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The interdisciplinary studies between neuroscience and information science have greatly pro-
moted the development of these two fields. The achievements of these studies can help humans 
understand the essence of biological systems, provide computational platforms for biological 
experiments, and improve the intelligence and performance of the algorithms in information 
science.

This research topic is focused on the computational modeling of visual cognition, body sense, 
motor control and their integrations. Firstly, the modeling and simulation of vision and body 
sense are achieved by 1) understanding neural mechanism underlying sensory perception and 
cognition, and 2) mimicking accordingly the structures and mechanisms of their signal prop-
agation pathways. The achievement of this procedure could provide neural findings for bet-
ter encoding and decoding visual and somatosensory perception of humans, and help robots 
or systems build humanoid robust vision, body sensing, and various emotions. Secondly, the 
modeling and simulation of the motor system of the primate are achieved by mimicking the 
coordination of bones, muscles and joints and the control mechanisms of the neural system 
in the brain and spinal cord. This procedure could help robots achieve fast, robust and accu-
rate manipulations and be used for safe human-computer interaction. Finally, by integrating 
them, more complete and intelligent systems/robots could be built to accomplish various tasks 
self-adaptively and automatically.
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Editorial on the Research Topic

Modeling of Visual Cognition, Body Sense, Motor Control and Their Integrations

The interdisciplinary studies between neuroscience and computer science have greatly promoted
the development of these two fields. The achievements of these studies can help humans understand
the essence of biological systems; provide computational platforms and intelligent methods for
biological experiments; and improve the intelligence and performance of the algorithms in
computer science.

We present 10 papers in this research topic, which are mainly focused on neural mechanisms
underlying the perception of vision, motor and pain; computational modeling of visual processing;
bio-inspired visual models; and novel machine learning algorithms to reliably predict pain.

1. NEURAL MECHANISMS RESEARCH OF VISION AND MOTOR

As our dominant sense, the ultimate purpose of visual processing is to support us in perception,
cognition, learning, and activities.

One article (Perry et al.) gives a brief review of alterations in visual processing near hand, which
supports the hypothesis that there exist parallel, and separate, effector-based attentional systems.
Whereas the oculomotor system enhances visual responses through gain modulation, and near-
hand attention system sharpens features (such as orientation) relevant to reaching and grasping.
This article provides a potential structure for visual-motor interaction modeling in bio-inspired
imitation learning.

2. COMPUTATIONAL MODELING OF VISUAL PROCESSING

The work of Galeazzi et al. is much related to the review paper (Perry et al.) on visual processing
near hand. The authors analyzed the functions of neurons in VisNet model through a biologically
plausible process of unsupervised competitive learning and self-organization both with realistic and
natural images. The experiments showed that individual output cells of the network could develop
single, localized, hand-centered receptive fields which are invariant to retinal location. Eguchi
et al. modified VisNet to model the neural representation of object shape in the primate ventral
visual system. By unsupervised visually-guided learning, the individual neurons show similar firing
properties with V4 and TEO. The neurons in the higher layer of the network could learn to respond
to localized boundary contour elements and show translation invariance across different retinal
locations through the use of a trace learning rule.
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Both of these two computational modeling methods simulate
the principles and mechanisms of the visual pathway, and may
inspire the future work in bio-inspired visual modeling for image
processing applications.

3. BIO-INSPIRED VISUAL MODELS

Li et al. proposed an enhanced HMAX model for image
categorization. By mimicking the attention modulation, memory
processing and feature encoding mechanisms of visual cognition,
a bottom-up saliency map, an unsupervised iterative clustering
method and multi-feature fusion method are introduced to the
HMAX model. The enhanced bio-inspired model with small
memory size showed better accuracy than other unsupervised
feature learning methods in Caltech101 dataset. Fu et al.
proposed an CNNmodel for feature construction in text analysis.
By modifying the CNN model to adapt to the text inputs,
introducing similarity of asker-answer information as attention
modulation, and bringing in reputation information to imitate
memory, the improved CNN model showed better performance
in answer recommendation task.

Different from the computational modeling of visual
processing (Galeazzi et al.; Eguchi et al.), these two bio-inspired
visual models had excellent performance in public datasets
focusing on computer science application, which shows that
biological research can promote the development of computer
science.

4. NEURAL MECHANISMS UNDERLYING

THE PERCEPTION OF PAIN

Pain is a subjective first-person experience, and self-report
is the gold standard to determine pain in various clinical
practice. Considering that self-report of pain is not available
in some vulnerable populations, the development of an
objective assessment of pain would be highly needed in clinical
applications (Huang et al., 2013). To achieve this aim, we need to
(1) identify neural activity that could serve as a cortical signature
for pain perception in humans using non-invasive functional
neuroimaging techniques, e.g., electroencephalography (EEG)
and functional magnetic resonance imaging (fMRI), and (2)
develop novel algorithms that could reliably predict the perceived
pain based on the identified pain-related neural responses (Hu
and Iannetti, 2016).

Three articles provide recent advances to better understand
the neural mechanism related to the central processing of
pain perception. Guo et al. investigated the vigilance states of
the brain when the subjects were suffering from acute pain
or chronic pain, and demonstrated that the vigilance level to
external sensory stimuli would be increased with acute pain, but
decreased with chronic pain. These observations indicated that
the study of pain-induced influences on cortical processing of
non-nociceptive sensory information would be a doable way to
differentiate acute pain and chronic pain, thus help monitor the
progress of pain chronification in clinical practice (Guo et al.).
In addition, Li et al. investigated the effects of placebo analgesia

on spontaneous brain oscillations during tonic muscle pain.
They observed that placebo-induced decreases in the subjective
pain perception significantly correlated with the increases of
the amplitude of alpha oscillations, which suggested that alpha
oscillations in frontal-central region could serve as the cortical
indicator of placebo effect on tonic muscle pain (Li et al.).
Finally, Peng and Tang provided a comprehensive summary
of the functional properties of pain-induced modulations of
ongoing cortical oscillations. In addition to the traditional
methods, they proposed that novel approaches should be
adopted to comprehensively explore the dynamics of oscillatory
activities associated with pain perception and behavior. Based
on these understandings, Peng and Tang pointed out the
potential clinical applications of neurostimuation techniques
(e.g., repeated transcranial magnetic stimulation (rTMS) and
transcranial alternating current stimulation (tACS)) based on the
modulation of pain-related cortical oscillations, which could help
promote the establishment of rational therapeutic strategy in the
framework of intelligent systems.

5. MACHINE LEARNING ALGORITHMS

FOR PAIN PREDICTION

Two articles in this Research Topic developed novel techniques
to improve the performance of pain prediction based on
non-invasive functional neuroimaging signals. Bai et al.
observed that pain-evoked EEG responses were significantly
correlated with spontaneous EEG activities at interindividual
level, and proposed a normalization approach to reduce the
interindividual variability of pain-evoked EEG responses based
on the spontaneous EEG activities for each subject. In addition,
Bai et al. found that the relationship between pain-evoked EEG
responses and pain perception was nonlinear, which inspired
them to develop a novel two-stage pain prediction strategy, a
binary classification of low-pain and high-pain trials followed
by a continuous prediction of high-pain trials to significantly
improve the prediction accuracy (Bai et al.). From a different
aspect, Tu et al. provided evidences showing that the joint use of
both pre-stimulus ongoing and post-stimulus evoked EEG/fMRI
activities could significantly improve the performance of pain
prediction compared to using just post-stimulus evoked brain
responses. Both studies (Bai et al.; Tu et al.) shed new lights
on the development of novel algorithms that could improve
the prediction accuracy based on functional neuroimaging
signals.

Taken together, this research topic provides a series of work
in the interdisciplinary studies of vision, motor and pain. The
biological findings and models of the topic could inspired the
future studies both in biology and computer science.
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Feedback within the oculomotor system improves visual processing at eye movement
end points, also termed a visual grasp. We do not just view the world around us however,
we also reach out and grab things with our hands. A growing body of literature suggests
that visual processing in near-hand space is altered. The control systems for moving
either the eyes or the hands rely on parallel networks of fronto-parietal regions, which
have feedback connections to visual areas. Since the oculomotor system effects on
visual processing occur through feedback, both through the motor plan and the motor
efference copy, a parallel system where reaching and/or grasping motor-related activity
also affects visual processing is likely. Areas in the posterior parietal cortex, for example,
receive proprioceptive and visual information used to guide actions, as well as motor
efference signals. This trio of information channels is all that would be necessary to
produce spatial allocation of reach-related visual attention. We review evidence from
behavioral and neurophysiological studies that support the hypothesis that feedback
from the reaching and/or grasping motor control networks affects visual processing while
noting ways in which it differs from that seen within the oculomotor system. We also
suggest that object affordances may represent the neural mechanism through which
certain object features are selected for preferential processing when stimuli are near the
hand. Finally, we summarize the two effector-based feedback systems and discuss how
having separate but parallel effector systems allows for efficient decoupling of eye and
hand movements.

Keywords: attention, vision, sensorimotor integration, reaching and grasping, peripersonal space

INTRODUCTION

Accumulating behavioral evidence has shown that visual processing is altered near the hand.
Speeded target detection and figure-ground assignment (Reed et al., 2006, 2010; Jackson et al.,
2010), improvements in working memory (Tseng and Bridgeman, 2011), orientation processing
(Craighero et al., 1999; Bekkering and Neggers, 2002; Hannus et al., 2005; Gutteling et al., 2011,
2013), target discrimination (Deubel et al., 1998), and in reaching and grasping precision (Brown
et al., 2008), are just some of the effects seen when a reach places a hand near a visual stimulus.
In addition, these alterations are seen whether the hand is nearby due to a sustained reach or if
the hand is moved towards the visual stimulus during each trial in a more active manner. What
remains a topic of debate is the mechanism by which these alterations in visual processing occur.
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A number of studies suggest that visual processing near the
hand is altered through spatial attention selection mechanisms
(di Pellegrino and Frassinetti, 2000; Schendel and Robertson,
2004; Reed et al., 2006, 2010; Abrams et al., 2008). These studies
have hypothesized that populations of fronto-parietal bimodal
neurons underlie enhanced visual selection in near-hand space;
however, these neurons are also thought to influence near-
hand processing in the absence of spatial attention influences
(Brown et al., 2008). More recently, enhanced magnocellular
processing has been postulated as an alternative explanation
for the near-hand effect (Gozli et al., 2012). For this review, we
investigate the hypothesis that these effects are driven by a novel,
effector specific, attentional selection mechanism that is different
from either oculomotor-driven visual spatial or feature-based
attention, and is mediated by feedback from fronto-parietal
regions involved in reaching and grasping networks. We will
first review the anatomical similarities between the oculomotor
and the reaching/grasping networks, and provide evidence
of feedback influences within the oculomotor system. We
will then compare the neurophysiological alterations in visual
processing near the hand to alterations in visual processing due
to the oculomotor system and provide supporting evidence of
feedback influences in the reaching and grasping system. We
suggest that links between the visual system and the motor
systems could drive enhanced processing of action-relevant
object features, but that de-coupled eye and hand movements
indicate the need for separate, effector-based selection
mechanisms.

NEURAL CIRCUITRY

The reaching, grasping, and oculomotor systems all involve
parallel networks of fronto-parietal areas (Figure 1). A
dorsomedial stream, projecting from visual area V6 (Rizzolatti
and Matelli, 2003; Passarelli et al., 2011), consisting of the medial
intraparietal (MIP) area and area V6A in the superior parietal
lobule (SPL), along with the dorsal premotor cortex (PMd) in
the frontal lobe, which forms what is thought to be the neural
network for reaching in the non-human primate (Caminiti et al.,
1996; Culham et al., 2006; Filimon, 2010), with homologs in
humans (Culham et al., 2006; Filimon, 2010). As with reaching,
it has been suggested that there is a parallel dorsolateral circuit
specialized for grasping (Fagg and Arbib, 1998; Luppino et al.,
2001; Filimon, 2010) that projects from visual area MT/V5
(Rizzolatti and Matelli, 2003), and that this circuit is mainly
dependent upon connections between the anterior intraparietal
(AIP) region in the inferior parietal lobule (IPL) and the ventral
premotor cortex (PMv), with homologous areas in humans
(Fagg and Arbib, 1998; Culham et al., 2003, 2006; Frey et al.,
2005). The reaching and grasping circuits however, appear to
not be as completely functionally distinct as once thought as
recent work has also found grasping related activity in the
dorsomedial stream in non-human primate (Raos et al., 2003,
2004; Fattori et al., 2009, 2010, 2012) and human populations
(Gallivan et al., 2011; Monaco et al., 2011). In fact, it has been
suggested that the visual, somatosensory, and motor properties
of V6A indicate a role for this area in the online error control

FIGURE 1 | Reach, grasp, and oculomotor control brain regions in the
macaque. Shown are the cortical brain regions associated with the reach
(in red), grasp (in blue), oculomotor (in green), and visual (in black) systems.
Not pictured are anatomical cross-talk connections between the reaching and
grasping networks (i.e., between V6A and anterior intraparietal (AIP)/Ventral
premotor cortex (PMv), see Fattori et al., 2015).

for all of prehension, including reaching and grasping (Fattori
et al., 2015). For movements of the eyes, the cortical oculomotor
system in non-human primates and humans is comprised of
the lateral intrapariental area (LIP)/parietal eye fields (PEF) and
the frontal eye fields (FEF; Goldberg and Segraves, 1989; Bisley
and Goldberg, 2003; Culham and Valyear, 2006; Culham et al.,
2006). Due to the similarity between the anatomical components
of these systems, we suggest that it is possible that oculomotor
feedback mechanisms enhancing visual processing, could be
replicated by the reaching and grasping networks to alter visual
processing near the hand.

FEEDBACK IN THE OCULOMOTOR
SYSTEM

The influence of feedback, from fronto-parietal motor related
areas, on visual processing is already well-supported for the
oculomotor system. Early psychophysical work established an
indirect link between alterations in visual processing due to shifts
in attention and saccade motor planning (Rizzolatti et al., 1987;
Kowler et al., 1995; Sheliga et al., 1994; Deubel and Schneider,
1996; Kustov and Robinson, 1996; Nobre et al., 2000; Castet
and Montagnini, 2006; van der Stigchel and Theeuwes, 2006;
Baldauf and Deubel, 2008). In general, visual processing was
improved when a visual target coincided with the endpoint
of a planned saccade suggesting a close relationship between
the oculomotor system and attention related changes in visual
processing. These studies led to investigations that more causally
associated activations of eye-movement related brain regions
to shifts in spatial attention and consequently alterations in
visual processing at the end points of planned saccades (Moore
and Fallah, 2001, 2004; Moore and Armstrong, 2003; Müller
et al., 2005; Neggers et al., 2007; Van Ettinger-Veenstra et al.,
2009; Gutteling et al., 2010; Bosch et al., 2013). For example,
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subthreshold microstimulation of the FEF resulted in increased
visual sensitivity at the end-point of the unactivated motor plan
behaviorally (Moore and Fallah, 2001, 2004) and within area
V4 (Moore and Armstrong, 2003). This would suggest that
recurrent connections between FEF and V4 allow for signals
from FEF to feed back into the occipital lobe to influence
subsequent visual processing (Armstrong et al., 2006; Armstrong
and Moore, 2007; Ekstrom et al., 2008, 2009; Squire et al.,
2012). Further evidence in primates comes from a study by
Supèr et al. (2004) who found that in primary visual cortex
neural activity corresponding to the location of the saccade
target was enhanced approximately 100 ms before the onset of
memory and visually-guided saccades. Studies in humans using
transcranial magnetic stimulation (TMS) provide additional
support for oculomotor feedback modulating visual processing.
A single TMS pulse activates neurons in the targeted area. As
such single pulse TMS over FEF enhances visual processing
(Grosbras and Paus, 2003; Ruff et al., 2008; Van Ettinger-
Veenstra et al., 2009) presumably by activating the feedback
connections to visual processing areas. In contrast, a triple pulse
disrupts the normal processing in an area. Triple pulse TMS
used to disrupt the FEF results in impaired discrimination of a
subsequently presented target (Neggers et al., 2007) suggesting
that oculomotor feedback is necessary for spatial attention.
Both the primate microstimulation studies and the human
TMS studies support oculomotor feedback producing spatial
attention effects behaviorally and within visual neurons. This
would require attention signals to occur in the frontal lobe and
propagate back to the occipital lobe. This is indeed what Van
Ettinger-Veenstra et al. (2009) showed with EEG neuroimaging.
They found that frontal activity associated with a saccade-go
signal preceded activity in the occipital cortex associated with the
appearance of a visual target. Thus, feedback projections from
oculomotor-related frontal areas alter processing in posteriorly
located visual areas.

VISUAL PROCESSING NEAR THE HAND

As mentioned previously, behavioral studies have provided
indirect evidence suggesting that the space near the hand is
prioritized. One prevailing theory suggests that alterations in
visual processing occur as a result of attentional selection of
near-hand space (di Pellegrino and Frassinetti, 2000; Schendel
and Robertson, 2004; Reed et al., 2006, 2010; Abrams et al.,
2008; Brown et al., 2008). Much like visual processing at the
end point of a saccade is altered, the parallel within the reaching
and grasping system would be a change in visual processing
that occurs at the end point of a reach or grasp, i.e., in the
workspace near the hand. One can imagine the benefit of this type
of mechanism. This is especially true when reaching for an object
while simultaneously viewing something in a different location
that draws oculomotor driven spatial attention away from the
object to be picked up. The underlying neural mechanisms that
would drive altered visual processing near the hand have, as yet,
not been well studied. A very recent neurophysiological study
however, has shed light on the neural underpinnings of near-
hand visual processing (Perry et al., 2015). Neuronal activity

was recorded from area V2 which is an area that is known to
be selective for orientation (Motter, 1993), a feature important
for reaching and grasping (Murata et al., 2000; Raos et al.,
2004; Fattori et al., 2009), modulated by attention (Motter, 1993;
Luck et al., 1997), and directly linked to fronto-parietal reaching
and grasping areas (Gattass et al., 1997; Passarelli et al., 2011;
Fattori et al., 2015). Instead of allocating classic visual spatial
attention with a cue (Moran and Desimone, 1985; Motter, 1993;
McAdams and Maunsell, 1999; Treue and Martinez-Trujillo,
1999), Perry et al. (2015) used the presence or absence of a
nearby hand to determine the effects of near-hand attention
on neuronal responses in area V2. Under these conditions,
there was a significant increase in response at the preferred
orientation when the hand was nearby. This is consistent with
classic visual spatial studies which produce a ‘‘gain-modulation’’
of neuronal responses: responses are multipled by the same
factor regardless of selectivity (McAdams and Maunsell, 1999;
Seidemann and Newsome, 1999; Treue and Martinez-Trujillo,
1999; McAdams and Reid, 2005). This results in a scaling of the
tuning curve. However in contrast to gain modulation, there was
no corresponding increase at the orthogonal orientation when
the hand was near. Consequently, this produced a sharpening,
instead of a scaling, of the orientation tuning curves when the
hand was near, suggesting a different underlying mechanism
than for oculomotor driven spatial attention. Sharpening of
orientation tuning curves would result in greater orientation
selectivity.

In addition to spatial attention, neuronal enhancement is
also found with feature-based attention, where attending to a
feature (such as a vertical bar) enhances processing of that
specific feature (vertical), which aids greatly in visual search.
Feature-based attention is described by the feature-similarity
gain model of attention which predicts that enhancement
of neuronal responses are strongest when the orientation of
the grasp target (attended feature) and the orientation of
the visual stimulus are matched, falling off as the difference
in their orientations increased (Treue and Martinez-Trujillo,
1999). No such relationship was found. These results (Perry
et al., 2015) suggest then that the attentional prioritization
of near-hand space does not conform to known spatial or
feature-based attentional mechanisms and that a novel, effector
based, mechanism exists. This mechanism would preferentially
process features (such as orientation) necessary for grasping,
which would then improve the accuracy of an upcoming
grasp.

EVIDENCE FOR FEEDBACK IN THE
REACHING AND GRASPING SYSTEMS

While the effects of near-hand attention are seen in early
visual areas, behaviorally these effects cannot be driven by
the oculomotor system. The control system for near-hand
attention, albeit separate from the oculomotor system, would
likely be driven through the parallel feedback from fronto-
parietal motor planning areas. It has been shown that neuronal
response variability is reduced in premotor cortex during
reaching (Churchland et al., 2010) and in the FEF during
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oculomotor preparation (Purcell et al., 2012). Notably, neurons
in V4 undergo a reduction in neuronal response variability
prior to the onset of a saccade (Steinmetz and Moore, 2010).
This suggests that reductions in oculomotor response variability
propagate back to posteriorly located visual processing regions. If
feedback from fronto-parietal reaching and grasping networks is
the method through which neurons in V2 undergo alterations in
their response properties (such as sharpened tuning—Perry et al.,
2015), it would be expected that response variability would also
be reduced. This is, in fact, what was found (Perry et al., 2015).
Thus, both oculomotor and near-hand spatial attention rely
on feedback projections which concomitantly reduce response
variability.

In human populations, this premise of feedback connections
mediating changes in visual response properties was tested by
Gutteling et al. (2013). They investigated whether activation
of the anterior portion of the intraparietal sulcus (aIPS) prior
to a grasping or pointing movement improved orientation
perception. aIPS has been shown to be part of a network
of fronto-parietal areas that are involved in the control of
grasping movements (Taira et al., 1990; Gallese et al., 1994;
Sakata et al., 1995). Furthermore, aIPS has been shown to
be selective for the orientation of the object to be grasped
(Murata et al., 2000) and connected to occipital visual areas
(Nakamura et al., 2001; Ruff et al., 2008; Blankenburg et al., 2010),
including ventral stream regions (Borra et al., 2008) that would
be sensitive to changes in orientation. Activation of aIPS during
action preparation (Gutteling et al., 2013) improved orientation
sensitivity, suggesting that aIPS is involved in modulating visual
information during action planning. In addition, compared to
pointing, grasping a 3-dimensional oriented bar, has been shown
with electroencephalography to strengthen the N1 component
and associated selection negativity in lateral occipital regions
suggesting that the plan to grasp influences early ventral stream
visual processing (orientation) of action-relevant features (Van
Elk et al., 2010). Improved sensitivity and strengthened selection
negativity is consistent with improved orientation tuning found
in non-human primate V2 neurons when a hand is nearby (Perry
et al., 2015).

Area V6A is another candidate area whose feedback could
sharpen orientation tuning, as it has been found to be sensitive to
the orientation of the wrist (Fattori et al., 2009), selective for grip
type (Fattori et al., 2010), contains cells selective for orientation
(Gamberini et al., 2011), and has direct connections to early
visual processing areas (Passarelli et al., 2011). In addition,
activity in V6A has been shown to be modulated by shifts
in covert, oculomotor driven, spatial attention (Galletti et al.,
2010), suggesting that it may play a similar role in hand driven
attention.

Recurrent feedback loops between fronto-parietal and early
visual processing areas (e.g., V2) would provide relevant
corollary motor discharge information to enhance visual
information relevant to reaching and grasping objects (i.e.,
sharpened orientation tuning) that would then update ongoing
motor plans. As a movement progresses, sharpened orientation
tuning information could be used to improve or correct hand
shaping and wrist orientation resulting in improved reach and

grasp accuracy. Given that V6A is thought to be involved in
online error control of both reaching and grasping (Fattori et al.,
2015), recurrent feedback loops between V2 and V6A are the
likely candidate mechanism to underlie this process.

AFFORDANCES

Orientation is considered to be part of the processing that
occurs in the ventral stream that results in object recognition.
It is not thought to be necessary for processes in the dorsal
stream that culminate in knowing where something is, for
computations of complex motion of an object, or for execution
of movement. Why then would orientation processing in V2
be improved simply because the hand is near? Close links
between the visual and motor systems have been at the core
of the affordance literature for years. Gibson (1979) suggested
that one of the key functions of the visual system was to
provide information to the motor system about the possible
actions that could be implemented, or alternatively, the possible
actions that the visual information affords. Since then, Tucker
and Ellis (1998, 2001) and Ellis and Tucker (2001) have argued
that the motor system itself could extract visually pertinent
information that would produce affordances. In fact, they have
used the term micro-affordances to refer to object properties
that are action-relevant and could be used to inform subsequent
movements to interact with the object of interest (Tucker and
Ellis, 2001). Orientation is an object feature that informs the
‘‘graspability’’ of an object. For example, object orientation can
either facilitate or impede response times depending on whether
the object orientation produces a motor affordance (Tucker
and Ellis, 1998). In other words, the orientation of an object
informs the grasp that needs to be planned. Regions within
the parietal lobe, integral to reaching and grasping movements,
show selectivity for the size, shape and orientation of an object
both during fixation and grasping movements (Taira et al.,
1990; Gallese et al., 1994; Murata et al., 2000; Fattori et al.,
2009, 2010, 2012; Breveglieri et al., 2015), suggesting these
areas play a key role in the integration of visual and motor
information and object affordances. Therefore, orientation is a
feature necessary to grasp objects accurately and is processed
within the fronto-parietal grasping network, especially within
area AIP.

Even if there is not a representation of the object as a whole
in the dorsal stream, the vision for action theory (Goodale and
Milner, 1992; Goodale, 2008, 2013) would also suggest that there
are features of an object that are action relevant and therefore
worthy of preferential processing, or attentional selection, by the
dorsal stream action system. Patients with visual agnosia, who
can still scale and orient their hand to an object to be grasped
in spite of being unable to recognize the object they are grasping,
speak to this point (Goodale et al., 1991, 1994;Milner et al., 2012).
Given that object features such as orientation have been shown to
affect subsequent motor affordances, and that object properties
are extracted to inform the scale and orientation of the hand in
patients who cannot recognize objects, it logically follows that
orientation be an object feature preferentially processed within
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the dorsal stream in parallel to its processing within the ventral
stream for object recognition.

ADVANTAGES OF SEPARATE EFFECTOR
MECHANISMS

Being able to separate the deployment of attention between
effectors allows for the decoupling of actions. Many examples
exist of instances where we reach for one thing while looking
elsewhere. In fact, optic ataxia, in which there is an inability
to reach to peripheral targets, results from damage to the
posterior parietal cortex (Milner and Goodale, 1995; Carey et al.,
1997; Jackson et al., 2005). It has been shown that reaching to
centrally located targets activates the MIP sulcus and PMd, while
reaching to peripherally located targets additionally activates the
parietal occipital junction and more rostral parts of PMd. These
differentiated networks support dissociation between where gaze
and grasp are deployed (Prado et al., 2005). Furthermore, recent
work has shown that when a sequence of reaching movements
are planned, visual discrimination is significantly enhanced not
just at the first movement goal but also at the second (Baldauf
et al., 2006; Baldauf and Deubel, 2008, 2009). So while an eye
movement would be planned and then executed to the first target,
the second is already enhanced suggesting that reach execution is
separate from oculomotor planning and in turn, that movement
planning and execution in the posterior parietal cortex already
accommodates separate representations of gaze and reach targets
(Jackson et al., 2009). These decoupled eye and hand movements
are supported by the presence of neuronal populations in
parietal areas that produce multiple types of reference frame
transformations to encode targets in eye-centered or hand-
/body-centered frames of reference (Lacquaniti et al., 1995;
Batista et al., 1999, 2007; Buneo et al., 2002, 2008; Cohen and
Andersen, 2002; Marzocchi et al., 2008; Chang et al., 2009; Chang
and Snyder, 2010; McGuire and Sabes, 2011). As populations

encoding targets in either eye- or hand-centered reference frames
support decoupled movements, it follows then that there should
exist separate effector-based attentional mechanisms.

CONCLUSION

We have reviewed literature in support of the hypothesis that
there exist parallel, but separate, effector-based attentional
systems. Whereas the oculomotor system enhances visual
responses through gain modulation, near-hand attention
sharpens orientation tuning and, potentially, other features
relevant to reaching and grasping. Thus, these effector-based
systems may be specialized for the actions those effectors can
perform. We suggest that improved orientation processing is
a feature important for accurate reaching and grasping, and
that separate effector-based attentional mechanisms allow for
the decoupling of visual enhancements associated with eye
and hand movements. Future investigations are needed to
further support this hypothesis for example, by systematically
testing grasp-relevant and irrelevant features. In addition,
testing whether both the reaching and grasping or grasping
alone is involved in near-hand attention which will provide
details regarding which fronto-parietal networks may be
involved and what other object features may be preferentially
processed.
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Neurons that respond to visual targets in a hand-centered frame of reference have been

found within various areas of the primate brain. We investigate how hand-centered visual

representations may develop in a neural network model of the primate visual system

called VisNet, when themodel is trained on images of the hand seen against natural visual

scenes. The simulations show how such neurons may develop through a biologically

plausible process of unsupervised competitive learning and self-organization. In an

advance on our previous work, the visual scenes consisted of multiple targets presented

simultaneously with respect to the hand. Three experiments are presented. First, VisNet

was trained with computerized images consisting of a realistic image of a hand and a

variety of natural objects, presented in different textured backgrounds during training. The

network was then tested with just one textured object near the hand in order to verify

if the output cells were capable of building hand-centered representations with a single

localized receptive field. We explain the underlying principles of the statistical decoupling

that allows the output cells of the network to develop single localized receptive fields

even when the network is trained with multiple objects. In a second simulation we

examined how some of the cells with hand-centered receptive fields decreased their

shape selectivity and started responding to a localized region of hand-centered space

as the number of objects presented in overlapping locations during training increases.

Lastly, we explored the same learning principles training the network with natural visual

scenes collected by volunteers. These results provide an important step in showing how

single, localized, hand-centered receptive fields could emerge under more ecologically

realistic visual training conditions.

Keywords: hand-centered, neural networks, self-organization, reference frames, posterior parietal cortex, area

5d, premotor

1. INTRODUCTION

The brain seems to represent the location of objects in space using a variety of coordinate systems.
Consistent with this, several neurophysiological recordings have reported neurons encoding the
location of visual targets in different frames of reference. Visual targets are represented initially
in a retinocentric or eye-centered frame of reference and in later stages of processing this
information is recoded into more abstract, non-retinal coordinate maps that are more suitable to
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guide our behavior. For example, head-centered, body-centered,
hand-centered as well as mixed representations have been
reported in different parts of the posterior parietal cortex and
adjacent areas (Andersen et al., 1985; Brotchie et al., 1995; Buneo
et al., 2002; Pesaran et al., 2006; Bremner and Andersen, 2012).

Similarly, a number of electrophysiological recordings in
macaques have also reported neurons with localized and selective
responses to stimuli shown in localized regions near the body
or parts of the body (i.e., peri-personal space and peri-hand
space; Hyvärinen and Poranen, 1974; Rizzolatti et al., 1981, 1988;
Graziano and Gross, 1993; Graziano et al., 1994, 1997; Fogassi
et al., 1996, 1999; Graziano and Gross, 1998; Graziano, 1999).
The visual responding regions of these cells seem to extend from
the skin and could be found anchored to different parts of the
body (e.g., around the hand, mouth and face). Their response
properties do not seem to change with eye movements and the
target does not have to necessarily touch the skin to elicit a
response.

Cells representing the location of visual targets in hand-
centered coordinates have been reported inmultiple areas, mostly
in the parietal cortex and premotor areas. For planning reach
vectors, hand-centered coordinates seem to be the dominant
representation in area 5d (Buneo and Andersen, 2006; Bremner
and Andersen, 2012). Other hand-centered receptive fields have
been found also in ventral premotor areas (Graziano et al., 1997;
Graziano, 1999). These cells fire maximally to the location of
the target relative to the hand, irrespective of where on the
retina this fixed spatial configuration appears. A number of
neurophysiological and behavioral studies with human subjects
have similarly shown evidence of hand-centered encoding of the
location of visual objects near the hands (peri-hand space) in
parietal and premotor areas (Makin et al., 2009, 2007; Brozzoli
et al., 2011, 2012; Gentile et al., 2011).

Different theoretical approaches have been proposed to reflect
the different stages of coordinate transformations and explain
some of the response properties found in some neurons of
the PPC and premotor areas. A variety of neural network
models have been suggested to account for the development of
these supra-retinal representations (e.g., head-centered, hand-
centered; Zipser and Andersen, 1988; Pouget and Sejnowski,
1997; Blohm et al., 2009; Chang et al., 2009). Some of these
models have focused on the development of head-centered
responses and despite the computational advantages of these
different theoretical efforts, most of this work has been based
on supervised learning algorithms, which cannot provide a
biologically plausible account of how these properties develop
in the cortex. Other computational approaches have suggested
a different way of implementing these transformations using
neurons behaving like basis function units that could provide an
immediate read-out of multiple frames of reference (Pouget and
Sejnowski, 1997).

A self-organizing hypothesis to account for how hand-
centered representations could occur has been recently proposed
(Galeazzi et al., 2013). Here, it was suggested that while the
eyes are exploring a visual scene involving a target object in a
fixed position with respect to the hand, a form of trace learning
would allow the network to associate different views of the same

hand-object spatial configuration. This hypothesis was tested
using a biologically plausible neural network model, VisNet, of
the primate visual system. The architecture of VisNet consisted
of a hierarchy of competitive neural layers, with unsupervised
learning taking place in the feedforward connections between
the layers. These simulation results showed how output cells
could learn to respond selectively to the location of targets with
respect to the hand, irrespective of where on the retina this spatial
configuration was shown.

The simulations presented previously by our laboratory
(Galeazzi et al., 2013) involved showing only a hand and single
circular object at any one time during training. However, in
the real world we rarely encounter one object at the time. In
fact, our visual system is mostly confronted with a complex
environment consisting of multiple objects. Moreover, in real-
world visual scenes the various objects that we encounter
throughout our sensory-motor experiences have different shapes
and sizes. Nevertheless, cells in the dorsal visual system seem to
be able to generalize and form delineated hand-centered visual
receptive fields. In this paper we explore whether our model
would still be able to develop output cells with single, localized,
hand-centered receptive fields when the network is exposed to
more realistic images. In the initial simulations presented in
Experiments 1 and 2, the training images were comprised of a
variety of everyday objects presented simultaneously around a
realistic hand. In Experiment 3, we increased the realism further
by presenting the hand against a range of completely natural
backgrounds during training.

Early research with VisNet (Stringer and Rolls, 2000) has
revealed the difficulty for the network to build transform (e.g.,
position) invariant representations of individual objects when
it is trained on cluttered backgrounds. How could the network
develop neurons that respond selectively to a single object when
it is trained with cluttered images always containing more that
one object at a time? Later work has shown that VisNet can in
fact form representations of individual objects even when they
are never seen in isolation during training (Stringer et al., 2007;
Stringer and Rolls, 2008). The statistical decoupling between the
different objects works when there is a sufficiently large number
of objects and the network is presented with many different
combinations of these objects during training. Any particular
combination of objects will be seen together only rarely which
prevents individual neurons in the output layer from learning
to respond to the particular combinations of objects seen during
training. Instead, the neurons are forced to learn to respond to
the individual objects themselves. The fundamental principle is
that competitive learning binds together the features that are seen
more often than other less frequent combinations of features in
the environment. Thus, the network does not need any prior
knowledge of which features belong to a particular object; it self-
organizes by learning to respond to the combinations of features
that co-occur the most.

We hypothesized that a similar mechanism of statistical
decoupling may produce visual neurons that have learned to
respond to single object locations in a hand-centered frame
of reference. Let us assume that during training the network
model is exposed to many images containing the hand with
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multiple other objects, but where the objects occur in different
combinations of hand-centered locations in the different images.
Because the objects are always seen with the hand, this forces each
of the output neurons to learn to respond to some combination
of the hand and hand-centered object locations. However, over
many different images there will be a relatively weak statistical
link between any two particular hand-centered object locations.
These statistics will drive the development of output neurons that
have learned to respond to particular spatial configurations of
the hand and a single object. That is, these neurons will respond
to the presence of an object in only one localized hand-centered
receptive field.

To test this learning hypothesis and increase the ecological
plausibility of our simulations, three experiments are presented.
We first show how the model can develop hand-centered
representations using more realistic training images composed
of the hand with pairs of objects presented in different hand-
centered locations. Many images with different combinations of
hand-centered locations were used to ensure adequate statistical
decoupling between the different object locations. In a second
experiment, we explored whether the output cells of our
model developed hand-centered receptive fields that were also
somewhat selective to the shape of the object, as well as evaluating
how this shape selectivity is affected as the network is trained
with more objects. Lastly, in the third experiment we explore
whether the network could still develop localized hand-centered
receptive fields when the hand is shown against a large collection
of different natural background scenes during training. In this
case, the background scenes used were entirely natural with no
careful control of what objects were present and where they were
located.

2. MATERIALS AND METHODS

2.1. VisNet Model
The experiments presented in this paper were conducted using
the VisNet model of the primate visual system (Figure 1). VisNet
is composed of four feedforward layers of competitive neural
networks. Each neuronal layer incorporates lateral competition
between neurons which is implemented by local graded
inhibition. The synaptic connections between the successive
layers of neurons are updated using associative learning.
Although VisNet has been often used to model invariance in
the ventral visual stream, it has been subsequently applied to
simulate visual processes occurring in the dorsal stream (Rolls
and Stringer, 2007; Galeazzi et al., 2013; Rolls and Webb, 2014).
Both ventral and dorsal streams share architectural similarities,
each consisting of a hierarchical series of neuronal layers with
competition mediated by inhibitory interneurons within each
layer (Rolls and Webb, 2014). The VisNet model is described in
the Appendix, more detailed descriptions can be found in Rolls
(2008).

In this study the model implements trace learning, in which
a temporal trace of the previous activity of the neuron is
incorporated in the learning rule. This learning mechanism
encourages individual neurons to respond to subsets of input

FIGURE 1 | Stylized image of the VisNet four-layered network. The

architecture of the network shows a hierarchical organization which can be

found in the dorsal visual system. Convergence through the network is

designed to provide fourth-layer neurons with information from across the

entire input retina.

images that occur close together in time. We have previously
shown how trace learning may allow neurons to develop
responses that are selective for the location of visual targets with
respect to the hand but invariant to the position of the hand-
object configuration on the retina. In particular, we suggested
that while the eyes are exploring a visual scene containing
a target object in a fixed position with respect to the hand,
trace learning would associate together different views (retinal
locations) of the same hand-object configuration onto the same
subset of output neurons. In this way, different output cells would
learn to respond selectively to different positions of the visual
objects with respect to the hand, where the neuronal responses
were invariant across different retinal locations (Galeazzi et al.,
2013).

2.2. Information Measures
In addition to the response profile of individual neurons, we
assessed the network performance using single and multiple cell
information theoretic measures. These measures have been used
extensively to analyse the performance of the VisNet model in
previous work (See Appendix). In this particular case, these
measures are used to evaluate whether individual cells in the
output layer are able to respond to a specific target location in
a hand-centered frame of reference over a number of different
retinal locations.

The single cell information metric computes the amount
of information conveyed by an individual output layer cell
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about which of the stimuli has been shown during testing. In
this study, a stimulus is defined as one of the different hand-
object configurations presented to the network during testing.
For example, if an output neuron developed a localized hand-
centered receptive field, then it would respond maximally and
selectively to the location of an object in a particular position with
respect to the hand across all tested retinal locations in which this
configuration appears.

On the other hand, the maximal cell information computes
the amount of information conveyed by the output population
about all of the possible hand-object configurations. This
measure verifies whether there is information about all of the
testing stimuli across the output layer. For example, if the
maximal multiple cell information is reached, this would mean
that all the tested hand-object configurations are represented
independently by separate output neurons. In other words,
the network would develop a variety of hand-centered output
cells, each of them with their own localized hand-centered
receptive field. These cells would then respond selectively to the
location of an object in a particular position with respect to
the hand, and all of the tested locations would be represented
in the output layer. More details about how these metrics
are applied and calculated for this study are provided in
Appendix.

2.3. Model Parameters
For these simulations we used an up-scaled version of the
model “retina” (i.e., 256 × 256). Increasing the size of the
retina, significantly improves the resolution and therefore the

performance of the model. The rest of the parameters are
described in Appendix.

3. TRAINING AND TESTING PROCEDURES

3.1. Experiment 1: Presentation of the
Hand with Pairings of Natural Objects
In the first experiment, VisNet was trained on images portraying
various spatial configurations of the hand with pairs of
natural objects, which were presented against different textured
backgrounds. Each of these training images was shifted across
different retinal locations during training. We investigated
whether these training images could produce output layer
neurons with single, localized, hand-centered receptive fields,
and which responded invariantly as the neuron’s preferred hand-
object configuration was shifted across different retinal locations.

3.1.1. Stimuli
The training images for the first experiment consisted of a
hand and two natural objects in different spatial configurations
surrounding the hand, all of which were presented against
different textured backgrounds. The images of the hand, objects
and backgrounds were selected from open source pictures on
the internet. The templates were designed, scaled and arranged
using Adobe Photoshop software. The images were generated in
RGB color and subsequently converted tomonochrome using the
MATLAB functionrgb2gray. Figure 2 shows a sample of some
of the training images of hand-object configurations that were
generated for this study.

FIGURE 2 | These are examples of some of the training images used in the first experiment. A pair of objects would appear in different hand-centered

locations simultaneously. The eyes would move exploring the visual scene producing different views of the same configuration across different retinal locations. The six

figures represent a sample of the possible images of object pairings generated from the pool of natural objects and textured backgrounds. The relative positions of the

hand and the pair of objects are unchanged during the eye movements.
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The backgrounds of the images were extended to 512 × 512
pixels for the preprocessing stage. The filtered outputs were then
cropped back to the original size 256×256. This step is important
to avoid possible artifacts or edge effects from the filters in the
initial layer of the network.

There was a pool of 42 natural objects to be presented with
the hand during training. The centers of all the objects were
distributed along a semicircle in six different possible locations
around the hand. The images showed all possible pairings of the
six hand-centered object locations. The number of possible pairs
of object locations may be calculated by

(

n

r

)

=
n!

r! (n− r)!
(1)

where n = 6 and r = 2, which gives a total of 15 pairings
of object locations. For each such pair of object locations we
randomly selected two objects from the pool to be presented in
that pair of locations. However, each such pair of objects was
presented in both possible arrangements: i.e., object 1 in location
1 and object 2 in location 2, and then object 1 in location 2
and object 2 in location 1. This led to a total of 30 hand-object
configurations. Then each of the blocks of these 30 hand-object
configurations was presented against one of the 21 different
textured backgrounds. This generated a total of 630 images.
In order to present the hand-object configurations in different
retinal positions, each of these configurations was translated by
six pixels at a time across VisNet’s retina. During training, the
hand was always shown surrounded by a pair of objects and never
with a single object in isolation. After training was completed,
the images used during testing consisted of the hand and a novel
object in a specific position relative to the hand. In the test
images, the novel objects were shown in one of the same six
hand-centered object locations that were used during training.

3.1.2. Training
The training procedure for this experiment consisted of

presenting VisNet with pairs of non-overlapping natural objects
displayed around the hand on a textured background. During

training, the objects were presented in pairs and never in

isolation, (see Figure 2). In order to develop invariant responses

across different retinal views, each of the images representing
a particular configuration of a hand and objects was trained

across five different retinal locations. The image sequences were

meant to arise from a series of eye movements and the resulting
shifts in the position of the hand and visual objects on the

256 × 256 “retina.” During each of the image sequences, the

fixed spatial configuration of the hand and pair of objects was
translated six pixels at a time. During the visual exploration of

a particular spatial configuration the natural background was

always the same. A new background was only used when a new
configuration of a hand and objects was presented.

During training, each image was presented to the network
in turn. The image was first convolved with the input Gabor
filters and the outputs of the Gabor filters are then passed to the
first layer of neurons. Next, the firing rates of neurons in the
first layer were calculated with soft competition as described in

Appendix. Next, the weights of the afferent synaptic connections
were updated according to the trace rule given by Equation (A11).
This process was then repeated for each subsequent layer of the
network. The network was thus trained one layer at the time,
starting with layer 1 and finishing in layer 4.

One training epoch consisted of the presentation of all 30
object pairings shown against one of the 21 different textured
backgrounds, with each of these images presented across five
different retinal locations. Figure 2 shows examples of six
training images, each composed of the hand with two natural
objects. In these simulations the network was trained for fifty
epochs per layer. The learning rates used were 0.1, 0.1, 0.1, and 0.1
in each layer. The number of epochs and learning rates used are
the same in all the experiments. For more details on the VisNet
parameters, see Appendix.

3.1.3. Testing
Throughout the testing phase, the synaptic weights were not
changed. Figure 3 shows the six images presented to the network
during testing. In order to test whether VisNet has developed
translation invariant neurons with a single, localized, hand-
centered receptive field, the network was tested with images of the
hand and a single circular object presented in only one of the six
hand-centered locations at a time. Furthermore, because the goal
is to test whether neurons respond to a specific hand-centered
location irrespective of the object form, the test images used a
simple textured object as shown in Figure 3. During testing, the
responses of the output layer neurons were recorded for each of
the hand-object configurations shown in Figure 3 presented in
each of the five retinal locations.

Lastly, a recent addition to the inspection tools of VisNet
enables the user to select an output cell after training and
then trace back the connections through layers that have been
strengthen by learning. This process can be repeated up until the
point that we reach the bank of Gabor filters in the input layer.
This permits us to identify which visual features of the input
images the selected output cell is responding to most strongly.

3.2. Experiment 2: Decay of
Object-Selectivity with Increased Visual
Training
In the second experiment, we investigated how the shape-
selectivity of hand-centered output layer neurons depended on
the amount of visual training that the network had received.
Specifically, we explored the hypothesis that neurons would
become less shape selective as they were trained on larger
numbers of objects at their preferred hand-centered location.

3.2.1. Stimuli
The training images for this experiment consisted of the hand
presented with a single natural object at a time. The natural
object was always presented at the same location with respect
to the hand. The objects were drawn randomly from the same
pool of 42 natural objects used in the first experiment. The
images were generated in RGB color and subsequently converted
to monochrome using the MATLAB function rgb2gray.
Different simulations were run with increasing numbers (1–8)
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FIGURE 3 | These are examples of six testing images used in the first experiment to determine the hand-centered receptive fields of output neurons

after training. Unlike the training condition where two objects were presented simultaneously, in this case a single textured stimulus was presented in six different

hand-centered locations. The hand-centered object locations were the same as those used during training in the first experiment. Each hand-object configuration

would be tested in five different retinal locations.

of natural objects used during training. For each simulation, the
network was tested with images of the hand and each of the
100 different novel objects presented in the same hand-centered
location on which the network was trained. The objects used
during training and testing were not the same. Figure 4 shows
examples of the pool of objects used for training and testing. At

testing, we recorded the percentage of the 100 test objects that the
output neurons responded to. This allowed us to assess the shape
selectivity of these neurons.

3.2.2. Training and Testing
For this experiment we were interested in exploring whether the
output cells that developed visual hand-centered receptive fields
could also show shape selectivity, and how this shape selectivity
depended on the amount of visual training with different natural
objects. We started by training the network with an image of
the hand with a single natural object in a particular position
with respect to the hand. We then tested the network with a
pool of 100 novel objects presented in the same hand-centered
location as used during training. Then across further simulations
we systematically increased the number of objects that appeared
in the same hand-centered location during training. One training
epoch consisted of presenting images of the hand with each of
the training objects that were used for that particular simulation.
After training was completed, the network was tested with the
same set of 100 images showing the hand with one of the novel
objects. The aim was to investigate how the shape selectivity of
neurons that learned to respond to that hand-centered location

was affected by the number (1–8) of natural objects seen there
during training.

This experiment was not focused on the development of
invariant neuronal responses across different retinal locations,
and so we trained each image of the hand and object in only a
single retinal location. Consequently, we updated the synaptic

weights between layers according to the simpler Hebb rule (See
Equation A10 in Appendix).

3.3. Experiment 3: Presentation of the
Hand Against Natural Backgrounds
In the third experiment, VisNet was trained on images with
the hand presented against completely natural backgrounds,
which were also shifted across different retinal locations. We
investigated whether output layer neurons learned to respond to
objects presented in single hand-centered locations, and whether
these responses were invariant as the neuron’s preferred hand-
object configuration was shifted across the retina.

3.3.1. Stimuli
In order to generate our pool of natural visual scenes, we
asked four volunteers to provide 10–12 photographs of natural
visual scenes from their everyday life in which they would
normally use their hands to manipulate objects. All of the
volunteers were naive and unaware of the purpose of the study.
We provided several examples (e.g., using cutlery in a meal,
grasping a cup, etc.) and provided three sample photos in order
to give them a general idea of the nature of the scenes we
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FIGURE 4 | The figure shows various examples of natural objects that were presented in the same location with respect to the hand during training

and testing for the second experiment. Different objects were used during training and testing. The objects were always presented in the same hand-centered

location in order to explore how the shape selectivity of neurons representing that location was affected by the number of objects presented there during training.

were interested in collecting. We provided further instructions
regarding the angle and distance at which the photos should
have been taken. The pictures were meant to be taken from a
first person point of view and the distance between the objects
and the camera had to be at arm’s length. Additionally we
asked them not to include the image of their own hand in the
picture.

The training stimuli for this experiment consisted of images
showing a picture of a real hand that was superimposed in all
of the natural visual scenes collected by our participants. The
templates were scaled and arranged using Adobe Photoshop
software. The images were generated in RGB color and
subsequently converted to monochrome using the MATLAB

function rgb2gray and then resized to a 256 × 256 matrix.
Figure 5 shows a sample of some of the training images that were
generated. A total of 48 natural images were collected and used
for the experiment. In order to present the configurations of the
hand and objects in different retinal positions, each of the fixed
spatial configurations was translated by five pixels at a time across
VisNet’s retina within a 3 by 2 grid. That is, for this experiment
the sequences included horizontal as well as vertical shifts on the
network’s retina.

After training was completed, the stimuli used during testing
consisted of images showing the hand and a novel textured
object in five different positions relative to the hand as shown in
Figure 6.
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FIGURE 5 | The figure shows various examples of the hand presented against different natural backgrounds during training in the third experiment.

The position of the hand within each of the backgrounds is unchanged during the eye movements.

3.3.2. Training and Testing

The training procedure for this experiment consisted of

presenting VisNet with images of the hand embedded within 48
different natural scenes containing a variety of objects as shown

in Figure 5. As in previous simulations, image sequences were

meant to arise from a series of eye movements and the resulting

shifts in the position of the hand and visual objects on the 256 ×
256 “retina.” During each of the image sequences, the fixed spatial

configuration of the visual scene is translated both horizontally

and vertically by five pixels at a time across a 3 by 2 grid of
retinal locations. In the first experiment we shifted the images

only horizontally. However, in order to increase the ecological

validity of this third experiment, we included a vertical shift of
five pixels as well. In this experiment, the synaptic weights were
updated according to the trace rule given by Equation (A11). One
training epoch consisted of presenting all 48 images in all 6 retinal
locations.

Figure 6 shows the images used to test the network after
training. In order to test whether VisNet has developed

translation invariant neurons with a single, localized, hand-
centered receptive field, the network was tested with images
consisting of the hand with only a single textured object
presented in one of five different hand-centered locations. The
responses of the output neurons are recorded with each of these
hand-object configurations presented in all six of the retinal
locations used during training.

4. RESULTS

4.1. Experiment 1: Presentation of the
Hand with Pairings of Natural Objects
We studied the responses of the output (fourth) layer cells
in VisNet before and after the network was trained on the
images of hand-object configurations shown in Figure 2. After
the network was trained, the network was tested on the images
shown in Figure 3 to determine whether cells in the output layer
had developed single, localized hand-centered receptive fields
and responded invariantly across the different retinal locations.
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FIGURE 6 | These are the five test images used after the network had been trained with the hand presented against natural background scenes in the

third experiment. That is, the network was tested with a single textured stimulus presented in five different hand-centered locations. Each hand-object configuration

was tested in the six different retinal locations that the hand was originally trained in.

Information analysis was then conducted on the responses of the
cells to all of the test images.

In previous simulations in which VisNet was trained on
all possible pairings of objects, it was reported that as the
number of objects increased, the statistical decoupling between
the objects started to force the network to learn to represent the
objects individually (Stringer et al., 2007). However, in the new
simulations carried out here the image of the hand was always
present with the objects. In this case, the most correlated features
would correspond to a combination of features of the hand and
features of the trained objects presented in a particular location
with respect to the hand. Therefore, individual cells should learn
to respond to a particular spatial configuration of the hand and a
single hand-centered object location.

Figure 7 shows the response profiles of six neurons in the
output layer of VisNet before training. Following the same
conventions of Galeazzi et al. (2013), each of the six columns
of plots contains the firing responses of a particular output
cell, which are labeled at the top of the column. Whereas
the six rows of plots show the responses of the cells to
each of the six hand-object configurations presented during
testing.

Each plot shows the responses of the given cell to the particular
hand-object configuration over the five retinal locations. The x
axis in each plot represents the five retinal locations of the hand-
object configuration on which the neuron was tested, while the
y axis represents the corresponding firing rate of the output
neuron. The top row shows the cell responses when a single
textured object is presented in the first of the testing locations

with respect to the hand. This corresponds to the upper left image
in Figure 3. The following rows show the cell responses when
the visual object is presented in successive test locations with
respect to the hand. The last row corresponds to the configuration
displayed in the bottom right image of Figure 3.

In Figure 7 we can see that before training, all of the six
cells responded rarely and randomly to the different hand-object
configurations. The responses do not have a particular ordered
structure. In Figure 8we can see the response profiles of the same
six neurons in the output layer of VisNet after training. In this
case it can be seen that, after training, each of the six cells has
learned to respond to just one of the hand-object configurations,
and responds to that configuration over all five tested retinal
locations. Furthermore, we can see here already that each of the
six hand-object configurations was represented by one of the
cells.

In order to have an overview of how these configurations
are represented across the output cell population, we present
the information analysis measures. Figure 9 shows the single
and multiple information measures for the output (fourth) layer
neurons before and after training with all of the hand-object
configurations. The single cell information analysis (Figure 9
top) shows that, after training, 115 neurons conveyed the
maximal single cell information of 2.58 bits. These output cells
responded to only a single position of the test object with respect
to the hand, and responded irrespective of retinal location. The
multiple cell information analysis (Figure 9 bottom) shows that,
before training, the multiple cell information does not reach the
maximal value of 2.58 bits. However, after training we can see

Frontiers in Computational Neuroscience | www.frontiersin.org December 2015 | Volume 9 | Article 147 | 24

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Galeazzi et al. Ecological Modeling of Hand-Centered Representations

FIGURE 7 | Firing rate responses from the first experiment before training. Each of the six columns shows the firing responses of a particular cell. Each row

shows the responses of the six cells to one of the six hand-object configurations (shown on the left) over all five different retinal locations shown along the abscissae. It

can be seen that each of the six cells initially responds randomly to each of the hand-object configurations over the different retinal locations.

that multiple cell information asymptotes to the maximal value,
which means that all six of the hand-object configurations are
represented by separate cells in the output layer. Figure 8 shows
examples of neurons representing each of the six hand-object
configurations.

We traced the strengthened connections from each one of
the output cells through successive layers to the input Gabor
filters driving that cell. Figure 10 shows the Gabor input filters
with strengthened connections to a trained output neuron that
had learned to respond to one of the hand-centered locations.
On the left side of Figure 10 we can see the Gabor filters that
are most strongly driving the responses of the particular output
cell. In this example, we show a cell that is representing a
subset of Gabor filtered inputs corresponding to the hand, as
well as a subset of inputs representing a visual location near
the hand. Tracing back the synaptic connectivity in this way
enables us to inspect the nature and extension of the hand
centered visual receptive field developed by the output cell after
training. We can thus determine not only the ability of the cell
to represent an individual region with respect to the hand, but
also the input features that were extracted from the set of objects
shown.

Altogether, the individual cell firing rate responses, the
information analysis and the inspection of connectivity in this
experiment demonstrate that VisNet is able to develop neurons
with a single, localized, hand-centered visual receptive fields
even when trained on more realistic images with multiple
natural objects shown with the hand against various textured
backgrounds. In particular, the principles of statistical decoupling
continue to operate successfully under these more ecological
training conditions. That is, after extensive training, the output
cells learn to respond to the features that are seen more
frequently together throughout training. This is a basic property
of competitive learning. Since the network is trained on
multiple natural objects with the hand against various textured
backgrounds, the features that appear more frequently together
are the hand (which is always present) and a subset of
features that are associated with a particular object location.
Consequently, individual output neurons learn to represent a
particular configuration of the hand and one object location with
separate neurons responding to different hand-centered object
locations. However, the statistical decoupling between any two
object locations is too weak to allow individual output cells to
learn to respond to more than one hand-centered location.
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FIGURE 8 | Firing rate responses from the first experiment after training. Response profiles of the same six neurons from Figure 7 after training on the images

shown in Figure 3. Conventions as in Figure 7. It can be seen that each of the six cells responds selectively to just one of the hand-object configurations, and

responds to that configuration over all five retinal positions shown along the abscissae. Moreover, each of the six hand-object configurations is represented by one of

the cells.

Additionally, the trace learning mechanism enables the
network to encode these representations across different retinal
locations. Thus, these cells will respond to the same hand-
object configuration irrespective of the position of the hand with
respect to the body and regardless of the gaze direction. These
hand-centered cells will fire maximally as long as the spatial
configuration of the hand and an object is the same.

4.2. Experiment 2: Decay of
Object-Selectivity with Increased Visual
Training
In Experiment 1, we were not interested in developing hand-
centered cells that were selective to specific objects. On the
contrary, we were primarily interested in the development
of hand-centered receptive fields where the neuron would
respond to the presence of almost any object as long as it was
presented within the receptive field. These cells are thought
to mostly provide information about the location of an object
with respect to the hand, rather than representing the detailed
features of the object. However, our simulations do not preclude

the possibility that some shape selectivity could arise after
training.

In the second experiment, we investigated whether the hand-
centered output neurons showed selectivity to the shapes of
objects presented with the hand, and how this shape selectivity
depended on the amount of training that the network had
received with other objects. By testing the network on images
with a variety of novel objects in the same hand-centered location
used during training, it was possible to assess whether the cells
that had learned to respond to that hand-centered location would
fire selectively to objects of a particular shape. A number of
experiments were performed with sampling different objects
during training. The results presented here are taken from one
of these experiments and are typical of the effects we observed.

In Experiment 2, eight separate simulations were conducted.
Successive simulations used increasing numbers of training
objects from 1 to 8, which were always presented at the same
location with respect to the hand during training. For each
simulation, after training we identified the subpopulation of
output neurons that had learned to respond to that hand-
centered location. The criterion for classifying a cell as responsive
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FIGURE 9 | Information results from the first experiment before and

after training. The upper plot shows the amount of single cell information

carried by individual output cells in rank order. After training, it was found that

115 cells reached the maximum amount of single cell information of 2.58 bits.

These cells responded perfectly to just one of the six tested hand-object

configurations, and responded to that configuration across all five different

retinal locations. In the untrained condition no cells reached maximal

information. The lower plot shows the multiple cell information measures

calculated across 30 cells with maximal single cell information. It can be seen

that, after training, the multiple cell information asymptotes to the maximal

value of 2.58 bits. This confirms that all six tested hand-object configurations

are represented by the output cells.

was that its firing rate should reach a threshold of 0.5. Then
we tested the network on 100 images of the hand with different
novel objects at the same hand-centered location. Each time we
recorded whether each of the neurons responded to the new
object at that hand-centered location. This procedure was used
to reveal how the shape selectivity of the output neurons changed
as the network was trained with increasing numbers of objects at
their preferred hand-centered location.

Figure 11 shows the average number of novel objects that the
hand-centered cells in the network responded to after training
as a function of the number of objects that the network has

FIGURE 10 | Tracing back the synaptic connections from a trained

output cell to the input Gabor filters in the first experiment. The left side

shows the input Gabor filters that an output cell has learned to respond after

training. This is an example of a neuron that represents a hand-object

configuration with the object above the hand. In this image the Gabor filters

with the strongest connectivity through the layer to the output cell are plotted,

where each Gabor filter is weighted by the strengths of the feed-forward

connections from that filter through the successive layers to the output neuron.

It can be seen that this neuron receives the strongest inputs from a subset of

Gabor filters that represent the location of the target on top of the hand. The

right side shows the image of the hand and the overlapped images of all the

training objects that appeared during training in this hand-centered location.

FIGURE 11 | Simulation results for the second experiment. In these

simulations we explored how the shape selectivity of a subpopulation of

hand-centered output neurons is affected as the network is trained with an

increasing number of natural objects at their preferred hand-centered location.

The plot shows the average number of novel test objects that the

subpopulation of output cells respond to as the network is trained with an

increasing number of the training objects. It is evident that as the network is

exposed to more objects during training, most cells start to lose their shape

selectivity and respond to a larger percentage of the novel objects.
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seen at that hand-centered location during training. The ordinate
corresponds to the percentage of novel objects that the cells
respond to while the abscissa corresponds to the number of
objects seen during training. We can see from these simulations
that the cells with hand-centered receptive fields started to
lose their shape selectivity as they got trained with more and
more objects in the same hand-centered location. Even when
we still found a few shape selective cells, the proportion of
highly selective cells was substantially reduced as the training is
increased. This means that most of the cells would respond to the
presence of an object in a region of space near the hand regardless
of the form of the object.

What learning mechanism leads to a reduction in the shape
selectivity of neurons as the network is trained on increasing
numbers of objects at the same hand-centered location? When
the first object is presented with the hand during training, a
small subset of output neurons will win the competition and
respond. Then Hebbian associative learning in the feedforward
connections within the network will increase the tuning of these
cells to respond to that particular object in that hand-centered
location. However, when another object is presented in the same
hand-centered location, the two objects may share some features
in common. The activation of these common features may then
cause the same subset of output neurons to respond again because
the relevant feedforward connections were strengthened during
training with the first object. The effect of this will be to associate
the features of the new object with the same output neurons. This
process may be repeated with a number of successive different
objects presented with the hand. All of the features of these
objects will become associated with the same output neurons.
Thus, the output neurons gradually lose their selectivity to the
form of the objects, and merely respond to any object presented
in that hand-centered location. This would produce receptive
fields that represent the locations in which the objects appear
with respect to the hand, without being particularly selective
about the differences between the features of these objects. Thus,
as the results show, as the network is trained with more and
more objects, the localized hand-centered receptive fields start
to lose their shape selectivity and respond to a variety of novel
objects as long as they appear within the hand-centered receptive
field. This learning process is somewhat similar to continuous
transformation (CT) learning (Stringer et al., 2006), which drives
the development of invariant neuronal responses by exploiting
the similarities between visual stimuli.

Consistent with our results, when we make a comparison at a
single-cell neuron level between high-level ventral regions that
are shape selective, such as the anterior inferotemporal cortex
(AIT) and high level dorsal regions that have been also reported
as shape selective (e.g., LIP), it has been found that AIT neurons
on average had higher shape selectivity than those of LIP (Lehky
and Sereno, 2007). AIT neurons also had significantly more units
that were highly selective to shape, whereas LIP had very few
neurons that were highly selective to shape.

4.3. Experiment 3: Presentation of the
Hand Against Natural Backgrounds
In the third experiment we investigated whether output neurons
developed localized hand-centered receptive fields when the

network was trained on images containing a hand presented
against a natural background scene as shown in Figure 5 and
then tested on the images shown in Figure 6.

Figures 12, 13 show the response profiles of five neurons in
the output layer of VisNet before training and after training,
respectively. Following the same conventions of the response
profiles in Experiment 1, each of the five columns of plots
contains the firing responses of a particular output cell, which is
labeled at the top of the column. The five rows show the responses
of the cells to each of the five hand-object configurations
presented during testing. Each plot shows the responses of
the given cell to the particular hand-object configuration over
six different retinal locations. Before training (Figure 12) none
of the cells responded exclusively to any of the hand-object
configurations; in fact they responded rarely. However, after
training, in Figure 13we can see that each of the five cells learned
to respond exclusively to one specific hand-object configuration,
and that these responses were invariant to different retinal
locations.

As in the other two experiments presented here, an
information analysis was carried out to investigate how these
hand-object configurations are represented across the whole
population of output cells. Figure 14 shows the single and
multiple cell information measures for the output (fourth) layer
neurons before and after training the network on images of the
hand presented against natural backgrounds. The information
analysis was performed by testing the network on the five
hand-object configurations shown in Figure 6, where each such
configuration was presented in six retinal locations.

Figure 14 (top) shows the single cell information measures
for the output layer of neurons. We can see here that, before
training none of the cells reached the maximum information.
However, after training 49 neurons reached the maximal single
cell information of 2.32 bits. This means that these 49 output
cells responded selectively to a single localized position of the
test object with respect to the hand, and that this response
was invariant to retinal location. In Figure 14 (bottom) it is
evident that before training the multiple cell information did
not reach the maximal value of 2.32 bits. However, after training
we can see that the multiple cell information asymptotes to the
maximal value, which means that all of the possible hand-object
configurations are successfully represented by separate cells in
the output layer. In fact, the five cell response profiles after
training shown in Figure 13 already confirmed that the network
was able to represent each of the five hand-object configurations.
The multiple cell analysis simply reaffirms that all five hand-
object configurations are represented invariantly across all retinal
locations by separate output neurons.

For this simulation we again traced the strengthened
connections from each one of the output cells through successive
layers to the input Gabor filters driving that cell. In Figure 15 we
can see the Gabor input filters with strengthened connections to
a trained output neuron that had learned to respond to one of
the hand-centered locations. On the left side of Figure 15 we can
see the Gabor filters that are most strongly driving the responses
of the particular output cell. This cell is representing a subset
of Gabor filtered inputs corresponding to the hand, as well as a
subset of inputs representing a localized region near the hand.
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FIGURE 12 | Firing rate responses from the third experiment before training. Each of the five columns shows the firing responses of a particular cell. Each row

shows the responses of the five cells to one of the five hand-object configurations (shown on the left) over all six different retinal locations shown along the abscissae.

It can be seen that each of the five cells initially responds randomly to each of the hand-object configurations over the different retinal locations.

The right side of Figure 15 shows the image of the hand with the
hand-centered receptive field of the neuron shown in blue.

5. DISCUSSION

In the simulations presented in this paper we have investigated
whether VisNet could still self-organize and develop neurons
with single, localized hand-centered receptive fields, as the
network is trained under more realistic visual training
conditions. In these experiments, we have systematically
improved the realism of the visual training stimuli in order
to test the robustness of the proposed learning mechanism
that relies on a combination of statistical decoupling between
hand-centered object locations and trace learning in order to
drive the development of hand-centered visual representations.

We have shown how some neurons learn to respond to
particular spatial configurations of the hand and an object
location. Such neurons represent the location of a visual object
in the reference frame of the hand. This learning process
exploits the statistical decoupling that will exist between different
hand-centered object locations across many different images.
Furthermore, these neuronal responses can become invariant
across different retinal locations by trace learning. This learning
rule binds together input patterns which tend to occur close

together in time. If the eyes typically saccade around a visual
scene faster than the hand moves, then trace learning will bind
together the same hand-object configuration across different
retinal locations.

In Section 4.1 we began to address how the network might
develop neurons with single, localized, hand-centered receptive
fields if it is trained on more realistic images containing multiple
objects presented simultaneously with the hand. Specifically,
we showed that presenting the objects in many different
pairs of hand-centered locations during training facilitated the
statistical decoupling between different object locations, which
in turn forced output neurons to develop localized hand-
centered receptive fields. This allowed us to train the network
with more than one object presented at a time with the
hand.

In Section 4.2 we investigated how the shape selectivity of
neurons was affected by the number of objects that the network
was trained on at a particular hand-centered location. We
proposed that whenever a new object is shown at a particular
hand-centered location, then there will likely be some overlap
of features with previous objects presented at that location. In
such a case, it is likely that some of the same output cells
will fire again to the presence of the new object. These cells
would get their synaptic weights from the features of the new
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FIGURE 13 | Firing rate responses from the third experiment after training. Response profiles of the same five neurons from Figure 12 after training on the

images shown in Figure 6. Conventions as in Figure 12. It can be seen that each of the five cells has learned to respond selectively to just one of the hand-object

configurations, and responds to that configuration over all six retinal positions shown along the abscissae. Moreover, each of the five hand-object configurations is

represented by one of the cells.

object strengthened. As the network is trained on more and
more objects at the same hand-centered location, this subset
of cells gradually learn to respond to most object features
at that location and hence lose their shape selectivity. Our
simulations suggest the possibility that hand-centered neurons
in area 5d and other parts of the posterior parietal cortex may
in fact display a range of different degrees of object shape
selectivity. The responses of some neurons may be still somewhat
selective to shape, while other neurons respond to almost all
objects placed within their hand-centered receptive field. Such a
heterogeneous population of neurons was in fact observed in our
simulations.

Lastly, in Section 4.3 we further increased the realism of
the simulations by training VisNet on images of the hand
presented against natural visual scenes. Unlike the previous
simulations where the hand-centered object locations were
carefully controlled, this time the objects could appear in
any location around the hand. Furthermore, there was also
more variability in the relative size of the objects and
their distance to the hand. Given the richness of the visual
training scenes in Experiment 3, the output cells showed more
spatial heterogeneity in their receptive fields. For example,
as shown in Figure 15, one of the particularly interesting

differences in this simulation result was that the localized
receptive fields near the hand had irregular and idiosyncratic
shapes, some of them covering larger areas surrounding the
hand.

Altogether, the results from the experiments presented here
showed how individual output cells could develop single,
localized, hand-centered visual receptive fields which are
invariant to retinal location. This occurred even when the
network was trained on more realistic visual scenes with
multiple objects presented simultaneously with the hand, or even
with the hand presented against complex natural backgrounds.
This is an important step to show how these hand-centered
representations could emerge from the natural statistics of our
visual experiences and under more realistic training conditions.
More importantly, we showed that this can be achieved using
an unsupervised learning mechanism where the synaptic weights
are updated in a biologically plausible manner using locally
available information such as the pre- and post-synaptic neuronal
activities.

5.1. Future Directions
In the simulations described in this paper, the hand was always
presented to the network in the same pose. In future work,
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FIGURE 14 | Information results from the third experiment before and

after training. The information analysis was carried out by testing the network

on the five hand-object configurations shown in Figure 6, where each such

configuration was presented in six retinal locations. The upper plot shows the

amount of single cell information carried by individual output cells in rank order.

After training, it was found that 49 cells reached the maximum amount of

single cell information of 2.32 bits. These cells responded perfectly to just one

of the five tested hand-object configurations, and responded to that

configuration across all six different retinal locations. In the untrained condition

no cells reached maximal information. The lower plot shows the multiple cell

information measures calculated across 25 cells with maximal single cell

information. It can be seen that, after training, the multiple cell information

asymptotes to the maximal value of 2.32 bits. This confirms that all five tested

hand-object configurations are represented by the output cells.

we plan to run simulations in which the hand is seen in
different postures. For example, the network might be trained
on sequences of images as the hand rotates to pick up a series of
objects. In this case, we hypothesize that neurons may develop a
diverse range of response properties. Some neurons may become
selectively tuned to the presence of a visual target with respect to
just one pose of the hand, while other neurons could develop pose
invariant responses through an invariance learning mechanism
such as trace learning (Földiák, 1991; Rolls, 1992) or continuous
transformation learning (Stringer et al., 2006).

FIGURE 15 | Tracing back the synaptic connections from a trained

output cell to the input Gabor filters in the third experiment after the

network was trained on images of the hand presented against natural

scenes. The left side shows the input Gabor filters that an output cell has

learned to respond to after training. In this image the Gabor filters with the

strongest connectivity through the layers to the output cell are plotted, where

each Gabor filter is weighted by the strengths of the feed-forward connections

from that filter through the successive layers to the output neuron. The right

side shows the image of the hand with the hand-centered receptive field of the

neuron shown in blue.

In this paper we were primarily interested in the visual
development of such hand-centered representations using
a self-organizing approach. Therefore, the input provided
to the network about the location of the hand and target
was presented visually. However, in the brain the positional
information of the location of the hand is integrated using
inputs from different modalities, including tactile and
proprioceptive signals. In this study we did not explore
the role of these different incoming signals. Nevertheless,
we hypothesize that they could in some cases facilitate the
statistical decoupling and formation of localized hand-centered
receptive fields. For example, tactile feedback from the touch
of an object will be generally congruent with visual signals
representing the hand-centered location of the visual object.
In future work, we plan to integrate signals from other
modalities such as tactile and proprioceptive information
to explore their role in the development of hand-centered
representations.

As we mentioned in the Introduction, a variety of regions
have been reported as encoding target positions in a hand-
centered frame of reference. However, there might be
functional differences between these different hand-centered
representations (De Vignemont and Iannetti, 2015). It is, for
example, unclear how the hand-centered encoding of reach
vectors reported in area 5d by Bremner and Andersen (2012)
may relate or differ from other hand-centered and peri-hand
representations reported in different regions (Graziano et al.,
1994, 1997; Graziano and Gross, 1998; Graziano, 1999). The
intention to reach to a desired location might be crucial for
the hand-centered cells in area 5d, while the mere presence of
an object near the hand could be sufficient to elicit a response
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from a hand-centered cell in PMv even if there is no intention
to interact with it. Some of the behavioral tasks and data analysis
from these different studies are not immediately comparable
and involve a limited set of experimental conditions. This
makes it difficult to disentangle not only the frame of reference
in which a particular cell encodes the location of a target,
but also how visual, proprioceptive, tactile and motor signals
are weighted and integrated during the task. Furthermore,
many of these cells may very well have interesting dynamical
properties in which the frame of reference could be varying
during different moments of the task (Bremner and Andersen,
2014).
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APPENDIX

A. VisNet Architecture and Parameters
A.1. VisNet
The VisNet model consists of a hierarchical series of four
feedforward layers of competitive networks. Within each
neuronal layer there is lateral competition between neurons
implemented by local graded inhibition. During training, there
is associative learning at the synaptic connections between
the successive layers of neurons (See Figure 1). In VisNet,
natural visual images are first passed through an array of
filters mimicking the response properties of V1 simple cells,
and subsequently these images are fed to the first layer of the
network architecture. The forward connections to individual
cells are derived from a topologically corresponding region of
the preceding layer, using a Gaussian distribution of connection
probabilities. These distributions are defined by a radius which
will contain approximately 67% of the connections from the
preceding layer. This leads to an increase in the receptive field size
of neurons through successive layers of the network hierarchy.
The network dimensions used for this study are shown in
Table A1. The architecture captures the hierarchical organization
of competitive neuronal layers that is common in both the dorsal
and ventral visual systems.

The simulations were conducted utilizing an updated version
of the VisNet model (Rolls and Milward, 2000; Rolls, 2008).
Before presenting the stimuli to VisNet’s input layer, they
are pre-processed by an initial layer representing V1 with a
dimension of 256 × 256 where each x, y-location contains a
bank of Gabor filter outputs g corresponding to a hypercolumn
generated by

g
(

x, y; λ, θ, ψ, σ, γ
)

= exp

(

−
x′2 + γ 2y′2

2σ 2

)

cos

(

2π
x′

λ
+ ψ

)

(A1)

x′ = x cos θ + y sin θ (A2)

y′ = −x sin θ + y cos θ (A3)

for all combinations of λ = 2, γ = 0.5, σ = 0.56λ, θ ∈

{0, π/4, π/2, 3π/4} and ψ ∈ {0, π,−π/2, π/2}.
The activation hi of each neuron i in the network is set equal

to a linear sum of the inputs yj from afferent neurons j weighted

TABLE A1 | Network dimensions showing the number of connections per

neuron and the radius in the preceding layer from which 67% are received.

Dimensions Number of connections Radius

Layer 4 32 × 32 100 12

Layer 3 32 × 32 100 9

Layer 2 32 × 32 100 12

Layer 1 64 × 64 100 12

Retina 256 × 256 × 16 – –

by the synaptic weights wij. That is,

hi =
∑

j

wijyj (A4)

where yj is the firing rate of the presynaptic neuron j in the
preceding layer, and wij is the strength of the synapse from
neuron j to neuron i.

Within each layer competition is graded rather than winner-
take-all, and is implemented in two stages. First, to implement
lateral inhibition the activation of neurons within a layer are
convolved with a spatial filter, I, where δ controls the contrast
and σ controls the width, and a and b index the distance away
from the center of the filter

Ia,b =











−δe
− a2 + b2

σ2 if a 6= 0 or b 6= 0,

1−
∑

a 6= 0
b 6= 0

Ia,b if a = 0 and b = 0.
(A5)

Typical lateral inhibition parameters are given in Table A2.
Next, contrast enhancement is applied by means of a sigmoid

activation function

y = f sigmoid(r) =
1

1+ e−2β(r − α)
(A6)

where r is the activation (or firing rate) after lateral inhibition, y
is the firing rate after contrast enhancement, and α and β are the
sigmoid threshold and slope respectively. The parameters α and
β are constant within each layer, although α is adjusted to control
the sparseness of the firing rates. The sparseness a of the firing
within a layer can be defined, by extending the binary notion of
the proportion of neurons that are firing, as

a =

(
N
∑

i = 1
yi/N)2

N
∑

i = 1
y2i /N

(A7)

where yi is the firing rate of the ith neuron in the set ofN neurons
(Rolls and Treves, 1990, 1998; Rolls, 2008). For the simplified case
of neurons with binarised firing rates= 0/1, the sparseness is the
proportion ∈ [0, 1] of neurons that are active. For example, to
set the sparseness to, say, 5%, the threshold is set to the value
of the 95th percentile point of the activations within the layer.
Typical parameters for the sigmoid activation function are shown
in Table A3.

For these simulations we used a trace learning rule (Földiák,
1991; Rolls, 1992) to adjust the strengths of the feed-forward

TABLE A2 | Lateral inhibition parameters.

Layer 1 2 3 4

Radius, σ 1.38 2.7 4.0 6.0

Contrast, δ 1.5 1.5 1.6 1.4
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TABLE A3 | The sigmoid parameters used to control the global inhibition

within each layer of the model.

Layer 1 2 3 4

Percentile 99 98 88 95

Slope β 190 40 75 26

synaptic connections between the layers during training. The
trace rule incorporates a trace yτ of recent neuronal activity into
the postsynaptic term. The trace term reflects the recent activity
of the postsynaptic cell. The effect of this is to encourage the
postsynaptic cell to learn to respond to input patterns that tend
to occur close together in time.

The equation of the original trace learning rule as used by
Wallis and Rolls (1997) is the following

1wj = αyτ xτj (A8)

where the trace yτ is updated according to

yτ = (1− η)yτ + ηyτ−1 (A9)

and we have the following definitions

xj: jth input to the
neuron.

y: Output from the
neuron.

yτ : Trace value of the
output of the neuron
at time step τ .

α: Learning rate.
Annealed between
unity and zero.

wj: Synaptic weight
between jth input
and the neuron.

η: Trace value. The
optimal value varies
with presentation
sequence length.

The parameter η may be set in the interval [0, 1]. For our
simulations the trace learning η is set to 0.8. If η = 0 then the
Equation (A8) becomes the standard Hebb rule

1wj = αyτ xτj . (A10)

However, the version of the trace rule used in this paper only
includes the trace of activity from the immediately preceding
timestep, as used in other studies (Rolls and Milward, 2000;
Rolls and Stringer, 2001) for improving the performance of the
standard trace rule and enhancing the effect of the invariance
representation. Thus, the rule takes now the following form

1wj = αyτ−1xτj . (A11)

Neuronal mechanisms that might support trace learning in the
brain have been previously discussed (Rolls, 1992; Wallis and
Rolls, 1997). To restrict and limit the growth of each neuron’s
synaptic weight vector, wi for the ith neuron, its length is
normalized at the end of each timestep during training as is
usual in competitive learning (Hertz et al., 1991). Normalization
is required to ensure that the same set of neurons do not always
win the competition. Neurophysiological evidence for synaptic
weight normalization has been presented (Royer and Paré, 2003).

A.2. Information Theory Measures
Single and multiple cell information theoretic measures are used
to assess the network’s performance. Both measures help to
determine whether individual cells in the output layer are able to
respond to a specific target location in a hand-centered frame of
reference over a number of different retinal locations. In previous
VisNet studies, the single cell information measure has been
applied to individual cells in the last layer of the network and
measures how much information is available from the response
of a single cell about which stimulus was shown. In this current
study, a stimulus is defined as one of the different hand-object
configurations. If an output neuron responds to just one of the
spatial configurations, and the cell responds to this configuration
across all tested retinal locations, then the cell will convey
maximal single cell information. The amount of information
carried by a single cell about a stimulus is computed using the
following formula

I(s,R) =
∑

r∈R

P(r|s) log2
P(r|s)

P(r)
(A12)

where the stimulus-specific information I(s,R) is the amount of
information the set of responses R of a single cell has about a
specific stimulus (i.e., target location with respect to the hand)
s, while the set of responses R corresponds to the firing rate y
of a cell to each of the stimuli (i.e., hand-object configurations)
presented in all tested retinal locations. Further details of how the
single cell information is calculated are provided in the literature
(Rolls et al., 1997a; Rolls and Milward, 2000; Rolls, 2008).

The maximum single cell information measure is

Max. single cell info. = log2(Number of stimuli). (A13)

For example, when we present 5 stimuli during testing, (i.e.,
spatial configurations of the hand and the test object), the
maximum single cell information measure is 2.32 bits. When we
present 6 target stimuli, the maximum single cell information
measure is 2.58 bits. The cell reaches the maximal information
when it responds selectively to just one of the hand-object spatial
configurations, and responds to that spatial configuration across
all the tested retinal positions.

On the other hand, the multiple-cell information computes
the average amount of information about which stimulus was
presented obtained from the responses of all the output cells.
This procedure is used to verify whether, across the population
of cells, there is information about all of testing stimuli (i.e.,
hand-object configurations) shown. Procedures for calculating
the multiple cell information measure have been described in
detail by Rolls et al. (1997b), Rolls and Milward (2000). In brief,
from a single presentation of a stimulus, we calculate the average
amount of information obtained from the responses of all the
cells regarding which stimulus is shown. This is achieved through
a decoding procedure that estimates which stimulus s′ gives rise
to the particular firing rate response vector on each trial. A
probability table of the real stimuli s and the decoded stimuli
s′ is then constructed. From this probability table, the mutual

Frontiers in Computational Neuroscience | www.frontiersin.org December 2015 | Volume 9 | Article 147 | 35

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Galeazzi et al. Ecological Modeling of Hand-Centered Representations

information is calculated as

I(S, S′) =
∑

s,s′

P(s, s′) log2
P(s, s′)

P(s)P(s′)
. (A14)

Multiple cell information values are calculated for the subset
of cells which, according to the single cell analysis, have
the most information about which stimulus (i.e., hand-
object configuration) is shown. In particular, the multiple cell
information is calculated from five cells for each stimulus that

had the most single cell information about that stimulus. For
example, in simulations with six target locations this results in
a population of 30 cells. Previous research (Stringer and Rolls,
2000) found this to be a sufficiently large subset to demonstrate
that shift invariant representations of each stimulus presented
during testing were formed, and that each stimulus could be
uniquely identified.

A.3. Data Sharing
The VisNet simulator can be downloaded from https://github.
com/bedeho/VisBack.
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Neurons in successive stages of the primate ventral visual pathway encode the spatial

structure of visual objects. In this paper, we investigate through computer simulation how

these cell firing properties may develop through unsupervised visually-guided learning.

Individual neurons in the model are shown to exploit statistical regularity and temporal

continuity of the visual inputs during training to learn firing properties that are similar to

neurons in V4 and TEO. Neurons in V4 encode the conformation of boundary contour

elements at a particular position within an object regardless of the location of the object

on the retina, while neurons in TEO integrate information from multiple boundary contour

elements. This representation goes beyond mere object recognition, in which neurons

simply respond to the presence of a whole object, but provides an essential foundation

from which the brain is subsequently able to recognize the whole object.

Keywords: ventral visual pathway, neural network, trace learning, V4, TEO, shape representation, hierarchical

networks

1. Introduction

1.1. Hierarchical Representations in the Primate Ventral Visual Pathway
Over successive stages of processing, the primate ventral visual pathway develops neurons that
respond selectively to objects of increasingly complex visual form (Kobatake and Tanaka, 1994),
going from simple orientated line segments in area V1 (Hubel andWiesel, 1962) to whole objects or
faces in the anterior inferotemporal cortex (TE) (Perrett et al., 1982; Tsunoda et al., 2001; Tsao et al.,
2003). In addition, in higher layers of the ventral pathway, the responses of neurons to objects and
faces show invariance to retinal location, size, and orientation (Tanaka et al., 1991; Rolls et al., 1992;
Perrett and Oram, 1993; Rolls, 2000; Rolls and Deco, 2002). These later stages of processing carry
out object recognition by integrating information frommore elementary visual features represented
in earlier layers (Brincat and Connor, 2004). Thus, in order to understand visual object recognition
in the primate brain, we need also to understand the encoding of more elementary features in
the early and middle stages of the ventral visual pathway. In particular, many theories suppose
that object recognition operates through the computation of intermediate representations which
reflect the spatial relations between the parts of objects (Giersch, 2001; Pasupathy and Connor,
2001; Brincat and Connor, 2004).

Experimental studies have shown that neurons in successive stages of the primate ventral
visual pathway encode the spatial structure of visual objects and their parts. For example, single

37
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unit recording studies carried out by Pasupathy and Connor
(2001) have shown that, within an intermediate stage of the
ventral visual pathway, area V4, there are neurons that respond
selectively to the shape of a local boundary element at a particular
position in the frame of reference of the object. Some of
these V4 neurons also maintain their response properties as an
object shifts across different locations on the retina (Pasupathy
and Connor, 2002). Further experimental studies have shown
that neurons in the later stages of the ventral visual pathway,
TEO and posterior TE, integrate information from multiple
boundary contour elements (Brincat and Connor, 2004). This
representation of the detailed spatial form of the separate parts
of each object may provide a necessary foundation for the
subsequent recognition of whole objects. That is, object selective
cells at the end of the ventral visual pathwaymay learn to respond
to unique distributed representations of object shape in earlier
areas (Booth and Rolls, 1998).

1.2. Computer Modeling Study
A number of modeling studies have tried to reproduce
the observed shape selective and translation invariant firing
properties of neurons in area V4 (Cadieu et al., 2007; Rodríguez-
Sánchez and Tsotsos, 2012). However, these past models have
not utilized biologically plausible local learning rules, which
use pre- and post-synaptic cell quantities to drive modification
of the synaptic connections during visually-guided learning.
Therefore, it still remains a challenge to understand exactly how
V4 neurons develop their shape selective response properties
through learning. The purpose of this paper is to provide
a biologically plausible theory of this learning process. More
generally, we investigate through computer simulation how the
cell firing properties reported in visual areas V4, TEO, and
posterior TE may develop through visually-guided learning, and
thus how the primate ventral visual pathway learns to represent
the spatial structure of objects.

The simulation studies presented below are conducted with an
established neural network model of the primate ventral visual

FIGURE 1 | Left: Stylized image of the four layer VisNet architecture.

Right: Convergence in the visual system. The diagonal lines show the

convergence of feed-forward connections through successive layers of

the ventral visual system leading to an increase in receptive field size

from 1.3◦ in V1 to 50◦ in TE (Figures excerpted from Wallis and Rolls,

1997).

pathway, VisNet (Wallis and Rolls, 1997), shown in Figure 1.
The standard network architecture consists of a hierarchy of
four competitive neural layers (Rumelhart and Zipser, 1985)
corresponding to successive stages of the ventral visual pathway.
The VisNet architecture is feed-forward with lateral interactions
within layers. Many engineering approaches to efficiently solve
similar problems extensively rely their architectures on top-
down information flows, mainly for their supervised learning.
However, our aim is to pin down the simplest form of core-
mechanisms in intermediate vision, that is sufficient to explain
a specific brain function. In fact, in other feature hierarchical
neural network modeling studies, such top-down information
transfer is often excluded (Olshausen et al., 1993; Riesenhuber
and Poggio, 1999; Serre et al., 2005, 2007; Wallis, 2013).

The researchers involved in these last publications
acknowledge the extensive presence of such back projections
in the visual cortex; however, they also think the exact roles
of these projections still remain a matter of debate. For
example, it has been proposed that the role of these feedback
pathways is to relay the interpretations of higher cortical
areas to lower cortical areas in order to verify the high-level
interpretation of a scene (Mumford, 1992) or to refine the
tuning characteristics of lower-level cortical cells based upon
the interpretations made in higher cortical areas (Tsotsos, 1993).
On the other hand, numerous physiological studies have also
reported that only short time spans are required for various
selective responses to appear in monkey IT cells, which imply
that feedback processes may not be critical for coarse, rapid
recognition (Perrett et al., 1992; Hung et al., 2005; vanRullen,
2008).

We also stand on the similar point of view, and learning
mechanisms implemented in the current model are a direct
extension of previous papers in the field (Rumelhart and
Zipser, 1985). In our paper, we have applied these established
learning mechanisms to the important new problem of how the
primate ventral visual system learns to represent the shapes of
objects.
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1.3. Hypothesis
In this paper, we consider how biologically plausible neuronal
and synaptic learning mechanisms may be applied to the
challenge of explaining (i) how neurons in V4 learn to respond
selectively to the shape of localized boundary contour elements
in the frame of reference of the object, (ii) how neurons in
areas TEO and posterior TE learn to respond to localized
combinations of boundary contour elements, and (iii) how these
neurons learn to respond with translation invariance as the object
is shifted through different retinal locations. In particular, we
hypothesize that a biologically plausible solutionmay be provided
by combining the statistical decoupling (Stringer et al., 2007;
Stringer and Rolls, 2008) that will occur between different forms
of boundary contour element over a large population of different
object shapes, with the use of a temporal trace learning rule to
modify synaptic weights as objects shift across different retinal
locations (Wallis and Rolls, 1997; Rolls, 2000).

1.3.1. Neurons Learn to Respond to Individual

Boundary Contour Elements by Exploiting Statistical

Decoupling
In previous work, we have investigated how VisNet may learn
transform invariant representations of individual objects if the
network is always presented with multiple objects simultaneously
during training (Stringer et al., 2007; Stringer and Rolls, 2008).
We have found that if VisNet is trained on different combinations

of objects on different occasions and as long as there are enough
objects in the total pool of objects, this will result in statistical
decoupling between any two objects. This statistical decoupling
forces neurons in the higher competitive layers of VisNet to learn
to respond to the individual objects, rather than the combinations
of objects on which the network is actually trained.

This is because a competitive neural network has a capacity
limit in terms of the number of object categories that can be
represented in a non-overlapping manner in the output layer.
Figure 2A provides some insight into the learning mechanisms
driving the formation of neurons encoding individual object.

Consider the highly simplified situation where, a winner-take-all
competitive network with 64 × 64 = 4096 output neurons is
presented with n different objects, which are presented in pairs
to VisNet during training. With winner-take-all competition,
the network is able to develop 4096 non-overlapping output
representations. Figure 2A shows how the number of individual
objects, y1 = n, and the number of possible objects comprised
of pairs of objects y2 =n C2 = n(n − 1)/2, rise quadratically
with increasing n. Because of this, y2 reaches the capacity limit of
the network much more quickly than y1. Therefore, for n > 91,
individual output neurons are forced to switch from representing
the objects to representing the individual objects. Although, of
course, the output layer as a whole will still provide unique
representations of the pairs of objects, themselves, but in a
distributed, overlapping manner.

We now propose that a similar learning mechanism may
operate to enable the network to learn to represent the
individual boundary contour elements within objects. For
example, consider the simplified case shown in Figure 3A.
This figure shows a set of four sided shapes, where each side
has one of three possible conformations: concave, straight, or
convex. Therefore, there are 4 sides × 3 side types = 12
different boundary contour elements (each defined by a unique
combination of position and shape), which may be used to
construct a total of 34 = 81 different whole objects. We
demonstrate that, when VisNet is trained on such a population of
different object shapes constructed from different combinations
of boundary contour elements, there is statistical decoupling
between any two boundary contour elements.

Figure 2B provides an illustration of how the capacity limit
forces output neurons to learn to represent individual boundary
elements. Figure 2B (left) shows two different object shapes that
share a boundary element at the bottom, which are presented to
the network during training. Each of the two objects stimulates a
subset of output neurons, and those neurons learn to represent
each shape through associative learning in the feed-forward
synaptic connections. The situation in the figure supposes that

FIGURE 2 | (A) The capacity limit of a competitive neural network forces

individual output neurons to switch from representing object shapes to

representing the boundary elements as the number of object shapes on

which the network is trained increases. (B) Illustration of how the network

model develops neurons that have learned to respond to individual boundary

elements of 2D object shapes.
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FIGURE 3 | (A) Form of visual objects used to train and test VisNet

for Study 1. Each object has a fixed number of sides (n), each of

which has a fixed number of possible boundary conformations (p).

(B) Form of visual objects used to train and test VisNet in Study 2.

These visual stimuli are similar to those used in the original

neurophysiological experiments of Pasupathy and Connor (2001). (C)

Examples of some of the realistic visual objects used for training

VisNet in Study 3.

the subset of the neurons activated partly overlap. In this
situation, the boundary element at the bottom becomes especially
strongly associated with the subset of output neurons at the
intersection of the two object shape representations. Figure 2B
(right) shows that during testing this intersecting subset of output
neurons will respond whenever the network is presented with
an object shape containing the given boundary element. In this
manner, without any top-down information transfer, the network
should be able to develop representations of localized boundary
elements. This kind of the distributed coding of 2D object shape,
utilizing an alphabet of localized boundary elements, may be used
to represent the shape of any object.

1.3.2. Neurons Develop Translation Invariant

Responses Through Trace Learning (Temporal

Association)
Another key property of the neurons reported by Pasupathy and
Connor (2001) in area V4, and neurons reported by Brincat
and Connor (2004) in areas TEO and posterior TE, is that they
respond with translation invariance as an object shifts across
different locations over the receptive field. The question is how
these neurons might learn to respond in such a translation
invariant manner?

One possible explanation is that the brain uses temporal
associative learning to develop such transformation invariant
representations. The theory assumes that, every now and
then, a primate will make a series of fixations at different
points on the same visual object before moving onto

another object; much experimental work has studied the
statistics of saccades and fixations across natural visual scenes
(Findlay and Gilchrist, 2003). Of particular relevance is how the
eyes saccade around natural visual scenes containing multiple
objects. Seminal psychophysical studies of how human subjects
move their gaze around pictures of natural scenes were carried
out by Yarbus (1967). It was indeed evident from this work that
there was a tendency for observers to shift their fixation to a
number of different points on a salient object, such as a person,
before moving onto the next object.

Therefore, we assume that eye movements would be
sufficiently small so that the same object is always projected
within the simulated receptive field when learning it. We believe
this constraint is reasonable to simulate recent physiological
findings. For example, Li and DiCarlo (2008) conducted a study
where monkeys are trained to track an object on a screen where
a object with identity A is originally placed on the one of two
possible retinal positions (+3◦ or −3◦) and later shifted to the
center (0◦). In the experimental condition, the identity of the
object is swapped from A to B when it is shifted to the center, and
the eyes saccade to it. As a results, individual neurons in primate
IT that are originally translation-invariantly selective to identity
A start to respond also to object with identity B only at the specific
retinal location. This finding does not exclude the possibility of
the temporal association learning which may occur at larger eye
movement; however, it provided a reasonable evidence for the
translation invariance learning mechanism within IT (Isik et al.,
2012).
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Accordingly, our proposed solution is temporal trace learning
(Foldiak, 1991; Wallis and Rolls, 1997; Rolls and Milward, 2000).
An example of such a learning rule is given in Section 2. If the
eyes shift about a visual scene more rapidly than the objects
change within the scene, then the images of an object in different
locations on the retina will tend to be clustered together in time.
In this case, a trace learning rule will encourage neurons in higher
layers to learn to respond with translation invariance to specific
objects or features across different retinal locations.

This rule is biologically plausible in terms of the way it utilizes
only locally available biological quantities, that is, the present
and recent activities of the pre- and post-synaptic neurons,
respectively. Also, it has been shown that this type of temporal
associative learning arises naturally within biophysically realistic
spiking neural networks when longer time constants for synaptic
conductance are introduced (Evans and Stringer, 2012).

Our past research has shown that this trace learning rule
may be combined with the mechanism of statistical decoupling
described above to produce translation invariant representations
of statistically independent visual objects (Stringer et al., 2007;
Stringer and Rolls, 2008). We hypothesize that the same trace
learning rule could encourage neurons representing boundary
contour elements to respond with translation invariance across
different retinal locations.

1.4. Overview of Simulation Studies Carried Out
in this Paper
Study 1 provides a proof-of-principle analysis. VisNet was trained
on artificial visual objects similar to those shown in Figure 3A.
These carefully constructed objects allowed us to explore how
the statistical decoupling between different boundary contour
elements influences the neuronal firing properties that develop
during learning.We also showed how the capacity of the network
to represent many different boundary contour conformations
can be increased by introducing a Self-Organizing Map (SOM)
architecture within each layer. Finally, we used the same artificial
visual stimuli to confirm that trace learning can produce neurons
that respond to individual boundary contour elements with
translation invariance across different retinal locations.

In Study 2, the sets of visual stimuli presented to VisNet
during training and testing were similar to those used in the
original physiological experiments of Pasupathy and Connor
(2001). Examples are shown in Figure 3B. This allowed for a
direct comparison between the performance of the VisNet model
and real neurons recorded in area V4 of the primate ventral visual
pathway.

In Study 3, we trained VisNet on a large number of realistic
visual objects with different boundary shapes. A sample of these
objects is shown in Figure 3C. This generated amore realistic and
demanding test of the underlying theory.

2. Materials and Methods

2.1. Hierarchical Neural Network Architecture of
the Model
VisNet is a hierarchical neural network model of the primate
ventral visual pathway, which was originally developed by

Wallis and Rolls (1997). The standard network architecture is
shown in Figure 1. It is based on the following: (i) a series
of hierarchical competitive layers with local graded lateral
inhibition. (ii) Convergent connections to each neuron from a
topologically corresponding region of the preceding layer. (iii)
Synaptic plasticity based on a biologically-plausible local learning
rule such as the Hebb rule or trace rule, which are explained in
Section 2.4.

In past work, the hierarchical series of four neuronal layers
of VisNet have been related to the following successive stages
of processing in the ventral visual pathway: V2, V4, the
posterior inferior temporal cortex, and the anterior inferior
temporal cortex. In this paper, we model for the first time
neuronal response properties observed within a series of
intermediate layers. Due to the relatively course-grained four-
layer architecture of VisNet, we do not wish to emphasize
a specific correspondence between the layers of VisNet and
particular stages of the ventral pathway. However, as our
main focus was on the neuronal properties reported in V4
and TEO, we mostly focused on the first three layers of
VisNet.

In VisNet, the forward connections to individual cells are
derived from a topologically corresponding region of the
preceding layer, using a Gaussian distribution of connection
probabilities. These distributions are defined by a radius which
contained approximately 67% of the connections from the
preceding layer. The values employed in the current studies
are given in Table 1, which have been proposed to be realistic
in Wallis and Rolls (1997). However, to deal with more
complex images, the size of the layer was extended to 128 ×

128 neurons from 32 × 32 neurons. The gradual increase
in the receptive field of cells in successive layers reflects the
known physiology of the primate ventral visual pathway (Pettet
and Gilbert, 1992; Pasupathy, 2006; Freeman and Simoncelli,
2011).

2.2. Pre-processing of the Visual Input by Gabor
Filters
Before the visual images are presented to VisNet’s input layer 1,
they are pre-processed by a set of input filters that accord with the
general tuning profiles of simple cells in V1. The filters provide a
unique pattern of filter outputs for each transform of each visual
object, which is passed through to the first layer of VisNet. In
this paper, the input filters were matching the firing properties
of V1 simple cells, which respond to local oriented bars and
edges within the visual field (Jones and Palmer, 1987; Cumming

TABLE 1 | VisNet parameters.

Layer Dimensions Number of connections Radius

Layer 4 128× 128 100 12

Layer 3 128× 128 100 9

Layer 2 128× 128 100 6

Layer 1 128× 128 201 6

Retina 256× 256× 16
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and Parker, 1999). The input filters used are computed by the
following equations (Daugman, 1985):

g(x, y, λ, σ, θ, ψ, γ ) = exp

(

−
x′2 + γ 2y′2

2σ 2

)

cos

(

2π
x′

λ
+ ψ

)

(1)
with the following definitions:

x′ = x cos θ + y sin θ
y′ = −x sin θ + y cos θ

(2)

where x and y specify the position of a light impulse in the
visual field (Petkov and Kruizinga, 1997). The parameter λ is
the wavelength, σ is the standard deviation which is a function
of λ and spatial bandwidth b, θ defines the orientation of the
feature, ψ defines the phase offset, and γ sets the aspect ratio.
In each experiment, an array of Gabor filters is generated at
each of 256 × 256 retinal locations with the parameters given in
Table 2.

The outputs of the Gabor filters are passed to the neurons
in layer 1 of VisNet according to the synaptic connectivity
given in Table 1. Each layer 1 neuron received connections
from 201 randomly chosen Gabor filters localized within a
topologically corresponding region of the retina. In the original
VisNet model (Wallis and Rolls, 1997), the input filters were
tuned to the four different spatial wavelengths 2, 4, 8, and
16 pixels. The shortest wavelength filters provided the highest
resolution information about the image. The neurons in the
first layer of VisNet were thus assigned most of their afferent
inputs from the shortest wavelength filters. In the current
simulations reported here, the model used inputs from only the
shortest wavelength filters, which was found to be sufficient to
represent the simple visual objects. For consistency with past
VisNet simulations, each neuron in the first layer of VisNet
received afferent connections from 201 of the short wavelength
filters.

2.3. Calculation of Cell Activations within the
Network
Within each of the neural layers 1–4 of the network, the activation
hi of each neuron i was set equal to a linear sum of the inputs yj
from afferent neurons j in the preceding layer weighted by the
synaptic weights wij. That is,

hi =
∑

j

wijyj (3)

TABLE 2 | Parameters for Gabor input filters.

Parameter (Symbol) Values

Wavelength(λ) 2

Spatial bandwidth (b) 1.5 octaves

Orientation(θ ) 0, π/4, π/2,3π/4

Phase shift (ψ ) 0: white on black bar

π : black on white bar

Aspect ratio (γ ) 0.5

where yj is the firing rate of neuron j, andwij is the strength of the
synapse from neuron j to neuron i.

2.4. Lateral Interaction between Neurons Within
each Layer
In the simulations reported below, the lateral interaction between
the neurons within each neuronal layer was implemented in one
of two different ways. The simplest approach was to implement
a competitive network architecture (Rolls and Treves, 1998),
in which neurons inhibited all of their neighbors. However, in
some simulations we also implemented a more complex SOM
architecture (Kohonen, 2000), which included both short range
excitation and longer range inhibition between neurons (i.e.,
a “Mexican hat” connectivity). A SOM architecture leads to
a map-like arrangement of neuronal response characteristics
across a layer after training, with nearby cells responding to
similar inputs. In particular, we investigated the hypothesis
that the SOM architecture could increase the capacity of the
network by enabling neurons in the higher layers to discriminate
between more boundary contour shapes. Parameters shown
in Tables 3, 4 were selected based on those that previously
optimized performance (Rolls andMilward, 2000; Tromans et al.,
2011).

2.4.1. Competitive Network Architecture
The original VisNet model implemented a competitive network
within each layer. Within each layer, competition was graded
rather than winner-take-all. To implement lateral competition,
the activations hi of neurons within a layer were convolved with a
spatial filter, Iab, where δ controlled the contrast and σ controlled
the width, and a and b indexed the distance away from the center
of the filter:

Ia,b =











−δ exp
(

− a2 + b2

σ 2

)

a 6= 0 or b 6= 0

1−
∑

a 6= 0,b 6= 0

Ia,b a = 0 and b = 0 (4)

The lateral inhibition parameters for the competitive network
architecture are given in Table 3.

TABLE 3 | Lateral inhibition parameters for the competitive network

architecture.

Layer 1 2 3 4

Radius (σ ) 1.38 2.7 4.0 6.0

Contrast (δ) 1.5 1.5 1.6 1.4

TABLE 4 | SOM parameters.

Layer 1 2 3 4

Excitatory radius (σE ) 1.4 1.1 0.8 1.2

Excitatory contrast (δE ) 5.35 33.15 117.57 120.12

Inhibitory radius (σI ) 2.76 5.4 8.0 12.0

Inhibitory contrast (δI ) 1.5 1.5 1.6 1.4

Frontiers in Computational Neuroscience | www.frontiersin.org August 2015 | Volume 9 | Article 100 | 42

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Eguchi et al. Neural representation of object shape

2.4.2. Self-organizing Map
In this paper, we have also run simulations with a SOM (von
der Malsburg, 1973; Kohonen, 1982) implemented within each
layer. In the case of the SOM architecture, short-range excitation
and long-range inhibition are combined to form a Mexican-hat
spatial profile and is constructed as a difference of two Gaussians
as follows:

Ia,b = −δI exp

(

−
a2 + b2

σ 2
I

)

+ δE exp

(

−
a2 + b2

σ 2
E

)

(5)

To implement the SOM, the activations hi of neurons within a
layer were convolved with a spatial filter, Iab, where δI controlled
the inhibitory contrast and δE controlled the excitatory contrast.
The width of the inhibitory radius was controlled by σI and
the width of the excitatory radius by σE. The parameters a and
b indexed the distance away from the center of the filter. The
lateral inhibition and excitation parameters used in the SOM
architecture are given in Table 4.

2.5. Contrast Enhancement of Neuronal Firing
Rates within Each Layer
Next, the contrast between the activities of neurons with each
layer was enhanced by passing the activations of the neurons
through a sigmoid transfer function (Rolls and Treves, 1998) as
follows:

y = f sigmoid(r) =
1

1+ exp
(

−2β(r − α)
) (6)

where r is the activation after applying the lateral competition or
SOM filter, y is the firing rate after contrast enhancement, and
α and β are the sigmoid threshold and slope, respectively. The
parameters α and β are constant within each layer, although α is
adjusted within each layer of neurons to control the sparseness
of the firing rates. For example, to set the sparseness to 4%,
the threshold is set to the value of the 96th percentile point of
the activations within the layer. The parameters for the sigmoid
activation function are shown in Table 5. These are the standard
parameter values that have been used in past VisNet studies
(Stringer et al., 2006, 2007; Stringer and Rolls, 2008).

2.6. Training the Network: Visually-guided
Learning of Synaptic Weights
The outputs of the Gabor filters were passed to layer 1 of
VisNet. Activity was then propagated sequentially through
layers 2 to 4 using the same mechanisms at each layer.
During training with visual objects, the strengths of the feed-
forward synaptic connections between successive neuronal
layers are modified by local learning rules, where the change

TABLE 5 | Parameters for Sigmoid activation function.

Layer 1 2 3 4

Percentile 99.2 98 88 91

Slope (β) 190 40 75 26

in the strength of a synapse depends on the current or
recent activities of the pre- and post-synaptic neurons. Two
such learning rules were implemented with different learning
properties.

2.6.1. The Hebb Learning Rule
One simple well-known learning rule is the Hebb rule:

δwij = krτi r
τ
j (7)

where δwij is the change of synaptic weight wij from pre-synaptic
neuron j to post-synaptic neuron i, rτi is the firing rate of post-
synaptic neuron i at timestep τ , rτj is the firing rate of pre-

synaptic neuron j at timestep τ , and k is the learning rate
constant.

2.6.2. The Trace Learning Rule
An alternative learning rule that, in addition to producing
neurons that respond to individual contour elements, can
also drive the development of translation invariant neuronal
responses is the trace learning rule (Foldiak, 1991; Wallis and
Rolls, 1997), which incorporates a memory trace of recent
neuronal activity:

δwij = krτ−1
i rτj (8)

where rτi is the trace value of the firing rate of post-synaptic
neuron i at timestep τ . The trace term is updated at each timestep
according to

rτi = (1− η)rτi + ηr
τ−1
i (9)

where η may be set anywhere in the interval [0, 1], and for
the simulations described below, η was set to 0.8. The effect of
this learning rule is to encourage neurons to learn to respond
to visual input patterns that tend to occur close together in
time. If the eyes shift about a visual scene containing a static
object, then the trace learning rule will tend to bind together
successive images corresponding to that object in different retinal
locations.

In our simulations, natural eye movements are simulated
implicitly during training by shifting each visual object in turn
across a number of retinal locations. That is, to simulate natural
rapid eye movements during visual inspection of each object, the
visual object itself is shifted across the retina. After an object
shifted through all of the retinal locations, the next object was
presented across the same locations.

To prevent the same few neurons always winning the
competition, the synaptic weight vector wi of each neuron i is
renormalized to unit length after each learning update for each
training pattern by setting

wi =
wi

||wi||
(10)

where ||wi|| is the length of the vector wi given by

||wi|| =

√

∑

j

w2
ij (11)
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2.7. Testing the Network
After the synaptic weights were established by training the
network on a set of visual objects, the learned response properties
of neurons through successive layers were tested. This was
done by presenting visual objects constructed from a pool of
different boundary contour elements, with the objects being
similar or different to those used during training. A number of
tests are applied to the recorded neuronal responses, including
information theory, which are described below.We also analyzed
the learned response properties of an output cell by plotting
the subset of input Gabor filters with the strongest feed-forward
connections to that output cell after training.

2.8. Information Analysis
To quantify the performance in transformation invariance
learning with VisNet, the techniques of Shannon’s information
theory have previously been used (Rolls and Treves, 1998). In
particular, a single cell information measure was applied to
analyse the responses of individual cells. In order to keep the
notation consistent with past publications (Rolls et al., 1997; Rolls
and Milward, 2000), we have here denoted the neuronal firing
rates by r.

To be informative in the context of this study, the responses of
a given neuron (r) should be specific to a particular contour that
appears at a particular side (s), and independent of the remaining
global form of the object or retinal location. The amount of
stimulus-specific information that a certain cell transmits is
calculated from the following formula with details given by Rolls
and Milward (2000).

I(s, ER) =
∑

r∈ER

P(r|s) log2
P(r|s)

P(r)
(12)

Here s is a particular stimulus (i.e., a specific contour, at a specific
side) and ER is the set of responses of the cell to the set of objects
that contain the contour at that particular side.

In past research with VisNet, this single-cell information
analysis was used when only one object was presented to the
network at a time. Therefore, the maximum information that an
ideally developed cell could carry was log2(number of stimuli).
However, in this study, the complete object shape (composed of n
contours) is presented. Therefore, this is conceptually equivalent
to always presenting n stimuli simultaneously, thus altering
the maximum attainable value of the single-cell information to
log2(p) bits of information.

3. Results

3.1. Study 1: VisNet Simulations with Artificial
Visual Objects Constructed from Multiple
Boundary Elements
In Study 1, VisNet was trained on artificial visual objects similar
to those shown in Figure 3A. For each simulation, these visual
objects had a fixed number of sides (n), and the curvature of
each side was selected from a fixed number of different boundary
conformations or elements (p) and were projected on 256 × 256

pixels of simulated retina. Therefore, for each simulation there
were pn complete objects constructed from all combinations of
the n× p contour elements. These artificially constructed objects
allowed us to investigate how the learned neuronal response
properties are affected by n and p. We then investigated the
development of translation invariance as objects are shifted by
10 pixels at a time over a grid of four different locations on the
retina by utilizing the trace learning mechanism discussed above.

3.1.1. Development of Neurons that Respond to

Localized Boundary Conformation
We began by demonstrating how neurons in the output layer
learn to respond to individual boundary contour elements when
VisNet, implemented with competitive network, is trained on
whole objects comprised of a number of such boundary elements.
During training, the feed-forward synaptic connections were
modified using the Hebb learning rule.

VisNet was first trained on a set of stimuli with n = 3
sides: top, left, and right. Each side has two possible boundary
conformations: concave and convex. This gave a total of 23 =

8 objects. As conceptually the third layer of VisNet may
represent TEO, the VisNet architecture we used consisted of three
competitive network layers in this simulation.

Figure 4A shows the learned responses y, given by Equation
(6), of a typical output cell in layer 3 of VisNet, which developed
selectivity to a concave contour situated at the top of each
object after training; the criteria of the selectivity is whether
the cell responds with a firing rate, r, approximately equal to 1
(1.00000 ≥ y ≥ 0.99995) across a set of whole objects containing

a concave contour on the top while the cell responds with a firing
rate approximately equal to 0 (0.00005 > y ≥ 0.00000) across a
set of whole objects not containing a concave contour on the top.

Figure 4A (top) shows a histogram of the average firing rate
responses of the neuron to six (overlapping) subsets of objects,
where each subset contains all those objects that incorporate a
particular one of the six contour elements. Figure 4A (bottom)
shows the actual subsets of objects that correspond to the six
data points shown in the histogram. The results confirm that the
neuron responds selectively.

Figure 4B shows the input Gabor filters that the same output
cell in layer 3 has learned to respond to after training. In this case,
the neuron receives the strongest inputs from a subset of Gabor
filters that represent a concave contour on the top of each object.
Such neuronal representations about each contour shape were
found across the layer in the trained network. The distribution
was quantified later in Sections 3.1.3 and 3.1.4.

3.1.2. How the Responses of Neurons to their

Preferred Boundary Elements Depend on the

Position of the Boundary Element in the Frame of

Reference of the Object
Additional simulations investigated how the responses of
neurons to their preferred boundary element depended on the
position of the boundary element with respect to the object.
In these simulations, VisNet, implemented with competitive
networks, was trained on objects constructed with n = 4 sides:
top, bottom, left, and right. Each side had p = 3 possible
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FIGURE 4 | (A) The responses of a cell in the output (third) layer of

VisNet that developed selectivity to the concave contour on the top of

each object. Top: a histogram of the average firing rate responses of the

neuron to six (overlapping) subsets of objects. Bottom: the actual subsets

of objects that correspond to the six data points shown in the histogram.

The objects that the cell responds to are ringed in red. (B) The input

Gabor filters that an output cell in layer 3 has learned to respond to after

training.

boundary conformations: concave, straight and convex. During
training, the feed-forward synaptic connections were modified
using the Hebb learning rule.

VisNet was tested with two sets of objects. The first set
contained those four-sided objects from the original training set
that had at least one straight contour element, either on the right,
bottom, left, or top. The second set contained mirror images of
the first set of objects. The mirror images were constructed by
reflecting the original trained objects around the retinal location
of the vertical straight contour on the right of the training objects
so that the vertical straight contours on the right and left of the
two objects are aligned on the retina as shown in Figure 5A. If
the neuron has learned about the local image context represented
by nearby input filers, the neuron should respond only to the
original images with a vertical straight contour on the right.

This effect is confirmed in Figures 5B,C. Figure 5B shows a
histogram of the average firing rate response of the neuron to the
four subsets of trained objects that contain a straight contour at
one of the sides: right, bottom, left, and top (conventions as in
Figure 4A). The histogram confirms that the neuron has learned
to respond to a vertical straight contour on the right of each of
the trained objects. Figure 5C shows similar results for themirror
image objects. Here it can be seen that the neuron fails to respond
to any of the mirror image objects, including those mirror image
objects with a vertical straight contour on the left.

Figure 5D shows the input Gabor filters that had strong
connectivity through the layers to such a neuron. The plot is
dominated by a strong vertical straight bar on the right hand side.
This shows that the neuron has learned to respond to a straight
contour on the right of each object. However, the activity of the
neuron will also be influenced by other less strong filters shown in

the plot. These additional filters extend furthest to the left of the
dominating vertical straight bar. In particular, the strong input
filters to the left of the vertical straight bar represent boundary
contour features that could co-occur within an object with the
vertical straight contour on the right. The same is not true for
the curve on the right of the vertical straight bar, which joins
the same two vertices linked by the vertical straight bar and so
would have to be an alternative contour element to the vertical
straight bar. The effect of this pattern of additional input filters
is that the neuron may require the presence of additional object
contours to the left of the vertical straight contour in order for
the neuron to respond. That is, the neuron will only respond to
a vertical straight contour when that particular contour shape
is on the right hand side of an object rather than the left of the
object.

3.1.3. How the Number of Object Sides (n) and the

Number of Possible Boundary Elements at Each Side

(p) Affect the Learned Neuronal Response Properties
We investigated how the neuronal firing properties that develop
in the network depend on the number of object sides (n) and the
number of possible boundary contour elements (p) at each side.
Each simulation was run with a fixed value of n and p. Across
simulations, the number of sides, n, was varied from 3 to 8, while
the number of possible boundary elements, p, was varied from 2
to 4. For each simulation, the network was trained on the full set
of objects that could be constructed given the fixed values of n and
p for that simulation; however, simulations with pn > 1000 were
omitted for practical reasons. During training, the feed-forward
synaptic connections were modified using the Hebb learning rule
within VisNet implemented with competitive networks.
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FIGURE 5 | Demonstration of neuronal response tuning in an object

centered frame of reference. Example stimuli used for testing are shown

in (A). (B) Shows a histogram of the average firing rate response of the

neuron to the four subsets of trained objects that contain a straight contour

at one of the sides: right, bottom, left, and top. (C) Shows similar results for

the mirror image objects. (D) The input Gabor filters that had strong

connectivity through the layers to a neuron that had learned to respond to a

straight contour on the right of each object.

For each combination of n and p, Figure 6A (top) gives the
number of neurons that learned to respond selectively to all
objects that contained one particular type of boundary contour
element, but not to objects that did not contain that boundary
element.

It was found that the last layer of the untrained network
already contained a small number of cells that were selective
for objects that contained one type of boundary element. This
was because this simulation task was relatively easy in that it did
not require the output neurons to respond invariantly as objects
were translated across different retinal locations. In simulations
reported later in Section 3.1.6, the output neurons were tested
with the objects presented in different retinal locations. In
these simulations, training was indeed required to produce any
neurons that responded selectively to objects containing one kind
of boundary element.

In the trained network, it can be seen that all simulations
produced large numbers of neurons that were selective for
objects that contained one particular type of boundary element.
Secondly, the number of object sides, n, did not have a significant
systematic effect on the performance of the network. In contrast,

as the number of possible boundary elements at each side,
p, increased, the number of neurons that learned to respond
selectively to objects containing one type of boundary element
declined.

We hypothesize that this is due to the effective increase
in the density of the boundary contour elements at each
side, which increases the difficulty of neurons in the higher
layers developing separate representations of these more similar
boundary conformations. In particular, an invariance learning
mechanism known as Continuous Transformation (CT) learning
(Stringer et al., 2006) may cause neurons in higher layers to
learn to respond to a number of similar boundary conformations
at each side; CT learning is able to bind smoothly varying
input patterns, such as a continuum of different possible
boundary conformations at one of the object sides, onto the
same postsynaptic neuron. In this way, CT learning may
dramatically reduce the selectivity of neurons for particular
boundary conformations.

Typical network behavior for a relatively large value of p is
shown in Figure 7. In this example, the network was trained
on objects with n = 3 sides, each of which had p = 4
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FIGURE 6 | Results of simulations in which VisNet is trained and

tested on objects constructed with a fixed number of sides (n) and

number of possible boundary elements at each side, p. (A) For each

simulation, the table records the number of neurons (in the third layer) that

learned to respond selectively to all objects that contained one particular type

of boundary contour element, but not to objects that did not contain that

boundary element. Results are given before training (left) and after training

(right). (B) Single cell information analysis results. For each simulation, the

single cell information measures for all output (third) layer neurons are plotted

in rank order according to how much information they carry. For each

simulation, results are presented before training (dotted line) and after training

with competitive network (broken dashed line) and with SOM (solid line).

possible boundary elements. The figure shows results for a
typical output cell that failed to learn to respond selectively
to objects containing one particular type of boundary contour.
Figure 7 (left) shows the input Gabor filters that had strong
connectivity through the layers to the neuron. The neuron has
strong connections from three similar boundary elements on
the lower right. Figure 7 (right) shows the average firing rate
response of the neuron to the 12 subsets of objects that contain
one of the different boundary elements. The neuron responds

maximally to the first three subsets of objects, which contain
the three boundary elements that are strongly represented in
the left plot. Thus, the neuron has learned to respond equally
strongly to all of these three boundary elements and is unable to
distinguish between them. This observed behavior is typical when
the number (density) of boundary contour elements at each side
is increased. Investigation into the responses of neurons across
the output layer after the training the network on objects where
each side had a relatively high number of possible boundary
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FIGURE 7 | Simulation showing the failure of an output neuron to

discriminate between a relatively large number of boundary contours

at one object side. Left: The input Gabor filters that had strong connectivity

through the layers to the output neuron. Right: histogram showing average

firing rate response of the neuron to the 12 subsets of objects that contain one

of the different boundary elements. That is, each of the data points (1–12)

represents the average firing rate of the neuron across the 16 objects

containing the following boundary elements: (1) right/sharp-convex, (2)

right/convex, (3) right/concave, (4) right/sharp-concave, (5) left/sharp-convex,

(6) left/convex, (7) left/concave, (8) left/sharp-concave, (9) top/sharp-convex,

(10) top/convex, (11) top/concave, (12) top/sharp-concave.

element contours, p, showed that many cells were unable to
distinguish between differently shaped contours on the same
sides.

The simulations at this juncture show that a biologically
plausible neural network can learn to code relative position
information for visual elements, but has limited capacity. In
the next section, we show how introducing a SOM architecture
within each layer of VisNet can enhance the selectivity of neurons
for individual boundary elements when the number of boundary
elements at each side, p, is large, overcoming the capacity
limitation.

3.1.4. The Effect of a Self-Organizing Map (SOM)

Architecture on Learned Neural Selectivity for

Boundary Contour Elements
We compared the performance of the standard competitive
network architecture in each layer with performance when
a SOM was introduced. We hypothesized that the SOM
architecture could increase the capacity of the network to
represent and distinguish between a larger number of finer
variations in boundary contour curvature.

As discussed in the previous section, a competitive network
may have difficulty in forming separate output representations
of similar input patterns. In particular, CT learning (Stringer
et al., 2006) may encourage the same output neurons to learn
to respond to similar input patterns representing boundary
contour elements of slightly different shape, or even bind
together a continuum of input patterns covering the space of
all possible boundary shapes at a particular object-centered
boundary location.

The SOM architecture is specifically designed to encourage
the output neurons to develop a fine-scaled representation of a
continuum of smoothly varying input patterns (Kohonen, 2000).
A SOM has additional short range lateral excitatory connections

between neurons within each layer. These connections encourage
nearby output neurons to learn to respond to similar input
patterns, which in turn leads to a map-like arrangement of
neuronal response characteristics across the layer after training.
In particular, slightly different input patterns will be distributed
across different output neurons. Thus, the effect of these
additional short range excitatory connections is to influence
learning in the network to spread the representations of a
continuum of overlapping input patterns over a map of output
neurons. This should allow the network to develop a more fine-
grained representation of the space of possible boundary contour
shapes.

We therefore hypothesized that the introduction of a SOM
architecture within each layer of VisNet would spread out the
representations of many different boundary contour curvatures
(p) at a particular side of the object over a map of output neurons.
This would help to produce distinct neural representations of
a large number of different boundary contour elements in the
output layer, and effectively increase the capacity of the network
to represent finer variations in boundary contour curvature.

During training, the feed-forward synaptic connections were,
again modified using the Hebb learning rule, and the simulation
results with the SOM architecture implemented within each layer
are presented in Figure 6A (bottom). The network was tested
on objects constructed with a fixed number of sides, n, and
different numbers of possible boundary elements at each side, p.
For each simulation, the heatmap shows the number of neurons
that learned to respond selectively to all objects that contained
one particular type of boundary contour element, but not to other
objects. These results should be compared with Figure 6A (top),
which gives the corresponding results with a competitive network
architecture implemented within each layer. As hypothesized,
the introduction of SOM architecture within each layer led to
many more neurons learning to respond selectively to objects
containing a particular boundary contour element. This effect is
particularly pronounced for larger numbers of n and p.

These effects can also be seen by examining the amount of
information carried by neurons about the presence of particular
types of boundary elements within the objects presented to
VisNet. We have previously used information theoretic measures
to assess the amount of information carried by neurons about the
presence of whole object stimuli within a scene, where the objects
may be presented under different transforms such as changes in
retinal position or orientation (Wallis and Rolls, 1997; Rolls and
Milward, 2000; Stringer et al., 2007; Stringer and Rolls, 2008).
A neuron that responds selectively to one particular stimulus
across a large number of transforms will carry a high level of
information about the presence of that object within a scene. In
this current paper, we were instead interested in the amount of
information carried by neurons about the presence of particular
boundary elements within an object.

Figure 6B present the single cell information analysis results
for simulations in which VisNet was tested on objects with
different numbers of sides, n, and numbers of possible boundary
elements at each side, p. The results are presented before
training (dotted line), after training with the competitive network
architecture (broken dashed line) and with the SOM architecture
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(solid line). The single cell information measures for all output
layer neurons are plotted in rank order according to how
much information they carry. In all simulations, training the
network on the set of pn whole objects led to many top layer
neurons attaining the maximal level of single cell information
of log2(p) bits. These results imply that training the network
on the whole objects led to many output neurons learning
to respond selectively to all of the objects that contained a
particular one of the boundary contour elements, but not to
objects that do not contain that boundary element. That is, these
neurons had learned to respond to the presence of that particular
boundary contour element within any object. In all simulations,
many top layer neurons attained the maximal level of single
cell information of log2(p) bits. However, consistent with our
hypothesis, the incorporation of a SOM architecture typically led
to a significant increase in the number of neurons that attained
the maximal level of single cell information.

Furthermore, different sub-populations of cells that carry
maximum single-cell information about each contour element
were mapped onto the corresponding locations within the layer.
This extended analysis has revealed that using a SOM led to a
feature map as shown in Figure 8. This result was consistent
with various physiological findings that indicate the topographic
organization within ventral visual pathway (Larsson and Heeger,
2006; Hansen et al., 2007; Silver and Kastner, 2009).

3.1.5. Response properties of Neurons through

Successive Layers of VisNet
We subsequently investigated how the response properties of
neurons vary through successive layers of VisNet, which is
implemented with SOM, before and after training. For all of the
simulations performed, the feed-forward synaptic connections
were modified using the Hebb learning rule.

Table 6 presents simulation results showing the responses of
neurons through layers 1 to 3. The results are presented for a
simulation with n = 4 sides and p = 2 contour elements
per side and compared before and after training. Each sub-table

FIGURE 8 | Simulation results demonstrating that the SOM

architecture leads to a feature map in the output layer. (A) Left: contour

plots showing the amount of single cell information carried by the 128 × 128

layer of output neurons for six boundary elements after training on objects with

n = 3 and p = 2. The different colored contour plots correspond to the

following boundary elements: top/convex (pink), top/concave (light green),

right/convex (blue), right/concave (yellow), left/convex (light blue), and

left/concave (red). (B) Right: similar results for the case n = 3 and p = 3.

gives the number of neurons that responded selectively to either
objects containing a single boundary element, objects containing
a combination of two boundary elements, or a single whole
object. It can be seen that, in all three layers, training the
network led to a substantial increase in the number of neurons
that responded to objects containing a single boundary element.
The numbers of neurons that learned to respond to individual
boundary elements increased through successive layers of VisNet.

For the simulation reported in Table 6, training did not lead
to a similarly large increase in the numbers of neurons that
responded to either a combination of two boundary elements,
or a single whole object. This contrasts with experimental
studies showing that neurons in the later stages of the ventral
visual pathway, TEO and posterior TE, integrate information
from multiple boundary contour elements (Brincat and Connor,
2004). We, therefore, investigated how neurons might learn to
respond to localized clusters of boundary contour elements and
also to whole objects. In fact, by examining the input Gabor filters
that had a strong connectivity to these types of neuron, we were
able to show that some neurons in VisNet were indeed learning
to respond to either a combination of two boundary elements, or
a whole object. These results are shown in Figure 9A.

Figure 9A compares the response properties of trained and
untrained neurons in simulations with the SOM architecture.
The network is presented with objects containing n = 4 sides,
where each side has p = 2 possible boundary elements. Results
are shown for four neurons. For each neuron, we show the
input Gabor filters that had strong connectivity through the
layers to the neuron (left), and a histogram showing average
firing rate response of the neuron to the objects that contain
one of the 8 boundary elements (right). The four neurons shown
in the Figure 9A had the following characteristics. (top-left) A
trained neuron that has learned to respond to a combination
of two adjacent boundary contour elements: top convex and
right convex. The Gabor filter plot shows that the feed-forward
synaptic weights have been strengthened selectively from the two
boundary elements only. (top-right) A trained neuron that has
learned to respond to a whole object. The preferred object is
comprised of two concave on top and right and two convex on
bottom and left. The Gabor filter plot shows that the neuron has
learned to respond to the complete set of boundary elements

TABLE 6 | Simulation results showing the responses of neurons through

layers 1 to 3 with the SOM architecture.

N4P2 experiment (SOM)

Layer 1 Contour 2 Contours Object

UNTRAINED NETWORK

3 856 270 538

2 418 104 82

1 293 0 0

TRAINED NETWORK

3 4216 92 89

2 2440 10 10

1 540 8 0

Frontiers in Computational Neuroscience | www.frontiersin.org August 2015 | Volume 9 | Article 100 | 49

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Eguchi et al. Neural representation of object shape

FIGURE 9 | Comparison of response properties of trained and

untrained neurons in simulations with the Self-Organizing Map (SOM)

architecture. The network is presented with objects containing n = 4 sides,

where each side has p = 2 possible boundary elements. (A) The figure

shows results for four typical neurons. For each neuron, we show two plots.

Left: The input Gabor filters that had strong connectivity through the layers to

the neuron. Right: histogram showing average firing rate response of the

neuron to the eight subsets of objects that contain one of the different

boundary elements. That is, each of the data points (1–8) represents the

average firing rate of the neuron across the eight objects containing the

following boundary elements: (1) right/concave, (2) right/convex, (3)

bottom/concave, (4) bottom/convex, (5) left/concave, (6) left/convex, (7)

top/concave, (8) top/convex. (B) Four neurons in layer 2 with strong synaptic

connections to the output neuron shown in top-right in (A).

comprising the preferred object. (bottom-left) An untrained
neuron that happens to respond selectively during testing to
two adjacent boundary elements. However, the Gabor filter plot
shows that a random collection of Gabor filters have strong feed-
forward connections to the neuron. This means that across a
richer diversity of test images, this neuron would not maintain
such a strict selectivity, and would in fact be most effectively
stimulated by the random constellation of Gabor filters shown.
(bottom-right) An untrained neuron that responds selectively
to a whole object. The Gabor filter plot shows that the neuron
receives strong connections from a random collection of Gabor

filters. This neuron would not maintain a strict selectivity to the
object when tested on a greater diversity of images.

The conclusion of the results shown in Figure 9A is
that although Table 6 appeared not to show an increase
during training in the numbers of neurons that responded to
combinations of two boundary elements or a whole object, in fact
training did lead to an increase in the numbers of neurons that
had specifically learned to respond to whole stimuli. However,
in Table 6, this effect had been masked by the existence of many
untrained cells that already responded by chance to combinations
of two boundary elements or a whole object, but which in fact
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had random inputs from a large randomized collection of Gabor
filters. Such untrained neurons are unlikely to be selective for
combinations of two boundary elements or a particular object
if the network were tested on a richer diversity of images.
In particular, these untrained neurons would respond more
selectively for images corresponding to the random constellations
of Gabor filters shown in the bottom of Figure 9A. In contrast,
the trained neurons on the top have strengthened connections
specifically from combinations of two boundary elements or a
whole object, and would therefore maintain their selectivity more
robustly across a greater variety of test images.

We also found that output neurons in layer 3 learned to
respond to whole objects by combining inputs from neurons in
the preceding layer that responded to the individual boundary
elements. This can be seen by examining the strengths of
the synaptic connections from neurons in layer 2 to output
neurons in layer 3 after training. Output neurons that had
learned to respond to a particular object received the strongest
synaptic connections from neurons in layer 2 that represented
the constituent boundary elements of that object. Figure 9B
shows four neurons in layer 2 with strong synaptic connections
to a whole shape selective neuron reported in the top-left of
Figure 9A. the output neuron shown in Figure 9A. Each of the
four neurons in layer 2 had learned to respond to a different one
of the boundary elements which were contained in the object
that the output neuron had learned to respond to. This example
shows that neurons in the later stages of the model are able to
integrate information frommultiple boundary contour elements,
as consistent with neurophysiological results for areas TEO and
posterior TE of the primate ventral visual pathway (Brincat and
Connor, 2004).

3.1.6. Translation Invariance of Neuronal Responses

as Objects are Shifted Across Different Locations on

the Retina
The neurons reported by Pasupathy and Connor (2001) in area
V4, and neurons reported by Brincat and Connor (2004) in areas
TEO and posterior TE, respond with translation invariance as an
object is shifted across different retinal locations. In this section
we show how these translation invariant neuronal responses may
be set up by training the network with the trace learning rule. The
trace learning rule encourages individual postsynaptic neurons to
learn to respond to subsets of input patterns that tend to occur
close together in time. Therefore, in the simulation described
below, during training we selected each object in turn and
presented that object in a number of different retinal locations
before moving on to the next object.

For this simulation, VisNet had four layers with a SOM
architecture implemented within each layer. The visual objects
had n = 4 sides, where each side has p = 3 possible boundary
elements. Each of the visual objects was presented in a 2 × 2
grid of four different retinal locations, which were separated by
horizontal and vertical shifts of 10 pixels.

Figure 10A shows the results after training for a typical output
neuron in layer 4. Figure 10B shows the input Gabor filters that
had strong connectivity through the layers to the output neuron.
It can be seen that the neuron has strong connections from a

FIGURE 10 | Simulation of network trained with the trace learning rule

as each of the visual objects is shifted across 4 different retinal

locations: top right, top left, bottom right and bottom left. The objects

had n = 4 sides, where each side has p = 3 possible boundary elements. The

figure shows results after training for a typical output neuron in layer 4. (A)

Histogram showing the average firing rate response of the output neuron to

the 12 subsets of objects that contain one of the boundary contour elements.

That is, each of the data points (1–12) represents the average firing rate of the

neuron across the 27 objects containing the following boundary elements: (1)

right/concave, (2) right/straight, (3) right/convex, (4) bottom/concave, (5)

bottom/straight, (6) bottom/convex, (7) left/concave, (8) left/straight, (9)

left/convex, (10) top/concave, (11) top/straight, (12) top/convex. Each of these

results is given for the objects placed in the four different retinal locations. (B)

The input Gabor filters that had strong connectivity through the layers to the

output neuron. (C) Single cell information analysis of a simulation where visual

object, which has n = 4 sides, where each side has p = 3 possible boundary

elements, is shifted across four different retinal locations. The single cell

information measures for all output layer neurons are plotted in rank order

according to how much information they carry. Results are presented before

training (broken line) and after training (solid line).

convex boundary element on the left of an object. The separate
contours that can be seen in the plot correspond to the different
retinal locations in which the objects are trained. Figure 10A
shows a histogram presenting the average firing rate response of
the output neuron to the 12 subsets of objects that contain one of
the boundary contour elements. The neuron responds maximally
to the subset of objects containing a convex boundary element on
the left. Notably, the neuron responds maximally to this subset
of objects over all four retinal locations. Thus, the neuron has
learned to respond to objects containing the convex boundary
element on the left regardless of where the object is presented on
the retina. These translation invariant neuronal responses are a
result of training the network with the trace learning rule.

Figure 10C shows findings from the single cell information
analysis. The results are presented before training (broken line)
and after training (solid line). Training the network on the
set of pn whole objects over the four retinal locations led to
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many top layer neurons attaining the maximal level of single
cell information of log2(p) bits. Neurons carrying maximal single
cell information responded selectively to a subset of objects
containing one particular type of boundary element, and with
translation invariance as the objects also were shifted over all four
retinal locations. In these simulations with translation invariance,
the information is dramatically increased after training. This
is because it is very unlikely for untrained neurons to both
respond selectively to a single boundary contour element across
all objects, and be able to respond with translation invariance
as these objects are shifted across the retina. Therefore, training
will lead to a much more significant difference between the
performances of the untrained and trained networks.

3.2. Study 2: VisNet Simulations with Visual
Stimuli of Pasupathy and Connor
In Study 2, the visual stimuli presented to VisNet were similar to
the artificial stimuli used in the neurophysiological experiments
of Pasupathy and Connor (2001) shown in Figure 3B. This
allowed direct comparison between the learned response
characteristics of the neurons in the VisNet model and the
experimentally observed cell responses encoding local boundary
information reported.

The stimuli were constructed by systematically combining
sharp convex, medium convex, broad convex, medium concave
and broad concave boundary elements to form closed shapes. We
also vary the angular separations of the vertices used to construct
the stimuli on 256 × 256 pixels of the simulated retina as shown
in Figure 3B. Furthermore, we also rotated the visual stimuli
through 360◦ in a single central location on the retina in steps
of 10◦ during training to provide more natural visual training.
This meant that there was not such a clean statistical decoupling
between the boundary elements as for Study 1. Nevertheless, we
expected that with the new objects used in Study 2 there would
still be sufficient statistical decoupling between the boundary
elements to ensure that the network developed neurons during
visually guided learning that responded to a localized region of
boundary curvature.

For all simulations in Study 2, the VisNet architecture
consisted of three layers of SOM, where each layer is composed
of 64 × 64 neurons. During training, the feed-forward synaptic
weights are modified using the trace learing rule, which is needed
to develop translation invariant neuronal responses.

3.2.1. Development of Neurons Encoding Local

Boundary Conformation in an Object-centered Frame

of Reference
Figure 11 shows a comparison between the responses of a neuron
recorded in area V4 of the primate ventral visual pathway by
Pasupathy and Connor (2001) and a neuron recorded from our
simulation, which exhibits a similar degree of selectivity. The
neuron recorded by Pasupathy and Connor (2001) responds
selectively to object shapes with an acute convex curvature at the
top right of the object. Many other neurons in the output layer of
VisNet learned to respond selectively to particular combinations
of local boundary curvature and position with respect to the
center of mass of the object. The network accomplished this even

though the statistical independence of the boundary contour
elements was not perfect.

To analyse the detailed firing properties of each output neuron
and quantified the distributions, we recorded its response to all
objects as they were rotated through 360◦. Next we segmented
the boundary contour of each object into multiple elements
based on the positions where the rate of change of the curvature
exceeded a fixed threshold. This then enabled us to calculate the
average response of the neuron to each particular combination
of local boundary curvature and angular position where that
boundary curvature appears, where the average is computed over
all orientations of all objects. Figure 12A shows a heatmap of the
average responses of the output neuron shown on the right of
Figure 11 to different combinations of boundary conformation
and angular position. The result indicates that this neuron
responds maximally to object shapes with an acute convex
curvature at the top right. The correlation coefficient between the
result and a predicted result of a modeled V4 neuron based on
Gaussian distribution, which is tuned to acute contours at 70◦ is
strong (0.798) and confirms the selectivity. Figures 12B–D show
examples of different trained cells.

For each neuron, we then analyzed the number of local peaks
in the heatmap of average firing rate against curvature and
angular position, as shown in Figure 12. Specifically, for each
neuron we counted the number of local peaks that were greater
than 60% of the average firing rate across the heatmap. Before
training, 176 cells had one peak, 98 cells had two peaks, 63 cells
had three peaks, and 44 cells had four peaks. After training, the
distributions were 319 cells, 460 cells, 414 cells, and 374 cells.
(These distributions were significantly different, χ2 = 17.58, df =
3, P≪ 0.01.) Thus, training led to a large increase in the number
of neurons that were selectively tuned to either one or just a few
boundary contour elements. The simulation results also predict
the existence of individual neurons that are tuned to boundary
elements in multiple locations. Consistent with this, Brincat and
Connor (2004) have reported that some neurons in TEO and
posterior TE do indeed respond to the co-occurrence of multiple
adjacent contour elements.

3.2.2. Development of Translation Invariant Neuronal

Responses
Pasupathy and Connor (2001) and Brincat and Connor (2004)
reported that neurons encoding the boundary conformation of
objects also respond with translation invariance as an object
is shifted across different retinal locations. In this section we
confirm that neurons in VisNet also develop translation invariant
responses when the network is trained on the stimuli shown
in Figure 3B. To cope with the larger computational resource
requirements, only the stimuli with an angular separation
between vertices of 135 ◦/135 ◦/90 ◦ were used, and the size of
the image was reduced to 128 × 128 pixels. During training,
the trace learning rule was used to modify the synaptic
weights.

In this simulation, during training each object was shifted
across a 3×3 grid of nine different retinal locations, which are
separated by horizontal and vertical intervals of 10 pixels. At
each pixel location, the objects are presented in all orientations
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FIGURE 11 | Comparison between the single neuron recording

data of Pasupathy and Connor (2001) and corresponding results

from VisNet simulations. On the left of the figure are shown the

responses of a neuron recorded in area V4 of the primate ventral

visual pathway and shown in Figure 5A of Pasupathy and Connor

(2001). Each object shape shown to the monkey is represented by a

white icon, and the firing rate response of the neuron is represented

by the surrounding shading with high firing denoted by black. Each

row shows a different object shape, with each column corresponding

to a different orientation of the object. It can be seen that the neuron

responds selectively to object shapes with an acute convex curvature

at the top right of the object. On the right of the figure are shown

corresponding results for an output cell in layer 3 of VisNet, which

has learned to respond with similar selectivity.

through 0◦–360◦ in 10◦ steps. Thismeans that during training the
objects underwent two different kinds of transformation, both
translation and rotation. We assume that typically the eyes shift
about a visual scene more rapidly than the objects rotate on the
retina. To simulate this effect, VisNet was trained as follows.
During training, the orientation of each object was kept fixed at
some initial angle while the object was shifted across all of the
different retinal locations. Then the orientation of the object was
adjusted by, for example, 10◦ and the object was again shifted
across all of the retinal locations. This procedure was repeated
for all object orientations from 0◦ to 360◦ in steps of 10◦. This
training procedure ensured that images of each object in the same
orientation but different retinal locations were closely clustered
together in time.

Figure 13 shows results for a typical output neuron after
training. Each subplot shows the average responses of the neuron
to different combinations of local boundary curvature and
angular position. The top subplot shows the average neuronal
responses over all nine retinal locations, while the remaining
subplots show the average neuronal responses to each of the nine
separate retinal locations.

In order to quantify the distribution of such cells, the number
of peaks of responses for each cell were calculated. Before
training, 91 cells had one peak, 61 cells had two peaks, 34 cells
had three peaks, and 24 cells had four peaks. After training, the
distributions were 288 cells, 253 cells, 119 cells, and 158 cells.
(These distributions were significantly different, χ2 = 1.99e+03,
df = 3, P≪ 0.01.)
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FIGURE 12 | Heatmap showing the average responses of four output

neurons to different combinations of local boundary curvature and

angular position where the boundary curvature appears. The average is

computed over all orientations (0◦–360◦) of all objects. (A) The neuron

responds maximally to object shapes with an acute convex curvature at the

top-right. This is the same neuron that was shown on the right of Figure 11.

(B–D) Three other cells that show different firing patterns are also plotted to

show the variability in the network.

It is evident that the neuron displays a pattern of selectivity for
boundary curvature and angular position that is similar across
the nine retinal locations. Thus, the responses of the neuron
exhibit translational invariance, similar to the neurons reported
in the neurophysiology experiments of Pasupathy and Connor
(2001) and Brincat and Connor (2004).

3.3. Study 3: VisNet Simulations with Images of
Natural Objects
In Study 3, VisNet was trained with images of natural objects in
order to demonstrate that the learning mechanisms elucidated in
this paper and tested with artificially constructed visual stimuli
in sections of Study 1 and 2 will indeed work effectively on real
world visual objects. We hypothesize that across many images
of natural objects with different boundary shapes, there will be
an effective statistical decoupling between localized boundary
elements, which are defined by local curvature and angular
position with respect to the center of mass of the object. This
should force the neurons in higher layers of the network to learn
to respond to the individual boundary elements rather than the
whole objects.

Some examples of the natural objects used in these simulations
are shown in Figure 3C. The set of stimuli used in the simulations
is composed of 177 realistic three dimensional objects. Various
kinds of three dimensional objects are downloaded from Google
3D Warehouse, converted into gray-scaled images, and rescaled
to fit on the center of 256 × 256 retina. In order to enhance
the realism of the visual images used to train VisNet, during
training each of the natural objects is rotated in plane through
360◦ in steps of 10◦. After training, the neuronal responses in

the network were examined with the test stimuli used for Study 2
(Figure 3B).

3.3.1. Development of Neurons Encoding Local

Boundary Conformation in an Object-centered Frame

of Reference
Figure 14 shows the responses of a typical output neuron after
training. This neuron learned to respond to an acute convex
curvature at the bottom left of an object. Moreover, although
not shown, many other neurons in the output layer of VisNet
learned to respond selectively to particular combinations of
local boundary curvature and angular position of the boundary
element.

In order to quantify the distribution of such cells, the number
of peaks of responses for each cell were calculated. Before
training, 176 cells had one peak, 98 cells had two peaks, 63 cells
had three peaks, and 44 cells had four peaks. After training, the
distributions were 232 cells, 141 cells, 125 cells, and 103 cells.
(These distributions were significantly different, χ2 = 176.82,
df = 3, P≪ 0.01.)

This result showed that VisNet was able to develop these
neuronal responses even though the network had been trained
on many natural visual objects without artificially constructing
the boundary shapes from artificially predefined elements.

3.3.2. Development of Translation Invariant Neuronal

Responses
We then tested whether neurons in VisNet can also develop
translation invariant responses when the network was trained
on the natural objects shown in Figure 3C. Each of the natural
objects was shifted across a 3×3 grid of nine different retinal
locations, which were separated by horizontal and vertical
intervals of 10 pixels. At each pixel location, the objects were
presented in different orientations through 0◦–360◦ in 10◦ steps.
The temporal sequencing of these two kinds of transforms was
the same as described in Section 3.2.2. During training, the trace
learning rule was used to modify the synaptic weights.

Figure 15 shows results for a typical output neuron after
training. Each subplot shows the average responses of the neuron
to different combinations of local boundary curvature and
angular position. The top subplot shows the average neuronal
responses over all nine retinal locations, while the remaining
subplots show the average neuronal responses to each of the nine
separate retinal locations. It can be seen that the neuron responds
selectively to objects with a high convex curvature at the top-left.
Moreover, the responses of the neuron are similar across all nine
retinal locations.

In order to quantify the distribution of such cells, the
number of peaks of responses for each cell were calculated. The
distributions were that before training, 97 cells had one peak,
38 cells had two peaks, 25 cells had three peaks, and 31 cells
had four peaks, whereas after training, the distributions were 349
cells, 148 cells, 90 cells, and 109 cells. (These distributions were
significantly different, χ2 = 1.34e + 03, df = 3, P ≪ 0.01).
Thus, the responses of the neuron are reasonably translation
invariant, similar to the neurons reported in the neurophysiology
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FIGURE 13 | Demonstration of translation invariance after training

the network on the visual stimuli shown in Figure 3B. The figure

shows the average responses of a typical output neuron over the nine

retinal locations after training with the trace learning rule. Each of the ten

subplots shows the average responses of the neuron to different

combinations of local boundary curvature and angular position where the

boundary curvature appears. The top subplot shows the average

neuronal responses computed over all nine retinal locations. While the

bottom subplots show the average neuronal responses computed

separately for each of the nine retinal locations.

experiments of Pasupathy and Connor (2001) and Brincat and
Connor (2004).

In conclusion, the above results thus demonstrate that even
when VisNet is trained on realistic natural visual objects, where
the boundary shapes have not been carefully constructed from
a pool of artificial elements, the network still develops neurons
that respond selectively to the curvature and location of localized
boundary contour elements in the frame of reference of the
object. Moreover, with the help of the trace learning rule, these
neuronal responses are also translation invariant as an object
shifts across different retinal locations.

4. Discussion

In this paper, we have demonstrated that when a neural network
model, VisNet, of the primate ventral visual pathway is trained
on many objects with different boundary shapes, the neurons in
the higher layers of the network learn to respond to localized
boundary contour elements, which are defined by the curvature
and location of the boundary element in the frame of reference
of the object. Interestingly, neurons learn to respond to these
boundary elements rather than learning to respond to the whole
objects that were actually presented during training. Moreover,
the neurons were able to learn to respond with translation

invariance as visual objects are shifted across different retinal
locations. This was shown to be successful when VisNet was
trained with either the artificially constructed visual stimuli used
in Studies 1 and 2, or with images of natural visual objects in
Study 3.

The primary contribution of this paper is to elucidate and
test two key biologically plausible learning mechanisms that can
combine to promote the development of these neuronal response
characteristics. First, similar to the results shown in the previous
study with multiple-objects (Stringer et al., 2007; Stringer and
Rolls, 2008), if the network is trained on many objects with
different boundary shapes, where each boundary is comprised
of a different constellation of contour elements, then this leads
to a statistical decoupling between the boundary elements. This
is sufficient to allow the competitive layers of VisNet to develop
neurons that respond to individual boundary elements defined
by curvature and position within the object, which are similar to
the neurons reported in the physiological experiments conducted
by Pasupathy and Connor (2001). Secondly, consistent with
previous simulation studies (Wallis and Rolls, 1997; Rolls and
Milward, 2000), neurons learned to respond with translation
invariance across different retinal locations through the use of a
trace learning rule. This kind of learning places constraints on
the statistics of how the eyes move and visual objects change or
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FIGURE 14 | The development of neuronal responses in VisNet that

encode combinations of local boundary curvature and rotational

position after the network has been trained with images of natural

objects as shown in Figure 3C. The figure shows the responses of an

output neuron which has learned to respond to an acute convex

curvature at the bottom left (225◦) of an object. (A,B) Shows the

responses of the neuron to objects with an angular separation between

the vertices of 135 ◦/135 ◦/90 ◦ and 180 ◦/90 ◦/90 ◦, respectively. Each

object shape is represented by a white icon, and the firing rate response

of the neuron is represented by the surrounding shading with high firing

denoted by black. Each row shows a different object shape, with each

column corresponding to a different orientation of the object. (C) Shows

a heatmap of the average responses of the neuron to different

combinations of local boundary curvature and angular position where the

boundary curvature appears. The average is computed over all

orientations (0◦–360◦) of all objects.

transform on the retina. These two mechanisms together provide
a biologically plausible account of how neurons in the primate
ventral visual pathway may learn to represent localized boundary
contour elements of objects as revealed by Pasupathy and Connor
(2001).

Furthermore, neurophysiological experiments carried out by
Brincat and Connor (2004) have shown that neurons in the
later stages of the ventral visual pathway, TEO and posterior
TE, integrate information from multiple boundary contour
elements. In our simulations, the number of cells that were tuned
to combinations of multiple contours increased in the higher
layers. Tracing back the feed-forward synaptic connectivity to
these output neurons confirmed that their selectivities were

built by combining inputs from neurons representing each local
boundary contour in the preceding layer.

The simulations reported in this present work are the first
to show how neuronal responses encoding the local boundary
conformation of objects may develop through a biologically
plausible process of visually-guided learning. Both the Hebb
learning rule and trace learning rule used above are biologically
plausible in that they are “local” learning rules, which only use
locally available biological quantities, such as the activity of the
pre- and post-synaptic neurons, to modify the synaptic weights.
This is in sharp contrast to other modeling studies that manually
set up the synaptic weights in a non-local manner. In particular,
the trace learning rule drives the development of translation
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FIGURE 15 | The development of translation invariant neuronal

responses in the output layer of VisNet after the network has been

trained with images of natural objects as shown in Figure 3C. The

network was trained with the trace learning rule in order to promote

invariance learning across nine different retinal locations. The figure shows

the average responses of a typical output neuron over the nine retinal

locations after training. Each of the ten subplots shows the average

responses of the neuron to different combinations of local boundary

curvature and angular position where the boundary curvature appears. The

top subplot shows the average neuronal responses computed over all nine

retinal locations. While the bottom subplots show the average neuronal

responses computed separately for each of the nine retinal locations.

invariant neuronal responses. Convincing experimental evidence
for the presence of trace learning in the primate visual system
has been provided by Cox et al. (2005), and a plausible account
of the synaptic basis of trace learning has been provided by
simulations of biologically detailed integrate and fire neural
networks carried out by Evans and Stringer (2012). Furthermore,
the trace learning rule can be implemented in the afferent
synaptic connections to all neuronal layers in the network,
which avoids the biologically implausible need for separate
layers for template learning and invariance learning as has
been implemented in previous models. Another important factor
that underpins the biological plausibility of the simulations
carried out in this paper is that the network model was always
trained on whole objects rather than carefully pre-segmented
and isolated parts of objects corresponding to local boundary
elements. Indeed, in Study 3, VisNet was trained on a random
assortment of whole natural visual objects. Nevertheless, the
network was still able to develop neurons that were specifically
tuned to localized boundary segments of objects. We also found
the performance of the model to be extremely robust, which gives
additional credence to the learning mechanisms explored in this
paper.

4.1. Future Work
The version of the VisNet architecture used in this paper
incorporated associative learning only in the bottom-up (feed-
forward) connections between successive layers of the network.
Furthermore, no top-down connections were included in the
model even though these are known to exist in the primate
ventral visual pathway. The rationale for using this simplified
architecture in the current study was that it is sufficient to
replicate how neurons in V4, TEO, and posterior TE are able to
learn to encode the conformation of boundary contour elements
at a particular position within an object. However, Zhou et al.
(2000) have shown that the responses of neurons in earlier
stages of visual processing such as V1 and V2, which have
preferred responses to oriented edges, are also modulated by
which side of a figure the edge occurs on. This is the case even
when the figure/background cues lie well-outside the classical
receptive field of the neuron. This suggests that global image
context specifying border ownership modulates the activity these
neurons. This contextual information must be conveyed to these
early stage visual neurons by some combination of top-down
connections between layers and recurrent connections within
layers.
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Another question is whether the approach proposed here
can be extended to 3D shape. Yamane et al. (2008) have
demonstrated the existence of neurons that encode the 3D
configuration of localized surface fragments defined by their
conformation, orientation and position with respect to the center
of mass of the object. A population of such neurons provides a
distributed representation of an object’s 3D shape. The response
characteristics of these neurons are also invariant as the object
is shifted through different locations on the retina. It will be
important to evaluate if a model such as VisNet, trained using
stereoscopic input, can begin to capture the partonomic structure
of 3D objects. Furthermore, it will be critical to assess whether
learning rules, such as trace learning, can still be used to generate
translationally invariant recognition processes.

However, theorists have long posited that the visual system
in fact represents complex three-dimensional shapes, such as
a table or a chair, by decomposing it into volumetric parts
with axial symmetry (Biederman, 1987). A recent fMRI study in

humans has provided evidence for this at the level of the neuronal
population, where it was found that the visual system explicitly
represents the relationships between the medial axes of linked
object parts (Lescroart and Biederman, 2013). Consequently,
more recently, Hung et al. (2012) have investigated medial axis
shape coding in the inferotemporal cortex. This work extended
their studies of parts-based spatial representations to “skeletal”
representations involving a configuration of volumetric parts,
where each part has an axis of radial symmetry or medial
axis. The three-dimensional structure of an object may then be
represented by a combination of the relationships between the
medial axes of the object parts as well as the conformations of
the surfaces of the object parts. Hung et al. (2012) confirmed
that individual neurons in IT do in fact encode a configuration
of both medial axis and surface fragments. In future work, we
shall investigate whether the computational learningmechanisms
demonstrated in this paper may also give rise to these kinds of
skeletal representations.
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In recent years, the interdisciplinary research between neuroscience and computer

vision has promoted the development in both fields. Many biologically inspired visual

models are proposed, and among them, the Hierarchical Max-pooling model (HMAX)

is a feedforward model mimicking the structures and functions of V1 to posterior

inferotemporal (PIT) layer of the primate visual cortex, which could generate a series

of position- and scale- invariant features. However, it could be improved with attention

modulation and memory processing, which are two important properties of the primate

visual cortex. Thus, in this paper, based on recent biological research on the primate

visual cortex, we still mimic the first 100–150 ms of visual cognition to enhance the HMAX

model, which mainly focuses on the unsupervised feedforward feature learning process.

The main modifications are as follows: (1) To mimic the attention modulation mechanism

of V1 layer, a bottom-up saliency map is computed in the S1 layer of the HMAX model,

which can support the initial feature extraction for memory processing; (2) To mimic the

learning, clustering and short-term memory to long-term memory conversion abilities

of V2 and IT, an unsupervised iterative clustering method is used to learn clusters with

multiscale middle level patches, which are taken as long-term memory; (3) Inspired by

the multiple feature encoding mode of the primate visual cortex, information including

color, orientation, and spatial position are encoded in different layers of the HMAX model

progressively. By adding a softmax layer at the top of the model, multiclass categorization

experiments can be conducted, and the results on Caltech101 show that the enhanced

model with a smaller memory size exhibits higher accuracy than the original HMAX

model, and could also achieve better accuracy than other unsupervised feature learning

methods in multiclass categorization task.

Keywords: HMAX, biologically inspired, feedforward, saliency map, middle level patch learning, feature encoding,

multiclass categorization

1. Introduction

Image categorization is a critical issue in computer vision and neuroscience research. As the natural
images have a lot of variations in lighting, scale, shape, position and occlusion, extracting intrinsic
features, which are not only invariant within same class but also discriminative between different
classes, is the principle of the algorithms for image categorization. And the mechanisms and
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structures of the visual cortex, which support the robust
recognition, are also the key points of neuroscience for visual
cognition research. Traditional computer vision algorithms are
far from perfect due to the aforementioned variations, while the
visual system of the primates shows good performance in daily
life. Thus, mimicking the structures, mechanisms and functions
of the primate visual cortex to design visual algorithms will
highlight computer vision researches, help to get an insight of the
visual cortex and further promote the interdisciplinary study of
computer vision and neuroscience.

In the last decades, many kinds of features have been
proposed to represent the natural images in the field of computer
vision. On the one hand, many global image representation
methods are proposed, such as the subspace analysis
methods including Principal Components Analysis (PCA)
(Turk and Pentland, 1991) and Fishers Linear Discriminant
Analysis (LDA) (Belhumeur et al., 1997), which can achieve
compact holistic encoding but cannot deal well with partial
occlusion or strong view changes; On the other hand, many
elaborated local feature representation methods are designed,
such as SIFT (Lowe, 2004) and SUFT (Bay et al., 2008),
which are scale-invariant and robust to moderate viewpoint
variations.

Moreover, a middle level representation method—Bag of
Words (BoW) (Sivic and Zisserman, 2003), has achieved
good performance for image-level classification. It extracts a
collection of unordered local patches of a test image, and
maps them to discrete visual words learned by k-means vector
quantization (VQ), and then obtains a histogram feature vector
for classification. As the BoW model does not encode spatial
information, it can be invariant to position and pose, but
lose discrimination in some conditions. In Lazebnik et al.
(2006), Spatial Pyramid Matching (SPM) kernel is introduced
to BoW, in which spatial information are encoded in different
scales and better performance is obtained in scene classification
task.

When compared with primate visual cortex, a majority of the
traditional methods could be called as flat processing methods,
in which features are designed and processed by task-dependent
learning algorithms (Krüger et al., 2013), but the primate visual
cortex is organized in a hierarchical structure, and has good
generality and robustness in a various of visual tasks.

Thus, it could be meaningful to mimic primate visual
cortex to design hierarchical computer vision algorithms. In
this interdisciplinary research field, the groundbreaking work
is the Nobel Prize work of Hubel and Wiesel (1959, 1962).
Based on biological experiments on cats striate cortex (V1), they
described a circuit model with simple cells and complex cells,
in which the complex cell has a similar response characteristic
as the simple cell, but has a larger receptive field and a
higher level tolerance to variations. After that, many biologically
inspired computational models for visual cognition are proposed,
including the Neocognitron (Fukushima, 1988), the saliency-
based visual attention model (Itti et al., 1998) and the HMAX
model (Riesenhuber and Poggio, 1999; Serre et al., 2007), etc.
Among them, the HMAX model is a feedforwad hierarchical
feature learning model for classification task. It tries to mimic

the structures and functions of the ventral stream of the primate
visual cortex in the first 100–150ms of visual cognition, and
includes four layers (S1, C1, S2, C2) corresponding to the V1 to
PIT layers of the primate visual cortex. By alternating between
convolution operation in S layers and max-pooling operation in
C layers, the model finally generates a set of position- and scale-
invariant features.

However, the HMAX model has its shortages. Firstly, a
random patch/prototype sampling method in C1 layer is used.
The representation and discrimination ability of these patches
are not guaranteed, and it doesn’t mimic the higher level
learning ability of the visual cortex (Gross, 2008; López-Aranda
et al., 2009). Secondly, the model is only designed for binary
classification task. A high feature dimension will be generated
for its application in multiclass categorization task, as patches
need to be sampled in each object class respectively, which
decreases its generalization ability and is different from the
memory process of the visual cortex (Gross, 2008; Tyler et al.,
2013).

In recent years, many researchers tried to modify the HMAX
model to improve its performance or introduce more biological
mechanisms into it. Mutch and Lowe (2006), Huang et al.
(2011b) refined the model with sparsification, lateral inhibition
and feedback based feature selection for image classification.
While Mutch and Lowe (2006) achieved patch selection based
on the weights of SVM classifier, and Huang et al. (2011b)
used a boosting method to learn discriminative patch. Both
of them didn’t consider the possibility of learning patch in
an unsupervised manner. Walther et al. (2002) merged the
saliency-based attention model (Itti et al., 1998) with the
HMAX model to modify the response characteristics of the S2
layer, while we will try to introduce attention modulation in
an early layer S1 to support the patch learning in the next
layer (C1). Thériault et al. (2013) extended the coding and
pooling mechanisms of the HMAX model with more scale
and spatial information for robust image classification, but it
didn’t achieve patch learning as the original HMAX model. In
addition, other modifications of the HMAXmodel demonstrated
good performance in face recognition (Liao et al., 2013; Qiao
et al., 2014a,b), scene classification (Huang et al., 2011a), and
handwritten digit recognition (Hamidi and Borji, 2010). The
corresponding properties of the HMAX and the BoW model to
the human visual cortex were also investigated by Ramakrishnan
et al. (2015).

Meanwhile, Deep Neural Networks (DNN), such as the
Convolutional Deep Belief Network (CDBN) (Lee et al., 2009)
and the Convolutional Neural Networks (CNN) (Krizhevsky
et al., 2012), are also organized in a hierarchical mode. Although
their correspondences to the structures and mechanisms of
the visual cortex are not quite clear, they have shown good
performance in image categorization task. However, thesemodels
are difficult to train because very large training sets are required
to avoid overfitting, and most of the CNN models with the
best performance (Girshick et al., 2014; Schroff et al., 2015) are
supervised models.

Thus, in this paper, based on related biological researches
(see more details in Section 2), we mainly focus on the first
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100–150ms feedforward feature learning process of the primate
visual cortex (Lamme and Roelfsema, 2000; Pascual-Leone and
Walsh, 2001) to extend the original HMAX model in the
following aspects:

(1) Attention Modulation: To mimic the bottom-up attention
modulation (Theeuwes, 2010; Zhang et al., 2012) and the
response characteristics of neurons in V1 layer (Chatterjee
and Callaway, 2003; Donk and van Zoest, 2008), a saliency
map is computed by combing the orientation and Lab
color-space information together in the S1 layer of the
HMAX model based on the concept of local feature
contrast. The generated salient regions mainly correspond
to salient objects, and the boundary and resolution
of objects are well kept. The proposed salient regions
are taken as the initial candidate regions for feature
extraction.

(2) Memory Processing: To mimic the conversion of short-
term memory to long-term memory of V2 (López-Aranda
et al., 2009) and the learning, selectivity and clustering
ability in distributed regions of inferotemporal cortex (IT)
(Gross, 2008), a memory processingmethod with two steps is
proposed to replace the random prototype sampling method
in the HMAXmodel. Firstly, multiscale middle level patches
are densely extracted in the salient regions. Secondly, the
patches are selected with an unsupervised iterative clustering
method. During which, rare and meaningless patches are
deleted, and similar patches are grouped in the same cluster,
and a classifier for each cluster is also learned. Thus, each
cluster can be taken as a distributed region of IT layer,
which contains neurons with similar selectivity of memory.
Furthermore, the patches in each cluster mainly correspond
to critical parts of objects, which are discriminative and
representative. Due to the unsupervised learning mode,
similar patches from different objects are shared, which
would support the multiclass categorization task with less
memory.

(3) Feature Encoding and Multiclass Categorization:

Corresponding to the distributed memory regions with
similar discrimination ability (Gross, 2008), the Gaussian-
like operation in S2 layer of the HMAX model is replaced
by classification operation of each cluster. To mimic
the feature encoding in Milner and Goodale (2008), the
maximal activation of each cluster in the C2 layer of
the HMAX model and its relative spatial position are
cascaded as the final feature vector. Softmax is taken as
the decision layer for multiclass categorization, and each
output corresponds to the distributed associated regions
of different objects for visual cognition in the cortex (Tyler
et al., 2013).

The remaining parts of this paper are organized as follows. In
Section 2, the related biological researches supporting the work
of this paper are discussed. In Section 3, a brief introduction
of the HMAX model is given, and the detailed improvements
and methods of our work are proposed. In Section 4, multiclass
categorization results on Caltech101 are given, and comparison
experiments with other models are also discussed. Finally, in

Section 5, we conclude this paper and discuss the results and our
future work.

2. Related Biological Researches

As the HMAX model and its modifications in this paper try to
mimic the structures and mechanisms of the ventral stream of
primate visual cortex, the review of related biological researches
in anatomy, neurobiology and cognitive science that support the
whole HMAX framework and the modifications are discussed
respectively as below.

2.1. Biological Researches of the HMAX
Framework
The ventral stream of primate visual cortex is associated with
complex shape discrimination, object recognition, attention and
long-term memory (Merigan, 1996; De Weerd et al., 1999; Nassi
and Callaway, 2009). It is organized in a hierarchical way, after
getting its inputs from the lateral geniculate nucleus (LGN), the
visual information goes through V1, V2, V4 to areas of IT: PIT,
Central inferotemporal(CIT), and anterior inferotemporal (AIT)
successively.

In the ventral stream, as receptive fields of neurons in one
visual layer together represent the entire visual field, each layer
contains a full representation of the visual space. During the
processing, visual information is propagated from a local region
to its succeeding hierarchical region, in which the receptive field
size of a neuron is approximately 2.5 times larger than the input
layer. Such convergent connectivity overlaps continuously with
each other and ensures the invariant representation of visual
stimuli. Please refer to Serre et al. (2007) for more detailed
biological evidence of the HMAX model.

2.2. Biological Researches of the Modifications
2.2.1. Neuronal Response Characteristic and Feature

Encoding Mode
The orientation, position and color information are critical for
feature encoding in visual cognition.

2.2.1.1. Orientation and Location

The neuronal responses of V1 can discriminate small changes
in visual orientations and spatial frequencies, and the spatial
location of visual information is well retained. V2 and V4 are
similar with V1, but have more tuning properties. The responses
of V2 neurons could also be modulated by the orientation of
illusory contours, and discriminate whether the stimulus is part
of the foreground or the background (Qiu and von der Heydt,
2005). V4 is tuned for object features of intermediate complexity,
like simple geometric shapes. IT layer is associated with the
representation of complex object features.

2.2.1.2. Color

The processing of color information begins in the retina with
three types of cones cells-L, M, S, which have different responses
to different wavelength lights (Hunt, 2005). Then the signals
are transmitted through LGN to V1. The color cells in LGN
and V1 are only sensitive along two axes, roughly red-cyan and

Frontiers in Computational Neuroscience | www.frontiersin.org October 2015 | Volume 9 | Article 123 | 62

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Li et al. Enhanced HMAX model

blue-yellow (Wiesel and Hubel, 1966; Chatterjee and Callaway,
2003; Field et al., 2007). In V1, there are double-opponent
neurons which compute local color contrast and color constancy
(Danilova and Mollon, 2006; Kentridge et al., 2007). V1 color
cells are clustered within cytochrome-oxidase blobs, and then
project to the cytochrome-oxidase thin stripes of V2, which in
turn project to globs in PIT. Glob cells achieve the perception
of hue including red, green, blue, and to some extent yellow
(Conklin, 1973). The final processing of color signals takes place
in IT, which may help with shape decision making (Matsumora
et al., 2008; Conway, 2009).

Finally, the visual inputs are transformed into representations
that embody the enduring characteristics of objects and their
spatial relationship (Milner and Goodale, 2008).

2.2.2. Attention Modulation
Attention modulation includes two modes: bottom-up and top-
down. Visual selection is completely stimulus-driven in the
first 150ms, and the salience of objects can be modulated by
bottom-up priming in a passive automatic way. In the later
time (N150ms), through massive recurrent feedback processing,
active volitional control based on expectancy and task will bias
visual selection in a top-down manner (Theeuwes, 2010).

In this paper, we focus on the bottom-up attention
modulation, which is associated with salience. It is computed
on the basis of the detection of locations which have significant
local feature contrast, along some dimension or combination
of dimensions (Itti and Koch, 2001; Donk and van Zoest,
2008). Firstly, a bottom-up saliency map can be created
in V1 (Theeuwes, 2010; Zhang et al., 2012), and lateral
connections (Gilbert and Wiesel, 1983; Rockland and Lund,
1983) between V1 neurons help mutual suppression between
neurons tuned to similar input features. In addition, V2 is mainly
responsive to top-down modulations (Beck and Kastner, 2005).
In V4, bottom-up saliency and top-down control converge,
and finally generate an overall saliency map (Töellner et al.,
2011a,b).

2.2.3. Distributed Memory and Association Structure
The regions in the ventral stream have distributed memory and
association structures.

Layer 6 of V2 are found to be important in the storage of
object recognition memory and the conversion of short-term
object memories into long-term object memories (López-
Aranda et al., 2009). IT is connected with other memory
associated areas, namely the hippocampus, the amygdala and
the prefrontal cortex. Gross (2008) revealed that neurons in IT
with similar selectivity of memory are clustered together and
they also display learning ability over time. For example, different
neural populations appear to be selectively tuned to particular
components (e.g., face, eyes, hands, legs) of the same biological
object.

Moreover, discrete object categories are even associated with
different regions: objects with many shared features (typical
of living things) are associated with activities in the lateral
fusiform gyri, whereas objects with fewer shared features (typical
of nonliving things) are associated with activities in the medial

fusiform gyri. While Perirhinal cortex (PRC) in the anteromedial
temporal lobe (aMTL) is associated with discrimination between
highly similar objects (Tyler et al., 2013). In addition, the
Parahippocampal Place Area (PPA) could differentiate between
scenes and objects, and the Fusiform Face Area (FFA) is more
sensitive to facial and body recognition rather than to objects
(Spiridon et al., 2006).

3. Methods and Detailed Implementation

In this part, the HMAXmodel is firstly reviewed. Secondly, based
on the biological researches stated above, our enhanced
model, focusing on the first 100–150ms unsupervised
feedforward cognitive process of the primate visual cortex,
is proposed. And the modifications and methods are discussed in
details.

3.1. The HMAX Model
During the hierarchical processing, the HMAX model
progressively increases its selectivity and invariance for
recognition. The function of each layer in the HMAX model is
discussed briefly in the following.

3.1.1. S1 Layer
This layer mimics the simple cells in V1, which have a Gabor-like
response characteristic. The grayscale input image is processed by
a convolution operation with multidimensional array of S1 cells,
and the S1 cells act with Gabor function as follows

G(x, y) = exp(−
x20 + γ 2y20

2σ 2
)× cos(

2π

λ
x0) (1)

where x0 = xcosθ + ysinθ and y0 = −xsinθ + ycosθ . 4
orientations θ (0◦, 45◦, 90◦, and 135◦) and 16 scales s are selected,
and other parameters are also tuned to generate 64 (= 4× 16) S1
layer feature maps FMS1, see Table I in Serre et al. (2007), for
more details.

3.1.2. C1 Layer
This layer mimics the complex cells in V1, which have larger
receptive fields than simple cells in V1 (S1 layer) and show some
degree of tolerance to shift and scale. Each C1 layer feature map
is generated by max-pooling local neighborhoods (LS×LS) in the
same scale band with a step overlap, as Equation (2). Here, one
scale band is formed by two feature maps with adjacent scales
in S1 layer. Thus, some degree of shift and scale invariance is
achieved in C1 layer, and 32 (= 4 × 8) C1 layer feature maps
FMC1 are obtained.

FMC1(x, y)
s,θ = max

ux,y∈B_FMS1
s,θ
ux,y (2)

where ux,y are the local neighborhoods centered at point (x, y)
in one of the orientation map of one scale band of S1 layer—
B_FMS1

s,θ .

3.1.3. Prototype Sampling
In this stage, M prototypes {P} are extracted from the C1 layer
across all four orientations (n × n × 4), and n = (4, 8, 12, 16)

Frontiers in Computational Neuroscience | www.frontiersin.org October 2015 | Volume 9 | Article 123 | 
 
| 

63

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Li et al. Enhanced HMAX model

is the prototype size. Only a random sampling method is
used for prototype extracting. For binary classification task, the
prototypes are only sampled from the positive training set.

3.1.4. S2 Layer
This layer corresponds to the cells in V4 and IT layer. For all
positions and orientations of each scale band, the difference of
the one feature map patch Xs ∈ FMC1

s centered at (x, y) and
each prototype Pm ∈ {P} is computed in a Gaussian-like way as
Equation (3).

FMS2(x, y)
s
m = exp(−β‖Xs − Pm‖) (3)

Where β defines the sharpness of the tuning. Here, as all the four
orientations are computed together, 8×M S2 layer feature maps
FMS2 are computed.

3.1.5. C2 Layer
In this layer, for the FMS2 corresponding to one prototype Pm,
its C2 layer response is computed by taking a global maximum
over all scales and positions. Thus, the final feature vector
consists ofM C2 values, which is a position- and scale- invariant
representation of an image.

3.2. The Enhanced HMAX Model
Given a set of training images D and N , where D is a
“discovery dataset” comprising a variety of object classes, and
N is the“natural world dataset” including many other common
objects and scenes. The goal of the enhanced HMAX model
is to mimic the first 100–150 ms feedforward visual cognition
procedure with the images in D and N by introducing attention
modulation, memory processing and position encoding into
the original HMAX model, and finally achieve multiclass
categorization. The whole framework of this paper is given in
Figure 1. All the modifications of the original HMAX model are
discussed in the following, which correspond to related biological
researches that stated in Section 2.

3.2.1. Attention Modulation—Saliency Map

Generation
In this step, the original HMAXmodel is extended with attention
modulation in S1 level, in which a bottom-up saliency map
is generated based on color and orientation contrast, which
corresponds to the biological evidence of attention modulation
in V1 layer (Gilbert andWiesel, 1983; Donk and van Zoest, 2008;
Theeuwes, 2010). Only the dataset D is processed in this step, as
it contains the object class to be learned. The generated saliency
map will support the prototype learning in next stage.

Different from the gray input images in the original HMAX
model, we use color input images and convert them to Lab
images, as this color space is mostly consistent with the characters
of LGN and V1 cells, which are sensitive along two axes, roughly
red-cyan and blue-yellow (Danilova andMollon, 2006; Kentridge
et al., 2007).

For a color image, based on the work of Itti et al. (1998)
and Achanta et al. (2009), firstly, the S1 layer orientation feature
map with 12 orientations θ and 16 Gabor scales s are computed

based on the L channel in Lab color space. Since all the feature
maps have the same size of the original image, we can directly
compute the orientation saliency map by difference operation
as Equation (4) rather than the downsampling and interpolation
operation in Itti et al. (1998). Here, the first 8 scales are selected
to compute the orientation saliency map. The scale interval 1s
for the difference operation is 4, and the difference of all the
scales and orientations are added together to get SFMO. Then,
by computing the mean value avg() and the standard deviation
std() of SFMO, the normalized orientation saliency map SFMO is
obtained.

SFMO =

4
∑

s= 1

12
∑

θ = 1

(FMO
s,θ − FMO

s+1s,θ )

SFMO = (SFMO − avg(SFMO))/std(SFMO)

(4)

Secondly, the Lab color feature map FMC is obtained by gaussian
filtering of the original Lab image, and the color saliency map
SFMC is computed as Equation (5). avg(FMi

C) computes the
mean value of the ith channel of FMC, and the normalized color
saliency map SFMC is computed in the same way as SFMO.

SFMC =
∑

i= l,a,b

(FMC
i − avg(FMC

i))T(FMC
i − avg(FMC

i)) (5)

Where l, a, b corresponds to the three channels of Lab color
space, respectively.

Finally, the normalized saliency feature maps of color and
orientation are combined together as SFM = λ1 · SFMO +

λ2 · SFMC to get the final saliency map (λ1 = 0.4, λ2 = 0.6).
The procedure of saliency map generation is illustrated in the S1
layer of Figure 1. Furthermore, the salient points are also sorted
according to their values in SFM.

3.2.2. Memory Processing—Prototype Learning
The prototype selection of the original HMAX model (Serre
et al., 2007) is based on random sampling. The representation
and discrimination ability of these prototypes are not guaranteed.
While in other modified HMAXmodels (Mutch and Lowe, 2006;
Huang et al., 2011b), prototypes are selected or learned in each
object class, respectively in a one vs. all manner, which is a
supervised procedure.

However, we try to mimic the first 100–150 ms in visual
cognition, which is an unsupervised feedforward procedure.
Thus, wemodify the unsupervisedmiddle level patch (prototype)
discovery method in Singh et al. (2012) to adapt to the HMAX
framework. In the new model, patches belonging to multiclass
can be learned without image label in an iterative way. During
this procedure, similar patches are clustered together and one
classifier is learned for each cluster for discrimination. This
procedure corresponds to the memory processing function of
V2 and IT, as the layer 6 of V2 are found important for
the conversion of short-term memories to long-term memories
(López-Aranda et al., 2009), and neurons in IT with similar
selectivity of memory are clustered together and they also display
learning ability over time (Gross, 2008).

In the new model, the datasets D and N are divided into two
equal, non-overlapping subsets (D1, N1 and D2, N2) for cross-
validation. The unsupervised prototype learning can be achieved
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FIGURE 1 | The whole framework of the enhanced HMAX model. Each layer corresponds to the region in visual cortex. Besides the functions and structures of

the original HMAX model, the modifications are marked with dotted green bounding box. The image with red bounding box on the bottom is the current processing

image. LGN is sensitive to Lab color space; S1 (simple cells in V1 layer): The bottom-up saliency map based on orientation and color contrast is computed;

C1 (complex cells in V1 layer): The initial patches are sampled by centering on the selected salient points; Prototype learning (V2 and IT): An iterative clustering

method is used to learn discriminative patch clusters and their classifiers, which corresponds to memory processing; S2 (V4 and IT): Each cluster classifier is used as

a detector to generate S2 layer; C2: Final features are integrated with orientation, position (and color) information; Visual task (IT): Multiclass categorization with

softmax are achieved.

in two phases: initial sampling and iterative learning. The iterative
learning is alternately processed between two steps: clustering
and training classifiers on the two subsets. In addition, multi-
scale patches are extracted, and the patches with different
size n(=16, 28) are processed independently in the prototype
learning procedure, and finally integrated together in the C2
layer.

In the initial sampling phase, the patches from N1 are taken
as negative samples and selected in a random sampling manner
with an overlap constraint, which filtrates the randomly sampled
centers by making the distance between the any two centers no
smaller than 1

4 of the patch size n. The patches from D1 are
sampled in the salient regions. We discuss the initial sampling
method in D1 in the following.

Firstly, 8 C1 layer feature maps FM3C1 are computed with
Equation (2). As the patches are sampled in the first scale band
of C1 layer FMC1

1, the corresponding positions of the sorted
salient points in C1 layer are computed. The final salient points
are selected sequentially with an overlap constraint, which is the
same as the constraint of the random sampling method on N1.
Then, S middle level patches {PD} in FMC1

1 are extracted by
taking the final selected salient points as centers, which could
guarantee a good cover of the whole salient region as well as avoid
big overlap between patches.

Furthermore, due to the bigger size ofmiddle level patches and
more orientations computed than those of the original HMAX
model, the feature dimension of a patch is high, which could
be difficult for the SVM training of each cluster in the iterative
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learning step, as there are very little positive training data. Thus,
a dimension reducing method is proposed, which is similar to
the design of HoG features (Dalal and Triggs, 2005) (illustrated
in Figure 2). One patch is divided into 3 × 3 blocks with an
overlap, and the orientation histogram of each block is computed,
normalized with L2 norm, and cascaded to form the final feature
vector of a patch, which is an effective and concise representation
of a patch. In some cases, since the IT layer is sensitive to the RGB
color space (Conklin, 1973), the RGB color histogram can also
be computed in the same way of orientation histogram (dividing
into 2× 2 blocks), and added to the final feature vector.

In the iterative learning phase, the initial sampled patches are
further learned and clustered.

Since the traditional k-means clustering method is not fruitful
for the middle level patches due to its low level distance metric,
in order to learn discriminative patches and avoid overfitting, an
iterative learning method is used.

Secondly, by taking the patches of a cluster as positive features
and all randomly sampled patches {PN} inN1 as negative features,
a weighted linear SVM classifier is learned for each cluster. And
the SVM classifier is used as a detector in the first C1 scale
band of N1 to find hard negative patches, which are then used to
retrain the SVM classifier of each cluster. Then, the learned SVM
classifier of each cluster is used as detector in D2, and only the
top q (=5) ranked patches are taken to update the corresponding
cluster to keep the purity. If the top ranked patches are less than
3, the cluster is deleted. Then, the subsets D1, N1 and D2, N2

are switched and a new iteration with SVM training and cluster
updating are processed. In experiments, the algorithm converges
in 4–5 iterations.

Moreover, the purity and discriminativeness of each learned
cluster Ki is computed as Equation (6).

purity(Ki) =
1

r

r
∑

j= 1

ScoreSVM(Pj), Pj ∈ Ki

discri(Ki) = FireNumD/(FireNumD + FireNumN) (6)

Where ScoreSVM(Pj) is the score of the jth patches in the ith
cluster Ki computed with the corresponding SVM classifier, and
r is set to 10 (r > q) to evaluate the generalization of the cluster.
FireNumD and FireNumN are the firing rates of the SVM classifier
of cluster Ki in the datasets D andN , respectively.

The purity and discriminativeness are normalized in the same
way as Equation (4), and the general score of each cluster is
computed with the normalized purity and discriminativeness,

defined as score(Ki) = purity(Ki) + λ3 · discri(Ki). Finally,
the top ranked clusters and their corresponding classifiers are

represented as �n = {Ki,Ci}
Ŵn
i= 1 (Ŵn is the number of patches

with size n = 16, 28), and all the clusters with different size n are
stored together as � = {Ki,Ci}

Ŵ
i= 1, Ŵ = Ŵ16 + Ŵ28.

The whole prototype learning algorithm is given in
Algorithm 1.

3.2.3. Feature Integration with Position Encoding
In this part, the final feature vector in C2 layer with orientation
and spatial position is computed.

Firstly, for each cluster {Ki,Ci} in �, its corresponding S2
layer feature maps are generated by using Ci as detector in all
the scale bands of the C1 layer. Each unit in the S2 layer is a SVM
score, which could intuitively represent the discrimination ability
of the ith cluster that corresponds to a distributedmemory region
of object component in IT (Gross, 2008). Finally, 8 × Ŵ S2 layer
feature maps are obtained.

Then, the C2 layer features are computed in the same way
of the original HMAX. But the relative position coordinate
(xmax/W, ymax/L) of themaximum score of each cluster classifier
is also added to the final feature vector, and W, L are the width
and length of the S2 layer feature map with the maximum
score in it. Thus, the length of the C2 layer feature vector of
an image is 3 × Ŵ. Here, by integrating appearance features
and loose spatial constraint together, more representative and

FIGURE 2 | The dimension reducing method. As 12 orientations θ are used, the original feature dimension of a patch with size n is 12× n× n, n = 16,28 in this

paper. After dimension reducing processing, the feature dimension is 12× 9 for all the patches with different size n.
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Algorithm 1 Unsupervised Prototype Learning Algorithm

Input: Training set T including D andN

Output: The top ranked clusters and their corresponding clusters � = {Ki,Ci}
Ŵ
i= 1

1: D ⇒ {D1,D2}; N ⇒ {N1,N2} ⊲ Split D andN into equal sized disjoint subsets
2: Compute FMC1 with Equation (2) ⊲ Compute C1 layer feature maps
3: for one patch size n in {16, 28} do
4: Select S points from the sorted salient points ⊲ Operate in the first scale band of FMC1 of D1

5: Extract S patches {PD} with dimension reduction

6: {Ki}
S/5
i= 1 ⇐ Kmeans({PD}) ⊲ Use Kmeans to divide patches to S/5 clusters

7: while not converged do

8: for all i that size(Ki) ≥ 3 do ⊲Maintain clusters with enough patches
9: Ci ⇐ SVM_train(Ki,N1) ⊲ Use weighted SVM to train classifier for each cluster
10: Hard_N1 ⇐ hard_mine(Ci,N1) ⊲ Find the hard negative patches in N1

11: Cnew
i ⇐ SVM_retrain(Ki,Hard_N1) ⊲ Retrain the classifier with Hard_N1

12: Knew
i ⇐ detect_top(Cnew

i ,D2, q) ⊲ Find top q = 5 patches in D2

13: end for

14: K ⇐ Knew; C ⇐ Cnew

15: swap(D1,D2); swap(N1,N2)
16: end while

17: compute score(Ki) = purity(Ki)+ λ3 · discri(Ki) based on Equation (6)

18: �n = {Ki,Ci}
Ŵn
i= 1 ⇐ select_top(C, score, Ŵn) ⊲ Select the top Ŵn clusters of each patch size

19: end for

20: Unite all the top ranked cluster �n with different patch size n to � = {Ki,Ci}
Ŵ
i= 1, Ŵ = Ŵ16 + Ŵ28

discriminative features are learned, which is consistent with

the function of the ventral visual stream (Milner and Goodale,
2008).

3.2.4. MultiClass Categorization
Based on the unsupervisedly learned features in C2 layer together
with the image labels, a softmax layer is added on the top
of the C2 layer to achieve the multiclass categorization task.
Each output of the softmax layer corresponds to a distributed
association region of an object class (Tyler et al., 2013). In
addition, due to the unsupervised iterative learning manner of
� = {Ki,Ci}

Ŵ
i= 1, similar patches from same object class are

gathered together, and in some conditions, similar patches from
different object class are also clustered together. The features
from multiclass are shared, and the memory storage could be
small. Meanwhile, the discriminativeness and purity are also
guaranteed. Thus, the final feature vector is compact and suitable
for multiclass categorization task.

4. Results

Multiclass categorization experiments on Caltech101 are carried
out. The implementation of each modification and the final
categorization result of the proposed model are evaluated and
discussed. Furthermore, the comparison experiments with the
original HMAX model and other unsupervised feature learning
methods on multiclass categorization are also conducted and
analyzed.

4.1. Dataset
Caltech101 (Fei-Fei et al., 2007) is a dataset with 102 classes
(101 object class and 1 background). Here, 10 object classes are

selected, and 30 color images are randomly sampled in each
class to form the “discovery dataset” D (positive training set).
The 437 color images in the background class are taken as the
“natural world dataset” N (negative training set). During the
testing process, another 20 color images in each of the 10 object
classes are selected to form the testing set.

4.2. Saliency Map Generation and Salient Point
Selection
In this part, we discuss the role of saliency map in S1 layer
(corresponding to V1 layer). Firstly, the V1 layer does have the
ability of bottom-up saliency map generation based on local
contrast. Secondly, the saliency map in S1 layer could provide a
good initial region for patch selection. In Figure 3, some images,
their corresponding saliency maps, and initially selected patches
with different methods are given. We can see that the generated
salient regions of our saliencymap computationmethod (column
2) correspond to object regions in images, and the boundary
and content are well kept. The proposed initial patch sampling
method based on salient points (column 3) has a dense cover
of the whole object region as well as avoid big overlap between
patches, while the random sampling method with only overlap
constraint (column 4) has a wider cover of the whole image,
which extracts some meaningless patches in the background.
Moreover, the purely random sampling method (column 5) has
extracted some highly overlap patches, which is redundant, and
can not guarantee a good cover of the whole object region.

For images with more complicated backgrounds, some
saliency maps generated by the proposed method are also given
in Figure 4. Although some points in the backgrounds are
also activated, the object regions still have more salient and
continuous activations.
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FIGURE 3 | Some image examples, their saliency maps, and the initially sampled patches (red bounding boxes) with different methods. The 1st column

includes original images, the 2nd column includes saliency maps computed based on Equations (4) and (5). The 3rd column includes initially sampled patches

extracted by taking the final selected salient points as centers, which is used in this paper. The 4th column includes randomly sampled patches but with the overlap

constraint (same with the constraint of 3rd column). The 5th column includes purely random sampled patches.

FIGURE 4 | Images with complicated backgrounds (left) and their saliency maps (right). Although some points in the complicated backgrounds are activated,

the dominant object regions still have more salient and continuous activations.

4.3. Memory Processing—Prototype Learning
By processing the initially sampled patches with the unsupervised
iterative patch clustering method in Algorithm 1, similar middle
level patches are clustered together, and their corresponding
SVM classifiers are also obtained. The convergence procedure of

two clusters is given in Figure 5. Before the first iteration, the
cluster is generated by k-means clustering, and there are some
noises because of the low level distance metric. After 4 iterations,
the middle level patches that clustered together become more
similar.
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FIGURE 5 | The iterative learning procedure of two clusters. The initial clustering with k-means is not quite meaningful because the patches in one cluster don’t

belong to same or similar part of objects. With the unsupervised iterative prototype learning method, the patches in one cluster become more and more similar. After

4th iterations, the patches in one cluster correspond to same critical part of objects.

Some examples of the final learned clusters are given in
Figure 6. For each cluster in Figure 6A, the middle level patches
correspond to a kind of key parts of an object class, which are
representative and discriminative. While in Figure 6B, although
the patches in same cluster are from different object classes,
their appearances in orientation feature space are similar, which
indicates that the similar middle level patches from different
object class could be shared. Finally, by combining the middle
level patches and the corresponding SVM classifier together, each
cluster could be taken as a distributed region selective to one kind
of object parts in the IT layer of the visual cortex.

4.4. Categorization Results and Comparisons
In this section, the multiclass categorization results of the
enhanced HMAX model (eHMAX) are discussed in a various
of conditions and compared with the original HMAX model
(oHMAX). In addition, because the features of the eHMAX
are learned in an unsupervised way, and each learned cluster
could be considered as a true visual word (see Figure 6), and
in the C2 layer the relative position coordinate of each cluster
is also encoded into the final features, we could see that the
framework of the eHMAX is similar with the BOW and SPM
framework. Thus, the comparison experiments of the eHMAX
and the representative models with BOW and SPM framework
are also conducted, which includes KSPM (Lazebnik et al., 2006),
ScSPM (Yang et al., 2009), and LLC (Wang et al., 2010).

Firstly, the categorization results of the eHMAX and the
oHMAXwith different sizes and different numbers of patches are
given in Figure 7. Here, the number of patches in the eHMAX

corresponds to the number of clusters, as each cluster generates
one feature map in the S2 layer, which is same with function of
one patch (prototype) in the oHMAX.

As shown in Figure 7, with same number of patches, the
patches with bigger size have shown higher accuracy in both
models. It is because that the patch size 28 is much closer to
the middle level patches, which always correspond to critical
parts of object. While the patch size n = 4, 8 is too small
to contain enough discriminative information. Moreover, the
eHMAX model has shown better accuracy than the oHMAX
model almost in all the conditions. For example, when the

number of patches is 100, the accuracy of the eHMAX with patch
size 16 and 28 is 83 and 88%, respectively, which is 9.5 and 13%
higher than the oHMAX with 100 patches sized at 16 and 28.
This indicates that the learned clusters in the eHMAX are more
discriminative and representative. In order to achieve higher
accuracy, more number of patches is needed for the oHMAX.
And in some conditions, the increase of number of patches can
not improve the accuracy a lot because of the low discrimination
ability of randomly sampled patches. For example, the accuracy
of the oHMAX model with 1000 patches sized at 16 and 28 is
80.5 and 81.5%, respectively. The improvements are not that
dramatic comparing with the performance with the configuration
of 100 patches. In a word, the memory storage and feature
representation of the eHMAX model is more compact and
effective.

In addition, We find that without encoding the relative spatial
position information, the accuracy of the eHMAX model with
patch size n = 16, 28 (100 clusters) drops to 79 and 83.5%,
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A

B

FIGURE 6 | Some examples of the final learned clusters. In (A) (6 clusters), for each cluster, its patches correspond to same critical part of objects, which

indicates the prototype learning method has learned representative features; In (B) (4 clusters), similar patches from different objects are clustered together, which

shares the memories of different object class and helps to save memory size.

respectively. It is obvious that besides the learned discriminative
and representative clusters, the good performance of the eHMAX
model is also partly dependent on position encoding.

Secondly, according to the numbers of selected top clusters in
different patch size, the final results of the eHMAX by combing
mutiscale clusters are given in Table 1, and the results of other
models are also listed. In the eHMAX Model, by combining
100 clusters sized at 28 and 500 clusters sized at 16, the best
performance is obtained as 92.5%, while the oHMAXmodel with
same number and scale of patches has an accuracy of 83%. For the
oHMAX in Serre et al. (2007) with 4 patch sizes [4,8,12,16] and
800 patches of each size, the accuracy is only 78.5%. In addition,
by setting the dictionary size of KSPM, LLC and ScSPM model
to 600, which equals to the number of clusters in the eHMAX
model, the ScSPM model achieves the best performance as 91%,
but the accuracies of these three models are still lower than the
eHMAX.

5. Discussion

Different from the original HMAX model with a random
patch/prototype sampling method, and other modified HMAX
models with selection of patches in a supervised manner,
we focus on the first 100-150 ms feedforward/unsupervised
cognitive processing to enhance the HMAX model, its success
mainly depends on attention modulation, memory processing
and feature encoding abilities, which are designed based on the
related biological researches.

In the experiments, it is clear that the attention modulation
could generate saliency maps with high quality, and provide
good candidate salient regions/points for patch learning. The
memory processing procedure could learn discriminative and
representative middle level patches in an unsupervised iterative
manner. Meaningless patches are deleted and similar patches
from same/different object classes can be gathered in a same
cluster during the procedure, which indicates the memory
selectivity, sharing and clustering ability of the enhanced HMAX
model.

As for the multiclass categorization experiments on
Caltech101, the performance of the enhanced HMAX model
and the original HMAX model with different size and number
of patches is evaluated. Both of the models could achieve higher
categorization accuracies with bigger size of patches, which
indicates the middle level patches (n = 28) contain more
discriminative information. The categorization accuracies of the
two models have no significant improvement when the number
of the patches is bigger than 100. For the enhanced HMAX
model, the reason may be that the purity and discrimination of
the new clusters are lower than that of the first 100 clusters. For
the original HMAX model, the reason may be the new randomly
sampled patches are meaningless or redundant. Furthermore,
the enhanced HMAX always has a better performance than the
original HMAXmodel with the same size and number of patches,
with the reason that the enhanced HMAX model learns more
discriminative middle level patches and also encodes relative
position information into features. All in all, the enhanced
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FIGURE 7 | Categorization accuracy of 10 classes in Caltech101 with

different methods. The size number of each line corresponds to the used

patch size of each model. The bigger the patch size, the higher accuracy can

be achieved for all the models. The eHMAX with patch size 28 has the highest

accuracy in all the conditions, which indicates that the memory storage and

feature representation of the eHMAX model is more compact and effective.

TABLE 1 | Categorization accuracy of 10 classes in Caltech101 with

different models.

Model Parameters Accuracy (%)

eHMAX Patch size: [16,28], Number of clusters:

[500,100]

92.5

oHMAX Patch size: [16,28], Number of patches:

[500,100]

83

oHMAX Patch size: [4,8,12,16], Number of patches:

[800,800,800,800]

78.5

KSPM Dictionary size: 600 85

ScSPM Dictionary size: 600 91

LLC Dictionary size: 600 89.5

The best accuracy is achieved by the eHMAX model as 92.5%, and it is bold to be more

striking.

HMAX model can achieved higher performance with smaller
memory storage.

In addition, the comparison experiments of the HMAX
model and three representative BOW and SPM models are
conducted, which include KSPM, ScSPM, and LLC model. These
three models also learn features in an unsupervised way, and
their dictionary/codebook is similar to the patch cluster in the
enhanced HMAX model. But the visual words in the KSPM and
the ScSPM models are SIFT descriptors with patch size n = 16,
and the visual words in LLC model are HOG descriptors with
three sizes, n = 16, 25, 31, respectively. They are all extracted
from the original image level, and these three models are flat
processing method.

The experiment results indicate that the enhanced HMAX
model has a higher accuracy than the above three models, which
may owe to its hierarchical modeling and the discriminative
middle level patches. Firstly, the hierarchical modeling helps
to achieve some kind of invariance. Secondly, the size of
the middle level patches is n = 16, 28 in the C1 layer
(C1 layer is five times smaller than the original image), and
the middle level patches mainly correspond to critical parts
of objects, which are much bigger than the SIFT and HOG
descriptors.

6. Conclusion

In this paper, based on recent biological research findings, we
modified the original HMAX model by mimicking the first 100–
150 ms unsupervised feedforward visual cognition process. The
main contributions include:

(1) A bottom-up saliency map is generated based on local
orientation and color contrast in S1 layer, which mimics the
attention modulation ability of V1 layer of the visual cortex.
The boundary and content of salient object are well kept, and
the points in the salient regions are selected to support the
initial sampling of patches.

(2) An unsupervised iterative clustering method is used to
learn more representative and discriminative middle level
patches, which mimics the learning, clustering and short-
term memory to long-term memory conversion abilities of
V2 and IT layer. After a few iterations, the patches in each
cluster almost correspond to the same or similar key parts of
object class, and one classifier of each cluster is also learned
to distinguish it from others.

(3) The feature vector is computed in C2 layer, which is the
cascade of the maximum activation value of each cluster
and their corresponding relative spatial position. Finally,
a softmax decision layer is used to achieve the multiclass
categorization. This process mimics the feature encoding
mode and distributed associated regions of different objects
in the visual cortex.

Experiments on multiclass categorization task have
demonstrated the effectiveness of the enhanced HMAX
model.

In the future, on the one hand, we will investigate the
reinforcement learning ability and the recurrent feedback
processing of the visual cortex, and mimic the related structures
andmechanisms to build new biologically inspired visual models.
With the labels of images, the saliency map generation and
memory learning can be further reinforced in a supervised
manner, and a higher accuracy and robustness could be expected.
With the ground-truth bounding box of objects, the relative
position of each patch to the center of each object could be
encoded to support categorization as well as detection task. On
the other hand, it will also be meaningful to find a way to
achieve multiple visual tasks, such as classification, detection
and segmentation, in an unsupervised or weakly supervised way,
since this way requires less human labor and the primate visual
cortex does have such ability.
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Recently, biologically inspired models are gradually proposed to solve the problem

in text analysis. Convolutional neural networks (CNN) are hierarchical artificial

neural networks, which include a various of multilayer perceptrons. According to

biological research, CNN can be improved by bringing in the attention modulation

and memory processing of primate visual cortex. In this paper, we employ

the above properties of primate visual cortex to improve CNN and propose

a biological-mechanism-driven-feature-construction based answer recommendation

method (BMFC-ARM), which is used to recommend the best answer for the

corresponding given questions in community question answering. BMFC-ARM is an

improved CNN with four channels respectively representing questions, answers, asker

information and answerer information, and mainly contains two stages: biological

mechanism driven feature construction (BMFC) and answer ranking. BMFC imitates

the attention modulation property by introducing the asker information and answerer

information of given questions and the similarity between them, and imitates the memory

processing property through bringing in the user reputation information for answerers.

Then the feature vector for answer ranking is constructed by fusing the asker-answerer

similarities, answerer’s reputation and the corresponding vectors of question, answer,

asker, and answerer. Finally, the Softmax is used at the stage of answer ranking to get

best answers by the feature vector. The experimental results of answer recommendation

on the Stackexchange dataset show that BMFC-ARM exhibits better performance.

Keywords: convolutional neural networks, biologically inspired feature construction, feature encoding, answer

recommendation, community question answering, text analysis

1. INTRODUCTION

Community Question Answering (CQA) has attracted a lot of attentions from both research and
industry communities in recent years. A fundamental problem in CQA is answer recommendation,
which recommends the best answer of a question to the asker who posts the question.

Most previous research takes this problem as a ranking task and employs learning-to-rank
algorithms to rank answers. Then the answer in the top of the answer list is recommended to users.
To achieve this, most researchers focus on constructing complex and novel features (e.g., lexical
features, syntactic features, and semantic features) to improve the recommendation performance.
For example, Surdeanu et al. (2011) use linguistically motivated features to rank answers to non-
factoid questions. They exploit natural language processing such as named-entity identification,
syntactic parsing, and semantic role labeling to construct similarity features, translation features,
density features, and frequency features.
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However, feature construction is a time-consuming and labor-
consuming problem which needs huge priori knowledge and
experience, especially with the increasingly huge amount of
questions and corresponding answers in CQA. Nowadays, many
researchers focus on constructing features automatically using
neural network. They only focus on the information of questions
and answers, which is not suitable for CQA containing huge
social information. It is worth to leverage the social information
presented in CQA that users tend to focus or vote answers
according to the relation with others.

Since, biologically inspired models are gradually proposed
to solve the problem in text analysis recently and the biological
research of primate visual cortex, traditional CNN can
be improved by introducing attention modulation and
memory processing of primate visual cortex. In this paper,
we employ the attention modulation and memory processing
of primate visual cortex to enhance the CNN model, and
propose a biological-mechanism-driven-feature-construction
based answer recommendation method (BMFC-ARM) to
recommend the best answer for given questions in community
question answering. In order to support feature construction,
BMFC-ARM imitates the attention modulation property by
introducing the asker-answerer information of given questions
and computing the similarity between them, and then brings
in the user reputation information of users who have answered
the questions, which imitates the memory processing property.
After feature construction, the Softmax is used at the stage of
answer ranking to get the best answer. The experimental results
of answer recommendation on the Stackexchange dataset show
that the BMFC-ARM exhibits better performance.

The rest of this paper is organized as follows. Section
2 describes the related work. The proposed BMFC-ARM is
introduced in Section 3, which contains biological mechanism
driven feature construction and answer ranking. Section 4 gives
details of experiments and corresponding results. Finally, Section
5 summarizes conclusion and future work.

2. RELATED WORK

2.1. Answer Recommendation
Answer recommendation is the basis research in CQA, which is
designed to recommend the best answer to users. Wang et al.
(2009) and Tu et al. (2009) proposed an analogical reasoning-
based method to model question-answer relations to rank
answers. Hieber and Riezler (2011) focused on the challenge of
identifying high quality content caused by the inherent noisiness
of user generated data. They proposed a series of features
to model answer quality and expended the query, then used
perceptron and Ranking SVM to rank answers. To recommend
a reasonable answer to users, Liu et al. (2014) recognized
questions in microblog and used collaborative filtering methods
with integrated standard features and contextual features which
are extracted from auxiliary resources. Beyond textural features
used in previous works, user information is also investigated
in answer ranking. Zhou et al. (2012) took advantage of three
kinds of user ptofile information: level-related, engagement-
related, and authority-related, and employed SVMRank and

ListNet for ranking answers. To avoid the manual quality control
mechanisms, Dalip et al. (2013) proposed a learning to rank
approach, and used textual and non-textual features which can
represent the quality of query and answer pairs to rank answers.
Specifically, the non-textual features contain user, review, and
user-graph features.

2.2. Deep Learning for Text Analysis
Kalchbrenner et al. (2014) proposed a dynamic convolutional
neural network with a dynamic k-Max pooling to model
sentences. Hu et al. (2015) adapted the convolutional strategy
in vision and speech, and then proposed convolutional neural
network models for matching two sentences.

In classification tasks, Wang et al. (2016) proposed a
framework to expand short texts based on word embedding
clustering and convolutional neural network to overcome the
worse classification performance caused by data sparsity and
semantic sensitivity. Lai et al. (2015) introduce a recurrent
neural network for text classification. Zeng et al. (2014) exploit
convolutional neural network to extract word level features and
sentence level features. Santos et al. (2015) proposed a a new
pairwise ranking loss function and used convolutional neural
network for relation classification.

Deep learning has been proven to be effective for many
text analysis tasks. Recently some researchers brought deep
learning into question answering. Bordes et al. (2014a,b) used an

embedding model to project question-answer pairs into a joint
space. tau Yih et al. (2014) used convolutional neural network to
measure the similarity of entity and relation of a question with
those in knowledge base for single-relation question answering.
Iyyer et al. (2014) introduced a recursive neural network tomodel
textual composition for factoid question answering. Zhou et al.
(2016) aimed to find answers of previous queries to new queries,
and used neural network architecture to learn the semantic
representation of queries and answers in community question
answering retrieval.

Different from previous deep learning methods only focusing
on the semantics of question-answer pairs to rank answers, we
also take user information into account in this paper, which is an
very important aspect in community question answering.

3. METHODOLOGY

In this section, we present the proposed approach BMFC-
ARM, which contains biological mechanism driven feature
construction (BMFC) and answer ranking. First, an overview of
the framework of BMFC-ARM is given. Then we describe the
BMFC method and answer ranking in detail.

3.1. Overview of BMFC-ARM
Answer recommendation can be viewed as a ranking problem.
Given a set of questions Q in a community question answering
(CQA) system, each question qi ∈ Q contains a list of answers
Ai = {ai1, ai2, . . . , aib, . . . , ain}, where aib is the best answer
selected by asker or CQA systems, our goal is to learn a ranker
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according to these question-answer pairs, then recommend the
best answer to any additional questions.

The proposed BMFC-ARM consists of two stages: BMFC and
answer ranking which shown in Figure 1. BMFC method is to
automatically construct features by introducing the attention
modulation and memory processing, which contains three parts:
text model, user model, and feature fusion. First, questions and
their corresponding answers are passed through text model to
get their feature vectors which contain semantic information.
At the same time, the corresponding asker information and
answerer information are passed through user model to get their
feature vectors. In order to introduce the attention modulation
and memory processing properties, BMFC imitates the attention
modulation property by introducing the asker information and
answerer information of given questions through user model

and computing the similarity between them, and then brings
in the user reputation information of user who answered the
questions, which imitates the memory processing property.
After getting the feature representation of questions, answers,
askers and answerers, feature fusion is used to combine
those features into a single vector. After feature construction,
answer ranking employs Softmax to recommend the best
answer.

3.2. Biological Mechanism Driven Feature
Construction (BMFC)
For the openness of CQA, all users can answer questions, which
results in the unstable quality of answers. For the sociality of
CQA, users get more interaction with each other when they

FIGURE 1 | The framework of BMFC-ARM, which contains two stages: BMFC and answer ranking. BMFC method is to automatically construct features by

introducing the attention modulation and memory processing, which contains three parts: text model, user model, and feature fusion. The feature representation of

questions, answers, and users are obtained from text model and user model respectively, and then the feature fusion constructs all feature representations together

with the similarity of asker-answerer pairs and answerer’s reputation into a combined feature vector. At last, Softmax is implemented to rank answers and recommend

the best answer accordingly.
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are similar, and may select the answer that provided by the
answerer who is similar with them as the best answer. Therefore,
in this paper, we assume that when users choose an answer
as the best answer in CQA, their thinking process have two
properties: (1) whether the answer is related to the question;
(2) whether the answerer is the person they care about or
familiar with.

According to the assumption, we introduce attention
modulation and memory processing of primate visual
cortex, and propose a biological mechanism driven feature
construction (BMFC) method. As users may choose an answer
which answered by the person similar to them as the best
answer, BMFC imitate the attention modulation property by
computing the similarity between askers and answerers of
given questions based on user model to reflect the relation
between askers and answerers. The reputation information
represents the quality of answers user answered. In order to
reflect the relevance of answers and questions, BMFC method

introduces user reputation to imitate the the memory processing
property. BMFC method contains text model, user model
and feature fusion. The flow of BMFC method is shown in
Figure 2.

3.2.1. Text Model

The text model in BMFC is based on convolutional neural
network which is shown in Figure 3. It contains two channels
to model question and answer respectively, and each channel
contains a convolution layer followed by a simple pooling
layer.

3.2.1.1. Text Matrix
Our text model first transforms the original text into vectors.
Inspired by Kalchbrenner et al. (2014), we use word2vec
that takes advantage of the context of the word which
contains more semantic information to do the word embedding
for each word in a text, and then construct the text

FIGURE 2 | The BMFC method, which contains three parts: text model, user model, and feature fusion. First, questions and their corresponding answers

are passed through text model to get their feature vectors which contain semantic information. At the same time, the corresponding asker and answerer are passed

through user model to get user feature vector. In order to introduce the attention modulation and memory processing properties, BMFC imitate the attention

modulation property by introducing the asker-answerer information of given questions through user model and computing the similarity between them, and then bring

in the user reputation information of user who answered the questions, which imitates the memory processing property. After getting the feature representation of

questions, answers and users, feature fusion is used to combine those features into a single vector.
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FIGURE 3 | The text model is used to map text into its corresponding feature representions. We use word2vec to tranform texts into vectors, and then use

two channel convolutional neural network to model questions and answers. All texts pass through a convolutional layer followed by a pooling layer. After text model,

texts are presented by their corresponding features.

matrix T ∈ R
d × |t| shown bellow:

T =





| | | | |

w1 · · · wi · · · w|t|

| | | | |





wherewi ∈ R
d is the word embedding of a word in the text which

contains |t| words and i is the position of the word in the text.
Then we will give a description of convolutional layer and

pooling layer used in each channel in next sections.

3.2.1.2. Convolutional layer
Convolutional layer is to convolve a matrix of weights with
the matrix of activations at the layer below, which has two
kinds of convolution: narrow convolution and wide convolution
Kalchbrenner et al. (2014). In our framework, we use wide
convolution which can deal with words at boundaries, and give
equal attention to words in different positions. And we use
ReLU as the activation function f (·). Given the text matrices
T ∈ R

d × |t| and a convolution filter k ∈ R
m, the convolution

operation between them results in a vector c ∈ R
|t| + m − 1. Each

element of c is computed as follows:

ci = f (Ti−m+ 1;i
T · k+ b) (1)

where |t| is the number of text word, b is the bias, m is the width
of convolutional filter.

3.2.1.3. Pooling layer
After convolutional layer, the input texts are represented by
the extracted features, and then passed through the pooling
layer. Pooling layer is used to reduce the dimension of features
obtained through the convolutional layer and aggregate feature
information from different parts. There are three commonly used

pooling methods: average-pooling, max-pooling, and stochastic-
pooling. Boureau et al. (2010) compared average-pooling and
max-pooling in detail. In this paper, we use max pooling which
is the most widely used pooling methods. It chooses the feature
with the maximum value in an area as shown in Equation (2).

cp = max{c} (2)

Then, the text matrix, convolutional layer and pooling layer form
our text model which builds rich feature representations of the
input question and answer.

Unlike previous works which just map the question and
answer into a vector space, BMFC takes user information into
account modeling asker and answerer into the same vector space,
and evaluates the relatedness of asker-answerer pairs based on
user model.

3.2.2. User Model

To introduce the attention modulation and memory processing
property into BMFC, we propose user model which represents
user information. In this paper, we use users’ self descriptions as
user information.

Same as text model, user model is based on CNN which
contains two channels to represent askers and answerers,
respectively. And each channel has a convolutional layer and a
pooling layer shown in Figure 4. Since users’ self descriptions
are very short, e.g., some just contain keywords, we use Latent
Dirichlet Allocation (LDA) Blei et al. (2003) to generate user
matrix U ∈ R

d × |u|.

U =





| | | | |

wu1 · · · wui · · · wu|u|

| | | | |




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FIGURE 4 | The user model for mapping user information into its corresponding feature representation. We use LDA to generate user matrix, and then use

two channel convolutional neural network to model askers and answerers. All user matrixes pass through a convolutional layer followed by a pooling layer. After user

model, askers, and answerers are presented by their corresponding features.

where d is the dimension of word vector, wui ∈ R
d is the word

representation of a word in user self description, |u| is the number
of words and i is the position of wui.

The convolutional layer and pooling layer in user model are
similar with those in text model.

3.2.3. Feature Fusion

After text model and user model, the information of questions,
answers, and corresponding askers and answerers is represented
by numeric vectors vq, va, vuq, and vua, respectively. Then, we
compute the similarity between asker and answerer to represent
their relations. Here, we use cosine similarity shown as follows:

suqua =
υuq · υua

‖υuq‖ × ‖υua‖
(3)

where suqua is the similarity between asker and answerer, ‖υuq‖

is the Euclidean norm of υuq = υuq1, υuq2, · · · , υuqn defined

as
√

υ2
uq1 + υ2

uq2 + · · · + υ2
uqn. Similarly, ‖υua‖ is the Euclidean

norm of υua.
Then, BMFC method concatenates the asker-

answerer similarities suqua, answerer’s reputation vr , and
corresponding vectors of question, answer, asker, and
answerer into a single vector which can be represented as
υ = [υq

T;υa
T;υuq

T; suqua;υua
T; vr]. Then, BMFC uses a

hidden layer to interact the different parts of υ to construct the
final feature to represent samples:

φ(w · υ + b)

where w is the weight vector of the hidden layer, b is the bias, and
φ(·) is the tanh function.

3.3. Answer Ranking
After feature construction using BMFCmethod, question-answer
pairs, and their corresponding users’ information are represented
through a vector V. In our method, we use a simple pointwise
ranking method to rank answers. Softmax is often used in
classification problem, which gives a probability of the sample
belongs to each class. Given the sample vector V, the probability
that it belongs to class j (j = 1, . . . ,K) is computed by Equation
(4). Then, answers are ranked according to this probability.

P(y = j|V) =
eV

TWj

∑K
k= 1 e

VTWk

(4)

whereWk is the weight vector of the kth class.

4. EXPERIMENT

4.1. Experiment Setting
4.1.1. Dataset

In our experiments, the raw data we use are from Stack
Exchange Data Dump1, which is an anonymized dump of all
user-contributed content on the Stack Exchange network2. The
dataset contains 238 sites and each site consists of questions and
corresponding answers of each question. We select around 840
resolved questions in four sites: movies, sports, travel, and music.

We split the dataset of 2385 question-answer pairs into a
training set (train, 80%), a development set (dev, 10%), and a
testing set (text, 10%) by randomly selecting 669 questions for
training set, 87 questions for development set, and 84 questions
for testing set, which are shown in Table 1. Here, each pair of

1https://archive.org/details/stackexchange
2http://stackexchange.com
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TABLE 1 | Summary of the answer recommendation dataset.

Data # Questions # QA Pairs # Askers # Answerers # Users

Train 669 1908 363 597 787

Dev 87 239 71 160 209

Test 84 238 76 173 229

Total 840 2385 428 689 912

#Question, #QA pairs, #Askers, and #Answerers are the number of questions, question-

answer pairs, askers, and answerers respectively. #Users is the total number of askers

and answerers except the overlap of them.

question and its answer together with the corresponding asker
and answerer constitutes an example. The example with best
answer is considered as the most relevant example among all
examples with other answers of the same question. This setup is
used in training set, development set, and testing set.

4.1.2. Word Embeddings

In our experiments, we use word2vec3 to get word embeddings
for questions and answers in text model, while using LDA to
generate user representation for askers and answerers in user
model.

For text model which represents question and answer
information, we use word2vec to get word embeddings, which
contains more semantic information by making use of the
context of words. Similar with Kim (2014), Yu et al. (2014),
we use the fixed word embeddings trained on all sites of Stack
Exchange Data Dump. And we use the skipgram model with
window size 5 to train word embeddings. Then words are
represented by 50-dimensional vectors.

Due to the brief self description of users, we use JGibbLDA4

trained by Gibbs sampling to generate word embeddings for the
user model. The parameter α is set as 0.5, β is set as 0.1, topic
number is set as 100, and each topic contains 50 words.

4.1.3. Parameters

The width mt of convolutional filter of the text model is set to
5, and the width mu of the user model is set to 2 according to
experimental results. The convolutional maps of both models are
100, and the depth of the convolutional filter is set to 50 which
is equal to the dimension of word vectors. We use ReLU as the
activation function and max pooling method.

Similary with Kim (2014), we use stochastic gradient descent
over mini-batches to train the BMFC-ARM where batch size is
set to 50.

4.1.4. Evaluation

For the task of answer recommendation, top answers in ranking
list determine users’ satisfaction. Therefore, we use Precision@N
and Mean Reciprocal Rank(MRR) as metrics to evaluate our
proposed method, which consider the position factor. Both of
them are commonly used in information retrieval and question
answering. Since we want to recommend the best answer to users,
we use Precision@1(N = 1) in this paper, which means that we

3https://code.google.com/archive/p/word2vec/
4http://jgibblda.sourceforge.net/

only focus on the precision of the first answer. Then Precision@1
is set to 1 if the best answer is ranked as first, 0 otherwise.

MRR takes the position of relevant answers into
consideration. Where Reciprocal Rank is the multiplicative
inverse of the rank of the first correct answer, and Mean
Reciprocal Rank is the average of Reciprocal Rank that taken
over all questions. MRR is computed as

MRR =
1

|Q|

|Q|
∑

q= 1

1

rank(q)

where |Q| is the number of questions in test dataset, rank(q) is the
position of the best answer in the resulting answer list.

4.2. Results
In this section we report the results of answer recommendation
obtained by BMFC-ARM, and give a comparison among different
methods (CNN-1, CNN-2, CNN-4, CNN-4M, CNN-4A, and
BMFC-ARM). CNN-1 method just considers the information of
questions and answers, which is passed through a single CNN
network to obtain the corresponding features. CNN-2 method is
a CNN network with two channels, which means that question
information and answer information are passed through one
channel respectively, and then obtains their corresponding
features. CNN-2 just considers the information of questions and
answers, which is similar with CNN. CNN-4 method considers
both question-answer information and user information, which
means that the information of question, answer, asker and
answerer is passed through four channels of CNN network
respectively, and then obtains their corresponding features.
Based on CNN-4, CNN-4M brings in the answerer’s reputation
to imitate memory processing property, and CNN-4A introduces
the similarity between askers and answerers. The proposed
BMFC-ARM imitates the attention modulation property by
introducing the asker-answerer information of given questions
and computing the similarity between them, and brings in
the user reputation information for users who answered the
questions to imitate the memory processing property. The details
of data used in this experiment are shown in Table 1. The
evaluation results measured by MRR and P@1 are reported over
this random split.

When users’ information is added, we compare the effects of
different widths mu of convolution filter due to the brief self
description of users. Unlike setting 5 as the width of convolution
filter in the text model of representing questions and answers,
our experiments compare the user model setting 2, 3, 4, and 5
as the width of convolution filter, respectively. Table 2 gives the
answer recommending results using different convolution filter
widths in the user model. As seen from Table 2, when mu = 2,
the value of MRR and P@1 of all methods are higher than the
cases of mu = 3, 4, and 5. The reason behind this result may be
due to the brief user information. Therefore, in the subsequent
experiments of this paper, the convolution filter width of the user
model is set to 2.

Figures 5, 6 show the recommendation results with different
methods with memory processing property and without memory
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TABLE 2 | Results with different widths of convolutional filter in user

model.

Model mu = 2 mu = 3 mu = 4 mu = 5

MRR P@1 MRR P@1 MRR P@1 MRR P@1

CNN-4 0.7498 0.5595 0.7403 0.5357 0.7409 0.5357 0.7240 0.5119

The CNN-4 method considers both question-answer information and user information,

which means that the information of question, answer, asker, and answerer is passed

through four channels of CNN network respectively, and then obtains their corresponding

features. mu means the convolution filter width in user model.

FIGURE 5 | Results with different methods along with memory property

information (MRR). No MP means that methods do not introduce the

memory property, where Yse MP means that methods considered the memory

property.

processing property. Figure 5 shows the results with MRR
measure and Figure 6 gives the P@1 measure. In these two
figures, the blue histogram represents methods which do
not consider the memory process mechanism, while the red
histogram represents methods that considered the memory
process mechanism. From Figure 5 we can see that CNN-2,
CNN-4, and CNN-4A obtain better performance by introducing
the memory process mechanism, which shows that the memory
processing mechanism through user reputation is useful to
recommend best answers. For CNN-2 which just considers
question information and answer information through two
channels of CNN, the recommendation result performs better
through adding user reputation, which shows that memory
processing mechanism plays an important role in answer
recommendation. From the recommendation results shown in
Figure 6 we can find that P@1 measure has the same tendency
withMRRmeasure, which also shows that methods withmemory
processingmechanism get better performance than those without
memory processing mechanism.

The recommendation results of different methods (BMFC-
ARM, CNN-1, CNN-2, CNN-4, CNN-4M, and CNN-4A) with
evaluation metrics of MRR and P@1 are shown in Table 3.

FIGURE 6 | Results with different methods along with memory property

information (P@1). No MP means that methods do not introduce the

memory property, where Yse MP means that methods considered the memory

property.

TABLE 3 | Results with different methods (CNN-1, CNN-2, CNN-4,

CNN-4M, CNN-4A, and BMFC-ARM).

Model MRR P@1

CNN-1 0.6933 0.4524

CNN-2 0.7220 0.5000

CNN-4 0.7498 0.5595

CNN-4M 0.7540 0.5712

CNN-4A 0.7567 0.5714

BMFC-ARM (Our model) 0.7673 0.5952

CNN-1 method just considers the information of questions and answers, which is

passed through a single CNN network to obtain the features. CNN-2 method is a

CNN network with two channels, which means that question information and answer

information are passed through one channel respectively. CNN-4 method considers both

question-answer information and user information, which means that the information of

question, answer, asker, and answerer is passed through four channels of CNN network

respectively. Based on CNN-4, CNN-4M brings in the answerer’s reputation to imitate

memory processing property, and CNN-4A introduces the similarity between askers and

answerers. BMFC-ARM imitates the attention modulation property by introducing the

asker-answerer information of given questions and computing the similarity between them,

and brings in the user reputation information which imitates the memory processing

property.

From Table 3, it is promising to observe that the proposed
BMFC-ARM outperforms those CNN-1, CNN-2, CNN-4, CNN-
4M, and CNN-4A with MRR and P@1 measure. It is probably
because that BMFC-ARM takes user information into account
introducing the attention modulation property and memory
processing property. From methods CNN-2 and CNN-4, we
can find that CNN-4 with user information performs better
than CNN-2 which just uses question and answer information.
This shows the importance of user information for answer
recommendation. Therefore, when recommending the best
answer to users in CQA, we need to take the relation information
between askers and answerers into account rather than just
considering question and answer information. The phenomenon
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that CNN-4M performs better than CNN-4 may be caused by
the introduced memory processing property. This indicates that
our memory processing property is useful by introducing user
reputation information. And the phenomenon that CNN-4A
performs better than CNN-4 shows that recommendation results
can be improved by considering the similarity between askers
and answerers which brings in users’ relation. The method CNN-
4A outperforms CNN-2 shows that through introducing the
attention modulation property, represented by user information
and the similarity between askers and answers, can improve the
recommendation results.

5. CONCLUSION

Convolutional neural networks (CNN) are hierarchical artificial
neutral networks, which are popularly used in natural language
processing. In this paper, we propose the BMFC-ARM to
recommend best answers for given questions in community
question answering, which is an improved CNN by introducing
attention modulation and memory processing of primate visual
cortex. In order to support the feature construction, we imitate
the attention modulation property by computing the similarity
of asker-answerer information of given questions, and bring
in the user reputation information for users who answered

the questions, which imitates the memory processing property.
Softmax is used at the stage of answer ranking to get the best
answer. The answer recommendation experimental results on
the Stackexchange dataset show that BMFC-ARM exhibits better
performance.

In the future, we will investigate how to bring the users’
sentiment information of questions into our framework and find
a novel way to represent the text.
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The transition from acute pain to chronic pain entails considerable changes of patients
at multiple levels of the nervous system and in psychological states. An accurate
differentiation between acute and chronic pain is essential in pain management as it may
help optimize analgesic treatments according to the pain state of patients. Given that
acute and chronic pain could modulate brain states in different ways and that brain states
could greatly shape the neural processing of external inputs, we hypothesized that acute
and chronic pain would show differential effects on cortical responses to non-nociceptive
sensory information. Here by analyzing auditory-evoked potentials (AEPs) to pure tones
in rats with acute or chronic pain, we found opposite influences of acute and chronic pain
on cortical responses to auditory inputs. In particular, compared to no-pain controls, the
N100 wave of rat AEPs was significantly enhanced in rats with acute pain but significantly
reduced in rats with chronic pain, indicating that acute pain facilitated cortical processing
of auditory information while chronic pain exerted an inhibitory effect. These findings
could be justified by the fact that individuals suffering from acute or chronic pain would
have different vigilance states, i.e., the vigilance level to external sensory stimuli would
be increased with acute pain, but decreased with chronic pain. Therefore, this auditory
response holds promise of being a brain signature to differentiate acute and chronic pain.
Instead of investigating the pain system per se, the study of pain-induced influences on
cortical processing of non-nocicpetive sensory information might represent a potential
strategy to monitor the progress of pain chronification in clinical applications.

Keywords: acute pain, chronic pain, auditory-evoked potentials (AEPs), sensory processing, animal models

INTRODUCTION

Acute pain, which serves as a warning signal of injury or illness, normally comes on quickly
and lasts for a short time (Carr and Goudas, 1999; Apkarian et al., 2009). If not treated
properly, acute pain can develop into chronic pain in which the pain persists even after
the initial injury or illness is healed (Merskey and Bogduk, 1994). When this happens,
considerable changes occur in both the peripheral and central nervous systems (CNS) as
well as in the psychological profiles of individuals (May, 2008). An accurate differentiation
between acute and chronic pain is essential in pain management as it may help optimize
analgesic treatments according to the pain state of patients (Loeser and Melzack, 1999;
Chou and Huffman, 2007a,b). It is, however, very difficult to make such a differentiation
during pain chronification, and a commonly-used operational approach for this purpose is
purely based on the duration of pain (e.g., pain that lasts for more than 3 or 6 months is
defined as chronic pain; Merskey and Bogduk, 1994). This approach can be highly unreliable
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because it ignores the substantial individual differences in
the process of pain chronification (Lavand’homme, 2011).
Nor can questionnaires be relied on to distinguish acute
pain from chronic pain, since patients may sometimes
describe the two pain states with equivalent characteristics
(Hashmi et al., 2013).

Some recent studies have found that information about
the transition from acute pain to chronic pain could be
documented by changes in brain structure and function (May,
2008; Apkarian et al., 2009, 2011), for example, a large-scale
reorganization of brain activities towards emotional circuits
could occur during the chronification of back pain (Hashmi
et al., 2013) and brain structural and functional connectivity
may be able to predict that process (Baliki et al., 2012; Mansour
et al., 2013). Importantly, the modulated brain structure and
function could influence cortical processing of various sensory
information—not only nociceptive information (Apkarian et al.,
2005; Wiech et al., 2008) but also non-nociceptive information
(Gilbert and Sigman, 2007; Fontanini and Katz, 2008). Consistent
with this, besides the large number of studies that focused
on the functionality of the nociceptive system per se in pain
states, there are reports of distorted cortical processing of non-
nociceptive sensory inputs (e.g., auditory and visual stimuli)
in individuals with acute pain (Johnson and Adler, 1993;
Lorenz and Bromm, 1997; Bingel et al., 2007) or chronic pain
(Lorenz et al., 1997; Wang et al., 1999; Blomhoff et al., 2000;
Ambrosini et al., 2003; Carrillo-de-la-Peña et al., 2006; Casale
et al., 2008) in experimental settings. Given that acute pain
and chronic pain may modulate brain activities in different
ways (Apkarian et al., 2009, 2011), we hypothesized that the
pain-related distortions of non-nociceptive sensory processing
could be differently represented when pain shifts from acute
to chronic states. If this hypothesis is valid, it would suggest
that examining the pain-related distortions of non-nociceptive
sensory processing might be a viable strategy for monitoring pain
chronification and thus could be potentially applied in clinical
practice.

Here we tested this hypothesis by investigating the different
influences of acute pain and chronic pain on auditory-evoked
potentials (AEPs) using rat models. An acute inflammatory pain
model was produced by intraplantar injection of formalin, and a
chronic inflammatory pain model was produced by intraplantar
injection of complete Freund’s adjuvant (CFA). In both pain
models, multi-channel AEPs elicited by pure tones in freely-
moving rats were recorded and compared.

MATERIALS AND METHODS

Animals
Sixty-four male Sprague-Dawley rats (weight at arrival:
180–200 g; Laboratory Animal Center, Academy of Military
Medical Sciences, Beijing, China) were used in the experiments.
Animals were housed individually under controlled temperature
(22 ± 2◦C) and humidity (50 ± 10%) conditions with a
reversed 12 h light/dark cycle (light on at 7:00 PM). They
were handled daily for a week before electrode implantation

surgery. All experimental procedures were in accordance with
the National Institutes of Health Guide for the Care and Use of
Laboratory Animals and approved by the ethics committee of
the Institute of Psychology, Chinese Academy of Sciences.

Electrode Implantation
Animals were anesthetized with sodium pentobarbital (50mg/kg,
i.p.) and then secured on a stereotaxic apparatus (Stoelting,
WoodDale, IL, USA). Twelve recording electrodes (stainless steel
screws, 1.0 mm in diameter) were implanted symmetrically on
the rat skull over both hemispheres according to the following
coordinates: (1) electrodes L1 and R1, 5.0 mm anterior to bregma
(5.0 A), ± 1.5 mm lateral to midline (± 1.5 L); (2) electrodes L2
and R2, 3.0 A, ± 1.0 L; (3) electrodes L3 and R3, −1.5 A, ± 2.5 L;
(4) electrodes L4 and R4, −4.5 A, ± 1.0 L; (5) electrodes L5 and
R5, 0.0 A, ± 4.5 L; and (6) electrodes L6 and R6, −4.5 A, ± 5.0 L.
A reference and a ground electrode were placed at the midline,
2.0 and 4.0 mm posterior to lambda, respectively. Insulated
wires connected the electrodes to a miniature connector, and
the whole assembly was firmly attached to the skull with
dental cement. After receiving penicillin (160,000 U, i.p.),
animals were allowed at least 1 week to recover from the
surgery.

Auditory Stimuli
Auditory stimuli were generated digitally using custom
MATLAB (Mathworks, Natick, MA, USA) scripts, amplified
by a power amplifier (A-S300, YAMAHA, Hamamatsu, Japan),
and delivered through a loudspeaker (H1189–27TDFC, SEAS,
Oslo, Norway) mounted in the ceiling of an anechoic sound-
attenuated chamber. Recordings were carried out in a Plexiglas
cage (L: 23 cm, W: 22 cm, H: 36 cm) situated in the sound-
attenuated chamber. The loudspeaker was approximately 1 m
from the middle of the test cage. The acoustic system was
calibrated with a condenser microphone (C01U, Samson,
Hauppauge, NY, USA) and a sound level meter (1350A, TES,
Taipei, Taiwan) before the experiments.

AEPs were elicited by pure tones of either 8000 or 8800 Hz
presented at 75 dB SPL with 100 ms duration and 500 ms inter-
stimulus interval (auditory oddball paradigm). In accordance
with previous studies recording auditory responses of the rat
brain (Shinba, 1997; Lazar and Metherate, 2003; Jung et al.,
2013; Witten et al., 2014), auditory stimuli with higher frequency
than those commonly used in human AEP studies (Sambeth
et al., 2003) were used in the present study, since rats exhibit
more robust electrophysiological responses to higher pitch tones
(with a maximum between 8 and 20 KHz) than to lower pitch
tones (Knight et al., 1985). Each recording session contained
eight stimulation blocks presented in random order with an
approximately 1 min break between successive blocks. In four
of these blocks, the lower frequency tone served as the standard
(i.e., frequent stimuli, 85%) and the higher frequency tone as
the deviant (i.e., rare stimuli, 15%). In the other four blocks, the
roles of the lower and higher frequency tones were switched. In
each block, 260 tones were presented in a pseudorandom order
with the constraint that at least two standards were delivered
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before each deviant. The first 10 stimuli in each block were
excluded from off-line analysis in order tominimize the potential
influence of switching between different types of blocks on
the measured auditory responses (Nakamura et al., 2011). Each
block lasted about 2.5 min and an entire session took less than
30 min.

EEG Recording
Rats were individually placed in the test cage 15–20 min
before EEG data collection to familiarize them with the test
environment. For EEG recording, a headstage was attached to the
connector mounted on the rat’s head and connected to an EEG
amplifier (UEA-16BZ, SYMTOP, Beijing, China) via a flexible
multi-strand cable. EEG signals were recorded continuously
from the 12 recording electrodes, sampled at 1000 Hz, and low-
pass filtered at 120 Hz. Rats were allowed to move freely in the
test cage throughout the recording session.

Experimental Procedures
Acute Pain Model
Forty rats were randomly divided into four groups: 1% formalin
(n = 11), 5% formalin (n = 10), normal saline (NS) control
(n = 10), and no-treatment (NT) control (n = 9) group. After the
rats were placed in the test cage for approximately 20 min, they
were injected with 1% formalin, 5% formalin, or NS (50 µL each)
subcutaneously into the plantar surface of their left hindpaw
according to the group they belonged to. Immediately after
injection, the rats were returned to the test cage. Nociceptive
behaviors were video-recorded over the following 60 min and
quantified by measuring the time spent licking the injected
paw within each 5 min period. Rats in the NT group were
treated by the same operations but without any injection. AEPs
were repeatedly recorded 24 h before (baseline), 20–50 min,
90–120 min, and 24 h after injection. One rat in the 5%
formalin group did not show any nociceptive behavior following
injection and thus was excluded from further analyses.

Chronic Pain Model
Twenty-four rats were randomly divided into two groups:
CFA group (n = 12) and NS group (n = 12). The rats
were subcutaneously injected with either 100 µL CFA (Sigma-
Aldrich, St. Louis, MO, USA) or NS into the plantar surface
of their right hindpaw. AEPs were repeatedly recorded 1 day
before (baseline), 1, 3, 7, 14, and 28 days after injection.
Thermal nociceptive thresholds, quantified using the paw
withdrawal latencies (PWLs) to radiant heat, of the injected
and non-injected hindpaws were measured on each test
day (PWL test started at least 2 h after the end of EEG
recording).

The thermal nociceptive threshold test was adapted from
Hargreaves et al. (1988). Rats were placed individually in
Plexiglas chambers on an elevated glass floor and habituated
to the test apparatus for at least 20 min. Focused radiant heat
generated by a 100 W projector lamp was applied through the
glass floor to the plantar surface of the stimulated hindpaw.
PWL was defined as the time from the onset of heat stimulation

to the withdrawal of the hindpaw. A cut-off time of 22 s was
employed to avoid tissue damage. Five trials separated by at least
5 min were conducted on each hindpaw. To ensure that the rats
were familiarized to the stimulation procedure and to increase
the reliability of the measurement, latency of the first trial was
discarded, and latencies of the following four trials were averaged
to give a mean PWL.

Three rats (one in the CFA group, two in the NS group) did
not show any movement of the stimulated hindpaws during the
22 s test period and thus were excluded from further analyses.

EEG Data Analysis
EEG data were preprocessed using EEGLAB (Delorme and
Makeig, 2004), an open source toolbox running in the MATLAB
environment, and custom MATLAB scripts. Continuous
EEG signals were band-pass filtered between 1 and 30 Hz
and segmented into epochs extending from −50 ms to
+350 ms relative to the stimulus onset. EEG segments were
baseline-corrected using the pre-stimulus interval, and trials
contaminated by gross artifacts were manually rejected by
visual inspection. Since we aimed to assess the influence of
pain states (acute or chronic pain) on AEPs, our analysis was
focused on standard-related cortical response due to its higher
signal-to-noise ratio than deviant-related cortical response
(the number of trials of standard was much larger than that
of deviant). For each group, single-trial responses to standard
stimuli were averaged for each rat and session. Single-rat average
waveforms were subsequently averaged to obtain group-level
waveforms for each session. Three distinct components in AEPs
were identified, which consisted of an initial negative deflection
peaking at ∼40 ms after stimulus onset (N40), followed by
a positive deflection peaking at ∼60 ms (P60) and another
negative deflection peaking at ∼100 ms (N100). For each group,
peak latency and baseline-to-peak amplitude of each component
were measured for each rat and session from the electrodes
where the deflection reached its maximum. Grand-average scalp
topographies at their peak latencies were plotted using a rat head
model according to the rat brain atlas of Paxinos and Watson
(2007).

Statistical Analysis
Data are expressed as mean ± standard error (SE). Statistical
analyses were performed with STATISTICA 10 (StatSoft, Tulsa,
OK, USA) andGraphPad Prism 5.0 (GraphPad Software, La Jolla,
CA, USA). Statistical significance was set as p < 0.05.

For acute pain model, the licking time was compared using
a two-way analysis of variance (ANOVA) with group (three
levels: NS, 1% and 5% formalin) as a between-subject factor
and time (12 levels: every 5 min during the first hour following
injection) as a within-subject factor. The cumulative licking time
within the 20–50 min interval after injection was compared
among the three injected groups using a one-way ANOVA.
For each AEP component, peak latencies were compared
using a two-way ANOVA with group (four levels: NT, NS,
1% and 5% formalin) as a between-subject factor and time
(four levels: baseline, 20–50 min, 90–120 min, and 24 h after
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injection) as a within-subject factor. Baseline-to-peak amplitudes
of each AEP component were normalized for each subject by
dividing the value in each session by the value in the baseline
session, and the normalized amplitudes of each AEP component
were compared using a two-way ANOVA with group (four
levels: NT, NS, 1% and 5% formalin) as a between-subject factor
and time (three levels: 20–50 min, 90–120 min, and 24 h after
injection) as a within-subject factor. Note that the baseline data
were not included in this analysis since in the baseline session
the normalized amplitudes, all of which were 1, had no variance.
Fisher’s protected least significant difference test was used for
post hoc comparisons.

For chronic pain model, the paw withdrawal latencies
to radiant heat were compared using a three-way ANOVA
with group (two levels: NS and CFA) as a between-subject
factor, and time (six levels: baseline, 1, 3, 7, 14, and
28 days after injection) and stimulation site (two levels:
left and right hindpaws) as within-subject factors. Fisher’s
protected least significant difference test was used for post
hoc comparisons. For each AEP component, peak latencies
were compared using a two-way ANOVA with group (two
levels: NS and CFA) as a between-subject factor and time
(six levels: baseline, 1, 3, 7, 14, and 28 days after injection)
as a within-subject factor. Consistent with the analysis for
the acute pain model, baseline-to-peak amplitudes of each
AEP component were normalized for each subject, and the
normalized amplitudes of each AEP component were compared
using a two-way ANOVA with group (two levels: NS and CFA)
as a between-subject factor and time (five levels: 1, 3, 7, 14,
and 28 days after injection) as a within-subject factor. Fisher’s
protected least significant difference test was used for post hoc
comparisons.

RESULTS

The Influence of Acute Pain on AEPs
Nociceptive behaviors, quantified by measuring the time spent
licking the injected paw within each 5 min period, are
summarized in Figure 1A (left). Rats injected with 1% or 5%
formalin, but not those injected with NS, exhibited a typical
biphasic pattern of licking behavior (phase I: 0–5 min; phase II:
15–60 min). This observation is consistent with that of previous
reports on the temporal profile of formalin-induced acute pain
(licking behaviors usually subside within 1 h, while some other
spontaneous nociceptive behaviors may last up to approximately
2 h; Dubuisson and Dennis, 1977; Porro and Cavazzuti, 1993),
which justifies the validity of the acute pain model. Two-
way ANOVA revealed that the licking time was significantly
modulated by ‘‘group’’ (F(2,27) = 38.4, p < 0.0001), ‘‘time’’
(F(11,297) = 16.7, p< 0.0001), and their interaction (F(22,297) = 4.8,
p < 0.0001). The cumulative licking time within the 20–50 min
interval after injection was significantly different among the
three injected groups (F(2,27) = 45.3, p < 0.0001, one-way
ANOVA; Figure 1A, right). Post hoc comparisons revealed that
the cumulative licking time was significantly different between
each pair of the injected groups (NS vs. 1% formalin: p < 0.001;

NS vs. 5% formalin: p < 0.001; 1% formalin vs. 5% formalin:
p < 0.01).

The group-level average AEP waveforms were characterized
by three distinct components: N40, P60, and N100. Whereas
the N40 and P60 waves were maximal over the frontal and
bilateral temporal regions respectively, the N100 wave displayed
a negative maximum over the fronto-central area (Figure 2A).
Therefore, in the subsequent analyses, peak latencies and
amplitudes of these waves were measured from the waveforms
averaged across the following electrodes: L1 and R1 for N40; L6
and R6 for P60; L1, R1, L2, and R2 for N100 (Figure 2B).

Peak latencies and amplitudes of N40, P60, and N100 for
different groups and sessions are summarized in Table 1.
Two-way ANOVA revealed that peak latencies of N40 were
not significantly modulated by ‘‘group’’, ‘‘time’’, or their
interaction (detailed statistics are summarized in Table 2).
Peak latencies of P60 and N100 were only significantly
modulated by ‘‘time’’ (P60: F(3,105) = 8.1, p < 0.0001; N100:
F(3,105) = 25.1, p < 0.0001). Normalized N40 amplitudes
were not significantly modulated by ‘‘group’’, ‘‘time’’, or their
interaction. Normalized P60 amplitudes were only significantly
modulated by ‘‘time’’ (F(2,70) = 4.4, p = 0.016). In contrast,
normalized N100 amplitudes were significantly modulated by
‘‘group’’ (F(3,35) = 6.2, p = 0.002) and ‘‘time’’ (F(2,70) = 8.1;
p = 0.0007), but not by their interaction (F(6,70) = 0.5; p = 0.81;
Figure 2C). Post hoc comparisons revealed that normalized
N100 amplitudes in the 1% and 5% formalin groups were
significantly larger than those in the NS and NT groups for
any post-injection session (p < 0.05 for all comparisons except
for the marginal significance (p = 0.06) between 1% formalin
and NS groups during the 20–50 min interval after injection).
Normalized N100 amplitudes were not significantly different
between NS and NT groups, as well as between 1% and 5%
formalin groups for any post-injection session (p > 0.05 for all
comparisons).

These results demonstrated that N100 amplitude of AEPs
was significantly enhanced in rats with acute pain (1% and 5%
formalin groups) compared to control rats (NT and NS groups),
which indicated that acute pain would facilitate the cortical
processing of auditory information in rats. Such facilitation effect
existed not only when formalin-injected rats exhibited robust
nociceptive behaviors but also when the apparent nociceptive
behaviors had subsided, e.g., 24 h after formalin injection.

The Influence of Chronic Pain on AEPs
Nociceptive thresholds, quantified by measuring PWLs to
radiant heat of the injected and non-injected hindpaws, are
summarized in Figure 1B. Rats injected with CFA exhibited
pronounced thermal hyperalgesia that developed within 1 day
and persisted through 14 days following injection. This
observation is similar to that of previous reports on the temporal
profile of thermal hyperalgesia in CFA-induced chronic pain
model (Wang et al., 2009; Li et al., 2012). Three-way ANOVA
revealed that PWLs were significantly modulated by ‘‘group’’
(F(1,19) = 5.8, p = 0.03), ‘‘time’’ (F(5,95) = 7.5, p < 0.0001),
‘‘stimulation site’’ (F(1,19) = 43.8, p < 0.0001), interactions
between two factors (‘‘group’’ × ‘‘stimulation site’’: F(1,19) = 41.0,
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FIGURE 1 | Nociceptive behaviors of rats in acute and chronic pain models. (A) Formalin-induced acute pain behaviors. Left: Time spent licking the injected
hindpaws within each 5 min period (from 0 to 60 min following the injection). Rats injected with 1% or 5% formalin showed a typical biphasic pattern of licking
behavior (phase I: 0 to 5 min; phase II: 15 to 60 min), which was not observed in the NS and NT groups. Right: The cumulative licking time within the 20-50 min
interval after injection. During this time interval, rats in the 1% and 5% formalin groups spent significantly longer time to lick their injected paws than rats in the NS
group. Rats in the 5% formalin group also showed significantly longer licking time than rats in the 1% formalin group. NT: no treatment; NS, normal saline.
∗∗p < 0.01; ∗∗∗p < 0.001. NT: n = 9; NS: n = 10; 1% formalin: n = 11; 5% formalin: n = 9. (B) Complete Freund’s adjuvant (CFA)-induced chronic thermal
hyperalgesia. Before injection (Baseline), paw withdrawal latency (PWL) to radiant heat stimuli was not significantly different between the NS and CFA groups, nor
between the left and right hindpaws. From day 1 to day 14 after injection, PWLs of the injected hindpaw were significantly decreased in the CFA group compared to
the NS group. Moreover, in the CFA group, PWLs of the injected hindpaw were significantly decreased compared to those of the non-injected hindpaw. NS, normal
saline; CFA, complete Freund’s adjuvant. For the comparison between CFA and NS groups of the injected hindpaw, ##p < 0.01, ###p < 0.001. For the comparison
between injected and non-injected hindpaws in the CFA group, ∗∗∗p < 0.001. NS: n = 10; CFA: n = 11. Data are expressed as mean ± standard error (SE).

FIGURE 2 | The influence of acute pain on AEPs. (A) Grand-average scalp topographies of N40, P60, and N100 waves. (B) For each group, AEP waveforms
from different sessions are plotted in different colors and superimposed. Displayed waveforms were measured from fronto-central electrodes (L1, R1, L2, and R2;
enclosed by the light gray ellipse in (A), where the N100 wave (marked using gray rectangles) displayed a negative maximum. (C) After injection, the normalized
N100 amplitudes in the 1% and 5% formalin groups were significantly larger than those in the NS and NT groups for any post-injection session. NT: no treatment;
NS, normal saline. ∗p < 0.05, compared to the NS group. NT: n = 9; NS: n = 10; 1% formalin: n = 11; 5% formalin: n = 9. Data are expressed as mean ± SE.

p < 0.0001 ; ‘‘time’’ × ‘‘stimulation site’’: F(5,95) = 9.5,
p< 0.0001; ‘‘group’’× ‘‘time’’: marginal significance, F(5,95) = 2.2,
p = 0.06), and the interaction between three factors (F(5,95) = 7.6,

p < 0.0001). Post hoc comparisons revealed that PWLs of the
injected hindpaw were significantly shorter in the CFA group
than in the NS group (p < 0.01 for all comparisons 1, 3, 7, and
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TABLE 1 | Latency and amplitude of AEP components for different groups and sessions (acute pain model).

Latency (ms) Amplitude (µV)

N40 P60 N100 N40 P60 N100

NT group (n = 9)
Baseline 38.3 ± 0.9 61.9 ± 0.6 112.0 ± 3.5 −8.1 ± 1.4 17.7 ± 2.9 −26.3 ± 4.8
20–50 min 38.2 ± 0.7 61.2 ± 0.6 101.9 ± 2.2 −6.3 ± 0.9 12.5 ± 1.6 −16.7 ± 3.8
90–120 min 38.8 ± 0.6 61.6 ± 0.5 102.3 ± 2.9 −6.5 ± 0.9 13.5 ± 1.2 −13.3 ± 2.7
24 h 38.6 ± 1.0 61.0 ± 0.6 99.3 ± 2.5 −7.0 ± 0.8 12.7 ± 1.9 −14.3 ± 3.3
NS group (n = 10)
Baseline 39.4 ± 0.4 60.6 ± 0.5 105.1 ± 2.6 −7.5 ± 0.6 12.4 ± 1.1 −29.1 ± 5.3
20–50 min 39.6 ± 0.4 60.5 ± 0.6 98.5 ± 1.8 −7.1 ± 0.9 12.3 ± 1.5 −22.9 ± 4.3
90–120 min 39.5 ± 0.3 60.4 ± 0.7 97.4 ± 2.1 −7.8 ± 0.7 12.1 ± 1.5 −20.3 ± 5.4
24 h 39.2 ± 0.3 60.6 ± 0.7 96.1 ± 1.8 −7.1 ± 0.7 11.5 ± 1.1 −20.4 ± 5.6
1% Formalin group (n = 11)
Baseline 38.7 ± 0.4 60.9 ± 0.7 102.2 ± 3.1 −6.9 ± 0.7 21.1 ± 2.9 −29.8 ± 5.4
20–50 min 38.5 ± 0.7 59.4 ± 0.7 97.7 ± 1.9 −6.3 ± 0.8 14.9 ± 2.0 −27.2 ± 4.0
90–120 min 38.4 ± 0.4 60.4 ± 0.5 95.1 ± 1.3 −7.1 ± 0.8 20.0 ± 2.8 −26.5 ± 4.9
24 h 38.6 ± 0.5 60.5 ± 0.7 91.7 ± 1.0 −6.8 ± 0.9 17.0 ± 2.4 −24.1 ± 4.7
5% Formalin group (n = 9)
Baseline 38.3 ± 0.6 60.6 ± 0.5 103.2 ± 4.3 −7.6 ± 1.0 15.0 ± 1.8 −25.8 ± 5.1
20–50 min 37.8 ± 0.7 58.9 ± 0.5 98.0 ± 1.9 −5.8 ± 0.7 11.9 ± 1.1 −25.4 ± 3.7
90–120 min 38.2 ± 0.7 60.1 ± 0.3 95.6 ± 1.7 −5.2 ± 1.3 15.1 ± 2.2 −22.6 ± 4.9
24 h 38.3 ± 0.7 60.2 ± 0.6 97.3 ± 3.9 −6.9 ± 1.0 15.0 ± 1.9 −24.1 ± 6.0

Data are expressed as mean ± SE. NT, no treatment; NS, normal saline.

14 days after injection). In the CFA group, PWLs of the injected
hindpawwere significantly shorter than those of the non-injected
hindpaw (p < 0.001 for all comparisons 1, 3, 7, and 14 days after
injection).

The group-level average AEPs of the chronic pain rats
consisted of three distinct components (N40, P60, and
N100), whose polarity and order were markedly similar to
AEPs of the acute pain rats (Figures 3A,B). A comparison
between Figures 2A, 3A revealed high consistency in scalp
topographies of the AEPs between the acute and chronic
pain conditions, indicating that changes in pain state may
not alter the spatial features of the auditory evoked cortical
responses.

Peak latencies and amplitudes of N40, P60, and N100 for
different groups and sessions are summarized in Table 3. Two-
way ANOVA revealed that peak latencies of N40 and N100
were only significantly modulated by ‘‘time’’ (N40: F(5,95) = 3.1,
p = 0.01; N100: F(5,95) = 26.2, p < 0.0001; Table 4). Peak latencies
of P60 were not significantly modulated by ‘‘group’’, ‘‘time’’, or
their interaction (Table 4). Normalized N40 and P60 amplitudes
were not significantly modulated by ‘‘group’’, ‘‘time’’, or their

interaction. In contrast, normalized N100 amplitudes were
significantly modulated by ‘‘group’’ (F(1,19) = 5.0, p = 0.038) and
‘‘time’’ (F(4,76) = 15.4; p < 0.0001), but not by their interaction
(F(4,76) = 0.2; p = 0.95; Figure 3C). Post hoc comparisons
revealed that normalized N100 amplitudes in the CFA group
were significantly reduced compared to those in the NS group
for any post-injection session (p < 0.05 for all comparisons).

These results showed that N100 amplitude of AEPs was
significantly reduced in rats with chronic pain (CFA group)
compared to control rats (NS group), which indicated that
chronic pain would inhibit the cortical processing of auditory
information in rats. This inhibitory effect persisted throughout
the observation period of 28 days.

DISCUSSION

We observed opposite influences of acute and chronic pain
on cortical responses to auditory inputs using rat models.
On one hand, N100 wave of rat AEPs was significantly
enhanced in rats with acute pain compared to no-pain controls,
suggesting that acute pain facilitated cortical processing of

TABLE 2 | Two-way ANOVA exploring the effect of “group” and “time” on latency and amplitude of AEP components (acute pain model).

Latency Normalized amplitude

N40 P60 N100 N40 P60 N100

F p F p F p F p F p F p

Group 1.0 0.43 1.3 0.30 2.2 0.10 0.8 0.49 2.1 0.12 6.2 0.002
Time 0.5 0.70 8.1 <0.0001 25.1 <0.0001 0.5 0.61 4.4 0.02 8.1 0.0007
Interaction 0.7 0.71 1.8 0.08 0.8 0.60 1.0 0.41 2.0 0.08 0.5 0.81

p values in boldface indicate statistically significant results.

Frontiers in Computational Neuroscience | www.frontiersin.org April 2016 | Volume 10 | Article 41 | 89

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Computational_Neuroscience/archive


Guo et al . A Brain Signature to Differentiate Pain States

FIGURE 3 | The influence of chronic pain on AEPs. (A) Grand-average scalp topographies of N40, P60, and N100 waves. (B) For each group, AEP waveforms
from different sessions are plotted in different colors and superimposed. Displayed waveforms were measured from fronto-central electrodes (L1, R1, L2, and R2;
enclosed by the light gray ellipse in (A), where the N100 wave (marked using gray rectangles) displayed a negative maximum. (C) After injection, the normalized
N100 amplitudes in the CFA group were significantly smaller than those in the NS group for any post-injection session. NS, normal saline; CFA, complete Freund’s
adjuvant. ∗p < 0.05, compared to the NS group. NS: n = 10; CFA: n = 11. Data are expressed as mean ± SE.

auditory information. On the other hand, N100 wave of rat
AEPs was significantly reduced in rats with chronic pain
compared to no-pain controls, suggesting that chronic pain
inhibited cortical processing of auditory information. Our
observations could not be explained by the direct interaction
between nociceptive and non-nociceptive sensory inputs, since
such interaction could not yield the opposite effects of acute
and chronic pain. Instead, our observations could be justified
by the fact that individuals who are suffering from acute
or chronic pain would have different vigilance states, i.e.,
the level of vigilance to external sensory stimuli would be
increased with acute pain, but decreased with chronic pain.
Since the neural processing of auditory information was biased
by acute and chronic pain in opposite directions, AEPs might

be used as a representative brain response to distinguish acute
pain from chronic pain and to monitor the progress of pain
chronification.

Acute Pain Facilitates Cortical Processing
of Auditory Information
Pain, in its acute state, serves as a warning signal of tissue damage
and induces protective responses that facilitate recuperation
(Woolf, 1995; Millan, 1999; Milligan and Watkins, 2009). The
presence of acute pain can result in a remarkably heightened
level of general arousal and vigilance of the suffered individual
(Millan, 1999; Price, 2000), which could be reflected by the
increased attention to potential threats or dangers in the
environment (Oken et al., 2006). Note that the increased

TABLE 3 | Latency and amplitude of AEP components for different groups and sessions (chronic pain model).

Latency (ms) Amplitude (µV)

N40 P60 N100 N40 P60 N100

NS group (n = 10)
Baseline 39.0 ± 0.3 59.8 ± 0.5 105.9 ± 3.0 −7.9 ± 0.6 13.6 ± 1.5 −26.7 ± 4.2
Day 1 39.2 ± 0.3 59.9 ± 0.5 100.6 ± 2.8 −7.8 ± 0.5 12.7 ± 1.0 −25.8 ± 3.7
Day 3 39.5 ± 0.5 60.4 ± 0.5 96.7 ± 1.5 −7.3 ± 0.7 14.7 ± 1.2 −24.3 ± 3.6
Day 7 39.0 ± 0.3 59.3 ± 0.4 95.1 ± 1.7 −7.6 ± 0.6 14.2 ± 1.5 −24.2 ± 3.0
Day 14 38.2 ± 0.5 59.5 ± 0.4 92.2 ± 1.1 −7.5 ± 0.6 14.3 ± 1.8 −27.5 ± 2.9
Day 28 38.8 ± 0.4 60.0 ± 0.3 93.9 ± 1.4 −7.8 ± 0.6 16.7 ± 1.9 −34.6 ± 4.6
CFA group (n = 11)
Baseline 39.0 ± 0.5 60.0 ± 0.6 109.7 ± 4.3 −7.8 ± 0.7 9.7 ± 1.6 −22.0 ± 2.5
Day 1 38.9 ± 0.4 59.7 ± 0.6 99.3 ± 2.4 −6.1 ± 0.9 11.1 ± 1.4 −16.0 ± 2.6
Day 3 39.1 ± 0.5 60.5 ± 0.6 94.5 ± 1.9 −6.0 ± 0.8 11.2 ± 1.4 −16.3 ± 2.7
Day 7 38.6 ± 0.4 60.7 ± 0.4 95.5 ± 1.8 −6.3 ± 0.9 12.7 ± 2.2 −16.6 ± 2.3
Day 14 38.4 ± 0.5 60.7 ± 0.6 94.4 ± 1.4 −6.1 ± 0.4 12.3 ± 1.6 −20.5 ± 2.7
Day 28 38.9 ± 0.5 60.4 ± 0.6 93.0 ± 1.6 −6.2 ± 0.7 12.2 ± 1.8 −25.4 ± 4.3

Data are expressed as mean ± SE. NS, normal saline; CFA, complete Freund’s adjuvant.
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TABLE 4 | Two-way ANOVA exploring the effect of “group” and “time” on latency and amplitude of AEP components (chronic pain model).

Latency Normalized amplitude

N40 P60 N100 N40 P60 N100

F p F p F p F p F p F p

Group 0.07 0.80 0.9 0.38 0.02 0.90 3.5 0.08 1.4 0.26 5.0 0.038
Time 3.1 0.01 1.1 0.39 26.20 <0.0001 0.5 0.75 1.3 0.29 15.40 <0.0001
Interaction 0.4 0.83 2.0 0.09 1.1 0.36 0.2 0.96 0.6 0.65 0.2 0.95

p values in boldface indicate statistically significant results.

attention to external changes would be important as it allows
the suffered individual to respond properly in life-threatening
situations.

Here, we observed a significant enhancement of cortical
response to auditory stimuli in rats experiencing acute pain
compared to no-pain controls (Figure 2C), which indicated that
acute pain could facilitate brain responses to external sensory
inputs likely through triggering a surge in vigilance. Consistently,
as demonstrated in some human brain imaging studies (Peyron
et al., 1999, 2000), activations of bilateral thalamus and upper
brainstem in response to acute pain were assumed to partly
reflect a generalized arousal enhancement. In addition, neural
processing of sensory inputs is highly susceptible to fluctuations
in vigilance/arousal (Mackworth, 1968; Davis and Whalen, 2001;
Oken et al., 2006), demonstrating an enhanced processing at
an increased vigilance level (van Marle et al., 2009; Shackman
et al., 2011). All these lines of evidence justify the significant
influence of acute pain on brain state (i.e., increased vigilance
level/attending to external changes), which would subsequently
enhance the cortical processing of non-nociceptive sensory
information.

Even though we have provided evidence showing that
acute pain could influence the brain state (i.e., the vigilance
level) significantly, we believe that their relationship is not
straightforward. First, we showed that the facilitatory effect
of acute pain could be sustained even when the prominent
nociceptive behaviors had subsided. This observation would
indicate the dissociation between acute pain and brain state
(represented by the facilitatory effect) in the perspective of
duration. Second, although the 5% formalin group showed
clearly more intense nociceptive behaviors (Figure 1A), the
normalized N100 amplitudes of AEPs were not significantly
different between rats injected with 1% formalin and those
injected with 5% formalin (Figure 2C). This observation would
demonstrate the dissociation between acute pain and brain state
in the perspective of intensity. Indeed, the detailed relationship
between acute pain and brain state (or the facilitatory effect)
should be investigated in the future.

Chronic Pain Inhibits Cortical Processing
of Auditory Information
It is well documented that sleep disturbance and fatigue,
consequent to the suffering of chronic pain, are of the most
common complaints among chronic pain patients (Ashburn
and Staats, 1999; Hart et al., 2000; Smith and Haythornthwaite,
2004). As demonstrated by electrophysiological activities and/or

vigilance-related cognitive performance (Belyavin and Wright,
1987; Cajochen et al., 1995, 1999; Cote et al., 2003; Ziino and
Ponsford, 2006; Lim and Dinges, 2008), both factors would
considerably reduce one’s level of vigilance. Following, the
attenuated level of vigilance (modulated brain state) could
affect the brain responses to sensory inputs (Fruhstor and
Bergström, 1969; Corsi-Cabrera et al., 1999; Cote et al., 2003).
Moreover, in contrast to acute pain that would increase the
individuals’ attention to potential threats or dangers in the
environment, chronic pain would lead to excessive attention
to the internal changes (e.g., hypervigilance to pain and other
somatic signals (Eccleston and Crombez, 1999, 2007; Crombez
et al., 2005)) in patients. The focus on internal changes in
chronic pain state would also result in a decreased level of
vigilance to the external environment, and thus lead to a
detrimental effect on the processing of pain-irrelevant, external
signals.

Here, we observed significant attenuation of cortical response
to auditory stimuli in rats with chronic pain compared to no-pain
controls (Figure 3C). Note that our observation is consistent
with some previous reports of sensory impairments in chronic
pain patients (Evers et al., 1997; Lorenz et al., 1997; Buodo
et al., 2004; Firat et al., 2006; Veldhuijzen et al., 2006; Casale
et al., 2008; Korostenskaja et al., 2011). In addition, relevant
phenomena have been found in rat models of chronic pain with
either inflammatory (Millecamps et al., 2004) or neuropathic
(Low et al., 2012) origin, which showed that rats in chronic pain
state exhibited decreased ability to perceive small changes in the
environment. All these evidences demonstrated that chronic pain
could greatly influence the brain state (i.e., decreased vigilance
level to external changes), which subsequently attenuated the
cortical processing of non-nociceptive sensory information.

Similar to the relationship between acute pain and brain state,
the relationship between chronic pain and brain state is also
not straightforward. Although we did not assess the influence
of chronic pain on brain state in the perspective of intensity in
the present study, we showed that the inhibitory effect of chronic
pain on auditory processing still existed on day 28 (Figure 3C)
when the thermal hyperalgesia was abolished (Figure 1B). This
observation would suggest the dissociation between chronic
pain and brain state (represented by the inhibitory effect) in
the perspective of duration. Note that this dissociation would
be crucial as it implied that the treatment of chronic pain
should not only aim to relieve patients from pain, but also be
designed to eliminate possible co-morbidities of chronic pain
(e.g., alterations in brain state), especially considering that some
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of the co-morbidities could persist even when the chronic pain
has been released (Chapman and Dunbar, 1998).

Although we found that the inhibitory effect of chronic pain
could be reliably observed throughout our observation period of
28 days, we have also noticed an increase in N100 amplitude
on day 14 and day 28 compared to those in the previous
sessions in both the pain and no-pain groups (Figure 3C). We
conjecture that the pronounced restoration or enhancement of
N100 amplitude in the last two sessions was due most likely to
the prolonged inter-session intervals (1 or 2 weeks) from day 7 to
day 28 in contrast to the 2- or 4-day intervals for the previous
sessions, which is consistent with the dishabituation effect on
event-related potentials after longer intervals during repeated
tests as reported previously (Kinoshita et al., 1996).

Transition of Brain States During Pain
Chronification
The transition from acute pain to chronic pain has been proven
to involve large-scale reorganizations of brain functions (Baliki
et al., 2006; Geha et al., 2007; Malinen et al., 2010; Farmer et al.,
2011; Parks et al., 2011; Weissman-Fogel et al., 2011). In general,
whereas acute pain largely activates brain regions involved
in nociceptive information processing (Apkarian et al., 2005),
chronic pain is consistently and substantially encoded by brain
regions related to emotional and motivational states of patients
(Apkarian et al., 2011). A recent longitudinal study illuminated
how such a change in brain activation pattern emerged during
pain chronification in a group of patients with subacute back pain
(Hashmi et al., 2013). It showed that the brain representation for
the perception of back pain underwent large-scale reorganization
from nociceptive processing regions (including insula, thalamus
and anterior cingulate cortex) to emotional relevant circuits
(including medial prefrontal cortex and amygdala) as the pain
transitioned from subacute state into persistence over a 1-year
period (Hashmi et al., 2013). This finding was confirmed by the
results of an inter-subject comparison between acute/subacute
and chronic back pain patients (Hashmi et al., 2013), as well
as the results obtained from other cross-sectional analyses
(Apkarian et al., 2005; Baliki et al., 2006, 2010).

Apkarian et al. (2005) pointed out that the increased
engagement of cognitive/emotional circuits in chronic pain
conditions indicated that chronic pain is different from acute
pain in terms of the cognitive, emotional, and introspective
components of pain. They expounded this notion in later
works, suggesting that a transition in the salience of pain—from
viewing a pain perception as an index of external threat to a
representation of an internal disease state—is involved in the
transition from acute to chronic pain (Apkarian et al., 2009),
and may be sufficient to drive the shift in brain representations

of pain perception from acute to chronic conditions (Hashmi
et al., 2013). Therefore, acute and chronic pain should not be
simply described by different duration of pain, but actually
represent two distinct states of the system. Our observation
that acute pain enhanced the neural processing of auditory
information while chronic pain suppressed it would represent
such transition of brain states. For this reason, the AEPs, as a
representative brain response to monitor the efficiency of the
system to process external sensory inputs, may be potentially
used to differentiate the brain states related to acute and chronic
pain.

Limitations and Future Directions
We investigated the influences of acute and chronic pain on
neural responses to auditory inputs using rat models. Indeed,
these influences were observed at limited time points, which
hampered us to continually monitor the progress of pain
chronification. A longitudinal study that encompasses acute
and chronic pain stages, as well as the critical period within
which the acute-chronic transition occurs, would be necessary
in the future to provide a fine-grained temporal profile of
how the brain response changes during pain chronification. In
addition, the sensitivity and specificity of using non-nociceptive
brain response, e.g., AEPs, to discriminate between acute
and chronic pain states should be characterized before using
this response to monitor the progress of pain chronification.
Importantly, even though animal models have been used to
improve our understanding of pain mechanisms, we are aware
that the information obtained from animal models cannot
be directly applied to humans, and our findings should be
replicated in human pain conditions for potential use in the
clinic.
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Placebo exhibits beneficial effects on pain perception in human experimental studies.
Most of these studies demonstrate that placebo significantly decreased neural
activities in pain modulatory brain regions and pain-evoked potentials. This study
examined placebo analgesia-related effects on spontaneous brain oscillations. We
examined placebo effects on four order-fixed 20-min conditions in two sessions:
isotonic saline-induced control conditions (with/without placebo) followed by hypertonic
saline-induced tonic muscle pain conditions (with/without placebo) in 19 subjects
using continuous electroencephalography (EEG) recording. Placebo treatment exerted
significant analgesic effects in 14 placebo responders, as subjective intensity of pain
perception decreased. Frequency analyses were performed on whole continuous EEG
data, data during pain perception rating and data after rating. The results in the first
two cases revealed that placebo induced significant increases and a trend toward
significant increases in the amplitude of alpha oscillation during tonic muscle pain
compared to control conditions in frontal-central regions of the brain, respectively.
Placebo-induced decreases in the subjective intensity of pain perception significantly
and positively correlated with the increases in the amplitude of alpha oscillations during
pain conditions. In conclusion, the modulation effect of placebo treatment was captured
when the pain perception evaluating period was included. The strong correlation
between the placebo effect on reported pain perception and alpha amplitude suggest
that alpha oscillations in frontal-central regions serve as a cortical oscillatory basis of the
placebo effect on tonic muscle pain. These results provide important evidence for the
investigation of objective indicators of the placebo effect.

Keywords: placebo, EEG, tonic muscle pain, pain perception, alpha oscillation

INTRODUCTION

Placebo effects on pain perception were characterized using numerous hemodynamic (e.g.,
functional magnetic resonance imaging (fMRI) and positron emission tomography (PET))
and electrophysiological (e.g., electroencephalography (EEG) and magnetoencephalography
(MEG)) in previous studies (Wager et al., 2004, 2006; Lorenz et al., 2005; Zubieta et al., 2005;
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Scott et al., 2008; Tracey, 2010). Most of these studies
demonstrated that placebo analgesia significantly decreased
neural activities in pain modulatory brain regions, including
thalamus, insula, and anterior cingulate cortex (ACC; Wager
and Fields, 2011). Laser-evoked potentials (LEPs) are one of
the best tools to assess the function of nociceptive pathways in
physiological and clinical settings (Bromm and Treede, 1991;
Iannetti et al., 2001), and LEPs were used in previous studies
to investigate placebo analgesia (Wager et al., 2006; Watson
et al., 2007). These studies demonstrated a clear decrease in P2
amplitude using LEPs (Wager et al., 2006), which suggests that
the placebo treatment affected early nociceptive processing (e.g.,
attention and affect). One recent study reported that placebo
analgesia during phasic pain was associated with changes in pain-
evoked potentials but not oscillatory activities (Tiemann et al.,
2015).

Reports of placebo effects in healthy subjects were primarily
based on duration limited phasic pain (Atlas et al., 2009;
Benedetti, 2009). Phasic pain provides some important
methodological benefits (e.g., safe and easy to apply repeatedly),
but it is too short to faithfully simulate clinical pain, which is
rarely brief and exhibits an explicit onset of pain perception.
Therefore, several studies proposed tonic pain models, which are
crucial to model the pain experience in clinical settings (Le Pera
et al., 2000; Chang et al., 2001, 2002, 2003, 2004; Huber et al.,
2006; Dowman et al., 2008; Nir et al., 2010). One tonic painmodel
uses pain originating from deep tissue, such as intramuscular
infusions of capsaicin or hypertonic saline, which is most
frequently encountered in clinical practice pain (Apkarian et al.,
2005). The present study used a prolonged muscle infusion
of hypertonic saline to generate tonic muscle pain (Stohler
and Kowalski, 1999). Hypertonic saline was continuously
infused to maintain a relatively stable pain sensation based
on real-time feedback of subjective pain intensity (Stohler,
1992).

FIGURE 1 | Experimental design and subjective pain intensity
perception. (A) The experiment consisted of four order-fixed 20-min
conditions in two sessions. Session 1: (I) control, (II) pain; Session 2: (III)
control with placebo, (IV) pain with placebo. Innocuous and noxious
stimulations were respectively applied in control conditions (I and III) and pain
conditions (II and IV). (B) The subjective pain intensity (mean ± SEM) was
collected every 15 s for each condition from all placebo responders (N = 14).

We collected continuous EEG data during tonic muscle pain
to assess the effect of placebo treatment on: (1) the subjective
perception of tonic pain; (2) the electrophysiological oscillatory
activities; and (3) the correlations between changes in pain
perception and oscillatory activities.

MATERIALS AND METHODS

Subjects
The study included 19 subjects (3 females and 16 males, mean
age: 23 ± 2 years). All subjects were nonsmokers with no
personal history of any neurological or psychiatric disease. None
of the subjects had any history of chronic or acute pain up to
4 weeks before and during the study period, and none of the
subjects was on any medication. All subjects provided informed
consent, and the Human Research Ethics Committee of the
Shenzhen Institutes of Advanced Technology, Chinese Academy
of Sciences approved the experimental procedures.

Experimental Design
The experiment consisted of four order-fixed 20-min conditions
in two sessions (Figure 1A): session 1: (I) control, (II) pain;
and session 2: (III) control with placebo, (IV) pain with
placebo. Subjects were informed that the impending sequential
intramuscular injections were possibly painful or non-painful
before each session. Experiments were conducted in a silent
and separate room, and subjects were comfortably seated in
a chair. Subjects were required to rate the intensity of pain
perception every 15 s on a computer-controlled visual analog
scale (VAS) ranging from 0 to 10 (0: no pain; 10: the most
pain intensity imaginable) during all conditions. A moving
bar was used to indicate VAS ratings, which were displayed
on a monitor in front of the subjects. Subjects indicated the
intensity of pain perception by pressing a keyboard key to
stop the moving bar with their left hand (the moving bar
ascended one score per second). Subjects were asked to arbitrarily
choose given scores on the VAS every 15 s until their response
was sufficiently accurate to familiarize subjects with the rating
paradigm.

We used an automated stimulus delivery system in this
study. We used two 24-gauge needles, and each needle was
attached to a syringe through a disposable tube. The outline
of the masseter muscle was established during clenching. The
needles were inserted in bilateral masseter muscles to a depth
of approximately 1 cm. Prolonged innocuous stimulation was
introduced during control conditions (I and III) via infusions
of medication-grade isotonic saline (0.9% NaCl) in the right
masseter muscle. During pain conditions (II and IV), prolonged
noxious stimulation was introduced by infusing hypertonic
saline (5% NaCl) in the left masseter muscle. Automated syringe
infusion pumps controlled the infusions. Isotonic saline was
infused at a constant speed of 75 µl/min during innocuous
stimulation (1500 µl in total). Noxious stimulation included a
0.2-ml bolus infusion over 15 s at the beginning and subsequent
continuous infusions at variable speeds (2134 ± 930 µl in
total). The speed of infusion was adjusted using a computer-

Frontiers in Computational Neuroscience | www.frontiersin.org May 2016 | Volume 10 | Article 45 | 96

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Computational_Neuroscience/archive


Li et al. Placebo Analgesia Changes Alpha Oscillations

controlled closed-loop system based on the real-time feedback
of pain perception to ensure perceived pain intensity maintained
at an approximate VAS level of 5 (Zhang et al., 1993; Stohler
and Kowalski, 1999). The adaptive controller identified the
system dynamic response and proportional-integral-derivative
(PID) controller parameters from the subjects’ initial response
to the bolus infusion (Zhang et al., 1993). The intramuscular
infusion of hypertonic saline produced a deep aching sensation
that was similar to chronic muscle pain, and the generated
pain sensation disappeared 5–10 min after cessation of
the hypertonic saline infusion (Stohler and Kowalski, 1999;
Zubieta et al., 2005). Consecutive sessions were separated by
at least 10 min.

Subjects were infused with isotonic saline (0.9% NaCl)
via an antecubital intravenous port in their right upper limb
during all four conditions. However, the subjects were told
that the isotonic saline was replaced by a novel medication
named ‘‘Entacapone’’ prior to conditions with placebo (III and
IV), and they were further given the following clinical trial-
type instruction: ‘‘we are studying the analgesic effect of a
novel medication named ‘‘Entacapone’’, and it may or may
not ease your pain’’ (Zubieta et al., 2005; Scott et al., 2007).
The same infusion profile of noxious stimulation was applied
for pain (II) and pain with placebo (IV) for each subject
(Scott et al., 2008).

Subjects were instructed to fill out the Chinese version of the
Positive and Negative Affective Scale (PANAS; Watson et al.,
1988) and McGill Pain Questionnaire (SF-MPQ; Melzack, 1987)
after each condition (I–IV) to provide details of their subjective
perceptions of pain. The Chinese version of these questionnaires
exhibits acceptable reliability and validity (Huang et al., 2003; Li
et al., 2013).

Behavioral Data Analysis
The average rating of pain intensity across all rating points
(once every 15 s) was calculated for each subject during
each condition. Subjects who reported an increase in the
average rating of the intensity of pain perception to noxious
stimulation after the placebo treatment (II vs. IV) were classified
as nocebo responders, and the other subjects were classified
as placebo responders (Scott et al., 2008). Previous studies
reported that placebo and nocebo effects were associated
with opposite responses of dopamine and endogenous opioid
neurotransmission in a distributed network of cortical and
subcortical regions (Scott et al., 2008). Therefore, psychophysical
and electrophysiological data from nocebo responders were
excluded from subsequent analyses.

Psychophysical data analyses were performed as follows. The
ratings of pain perception, positive affect ratings (PANAS-P)
and negative affect ratings (PANAS-N) were compared across all
four conditions using a two-way repeated-measures analysis of
variance (RMANOVA), with ‘‘pain’’ (two levels: control vs. pain)
and ‘‘placebo’’ (two levels: without vs. with placebo) as factors.
Post hoc tests were performed when the interaction effect was
significant. Not all subjects finished the SF-MPQ questionnaire
after control conditions (I and III), so the total MPQ sensory
(MPQ-S) and affective (MPQ-A) scores of only pain conditions

(II and IV) were calculated for each subject. The scores were
compared between two pain conditions using a two-tailed paired
sample t-test.

EEG Recording and Data Analysis
Continuous EEG data were recorded using a Neuroscanr

Scan 4.2 (Neuroscan, Charlotte, NC, USA) amplifier and
128 Ag/AgCl electrodes mounted on an elastic cap (Quickapr,
Neuromedical supplies, Charlotte, NC, USA) according to the
extended international 10–20 system (Aslaksen et al., 2007).
The reference channel was located at the vertex, and all
channel impedances were kept lower than 10 kΩ. Extracranial
activity was continuously recorded with a 0.05 Hz and
100 Hz band-pass filter and was digitized at a sampling rate
of 1000 Hz. A notch filter was set to 50 Hz to reduce
electrical interference. Electro-oculographic (EOG) signals were
simultaneously recorded from four surface electrodes (one
pair over the upper and lower eyelids; the other pair placed
1 cm lateral to the outer corner of the left and right orbits)
to monitor ocular movements and eye blinks. Subjects were
instructed to relax and keep their eyes open during each
condition.

Preprocessing
EEG data were analyzed using Matlab (The Mathwork, Natick,
MA, USA) and EEGLAB1, which is an open source toolbox
running under the Matlab environment. Continuous EEG data
for each condition were down-sampled to 500 Hz and band-
pass filtered between 1 and 100 Hz. Continuous EEG data
contaminated by eye-blinks and movements were corrected
using an independent component analysis (ICA) algorithm
(Makeig et al., 1997; Jung et al., 2001; Delorme and Makeig,
2004). The de-noised EEG data were re-referenced to a common
average reference. EEG data collected during a short period of
30 s at the beginning and end of each condition were discarded
to exclude possible brain responses related to the sudden change
in stimulation.

EEG Spectral Analysis
Nineteen minutes of continuous EEG data from each subject and
condition were transformed to the frequency domain using a
discrete Fourier transform to yield amplitude spectra (in µV)
ranging from 1 to 100 Hz. The amplitudes of EEG oscillations
in the delta (0−4 Hz), theta (4−8 Hz), alpha (8−12 Hz), beta
(12−30 Hz), and gamma (30−100 Hz) bands were calculated for
each condition and electrode, and the first group of amplitude
spectra was obtained.

Previous studies generally used verbal pain perception
ratings. EEG data during ratings were excluded because of
the possible confounding factor of speaking. Subjects in this
experiment indicated the intensity of pain perception by pressing
a keyboard key to stop a moving bar with their left hand.
This pain rating procedure required a longer time than verbal
pain rating because the moving bar ascended one score per
second. We investigated whether the inclusion of the EEG

1http://sccn.ucsd.edu/eeglab
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data during pain perception was important for the extraction
of placebo-related modulation effects. Therefore, additional
separate analyses were performed with the EEG data during pain
perception rating and EEG data after rating. Pain perception
ratings were repeated once in every 15 s. Subjects pressed
a button when the moving VAS bar indicated their pain
intensity. Therefore, we partitioned the EEG data based on
the time point when the pain intensity rating was completed.
The original preprocessed continuous EEG data were segmented
into EEG epochs of 1 s, and the segmented EEG epochs
were transformed to the frequency domain for each subject
and each condition to facilitate the partition. The obtained
single-epoch amplitude spectra according to time period during
rating were averaged for each electrode and condition to
provide another group of amplitude spectra. The numbers
of segments during ratings were 2.60 ± 1.17, 5.39 ± 1.19,
2.25 ± 1.15 and 4.19 ± 0.70 in conditions I, II, III, and
IV, respectively. The obtained single-epoch amplitude spectra
according to time periods after VAS rating were also extracted
to provide a third group of amplitude spectra. The numbers
of segments after ratings were 12.40 ± 1.17, 9.61 ± 1.19,
12.75 ± 1.15 and 10.81 ± 0.70 in conditions I, II, III, and IV,
respectively.

All three groups of amplitude spectra were compared
across all four conditions using point-by-point two-way RM
ANOVA with ‘‘pain’’ (two levels: control vs. pain) and
‘‘placebo’’ (two levels: without vs. with placebo) as factors.
Considering the two-by-two experimental design, significant
interaction effect indicated the placebo effect. A permutation
test with 5000 iterations was used to construct the null
distribution of the max F-statistic across electrodes to control
for multiple comparisons. We identified the F-statistic that
corresponded to the 5% most extreme parts of the maximal
F distribution. We thresholded our original statistical maps
at that 5% level from the maximal F distribution (Maris and
Oostenveld, 2007). Compared with this F-statistic, higher F
value represented significant result after correction. Besides,
we calculated the corrected P value of our observed F value
by counting the proportion of the permutation distribution
as or more extreme than F. Results of main effects and
post hoc tests were presented when the interaction effect was
significant.

Correlation Analysis
The correlation coefficients and significance of placebo
responders were calculated between changes in the amplitude

of alpha oscillation measured at frontal-central electrode FCz
after placebo treatment (IV–II) and changes in: (1) subjective
intensity of pain perception to noxious stimulation; and (2)
psychophysical scores (i.e., PANAS and MPQ scores; II–IV).
Besides, in order to keep consistent with the two-by-two
experimental design, correlation analysis was also performed
with changes which were calculated according to the interaction
effect ((IV–II)–(III–I)) for alpha amplitude; ((II–IV)–(I–III)) for
subjective intensity).

RESULTS

Psychophysical Results
The subjective intensity of pain perception to noxious
stimulation increased after the placebo treatment (IV vs. II)
in five subjects (nocebo responders) and decreased in the
remaining 14 subjects (placebo responders). The intensity of
pain perception to noxious stimulation for placebo responders
revealed an overall declining tendency with increased stimulus
duration (II and IV; Figure 1B), which may be due to the
limitation of the maximum speed of hypertonic saline infusion.
In contrast, the intensity of pain perception to innocuous
stimulation was approximately a VAS level of 2 and increased
slightly with increased stimulus duration (I and III; Figure 1B),
which may be caused by the needle effect (Veerasarn and Stohler,
1992).

Table 1 summarizes the average ratings of subjective
pain intensity, PANAS scores, and MPQ scores for placebo
responders. The intensity of pain perception was significantly
modulated by the factors ‘‘placebo’’ (F(1,13) = 25.889, P = 0.000)
and ‘‘pain’’ (F(1,13) = 105.663, P = 0.0000) and the interaction
between two factors (F(1,13) = 5.748, P = 0.032; Figure 2C).
The decrease in pain intensity to noxious stimulation was
significant after placebo treatment (II vs. IV; P = 0.000), but
only marginally significant to innocuous stimulation (I vs.
III; P = 0.058). The PANAS-P scores were not significantly
modulated by the factor ‘‘pain’’ (F(1,13) = 1.050, P = 0.324)
or ‘‘placebo’’ (F(1,13) = 2.444, P = 0.142), or the interaction
between the two factors (F(1,13) = 0.918, P = 0.356). The
PANAS-N scores were significantly modulated by the factor
‘‘placebo’’ (F(1,13) = 8.050, P = 0.014) but not the factor
‘‘pain’’ (F(1,13) = 1.518, P = 0.240) or the interaction between
the two factors (F(1,13) = 1.194, P = 0.294). MPQ-S scores
decreased significantly in condition IV compared to condition II
(t(13) = 2.230, P = 0.044). In contrast, the MPQ-A scores were not

TABLE 1 | Psychophysical responses of placebo responders.

Pain Intensity PANAS-P PANAS-N MPQ-S MPQ-A

Condition I 2.16 ± 1.17 23.14 ± 6.13 14.64 ± 3.88 − −

Condition II 4.93 ± 1.21 21.36 ± 6.49 16.50 ± 5.49 9.93 ± 6.06 6.21 ± 3.95
Condition III 1.79 ± 1.11 20.64 ± 6.38 13.43 ± 3.16 − −

Condition IV 3.75 ± 0.71 20.50 ± 6.47 13.36 ± 2.95 3.36 ± 2.27 2.07 ± 1.64

Mean ± 1 SD of psychophysical measures during conditions in the absence and presence of placebo in 14 placebo responders. Pain intensity refers to the average

ratings of momentary pain acquired every 15 s.
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significantly different between conditions II and IV (t(13) = 1.906,
P = 0.079).

Electrophysiological Results
Frequency analyses of the 19-min continuous EEG data
revealed that the group level scalp topographies of alpha
oscillations were maximal at bilateral posterior parietal and
occipital regions in all four conditions (Figure 2A). Point-
by-point two-way RM ANOVA revealed that electrode FCz
exhibited a significant interaction effect on the amplitudes of
alpha oscillations after correction for multiple comparisons
(Figure 2B). The amplitudes of alpha oscillations at FCz
were 6.56 ± 2.19 µV, 5.70 ± 1.80 µV, 6.52 ± 2.23 µV,

and 6.18 ± 2.04 µV in conditions I, II, III, and IV
respectively. The amplitudes of alpha oscillations at FCz were
significantly modulated by the factor ‘‘pain’’ (F(1,13) = 13.886,
P = 0.040, corr.) and the interaction between the two factors
(F(1,13) = 13.003, P = 0.046, corr.; Figure 2D), but not
by the factor ‘‘placebo’’ (F(1,13) = 1.483, P = 0.864, corr).
Post hoc tests revealed that the amplitudes of alpha oscillations
were significantly larger in condition IV than condition II
(P = 0.005), but no significant difference was observed between
the amplitudes of alpha oscillations in conditions I and III
(P = 0.846).

Frequency analyses results of EEG data during pain
perception ratings revealed that electrode FCz exhibited a

FIGURE 2 | Evidence showing the effect of placebo treatment from behavioral and EEG data. (A) Group level scalp topographies of alpha oscillations
(8–12 Hz) of different experimental conditions. (B) Group level spectra (measured at FCz) of different experimental conditions. Scalp topography showing the
significant interaction between the factors “pain” and “placebo” on the amplitudes of alpha oscillations at FCz is displayed in the insert. (C) Significant interaction
effect between the factors “pain” and “placebo” was observed on the average ratings of pain intensity across all rating points (once every 15 s; left). (D) The
amplitudes of alpha oscillation (measured at FCz). Each dot represents the mean value from one condition, and error bars represent, for each condition, ± SEM
across subjects (F: F value of the interaction effect between the factors “pain” and “placebo”; corr.: corrected for multiple comparisons). (E) Significant correlation
was observed between decrease in pain intensity during noxious stimulation after placebo treatment (II–IV) and the increase in the amplitude of alpha oscillation
measured at FCz (IV–II). Each dot represents a value from each subject, and black line represents the best linear fit.
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trend toward significant interaction effect between the factors
‘‘pain’’ and ‘‘placebo’’ on the amplitudes of alpha oscillation
(F(1,13) = 8.065, P = 0.014, uncorr., P = 0.138, corr.; left and
middle panels of Figure 3A). Post hoc tests revealed that the
amplitudes of alpha oscillations were significantly larger in
condition IV than condition II (P = 0.004), but no significant
difference was observed between conditions I and III (P = 0.638).
Analysis results of EEG data after VAS ratings revealed that the
interaction effect was not significant (F(1,13) = 4.564, P = 0.222,
corr.; left and middle panels of Figure 3B).

Correlation between Psychophysical and
Electrophysiological Data
First, the correlation analysis was performed with changes
between two pain conditions (II vs. IV). Significant positive
correlation was observed between increases in the amplitudes
of alpha oscillations measured at FCz after placebo treatment
and decreases in: (1) subjective intensity of pain perception
(R = 0.611, P = 0.020; Figure 2E); (2) MPQ-S scores (R = 0.641,
P = 0.014); and (3) MPQ-A scores (R = 0.594, P = 0.025)
when EEG data of the entire 19-min continuous EEG data were
included. The correlation between alpha oscillation increases and
pain perception decreases was also significant when only EEG
data during pain perception rating were included (R = 0.584,

P = 0.028). The correlation was marginally significant when only
EEG data after pain perception rating were included (R = 0.524,
P = 0.055). Secondly, no significant correlation was observed
when the correlation analysis was performed with the interaction
terms (P > 0.05).

DISCUSSION

The present study described an active placebo effect on
electrophysiological alpha oscillations during 20 min of tonic
muscle pain. We observed placebo effects on the subjective
intensity of pain perception to noxious stimulation. Placebo
induced significant increases or a trend toward significant
increases in the amplitude of alpha oscillation during tonic
muscle pain in frontal-central regions when EEG data during
pain perception ratings were not excluded. The decreases
in the subjective intensity of pain perception to noxious
stimulation after placebo treatment and the increases in the
amplitude of alpha oscillation were significantly correlated.
These findings suggest that placebo modulation in cognitive
appraisal/experience of tonic muscle pain were effectively
indexed by electrophysiological alpha oscillations, which served
as additional evidence for the expectancy-based placebo
mechanism (Wager et al., 2004; Zubieta et al., 2005; Scott et al.,
2007; Atlas and Wager, 2012).

FIGURE 3 | Evidence showing the effect of placebo treatment from the partitions of EEG data during pain perception rating and after rating.
(A) A trend toward significant interaction effect was identified from frequency analyses including EEG data during the rating period (left panel); the mean values of the
amplitudes of alpha oscillation (measured at FCz) from each condition are shown (F: F value of the interaction effect between the factors “pain” and “placebo”; corr.:
corrected for multiple comparisons; middle panel); a significant correlation was observed between decrease in pain intensity during noxious stimulation after placebo
treatment (II–IV) and the increase in the amplitude of alpha oscillation measured at FCz (IV–II; right panel). (B) No significant interaction effect was identified from
frequency analyses that included EEG data of the time periods after rating (left panel); the corresponding results of mean amplitude values are shown (middle panel);
marginally significant correlation was observed (right panel).
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Numerous neuroimaging studies, including fMRI and PET
studies of healthy subjects and clinical patients, revealed several
cortical and subcortical regions that were mediated by placebo
treatment (Meissner et al., 2011). The placebo analgesia also
suppressed pain-induced responses in thalamus, insula, and ACC
(Wager et al., 2004; Bingel et al., 2006; Kong et al., 2006; Price
et al., 2007; Eippert et al., 2009). Assessments of the placebo
effect to LEPs revealed a significant decrease in P2 amplitude,
which was partially explained by the reduction in reported pain
perception (Wager et al., 2006). The P2 in LEPs is highly likely
generated from the ACC (Garcia-Larrea et al., 2003), and the
decrease in P2 amplitude is consistent with the suppression
of pain-induced responses in the ACC, which provides solid
evidence that placebo analgesia is likely achieved via modulation
of the emotional and cognitive components of pain (primarily
coded by the ACC; Wiech et al., 2008; Tracey, 2010).

The placebo modulation effect that we observed supports
the existence of a placebo effect on brain oscillation. The
placebo treatment-induced changes in alpha oscillatory activities
were maximal at frontal-central electrodes, which suggests the
contribution of ACC to the generation of placebo-induced
changes in alpha oscillations and confirms the modulation
of placebo on the affective and cognitive components of
pain that were observed to previous fMRI and PET studies
(Wiech et al., 2008; Zubieta and Stohler, 2009; Tracey, 2010).
Notably, the suppression of alpha amplitudes may reflect cortical
activation or disinhibition of the corresponding neural networks
(Pfurtscheller et al., 1996; Pfurtscheller and Lopes da Silva, 1999;
Hu et al., 2013). For example, increased cellular excitability
in thalamo-cortical systems was reflected by a decrease in
alpha amplitude in EEG (Steriade and Llinás, 1988). Thus,
the significant increase of alpha amplitude at frontal-central
regions after placebo treatment may indicate an inhibition
of cortical areas (including ACC) that are involved in pain
processing (e.g., cognitive appraisal of tonic pain). However,
we cannot make any firm conclusions about the contribution
of ACC to the generation of placebo-induced changes in alpha
oscillations without source analyses. We also cannot exclude the
possible contribution of other neural sources (e.g., operculo-
insular cortex) despite the performance of an EEG source analysis
because of the limited spatial resolution of the EEG technique
and the inverse problem in EEG source analysis (Michel et al.,
2004). Hopefully, these issues may be effectively solved using the
simultaneous EEG-fMRI technique, which was effectively used to
extract fMRI activations that were significantly modulated by the
alpha amplitude in EEG (Feige et al., 2005).

Only two published studies reported placebo treatment effects
on brain alpha oscillatory activity. One study related alpha
activity to placebo analgesia and reported a placebo-associated
increase in alpha oscillations (Huneke et al., 2013). However,
this study recorded alpha activity during resting states after
placebo induction (Huneke et al., 2013). Another study reported
that phasic pain-induced alpha responses were not sensitive
to placebo manipulation using changes in stimulus intensity
(Tiemann et al., 2015). This study did not include EEG data
during pain perception (Tiemann et al., 2015). The placebo
effect was derived from the cognitive and affective processing

of pain perception, which may be more promising during the
rating period. The alpha suppression in response to tonic pain
primarily reflects high-level cognitive processing, and attention
modulation may significantly affect it (Peng et al., 2014). Placebo
treatment-related modulation effects of alpha oscillations may
be better captured when subjects are asked to focus on their
pain perception and report their pain intensity. Consequently, we
observed significant modulation effects of placebo treatment and
a positive correlation between placebo-induced pain decrease
and increase in alpha amplitude when the pain perception
evaluating period was included.

This study generated tonic muscle pain via an intramuscular
infusion of hypertonic saline to produce a deep aching that
was similar to the muscle pain experienced in clinical situations
(Stohler and Kowalski, 1999). Our understanding of the neural
mechanisms of pain were primarily based on the brain activation
of phasic cutaneous pain, which involves fewer methodological
challenges (e.g., easier to present several times to achieve a
high signal-to-noise ratio of the brain responses) compared
to tonic pain (Apkarian et al., 2011). However, chronic pain
is normally prolonged and originates from deep tissue (e.g.,
muscle and viscera) in clinical practice (Apkarian et al., 2005;
Schreckenberger et al., 2005). Therefore, the tonic muscle pain
achieved by intramuscular infusion of hypertonic saline was
used in the present study. The automated stimulus delivery
system produced a prolonged, relatively stable muscle pain and
achieved a better simulation of the pain experience in clinical
settings, which may be important to establish the connection
between placebo analgesic studies conducted in experimental
settings (healthy subjects) and clinical practice (chronic pain
patients).

There are several limitations to this study. First, this study
consisted of fixed-order sessions (session 1: conditions I and
II, session 2: conditions III and IV). Session 1 was always
performed before session 2 because the individual infusion
profiles used in condition IV should be identical to condition
II. We cannot exclude the confounding factors of mental
fatigue-induced alpha oscillation changes in this fixed-order
and longer-lasting experiment. Experiments with prolonged
stimulation are difficult to control as well as experiments using
phasic stimulation. Mental fatigue and its influence on the
measures of brain oscillation should be carefully considered.
Spectral measures of brain oscillations were investigated to
reflect changes in mental state in longer-lasting experiments.
Several EEG measures were proposed to be valid and reliable
indicators of mental fatigue, including a characterized shift
of EEG power towards lower-frequency bands (delta, theta
and alpha) and decrease in higher-frequency bands (Lal and
Craig, 2002; Wascher et al., 2014). The amount of alpha
suppression declined with time on task (Wascher et al., 2014).
An increase in alpha power may reflect the increased effort
and the difficulty of the subjects to maintain a state of alert
wakefulness (Wascher et al., 2014). The significant correlation
between the differences in pain perception and alpha amplitude
was observed when the differences were calculated between two
pain conditions II and IV. But no significant correlation could
be observed when the differences were calculated according
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to the interaction effect. Small sample size and fixed-order
design might be some of those factors that contributed to this
problem. Therefore, the correlation between the effect size of
placebo analgesia in pain perception and alpha amplitude require
further investigation using a randomized design and within-
subject correlation analysis may offer more solid evidence.
Second, the saline infusions in the control conditions and
the pain conditions occurred on different sides. Therefore,
we could only focus on the results of central electrodes in
this study. The acquisitions of EEG data involve up to a few
hundred electrodes positioned on the scalp, which together
with volume conduction through the head results in a poor
spatial resolution (Michel et al., 2004). The spreading effect
from the lateral electrodes should be taken into consideration
when interpreting the observed effects at the central electrodes.
Third, the number of segments was different for different
conditions when performing additional analyses with EEG data
during and after ratings. This difference may be a confounding
factor for comparisons of the amplitude spectrum among four
conditions. Fourth, we only performed multiple comparisons
correction for the number of electrodes (Schulz et al., 2015),
but the correction for point-by-point analysis should account for
the number of electrodes and the number of frequency bands

(Peng et al., 2014). Previous studies reported an association of
placebo and nocebo effects with opposite responses of dopamine
and endogenous opioid neurotransmission in a distributed
network of cortical and subcortical regions (Scott et al., 2008),
and possible electrophysiological responses that are oppositely
involved in placebo and nocebo effects should be assessed in the
future.
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Alongside the time-locked event-related potentials (ERPs), nociceptive somatosensory
inputs can induce modulations of ongoing oscillations, appeared as event-related
synchronization or desynchronization (ERS/ERD) in different frequency bands. These
ERD/ERS activities are suggested to reflect various aspects of pain perception,
including the representation, encoding, assessment, and integration of the nociceptive
sensory inputs, as well as behavioral responses to pain, even the precise details of
their roles remain unclear. Previous studies investigating the functional relevance of
ERD/ERS activities in pain perception were normally done by assessing their latencies,
frequencies, magnitudes, and scalp distributions, which would be then correlated with
subjective pain perception or stimulus intensity. Nevertheless, these temporal, spectral,
and spatial profiles of stimulus induced ERD/ERS could only partly reveal the dynamics
of brain oscillatory activities. Indeed, additional parameters, including but not limited
to, phase, neural generator, and cross frequency couplings, should be paid attention
to comprehensively and systemically evaluate the dynamics of oscillatory activities
associated with pain perception and behavior. This would be crucial in exploring the
psychophysiological mechanisms of neural oscillation, and in understanding the neural
functions of cortical oscillations involved in pain perception and behavior. Notably, some
chronic pain (e.g., neurogenic pain and complex regional pain syndrome) patients
are often associated with the occurrence of abnormal synchronized oscillatory brain
activities, and selectively modulating cortical oscillatory activities has been showed to
be a potential therapy strategy to relieve pain with the application of neurostimulation
techniques, e.g., repeated transcranial magnetic stimulation (rTMS) and transcranial
alternating current stimulation (tACS). Thus, the investigation of the oscillatory activities
proceeding from phenomenology to function, opens new perspectives to address
questions in human pain psychophysiology and pathophysiology, thereby promoting
the establishment of rational therapeutic strategy.

Keywords: pain, cortical oscillations, event-related desynchronization (ERD), event-related synchronization
(ERS), electroencephalography (EEG)
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INTRODUCTION

Pain, affecting the well beings of millions of individuals and
imposing a severe financial burden upon our societies, is a major
public healthcare problem. Pain relief, especially for the patients
with pathological chronic pain, still remains a very problematic
challenge to the physicians. The progress in understanding
of the neural representation of pain in humans is not only
important for basic neuroscience research, but also critical to
develop effective strategies for the diagnosis and management
of the pathological pain conditions. Specifically, this constitutes
the understandings of: (1) the physiological mechanisms of
the nociceptive system in healthy populations, particularly the
cortical processes underlying the perception of pain and (2) the
pathophysiological mechanisms of the nociceptive system in
chronic pain patients, particularly the peripheral and central
mechanisms leading to chronic pain. Thus, for a better
understanding of the physiology and pathophysiology of pain in
humans, novel approaches should be developed to identify the
neural activities related to the processing of noxious inputs in
humans, as well as characterize their functional roles in subjective
pain perception.

In both physiological (Iannetti et al., 2003) and
pathophysiological (Treede, 2003; Treede et al., 2003) studies,
laser-evoked potentials (LEPs) have been extensively used to
investigate the peripheral and central processing of nociceptive
somatosensory inputs, and are currently considered as the best
available diagnostic tool to assess the function of nociceptive
pathways in patients (Cruccu et al., 2010). The radiant heat
pulses that selectively excite nociceptive nerve endings in
the epidermis (Bromm et al., 1984), can elicit a number of
electrical brain responses, some of which can be detected
with the electroencephalography (EEG) recording techniques
(Carmon et al., 1976; Mouraux et al., 2003). Note that the
EEG response is time-locked if it manifests the same pattern
at roughly the same time on each trial after the stimulus onset,
and the EEG response is phase-locked if it takes the same
phase angle on each trial after the stimulus onset (Mouraux
and Iannetti, 2008). The time-locked and phase-locked LEPs
could be commonly obtained by an across-trial averaging
procedure. Several deflections have been identified in LEPs
(Figure 1), including: (1) an early component of a small
negative deflection (N1, peaking at approximately 160 ms when
stimulating the hand dorsum), with maximal distribution over
the central temporal region contralateral to the stimulated
side (Valentini et al., 2012); (2) the largest deflection of a
negative-positive vertex potential (N2-P2 complex, peaking
at approximately 160 and 390 ms when stimulating the hand
dorsum), with maximal scalp distribution over the central
region (Iannetti et al., 2008); and (3) a late component of a
positive deflection (P4, approximately 390 ms when stimulating
the hand dorsum), with maximal scalp distribution over the
central–parietal region contralateral to the stimulated side
(Hu et al., 2014a). As revealed by dipole modelings of scalp,
subdural recordings, and direct intracranial recordings (Tarkka
and Treede, 1993; Bromm and Chen, 1995; Lenz et al., 2000;
Garcia-Larrea et al., 2003; Valentini et al., 2012), LEPs were

showed to be generated from a combination of cortical and
subcortical structures, including the primary and secondary
somatosensory cortex (S1 and S2), insula, and anterior/mid-
cingulate cortex (ACC/MCC), as well as parietal operculum.
Functionally, recent evidences (Iannetti et al., 2008; Mouraux
and Iannetti, 2009) showed that these laser-evoked EEG
responses represent an indirect readout of the function of
nociceptive system, mainly determined by the saliency of
the eliciting nociceptive stimulus, i.e., the ability to capture
attention, instead of the specific neural processes underlying
pain perception.

Alongside the ERPs, sensory stimuli could also induce
transient modulations of the ongoing oscillatory activities in
different frequency bands (Pfurtscheller and Lopes da Silva,
1999). Since these oscillatory activities are normally time-
locked but not phase-locked to the onset of the stimulus,
they would be eliminated by the classical across-trial averaging
procedures that are typically used to reveal ERPs (Mouraux
and Iannetti, 2008). Alternative signal processing techniques,
based on the joint time-frequency decompositions of signals,
are often adopted to explore the neurophysiological mechanisms
of brain oscillations. These modulations are characterized by
either transient enhancement (event-related synchronization,
ERS) or transient suppression (event-related desynchronization,
ERD) of the oscillation power, usually confined to a specific
frequency band (Pfurtscheller and Lopes da Silva, 1999). The
functional significance of ERS and ERD differs according to the
frequency band within which they occur. For example, ERD
in the alpha band (frequencies ranging from 8–13 Hz) has
been hypothesized to reflect cortical activation or disinhibition
(Pfurtscheller and Lopes da Silva, 1999; Schnitzler et al., 2000;
Hu et al., 2013), while ERS in the gamma band (frequencies
ranging from 30–100 Hz) has been hypothesized to play a crucial
role in cortical integration and perception (Tallon-Baudry and
Bertrand, 1999; Gross et al., 2007; Fries, 2009; Hipp et al.,
2011).

By performing time–frequency analysis on the EEG
signals elicited by nociceptive somatosensory stimuli, several
electrophysiological responses (ERPs) related to the activation
of nociceptive fibers have been disclosed (Figure 1), including:
(1) a suppression of the alpha oscillations, i.e., α-ERD, globally
across somatosensory, motor, and visual areas, reflecting a
widespread change of cortical function and excitability, and
relating to the special alerting function of pain (Mouraux
et al., 2003; Ploner et al., 2006b; Hu et al., 2013); (2) a
suppression of beta oscillations (∼20 Hz in frequency), i.e.,
β-ERD, predominantly over the contralateral primary motor
cortex without an obvious beta oscillation rebound followed
(Raij et al., 2004), indicating the prolonged excitations of
neurons within motor cortex, which may be associated with
the facilitation of the voluntary movements to prevent tissue
damage in pain processing; and (3) enhancement of gamma
oscillations, i.e., γ-ERS, over contralateral somatosensory cortex,
particularly relating to subjective pain intensity (Gross et al.,
2007; Zhang et al., 2012; Hu et al., 2014b), and reflecting the
internal representations of behaviorally relevant stimuli that
should receive enhanced/preferred processing.
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FIGURE 1 | Flowchart describing the identification of pain related electrophysiological features and applications in both basic and clinical pain study.
Nociceptive somatosensory inputs can elicit transient changes in the ongoing electroencephalography (EEG) activities, including phase-locked event-related
potentials (ERPs) and non-phase-locked modulations of ongoing oscillatory activities in multiple frequency bands (appeared as event-related desynchronization or
synchronization, ERD or ERS). The phase-locked ERPs activities could be obtained by the classical across-trial averaging process, characterized by their peak
latency, amplitude, scalp topography, and neural generators, while the non-phase-locked ERD/ERS activities could be identified using time-frequency analysis (TFA),
characterized by several parameters including latency, frequency, magnitude, scalp topography, phase, neural generator, casual information flows, and
cross-frequency couplings (CFCs). The assessment of the relationship between human pain perception and electrophysiological responses has the potential
applications in both basic and clinical pain study, including: (1) exploring electrophysiological signatures coding subjective pain perception; (2) predicting subjective
pain intensity; (3) exploring pathological mechanisms of chronic pain; and (4) relieving pain modulating the cortical oscillatory activities using neurofeedback
techniques.

These painful stimulus induced ERD/ERS responses,
occurring in painful information processing, have been suggested
to be associated with the perception of pain (Babiloni et al., 2006;
Gross et al., 2007; Zhang et al., 2012) and with endogenous or
exogenous attention to the painful stimuli (Mouraux et al., 2003;
Hauck et al., 2007; Hu et al., 2013). However, it is still not clear
whether these somatic sensory pain-related oscillatory activities
are pain-specific opposed to non-painful somatosensory stimuli,
or the salience of the stimuli presentation (Iannetti et al., 2008;
Mouraux and Iannetti, 2009). Even though, these stimulus
induced ERD/ERS activities could indeed provide plentiful
information related to brain processing, which is different
from those cortical activities reflected by stimulus-evoked ERPs
(Mouraux and Iannetti, 2008). Previous studies have indicated
that nociceptive somatosensory stimuli induced ERD/ERS
activities in multiple frequency bands could reflect various
aspects of pain perception (e.g., representation, encoding,
assessment, and integration of the nociceptive sensory stimuli, as

well as the behavioral responses to pain), even the precise details
of their roles remain unclear. Indeed, investigating the cortical
oscillatory activities involved in human pain perception and
establishing the oscillatory basis of pain opened a new window
to study the cortical process underlying pain perception. Thus,
in this article, we will: (1) highlight several methodological
recommendations on investigating brain oscillations related to
pain and (2) summarize the potential applications in both basic
and clinical pain study.

METHODOLOGICAL RECOMMENDATIONS
TO EXTRACT PAIN RELATED BRAIN
OSCILLATORY ACTIVITIES

The transient modulations of cortical oscillatory activities
induced by the nociceptive somatosensory stimuli are normally
characterized by their peak frequency, latency, magnitude,
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and topography distribution, relative to the baseline period
(using subtraction or percentage approach). Nevertheless, the
traditionally temporal, spectral, and spatial profiles can only
partly reveal the dynamics of brain oscillatory activities.
Investigating novel parameters comprehensively characterizing
brain oscillations could help explore the psychophysiological
mechanisms of neural oscillations, as well as the neural functions
of cortical oscillations involved in sensory perception and
behavior. In addition, pre-stimulus ongoing EEG oscillation
could influence both post-stimulus electrophysiological activities
and sensory perception (Thut et al., 2006; Romei et al.,
2008; Fellinger et al., 2011; Lange et al., 2012; Tu et al.,
2016), suggesting the importance of dissecting the contributions
of pre- and post-stimulus oscillation to the variabilities of
painful stimulus induced ERD/ERS activities. Based on these
understandings, from the methodological aspect, we encourage
the researchers of pain field to: (1) utilize novel parameters to
comprehensively characterize pain related oscillations and (2)
dissect the contributions of pre- and post-stimulus oscillations,
when they are investigating the dynamics of brain oscillatory
activities associated with pain perception and behavior.

Utilization of Novel Parameters to
Comprehensively Characterize Pain
Related Oscillations
Apart from the appearing frequency, latency, magnitude, and
scalp topography, several other parameters, including but not
limited to, the phase, neural generator, and cross-frequency
coupling (CFC) of pain related oscillations, should also be further
investigated, for a comprehensive and systemic understanding of
the brain oscillations associated with pain.

Phase
Much of the research on oscillations in human EEG has focused
on the dynamics of oscillations magnitudes. Nevertheless,
the phase of the oscillatory activities at a given frequency
band reflects cyclic fluctuations of a network’s excitability and
varies on a much faster timescale than the sluggish amplitude
fluctuations at the same frequency band (Buzsáki and Draguhn,
2004; Lakatos et al., 2005; Rajkai et al., 2008), the phase of
the oscillations may provide deep insights into the fine-grained
neural mechanisms underlying sensory perception (Buzsáki and
Draguhn, 2004; Busch et al., 2009). Indeed, it is suggested that
phase synchronization between alpha oscillations in different
brain areas allows for an effective network communication and
information transmission regulation (von Stein and Sarnthein,
2000; Palva and Palva, 2011; Saalmann et al., 2012).

A growing body of studies on EEG oscillations have shown
that the phase of ongoing theta and alpha frequency oscillations
prior to the onset of stimuli could influence both the subsequent
ERPs (e.g., Haig and Gordon, 1998; Kruglikov and Schiff, 2003;
Gruber et al., 2005; Fellinger et al., 2011) and sensory stimulus
perception (Busch et al., 2009; Mathewson et al., 2009). As
shown in the target auditory oddball data, the amplitude of ERPs
(e.g., N100 amplitude) as well as the reaction times (RTs) were
both significantly modulated by the phase synchronization of

the alpha oscillation that was evaluated by the angular variance
of the oscillation (Haig and Gordon, 1998). Using identical
visual stimuli at the individual detection threshold (Busch et al.,
2009), the phase of ongoing oscillation (in theta and alpha
frequency bands) accounted for about 16% of variabilities of
visual detection performance (hits or misses) and allowed the
prediction of sensory performance on the single-trial level. In
other words, the phase of ongoing oscillations reflects the cortical
processing of threshold visual stimuli, thus providing a direct
link between phase of oscillations and sensory perception and
behavior.

These evidences of a relationship between spontaneous
oscillation phase and the amplitude of subsequent ERPs, manual
responses, and sensory perception, are in line with the cellular
level concept that the neuronal oscillations reflect the cyclic
variations of neuronal excitability (Buzsáki and Draguhn, 2004;
Rajkai et al., 2008). Even the dynamics of phase information in
cortical oscillatory activities have been shown to be functionally
relevant in stimulus processing and perception of auditory,
visual, and even somatosensory modalities, the modulations of
pain elicited ERPs as well as pain perception and behavior by
the phase of the oscillatory activities, still remain unclear. It
therefore needs further investigation, which could broaden the
understanding regarding how the ongoing oscillations shape our
sensory painful perception.

Neural Generators
The spatial characteristics of stimulus induced ERD/ERS
activities could be based on their scalp topographies, but the
effects of active references in EEG recordings could not be
denied. Whether the reference problems in assessing ERD/ERS
oscillatory activities could be reduced by approximately
standardizing the reference of scalp EEG recordings to a point at
infinity, which was ever proposed in assessing evoked potentials
by Yao (2001), should be further investigated. Nevertheless,
the fact that the equivalent sources of evoked potentials and
oscillatory activities are actually independent from the choice
of a particular reference, suggests the importance of identifying
neural generators of stimulus-induced ERD/ERS activities. With
accumulating evidence showing the functions of the oscillatory
brain activities in various aspects of pain perception (Mouraux
et al., 2003; Ploner et al., 2006a,b; Gross et al., 2007; Zhang et al.,
2012; Hu et al., 2013), identifying sources of oscillatory activities
is an essential step to directly determine the relation of EEG
oscillations to brain function and sensory process, thus revealing
how the different cortical areas function as a network involved in
human pain perception. For example, alpha oscillations close to
the occipito-parietal midline is closely linked to coherent objects
(Vanni et al., 1997), suggesting that the function of oscillatory
activity in occipitoparietal visual areas in modulating visual
shape processing. However, until now, identifying the sources
of oscillations in human brain is still a challenging problem
due to the low spatial resolution of EEG/MEG recording
techniques.

Source localization techniques have been proposed to identify
the responsible neural generators (Pascual-Marqui et al., 1994;
Cheyne et al., 2003; Hoechstetter et al., 2004; Jurkiewicz et al.,
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2006; Doesburg et al., 2009), e.g., dipole and distributed source
modelings, as well as beamformer technique, and have been
adopted in localizing the neural generators of pain related
oscillations (Raij et al., 2004; Ploner et al., 2006a,b; Gross et al.,
2007; Peng et al., 2012). Gross et al. (2007) computed the painful
stimuli induced high-frequency oscillations in the electrical
activity of the human S1 using a linearly constrained minimum
variance spatial filtering approach, and then the relationships
between stimulus induced gamma ERS and objective stimulus
intensity as well as subjective pain intensity were established on
the source level, making it possible to evaluate the functional
relevance of gamma oscillations in pain perceptionmore directly.
However, these source localization models are typically ill-
posed inverse problems since infinite number of sources could
explain a given scalp topography and additional information as
constraints is needed to obtain a unique solution. For example,
the beamformer source localization technique, which uses an
adaptive spatial filter to estimate the activity everywhere in the
brain (Gaetz and Cheyne, 2003; Cheyne et al., 2003), is based on
minimizing the source power (or variance) at a given location,
and assumes that sources in different parts of the brain are not
temporally correlated, which does not make sense physiologically
sometimes.

Alternative approaches based on the simultaneous recordings
of functional magnetic resonance imaging (fMRI) and EEG
(Laufs et al., 2003a; Lei et al., 2011; Dong et al., 2014) have also
been proposed to explore the neural sources of EEG oscillations
by identifying fMRI blood oxygenation level-dependent (BOLD)
signal changes related to spontaneous EEG power fluctuations.
Even it combines the high spatial resolution in fMRI and
high temporal resolution in EEG, such a method of correlating
continuously band-specific EEG power with fMRI-BOLD signal
changes, is actually an indirect way to identify source of
oscillations. Indeed, monitoring the large-scale neuronal firing
patterns and the generated local field potentials (LFPs) in animal
models (e.g., behaving rodents) serves a direct and effective way
to investigate the generators of these various oscillations as well
as their spatial and temporal relationships.

CFC
As a statistical relationship between oscillatory activities in two
different frequency bands, CFCs (may be appeared as phase-
to-phase, phase-to-power, or power-to-power couplings) have
been proposed to reflect the coordination of neural dynamics
across temporal and spatial scales (Canolty and Knight, 2010;
Canolty et al., 2006), and have been observed in many species
and brain regions. As revealed by the LFPs on monkeys, the
phase of low-frequency oscillations was shown to modulate the
amplitude of gamma oscillations (Wang et al., 2012), and such
CFC was suggest to integrate long-range neural interactions
mediated by low-frequency rhythms (e.g., theta/alpha) with
local computations mediated by high frequencies (i.e., gamma).
Importantly, the abnormal CFC is linked to several cognitive
processes and disease states (Schlee et al., 2009; López-Azcárate
et al., 2010; Miskovic et al., 2011; de Hemptinne et al.,
2013). Couplings between β-phase (13–30 Hz) and γ-amplitude
(50–200 Hz) in primary motor cortex showed to be exaggerated

for Parkinson patients compared with healthy subjects without
motor disorders, and such excessive coupling could be reduced
by therapeutic subthalamic nucleus stimulation (de Hemptinne
et al., 2013), suggesting the dysfunction of CFC in disease
states.

With the evidences showing: (1) the potential relevance of
CFC for understanding psychophysiological and pathological
brain functions (Canolty et al., 2006; Schlee et al., 2009;
Canolty and Knight, 2010; López-Azcárate et al., 2010; Miskovic
et al., 2011; de Hemptinne et al., 2013) and (2) nociceptive
somatosensory stimuli induced modulations of oscillations in
multiple frequency bands (Schulz et al., 2011; Zhang et al., 2012;
Hu et al., 2015), we believe that the oscillatory activities in
different frequency bands are functioning interactively within
the cortical network, and CFCs involved in pain could provide
complemented information for the establishment of the cortical
oscillatory bases of pain perception. However, it should be
noted that the couplings measured anywhere in the brain
can be potentially explained by the influence of external
sensory inputs or internal cognitive events, on the phase and
amplitude of the oscillations, rather than reflecting the actual
modulations in different frequency bands. For example, the
coupling of theta phase and gamma power observed in rodents
(Wang et al., 2011), which was interpreted as a reflection
of the storage and processing of nociceptive information,
actually can be explained by the common effects of the
nociceptive sensory inputs on both theta phase and gamma
power, instead of the actual CFC. Therefore, whether the
observed correlation between two bands (e.g., phase-amplitude)
is due to the common drive, e.g., generated by external or
internal input, or whether the correlation is due to a causal
interaction between rhythms should be distinguished in the
future study.

Dissection of Pre- and Post-Stimulus
Oscillations
The traditional approach to estimate ERD/ERS activities relies on
time-frequency decomposition methods to transform the single-
trial electrocortical signals into time-frequency distributions
(TFDs), and then the resulting TFDs are typically expressed
as a percentage change relative to pre-stimulus EEG power to
highlight the stimulus-induced changes in power within specific
frequency bands (Ploner et al., 2006b; Iannetti et al., 2008;
Hu et al., 2013). However, a recent study (Hu et al., 2014b)
demonstrated that such baseline percentage approach would
introduce a significant bias in estimating ERD/ERS magnitudes,
i.e., resulting in an overestimation of ERS and underestimation
of ERD, and pointed out that such bias could be avoided using a
single-trial baseline subtraction approach.

Importantly, the pre-stimulus oscillatory activities in
different frequency bands, reflecting the dynamics of brain
states, can influence both the post-stimulus ERPs and
sensory perception. For example, the pre-stimulus α-power
could significantly modulate the nociceptive-induced α-ERD
magnitude (Hu et al., 2013), by showing the nociceptive-induced
α-ERD magnitude was significantly more dependent on the
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pre-stimulus than on the post-stimulus α-power. A more
recent study (Tu et al., 2016) showed that the pre-stimulus
EEG oscillations in both alpha and gamma frequency bands
could significantly modulate the subjective perception of painful
stimuli, and importantly, the pre-stimulus alpha and gamma
oscillatory activities could provide distinctive information
in predicting subjective pain perception. Nevertheless, the
single-trial baseline correction approaches (both percentage
and subtraction methods) would confuse the contribution
of pre- and post-stimulus EEG power, since the baseline
corrected ERD/ERS activities reflect the mixed variabilities
of changes in the state of the system (reflected as the pre-
stimulus oscillations in different frequency bands; Laufs et al.,
2003b; Del Percio et al., 2006; Hu et al., 2013) and changes
induced by the stimulus and task (reflected as the post-stimulus
oscillations).

Thus, it is crucial to dissect the contributions of pre- and
post-stimulus power to the variability of ERD/ERS, which
reflect different psychophysiological mechanisms. It is proposed
to dissect and quantify the relationship between behavioral
variables (e.g., RTs and subjective pain intensity) and pre-
and post-stimulus EEG activities, e.g., based on a multivariate
linear regression model with the combination of partial least
square (PLS) regression (Hu et al., 2014b), thus allowing for a
full exploration of electrocortical oscillations involved in pain
perception.

POTENTIAL APPLICATIONS IN BASIC AND
CLINICAL PAIN STUDIES

By comprehensively investigating neural oscillatory activities
relating to the nociceptive sensory inputs (both transient and
tonic stimuli) on healthy subjects, it is likely to establish
an oscillatory basis of human pain perception and identify
how a network of cortical areas involves in human pain
experience. The identification of electrophysiological parameters
or signatures encoding how the cortex processes the nociceptive
inputs and how the experience of pain may emerge from this
complex processing, could indeed open a window to study
the cortical process underlying pain function as well as the
physiology mechanism of nociceptive systems in humans. In
clinical practice, this understanding also would make it possible
to predict/measure subjective pain intensity objectively, and
definitely help (1) explore the pathological mechanisms of
chronic pain and (2) achieve pain relief by modulation the
oscillatory activities using neurofeedback techniques, with the
investigation of cortical oscillatory activities on chronic pain
patients.

Identifying the Electrophysiological
Signatures of Pain Perception
In the last decades, a large number of EEG/MEG studies (Gross
et al., 2007; Iannetti et al., 2008; Schulz et al., 2011; Zhang et al.,
2012; Hu et al., 2013, 2014a) have extensively investigated the
neural activities in response to the various kinds of nociceptive
stimuli, with focusing specifically on temporal aspects of

nociceptive processing. LEPs have been used extensively in
the past decades for a progress in the understanding of
the cortical processes underlying pain perception, with the
assumption that they reflect, at least partly, neural activities
specifically involved in processing nociceptive somatosensory
inputs. However, Mouraux and Iannetti (2009) demonstrated
that nociceptive laser-evoked brain potentials do not reflect
nociceptive-specific neural activity by showing: (1) LEPs could
be entirely explained by a combination of multimodal neural
activities and somatosensory-specific neural activities and (2) the
magnitudes of the multimodal activities were significantly
correlated with subjective ratings of saliency regardless the
sensory modalities.

Nevertheless, with recent evidence showed that: (1) pain
induced gamma oscillations over S1 covaried with objective
stimulus intensity as well as subjective pain intensity (Gross
et al., 2007); (2) the magnitudes of laser induced gamma band
oscillations could always predict the subjective pain intensity
regardless of the stimulus repetition when applying trains of
three laser stimuli with constant 1 s interval (Zhang et al.,
2012); and (3) tonic heat pain induced gamma oscillations could
significantly predict subjective pain intensity (Peng et al., 2014;
Schulz et al., 2015), we speculate that the gamma oscillation may
be a candidate of the electrophysiological signatures reflecting
nociceptive specific neural activities, even further investigation
should be done.

Predicting Subjective Pain Intensity
Even pain is a subjective first-person experience, and self-report
is considered as the golden standard for the evaluation of pain
intensity in clinical situations (Cruccu et al., 2010), self-reports
of pain intensity are not available in some vulnerable populations
which may lead to inadequate or suboptimal treatment of pain.
An objectivemeasurement of pain intensity that can complement
self-reports, e.g., to monitor the effect of analgesic drug or the
recovery of nociceptive system for non-communicative patients,
is in demanding in clinical practice. Even it would be optimal
to use pain-specific electrophysiological signatures in predicting
subjective pain intensity, using the electrophysiological features
that are pain-related but not directly specific to pain processing,
could also achieve a relatively high accuracy. For example, for
an objective evaluation of pain intensity, Huang et al. (2013)
used the evoked potentials information (N2 and P2 latencies
and amplitudes) of single-trial LEPs, which are considered to
mainly reflect attention capture and arousal to the painful
stimuli (Iannetti et al., 2008; Mouraux and Iannetti, 2009), with
prediction accuracy of ∼86.3% and ∼80.3% at within-individual
and cross-individual level respectively.

Considering (1) the close association between time-frequency
oscillatory features (e.g., gamma ERS) with subjective pain
intensity (Gross et al., 2007; Zhang et al., 2012); (2) the
oscillatory features could provide complementary information
of cortical processing that is different from those reflected
by evoked potentials (Mouraux and Iannetti, 2008); and
(3) the fluctuations of pre-stimulus oscillations could
influence and modulate the subsequent sensory perception
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(Mathewson et al., 2009; Tu et al., 2016), we propose that
the prediction of subjective pain intensity is promising to
obtain a better performance with the combination information
of stimulus-evoked ERPs, stimulus-induced ERD/ERS, and
pre-stimulus oscillation in different frequency bands.

Investigating the Pathological Mechanisms
of Chronic Pain: Abnormal Oscillatory
Activities in Chronic Pain Patients
Clinical studies have revealed that some chronic pain patients are
associated with the occurrence of abnormal cortical oscillatory
activities (Sarnthein et al., 2006; Drewes et al., 2008; Sarnthein
and Jeanmonod, 2008; Schlee et al., 2009; Walton et al., 2010).
By comparing power spectra of the resting EEG of neurogenic
pain patients and healthy controls, the patient group exhibited
higher resting-EEG power over the frequency range of 2–25 Hz,
and the maximal difference appeared in theta frequency band in
all electrodes (Sarnthein et al., 2006). Importantly, the excessive
theta power gradually decreased and approached normal values
after thalamic surgery, suggesting that both EEG and neurogenic
pain may be determined by tightly coupled thalamocortical
loops (Sarnthein et al., 2006). In addition, the patients with
visceral (Drewes et al., 2008) and somatic pain syndromes
such as complex regional pain syndrome and neurogenic
pain (Sarnthein and Jeanmonod, 2008; Walton et al., 2010)
also showed higher baseline levels of delta and/or theta EEG
oscillations compared with the healthy controls, localized to the
somatosensory cortex corresponding to the pain localization,
and to orbitofrontal-temporal cortices related to the affective
pain perception. Hepatic encephalopathy patients showed a
decreased peak frequency of alpha activity and a delayed alpha
rebound in painful stimulus processing over the somatosensory
cortex, compared with healthy controls (May et al., 2014). The
alternations of the oscillatory activities in chronic pain patients
may reflect a dysfunctioned local communication or long-range
communication between the functionally specialized assemblies
formed by a huge number of neurons in the human brain
(Schnitzler and Gross, 2005). Studying the abnormal oscillations
in chronic pain patients, could provide insights about the
pathological mechanisms underlying chronic pain situations,
thus at last leading to a rational basis for the management of pain.

Relieving Pain by Modulating Cortical
Oscillatory Activities using Neurofeedback
Techniques
With the evidences showing the association between the ongoing
oscillatory activities and subsequent sensory perception and
behaviors (Rahn and Bas,ar, 1993a,b; Babiloni et al., 2008;
Romei et al., 2008; Lange et al., 2012; Tu et al., 2016), the
application of neurostimulation techniques outside the skull,
such as repetitive transcranial magnetic stimulation (rTMS) and
transcranial alternating current stimulation (tACS) that could
selectively modulate the oscillatory activities at specific brain
areas (e.g., sensorimotor cortex), is promising to relieve pain
(Klein et al., 2015). Using these online stimulation techniques
could not only reveal the causal roles of the oscillatory brain

activities and subjective pain perception, but also may be
considered as effective strategies for clinical pain relief.

Indeed, with the delivery of 20 Hz rTMS over S2, patients
with chronic visceral pain exhibited significant analgesic
effects (Fregni et al., 2005). In addition, subthreshold motor
cortex rTMS at 10 Hz to the chronic neuropathic pain
patients, could significantly reduce pain intensity and thermal
sensory thresholds in the painful zone, and the pain relief
showed to be correlated with the improvement of warmth
sensory thresholds (Lefaucheur et al., 2008). They interpret
the action of rTMS to patients with chronic pain could
induce changes of cortical excitability, thus for a restoration of
defective intracortical GABAergic inhibitory processes and the
normalization of neuronal activity in thermal sensory relays,
since chronic neuropathic pain was associated with the motor
cortex disinhibition, which may be related to the impairment
of GABAergic neurotransmission responsive to some aspects
of pain symptom or to the underlying sensory or motor
disturbance. In addition, by testing the effectiveness of tACS
over S1 at a wide frequency band (ranging from 2–70 Hz),
the tACS over S1 could elicit tactile sensation in a frequency-
dependent manner (Feurra et al., 2011), with obvious effects
at stimulus frequency within both alpha (10–14 Hz) and high
gamma (52–70 Hz) ranges, indicating that online stimulation
techniques could be used to reveal the causal roles of the brain
oscillations.

SUMMARY

Besides ERPs, the nociceptive somatosensory inputs could also
induce modulations of cortical oscillations, appeared as ERD or
ERS in different frequency bands. These ERD/ERS activities are
suggested to be involved in different aspects of pain perception
(e.g., sensory perception and behavior), even though the details
of their functional roles remain unclear. From a methodological
perspective, apart from the temporal, spectral, and spatial
profiles of the oscillatory activities, it is instructive to adopt
novel parameters (e.g., phase, neural generator, and CFC) to
comprehensively evaluate the dynamics of cortical oscillations,
thus allowing a full exploration of the neuronal oscillations
involved in pain perception. Identifying pain related oscillatory
activities and establishing an oscillatory basis of pain perception,
could lead new insights into the physiological mechanisms of
nociceptive systems in humans. In clinical practice, this also
offers exciting prospects for the investigation of pathological
mechanisms of chronic pain, thus promoting the development
of rational therapeutic strategy.
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An effective physiological pain assessment method that complements the gold standard

of self-report is highly desired in pain clinical research and practice. Recent studies have

shown that pain-evoked electroencephalography (EEG) responses could be used as a

readout of perceived pain intensity. Existing EEG-based pain assessment is normally

achieved by cross-individual prediction (i.e., to train a prediction model from a group of

individuals and to apply the model on a new individual), so its performance is seriously

hampered by the substantial inter-individual variability in pain-evoked EEG responses. In

this study, to reduce the inter-individual variability in pain-evoked EEG and to improve

the accuracy of cross-individual pain prediction, we examined the relationship between

pain-evoked EEG, spontaneous EEG, and pain perception on a pain EEG dataset, where

a large number of laser pulses (>100) with a wide energy range were delivered. Motivated

by our finding that an individual’s pain-evoked EEG responses is significantly correlated

with his/her spontaneous EEG in terms of magnitude, we proposed a normalization

method for pain-evoked EEG responses using one’s spontaneous EEG to reduce the

inter-individual variability. In addition, a nonlinear relationship between the level of pain

perception and pain-evoked EEG responses was obtained, which inspired us to further

develop a new two-stage pain prediction strategy, a binary classification of low-pain

and high-pain trials followed by a continuous prediction for high-pain trials only, both

of which used spontaneous-EEG-normalized magnitudes of evoked EEG responses as

features. Results show that the proposed normalization strategy can effectively reduce

the inter-individual variability in pain-evoked responses, and the two-stage pain prediction

method can lead to a higher prediction accuracy.
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INTRODUCTION

Pain is an unpleasant experience related to substantive or
potential tissue damage (Loeser and Treede, 2008; Brown et al.,
2011). Self-report is the gold standard to determine the presence,
absence, and the degree of pain perception in clinic practice
(Cruccu et al., 2010; Haanpää et al., 2011), but it may fail
in certain patient populations, e.g., patients who suffer from
consciousness disorders or are in coma (Schnakers and Zasler,
2007). Lack of accurate pain assessment in these populations can
lead to inadequate or suboptimal treatment of pain. Therefore,
it is of high importance to develop a physiology-based pain
assessment method that is independent of participants’ subjective
rating (Brown et al., 2011; Terhaar et al., 2011; Huang et al.,
2013b).

As a sensory perception that involves a complex set of brain
activities, pain has been under intensive investigations using
brain imaging techniques, such as electroencephalography (EEG)
and functional magnetic resonance imaging (fMRI). A variety
of neural signatures of pain have been identified from brain
imaging data, and the possibility to utilize pain-related neural
signatures for pain assessment has been explored in many studies
(Bromm and Treede, 1983; Iannetti et al., 2003; Marquand et al.,
2010; Brown et al., 2011; Brodersen et al., 2012; Schulz et al.,
2012; Zhang et al., 2012). For example, a support vector machine
(SVM) trained on fMRI data was verified to be possible for
pain assessment (Brown et al., 2011). Schulz et al. also applied
a multivariate pattern analysis to predicted individual’s pain
sensitivity using single-trial pain-related EEG (Schulz et al.,

2012).
Particularly, EEG-based pain assessment has attracted a

growing interest in recent years, not only because the EEG
technique is cheap, easy-to-use, and non-invasive, but also
because the relationship between EEG responses and pain
perception has been relatively well recognized. In basic research
of pain, EEG activities elicited by nociceptive laser heat pulses
are widely used to assess neural processing of nociceptive pain
(Bromm and Treede, 1983; Iannetti et al., 2003; Treede et al.,
2003). A positive relationship between the intensity of perceived
pain and a variety of components (such as N2 and P2) in
laser-evoked EEG responses has been well documented (Kakigi
et al., 1989; Bromm and Treede, 1990; Beydoun et al., 1993;
Arendt-Nielsen, 1994; Garcí-Larrea et al., 1997; Iannetti et al.,
2005; Huang et al., 2013a). Based on the existing knowledge
on relationship between laser-evoked EEG and pain, we have
developed a method to predict the level of subjective pain
perception using single-trial laser-evoked EEG potentials (Huang
et al., 2013a), and achieved good predictive accuracy.

Pain prediction using evoked EEG can be realized at two
levels: within-individual pain prediction (the classifier and the
prediction model were trained on and applied to the same group
of individuals) and cross-individual prediction (the classifier and
the prediction model were trained on a group of individuals
but applied to different individuals). Since within-individual pain
prediction requires real pain ratings for new individuals and
is not applicable to people who are unable to reliably express
their pain perception (Brodersen et al., 2012; Schulz et al.,

2012), cross-individual pain prediction is more desired in clinical
uses. However, our previous work (Huang et al., 2013b) showed
that cross-individual pain prediction has a significantly lower
performance than within-individual prediction, mainly because
of the inherent inter-individual variability in pain perception
and neural responses. Therefore, incorporating individual factors
that are particularly related to inter-individual variability of
pain perception or pain-evoked neural activities into the cross-
individual pain prediction model is crucial in pain assessment
and pain therapy (Davis, 2011), and it is also the objective of the
present study.

In an EEG-based pain prediction model that links EEG
signals and subjective pain ratings, substantial inter-individual
variability is involved in both EEG and ratings. However, it
is difficult to improve the performance of cross-individual
pain prediction by means of reducing the inter-individual
variability of subjective pain ratings, because pain ratings for a
new individual, as the unknown variables to be predicted, are
not accessible. Therefore, this study is focused exclusively on
decreasing the inter-individual variability of pain-related EEG
responses: we aim to explore how the pain-related EEG responses
vary between individuals at different levels of pain and how to
normalize pain-related EEG responses across individuals for a
more accurate EEG-based cross-individual pain prediction.

In the present study, we hypothesize that an individual’s
spontaneous EEG activity can be used to normalize his/her
pain-evoked EEG responses so as to improve the accuracy of
cross-individual pain prediction. This hypothesis is induced by
strong and consistent evidence showing that the magnitudes of
a variety of pain-evoked EEG responses are highly correlated
with that of spontaneous EEG of the same individual. Actually,
the magnitudes of both spontaneous and pain-evoked EEG
activities are altered by the difference in individual-specific
factors, such as cortical anatomy (e.g., the thickness of the skin
and skull) and experimental conditions (e.g., electrode position
and scale-electrode impedances; Klistorner and Graham, 2001;
You et al., 2012). Therefore, the magnitude of spontaneous
EEG has the potential to serve as an individual scale to
normalize the magnitude of pain-evoked EEG responses for a
reduced inter-individual variability. The normalized magnitudes
of pain-evoked EEG are used as features in the subsequent pain
prediction. Next, a two-stage cross-individual pain prediction
method is developed: a binary classifier to discriminate low-
pain (NRS ≤ 4) and high-pain (NRS > 4) followed by a linear
prediction model to predict the pain ratings (4–10) for high-pain
trials only. The results showed that the proposed spontaneous
EEG based normalization can effectively decrease the inter-
individual variability in the classifiers and prediction models, and
consequently, can increase the accuracy of pain prediction, as
compared with the prediction based on raw pain-evoked EEG
responses.

MATERIALS AND METHODS

Participants
Thirty-four healthy volunteers (17 females and 17 males), aged
18–25 years (Mean ± SD: 21.6 ± 1.7), without a history of
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chronic pain, participated in the study. All volunteers gave their
written informed consent and were paid for their participation.
The experiment procedures were approved by the local ethics
committee. Before the experiment, they were familiarized with
the experimental setup and task.

Experimental Design
Nociceptive-specific radiant-heat stimuli were generated
by an infrared neodymium yttrium aluminiumperovskite
(Nd:YAP) laser with a wavelength of 1.34 µm (Electronical
Engineering, Italy). At this wavelength, laser pulses activate
directly nociceptive terminals in the most superficial skin layers.
The laser beamwas transmitted via an optic fiber and its diameter
was set at ∼ 7mm (≈38mm2) by focusing lenses. Laser pulses
were directed at the medial side of the dorsum of left hand,
between the first and third metacarpus. A He-Ne laser pointed
to the area to be stimulated. The duration of the laser pulse was
fixed at 4ms. After each stimulus, the target of the laser beam
was shifted by more than 1 cm in a random direction, to avoid
nociceptor fatigue or sensitization.

Participants were asked to report the intensity of perceived
pain elicited by the laser stimulus, using a numerical rating scale
(NRS) ranging from 0 (no pain) to 10 (pain as bad as it could
be). Prior to EEG data collection, the highest energy of the laser
stimulation, used in the following experiment, was individually
determined using the method of limits (from 1 J in step of 0.25
J) until a rating of 8 was reached. No withdrawal reflexes and
motor contractions were observed until the stimulation intensity
increased to 3.75–4.5 J. During the EEG data collection, 12–15
different levels of laser stimulation energies (from 1 to 3.75–4.5 J,
in step of 0.25 J) were adopted, and 10 laser pulses at each energy
level, for a total of 120–150 pulses, were delivered in two blocks.
Before each block, the surface temperatures of hand dorsum for
each participant were measured using an infrared thermometer.
The order of stimulus energies was pseudo-randomized. The
inter-stimulus interval (ISI) varied randomly between 10 and 15 s
(uniformly distributed). An auditory tone delivered between 3
and 6 s after the laser pulse (uniformly distributed) prompted the
participants to rate the intensity of pain. The dataset with 12–
15 levels of stimulation energy enables a more comprehensive
and detailed investigation of the relationship between pain-
evoked EEG responses and spontaneous EEG activities and the
relationship between pain-evoked EEG responses and subjective
pain ratings.

EEG Recording
Participants were seated in a comfortable chair in a silent,
temperature-controlled room. They wore protective goggles and
were asked to focus their attention on the stimuli and relax
their muscles. The EEG data were recorded using a 64-channel
EEG cap with Ag-AgCl scalp electrodes placed according to the
international 10–20 system (Brain Products GmbH, Munich,
Germany; pass band: 0.01–100Hz; sampling rate: 1000Hz). The
nose was used as the reference electrode, and the impedances of
all electrodes were kept lower than 10 k�. Electrooculographic
(EOG) signals were simultaneously recorded using surface
electrodes to monitor ocular movements and eye blinks.

EEG Data Analysis
Preprocessing

Continuous EEG data from Cz channel were band-pass filtered
between 1 and 30Hz. EEG epochs were extracted using a
window analysis time of 1 s (from 0.5 s pre-stimulus to 0.5 s post-
stimulus), and baseline corrected using the pre-stimulus interval
(−0.5 to 0 s). Artifacts due to eye blinks or eye movements were
subtracted using independent component analysis. In all datasets,
the independent components which had a large EOG channel
contribution and a frontal scalp distribution were removed. The
above EEG data preprocessing were realized using EEGLAB
(Delorme and Makeig, 2004), an open source toolbox running in
MATLAB environment.

Feature Extraction

EEG trials recorded at Cz (nose referenced) were used for
prediction of pain perception. Each EEG trial consists of two
segments: the pre-stimulus trial (−0.5 to 0 s) is spontaneous
EEG (sEEG) and the post-stimulus trial (0–0.5 s) is dominated
by pain-evoked EEG (pEEG) or, more precisely, Aδ-fiber pain-
evoked EEG responses. The magnitude of sEEG or pEEG trial is
quantified by root mean square (RMS)

RMS =

√

√

√

√

1

K

K
∑

k= 1

x2
k
, (1)

where xk is the k-th sample of the trial, and K is the number of
data samples. The RMS of sEEG or pEEG are denoted as RMSS or
RMSP and will be used as features in subsequent investigation of
the relationship between pain and EEG and in pain prediction.

Relationship between sEEG and pEEG
To test whether sEEG can serve as a baseline to normalize
pEEG for a smaller inter-individual variability, we examined
the relationship between RMSS and RMSP. We assume that an
individual’s RMSS and RMSP (both of which are averaged across
all trials at each pain intensity level) are normally distributed,
and calculate the mean and standard deviation (SD) of RMSS and
RMSP across all trials at each pain intensity level. Then, cross-
individual correlation between these mean and SD values were
estimated.

Relationship between Pain and pEEG
In our experiments, participants were asked to report the level
of pain perception with four as the pinprick pain threshold (i.e.,
NRS > 4 refers to feeling of pinprick pain). Thus, NRS = 4
serves as a threshold to differentiate low-pain and high-pain
(i.e., low-pain: NRS≤ 4, high-pain: NRS > 4). To investigate the
relationship between the rating of perceived pain and evoked
EEG responses, RMSP, which was averaged across trials with
each identical pain level for each individual, was fitted using two
models: a global linear model and a two-piecewise linear model
(two segments withNRS= 4 as the break point). The global linear
model is based on the assumption that magnitude of pEEG is
linearly increased with the pain rating, while the piecewise linear
model assumes that the relationship between pain rating and
pEEG is different for low-pain (NRS ≤ 4) and high-pain (NRS
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> 4). The performance of the two models are quantified with the
mean square error (MSE) and compared across individuals using
a paired sample t-test.

Feature Normalization Based on sEEG
There are different normalization methods available, and here
we normalized the magnitude of a pEEG trial as the z-score of
the population defined by sEEG trials. For each individual, the
magnitude of the i-th pEEG trial, RMSP(i), was normalized by
RMSS of all sEEG trials as

nRMSP(i) =
RMSP(i)− µ(RMSS)

σ (RMSS)
, (2)

where nRMSP(i) is the normalized magnitude of the i-th pEEG
trial,µ and σ are respectively the mean and the SD of RMSS of all
trials of this individual.

To examine whether the inter-individual variability of pEEG
magnitudes was decreased by the sEEG-based normalization,
we performed an ANOVA F-test on RMSP and nRMSP. More
precisely, at each pain level, an ANOVA F-test was performed
on RMSP or nRMSP of all trials with this pain level across all
individuals to check whether the means of RMSP or nRMSP
of this group of individuals are the same, and the resultant F-
statistics denote the inter-individual variability relative to the
within-individual variability of the variable under test. Then, we
compared the F-statistics between RMSP and nRMSP at each pain
level, and it is expected that nRMSP has a smaller F-statistic than
RMSP.

We next investigate whether the proposed sEEG-based
normalization method can reduce the cross-individual variability
in the relationship between intensity of pain perception and the
magnitude of pEEG. Firstly, for each individual, we calculated
an optimal threshold of RMSP or nRMSP that can best classify
(with the highest accuracy) the individual’ trials into low-pain
(NRS ≤ 4) and high-pain (NRS > 4). The inter-individual
variability of the binary classification thresholds of RMSP and
nRMSP were measured by variance. If the variance of the
threshold obtained from nRMSP is smaller than that from
RMSP, the effectiveness of sEEG-based normalization in reducing
the individual difference in the binary classification can be
validated. A two-sample F-test was also conducted to check
whether the thresholds of RMSP and nRMSP have the same
variance. Secondly, we consider the relationship between pain
ratings and RMSP (or nRMSP) of high-pain (NRS > 4) trials
to be a linear model specific to each individual, then the inter-
individual variability in this relationship is indicated by the
cross-individual variance of slope and intercept of the linear
model. So, slopes and intercepts of all individuals were calculated
using two sets of features (RMSP and nRMSP), and their inter-
individual variability were compared. If the cross-individual
variance of slopes or intercepts obtained using nRMSP is smaller
than that obtained using RMSP, the effectiveness of sEEG-
based normalization in reducing the individual variability in
the continuous prediction model can be validated. Similarly,
a two-sample F-test was also conducted to check whether
the slopes or intercepts of RMSP and nRMSP have the same
variance.

Binary Classification (Low-Pain vs.
High-Pain)
A linear discriminant analysis (LDA) classifier was adopted to
classify low-pain and high-pain trials using leave-one-individual-
out cross validation. The classifier was first trained with RMSP or
nRMSP of training trials, which divided into two categories (low-
pain: NRS ≤ 4, and high-pain: NRS > 4), and then applied to
the test trials to predict labels (low-pain vs. high-pain) from the
corresponding RMSP or nRMSP. The classification performance
was evaluated by accuracy, and the accuracies obtained from
classification using RMSP and nRMSP were compared using
paired sample t-test.

Continuous Prediction of Pain Levels for
High-Pain Trials
After binary classification, only high-pain trials are involved
in continuous pain prediction, because there is no significant
correlation between pain ratings and pEEG of low-pain trials.
To prove that the sEEG-based normalization is effective
for continuous pain prediction regardless of the results of
the preceding binary classification, we performed continuous
pain prediction for trials predicted as high-pain from binary
classification as well as for real high-pain trials (NRS > 4).

Relationship between single-trial RMSP (or nRMSP) and the
corresponding intensity of pain perception wasmodeled by linear
regression. For the i-th pEEG trial, the pain rating Ri can be
estimated as

Ri = α · RMSP(i)+ c, (3)

Ri = α · nRMSP(i)+ c, (4)

where α and c are slope and intercept of the linear regression
model. The model of (Equations 3 and 4) was trained and tested
using leave-one-individual-out cross validation.

The prediction performance of the linear regression model
was evaluated by Mean Absolute Error (MAE),

MAE =
1

N

N
∑

n=1

∣

∣

∣
Ri − R̂i

∣

∣

∣
, (5)

where N is the total number of test trials, Ri and R̂i are
respectively the real and predicted rating value for the i-
th trial. MAE provides a straightforward measure on how
precisely the generated linear regression model can represent the
relationship between pain ratings and pEEG magnitudes. The
MAE values obtained from prediction using RMSP and nRMSP
were compared using the paired sample t-test.

RESULTS

Relationship between sEEG and pEEG
For each participant, the mean and SD of RMSS and RMSP at
each pain intensity level were calculated. Since NRS > 8 was
not available for some participants, we use a combined level of
“NRS > 8” to denote all trials with an NRS > 8. It can be clearly
seen from Figure 1 and Table 1 that, a significant correlation
(p ≤ 0.007) between the mean values of RMSS and RMSP was
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FIGURE 1 | Correlation between the mean and SD of RMSS and RMSP at levels of (A) NRS ≤ 4, and (B) NRS > 4. Red dots represent the mean or SD of

RMSS and RMSP, which are averaged across all trials at each pain intensity level for each participant. Gray lines represent the best linear fit.

TABLE 1 | Correlation between the mean and SD of RMSS and RMSP at each pain level.

NRS (0, 4] (0, 1] (1, 2] (2, 3] (3, 4]

Mean R 0.891 0.721 0.930 0.725 0.666

P-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

SD R 0.659 0.614 0.466 0.171 0.537

P-value < 0.001 < 0.001 0.013 0.335 0.001

NRS (4, 10] (4, 5] (5, 6] (6, 7] (7, 8] (8, 10]

Mean R 0.550 0.454 0.525 0.570 0.633 0.555

P-value < 0.001 0.007 0.001 < 0.001 < 0.001 0.003

SD R 0.519 0.303 0.340 0.065 0.402 0.193

P-value 0.002 0.082 0.049 0.718 0.025 0.346

obtained at each intensity level of pain perception. In addition, a
significant correlation between the SD values of RMSS and RMSP
was also obtained (p≤ 0.02) for overall intensity level of low-pain

(NRS ≤ 4) and high-pain (NRS > 4), though some individual
intensity level is not significant (such as intensity level at 2–3, 4–
5, 6–7, and 8–10). To conclude, the distributions of RMSS and
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FIGURE 2 | (A) Relationship between pain ratings and RMSP (from one participant). Colored dots represent mean ± SD of RMSP averaged across trials at different

level of pain perception. The red line represents the fitted global linear model, while the blue lines represent the fitted two-piecewise linear model. (B) Comparison of

MSE (mean ± SD) of all participants between two fitting models.

TABLE 2 | Comparison of F-statistics obtained from the ANOVA F-test on RMSP and nRMSP.

NRS (0, 1] (1, 2] (2, 3] (3, 4] (4, 5] (5, 6] (6, 7] (7, 8] (8, 10]

RMSP 5.279 6.476 5.802 10.553 17.022 13.501 17.278 10.420 18.718

nRMSP 1.182 1.475 1.582 4.795 11.624 11.332 13.792 8.172 9.310

RMSP are highly correlated, which verifies our hypothesis that
magnitudes of pEEG are highly correlated with the magnitude of
sEEG. This observation supports the idea that RMSS could serve
as an individual scale to normalize his/her RMSP to reduce inter-
individual variability of pain-related features in pain classification
and prediction models.

Relationship between Pain and pEEG
Figure 2A shows the relationship between pain rating and the
magnitude of pEEG (mean ± SD) of one participant. Overall,
pain rating and RMSP are positively related, but RMSP does not
increase significantly when the subjective pain ratings is ≤ 4
(referred to as “low-pain”); when the subjective pain rating is
>4 (referred to as “high-pain”), RMSP is linearly increased with
pain ratings. MSE of the global linear model (red line) or the
two-piecewise linear model (blue line) was adopted to measure
the accuracy of fitting, as shown in Figure 2B. It can be seen
from the group-level results in Figure 2B that, the fitting error
of the piecewise linear model is significantly smaller than that
of the global linear model. Therefore, the piecewise linear model
can better describe the relationship between pain perception and
RMSP. The nonlinear relationship motivates us to develop the
two-stage pain prediction (i.e., to classify low- and high-pain first,
then to predict the pain rating for high-pain trials only).

Feature Normalization Based on sEEG
We first confirmed that the magnitudes of sEEG trials and
pEEG trials of each individual approximately follow a normal

distribution (p < 0.0001 for all individuals, one-sample
Kolmogorov–Smirnov test). Therefore, an individual’s sEEG
trials could form a distribution for normalizing pEEG trials into
z-scores. Table 2 shows that, at each pain level, the F-statistic
obtained from the ANOVA F-test on nRMSP is lower than
that obtained from RMSP, which proves that the sEEG-based
normalization method can effectively reduce the inter-individual
variability of pEEG trials.

Figure 3 shows the optimal binary classification thresholds
and slopes/intercepts of linear regression models for high-pain
trials, which were obtained from available trials and ratings
of all individuals. We can clearly see that, after sEEG-based
normalization, the variance of all above three parameters were
remarkably decreased, which illustrates that the proposed sEEG-
based normalization method can effectively reduce the inter-
individual variability in classification and prediction models.

Table 3 further shows that, cross-individual variances of all
three classifier/model parameters were decreased after sEEG-
based normalization. The two-sample F-test also demonstrates
that the variances of all three classifier/model parameters are
significantly different between using RMSP and using nRMSP as
features (p < 0.0001 for all).

Pain Prediction
The mean and SD of accuracy for binary pain classification
(low-pain vs. high-pain) using RMSP (i.e., pEEG features)
and using nRMSP (i.e., sEEG-normalized pEEG features)
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FIGURE 3 | Effects of sEEG normalization on inter-individual variability of (A) binary classification thresholds, (B) slopes of linear regression models

for high-pain trials, (C) intercepts of linear regression models for high-pain trials. Noted that mean values were removed from these parameters for

illustration. The box plots show the minimu, lower quartile, median, upper quartile, and maximum values of one group of variables.

TABLE 3 | Comparison of binary classifier thresholds and model

parameters between using RMSP and using nRMSP.

RMSP nRMSP

Binary classfication

theresholds

Cross-individual variance 4.284 1.797

P-value (F-test for equal variance) <0.001

Slopes of linear models Cross-individual variance 1.340 0.522

P-value (F-test for equal variance) <0.001

Intercepts of linear

models

Cross-individual variance 7.525 3.254

P-value (F-test for equal variance) <0.001

TABLE 4 | Accuracy of binary classification and prediction error (MAE) of

continuous prediction.

RMSP nRMSP P-value (paired

t-test)

Accuracy of binary

classification (%)

68.95 ± 12.91 70.36 ± 14.18 0.092

MAE of continuous

prediction (on predicted

high-pain trials)

1.838 ± 0.602 1.625 ± 0.446 0.002

MAE of continuous

prediction (on real

high-pain trials)

1.235 ± 0.278 1.173 ± 0.278 0.003

are summarized in Table 4. Results show that nRMSP can
improve the classification accuracy, though the performance
improvement is only close to significant (p= 0.092).

The mean and SD of MAE for continuous pain prediction
using RMSP (i.e., pEEG responses) and using nRMSP (i.e., sEEG-
normalized pEEG responses) for trials predicted as high-pain
from binary classification and for real high-pain trials (NRS >

4) are summarized in Table 4. Results indicate that the proposed
sEEG-based normalization method can significantly improve
the prediction accuracy for both predicted high-pain trials

(p= 0.002) and real high-pain trials (p = 0.003) in continuous
pain prediction.

DISCUSSION

In this study, we proposed to normalize pain-evoked EEG
responses using spontaneous EEG to improve the performance
of EEG-based pain prediction. Pain-related EEG responses have
been used to predict the level of subjective pain, but the large
inter-individual variability seriously degrades the performance
of cross-individual pain prediction. In this work, we began by
performing a comprehensive and detailed investigation of the
relationship between pEEG responses and sEEG activities as
well as the relationship between subjective pain ratings and
pEEG responses. Our results revealed a strong inter-individual
correlation between the magnitude of pEEG and sEEG. Besides,
our results also confirmed a nonlinear relationship between
pEEG and subjective pain ratings. Based on above observations,
we proposed a new two-stage approach for pain prediction: (1)
a binary classification to differentiate low-pain and high-pain
trials; (2) a continuous regression to predict pain ratings of
high-pain trials. In both steps, the normalization strategy based
on sEEG was used to reduce the inter-individual variability in
the magnitude of pEEG, so that a higher classification accuracy
and a lower prediction error were achieved. The new sEEG-

based normalization strategy has the potential to contribute to
an applicable and reliable tool for pain assessment.

Relationship between sEEG and pEEG
An individual’s spontaneous EEG has been shown to be related to
his/her genetic code, implying its uniqueness (Tran et al., 2001;
Doležal et al., 2005; Anokhin et al., 2006; Marcel and Del Millan,
2007; Näpflin et al., 2007; Zietsch et al., 2007). A strong inter-
individual correlation between the magnitude of sEEG and pEEG
was also obtained from our database. A potential interpretation
for this phenomenon may be due to the skull thickness, the
orientation of the gray matter and so forth. These anatomical
factors are specific to each person and will remain relatively stable
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for adults. Experimental conditions, such as electrode position
and scale-electrode impedances, could also contribute to the
phenomenon, because theymay influence themagnitudes of both
pEEG and sEEG.

Relationship between Pain Rating and
Pain-Evoked EEG Responses
Numerous previous studies have shown that the perceived pain
intensity is strongly correlated with the amplitude of a number
of evoked EEG responses (Iannetti et al., 2005; Huang et al.,
2013b). In most of these works, the level of pain perception was
assumed or found to be linearly correlated with the evoked EEG
responses, but such a linear relationship has been challenged by
growing evidence showing the nonlinearity between pain level
and the neural responses. The assumption and observation of
the linear relationship may due to the limited range of painful
stimulus intensities used in most of pain experiments, which
further limited the range of perceived pain intensity. To solve this
problem, our experiment was designed to deliver a large number
of laser pulses (>100) with a wide energy range (from 1 to 3.75–
4.5 J; 12−15 levels) to each participant. The result that the fitting
error of a two-piecewise linear model (with a break point of NRS
= 4) was significantly smaller than that of a global linear model
indicated a nonlinear relationship between pain level and the
evoked EEG responses.

Feature Normalization Based on sEEG
To normalize the magnitudes of pEEG trials of one individual,
we proposed to estimate their z-scores in the population
defined by sEEG trials of this individual. Although other
normalization methods exist, the proposed z-scores can achieve
better prediction results than other normalization methods, such
as dividing RMSP with the mean of sEEG or subtracting the
mean of sEEG from RMSP (results are not shown here). Besides
its good performance, the proposed z-score normalization also
reflects certain physiological meanings. It has been revealed
that the variability of spontaneous neural activity can reflect
the “dynamic range” of possible neural responses to incoming
stimuli and can provide a powerful and accessible measure for
understanding various individual difference variables (Barlow,
1960; Rodin et al., 1965; Rogers, 1980; Polich, 1997; Ramos-
Loyo et al., 2004; Lee et al., 2011; Nash et al., 2012; Garrett
et al., 2013; Schiller et al., 2014). Therefore, the distribution
defined by the magnitudes of sEEG is indicative of the possible
range of magnitudes of evoked pEEG and it can be used as
a baseline distribution to normalize pEEG magnitudes to z-
scores.

Applicability of the sEEG-Normalization
Based Pain Prediction
Predictive power of pEEG responses for decoding the intensity of
subjective pain perception has been well documented in previous
studies (Kakigi et al., 1989; Bromm and Treede, 1990; Garcí-
Larrea et al., 1997; Iannetti et al., 2005; Huang et al., 2013b),
which further led to several cross-individual pain prediction
methods, which do not need any subjective pain rating for
new individuals and thus more promising for clinical uses.

However, the accuracy of cross-individual pain prediction is
still not satisfactory because of the inherent inter-individual
variability in either pain evoked responses or pain ratings. A
practical solution to this problem is to incorporate individual
traits that are related to inter-individual variability into the pain
prediction model (Davis, 2011). In our previous study (Huang
et al., 2013b), single-trial evoked EEG features were normalized
by subtracting themean and dividing by the SD of the individual’s
evoked EEG features, and single-trial ratings of pain perception
were rescaled within the range from 0 to 10 (defining 0 as the
lowest pain rating and 10 as the highest pain rating for each
participant). Although above normalization on both evoked EEG
features and pain ratings can significantly increase the prediction
accuracy, its drawback was obvious. First, the normalization
was based on the distribution of evoked EEG features, which
can only be obtained from a large number of painful stimuli
and may not be accepted by participants. Second, it still needs
subjective pain rating from a new individual, which is not
suitable for participants with communication impairments. As
compared with the conventional normalization strategy (Huang
et al., 2013b), the proposed method has two main advantages:
first, it will not introduce any pain experience to a new
participant because the normalization is based on spontaneous
EEG; second, it can well deal with the difficult situation that
no reliable pain rating is available because no subjective rating
is needed. Therefore, the proposed sEEG-based normalization
method is more practical and feasible for clinical research and
applications.

Limitation and Future Work
The proposed normalization strategy focused solely on features
of pain-evoked EEG responses, simply because real values
of pain perception are generally considered to be unknown
in clinical scenarios. However, not only EEG responses but
also the pain ratings are characterized by tremendous inter-
individual variability. Different individuals perceive different
pain perception in response to the same painful stimulus. For
example, we have found pronounced sex-dependent difference
in pain perception as well as in pain-evoked EEG responses (see
Supplementary Materials). Taking into account gender difference
(such as using sex as a predictor) may lead to a more accurate
pain prediction. Mechanisms contributing to inter-individual
differences in pain sensitivity include genetic, environmental,
psychological, and cognitive factors (Nielsen et al., 2009; Coghill,
2010; Schulz et al., 2012), and it may be caused at any stage in pain
processing from the skin to the brain. Highly sensitive individuals
may activate stronger neural responses and/or pain experience
than insensitive individuals (Coghill et al., 2003; Coghill, 2010).
Variations in pain sensitivity is an important issue worthy of
further investigation, because understanding the contributing
factors of pain sensitivity will help greatly in developing a more
accurate and practical method for diagnosis of pain (Edwards,
2005; Nielsen et al., 2009). Our future study is aimed to address
above difficult problems, such as how to normalize pain ratings
and pain sensitivity and how to incorporate personal traits and
environmental factors in the prediction model, to develop a more
accurate and practical EEG-based prediction assessment method.
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Pain is a highly subjective experience. Self-report is the gold standard for pain

assessment in clinical practice, but it may not be available or reliable in some populations.

Neuroimaging data, such as electroencephalography (EEG) and functional magnetic

resonance imaging (fMRI), have the potential to be used to provide physiology-based and

quantitative nociceptive pain assessment tools that complements self-report. However,

existing neuroimaging-based nociceptive pain assessments only rely on the information

in pain-evoked brain activities, but neglect the fact that the perceived intensity of pain is

also encoded by ongoing brain activities prior to painful stimulation. Here, we proposed

to use machine learning algorithms to decode pain intensity from both pre-stimulus

ongoing and post-stimulus evoked brain activities. Neural features that were correlated

with intensity of laser-evoked nociceptive pain were extracted from high-dimensional

pre- and post-stimulus EEG and fMRI activities using partial least-squares regression

(PLSR). Further, we used support vector machine (SVM) to predict the intensity of

pain from pain-related time-frequency EEG patterns and BOLD-fMRI patterns. Results

showed that combining predictive information in pre- and post-stimulus brain activities

can achieve significantly better performance in classifying high-pain and low-pain and

in predicting the rating of perceived pain than only using post-stimulus brain activities.

Therefore, the proposed pain prediction method holds great potential in basic research

and clinical applications.

Keywords: pre-stimulus brain activity, EEG, fMRI, pain perception, machine learning, feature selection

INTRODUCTION

Pain assessment is a crucial clinical practice. Inaccurate pain assessment can lead to inadequate
pain management, and even misleads diagnosis and treatment (Brown et al., 2011). As a
multidimensional and highly subjective experience, pain perception is primarily measured by
means of self-report [e.g., Visual Analog Scales (VAS) and Numeric Rating Scales (NRS)]
in clinical applications (Cruccu et al., 2008; Haanpää et al., 2011). However, the subjectivity
of self-report limits its application to people with impaired consciousness (e.g., patients in
a coma, vegetative state or minimal conscious state; Schnakers and Zasler, 2007) or limited
cognitive capacity (e.g., young children, the elderly, patients with cognitive impairment;
Wong and Baker, 1988; Herr et al., 2004; Buffum et al., 2007), and people who are
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unwilling to reliably communicate the feeling of pain. In
addition, self-report provides limited understandings of the
underlying neurophysiological processes of pain perception,
which is important for the development of targeting treatments
(Wager et al., 2013).Therefore, developing a neurophysiology-
based pain assessment tool is highly necessary in basic pain
research and clinical applications.

Non-invasive neuroimaging techniques, such as
electroencephalography (EEG) and functional magnetic
resonance imaging (fMRI), enable us to readily obtain brain
responses to nociceptive inputs. A variety of neural correlates
of nociceptive pain [e.g., laser-evoked EEG potentials (LEPs),
fMRI responses within the “pain matrix”] have been identified,
allowing for neurophysiology-based pain assessments (Huang
et al., 2013; Wager et al., 2013). Assessing subjective intensity
of nociceptive pain perception with non-invasive neuroimaging
data has gained emerging interest in recent years. For example,
based on the strong correlation between the amplitudes/latencies
of LEP and subjective pain perception, single-trial LEP features
were used to predict pain intensity with high accuracy (Huang
et al., 2013). Rapid developments of neuroimaging data analytics
also lead to novel and effective algorithms for pain prediction.
Machine learning, which can identify brain activation patterns
corresponding to pain perception, has also been used in pain
prediction due to its high sensitivity to multidimensional
neuroimaging patterns (Schulz et al., 2011; Brodersen et al., 2012;
Wager et al., 2013).

However, conventional neuroimaging-based pain prediction
methods only make use of pain-related information encoded
in brain activities evoked by nociceptive stimulation, while
completely overlook ongoing brain activities prior to nociceptive
stimulation. Actually, pre-stimulus ongoing brain activities
contain important information that is predictive of forthcoming
perception of pain, because previous studies have convincingly
shown that pain perception is largely modulated by ongoing
cognitive states (e.g., expectation, attention, reappraisal;
Terkelsen et al., 2004; Quevedo and Coghill, 2007; Wiech et al.,
2008; Tu et al., 2016). Babiloni et al. (2006) firstly revealed
a strong negative correlation between pre-stimulus alpha-
band EEG power and subjective pain rating. The relationship
between pre-stimulus brain responses and pain perception
was also observed in fMRI studies. It was reported that the
variability in pain perception under identical stimuli was
positively correlated with the fluctuation of baseline blood
oxygenation level dependent (BOLD) signal in medial thalamus,
lateral fronto-parietal network, and negatively correlated with
BOLD in posterior cingulate and temporo-parietal cortices
(Boly et al., 2007). The pre-stimulus functional connectivity
between anterior insula cortex and brainstem was also found
to negatively modulate pain perception (Ploner et al., 2010).
Our recent work has introduced how the ongoing fluctuations
of intrinsic cortical networks (as reflected by EEG spectrogram
and BOLD-fMRI responses) determine the dynamic state of the
brain and influence the pain perception (Tu et al., 2016). These
findings suggested that pre- and post-stimulus brain activities
provide complementary information for pain encoding: post-
stimulus brain activities reflect the nociceptive information while

pre-stimulus brain activities are responsible for trial-to-trial
variability in baseline cognitive and emotional states.

In the present work, we hypothesize that combining the
information embedded in pre- and post-stimulus brain activities
can lead to a more accurate prediction of nociceptive pain
perception. To validate this hypothesis, we collected EEG and
fMRI data in laser-evoked pain experiments and used machine
learning algorithms to decode perceived pain intensity from
both pre-stimulus ongoing and post-stimulus evoked brain
activities. Temporal-spectral EEG spectrogram and BOLD-fMRI
magnitudes (in both pre- and post-stimulus periods) comprise
two high-dimensional feature sets used for pain decoding. A
popular supervisedmachine learningmethod, partial least square
regression (PLSR; Hu et al., 2014), was used to reduce the
dimensionality of EEG or fMRI feature sets by detecting a
subset of features that are closely correlated with pain. These
features form a number of pre- and post-stimulus pain-related
brain patterns (temporal-spectral patterns for EEG and spatial
patterns for fMRI). Support vector machine (SVM; Cortes and
Vapnik, 1995) was then used to decode the intensity of pain
perception from the pre- and post-stimulus EEG or fMRI brain
patterns. In both EEG and fMRI datasets, the proposed pain
decoding method using both pre- and post-stimulus activities
achieved higher prediction performance than conventional pain
decoding methods using post-stimulus information only. In
addition, the predictive power of pre- and post-stimulus brain
patterns for pain decoding was individually assessed and ranked,
helped to build a more concise prediction model and provided
an understanding of to what extent the extracted pain-related
patterns contribute to pain perception.

MATERIALS AND METHODS

In the present work, we proposed to decode the intensity of
perceived pain from both pre- and post-stimulus brain activities
(sampled by EEG or fMRI) in laser-evoked pain experiments.

Experiments
EEG Experiments
EEG data were collected from 96 healthy participants (51
females) aged 21.6 ± 1.7 years (mean ± SD). All participants
gave their written informed consent and the experimental
procedures were approved by the local ethics committee. Details
of experimental design and recordings have been published
previously (Hu et al., 2014).

In brief, nociceptive-specific radiant-heat stimuli were
generated by laser and a total of 40 pulses, 10 for each of the four
stimulus energies (E1: 2.5 J; E2: 3.0 J; E3, 3.5 J; E4, 4.0 J), were
delivered in a pseudorandom order. The inter-stimulus interval
varied between 10 and 15 s. After each stimulus, subjects were
instructed to rate the intensity of the painful sensation elicited
by the laser pulse, using a visual analog scale (VAS) ranging from
0 to 10 (0 corresponds to “no pain,” “<5” corresponds to “heat
pain,” “≥5” corresponds to “acute pain,” and “10” corresponds to
“pain as bad as it could be”; Jensen and Karoly, 1992). EEG data
were continuously recorded using 64 Ag-AgCl scalp electrodes
placed according to the International 10–20 system (Brain
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Products GmbH; Munich, Germany; pass-band: 0.01–100Hz;
sampling rate: 1000Hz), using the nose as reference. Electrode
impedances were kept below 10 kΩ . Electro-oculographic (EOG)
signals were simultaneously recorded using surface electrodes to
monitor ocular movements and eye blinks.

Functional MRI Experiments
Functional MRI data were collected from 32 healthy participants
(20 females) aged 22.1 ± 2.0 years (mean ± SD). All participants
gave their written informed consent and the experimental
procedures were approved by the local ethics committee. The
current dataset follows a similar experimental design as was
adopted in the EEG dataset, with the exception that inter-
stimulus interval was longer (varied between 27 and 33 s) due
to the low temporal resolution of fMRI recording. Functional
MRI data were acquired using a Siemens 3.0 Tesla Trio scanner
with a standard head coil. A whole-brain gradient-echo, echo-
planar-imaging sequence was used for functional scanning with
a repetition time (TR) of 1500ms (29ms echo time, 25 5.0mm-
thick slices with 0.5mm inter-slice gaps, 3 × 3mm in-plane
resolution, field of view 192 × 192 mm, matrix 64 × 64; flip
angle 90◦). A high-resolution T1-weighted structural image (1
mm3 isotropic voxel MPRAGE) was acquired after functional
imaging.

Methods
The proposed pain decoding pipeline is shown in Figure 1.
The pipeline consists of 3 steps: (1) pre-processing (not shown
in Figures 1, 2 feature extraction and selection; and (3) pain
prediction. Firstly, pre-processing is aimed to remove noise
and artifacts from raw EEG and fMRI recordings. Secondly, a
subset of pain-related features is selected from high-dimensional
neuroimaging data (time-frequency EEG data or whole-brain
fMRI data) in both pre- and post-stimulus periods to form
discriminative temporal-spectral EEG patterns and spatial fMRI
patterns. Thirdly, a predictionmodel is established to describe the
relationship between the level of pain perception and identified
EEG or fMRI patterns in both pre- and post-stimulus periods.
Two machine learning methods, PLSR and SVM, were used in
step 2 and step 3, respectively. Although, EEG and fMRI have
different pre-processing steps, they share similar methods in the
steps of feature selection and prediction.

Pre-Processing
For EEG data, five subjects were excluded from the dataset
since they did not have variable painful sensation in response
to different stimulus energies. EEG data were preprocessed
using EEGLAB (Delorme and Makeig, 2004) and underwent
standard pre-processing. Continuous data were filtered (1–
100 Hz) and segmented into epochs (–500 to 0 ms and
0 to 1000 ms for pre- and post-stimulus, respectively) and
baseline-corrected using pre-stimulus interval. An infomax
independent component analysis (ICA; Delorme and Makeig,
2004) was used to correct trials contaminated by eye blinks and
movements.

For fMRI data, two subjects were excluded from the
dataset since they did not have variable painful sensation

in response to different stimulus energies. The preprocessing
routine was conducted using SPM8 (Wellcome Trust Center
for Neuroimaging, London, UK). Images were slice-timing
corrected, head motion corrected, normalized to the Montreal
Neurological Institute (MNI) space (voxel size = 3× 3 × 3
mm) by mapping T1-weighted structural image to MNI template
(Ashburner and Friston, 2005), and spatially smoothed using a
Gaussian kernel of 8 mm full width at half maximum (FWHM
= 8 mm). A high-pass filter was applied (cut-off frequency =

1/128 Hz) to the BOLD time-series to remove low-frequency
drifts. BOLD responses were modeled as a series of events
using a stick function and ratings were included as a parametric
modulator of each stimulus, which were then convolved with
a canonical hemodynamic response function (HRF). Group-
level statistical analyses were carried out using a random effects
analysis with one-sample t-test as implemented in SPM8. Brain
regions activated by laser stimuli were illustrated in Figure 3.

Feature Extraction and Selection
EEG spectral power in the time-frequency domain and BOLD-
fMRI strength are used as features to predict pain levels. For
EEG, short-time Fourier transform (STFT) with a fixed 200 ms
Hanning window (Zhang et al., 2012) was applied to single-
trial data at electrode C4 (LEP has maximal responses at the
contralateral site of somatosensory area) (Valentini et al., 2012)
to obtain their time-frequency distributions. Pre-stimulus (–500
to 0ms) and post-stimulus (0 to 1000ms) EEG spectrograms
were extracted as pre- and post-stimulus features (i.e., each
feature represents the power at a time-frequency pixel in the
spectrogram) for further analysis. For fMRI, the whole-brain
scan at stimulus onset containing pre-stimulus brain patterns
immediately before stimulus onset (onset scan), and the whole-
brain scan corresponding to the maximum BOLD response to
nociceptive pain (peak scan, i.e., 4th scan after stimulus onset,
Figure 3B), were extracted as pre- and post-stimulus features
(i.e., each feature represents a voxel at stimulus onset or response
peak in the scans) for further analysis. Since in both EEG and
fMRI experiments painful stimuli were delivered in 4 different
energy levels, both EEG and fMRI features as well as subjective
pain ratings were normalized by removing the mean values of
ratings within each energy group to minimize the influence
of stimulus energy on the assessment of their trial-to-trial
relationship.

For each subject, a linear model is used to describe the
relationship between the level of pain perception and pain-related
neuroimaging features, which include pre-stimulus features
(X

pre
m , m = 1, ..., M, where m denotes the index of pre-stimulus

features andM is the total number of pre-stimulus features) and

post-stimulus features ( X
post
n , n = 1, ..., N, where n denotes the

index of post-stimulus features and N is the total number of
post-stimulus features). The linear function linking the reported
intensity of pain, Y, and EEG or fMRI features of one trial reads:

Y = a0 +

M
∑

m

a
pre
m X

pre
m +

N
∑

n

a
post
n X

post
n + ε, (1)
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FIGURE 1 | Overview of the proposed pain decoding method (pre-processing steps are not shown). (1) Feature extraction. Single-trial pre- and

post-stimulus EEG spectrogram at C4 electrode (left) and whole-brain fMRI BOLD signals of onset and peak scans (right) were extracted from preprocessed data as

features. (2) Feature selection. Extracted features and perceived intensity of pain were fitted in a PLSR model. Features that were significantly predictive of pain

perception were identified from group analysis and form a set of patterns (temporal-spectral EEG patetrns and spatial fMRI patterns). (3) Prediction. Selected brain

patterns were fed to SVC and SVR models for pain classification and regression.

where a
pre
m and a

post
n , respectively, denote the model coefficients

for X
pre
m and X

post
n , a0 denotes the intercept, and ε denotes the

model residual.
Following, a subset of features that are most predictive of

pain perception was selected. Here, the predictive power of

each feature was defined according to its corresponding model

coefficient (a
pre
m or a

post
n ) in Equation (1). That is, those features

with a corresponding model coefficient significantly different
from 0 across subjects were regarded as regions with predictive
power. To achieve this, PLSR [implemented by Nonlinear
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FIGURE 2 | (A) Identified pain related EEG time-frequency patterns. PLSR coefficients indicating the relationship between EEG spectrogram and the intensity of pain.

Five time-frequency clusters (C4-nose) significantly modulated the intensity of pain. (B) Group-level average of EEG spectrogram (C4-nose). Time-frequency power

within corresponding five time-frequency clusters were selected for pain prediction. (C) The performance to predict subjective intensity of pain based on “Pre+Post”

and “Post” EEG features. Classification accuracies to discriminate low and high pain trials were 83.5 ± 6.8% (“Pre+Post”) and 78.2 ± 9.1% (“Post”), respectively (p <

0.0001, paired t-test). Significant difference was observed in classification sensitivity (p < 0.05, paired t-test), but not in specificity. Prediction errors to continuous

predict pain intensity were 1.15 ± 0.32 (“Pre+Post”) and 1.27 ± 0.38 (“Post”), respectively (p < 0.0001, paired t-test). Error bars represent SD across subjects. (D)

The performance to predict subjective intensity of pain based on individual EEG patterns. “LEP” provided strongest and most significant prediction performance.

Iterative Partial Least Squares algorithm (NIPALS); Wold et al.,
2001] was applied to estimate the model coefficients in Equation
(1). PLSR was applied here as it can solve the problems of
high dimensionality and multicollinearity, which are typical in
neuroimaging data. Statistical significance of the estimatedmodel
coefficients across subjects were assessed with a point-by-point
one-sample t-test against zero, combined with nonparametric
permutation testing (see PLSR analysis in Tu et al., 2016 for
details of this method). The statistical result defines a number
of pain-related patterns (temporal-spectral patterns for EEG and
spatial patterns for fMRI), which consist of features that are most
predictive of pain intensity and share similar temporal-spectral
characteristics (for EEG) or spatial characteristics (for fMRI)
across subjects. More precisely, for EEG data, these patterns are
neighboring time-frequency pixels having power values that are
significantly correlated with pain perception, while for fMRI data,
these patterns are neighboring voxels having BOLD strengths
that are significantly correlated with pain perception.

Pain Prediction
In this step, pain prediction models were trained to decode
single-trial intensity of pain perception from identified pain-
related patterns (time-frequency patterns for EEG and spatial
patterns for fMRI). Two types of pain decoding models were
trained in the current study: (1) classification, which qualitatively
predicts the intensity of pain by classifying trials into two levels

(low pain: VAS < 5; high pain: VAS ≥ 5); and (2) regression,
which quantitatively predicts the intensity of pain as a continuous
value (0–10). Linear support vector classification (SVC) and
support vector regression (SVR) model were, respectively,
adopted as the classification and regression model (Pereira et al.,
2009).

A leave-one-out-cross-validation (LOOCV) strategy was
adopted to evaluate the performance of the pain decoding model
(SVC and SVR) for each subject (Huang et al., 2013). For each
iteration in LOOCV, one trial was selected as the test sample
and fed to the SVC/SVR model trained with remaining samples,
and the iterations were repeated for every trial. To quantify
the performance of SVC, classification accuracy, sensitivity, and
specificity were calculated. Sensitivity and specificity are defined
as:

Sensitivity =

∑

TP
∑

TP +
∑

FN
, Specificity =

∑

TN
∑

TN +
∑

FP
,(2)

where
∑

TP and
∑

FN denote the number of true positive and
false negative respectively,

∑

TN and
∑

FP denote the number
of true negative and false positive respectively. Here positive is
defined as high pain trials and negative is defined as low pain
trials.
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To quantify the performance of SVR, we used mean absolute
error (MAE), which is defined as:

MAE =
1

P

P
∑

p=1

∣

∣

∣
Rp − R̂p

∣

∣

∣
, (3)

where Rp and R̂p denote, respectively, the actual and predicted
intensity of pain perception for trial p, and P is the number
of trials of each subject. The above steps were repeated for
each subject, and the performance measures were assessed at
group level (e.g., whether SVC yielded significantly above-chance
classification accuracy).

Since one of our focuses is to investigate whether the
combination of pain-related information in both pre- and post-
stimulus information can improve pain decoding performance,
we further compared the prediction performance using two sets
of patterns: (1) both pre- and post-stimulus pain-related patterns
(the proposed method); (2) post-stimulus pain-related patterns
only (the conventional method). Last, we also evaluated the
individual contribution of each pain-related brain pattern to pain
decoding, yielding a ranked contribution of these pain-related
patterns.

RESULTS

EEG Results
Psychophysics
Ninety-six subjects overall had an average subjective pain
intensity of 5.74± 1.03 (mean± SD). Five subjects were excluded
for the following analyses since they did not have variable
sensation in response to different stimulus energies. Nociceptive-
specific laser stimuli of four energies (E1–E4) elicited clear
pinprick sensation in the remaining 91 subjects (E1: 3.81 ± 1.41;
E2: 4.86± 1.34; E3: 6.63± 1.07; E4: 7.75± 1.03).

Pain-Related Time-Frequency Patterns
Five time-frequency clusters were identified to significantly
modulate the perceived pain intensity (Figures 2A,B). In the pre-
stimulus interval, a cluster in the alpha band (“Pre-ABO”: –221–
31 ms, 8–15 Hz; p < 0.001) and a cluster in gamma band (“Pre-
GBO”: –180–85 ms, 74–87 Hz; p = 0.001) negatively modulated
the perceived intensity of a subsequent stimulus. In the post-
stimulus interval, three significant clusters were observed: the
low-frequency “LEP” (74–470 ms, 1–22 Hz; p < 0.001), the low-
frequency ABO (“Post-ABO”: 637–935 ms, 8–20 Hz; p < 0.001),
and the high-frequency GBO (“Post-GBO”: 127–377ms, 62–
100Hz; p< 0.001). It was confirmed that the magnitude of “LEP”
and “Post-GBO” positively correlated with perceived intensity of
pain, while the magnitude of “Post-ABO” negatively correlated
with perceived intensity of pain.

Predicting Pain from Pre- and Post-stimulus

Time-Frequency Patterns
We trained and tested a linear SVM on two different
sets of patterns: (1) post-stimulus time-frequency patterns
(“Post”) including “LEP,” “Post-ABO,” and “Post-GBO”; (2) both
pre- and post-stimulus time-frequency patterns (“Pre+Post”)

FIGURE 3 | (A) Statistical result of brain regions activated (red) and

deactivated (blue) by nociceptive pain following a conventional GLM analysis in

SPM8, which represents the voxel-wise t-statistics of GLM model coefficients

corresponding to the regressor denoting stimulus-evoked BOLD time-series

(constructed by canonical hemodynamic functions at stimulus onsets) at

group level [corrected with false discovery rate correction (FDR)]. For illustrative

purpose, we used different p-value threshold for showing activated regions

(PFDR < 10−6, as the result was highly significant) and deactivated regions

(PFDR < 0.05) in the current figure. (B) Averaged BOLD time series (–3 to 12 s)

in activated regions (red curve) and deactivated regions (blue curve). Error bar

at each time instant represents the standard error of mean (SEM) of BOLD

responses across subjects.

including “Pre-ABO,” “Pre-GBO,” “LEP,” “Post-ABO,” and “Post-
GBO” (Figure 2C). For classification accuracy (mean ± SD),
“Pre+Post” provided significantly higher accuracy than “Post”
(“Pre+Post”: 83.5 ± 6.8%; “Post”: 78.2 ± 9.1%; p < 0.0001,
paired t-test). Significant difference was observed in classification
sensitivity (“Pre+Post”: 79.2 ± 14.6%; “Post”: 77.0 ± 17.3%; p
= 0.04, paired t-test), but no significant difference in specificity
was observed (“Pre+Post”: 72.2 ± 14.2%; “Post”: 72.0 ± 17.3%;
p = 0.91). For prediction error (mean ± SD), “Pre+Post” also
provided significantly lower MAE than “Post” (“Pre+Post”: 1.15
± 0.32; “Post”: 1.27± 0.38; p < 0.0001, paired t-test).

Predicting Pain from Individual Time-Frequency

Patterns
We attempted to predict the perception of pain from individual
time-frequency EEG patterns, with the aim to rank their
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respective predictive power. Therefore, results could offer us
an understanding of to what extent the extracted patterns
contribute to pain prediction. It should be noticed that pre-
stimulus brain patterns can only contribute to the fluctuation of
perceived pain perception within identical stimuli, as the brain
could not forecast the energy of forthcoming nociceptive stimuli
which were randomized across trials. Therefore, we used “Pre-
ABO” and “Pre-GBO” to predict the normalized intensity of
pain perception, while “LEP,” “Post-ABO,” and “Post-GBO” to
predict the perceived intensity of pain perception. Thus, we could
propose a rank order of pain-related brain patterns (Figure 2D).

All five time-frequency patterns obtained significant
prediction results. The most predictive pattern in the pre-
stimulus period was “Pre-ABO” in terms of classification
accuracy and prediction error (55.3 ± 6.6% and 1.79 ± 0.56)
and “LEP” was the most predictive pattern in the post-stimulus
period (77.0 ± 9.3% and 1.30 ± 0.36). Other patterns also
provided above-chance performance (“Pre-GBO”: 55.0 ± 7.6%
and 1.86 ± 0.55; “Post-ABO”: 57.5 ± 6.9% and 1.72 ± 0.51;
“Post-GBO”: 56.9± 4.6% and 1.75± 0.55).

Functional MRI Results
Psychophysics
Thirty-two subjects overall had an average subjective pain
intensity of 4.82 ± 1.55 (mean ± SD). Nociceptive-specific laser
stimuli of four energies (E1–E4) elicited clear pinprick sensation
in 30 subjects (E1: 2.92 ± 1.53; E2: 3.84 ± 1.69; E3: 5.68 ± 1.62;
E4: 6.91 ± 1.54). Two subjects were excluded for the following
analyses since they did not have variable sensation in response to
different stimulus energies.

Laser-Evoked BOLD Responses
Single-subject fMRI data were analyzed on a voxel-by-voxel basis,
using a general linear model (GLM) approach (Frackowiak et al.,
2004), to assess the laser-evoked BOLD activations/deactivations.
Figure 3A shows that laser stimuli elicited activations within
various brain regions, including anterior/middle cingulate
cortex (ACC and MCC), supplementary motor area (SMA),
primary, and secondary somatosensory cortex (S1 and S2),
insula (INS), and thalamus, while deactivations in rectus and
DLPFC. Group-level BOLD responses in positive and negative
activated regions were illustrated in Figure 3B. The peak
response of positive activation was located around 6 s (4th scan)
after stimulus, while was located around 7.5 s (5th scan) for
deactivation.

Pain-Related fMRI Patterns
Post-stimulus evoked BOLD responses in several brain regions
showed the capability of significantly modulating the pain
perception (Figure 4A). These regions include INS, ACC, MCC,
S1, SMA, and S2 in the “pain matrix” (Legrain et al., 2011), which
can positively modulate pain perception, rectus in default mode
network (DMN), and dorsal lateral prefrontal cortex (DLPFC),
which can negatively modulate pain perception. Because of the
intrinsic delay of the hemodynamic response, the fMRI signal
sampled at stimulus onset reflects the brain activity preceding the
arrival of the sensory input to the nervous system. At the stimulus

onset time, we found a positive correlation between subsequent
normalized pain intensity and BOLD in S1, DLPFC, MCC, SMA,
and ACC, and a negative correlation in angular, amygdala and
precuneus (Figure 4A).

Predicting Pain from Pre- and Post-Stimulus fMRI

Patterns
Similar to EEG analysis, we trained and tested linear SVM
on two sets of patterns: (1) post-stimulus fMRI patterns
(“Post”) including identified patterns at the peak scan; (2) both
pre- and post-stimulus fMRI patterns (“Pre+Post”) including
identified patterns at both onset and peak scans. For classification
accuracy, “Pre+Post” provided significantly higher accuracy than
“Post” (“Pre+Post”: 75.0 ± 10.5%; “Post”: 72.5 ± 11.0%; p =

0.0018, paired t-test). No significant difference was observed in
classification sensitivity (“Pre+Post”: 63.1 ± 31.7%; “Post”: 58.9
± 35.0%; p = 0.12, paired t-test) and specificity (“Pre+Post”:
57.1 ± 37.0%; “Post”: 54.4 ± 39.5%; p = 0.24, paired t-test). For
prediction error, “Pre+Post” also provided significantly lower
error than “Post” (“Pre+Post”: 1.66± 0.47; “Post”: 1.76± 0.47; p
< 0.0035, paired t-test) (Figure 4B).

Predicting Pain from Individual fMRI Patterns
We further predicted the perception of pain from individual
fMRI spatial patterns. Similarly, pre-stimulus fMRI patterns were
assessed to predict the normalized intensity of pain while post-
stimulus fMRI patterns were assessed to predict the perceived
intensity of pain (please refer to “Predicting Pain from Individual
Time-frequency Patterns” for the reason). All regions achieved
significant above-chance prediction accuracy (p < 0.05). The
most predictive pre-stimulus fMRI patterns were S1 (56.0± 8.4%
and 1.95± 0.34) (in terms of accuracy) and DLPFC (55.3± 7.7%
and 1.92 ± 0.39) (in terms of prediction error), while the most
predictive post-stimulus fMRI pattern was insula (72.4 ± 10.6%
and MAE: 1.89± 0.62) (Figure 4C).

DISCUSSION

In the present work, we proposed a novel pain decoding method
which uses both post-stimulus evoked brain activity and pre-
stimulus brain activity as features to enhance the prediction
performance compared to conventional methods based on post-
stimulus evoked brain activities only. Our analysis led to two
main findings.

First and foremost, our results demonstrated that by further
incorporating pain-related information in pre-stimulus brain
activities into the conventional pain prediction model solely
based on post-stimulus evoked brain activities, the prediction
performance can be significantly improved. The present work
highlights the significance of pre-stimulus brain activities
in encoding pain perception in the brain, and indicates
the bias between actual pain perception and predicted pain
perception may also be contributed from pre-stimulus brain
activities.

Second, the individual predictive power of pain-related neural
features is investigated and ranked, which offers us a better
understanding of the predictive capacity of pain-associated
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FIGURE 4 | (A) Post-stimulus and pre-stimulus fMRI patterns defined by PLSR coefficients. Positively and negatively predictive patterns are shown in red and blue,

respectively (p < 0.05, cluster-level permutation test). (B) The performance to predict subjective intensity of pain based on “Pre+Post” and “Post” fMRI patterns.

Classification accuracies to discriminate low and high pain trials were 75.0 ± 10.5% (“Pre+Post”) and 72.5 ± 11.0% (“Post”), respectively (p = 0.0018, paired t-test).

No significant difference was observed in classification sensitivity and specificity. Prediction errors (quantified as MAE) to continuously predict pain intensity were 1.66 ±

0.47 (“Pre+Post”) and 1.76 ± 0.47 (“Post”), respectively (p < 0.0035, paired t-test). Error bars represent SEM across subjects. (C) Ranked contribution of pain-related

patterns. Error bars represent SEM across subjects. ACC, Anterior Cingulate Cortex; AMYG, Amygdala; DLPFC, Dorsal Lateral Prefrontal Cortex; INS, Insula; MCC,

Middle Cingulate Cortex; PREC, Precuneus; SMA, Supplementary Motor Area; S1, Primary Somatosensory Cortex; S2, Secondary Somatosensory Cortex.

brain patterns. The combined predictive power of these neural
features is also obtained. Although, most of identified neural
features provided above-chance prediction individually, they
could not be able to yield higher predictive power when being
used with other features, which implies that these regions may
not provide completely independent and complimentary pain-
related information.

Significance of Pre-stimulus Brain
Activities in Pain Decoding
Conventional pain prediction approaches only rely on the
relationship between post-stimulus evoked brain activity and
pain perception, but they seldom consider the predictive power
of pre-stimulus ongoing activities, which have been shown to be
correlated with pain (Brodersen et al., 2012; Huang et al., 2013;
Wager et al., 2013). In the present work, we demonstrated that, a
prediction model, which describes the joint contribution of post-
stimulus evoked brain activities and pre-stimulus ongoing brain
activities to pain, can provide significantly higher prediction
performance.

Actually, pre-stimulus brain oscillations have been repeatedly
shown to be predictive of forthcoming sensory perception and
they play an important role in the brain mechanisms underlying
perception (Linkenkaer-Hansen et al., 2004; Hanslmayr et al.,
2007; Van Dijk et al., 2008; Zhang and Ding, 2010; Lange
et al., 2012; De Lange et al., 2013). It has been reported that

the fluctuation of ongoing brain activities is able to capture
the ongoing brain state and reflect various cognitive terms
such as vigilance, attention, and expectation (Buzsaki, 2009).
Such ongoing variation in brain state, as captured by ongoing
brain activities, has been shown to be able to bias various
sensory perceptions. As for pain perception, literature has
shown that pain does not only reflect the neural processing
of nociceptive information, but is also influenced by various
psychosocial contexts and psycho-physiological factors (i.e.,
brain states; Wiech et al., 2008). In our previous work (Tu
et al., 2016), we reported that pre-stimulus alpha and gamma
oscillations sampled by EEG and BOLD activities in sensorimotor
resting state network and DMN were implicated in top-down
modulation of pain, and consequently modulated the perception
of subsequent painful stimuli. These findings advanced
our understanding of the neural mechanisms of pain, and
inspired us to further utilize pre-stimulus information for pain
decoding.

Predictive Neural Patterns
For EEG data, when decoding pain perception from pre-stimulus
activity, both “Pre-ABO” and “Pre-GBO” afforded significant
accuracies. “Pre-ABO” has been interpreted as a measure of
altered excitability of neuronal ensembles in primary sensory
cortex, while “Pre-GBO” modulates long-range communication
between distributed neuronal assembles. Thereby they offered
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complementary information in terms of classification accuracy.
When decoding pain-related information embedded in post-
stimulus EEG activities, “LEP” had the highest accuracies,
indicating its strongest contribution to pain prediction [in terms
of mean accuracy (%) and variability (t-value)]. Not surprisingly,
no significant difference of prediction accuracy was observed
between “LEP” and “Post” (“LEP”: 77.0 ± 9.3% and 1.30 ±

0.36; “Post”: 78.2 ± 9.1% and 1.27 ± 0.38; p = 0.72 and p
= 0.54 for classification and regression, respectively). Although
“Post-ABO” and “Post-GBO” enabled significant accuracies
when predicting pain perception individually, they did not
provide additional information when being considered along
with “LEP.” It may due to the predictive information provided
by “Post-ABO” and “Post-GBO” is also contained in “LEP.”
Therefore, it is possible to remove “Post-ABO” and “Post-GBO”
and develop a more concise pain prediction model in clinical
practice.

For fMRI data, we found the activities at DLPFC are predictive
of pain perception, no matter whether they are measured before
or after stimulus onset. But the degrees of importance of pre-
stimulus DLPFC activities and post-stimulus DLPFC activities
are largely different. Pre-stimulus DLPFC activities provide the
highest prediction performance among all pre-stimulus patterns
(measured by MAE), showing DLPFC is one of the most
important regions executing cognitive pain modulation (Wiech
et al., 2008). One the other hand, post-stimulus DLPFC activities
cannot offer as high prediction performance as “pain matrix”
(insula, ACC, MCC, S1, and SMA) does (Legrain et al., 2011),
indicating that cognitive modulation is less important after
stimulus.

Machine Learning Classifiers for Brain
Decoding
Machine learning has gained popularity in the community
of brain science and engineering recently for it allows for
decoding stimuli, mental states, behaviors, and other variables
of interest from neuroimaging data (Pereira et al., 2009).
Various machine learning classifiers have been applied to brain
decoding, including Logistic Regression (LR; Ryali et al., 2010),
linear SVM (Ryali et al., 2010), Gaussian Naïve Bayes (GNB;
Huang et al., 2013) and Fisher’s Linear Discriminant Analysis
(LDA) (Davatzikos et al., 2005). In the present work, we used
PLSR to select discriminative features from EEG and fMRI
data and applied linear SVC and SVR, both of which are
extensions of the classical SVM, to classify and continuously
predict subjective pain perception from EEG and fMRI features.
PLSR and SVM are both popular machine learning methods
and they are gradually used in many applications of brain
decoding.

Since there are generally more predictors than experimental
trials or subjects, it is often advantageous to reduce the number
of predictors by selecting an informative subset. Wager and
his colleagues used LASSO-PCR, which is combination of two
dimension reduction methods (LASSO and PCA), to extract
features and predict pain perception (Wager et al., 2013). LASSO
is based on sparsity-enhancing L1 regularization on regression
coefficients and it can shrink small regression coefficients to

zero to realize dimension reduction. But, when dealing with
strongly correlated predictors (e.g., adjacent fMRI voxels),
LASSO arbitrarily selects one variable from a group of highly-
correlated variables, which degrades the interpretability of the
prediction model (Cecchi et al., 2012). Therefore, in (Wager
et al., 2013), the authors first used PCA to reduce the number
of predictors and then used LASSO on the orthogonal principle
components (PCs) rather than the original fMRI data. However,
since PCA is an unsupervised method and the PCs are obtained
according to the variance of the data solely, it cannot guarantee
that the classes can be well-separated in the space defined by
reduced dimensions. Here we used PLSR to decode pain related
brain patterns, because it is a supervised dimension reduction
method that can exploit class information to ensure that high-
dimensional data can be amped into a low-dimensional space
where different classes are well-separated. PLSR is still a linear
method but the relationship between pain intensity and brain
signals could be non-linear (Wager et al., 2005; Loggia et al.,
2012). There are more sophisticated methods that can explore
nonlinear relationships between brain responses and behavior
variables, which is in accord with intrinsic nonlinear neuro-
dynamics of the brain (Tu et al., 2015).

More recently, deep machine learning algorithms which can
model the data with multiple processing layers, have been applied
for brain decoding and neuroscience discovery (Plis et al.,
2014). What differentiates them from other classifiers is the
automatic feature learning from data which largely contributes
to improvements in accuracy. Deep models such as deep belief
networks (DBNs) and restricted Boltzmann machine (RBM),
separate linear factors from functional brain imaging data by
fitting a probability distribution model to the data, has been
used for fMRI classification (Schmah et al., 2008) and for
identifying intrinsic networks (Hjelm et al., 2014). It is potentially
a suitable solution for pain decoding model, and more advanced
feature selection and machine learning techniques will be used
to build a more powerful pain decoding model in our future
study.

Further Developments for Clinical Uses
In the present study, we proposed a novel pain decoding
model incorporating both pre-stimulus brain activities
and post-stimulus brain activities, and adopted machine
learning classifiers to effectively predict pain perception in
single-trials. Such decoding model and prediction strategy
could be executed rapidly, reliably, and automatically, thus
satisfying most requirements of various basic and clinical
applications.

Pre-stimulus brain activities could be a great indicator of
subject’s ongoing cognitive states and they include much useful
information for decoding within-subject variability. However,
our decoding model does not take inter-subject variability of pain
perception and brain responses into consideration. In future,
we would like to apply the decoding model on cross-subject
prediction which is more favored because it does not need any
training on new individuals.

EEG and fMRI are the commonly used techniques for pain
assessment in clinical applications. Particularly, EEG is more
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favored because it is cheap and easy to operate. For pain-related
clinical study, our proposed novel pain-related brain patterns
hold great potential to help diagnose nociceptive system deficit
as well as to predict subjective pain perception (e.g., to monitor
the effect of analgesic drug or the recovery of nociceptive system
for non-communicative patients). Moreover, compared with our
previous work on pain prediction (Huang et al., 2013), which rely
on EEG data from a high-density EEG cap, we obtain desirable
pain prediction accuracy from EEG at only one electrode so that
the preparation period is significantly reduced, which makes the
proposed EEG-based prediction method more suitable for both
clinicians and patients.
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