” OR “artificial neural network*” OR

“computer-aided” OR “Bayes* network*” OR “supervised learning”

OR “unsupervised clustering” OR “computer-assisted” OR (deep

NEAR/1 network*) OR “ensemble learning”). The retrieval was

carried out on January 18, 2022. Figure 1 shows the workflow of

the retrieval strategy in this research.
Strategy of manual screening

According to our research area, which focuses on the applications

of AI in liver cancer, we designed the following search items: the

papers for analysis were restricted to those that (1) were written in
frontiersin.org
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English, (2) focused on the field of liver cancer, (3) involved AI

technologies. After the preliminary search, 2111 papers were

included, and then we conducted further manual screening. In the

manual screening process, all papers are divided into relevant,

uncertain and excluded categories. Papers marked as unsure were

screened by three of the authors (XH, LL, and MX) and discussed to

determine whether they should be included. Unlike a systematic

review, bibliometric analysis only requires screening of abstracts

and full texts are only screened when necessary. According to the

screening criteria, 193 papers were excluded because did not focus on

the relevant field. Finally, 1724 papers were included in our study.
Bibliometric analysis and visualization

The analysis of the global trend of publications and citations and

productive countries/regions is mainly to comprehensively

understand the development trends of AI on liver cancer from

beginning to end. The analysis of institutions, authors, and co-cited

authors can quantitatively describe the strength of the cooperation

between authors and institutions (30–32). Additionally, the analysis

of top journals can analyze the level of cooperation and relationships

in the concentrated fields of journals, which is beneficial to cross field

cooperation in research (32). In particular, cluster co-occurrence

analysis of keywords from different perspectives such as disease,

data type, clinical goals, and clinical methods can help us

understand the main topics and research trends in the current field

of AI in liver cancer field.

We used VOSviewer (version 1.6.18) (33) and Citespace (version

6.1.R1) (34, 35) to perform bibliometric visual analysis on the data.

VOSviewer was used to analyze the degree of cooperation between

countries/regions and institutions, as well as the co-occurrence of
Frontiers in Oncology 03100
cooperation between authors and cited authors. We used Citespace to

generate a dual map, which showed the relationship between the main

distribution fields of citing journals and citied journals. At the same

time, we used Citespace to conduct a strong citation bursts ranking

analysis of references. Meanwhile, an online SRplot was used for in-

depth keyword analysis. In addition, we used Microsoft Excel 2019

(Microsoft, Redmond, WA) to analyze the targeted files. The top ten

of top-cited or productive authors, countries/regions, publications,

journals, and institutions were analyzed and tabulated.

In this study, five researchers (M.X., Y.X., Y.Z., S.H., and Q.Z.)

were invited to search, download and analyze the publications to

assure accuracy of data and repeatability of research.
Results

Global trend of publications and citations

A total of 1724 papers were collected from WoSCC database

inception according to our data searching strategy, including 1547

original articles and 177 reviews (Figure 1). Research on AI in liver

cancer started in 2003 and has increased every year (Figure 2). Research

has advanced especially rapidly from 2017, accounting for almost 70% of

all publications. As of the search date, all papers have been cited 27049

times, and the H-index and average citations per item are 67 and 15.69,

respectively. The H-index (36) is a mixed index which could be used as a

significant indicator of appraising both the number and level of academic

output of a scientific researcher, country, journal, or institution.
Analysis of productive countries/regions

A total of 75 countries/regions had published related articles in

this field, of which the top 10 in terms of publication count are China

(608), the USA (470), India (129), Germany (122), Japan (118), Italy

(105), England (75), South Korea (75), Canada (74), and France (73),

accounting for 35.33%, 27.31%, 7.49%, 7.09%, 6.86%, 6.10%, 4.36%,

4.36%, 4.30%, and 4.24% of total publications, respectively (Table 1).

The USA ranked first in H-index and total citations, with 49 and

10228 citations, respectively, which were both much higher than that

of China in second place (38, 7298 citations, respectively). Moreover,

the USA was first in terms of average citations per paper, followed by

France and Italy. Figure 3 shows the degree of cooperation between

countries when the minimum number of publications was set to at

least 5. The lines between nodes indicate co-authorships between

countries, where a thicker line indicates stronger cooperation (total

link strength [TLS]). The top 5 TLSs were associated with the USA,

China, India, Italy, and Canada.
Analysis of productive institutions

More than 2000 institutions have participated in research on AI in

liver cancer, and the top 10 institutions with the highest contribution

are shown in Table 2. The top three institutions were the League Of

European Research Universities, Sun Yat Sen University, and

Zhejiang University with a total of 109, 62, and 58 articles. Figure 4
FIGURE 1

Flowchart of the search process in the study.
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shows the TLS between institutions, and the top 3 TLSs were

associated with Sun Yat Sen University (TLS = 187), Zhejiang

University (TLS = 173), and the Mayo Clinic (TLS = 124).
Analysis of authors and co-cited authors

A total of 9916 authors and 37290 co-cited authors were included in

the study. Table 3 shows the top 10 most productive authors, including 4

Chinese, 3 American, 2 Singaporean, and 1 Italian author. Jasjit S. Suri,

Luca Saba, and Udyavara Rajendra Acharya were the top 3 authors, with

18, 17, and 15 articles, respectively. VOSviewer was also used to visualize

the map of co-authorship of authors and co-citations (Figure 5). There

were 78 authors with more than 45 citations, among which the top 3

TLSs were associated with U.R. Acharya (TLS = 2274), L. Saba (TLS =

1299), and O. Ronneberger (TLS = 1102).
Analysis of top journals

All related studies have been published in 585 journals. Table 4

shows the top 10 most productive journals, including their paper

count, impact factor (IF), Journal Citation Ranking (JCR), H-index,
Frontiers in Oncology 04101
and total count. The top 3 journals were Frontiers in Oncology (50,

2.90%), European Radiology (45, 2.61%), and Scientific Reports (41,

2.38%). Of the top 10 journals, there are 4 comprehensive medical

journals (Frontiers in Oncology, Scientific Reports, PLoS One,

International Journal of Computer Assisted Radiology and Surgery),

1 hepatobil iary professional journal (World Journal of

Gastroenterology), 1 medical imaging journal (European Radiology),

and 2 engineering journals (Medical Physics, IEEE Access). Forty

percent of journals had a JCR of Q1. Figure 6 shows the dual map of

journals and the relationship between citing journals and cited

journals. There were mainly four citation paths, and the citing

papers were mainly concentrated in three fields: (1) molecular,

biology, and immunology; (2) medicine, medical, clinical; and (3)

neurology, sports, ophthalmology. The cited papers were mainly

located in 3 fields: (1) molecular, biology, genetics; (2) health,

nursing, medicine; and (3) dermatology, dentistry, surgery.
Analysis of top cited references and co-
citation references

Figure 7 shows the top 25 references with the strongest citation

bursts. The explosion of citations in this field began in 2003, and a
TABLE 1 Top 10 productive countries/regions producing studies related to artificial intelligence in liver cancer.

Rank Country Counts Percentage H-index Total citations Average citation per paper

1 China 608 35.33 38 7298 12

2 USA 470 27.31 49 10228 21.76

3 India 129 7.49 21 1587 12.3

4 Germany 122 7.09 26 2169 17.78

5 Japan 118 6.86 25 2316 19.63

6 Italy 105 6.10 25 2171 20.68

7 England 75 4.36 20 1442 19.23

8 South Korea 75 4.36 15 655 8.73

9 Canada 74 4.30 18 1181 15.96

10 France 73 4.24 24 1541 21.11
FIGURE 2

Global trend of publications and citations on artificial intelligence research in liver cancer from 2003 to 2022.
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large number of co-citation references were focused on the period

from 2015 to 2019, indicating that research in this field was a hotspot

in these years.
Analysis of keywords

An in-depth analysis of keywords from the diseases, data types,

clinical goals, and methods (Figure 8) were conducted. Most articles

focused on liver cancer, and HCC was widely studied as a single type

of disease, followed by cirrhosis, fatty liver disease, liver fibrosis,

liver transplantation, and hepatectomy, accounting for 30.76%,

33.52%, 11.10%, 9.45%, 8.39%, 4.41%, and 2.37%, respectively

(Figure 8A). In terms of the data type, computed tomography

(CT, 46.79%) was the most used, followed by ultrasound

(23.58%), magnetic resonance imaging (MRI, 22.83%), and biopsy

(6.79%) (Figure 8B). Figure 8E shows that in the study of liver
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cancer, including HCC, CT was the most used, followed by

ultrasound and MRI. In addition, CT was mainly used for the

research of liver fibrosis, ultrasound was mainly used for the

research of fatty liver disease, and biopsy was mainly used for

liver fibrosis research (Figure 8E). The differential diagnosis of

HCC, are the key points, followed by the diagnosis of liver

cirrhosis, liver fibrosis and fatty liver disease, are key points

among the specific diagnosis, classification, and treatment of liver

diseases. In terms of the prognosis of liver disease, the prognosis of

HCC is a key focus, and the surgical methods for its treatment

mainly include radiofrequency ablation and transarterial

chemoembolization (Figure 8F). Three quarters of these papers

were about diagnosis, classification, segmentation, or prediction,

with relatively less attention to prognosis. Moreover, most liver

cancer studies used CNNs, with a minority exclusively using more

traditional techniques like support vector machine and decision

trees (Figure 8D).
TABLE 2 Top 10 institutes with publications researching the use of artificial intelligence in liver cancer.

Rank Institutions Countries/regions NP H-index NC Average per item

1 League Of European Research Universities Belgium 109 25 2746 25.49

2 Sun Yat Sen University China 62 11 704 11.61

3 Zhejiang University China 58 10 349 6.19

4 University Of Texas System USA 57 17 1000 17.93

5 Chinese Academy Of Sciences China 55 15 799 14.65

6 Fudan University China 49 10 997 20.45

7 Udice French Research Universities France 45 20 1103 24.62

8 Harvard University USA 42 14 766 18.31

9 Stanford University USA 40 19 791 20.25

10 University Of California System USA 36 14 795 22.25
NP, number of publications; NC, number of citations.
FIGURE 3

Citation network visualization map of countries/regions. The thickness of the lines reflects the citation strength.
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TABLE 3 The 10 most productive authors of publications researching the use of artificial intelligence in liver cancer.

Rank Author Country Count Total citations H-index Average per item

1 Suri, Jasjit S. USA 18 456 11 25.33

2 Saba, Luca Italy 17 371 10 21.82

3 Acharya, Udyavara Rajendra ingapore 15 519 11 34.6

4 Kuang, Ming China 14 214 6 15.29

5 Chapiro, Julius USA 12 237 6 19.75

6 Xing, Lei USA 11 318 7 28.91

7 Hagiwara, Yuki Singapore 11 207 6 18.82

8 Tian, Jie China 11 191 7 17.36

9 Wang, Wei China 11 177 5 16.09

10 Fan, Jiahao China 9 56 5 6.22
F
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FIGURE 5

Visualization map of co-authorship (A) and co-citation (B) analyses of authors. The thickness of the lines reflects the citation strength.
FIGURE 4

Citation network visualization map of institutions. The thickness of the lines reflects the citation strength.
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Discussion

In this quantitative study, in order to systematically and

quantitatively analyze the research status of AI in liver cancer, and

explore the future research trends and hotspots in this field, we used a

bibliometrics method to analyze the current research status of AI in

liver cancer in terms of publication and citation trends, countries/

regions and institutions, authors and co-cited authors, journals, cited

references and co-citation references, and keywords. Ultimately, 1724

articles focusing on AI in liver cancer were collected from theWoSCC

database and analyzed.

Research on AI in liver cancer mainly started in 2003 and

entered a stage of rapid development in 2017. China is the most

productive country with 35.33% of total publications; however, the

USA ranked first according to the H-index, citations, and average

citations per paper. It is notable that China, as a country with a high

incidence of liver cancer, has a high number of studies on AI in liver

cancer. However, most studies in China have limited impact, which

may need further improvement from topic selection and research

implementation. The League Of European Research Universities is

the most productive institution, followed by Sun Yat Sen University

and Zhejiang University. This is consistent with the conclusion of

the most productive country above. We also found that cooperation
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between medical and industrial universities contributes to better

research. For example, Sun Yat Sen University and the Chinese

Academy Of Sciences (the second and fifth most productive

institutions, respectively) have a strong TLS. Fu Dan University

and Shanghai Jiaotong University also have a strong TLS. This

indicated that the combination of medicine with engineering is

helpful for the development of AI in medicine. It also suggested that

studies should pay attention to the reasonable allocation of

research teams.

The top three most productive journals had JCR scores of at least

Q2. This shows that the field of AI in liver cancer is relatively mature

and has a high level of concern and recognition. Moreover, most of

the top 10 journals in this field are medical journals and include a

small number of engineering journals, showing that the medical field

pays more attention to AI in liver cancer. This suggests that we can

consider and design studies from both medical and engineering

aspects when conducting research, especially in medicine.

In the in-depth analysis of keywords, we found that most studies

focused on liver cancer, especially HCC, showing that this is a

research priority of liver disease. The second most common area of

research was chronic hepatitis diseases such as liver cirrhosis, liver

fibrosis, and fatty liver disease, which are more important for the

prevention of liver cancer.
TABLE 4 Top 10 journals related to research on artificial intelligence in liver cancer.

Rank Journal Count IF (2020) JCR (2020) H-index Total citations

1 Frontiers in Oncology 50 6.244 Q2 8 236

2 European Radiology 45 5.315 Q1 16 840

3 Scientific Reports 41 4.38 Q1 12 539

4 Medical Physics 35 4.071 Q1 13 549

5 PLoS One 35 3.24 Q2 15 675

6 World Journal of Gastroenterology 31 5.742 Q2 10 286

7 International Journal of Computer Assisted Radiology and Surgery 26 2.924 Q2/Q3 11 312

8 Cancers 23 6.639 Q1 5 74

9 Computers in Biology and Medicine 23 4.589 Q1/Q2 11 370

10 IEEE Access 22 3.367 Q2 7 139
IF, impact factor; JCR, Journal Citation Ranking.
FIGURE 6

A dual-map overlap of journals with studies researching artificial intelligence in liver cancer.
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Regarding data type, studies of AI in liver cancer started from the

simple data modeling of genetic or molecular data (9–11). With the

development of medical imaging, research on medical imaging has

been gradually increasing. CT, ultrasound, and MRI are the top three

most used data types. First, this may because CT and MRI can be used

as the basis for clinical treatment strategies for patients with liver

cancer based on guidelines for liver cancer diagnosis. Moreover,

ultrasound, as a screening method for patients at high risk of liver

cancer, needs to be checked every six months. Therefore, the data

volume of these three imaging methods has greatly increased, which

has promoted the development of AI in liver cancer (37–39). Second,

compared with MRI, CT has the advantages of fast inspection speed

and cost-effectiveness, and is an indispensable and important imaging

method in the diagnosis and treatment of liver cancer. Finally,

although ultrasound is widely used in clinical practice, its image

acquisition is seriously affected by the doctor’s operation technique

and machine model, the resolution is low, and the processing is

difficult. Therefore, it is used less often than CT. However, it is worth

noting that contrast-enhanced ultrasound has now been included as a

recommended imaging modality for the diagnosis of liver cancer (40,

41) and is also widely used in the development and prognostic

evaluation of ultrasound-guided radiofrequency ablation. This

suggests that we could pay attention to the important role of

ultrasound in liver cancer clinics in future research. At the same

time, few studies used pathological, genetic, and other clinical data

(42–44). The main reason may be that the medical cost of genetic

examination is high and the realization of AI in multiomics research

is difficult.

In the cross-analysis of data types and diseases, we found that

biopsy was used as an important data type in studies of AI in liver

fibrosis. This is mainly because the histopathological examination of

liver biopsy is still the gold standard for the diagnosis of liver fibrosis

(45). Conventional CT/MRI examinations can observe morphological

changes of the liver; however, quantitative assessment of early-stage

liver fibrosis is still difficult and is therefore less used. Although

ultrasound elastography and magnetic resonance elastography (MRE)

are highly effective non-invasive assessment methods in the diagnosis
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of liver fibrosis, a unified MRE liver elasticity value for liver fibrosis

with different etiologies has not been established (46–48). This also

indicates that the use of AI to quantitatively analyze liver fibrosis by

imaging is a problem worthy of further study. In studies of AI in fatty

liver disease, ultrasound is the first choice, mainly because of its high

sensitivity in the diagnosis of diffuse fatty liver, convenience, cost-

effectiveness, and safety, and plays an important role in judging the

status of liver parenchyma.

In terms of clinical goals, the diagnosis and differential diagnosis

of liver cancer on medical imaging are still major research priorities

(19, 49–53). However, the clinical diagnosis of liver cancer is a

comprehensive process, especially because of the variety and

atypical characteristics of focal liver lesions. For example, dysplastic

nodules in the state of liver cirrhosis have strong malignant potential,

especially high-grade dysplastic nodules, and they are difficult to

distinguish from early liver cancer in imaging. A comprehensive

evaluation of the clinical indicators of the patient is usually required,

including alpha-fetoprotein and abnormal prothrombin (54–58).

However, there are still few studies that combine multiple types of

data such as genetic data, molecular data, imaging data, and clinical

indicators, and lack the support of large data and multi-center studies.

Studies on the treatment and prognosis of liver cancer mainly

focused on the survival of a specific surgical method (59–66), such as

radiofrequency ablation, transarterial chemoembolization and etc.

Reports have proven that the modern therapies integrate a variety

of neoadjuvant and adjuvant strategies have achieved dramatic

improvements in survival, especially for patients with advanced

HCC (66, 67). But the division of the patient population, the choice

of potentially disclosing novel biomarkers still are controversies and

the decision-making of precision treatment methods adapted to the

specific patients, AI can play a role in this, but related research has not

yet been seen.

In terms of methods used, some studies used traditional

algorithms (51–53), such as support vector machine and random

forests models, which were mainly concentrated in the early research

stage. Since 2012, deep learning with CNNs has been widely used in

the field, involving common tasks in the field of machine learning
FIGURE 7

Visualization map of top 25 references with the strongest citation bursts from 2003 to 2022.
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such as diagnosis, prediction, and segmentation, and achieved good

results (9, 49, 50, 68–70). Most tumor segmentation tasks use a U-Net

method with a good effect, showing that U-Net has a good effect in the

segmentation task in the medical field, especially for tasks with small

amount of medical data (71, 72). It is estimated that the main research

methods in later stages of research are still concentrated in the field of

deep learning, which also indicates that future research aims to

achieve better results and has higher technical requirements,

especially for fusion modeling of multimodal data.

Previous meta-analyses and literature reviews focused on the

applications of specific technologies in liver cancer or the

development status of specific liver disease (22–29), such as

reviewing studies on AI on assisted imaging in the diagnosis,

prognosis and detection of liver cancer, or explaining the latest

research, limitations, and future development trends of AI in a
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certain direction. However, they lack a quantitative analysis based

on the available literatures. Therefore, a bibliometrics analysis was

conducted in our study to summary the research status of AI in liver

cancer. Bibliometrics analysis uses mathematical and statistical

methods to study the literature system and bibliometric

characteristics in a given field to mine the distribution structure,

quantitative relationships, and changes of literature in this field.

Visual display with the help of special software plays an important

role in understanding the current development status and

development trend of the field. However, our research also has

limitations. First, we only included English articles in the WoSCC

database and did not include articles in other databases or

languages, which could lead to the omission of many studies.

Second, keyword screening may not be perfect and could lead to

omission of literature.
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FIGURE 8

(A) Distribution of publications by disease category. (B) Distribution of publications by data modality. (C) Distribution of publications by goal.
(D) Distribution of publications by AI/ML method. (E) Distribution of publications by disease by data type. (F) Distribution of publications by disease by
clinical goal. MRI, magnetic resonance imaging; CNN, Convolutional Neural Network; SVM, support vector machine; CT, computed tomography.
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Conclusion

This study used bibliometrics to conduct an in-depth analysis of

the published literature on AI in liver cancer. The results showed that

AI has undergone rapid development and has a wide application in

the diagnosis and treatment of liver diseases, especially in China,

which has one of the highest incidences of liver cancer compared to

other countries the world. In addition, intelligent analysis of imaging

data is the hotspot and focus of current research in this field.

However, combined with the current clinical difficulties such as

accurate screening of early-stage liver cancer patients and high-risk

patients, and selection of reasonable treatment decisions for advanced

liver cancer patients, the use of AI for the fusion analysis of multiple

types data in the process of diagnosis and treatment of liver cancer

and multi-modal treatment decision-making for liver cancer are still

relatively rare, and may become a future research trend.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

LL, XH, and YW conceived the study. MX, YX, YZ, SH, and QZ

collected and analyzed the data. MX, YX, XH, and LL wrote the
Frontiers in Oncology 10107
manuscript. LL, XH, and YW revised and reviewed the manuscript. All

authors contributed to the article and approved the submitted version.
Funding

This work was supported by the National Natural Science

Foundation of Chongqing (Grant No. cstc2021jcyj-msxmX0965),

Joint Medical Research Project of Chongqing Science and

T e c h no l o g y Comm i s s i o n a n d He a l t h C omm i s s i o n

(2021MSXM262), the National Natural Science Project (31771324

and 31671251), and Chongqing science and technology talent

project (No.CQYC201905037).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. International Agency for Research on Cancer and World Health Organization.
Cancer today (2022). Available at: https://gco.iarc.fr/today/home (Accessed June 10,
2022).

2. Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Niksǐć M, et al. Global
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Integrating CT-based radiomic
model with clinical features
improves long-term
prognostication in high-risk
prostate cancer

Jerry C. F. Ching1, Saikit Lam2,3, Cody C. H. Lam1,
Angie O. Y. Lui1, Joanne C. K. Kwong1, Anson Y. H. Lo1,
Jason W. H. Chan1, Jing Cai1, W. S. Leung1*

and Shara W. Y. Lee1*

1Department of Health Technology and Informatics, The Hong Kong Polytechnic University,
Hong Kong, Hong Kong SAR, China, 2Department of Biomedical Engineering, The Hong Kong
Polytechnic University, Hong Kong, Hong Kong SAR, China, 3Research Institute for Smart Aging,
The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
Objective: High-risk prostate cancer (PCa) is often treated by prostate-only

radiotherapy (PORT) owing to its favourable toxicity profile compared to whole-

pelvic radiotherapy. Unfortunately, more than 50% patients still developed disease

progression following PORT. Conventional clinical factors may be unable to identify

at-risk subgroups in the era of precision medicine. In this study, we aimed to

investigate the prognostic value of pre-treatment planning computed tomography

(pCT)-based radiomic features and clinical attributes to predict 5-year progression-

free survival (PFS) in high-risk PCa patients following PORT.

Materials and methods: A total of 176 biopsy-confirmed PCa patients who were

treated at the Hong Kong Princess Margaret Hospital were retrospectively

screened for eligibility. Clinical data and pCT of one hundred eligible high-risk

PCa patients were analysed. Radiomic features were extracted from the gross-

tumour-volume (GTV) with and without applying Laplacian-of-Gaussian (LoG)

filter. The entire patient cohort was temporally stratified into a training and an

independent validation cohort in a ratio of 3:1. Radiomics (R), clinical (C) and

radiomic-clinical (RC) combined models were developed by Ridge regression

through 5-fold cross-validation with 100 iterations on the training cohort. A

model score was calculated for each model based on the included features.

Model classification performance on 5-year PFS was evaluated in the

independent validation cohort by average area-under-curve (AUC) of receiver-

operating-characteristics (ROC) curve and precision-recall curve (PRC). Delong’s

test was used for model comparison.
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Results: The RC combined model which contains 6 predictive features (tumour

flatness, root-mean-square on fine LoG-filtered image, prostate-specific antigen

serum concentration, Gleason score, Roach score and GTV volume) was the

best-performing model (AUC = 0.797, 95%CI = 0.768-0.826), which significantly

outperformed the R-model (AUC = 0.795, 95%CI = 0.774-0.816) and C-model

(AUC = 0.625, 95%CI = 0.585-0.665) in the independent validation cohort.

Besides, only the RC model score significantly classified patients in both

cohorts into progression and progression-free groups regarding their 5-year

PFS (p< 0.05).

Conclusion: Combining pCT-based radiomic and clinical attributes provided

superior prognostication value regarding 5-year PFS in high-risk PCa patients

following PORT. A large multi-centre study will potentially aid clinicians in

implementing personalised treatment for this vulnerable subgroup in the future.
KEYWORDS

radiomic, high-risk, prostate cancer, prognosis, progression-free survival (PFS),
radiation therapy, prostate-only radiotherapy, radiomic-clinical model
1 Introduction

Prostate cancer (PCa) ranks the second highest globally in terms

of the prevalence of male malignancies, with more than 1.4 million

new cases diagnosed in 2020 (1). High-risk PCa accounts for over

one-third of the newly diagnosed PCa population, with a three-fold

greater risk of developing distant metastasis compared to their low-

risk counterparts. The management strategies of these two cohorts

differ drastically. The low-risk PCa usually requires only active

surveillance, while high-risk ones require combined modality

therapy such as surgery, radiotherapy, systemic chemotherapy or

hormonal therapy (2). Optimising treatment strategy for the high-

risk is challenging.

Clinically undetectable occult pelvic nodal metastasis is

commonly present in up to 40% of high-risk PCa patients (3).

However, reliable detection of occult pelvic lymph node (PLN)

metastasis is yet available for clinical use (4). It remains as an

unresolved clinical challenge as to whether PLN should be

prophylactically treated. The survival benefits and toxicity profiles

of prostate-only radiotherapy (PORT), or prophylactic whole-pelvic

radiotherapy (WPRT) were vigorously investigated in large

randomised controlled trials (e.g. RTOG-9413), national database

analysis and retrospective studies among the western population

(5–9). Hence, the trade-off between better survival with WPRT and

reduced toxicities with PORT is still highly debated.

Although the 5-year survival of high-risk PCa patients

drastically increased by 23% over the years with greater emphasis

on health-related quality of life (HRQoL) (10, 11), over 50% of high-

risk PCa patients receiving PORT experienced recurrence, which

was far higher than the 12.5% recurrence from the WPRT cohort

(6). It is evident that a more refined subgrouping is necessary to

predict which high-risk patient receiving PORT would experience

recurrence within 5 years to support the clinical decision. Two
02111
commonly used conventional risk stratification tools are the

National Institute for Health and Care Excellence (NICE)

guideline and the Roach formula. The NICE guideline stratified

patients into low, intermediate and high risk by clinical (c)T stage,

prostate-specific antigen (PSA) serum concentration and Gleason

score (GS) (12). Although all are prognostic markers (13–15), the

cT stage is determined by digital rectal examination (DRE) that is

subjected to high interobserver variability because (16) only a small

portion of the prostate is palpable (17). The Roach score (RS) is also

commonly used for risk stratification, based on the PSA and GS

(18). A score of ≥15% is considered high-risk. A recent study

reported that the RS has statistically significantly higher predictive

power than the NICE guideline, with a concordance index of 0.724

and 0.715 respectively (13). However, the RS tends to overestimate

the risk of occult PLN disease by 2.5 to 4 times among high-risk

patients. This would result in the over-treatment of patients and

compromise the therapeutic index (19, 20). Therefore, both NICE

and RS may not be sufficiently effective in the era of precision

medicine. There is a growing demand for developing a more

refined, personalised risk stratification method for predicting

treatment outcomes of high-risk PCa patients.

Recent advancement in artificial intelligence and radiomics

accelerates the development of precision and personalised

medicine. Radiomics adopts high-throughput methods to extract

high-dimensional radiological features, transforming them into

imaging biomarkers to improve clinical decisions (21). Magnetic

resonance imaging (MRI) has been extensively studied, employing

derived radiomic features for diagnosis or risk prediction of PCa.

They showed promising classification performance on clinical

endpoints such as GS or biochemical recurrence (BCR) (22–26).

By contrast, very few investigations were conducted on the

prognostic value of imaging biomarkers derived from the pCT of

high-risk PCa patients, despite that the prognostic power of CT-
frontiersin.org
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based radiomics has been widely reported in other types of primary

solid tumours such as non-small cell lung cancer, nasopharyngeal

carcinoma and renal cell carcinoma (27–30). Franzese et al. (31) was

the only study employing pCT-derived radiomic features to predict

metastasis-free survival in PCa patients treated by external beam

radiotherapy (EBRT). However, the included patients in their study

were treated with various kinds of treatment, including trans-

urethral resection of the prostate, high-intensity focused

ultrasound, and EBRT. The prognostic power of their model

specifically on PORT-treated high-risk PCa patients remains to

be explored.

To our best knowledge, this is the first study to investigate the

feasibility of utilising pCT-derived radiomic features and clinical

attributes to predict 5-year progression-free survival (PFS) in high-

risk localised PCa patients following PORT. Recently, a systematic

review in prostate radiomics suggested that incorporating clinical

features into a radiomic model may improve its clinical utility (32).

Given the inherently heterogeneous nature of the disease,

conventional clinical factors may provide additional prognostic

value (33). The success of this study may provide insightful

findings for clinicians to optimise treatment strategies for

managing high-risk PCa patients.
2 Methods and materials

2.1 Patients

2.1.1 Patient source
The present study was approved by the Human Subjects Ethics

Sub-committee of the Hong Kong Polytechnic University

(Reference: HSEARS20220406011) and Kowloon West Cluster

Research Ethics Committee (KWC-REC) of the Hong Kong

Hospital Authority (Reference: KW/EX-21-155 (165–05)). The

requirement for individual informed consent was waived due to

the retrospective nature of this study. One hundred and seventy-six

biopsy-proven PCa patients who underwent definitive PORT at the
Frontiers in Oncology 03112
Princess Margaret Hospital (PMH) in Hong Kong between

February 2011 and December 2016 were retrospectively screened

for eligibility. Following the inclusion and exclusion criteria (IEC)

shown in Figure 1, 100 patients with localised (cT1-3, N0, M0)

disease, with RS ≥ 15% (i.e. high-risk PCa) were included in

this study.

2.1.2 Patient data
Clinical information such as the age at diagnosis, PORT start

date and disease characteristics (clinical tumour (T), nodal (N) and

distant metastatic (M) staging, histology, PSA serum concentration,

GS, RS); treatment information (prescription and period of PORT

and hormonal therapy, treatment techniques and organ contours);

imaging information (pCT registered with organ contours); and

clinical outcome (status of biochemical failure, regional and distant

metastasis) were collected retrospectively.

2.1.3 Treatment approach and clinical endpoint
All patients were treated with PORT using intensity-modulated

radiotherapy (IMRT), to a total of 70 or 74Gy. The treatment

regimen also included neoadjuvant and concurrent antiandrogen

and/or luteinising hormone-releasing hormone analogue (LHRHa)

for 8-12 weeks, and 3 years of adjuvant LHRHa.

For this study, the clinical endpoint was the 5-year PFS status.

Patients with disease progression manifested as biochemical

recurrence, regional or distant metastasis, or death (34) were

labelled “PFS-1”, with the others labelled as “PFS-0”. The Phoenix

criteria of biochemical recurrence, defined as > 2 ng/mL rise from

nadir PSA (35), was adopted in this study.

2.1.4 Patient stratification
The enrolled patients with treatment commenced on or before

the date of 08/11/2016 were allocated to a training dataset (n = 75),

and the remaining ones were assigned to an independent validation

dataset (n = 25). The PFS-1 to PFS-0 ratio between the training and

independent validation cohort was set at 6:4, referencing a similar

work adopting temporal stratification (36). This patient
FIGURE 1

Patient stratification and inclusion-exclusion criteria. PMH, Princess Margaret Hospital; n denotes number of patients; TRUS, transrectal ultrasound;
RS, Roach Score; pCT, planning computed tomography; GTV, gross tumour volume; PORT, prostate-only radiotherapy; AJCC, American Joint
Committee on Cancer; PSA, prostate specific antigen; GS, Gleason score.
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stratification approach has been widely adopted in similar studies

(36–38), which complies with the recommendation provided in the

Transparent Reporting of a Multivariable Prediction Model for

Individual Prognosis or Diagnosis (TRIPOD) type-2b

classification (39).
2.2 Planning CT acquisition and volume-
of-interest segmentation

Patients underwent iodinated contrast-enhanced (intravenous

injection of 120mL Omnipaque 300 mg/dL at 3 mL/second with 75

seconds scan delay) on one of the two CT scanners: 16-slice GE

LightSpeed RT16 or GE BrightSpeed (GE Medical Systems, WI,

USA). The pCT acquisition parameters included: X-ray tube voltage

120 kVp or 140 kVp; X-ray tube current 114-376 mA; field-of-view

500-650 mm; body filter; standard convolution kernel; matrix size

512x512; pixel spacing 0.98-1.27 mm; and reconstruction thickness

2.5 mm. The pCT scans were acquired 24 (range, 6-47) days on

average before PORT commencement. All pCT scans were stored in

Picture Archiving and Communication System (PACS) in Digital

Imaging and Communications in Medicine (DICOM) format. All

pCTs scans were registered with GTV segmentation, which was the

VOI for radiomic feature extraction and modelling in this study.

The GTV of all patients were segmented by experienced oncologists

on the Eclipse ARIA system (version 8.6.15 or 13.0.26, Varian

Medical System). The delineation of VOI is performed according to

the ESTRO ACROP consensus guideline (40). A team of oncologists

with expertise in prostate cancer radiotherapy delineated the ROI.

To address the inter-observer variabilities, the contours were all

reviewed and approved by a Consultant Oncologist before use.

Calcification, necrosis, nor artifacts due to fiducial markers were not

found in all the included cases in this study. The GTV segmentation

of a representative patient is illustrated in Figure 2.
2.3 CT image pre-processing

All pCT images were pre-processed before radiomic feature

extraction, in compliance with the recommendations provided in

the internationally accepted Image Biomarker Standardisation

Initiative (IBSI) guideline (41). All steps were implemented by an

in-house developed pipeline (IhDP) which used an open-source
Frontiers in Oncology 04113
Pyradiomics v2.2.0 with SimpleITK v1.2.4 package on Python

v3.7.3 platform. pCT was first resampled to 1 mm isotropic

voxels by B-spline interpolation to account for voxel spacing

variation while avoiding longitudinal image oversampling (41).

Resampled pCT were discretized to 10-Hounsfield unit (HU) bins

to homogenise intensity resolution (42). The GTV was re-

segmented by HU thresholding, bounded by -150 and 180 HU

(43). Six kernel sizes of Laplacian of Gaussian (LoG) filters, 0.5, 1, 2,

3, 4 and 5 mm, were used to reconstruct the image, facilitating fine

and coarse texture feature extraction at different resolutions (44).
2.4 Feature extraction & feature
normalization

A total of 665 radiomic features from the GTV were extracted

using the IhDP. Types of the extracted features of both unfiltered

and LoG-filtered images included shape (n = 14), first-order

intensity (n = 108) and texture (n = 543). Details of the extracted

features classes and their distributions are shown in

Supplementary Material.

Before analysis, all radiomic features were normalised by using

z-score transformation using R software (version 4.1.3). Specifically,

features were centred and scaled firstly in the training cohort in

which each feature had a mean of 0 and a standard deviation of 1.

The normalisation factors obtained in the training cohort were then

used to perform feature normalisation in the independent

validation cohort.
2.5 Feature selection & model
development

Relevant feature selection processes including the Spearman

correlation coefficient (SCC) and Mann-Whitney U test were

performed on the training cohort before the use of Ridge

regression algorithms (44–46). The independent validation cohort

was adopted for independent model validation. All model training

and validation were performed using the R software.

For the radiomic model development, the SCC was first

calculated for each pair of radiomic features in the training

cohort using the R package “caret”. When the absolute

correlation coefficient (r) was ≥ 0.6 in any of the feature pairs, the

feature with a higher mean absolute correlation was removed from

the original feature set to minimise the likelihood of

multicollinearity and model overfitting (21). The clinical

significance of the remaining features was assessed by using a

two-sided, unpaired Mann-Whitney U test in the training cohort

by executing the “wilcox.test’ function in the R software, while

features with p > 0.1 were removed. A L2 regularisation was

performed using ridge regression in the R package “glmnet”.

Ridge regression penalises regression coefficients through

hyperparameter (l) tuning in a grid search. The l yielding a

minimum cross-validation error was then chosen. The objective

function was optimised through cyclical coordinate descent in the R

package “glmnet”.
FIGURE 2

Representative example of a GTV segmentation on contrast-
enhanced pCT of a high-risk prostate cancer patient.
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For the clinical model development, clinical features including

PSA serum concentration, GS, RS and GTV volume formed the

initial feature set. PSA was categorised into< 10, 10-20 and > 20 ng/

mL while GS was classified into five groups (14). RS was divided

into 4 categories: 15-25%, > 25-35%, > 35%-45% and > 45% (18). All

clinical features were tested for correlation using the SCC test in the

training cohort. The same correlation threshold of r ≥ 0.6 as in the R

model was applied. Ridge regression was also performed.

To develop the radiomic-clinical (RC) combined model, all

selected radiomic and clinical features were combined and fitted

into the ridge regression. A 5-fold cross-validation was employed

with 100 iterations to obtain the average predictive performance

model. The model score was calculated as

Model Score = (Coefficient)� (Feature Value) + Intercept

Three model scores were calculated for each patient: R (R-

score), C (C-score) and RC combined (RC-score) models. The R

package “cvAUC” and “PRROC” were used to compute the

averaged area under the receiver-operating characteristics (ROC-

AUC) curves and precision-recall curve (PRC). Other performance

indicators including sensitivity, specificity, accuracy and the

Youden index (YI) were calculated by the R package “pROC”.

The optimal cut-off in each model was determined using the

Youden method (47).
2.6 Statistical analysis

All continuous variables have been verified for conformity by

the Shapiro-Wilk test. Statistical differences of continuous clinical

and demographic variables were evaluated by the Mann-Whitney U

test, while categorical variables were assessed by Chi’s square or

Fisher-exact test as appropriate. Performance of the R, C and RC

combined models were compared using the Delong test, based on

their averaged ROC-AUC in both training and independent

validation cohorts. The correlations between RC-score, radiomic

and clinical variables were evaluated by SCC to reveal any dominant

features in the model that contribute heavily to the RC-score. SCC

was also used to assess inter-feature correlation in the training

cohort for feature screening. All statistical tests were two-sided with

a value of p< 0.05 considered statistically significant.
3 Results

3.1 Patient characteristics

Among 176 patients screened for eligibility, 100 cases met the

inclusion criteria. 10 included patients who experienced disease

progression were labelled as “PFS-1”, in which 6 (8%) and 4 (16%)

were allocated to the training and independent validation cohorts

respectively. Table 1 summarises the characteristics of the

enrolled patients.

No statistically significant difference was detected in the

distribution of age, PSA serum concentration, GS, RS, GTV

volume, neoadjuvant hormonal therapy (NHT), concurrent
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hormonal therapy (CHT) and adjuvant hormonal therapy (AHT)

regimen between training and independent validation cohorts,

except for the PORT dose scheme (p< 0.001). Furthermore, PSA,

GS, RS and GTV volumes were not significantly different between

PFS-1 and PFS-0 patients in both cohorts, except for the

CHT regime.
3.2 Model development

A simplified modelling workflow is illustrated in Figure 3. In the

R model, 40 features with high independence (r< 0.6) shown in the

correlation map (Supplementary Material) underwent further

elimination. Among them, the unfiltered-shape-flatness and LoG-

1mm-filtered root-mean-square (RMS) features were chosen for the

development of the R model. In the C model, the Spearman

correlations between PSA, GS, RS and GTV volume were less

than 0.6 (Supplementary Material). Therefore, all 4 clinical

features were used for modelling. The R and C models consisted

of 2 radiomic and 4 clinical features respectively, while these 6

features were combined in the RC model.

Table 2 lists the intercepts and coefficients of all three models.

Patients with model scores higher than the optimal cut-off were

classified as high-risk of having disease progression within 5 years

since the commencement of treatment, or vice versa.
3.3 Model evaluation

The performance of each model in both the training and

independent validation cohorts is summarised in Table 3. The

ROC and PR curves are shown in Figure 4. Boxplots of the model

scores are presented in Figure 5.

The RC combined model yielded the highest ROC-AUC (0.797,

95%CI = 0.786-0.826) in the independent validation cohort

compared to the R (0.795, 95%CI = 0.774-0.816) and C (0.625,

95%CI = 0.585-0.665) models. The DeLong test showed that the RC

combined model had a ROC-AUC significantly higher than the C

model in both training (0.747 vs. 0.554, p< 0.001) and independent

validation (0.797 vs. 0.625, p< 0.001) cohorts. A similar finding was

also observed with the RC model demonstrating a higher ROC-

AUC than the R model in the independent validation cohort (0.797

vs. 0.795, p<.001). Moreover, the RC combined model had the

highest PR-AUC, accuracy and YI compared to R and C models in

the independent validation cohort. The RC combined model also

attained a relatively high sensitivity and specificity of 0.808 and

0.722 in the training cohort and 0.793 and 0.653 in the independent

validation cohort, respectively.

Of note, the RC combined model was the only model that

resulted in a significantly different RC-score between PFS-1 and

PFS-0 patients in both the training (median: -2.428 vs. -2.447, p =

0.01) and independent validation cohorts (median: -2.411 vs.

-2.451, p = 0.03). On the other hand, the R model failed to render

a significantly different R-score in the independent validation

cohort (median: -2.368 vs. -2.491, p = 0.08). Similarly, the C

model did not yield any significant difference in C-score for
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TABLE 1 Patient characteristics.

Patient Characteristics Whole
Cohort

Training Cohort Validation Cohort
p**

All PFS-1 PFS-0 p* All PFS-1 PFS-0 p*

Patients, n 100 75 6 69 – 25 4 21 – –

Age at PORT start date, median
(range)

72
(52–86)

72
(55-84)

70
(58-78)

72
(55-84)

0.66 70
(52-86)

69
(52-86)

73.5
(68-82)

0.32 0.93

PSA before PORT, ng/mL,
n (%)

0.37 0.80 0.11

< 10 10 (10) 6 (8) 0 (0) 6 (8.7) 4 (16) 1 (25) 3 (14.3)

10-20 29 (29) 19 (25.3) 3 (50) 16 (23.2) 10 (40) 1 (25) 9 (42.9)

> 20 61 (61) 50 (66.7) 3 (50) 47 (68.1) 11 (44) 2 (50) 9 (42.9)

GS grade group, n (%) 0.75 0.64 0.11

GS ≤ 6 11 (11) 11 (14.7) 0 (0) 11 (15.9) 0 (0) 0 (0) 0 (0)

GS = 3 + 4 21 (21) 14 (18.7) 2 (33.3) 12 (17.4) 7 (28) 1 (25) 6 (28.6)

GS = 4 + 3 17 (17) 13 (17.3) 1 (16.7) 12 (17.4) 4 (16) 0 (0) 4 (19.0)

GS = 8 24 (24) 20 (26.7) 1 (16.7) 19 (27.5) 4 (16) 0 (0) 4 (19.0)

GS = 9-10 27 (27) 17 (22.7) 2 (33.3) 15 (21.7) 10 (40) 3 (75) 7 (33.3)

RS, n (%) 0.94 0.61 0.71

15-25% 29 (29) 22 (29.3) 1 (16.7) 21 (30.4) 7 (28) 0 (0) 7 (33.3)

> 25-35% 19 (19) 16 (21.3) 2 (33.3) 14 (20.3) 3 (12) 0 (0) 3 (14.3)

> 35-45% 22 (22) 15 (20) 1 (16.7) 14 (20.3) 7 (28) 2 (50) 5 (23.8)

> 45% 30 (30) 22 (29.3) 2 (33.3) 20 (29.0) 8 (32) 2 (50) 6 (28.6)

GTV volume, cm3, median
(range)

42.7
(15.7-170.6)

43.5 (15.7-
170.6)

40.9
(24.9-
86.8)

43.5
(15.7-
170.6)

0.52 35.6 (18.1-
100.4)

34.1
(22.5-
63.7)

41.7
(18.1-
100.4)

0.92 0.10

PORT dose/fractionation,
n (%)

0.29 0.16 <
0.001

70Gy/35fr 31 (31) 31 (41.3) 4 (66.7) 27 (39.1) 0 (0) 0 (0) 0 (0)

74Gy/35fr 67 (67) 43 (57.3) 2 (33.3) 41 (59.4) 24 (96) 3 (75) 21 (30.4)

74Gy/37fr 2 (2) 1 (1.3) 0 (0) 1 (1.4) 1 (4) 1 (25) 0 (0)

NHT, n (%) >
0.99

0.42 0.18

Antiandrogen only 4 (4) 2 (2.7) 0 (0) 2 (2.9) 2 (8) 1 (25) 1 (4.8)

Antiandrogen with LHRHa 94 (94) 72 (96) 6 (100) 66 (95.7) 22 (88) 3 (75) 19 (90.5)

LHRHa only 1 (1) 0 (0) 0 (0) 0 (0) 1 (4) 0 (0) 1 (4.8)

None 1 (1) 1 (1.3) 0 (0) 1 (1.4) 0 (0) 0 (0) 0 (0)

CHT, n (%) 0.71 0.003 0.88

Antiandrogen only 18 (18) 12 (16) 1 (16.7) 11 (15.9) 6 (24) 3 (75) 3 (14.3)

Antiandrogen with LHRHa 59 (59) 45 (60) 5 (83.3) 40 (58) 14 (56) 0 (0) 14 (66.7)

LHRHa only 18 (18) 14 (18.7) 0 (0) 14 (20.3) 4 (16) 0 (0) 4 (19)

None 5 (5) 4 (5.3) 0 (0) 4 (5.8) 1 (4) 1 (25) 0 (0)

AHT, n (%) 0.11 0.11 0.80

Antiandrogen only 2 (2) 1 (1.3) 0 (0) 1 (1.4) 1 (4) 1 (25) 0 (0)

Antiandrogen with LHRHa 7 (7) 5 (6.7) 1 (16.7) 4 (5.8) 2 (8) 1 (25) 1 (4.8)

(Continued)
F
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either the training (median: -2.405 vs. -2.440) or independent

validation cohort (-2.383 vs. -2.425).
3.4 Correlation analysis among RC-scores,
radiomic and clinical features

TheaverageabsoluteSCC(r)ofR featureswithRC-scores (r=0.603)

was ~2.6 times higher than that of C features with RC-scores (r = 0.235).

Among radiomic features, LoG-1mm-filtered RMS had the highest

correlation with the RC-score (r = 0.797), followed by the unfiltered-

shape-flatness (r = 0.409). The clinical features with the highest and

lowest correlationwithRC-scorewereGS(r=0.411)andGTVvolume(r

= 0.105) respectively. Between radiomic and clinical features, unfiltered-

shape-flatness and LoG-1mm-filtered RMS had the highest correlation

with RS (r = 0.372) and GTV volume (r = 0.228), respectively. The

correlation matrix (Supplementary Material) described in detail the

correlation between RC-scores of patients in the independent validation

cohort and their corresponding R and C features.
4 Discussion

For the first time, we demonstrated that combining CT-based

radiomic (unfiltered-shape-flatness, LoG-1mm-filtered RMS) and
Frontiers in Oncology 07116
clinical attributes (PSA, GS group, RS group and GTV volume)

provided superior prognostic value for 5-year PFS in high-risk PCa

patients following PORT. The DeLong test revealed that the ROC-

AUC of the RC combined model was significantly higher than those

of the R and Cmodels in the independent validation cohort. The RC

model had the highest overall accuracy and YI. Only the RC model

score significantly classified patients into “progression” (PFS-1) and

“progression-free” (PFS-0) groups according to their 5-year PFS in

both training and independent validation cohorts (both p< 0.05).

These findings suggested the potential of the RC combined model in

supporting clinicians to implement personalized treatment for this

vulnerable patient subgroup in the future. For instance, if a patient

is classified into the “progression” (PFS-1) group ahead of the

commencement of the PORT treatment, clinicians may consider a

more aggressive therapy (e.g., WPRT) for improving the prognosis

of the given patient.

The two identified radiomic features (unfiltered-shape-flatness

and LoG-1mm-filtered RMS) are in line with previous studies using

CT images (27, 28, 48, 49). Unfiltered-shape-flatness is a shape

feature calculated by the square root of the least axis length divided

by the major axis length (48). A value closer to zero indicates the

tumour is flatter. This feature was reported in another CT radiomic

model for predicting tumour response in lung cancer patients

receiving EBRT (49). Additionally, the RC-score was negatively
TABLE 1 Continued

Patient Characteristics Whole
Cohort

Training Cohort Validation Cohort
p**

All PFS-1 PFS-0 p* All PFS-1 PFS-0 p*

LHRHa only 81 (81) 61 (81.3) 3 (50) 58 (84.1) 20 (80) 2 (50) 18 (85.7)

None 10 (10) 8 (10.7) 2 (33.3) 6 (8.7) 2 (8) 0 (0) 2 (9.5)
frontie
PORT, prostate-only radiotherapy; PSA, prostate specific antigen; GS, Gleason score; RS, Roach score; GTV, gross tumour volume; NHT, neoadjuvant hormonal therapy; CHT, concurrent
hormonal therapy; AHT, adjuvant hormonal therapy; LHRHa, luteinizing hormone-releasing hormone analogue; n denotes the number of patients; PFS, progression-free survival, *refers to p
derived from univariate analysis on association of each patient characteristics with the status of 5-year PFS, **refers to p derived from patient characteristics comparison between the training and
validation cohorts.
FIGURE 3

Models construction workflow. R, Radiomics; RC, Radiomic-clinical; C, clinical; n denotes number of features; ROC, receiver-operating
characteristic; PR, precision-recall; YI, Youden index.
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correlated to the flatness, with a lower flatness value indicating a

poorer prognosis. Such a finding is consistent with Khodabakhshi’s

study, which predicted the OS of patients with renal cell carcinoma

(27). The feature LoG-1 mm-filtered RMS is calculated by the mean

of all squared intensity values in LoG-1mm-filtered ROI (48).

Similar to flatness, it is negatively correlated to the RC-score. The

RMS has been reported in a CT radiomic model study for lung

adenocarcinoma, in which a lower value was associated with poorer

PFS and OS (28). The prognostic implications of these features have

not been reported for PCa, and the association between the selected

pCT radiomic features and biological properties remains unclear.

Indeed, the RC model was dominated by the R features since the

absolute SCC of R features with RC-score was ~2.6 times higher

than those of clinical features (Supplementary Material). Further

investigation is needed to explore the biological mechanism of

radiomic features.

Another notable finding is the lack of textural features in the RC

combined model. It may be attributed to the intrinsic property of

pCT images and the clinical endpoint of our study. Most prostate

radiomic studies use MRI-derived features for prognostic prediction

(22–24, 50). In a study using T2-weighted MRI, features with the

highest predictive value originated from the gray-level run-length

matrix (GLRLM) texture feature class (23). Another two studies

using apparent diffusion coefficient (ADC) MRI for radiomics

modelling (23, 24) suggested that the gray-level co-occurrence
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matrix (GLCM) texture feature class contained the most

predictive features. However, in a prostate radiomic study (51)

exploring interfraction cone-beam CT, both shape and first-order

features have excellent capability in predicting patient outcomes,

which was similar to our study. In addition, these two features were

also found to be capable of predicting PFS in both nasopharyngeal

carcinoma (NPC) and NSCLC (29, 30). Meanwhile, texture features

dominate in MRI-based NPC radiomic studies (52, 53). These

observations suggested that the feature class selected for PFS

prediction could be influenced by the choice of imaging modality.

This may be explained by the inherently lower soft-tissue contrast

characteristic in CT than in MRI, resulting in less prominent texture

features that may be relevant to the PFS. Texture features in CT and

MRI have been regarded as the manifestation of tumour

heterogeneity. Hence, the dominant feature class may vary

according to different clinical endpoints. For instance, texture

features are often selected in both CT and MRI prostate radiomic

studies when GS is chosen as the clinical endpoint (25, 42). It is not

surprising since GS is the gold standard for characterising prostate

heterogeneity, while texture features measure the same physical

property. The current study demonstrated that both shape

(unfiltered-shape-flatness) and first-order features (LoG-1mm-

filtered RMS) have similar predictive performance compared to

MRI radiomic studies (23, 24, 50). Nonetheless, a further study

involving a larger external validation cohort is needed to validate
TABLE 2 Intercepts and selected radiomic and/or clinical features of the R, C and RC combined models.

Intercept and Coefficients
Values of Intercept and Coefficients of Each Model

R Model C Model RC Combined Model

Intercept -2.463 -2.450 -2.445

Raw_shape_flatness -0.052 — -0.010

LoG_1mm_first-order_root-mean-square -0.101 — -0.017

PSA — -0.032 -0.005

GS — 0.015 0.004

RS — 0.033 0.004

GTV volume — -0.044 -0.006
R, radiomics; C, clinical; RC, radiomic-clinical; LoG, Laplacian of Gaussian; PSA, prostate specific antigen; GS, Gleason score; GTV, gross tumour volume.
—, feature absent.
TABLE 3 Predictive performance of the R, C and RC combined models.

Model

Training Cohort Validation Cohort

ROC-AUC,
Mean (95%

CI)

PR-
AUC,
Mean

Sens. Spec. Acc. YI p*
ROC-AUC,
Mean
(95%CI)

PR-
AUC,
Mean

Sens. Spec. Acc. YI p*

R 0.798
(0.788-0.809)

0.177 0.998 0.658 0.685 0.656 0.005 0.795
(0.774-0.816)

0.357 0.825 0.605 0.640 0.430 < 0.001

C 0.554
(0.521-0.587)

0.097 0.353 0.764 0.731 0.117 <
0.001

0.625
(0.585-0.665)

0.230 0.530 0.676 0.652 0.206 < 0.001

RC
combined

0.747
(0.726-0.767)

0.172 0.808 0.722 0.729 0.530 (Ref.) 0.797
(0.768-0.826)

0.371 0.793 0.653 0.676 0.446 (Ref.)
fronti
R, radiomics; C, clinical; RC, radiomic-clinical; ROC, receiver-operating characteristic; AUC, area-under-curve; CI, confidence interval; PR, precision-recall; YI, Youden index (Sensitivity +
specificity -1); Sens., sensitivity; Spec., specificity; Acc., accuracy; Ref., reference, *refers to statistical significance of ROC-AUC differences between R and RC combined model and that between C
and RC combined model in each cohort
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the performance of these two feature classes in predicting the PFS of

high-risk PCa patients.

The C model constructed based on clinical factors had the

poorest performance. Univariate analysis did not show any

statistical significance of these clinical features between PFS-1 and

PFS-0 patients in both cohorts. The most probable explanation is

that these clinical features are homogeneous within the high-risk

subgroup of PCa patients (32). Thus, using the C model alone

would lead to the poorest prediction performance. Statistically, the

C model also failed to differentiate the 5-year PFS status in both

cohorts. These findings are in line with those reported by Fernandes

et al. (23) and Bourbonne et al. (26), who have also incorporated

PSA and GS in their clinical models. They also retrospectively

investigated the clinical predictive model for high-risk PCa patients

treated by EBRT (23) and radical prostatectomy during a 5-year

follow-up (26). The sensitivity and specificity of the C model were

also comparable to those reported by Bourbonne et al. (26)

(Sensitivity: 0.53 vs 0.68; Specificity: 0.53 vs. 0.59). These clinical

features, however, are not without predictive values when combined

with the R model. It is demonstrated by the increase in overall

accuracy in both the training and independent validation cohorts

after combining R with C models. The potential complementary
Frontiers in Oncology 09118
role between R and C features for prognosis warrants future

investigation (54).

Overall, this study explored the potential of combining pCT-

derived radiomic and clinical features in the prognostic prediction

of high-risk PCa patients receiving PORT. Our study has

demonstrated that the classification performance of the combined

RC model was comparable to the combined MRI-derived radiomic

and clinical models. Among all included features, the shape and

first-order features are considered more intuitive than other

complex features when interpreting the classifier in predicting 5-

year PFS of high-risk patients in the clinical setting (51). Our patient

stratification methodology is highly standardised by adopting a

temporal validation as in type-2b study according to the TRIPOD

guideline (39). Moreover, the use of pCT is preferable due to its

higher standardisation, repeatability and calibration of CT over

diagnostic MRI (33). For instance, HU in pCT directly quantifies

the electron density of the tissue while the pixel value in MR is

arbitrarily allocated.

This study has several limitations. First, the sample size is

relatively small. This can be attributed to the strict inclusion and

exclusion criteria enforced to ensure high-quality radiomics and

clinical data. Nonetheless, numerous studies have also contributed
B

C D

A

FIGURE 4

The ROC and PR curves of R, C and RC combined models. Boxplots (A, B) Averaged ROC curves of the training and independent validation cohort.
Boxplots (C, D) The PR curves of both cohorts. ROC, receiver-operating characteristic; PR, precision-recall; R, radiomic; C, clinical; RC, radiomic-
clinical; AUC, area under curve.
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insightful findings to the community with a similar sample size as

our work (32, 55–57). Second, this work only performed modelling

based on data from a single centre as COVID-19 has restricted the

research team from conducting data collection from multiple

centres. Third, owing to the small sample size and temporal

stratification, a class imbalance exists in which only 10% are PFS-

1 patients. Although a similar situation was observed in Bosetti’s

(2020) work analysing cone-beam CT performance for predicting

prostate cancer clinical progression, further study with a larger

sample size and proportion of PFS-1 patients would be beneficial to

minimise modelling and evaluation bias. Minority class-boosting

techniques should also be implemented if appropriate. Fourth, an

external testing set was not employed. This would be essential to

demonstrate satisfying model generalisability in a multi-centre

study before actual clinical application (58). Moreover, Ridge

regression, which was a relatively straightforward modelling

strategy, was adopted in this work for demonstrating the

proposed feasibility of using radiomic-clincial factors to predict

patient outcomes. To render the model fit for clinical application,

more robust modelling methodologies such as non-linear machine

learning techniques and random oversampling should be

incorporated when processing multi-centre data sets.
5 Conclusion

This study demonstrated the feasibility and potential of using pCT-

derived radiomic and clinical features for predicting 5-year PFS in

high-risk PCa patients receiving PORT, which is an important clinical

research gap that previously lacks investigation The RC combined

model provided statistically superior predictive performance than both

R and C models in the independent temporal validation cohort. These

findings lay the ground for the future development of a combined

radiomic-clinical model involving robust modelling techniques,
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multicentre data and external validation. We hope that this work will

bring attention to the academic community and encourage future work

to address this on a larger scale towards clinical implementation.

Ultimately, it could potentially act as a supportive decision tool

predicting the outcome of different treatment regimens to facilitate

personalised management of high-risk PCa patients.
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