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Editorial on the Research Topic

Combining multiple non-invasive images and/or biochemical tests to
predict prostate cancer aggressiveness
Introduction

This Special Topics Issue in Frontiers in Oncology, Genitourinary Oncology compiles

research articles that noninvasively assess prostate tumors through combining multiple

disparate independent quantitative data. The contributions to the Special Topics discuss the

performance of more common resources and methods that have been employed in the

medical arena, such as biomarkers, clinical data, visual inspection of multi-parametric MRI

(mpMRI), as well as adapting and applying novel approaches derived from other fields that

quantitatively assess spatially registered multi-parametric MRI (SRMP-MRI).
Background
“What’s past is prologue,” William Shakespeare, The Tempest

“The past is a stepping stone, not a mill stone,” Robert Plant
Quantifiable research endeavors can benefit from combining multiple independent pieces

of information or variables (1–3) to describe or ascertain a given condition or predict an

outcome. The sources of input information may be garnered from biomarkers, clinical

factors, meta information, human intelligence, detectors and/or images. Having multiple

input factors that supplement and/or complement each other without mere duplication

improves the accuracy of the predicted outcome. To aid combining disparate data in the

clinic, nomograms (4) have provided a graphical tool for computing the likelihood of an effect
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due to a number of input variables. Standard measures can establish

the significance of the input information for evaluating or achieving a

desired goal.

Extracting information, however, may burden and harm the

patient (5). For prostate cancer, a 6-12 core transrectal ultrasound-

based needle biopsy supplemented by MRI has been the principal

means of diagnosis and patient risk stratification. Aside from possible

under sampling the prostate (6, 7), such an invasive procedure carries

the risks of pain, hemorrhage, and infection for the patient (8).

Although the widely implemented non-invasive PSA indicator has

significantly reduced PCa mortality, its low specificity lead to under

and overtreatment and loss quality of life for the patient (9).

To improve PCa diagnosis, grading, and alleviate patient

suffering, non-invasive strategies have been developed, such as the

Prostate Imaging Reporting and Data System (PI-RADS) (9). PI-

RADS (10) is a protocol for radiologists to visually inspect multiple

MRI sequences and combine the assessments to determine the

prostate tumor’s aggressiveness. However, such a qualitative

approach depends on the training and experience of the radiologists.

Only one study (Jia et al.) in this compilation applies Artificial

Intelligence (AI) methods to find image texture features and combine

them to predict outcomes. AI harnesses the available image data and

the growing computing power, is fashionable, and successful.

However, there are drawbacks to the AI, such as overtraining of

models lead to low accuracy, require fixed measurement conditions

such as magnetic field, and textures are unconnected to physiology.

The studies in this issue mostly avoid these pitfalls.
Discussion

Table 1 summarizes nine studies, including Chang et al., Falagario

et al., Jia et al., Jiang et al., Lei et al., Liu et al., Mo et al., Wang et al.,
Frontiers in Oncology 6
and Mayer et al. that examined the efficacy of combining various

forms of PSA, prostate volume, and PI-RADS to non-invasively

predict Clinically Significant Prostate Cancer (csPCa) or presence in

MRI. There are a number of exceptions in this compilation. Chang

et al. used two statistical metrics that characterize the diffusion,

namely the mean and kurtosis to predict the International Society

of Urological Pathology staging (ISUP). Falagario et al. added

clinically based Risk Factors to mpMRI and improved the accuracy

for detecting csPCa. Unlike other studies in this compilation, only Jia

et al. applied AI and radiomics to predict the csPCa. Jiang et al. used

geometric measures for the prostate to predict the presence of

prostate cancer. Liu et al. departed from the others in examining

input data that predicted the need for mpMRI. The summary cites the

input variables, dependent variable, number of patients, an evaluation

metric, specifically the Area Under the Curve (AUC) from Receiver

Operator Characteristic and whether a nomogram was generated. All

studies achieved high AUC and showed that adding mpMRI and

using multiple variables relative to a single variable improved the

accuracy. All studies need further verification with prospective studies

and higher patient numbers.

Two articles in this Special Topics issue studied spatially

registered hyperspectral mpMRI. The first (Mayer et al.) eschewed

the familiar independent variables (PI-RADS, PSA, age, etc), but

instead tapped variables associated with SRMP-MRI such as

eccentricity, Signal to Clutter Ration and achieved high AUC. The

second (Mayer et al.), not in Table 1, does not use multiple features to

predict an outcome. Instead, Mayer et al. studied an anomaly detector

that finds deviant voxels within the normal prostate through

processing the SRMP-MRI and examines a variety of statistical

methods to manipulate the covariance matrix in order to generate

an optimized AUC. Further studies are warranted that compared the

anomaly detection with a radiologist tumor contouring of the SRMP-

MRI tumors.
TABLE 1 Retrospective, single center studies included in this Special Topics issue.

Author Input Variables Prediction Number of
Patients

Evaluation
Metrics

Best or Range
of AUC

Nomogram

Chang Dmean ,Dkurtosis ISUP 45 AUC 0.907 No

Faligario mpMRI, RC csPCa 221 AUC, DCA 0.8 No

Jia Radiomics: T2, DWI, Clinical Data PFS 191 AUC, DCA,
Calibration Curve

0.917-0.926 No

Jiang Age, PSA, transCGA, PA PCa 691 AUC 0.918 Yes

Lei PI-RADS, PSAD csPCa 422 AUC 0.97 No

Liu Total PSA, Free PSA, PSAD, Prostate Volume, Age Tumor Presence
in MRI

784 AUC, DCA 0.8 No

Mo Prostate Health Index (Free PSA, Total PSA), PI-
RADS, Prostate Volume

csPCa 315 AUC 0.882 Yes

Wang PI-RADS, PSAD csPCa 833 AUC 0.94 No

Mayer Eccentricity, Signal to Clutter Ratio, Tumor
Volume

csPCa 25 AUC, DCA 0.861-0.969 Yes
mpMRI, Multi-parametric MRI; PI-RADS, Prostate Imaging Reporting And Data system; AUC, Area Under the Curve; DCA, Decision Curve Analysis; RC, Risk Calculator; PSAD, Prostate Serum
Antigen Density; PFS, Progression Free survival; ISUP, International Society of Urological Pathology; Dmean, Mean diffusion; Dkurtosis, Diffusion kurtosis; csPCa, Clinically Significant Prostate Cancer;
PA, maximum prostate sectional area; transCGA, transverse central gland area.
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Future research
Fron
“The best way to predict the future is to create it.”

Abraham Lincoln

“The past is in your head, the future is in your hands.” Margaret

Atwood
The works presented in this issue directly suggested future

refinements, such as more patients, prospective studies, application

to greater number of clinics, but hints at more ambitious projects

such as:
New biomarkers.

A number of studies in Special Topics showed that adding PSA to

mpMRI boosts sensitivity and specificity for reliably determining

csPCa. New biomarkers, beyond PSA (11, 12), show promise in

identifying the presence of prostate tumors with fewer false

positives than PSA. Future studies might combine these novel

biomarkers with PI-RADS or mpMRI for further improvement.
Directed proton therapy

Due to the increasing prevalence of proton beam therapy and its

ability to more precisely deliver radiation therapy (13), imaging (14,

15) may reveal that certain patients benefit from exposing only a

portion of the prostate, rather than the entire prostate, to irradiation,

thus reducing possible side effects from unnecessarily exposing

nearby normal tissues. To date, only treatment planning studies

(13) suggest the feasibility of using mpMRI for this purpose.
Qualitative/quantitative color maps.

Currently radiologists (10) visually inspect individual greyscale

images to discern and interpret lesions. An alternative coloring

schemes assigns red, green, blue to components in SRMP-MRI and

generate a composite color image that can be quantified (16–18).

Color in this case codes for PCa and normal tissue physiology. This

coloring is not equivalent to false or pseudo coloring applied to

individual images to show relative intensities within a given image.

Future research (18) may clinically test employing tumor color

display for patient care management and possibly derive new

quantitative metrics for assessing tumors.
Cross-clinic transformation

MRI scanning conditions (magnetic field strength, pulse

sequences etc.), can vary among clinics which hinders AI-based

techniques from generalization. Previously (19), “whitening-
tiers in Oncology 7
dewhitening” transformed target signatures for supervised target

detections to handle the changes in conditions. Similarly (20),

signatures based on Gleason score status were transformed. Future

research may transform prostate tumor signatures across multiple

clinics. A single library may hold multiple tumor signatures in

the future.
mpMRI and genomics

Other research directions may combine multiple data input or

images to infer tumor genomics. A meta-analysis (21) found that

mpMRI-visible cancer related to genotype, phenotype, physiology

(proliferative signaling, DNA damage, and inflammatory processes).

Others (22, 23) correlated mpMRI visibility with aggressive genomic

and proteomic features. Further research incorporating all mpMRI

modalities may further discriminate among genomic metrics or find

more markers.
Magnetic resonance spectroscopy

MRS uses many bands, similar to airborne hyperspectral imagers.

However, MRS suffers from crude spatial resolution (MRS (24) is 0.25

cm3 versus mpMRI is 0.006 cm3) causing sampling issues. The limited

MRS sample number precludes exploiting the statistical analysis due

to background covariance matrix inversion non-singularity.

Covariance matrix regularization can mitigate the insufficient

sampling. Elevating the MRS spatial resolution by degrading the

spectral resolution may enable MRS statistical analysis similar to

remote sensing. Remote sensing proved the value of making the trade-

offs and possibly help the clinic.
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Does Multiparametric Magnetic
Resonance of Prostate Outperform
Risk Calculators in Predicting
Prostate Cancer in Biopsy
Naïve Patients?
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Michele Di Nauta1, Mario Auciello1,2, Francesca Sanguedolce3, Paola Milillo4,
Luca Macarini4, Oscar Selvaggio1, Giuseppe Carrieri 1 and Luigi Cormio1,2
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Teaching Hospital, Andria, Italy, 3 Department of Pathology, University of Foggia, Foggia, Italy, 4 Department of Radiology,
University of Foggia, Foggia, Italy

Background: European Association of Urology (EAU) guidelines recommend using risk-
calculators (RCs), imaging or additional biomarkers in asymptomatic men at risk of
prostate cancer (PCa).

Objectives: To compare the performance of mpMRI, a RC we recently developed and
two commonly used RC not including mpMRI in predicting the risk of PCa, as well as the
added value of mpMRI to each RC.

Design, Setting, and Participants: Single-center retrospective study evaluating 221
biopsy-naïve patients who underwent prebiopsy mpMRI.

Outcome Measurements and Statistical Analysis: Patients’ probabilities of any PCa
and clinically significant PCa (csPC, defined as Gleason-Score ≥3 + 4) were computed
according to mpMRI, European Randomized Study of Screening for Prostate Cancer RC
(ERSPC-RC), the Prostate Biopsy Collaborative Group RC (PBCG-RC) and the Foggia
Prostate Cancer RC (FPC-RC). Logistic regression, AUC, and Decision curve analysis
(DCA) were used to assess the accuracy of tested models.

Results and Limitation: The FPC-RC outperformed mpMRI in diagnosing both any PCa
(AUC 0.76 vs 0.69) and csPCa (AUC 0.80 vs 0.75). Conversely mpMRI showed a higher
accuracy in predicting any PCa compared to the PBCG-RC and the ERSPC-RC but
similar performances in predicting csPCa. At multivariable analysis predicting csPCa and
any PCa, the addition of mpMRI findings improved the accuracy of each calculator. DCA
showed that the FPC-RC provided a greater net benefit than mpMRI and the other RCs.
The addition of mpMRI findings improved the net benefit provided by each calculator.
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Conclusions: mpMRI was outperformed by the novel FPC-RC and showed similar
performances compared to the PBCG and ERSPC RCs in predicting csPCa. The addition
of mpMRI findings improved the diagnostic accuracy of each of these calculators
Keywords: prostate cancer, mpMRI, decision curve analysis, clinically significant prostate cancer, risk calculator
INTRODUCTION

In current clinical practice, the cancer detection rate (CDR) of a
first extended prostate biopsy (PBx) prompted by an elevated
serum prostate-specific antigen (PSA) level and/or an abnormal
digital rectal examination (DRE) is around 40%, dropping to
approximately 25% in the setting of screening programs, i.e.
patients with serum PSA between 2.5 and 10 ng/ml (1, 2).

To reduce the risk of unnecessary PBxs, current European
Association of Urology (EAU) guidelines (3) provide a strong
recommendation to offer further risk-assessment to asymptomatic
men with normal DRE but PSA levels between 2 and 10 ng/ml
prior to performing PBx. Such “further risk assessment” should be
done by one of following tools: i) risk-calculator (RC); ii) imaging;
iii) an additional serum or urine-based test (3). Interestingly, while
this recommendation has remained unchanged in 2018 and 2019
Guidelines, the 2020 Guidelines provide a weak recommendation
to perform mpMRI in any patient with clinical suspicion for
prostate cancer (PCa). If mpMRI demonstrates lesion(s)
suspicious for PCa, systematic and target biopsy should be
performed, whereas biopsy can be avoided when mpMRI is
negative and the clinical suspicion of PCa is low. By doing so,
the 2020 Guidelines somehow bind the decision to perform
mpMRI to the clinical suspicion of PCa which is well
determined by available RCs.

RCs are designed to determine the risk of an individual
harboring PCa by entering into a statistical model his clinical
parameters. To date, several calculators have been developed and
externally validated; a few also include mpMRI findings and
biomarkers but questions remain on the additional value
provided by such tests. Indeed, a recent study aiming at
comparing and externally validating prostate cancer RCs
incorporating mpMRI demonstrated that the addition of
mpMRI parameters to RCs based on standard clinical variables
was limited (3). Overall, available information regarding the use
of RCs, mpMRI or biomarkers as triage test and the utility of
combining them remain scarce.

The present study therefore aimed to compare the performance
of mpMRI with the performances of two commonly-used
externally-validated calculators not including mpMRI (4, 5) and
a novel externally-validated calculator we recently developed (6) in
predicting the risk of harboring PCa, as well as the added value of
mpMRI to each RC.
PATIENTS AND METHODS

Our Internal Review Board which approved the database on
prostate biopsy was queried to identify patients who underwent
210
mpMRI and trans-rectal prostate biopsy at our institution under
the clinical suspicion of PCa. The patient population used for the
development of our RC was not included in the present study.

Prostate mpMRI was triggered by PSA higher than 3.0 ng/ml
and/or abnormal DRE and were interpreted by a single dedicated
radiologist (PM) with 10 years of experience in prostate MRI,
using the PIRADSv2.0 recommendations (7).

All patients underwent PSA measurement before DRE and
transrectal ultrasound (TRUS). Uroflowmetry (UFM) was
carried out before PBx, waiting for the patient to report a
strong sensation to void.

MRI examinations were performed using a 1.5 T MR scanner
(Achieva, Philips Healthcare, Best, The Netherlands) and surface
array coils (SENSE Flex surface) or with endorectal coil (ERC)
combined with 16-channel surface coil (TORSO-XL coil). The
mpMRI protocol was compliant with PIRADs 2.0 recommendations
(7) and consisted of: A. Turbo-Spin-Echo (TSE) T2-weighed
imaging in axial, coronal and sagittal planes [repetition time
(TR) 5,300, echo time (TE) 150 ms, slice thickness 3 mm, field
of view (FOV) 180 × 180, number of signal averaged (NSA) 8]; B.
TSE T1-weighed imaging in axial plane [TR/TE 400–650/12 ms,
thickness 3 mm, FOV 180 × 180, NSA 3]; C. Diffusion-weighted
imaging sequence (DWI) in the axial plane [TR/TE 3,481/92 ms,
slice thickness 3 mm, FOV 180 × 220, NSA 4, b-values 0–500–
1000–1,500/2,000 s/mm2]; D. Dynamic contrast enhanced
prostate MRI was performed using a T1-weighted high
resolution isotropic volume examination (THRIVE) on the axial
plane [TR/TE 4.5/2.2 ms, slice thickness 3 mm, FOV 184 × 220,
NSA 1] following injection of 0.1 ml/kg of gadobutrol followed by
20 ml of saline solution using an automatic injector at a rate of
2 ml/s.

In accordance with the current EAU guidelines, patients with
negative mpMRI (PIRADS 1 and 2 lesions were considered to be
negative) received a standard ultrasound guided transrectal PBx
using our 18-core template (8); those with a positive mpMRI
received a transrectal electromagnetic-tracked MRI/US fusion
guided biopsy (Navigo, UC-CARE, Yokneam, ISR). To avoid
large differences in the number of cores, we attempted to include
the two target cores from each mpMRI-suspicious lesions into
our 18-core biopsy scheme (SBx). All procedures were carried
out by two of us (OS, GS) under local non-infiltrative anesthesia
(8, 9).

A single, dedicated uropathologist (FS) reviewed all biopsy
specimens according to International Society of Urological
Pathology; Gleason Grade Groups (GGG) were assigned to
each patient (10). Contemporary diagnostic criteria for high-
grade prostatic intraepithelial neoplasia (HGPIN), atypical small
acinar proliferation (ASAP) of prostate (11), and PCa
were followed.
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Statistical Analysis
Outcomes of the present study were probabilities of any PCa
(GGG≥1) and clinically significant PCa (csPC defined as
GGG≥2) as assessed by mpMRI alone, or by one RC alone,
namely the European Randomized Study of Screening for
Prostate Cancer (ERSPC) (4), the Prostate Biopsy Collaborative
Group (PBCG) (5) and the Foggia Prostate Cancer (FPC) RCs
(6), or by adding mpMRI to each RC.

Our primary objective was to compare the accuracy of
mpMRI and the FPC-RC. As a secondary objective we sought
to compare the accuracy of mpMRI with two of the most used
available RCs. Finally, we determined the added value of mpMRI
to each of the tested models.

For descriptive statistics, continuous variables were reported
as medians and interquartile ranges, whereas categorical
variables were reported as rates. Patients’ probabilities of any
PCa as well as csPCa were computed applying the coefficients
(available upon request to the authors of the original
publications) to the logit functions for the ERSPC-RC and the
FPC-RC. Conversely, individual probability of i. No cancer, ii.
Low grade cancer, and iii. High grade cancer for the PBCG-RC
was computed using the coefficients and formulas provided by
the authors as supplementary materials (5).

Univariable logistic regression was carried out in order to
compare each RC against mpMRI as predictors of the outcomes
of interest.

Three models predicting any PCa and three models
predicting csPCa were created adding mpMRI to the individual
risk computed for each calculator, in a multivariable model.
Since the PBCG-RC was developed using multinomial regression
(i.e. it provides risk of no cancer, low-grade cancer, high-grade
cancer), the risk prediction for any cancer was computed as
1-risk of no cancer and was identical to the risk of low-grade
cancer + risk of high-grade cancer.

The corresponding area under receiver operating characteristic
(ROC) curve (AUC) and decision curve analysis (DCA) were used
to assess the predictive accuracy and clinical benefit of
tested models.

Statistical analyses were performed according to the latest
guidelines (12) using STATA 15 (StataCorp LP, College Station,
TX, USA). Significance was set at a = 0.05.
RESULTS

Between January 2017 and October 2019, a total of 415 patients
underwent mpMRI and PBx at our Institution. Men receiving
five alfa-reductase inhibitors (N = 50), or who had previously
undergone PBx (N = 174), or invasive treatment for benign
prostatic hyperplasia (n = 11), or with dwelling urethral catheters
(N = 5), or with a voided volume of less than 150 ml (N = 7) were
excluded from the present study. Patients with PSA >20 ng/ml
(N = 18) were also excluded as we found them to have a too high
risk (>75%) of harboring PCa.

After the exclusion criteria, the final population included 221
biopsy naïve patients with complete data. Patients characteristics
Frontiers in Oncology | www.frontiersin.org 311
are summarized in Table 1; 43 patients (19.5%) had a negative
mpMRI (PIRADS 1–2), thus underwent 18-core US guided
transrectal PBx, whereas the remaining 168 underwent
mpMRI/US guided fusion PBx. Their PIRADS score was 3, 4,
and 5 in 35 (15.8%), 120 (54.3%) and 23 (10.4%), respectively.

Any PCa and csPCa detection rates were 53.8% (n = 119) and
27.1% (n = 60), respectively. The negative predictive value of
mpMRI (PIRADS 1–2) in predicting any PCa and csPCa was 76.7
and 97.7% respectively. The positive predictive value of mpMRI
(PIRADS 3–4–5) was 61.2% for any PCa and 33.1% for csPCa.

Univariable analysis predicting the outcomes of interest is
shown in Table 2. RCs and mpMRI PIRADS score were all
significant predictors of any PCa and csPCa (p < 0.05).

The FPC-RC outperformedmpMRI in diagnosing both any PCa
(AUC 0.76 vs 0.69) and csPCa (AUC 0.80 vs 0.75). Conversely
mpMRI showed a higher accuracy in predicting any PCa compared
to the PBCG-RC and the ERSPC-RC but similar performances in
predicting csPCa (Table 2, Figures 1A–C).

Multivariable analysis showed that the addition of mpMRI
findings improved the diagnostic accuracy of each calculator in
predicting both csPCa and any PCa. The model derived from the
addition of mpMRI to the FPC-Rc showed the highest accuracy
in diagnosing both any PCa (AUC 0.78) and csPCa (AUC 0.87)
(Table 3, Figures 1B, D).

Finally, DCA showed that the FPC-RC provided greater net
benefit than mpMRI in predicting any PCa and csPCa.
Conversely mpMRI had a higher net benefit compared to the
other RCs. Again, the addition of mpMRI findings improved the
net benefit provided by each calculator benefit (Figure 2).
DISCUSSION

Over the last years, mpMRI has gained popularity as a reliable
tool in localizing specific regions of the prostate highly suspicious
TABLE 1 | Descriptive characteristics of the study population.

Overall population
N = 221

Age 66.0 (60.0, 71.0)
DRE, n (%)
Negative 123 (55.7%)
Suspicious 98 (44.3%)
Family History
Negative 108 (76.1%)
Positive 34 (23.9%)
PSA, ng/ml 5.5 (4.1, 7.4)
PSA density 0.11 (0.07, 0.15)
Prostate volume, cc 52.0 (39.0, 69.0)
PIRADS
1-2 43 (19.5%)
3 35 (15.8%)
4 120 (54.3%)
5 23 (10.4%)
Any Cancer 119 (53.8%)
Cs Cancer 60 (27.1%)
NPV of PIRADS 1-2 97.8% (42/43)
PPV of PIRADS 3-4-5 33.1% (59/178)
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for csPCa; therefore, there is a trend to recommend it as the most
efficient tool in predicting PCa at PBx (13). Such recommendation
is however based on prospective studies in high volume tertiary
cancer centers that do not reflect everyday practice in less
experienced centers (14–16). Indeed, mpMRI suffers a great
inter-reader and inter-center variability (13, 17, 18); moreover, it
is expensive. and not all institutions may afford to test every patient
at risk for PCa. Conversely, RCs are freely available online and have
been proved to be effective in several external validation cohorts.

The first interesting finding of our study was that the FPC-
RC, which has recently been externally validated in a cohort of
1,377 biopsy naïve patients from 11 institutions (19), outperformed
mpMRI in predicting PBx outcomes. This finding somehow
further supports the clinical value of benign prostatic obstruction
parameters in the evaluation of patients with PCa suspicion
Frontiers in Oncology | www.frontiersin.org 412
(20–22). Differently from mpMRI, the FPC-RC is a freely
available and almost inexpensive tool that can be easily used
during any medical consultation. Should our findings be
replicated in further external cohorts, the FPC-RC may become
an essential tool for patients requiring “further risk assessment”
prior to performing PBx.

When compared to other RCs, mpMRI outperformed the
ERSPC-RC and the PBCG-RC in predicting any PCa but showed
similar performances in predicting csPCa.

Our study also aimed to answer the relevant question whether
combining diagnostic tools may improve their diagnostic accuracy.
Overall, the addition of mpMRI findings improved the diagnostic
accuracy of each calculator in predicting both csPCa and any PCa.
Our findings are in line with those from a single center study
whereby the diagnostic accuracy of 4 RCs incorporating mpMRI
TABLE 2 | Univariable analysis predicting any cancer and csPCa using risk calculators and mpMRI.

OUTCOME: ANY PCa OUTCOME: csPCa

O.R. 95% CI P>|z| AUC O.R. 95% CI P>|z| AUC

FPC-RC, per unit 1.05 1.03,1.07 <0.001 0.760 1.06 1.04,1.08 <0.001 0.801
PBCG-RC, per unit 1.03 1.01,1.05 0.001 0.615 1.05 1.03,1.07 <0.001 0.733
ERSPC-RC, per unit 1.00 1.00,1.00 0.001 0.614 1.09 1.06,1.13 <0.001 0.749
MRI highest PIRADS
1-2 Ref. 0.690 Ref. 0.754
3 2.20 0.83,5.85 0.114 1.24 0.07,20.49 0.883
4 5.91 2.66,13.15 <0.001 24.32 3.23,182.86 0.002
5 11.88 3.52,40.14 <0.001 65.33 7.59,562.40 <0.001
January 2021 | Volume 10 | Article 6
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FIGURE 1 | Receiver operator curve (ROC) analysis comparing accuracy of mpMRI vs mpMRI naïve Risk calculators (RCs) (A–C), and model based on mpMRI +
RCs (B–D) for detecting any PCa (A, B) and clinically significant prostate cancer (C, D).
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TABLE 3 | Multivariable analysis predicting any PCa and csPCa.

OUTCOME: ANY PCa OUTCOME: csPCa

O.R. 95% CI P>|z| AUC O.R. 95% CI P>|z| AUC

MODEL-1
FPC-RC, per unit 1.04 1.03,1.06 <0.001 0.783 1.06 1.04,1.08 <0.001 0.870
MRI highest Pirads
1-2 Ref. Ref.
3 1.91 0.67,5.47 0.226 1.67 0.08,33.59 0.738
4 3.51 1.47,8.40 0.005 25.74 2.67,247.97 0.005
5 6.42 1.73,23.89 0.006 60.17 5.18,698.68 0.001

MODEL-2
PBCG-RC, per unit 1.03 1.00,1.05 0.015 0.726 1.05 1.03,1.07 <0.001 0.844
MRI highest Pirads
1-2 Ref. Ref.
3 2.28 0.85,6.14 0.104 1.30 0.08,22.33 0.855
4 5.59 2.49,12.55 <0.001 23.75 3.06,184.34 0.002
5 9.78 2.84,33.63 <0.001 51.87 5.73,469.84 <0.001

MODEL-3
ERSPC-RC, per unit 1.00 1.00,1.00 0.012 0.725 1.08 1.04,1.12 <0.001 0.841
MRI highest Pirads
1-2 Ref. Ref.
3 2.29 0.85,6.17 0.102 1.66 0.09,30.08 0.731
4 5.58 2.48,12.54 <0.001 24.23 2.87,204.38 0.003
5 9.66 2.80,33.28 <0.001 45.37 4.62,445.97 0.001
Frontiers in Oncology | www.fron
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Three models were created adding mpMRI to each risk calculator.
A B

DC

FIGURE 2 | Decision curve analysis (DCA) comparing the clinical utility of mpMRI vs mpMRI naïve risk calculators (RCs) (A–C), and model-based on mpMRI + RCs
(B–D) for detecting any PCa (A, B) and clinically significant prostate cancer (C, D). The DCA simulates two scenarios: one in which all patients would receive biopsy
(biopsy in all) and one in which none undergoes biopsy (biopsy in no one). Clinically useful models lie above these scenarios. Models including mpMRI +RCs showed
a higher net benefit at each threshold probability and thus outperformed mpMRI alone in determining the need for a prostate biopsy.
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(23–26) was compared with that of the ERSPC-RC (4) and
PBCG-RC (5) in a population of 468 patients. The four RCs
incorporating mpMRI parameters provided better discrimination,
calibration, and clinical usefulness; however, none of the six
calculators demonstrated clinical benefit against a “biopsy all”
strategy at thresholds of less than 15% (27). This finding
underlines a potentially relevant limitation of RCs; specifically, a
model that shows benefit at high thresholds of probability is clinically
useless in a screening setting since the decision to perform a biopsy is
especially difficult in patients with borderline risk.

In the present study, DCA showed that the combination of
mpMRI and RCs provided a greater benefit than the “biopsy all”
strategy at low thresholds. Having said this, additional external
validation studies in different biopsy settings are warranted since
the clinical utility of these models could be cohort dependent. It is
also worth mentioning that calculators including mpMRI, though
outperforming the mpMRI naïve ones, involve obtaining mpMRI
in all patients and this may not be afforded in centers with limited
resources (28). Conversely, mpMRI naïve RCs offer the unique
opportunity to potentially tailor further testing, such as mpMRI
and PBx itself, on an individual basis. Indeed, it has been pointed
out that RCs and biomarkers may help in selecting patients who
could benefit from mpMRI and PBx and patients with a very low
risk of csPCa in whom the positive predictive value of mpMRI is
low and mpMRI and PBx should be avoided (29–31).

The findings of this study have to be seen in light of some
limitations. First, the FPC-RC was developed at our institution,
and this can explain its better performance compared to the
other tested RCs. Even if the patient population used for the
development of the RC was not included in the present study,
this cannot be considered an external validation study. Other
potential study limitations include its relatively small sample size
and its retrospective nature; however, we elected to use strict
inclusion criteria and data were prospectively collected. Finally,
we did not test novel and promising tools such as bi-parametric
MRI (32) and novel biomarkers (33), but this would have been
beyond the aim of a study comparing currently available tests.
Frontiers in Oncology | www.frontiersin.org 614
CONCLUSIONS

The present study pointed out that mpMRI was outperformed by
the novel FPC-RC and showed similar performances compared
to the PBCG and ERSPC risk calculators in predicting csPCa.
The addition of mpMRI findings improved the diagnostic
accuracy of each of these calculators. Further studies are
needed to assess how these findings can be used to safely avoid
unnecessary biopsies.
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IVIM Parameters on MRI Could
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Purpose: To elucidate the usefulness of intravoxel incoherent motion (IVIM)/apparent
diffusion coefficient (ADC) parameters in preoperative risk stratification using International
Society of Urological Pathology (ISUP) grades.

Materials and Methods: Forty-five prostate cancer (PCa) patients undergoing radical
prostatectomy (RP) after prostate multiparametric magnetic resonance imaging (mpMRI)
were included. The ISUP grades were categorized into low-risk (I-II) and high-risk (III-V)
groups, and the concordance between the preoperative and postoperative grades was
analyzed. The largest region of interest (ROI) of the dominant tumor on each IVIM/ADC
image was delineated to obtain its histogram values (i.e., minimum, mean, and kurtosis) of
diffusivity (D), pseudodiffusivity (D*), perfusion fraction (PF), and ADC. Multivariable logistic
regression analysis of the IVIM/ADC parameters without and with preoperative ISUP
grades were performed to identify predictors for the postoperative high-risk group.

Results: Thirty-two (71.1%) of 45 patients had concordant preoperative and
postoperative ISUP grades. Dmean, D*kurtosis, PFkurtosis, ADCmin, and ADCmean were
significantly associated with the postoperative ISUP risk group (all p < 0.05). Dmean and
D*kurtosis (model I, both p < 0.05) could predict the postoperative ISUP high-risk group with
an area under the curve (AUC) of 0.842 and a 95% confidence interval (CI) of 0.726–
0.958. The addition of D*kurtosis to the preoperative ISUP grade (model II) may enhance
prediction performance, with an AUC of 0.907 (95% CI 0.822–0.992).

Conclusions: The postoperative ISUP risk group could be predicted by Dmean and
D*kurtosis from mpMRI, especially D*kurtosis. Obtaining the biexponential IVIM parameters is
important for better risk stratification for PCa.

Keywords: prostate cancer, IVIM, ISUP grade, diffusivity, pseudodiffusivity, perfusion fraction, kurtosis
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INTRODUCTION

The Gleason scores (GSs) obtained from prostate biopsies or
transurethral resection of the prostate (TURP) before radical
prostatectomy (RP) are used as treatment guidance for prostate
cancers (PCas) by stratifying them into low-risk (GS 6),
intermediate-risk (GS 7) and high-risk (GS 8-10) groups. For
example, low-risk patients may undergo active surveillance or
brachytherapy as monotherapy (1, 2). However, the concordance
of the GS on prostate biopsy and the GS according to RP are
limited, ranging from 31% to 60% (3–5), which implies possibly
inappropriate treatment selection for some patients when relying
on the GS obtained from prostate biopsies (4, 5). Recently, the
International Society of Urological Pathology (ISUP) adopted a
new grading system for PCas using GSs 6, 3 + 4, 4 + 3, 8, and 9-10
as grades I, II, III, IV, and V, respectively, to replace the old risk
stratification groups (i.e., GS 6, 7, 8-10) (6). The intermediate-
risk group (GS 7) in the old risk stratification system is divided
into GS 3 + 4 (grade II) and 4 + 3 (grade III) in the new ISUP
grade system because there is a significant difference in
recurrence between patients in the two new grades (6). The
hazard ratios of biochemical recurrence relative to ISUP grade I
were 1.9, 5.1, 8.0, and 11.7 for ISUP grades II, III, IV, and V,
respectively. Thus, the accurate prediction of the postoperative
ISUP grade according to the RP specimen is important for risk
stratification and treatment selection for PCas.

Diffusion weighted imaging (DWI) is currently considered a
key component of prostate multiparametric magnetic resonance
imaging (mpMRI) examinations (7, 8). There are statistically
significant correlations between the apparent diffusion
coefficients (ADCs) and the GSs of PCas (9–11). The ADC
values representing water diffusion are usually calculated from
DWI using monoexponential fitting (12), which, however, does
not consider the influence of intravoxel incoherent motion
(IVIM) (13, 14). Thus, Le Bihan et al. (15). proposed an IVIM
model using biexponential fitting, which allows the extraction of
IVIM parameters, including diffusivity (D), pseudodiffusivity
(D*), and perfusion fraction (PF). Two studies have shown
that both ADC and IVIM parameters are associated with low
risk (GS 6) and intermediate/high risk (GS 7-10) via biopsy or RP
(16, 17). Nonetheless, it remains unclear whether the ADC/IVIM
parameters are associated with the postoperative ISUP grades
and thus may be useful for their prediction. In addition, for
patients with preoperative ISUP grades obtained via biopsy or
TURP, do the addition of the ADC/IVIM parameters have
incremental value for risk stratification? Thus, the purpose of
the current study was to elucidate whether ADC and IVIM
parameters alone or in combination with preoperative ISUP
grades could predict the postoperative ISUP grade.
Abbreviations: GS, Gleason score; TURP, transurethral resection of the prostate;
RP, radical prostatectomy; PCa, prostate cancer; ISUP, International Society of
Urological Pathology; DWI, Diffusion weighted imaging; mpMRI,
multiparametric magnetic resonance imaging; ADC, apparent diffusion
coefficient; IVIM, intravoxel incoherent motion; D, diffusivity; D*,
pseudodiffusivity; PF, perfusion fraction; DCE, dynamic contrast enhancement;
FOV, field of view; PSA, prostate-specific antigen; TRUS, transrectal ultrasound.
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MATERIALS AND METHODS
Patients
The institutional review board approved this retrospective study
and provided a waiver for obtaining informed consent from the
enrolled patients. From June 2016 to December 2017, 247
patients underwent prostate mpMRI, including DWI, IVIM,
and dynamic contrast enhancement (DCE) pulse sequences.
The patients who met all inclusion criteria and did not fit any
of the exclusion criteria were enrolled for final analysis. The
inclusion criteria were (1) a histological diagnosis of PCa by
prostate biopsy or TURP, (2) no treatments for PCa before
mpMRI, and (3) RP after mpMRI. At this stage, 195 patients
were excluded due to violation of inclusion criteria, including ten
without a histological diagnosis, 20 with records of treating PCa
(such as prior RP, anti-hormone therapy, radiation therapy, etc.),
and 165 without receiving RP. Of 52 patients who met all
inclusion criteria, seven patients were excluded because of
fitting the exclusion criteria. The exclusion criteria were (1) no
PCa found in RP specimens (n = 1), (2) concurrent malignancy
other than PCa in RP specimens (n = 1), (3) a time interval of
more than 90 days between mpMRI and RP (n = 5) (16, 18), (4)
poor diagnostic quality due to artifact of hip prostheses on
mpMRI (n = 0), and (5) no detectable PCa on mpMRI (n = 0).
Forty-five patients were eligible for this study and were used to
construct the database (Figure 1).
MRI Technique and IVIM/ADC Parameters
on MRI
All MRI acquisitions were performed on a 3T clinical scanner
(Discovery MR750, GE Healthcare, Milwaukee, USA). The
mpMRI pulse sequences included conventional T2-weighted
imaging (T2WI) in the sagittal, coronal and axial planes and
T1-weighted imaging (T1WI) in the axial plane as well as
functional imaging such as DWI, IVIM and DCE. T2WI was
performed using a fast spin echo (FSE) sequence with repetition
time (TR) = 5800-6100 ms; echo time (TE) = 92 - 103 ms; slice
thickness = 4 mm; matrix = 384 × 320; and field of view (FOV) =
180 × 180 - 240 × 240 mm2. T1WI was performed using an FSE
sequence with TR = 660 ms; TE = 15 ms; slice thickness = 4 mm;
matrix = 256 × 224; and FOV = 180 × 180 mm2. IVIM imaging
was performed using 8 b values (i.e., 0, 10, 30, 50, 80, 100, 400,
1000 s/mm2) with a reduced FOV (rFOV) = 20 × 10 cm2;
matrix = 80 × 40; and TE = 53.4 ms. After IVIM DWI, DCE
using a three-dimensional (3D) T1-weighted spoiled gradient-
echo sequence in the axial plane (TR = 2.6 ms; TE = 1.1 ms; flip
angle = 13°; number of excitations (NEX) = 1; matrix = 140 ×
140; FOV = 280 × 280 mm2; and slice thickness = 4 mm) was
acquired using a standard dose (0.1 mmol/kg body weight) of
gadopentetate dimeglumine (Gd-DTPA; Magnevist; Bayer-
Schering, Burgess Hill, UK) administered at a rate of 3 mL/s
with a temporal resolution of 5.4 seconds and a total acquisition
time of 324 seconds (60 phases). A uroradiologist with over 20
years of experience reviewed the ADC and IVIM images using
homemade software written in MATLAB (R2015b; MathWorks,
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Inc., Natick, MA, USA) and delineated the largest region of
interest (ROI) of the dominant tumor nodule on each image
(Figures 2–4). Histogram values (i.e., minimum, mean, and
kurtosis) of the IVIM parameters (D, D*, and PF) were then
calculated and obtained using a biexponential model (15).
Histogram values (i.e., minimum, mean, and kurtosis) of the
ADCs generated from DWI using a standard monoexponential
model (19) were recorded.
Clinical Variables and Risk Groups Based
on Preoperative and Postoperative
Gleason Grading
For each patient, we recorded his age and prostate-specific
antigen (PSA) titer at diagnosis. The preoperative ISUP grades
of PCas (6, 20) were recorded using the histological results from
transrectal ultrasound (TRUS) biopsy or TURP specimens and
categorized into low-risk (grade I-II) and high-risk (grade III-V)
groups. The percentage of positive TRUS biopsy specimen cores
Frontiers in Oncology | www.frontiersin.org 318
was recorded. The final pathological results based on RP
specimens were then used for recording postoperative ISUP
grades and similarly categorized into the two risk groups. The
preoperative and postoperative ISUP grades and their
corresponding risk groups of all patients were compared and
recorded as same, upgraded or downgraded.

Statistical Analysis
Descriptive statistics for continuous variables are expressed as the
median and interquartile range (IQR) because of the small sample
size and skewed distributions. Categorical variables are expressed as
counts and proportions. The kappa statistic was calculated to analyze
the agreement between the preoperative and postoperative ISUP
grades.Theassociationsof clinical characteristics and the IVIM/ADC
parameters with the final risk groups (high/low) based on the
postoperative ISUP grades were analyzed using the Mann-Whitney
U test for continuous variables. Furthermore, multivariable logistic
regression with forward selection procedure was performed to
identify the predictors of a high-risk stratification for the RP
specimens. First, all clinical characteristics (including age, PSA at
diagnosis, positive biopsy specimen cores) and all IVIM/ADC
parameters were initially entered in a logistic regression to identify
the significant predictors of the postoperative ISUP risk group based
on forward selection (Model I). Afterward, we added a factor of risk
groups based on the preoperative ISUP grade combining with the
model offorwardprocedure to investigate its adding effect (Model II).
The ROC curves were plotted to show the predictive performance of
the models. A similar multivariable logistic regression with forward
selection procedure was also performed to identify the key predictors
of postoperative ISUP grade or risk group upgrading. All statistical
analyses were performed using SPSS Statistics version 25 (IBM,
Armonk, New York). A two-tailed p-value of less than 0.05 was
considered statistically significant.
RESULTS

The descriptive statistics of the clinical characteristics and the IVIM/
ADCparametersof the45patients are summarized inTable1. Before
RP, themedianPSAtiter atdiagnosiswas14.2ng/mL, and10patients
(22.2%)hadPSAtiter less than9ng/mLatdiagnosis, ranging from2.0
ng/mL to 8.3 ng/mL. Of these 10 patients, two patients (4.0%) had a
PSAtiter less than4ng/mLatdiagnosis: 2.0ng/mLand3.2ng/mL.Of
the 45 patients, 41 (91.1%) underwent TRUS biopsy, and 4 (8.9%)
underwent TURP to obtain theGS. AmongADC,D, andD*, D* had
the lowest mean, and ADC had the highest. In contrast, D* had the
highest kurtosis, and ADC had the lowest.

Table 2 shows the distributions of the preoperative and
postoperative ISUP grades of the 45 patients. For the
preoperative TRUS biopsies and TURP specimens, ISUP grades
I and III were the most common. However, grade III was the most
common for the postoperative RP specimens. Fifteen of 45
(33.3%) patients had the same preoperative and postoperative
ISUP grades. Thirty-two (71.1%) patients were categorized into
the same preoperative and postoperative ISUP risk groups (16
low-risk and 16 high-risk). Overall, 7 (15.6%) patients upgraded
from low risk to high risk (i.e., grade I to III for 2, and II to III
FIGURE 1 | Flow diagram of the enrollment of the 45 patients selected by
applying inclusion and exclusion criteria.
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for 5) and 6 (13.3%) patients downgraded from high risk to low
risk (i.e., grade III to I for 1 and III to II for 5) postoperatively.
There was moderate agreement between the preoperative and
Frontiers in Oncology | www.frontiersin.org 419
postoperative ISUP risk groups (kappa = 0.423, p=0.005). There
were significant associations of preoperative and postoperative
ISUP risk group, as 16 of 22 (72.7%) postoperative ISUP low-risk
patients and 7 of 23 (30.4%) postoperative ISUP high-risk patients
were regarded tohavepreoperative ISUP low-risk grades (p=0.005).

The clinical characteristics (i.e., age and PSA at diagnosis and
percentage of positive cores from TRUS biopsy) had no
associations with both the postoperative ISUP high-risk group
and postoperative ISUP risk group upgrading (Table 3; Table S1
and S2). However, multiple IVIM and ADC parameters,
including Dmean, D*kurtosis, PFkurtosis, ADCmin, and ADCmean,
were significantly associated with postoperative ISUP risk group
FIGURE 2 | A representative PCa with a preoperative Gleason score of 3 + 3 for the histogram analysis of DW imaging measures. After identifying the dominant
tumor nodule in the prostate gland, a region of interest (ROI) was delineated manually on a conventional DWI image (b = 1500 s/mm2) (A) to obtain an ADC map and
the corresponding histogram (B) of the ADC map (C).
TABLE 1 | Clinical characteristics and IVIM/ADC parameters obtained on MRI of
45 prostate cancer patients before radical prostatectomy.

Variables Median (IQR)

Clinical characteristics
Age at diagnosis (years) 66.0 (63.0–71.0)
PSA at diagnosis (ng/mL) 14.2 (9.1–20.4)
Positive biopsy specimen cores (%) 33.3 (8.3–50.0)

IVIM and ADC parameters
Dmin (×10

-6 mm2/s) 481.0 (363.0–644.0)
Dmean (×10

-6 mm2/s) 934.7 (832.7–1024.9)
Dkurtosis 3.2 (2.6–3.8)
D*min (×10

-6 mm2/s) 0.0 (0.0–0.0)
D*mean (×10

-6 mm2/s) 376.6 (253.3–490.8)
D*kurtosis 44.4 (17.9–70.0)
PFmin (%) 0.02 (0.01–0.22)
PFmean (%) 60.7 (54.6–72.1)
PFkurtosis 1.5 (1.3–2.4)
ADCmin (×10

-6 mm2/s) 580.0 (445.0–852.0)
ADCmean (×10

-6 mm2/s) 1181.7 (1022.4–1281.1)
ADCkurtosis 3.0 (2.4–3.7)
All the statistics for the variables are expressed as the median (IQR).
IVIM, intravoxel incoherent motion; ADC, apparent diffusion coefficient; MRI, magnetic
resonance imaging; PSA, prostate-specific antigen; D, diffusivity; min, minimum; D*,
pseudodiffusivity; PF, perfusion fraction.
TABLE 2 | ISUP grades of prostate cancers obtained before radical
prostatectomy (RP) and using histological results of the RP specimens of the 45
patients.

Preoperative ISUP grades ISUP grades from RP specimens

I II III IV V

I, n (%) 2 (15.4) 9 (69.2) 2 (15.4) 0 (0) 0 (0)
II, n (%) 1 (10.0) 4 (40.0) 5 (50.0) 0 (0) 0 (0)
III, n (%) 1 (7.7) 5 (38.5) 7 (53.8) 0 (0) 0 (0)
IV, n (%) 0 (0) 0 (0) 4 (66.7) 0 (0) 2 (33.3)
V, n (%) 0 (0) 0 (0) 1 (33.3) 0 (0) 2 (66.7)
Ju
ly 2021 | V
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Row percentages shown in parentheses.
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(all p < 0.05, Table 3). Besides, Dmean, PFkurtosis, and ADCmean,
were associated with postoperative ISUP risk group upgrading
(all p ≤ 0.05, Table S2). Further multivariable logistic regression
analysis showed that Dmean and D*kurtosis were significant
predictors for the postoperative ISUP high-risk group (both p
< 0.05, model I, Table 4). Dmean was the only significant
predictor for the postoperative ISUP risk group upgrading,
with a negative relationship (p < 0.0001, Table S3). Significant
predictors for the postoperative ISUP grade upgrading were not
identified. By using the preoperative ISUP grade as an
adjustment variable, the additive effect of D*kurtosis and Dmean
could improve the performance of the prediction models (p <
0.05, model II, Table 4). Figure 5 shows that the areas under the
ROC curves for model I and model II were 0.842 (95% CI 0.726–
0.958) and 0.907 (95% CI 0.822–0.992), respectively.

DISCUSSION

This study shows that there is only moderate agreement in the
preoperative and postoperative ISUP risk groups, with a final
concordance of 71.1%. Two major factors may account for this
limited concordance: (1) bias in the pathological evaluation and
(2) sampling error from an underrepresented area (21). Previous
studies have also reported similar but lower concordances for GS
risk groups ranging from 31% to 60% (3–5). Although the higher
concordance achieved in this study could be explained by the use
of more biopsy cores (12, 13) than in previous studies (10 or
fewer), 29% of patients who upgraded or downgraded
postoperatively remained misclassified in the risk stratification
and could have been potentially misled in the treatment selection
if it had been based on the preoperative ISUP risk group alone.

There were significant associations of the postoperative ISUP
risk groups with ADCmin, ADCmean, Dmean, PFkurtosis and
Frontiers in Oncology | www.frontiersin.org 520
D*kurtosis (all p < 0.05) but not with the clinical characteristics
in this study. Previous studies have also reported that ADCmean

and Dmean are associated with the GS risk group but not with
clinical characteristics (16–18, 22–24). Since there is an inverse
correlation between ADCmean and GS 6-10 obtained from
biopsies (19), the significant differences in ADCmean using the
monoexponential model and Dmean using the biexponential
model between GS risk groups are reasonable and could be
expected. However, the new ISUP grades differ from GS, as GS 7
is now categorized into two grades, ISUP grade II for GS 3 + 4
and ISUP grade III for GS 4 + 3, because of their substantial
differences in recurrence. Shan et al. (18). showed that ADCmean,
PFmean, and Dmean could differentiate GS 3 + 4 from GS > 3 + 4
according to RP with AUCs of 0.744, 0.726 and 0.732, respectively
(all p < 0.05), which is similar to our results except for PFmean. In
IVIM models, PF represents the proportion of water flowing in
capillaries of the total water in a voxel, and D* represents water
movement in the randomly oriented capillary network mimicking
TABLE 3 | Associations of clinical characteristics and IVIM/ADC parameters obtained before radical prostatectomy with final risk groups of 45 prostate cancer patients.

Variables ISUP grade groups* p

Low risk (N = 22) High risk (N = 23)

Age (years) 65.5 (63.0–71.0) 66.0 (61.0–71.0) 0.849
PSA at diagnosis (ng/mL) 11.8 (8.3–17.4) 14.5 (9.1–21.4) 0.586
Positive biopsy cores (%) 25.0 (8.3–50.0) 33.3 (12.5–50.0) 0.741
Dmin (×10

-6 mm2/s) 494.0 (350.0–692.0) 455.0 (363.0–563.0) 0.247
Dmean (×10

-6 mm2/s) 971.7 (901.4–1113.6) 881.6 (800.3–995.7) 0.035
Dkurtosis 2.8 (2.2–4.0) 3.5 (3.0–3.8) 0.073
D*min (×10

-6 mm2/s) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.282
D*mean (×10

-6 mm2/s) 423.5 (251.4–603.5) 369.6 (298.0–420.8) 0.555
D*kurtosis 19.3 (4.8–49.4) 59.7 (34.2–84.8) < 0.001
PFmin (%) 0.06 (0.01–2.2) 0.02 (0.01–0.13) 0.219
PFmean (%) 58.1 (42.8–73.2) 62.0 (57.6–71.2) 0.376
PFkurtosis 2.3 (1.6–3.9) 1.3 (1.3–1.5) 0.001
ADCmin (×10

-6 mm2/s) 705.5 (535.0–927.0) 535.0 (434.0–682.0) 0.044
ADCmean (×10

-6 mm2/s) 1274.7 (1084.8–1304.4) 1094.6 (1016.8–1231.4) 0.035
ADCkurtosis 2.7 (2.2–3.7) 3.4 (2.8–4.0) 0.077
July 2021 | Volume 11 | Article
All the statistics for the variables are expressed as the median (IQR).
All compared with the Mann-Whitney U test.
*Final ISUP grade groups using results of histological examinations of radical prostatectomies.
IVIM, intravoxel incoherent motion; ADC, apparent diffusion coefficient; ISUP, the International Society of Urological Pathology; PSA, prostate-specific antigen; D, diffusivity; min, minimum;
D*, pseudodiffusivity; PF, perfusion fraction.
TABLE 4 | Multivariable analysis of significant predictors of high-risk group
according to radical prostatectomy specimens using logistic regression analysis.

Predictor Estimate (S.E.) OR (95% CI) p

Model I
Dmean (×10

-6 mm2/s) -0.002 (0.001) 0.998 (0.996–0.999) 0.003
D*kurtosis 0.045 (0.014) 1.046 (1.018–1.075) 0.001

Model II
Dmean (×10

-6 mm2/s) -0.005 (0.001) 0.995 (0.993–0.998) 0.002
D*kurtosis 0.052 (0.018) 1.053 (1.016–1.092) 0.005
Preoperative ISUP grades

I Reference
II 2.785 (1.249) 16.193 (1.399–187.381) 0.026
III, IV, V 2.575 (1.111) 13.126 (1.489–115.733) 0.020
6

S.E., standard error; OR, odds ratio; CI, confidence interval; D, diffusivity; D*,
pseudodiffusivity; ISUP, the International Society of Urological Pathology.
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FIGURE 3 | Another ROI was delineated manually on the IVIM D map. The ROI on the D map was automatically copied to the D* and PF maps by our homemade
software. Then, the corresponding histograms of the D, D*, and PF maps were obtained. The process was repeated for each DWI image and IVIM map containing
the dominant tumor nodule.
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FIGURE 4 | Finally, our homemade software constructed the whole dominant nodule histograms for D, D*, PF, and ADC by combining the different histograms from
each image. The minimum, mean, and kurtosis of the IVIM/ADC parameters were extracted from the whole dominant nodule histogram and used for further analysis.

Chang et al. IVIM Could Predict ISUP Risk
diffusion (15). This study showed that the postoperative ISUPhigh-
risk group had significantly higher D*kurtosis and lower PFkurtosis
than the low-risk group,whichmeans that there aremore outliers of
the D* distribution and fewer outliers of the PF distribution (25).
Thus, the postoperative ISUP high-risk grades tend to have
markedly more heterogeneous water movement in the capillary
network in voxels and a relatively more restricted range of PF than
the low-risk group. The associations of these ADC and IVIM
parameters with the postoperative ISUP risk group implies their
potential usefulness in preoperative risk stratification and
prediction for the postoperative ISUP grades, which have
replaced the old GS system worldwide.

From a practical point of view, it is necessary to address whether
the ADC/IVIM parameters could predict the final postoperative
ISUP risk groups, andmultivariate analysiswith controlling variables
Frontiers in Oncology | www.frontiersin.org 722
showed thatDmean andD*kurtosis, rather thanPFkurtosis andADCmean,
were significant predictors for the postoperative ISUP risk group in
this study. This means that lower Dmean and higher D*kurtosis values
predict thepostoperative ISUPhigh-risk groupwithanexpectedhigh
accuracy (0.842), as shown by the AUC, which is higher than the
concordance (0.71) of the preoperative and postoperative ISUP risk
group. The limited concordance between the preoperative and
postoperative ISUP grades or GSs might result in the inappropriate
selection of treatment. Thus, are the ADC and IVIM parameters
helpful in filling this gap? This study shows that the addition of
D*kurtosis into the model using the preoperative ISUP grades has
incremental value, achievingahighAUCof0.907,whichaccounts for
a 67.8% decrease in upgrading/downgrading the postoperative ISUP
risk groupwith respect to thepreoperative ISUPrisk group.Thus, it is
worth obtaining IVIM parameters using a biexponential model
July 2021 | Volume 11 | Article 659014
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FIGURE 5 | The receiver operating characteristic curves of the prediction models. The areas under the curves of model I and model II are 0.842 and 0.907,
respectively. In model I, the IVIM/ADC parameters Dmean and D*kurtosis were significant predictors for the ISUP high-risk group according to radical prostatectomy
(RP) specimens. In model II, the use of the preoperative ISUP grade as an adjustment variable, in addition to Dmean and D*kurtosis, may enhance the predictive
performance of the model.

Chang et al. IVIM Could Predict ISUP Risk
because unlike theADCparameters, they are significant predictors of
postoperative ISUP grade, both without and with biopsy/
TURP information.

Le Bihan et al. (15). proposed the IVIM model by assuming a 2-
compartment scenario and characterized the diffusion signals with a
biexponential decay function. Since IVIM is an expanded form of
DWI, it can be used for PCa detection in peripheral and transition
zones of the prostate, just like monoexponential-fitted ADC.
Previous studies had shown that the IVIM parameters were not
superior to ADC in evaluating PCa in the transition zone (22) but
might increase the diagnostic performance in detecting PCa in the
peripheral zone (24). For tumor detection in the whole prostate,
IVIM parameters and ADC might have comparable diagnostic
performance (18). Overall, the biexponential-fitted IVIM did not
add more information in tumor detection than traditional ADC.
However, the IVIM parameters, as shown in the present study,
would be beneficial to predict GS, aggressiveness, and postoperative
ISUP risk group of PCa. The IVIM diffusion might, therefore,
potentially influence the treatment selection of PCa.

There are limitations in the present work. First, this is a
retrospective study of PCa patients undergoing RP with possible
selection bias resulting from the recruitment of operable patients
undergoing active surveillance, radiation therapy or hormone
therapy by using the GS from biopsies/TURP as a reference for
treatment selection. Another limitation is the small number of
patients included in the present study due to the strict inclusion and
exclusion criteria used, which, however, were implemented to
ensure comparability between mpMRI and the RP specimens
(e.g., patients with a delay of more than 90 days between mpMRI
andRPwere excluded). Future studieswith prospective designs and
large patient cohorts should be performed to confirm our results.
Frontiers in Oncology | www.frontiersin.org 823
In conclusion, predicting the postoperative ISUP risk group with
the use of histological information from biopsies/TURP could be
unsatisfactory and sometimes misleading. It might be feasible and
helpful to use the IVIM parameters Dmean and D*kurtosis from
mpMRI alone to predict the postoperative ISUP risk group. The
addition of D*kurtosis to the preoperative ISUP grades has
incremental value in the prediction of postoperative ISUP grades.
Therefore, it is important to obtain IVIM parameters using a
biexponential model for better risk stratification for PCa before
surgery or other treatments.
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Objective: To reduce unnecessary prostate biopsies, we designed a magnetic
resonance imaging (MRI)-based nomogram prediction model of prostate maximum
sectional area (PA) and investigated its zone area for diagnosing prostate cancer (PCa).

Methods: MRI was administered to 691 consecutive patients before prostate biopsies
from January 2012 to January 2020. PA, central gland sectional area (CGA), and
peripheral zone sectional area (PZA) were measured on axial T2-weighted prostate
MRI. Multivariate logistic regression analysis and area under the receiver operating
characteristic (ROC) curve were performed to evaluate and integrate the predictors of
PCa. Based on multivariate logistic regression coefficients after excluding combinations of
collinear variables, three models and nomograms were generated and intercompared by
Delong test, calibration curve, and decision curve analysis (DCA).

Results: The positive rate of PCa was 46.74% (323/691). Multivariate analysis revealed
that age, PSA, MRI, transCGA, coroPZA, transPA, and transPAI (transverse PZA-to-CGA
ratio) were independent predictors of PCa. Compared with no PCa patients, transCGA
(AUC = 0.801) was significantly lower and transPAI (AUC = 0.749) was significantly higher
in PCa patients. Both of them have a significantly higher AUC than PSA (AUC = 0.714) and
PV (AUC = 0.725). Our best predictive model included the factors age, PSA, MRI,
transCGA, and coroPZA with the AUC of 0.918 for predicting PCa status. Based on this
predictive model, a novel nomogram for predicting PCa was conducted and internally
validated (C-index = 0.913).

Conclusions:We found the potential clinical utility of transCGA and transPAI in predicting
PCa. Then, we firstly built the nomogram based on PA and its zone area to evaluate its
diagnostic efficacy for PCa, which could reduce unnecessary prostate biopsies.

Keywords: nomogram, prostate maximum sectional area, prostate zone area, prostate cancer, prostate biopsy
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INTRODUCTION

Prostate cancer (PCa) is the most common cancer among men in
the Western world, and it has an increasing prevalence (1). There is
an international consensus that early detection and treatment of
PCa can improve the survival rate of PCa patients. Prostate-specific
antigen (PSA) is the most widely used screening marker to detect
PCa at an early stage. The larger clinical trial found that patients
having undergone PSA screening had 25% lower PCa death rates
than those who did not (2). After tests reveal an elevated serum PSA
level, most patients require puncture biopsy of the prostate, because
the prostate biopsy remains the gold standard method for
diagnosing PCa. However, we have to face a clinical problem that
the prostate biopsy is an invasive operation. It not only brings pain
and fear to the patients, but also may cause medical complications
such as infection and hemorrhage (3). Because prostate biopsy
always has the probability of missing tumor tissue, it is not able to
make a 100% diagnosis of PCa. The rate of negative prostate
biopsies was substantially high (58.51%–69.30%) especially in
cases with only elevated PSA levels, thus greatly affecting patients’
quality of life (4, 5). Therefore, it is rational to avoid the biopsy on
patients who are ultimately proved to be negative cases.

In order to overcome the limitations of PSA test, Benson et al.
proposed the concept of PSA density (PSAD, PSA value divided by
prostate volume), which was considered to increase the accuracy of
PSA test for diagnosing the PCa (6). The main principle is that PCa
tissues can release more PSA per unit volume to blood serum than
enlarged or normal prostate tissues do. Recent research had also
shown that PSA density could overweigh PSA in distinguishing
clinically significant PCa and intraprostatic inflammation before
prostate biopsy (7). However, it has been reported that the prostate
volume was frequently roughly calculated using the prolate ellipsoid
formula before operation, in which there is 10%–20% error
compared with prostatectomy specimens in the clinical situation
(8, 9). So, this kind of prostate volume should be further improved
for assessing the exact risk of PCa. Therefore, we considered finding
newMRI-based predictors to enhance the role of roughly calculated
prostate volume for predicting PCa.

In MRI images of prostate zonal anatomy, the prostate
comprises the peripheral zone, transition zone, central zone,
and anterior fibromuscular stroma (10). A related study showed
that approximately 75%–85% of PCa cases are located in the
peripheral zone, rather than the central gland. The central gland
is the typical site of BPH, which includes the transition zone,
Abbreviations: BMI, body mass index; FPSA, free PSA; PSA, prostate-specific
antigen; FTPSA, free PSA

PSA ; PV, prostate volume; sagiPSAPA, PSA
sagi PA ; PSAD, PSA

density; sagiPSACGA, PSA
sagi CGA ; PA, prostate maximum sectional area;

sagiPSAPZA, PSA
sagi PZA ; CGA, central gland sectional area; transPSAPA, PSA

trans PA ;
PZA, peripheral zone sectional area; transPSACGA, PSA

trans CGA ; sagiPA, sagittal
prostate maximum sectional area; transPSAPZA, PSA

trans PZA ; sagiCGA, sagittal
central gland sectional area; coroPSAPA, PSA

coro PA ; sagiPZA, sagittal peripheral
zone sectional area; coroPSACGA, PSA

coro CGA ; transPA, transverse prostate
maximum sectional area; coroPSAPZA, PSA

coro PZA ; transCGA, transverse central
gland sectional area; sagiPAI, sagiPZA

sagi CGA ; transPZA, transverse peripheral zone
sectional area; transPAI, transPZA

trans CGA ; coroPA, coronal prostate maximum
sectional area; coroPAI, coroPZA

coro CGA ; coroCGA, coronal central gland sectional
area; ALP, alkaline phosphatase; coroPZA, coronal peripheral zone sectional
area; LDH, lactate dehydrogenase
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central zone, and anterior fibromuscular stroma (11). MRI
images can clearly identify different anatomical areas of the
prostate, which is beneficial to improve the detection rate of
PCa. We first propose the concept of the prostate maximum
sectional area (PA) for predicting PCa by MRI images, which
includes both central gland sectional area (CGA) and peripheral
zone sectional area (PZA). Comparatively, MRI is regarded as
the most precise noninvasive method, as it can assess PA with
high reproducibility and accuracy compared with rough prostate
volume calculated by the common formula (12).

Nomogram is a simple intuitive graph of a complex
mathematical formula (13). It is widely used for cancer
prediction, primarily because of their ability to use biologic and
clinical variables building a graphically depictive statistical
predictive model that is tailored to an individual patient (14).
User-friendly graphical interfaces for generating these estimates
facilitate the use of nomograms to aid in clinical decision-making.

The purpose of the current study was to establish a new
nomogram about PA and its associated zone area such as CGA
and PZA on axial T2 fat-saturated MRI for diagnosing PCa. To
the best of our knowledge, no previous literature has employed
MRI-based PA and the associated zone area for the prediction of
PCa before prostate biopsy among Chinese population.
METHODS

Study Population
The study was designed as a retrospective cohort study that was
conducted in the Laboratory of Urology and the Department of
Urology of Fujian Medical University Union Hospital (Fuzhou,
China). We enrolled 691 consecutive patients who underwent
multiparametric magnetic resonance image (mp-MRI) before
initial transrectal ultrasound (TRUS)-guided prostate biopsy
from January 2012 to January 2020, followed by data
anonymization. Eligible patients who matched the selection
criteria were identified by the following criteria: elevated PSA
levels (≥10 ng·ml−1), suspected cancer on digital rectal
examination (DRE), hyperechoic or hypoechoic TRUS, or
abnormal MRI findings. For PSA values between 4 and 10
ng·ml−1, the biopsy criterion was ratio of free to total PSA <
16%. The exclusion criteria were as follows: previous prostate
biopsy, history of prostate surgery, pathological examination
revealing tumors other than adenocarcinoma, and incomplete
mp-MRI information or imaging artifacts (Figure 1). The study
was ethically approved by the Institutional Review Board of
Fujian Medical University Union Hospital with an approval
number of 2020KY059. Written informed consent was
obtained from patients before the study commenced. Details of
patients’ identity had to be omitted. Our work complies with the
Code of Ethics of the World Medical Association (Declaration of
Helsinki, revised in 2013).

Clinical Data and Variable Definitions
Clinical characteristics including age, body mass index (BMI), PSA,
free PSA (FPSA), free-to-total PSA (FTPSA), prostate volume (PV),
PSA density (PSAD), MRI, transverse prostate maximum sectional
September 2021 | Volume 11 | Article 708730
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area (transPA), coronal prostate maximum sectional area (coroPA),
sagittal prostate maximum sectional area (sagiPA), transverse
peripheral zone sectional area (transPZA), coronal peripheral
zone sectional area (coroPZA), sagittal peripheral zone sectional
area (sagiPZA), transverse central gland sectional area (transCGA),
coronal central gland sectional area (coroCGA), sagittal central
gland sectional area (sagiCGA), alkaline phosphatase (ALP), and
lactate dehydrogenase (LDH) were collected before prostate biopsy.
Subsequently, transverse PSA-to-PA ratio (transPSAPA), coronal
PSA-to-PA ratio (coroPSAPA), sagittal PSA-to-PA ratio
(sagiPSAPA), transverse PSA-to-PZA ratio (transPSAPZA),
coronal PSA-to-PZA ratio (coroPSAPZA), sagittal PSA-to-PZA
rat io (sagiPSAPZA), transverse PSA-to-CGA rat io
(transPSACGA), coronal PSA-to-CGA ratio (coroPSACGA),
sagittal PSA-to-CGA ratio (sagiPSACGA), transverse PZA-to-
CGA ratio (transverse prostate area index, transPAI), coronal
PZA-to-CGA ratio (coronal prostate area index, coroPAI), and
sagittal PZA-to-CGA ratio (sagittal prostate area index, sagiPAI)
were calculated. The prostate maximum sectional area on prostate
T2WI MRI had the following definition: In the transverse plane,
when the bilateral prostate lobes are basically symmetrical, and the
quasi-circular internal urethral sphincter can be seen in the middle
of the prostate, the maximum section is the one for which the
sectional area becomes smaller when scanning upward or
downward. In the coronal plane, when the bilateral prostate lobes
are basically symmetrical, and the strip-type internal urethral
sphincter can be seen in the middle of the prostate, the maximum
section is the one for which the sectional area becomes smaller when
scanning upward or downward. In the sagittal plane, when the strip-
type internal urethral sphincter can be seen in the middle of the
prostate, the maximum section is the one for which the sectional
area becomes smaller when scanning upward or downward.
Frontiers in Oncology | www.frontiersin.org 327
Image Acquisition and Interpretation
A SiemensMagnetom Trio Tim 3.0-T superconductingMRI scanner
with an 18-channel phased-array torso coil was used to create all
magnetic resonance images [repetition time (TR) 400 ms, echo time
(TE) 80 ms, slice thickness = 3 mm, interslice gap = 30%, acquisition
four times with fat-suppression technique]. T2-weighted images in
the sagittal, coronal, and transverse planes, diffusion-weighted images,
apparent diffusion coefficient in the transverse plane, and dynamic
contrast-enhanced images were acquired according to the
international prostate MRI guidelines (15). Interpretation of the
MRI findings was performed by a radiologist and a urologist (with
5 or more years of experience in prostate imaging),whomeasured PA
and CGA on fat-saturated T2WI MRI (Figure S1).

Prostate Biopsy Method
Following local non-infiltrative anesthesia, all prostate biopsies were
performed transrectally under TRUS guidance (BK Medical, USA).
A standard 13-core systematic prostate biopsy was obtained
including transitional, peripheral, and anterior zone from base to
apex by an 18-gauge/25-cm biopsy needle (Bard Peripheral
Vascular, Inc). All patients underwent standard prostate biopsies,
which were performed by an experienced urologist (more than 5
years of experience in prostate biopsy). All biopsy specimens were
examined and recorded by two experienced pathologists.

Statistical Analysis
Distributions of variables were compared by the chi-squared test for
categorical variables and the Mann–Whitney U test for continuous
variables, which was not normally distributed. The values of all
continuous variables (age, BMI, PSA, FPSA, FTPSA, transPA,
coroPA, sagiPA, transPZA, coroPZA, sagiPZA, transCGA,
coroCGA, sagiCGA, transPSAPA, coroPSAPA, sagiPSAPA,
FIGURE 1 | Flow chart of patient selection.
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transPSAPZA, coroPSAPZA, sagiPSAPZA, transPSACGA,
coroPSACGA, sagiPSACGA, ALP, and LDH) were not normally
distributed. Variables including BMI, FPSA, FTPSA, transPZA, and
ALP were excluded due to lack of statistical significance in
univariate logistic regression analysis. We integrated variables
with great clinical significance including age, PSA, and MRI into
the base model. The remaining variables were reassembled into all
kinds of possible combinations through enumeration algorithm.
Then, we combined base model and each different combinations
together to form our predict models. Correlation analysis was used
to detect the multicollinearity between every two variables (Figure
S2). Any model that contained two or more multicollinearity
Frontiers in Oncology | www.frontiersin.org 428
variables will be eliminated before the next step. Then,
multivariate logistic regression analysis was performed on the rest
of these models to identify the independence of each predictor for
diagnosing PCa and calculate its variance inflation factor (VIF).
Models will also be eliminated when their VIF ≥ 2. The diagnostic
efficacy of these models was evaluated by the area under the curve
(Figure 2). The first three combinations with the highest AUC were
chosen as our final models. The statistical differences among three
models and each single predictor were compared by Delong test,
respectively. The cutoff value, sensitivity, specificity, and positive
and negative likelihood ratios were computed for these variables and
prediction models. Nomograms were generated to predict the
FIGURE 2 | Flow chart of statistical analysis.
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probability of PCa, based on the multivariate regression coefficients
in three models. These models were recalibrated both in the training
cohort and the validation cohort to evaluate the nomogram’s
discrimination capacity by 1,000 random bootstrap samples with
replacement. Calibration slope less than 1 reflects proper fit of the
model. The clinical utility of three models was quantified by
decision curve analysis (DCA) through summing the benefits
(true positives) and subtracting the harms (false positives).
Statistical significance was defined as p-value < 0.05. Statistical
analysis, nomogram, and calibration plot were generated using R
studio (version 4.0.3).
RESULTS

Clinical Characteristics
A total of 230 (47.23%) of 487 patients in the training cohort and
93 (45.59%) of 204 patients in the validation cohort were
Frontiers in Oncology | www.frontiersin.org 529
diagnosed with PCa (Table 1). Univariate logistic regression
analysis showed that all variables were statistically significant
predictors of PCa detection except for BMI, FPSA, FTPSA,
transPZA, and ALP in the training cohort. No significance was
found in variables between the training cohort and validation
cohort except for age (Table 2).

Multivariate Logistic Regression Models
To evaluate the synergistic ability of every single predictor for
predicting PCa, we created different models that did not contain
multicollinearity. The first three models with the highest AUC
were chosen as our final models, which were model 1, model 2,
and model 3. Model 1 consists of age, PSA, MRI, transCGA, and
coroPZA after excluding sagiPAI, PV, and PSAD. Model 2
consists of age, PSA, MRI, transPAI, coroPZA, and transPA
after excluding PV and PSAD. Model 3 consists of age, PSA,
MRI, transPAI, and PV after excluding sagiPAI, coroPAI, and
PSAD (Table 3). Age, MRI, and PSA were independent
TABLE 1 | Clinical characteristics of patients before the prostate biopsy.

Training cohort Validation cohort

No PCa PCa OR (95% CI) p-value No PCa PCa OR (95% CI) p-value

(n = 257) (n = 230) (n = 111) (n = 93)

Age* 67 (62;73) 70 (64;76) 1.05 (1.02;1.07) <0.001 69 (64;74) 72 (66;77) 1.03 (1.00;1.07) 0.023
BMI* 23.00 (21.50;24.91) 23.88 (21.35;25.99) 1.04 (0.98;1.10) 0.082 23.90 (22.50;25.43) 22.70 (20.52;25.50) 0.92 (0.84;1.01) 0.031
MRI: <0.001 <0.001
Abnormal 92 (35.8%) 186 (80.9%) Ref. 43 (38.7%) 76 (81.7%) Ref.
Normal 165 (64.2%) 44 (19.1%) 0.13 (0.09;0.20) 68 (61.3%) 17 (18.3%) 0.14 (0.07;0.27)

FPSA* 1.53 (0.92;2.50) 1.68 (0.69;7.27) 1.11 (1.06;1.17) 0.101 1.49 (0.98;2.42) 1.33 (0.18;3.51) 1.09 (1.02;1.16) 0.411
PSA* 11.13 (7.44;17.91) 26.09 (9.54;97.90) 1.04 (1.03;1.05) <0.001 11.42 (7.07;16.74) 29.38 (13.22;86.47) 1.05 (1.03;1.07) <0.001
FTPSA* 0.14 (0.10;0.18) 0.12 (0.08;0.20) 12.7 (2.26;71.0) 0.292 0.14 (0.11;0.20) 0.11 (0.07;0.18) 1.24 (0.11;13.7) 0.008
PV* 72.9 (49.6;105) 45.7 (33.5;64.8) 0.98 (0.97;0.98) <0.001 69.3 (44.5;98.9) 41.7 (29.1;56.7) 0.97 (0.96;0.98) <0.001
PSAD* 0.15 (0.10;0.23) 0.56 (0.25;1.46) 14.7 (7.56;28.8) <0.001 0.16 (0.11;0.26) 0.65 (0.33;1.83) 109 (21.6;552) <0.001
sagiPA* 20.1 (16.2;24.7) 15.5 (12.2;19.5) 0.89 (0.86;0.92) <0.001 20.1 (16.3;24.8) 15.1 (12.1;18.0) 0.87 (0.82;0.92) <0.001
sagiCGA* 12.8 (9.06;17.1) 8.09 (5.77;11.1) 0.83 (0.80;0.87) <0.001 12.8 (9.62;17.1) 6.98 (5.16;9.99) 0.80 (0.74;0.86) <0.001
sagiPZA* 6.49 (4.79;8.50) 7.11 (5.15;9.45) 1.06 (0.99;1.12) 0.041 6.23 (4.78;8.55) 6.80 (4.72;9.98) 1.08 (0.99;1.18) 0.187
transPA* 21.9 (17.5;28.0) 16.9 (13.0;20.4) 0.89 (0.86;0.91) <0.001 21.0 (17.2;27.1) 16.1 (12.8;19.3) 0.86 (0.82;0.91) <0.001
transCGA* 13.5 (9.76;18.2) 7.61 (5.77;10.6) 0.79 (0.75;0.83) <0.001 13.9 (10.0;17.0) 7.06 (4.95;9.82) 0.78 (0.72;0.84) <0.001
transPZA* 8.30 (5.91;10.3) 8.55 (5.96;10.9) 1.03 (0.98;1.07) 0.398 7.58 (5.89;9.77) 7.99 (6.30;10.5) 1.04 (0.96;1.13) 0.242
coroPA* 21.3 (17.1;27.9) 16.8 (13.1;20.2) 0.89 (0.86;0.91) <0.001 22.2 (15.3;26.9) 15.5 (12.7;19.7) 0.88 (0.84;0.92) <0.001
coroCGA* 16.2 (11.5;21.5) 8.91 (6.67;12.3) 0.83 (0.80;0.87) <0.001 16.3 (10.7;21.3) 7.95 (5.58;11.4) 0.82 (0.77;0.87) <0.001
coroPZA* 5.77 (4.23;7.21) 6.84 (5.31;8.79) 1.19 (1.11;1.28) <0.001 5.45 (4.29;6.36) 6.76 (5.35;9.17) 1.33 (1.17;1.51) <0.001
sagiPSAPA* 0.56 (0.39;0.88) 1.81 (0.73;4.44) 2.24 (1.84;2.73) <0.001 0.56 (0.36;0.93) 2.02 (1.00;4.99) 3.13 (2.06;4.75) <0.001
sagiPSACGA* 0.91 (0.62;1.37) 3.54 (1.46;8.17) 1.73 (1.51;1.97) <0.001 0.82 (0.53;1.43) 4.10 (1.94;10.8) 2.30 (1.72;3.07) <0.001
sagiPSAPZA* 1.78 (1.15;3.29) 4.18 (1.54;10.2) 1.19 (1.13;1.26) <0.001 1.69 (0.99;2.95) 4.60 (2.30;10.0) 1.18 (1.09;1.27) <0.001
transPSAPA* 0.51 (0.35;0.75) 1.55 (0.65;4.28) 2.48 (1.97;3.12) <0.001 0.53 (0.34;0.81) 1.75 (0.84;4.81) 3.57 (2.22;5.76) <0.001
transPSACGA* 0.81 (0.57;1.30) 3.43 (1.39;9.06) 1.75 (1.52;2.01) <0.001 0.84 (0.54;1.40) 4.44 (1.78;11.9) 2.21 (1.67;2.93) <0.001
transPSAPZA* 1.40 (0.89;2.36) 3.22 (1.29;8.44) 1.25 (1.17;1.34) <0.001 1.44 (0.92;2.24) 3.85 (1.61;9.03) 1.32 (1.18;1.47) <0.001
coroPSAPA* 0.52 (0.35;0.77) 1.47 (0.69;4.26) 2.51 (1.99;3.17) <0.001 0.50 (0.34;0.82) 1.77 (0.88;4.44) 3.50 (2.21;5.53) <0.001
coroPSACGA* 0.74 (0.47;1.09) 3.10 (1.29;7.36) 1.84 (1.58;2.14) <0.001 0.66 (0.49;1.20) 4.08 (1.52;9.36) 2.39 (1.76;3.23) <0.001
coroPSAPZA* 2.11 (1.21;3.57) 3.98 (1.72;9.83) 1.19 (1.13;1.25) <0.001 2.08 (1.29;3.60) 4.80 (2.08;9.27) 1.23 (1.12;1.34) <0.001
sagiPAI* 0.49 (0.34;0.74) 0.82 (0.51;1.26) 3.80 (2.51;5.75) <0.001 0.47 (0.32;0.71) 0.85 (0.56;1.66) 4.22 (2.28;7.81) <0.001
transPAI* 0.58 (0.41;0.87) 1.10 (0.62;1.61) 5.60 (3.71;8.46) <0.001 0.54 (0.41;0.87) 1.27 (0.70;1.79) 7.70 (3.90;15.2) <0.001
coroPAI* 0.36 (0.23;0.53) 0.74 (0.49;1.24) 9.21 (5.34;15.9) <0.001 0.35 (0.23;0.48) 0.81 (0.55;1.32) 31.3 (10.7;92.0) <0.001
ALP* 72.0 (60.0;85.0) 71.0 (59.0;88.3) 1.00 (1.00;1.01) 0.773 75.0 (60.5;85.0) 76.0 (61.0;89.0) 1.01 (1.00;1.01) 0.354
LDH* 176 (155;204) 182 (159;210) 1.01 (1.00;1.01) 0.034 179 (159;201) 184 (165;209) 1.01 (1.00;1.01) 0.125
September 2021 |
 Volume 11 | Article
PCa, prostate cancer; OR, odds ratio; FTPSA, free-to-total PSA; PA, prostate maximum sectional area; CGA, central gland sectional area; PZA, peripheral zone sectional area; PAI, PZA-
to-CGA ratio; trans, transverse; coro, coronal; sagi, sagittal; PV, prostate volume; PSAD, PSA density.
*Continuous variables are shown as the median value and interquartile range.
All variables were not normally distributed.
708730

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Jiang et al. MRI-Based Nomogram Predicting PCa
predictors of PCa in three models. The statistical significance of
PV was not detected in both model 1 and model 2. The statistical
significance of PSAD was not detected in all models.

Comparison of Predictive Accuracy
Furthermore, predictive accuracy of each predictor alone and
models were assessed separately with ROC curve analysis. The
AUC of model 1 (base model + coroPZA + transCGA) for
predicting PCa was the highest among the models of any single
predictor alone and the base model combined with any other
predictors (Figure 3 and Table 4). Delong test was used to
compare the statistical difference of the AUC among three models
and single predictors. Compared with model 3 (AUC = 0.907), the
AUC of model 1 (AUC = 0.918) and model 2 (AUC = 0.916) had
the same higher statistical advantages in the training cohort, while
no statistical difference was found among the three models in the
validation cohort (Table 5). The AUC of transCGA (0.801) was
significantly higher than other single predictors. The AUC of
coroPZA (0.635) was lower than other predictors, while there was
no significant difference of AUC among transPAI, transPA, PV, and
PSA in the training cohort (Table 6).
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Nomograms, Calibration Plots,
and DCA Curves
Based on the multivariate regression coefficients, the predictive
models were visually presented as nomograms (Figure 4 and
Figure S3). The nomogram’s discrimination of three models in
the training cohort and validation cohort was shown in the
calibration plot (Figure 5, Figures S4 and S5). The C-index of
model 1 for predicting PCa was 0.918 in the training cohort. The
performance of model 2 (0.916) and model 3(0.907) in the
calibration plot was not as good as that of model 1 in the training
cohort, which demonstrates the superior fit of model 1. DCA curves
showed that the nomogram based on model 1 has better net benefit
gains in all range of threshold probabilities in the training cohort,
while net benefit gains only improved when threshold probabilities
are >8% in the validation cohort (Figure 6).
DISCUSSION

PCa is a malignant form of cancer whose diagnosis depends on
the histopathological verification of adenocarcinoma in a
TABLE 2 | Clinical characteristics of patients in training cohort and validation cohort.

All Training cohort Validation cohort p-value
(n = 691) (n = 487) (n = 204)

Age* 69 (63;75) 69 (63;74) 70 (65;76) 0.047
BMI* 23.44 (21.50;25.51) 23.44 (21.50;25.56) 23.45 (21.51;25.50) 0.882
MRI: 0.827
Abnormal 397 (57.5%) 278 (57.1%) 119 (58.3%)
Normal 294 (42.5%) 209 (42.9%) 85 (41.7%)

FPSA* 1.53 (0.85;3.08) 1.59 (0.86;3.24) 1.46 (0.85;2.72) 0.244
PSA* 14.02 (8.70;35.09) 13.76 (8.56;34.65) 14.64 (9.63;35.76) 0.460
FTPSA* 0.13 (0.09;0.19) 0.13 (0.09;0.19) 0.13 (0.09;0.19) 0.742
PV* 57.1 (39.4;85.1) 58.3 (40.5;86.7) 55.0 (36.2;82.5) 0.192
PSAD* 0.24 (0.13;0.65) 0.23 (0.13;0.65) 0.26 (0.14;0.65) 0.285
sagiPA* 17.9 (13.9;22.3) 18.0 (13.9;22.5) 17.5 (13.6;22.2) 0.533
sagiCGA* 10.4 (6.86;14.8) 10.4 (6.92;15.0) 10.4 (6.69;14.4) 0.548
sagiPZA* 6.71 (4.84;9.04) 6.74 (4.88;9.05) 6.59 (4.72;8.86) 0.532
transPA* 19.0 (15.0;24.2) 19.3 (15.3;24.3) 18.6 (14.9;23.7) 0.304
transCGA* 10.3 (7.05;15.2) 10.5 (7.21;15.2) 10.2 (6.62;15.1) 0.424
transPZA* 8.20 (5.95;10.7) 8.37 (5.94;10.8) 7.82 (6.01;10.3) 0.386
coroPA* 18.8 (14.5;24.6) 18.9 (14.7;24.6) 18.0 (14.2;24.4) 0.298
coroCGA* 12.0 (7.91;17.8) 12.1 (8.11;17.7) 11.4 (7.68;17.9) 0.481
coroPZA* 6.13 (4.58;7.92) 6.30 (4.54;7.97) 5.88 (4.64;7.65) 0.187
sagiPSAPA* 0.83 (0.48;2.07) 0.81 (0.47;1.99) 0.93 (0.49;2.19) 0.525
sagiPSAPZA* 2.34 (1.28;6.03) 2.29 (1.26;6.02) 2.47 (1.32;6.04) 0.635
sagiPSACGA* 1.43 (0.76;3.96) 1.37 (0.77;3.70) 1.53 (0.72;4.04) 0.560
transPSAPA* 0.70 (0.43;1.80) 0.69 (0.43;1.79) 0.75 (0.44;1.83) 0.367
transPSAPZA* 1.90 (1.07;4.27) 1.86 (1.02;4.20) 1.99 (1.19;4.40) 0.365
transPSACGA* 1.35 (0.73;4.04) 1.28 (0.73;3.77) 1.41 (0.75;4.10) 0.479
coroPSAPA* 0.73 (0.43;1.82) 0.72 (0.43;1.74) 0.78 (0.44;2.00) 0.386
coroPSAPZA* 2.57 (1.44;5.79) 2.57 (1.35;5.65) 2.54 (1.62;6.06) 0.371
coroPSACGA* 1.13 (0.62;3.52) 1.10 (0.62;3.38) 1.20 (0.62;3.69) 0.563
coroPAI* 0.50 (0.31;0.86) 0.50 (0.32;0.85) 0.48 (0.29;0.88) 0.779
transPAI* 0.75 (0.48;1.28) 0.75 (0.49;1.28) 0.76 (0.45;1.30) 0.983
sagiPAI* 0.60 (0.41;1.00) 0.60 (0.42;0.99) 0.57 (0.38;1.07) 0.812
ALP* 73.0 (60.0;86.3) 71.7 (59.0;86.0) 76.0 (60.8;87.0) 0.287
LDH* 179 (157;206) 178 (156;207) 181 (162;205) 0.490
September 2021 | Volume 11 | Article
PCa, prostate cancer; OR, odds ratio; FTPSA, free-to-total PSA; PA, prostate maximum sectional area; CGA, central gland sectional area; PZA, peripheral zone sectional area; PAI, PZA-
to-CGA ratio; trans, transverse; coro, coronal; sagi, sagittal; PV, prostate volume; PSAD, PSA density.
*Continuous variables are shown as the median value and interquartile range.
All variables were not normally distributed.
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prostate biopsy. However, excess of prostate biopsy has led to
increased side effects such as bleeding and infection. It also
caused the inferior positive rate of 30%–40% (3, 5). A
retrospective study including 1,203 patients who underwent
prostate biopsy demonstrated that the overall rates of
infectious and hemorrhagic complications after prostate biopsy
were 8.23% and 15.71%, respectively (16). So, it needs to establish
a method to carefully select patients who need prostate biopsy.

Numerous studies have reported the predictive value of
prostate volume (PV) and prostate volume-adjusted PSA (i.e.,
PSAD) for PCa. For example, one study that measured 235
patients’ prostate volume and PSA levels demonstrated that the
AUC values of PSAD (0.712) and prostate volume (0.710) were
higher than that of PSA (0.517) for diagnosing PCa (17). Our
previous research found that the utility of PSAD for performing
surveillance in patients at risk of PCa was higher than that of
standard variables such as PSA (18). However, a retrospective
study found that PSAD and PSA (AUC = 0.620 and 0.530,
respectively) failed to outperform prostate volume (AUC =
0.680) for preoperative prediction of PCa (19). The current
study confirmed that both PV and PSAD were good predictors
of PCa in univariate logistic analysis. However, none of them
showed statistical significance in model 1 and model 2. The
reason is possibly that the prostate is not a regular geometric
solid especially in the malignant growth mode of the tumor.
Furthermore, prostate volume is usually estimated by an
elliptical sphere formula (PV = 0.52 × length × width ×
height). Any error on the length, width, or height of prostate
may be magnified through the multiplication (20). Previous
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FIGURE 3 | Receiver operating characteristic curves depicting the accuracy
of predictors of PCa before the initial biopsy. Base model: age + PSA + MRI.
Model 1: Base model + coroPZA + transCGA. Model 2: Base model +
transPAI + coroPZA + transPA. Model 3: Base model + transPAI + PV.
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studies had shown a high magnitude of bias between the
calculation of prostate volume by the prolate ellipsoid formula
and the actual prostate volume, which casts doubt on the
diagnostic efficacy of PV and PSAD in PCa (21). Some studies
had confirmed that the bias of calculated prostate volume
fluctuates between 10% and 20% (8, 9). As we mentioned
above, the increase of PSA level caused by any other reason,
except for PCa, may lead to the error of PSAD and reduce its
specificity for predicting PCa. Therefore, we do not think that PV
and PSAD have the leading advantage of predicting PCa.

In order to overcome the difficulties mentioned above, we
sought to replace the role of prostate volume with the
incorporation of more accurate, simple prostatic imaging
parameters. We found that PA (prostate maximum sectional
area) is a good prostatic imaging parameter for predicting PCa by
MRI test in line with the above requirements. MRI has higher
spatial resolution and better soft tissue contrast than TRUS, and
Frontiers in Oncology | www.frontiersin.org 832
MRI can provide more accurate PA. So, it can reflect the actual
size of the prostate (19). Thus, we used MRI-based PA as an
alternative predictor of prostate volume for predicting PCa. As
far as we know, we are the first to use prostate maximum
sectional areas in sagittal, transverse, and coronal directions to
predict PCa. The data of prostate sectional area from three
different directions may help to improve its representativeness
for irregular prostate. It can possibly find out the shape
characteristics of the prostate in different directions. On the
other hand, the area and its zone area of prostate were actually
measured in MRI segments, which will decrease the systematic
error to a great extent compared with the calculated prostate
volume by formula. In our research, all sectional area predictors
have statistical differences between PCa and no PCa patients in
univariate analysis, except for transPZA. It proved that they had
great potential in predicting PCa. We found that BPH patients
had larger PA and CGA but smaller PZA in three directions
compared with those who had PCa. It might result from the fact
that BPH contributes to mechanical stress fields by pathological
enlargement of the prostate central gland, hence further
restraining PCa growth, as PCa mostly originates in the
peripheral zone of the prostate (22). Through Delong test
among single predictors, we find out the transCGA has the
significantly highest AUC (0.801) among all predictors.
Compared with no PCa, transCGA is significantly smaller in
patients with PCa (p < 0.001). We speculated that this is due to
the special behavior pattern of PCa growth on the transverse
section. So far, we have not seen any relevant report that needs to
be confirmed by further pathological or anatomical studies.

To further explore the potential of prostate sectional area
related predictors to predict PCa, we built new predictors like
PAI, PSAPA, PSACGA, and PSAPZA (calculated by PZA/CGA,
PSA/PA, PSA/CGA, and PSA/PZA) based on the sectional area
from three different directions in MRI segments. Each of these
predictors had the potential ability to distinguish PCa from no
PCa in univariate logistic analysis. Unfortunately, we found that
PSAPA, PSACGA, and PSAPZA failed to outperform any
predictors when we discovered the different models. So, we did
not include these predictors in multivariate logistic analysis.
However, PAI (prostate area index) showed favorable
predictability in our final model, especially transPAI, which
had an AUC (0.749) second only to transCGA. In both model
TABLE 4 | The AUC and cutoff values for predicting biopsy outcome and their sensitivity, specificity, and positive and negative likelihood ratios for PCa.

Parameters AUC Cutoff value Sensitivity (%) Specificity (%) Positive likelihood ratio Negative likelihood ratio

coroPZA 0.635 6.055 64.8% 56.4% 1.49 0.62
PSA 0.714 28.775 48.7% 91.1% 5.47 0.56
PV 0.725 69.562 80.9% 54.1% 1.76 0.35
transPA 0.727 18.505 64.3% 71.6% 2.26 0.50
transPAI 0.749 0.906 61.7% 77.4% 2.73 0.49
transCGA 0.801 11.045 78.7% 67.7% 2.44 0.31
Model 1 0.918 0.525 82.2% 89.1% 6.36 0.19
Model 2 0.916 0.471 83.9% 86.8% 7.75 0.27
Model 3 0.907 0.480 81.3% 86.4% 5.98 0.22
September 2021 | V
PCa, prostate cancer; AUC, area under the curve; PA, prostate maximum sectional area; CGA, central gland sectional area; PZA, peripheral zone sectional area; PAI, PZA-to-CGA ratio;
trans, transverse; coro, coronal; PV, prostate volume; Base model, Age + PSA + MRI; Model 1, Base model + coroPZA + transCGA; Model 2, Base model + transPAI + coroPZA +
transPA; Model 3, Base model + transPAI + PV.
TABLE 5 | The statistical difference in AUC of predicting PCa among three models.

Comparison (p-value)by
Delong test

Model 1 vs.
Model 2

Model 1 vs.
Model 3

Model 2 vs.
Model 3

Training cohort 0.300 0.019 0.042
Validation cohort 0.706 0.293 0.150
PCa, prostate cancer; Base model, Age + PSA + MRI; Model 1, Base model + coroPZA +
transCGA; Model 2, Base model + transPAI + coroPZA + transPA; Model 3, Base model +
transPAI + PV.
TABLE 6 | The statistical difference in AUC of predicting PCa among single
predictors in the training cohort.

Comparison
(p-value) by
Delong test

transCGA transPAI transPA PV PSA coroPZA

transCGA —

transPAI 0.002 —

transPA <0.001 0.442 —

PV <0.001 0.359 0.843 —

PSA 0.01 0.307 0.718 0.762 —

coroPZA <0.001 <0.001 0.017 0.02 0.018 —
PCa, prostate cancer; PA, prostate maximum sectional area; CGA, central gland sectional
area; PZA, peripheral zone sectional area; PAI, PZA-to-CGA ratio; trans, transverse; coro,
coronal; PV, prostate volume.
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2 and model 3, transPAI had a certain contribution to the
diagnosis of PCa compared with coroPAI and sagiPAI. This
also confirms our previous hypothesis about the special behavior
pattern of PCa growth on the transverse section. Patients with
Frontiers in Oncology | www.frontiersin.org 933
PCa have higher transPAI. It may be due to PCa often
originating in the peripheral zone, which causes the
enlargement of PZA. Then, it leads to an increase in PAI
(PZA-to-CGA ratio) in turn.
FIGURE 4 | Nomogram predicting the probability of PCa at the initial biopsy based on model 1.
FIGURE 5 | Calibration plot in training cohort and validation cohort and predictive accuracy for PCa at initial biopsy based on model 1.
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With the changes to people’s living habits, and the
progression of population aging, the prevalence of PCa is
increasing annually, especially among adults aged over 70
years. This situation has seriously affected the health of older
adults (23). Our results also confirm this conclusion. The median
age of men with PCa was 75 years, compared with 69 years for
men without PCa (p < 0.001). Thus, age can be used as a
reference for prostate biopsy.

To reduce unnecessary prostate biopsy and improve the
diagnostic accuracy of PCa in clinical practice, nomograms
integrating many independent predictors of PCa have been
developed and validated. A previous study reported that
nomograms could provide more individualized risk estimations
of a certain disease, which could help clinicians to make
management-related decisions for patients with PCa (24). For
example, a nomogram developed on the basis of 1,144 men who
underwent TRUS found that the C-index (0.876) was associated
with their best model that integrates age, PSA, percentage free
PSA, DRE, prostate transition zone volume, and TRUS for
predicting PCa (25). Another study integrated age, prostate
volume, PSA, FTPSA, TRUS, and DRE as its best model to
develop a nomogram for the probability of detecting PCa in all
patients, achieving a C-index of 0.853 (26). In the current study,
Frontiers in Oncology | www.frontiersin.org 1034
we chose the best prediction model of the base model +
transCGA + coroPZA to construct a new nomogram that
could provide the risk of PCa for individual Chinese patients.
Internal validation showed a predictive accuracy (C-index =
0.913) for PCa, which gained an advantage over some previous
nomograms developed by Chinese researchers.

Our study has certain limitations. As with any retrospective
study, there was the risk of selection bias in assessing the value of
the prostate maximum sectional area on mp-MRI. In addition to
the issues surrounding the small sample size, our models were
calibrated using internal validation only, with no external
validation conducted to ensure their utility. Therefore, further
clinical studies that employ long-term follow-up to evaluate our
model’s practical applicability are required before it is
prospectively applied to patients.

We first found that MRI-based CGA, PZA, and PA in the
sagittal, transverse, and coronal section have potential predictive
value for diagnosing PCa, especially transCGA. We put forward a
new predictor named transPAI. We found that it was
significantly higher in PCa patients. Our nomogram model
based on age + MRI + PSA + transCGA + coroPZA had great
predictive accuracy for PCa. The application of this nomogram
model may further decrease the rate of unnecessary biopsies.
FIGURE 6 | Decision curve analysis of the effect of the nomogram based on model 1 for predicting prostate cancer in training cohort and validation cohort. Net
benefit of nomogram is plotted with threshold probabilities for prostate cancer compared with the strategies of treating all patients or no one. The decision curve
illustrated net benefit was improved when threshold probability > 8%.
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Purpose: The clinical utility of multiparametric magnetic resonance imaging (mpMRI) for
the detection and localization of prostate cancer (PCa) has been evaluated and validated.
However, the implementation of mpMRI into the clinical practice remains some burden of
cost and availability for patients and society. We aimed to predict the results of prostate
mpMRI using the clinical parameters and multivariable model to reduce unnecessary
mpMRI scans.

Methods: We retrospectively identified 784 men who underwent mpMRI scans and
subsequent prostate biopsy between 2016 and 2020 according to the inclusion criterion.
The cohort was split into a training cohort of 548 (70%) patients and a validation cohort of
236 (30%) patients. Clinical parameters including age, prostate-specific antigen (PSA)
derivates, and prostate volume (PV) were assessed as the predictors of mpMRI results.
The mpMRI results were divided into groups according to the reports: “negative”,
“equivocal”, and “suspicious” for the presence of PCa.

Results: Univariate analysis showed that the total PSA (tPSA), free PSA (fPSA), PV, and
PSA density (PSAD) were significant predictors for suspicious mpMRI (P < 0.05). The PSAD
(AUC = 0.77) and tPSA (AUC = 0.74) outperformed fPSA (AUC = 0.68) and PV (AUC = 0.62)
in the prediction of the mpMRI results. The multivariate model (AUC = 0.80) had a similar
diagnostic accuracy with PSAD (P = 0.108), while higher than tPSA (P = 0.024) in predicting
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the mpMRI results. The multivariate model illustrated a better calibration and substantial
improvement in the decision curve analysis (DCA) at a threshold above 20%. Using the
PSAD with a 0.13 ng/ml2 cut-off could spare the number of mpMRI scans by 20%, keeping
a 90% sensitivity in the prediction of suspicious MRI-PCa and missing three (3/73, 4%)
clinically significant PCa cases. At the same sensitivity level, the multivariate model with a
32% cut-off could spare the number of mpMRI scans by 27%, missing only one (1/73, 1%)
clinically significant PCa case.

Conclusion: Our multivariate model could reduce the number of unnecessary mpMRI
scans without comprising the diagnostic ability of clinically significant PCa. Further
prospective validation is required.
Keywords: prostate cancer, magnetic resonance imaging, prostate-specific antigen, prostate-specific antigen
density, multivariate model
INTRODUCTION

Prostate cancer (PCa) is the second most commonmalignancy in
men, with over 1 million new cases and 375,304 deaths in 2020
(1). The diagnostic tools of PCa mainly includes digital rectal
examination (DRE), prostate-specific antigen (PSA) test,
multiparametric magnetic resonance imaging (mpMRI), and
prostate biopsy (2). DRE requires extensive experience, and has
a limited value in decision-making (3). PSA is a better predictor
of PCa than DRE, and is the gold standard for PCa screening (4).
The mpMRI has a good sensitivity for the detection and
localization of clinically significant PCa (CSPCa, defined as
Gleason score ≥ 3 + 4) (5, 6). Prostate biopsy is the gold
standard for PCa diagnosis, but is invasive.

While these risk stratification tools have an additional value
in the diagnostic pathway of PCa, it is controversial to perform
mpMRI and prostate biopsy in every man with an elevated serum
tPSA level and/or other clinical suspicion, in consideration of the
costs for patients, the burden, and availability for society.
Performing mpMRI and/or prostate biopsy among men with a
high risk of CSPCa could be an acceptable option (7). A dozen of
risk calculators incorporating clinical variables and/or novel
biomarkers have been developed to predict the results of
prostate biopsy and to reduce unnecessary biopsy by 36%–66%
(8–12). However, the knowledge about developing a strategy to
predict the results of mpMRI and select patients who could
benefit from mpMRI is limited (13, 14).

Our prior study, consistent with other studies, found that
clinical parameters such as age, PSA derivates [total PSA (tPSA),
free/total PSA (f/tPSA), and PSA density (PSAD)], and prostate
volume (PV) were significant predictors for PCa and CSPCa (8,
15). Therefore, we question whether the negative and equivocal
mpMRI scans could be limited using a model based on these
clinical parameters among men with an elevated PSA level. Our
study aimed to predict the results of mpMRI using the
inexpensive, inexperience, and readily available clinical
parameters and multivariable model, and to assess the impact
of potentially avoidable mpMRI scans. Overall, this study will be
helpful for optimizing the diagnostic pathway, implementing a
238
precision treatment strategy, and reducing the burden for
patients and health care providers.
MATERIALS AND METHODS

Study Populations
This retrospective study was approved by the institutional review
board. We identified 903 consecutive patients who underwent
PSA test, mpMRI scans, and subsequent prostate biopsy between
April 2016 andMarch 2020 at our medical center (Supplementary
Figure 1). Patients were excluded due to incomplete data (94
cases) or being diagnosed with other types of tumor/cancer (25
cases), leaving 784 (87%) patients available for analysis
(Supplementary Figure 1). The 70% and 30% of the study
population were randomly divided into a training cohort (548
cases) and a validation cohort (236 cases), respectively
(Supplementary Figure 1).

Clinical, Imaging, and Pathological
Parameters Collection
The clinical parameters including age at prostate biopsy, serum
tPSA and fPSA values, PV, and reports of mpMRI examination
were extracted from clinical records. The serum tPSA and fPSA
were measured by immunofluorescence assay. PV was measured
by mpMRI examination using the 3.0-T MRI system (SIEMENS,
Germany). The protocol of mpMRI examination complied with
the guidelines of the European Society of Urology Radiology, and
included T2-weighted Imaging (T2WI), diffusion-weighted
imaging (DWI), and dynamic contrast-enhanced imaging
(DCE). The prostate mpMRI images were interpreted by two
experienced radiologists with at least three years of prostate
mpMRI experience. The mpMRI results were divided into three
groups: “negative”, “equivocal”, and “suspicious” for the presence
of PCa, according to the mpMRI reports. The “negative”,
“equivocal”, and “suspicious” for MRI-PCa corresponded to the
PI-RADS 1 or 2, PI-RADS 3, and PI-RADS 4 or 5 according to the
latest Prostate Imaging Reporting and Data System version 2 (PI-
RADS v2) guideline (16).
September 2021 | Volume 11 | Article 732027
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Prostate Biopsy and
Histopathological Diagnosis
All patients underwent a transrectal ultrasound (TRUS)-guided
systematic 12-point prostate biopsy (15). If there are suspected
malignant nodules by mpMRI and/or ultrasound, additional 1–5
needles were performed in regions with cognitiveMRI-TRUS fusion
and/or abnormal ultrasound echoes. Biopsy cores were analyzed
according to the standards of the ISUP (17).

Statistical Analysis
We described the profile of age, PSA derivates (tPSA, fPSA, f/tPSA,
PSAD), PV, and prostate biopsy results of the enrolled patients by
the category of mpMRI results. The c2 test or Fisher’s exact test was
used to analyze categorical data. The Mann-Whitney U test was
used to analyze ranked data. Student’s t-test or ANOVAwas used to
analyze continuous data. Multivariable logistic regression analysis
with a stepwise strategy was used to develop models to predict
mpMRI results. The area under the ROC curve (AUC) was used to
evaluate the diagnostic accuracy of the clinical parameters and
multivariable model. Differences between the AUCs were compared
using the method of DeLong et al. (18). The calibration plot was
used to assess the performance characteristics of the models.
Calibration was assessed by grouping men in the validation
cohort into delices (each of size 23 or 24), and then comparing
the mean of the predicated probabilities and the observed
proportions. The sum squares of the residues (SSR) were used to
assess the deviation of calibration plots from the 45° line (19).
Decision-curve analysis was used to measure the clinical utility. All
tests were two sided with significance level set at 0.05. Data cleaning
and analyses were conducted using the R statistical software
(Version 4.0.2).
RESULTS

A total of 784 patients underwent PSA test, mpMRI scans, and
subsequent prostate biopsy enrolled in this study. Of the enrolled
patients, 296 (37.8%) were negative for MRI-PCa, 133 (17.0%)
Frontiers in Oncology | www.frontiersin.org 339
were equivocal for MRI-PCa, and 355 (45.2%) were suspicious
for MRI-PCa (Table 1). The clinical parameters including age,
tPSA, fPSA, f/tPSA, PSAD, PV, and prostate biopsy categorized
by the mpMRI results are displayed in Table 1. The training and
validation cohorts consisted of 548 (70%) and 236 (30%)
patients. The clinical parameters were similar between the
training cohorts and validation cohorts (each P > 0.05,
Supplementary Table 1). Of the validation cohorts, 91 (39%)
were negative for MRI-PCa, 38 (16%) were equivocal for MRI-
PCa, 107 (45%) were suspicious for MRI-PCa; 138 (58%) were
benign biopsy, 12 (5%) were PCa (GS = 3 + 3), and 86 (36%)
were CSPCa (Supplementary Table 1).

Univariate Analysis of Clinical Parameters
for Suspicious MRI-PCa
In the univariate analysis, all clinical parameters except age and f/
tPSA were significant predictors for suspiciousMRI-PCa (each P <
0.05, Table 2). The risk of suspicious MRI-PCa increased with
tPSA (OR = 1.03, 95% CI: 1.02–1.04), fPSA (OR = 1.14, 95% CI:
1.07–1.21), and PSAD (OR = 3.03, 95% CI: 2.05–4.49), but it was
conversely associated with PV (OR = 0.995, 95%CI: 0.990–0.999)
(Table 2). PSAD (AUC = 0.77) had a higher diagnostic accuracy
compared with fPSA (AUC = 0.68, P = 0.017) and PV (AUC =
0.62, P < 0.001) (Table 2), and showed a similar diagnostic
accuracy with tPSA (AUC = 0.74, P = 0.144) in the prediction
of MRI-PCa (Table 2).

Development of a Multivariate Model to
Predict Suspicious MRI-PCa
In the stepwise multivariate analysis, tPSA (P < 0.001), fPSA (P =
0.038), and PV (P < 0.001) remained in the multivariate model as
significant predictors for suspicious MRI-PCa. The multivariate
model (AUC = 0.80) outperformed tPSA (P = 0.024), and
behaved similarly with PSAD (P = 0.108) in the prediction of
suspicious MRI-PCa (Table 2 and Figure 1A). Additionally, the
calibration plot indicated an excellent concordance in the
multivariate model (SSR = 0.118), followed by tPSA (SSR =
0.146), and PSAD (SSR = 0.241) (Figure 1B). The DCA showed
TABLE 1 | The clinical parameters and biopsy results by category of mpMRI results between April 2016 and March 2020.

Clinical parameters mpMRI examination

Negative (n = 296) Equivocal (n = 133) Suspicious (n = 355) P

Age (years) 67 (62–72) 68 (61-75) 68 (63–74) 0.032
tPSA (ng/ml) 11.5 (7.71–18.3) 12.7 (5.98–22.3) 23.2 (9.71–45.3) <0.001
fPSA 1.65 (0.96–2.58) 1.49 (0.84–3.02) 2.59 (1.21–5.31) <0.001
f/tPSA 0.14 (0.10–0.20) 0.14 (0.10–0.20) 0.11 (0.07–0.19) 0.002
PSAD (ng/ml2) 0.21 (0.13–0.34) 0.22 (0.11–0.40) 0.48 (0.21–0.96) <0.001
PV (ml) 58 (37–84) 51 (34–74) 46 (33–68) <0.001
Biopsy result, No. (%) <0.001
No-PCa 254 (86) 99 (74) 104 (29)
GS = 3 + 3 14 (5) 9 (7) 23 (6)
GS = 3 + 4 12 (4) 10 (8) 28 (8)
GS = 4 + 3 9 (3) 4 (3) 75 (21)
GS ≥ 8 7 (2) 11 (8) 125 (36)
September 2021 | Volume 11 | Article
tPSA, total prostate-specific antigen; fPSA, free PSA; f/tPSA, free PSA/total PSA; PSAD, PSA density; PV, prostate volume; GS, Gleason score.
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that the multivariate model had the highest net clinical benefit
across the threshold probabilities above 20% (Figure 1C). It was
considered that the multivariate model was most helpful to rule
out the “Suspicious MRI-PCa”.
Impact of the Clinical Parameters and
Multivariate Model on mpMRI Scans
Reduced and CSPCa Diagnosis Delayed
To further assess the potential clinical benefit of the tPSA,
PSAD, and multivariate model, the clinical consequences of
using various cut-offs for the tPSA, PSAD, and multivariate
model are listed in Table 3. Using of a 32% cutoff for the
multivariate model would allow for reducing 64/236 (27%)
mpMRI scans, while keeping 96/107 (90%) sensitivity in the
prediction of suspicious MRI-PCa. At the same level of
sensitivity as the multivariate model to predict suspicious
MRI-PCa, applying the tPSA and PSAD could reduce 37/236
(16%) and 48/236 (20%) mpMRI scans, respectively. All the 236
patients in the validation cohort obtained clear pathological
results of prostate biopsy. Assuming that the indications for
subsequent biopsies were only based on the mpMRI findings,
biopsies among men who would not have undergone mpMRI
scans revealed three CSPCa using the tPSA, three CSPCa using
Frontiers in Oncology | www.frontiersin.org 440
the PSAD, and one CSPCa using the multivariate model in the
validation cohort.
DISCUSSION

The added value of mpMRI for the detection and localization of
CSPCa has been validated (5, 12, 20). However, it is controversial
to perform mpMRI in every man with an elevated serum tPSA
level. Our study revealed that tPSA, fPSA, PV, and PSAD were
significant predictors for suspicious MRI-PCa, and the number
of mpMRI scans could be reduced based on the low cost and
readily available clinical parameters. At the same level of
sensitivity (90%) in the prediction of suspicious MRI-PCa, the
multivariate model could reduce more mpMRI scans (27%) and
missed less CSPCa (1%), compared with PSAD (20% and 4%)
and tPSA (16% and 4%).

Reported proportions of the total negative MRI (PI-RADS 1-2)
ranged from 37% to 58% for individual studies depending on the
prevalence of PCa in the study populations (21–23). The ratios of
negative MRI-PCa and equivocal MRI-PCa were 38% and 17% in
our study. These indicate that the overuse of prostate mpMRI is
common in the current healthcare environments, and it is
A B C

FIGURE 1 | Receiver operating characteristics curves, calibration plot, and decision curve analysis of tPSA, PSAD, and multivariable model for predicting suspicious
prostate cancer by mpMRI. (A) Receiver operating characteristics curves; (B) Calibration plot; (C) Decision curve analysis.
TABLE 2 | Univariate and multivariate regression analysis of clinical parameters to predict suspicious MRI-PCa in the validation cohort.

Clinicalparameters Univariate analysis Multivariate analysis

OR (95% CI) AUC (95% CI) P Coefficient OR (95% CI) P

Intercept NA NA -1.537 NA 0.019
Age (yrs) 1.01 (1.00–1.03) 0.59 (0.51–0.66) 0.135 NA NA NA
tPSA (ng/ml) 1.03 (1.02–1.04) 0.74 (0.68–0.81) <0.001 0.031 1.03 (1.02–1.04) <0.001
fPSA 1.14 (1.07–1.21) 0.68 (0.61–0.75) <0.001 0.070 1.07 (1.00–1.14) 0.038
f/tPSA 1.52 (0.69–3.37) 0.61 (0.53–0.68) 0.302 NA NA NA
PV (ml) 0.995 (0.990–0.999) 0.62 (0.54–0.69) 0.017 -0.012 0.99 (0.98–0.99) <0.001
PSAD (ng/ml2) 3.03 (2.05–4.49) 0.77 (0.71–0.83) <0.001 NA NA NA
September 2
021 | Volume 11 | Article
tPSA, total prostate-specific antigen; fPSA, free PSA; f/tPSA, free PSA/total PSA; PV, prostate volume; PSAD, PSA density; GS, Gleason score; NA, not applicable.
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essential to identify men who will benefit from mpMRI in the
current MRI era. In this study, we assessed the inexpensive and
readily available parameters as the predictor for suspicious MRI-
PCa, and found that PSAD and tPSA had a higher diagnostic
accuracy than other single parameters. However, the PV, which
was used to calculate the PSAD and develop a multivariate
model, were estimated by the mpMRI examination. However,
the PV could be reliably measured by TRUS, which was a routine
and low-cost procedure (24). Hence, an accurate PSAD could be
obtained using TRUS before mpMRI without changing the
clinical workflow.

To date, multivariate models or machine learning models for
the detection of CSPCa have been developed in a growing body of
literatures (8–12, 25). Studies demonstrated that a risk-based
triage strategy could reduce more unnecessary biopsy and the
overdiagnosis in comparison with single parameters (8, 11, 25).
However, the study about developing a multivariate model to
predict the results of prostate mpMRI and selecting patients who
could benefit from mpMRI is limited (13, 14). The study by
Alberts et al. introduced the concept of a patient triage strategy to
avoid prostate mpMRI, and assessed the rate of potentially
avoidable mpMRI by applying the risk calculators for detecting
PCa (Rotterdam Prostate Cancer Risk Calculator, RPCRC) in a
small cohort with one or more previously negative random TRUS-
guided biopsies (14). The RPCRC (57/83, 69%) incorporating a
multitude of variables spared less unnecessary mpMRI scans than
our simple model (106/138, 77%) at the same level of sensitivity
for the detection of CSPCa. These may indicate that commonly
risk models for detecting PCa and/or CSPCa do not address the
appropriate use of mpMRI. It is essential to establish risk models
and decision thresholds for the prediction of mpMRI results.

In this study, our developed multivariate model including
tPSA, fPSA, and PV has a similar diagnostic accuracy with the
PSAD in the prediction of suspicious MRI-PCa (P = 0.108). This
was consistent with the study by Dominik Deniffel (13).
Although cross-study comparisons are challenging, our
Frontiers in Oncology | www.frontiersin.org 541
multivariate model (AUC = 0.80) performed similarly with the
model developed by Dominik Deniffel (AUC = 0.75) in the
prediction of mpMRI results (13). Using the two simple
multivariate model could reduce above a quarter of mpMRI
scans at a high sensitivity for the detection of CSPCa. It
substantiates that the mpMRI scans could be reduced based on
the readily available clinical parameters. The strength of our
study was able to establish the definite link between mpMRI
omission and the rate of CSPCa delayed. Some studies showed
that a high-resolution micro-ultrasound had a comparable or
higher sensitivity for the detection of CSPCa compared to
mpMRI (26, 27), and was an independent parameter to predict
the results of biopsy (28). In the further study, we will evaluate
more convenient, low-cost, clinical parameters as predictors for
the results of mpMRI, and to strengthen our multivariate model.

Our study was subject to several limitations. First, this study is
a single center study based on a Chinese population, and limited
by the inherent drawbacks of its retrospective design. The study
results should be cautiously applied to other populations, and
further prospective multicenter validation is required. Second,
the PV used to calculate PSAD and build a multivariate model
was estimated by mpMRI in our study. However, a study showed
that PV could be reliably measured by TRUS (24), and a low-cost
micro-ultrasound had a high sensitivity for the detection CSPCa
(26, 27). Third, our model only included clinical parameters such
as age, PSA test, and volume. The race, family history, and
micro-ultrasound (26–28) will be considered in future studies to
augment our multivariate model.
CONCLUSIONS

Our study demonstrated that tPSA, fPSA, PV, and PSAD were
significant predictors for the mpMRI results. The multivariate
model based on the inexpensive and readily available clinical
parameters could be used as an aid to select patients who could
TABLE 3 | The diagnostic performance of tPSA, PSAD, and multivariate model in prediction of suspicious MRI-PCa in the validation cohort.

Strategies Sensitivity Cut-off mpMRI scans reduced (n = 236), n (%) Suspicious mpMRI delayed

No-PCa (n = 28)
n (%)

GS = 3 + 3 (n = 6),
n (%)

GS ≥ 3 + 4 (n = 73),
n (%)

tPSA 106/107 (99%) 0.90 ng/ml 3 (1) 0 (0) 0 (0) 1 (1)
PSAD 106/107 (99%) 0.03 ng/ml2 4 (2) 0 (0) 0 (0) 1 (1)
Multivariate 106/107 (99%) 0.25 19 (8) 1 (4) 0 (0) 0 (0)
tPSA 102/107 (95%) 4.50 ng/ml 19 (8) 2 (7) 0 (0) 3 (4)
PSAD 102/107 (95%) 0.10 ng/ml2 27 (11) 2 (7) 0 (0) 3 (4)
Multivariate 102/107 (95%) 0.29 41 (17) 4 (14) 0 (0) 1 (1)
tPSA 96/107 (90%) 6.70 ng/ml 37 (16) 8 (29) 0 (0) 3 (4)
PSAD 96/107 (90%) 0.13 ng/ml2 48 (20) 8 (29) 0 (0) 3 (4)
Multivariate 96/107 (90%) 0.32 64 (27) 10 (36) 0 (0) 1 (1)
tPSA 91/107 (85%) 9.10 ng/ml 65 (28) 10 (36) 1 (17) 5 (7)
PSAD 91/107 (85%) 0.18 ng/ml2 80 (34) 12 (43) 0 (0) 4 (5)
Multivariate 91/107 (85%) 0.35 85 (36) 14 (50) 0 (0) 2 (3)
tPSA 86/107 (80%) 10.7 ng/ml 89 (38) 11 (39) 1 (17) 9 (12%)
PSAD 87/107 (81%) 0.21 ng/ml2 92 (39) 15 (54) 0 (0) 5 (7)
Multivariate 86/107 (80%) 0.37 100 (42) 17 (61) 0 (0) 4 (5)
Se
ptember 2021 | Volume
PCa, prostate cancer; CSPCa, clinically significant prostate cancer; GS, Gleason score; tPSA, total prostate-specific antigen; PV, prostate volume; SVI, seminal vesicle invasion; LNI, lymph
node invasion.
11 | Article 732027

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Developing Strategy Reduce mpMRI Scans
benefit from mpMRI and to reduce the unnecessary mpMRI
scans without compromising the ability to diagnose CSPCa.
Further prospective validation is required.
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MRI radiomics predicts
progression-free survival
in prostate cancer

Yushan Jia1, Shuai Quan2, Jialiang Ren2, Hui Wu3*, Aishi Liu3*,
Yang Gao3, Fene Hao3, Zhenxing Yang3, Tong Zhang1

and He Hu1

1Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China, 2Department of
Pharmaceuticals Diagnosis, GE Healthcare (China), Shanghai, China, 3Department of Radiology,
Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
Objective: To assess the predictive value of magnetic resonance imaging (MRI)

radiomics for progression-free survival (PFS) in patients with prostate cancer (PCa).

Methods: 191 patients with prostate cancer confirmed by puncture biopsy or

surgical pathology were included in this retrospective study, including 133 in the

training group and 58 in the validation group. All patients underwent T2WI and

DWI serial scans. Three radiomics models were constructed using univariate

logistic regression and Gradient Boosting Decision Tree(GBDT) for feature

screening, followed by Cox risk regression to construct a mixed model

combining radiomics features and clinicopathological risk factors and to draw

a nomogram. The performance of the models was evaluated by receiver

operating characteristic curve (ROC), calibration curve and decision curve

analysis. The Kaplan-Meier method was applied for survival analysis.

Results: Compared with the radiomics model, the hybrid model consisting of a

combination of radiomics features and clinical data performed the best in

predicting PFS in PCa patients, with AUCs of 0.926 and 0.917 in the training

and validation groups, respectively. Decision curve analysis showed that the

radiomics nomogram had good clinical application and the calibration curve

proved to have good stability. Survival curves showed that PFS was shorter in the

high-risk group than in the low-risk group.

Conclusion: The hybrid model constructed from radiomics and clinical data

showed excellent performance in predicting PFS in prostate cancer patients. The

nomogram provides a non-invasive diagnostic tool for risk stratification of

clinical patients.

KEYWORDS

prostate cancer, radiomics, progression-free survival, magnetic resonance imaging,
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Introduction

Prostate cancer is the most common malignancy of the male

reproductive system, the fourth most common cancer

worldwide, and the fifth leading cause of cancer death in men

(1, 2). There are significant geographical differences in its

incidence. With economic development and increased life

expectancy, the incidence and mortality of PCa are on the rise

in Asian countries, with an increasing disease burden (3).

According to the US Surveillance, Epidemiology and End

Results (SEER) Database 2010-2016 data, the 5-year survival

rate for metastatic PCa is only 30% (4). The onset of PCa is

insidious, and most patients are already at intermediate to the

advanced risk of PCa at the time of initial diagnosis, with a high

rate of recurrence and risk of metastasis (5). Therefore, it is

particularly important to find a suitable way to predict the

progression of prostate cancer patients and intervene early to

prolong their survival.

Artificial intelligence (AI), the ability of machines to perform

cognitive tasks to achieve specific goals based on the data

provided, is transforming our healthcare system. Machine

learning (ML) is a subfield of AI, meaning that algorithms are

created and deployed to analyze data and its properties, and are

not specifically given tasks based on certain predefined inputs in

the environment. In order to improve the probability of survival

of prostate cancer patients, it is necessary to develop appropriate

predictive models for PCa. Jović S et al. (6) applied and

compared several machine learning techniques in their study

for analytical discussion and concluded that machine learning

techniques can be used for prediction related to prostate cancer.

The use of computer-based learning models has become a major

area of research in PCa. Conventional imaging is usually used for

diagnosis, staging and treatment guidance of tumors and the

information obtained from the images is subjective. Dutch

scholar Lambin (7) first introduced the concept of radiomics

in 2012, which promises to visualize heterogeneity within

tumors and reveal the prognostic information behind the

images. It builds on imaging techniques such as magnetic

resonance imaging (MRI), computed tomography and positron

emission tomography to convert medical images into high-

dimensional, mineable data through high-throughput

extraction of quantitative features, thereby providing decision

support for oncology at low cost and non-invasively (8). Ferro M

et al. (9) summarize the latest studies using different imaging

modalities, following a predefined methodology, looking for

studies with validated protocols, but also looking at how AI

can improve radiomics and translate these results into clinical

practice, and about the advantages and limitations of the

different algorithms used in PCa radiomics. In addition, many

studies in recent years have shown that radiomic features are

related to molecular features of cancer tissue, genomics,

proteomics and metabolomics (10). This new area of research
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in PCa is an extension of radiomics, whose main focus is on

tailored approaches to diagnose aggressive PCa (11), predict

prognosis (12), progression (13) and response to treatment (11).

MRI with its high soft tissue resolution and multidirectional

imaging capabilities can clearly show the different locations of

lesions in prostate cancer, and in combination with functional

imaging plays an important role in assessing the presence of

extra capsular extension (ECE), seminal vesicle invasion, in

prostate cancer detection (14), staging (15) and aggressiveness

assessment (16) and is the most commonly used imaging

modality in prostate cancer screening. A number of published

findings support mp-MRI (17, 18) as the most sensitive and

specific imaging modality.

Progression-free survival is important for the prognostic

assessment of tumor patients, and studies have demonstrated

that radiomics can be used to predict progression-free survival in

glioma (19), breast cancer (20), lung cancer (21) and ovarian

cancer (22), but to date, no personalized imaging prediction

models have been developed for progression-free survival in

prostate cancer patients. Therefore, this study evaluates the

value of MRI radiomics in predicting progression-free survival

in PCa patients to develop a hybrid clinical-imaging histology

model to help improve decision-making and guide

individualized treatment.
Material and methods

Patient selection

This study was approved by the Ethics Committee of the

Affiliated Hospital of Inner Mongolia Medical University, and

informed consent was obtained from patients. A retrospective

collection of 373 patients with PCa retrieved from our hospital’s

image archiving and communication system (PACS, GE) from

January 2016 to December 2018 was conducted. Patient

groupings are shown in Figure 1. Inclusion criteria: 1. Patients

with histologically confirmed T1-4N0M0 prostate cancer

confirmed by puncture biopsy or surgical pathology; 2.

Undergoing MRI one week prior to treatment. Exclusion

criteria: 1. previous endocrine, radiotherapy or chemotherapy;

2. clear signs of metastasis on MRI; 3. incomplete clinical

profile. The final 191 patients were included in the study,

(aged 45-89 years, median age 74 years) and were randomised

in a 7:3 ratio into a training group (n=133) and a validation group

(n=58). Clinical information on all patients included age, pre-

treatment PSA levels, number of lesions, clinical T-stage and

Gleason score.

All patients are followed up at 3 months for 2 years, every 6

months after 2 years and once a year after 5 years. The follow-up

deadline is December 2021. Follow-up visits include PSA levels,

CT of the chest, abdomen and pelvis or MRI of the pelvis, and
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bone scans. The endpoint is progression-free survival, defined as

the time from the first day of treatment until disease progression

(biochemical recurrence, distant metastases, including bone

metastases, lymph node metastases and other distant organ

metastases) or death from any cause, or the last follow-up visit.
MRI acquisition

All scans were performed using a GE Discovery MR 750 3.0T

superconducting MRI machine with an abdominal coil in all

patients. The acquisition parameters were as follows: axial T2-

weighted spin-echo images (repetition time/echo time [TR/TE]:

3,480/85 ms, field of view[FOV] = 24 cm, matrixs = 320x320, lice

thickness = 4 mm, spacing = 1.0 mm), axial T1-weighted spin-echo

images (TR/TE: 811/10 ms, FOV = 24 cm, matrixs = 320x224, slice

thickness = 4 mm, spacing = 1.0 mm), and axial DWI SE-EPI

images (TR/TE: 2,900/61, FOV = 28 cm, matrixs = 512x512, slice

thickness = 4 mm, spacing = 1.0 mm, b = 0, 1,000 s/mm2). ADC

maps were obtained in GE AW 4.6 Functool workstation

post-processing.
Image segmentation

We used the open-source software ITK-SNAP software for

lesion segmentation. Radiologists with 5 years of experience in

male pelvic MRI imaging were used to outline ROIs along

the edges of the lesion at the largest level of the lesion on

T2WI and ADC images, respectively, avoiding fat, calcifications

and hemorrhagic foci. To select robust features for intra-

rater and inter-rater description variation, intra-rater test

datasets and intra-rater test datasets were obtained for

50 patients (**blind** with 15 years of experience in urological

imaging) by the same radiologist and another radiologist,

respectively (Figure 2).
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Extraction and selection of
radiomics features

From each Roi, radiomic features were extracted from DWI,

ADC images using the open-source tool pyradiomics. These

features include: 1. Shape features: used to describe the

geometric properties of the ROI, including size elements that

describe the volume and surface area of the ROI. 2. First-order

features, which are features describing the intensity distribution

of voxels within the ROI, calculated by histogram analysis.

3.Texture features that describe the intensity level of the

spatial distribution of voxels. Includes Grey Level Co-

occurrence Matrix (GLCM) features, Grey Level Travel Length

Matrix (GLRLM) features and Grey Level Size Zone Matrix

(GLSZM) features.4. Algorithmically transformed features: first-

order and higher-order texture features obtained by

transforming the original image with Wavelet and Laplacian-

of-Gaussian (LOG). 1307 radiomic features were extracted from

each ROI.
Construction of radiomics signatures

First, features with low repeatability were excluded from the

subsequent analysis. Here the intra-rater and inter-rater

repeatability for each feature was quantified by intraclass

correlation coefficient (ICC) calculated on the intra-rater test

data set and inter-rater test data set respectively. Features with

ICC > 0.8 are retained. All features were normalized using the Z-

Score transform. Single-factor logistic regression and GBDT

were then used to further filter the histological features to

ensure reproducibility of the model and reduce overfitting or

selection bias in the radiomics model. The screened radiomics

features were analyzed using Cox risk regression to create a

radiomics model. Significant clinical variables were screened

using univariate Cox risk regression. ROC curves, calibration
FIGURE 1

Patient selection flow chart. Includes exclusion criteria and grouping.
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curves, and decision curve analysis were applied to assess

model performance.
Validation of radiomics signatures

Kaplan-Meier survival analysis was used in the training group

to assess the potential association of radiomic features with PFS,

which was then validated in the validation group. Classification of

patients into high and low risk groups based on cut-off values

based on radiomic signatures as determined by optimal cut-off

analysis using X-title software. The truncation values are

estimated on the training group and validated on the validation

group. A weighted log-rank test was used to assess the difference

in survival curves between the high and low risk groups. To
Frontiers in Oncology 04
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demonstrate the value of radiomic features for individualized

assessment of PFS, separate radiomic column line plots were

constructed. Radiomics scores (Rad scores) and clinical data were

combined to create a mixed model of radiomics and clinical data

to plot nomograms and provide a visual tool for predicting

progression-free survival in PCa. The Rad score is calculated by

adding selected imaging histology features that are weighted by

their respective coefficients. Significant clinical variables were

screened using univariate Cox risk regression.
Statistical analysis

All statistical analyses for this study were performed using R

software (Version 3.6.3, Statistical Computing Basis). A two-
FIGURE 2

Schematic diagram of the ROI outline. (A) is the T2WI sequence with PCa in the left peripheral band, (B) is the ADC sequence with the cancer
foci showing low signal, (C) is the ROI outline, (D) is the generated ROI.
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sided P < 0.05 was considered statistically significant. The

Kolmogorov-Smimov test was used to verify that the

histological characteristics conformed to a normal distribution,

using the two independent samples t-test for normal distribution

and the Mann-Whitney U test for non-normal distribution. The

ability of the model was assessed by the ROC, calculating the

AUC and 95% confidence intervals. The diagnostic sensitivity,

specificity, accuracy, positive predictive value and negative

predictive value of the models were also calculated. Calibration

curves were used to assess the predictive performance of each

model. Decision curves were used to assess the net benefit of

each model at different threshold probabilities and to evaluate

the clinical applicability of each model.
Results

Clinical data

Clinical data for patients in the training and validation

groups are shown in Table 1. Patients were aged 45-89 years,

with a median age of 74 years. The median progression-free

survival time was 42 months (range 10-72 months). There was

no statistically significant difference between the training and

validation groups in terms of patient age (p > 0.05) and

statistically significant differences in Gleason score, clinical T-

stage, number of lesions and pre-treatment PSA levels (p < 0.05).
Frontiers in Oncology 05
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Radiomic signature building

1037 radiomic features were extracted from the ROI, and

after t-test or Mann-WhitneyU test screening to remove the

meaningless features, 5 optimal features were finally obtained

from T2W1 and 4 optimal features from ADC using single

factor logistic regression and the GBDT method, and the

feature screening results are shown in Table 2. The results

show that the hybrid model has better predictive ability, and

the ROC curves of the four models in the training and

validation groups are shown in Figures 3A, B. The AUCs of

the T2WI, ADC, T2WI-ADC models and the hybrid model in

the training group are 0.876 (0.815, 0.931), 0.722 (0.562, 0.856),

0.904 (0.833, 0.965), 0.904 (0.833, 0.965), and 0.926 (0.882,

0.962), and the AUCs in the validation group were 0.843

(0.673, 0.965), 0.713 (0.444, 0.945), 0.870 (0.75, 0.972), and

0.917 (0.808, 1.0), respectively (shown in Table 3). The four

model decision curves and calibration curves are shown in

Figures 3C–F.
Radiomics scoring and normogram
creation

The Rad score was obtained by weighting the nine optimal

features by their respective coefficients, calculated as = -1.6371 +
TABLE 1 Comparison of clinical characteristics between the training and validation groups.

Clinical data Training group Validation group P
n=133 n=58

Age (mean ± SD, years) 72.12 ± 8.82 73.31 ± 8.40 0.765

T stage 0.001

T1 47 15

T2 53 32

T3 15 6

T4 18 5

Pre-treatment PSA levels(n/ml) 0.001

<100 67 30

>100 66 28

Gleason Score 0.001

5 12 2

6 23 11

7 43 22

8 29 13

9 16 6

10 10 4

Number of tumors 0.013

=1 86 31

>1 47 27
frontiersi
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0.3323 × “ log-sigma-5-0-mm-3D_firstorder_10Percentile

“-0.1502 ×“wavelet-LHL_gldm_SmallDependenceHighGrayLevel

Emphasis “+ 0.1918 ×“wavelet-HLL_glcm_Correlation”+ 0.3284”

wavelet-LHL_glcm_MaximumProbability”+ 0.5209 × “log-sigma-

3-0-mm-3D_firstorder_Minimum “- 0.5178 × “ wavelet-

LLL_firstorder_InterquartileRange “+ 0.0487 ×“ wavelet-

LLL_glszm_SmallAreaHighGrayLevelEmphasis “- 0.4251 ×“

original_glrlm_GrayLevelNonUniformityNormalized “- 0.3291

×“ wavelet-LHH_glrlm_RunEntropy”. The Rad score plots for

the training and validation groups are shown in Figure 4.

Independent clinical predictors combined with Rad scores make

up the Nomogram, as shown in Figure 5.
Survival analysis

Patients were divided into high-risk and low-risk groups

based on radiomics scores. PFS survival curves were plotted

using the Kaplan-Meier method. Using the log-rank chi-square

test, there was a statistically significant difference in survival

rates between the different risk groups in the training and

validation groups (p<0.001) (Figure 6).
Discussion

PCa is a common malignancy in elderly men, and its incidence

and mortality are on the rise in some countries, especially in Asia.

The insidious onset of PCa and the fact that it is mostly mid-to late-

stage when first diagnosed has led to a decline in patient survival.

Prognostic models associated with PFS have been developed in

other tumor types with promising applications; however, according

to our literature search, prognostic survival models for PFS imaging

of PCa have not been studied. Imaging is an important clinical

examination tool for diagnosis, staging and treatment decisions for

tumors but relies heavily on the physician’s visual assessment of the

images, which is subjectively biased and produces limited

information. With the increased digitization of clinical

information and the application of artificial intelligence research,

radiomics has become a hot research topic. Solid tumors are

spatially and temporally heterogeneous, and imaging histology

can capture this heterogeneity noninvasively and express it in

terms of pixel density and spatial distribution, which may

correlate with tumor aggressiveness, pathological grading,

posttreatment response and prognosis (7, 23, 24). In contrast,

PCa is characterized by its remarkable heterogeneity and the

variability of tumor prognosis. Most prostate cancers are inert,

while the remaining proportion can be very aggressive and even life-

threatening, so stratified management of patients with prostate

cancer, early detection and effective intervention in high-risk

patients to reduce recurrence and metastasis are important goals

of current clinical research. Reliable and accurate predictors and

prognostic models can help guide clinical decision-making to the
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C D

E F

A

FIGURE 3

ROC curves, decision curve analysis, calibration curves for different models in the training and validation groups. The ROC curves for the four
models in the training and validation groups are shown in (A, B). The decision curves for the four models in the training and validation groups
are shown in (C, D). The calibration curves for the four models are shown in (E, F).
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clinical benefit of patients. In this context, we extracted features

from MRI, constructed models and combined them with clinical

factors to create nomograms for the further risk assessment of

prostate cancer patients.

MRI-based radiomics have been extensively used in the

diagnosis of prostate cancer, the Gleason score and other areas

with satisfactory results (25–28). Recently, MRI radiomics has

also been used to predict the risk of biochemical recurrence

(BCR) after radical prostate cancer surgery and radiotherapy.

BCR is considered a marker of local recurrence, distant

metastasis and prostate cancer-specific death. Studies have

reported (29) that the 10-year BCR rate after radical

prostatectomy is as high as 50%. Gnep et al. (30) previously

demonstrated in that Haralick features from T2WI were

associated with BCR occurrence, suggesting that radiomics

analysis may be able to capture the difference between BCR-

positive and BCR-negative lesions on MRI. However, the role of

MRI-based radiomics in assessing PFS in PCa has not yet been

reported, so we have undertaken a study to investigate this. We

used T2WI and ADC sequences to extract features because
Frontiers in Oncology 08
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T2WI can clearly show the anatomical features of the tumor

and the presence of perineural involvement and seminal gland

involvement in prostate cancer patients, and the images contain

more valuable textural features. ADC values objectively reflect

the degree of diffusion of water molecules in biological tissue and

correlate with the malignancy of the tumor, avoiding the

penetration effect of DWI due to the very long T2 decay time

of the tissue. The combination of T2WI and ADC allows for

more accurate and comprehensive tumor information to be

obtained. In our study, the combined sequence of T2WI and

ADC showed better performance in predicting 3-year PFS in

PCa patients than the model with the sequence alone, with the

highest AUC in both the training and validation groups.

Age, pretreatment PSA levels, TNM stage and Gleason score

all have an impact on the prognosis of PCa. In this study, using

univariate Cox risk regression analysis, the clinical T stage,

pretreatment PSA level and Gleason score were found to have

a statistically significant impact on the prognosis of PCa; age was

not. Some scholars (31) conducted an epidemiological survey

and analysis on the effect of age on survival, comparing the effect
TABLE 3 Predictive performance of T2WI, ADC, T2WI-ADC and hybrid models.

Cohort Model AUC(95%CI) ACC SEN SPE PPV NPV

Training ADC 0.722(0.562,0.850) 0.729 0.728 0.750 0.978 0.150

T2WI 0.876(0.815,0.930) 0.782 0.768 1.000 1.000 0.216

T2WI-ADC 0.904(0.833,0.960) 0.850 0.848 0.875 0.991 0.269

Hybrid models 0.926(0.882,0.960) 0.865 0.856 1.000 1.000 0.308

Validation组 ADC 0.713(0.444,0.940) 0.741 0.741 0.750 0.976 0.176

T2WI 0.843(0.673,0.960) 0.707 0.704 0.750 0.974 0.158

T2WI-ADC 0.870(0.750,0.972) 0.810 0.815 0.750 0.978 0.231

Hybrid models 0.917(0.808, 1.000) 0.793 0.778 1.000 1.000 0.250
frontiers
T2WI, T2- weightedimagine; ADC, apparent diffusion coeffificient; AUC, area under curve; SEN, sensitivity; SPE, specificity; ACC, accuracy; PPV, positive predictive value; NPV,
negative predictive.
BA

FIGURE 4

Rad score chart for training and validation groups. (A, B) show the distribution of radiomics scores for the training and validation groups
respectively. The pink bars represent the radiomics scores of patients who did not experience disease progression, while the blue bars represent
the radiomics scores of patients who experienced disease progression.
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of different age segments on survival. The results showed that

patients in the younger group survived longer, and the difference

was statistically significant, but it has also been shown (32) that

age is not an influential factor in the prognosis of prostate

cancer. Our findings do not support age as an independent

influential factor in the prognosis of patient survival. We also did

a simple Kendall correlation analysis of the effect of T-stage,

Gleason score and number of lesions on the patient’s PSA levels

and found that the three clinical factors were positively

correlated with PSA levels and that the Gleason score

correlated more significantly with them. This suggests that the

PSA level is also increased with an increase in Gleason score. The

PIRADS v2 score is currently the most widely used and

internationally recognized MRI reporting system for the

prostate. de Cobelli O et al. (33) found a significant association

between PIRADS score and GS escalation, ECE, unfavorable
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prognosis and large tumor volume: increasing with increasing

PIRADS score. We will also include PI-RADS in a follow-up

study to discuss its relevance to the prognosis of prostate cancer.

The concept of adequate mutual agreement between

genitourinary radiologists has been a key point of discussion.

mpMRI has changed the paradigm of prostate cancer detection,

characterization and management, refining treatment planning

and patient selection for active surveillance, and assessing post-

treatment outcomes, but the interpretation of mpMRI remains

difficult and has substantial inter-reader variability, leading to

the development of the original (v.1) and updated (v.2 and 2.1)

versions of the PI-RADS development. Del Giudice et al. (34)

demonstrated that Vesical Imaging-Reporting and Data System

(VI-RADS) provides a standard method for radiologists in the

acquisition, interpretation and reporting of MRI of bladder

cancer. Despite the existence of two very independent
BA

FIGURE 6

Kaplan-Meier analysis. (A) is the training group and (B) is the validation group.
FIGURE 5

Radiology nomogram. The radiology nomogram prediction model predicts the probability of progression in patients with PCa. How to use: (1)
locate the patient’s radiomic score, PSA level, clinical T-stage, Gleason score, number of tumor and then draw a straight line on the top dot axis
to obtain the corresponding score; (2) sum the scores obtained (3) find the final sum on the total point axis and draw a straight line down to
assess the risk of progression in patients with prostate cancer.
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diagnostic goals between PI-RADS and VI-RADS, these

standard certainties share the common goal of pursuing a

higher reliability of diagnostic findings in the reader than a

purely subjective interpretation of MRI sequences, which also

provides ample evidence of the importance of rigorous

monitoring for a high degree of inter-reader agreement

between different AI and radiomic features.

Many studies have attempted to combine imaging histology

with clinical parameters to improve the predictive power of the

model. The nomogram was developed by Yu et al. (35) With the

combination of radiomics features and clinical parameters was

able to predict peritoneal metastases in ovarian cancer

preoperatively well, and its efficacy was superior to that of a

single model with radiomics and the clinic. We also developed a

hybrid model to plot a nomogram combining Rad scores and

important clinical features for the assessment of 3-year PFS in

PCa patients. The hybrid model showed superior predictive

performance for 3-year PFS prediction compared to the

radiomics model alone. The ROC curve analysis also validates

this result. Our study also found that the Rad score could be used

as a marker to distinguish between low- and high-risk patients.

Patients with higher Rad scores are at greater risk of progression

and have shorter PFS. These results provide new insights into

future treatment options for patients with PCa. For example,

patients at high risk of progression may consider a combination

of early multiple treatments; conversely, patients at low risk of

progression may opt directly for surgery, local radiotherapy or

even monitoring, thus avoiding ineffective or excessive treatment

and disease progression due to delays in effective treatment.

Therefore, the Rad score can be used as a valid biomarker to

improve the prognosis of patients with PCa.

There are some limitations to our study. First, this is a single-

center, retrospective study with some possible bias in the

selection of patients, which will be validated in future research

through multicenter, prospective studies to provide more

reliable evidence for clinical application. Second, the follow-up

period was relatively short, and longer follow-up is needed to

predict 5-year and 10-year progression-free survival, which can

be used as part of our follow-up study. Third, radiomics seeks to

find the most valuable features in a variety of data, and we only

analyzed T2WI and ADC images without adding dynamic

enhancement images to the analysis. Multiparametric data

analysis may help improve the quality of the model. Fourth,

some important protein and gene biomarkers associated with

PCa progression were not considered for the features we

extracted from the MRI. Finally, our ROIs were obtained by

manual segmentation by radiologists, with subjective observer

bias, and a reliable and robust automated segmentation method

should be further developed to address this issue.
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Conclusion

In summary, in this study, we retrospectively analyzed the

relationship between MRI radiomics features and progression-

free survival in patients with prostate cancer confirmed by

biopsy puncture or surgical pathology and analyzed the

feasibility of imaging histology for the assessment of

progression-free survival. The radiomics features extracted by

MRI provide a highly accurate, noninvasive, easy-to-perform,

real-time method for preoperatively predicting progression-free

survival in prostate cancer patients. Multiple sequence

combination models are superior to single sequence models.

We developed a nomogram to provide a noninvasive,

individualized tool for the stratified management of prostate

cancer patients to support clinical decision-making. Although

there are some limitations to our study, we have provided a

means of assessing the preoperative prediction of tumor

progression in prostate cancer patients, compensating for the

shortcomings of conventional imaging.
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Globally, Prostate cancer (PCa) is the secondmost common cancer in themale

population worldwide, but clinically significant prostate cancer (CSPCa) is more

aggressive and causes to more deaths. The authors aimed to construct the risk

category based on Prostate Imaging Reporting and Data System score version

2.1 (PI-RADS v2.1) in combination with Prostate-Specific Antigen Density

(PSAD) to improve CSPCa detection and avoid unnecessary biopsy.

Univariate and multivariate logistic regression and receiver-operating

characteristic (ROC) curves were performed to compare the efficacy of the

different predictors. The results revealed that PI-RADS v2.1 score and PSAD

were independent predictors for CSPCa. Moreover, the combined factor shows

a significantly higher predictive value than each single variable for the diagnosis

of CSPCa. According to the risk stratification model constructed based on PI-

RADS v2.1 score and PSAD, patients with PI-RADS v2.1 score of ≤2, or PI-RADS

V2.1 score of 3 and PSA density of <0.15 ng/mL2, can avoid unnecessary of

prostate biopsy and does not miss clinically significant prostate cancer.

KEYWORDS

prostate biopsy, prostate cancer, prostate imaging reporting and data system score,
prostate-specific antigen density (PSAD), clinically significant prostate cancer (csPCa)
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Introduction

Prostate cancer (PCa) accounts for 13.5% of all cancer cases

and 6.7% of all cancer deaths among males worldwide, ranking

second and sixth for cancer incidence and mortality among men

respectively (1). Most prostate cancers are not aggressive and

represent little or no damage to the patient’s health or life

expectancy, despite the disease’s high occurrence. Many will

not be diagnosed with prostate cancer until an autopsy or

screening is performed. Although there is no standardized

definition of clinically significant prostate cancer, the disease

has become more aggressive. However, clinically significant

prostate cancer is an aggressive, fatal disease that causes death

in some men; definite treatment is required. Prostate-specific

antigen (PSA) testing is crucial for the diagnosis of prostate

cancer, which has led to a decrease in disease-specific mortality

and advanced disease during the previous two decades (2).

Regrettably, PSA testing alone increased the detection of many

clinically insignificant prostate cancer, which usually progress

indolently and does not need any clinical intervention (3).

Therefore, It is imperative to establish a non-invasive method

to prevent over-diagnosis and eliminate unnecessary biopsies,

while simultaneously identifying clinically significant prostate

cancer as early as possible.

Multiparametric Magnetic Resonance Imaging (mpMRI)

that combines T2-weighted imaging (T2WI) with functional

pulse sequences such as dynamic contrast-enhanced (DCE) and/

or diffusion-weighted imaging (DWI) imaging has demonstrated

high application value in PCa diagnosis, local staging, and active

surveillance. PI-RADS v2.1 was recommended to assess the

likelihood of a clinically significant cancer of any lesion based

on mpMRI in the prostate using a 5-level subjective score (4). A

meta-analysis found that the median mpMRI negative predictive

value (NPV) was 82.4% (IQR, 69.0–92.4%) for overall cancer

and 88.1% (IQR, 85.7–92.3) for CSPCa (5). PRECISION trial (6)

and PROMIS trial (7) demonstrated that the use of mpMRI to

triage men prior to prostate biopsy could allow a quarter of men

to avoid a primary biopsy and reduce the number of clinically

insignificant cancer missed. The significance of PI-RADS point 3

for the diagnosis of PCa and CSPCa has, however, varied

considerably between investigations (8, 9). The suspicious

lesion concerns the presence of clinically relevant cancer was

assigned PI-RADS point 3 per the standards. As a result,

managing unclear or ambiguous PI-RADS 3 lesions has

become difficult for doctors. To overcome these shortcomings

and increase the consistency of physician assessments, the PI-

RADS Steering Committee has revised PI-RADS v2 based on

consensus (PI-RADS v2.1).Previous studies have validated the

diagnostic performance of PI-RADS v2.0 score combined with

PSAD in the detection of CSPCa. However, due to inconsistent

methodology across different studies, heterogeneous outcomes

were observed. In some studies, PI-RADS v2.0 scores were
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assessed based on 1.5T MRI machine, while the others were

based on 3.0T machine (10), In addition, some studies apply MR

protocol that only consists of T2WI and DWI, which is called bi-

parametric MRI(bpMRI) does not precisely meet the

requirements of PI-RADS v2.0 system (10). In contrast, the

majority of studies lack follow-up information for patients

whose biopsies were negative (11, 12). Consequently, the

purpose of the current study is to further validate the

performance of PI-RADS v2.1 score combined with PSAD in

the detection of CSPCa, using a more accurate PI-RADS v2.1

score based on a 3.0T machine that includes T2WI, DWI,

and DCE.
Materials and methods

Patients selection

We retrospectively reviewed a cohort including 422 patients

who underwent mpMRI prior prostate biopsy and underwent

their first prostate biopsy between January 2016 and January

2019 at the First Affiliated Hospital of Kunming Medical

University. Inclusion criteria: 1. Patients with suspected

prostate cancer found by a rectal exam, PSA, TRUS, MRI; 2.

Patients willing to undergo prostate puncture biopsy. The

exclusive criteria were as follows: 1) lack of any T2WI, DWI

and DCE; 2) lack of histopathological results or clinical

information, including age, PSA, fPSA and MRI-measured

prostate volume; 3) the previous history of prostate surgery; 4)

received 5a reductase inhibitors; 5) lost to follow-up.
MRI

All mpMRI scans of the prostate were performed with 3.0T

MR scanner (Achieva, Philips/Discovery MR W750, GE), which

involved axial T2WI, DWI, and DCE. The Apparent Diffusion

Coefficient (ADC) map was automatically calculated. And the

locations of these axial sequences were exactly matched. PI-

RADS score of each case was graded separately according to the

PI-RADS v2.1 criteria by two independent radiologists (R1, R2)

blinded to the clinical information and pathological outcomes. If

scores were inconsistent, the final PI-RADS scores were

determined through a discussion between two radiologists.

The volume of the prostate was measured according to the PI-

RADS v2.1 cri ter ia based on mpMRI: ([maximum

anteroposterior {AP} diameter] X [maximum transverse

diameter] X [maximum longitudinal diameter] X 0.52), the

maximum AP and longitudinal diameters are placed on the

midsagittal T2W image, while the maximum transverse

diameter is placed on the axial T2W image. And the TNM
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staging of prostate cancer was determined mainly based on

mpMRI by the radiologist(R2).
Prostate biopsy and pathological analysis

The indications of prostate biopsy and repeated biopsy were

performed in accordance with the Chinese Urology Association

Guidelines and European Association of Urology Guidelines. In

all patients, 12-core systematic transrectal ultrasound-guided

prostate biopsies were performed by urinary specialists with

more than 10 years of experience, and two cognitive fusion-

targeted biopsy cores were added for each lesion based on

mpMRI findings.

The final pathological results of this study are subject to

biopsy and follow-up results. Patients who received negative

results in their initial biopsies were followed up on, which

included repeat biopsy results, surgical therapy results, MRI

results, and PSA results. Clinically significant prostate cancer

was defined as Gleason score≥3+4 or ≥T3 staging (extracapsular

extension). Clinically insignificant prostate cancer was defined as

Gleason score<3+4 or ≤T2 staging.
Statistical analysis

For normally and non-normally distributed data, the mean

(standard deviation [SD]) and the median (interquartile range

[IQR]) will be used. To assess between-group differences in

normally and non-normally distributed data, the Student t-test

and Mann-Whitney U-test were used. Categorical variables were

represented as percentages, and chi-square test was used to

assess between-group differences. The area under the curve

(AUC) was used to assess the accuracy of the receiver

operating curves (ROC) for factors evaluated for the risk of

PCa and CSPCa. PSAD was divided into four subgroups based

on the appropriate PSAD cut-off points for detecting PCa and

CSPCa and recognizing outliers, and the risk category for CSPCa

was constructed using PI-RADS V2.1 scores and PSA subgroups.

P value less than 0.05 was considered to indicate a

statistically significant. SPSS software was used to conduct all

analyses (Version 20.0. IBM).
Results

Patients data

The Profiles of 422 patients were analyzed. As stated in

Table 1, the mean age was 68.50 ± 7.44 years. The median values

for [interquartile range (IQR)] tPSA, f/tPSA, PV and PSAD

were, 14.20(8.24~37.18) ng/mL, 0.15(0.11~0.22), 56.69

(37.70~77.08) ml, and 0.27(0.15~0.76) ng/ml2, respectively.
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The number of PI-RADS V2.1 score 1-2, 3, 4, 5 were 167, 53,

67, 135, respectively.
Pathological outcomes

The flow chart of pathological outcomes is depicted in

Figure 1. 194 patients were confirmed with positive outcomes

from the initial biopsy, of which 149 patients were diagnosed

with CSPCa. In the meantime, 228 patients were diagnosed with

BPH in their initial biopsy and would be followed up; of which

29 patients underwent a repeat biopsy and 2 of them were

diagnosed with PCa, including 1 CSPCa; 123 patients underwent

TURP or HOLEP, and 2 patients of them were diagnosed with

CISPCa; and 11 patients who underwent both biopsy and TURP

were diagnosed with BPH. Regular monitoring of PSA, MRI, and

transrectal ultrasound, if needed, demonstrated the absence of

disease development for 85 patients. Finally, the pathological

results for benign prostate hyperplasia (BPH), PCa, and CSPCa

were 221(53.1%), 201 (46.9%), and 150(35.5%), respectively.
Group analysis

First of all, we divide all patients into groups based on the

following criteria, 1) BPH group and PCa group according to

their pathological results, 2) CSPCa group and non-CSPCa

group (including CISPCa and BPH patients) according to

whether the pathological outcome is CSPCa. Then we

analyzed the differences of risk factors by groups described

above, 1) BPH group and PCa group, 2) CSPCa group and

non-CSPCa group.

As shown in Table 2, the BPH group and the PCa group

contained 224 and 198 patients respectively. While the CSPCa

group and non-CSPCa group contained 150 and 272 patients
TABLE 1 Patients’ characteristics.

Variables Value

Median (IQR)

tPSA(ng/ml) 14.21(8.25~37.90)

f/tPSA 0.15(0.11~0.21)

PV (ml) 54.66(37.31~74.98)

PSAD (ng/ml2) 0.27(0.15~0.77)

Mean ± SD

Age (years) 68.49 ± 7.47

N (%)

PI-RADS v2 score

1-2 167(39.6%)

3 53(12.6%)

4 67(15.8%)

5 135(32.0%)
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respectively. Intriguingly, we discovered that biopsy results were

significantly correlated with age, PSA, PV, PSAD, and MRI

findings (all p < 0.05, Table 2) between CSPCa and non-CSPCa

group, as well as BPH and PCa group.
Efficiency of risk factors in the diagnosis
of PCa and CSPCa

Then, we aimed to identify PCa and CSPCa-associated risk

variables. As shown in Table 3, the AUC values of PI-RADS v2.1

score and PSAD were 0.91 and 0.84, 0.95 and 0.89 for PCa and

CSPCa, respectively, which was greater than all other factors

(P<0.05). Then we determined that PI-RADS v2.1 score 4 as the

cut-off point for distinguishing PCa and CSPCa, and 0.38 and

0.65 as the cut-off of PSAD for diagnosing PCa and CSPCa,
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respectively. Finally, the cutoff for PI-RADS v2.1 score and

PSAD were selected for the prediction models, which were

constructed for discriminating PCa and CSPCa. Consequently,

the AUC of the prediction model consists of PI-RADS v2.1 score

and PSAD was higher for PCa and CSPCa in comparison to PI-

RADS v2.1 score and PSAD alone (Table 3).
Construction of a multivariate risk
category to predict CSPCa

For further analysis, we divided PSAD into four subgroups

based on the study-confirmed cutoff point(0.38, 0.65) and widely

accepted threshold (0.15) (Table 6). The examination of

multivariate logistic regression indicated that PI‐RADS v2

score and PSAD were independent predictors of CSPCa.

Further analysis revealed no significant difference was

observed for CSPCa for PI-RADS v2.1 score 2 and 3 (Table 4).

Next, we attempted to validate our findings about CSPCa

prediction. As indicated in Table 5, patients with a PI-RADS v2.1

score of 2 were negative for CSPCa, while 53 patients with a PI-

RADS v2.1 score of 3 were diagnosed with CSPCa. Moreover,

only 2 out of 108 individuals with a PSAD of 0.15 ng/mL2 were

proven to have CSPCa. Therefore, we developed a risk category

for CSPCa based on the combined PI-RADS v2.1 score of

PSAD subgroups.

As demonstrated in Table 6, we confirmed that PI‐RADS v2

score of ≥4, or a PI‐RADS v2 score of 3, and a PSAD≥0.65 ng/mL2

(red zones) as the high-risk group, with the highest CSPCa

detection rate (72.1%). In contrast, a PI‐RADS v2 score of 2, or

a PI‐RADS v2 score of 3 with PSAD of ≤0.15 ng/mL2 (green

zones), were assigned as the low‐risk group in which no CSPCa

was detected. Others (blue zones) with a 10.3% detection rate for

CSPCa were assigned as the moderate‐risk group. The detection

rates for PCa in patients assigned with low‐, moderate‐, and high‐

risk prostate cancer were 9.0%, 37.9%, and 83.3%, respectively.
FIGURE 1

Pathological outcomes flow chart.
TABLE 2 Univariate analysis of the Clinical Characteristics in the different groups.

Variables Group 1 Group 2 P value

PCa BPH P value CSPCa Non-CSPCa

patients 198(46.9%) 224(53.1%) – 150(35.5%) 172(64.5%) –

Age 69.85 ± 7.35 67.29 ± 7.38 P<0.0011) 69.45 ± 7.36 67.69 ± 7.49 P<0.0011)

tPSA (ng/ml) 34.85(12.37~100.00) 10.36(6.85~16.07) P<0.0012) 71.85(17.88~100.00) 10.76(7.18~16.72) P<0.0012)

f/tPSA 0.15(0.10~0.24) 0.15(0.11~0.19) P=0.542) 0.16(0.09~0.26) 0.15(0.11~0.20) P=0.5272)

PV (ml) 48.40(32.31~66.97) 60.52(44.03~85.85) P=0.0031) 49.29(32.31~66.97) 57.74(42.56~85.55) P=0.0361)

PSAD (ng/ml2) 0.76(0.29~1.46) 0.17(0.12~0.28) P<0.0012) 1.01(0.43~1.71) 0.18(0.12~0.29) P<0.0012)

MRI (%) P<0.0013) P<0.0013)

positive 187 68 150 14

negative 11 156 0 34
front
PCa, prostate cancer; CSPCa, clinically significant prostate cancer; PSA, prostate-specific antigen; f/tPSA, the ratio of free to total prostate specific antigen; PV, prostate volume; PSAD PSA
density.
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Discussion

The previous report in China (44%, 6123/13904), as

published by 33 member hospitals of the Chinese Prostate

Cancer Consortium (CPCC) (13). We enrolled 422 patients in

our trial for a minimum of 14 months follow-up, and we

discovered the same outcome. 53.1 percent (224/422) of

patients were diagnosed with benign lesions (prostatic

hyperplasia, prostatitis, etc.), while 46.9 percent (198/422)

were diagnosed with PCa.

Since the release of PI-RADS V2 based on mpMRI, PI-RADS

v2.0 has been widely recognized in radiology and urology, as well

as clinical practice. Its clinical value and practicability have been

extensively validated. Current studies have also shown that PI-

RADS V2.1 has excellent performance in predicting PCa,

particularly for CSPCa (14–17), with an even higher accuracy

over systematic TRUS biopsies for PCa diagnosis (6, 7, 18). In this

study, PI-RADS v2.1 score was an independent predictor for PCa

with excellent diagnostic performance, the AUC was 0.9108 with

PI-RADS v2.1 score 4 as the cut-off. The sensitivity, specificity,

PPV and NPV were 85.4%, 85.3%, 83.7% and 86.8%, respectively.

For CSPCa, We defined clinically significant prostate cancer

as Gleason score≥3+4 or ≥T3 staging (extracapsular extension).
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PI-RADS v2.1 has improved diagnostic accuracy. The AUC was

0.95 with PI-RADS v2.1 score 4 as the cut-off, and NPV was up

to 98.2%. A high NPV can help minimize unnecessary prostate

biopsies and their associated problems.

Although the PI-RADS score had an advantage in predicting

CsPCa in this study, PI-RADS V2.1 of 4 score has s NPV up to

98.2% for CSPCa, If the biopsy was carried on a PI-RADS score

= 3, 7.5% (4/53) of CsPCa patients would be omitted; however, if

set at a PI-RADS score≥3, 19.2% (49/255) of patients would

receive an unnecessary biopsy. Overtreatment of inactive

prostate cancer diminishes the quality of life, but the delayed

treatment of more aggressive CSPCa increases the incidence of

metastatic illness and mortality. Therefore, a decision to

puncture the prostate based exclusively on PI-RADS V2.1 is

not recommended.

In this study, prostate volume was measured using 3T MRI,

and PSADwas then calculated. PSAD demonstrated outstanding

diagnostic performance for PCa and CSPCa when utilizing the

cut-off values of 0.38 and 0.65, with AUC values of 0.84 and 0.89,

respectively. This study’s PSAD cutoff value was much higher

than 0.15, which may be a result of the population’s generally

high PSA levels (median 14.21 ng/ml). The PI-RADS v2.1score

and PSAD were independent predictors of CSPCa, according to
TABLE 4 The multivariate logistic regression analysis of PI‐RADS v2 score and PSAD for CSPCa.

Variables OR 95%CI P value

PSAD (ng/ml2) –

<0.15 – – P<0.001

~0.38 0.060 0.016~0.223 P<0.001

~0.65 0.126 0.050~0.321 P<0.001

≥0.65 0.320 0.104~0.983 P<0.001

PI-RADS V2 score

2 – – –

3 0 0 P=0.994

4 0.029 0.009~0.100 P<0.001

5 0.148 0.065~0.336 P<0.001
front
PIRADS v2 prostate imaging-reporting and data system version 2; PSAD, PSA density; OR, odds ratio; CI, confidence interval.
TABLE 3 Diagnostic performance of risk factors for PCa and CSPCa.

Variable PCa CSPCa

AUC SEN SPE PPV NPV Cut-off AUC SEN SPE PPV NPV Cut-off

PI-RADS v2 score 0.91 85.4 85.3 83.7 86.8 4 0.95 97.3 79.4 72.3 98.2 4

PSAD 0.84 68.2 87.5 56.4 80.6 0.38 0.89 70.0 94.9 88.2 85.1 0.65

PSA 0.79 57.1 89.3 82.5 70.2 24.0 0.85 68.0 91.5 91.6 83.8 31.2

f/tPSA 0.52 16.7 98.7 91.7 57.3 0.33 0.52 20.0 97.8 83.3 68.9 0.33

PV 0.62 54.0 65.6 58.1 61.8 50.1 0.59 42.7 73.2 46.7 69.8 43.4

age 0.59 48.0 66.5 55.9 59.1 70 0.55 47.3 63.6 41.8 68.6 70

PI-RADS +PSAD 0.93 90.4 80.8 80.6 90.5 – 0.97 92.7 87.9 80.8 95.6 –
i

PCa, prostate cancer; CSPCa, clinically significant prostate cancer; CISPCa, clinically insignificant prostate cancer; PSA, prostate-specific antigen; f/tPSA, the ratio of free to total prostate
specific antigen; PV, prostate volume; PSAD, PSA density; AUC, area under of curve; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.
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multivariate logistic regression analysis. According to a prior

study, PSAD not only predicts the results of prostate biopsy but

also is a predictor for CSPCa. Kosaka et al. reported that PSAD

could become a useful predictor of significant PCa in men aged ≤

50 (19). According to a number of studies, higher PSAD is an

important independent predictor of pathological upgrade

between prostate biopsy and radical prostatectomy (20–23),

and PSAD derived from MRI shows a more significant

correlation with CSPCa compared with using TRUS (24). So,

PI-RADS v2.1 score and PSAD were applied as risk factors in the

prediction models for CSPCa. We reported that the diagnostic

performance of the model was significantly better than each

single variable (p <0.05). Despite the paucity of studies

employing PI-RADS v2.1 score combined PSAD, outcomes

from studies employing PI-RADS v2.0 score combined PSAD

have been inconsistent. Several studies have shown that PI-

RADS v2.0 score combined with PSAD as a screening tool had a

higher predictive value for CSPCa (11, 12, 21, 25). Using the PI-

RADS v2.1 score combined with PSAD as a screening tool for

CSPCa, our study demonstrated a better predictive effect.

However, Cuocolo et al. found that PSAD combined PI-RADS

v2.0 score did not show a significant improvement in the

diagnostic performance (26).

In this study, if the PI-RADS v2.1 score of 3 was the

recommended threshold for biopsy, 19.2% of patients would

have received an unnecessary biopsy. The specificity was fair

low. Although the calculators reported were useful for predicting

CSPCa (27), they are not convenient and practical for clinicians. As

a result, we divided PSAD into four subgroups based on the cut-off

points for PCa and CSPCa identified in this study (0.38, 0.65) and

accepted threshold (0.15), and then combined them with PI-RADS
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v2.1 scores to constructed the risk category of CSPCa. The absence

of CSPCa in the low-risk group suggests that 44.8 percent (189/

422) of patients might have avoided unnecessary biopsies, and

CSPCa would not have been missed. Furthermore, for high-risk

patients who got negative results in the first biopsy, risk

stratification could help to formulate a follow-up strategy.

Washino’s research (10) had confirmed that a combination

of PI-RADS v2 score and PSA density can assist with prostate

biopsy decision-making. The most significant difference between

our study and theirs was the replacement of PI-RADS 2.0 with

PI-RADS V2.1. Correspondingly, the calculation method of

prostate volume has also changed. As an improved version,

PI-RADS V2.1 is more accurate than PI-RADS V2.0 in

diagnosing CSPCa, according to our research. Moreover, there

were less PI-RADS scores of 3 in our study than in Washino’s

(42.0%, 122/20 vs. 12.0%, 53/422), which was regarded as the

probability of CSPCa being uncertain, making its diagnosis

extremely difficult. Second, compared to Washino’s research10,

which merely classified PSAD subgroups based on a simple

multiple relationship of 0.15ng/ml2, our study is more detailed.

Our research established more subgroups and performed more

thorough risk classification. Thirdly, our analysis comprised a

bigger sample size and tracked individuals with a negative first

biopsy for up to two years. Overall, our study was one of the few

to evaluate the effectiveness of the combined PI-RADS V2.1 and

PSAD scores in predicting biopsy outcomes. Our research not

only supports prior findings but also serves as a foundation for

future studies.

Additionally, certain studies are useful as clinical references. In

patients with PSA levels between 4 and 10 ng/mL, the combination

of PI-RADS v2.0 and PSAD has been demonstrated to improve the
TABLE 5 Detection of PSAD subgroups and PI-RADS v2 score for PCa and CSPCa.

Outcomes PSAD subgroups PI-RADS v2 score

<0.15 ~0.38 ~0.65 ≥0.65 1-2 3 4 5

patients 108 150 44 120 167 53 67 135

PCa(n, %) 21(20.9) 42(28.0) 26(59.1) 109(90.8) 11(6.6) 18(34.0) 44(65.7) 125(92.6)

CSPCa(n, %) 7(3.6) 25(16.7) 13(29.5) 105(87.5) 0(0) 4(7.5) 26(38.8) 120(88.9)
fronti
PCa, prostate cancer; CSPCa, clinically significant prostate cancer; PIRADS v2, prostate imaging-reporting and data system version 2; PSAD, PSA density.
TABLE 6 Risk category of CSPCa.

PI-RADS v2 score

1-2 3 4 5

PSAD <0.15 0 (0/72) 0 (0/22) 28.6% (2/7) 71.4% (5/7)

~0.38 0 (0/77) 15% (3/20) 30.3% (10/33) 60.0% (12/20)

~0.65 0 (0/10) 0 (0/9) 25.0% (3/12) 76.9% (10/13)

≥0.65 0 (0/8) 50.0% (1/2) 73.3% (11/15) 97.9% (93/95)
Red, green and blue zones indicate high‐, moderate‐ and low‐risk groups, respectively. The detection rates for PCa in patients assigned with low‐, moderate‐, and high‐risk prostate cancer
were 9.0%, 37.9% and 83.3%, respectively.
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predictive value of CSPCa and reduce the number of unnecessary

biopsies (28, 29). In addition, the combination also improves

predictive value of CSPCa in targeted prostate biopsy and reduce

unnecessary biopsies (12, 30, 31).

We did not include multiple CSPCa definitions in the meta-

analysis due to the substantial variability in NPV that was caused

by the various definitions. Consequently, this would have

brought unacceptable clinical heterogeneity into the data,

possibly leading to erroneous and biased estimations. Last but

not least, various factors, such as racial differences radiologists’

experience (32), etc., influence the outcomes of different studies.

There are several limitations in this study that need to be

noted. First of all, it is a retrospective single-center study, and

prospective validation is lacking because of insufficient follow-up

time. Second, although the previous study has shown that MRI/

US cognitive fusion-targeted biopsies(COG-TB) are superior to

systemic biopsies in detecting PCa (33), MRI/US COG-TB also

exists false negative, which may result in possible bias (34, 35).

Third, our outcomes were assigned according to biopsy-proven

Gleason score and mpMRI-proven T staging, which deviates

from the pathology results after radical prostatectomy.
Conclusion

In the present study, PSAD and PI-RADS v2.1 scores

demonstrated more predictive value than tPSA, f/tPSA, PV,

and age. We utilized the PI-RADS v2.1 score and PSAD as

jointed factors to diagnose PCa and CSPCa, which displayed

significantly greater predictive value. In the risk category we

constructed, patients with PI-RADS v2.1 score of ≤2, or PI-

RADS v2.1 score of 3 and PSA density of <0.15 ng/mL2, could

avoid unnecessary prostate biopsy without missing clinically

significant prostate cancer. In conclusion, our study offers a

novel predictive risk category to improve the diagnosis of CSPCa

while preventing unnecessary biopsies for clinicians.
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Combination of PI-RADS score
and PSAD can improve the
diagnostic accuracy of prostate
cancer and reduce unnecessary
prostate biopsies

Changming Wang1, Lei Yuan2, Deyun Shen1, Bin Zhang3,
Baorui Wu1, Panrui Zhang4, Jun Xiao1,3* and Tao Tao1*

1Department of Urology, The First Affiliated Hospital of USTC of China, Division of Life Sciences and
Medicine, University of Science and Technology of China, Hefei, China, 2Department of Radiology,
The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and
Technology of China, Hefei, China, 3Department of Urology, Affiliated Anhui Provincial Hospital of
Anhui Medical University, Hefei, China, 4Hefei National Laboratory for Physical Sciences at Microscale,
The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences,
Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
Objectives: The purpose of this study is to evaluate the diagnostic accuracy of

the clinical variables of patients with prostate cancer (PCa) and to provide a

strategy to reduce unnecessary biopsies.

Patients and methods: A Chinese cohort that consists of 833 consecutive

patients who underwent prostate biopsies from January 2018 to April 2022 was

collected in this retrospective study. Diagnostic ability for total PCa and

clinically significant PCa (csPCa) was evaluated by prostate imaging–

reporting and data system (PI-RADS) score and other clinical variables.

Univariate and multivariable logistic regression analyses were performed to

figure out the independent predictors. Diagnostic accuracy was estimated by

plotting receiver operating characteristic curves.

Results: The results of univariate and multivariable analyses demonstrated that

the PI-RADS score (P < 0.001, OR: 5.724, 95% CI: 4.517–7.253)/(P < 0.001, OR:

5.199, 95% CI: 4.039–6.488) and prostate-specific antigen density (PSAD) (P <

0.001, OR: 2.756, 95% CI: 1.560–4.870)/(P < 0.001, OR: 4.726, 95% CI: 2.661–

8.396) were the independent clinical factors for predicting total PCa/csPCa.

The combination of the PI-RADS score and PSAD presented the best diagnostic

performance for the detection of PCa and csPCa. For the diagnostic criterion of

“PI-RADS score ≥ 3 or PSAD ≥ 0.3”, the sensitivity and negative predictive values

were 94.0% and 93.1% for the diagnosis of total PCa and 99.2% and 99.3% for

the diagnosis of csPCa, respectively. For the diagnostic criterion “PI-RADS

score >3 and PSAD ≥ 0.3”, the specificity and positive predictive values were

96.8% and 92.6% for the diagnosis of total PCa and 93.5% and 82.4% for the

diagnosis of csPCa, respectively.
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Conclusions: The combination of the PI-RADS score and PSAD can implement

the extraordinary diagnostic performance of PCa. Many patients may safely

execute active surveillance or take systematic treatment without prostate

biopsies by stratification according to the PI-RADS score and the value of PSAD.
KEYWORDS

prostate cancer, prostate biopsy, multiparameter magnetic resonance imaging,
prostate imaging-reporting and data system score, prostate-specific antigen density
Introduction

Prostate cancer (PCa) is the most common malignancy of

the male genitourinary system. According to the latest data,

there will be 268,490 new diagnosed cases and 34,500 deaths in

the United States in 2022 (1). In China, with the rapid

development of economy and wide adoption of early detection

techniques, the incidence of PCa is gradually increasing year by

year (2). The incidence of PCa is closely related to the age of the

patients; a study has shown that PCa is extremely rare in men

under 50 years of age, but more than 85% of the patients are over

60 years of age (3). Therefore, the increasing aging of the

Chinese population will inevitably lead to a fast increase in the

number of patients with PCa. In the face of the rapidly growing

patient population, early screening, diagnosis, and treatment of

PCa have great clinical significance to improve prognosis, reduce

the proportion of advanced cases, and prolong life span (4).

To date, the main methods recommended by the guidelines

for the early detection of PCa include digital rectal examination

(DRE), serum total prostate-specific antigen (tPSA), transrectal

ultrasound, and genetic tests for inherited PCa (5). Results of

DRE by different operators were inconsistent, and both the

pooled sensitivity and specificity are less than 60% (6). Serum

tPSA has satisfactory sensitivity for the diagnosis of PCa, but

elevated PSA is not specific for PCa; some PSA derivatives, such

as PSA density (PSAD), PSA velocity, PSA doubling time, and

free/total PSA ratio, also have a fairly diagnostic value for PCa,

but their clinical value is still controversial, and more high-

quality studies are still necessary before clinical practice (7, 8).

Multiparameter magnetic resonance imaging (mpMRI) has been

widely used in the diagnosis of PCa in recent years. The results of

mpMRI can be quantitatively evaluated by prostate imaging–

reporting and data system (PI-RADS) (9). A study found that the

addition of PSAD can improve the predictive performance of PI-

RADS for the identification of PCa (10). However, mpMRI has

poor identification of small masses, inflammatory lesions, and

low-grade PCa (11).

Ultimately, prostate biopsies are required to confirm the

diagnosis of suspected patients. Although prostate biopsy is the

current gold standard for diagnosing PCa, it still has some
02
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deficiencies such as unpredictable complications, and most

important is that the detection rate of PCa by prostate biopsy

is less than 50% in light of the previous studies (12, 13). The

purpose of this study was to evaluate the diagnostic accuracy of

mpMRI and clinical parameters and to propose a strategy to

reduce unnecessary prostate biopsies.
Patients and methods

Patients and selection criteria

This study was approved by the ethics committee of The

First Affiliated Hospital of USTC (No. 2022-RE-125). In total,

the information of 833 consecutive patients who accepted

prostate biopsies from January 2018 to April 2022 was

collected from the Department of Urology at The First

Affiliated Hospital of USTC to accomplish this retrospective

analysis. The baseline clinicopathologic features of all the

patients were obtained by the methods that we described

previously (14). Only patients with naïve prostate biopsy and

complete clinicopathologic characteristics could be included in

this study; meanwhile, patients were still excluded for any of the

following conditions: a history of other malignancies, more than

2 weeks from laboratory tests to operations, have taken 5a-

reductase inhibitors before biopsy, and serum tPSA ≥100 or <4

ng/ml. Each participant signed an informed consent prior

to biopsy.
MRI image acquisition and
PI-RADS score

All enrolled patients underwent mpMRI examinations with

a 3.0T scanner with an external six-channel body array coil (Trio

Tim, Siemens Healthineers, Erlangen, Germany). Patients were

placed in the supine position, and endorectal coils were not used.

The imaging protocol included transverse T1-weighted imaging

(T1WI), multiplanar (transverse, sagittal, and coronal) T2-

weighted imaging (T2WI), and transverse diffusion-weighted
frontiersin.org
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imaging (DWI) with a quantitative apparent diffusion coefficient

(ADC) (b values were 0, 800, and 1,400 s/mm2). All the images

required within 2 months before prostate biopsy. Then, the

interpretation was performed by two professional radiologists

with more than 3 years of experience in prostate mpMRI. They

first reviewed the images separately and discussed the

controversial results together subsequently. They were blinded

to the pathological results throughout the process. Ultimately, a

definite PI-RADS score (version 2.1) from 1 to 5 was obtained

for every incorporated participant (15). Figure S1 shows the

representative images of mpMRI.
Biopsy protocol and
histopathological results

In our hospital, prostate biopsies were performed by

specialized urologists; all patients underwent transperineal

procedures with the help of a transrectal ultrasound-guided

system (biplane imaging scan). Systematic biopsy with a 12-core

protocol was performed for each patient at first, and patients who

had regions of interest in mpMRI (PI-RADS score ≥ 3) would

receive cognitive fusion–targeted biopsy with additional one to six

cores. All samples were sent to the pathology department for

standard histological examinations, which was also regarded as

the “gold standard” in this study. Histopathological grade was

recorded according to the International Society of Urological

Pathology 2014 updated Gleason score grading system (16). The

primary endpoint of our study was the detection rate of clinically

significant PCa (csPCa) defined as high-grade PCa with Gleason

score ≥ 3 + 4, and clinically insignificant PCa (cisPCa) refers to

low-grade PCa with Gleason score = 3 + 3.
Statistical analyses

Non-normal distributed continuous variables were presented as

median [interquartile ranges (IQRs)] and compared by the

Kruskal–Wallis test. Descriptive statistic counts (proportions) and

chi-square test were used to describe the categorical variables. The

correlation coefficients were evaluated using Spearman’s rank

correlation analysis. Univariate and multivariable logistic

regression analyses were applied to screen the independent

predictors of PCa or csPCa, and the odds ratio (OR) and 95%

confidence interval (95% CI) were also recorded. Diagnostic

performance was evaluated by plotting receiver operating

characteristic (ROC) curves and their values of area under the

curve (AUC). Sensitivity and specificity were calculated for clinical

variables and the probability of combined PI-RADS score with

PSAD at the optimal cutoff value. The accuracy of diagnostic tests

was evaluated by sensitivity, specificity, positive predictive values

(PPVs), and negative predictive values (NPVs) for different
Frontiers in Oncology 03
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diagnostic criteria. Statistical analysis was performed using IBM

SPSS (version 25.0) and R software (version 4.2.0) (http://www.R-

project.org), and ROC curves were plotted and compared

using MedCalc (version 18.9.1). P < 0.05 was considered

statistically significant.
Results

Demographic characteristics of the
enrolled patients

The original information of all the patients was summarized in

Table S1. In total, 833 patients were incorporated in the

retrospective analysis; there were 336/833 (40.3%) PCa cases and

497/833 (59.7%) cases with a non-cancerous outcome.Within these

patients with PCa, 248/336 (73.8%) were diagnosed with csPCa, and

88/336 (26.2%) were diagnosed with cisPCa. The median value

(IQR) of age, body mass index (BMI), PSA, prostate volume (PV),

and PSAD were 69 (63–75) years, 23.77 (21.80–25.50) kg/m2, 13.83

(9.36–21.61) ng/ml, 47.62 (32.18–67.78) ml, and 0.30 (0.16–0.52)

ng/ml2 of all the patients, respectively. Comparisons of these clinical

variables among the non-cancer, csPCa, and cisPCa patients

revealed that PSA and PSAD levels were significantly higher in

the csPCa group (P < 0.001) (Figures 1A, C). The PV of the non-

cancer group was the biggest followed by the cisPCa and csPCa

groups (P < 0.01) (Figure 1B). After stratifying patients by the PI-

RADS score and PSAD subgroups, the detection rate of csPCa

increased dramatically with an elevated PSAD level and PI-RADS

score (P < 0.001) (Figures 1D, E). These data discovered that the PI-

RADS score and PSAD have potential discriminative ability for

prostate biopsy results.
PI-RADS score and PSAD were
independent predictors of the
prostate biopsy results

First, correlation analysis indicated that the PI-RADS score and

PSAD were two main factors related to PCa and csPCa detection

(Figure S2). Then, the results of univariate analysis revealed that age,

PSA, PV, PSAD, and PI-RADS score were associated factors for

both PCa and csPCa. Because PSAD had strong correlations with

PSA and PV (Figure S2), PSA and PV were excluded from the

multivariable analysis to avoid confounding. The results of

multivariable analysis demonstrated that the PI-RADS score (P <

0.001, OR: 5.724, 95% CI: 4.517–7.253; P < 0.001, OR: 5.199, 95%

CI: 4.039–6.488) and PSAD (P < 0.001, OR: 2.756, 95% CI: 1.560–

4.870; P < 0.001, OR: 4.726, 95% CI: 2.661–8.396) were independent

clinical factors to predict PCa and csPCa, respectively. The detailed

data of univariate and multivariable analyses were concluded

in Table 1.
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Diagnostic performance of the clinical
variables and combined PI-RADS score
with PSAD

First, the PI-RADS score and PSAD were combined

according to the results of multivariable analysis. By plotting
Frontiers in Oncology 04
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ROC curves, the combination of the PI-RADS score and PSAD

presented with the best diagnostic accuracy for PCa (Figure 2A)

and csPCa (Figure 2B) in prostate biopsy compared with any

single clinical variable. Regarding the diagnosis of PCa, the AUC,

sensitivity, and specificity were 0.915 (95% CI: 0.894–0.933),

85.71%, and 87.12%, respectively, for the combined PI-RADS
B C

D E

A

FIGURE 1

Comparisons of the clinical variables among the non-cancer, csPCa, and cisPCa patients: (A) total PSA; (B) PV; (C) PSAD; (D) PI-RADS score;
(E) PSAD subgroups. **P < 0.01; ***P < 0.001; NS, not significant.
TABLE 1 Univariate and multivariable analysis for screening out the independent factors of total PCa and csPCa.

Parameters Univariate analysis Multivariable analysis

OR 95% CI P-value B OR 95% CI P-value

For total PCa

Age (years) 1.059 1.041–1.078 <0.001 0.024 1.024 0.999-1.051 0.064

BMI (kg/m2) 1.000 0.954–1.049 0.991

PSA (ng/ml) 1.037 1.026–1.047 <0.001

PV (ml) 0.973 0.967–0.979 <0.001

PSAD (ng/ml2) 12.154 7.303–20.227 <0.001 1.014 2.756 1.560–4.870 <0.001

PI-RADS score 6.551 5.214–8.231 <0.001 1.745 5.724 4.517–7.253 <0.001

For csPCa

Age (years) 1.063 1.043–1.084 <0.001 0.028 1.028 0.999–1.058 0.055

BMI (kg/m2) 0.977 0.928–1.028 0.375

PSA (ng/ml) 1.049 1.038–1.060 <0.001

PV (ml) 0.967 0.959–0.974 <0.001

PSAD (ng/ml2) 15.438 9.329–25.545 <0.001 1.553 4.726 2.661–8.396 <0.001

PI-RADS score 6.199 4.940–7.779 <0.001 1.633 5.199 4.039–6.488 <0.001
front
PCa, prostate cancer; csPCa, clinically significant prostate cancer; BMI, body mass index; PSA, prostate-specific antigen; PV, prostate volume; PSAD, prostate-specific antigen density; PI-
RADS, prostate imaging-reporting and data system; OR, odds ratio; 95% CI, 95% confidence interval.
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score with PSAD, which was obviously higher than age, PSA,

PV, and PSAD (P < 0.001), but no statistical difference was

observed compared with the PI-RADS score (P = 0.148)

(Table 2). In terms of the csPCa diagnosis, the AUC,

sensitivity, and specificity were 0.942 (95% CI: 0.924–0.957),

85.89%, and 89.06%, respectively, for the combined PI-RADS

score with PSAD; the diagnostic accuracy significantly

outperformed any single clinical variable including the PI-

RADS score (P < 0.001) (Table 2). Above all, the combination

of the PI-RADS score and PSAD received the best diagnostic

performance for the detection of PCa and csPCa in

prostate biopsy.
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PCa and csPCa detection rate in patients
stratified by PI-RADS score and PSAD

Tocounselpatients for reducingunnecessaryprostatebiopsies, an

exact diagnostic threshold value of the PI-RADS score and PSAD is

needed.Then, all patientsweredivided intodifferentgroupsaccording

to the separated PI-RADS score and PSAD subgroups. Subsequently,

we calculated the detection rates of total PCa and csPCa in these

groups, which are exhibited in Tables S2 and S3, respectively. After

careful consideration, 291 patients with “PI-RADS score < 3 and

PSAD < 0.3” were categorized into group 1; 326 patients with “PI-

RADS score≥3 andPSAD<0.3”or “PI-RADSscore <3 andPSAD≥
TABLE 2 Diagnostic accuracy of the clinical parameters for total PCa and csPCa.

Parameters AUC 95% CI Sensitivity Specificity P-value

For total PCa

Age (years) 0.637 0.603-0.670 53.47% 67.00% <0.001

PSA (ng/ml) 0.660 0.627-0.692 57.44% 70.02% <0.001

PV (ml) 0.713 0.681-0.744 60.12% 74.45% <0.001

PSAD (ng/ml2) 0.760 0.729-0.788 63.69% 77.46% <0.001

PI-RADS score 0.909 0.887-0.928 90.48% 80.48% 0.148

PI-RADS score + PSAD 0.915 0.894-0.933 85.71% 87.12% Reference

For csPCa

Age (years) 0.645 0.612-0.678 48.39% 73.85% <0.001

PSA (ng/ml) 0.723 0.692-0.753 66.13% 69.57% <0.001

PV (ml) 0.726 0.694-0.756 76.61% 58.97% <0.001

PSAD (ng/ml2) 0.820 0.792-0.845 75.00% 76.07% <0.001

PI-RADS score 0.922 0.902-0.939 84.27% 88.21% <0.001

PI-RADS score + PSAD 0.942 0.924-0.957 85.89% 89.06% Reference
front
PCa, prostate cancer; PSA, prostate-specific antigen; PV, prostate volume; PSAD, prostate-specific antigen density; PI-RADS, prostate imaging-reporting and data system; csPCa, clinically
significant prostate cancer; AUC, area under curve; 95% CI, 95% confidence interval.
BA

FIGURE 2

ROC curves of clinical variables and combined PI-RADS score with PSAD for the diagnosis of PCa: (A) ROC curves for the diagnosis of total
PCa; (B) ROC curves for the diagnosis of csPCa.
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0.3”were regarded as group 2; and 216 patients with “PI-RADS score

> 3 and PSAD ≥ 0.3” were defined as group 3 (Figure 3A). The

distribution and frequencies of the patients in each group are

summarized in Table S4. We found only 2/291 (0.7%) patients

diagnosed with csPCa in group 1 and only 16/216 (7.4%) patients

diagnosed with non-PCa by prostate biopsy in group 3 (Figure 3B).

Therefore, we established two diagnostic criteria: criterion 1 is “PI-

RADS scored≥ 3orPSAD≥ 0.3”, and the sensitivity, specificity, PPV,

and NPV of criterion 1 were 94.0%, 54.5%, 58.3%, and 93.1% for the

diagnosis of total PCa and 99.2%, 49.4%, 45.4%, and 99.3% for the

diagnosis of csPCa, respectively; criterion 2 is “PI-RADS score >3 and

PSAD ≥ 0.3”, and the sensitivity, specificity, PPV, and NPV of

criterion 2 were 59.5%, 96.8%, 92.6%, and 78.0% for the diagnosis

of total PCa and 71.8%, 93.5%, 82.4%, and 88.7% for the diagnosis of

csPCa, respectively (Table 3). These data suggest that patients with

negative results by diagnostic criterion 1 can almost rule out the

possibility of PCa and, inversely, a high probability of PCa for patients

with positive results by diagnostic criterion 2.
External validation of our results by other
Chinese datasets

Our results were also externally validated in two other

Chinese datasets from the recent report by Tao et al. (14). As
Frontiers in Oncology 06
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we expected, after the patients were categorized into three

groups by the PI-RADS score and PSAD with the method

mentioned in Figure 3A, the frequency distribution histograms

indicated significant discrepancies of patients’ composition

(Figures 3C, D). In the external validation dataset 1, only 7/

104 (6.7%) patients were diagnosed with csPCa in group 1, and

just 8/92 (8.7%) patients were excluded from diagnosis of PCa in

group 3. Similarly, in the second external validation dataset, only

4/101 (3.9%) patients were diagnosed with csPCa in group 1, and

just 7/98 (9.1%) patients were diagnosed with non-cancerous

diseases in group 3 (Table S4). These data illustrated a pretty

good performance of multicenter verifications.
Strategy for avoiding unnecessary
prostate biopsy

Finally, a strategy was established to avoid unnecessary

prostate biopsies (Figure 4). Outpatients with suspicion of PCa

can be stratified by the combination of the PI-RADS score and

PSAD, and patients categorized into group 2 should accept

routine prostate biopsies; patients divided into group 1 can

safely avoid biopsies and carry out active surveillance on

account of only 2/291 (0.7%) csPCa cases that received missed

diagnoses in the current observation. In addition, patients in
B

C D

A

FIGURE 3

Grouping scheme of patients and frequency distribution in each group: (A) grouping scheme of patients by PI-RADS score and PSAD
subgroups; (B) frequency distribution of the patients in different groups; (C, D) frequency distribution histograms of two external datasets.
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group 3 can also take radical or systemic therapy without

prostate biopsies into consideration because only 16/216

(7.4%) patients with non-PCa were observed in group 3 of this

study. However, this may still be full of challenges because of the

irretrievable destruction by radical prostatectomy for patients

without PCa even if they are in group 3.
Discussion

In recent decades, prostate biopsy has been the most

commonly recommended method for the early diagnosis of

PCa, but it has some unavoidable shortcomings. First of all,

prostate biopsy is invasive and can cause postoperative

complications such as sepsis and bleeding (17). Second, the

operation will result in a certain degree of psychological and
Frontiers in Oncology 07
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financial burden to patients. Then, for the patients diagnosed

with csPCa by biopsies, they need to wait a period of time before

radical prostatectomy, and this will increase the probability of

cancer dissemination. Furthermore, because of the possibility of

false-negative biopsy results, some patients have to undergo

repeated biopsies (18). At last, in many studies, the detection rate

of PCa or csPCa is less than 50%, which means a general

phenomenon that lots of patients accepted undue biopsies

(19). Our purpose in this retrospective study is to propose a

strategy for clinicians to obviate needless prostate biopsies.

Serum tPSA examination is the most commonly used tool for

PCa screening. Abnormal non-specific escalation of tPSA is the

primary reason of the unnecessary prostate biopsies (20). Tomake

a triage test of patients prior to biopsy, some risk calculators that

incorporated tPSA have been established, such as Prostate Cancer

Prevention Trial Risk Calculator (21) and European Randomized
FIGURE 4

Flowchart of the strategy for avoiding unnecessary prostate biopsy. *Group 1 patients with PI-RADS score < 3 and PSAD < 0.3; ^Group 2 patients
with “PI-RADS score ≥ 3 and PSAD < 0.3” or “PI-RADS score < 3 and PSAD ≥ 0.3”; #Group 3 patients with PI-RADS score > 3 and PSAD ≥ 0.3.
TABLE 3 Diagnostic accuracy of total PCa and csPCa by different diagnostic threshold.

Diagnostic threshold Sensitivity Specificity PPV NPV Accuracy

For total PCa

PI-RADS scored ≥ 3 or PSAD ≥ 0.3 94.0% 54.5% 58.3% 93.1% 70.5%

PI-RADS score >3 and PSAD ≥ 0.3 59.5% 96.8% 92.6% 78.0% 81.8%

For csPCa

PI-RADS scored ≥ 3 or PSAD ≥ 0.3 99.2% 49.4% 45.4% 99.3% 64.2%

PI-RADS score >3 and PSAD ≥ 0.3 71.8% 93.5% 82.4% 88.7% 87.0%
fro
PCa, prostate cancer; csPCa, clinically significant prostate cancer; PI-RADS, prostate imaging-reporting and data system; PSAD, prostate-specific antigen density; PPV, positive predictive
value; NPV, negative predictive value.
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Study of Screening for Prostate Cancer Risk Calculator (22);

however, studies have proved that it will lead to overdiagnosis

and overtreatment when these calculators are applied in the

Chinese populations, and, as a result, the median or average

level of tPSA is usually higher in Chinese patients compared with

that inWestern cohorts (23, 24). Importantly, the value of mpMRI

was not estimated in these studies. mpMRI is a routine

examination recommended prior to biopsy nowadays, and latest

meta-analyses indicated that the pooled NPV of mpMRI using the

definition of negative MRI (PI-RADS score 1–2) and csPCa

(Gleason score ≥ 3 + 4 = 7) was 90.8% (95% CI: 88.1–93.1%)

for biopsy-naïve men (25). However, the pooled PPV of

suspicious mpMRI for csPCa was only 42% (95% CI: 38–45%)

in the biopsy-naïve group (26). MRI-guided targeted biopsy can

enhance the detection of csPCa and detect significantly fewer

cisPCa than systematic biopsy (27). PSAD is the value of serum

tPSA divided by the PV, and previous studies have demonstrated

that mpMRI combined with PSAD < 0.15 ng/ml2 can improve the

NPV to predict PCa (28, 29). However, these studies were based

onWestern populations with a small sample size, and there is still

a paucity in the data from Chinese patients.

In the present study, we observed the diagnostic value of

patients’ clinical variables and found that PSAD and the PI-

RADS score can independently predict PCa and csPCa of

prostate biopsies. The combination of PSAD and the PI-RADS

score achieved the best diagnostic performance relative to using

a single variable. By setting different diagnostic criteria, we

discovered that patients with “PI-RADS score < 3 and PSAD <

0.3” can safely rule out the diagnosis of csPCa, and we make a

definitive diagnosis of PCa for patients with “PI-RADS score > 3

and PSAD ≥ 0.3”. To reduce unnecessary prostate biopsies, most

of the previous studies discussed the diagnostic threshold with a

high NPV, just like the diagnostic criterion 1 that we described

above. However, we also discussed a diagnostic criterion with a

high PPV. Radical prostatectomy without biopsy is a viable

option despite 16/216 (7.4%) patients with PI-RADS score > 3

and PSAD ≥ 0.3 diagnosed with non-cancerous diseases in this

study. On the one hand, prostate biopsies could produce false-

negative results. In addition, 68Ga prostate-specific membrane

antigen positron emission tomography/computed tomography

(68Ga PSMA PET/CT) is a novel diagnostic modality with

excellent performance for both primary and metastatic lesions

of PCa (30). A recent study has reported that men with PI-RADS

of 4 or 5 combined with a maximum standardized uptake value

(SUVmax) ≥ 9 can denote csPCa with 100% specificity (31). In

addition, the initial successful experience has been released for

25 patients who received radical prostatectomy without prior

biopsy; all these patients got PI-RADS score ≥ 4 in mpMRI and

SUVmax ≥ 4.0 in 68Ga PSMA PET/CT (32). In the future, for

patients with high suspicion of PCa, prostate biopsy may no

longer be the only way for diagnosis before active therapies.
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Our study also has some limitations. First, the suspicious

regions in the mpMRI with a PI-RADS score of 4 or 5 were

detected by cognitive fusion–targeted biopsies, which can produce

inevitable deviation without a real-time intraoperative MRI-

guided system. Second, some important clinical parameters like

DRE and free/total PSA were not analyzed because of too many

irretrievable missing values. Third, although mpMRI images were

independently reviewed by two radiologists, inter-observer

reliability was not assessed. Next, this study was only validated

in few tertiary medical centers, and it should be validated in other

Chinese high-volume hospitals in the future. Last, selection bias

cannot be avoided due to the retrospective nature.
Conclusions

Prostate biopsy is the most commonly used approach for

the initial diagnosis of PCa with several inherent shortcomings.

In this retrospective study, we found that the combination of

the PI-RADS score and PSAD can achieve outstanding diagnostic

performance of PCa. Patients with “PI-RADS score < 3 and

PSAD < 0.3” may safely avoid biopsies and execute active

surveillance, and patients with “PI-RADS score > 3 and

PSAD ≥ 0.3” can also take a radical or systematic therapy

without prostate biopsies into consideration. However, a study

with prospective design is still needed to further confirm our

findings in the future.
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SUPPLEMENTARY FIGURE 1

TherepresentativeimagesofmpMRIofsixpatients: (A)PI-RADSscore1:Normal

peripheralzone,axialT2WIshowsuniformlyhyperintensivesignal intensity,high
b-value DWI and ADC also show no abnormality (white arrow); (B) PI-RADS
score 2: Axial T2WI shows diffuse hypointensity with indistinct margin, high b-
value DWI exhibits slightly hyperintense and indistinct hypointense on ADC

(white arrow); (C) PI-RADS score 3: Axial T2WI exhibits non-circumscribed
moderatehypointensity in left peripheral zone,DWI showsmildly hyperintense

on high b-value and hypointense on ADC (white arrow); (D) PI-RADS score 4:

Axial T2WI shows circumscribed, homogenous moderate hypointense focus
confined in right peripheral zone with greatest dimension <1.5cm, DWI sees

focal obviously hyperintense on high b-value and hypointense on ADC (white
arrow); (E) PI-RADS score 5: Axial T2WI shows non-circumscribed,

homogenous moderate hypointense focus confined with greatest dimension
>1.5cminleft transitionzoneandperipheralzone.highb-valueDWIshowsfocal

markedly hyperintense and apparent hypointense on ADC (white arrow); (F)
Measurement of prostate maximum diameters, green line: anteroposterior
diameter, pink line: longitudinal diameter, brown line: transverse diameter.

SUPPLEMENTARY FIGURE 2

Spearman correlation analysis between clinical variables and biopsy
results indicated PI-RADS score and PSAD were closely related to the

detection of PCa and csPCa. *, P < 0.05; **, P <0.01; ***, P <0.001.
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Introduction: On prostate biopsy, multiparametric magnetic resonance

imaging (mpMRI) and the Prostate Health Index (PHI) have allowed prediction

of clinically significant prostate cancer (csPCa).

Methods: To predict the likelihood of csPCa, we created a nomogram based

on a multivariate model that included PHI and mpMRI. We assessed 315 males

who were scheduled for prostate biopsies.

Results: We used the Prostate Imaging Reporting and Data System version 2

(PI-RADS V2) to assess mpMRI and optimize PHI testing prior to biopsy.

Univariate analysis showed that csPCa may be identified by PHI with a cut-off

value of 77.77, PHID with 2.36, and PI-RADS with 3 as the best threshold.

Multivariable logistic models for predicting csPCa were developed using PI-

RADS, free PSA (fPSA), PHI, and prostate volume. A multivariate model that

included PI-RADS, fPSA, PHI, and prostate volume had the best accuracy (AUC:

0.882). Decision curve analysis (DCA), which was carried out to verify the

nomogram’s clinical applicability, showed an ideal advantage (13.35% higher

than the model that include PI-RADS only).

Discussion: In conclusion, the nomogram based on PHI and mpMRI is a

valuable tool for predicting csPCa while avoiding unnecessary biopsy as

much as possible.

KEYWORDS

prostate cancer, nomogram, multiparametric magnetic resonance imaging (mpMRI),
prostate health index, predicting
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Introduction

Prostate cancer (PCa) is the most frequent cancer among

men for more than half of the globe, and it was the sixth major

cause of death among men in 2020 (1). Although the frequency

of PCa in China is lower than in European and American

countries, it is rising at an alarming pace, which may have a

negative impact on survival rate (2). Possible explanations

include the rising incidence of PSA screening and the

widespread use of multiparametric magnetic resonance

imaging (mpMRI) in the clinic (3). PSA has been the most

significant molecular biomarker for prostate cancer screening

and postoperative follow-up since its discovery in the 1980s (4).

However, the low specificity of PSA inevitably results in many

needless biopsies, and detecting clinically insignificant prostate

cancer is not desirable (5). Moreover, PSA testing mostly reveals

indolent cancers that are unlikely to develop throughout a

patient’s lifetime and that benefit from surgery or radiation

only very infrequently (6).

In recent years, it has been shown that the Prostate Health

Index (PHI), a mathematical formula that integrates total PSA

(tPSA), free PSA (fPSA), and [-2] ProSA (p2PSA), is more

effective than tPSA in the diagnosis of csPCa (7–9). The PHI

blood test was authorized by the US Food and Drug

Administration (FDA) in 2012 to detect PCa with elevated

PSA (10). Prostate MRI is useful in diagnosing suspected

prostate cancer and has a high negative predictive value

(NPV) for csPCa (11). The Prostate Imaging Reporting and

Data System, version 2 (PI-RADS v2), which was introduced

recently, is a powerful tool to identify csPCa needing biopsy and

help locate the lesions of the target (12). If the MRI is positive

(PI-RADS score ≥3), biopsies should be conducted (13).

However, PI-RADS 3 only identified csPCa in ≤20% of

patients (14). In a meta-analysis, the positive predictive value

(PPV) of mpMRI for csPCa was 40%, and the PPV in PI-RADS 4

and 5 lesions was still suboptimal (15). It is not advisable to use

mpMRI alone to screen patients for biopsy (16). To the best of

our knowledge, only a few studies have examined the predictive

power of combining mpMRI with PHI in men with csPCa

(17–19).

Therefore, we performed this study to conduct a novel

nomogram incorporating PHI, mpMRI, and other variables to

predict csPCa in a Chinese population.
Materials and methods

Patients

We performed a single-center study of patients with

abnormal digital rectal examination (DRE) and/or increased

blood tPSA who had biopsies between January 2020 and June
Frontiers in Oncology 02
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2022. Subjects with acute bacterial prostatitis, urinary tract

infections, a history of PCa or a prostate biopsy, or who had

taken any dose of 5-alpha reductase inhibitors were excluded.

Figure 1 illustrates the screening procedure.
Biomarker measurement

The fPSA, tPSA, and p2PSA levels were determined prior to

biopsy using the fully automated immunoassay equipment

Access 2 analyzer (Beckman Coulter, Brea, CA, USA). PHI

was calculated using the formula p2PSA/fPSA×√tPSA. The

percentage of fPSA (%fPSA) was calculated as fPSA/PSA×100,

while the percentage of p2PSA (%p2PSA) was defined as p2PSA/

fPSA × 100. Moreover, PSA density (PSAD) and PHI density

(PHID) were determined as the ratios of PSA/prostate volume

and PHI/prostate volume, respectively.
Multiparametric MRI

Without an intrarectal coil, mpMRI of the prostate was

performed on a 3.0 T GE Signa HDx MR scanner (GE

Healthcare, Milwaukee, USA) prior to biopsy. A senior

abdominal radiologist with more than 8 years of expertise in

prostate MRI and >300 scans yearly reviewed the mpMRI, which

includes T2-weighted imaging (T2WI), diffusion-weighted

imaging (DWI), b values of 0 and 800-1200 s/mm2, and

apparent diffusion coefficient (ADC). The 2015 scoring rules
FIGURE 1

Enrollment and outcomes. The primary analysis included all 531
men. Those who were ineligible for MRIs or PHI, as well as those
with acute bacterial prostatitis, urinary tract infections, or a
history of treatment, were excluded. The final study cohort
consisted of 315 people.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1068893
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mo et al. 10.3389/fonc.2022.1068893
for the PI-RADS V2 were used and a score between 1 and 5 was

assigned (12).
Biopsy protocol

Patients who had 3.0T mpMRI prior to biopsy received

transperineal ultrasound-guided cognitive targeted biopsies for 2-

3 cores based on lesions with PI-RADS(≥3) revealed on mpMRI as

well as systematic biopsies for at least 12 cores using a biplane TRUS

probe (Esaote, Transducer TRT33) and an 18-G disposable needle.

Prostate volume was measured using TRUS during a monitoring

biopsy. The ellipsoid formula (width × height × length × 0.52) was

applied to calculate prostate volume.
Histology

Tissue biopsies were examined by a single dedicated

uropathologist. According to the 2014 consensus criteria from

the International Society of Urological Pathology, PCa was

evaluated as follows: grade group (GG) 1 (Gleason score ≤6),

GG 2 (Gleason score 3 + 4 = 7), GG 3 (Gleason score 4 + 3 = 7),

GG 4 (Gleason score 8), and GG 5 (Gleason score ≥9) (20).

Clinically significant PCa was characterized in prostate biopsy

pathology as GG2 ≥2, which is known to be more prevalent in

the most recent definitions (21, 22).
Ethics approval

The 1964 Declaration of Helsinki and its later amendments

served as the ethical framework for this retrospective

investigation. The local ethics commission decided not to

require participants to provide their informed consent

(Medical Ethics Committee of Taizhou Hospital, Zhejiang

Province, China, K20220838).
Statistical analysis

In the case of numerical variables, descriptive statistics

(median (25th percentile; 75th percentile)) were utilized to

define the entire sample. Percentages and absolute frequencies

were used to represent categorical variables. We used

Kolmogorov-Smirnov test to test the normal distribution of

the continuity variables. For comparisons of continuous

variables, the Mann-Whitney U test was utilized. To compare

qualitative variables, a chi-squared test was used. We

performed ROC analysis to compare the diagnostic accuracy

of mpMRI, individual PSA-derived blood indicators, and a

combination of the two, and we determined the area under the

curve (AUC) and its 95% confidence interval. The DeLong test
Frontiers in Oncology 03
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was employed to evaluate the AUCs of the various prediction

models (23). The baseline characteristics of patients (prostate

volume), laboratory data (PHI, fPSA), and PI-RADS category

were used to develop multivariable logistic models for

predicting csPCa. Using a nomogram, the best prediction

model was presented for clinical use. Bootstrap resampling

(1000 repeats) was utilized to examine both discrimination and

calibration for internal model validation. To assess predictive

accuracy, a bootstrap method was utilized to obtain bootstrap-

corrected estimates of the C-Statistics. Visual and statistical

calibration were examined using the Hosmer-Lemeshow test.

The Youden index was maximized to obtain an ideal threshold

(sensitivity + specificity - 1). IBM SPSS 25.0 (IBM Corp.,

Armonk, NY, USA) was used for statistical analyses. The

results were judged to be statistically significant when the p-

value was <0.05. Using R and the rms and rmda packages, we

were able to visualize nomograms, decision curves, and

calibration curves (version. 4.2.1, R Foundation for Statistical

Computing, Vienna, Austria).
Results

Clinical characteristics of the
study cohort

The clinical characteristics of the patients and the results of

auxiliary examination are shown in Table 1. Overall, in the

diagnostic setting, 194 patients (61.6%) had a positive biopsy.

Patients with negative biopsy and those with PCa on biopsy were

compared in terms of age, PI-RADS score, and all PSA-derived

serum indicators. The median fPSA concentration was

comparable between groups (P = 0.915). Moreover, %fPSA

was lower (12.04 vs. 15.90; P <0.001), while p2PSA, %p2PSA,

PHI, PSAD and PHID were higher (42.68 vs. 24.76; 2.91 vs. 1.01;

28.23 vs. 17.33; 96.99 vs. 53.22; 0.29 vs. 0.17; 2.91 vs. 1.01, P <

0.001) in patients with PCa.

Of these, 158 (50.2%) had csPCa on biopsy (Table 2). To

evaluate csPCa’s capacity to distinguish between patients, ROC

analyses were carried out. Both the PI-RADS score and PSA-

derived biomarkers were substantially associated with the

likelihood of csPCa in univariable logistic analysis, with an

AUC ranging from 0.52 (95% CI: 0.46 to 0.59) for free PSA to

0.83 (95% CI: 0.79 to 0.88) for PHID. As demonstrated in

Table 2, PHID surpassed both the PI-RADS score (AUC: 0.75

(95% CI: 0.70 to 0.81)) and the tPSA (AUC: 0.63 (95% CI: 0.57 to

0.69)) in terms of diagnostic accuracy. In terms of PHI, the

optimal cutoff was 77.77, with a corresponding sensitivity of 0.76

(95% CI: 0.68 to 0.82) and specificity of 0.73 (95% CI: 0.65 to

0.80). With a sensitivity of 0.70 (95% CI: 0.62 to 0.77) and

specificity of 0.83 (95% CI: 0.76 to 0.89), the optimum threshold

for PHID was found to be 2.36. The best cut-off value was

established to be a PI-RADS score of 3, with a sensitivity of 0.85
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TABLE 2 AUC comparing patients with clinically significant prostate cancer (csPCa) versus patients with negative biopsy or clinically insignificant
PCa (No csPCa).

No csPCa csPCa
Studied Variables (n = 157) (n = 158) P value AUC (95% CI) Cut-off Sensitivity Specificity

Age (median [IQR]), years 68.00 [63.00, 73.00] 70.00 [65.00, 73.00] 0.147 0.55 (0.48-0.61) 69.5 0.51 0.60

MRI PI-RADS (%) <0.001 0.75 (0.70-0.81) 3 0.85 0.52

1 9 (5.7) 1 (0.6)

2 72 (45.9) 22 (13.9)

3 47 (29.9) 50 (31.6)

4 25 (15.9) 52 (32.9)

5 4 (2.5) 33 (20.9)

Prostate volume (median [IQR]), mL 45.11 [30.28, 71.98] 32.64 [23.71, 40.46] <0.001 0.69 (0.63-0.75) 17.66 0.98 0.03

tPSA (median [IQR]), ng/mL 8.70 [5.19, 14.06] 10.91 [7.28, 21.22] <0.001 0.63 (0.57-0.69) 17.57 0.32 0.87

fPSA (median [IQR]), ng/mL 1.42 [0.87, 2.13] 1.42 [0.84, 2.52] 0.521 0.52 (0.46-0.59) 2.02 0.37 0.75

p2PSA (median [IQR]), pg/mL 26.81 [14.55, 42.68] 46.16 [29.27, 70.82] <0.001 0.71 (0.66-0.77) 35.26 0.68 0.66

%fPSA (median [IQR]) 15.85 [10.75, 22.16] 11.66 [8.72, 15.21] <0.001 0.67 (0.61-0.73) 50.03 0.02 1

%p2PSA (median [IQR]) 19.58 [12.69, 28.67] 29.72 [22.43, 41.09] <0.001 0.71 (0.65-0.77) 22.29 0.76 0.62

PHI (median [IQR]) 55.79 [38.29, 80.16] 100.20 [78.23, 156.05] <0.001 0.81 (0.75-0.85) 77.77 0.76 0.73

PSAD (median [IQR]), ng/mL/mL 0.18 [0.11, 0.29] 0.34 [0.21, 0.75] <0.001 0.74 (0.68-0.79) 0.26 0.65 0.71

PHID (median [IQR]) 1.13 [0.77, 2.10] 3.36 [2.09, 5.25] <0.001 0.83 (0.79-0.88) 2.36 0.70 0.83

PI-RADS + volume <0.001 0.80 (0.75-0.85) 0.81 0.71

PI-RADS+ PHI <0.001 0.85 (0.81-0.89) 0.79 0.81

PI-RADS + volume+PHI <0.001 0.87 (0.84-0.91) 0.81 0.82

PI-RADS+volume +PHI+ fPSA <0.001 0.88 (0.85-0.92) 0.83 0.83
Frontiers in Oncology
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The AUC of the matching ROC curve with the 95% confidence interval (CI) is provided for each variable. According to the Youden index maximization, the best threshold for the diagnosis
of PCa is provided with the achieved sensitivity and specificity. Cases are defined as individuals with values equal to or more than the threshold, with the exception of prostate volume, which
is the inverse. PI-RADS, Prostate Imaging Reporting and Data System; tPSA, total prostate specific antigen; p2PSA, [−2]proPSA; %fPSA,free PSA/total PSA;%p2PSA, p2PSA/free PSA; PHI,
prostate health index; PSAD, PSA density, PSA/Prostate volume; PHID, PHI density, PHI/Prostate volume; AUC, area under curve; ROC, receiver operating characteristic.
TABLE 1 Demographic and clinical characteristics of the study population.

Overall Negative biopsy PCa
Parameter (n = 315) (n = 121) (n = 194) P value

Age (median [IQR]), years 69.00 [64.00, 73.00] 68.00 [61.00, 73.00] 69.00 [65.00, 73.00] 0.118

MRI PI-RADS (%) <0.001

1 10 (3.2) 8 (6.6) 2 (1.0)

2 94 (29.8) 57 (47.1) 37 (19.1)

3 97 (30.8) 36 (29.8) 61 (31.4)

4 77 (24.4) 17 (14.0) 60 (30.9)

5 37 (11.7) 3 (2.5) 34 (17.5)

Prostate volume (median [IQR]), mL 36.04 [26.63, 56.58] 50.40 [32.55, 73.63] 32.94 [24.36, 43.08] <0.001

tPSA (median [IQR]), ng/mL 9.97 [6.09, 16.54] 8.66 [5.03, 14.26] 10.71 [7.04, 18.97] 0.001

fPSA (median [IQR]), ng/mL 1.42 [0.85, 2.31] 1.43 [0.89, 2.13] 1.39 [0.84, 2.43] 0.915

p2PSA (median [IQR]), pg/mL 36.06 [21.31, 57.14] 24.76 [13.04, 40.80] 42.68 [26.66, 67.74] <0.001

%fPSA (median [IQR]) 13.36 [9.62, 19.22] 15.90 [10.75, 22.72] 12.04 [9.04, 16.73] <0.001

%p2PSA (median [IQR]) 25.02 [16.54, 35.80] 17.33 [12.31, 26.14] 28.23 [20.98, 39.05] <0.001

PHI (median [IQR]) 78.40 [52.33, 118.11] 53.22 [35.86, 76.63] 96.99 [70.12, 150.43] <0.001

PSAD (median [IQR]), ng/mL/mL 0.24 [0.15, 0.51] 0.17 [0.10, 0.28] 0.29 [0.19, 0.66] <0.001

PHID (median [IQR]) 2.09 [1.03, 3.63] 1.01 [0.70, 1.79] 2.91 [1.85, 4.80] <0.001
nt
PI-RADS, Prostate Imaging Reporting and Data System; tPSA, total prostate specific antigen; p2PSA, [−2]proPSA; %fPSA,free PSA/total PSA;%p2PSA, p2PSA/free PSA; PHI, prostate
health index; PSAD, PSA density, PSA/Prostate volume; PHID, PHI density, PHI/Prostate volume.
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(95% CI: 0.79 to 0.90) and a specificity of 0.52 (95% CI: 0.44 to

0.60) (Table 2).
Correlation between PHID and
PI-RADS score

The distribution of PHID and prostate biopsy pathology

findings classified by PI-RADS score grade is shown in Figure 2.

Patients with PI-RADS 4 presented an increased likelihood of

harboring csPCa compared with those with PI-RADS 1 (OR

18.72 (95% CI: 2.25-156.01); P = 0.0068), PI-RADS 2 (OR 6.81

(95% CI: 3.47-13.37); P < 0.0001), and PI-RADS 3 (OR 1.96 (95%

CI: 1.05-3.64); P = 0.0344). Patients with PI-RADS 5 presented an

increased likelihood of harboring csPCa compared with those with

PI-RADS 1 (OR 74.25 (95%CI: 7.36-749.46); P = 0.0003), PI-RADS

2 (OR 27.00 (95% CI: 8.62-84.61); P < 0.0001), and PI-RADS 3 (OR

7.75 (95% CI: 2.55-23.57); P = 0.0003).
Nomogram development and internal
validation for predicting csPCa

Multivariable logistic analysis using PI-RADS, fPSA, PHI,

and prostate volume yielded an AUC of 0.882 (95% CI: 0.845 to

0.920), and a nomogram was created to display these findings

visually (Table 2, Table 3, and Figure 3). The PHI and mpMRI

nomograms were internally tested using a 1000 bootstrap

resampled dataset. The computed bootstrap-corrected C-index

of 0.877 demonstrates excellent discriminative power. According

to the calibration plot, there was a high degree of agreement

between the calculated and observed probabilities (Figure 4). As

measured by the Hosmer-Lemeshow goodness-of-fit test, the

model was calibrated well (P = 0.829). Decision curve analysis
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(DCA) was carried out to verify the nomogram’s clinical

applicability, and the results showed a maximum advantage

(13.35% higher than the model that include PI-RADS only)

(Figure 5). Furthermore, as shown in Figure 5, the net clinical

benefit was 0.3206 based on the 50% likelihood threshold of

what was expected.
Discussion

To our knowledge, this is a novel viable prediction

nomogram model based on PHI and mpMRI that may

enhance csPCa detection, greatly lowering PCa overdiagnosis

prior to prostate biopsy in an Asian population. The net clinical

benefit in this research was 0.3206, indicating that the

nomogram would increase the identification of csPCa by

32.06%, leading to fewer needless biopsies when compared to

a threshold possibility of 50%.

A change in cancer diagnostic priorities from detecting all

cancers to focusing on the identification of potentially aggressive

but curable cancers and minimizing the detection and treatment

of indolent disease has resulted from the recognition of PCa

overdiagnosis and overtreatment (24). In recent years, numerous

novel biomarkers, including PHI, have shown promise in

distinguishing clinically significant from inconsequential PCa

more reliably than PSA (25–27). Extensive multicenter research

has shown that employing a PHI threshold of 24, could have

prevented 36%–41% of needless biopsies and 17%-24% of

overdiagnosed indolent cancers (28). Additionally, the PHI has

been verified in Asian populations. According to the results of a

multicenter study conducted in China, Na et al. revealed that

using a PHI of ≤35 as the threshold would have resulted in the

missed diagnosis of 8% of PCa in prostate biopsies and 4% of

high-grade lesions (29). The efficacy of PHI was analyzed across
FIGURE 2

Violin plot showing the distribution of PHID according to the PI-RADS v2 score. Data are shown as the median (bold horizontal line in the box)
and Q1 and Q3 (borders of the box). Q1 = 25th percentile; Q3 = 75th percentile; IQR (interquartile range) = Q3-Q1..
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many Asian populations in a multicenter study. Using PHI

criteria of 25, 25-35, 35-55, and >55, higher-grade PCa

(Gleason 7) was found to be diagnosed in 1.0%, 1.9%, 13%,

and 30% of Asian males, respectively (30).

The success of PSAD encouraged several authors to assess

the use of PHID, which was originally reported in 2014 by

Mearini et al. (31). The comparison between PHID and PHI

showed equivocal findings. In a large cohort of naïve biopsy

patients in whom PHI and PHID were compared, PHI seemed to

perform better than PHID, especially in those with small

prostates (under 40 cc) (32). Additionally, Garrido et al., in a

cohort of patients with tPSA less than 10 ng/ml, revealed that

PHID had a better diagnostic performance than PHI for overall

PCa detection, not specifically for csPCa (33). However, in

contrast to these findings, Tosoian et al. observed a

considerably higher AUC for PHID (0.84 vs. 0.76 for PHI) in

csPCa, leading to future research investigating its value (34).

More recently, Druskin et al. reported a higher AUC for PHID

(0.82) versus PHI (0.79) in the diagnosis of csPCa on biopsy

(35). Our results also showed that PHID performed better than
Frontiers in Oncology 06
79
PHI, with AUCs of 0.83 and 0.81, respectively. Finally, Chiu et al.

found that combining PHI and prostate volume (as PHID) is an

excellent indicator of csPCa with an AUC of 0.82. For csPCa,

PHID was most effective in preventing unnecessary biopsies

(43.7%), achieving 90% sensitivity, and missing the fewest cases

(8.5%) when PHID was ≥0.67 (25).

However, these studies did not include prostate MRI, a

crucial technology that is increasingly being used in PCa

diagnosis. The American Urological Association (AUA)

concurs that lesions discovered on prostate mpMRI with PI-

RADS ≥3 should be biopsied immediately and that biopsy of PI-

RADS 3 lesions should not typically be postponed (36). The PPV

of prostate mpMRI, however, is not optimal. Vendrink et al.

discovered that 17%, 34%, and 67% of patients with PI-RADS 3,

4, and 5 lesions were diagnosed with csPCa, respectively (37).

Together, PHI and MRI have been shown to improve diagnostic

performance, allowing doctors to forego needle biopsies while

still detecting the presence of advanced PCa. Hsieh et al.

demonstrated in a prospective Asian cohort study that if

prostate biopsies were only conducted in individuals with PI-

RADS ≥3 and PHI ≥30 and just 1 patient with csPCa was

excluded, roughly half of these biopsies could be avoided (22).

Druskin et al. showed in a study of 104 men that the PI-RADS

scores were complimentary to PHID and that the great majority

of csPCa patients were diagnosed with a PI-RADS score of 1 or

2, a PHID ≥0.44 or, if a PI-RADS score of 3, 4, or 5 (35). These

data confirm our hypothesis that a unique nomogram based on
FIGURE 3

The nomogram was employed by determining the patient’s
location on each factor axis. The scores for each element are
summed to obtain a total score, which is depicted on the lower
axis and corresponds to the likelihood of csPCa. PI-RADS,
Prostate Imaging Reporting and Data System; fPSA: free PSA;
PHI: prostate health index; tPSA: total PSA; csPCa: clinically
significant prostate cancer..
TABLE 3 Multivariate logistic regression analysis of predictors in the
prediction of csPCa.

Predictor Odds Ratio 95% CI. coefficient P value

MRI PI-RADS 6.50 3.43-12.33 1.87 <0.0001

Prostate volume 0.42 0.27-0.63 -0.88 <0.0001

PHI 4.59 2.83-7.44 1.52 <0.0001

fPSA 1.23 1.04-1.46 0.21 0.0164
PI-RADS, Prostate Imaging Reporting and Data System; csPCa, clinically significant
prostate cancer; PHI, prostate health index.
FIGURE 4

The calibration curve compares the accuracy of the original
prediction model (“apparent”) (light dashed red line) to the
bootstrap model (“bias corrected”) (solid green line) in predicting
the likelihood of csPCa. The ideal calibration is shown by the
diagonal blue dot line, which serves as the reference line. The
abscissa indicates the anticipated value determined from the
nomogram, whereas the ordinate reflects the observed actual
probability value. Small vertical lines at the top of the graph
represent the distribution of the expected probability.
Overprediction occurs when an estimate falls below the
reference line, while underprediction occurs when an estimate
rises above the reference line. In an ideal situation, these two
lines should be close to the diagonally dashed blue line.
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PHID/PHI and multiparametric MRI might be a valuable tool

for predicting csPCa.

To our knowledge, this is a novel feasible predictive

nomogram model based on PHI and mpMRI for assessing the

PHI and PI-RADS scoring systems as a method of avoiding

needless needle biopsies and combating overdiagnosis. As a

result, the integration of PHI and mpMRI shows potential for

csPCa assessment prior to prostate biopsy, which might improve

patient quality of life and save healthcare costs. In the current

study, we created and internally verified a novel nomogram

based on PHI and MRI, achieving excellent csPCa detection

accuracy (AUC 0.882). In addition, when compared to the other

examined models, the highest net advantage for csPCa detection

was achieved with a substantial cutoff possibility. In addition, the

net clinical benefit was 0.3206 based on the 50% likelihood

threshold of what was projected to happen, indicating that the

nomogram would increase the detection of csPCa by 32.06%,

hence lowering the number of needless biopsies.

Our results must be evaluated against some constraints.

First, over the past few years, csPCa has been defined in a

variety of different ways, and there is still no universally agreed

upon definition. Overall, the most recent criteria seem to favor a

Gleason score of >6 (ISUP >1); hence, we utilized that to

designate csPCa in our analysis (38). Second, the analysis was

based on prostate biopsy pathology, which is a drawback of this

study. Because some individuals in this group who were

diagnosed with prostate cancer selected brachytherapy or

radiotherapy, the postoperative pathology of prostate cancer

could not be collected, and csPCa may have been

underestimated. The pathological upgrading rates of

systematic biopsy alone, targeted biopsy alone, and targeted

biopsy paired with systematic biopsy were 16.8%, 8.2%, and
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3.5%, respectively (39, 40). Furthermore, in our investigation,

targeted biopsy was performed using cognitive registration,

which may be less accurate than MR/US fusion systems.

In conclusion, our PHI- and mpMRI-based nomograms are

good prediction tools that may enhance the identification of

patients with csPCa while avoiding unnecessary biopsies as

much as possible. However, further research is required to

externally confirm this nomogram and enhance csPCa detection.
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Background: Evaluating and displaying prostate cancer through non-invasive

imagery such as Multi-Parametric MRI (MP-MRI) bolsters management of

patients. Recent research quantitatively applied supervised target algorithms

using vectoral tumor signatures to spatially registered T1, T2, Diffusion, and

Dynamic Contrast Enhancement images. This is the first study to apply the

Reed-Xiaoli (RX) multi-spectral anomaly detector (unsupervised target

detector) to prostate cancer, which searches for voxels that depart from the

background normal tissue, and detects aberrant voxels, presumably tumors.

Methods: MP-MRI (T1, T2, diffusion, dynamic contrast-enhanced images, or

seven components) were prospectively collected from 26 patients and then

resized, translated, and stitched to form spatially registered multi-parametric

cubes. The covariance matrix (CM) and mean m were computed from

background normal tissue. For RX, noise was reduced for the CM by filtering

out principal components (PC), regularization, and elliptical envelope

minimization. The RX images were compared to images derived from the

threshold Adaptive Cosine Estimator (ACE) and quantitative color analysis.

Receiver Operator Characteristic (ROC) curves were used for RX and

reference images. To quantitatively assess algorithm performance, the Area

Under the Curve (AUC) and the Youden Index (YI) points for the ROC curves

were computed.

Results: The patient average for the AUC and [YI] from ROC curves for RX from

filtering 3 and 4 PC was 0.734[0.706] and 0.727[0.703], respectively, relative to

the ACE images. The AUC[YI] for RX from modified Regularization was 0.638

[0.639], Regularization 0.716[0.690], elliptical envelope minimization 0.544

[0.597], and unprocessed CM 0.581[0.608] using the ACE images as

Reference Image. The AUC[YI] for RX from filtering 3 and 4 PC was 0.742

[0.711] and 0.740[0.708], respectively, relative to the quantitative color images.

The AUC[YI] for RX from modified Regularization was 0.643[0.648],

Regularization 0.722[0.695], elliptical envelope minimization 0.508[0.605],
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and unprocessed CM 0.569[0.615] using the color images as Reference Image.

All standard errors were less than 0.020.

Conclusions: This first study of spatially registered MP-MRI applied anomaly

detection using RX, an unsupervised target detection algorithm for prostate

cancer. For RX, filtering out PC and applying Regularization achieved higher

AUC and YI using ACE and color images as references than unprocessed CM,

modified Regularization, and elliptical envelope minimization.
KEYWORDS

anomaly and outlier detection, multi-parametric MRI, prostate cancer, tumor
detection, regularization, principal component analysis, image analysis, color analysis
Introduction

Optimal prostate cancer (PCa) management requires an

accurate evaluation of potential tumor aggressiveness (1–3).

Several clinical indicators (4–17), such as prostate specific

antigen (PSA) (7–9), seminal vesicle involvement (10, 11),

tumor volume (12–16), extraprostatic extension and other

MRI features (17–21), and the Gleason score (22) predict

clinical outcomes such as biochemical recurrence after

treatment (4–6) and cancer metastasis (10, 11, 14). However,

some data, such as PSA (8), are not consistently predictive of

outcome. By interpreting multi-parametric MRI using the

Prostate Imaging Reporting and Data System (PI-RADS)

protocol (17–20), radiologists apply a series of rules to

generate a PI-RADS score for the lesion. Visual inspection and

assessment of imaging or histology slices rely on the experience

and judgment of radiologists and pathologists (17–20), possibly

creating inconsistent evaluations due to inter-reader variability.

A more objective and quantitative approach could reduce

such variability.

To achieve this, there is interest in quantitatively applying and

assessing supervised target algorithms to spatially registered T1,

T2, diffusion, and dynamic contrast enhancement images at the

voxel level (23–28). Previous research examined tumors using

vectoral tumor signatures that were inserted into supervised target

algorithms applied to spatially registered MRI hypercubes. The

supervised target detection algorithms applied to (23–28)

assessing prostate cancer were adapted from remote sensing

applications designed to analyze hyperspectral images generated

from airborne platforms. The spectral signature helps discriminate

tumors (or targets in the case of remote sensing) from normal

tissue (or backgrounds). Instead of exploiting the unique spectral

content of a target, remote sensing can also peruse an image for

candidate targets by examining and finding pixels (or voxels) that

statistically depart from the background, also known as anomaly
02
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detection. Although less specific than supervised target detection,

anomaly detection (29–31) can find unsuspected targets but is also

subject to detecting additional false positives. For multispectral or

hyperspectral images, the commonly used algorithm is called

Reed-Xiaoli (RX) (32) and computes the magnitude of a voxel’s

vector distance (in whitened space) from the background or

normal prostate. The larger the RX value, the more the voxel

departs from normal tissue. A hypersphere decision surface

surrounding the background provides a criterion for whether a

voxel is normal (inside the hypersphere) or anomalous (outside

the hypersphere).

Anomaly detection has also been applied to medical images

(33–38). However, this study significantly differs from previous

efforts. The background (normal prostate) is characterized by

second-order statistics such as a multi-dimensional covariance

matrix and mean, not features derived through spatial

processing. Specifically, most of the other studies extracted

features from images derived in a single modality, unlike the

work described in this manuscript. Previously, extra dimensions

were added (37, 38) through spatial processing from a single

modality. In another study, anomaly detection followed the

temporal evolution (35) of a contrast agent from a single

modality and considered time to be the “fourth dimension.” In

this study, voxels from structural (T1, T2), dynamic contrast

enhancement, and diffusion images composed the “fourth

dimension.” The RX algorithm is purely spectral and does not

require spatial processing. In addition, other studies employed

deep learning and artificial intelligence approaches, unlike the

present work, which used a faster, simpler algorithm (RX). The

present work, unlike deep learning approaches that require

retraining, can more easily be adapted to clinics that employ

different magnetic fields and pulse sequences (23) by using

whitening –dewhitening transforms.

This study of spatially registered multi-parametric MRI is

the first to apply an unsupervised target detection for prostate
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cancer, specifically the RX algorithm, that does not use a tumor

signature. The covariance matrix (CM) and mean background

vector proscribes the decision surface for RX, an anomaly

detector. The anomaly detector searches for voxels that depart

from the normal tissue, or background. Such an anomaly

detector may be sensitive to both higher and lesser

vascularized regions of the tumor and provide a more

complete assessment of the lesion.
Method and materials

Overall summary

Figure 1 shows schematically the procedures for computing

anomaly detection and generating the receiver operator

characteristic (ROC) curve. First, the MRI images are

collected, resized, translated, resampled, and stitched together

to assemble spatially registered hyperspectral image cubes. The

normal prostate is outlined to help form a mask that is applied to

the hyperspectral image cubes to aid calculations for RX (red

outline, arrow) and Adaptive Cosine Estimator (31) or ACE

(blue outline, arrow), a supervised target detection algorithm.

The normal prostate mask aids the hyperspectral statistics
Frontiers in Oncology 03
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computation for the normal prostate and delineates the

normal prostate reference mask (orange arrow) for the ROC

calculations. The color (green outline) scheme, specifically the

RGB (red, green, and blue channels), is assigned to the washout

from the dynamic contrast enhancement and the high B from

the diffusion weighted images, respectively. The colors are

quantified using CIELAB computations (24). Color/CIELAB is

used to display tumors, to generate a Reference Mask.

Thresholds applied to the ACE (blue outline) and CIELAB

color (green outline, arrow) calculations help form two

independent tumor reference image masks that are used for

the ROC calculation (yellow outline). A signature of the tumor is

taken from the hyperspectral image cube and inserted into the

ACE calculation. Four options were examined for reducing noise

in the covariance matrix for the RX calculation (red outline):

principal component filtering, regularization, modified

regularization, and the unprocessed covariance matrix

(red outline).

The Methods and materials section qualitatively describes

the individual components, namely the spatial registered

hypercube assembly, reference mask, anomaly detector

generator, and assessment. The Appendix summarizes the

mathematics used to generate the components. More details

can be found in the cited references.
FIGURE 1

Schematic overview of processes that need to generate ROC curve (yellow outline). A spatially registered hypercube (purple outline, arrow) is
composed of MRI modalities. Reference mask options include ACE (blue outline) and CIELAB (green outline). Detection map from the RX
computation (red outline, arrow).
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Spatial registered hypercube assembly:
Study cohort

The Cancer Imaging Archive (TCIA) (39, 40), affiliated with the

National Institutes ofHealth (NIH), collected and stored patient data

from prostate tumor MRI and histology from whole-mount

prostatectomy specimens. This study followed the Declaration of

Helsinki (as revised in 2013). Since the imageswere anonymized, this

investigationwas determined to be IRB-exempt. This study followed

the Health Insurance Portability and Accountability Act guidelines.

A total of 26 patients were included. All patients had biopsy-proven

adenocarcinomaof theprostate,withamedianpatient ageof 60years

(range, 49 to 75 years), amedian PSA of 5.8 ng/ml (range, 2.3 to 23.7

ng/ml), and a median GS of 7 (range, 6 to 9). Eighteen of the 26

patientshad tumors larger than1cc.This studyplacedno restrictions

on tumor location within the prostate. Robotic-assisted radical

prostatectomy was performed at a median time of 60 days

(minimum 3 days, maximum 180 days) following MRI without

any intervening treatment.
Spatial registered hypercube assembly:
Whole mount prostatectomy
and histology

The whole mount prostatectomy histology has previously been

described indetail and is very briefly summarized (41–43). Following

radical prostatectomy, the specimen was fixed at room temperature

in formalin for 2 to 24 h and then placed in a customized 3D mold

that is based onMRI and sliced in sectionswith a separation of 6mm

in the axial direction, corresponding to the MRI axial plane section.

The individual tumor foci, dimensions, andGleason scores from the

histology slides were independently determined by two experienced

pathologists who were blinded to the MRI results.
Spatial registered hypercube assembly:
Magnetic resonance imaging

TheMRI collectionwas composed of structural (T1, T2) images,

diffusion-weighted images (DWIs), and dynamic contrast-enhanced

(DCE) images. The pulse sequences were described in earlier studies

(41–43). ThisMRIprotocol included triplanarT2Wturbo spin echo,

DWMRI, and axial pre-contrast T1-weighted axial 3D fastfield echo

DCE MRI sequences. A prior study (26) described their detailed

sequence parameters.
Spatial registered hypercube assembly:
Image processing, pre-analysis

DCE images consist of a time series at fixed locations in the

prostate, encompassing the entire prostate. These images display
Frontiers in Oncology 04
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the evolution in time of contrast material over several hundred

seconds following injection. The DCE shows contrast uptake in

the tissues. By analyzing the DCE and exploiting the unique

tumor physiology, a portion of tumors may be identified. The

tracer concentration in the tissue that supplies and empties

through the tumor vasculature is described by a simple two

compartment model (23, 44, 45). For times greater than the time

to reach the peak uptake of the contrast material in a tumor (>50

s), every voxel was fitted with an exponentially decaying function

to form the washout (kep) images and the probability likelihood

(prob) images.

All MRI images were digitally resized (23–28) to 1 mm

resolution in the transverse direction. Using the known location

of the patient’s position on the table, all slices were resized to

6 mm spacing and aligned using resampling. The Dynamic

Contrast Enhancement images were treated as the reference

for spatial registration. Due to the short time intervals between

scan types (<20 min), small rigid adjustments (minor transverse

translation) were applied to the structural, diffusion, and DCE

images. A “cube” is composed of stacked individual slices that

were scaled, translated, and resliced to be spatially registered at

the pixel level. These “ three-dimensional” (two transverse

directions plus a spectral dimension composed of MP-MRI

sequences) cubes were “stitched” together into a narrow three-

dimensional hypercube to depict the entire prostate and other

tissues in the field of view of the MRI scan. This stitching, or

mosaicking, follows the approach used in remote sensing, in

which large areas are stitched together. Mosaicking or stitching

cubes greatly increases the processing speed for handling high-

dimensional data. The spectral content of the hypercube had

seven components (23–28): T1 (pre-contrast), T1 (maximum

contrast), T2, ADC, DWI-high B (B = 1,000 s/mm2), Washout or

kep from DCE.
Anomaly detector generator: Anomaly
detector (RX)

An anomaly detector (29–31) examines and computes

statistics, such as mean value and covariance matrix, that

characterize a background (the normal prostate organ) and

identifies targets (tumor, benign prostatic hyperplasia) by

noting voxels that quantitatively depart from the background.

In contrast, supervised target detection uses a target signature to

help distinguish a target from the background. This study, like

many that examine multi- and hyperspectral images, applies the

RX (32) algorithm to detect anomalous voxels. The RX

algorithm queries each voxel and computes the voxel value

and background statistics for all components, specifically the

covariance matrix and mean. A voxel’s RX value (32) is the

voxel’s Mahalanobis distance (Euclidean distance in whitened

space) from the background (normal prostate) mean. A voxel’s

large RX value shows a large deviation from the background. The
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RX decision surface is a hypersphere with background residing

inside a sphere and anomalies outside. The covariance matrix

corrects and accounts for correlations among the different

components (for example, the correlation between ADC and

DWI) to get a true measure of the aggregate contribution of each

component to the deviation of the voxel from the background.

Actual data fails to follow the ideal RX probability distribution,

namely a chi-square distribution (32) requiring ad-hoc anomaly

cutoff thresholds or employing acceptable false alarm rates. The

Appendix summarizes some of the mathematics behind the RX

algorithm. For more details, see references (29–32).
Anomaly detector generator:
Filtering noise

Computing the RX covariance matrix generates principal

components (46). Principal components are linear combinations of

all MRI components but are orthogonal or totally decorrelated from

each other. The principal components are ordered based on their

eigenvalues or statistical variation. Well-resolved images have large

eigenvalues and high variation. In contrast, noisy principal

components have small eigenvalues. Noise is reduced by filtering

and eliminating the noisy (low eigenvalue) principal components,

resulting in a more accurate RX calculation. The Appendix

summarizes some of the mathematics behind the filtering of

principal components. For more details, see references (27, 28, 47).
Anomaly detector generator:
Regularization and shrinkage

Regularization is another way to correct for the

imperfections of the computed covariance matrix. The

statistics describing the background (normal prostate) should

follow a normal distribution. However, the analytical formula for

the covariance matrix results in only an approximation. The goal

of shrinkage regularization (27, 28, 48) is to perturb the original

covariance matrix CM(g) by mixing in a diagonal matrix with a

mixing parameter g to generate a regularized or modified

regularized covariance matrix. The appropriate g is chosen to

maximize the normal distribution. Regularized or modified

regularized covariance matrix generation follows the same

procedure but differs in the mixing diagonal matrix. The

Appendix summarizes some of the mathematics behind

regularization. For more details, see references (27, 28, 48).
Anomaly detector generator: Elliptical
volume minimization

Elliptical volume minimization (EVM) (49) provides another

approach for reducing the effects of noise in the covariance matrix
Frontiers in Oncology 05
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calculation. EVM does not use an analytical solution. Instead, EVM

sequentially removes 10% of randomly chosen pixel searches and

computes and records the hypervolume elliptical volume for the

remaining90%of theprostatepixels.Theminimumelliptical volume

after the search is chosen, presumably reducing the effects of the 10%

aberrant voxels.
Reference mask: Color
quantification: CIELAB

Perceiving color is a neuro-psychological phenomenon that

depends on the observer and display (50–52). Objectively

quantifying color to assess images is, therefore, fraught with

challenges. However, considerable empirical research and effort

have allowed for the conversion of color perception into

quantitative metrics, specifically by using the CIELAB color space,

also referred to the asL*a*b* color space (50–52). CIELAB is designed

to relate to the CIE standard observer. The CIE standard observer is

generated from color matching experiments conducted under

laboratory conditions. The CIELAB is designed to be independent

of any device, such as a computer monitor or a printer. It is based on

theopponent colormodel ofhumanvision,where red andgreen form

anopponentpair, andblueandyellowformanopponentpair.Color is

described by three values:L* for perceptual lightness anda* and b* for

the four unique colors of human vision: red, green, blue, and yellow.

The L* defines black at 0 and white at 100. The a* axis follows the

green–red opponent colors, with negative values toward green and

positive values toward red. The b* axis represents blue–yellow

opponents, with negative numbers toward blue and positive toward

yellow. Yellow for this study is related to tumor in this study and is of

most interest. The Appendix summarizes some of the mathematics

behind coloring. For more details, see references (50–52).
Reference mask: ACE

A target, such as a tumor, can be characterized by its spectral

signature. The spectral signature is a vector whose components

are values from each of the MRI modalities. The tumor signature

differs from the background (normal prostate) vector. The

difference between the tumor and normal prostate vectors is

exploited by supervised target algorithms. The adaptive cosine

estimator (ACE) is one example of supervised target detection.

The Appendix summarizes some of the mathematics behind

ACE. For more details, see references (22–28, 31).
Assessment: Receiver operator
characteristic

The receiver operator characteristic (ROC) curve (53)

evaluates the performance of a binary target detection
frontiersin.org
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algorithm, specifically the RX anomaly detector and its variants

(filtering, regularization). In this study, for a given RX anomaly

detector threshold, each voxel in normal tissue is classified as

either a target (above the RX threshold) or a normal prostate

(below the RX threshold). This study uses two types of reference

images, namely ACE (threshold = 0.65) and CIELAB (threshold

= 0.35), to depict the targets. The ROC curve displays the

sensitivity (how well RX characterizes targets) and the 1-

Specificity (how well RX characterizes background) for all RX

thresholds. The area under the curve (AUC) from the ROC

curve and the Youden Index (YI) or maximum accuracy

summarize RX performance. The Appendix summarizes some

of the mathematics behind the ROC curve. For more details, see

reference (53).
Reference mask and assessment:
Reference masks/threshold cutoffs

Ideally, a “ground truth” imagemaskdepicts theactual locations,

sizes, and shapes of the tumors. Current practice attributes “ ground

truth” to the pathologist’s assessment andmarkings on the histology

slides derived from a whole-mount prostatectomy. Pathology

evaluation is acceptable for Gleason score and tumor volume

determinations. However, pathology assessment of the histology

for tumor location and position for MRI suffers from a few

limitations. The histology preparations can result in distortions,

shrinkage, and tearing. Tissues imaged by MRI are supported by

muscles and other soft tissues and subject to gravity, further

complicating their registration to histology slides. Due to the

absence of any registration points, it is impossible to precisely

register the histology slides to the axial MRI images in both the

axial and transverse directions.

The radiologist’s delineation of tumors on the multi-parametric

MRI might have served as candidate “ground truth” but it was not

available. Instead, the images derived from ACE and Color/

CIELABS applied to the spatially registered MRI marked the
Frontiers in Oncology 06
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tumors at the voxel level for the ROC curve computations. In-

scene signatures were inserted into the ACE calculations. The

thresholds from the ACE or Color/CIELABS were taken from a

previous study (24) that computed the correlation coefficients of

tumor volumes derived from the ACE and Color/CIELABS using

varying thresholds with the tumor volume generated from the

pathologist’s evaluation of the slides taken from wholemount

prostatectomy. The highest correlation was achieved with 0.65 and

0.35 for ACE and color/CIELABS, respectively, and was therefore

chosen for this study. In practice (31, 32), RX applied to data does

not follow the expected Chi-Square distribution. In practice, ad hoc

or acceptable false alarm rates set the cutoff threshold values.
Results

Thepatientaverage (±standarderror) for theAUCandYI for the

ROC curves for RX for all 26 patients are shown in Tables 1, 2,

respectively. For both calculations, the covariancematrixwas filtered

by eliminating 3 and 4 principal components. This was followed by

applying modified regularization and regularization, as well as

searching for the minimum elliptical volume. In addition, RX was

generated, and ROC curves were computed using an unprocessed

covariance matrix. The best performance in terms of highest AUC

and YI was from the filtered covariance matrix approach and from

applying the regularization to the covariance matrix. Elliptical

volume minimization performed even worse than using an

unprocessed covariance matrix.

Unlike processing using ACE and CIELAB (24), anomaly

detection failed to achieve high correlation with histology-

derived tumor volume or those derived from manual coloring.
Discussion

This is the first spatially registered multi-parametric MRI

study to apply an unsupervised target detection algorithm,
TABLE 2 Youden Index and [Standard Error].

Delete three PC Delete four PC Modified Regularization Regularization Elliptical Envelope Unprocessed

ACE 0.706[0.017] 0.727[0.016] 0.639[0.012] 0.690[0.013] 0.597[0.017] 0.608[0.012]

CIELAB
B 0.711[0.020] 0.708[0.018] 0.648[0.016] 0.695[0.018] 0.605[0.014] 0.615[0.012]

The covariance matrix corrections are denoted as gray. ACE (threshold=0.65, denoted as blue) and CIELAB (threshold 0.35) are the Reference images.
TABLE 1 Average Area Under the Curve (AUC) and [standard error].

Delete three PC Delete four PC Modified Regularization Regularization Elliptical Envelope Unprocessed

ACE 0.734[0.022] 0.727[0.022] 0.638[0.017] 0.716[0.017] 0.544[0.025] 0.581[0.018]

CIELAB
B 0.742[0.025] 0.740[0.022] 0.643[0.023] 0.722[0.022] 0.508[0.024] 0.569[0.020]

The covariance matrix corrections are denoted as gray. ACE (threshold=0.65, denoted as blue) and CIELAB (threshold 0.35) are the Reference images.
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namely the RX algorithm for prostate cancer. The best

performance in terms of highest AUC and YI were the filtered

covariance matrix approach, and from applying regularization to

the covariance matrix. Elliptical volume minimization

performed even worse than using an unprocessed covariance

matrix. The anomaly detection attained high AUC and YI from

ROC when using ACE and CIELAB color images as reference

images. However, unlike supervised target detection, anomaly

detection failed to achieve high correlation with histology

derived tumor volume or those derived from manual coloring.

Imaging is only one way to non-invasively evaluate a patient

for the possible presence of prostate cancer. Recent research (54)

evaluated biomarkers residing in urine or blood (beyond

prostate serum antigen tests) to determine whether a patient

has prostate cancer, its stage, and its potential aggressiveness.

Using metrics derived from imaging does not preclude using

biomarkers. Greater accuracy might be achieved by combining

the new biomarkers with predictors derived from algorithms

applied to spatially registered hypercubes. Each patient can be

individually evaluated by determining the presence of

biomarkers and computing imaging metrics to generate a

patient-specific probability for the presence of prostate cancer

and its likelihood to metastasize and extend beyond the prostate.

It is important to note that the “ reference image” for the

prostate tumors in this ROC curve study for anomaly detection

was taken from ACE and CIELAB images. Tumor delineation

from pathologists ‘ histology images is available but is not a good

reference for this study. The histology images suffer from

distortion and shrinkage during the slicing, staining and

preservation processes and are not subject to stresses from

connections to muscles and other soft tissues as well as

gravity. Using ACE and CIELAB images can also be

problematic due to their unverified connection to pathology

assessed histology slides. However, ACE and CIELAB are

perfectly spatially registered to the RX detection images. The

ACE and CIELAB images also describe classic tumor behavior,

i.e., ones that exhibit low diffusion but high vasculature. Future

investigation is warranted to use “ reference image” masks

generated with multiple signatures for ACE and/or some green

(low vasculature, low diffusion) CIELAB images.

Anomaly detection is sensitive to volumes within the

prostate that do not necessarily display the spectral

characteristics of an archetypal tumor, namely one that shows

low diffusion but high vascularization. Malignant tumors can

show limited vascularization but limited diffusion and, therefore,

can be sufficiently spectrally anomalous to be detected by RX but

not by supervised target detection. However, anomaly detectors

may also detect hyperplasia, or swelling, within the prostate. In

addition, anomaly detection is sensitive to image artifacts such as

misregistration in multi-parametric MRI.

Previous work (27) on Signal to Clutter Ratio and Gleason

score found that the covariance matrix was more optimally

handled by deleting three principal components, not four
Frontiers in Oncology 07
89
principal components. Earlier work also found that a better-

performing RX used a covariance matrix treated with a modified

regularization procedure, not the more standard regularization

procedure. In contrast, the more optimal covariance matrix for

anomaly detectors was generated by filtering four principal

components, not three. The standard regularization performed

better than the modified regularization for generating a more

optimal covariance matrix and likelihood and a better

performing RX.

The large ROC AUC and large Youden Index relating the RX

to the supervised target algorithm ACE and quantitative

CIELAB coloring scheme suggest a strong relationship

between anomalies and regions sharing typical tumor

characteristics. However, the thresholds associated with the

Youden Index vary considerably and unpredictably from

patient to patient. ROC curves sample all classifier gray levels

or thresholds. However, employ ing RX for tumor volume

determination or prediction requires a single threshold.

Previous studies and the present work find that RX do not

obey expected the chi-squared distribution (31), complicating

efforts to set detection thresholds. Employing RX to reliably

predict tumor volume requires an appropriate threshold.

Further work is needed to identify an appropriate RX

threshold for determining tumor volume.

This study has some limitations. Future work should employ

radiologist-delineated tumors on theMRIas the “ ground truth.”The

threshold parameters for ACE, CIELABS, and ultimately RX should

be checked through cross-validation studies. The patients in this

study were prospectively enrolled but were analyzed retrospectively

from a single institution (NIH). Clinical implementation variations,

therefore, could not be examined, and the effects of variation on this

analysis are uncertain. In addition, as with all retrospective analyses,

the findings herein may be subject to biases. Lastly, the dataset

comprised only 26 patients. Although a limited number of patients

were assessed, consecutive patients were analyzed to minimize

potential bias, and nevertheless highly statistically significant AUC

and YI values were achieved, showing the potential clinical value of

this approach.
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Background: Current prostate cancer evaluation can be inaccurate and

burdensome. To help non-invasive prostate tumor assessment, recent

algorithms applied to spatially registered multi-parametric (SRMP) MRI extracted

novel clinically relevant metrics, namely the tumor’s eccentricity (shape), signal-to-

clutter ratio (SCR), and volume.

Purpose: Conduct a pilot study to predict the risk of developing clinically

significant prostate cancer using nomograms and employing Decision Curves

Analysis (DCA) from the SRMPMRI-based features to help clinicians non-invasively

manage prostate cancer.

Methods: This study retrospectively analyzed 25 prostate cancer patients. MP-MRI

(T1, T2, diffusion, dynamic contrast-enhanced) were resized, translated, and

stitched to form SRMP MRI. Target detection algorithm [adaptive cosine

estimator (ACE)] applied to SRMP MRI determines tumor’s eccentricity, noise

reduced SCR (by regularizing or eliminating principal components (PC) from the

covariance matrix), and volume. Pathology assessed wholemount prostatectomy

for Gleason score (GS). Tumors with GS >=4+3 (<=3+4) were judged as “Clinically

Significant” (“Insignificant”). Logistic regression combined eccentricity, SCR,

volume to generate probability distribution. Nomograms, DCA used all patients

plus training (13 patients) and test (12 patients) sets. Area Under the Curves for

(AUC) for Receiver Operator Curves (ROC) and p-values evaluated

the performance.

Results: Combining eccentricity (0.45 ACE threshold), SCR (3, 4 PCs), SCR

(regularized, modified regularization) with tumor volume (0.65 ACE threshold)

improved AUC (>0.70) for ROC curves and p-values (<0.05) for logistic fit. DCA
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showed greater net benefit from model fit than univariate analysis, treating “all,” or

“none.” Training/test sets achieved comparable AUC but with higher p-values.

Conclusions: Performance of nomograms and DCA based on metrics derived

from SRMP-MRI in this pilot study were comparable to those using prostate serum

antigen, age, and PI-RADS.
KEYWORDS

prostate cancer, multi-parametric magnetic resonance imaging (MP-MRI), Gleason score

(GS), signal-to-clutter ratio (SCR), regularization, nomograms, decision curve analysis,
multiple variable regression
Introduction

For prostate cancer, deciding to treat clinically significant disease

or to monitor benign lesions or low risk invasive disease (1) requires

correct assessment in order to properly manage the disease. A large

number of factors, such as Gleason score, prostate serum antigen

(PSA) (2–4), metadata (5) such as patient age, family history, tumor

size (6), clinical stage and visual inspection of images of the lesion (7–

11), etc. contribute to a patient’s evaluation, but they vary in their

correlation to disease status. The large number and variation of

contributing factors among patients can complicate cancer

management and confuse the clinician and patient. A nomogram

(12–14) is a graphical depiction that quantitatively combines a

number of factors to help summarize a patient’s status and simplify

the assessment. The nomogram produces a probability distribution

for the likelihood of serious disease that is tailored for each individual

patient. Along with a nomogram, a Decision Curve Analysis (DCA)

(15) can refine and enhance the management of the patient by

providing a graph to suggest when or if to apply certain procedures.

Further complicating patient management, the factors that contribute

to patient evaluation can also potentially discomfort the patient and

produce side effects (16). Specifically, a prostate biopsy, currently the

standard assessment, can cause hemorrhaging, pain, and infection, and it

can possibly miss properly sampling the tumor (17). To elevate patient

assessment, imaging, such as MRI, can non-invasively display the entire

image and tumor withminimal patient discomfort. Specifically, qualitative

assessment of multiple modalities of MRI or Multi-Parametric MRI (MP-

MRI) employ trained radiologists who follow the Prostate Imaging

Reporting and Data System (PI-RADS) protocol (7). Recently, PI-

RADS assessments have been incorporated into nomograms and

achieved significant accuracy in predicted disease outcomes (18–23).

However, the quality of the PI-RADS assessment can vary depending

on the training or experience of the radiologist examining a patient’s

image (24). A more quantitative, robust approach is desired.

Recently (25–30), algorithms have been applied to spatially

registered MP-MRI to assess prostate tumors. These algorithms

exploit the vectoral nature of each voxel in the prostate organ,

unlike others that process individual modalities. Each voxel is

treated as a vector, not a scalar. The recent studies determined the

prostate tumor’s Gleason score (25–30), tumor volume (26),

eccentricity (shape) (27), and Signal-to-Clutter Ratio (SCR) (29).
0293
This study is the first to use spatially registered MP-MRI as input

information for a nomogram and for DCA. This study used patient data

from The Cancer Imaging Archive (TCIA) (37, 38) that is composed of

twenty-six consecutive patients who had biopsy proven adenocarcinoma

of the prostate, had undergone MRI scan, and histological examination

of wholemount prostatectomy. For this study, clinically significant

(insignificant) prostate cancer was defined by the pathology

assessment of Gleason scores >=4+3 (<=3+4). The present

retrospective work does not use other clinical data (18–23) such as

age, PSA nor use PI-RADS as input for the nomogram. Instead, the

nomograms use various combinations of eccentricity, filtered and

regularized SCR, and tumor volume indicators to find the probability

that the prostate tumor is highly aggressive. This study extends and

builds upon earlier work (28, 30) that examined multivariable regression

fits to Gleason scores in order to generate a clinical tool to aid in the

management of prostate cancer. The nomogram and decision curve

analysis were quantitatively assessed by computing the Area Under the

Curve (AUC) for the Receiver Operator Characteristic (ROC), p-values.

Methods

Overall description

Figure 1 provides an overview of the methodology to generate a

nomogram from metrics derived from spatially registered MP-MRI

(25–30) along with accompanying performance evaluations. The

main components in the summary are described in greater detail

below. The independent variable for the multivariable fit originates

from spatially registered MP-MRI and the dependent categorical

variable Clinically Significant Prostate Cancer derived from Gleason

score and pathology exam of histology of the resected prostate.

Sequences of MRI (T1, T2, Dynamic Contrast Enhancement,

Diffusion) were collected from each patient. The images were rescaled,

cropped, translated, and resampled to form spatially registered

multispectral cubes. These cubes were then stitched together to form

spatially registered hypercubes. From visual inspection, the normal

prostate was digitally outlined using an axial view to form the normal

tissue or background. A vector tumor signature was taken from certain

voxels identified in the colorized registered hypercube (25–30) and

inserted into the Adaptive Cosine Estimator, and a threshold (25–30)

was applied to find the tumor volume and eccentricity.
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The nomogram (text box colored as baby blue in Figure 1) receives

input from amulti-variable fit (yellow text box). Multivariable regression

fits independent variables from spatially registered MP-MRI to the

independent variable Gleason score. The independent variables are

Regularized SCR (green), SCR with principal component filtering

(red), tumor eccentricity (blue), tumor volume (purple) and combined

in a variety of permutations to achieve an optimal fit. The dependent

variable is categorical Clinically Significant Prostate Cancer, related to

the Gleason score and is derived from pathology, notMRI. A pathologist

determines the Gleason score from microscopic inspection of histology

slides of wholemount prostatectomy.

To assess the multivariable regression fit and the nomogram,

Receiver Operator Characteristic curves were generated and the Area

Under the Curve (AUC) was computed. The coefficient of

determination (R2) between the independent and dependent

variables was computed along with the probability for the null

hypothesis (p-value). To further assess and extend the clinical

application of the nomogram, a Decision Curve Analysis was

computed to find the net benefit for applying the nomogram.

The Methods qualitatively describes the individual components of

anomaly detector generator and assessment. The Appendix

summarizes the mathematics used to generate the components.

More details can be found in the cited references.
Study design and population

Patient data from prostate tumor MRI and histology from whole

mount prostatectomy specimens were collected and stored through The

Cancer Imaging Archive (TCIA) (37, 38), affiliated with The National

Institutes of Health (NIH). This study followed the Declaration of

Helsinki (as revised in 2013). This study is compliant with the Health

Insurance Portability and Accountability Act. The NIH Institutional

Review Board approved this retrospectively designed single institution

study and determined that individual consent for this retrospective

analysis was not required. Twenty-six consecutive patients in the TCIA
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database were assessed. All patients had biopsy proven adenocarcinoma

of the prostate, withmedian patient age of 60 years (range, 49 to 75 years),

with a median PSA of 5.8 ng/mL (range, 2.3 to 23.7 ng/mL) and with

medianGS of 7 (range, 6 to 9). Eighteen of the 26 patients had tumor sizes

>1 cc. One patient did not uptake the contrastmaterial used for Dynamic

Contrast Enhancement. This study did not place restrictions on tumor

location within the prostate. Robotic assisted radical prostatectomy was

performed following MRI without any intervening treatment. All cases

were anonymized for subsequent analysis.
Whole mount prostatectomy and histology

The whole mount prostatectomy histology has previously been

described (39–41). Following radical prostatectomy, the specimen was

fixed at room temperature in formalin for 2 to 24 hours, placed in the

customized 3D mold, and sliced in sections with a separation of

6 mm. in the axial direction (corresponding to the MRI axial plane

section). The individual tumor foci, dimensions, and GSs from the

histology slides were independently determined by two experienced

pathologists blinded to the MRI results. As in earlier studies (25–30)

and to better reflect the patient’s status, a patient’s GS was a weighted

average (based on histology blob size) of the GSs assessed by

the pathologists.
Magnetic resonance imaging

The MRI collection was composed of diffusion weighted images

(DWIs), dynamic contrast enhanced (DCE), and structural (T1, T2)

images. The pulse sequences were described in earlier studies (39–41).

Triplanar T2W turbo spin echo, DWMRI, and axial pre-contrast T1-

weighted axial 3D fast field echo DCEMRI sequences were part of this

MRI protocol. The detailed sequence parameters were described in a

prior study (41). The mean interval between MRI and radical

prostatectomy was 60 days (range, 3 to 180 days).
FIGURE 1

provides an overview of the methodology to generate a nomogram from metrics derived from spatially registered MP-MRI (25–30) along with
accompanying performance evaluations. The main components in the summary are described in greater detail below. The independent variable for the
multivariable fit originates from spatially registered MP-MRI and the dependent categorical variable Clinically Significant Prostate Cancer derived from
Gleason score and pathology exam of histology of the resected prostate.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1066498
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mayer et al. 10.3389/fonc.2023.1066498
Image processing, pre-analysis

The DCE are a time series of images follow contrast material in

tissues over several hundred seconds following injection. A portion of

tumors may be identified through analysis of DCE and exploiting the

unique tumor physiology. The tracer concentration in the tissue that

supplies and empties through the tumor vasculature is described by a

simple two compartment model (25, 42, 43). For longer times (>50

seconds) than the time to reach the contrast material peak uptake in a

tumor, every voxel was fitted with an exponentially decay function to

form the washout (kep).

The MRI images were digitally resized (25–30) to 1 mm

resolution in the transverse direction. In the axial direction, the

slices were resized to 6 mm spacing and aligned using resampling

based on the known location of patient’s table position. Due to the

short time interval between scans (<20 minutes), only small rigid

adjustments (minor transverse translation) were applied to the

structural, diffusion, and DCE images. A “cube” was formed from

stacked individual slices that were scaled, translated, resliced and were

thereby spatially registered at the voxel level. These “three

dimensional” (two transverse directions plus spectral composed of

MP-MRI modalities) cubes were then “stitched” together into a

narrow three-dimensional hypercube in order to depict the entire

MRI scan. The spectral content of the hypercube had 7 components

(25–30) [T1 (pre-contrast), T1 (maximum contrast), T2, ADC, DWI-

high B (B=1,000 s/mm2), Washout or kep from DCE].
Eccentricity calculation

Custom software (coded in Python 3) was used to calculate the

eccentricity (27, 28) for every labeled blob. The moment of inertia

matrix I for the kth blob was computed. From the eigenvalues of the

moment of inertia I, the largest eigenvalue was assigned to the large axis

lk and the second eigenvalue was assigned to the transverse moment sk.

The eccentricity Ek for the kth blob is a weighted difference of the major

axis and minor axis. Eccentricity values Ek range from 0 (spherical

shape) to 1 (line). For more details see References (27, 28).
Overall quantitative metrics description: SCR

Instead of relying on trained radiologists to visually inspect multiple

MRI images, the Signal to Clutter Ratio quantitatively assesses tumors

departure from normal prostate tissue. The SCR formulation combines

all components of the MP-MRI. But in addition, the SCR formulation

uses the covariance matrix, to correct and account for correlations

among the different components (for example, the correlation between

ADC and DWI) to get a true measure of the aggregate contribution of

each. The Appendix summarizes some of the mathematics behind the

SCR algorithm. For more details see (29, 31, 34–36).
SCR: Filtering noise

Computing the SCR covariance matrix generates principal

components (34). Principal component are linear combinations of
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all MRI components but are orthogonal or totally decorrelated from

each other. The principal components are ordered based on their

eigenvalue or statistical variation. Well resolved images have

eigenvalue and high variation. In contrast, the noisy principal

components have small eigenvalues. Noise is reduced by filtering

and eliminating the noisy (low eigenvalue) principal components

resulting in a more accurate RX calculation. The Appendix

summarizes some of the mathematics behind the filtering of

principal components. For more details see (29, 31, 35).
Regularization and shrinkage

Regularization is another way to correct for the imperfections of the

computed covariance matrix. The statistics describing the background

(normal prostate) should follow a normal distribution. However, the

analytic formula for the covariance matrix results in only an

approximation. The goal of shrinkage regularization (29, 36) is to

perturb the original covariance matrix CM(g) by mixing in a diagonal

matrix with a mixing parameter g to generate a regularized or modified

regularized covariance matrix. The appropriate g is chosen to maximize

the normal distribution. Regularized ormodified regularized covariance

matrix generation follow the same procedure but differ in the mixing

diagonal matrix. The Appendix summarizes some of the mathematics

behind regularization. For more details see (29, 36).
Tumor volume measurements, supervised
target detection

The Supervised target detection algorithm or ACE was applied to

the spatially registered MRI (26) and was used to determine the tumor

volume. Voxels exceeding a threshold for ACE scores are assigned to

tumor and normal tissue are assigned to ACE scores residing below

the threshold. The number of voxels exceeding the threshold (tumor)

were counted and converted to volume based on the MRI spatial

resolution The Appendix summarizes some of the mathematics

behind tumor volume computation. For more details see (26).
Logistic regression

A logistic regression fit (44, 45) was applied to the dependent

categorial variable CsPCa, using all combinations of the continuous

independent variables (eccentricity, SCR, volume). The GS derived

from the pathological assessment of histology slides from

prostatectomy. The clinically significant PCa (CsPCa) was assigned

to Gleason score >=4+3 and the clinically insignificant PCa (CiPCa) is

assigned to<=3+4 This study only reports the combination of

independent variables that achieved the highest performance in

earlier studies (27–30). The eccentricity from the largest blob used

ACE threshold 0.45. SCR includes cutoff from three and four principal

components, regularized SCR and modified regularization. The

volume derived from MP-MRI used ACE threshold 0.65.

The coefficient of determination R2 assesses the fit. In addition, the

quality of fit was assessed by computing the F-value and affiliated P

value (44, 45).
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Receiver operator characteristic

The Receiver Operator Characteristic curve summarizes (46) and

helps assess a binary classifier by plotting the probability of target

detection (or sensitivity) against the false alarm probability (or 1-

specificity) for all threshold settings. The classifier’s accuracy is

assessed by comparing the multivariable logistic regression fitted

results with the pathologist’s Gleason score determination for

each patient.

The ROC vertical axis (Sensitivity) surveys the patients with

clinically significant prostate cancer (CsPCa) and determines

whether the patient’s prostate cancer status is correctly identified by

the logistic regression for a given threshold. The horizontal axis (False

Alarm probability or 1-Specificity) displays the relative accuracy for

determining the status of patients with clinically identified as

insignificant prostate cancer (CiPCa) for a given probability

threshold. The ROC curve is monotonically increasing. If feasible,

the best ROC curve value would be 100% target detection and 0%

False Alarm probability (upper left corner for the ROC curve). The

Area Under the Curve (AUC) is used to assess classifier and ranges

from 0 (poor performance) to 1 (optimal performance).
Nomogram and decision curve analysis

A nomogram (12–14) is a two-dimensional calculating device

designed to graphically depict a statistical prognostic model that

generates a probability of a clinical event. Nomograms use biologic

and clinical variables. In this study, the nomograms employ a

logistic regression to model the probability that a prostate tumor is

clinically significant. Each variable is listed separately, with a

corresponding number of points assigned to a given magnitude

of the variable. The individual points are summed from each
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variable to generate the total number of points for all variables.

The total point score is projected onto the scale of outcome.

Nomograms can be tailored to an individual patient and

potentially reduce biopsies and their morbidity. They are widely

used for cancer prediction.

Decision Curve Analysis (15) plots the net benefit associated with

a model against the model’s threshold probability. Net benefit is a

weighted difference combination of True and False identifications of

cl inical ly s ignificant prostate cancer , weighted by the

threshold probability.

Alternatively, the threshold probability is the minimum probability

of an event at which a decision-maker would take a given action, i.e. the

probability of cancer at which a doctor would order a SRMP MRI scan.

A lower threshold probability means a patient’s greater concern about

cancer, while a higher threshold reflects greater concern about a patient’s

aversion to SRMP-MRI. A positive classification is defined by whether

predicted probability is at least as great as the threshold probability. As a

reference (and by convention), the display includes the results of the

default strategies of assuming that all or no observations are positive as a

function of threshold probability.

Decision Curve Analysis assesses the clinical value of a predictor,

unlike other evaluation statistical methods. Applying decision curve

analysis can determine whether using a predictor to make clinical

decisions like performing a SRMP MRI scan will provide benefit over

alternative decision criteria, given a specified threshold probability
Results

Table 1 summarizes the assessments of 25 consecutive patients with

contrast enhanced MRIs. Patients were assessed for the best fitting

combinations of metrics derived from spatially registered MP-MRI to

the Risk of PCa categorical variable. The independent variables include
TABLE 1 Summary of Logistic Regression fits for All patients.

Independent Variables # Variables F Value p-value R2 AUC [95% LL, 95% UL]

3PC+Vol 2 16.08 0.0003 0.664 0.912 [0.792, 1.00]

Ecc+3PC 2 14.43 0.0007 0.614 0.882 [0.719, 1.00]

Ecc+Mod Reg+3PC 3 14.47 0.0023 0.615 0.882 [0.719, 1.00]

Ecc+ Reg+3PC 3 14.99 0.0018 0.631 0.882 [0.719, 1.00]

Ecc+3PC+Vol 3 16.87 0.0008 0.687 0.919 [0.799,1.00]

Ecc+ Reg+3PC+Vol 4 17.03 0.0019 0.691 0.919 [0.799,1.00]

Ecc+Mod Reg+3PC+Vol 4 17.02 0.0019 0.691 0.926 [0.804,1.00]
Analyzing all patients, Summary of Best Regression fits of combinations eccentricity, SCR, and Volume to Gleason score. AUC, Area Under Curve; R2, coefficient of determination; LL, Lower Limit
Confidence Interval; UL Upper Limit 95% Confidence Interval; ECC, eccentricity(0.45 ACE Threshold); Mod_Reg, Modified Regularization; SCR, Reg, Regularized SCR; Vol, Volume (0.65 ACE
threshold).
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tumor eccentricity using an ACE threshold of 0.45 (Ecc), SCR using

regularization (Reg), SCR using Modified SCR (Mod_Reg), SCR after

filtering out 3 PC (3PC), and tumor volume (Vol) using 0.65 for the

ACE threshold. The dependent categorical variable (Risk of PCa) was

taken from the pathology determined Gleason Scores. The number of

variables identified for each fit. Tables 1, 2 lists each fit’s F values and

associated probability of null hypothesis p-values, coefficient of

determination (R2), Area Under the Curve (AUC) for the Receiver

Operator curves and the AUC’s 95% Confidence intervals Lower Level

(LL) and Upper Level (UL). The fits have statistical significance (p-

values<0.01), achieve high coefficient of determination (R2>0.60), high

AUC (>0.85) but large confidence interval (0.20).

Table 2 replicates Table 1 except using a greater number of

independent variables(eccentricity, SCR, volume) and the analysis

follows a test set (12 consecutive odd numbered patients) that used

the fitted parameters from training 13 consecutive even numbered

patient. Like Table 1, high AUC scores (>0.85) are achieved. However,

p-values were higher, and the coefficients of determination were lower.

Figure 2A shows a nomogram resulting from logistic regression

fits using Eccentricity (0.45 ACE threshold), SCR after regularization,

and SCR after filtering by removing 3 principal components. For a

given patient, each component’s contribution is determined by

projecting their values onto the “Points.” The total points are

computed by summing each of the contributions. “Total points” is

projected onto the “Risk of PCa” axis to determine the probability that

a given patient suffers from clinically relevant prostate cancer.

Figure 2B shows an example of a ROC curve (shown as a bold

black line) that displays the Sensitivity plotted against (1-Specificity)

(the Specificity value is decreasing along the axis). The bold black line

corresponding to the AUC (0.882) and the vertical lines in the ROC

curve correspond to the 95% Confidence interval for the AUC. This

particular ROC evaluates the logistic fit to Eccentricity, regularized

SCR, and SCR filtered by deleting 3 principal components.

Associated with the nomogram is the Decision Curve Analysis

(Figure 2C). Figure 2C shows the net benefit from using each

component (eccentricity, regularized SCR, SCR after removing 3

principal components), all components in the regression fit, as a

function of Threshold Probability or expected likelihood that the

patient has clinically significant prostate cancer. In addition, the net

benefit of treating all patient and treating no patients are shown as a

standard reference. Applying the regression fit generates the highest

net benefit for all threshold probability values relative to applying the

individual components (eccentricity, SCR).
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Similarly, Figures 3A–C show a nomogram, ROC curve, and a

Decision Curve Analysis resulting from fitting Eccentricity (0.45

ACE threshold), SCR after regularization, and SCR after filtering

by removing 3 principal components, Volume (0.65 ACE

threshold). Again, applying the regression fit generates the

highest net benefit for all threshold probability values relative

to app ly ing the indiv idua l components (eccentr i c i ty ,

SCR, volume).
Discussion

This study is the first to generate a nomogram using features

derived from algorithms applied to spatially registered MP-MRI (25–

30). Previous studies formed a foundation for the present study,

although this study is novel and extended the findings to generate and

evaluate the probability for tumor aggressiveness. In addition, the

DCA provides an additional tool for guiding application of the

nomogram, guiding which input and fits should be employed, and

under what conditions. From the high AUC (>0.85), high R2 (>0.70),

and low p-values (<0.05), this pilot study found that nomograms can

accurately predict the probability of prostate tumor aggressiveness.

The nomogram performance as described by AUC from ROC curves

is comparable with other studies (18–23) that use metadata such age,

clinical data such as PSA, and PI-RADS and that achieve AUC

ranging from 0.8 to 0.90.

The transformation of remote sensing-based approaches and

algorithms for prostate cancer evaluation discussed in this

manuscript forms only a part of the research constellation. There

has been considerable progress and research in using biomarkers (47)

and multi-parametric MRI (48) to determine the possible presence of

prostate cancer and their role in disease management. Companies

have translated bench research (47) in biomarkers into clinical tests

for their efficacy and offer promising alternatives to the standard

prostate serum antigen. Studies investigated the effectiveness of how

multi-parametric MRI is employed (49) in the clinic and alternative,

simpler configurations and approaches (50) that may eventually make

MP-MRI more accommodating for patients and the clinic. Future

research may combine the approaches applied to spatially registered

hyperspectral hypercubes discussed in this study with biomarkers

(47) and may also be modified with the aid of insights gained from

MP-MRI implementation (48).
TABLE 2 Summary of Logistic Regression fits for Training, Test Sets.

Independent Variables # Variables F Value p-value R2 AUC (Train) AUC (Test) [95% LL, 95%UL]

3PC+Vol, Train-Test 2 5.63 0.0598 0.496 0.861 0.969 [0.882-1.00]

Ecc+ Reg+3PC, Train+Test 3 6.29 0.0984 0.541 0.889 0.906 [0.702-1.00]

Ecc+ Reg+3PC+Vol, Train+Test 4 6.98 0.137 0.586 0.944 0.938 [0.791-1.00]
Analysis of Training and Test Cases, Summary of Best Regression fits of combinations of eccentricity, SCR, and Volume to Gleason score. AUC, Area Under Curve; R2, coefficient of determination; LL,
Lower Limit Confidence Interval; UL Upper Limit 95% Confidence Interval; ECC, eccentricity(0.45 ACE Threshold); Mod_Reg, Modified Regularization SCR; Reg, Regularized SCR; Vol, Volume
(0.65 ACE threshold).
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The metrics (AUC, p-value) that assess the accuracy of the

nomogram for this study were confined to employing features from

spatially registered MP-MRIs. The restricted composition of features

nevertheless performed as well or better than studies (18–23) that

employed more conventional features such as PSA, age, PI-RADS.

Adding extra features from the clinic such as age, PSA etc. to the

inputs from spatially registered MP-MRI may further increase the

accuracy of the prediction for tumor aggressiveness, as in studies that

use PI-RADS data.

Logistic Regression fits the input variables to a binary or a

categorical variable, in this case the “Risk of PCa,” which can only

be 0 (non-clinically relevant PCa) or 1 (clinically relevant PCa).

Earlier multi-variable fitting studies treated the Gleason score as a

continuous variable. Better fits for each of the independent variables
Frontiers in Oncology 0798
(p<0.03) were achieved in univariable and multivariable fitting when

the Gleason score was treated as continuous. Although the overall

fitting (shown in Tables 1, 2) achieves high correlation, assessment of

a larger number of samples should improve the univariable fitting

using the categorical dependent variable, especially for training/

test analysis.

The performance of the multivariable fits diminishes slightly when

dividing the patients into training and test sets, as is common in most

studies. Due to the limited size of this data set, other combinations of

training and testing sets were not feasible. Future analyses using larger

patientnumbers could reduce confidence intervals andbolster confidence

in this study’s findings. Nevertheless, the results described in this

manuscript merit further studies that employ larger patient sample

sizes that may successfully predict prostate tumor aggressiveness.
B
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A

FIGURE 3

(A) is a nomogram resulting from logistic fit to Gleason score with eccentricity, tumor volume, and SCR with 3 PC removed. (B) Receiver Operator Curve
applied to Logistic Regression for eccentricity, 3 PCs removed from SCR, tumor volume. Area Under the Curve (AUC) and 95% Confidence Limits shown
as bold and lighter line with vertical bars. Area Under the Curve (AUC) and 95% Confidence Limits shown as bold and lighter line with vertical bars (C).
Decision Curve Analysis for (A) nomogram.
BA

C

FIGURE 2

(A) is a nomogram resulting from logistic fit to Gleason score with eccentricity, regularized SCR, and SCR with 3 PC removed. (B). ROC curve for fitting
eccentricity, regularized SCR and SCR after 3 PC removed, Area Under the Curve (AUC) and 95% Confidence Limits shown as bold and lighter line with
vertical bars (C). Decision Curve Analysis for (A) nomogram.
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There is a question of whether the results are robust or

fundamentally unchanged upon using differing target signatures

and normal prostate outlines. For a number (but not all) of

patients, calculations were rerun with different choice of signatures

and different contouring of the normal prostate. The resulting

calculations generated virtually the same as those using initial input

data. However, a more definitive study is merited.

This study has some limitations. The patients in this study all

originated from a single institution (NIH), potentially limiting

generalizability. Furthermore, although all patients were prospectively

enrolled, this is a retrospective analysis of the data andmay be subject to

biases. Furthermore, the dataset comprised only 25 patients. Although a

small number of patients were assessed, consecutive patients were

analyzed to minimize potential bias. Despite this being a pilot analysis

with a limited dataset, highly statistically significant P values, highAUC,

high coefficient of determination values, and high net benefits in the

decision analysis curves were achieved, showing potential clinical value

of this approach.
Conclusions

This retrospective pilot study shows that nomograms that only

use metrics from spatially registered MP-MRI achieve comparable

performance relative to nomograms that use prostate serum antigen,

age, PI-RADS. Validation of these finds from larger and multicenter

cohorts are needed before clinical implementation.
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Appendix

Overall quantitative metrics description: SCR

The SCR (30–33) is given by

SCR = (S − m)TCM−1(S − m)      (1)

that is a matrix multiplication over MP-MRI modalities. The

superscript T denotes a vector transpose operation, CM is the covariance

matrix, and the superscript -1 denotes a matrix inverse operation, where S

is the vector tumor signature or mean over the identified tumor voxels.

Vector m is the mean value for normal prostate or background.
SCR: Filtering noise

The filtered SCRFiltered is given by

SCRFiltered = (S − m)TCM−1
Filtered(S − m)     (2)

where the inverse covariance matrix CM�1
Filteredis a square

symmetrical matrix and decomposes into three parts (34),

CM−1
Filtered = LTl−1

FilteredL     (3)

l−1
Filtered =

1
l2
1
0 0 0

0 1
l2
2

0

… … …

0 0 0

0 0 … 0 0

2
666666664

3
777777775
    (4)

The eigenvalues are ordered according to size ranging from the

largest L1 to the smallest LM. For unfiltered processing, the images

corresponding to the eigenvalues and eigenvectors range from high

signal and variation (1, 2) to low variation and very noisy (M-1, M.

Filtering out the noisy eigenvectors (29, 31, 35) means removing or

deleting the lowest valued eigenvalues (3 or 4 in this study) (Eq 3,4)

from the inverse matrix (see Eq 4).
Regularization and shrinkage

Shrinkage and regularization (29, 36) perturbs the covariance

matrix CM(g) to maximize the normal distribution, or equivalently

minimize the discriminant function d(g) [=-ln(normal distribution)]

by adding a diagonal component that is controlled by the parameter g.
This study examines two types of regularization: regularization and

modified regularization. Both follow the same procedure but differ in

the mixture component. Specifically, the modified regularized

SCRMod_reg

SCRmod _ Re g (g = gmin) = (S − m)TCM−1
mod _ Re g(g

= gmin)(S − m)   (5)
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where CMmod_Reg(g) is

CMmod _ Re g(g ) = (1 − g )CM + gV    (6)

and V is a diagonal matrix filled up with the square of the

standard deviations from M modalities and is given by

V =

s 2
1 0 0 0

0 s 2
2 0

… … …

0 s 2
M−1 0

0 0 … 0 s 2
M

2
666666664

3
777777775
   (7)

Using Eqs. [6,7] the modified discriminant function dmod_Reg (g)

dmod _ Re g(g ) =o
N

i=1
(xi − m)TCM−1

mod _ Re g(g )(xi − m)

+ ln ( det (CMmod _ Re g(g )))   (8)

is computed for 0<g<1 and a minimum dmod(gmin) is found at gmin

resulting in a SCRMod_Reg (Eq. [5]) using a modified regularization

procedure (using Eqs. [6,7]).

For SCRReg, the CMReg uses a matrix containing identical

components (proportional to the identity matrix and is simply the

average standard deviation s.

CMRe g(g ) = (1 − g )CM +
g Tra(CM)

M
I   (9)

by control value g where Tra denotes the trace operator and I is

the identity matrix. g ranges from g=0.0 or no CM modification to

g=1.0 or CM is proportional to the identity matrix. Again, the

covariance matrix CMReg(g) is perturbed to maximize the normal

distribution, or equivalently minimize the discriminant function d(g)
(=-ln(normal distribution)) by using CMReg (Eq 9) i.e.

dRe g(g ) =o
N

i
(xi − m)TCMRe g(g )

−1(xi − m)

+ ln ( det (CMRe g (g )))  (11)

The SCReg is given by

SCRRe g(g = gmin) = (S − m)TCM−1
Re g(g = gmin)(S − m)   (9)
Tumor volume measurements, supervised
target detection

The procedure for estimating the tumor volume using the

supervised target detection algorithm or ACE has been previously

described (26). For spatially-registered MP-MRI, threshold is applied to

the ACE map. Voxels exceeding a threshold for ACE scores are

assigned to tumor and normal tissue are assigned to ACE scores

residing below the threshold. Earlier study (26) examined thresholds

0.40 to 0.85 assessed in 0.05 increments and found that 0.65 was

optimal. The number of tumor voxels are converted to volume based on

the MRI spatial resolution (1 mm × 1 mm) and slice separation (6 mm)

resulting in a voxel volume (r=0.006 cm3). Each blob’s volume Vk is
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given by a total number of pixels within each blob and corrected by the

voxel volume r (assuming density of unity for each voxel),

Vk = rN = ro
N

i=1

xi
abs(xi)

 (12)
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