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Editorial on the Research Topic

Targeting the microbiota to attenuate chronic inflammation
Introduction

Although the whole human body is a complex ecosystem inhabited by very different

microorganisms, including bacteria, fungi, archaea, and viruses, studies about gut bacteria

have received the most attention. The relationship between the gut microbiota and the

immune system has been the focus of intense research [recently reviewed at (1)]. Chronic

inflammation correlates with an altered microbiota composition in the context of

inflammatory bowel disease, colorectal cancer, frailty, metabolic endotoxemia, and non-

communicable diseases (2–6). Specifically, many studies have addressed the role of different

microbiome components on chronic inflammation (7, 8). For example, some microbes

adhered to the intestinal epithelium can locally induce Th17 responses (9), while others can

exert distant effects on different organ systems through metabolite production (10, 11).

This has fueled research aimed at shaping these interactions by either redesigning the entire

bacterial community or administering specific relevant bacterial strains that are

presumably beneficial (12). However, most studies targeting the microbiota to elicit

protective immune responses are only exploratory, with limited sample sizes and

assessing multiple outcomes. Therefore, it is unclear how we can induce stable,

beneficial changes in the gut microbiota.

This Research Topic highlights translational research and clinical trials evaluating the

immunological effects of interventions on the gut microbiota, such as dietary or

pharmacological interventions, probiotics, fungus, and other compounds. In addition, it

focuses on specific mechanisms by which the microbiota can affect chronic inflammation

in different diseases.
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Interventions on the gut microbiota in
chronic inflammation diseases

This Research Topic addresses interventions on the gut

microbiota from different perspectives.

According to new probiotic characterizations, Blázquez-Bondia

et al. show the effect of a novel probiotic in a double-blind placebo-

controlled clinical trial (RECOVER study). The i3.1 probiotic (a

mixture of L. plantarum and P. acidilactici and a fiber-based

prebiotic) improved immune reconstitution in people with HIV

with impaired immunological recovery under stable antiretroviral

therapy. There were no major adverse effects related to the

intervention, and a slight increase in CD4/CD8 ratio as well as a

decrease in pathways abundances were found in the active arm.

Saghari et al. report the effects of three monoclonal microbial

formulations of L. lactis spp. cremoris (EDP1066) on the immune

response to a marine mollusk protein used to “mimic” an immune

response in healthy volunteers. They assessed three different probiotic

formulations to evaluate various exposure sites within the

gastrointestinal tract. The immunomodulatory effect was assessed

by quantifying circulating regulatory T cells and by stimulation of

monocyte and lymphocyte with the Toll-like receptor 4 ligand

lipopolysaccharide (LPS) and phytohemagglutinin (PHA),

respectively. However, the results did not show a significant

immune modulation measured as an antibody response to the

challenge with the mollusk protein.

Plant compounds have mainly been used in the history of

medicine. Liu et al. assessed the role of caesaldekarine, a cassane

diterpenoid isolated from the plant Caesalpinia bonduc, to

ameliorate colitis in mice. The mechanisms involved suppression

of tissular inflammation, intestinal barrier integrity maintenance,

and increased Lactobacillus abundance.

Fungi have been rarely been assessed as probiotics, with the

exception of Saccharomyces Boulardii. Wang et al. evaluated the

effects of dietary supplementation with Tolypocladium sinense, a

mycelium isolated from a Chinese caterpillar, against obesity. This

intervention affected the inflammatory response and oxidative

stress levels by regulating lipid metabolism, such as decreasing

short-chain fatty acid content. These results were further confirmed

after fecal transplantation in mice.

Lastly, some traditional Chinese medicine products, as

presented by Zhu et al., have been potentially related to

improving different liver-related diseases through microbiota

regulation mechanisms. Their review describes targeting

microbiota studies to treat liver conditions, such as alcoholic

disease, nonalcoholic disease, autoimmune disease, liver injury,

and cancer.
Advancing translational research in
the microbiome field

Direct intervention studies are essential for determining the

causal effects of the microbiome on disease pathogenesis. But it is

also important to understand the mechanisms underlying specific
Frontiers in Immunology 0286
microbiota actions in the host to design efficient and effective

treatments. However, as described in Moreno et al., for the

particular cases of HIV and HPV infection, most studies are

based on highly dimensional datasets and address multiple

outcomes, which hampers transferring the results to the clinic.

The review also highlights the need for standardization of methods

and encourages more hypothesis-driven studies.

Other studies in this Research Topic report novel mechanisms

by which the microbiota can contribute to inflammation.

Ling et al. evaluated 140 school-aged children (6-12 years) from

China (92 with depression and 48 healthy controls). They analyzed

the correlations between gut microbiota profiles and host immune

response measured as the expression of 27 cytokines. Patients with

depression exhibited enrichment for proinflammatory genera

(Streptococcus) and some inferred immunomodulatory

metabolites (e.g., increase in membrane transport, signal

transduction, and metabolism of other amino acids in children

with depression), which correlated with increased levels of

proinflammatory cytokines such as IL-17.

Fonseca et al . describe the anti-inflammatory and

immunomodulatory properties of extracellular vesicles produced

by the prominent human gut commensal bacterium Bacteroides

thetaiotaomicron. By administering these vesicles to mice with

colitis, they report important factors in anti-inflammatory and

immunomodulatory responses, showing a reduction in intestinal

inflammation, upregulation of the anti-inflammatory cytokine IL-

10, and even epigenetic reprogramming.

As mentioned above, inflammation and HIV are two deeply

interconnected factors. Littlefield et al. described the etiology of

gastrointestinal inflammation among men who have sex with men

and their link with gut microbiome composition. They found

specific fecal soluble immune factors, such as calprotectin, a

clinically relevant marker of gastrointestinal inflammation in men

who have sex with men independently of their HIV status. They

also observed differences in markers of bacterial translocation

(elevated levels of plasma, sCD14, and sCD163) and in an in vitro

system. These data indicate a connection between fecal soluble

immune factors composition, decreased intestinal barrier function,

and bacterial-induced systemic inflammation.

Additional mechanisms by which some therapeutic anti-

inflammatory interventions could affect, and be affected by, the

microbiota are addressed in this Research Topic.

Johnson et al. assess the effect of treatment with the humanized

monoclonal antibody anti-a4b7 on microbiota composition.

Vedolizumab administration to SIV-infected macaques led to

different results than previous studies. The intervention elicited

the maturation of macrophages associated with dysbiosis markers

previously identified as predictors of HIV replication, immune

activation, and changes in viral loads in tissues. This point

towards a possible future modulation of gut immune functions to

improve treatments for HIV infection.

Zhou et al. evaluate the involvment of the gut microbiota in the

efficacy of the anti-rheumatic drug methotrexate. Patients with

rheumatoid arthritis showed a decreased abundance of intestinal

Bacteroides fragilis after methotrexate treatment. Transplantation of

Bacteroides fragilis or supplementation with butyrate restored the
frontiersin.org
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methotrexate efficacy in collagen-induced arthritis mice pretreated

with antibiotics.

Finally, four articles suggest a potential role of the microbiota in

the activation of host pathways that have been linked to

thepathogenesis of different conditions. First, Ancona et al. review

the implications of gut dysbiosis in COVID-19 and long-COVID

syndrome. They focus on the confounding factors in the previous

literature and, more specifically, on studies of airway microbiota

and long-COVID with neurological symptoms. Second, Omaru

et al. reviewed the activation of NOD1/NOD2 receptors in

chronic liver disease. This occurs through the regulation of

proinflammatory cytokine responses leading to the development

of chronic liver diseases, including hepatocellular carcinoma. Third,

Fan et al. propose using the aryl hydrocarbon receptor as a

therapeutic target for ischemic stroke by describing its role in the

“microbiota-gut-brain axis” as a receptor of tryptophan metabolites

that is impacted by gut microbiota. Finally, Li et al. review the

impact of the oral microbiota on cardiometabolic health.

Microbiota metabolites in the oral cavity, affected by oral

dysbiosis, periodontal disease, and dental plaque, have been

associated with cardiovascular disease occurrence. According to

this, they discuss the potential of oral microbiota transplantation as

a therapeutic intervention.
Perspectives

This Research Topic includes studies that evaluate the potential

of microbiota to attenuate chronic inflammation. Some of these

studies assessed direct interventions on gut microbiota in different

diseases and aimed to characterize the immunological effects. Other

studies describe specific mechanisms underpinning these

relationships, such as changes in metabolic routes or regulation of
Frontiers in Immunology 0397
particular host factors related to immune responses. Finally, some

of these studies review host-microbiota interactions in different

conditions and suggest novel approaches to improve health

However, this field is still in its infancy, and more studies are

required. We must unravel the specific mechanisms by which

microbiota modulates the immune system. Such approaches

could become helpful in improving outcomes in diseases

characterized by chronic inflammation.
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Host-microbiota interactions:
The aryl hydrocarbon receptor
in the acute and chronic phases
of cerebral ischemia
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The relationship between gut microbiota and brain function has been studied

intensively in recent years, and gut microbiota has been linked to a couple of

neurological disorders including stroke. There are multiple studies linking gut

microbiota to stroke in the “microbiota-gut-brain” axis. The aryl hydrocarbon

receptor (AHR) is an important mediator of acute ischemic damage and can

result in subsequent neuroinflammation. AHR can affect these responses by

sensing microbiota metabolites especially tryptophan metabolites and is

engaged in the regulation of acute ischemic brain injury and chronic

neuroinflammation after stroke. As an important regulator in the

“microbiota-gut-brain” axis, AHR has the potential to be used as a new

therapeutic target for ischemic stroke treatment. In this review, we discuss

the research progress on AHR regarding its role in ischemic stroke and

prospects to be used as a therapeutic target for ischemic stroke treatment,

aiming to provide a potential direction for the development of new treatments

for ischemic stroke.

KEYWORDS

aryl hydrocarbon receptor, microbiota-gut-brain axis, cerebral ischemia, tryptophan
metabolism, gut microbiota
Introduction

Cerebrovascular accident, commonly known as stroke and being a global health

concern, is characterized by high mortality and disability rates, and is one of the leading

cause of dementia and depression (1). According to neuropathology, stroke can be

classified into two major subtyes: ischemic and hemorrhagic, with the former and latter

accounting for 85% and 15% of all cases, respectively (2). The relationship between gut
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microbiota and brain function has been studied intensively in

recent years, and gut microbiota has been linked to a couple of

neurological disorders, including Alzheimer’s disease (AD) (3),

Parkinson’s disease (PD) (4), multiple scleroses (MS) (5),

neurodevelopmental (6) and psychiatric disorders (7, 8), and

stroke (9–15). Communication between the brain and gut

microbiota is mainly mediated by neurogenic signaling

molecules and microbial metabolites; specifically, four

pathways related to neuro, metabolism, endocrine, and

immune signaling, are involved in this process (16). In

turn, the central nervous system (CNS) can regulate

neurotransmitters to achieve bidirectional communications by

shaping microbial community composition and function. These

processes that link microbiota and the brain are termed the

“microbiota-gut-brain” axis. Study have proven that the gut

microbiota can influence stroke prognosis by modulating the

immune response and neuroinflammation (13). In turn, stroke

can induce a shift in the gut microbiota, affecting intestinal

motility and permeability, stress response, and systemic

infection after stroke (10, 14, 15, 17). These findings highlight

the close connection between gut microbiota and stroke in the

“microbiota-gut-brain” axis.

Gut microbiota interacts with the host mainly through its

metabolites. Tryptophan is an essential amino-acid that must be

obtained from the diet. It can be metabolized by gut microbiota

directly or indirectly and participates in a variety of physiological

processes. Abnormal tryptophan metabolism has been

associated with many diseases. The AHR is an important

mediator of acute ischemic damage and can result in

subsequent neuroinflammation (18, 19). AHR can affect these

responses by sensing microbiota metabolites. For instance, it can

be activated predominantly by ligands produced from gut

microbes metabolizing diet-derived tryptophan (20, 21).

Indeed, aberrant tryptophan metabolism and dysbiosis of gut

microbiota have been observed in both acute and chronic stages

of cerebral ischemia (22, 23). Actually, ischemic injuries and

subsequent neuroinflammation have been recognized as key

elements in stroke development. Neuroinflammation exists in

both acute and chronic phases of cerebral ischemia, affecting the

prognosis and survival of stroke patients to some extent.

Persistent neuroinflammation could induce neurodegeneration,

leading to post-stroke dementia and depression (24, 25).

Activated microglia and astrocyte play an important role in

neuroinflammation after stroke, which may be achieved through

the binding of the ligand to AHR (5, 26–30).

AHR is engaged in the regulation of acute ischemic brain

injury and may be involved in chronic neuroinflammation after

stroke. As an important regulator in the “microbiota-gut-brain”

axis, AHR has the potential to be used as a new therapeutic target

for ischemia stroke treatment. In this review, we discuss the

research progress on AHR regarding its role in ischemia stroke

and prospects to be used as a therapeutic target for ischemia
Frontiers in Immunology 02
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stroke treatment, aiming to provide a potential direction for the

development of new treatments for ischemia stroke.

Role of the “microbiota-gut-brain”
axis in the development of
ischemia stroke

The communication between the gut microbiota and CNS is

mediated through at least 4 interacting components, including

the immune system, metabolites, neurotransmitters, and

activated vagal nerve (19). In the top-down signaling pathway,

ischemia stroke can disrupt the structure and function of the gut

microbiota through the autonomic nervous system, increasing

the gut permeability and reducing its motility, which further

induces an intestinal immune response and bacterial

translocation. In the bottom-up signaling pathway, post-stroke

gut microbiota dysbiosis can result in changes in bacterial

metabolites, leading to systematic infection due to bacterial

translocation, abnormal immune cell migration, and release of

immunomodulatory cytokines, which further mediates

neuroinflammation that causes severe ischemia stroke and

worse prognosis (31) (Figure 1).

Preclinical and clinical studies demonstrated that gut

microbiota plays an important role in the pathogenesis and

prognosis of ischemia stroke (10, 12–16, 32–47) (Table 1). For

example, many studies indicate that gut microbiota can affect

risk factors related to ischemia stroke directly or indirectly,

including hypertension, diabetes, hypercholesterolemia, obesity

and atherosclerosis, as well as aging (35, 48–52). However, so far,

there is no large prospective study exploring how gut microbiota

relates to the long-term risk of ischemia stroke. In addition,

ischemia stroke could change the gut microbiota composition.

For instance, Enterobacteriaceae , Ruminococcaceae ,

Veillonellaceae and Lachnospiraceae were significantly enriched

after stroke, while Bacteroidaceae and Prevotellaceae were

significantly reduced. Enterobacteriaceae showed notably

increased in patients with poor prognosis of cerebral infarction

(47). Another study demonstrated that dysbiosis of the gut

microbiota relates to ischemia stroke severity in mice;

specifically, germ-free (GF) mice can develop more severe

brain injury after receiving fecal transplants from high-stroke

disequilibrium index (SDI) mice (36). Pre-existing microbiota

ensures intestinal protection, and transplantation of the gut

microbiota from post-stroke mice to GF mice exacerbates the

brain damage and functional deficits compared to those in the

controls. GF mice present enlarged brain lesions compared to

recolonized (Ex-GF) and specific pathogen-free (SPF) mice after

stroke (11). Changes in gut microbiota induced by antibiotics

such as ampicillin can reduce ischemic brain injury and gut

inflammation, leading to improved long-term prognosis (16, 38).

However, another study showed the opposite result; mortality in
frontiersin.org
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mice with disturbed gut microbiota was significantly higher

following inhibition of gut microbiota by broad-spectrum

antibiotics (12). Therapeutic fecal microbiota transplantation

(FMT) can normalize the microbiota imbalance induced by

brain injury and improve stroke prognosis (10). This effect

may be particularly pronounced when aged stroke mice

received FMT from young mice. The aged mice showed fewer

behavioral abnormalities and neuroinflammation, which may be

due to the fact that gut microbiota could produce high levels of

short-chainfatty acids (SCFAs). Mechanistically, SCFAs can

improve neuronal connectivity and synaptic plasticity after

stroke by modulating microglia activation through recruitment

of T-lymphocytes, thereby improving behavioral recovery.

Studies have shown that supplementation of Lactobacilli after

stroke can reduce neuroinflammation and improve cognitive

function and depression (35, 40, 45). In addition, new evidence

indicates that lactulose and atorvastatin may regulate the

structure of gut microbiota by regulating intestinal immune

function and reducing neuroinflammation after stroke (43, 46).

Acute ischemia stroke is characterized by loss of species

diversity and overgrowth of opportunistic pathogens. A previous

study has shown that acute ischemia stroke patients can develop

significant gut microbiota disturbances at 3 days post-stroke,

which returned to similar levels pre-stroke by day 5 (39).

However, cerebral ischemia can induce persistent gut

microbiota dysbiosis, disrupt the gut barrier, and lead to

chronic systemic inflammation of the host, which is associated
Frontiers in Immunology 03
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with worsening stroke and neurodegenerations. One study

demonstrated that gut dysbiosis could last for more than 3

weeks after stroke, and then the disturbed gut microbiota could

gradually recover but microbiota diversity was still decreased

significantly after 4 weeks (36). Gut microbiota dysbiosis in

Cynomolgus monkeys is still observed 6 and 12 months after

cerebral ischemia, with notably increased Bacteroidetes phylum

and Prevotella genus and significantly reduced Firmicutes

phylum, Faecalibacterium, Oscillospira, and Lactobacillus

genera, accompanied by a significant increase in levels of

plasma D-lactate, zonulin, LPS, TNF-a, IFN-g, IL-6 and a

significant decrease in levels of SCFAs (23).

Alterations of levels of tryptophan
metabolites and AHR after
ischemia stroke

Tryptophan metabolism in the gastrointestinal tract can be

regulated by three main pathways, i.e., the kynurenine pathway,

serotonin pathway, and indol pathway. Approximately 90% of

ingested tryptophan is degraded through the kynurenine

pathway in immune and epithelial cells (53, 54). More

specifically, tryptophan is transferred into the brain crossing

the blood-brain barrier (BBB); then, two key enzymes in the

kynurenine pathway, indoleamine-2,3-dioxygenase (IDO) and

tryptophan-2,3-dioxygenase (TDO), metabolize L-tryptophan
FIGURE 1

“Microbiota-gut-brain” axis in the ischemic stroke. Gut microbiota communicates to the CNS through the immune system, metabolites and
neurotransmitters, as well as activation of the vagal nerve. In the top-down signaling pathway, ischemic stroke can affect the community
structure and function of the gut microbiota through the autonomic nervous system, increase the gut permeability and reduce `gut motility,
meanwhile, inducing an intestinal immune response and bacterial translocation. In the bottom-up signaling pathway, gut microbiota dysbiosis
after stroke leads to changes in bacterial metabolites, systematic infection due to bacterial translocation, immune cell migration and the release
of immunomodulation cytokines, which further mediate neuroinflammation, related to the severity of ischemic stroke and worse prognosis. Gut
microbiota can affect risk factors related to ischemia stroke directly or indirectly, including hypertension, diabetes, hypercholesterolemia, obesity
and atherosclerosis, as well as aging.
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TABLE 1 Summarizes the pre-clinical and clinical evidences regarding the relationship between gut microbiota and ischemic stroke.

Author Year of
publication

Type
of

study

Subjects Key findings

Caso et al.
(32)

2009 Pre-
clinical
study

CCAO and
MCAO rat

Bacterial translocation to mesenteric lymph nodes, spleen, liver, and lung after stroke, and it was associated with
worsening stroke.

Benakis
et al. (16)

2016 Pre-
clinical
study

MCAO
mice

Antibiotic-induced alterations in the gut microbiota can reduce ischemic brain injury, the effect can be
transmitted by FMT.

Singh et al.
(10)

2016 Pre-
clinical
study

MCAO
mice

Reduced species diversity and bacterial overgrowth of bacteroidetes were associated with intestinal barrier
dysfunction and reduced intestinal motility; gut dysbiosis intensifies the ingress of Th17- and IL17-secreting g d
T-cells (g d T-cells) into the CNS from the intestine, leading to chronic systemic and neuroinflammation. Higher
numbers of proinflammatory lymphocyte populations correlate negatively with stroke outcome, which is reflected
as larger infarct size, brain edema, and neurological deficits; FMT improves stroke outcome.

Houlden
et al. (15)

2016 Pre-
clinical
study

MCAO
mice

Specific changes in Peptococcaceae and Prevotellaceae were related with the severity of the stroke; changes in gut
microbiota after stroke may affect recovery and treatment.Gut dysbiosis affects the local immune cells in the
intestine and brain. In the early stage of stroke, engages both innate and adaptive immunity, microglial activation
is followed by infiltration of peripheral immune cells, including monocytes, T- and B-lymphocytes.

Winek
et al. (12)

2016 Pre-
clinical
study

MCAO
mice

Conventional microbiota ensures intestinal protection; microbial colonization or specific microbiota are crucial
for stroke outcome.

Stanley
et al. (14)

2016 Pre-
clinical
study

MCAO
mice

Stroke promotes the translocation and dissemination of selective strains of bacteria that originated from the host
gut microbiota.

Crapser
et al. (33)

2016 Pre-
clinical
study

MCAO
mice

Ischemic stroke induces gut permeability and enhances bacterial translocation leading to sepsis in aged mice.

Yamashiro
et al. (34)

2017 Clinical
study

41 patients:
40 controls

Ischemic stroke was independently associated with increased bacterial counts of Atopobium cluster and
Lactobacillus ruminis, and decreased numbers of Lactobacillus sakei subgroup, changes in the prevalence of
Lactobacillus ruminis were positively correlated with serum IL-6 levels.

Spychala
et al. (35)

2018 Pre-
clinical
study

MCAO
mice

The Firmicutes to Bacteroidetes ratio in aged mice increased 9-fold compared to young; gut microbiota can be
modified to positively impact outcomes from age-related diseases.

Singh et al.
(11)

2018 Pre-
clinical
study

MCAO
mice

Bacterial colonization reduces stroke volumes by increasing cerebral expression of cytokines and microglia/
macrophage cell counts; lymphocyte-driven protective neuroinflammation after stroke under control of the
microbiome.

Xia et al.
(36)

2019 Clinical
study

83 patients:
70 controls

Dysbiosis of the gut microbiota correlated with ischaemic stroke severity, mice receiving FMT from patients with
a high stroke disequilibrium index (SDI) developed more severe brain damage

Chen et al.
(23)

2019 Pre-
clinical
study

MCAO
cynomolgus
monkeys.

The levels of Bacteroidetes phylum and Prevotella genus were significantly increased, the Firmicutes phylum, the
Faecalibacterium, Oscillospira, and Lactobacillus genera were decreased after cerebral infarction in
monkeys; Cerebral infarction induces persistent host gut microbiota dysbiosis, intestinal mucosal damage, and
chronic systemic inflammation in cynomolgus monkeys.

Zeng et al.
(37)

2019 Clinical
study

141 patients Compared with the low-risk group, opportunistic pathogens (Enterobacteriaceae and Veillonellaceae) and lactate-
producing bacteria (Bifidobacterium and Lactobacillus) were increased, butyrate-producing bacteria
(Lachnospiraceae and Ruminococcaceae) were decreased in the high-risk group.

Benakis
et al. (38)

2020 Pre-
clinical
study

MCAO
mice

Bacteroidetes S24.7 and the enzymatic pathway for aromatic metabolism were correlated with infarct volume; The
gut microbiota composition in the ampicillin-treated mice was associated with reduced gut inflammation, a long-
term favorable outcome, and a reduction of brain tissue loss.

JeoJeonn
et al. (39)

2020 Pre-
clinical
study

MCAO pig Abundance of the Proteobacteria was significantly increased, while Firmicutes decreased at 3 days poststroke,
compared to prestroke populations, abundance of the lactic acid bacteria Lactobacillus was reduced. By day 5, the
microbial pattern returned to similar values as prestroke,

Lee et al.
(40)

2020 Pre-
clinical
study

MCAO
mice

Aged stroke mice receiving young fecal transplant had less behavioral impairment and inflammation, which is
related to Bifidobacterium longum, Clostridium symbiosum, Faecalibacterium prausnitzii and Lactobacillus
fermentum, for they can produce more SCFAs

Ling et al.
(41)

2020 Clinical
study

93 patients The abundance of Firmicutes and its members, including Clostridia, Clostridiales, Lachnospiraceae, and
Lachnospiraceae_other, was significantly decreased in the age-matched PSCI group; PSCI was significantly
correlated with the abundance of Enterobacteriaceae after adjustments

(Continued)
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into L-Kyn (55, 56), which plays a key role in this pathway. L-

Kyn can be further catabolized in two types of cells, astrocytes

and microglia, in the brain. In astrocytes, L-Kyn was

transformed into kynurenic acid (KYNA) under the

catalyzation of kynurenine aminotransferase (KAT) family

enzymes. KYNA is a well-recognized N-methyl-D-

aspartate receptor (NMDAR) antagonist and is thought to be

neuroprotective (57). In microglia, L-Kyn can be hydroxylated

by kynurenine 3-monooxygenase (KMO) to generate 3-HK and

its major metabolites, such as quinolinic acid (QUIN), which is

considered to be an NMDAR agonist with neurotoxic properties

(58). Both QUIN and KYNA act on NMDAR in the postsynaptic

membrane of neurons. L-Kyn is shown to be a key AHR ligand

and is associated with ischemia stroke severity and

prognosis (18).

Preclinical and clinical studies have shown altered

kynurenine pathway and tryptophan catabolism after

cerebral ischemia. An increased level of brain QUIN was

observed in gerbils, which was mediated by the activation of

IDO, KYN, and 3-HK after transient ischemic attack (TIA),

ultimately leading to an abnormal increase in the QUIN/

KYNA ratio, which might contribute to the progression of

post-stroke injury (59–63). QUIN is primarily detected in

microglia and infiltrating macrophages 2-7 days after cerebral

ischemia, which is consistent with a peak in immune

infiltration, glial activation and inflammation during this

period (62). An altered kynurenine pathway metabolism

was observed in a permanent middle cerebral artery
Frontiers in Immunology 05
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occlusion (MCAO) mouse model after ischemia stroke (22).

The level of L-Kyn was increased in the brain as early as 3

hours after MCAO and remained at an increased level for 24

hours, in contrast to a decrease in L-tryptophan level between

3 and 24 hours and slight changes in plasma L-Kyn or L-Trp.

An increase in AHR protein level, nuclear translocation and

transcriptional activity of cortical neurons in this mouse

model was also observed. In addition, the L-Kyn/L-Trp

ratio is much higher in stroke patients than that in healthy

controls and is positively correlated with infarct volume (63).

The most common long-term complications after ischemia

stroke are dementia and depression. A study found that

abnormal alterations in kynurenine pathway catabolism

persisted for at least 1 year after stroke, suggesting that it

might be the cause of persistent brain dysfunction in these

patients (64). The association between cognitive impairment

and the kynurenine pathway after ischemia stroke has been

described in only one study (65). Decreased levels of 5-HT

and increased levels of kynurenine pathway catabolites have

been reported in post-stroke patients with depression, and

activation of key enzymes in the kynurenine pathway can lead

to increased production of 3-HK, QUIN, L-Kyn, and KYNA

(66), which induce the production of neurotoxic agents

(67, 68). Finally, these alterations can cause damages to

multiple brain regions such as the hippocampus, inhibiting

neurogenesis and activating apoptotic signaling pathways,

and thus leading to depression (69), which has been

referred to as the kynurenine hypothesis of depression (70).
TABLE 1 Continued

Author Year of
publication

Type
of

study

Subjects Key findings

Xiang et al.
(42)

2020 Clinical
study

20 patients:
16 controls

Stroke patients had fewer Firmicutes than controls. Lachnospiraceae (OTU_45) and Bacteroides served as
markers of lacunar infarction. Bilophila and Lachnospiraceae (OTU_338), served as markers of non-lacunar acute
ischemic infarction. Three optimal bacterial species, Pseudomonas.

Yuan et al.
(43)

2021 Pre-
clinical
study

MCAO
mice

Lactulose promotes functional outcomes after stroke in mice, which may be attributable to repressing harmful
bacteria, and metabolic disorder, repairing gut barrier disruption, and reducing inflammatory reactions after
stroke.

Wu et al.
(44)

2021 Pre-
clinical
study

MCAO rat The abundance of the Firmicutes phylum was decreased, whereas Proteobacteria and Deferribacteres were
increased after stroke; Ruminococcus_sp_15975 might serve as a biomarker for the stroke; Many metabolites,
such as L-leucine, L-valine, and L-phenylalanine, differed between the stroke and sham groups

Huang
et al. (45)

2021 Pre-
clinical
study

MCAO
mice

Bifidobacterium was enriched in calorie-restriction mice; Bifidobacterium administration improved the long-term
rehabilitation of stroke mice

Zhang
et al. (46)

2021 Pre-
clinical
study

MCAO
mice

Atorvastatin increased the abundance of Firmicutes and Lactobacillus, decreased Bacteroidetes abundance,
increased fecal butyrate level, promoted intestinal barrier function, regulated intestinal immune function, and
reduced microglia-mediated neuroinflammation after stroke; FMT of atorvastatin-treated mice alleviated
neuroinflammation in MCAO mice.

Xu et al.
(47)

2021 Clinical
study/
Pre-
clinical
study

28patients:
28controls

Enterobacteriaceae, Ruminococcaceae, Veillonellaceae and Lachnospiraceae were significantly enriched after
stroke, while Bacteroidaceae and Prevotellaceae were significantly reduced. Enterobacteriaceae showed significant
enrichment in patients with poor prognosis of cerebral infarction. Enterobacteriaceae exacerbates cerebral
infarction by accelerating systemic inflammation and alleviates cerebral infarction by inhibiting its excessive
growth.
CCAO, common carotid artery occlusion.
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However, no correlations between depressive symptoms in

post-stroke populations and blood L-Kyn/L-Trp ratios have

been found (71, 72).
Gut microbiota affects levels of
tryptophan metabolites and AHR

Gut microbes can metabolize tryptophan through several

metabolic pathways and produce various tryptophan

metabolites (73). For instance, some bacterial species, such as

Escherichia coli, Clostridium spp. Bacteroides spp. Clostridium

sporogenes, Peptostreptococcus spp. Peptostreptococcus russellii,

Peptostreptococcus anaerobius and Peptostreptococcus stomatis,

Clostridium botulinum, and Peptostreptococcus anaerobius, can

produce indole propionic acid (IPA), indoleacetic acid (ILA),

and indoleacetic acid (IA). While other species, such as

Lactobacilli, Ruminococcus gnavus, Clostridium bartlettii, and

Bifidobacterium spp., can produce indole aldehydes (IAld),

indoleacetic acid (IAA), and ILA. Some others, such as

Bacteroides spp. and Clostridium spp., can produce 3-

methylindole (skatole) by decarboxylation of IAA.

Gut microbiota can directly or indirectly metabolize

tryptophan, generating various metabolites, including indole,

tryptamine, indole ethanol (IE), IPA, ILA, IAA, skatole, IAld and

IA. Some of them, including Indole, IPA, and IA, can reduce

intestinal permeability by disrupting mucosal homeostasis.

Several other tryptophan catabolic products can regulate

innate and adaptive immune responses by binding to AHR in

intestinal immune cells. For example, IAld can increase IL-22

production by activating the AHR signaling pathway. Some

other tryptophan metabolites, such as IPA, IE and IA, can be

absorbed into the blood through the intestinal epithelium and

exert antioxidant and anti-inflammatory effects (73).

Tryptophan catabolic products, including IAA, IA, IAld, ILA,

tryptamine, and skatole, are all ligands for AHR (74–77). Some

agonists can facilitate AHR in crossing the BBB. In astrocytes

and microglia, AHR can inhibit pro-inflammatory nuclear

factor-kB (NF-kB) signaling, thus interfering chemokine

production and transcriptional programs associated with

inflammatory monocyte recruitment, and activating CNS-

resident myeloid cells and producing direct neurotoxicity to

regulate CNS inflammation (5).
The role of AHR in ischemia stroke

The basic characteristics of AHR

AHR is a ligand-controlled transcription factor (5), which is

implicated in multiple physiological and pathological processes

of many diseases, including inflammatory bowel disease (78),
Frontiers in Immunology 06
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metabolic syndrome, and CNS diseases (79, 80). Expression of

AHR is widely detected in the CNS, such as in neurons,

oligodendrocytes, monocytes/macrophages, astrocytes,

microglia, and cerebral endothelial cells (81). AHR can

regulate the expressions of target genes which relate to cell

proliferation, metabolism and immune response (82).

Significant upregulation of AHR expression after stroke has

been reported, which is shown to play a role in the cerebral

ischemic injury (22, 83–86) (Table 2). In addition, the integrity

of the BBB is also compromised upon activation of the AHR

signaling (87–89). The BBB is essential for maintaining CNS

homeostasis, and impairment of BBB is thought to contribute to

neurodegeneration, leading cognitive impairment in

humans (90).

The role of AHR in the neurological and immune

systems has received increasing attention (91). The role of

neuroinflammation in acute and chronic ischemia stroke has

also been recognized (92). In fact, one of the pathological

features of neurodegenerative diseases is neuroinflammation,

mainly manifested by chronic activation of microglia (93). AHR

can mediates inflammatory effects of microglia through dietary

and microbial metabolites, particularly tryptophan metabolites

(5, 93). Given the links between tryptophan metabolism, AHR

and immune cell activation (94), we will highlight the role of the

AHR signaling pathway (i.e., tryptophan metabolites as AHR

ligand can bind to AHR) in ischemia stroke and potential targets

for pharmacological modulation of ischemia stroke, in the

following discussions.
AHR in acute phases of ischemia stroke

Cuartero et al. used mouse models to verify the hypothesis

that activation of the L-Kyn-AHR signaling pathway can

exacerbate acute ischemic brain injury (22). They identified

increased AHR protein level, nuclear translocation and

transcriptional activity of cortical neurons in a permanent

MCAO mouse model. In the core of the infarct, the AHR

protein level rose to a peak at around 5 hours after stroke and

returned to baseline levels by day 7 after stroke; in the peri-

infarct area, the AHR protein level started to increase at 18 hours

after stroke and reached the peak at day 3 after stroke and then

started to decrease. Treating with an AHR antagonist or using

AHR-deficient mice resulted in a smaller infarct size and lower

National Institutes of Health Stroke Scale (NIHSS) in mice

model (22). However, another group showed an opposite

result when treating ischemia stroke using the AHR agonists.

Mechanistically, activation of the AHR signaling during cerebral

ischemia may mediate specific pathological effects by inhibiting

the cAMP response element-binding protein (CREB) signaling

pathway. Further experiments demonstrated that L-Kyn could

accumulate in the brain during acute ischemia stroke and act as
frontiersin.org

https://doi.org/10.3389/fimmu.2022.967300
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fan et al. 10.3389/fimmu.2022.967300
an endogenous activator of AHR. Exogenous supplementation

of L-Kyn aggravates strokes in an AHR-dependent manner and

increases infarct volume. Most interestingly, the authors also

demonstrated that inhibition of L-Kyn production by

pharmacological blockade of TDO could decrease the

activation of AHR signaling and reduce infarct volume in the

MCAO stroke model. Taken together, this study identified the L-

Kyn-AHR pathway as a novel mediator of brain injury during

stroke, and validated TDO and AHR as new “druggable” targets

for acute ischemia stroke.

Another study suggested that AHR inhibition in acute

ischemia stroke might be benefits regarding functional

outcomes through reducing pro-inflammatory glial cell

proliferation and promoting neurogenesis. Compared to

respective controls, wild-type (WT) and AHRcKO mice that

were treated with the AHR antagonist, 6,2’,4’-trimethoxyflavone

(TMF), showed significantly smaller infarct volumes and

improved sensorimotor and non-spatial working memory

functions. AHR Immunoreactivity was increased mainly in

activated microglia and astrocytes after AHRcKO. TMF-

treated WT and AHRcKO mice showed remarkably increased

astrocyte and microglia proliferation (28). In a cerebral

ischemia-reperfusion injury (CIRI) rat model, TMF-treated

rats displayed lower cell apoptosis levels and smaller infarct

volumes than those not treated with TMF at 24 h after cerebral

ischemia, which were most pronounced in the 10 min and
Frontiers in Immunology 07
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50 min after stroke. This study indicated that the AHR

antagonists might reduce CIRI-related cellular injury.
AHR in chronic ischemia stroke

Ischemia stroke can induce long-term host gut microbiota

dysbiosis, impairing the intestinal barrier and leading to chronic

neuroinflammation. This inflammatory response is associated

with cognitive impairment, depression, and anxiety in post-

stroke patients (28). One year after FMT, elevated plasma pro-

inflammatory cytokines, such as IFN-g, IL-6 and TNF-a, were
decreased in focal cerebral ischemia of monkey models,

suggesting the persistence of systemic inflammation post

ischemia stroke (23). Numerous studies have shown that

resident inflammatory cells and microglia can first respond to

CIRI and amplify neuroinflammation by interacting with

astrocytes (95–98). The inflammatory response in the brain of

rats surviving 2 years after ischemic brain injury was evident but

varied in the extent regarding microglia and astrocyte responses

in different brain tissues (25). In another rat model of dementia

in which the rats survived 2 years after cerebral ischemia, it was

shown that this neuroinflammatory process was mainly

regulated by microglia and astrocyte activity. In conclusion,

microglia and astrocytes play an important role in post-stroke

neurodegeneration (99).
TABLE 2 A summary of the role of AHR in cerebral ischemia.

Reference Subjects Key findings Moechanism

Cuartero
et al., 2014
(22)

MCAO
mice

Ischemic insult increases total and nuclear AHR levels as well as AHR
transcriptional activity in neurons in vivo and in vitro, increasing
infarct size and neurological deficits. L-kynurenine-AHR pathway
mediates acute brain damage after stroke.

L-Kyn increased the expression of the AHR target genes Cyp1a1 and
Cyp1b1 mRNA in cortical neurons; L-Kyn decreased CRE-mediated
transcription in neurons, demonstrated by a reduction in both
BDNF and NPAS4 mRNA expression to increase apoptosis.

Chen et al.,
2019 (83)

MCAO
mice

The kynurenine/AHR activation mediated acute ischemic injury.
Compared to normal WT controls and AHRcKO mice. AHR
immunoreactivities were increased predominantly in activated
microglia and astrocytes, leading to a significantly aggrandized
ischemic brain infarction, sensorimotor deficits, and nonspatial
working memory after MCAO.

AHR affected pro-inflammatory cytokines IL-1b, IL-6, IFN-g,
CXCL1, as well as S100b, NGN2, and NGN1 gene and protein
expression after MCAO. TMF treatment modulated gene and
protein expression related to neurogenesis after stroke, leading an
increased proliferation of neural progenitor cells at the ipsilesional
neurogenic zones.

Kwon et al.,
2020 (84)

TMCAO
rat

The inhibition of AHR activation before reperfusion alleviates brain
damage due to apoptosis. AHR antagonism at a delayed time point
after ischaemia is also effective in suppressing cerebral I/R injury and
this effect was most pronounced in the 10 min and 50 min post-stroke
administration groups.

AHR antagonists after ischaemia affected the inhibition of the
formation of cellular and vasogenic oedemas due to cerebral I/R.

Tanaka
et al., 2021
(85)

MCAO
mice

MCAO upregulated AHR expression in microglia during ischemia.
MCAO increased the expression of TNFa and then induced edema
progression, and worsened the modified neurological severity scores,
with these being suppressed by administration of an AHR antagonist,
CH223191.

In MCAO model mice, the NOX subunit p47phox expression was
upregulated in microglia by ischemia, aggrandized the expression
of Tnfa and edema progression. AHR antagonist can relieve
hypoxia/ischemia and edema progression and improve the
neurological severity scores in mice via inhibition of the AHR
signaling pathway.

Rzemieniec
et al., 2019
(86)

mice A selective AHR modulator, DIM protects neurons against ischemia-
induced damage at earlier and later stages of neuronal development,

Ischemia-induced apoptosis and autophagy and possibly corresponds
to ischemia-evoked disruption of HDAC activity and AhR/CYP1A1
signaling pathway. DIM partially reversed OGD-induced apoptosis,
autophagy and AHR/CYP1A1 signaling as well as OGD-inhibited
HDAC activity.
OGD, Oxygen and glucose deprivation; DIM, 3,3′-diindolylmethane; TNFa, tumor necrosis factor a; NOX, NADPH oxidase; TMCAO, transient middle cerebral artery occlusion.
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Stroke injuries can induce the activation of microglia, which

are generally classified into detrimental M1 and protective M2

subtypes (Figure 2). M1 microglia can secrete pro-inflammatory

cytokines while M2 microglia can secrete anti-inflammatory

cytokines. M2 microglia can stimulate neural stem/progenitor

cell proliferation and neuronal differentiation in the ipsilateral

subventricular zone through upregulation of TGFa expression

levels. Studies have shown that in acute ischemia stroke,

activated microglia predominantly express M2 phenotypic

markers. However, there is a gradual shift to the M1

phenotype at around 1 week since the acute initiation of

ischemia stroke, which persists for several weeks or even

months. The sustained activation microglia is also thought to

be assoc ia ted wi th the onse t and progress ion of

neurodegenerative diseases (100). NF-kB, which is a key

molecule in the microglia inflammatory pathway, induces

activation and polarization of M1 microglia (101). Astrocytes

can proliferate reactively after ischemic stroke. Liddelow et al.

classified these astrocytes into the A1 and A2 subtypes, which are

neurodamaging and neuroprotective, respectively (102). AHR

plays an important role in activating microglia and activating

astrocytes, which participate in the pro-inflammatory and anti-

inflammatory processes, respectively. AHR inhibits the pro-

inflammatory NF-kB signaling pathway while deletion of AHR

or AHR ligands in microglia results in a dysregulated

inflammatory response . Microg l i a and as t rocyte s

intercommunicate with each other in many ways and may also

be involved in the “gut-microbiota-brain” axis (103). Based on
Frontiers in Immunology 08
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the fact that gut microbial metabolites can affect the CNS via the

AHR-dependent signaling pathway, role of the commensal

microbiota-mediated AHR signaling in the regulation of

inflammation-promoting activity mediated by microglia and

astrocytes has been investigated in recent years. Agonists

derived from diet, gut microbiota and host metabolism can

activate the AHR through the BBB. The AHR promotes TGFa
expression in microglia, which acts on astrocytes and inhibits

their pro-inflammatory activity. Further, AHR on microglia

inhibits NF-kB-driven vascular endothelial growth factor B

(VEGFB) expression, thereby promoting astrocytes to exert

anti-inflammatory activity (104). Gut microbiota dysbiosis after

stroke leads to abnormal tryptophanmetabolism, and the decreased

levels of AHR agonists may lead to enhanced neuroinflammation.

AHR as a potential therapeutic
target for treatment of
ischemia stroke

As previously described, modulation of the AHR signaling

may provide new therapeutic strategy to attenuate neuronal

damage after acute ischemia stroke and prevent the development

of post-stroke neurodegeneration, thereby improving the short-

and long-term ischemia stroke prognosis. In the permanent

MCAO mouse model, L-Kyn mediates ischemic neuronal

injury as an endogenous activator of AHR (22). Therefore,

pharmacological inhibition of the kynurenine pathway or
FIGURE 2

Neuroinflammation in the brain after stroke, the role of AHR and tryptophan metabolites in neuroinflammation. Microglia and astrocytes are
activated and interact with each other to mediate neuroinflammation following ischemic stroke Some metabolites such as 3-HK, Kyn, QUIN
produced by tryptophan metabolism can cross the BBB plays a neuroprotective or neurotoxic role. Gut flora and the host tryptophan metabolism
produce AHR agonist. In astrocytes and microglia, AHR can inhibit pro-inflammatory nuclear factor-kB (NF-kB) signaling, and reduction of AHR
agonists after gut microbiota dysbiosis result in an upregulated neuroinflammation and neurotoxic responses and immune cell recruitment, which
are amplified through microglia-astrocyte interactions.
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activation of the AHR pathway in acute ischemia stroke might

prevent neurological injury. On the one hand, early

administration of TMF, an AHR antagonist, can be a simple

approach for the treatment of acute ischemia stroke. On the

other hand, synthesis of L-Kyn under the action of TDO as the

primary pathway in ischemic brain tissue and inhibition of L-

Kyn production by the TDO inhibitor compromises the

activation of the AHR signaling, leading to reduced infarct

volume. Interestingly, pharmacological blockade of IDO,

another key enzyme in L-Kyn production, by the IDO

inhibitor 1-MT, does not show a beneficial effect in reducing

infarct size and improving neurological prognosis, despite

increased IDO expression and activity in transient MCAO

mouse model (105).

AHR can mediate the inflammatory response in glial cells of

the CNS (106). Dietary and microbial metabolites, particularly

tryptophan metabolites, have recently been shown to act as AHR

activators and thus regulate microglia and astrocyte activity and

neuroinflammation in the CNS (5, 94). These studies linked the

gut microbiota to neurological inflammation in the brain via the

AHR signaling pathway. In mice with autoimmune

encephalomyelitis, the AHR signaling was activated in

astrocytes, which was proven to limit the inflammatory

response in astrocytes. Moreover, this anti-inflammatory

response could become increasingly evident when dietary

tryptophan was ingested by mice. To demonstrate that this

effect is regulated by microbiota-mediated tryptophan

metabolites, a broad-spectrum antibiotic-ampicillin was

applied to the mice to clear their gut microbiota, followed by

treatment of the mice with indirubin-3’-oxime, a microbial

metabolite of tryptophan. As a result, AHR-mediated anti-

inflammatory effects were observed (5), indicating the effect is

indeed mediated by tryptophan metabolites. Indirubin-3’-oxime

has also been shown to inhibit the inflammatory activation in

microglia in the rat brain (107). Lactobacillus was found to be an

important host probiotic, and its levels were reduced after

cerebral ischemia in monkeys (23). There are also studies

showing that Lactobacillus supplementation can improve

cognitive function and mood and reduce aging-related

inflammation in mice and rats (28, 108). Lactobacillus casei

subsp. casei 327 (327 strain) can indirectly promote colonic 5-

HT synthesis (109). Lactobacillus reuteri can degrade tryptophan

into indolic compounds, such as IAld, ILA, and IAA (74, 110). A

decreasing trend in serum kynurenine: tryptophan ratios was

observed in humans after 8 weeks of oral administration of

Lactobacillus johnsonii (111). As an important source of essential

amino acids, diet is considered to be an important factor in

shaping microbial tryptophan metabolism. A recent study

indicated that the microbial tryptophan degradation pathway

could be weakened under a high-fat diet (112). In addition,

increasing carbohydrate availability promotes intestinal

serotonin synthesis (113). Thus, probiotic supplementation
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and a reasonable diet can theoretically improve ischemia

stroke prognosis; however, whether it is indeed beneficial in

post-stroke patients needs to be tested in future clinical trials.

Ramos et al. showed that the function of AHR and its

downstream signaling pathways are impaired in the elderly

and AD patients (114). The role of AHR ligands in improving

learning memory deficits was also confirmed in a mouse model

(104). Activation of the AHR signaling pathway by endogenous

ligands such as L-Kyn and 6-Formylindolo[3,2-b]carbazole

(FICZ), or exogenous ligands such as diosmin and indole-3-

carbinol, could increase the expression and enzymatic activity of

neprilysin in amyloid precursor protein/presenilin 1 (APP/PS1)

mice, and improve cognitive impairment effectively in these

mice. Tryptophan metabolites, such as 5-hydroxy indole-acetic

acid and kynurenic acid, could reduce cognitive impairment in

mice and Ab load in patients with mild cognitive impairment by

activating AHR (115–118).
Present shortcomings and
future perspectives

New therapies, such as the application of recombinant

thrombolytic tissue plasminogen activator (r-tPA) and intra-

arterial thrombectomy, have been developed for the treatment of

acute ischemia stroke (119). However, due to the narrow time

windows and the limitations of endovascular treatment

techniques, only a small number of patients with acute

ischemia stroke can benefit from these new therapies. There

are limited treatment options for patients with subacute and

chronic ischemia stroke. In light of this, AHR can be used as a

potential therapeutic target for the treatment of these patients

(85). Inhibition of AHR signaling in acute ischemia stroke has

the potential to benefit the patients by reducing pro-

inflammatory gliosis and enhancing neurogenesis. In contrast,

tryptophan metabolites, as the AHR ligands, can interact with

microglia and astrocytes and prevent neurodegeneration.

Supplementation of tryptophan metabolites, probiotics

producing AHR agonists, and FMT from normal donors may

be potential therapeutic strategies that can improve the

prognosis of certain types of ischemia stroke. Delivering drugs

to the brain directly has long been a major challenge in treating

neurodegeneration, and thus these proposed strategies might

overcome this barrier.

However, there is still a long way to go for researchers

despite the substantial progress. Firstly, the composition and

immunological characteristics of human gut microbiota are not

completely the same as those of animals such as mice. Secondly,

the effects of intestinal fungi and protozoa on tryptophan

metabolism and severity of ischemia stroke are unclear.

Whether there are other endogenous or exogenous AHR

ligands besides tryptophan that have not been identified and
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whether there are any other endogenous inhibitors of the AHR

pathway are unknown as well. Tryptophan can also directly be

absorbed by the host gut and the complex interactions between

intestinal flora, intestinal lumen tryptophan availability, and

host tryptophan metabolism need further study. Thirdly, it

requires validation that whether the results from animal

studies could be used for the effective treatment of human

diseases such as ischemia stroke. Developing a humanized

mouse model might help explain the well-known differences

regarding AHR between humans and mice. Finally, large-scale,

highly controlled clinical studies are urgently needed to further

validate the role of AHR in ischemia stroke development.
Conclusion

The role of AHR and tryptophan metabolism in the

communication between the gut microbiota and CNS has been

increasingly well known. Tryptophan metabolism is directly or

indirectly regulated by the gut microbiota and many tryptophan

metabolites can act as endogenous AHR activators, activating

AHR, which can further regulate neuroinflammation by

interacting with microglia and astrocytes. Since many factors

can affect the gut microbiota composition and metabolism,

including diet, antibiotics, and probiotics, as well as FMT, the

manipulation of the gut microbiota modulating tryptophan

availability may be a therapeutic method for neuroinflammation

after ischemia stroke. In conclusion, we argue that the AHR and

tryptophan metabolism play an important role in ischemia stroke.
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L, et al. Cellular markers of neuroinflammation and neurogenesis after ischemic
brain injury in the long-term survival rat model. Brain Struct Funct (2012) 2):411–
20. doi: 10.1007/s00429-011-0336-7

97. Chamorro Á, Meisel A, Planas AM, Urra X, van de Beek D, Veltkamp R.
The immunology of acute stroke. Nat Rev Neurol (2012) 8:401–10. doi: 10.1038/
nrneurol.2012.98

98. Ma Y, Wang J, Wang Y, Yang GY. The biphasic function of microglia in
ischemic stroke. Prog Neurobiol (2017) 157:247–72. doi: 10.1016/
j.pneurobio.2016.01.005

99. Jawaid A, Krajewska J, Pawliczak F, Kandra V, Schulz PE. A macro role for
microglia in poststroke depression. J Am Geriatr Soc (2016) 64(2):459–61.
doi: 10.1111/jgs.13974

100. Lyu J, Xie D, Bhatia TN, Leak RK, Hu X, Jiang X. Microglial/Macrophage
polarization and function in brain injury and repair after stroke. CNS Neurosci Ther
(2021) 27(5):515–27. doi: 10.1111/cns.13620

101. Jiang CT, Wu WF, Deng YH, Ge JW. Modulators of microglia activation
and polarization in ischemic stroke.Mol Med Rep (2020) 21:2006–18. doi: 10.3892/
mmr.2020.11003

102. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer
L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature
(2017) 541:481–7. doi: 10.1038/nature21029

103. Allen NJ, Lyons DA. Glia as architects of central nervous system formation
and function. Science (2018) 362:181–5. doi: 10.1126/science.aat0473
frontiersin.org

https://doi.org/10.1111/j.1471-4159.1993.tb07443.x
https://doi.org/10.1111/j.1471-4159.1993.tb07443.x
https://doi.org/10.1038/jcbfm.1990.119
https://doi.org/10.1016/s0169-328x(98)00136-3
https://doi.org/10.1111/j.1460-9568.2007.05838.x
https://doi.org/10.1111/j.1468-1331.2006.01220.x
https://doi.org/10.1186/1742-2094-8-17
https://doi.org/10.1186/1742-2094-8-17
https://doi.org/10.1042/bst0130441
https://doi.org/10.1046/j.1471-4159.1998.70010299.x
https://doi.org/10.1046/j.1471-4159.1998.70010299.x
https://doi.org/10.1046/j.1365-2826.2003.01058.x
https://doi.org/10.1176/appi.ajp.160.8.1516
https://doi.org/10.1055/s-0028-1094391
https://doi.org/10.1055/s-0028-1094391
https://doi.org/10.1007/s12031-014-0272-0
https://doi.org/10.1007/s12031-014-0272-0
https://doi.org/10.2147/ndt.s65740
https://doi.org/10.1038/s41467-018-05470-4
https://doi.org/10.1016/j.immuni.2013.08.003
https://doi.org/10.1126/science.aah5825
https://doi.org/10.1124/dmd.115.063677
https://doi.org/10.1124/dmd.115.063677
https://doi.org/10.1038/srep12689
https://doi.org/10.1038/nm.4102
https://doi.org/10.1038/nm.4102
https://doi.org/10.1055/s-0043-107843
https://doi.org/10.1016/j.cyto.2015.02.020
https://doi.org/10.3390/ijms222212326
https://doi.org/10.3390/ijms222212326
https://doi.org/10.1016/j.bbagrm.2016.02.006
https://doi.org/10.1016/j.bbagrm.2016.02.006
https://doi.org/10.1186/s12974-019-1572-7
https://doi.org/10.1186/s12974-019-1572-7
https://doi.org/10.1038/s41598-020-72023-5
https://doi.org/10.3390/cells10040718
https://doi.org/10.3390/cells10040718
https://doi.org/10.1007/s10495-019-01522-2
https://doi.org/10.1007/s10495-019-01522-2
https://doi.org/10.1007/s00204-012-0963-7
https://doi.org/10.1016/j.toxlet.2014.09.023
https://doi.org/10.1038/jcbfm.2011.44
https://doi.org/10.1038/jcbfm.2011.44
https://doi.org/10.1016/j.neuron.2014.12.032
https://doi.org/10.1016/j.it.2009.06.005
https://doi.org/10.3389/fncel.2015.00476
https://doi.org/10.1038/nrneurol.2014.38
https://doi.org/10.1146/annurev-immunol-032713-120245
https://doi.org/10.1038/nrneurol.2015.144
https://doi.org/10.1007/s00429-011-0336-7
https://doi.org/10.1038/nrneurol.2012.98
https://doi.org/10.1038/nrneurol.2012.98
https://doi.org/10.1016/j.pneurobio.2016.01.005
https://doi.org/10.1016/j.pneurobio.2016.01.005
https://doi.org/10.1111/jgs.13974
https://doi.org/10.1111/cns.13620
https://doi.org/10.3892/mmr.2020.11003
https://doi.org/10.3892/mmr.2020.11003
https://doi.org/10.1038/nature21029
https://doi.org/10.1126/science.aat0473
https://doi.org/10.3389/fimmu.2022.967300
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fan et al. 10.3389/fimmu.2022.967300
104. Prinz M, Masuda T, Wheeler MA, Quintana FJ. Microglia and central
nervous system-associated macrophages-from origin to disease modulation. Annu
Rev Immunol (2021) 39:251–77. doi: 10.1146/annurev-immunol-093019-110159

105. Jackman KA, Brait VH, Wang Y, Maghzal GJ, Ball HJ, McKenzie G, et al.
Vascular expression, activity and function of indoleamine 2,3-dioxygenase-1
following cerebral ischaemia-reperfusion in mice. Naunyn Schmiedebergs Arch
Pharmacol (2011) 383:471–81. doi: 10.1007/s00210-011-0611-4

106. Lee YH, Lin CH, Hsu PC, Sun YY, Huang YJ, Zhuo JH, et al. Aryl
hydrocarbon receptor mediates both pro-inflammatory and anti-inflammatory
effects in lipopolysaccharide-activated microglia. Glia (2015) 63:1138–54.
doi: 10.1002/glia.22805

107. Jung HJ, Nam KN, Son MS, Kang H, Hong JW, Kim JW, et al. Indirubin-
3′-oxime inhibits inflammatory activation of rat brain microglia. Neurosci Lett
(2011) 487:139–43. doi: 10.1016/j.neulet.2010.10.009

108. Jeong JJ, Woo JY, Kim KA, Han M, Kim DH. Lactobacillus pentosus var.
plantarum C29 ameliorates age-dependent memory impairment in Fischer 344
rats. Lett. Appl Microbiol (2015) 60:307–14. doi: 10.1111/lam.12393

109. Hara T, Mihara T, Ishibashi M, Kumagaib T, Joha T, et al. Heat-killed
lactobacillus casei subsp. casei 327 promotes colonic serotonin synthesis in mice. J
Funct Foods (2018) 47:585–9. doi: 10.1016/j.jff.2018.05.050

110. Cervantes-Barragan L, Chai JN, Tianero MD, Luccia BD, Ahern PP,
Merriman J, et al. Lactobacillus reuteri induces gut intraepithelial CD4(+)
CD8alphaalpha(+) T cells. Science (2017) 357(6353):806–10. doi: 10.1126/
science.aah5825

111. Marcial GE, Ford AL, Haller MJ, Gezan SA, Harrison NA, Cai D, et al.
Lactobacillus johnsonii N6.2 modulates the host immune responses: A double-
blind, randomized trial in healthy adults. Front Immunol (2017) 8:655.
doi: 10.3389/fimmu.2017.00655

112. Krishnan S, Ding Y, Saedi N, Choi M, Sridharan GV, Sherr DH, et al. Gut
microbiota-derived tryptophan metabolites modulate inflammatory response in
Frontiers in Immunology 13
20
hepatocytes and macrophages. Cell Rep (2018) 23(4):1099–111. doi: 10.1016/
j.celrep.2018.03.109

113. Kashyap PC, Marcobal A, Ursell LK, Larauche M, Duboc H, Earle KA, et al.
Complex interactions among diet, gastrointestinal transit, and gut microbiota in
humanized mice. Gastroenterology (2013) 144(5):967–77. doi: 10.1053/
j.gastro.2013.01.047
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Changes in fecal microbiota
composition and the cytokine
expression profile in school-
aged children with depression:
A case-control study

Zongxin Ling1,2*†, Yiwen Cheng1†, Feng Chen1†, Xiumei Yan3†,
Xia Liu4†, Li Shao5,6, Guolin Jin7, Dajin Zhou3, Guizhen Jiang3,
He Li7, Longyou Zhao3* and Qinghai Song7*

1Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key
Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center
for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University,
Hangzhou, China, 2Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China,
3Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, China, 4Department
of Intensive Care Unit, the First Affiliated Hospital, School of Medicine, Zhejiang University,
Hangzhou, China, 5Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University,
Hangzhou, China, 6Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal
University, Hangzhou, China, 7Department of Psychiatry, Lishui Second People’s Hospital,
Lishui, China
Depression in childhood negatively affects the growth and development,

school performance, and peer or family relationships of affected children,

and may even lead to suicide. Despite this, its etiology and pathophysiology

remain largely unknown. Increasing evidence supports that gut microbiota

plays a vital role in the development of childhood depression. However, little is

known about the underlying mechanisms, as most clinical studies investigating

the link between gut microbiota and depression have been undertaken in adult

cohorts. In present study, a total of 140 school-aged children (6–12 years) were

enrolled, including 92 with depression (male/female: 42/50) and 48 healthy

controls (male/female: 22/26) from Lishui, Zhejiang, China. Illumina

sequencing of the V3–V4 region of the 16S rRNA gene was used to

investigate gut microbiota profiles while Bio-Plex Pro Human Cytokine 27-

plex Panel was employed to explore host immune response. We found that,

compared with healthy controls, children with depression had greater bacterial

richness and altered b-diversity. Pro-inflammatory genera such as

Streptococcus were enriched in the depression group, whereas anti-

inflammatory genera such as Faecalibacterium were reduced, as determined

by linear discriminant analysis effect size. These changes corresponded to

altered bacterial functions, especially the production of immunomodulatory

metabolites. We also identified the presence of a complex inflammatory

condition in children with depression, characterized by increased levels of

pro-inflammatory cytokines such as IL-17 and decreased levels of anti-

inflammatory cytokines such as IFN-g. Correlation analysis demonstrated that

the differential cytokine abundance was closely linked to changes in gut
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microbiota of children with depression. In summary, key functional genera,

such as Streptococcus and Faecalibacterium, alone or in combination, could

serve as novel and powerful non-invasive biomarkers to distinguish between

children with depression from healthy ones. This study was the first to

demonstrate that, in Chinese children with depression, gut microbiota

homeostasis is disrupted, concomitant with the activation of a complex pro-

inflammatory response. These findings suggest that gut microbiota might play

an important role in the pathogenesis of depression in school-aged children,

while key functional bacteria in gut may serve as novel targets for non-invasive

diagnosis and patient-tailored early precise intervention in children

with depression.
KEYWORDS

children, depression, dysbiosis, microbiota-targeted diagnosis, inflammation
Introduction

Depression in school-aged children, a long-overlooked

psychiatric disorder, affects approximately 2.8% of children

under the age of 13 and 5.6% of 13–18-year-olds (1).

Childhood depression is characterized by sad or irritable

mood, decreased self-esteem, sleep disturbance, anhedonia,

decreased capacity for fun, social withdrawal or impaired

social relationships, and impaired school performance (2, 3).

This disorder tends to recur throughout life and is associated

with serious complications, including self-harm and suicide.

Notably, the prevalence of depression increases markedly after

the transition from childhood to adolescence (4). The high

prevalence and adverse outcomes have rendered childhood

depression a significant public health problem. Additionally,

major depressive disorder (MDD) has become a leading risk

factor for suicide amongst children. Unlike in adults,

depression is difficult to diagnose in children because the

symptoms are non-specific and the manifestations may

overlap with those normally witnessed at this stage of life.

Accordingly, most children with depression go undiagnosed

and untreated (2, 5).

Over recent years, childhood depression has received

increasing attention from mental health professionals as well

as parents. An awareness of the possibility of depression in

children can expedite its diagnosis and treatment, thereby

avoiding more severe complications later in life. Depression in

children can be caused by any combination of factors, including

physical health, family history, environment, genetic

vulnerability, and biochemical disturbance. Evidence for the

heritability of depression in children includes familial

transmission; heightened risk for depression in the adult

relatives of depressed youths; and estimates of heritability of
02
22
40%–80% in studies of twins (2, 6, 7). Environmental factors,

together with genetic predisposition, also confer an increased

risk for depression (8). A comprehensive meta-analysis of twins

indicated that environmental effects account for a 55%-66% risk

for major depression (9). Recent preclinical and clinical findings

strongly support the existence of a link between gut dysbiosis

and depression via the microbiota–gut–brain axis. We have

previously reported that gut microbiota homeostasis is

disrupted in adult patients with MDD, characterized by

increased levels of Enterobacteriaceae and Alistipes and

reduced numbers of Faecalibacterium. Notably, we found that

Faecalibacterium abundance was negatively correlated with the

severity of depressive symptoms (10). Interestingly, the

transplantation of fecal microbiota derived from patients with

depression (“depression microbiota”) into germ-free mice can

induce depression-like behavior by altering host metabolism,

demonstrating a causal correlation between gut dysbiosis and

the development of depression (11). A recent multi-omics-based

analysis also revealed that neuroactive metabolites (multiple B

vitamins, kynurenic acid, gamma-aminobutyric acid, and short-

chain fatty acids) derived from specific depression-associated

microbes are involved in the interactions between the gut and

the brain and contribute to the pathophysiology of depression

(12). Meanwhile, “depression microbiota”-derived molecules

and metabolites can promote inflammation in the central

nervous system, thereby greatly contributing to the onset of

depression (13). Additionally, patients with depression

reportedly have higher levels of pro-inflammatory cytokines,

acute-phase proteins, chemokines, and cell-adhesion molecules

(14, 15). Besides social, psychological, and environmental

factors, recent evidence has indicated that the gut microflora,

acting through the microbiota–gut–brain axis, may be a key

environmental determinant for depression in adults.
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Emerging evidence has indicated that the gut microbiota

undergoes age-related changes; however, relatively few studies

have considered the effects of age on the gut microbiota when

exploring the pathogenesis of depression. Moreover, most

clinical studies investigating the association between the gut

microbiota and this condition have involved adult cohorts.

Given the differences in environmental exposures and life

trajectories between children and adults, further studies

investigating the connection between gut dysbiosis and

depression in childhood are urgently needed. Accordingly, the

aim of this study was to explore in detail the structure and

composition of the fecal microbiota in pediatric patients with

MDD from Lishui using high-throughput 16S rRNA gene

sequencing on the MiSeq platform, as well as identify putative

associations between altered microbial profiles and host cytokine

expression levels. Our findings provide novel insights into the

etiology of depression in children as well as contribute to non-

invasive diagnosis and personalized microbiota-targeted therapy

for depression in childhood.
Methods

Participants’ enrollment

A total of 92 pediatric patients with newly diagnosed MDD

(age 6-12 years) according to the criteria of the Hamilton

Depression Scale (HAMD), and/or the Diagnostic and

Statistical Manual of Mental Disorders Fifth Edition (DSM-V),

and/or the third version of Chinese Classification of Mental

Disorder (CCMD-3), were recruited from Lishui, Zhejiang

(China) from November 2019 to April 2021, while 48 healthy

children with similar age and sex distribution were enrolled as

controls. The pediatric MDD patients were enrolled in the

outpatient clinics of Lishui Second People’s Hospital

(Zhejiang, China) and diagnosed by two experienced pediatric

psychiatrists. Meanwhile, their schoolmates were recruited

randomly, evaluated systematically, and selected as healthy

control. Those schoolmates with HAMD more than 7 would

be exclude from healthy controls. Dietary and other socio-

demographic information was obtained via questionnaires. All

these participants lived in the Liandu district of Lishui, with

similar birth modes, dietary habits, lifestyles, and environment.

These protocols for the study were approved by the Ethics

Committee of Lishui Second People’s Hospital and written

informed consent was obtained from their guardian before

enrollment. The detailed demographic data and medical

history were collected using a set of questionnaires (Table S1).

The exclusion criteria included: age < 6 or > 13 years; body mass

index (BMI) > 28 kg/m2; active respiratory or intestinal

infections; autism spectrum disorder, anorexia nervosa, bipolar

disorder, attention-deficit/hyperactivity disorder, mania;
Frontiers in Immunology 03
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antibiotic, prebiotic, probiotic, or synbiotic administration in

the previous month; antidepressant, mood stabilizers or other

psychiatric drugs in last 1 months; autoimmune diseases.
Sample collection and bacterial
DNA extraction

The sample collection, processing and banking are according

to our previous standardized protocols. Briefly, approximately

2g of a fresh fecal sample was collected in a sterile plastic cup,

and stored at -80°C after preparation within 15 min until use.

Serum samples from these participants were obtained using their

fasting blood in the early morning. Bacterial genomic DNA was

extracted from 300 mg of homogenized feces using a DNA Stool

Mini Kit (QIAGEN, Hilden, Germany) according to the

manufacturer’s instructions (16, 17). The amount of DNA was

determined using a NanoDrop ND-1000 spectrophotometer

(Thermo Electron Corporation, Boston, MA, USA) and the

quality of DNA was checked by agarose gel electrophoresis.

All DNA was stored at -20°C before further analysis.
Amplicon library construction
and sequencing

The protocols of amplicon library construction and

sequencing were conducted as our previous studies (16–18).

The details were shown as follows: amplicon libraries were

constructed with Illumina sequencing-compatible and barcode-

indexed bacterial PCR primers 341F (5’-CCTACGGG

NGGCWGCAG-3’)/785R (5’-ACTACHVGGGTATCTAATCC-

3’), which target the V3-V4 regions of the 16S rRNA gene (19).

All PCR reactions were performed with KAPA HiFi HotStart

ReadyMix using the manufacturer’s protocol (KAPA Biosystems)

and approximately 50 ng of extracted DNA per reaction.

Thermocycling conditions were set at 95°C for 1 min, 55°C for

1 min, then 72°C for 1 min for 30 cycles, followed by a final

extension at 72°C for 5 min. All PCR reactions were performed in

50 ml triplicates and combined after PCR. The amplicon library

was prepared using a TruSeq™ DNA sample preparation kit

(Illumina Inc, San Diego, CA, USA). Prior to sequencing, the PCR

products were extracted with the MiniElute® Gel Extraction Kit

(QIAGEN) and quantified on a NanoDrop ND-1000

spectrophotometer (Thermo Electron Corporation) and Qubit

2.0 Fluorometer (Invitrogen). The purified amplicons were then

pooled in equimolar concentrations and the final concentration of

the library was determined by Qubit (Invitrogen). Negative DNA

extraction controls (lysis buffer and kit reagents only) were

amplified and sequenced as contamination controls. Sequencing

was performed on a MiSeq instrument (Illumina) using a 300 × 2

V3 kit together with PhiX Control V3. MiSeq sequencing and
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library construction were performed by technical staff at

Hangzhou KaiTai Bio-lab.
Bioinformatic analysis

Based on our previous studies, the 16S rRNA gene sequence

data set generated from the Illumina MiSeq platform was

inputted to QIIME2 (version 2020.11), and all steps of

sequence processing and quality control were performed in

QIIME2 with default parameters (16, 17, 20, 21). Before the

following data analysis, these reads of each sample were

normalized to even sampling depths and annotated using the

Greengenes reference database (version 13.8) with both the RDP

Classifier and UCLUST version 1.2.22 methods implemented in

QIIME2. a-diversity indices, including the observed species,

abundance-based coverage estimator (ACE), Chao1 estimator,

Shannon, Simpson, Evenness and PD whole tree indices, were

calculated at a 97% similarity level. b-diversity was measured by

the unweighted UniFrac, weighted UniFrac, jaccard and Bray-

Curtis distances calculated by QIIME2, which were visualized by

principal coordinate analysis (PCoA). The differences in the

composition of the fecal microbiota at different taxonomic levels

were analyzed with Statistical Analysis of Metagenomic Profiles

(STAMP) software package v2.1.3 and the linear discriminant

analysis (LDA) effect size (LEfSe) method. Only bacterial

phylotypes with an average relative abundance of more than

0.01% were selected for the LEfSe analysis. Krona chart was

plotted using taxonomy summary data obtained from QIIME

Krona chart displays abundance and hierarchy simultaneously

using a radial space-filling display and features a red-green color

gradient, signifying the average BLAST hits e-values within each

taxon (22). PiCRUSt v1.0.0 was used to identify predicted gene

families and associated pathways from inferred metagenomes of

taxa of interest identified from the compositional analyses.
Multiplex cytokine analysis

Serum cytokines, chemokines and growth factors were

probed using Bio-Plex Pro Human Cytokine 27-plex Panel

(M50-0KCAF0Y, Bio-Rad, Hercules, CA, USA) multiplex

magnetic bead-based antibody detection kits following

manufacturer’s instructions. Based on the Luminex® xMAP®

technology, the assays are capable of simultaneously quantifying

27 targets including interleukin-1b (IL-1b), IL-1 receptor

antagonist (IL-1ra), IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-

10, IL-12(p70), IL-13, IL-15, IL-17, Eotaxin, Fibroblast growth

factor-basic (FGF-basic), granulocyte colony-stimulating factor

(G-CSF), granulocyte-macrophages colony-stimulating factor

(GM-CSF), interferon gamma (IFN-g), interferon gamma-

inducible protein 10 (IP-10), monocyte chemotactic protein-1

(MCP-1), macrophages inflammatory protein-1a (MIP-1a),
Frontiers in Immunology 04
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platelet-derived growth factor (PDGF-bb), MIP-1b, regulated
upon activation normal T-cell expressed and secreted

(RANTES), tumor necrosis factor-alpha (TNF-a), and vascular

endothelial growth factor (VEGF). The assays were run on the

Luminex® 200™ system (Bio-Rad) and fluorescence values were

collected. A standard curve was derived using the different

concentrations of the assay standards. Data was acquired using

the Bio-Plex Array Reader system 2200. The results expressed as

picogram per milliliter (pg/mL) using the standard curves

integrated into the assay and Bio-Plex Manager v5.0 software

with reproducible intra- and inter-assay CV values of 5-8% (16,

17, 23).
Statistical analysis

White’s nonparametric t-test, independent t-test, or Mann-

Whitney U-test were applied for continuous variables. Pearson

chi-square or Fisher’s exact test were used for categorical

variables between groups, Spearman’s rank correlation test was

utilized for correlation analyses. Statistical analysis was

performed using the SPSS v19.0 (SPSS Inc., Chicago, IL) and

STAMP v2.1.3 (24). False-discovery rate (FDR) was calculated

according to Benjamini-Hochberg, FDR-corrected p values were

denoted as QFDR and was used when performing all untargeted

screening analyses of different taxa. The predictive power was

evaluated by receiver operating characteristics (ROC) and area

under the curve (AUC) analysis to determine the ability of the

differential bacteria to accurately predict childhood depression.

R software ggplot2 and pheatmap packages and GraphPad Prism

v6.0 were used for preparation of graphs. All tests of significance

were two sided, and p<0.05 or corrected p<0.05 was considered

statistically significant.
Accession number

The sequence data from this study are deposited in the

GenBank Sequence Read Archive with the accession

number PRJNA846994.
Results

Characteristics of patients

A total of 140 school-aged children were included in this

study, including 92 recently diagnosed with MDD (male/female:

42/50; age: 8.84 ± 1.89 years) and 48 healthy controls (male/

female: 22/26; age: 9.27 ± 2.11 years). No differences in clinical

characteristics such as BMI (21.86 ± 2.33 in MDD patients vs.

21.33 ± 2.27 in the controls), birth mode (vaginal delivery: 68 for

MDD patients vs. 37 for the controls; cesarean section: 24 among
frontiersin.org
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MDD patients vs. 11 among the controls), and feeding mode (all

mixed feeding) were detected between the two groups (p > 0.05).

All the children newly diagnosed with MDD were treatment-

naive. The average HAMD score for children with MDD was

24.0 ± 4.52, significantly higher than that for the healthy controls

(4.2 ± 2.48; p < 0.05). Among the children with MDD, 12 had a

family history of a psychiatric disorder such as MDD

or schizophrenia.
Fecal microbiota structure was altered in
children with MDD

For microbiota analyses, we obtained 3,883,979 high-quality

reads (1,222,781 for healthy controls and 2,661,198 for children

with MDD), with an average of 27,742 reads per sample. In total,

we identified 3,673 OTUs (unique bacterial phylotypes) among

the fecal microbiota, attaining a Good’s coverage of 98.87%,

indicating that most of the fecal bacteria had been detected.
Frontiers in Immunology 05
25
The a-diversity of the fecal microbiota defines its richness

(number of OTUs) and evenness (relative abundance of the

OTUs) either qualitatively (richness and Chao1 indices) or

quantitatively (Shannon and Simpson indices). Interestingly, the

Shannon and Simpson index values were not significantly

different between the healthy controls and the children with

MDD (Figures 1A, B), whereas the richness index values—

ACE, Chao1, and observed OTUs—were significantly higher in

children with MDD than in the healthy controls (Figures 1C–E).

To characterize the global differences between the fecal microbial

communities of the two groups, PCoA plots (bacterial b-
diversity) were generated based on the Bray–Curtis (R2 =

0.079), Jaccard (R2 = 0.052), unweighted UniFrac (R2 = 0.054),

and weighted UniFrac (R2 = 0.181) distances. The results showed

significant separation between the fecal samples of the pediatric

patients with MDD and those of healthy children despite the

significant interindividual variation observed (ADONIS test: p <

0.01; Figures 1F–I). Additionally, a Venn diagram of the shared

OTUs between the children with MDD and healthy children
B C D E

F G H I

J

A

FIGURE 1

Altered overall structure of the fecal microbiota in patients with childhood major depressive disorders (MDD). The diversity indices of Shannon
(A) and Simpson (B), and the richness indices of ACE (C), Chao1 (D), and the observed OTUs (E) were used to evaluate the overall structure of
the fecal microbiota in childhood MDD patients and the healthy controls. The data are presented as mean ± standard deviation. Unpaired t tests
(two tailed) were used to analyze the variation between the groups. *p < 0.05 and #p < 0.01 compared with the control group. Principal
coordinate analysis (PCoA) plots of individual fecal microbiota based on Bray–Curtis (F), jaccard (G), and unweighted (H) and weighted (I)
UniFrac distances in childhood MDD patients and the healthy controls. Each symbol represents a sample. The Venn diagram illustrates the
overlap of OTUs in childhood MDD-associated microbiota and healthy controls (J).
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showed that a total of 2,255 OTUs were shared between the two

groups, while 1,148 and 270 OTUs were unique to children with

MDD and healthy children, respectively (Figure 1J).
Differences in fecal microbiota
composition between children with MDD
and healthy controls

Bacterial community composition at different taxonomic levels

was compared between patients with MDD and healthy children to

identify the drivers of community separation. In total, the sequence

reads were classified into 11 phyla, 89 families, and 246 genera in

the fecal microbiota of the children using the RDP classifier. Krona

radial space-filling charts showed the mean relative abundances of

bacterial taxa in children with MDD and healthy children from

phylum to genus levels (starting at the inner circle; Figure 2). The

charts clearly demonstrated that the fecal microbiota of the children

was dominated by the phyla Firmicutes, Bacteroidetes,

Actinobacteria, and Proteobacteria. Figure 3 illustrates the

differentially abundant bacteria at different taxonomic levels

between the pediatric patients with MDD and healthy children.

Specifically, regarding the relative abundance of microbiota at the

phylum level, the proportion of Firmicutes, Actinobacteria,

Proteobacteria, and Candidatus_Saccharibacteria was significantly

higher in child patients with MDD while that of Bacteroidetes was

lower (p < 0.05, Figure 3A). Interestingly, the ratio of Firmicutes to

Bacteroidetes (changes in which can be an indicator of gut

dysbiosis) was significantly greater in children with MDD than in

healthy children (p < 0.05, Supplementary Figure 1). At the family

level, the proportions of Lachnospiraceae, Prevotellaceae,

Bifidobacteriaceae, Enterobacteriaceae, Streptococcaceae, and

Coriobacteriaceae were significantly greater, while those of other
Frontiers in Immunology 06
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families, such as Bacteroidaceae and Porphyromonadaceae, were

smaller, in patients with MDD than in the healthy controls (p <

0.05, Figure 3B). At the genus level, the proportions of 26 genera,

such as Prevotella, Bifidobacterium, Escherichia/Shigella,

Agathobacter , Gemmiger , Streptococcus, Megasphaera ,

Clostridium_XlVa, and Collinsella, were significantly greater in

children with MDD than in the controls, while those of 6 other

functional genera—Bacteroides, Phocaeicola, Faecalibacterium,

Parabacteroides, Flavonifractor, and Dysosmobacter—were

markedly lower (p < 0.05, Figure 3C). LEfSe analysis showed that

many key functional taxa (biomarkers) were different between the

children with MDD and the healthy controls at all taxonomic levels

(LDA score > 3, p < 0.05) (Figure 4). A representative cladogram of

the most differentially abundant taxa between the two cohorts,

demonstrating the changes in fecal microbiota composition in child

patients with MDD, is shown in Figure 4A. At the genus level,

Prevotella (LDA=4.7, p<0.01), Escherichia/Shigella (LDA=4.5,

p<0.01), Bifidobacterium (LDA=4.5, p<0.01), Streptococcus

(LDA=4.1, p<0.01), Gemmiger (LDA=4.1, p<0.01), Agathobacter

(LDA=4.1, p<0.01), Klebsiella (LDA=3.8, p<0.01), and Collinsella

(LDA=3.7, p<0.01), among others, were biomarkers for the

childhood MDD group, while Bacteroides (LDA=4.9, p<0.01),

Faecalibacterium (LDA=4.4, p<0.01), Parabacteroides (LDA=4.2,

p<0.01) and Akkermansia (LDA=3.4, p<0.01) were biomarkers for

the healthy control group (Figure 4B).
A fecal microbiota-based signature could
discriminate between children with MDD
and healthy controls

To identify biomarkers thatmade a significant contribution to the

prediction performance, we performed a receiver operating
FIGURE 2

Krona charts showing the taxonomic identification and relative abundance of the most abundant bacterial OTUs recorded in childhood MDD
patients and healthy controls. These taxa represent the internal core microbiota at the individual level.
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FIGURE 3

Differential bacterial taxa between childhood MDD patients and the healthy controls. Comparisons of the relative abundance of the abundant
bacterial taxa at the level of bacterial phylum (A), family (B), and genus (C). The data are presented as the mean ± standard deviation. Mann–
Whitney U-tests were used to analyze variation between childhood MDD patients and the healthy controls. *p < 0.05 and #p < 0.01 compared
with the control group.
BA

FIGURE 4

Taxonomic differences of the fecal microbiota between childhood MDD patients and the healthy controls. LEfSe identified the features of the
fecal microbiota that are discriminative with respect to childhood depression using the LDA model results for the bacterial hierarchy (A), while
LDA coupled with effect size measurements identified the most differentially abundant taxa between the two groups (B). Only the taxa meeting
a significant LDA threshold value of > 3 are shown.
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characteristic (ROC) curve analysis. The results of the LEfSe analysis

indicated that several genera could be used as potential biomarkers to

discriminate between child patients with MDD and healthy children.

Important biomarkers, such as Bacteroides, Phocaeicola,

Faecalibacterium, Escherichia/Shigella, Parabacteroides, Gemmiger,

Streptococcus, Klebsiella, Romboutsia, and Dorea, were assessed for

their potential discriminating value.Usingonly oneof thedifferentially

abundant genera as a predictor, we obtained an area under the ROC

curve (AUC) ranging from 0.174 to 0.891 (Figure 5A). The results

indicated that an increased abundance of Streptococcus was the best

predictor for MDD in children (AUC: 0.891). We further utilized

multiple logistic regressionanalysis to identify thebest combinationsof

the key functional genera that could distinguish child patients with

MDDfromhealthy controls.We found that combinations of six of the

above-mentioned genera—Bacteroides , Streptococcus ,

Faecalibacterium, Dorea, Romboutsia, and Parabacteroides—yielded

improved diagnostic performance, relative to each bacterium alone

(AUC: 0.987) (Figure 5B). Meanwhile, Phocaeicola, Escherichia/

Shigella, Gemmiger, and Klebsiella were excluded from further

analysis because combinations with other key functional genera

yielded lower AUC values compared with each bacterium alone.
General functional profile of the
microbiota associated with MDD
in childhood

The function of the microbiota associated with MDD in

children was explored using the PiCRUSt algorithm. This

algorithm can predict the abundances of functional categories

within the Kyoto Encyclopedia of Genes and Genomes (KEGG)

orthology (KO) database based on closed-reference OTU picking,

thereby identifying metabolic and functional changes in fecal
Frontiers in Immunology 08
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microbiota. The general functional profile of the childhood

MDD-associated fecal microbiota is shown in Figure 6. Among

the 64 level-2 KEGG pathways, we identified 11 categories

displaying marked differential abundance between children with

MDD and healthy children (p < 0.05), 3 of which were enriched

(membrane transport, signal transduction, and metabolism of

other amino acids) and 8 decreased (folding, sorting and

degradation, biosynthesis of other secondary metabolites, amino

acid metabolism, lipid metabolism, metabolism of cofactors and

vitamins, energy metabolism, carbohydrate metabolism, and

glycan biosynthesis and metabolism) in the MDD group. At level

3, a total of 42 KEGG pathways were identified as displaying

significantly differential activity between the fecal microbiota of

the two groups (p < 0.05). Specifically, 25 pathways, including fatty

acid metabolism, biosynthesis of unsaturated fatty acids, bacterial

secretion system, and lysine biosynthesis, showed higher activity in

the childhood MDD-associated fecal microbiota, while 17

pathways, such as lipopolysaccharide biosynthesis, secondary bile

acid biosynthesis, glycosaminoglycan degradation, and primary

bile acid biosynthesis, showed a prominent reduction in activity.

Collectively, our findings suggested that the altered functional

potential of the bacterial assemblages in the fecal microbiota

associated with MDD in childhood, such as increased fatty acid

metabolism and decreased bile acid biosynthesis,may play a role in

the pathogenesis and progression of the condition.

Correlations between differentially
abundant genera and host
cytokines levels

As shown in Figure 7, children with MDD exhibited

complex changes in cytokine expression levels. Of the 27

cytokines examined, 8 (IL-1b, IL-4, IL-8, IL-17, IP-10, MCP-1,
BA

FIGURE 5

The differential genera as childhood MDD diagnostic markers. Receiver operating characteristic (ROC) curves for the differential genera such as
Bacteroides, Phocaeicola, Faecalibacterium, Escherichia/Shigella, Parabacteroides, Gemmiger, Streptococcus, Klebsiella, Romboutsia, Dorea
alone (A) or in combination including Bacteroides, Streptococcus, Faecalibacterium, Dorea, Romboutsia and Parabacteroides (B) used to
discriminate childhood MDD patients from healthy controls. AUC, the area under the receiver operating characteristic curve.
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MIP-1a, and TNF-a) were noticeably upregulated in child

patients with MDD relative to healthy children while 3 (IFN-g,
MIP-1, and RANTES) were markedly downregulated (all p <

0.05). Next, to assess whether there was a reciprocal relationship

between altered host immunity and the key functional bacteria

in the child patients with MDD, we performed a Pearson’s

correlation analysis. Heatmaps were created based on Pearson’s

correlation coefficient (r, Figure 8). Interestingly, in children

with MDD, the key functional genus, Bacteroides, was negatively

associated with the above-mentioned upregulated cytokines and

positively correlated with the downregulated cytokines. The

genera displaying increased abundance, such as Prevotella,

Bifidobacterium, Escherichia/Shigella, Agathobacter, Gemmiger,

Streptococcus, were negatively correlated with IFN-g expression
levels, whereas the opposite was observed for the genera with

reduced abundance, such as Phocaeicola and Parabacteroides. In
Frontiers in Immunology 09
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children with MDD, IL-17, a pro-inflammatory cytokine, was

positively correlated with the genera displaying increased

abundance and negatively correlated with those showing

decreased abundance. Importantly, the beneficial butyrate-

producing genus, Faecalibacterium, was negatively correlated

with IL-17 expression. Our results suggested that changes in the

cytokine profile of children with MDD were closely correlated

with alterations in fecal microbiota abundance, and may be

involved in the pathophysiology of MDD in childhood.
Discussion

In our present study, we characterized the structure and

composition of the fecal microbiota and host cytokine

expression profile in drug-naïve Chinese school-aged children
FIGURE 6

PiCRUSt-based examination of the fecal microbiota of childhoodMDD patients and the healthy controls. The different bacterial functions were evaluated
between them based on two-sidedWelch’s t-test. Comparisons between the groups for each KEGG functional category (levels 2 and 3) are shown by
percentage. The Benjamini–Hochberg method was used for multiple testing correction based on the false discovery rate (FDR) through STAMP.
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with MDD for the first time. In our cohort, we found changed

overall structure of the fecal microbiota in children with MDD

when compared with the healthy controls, specifically, unaltered

bacterial a-diversity, increased richness indices such as ACE,
Frontiers in Immunology 10
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Chao1, and observed OTUs and altered b-diversity. LEfSe

identified several pro-inflammatory genera such as Streptococcus

increased and anti-inflammatory genera such as Faecalibacterium

decreased in pediatric MDD patients. These key differential
FIGURE 7

Mean (SEM) concentrations (pg/ml) of 27 pro- and anti-inflammatory cytokines and chemokines in childhood MDD patients and in healthy
controls determined using Bio-Plex immunoassays. The concentrations of IL-1b, IL-4, IL-8, IL-17, IP-10, MCP-1, MIP-1a and TNF-a increased
significantly in childhood MDD patients, while those of IFN-g, MIP-1b and RANTES decreased significantly. *p < 0.05.
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functional genera, alone or in combination, could serve as novel

and powerful non-invasive biomarkers to distinguish between

pediatric MDD patients from healthy ones. Meanwhile, altered

host cytokine expression profiles, increased levels of pro-

inflammatory cytokines such as IL-17 and decreased levels of

anti-inflammatory cytokines such as IFN-g, were observed in

pediatric MDD patients. Additionally, the pronounced

correlation was detected between the differential cytokine

abundance and changes in gut microbiota of children with

MDD. These findings demonstrated gut dysbiosis concomitant

with the activation of a complex pro-inflammatory response in

pediatric MDD patients, which might be play vital roles in the

pathogenesis of children depression.

As far as the bacterial diversity was concerned, our finding in

children with MDD was inconsistent with previous case-control

studies involving adolescent and adult patients with depression.

Bacterial a-diversity is often used as a proxy for community

stability and function, with increasing a-diversity values

indicating a greater number of species, with more even

representation, and/or greater biodiversity. In fact, there were no

consensus on the changing patterns of the bacterial a-diversity
among MDD-related clinical studies (25). In adult MDD patients,

higher bacterial a-diversity as indicated by Shannon was observed
Frontiers in Immunology 11
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in our previous study (10), while another two Chinese studies

demonstrated lower Shannon index (26, 27). Similar to our present

study on pediatric patients with MDD, five Chinese studies

involving drug-naive adult patients with MDD from different

regions showed that a-diversity indices, such as the Shannon

and Simpson indices, did not differ significantly between patients

and controls (11, 28–31). A comparative meta-analysis of a-
diversity between adult patients with MDD and controls

conducted by Sanada et al. also observed unaltered a-diversity in
MDD patients (32). This might be associated with differences in

the number of OTUs as well as in relative abundances (33). In

addition, no significant differences were observed in bacterial a-
diversity in studies investigating depression in adolescents (34) or

attention-deficit/hyperactivity disorder in children (35). Regarding

b-diversity in depression, studies have been relatively consistent in

reporting differences in the overall community composition of the

gut microbiota between patients and controls. In a systematic

review of gut microbiota composition in MDD-related

observational studies, differences in gut microbiota composition

were reported in 87% of MDD b-diversity analyses (36). Similar

patterns were found in several studies on depression in adults. In

these latter studies, PCoA could separate patients with MDD and

healthy controls into different clusters despite significant
FIGURE 8

Correlation between fecal microbiota, and pro- and anti-inflammatory cytokines and chemokines in childhood depression. The heatmap shown
Pearson’s correlation coefficients between differential genera and host immunity in childhood MDD patients. Pearson correlation (r) and
probability (p) were used to evaluate statistical importance. *p < 0.05.
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interpersonal variability (11, 26, 30, 37, 38). Jackson et al. reported

that b-diversity distances were associated with symptoms of

depression (39), while another study found no such association

(40). Regarding richness, in our study, the greater number of OTUs

was observed in child patients with MDD than in healthy children.

These findings were consistent with those of our previous study on

adult patients with MDD (10), but contrasted with the observed

decrease in the number of species reported for adult patients with

MDD in Irish and Chinese studies (26, 37). In Chinese children

with autism spectrum disorder, higher microbial richness was also

observed when compared with age- and BMI-matched normally

developing children (41). Despite the reported inconsistencies,

these bacterial diversity indices have been explored as non-

invasive diagnostic biomarkers and treatment outcome

predictors for depression. The discrepancy in MDD-associated

gut microbiota diversity between children and adults might be due

to the differences in baseline profiles of the gut microbiota (42–45).

The gut microbiota of healthy children displays both functional

and taxonomic differences with respect to those of adults and may

also be more susceptible to environmental factors (46). Generally,

the age-related baseline gut microbiota profile can be strongly

influenced by intrinsic factors, the accumulation of environmental

and dietary exposures, life-style, and intestinal maturation, among

other factors (47). The existence of a strong correlation between

gut microbiota diversity and health suggests that gut dysbiosis in

childhood may contribute to the occurrence and development of

MDD in children.

Although diversity-related findings have been inconsistent

among age groups, specific bacterial taxa have been associated

with MDD in studies that compared the gut microbiota of

patients with that of controls. Overall, the fecal microbiota of

children with MDD is characterized by a greater abundance of

pro-inflammatory bacteria, such as Escherichia/Shigella, and a

lower abundance of anti-inflammatory bacteria, such as

Bacteroides and Faecalibacterium. Bacteroides (the core genus

of the phylum Bacteroidetes) is one of the most abundant

bacterial genera in the human colon, and members of this

genus in the gut microbiota have been associated with health

benefits, resistance to pathogens, as well as other host

physiologic, metabolic, and immunologic phenotypes (48, 49).

In agreement with our previous study on depression in adults,

Bacteroides abundance was reported to be decreased in children

with depression (10, 50); nevertheless, the specific contributions

of Bacteroides to behavioral changes and the underlying

mechanisms remain largely elusive. Interestingly, our data also

demonstrated that Bacteroides genus was associated with

systemic inflammation, suggesting that this genus may

participate in modulating the host immunity in childhood

depression (51). In fact, reports on the changing pattern of

Bacteroides abundance and its association with depression have

been inconsistent among studies. Overall, increasing evidence

supported the beneficial roles of Bacteroides in regulating the

development of childhood depression. Valles-Colomer et al.
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found that a lower relative abundance of Bacteroides in adults

with depression was correlated with lower quality of life and

higher prevalence of depression (52). Rhee et al. observed that

the Bacteroides genus was negatively associated with the total

HAMD score in adult patients with MDD (53). Strandwitz et al.

demonstrated that the relative abundance of Bacteroides in feces

was negatively correlated with brain signatures associated with

depression (54). In fact, the functions of Bacteroides were

significantly influenced by which Bacteroides species or strain

is dominant in the gut (55). One study found that different

Bacteroides species differentially modulate depression-like

behavior via metabolism-mediated gut–brain signaling,

especially through the tryptophan pathway (56). Specifically,

recent studies found that colonization by B. fragilis, B. uniformis,

and B. caccae, but not B. ovatus, recapitulated the negative effects

of “depression microbiota” on behavior and neurogenesis,

suggesting differential behavioral impacts of bacteria from the

same genus. B. ovatus, a human gut commensal bacterium with

anti-inflammatory properties and potential as a next-generation

probiotic (57, 58), can reportedly influence the abundance of

intestinal short-chain fatty acids (SCFAs) and neurotransmitters

such as g-aminobutyric acid (GABA) (59). Bacteroides spp. are

the major bacterial producers of inhibitory neurotransmitter

GABA in the human gut, and the reduced GABA levels have

been associated with depressive-like behavior (60). The

abundance of Parabacteroides, a genus in the phylum

Bacteroidetes, was also found to be decreased in the fecal

microbiota of children with MDD. Parabacteroides has been

associated with positive health states, while its reduced

abundance has been linked to negative effects on health.

Preclinical studies have also found that Parabacteroides is

negatively correlated with depressive behaviors but positively

correlated with neurotransmitter metabolism (61, 62). Its

regulatory roles in host metabolism, especially the production

of succinate and secondary bile acids, might play a role in MDD

in childhood (63).

One beneficial bacterium, Faecalibacterium (typical strain F.

prausnitzii), has been proposed as a major factor in human

intestinal health as well as a health biosensor (64). Interestingly,

several studies have indicated that Faecalibacterium abundance is

reduced in both children and adults with depression (32), as well as

in several neuropsychiatric disorders such as multiple sclerosis,

Alzheimer’s disease, and Parkinson’s disease (16, 17, 65). These

observations suggest that Faecalibacterium plays a positive role in

the modulation of the gut–brain axis. In adults with depression,

Faecalibacterium abundance has been negatively correlated with

the severity of depressive symptoms, as evidenced by HAMD and

Montgomery–Asberg Depression Rating Scale (MADRS) scores

(10). In the present study, we also identified a negative correlation

between Faecalibacterium abundance and the levels of the pro-

inflammatory cytokine IL-17 in children with MDD.

Faecalibacterium is an acetate consumer and can produce

butyrate and various bioactive anti-inflammatory molecules such
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as shikimic and salicylic acids (66). These bioactive metabolites can

promote vagus nerve stimulation in the colon, microglia

maturation and activation, and the production of brain-derived

neurotrophic factor (BDNF), which might be directly involved in

the pathogenesis of childhood depression via its effect on the gut–

brain axis. Romano et al. observed that the butyrate-producing

Faecalibacterium was consistently associated with improved

quality-of-life indicators (65). Given its lower abundance in

patients with depression, Faecalibacterium may serve as a

biomarker for discriminating between individuals with MDD

and healthy controls.

Additionally, the abundance of the genera Prevotella and

Klebsiella was also found to be increased in Chinese pediatric

patients with autism spectrum disorder and Chinese adult

patients with MDD (67–69). Interestingly, Lin et al. reported that

increased numbers of Prevotella and Klebsiella were significantly

and positively correlated with the HAMD score (69), while the

abundances of both genera were found to be reduced after

successful MDD treatment (33, 69, 70). The authors proposed

that these findings should be considered in the diagnosis and

therapeutic monitoring of MDD in the future. Although

members of the genus Prevotella are not normally considered to

be pathogenic, the role of Prevotella in mucosal inflammation and

the subsequent dissemination of pro-inflammatory mediators

might be involved in the pathogenesis of MDD in childhood.

Klebsiella, a genus of Gram-negative bacteria, can translocate

lipopolysaccharides (LPS), thereby activating pro-inflammatory

responses and inducing depressive-like behaviors. This effect may

play a role in MDD pathophysiology in children. Interestingly, the

abundance of the normally beneficial genus, Bifidobacterium, was

found to be increased in child patients with MDD, which was in

accordance with that reported for adults with this disorder (30, 33,

38, 71). These results may challenge the notion that Bifidobacterium

always exerts beneficial effects on the host given that the functions

of Bifidobacterium seem to be species- or strains-specific. Some

species or strains of Bifidobacterium have been associated with

lower scores on depression scales after regular consumption as

probiotics (72). However, metagenomic-based studies have found

that the relative abundance of two Bifidobacterium species—B.

longum and B. dentium—is increased in adult patients with

MDD (33, 38). Therefore, it seems that the predominant

Bifidobacterium species or strain determines the effects (positive

or negative) of this genus on depressive behavior. Escherichia/

Shigella (family Enterobacteriaceae) are thought to be harmless;

however, this group has been reported to be overrepresented in both

children and adults with depression. In this study, we found that

Escherichia/Shigella abundance was significantly and positively

correlated with systemic inflammation, which may induce

depressive symptoms (73). A greater abundance of Escherichia/

Shigella could lead to the release of greater amounts of LPS into the

plasma, resulting in increased blood–brain barrier permeability and

chronic and persistent neuroinflammation, finally leading to
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depression (74). In addition, Chen et al. found that Escherichia/

Shigella was positively associated with the severity of anxiety (75),

while Cattaneo et al. proposed Escherichia/Shigella as a candidate

pro-inflammatory taxon given that its abundance showed a positive

correlation with the blood levels of IL-1b, CXCL2, and NLRP3 (76).
As previously mentioned, gut dysbiosis, especially an increase in the

numbers of pro-inflammatory bacteria and a decrease in those of

anti-inflammatory bacteria, might contribute to the disruption of

the intestinal mucosal barrier and the blood–brain barrier, leading

to intestinal inflammation and neuroinflammation, a decrease in

the concentrations of neurotransmitters and bacterial metabolites

(e.g., SCFAs), and, consequently, childhood depression.

The criterium used for the diagnosis of depression in

children is the same as that employed for the diagnosis of

depression in adults, and is highly dependent on a wide

variety of behavioral changes in the patients. In this study, the

Firmicutes/Bacteroidetes ratio was significantly increased in

pediatric patients with MDD relative to that in the controls,

demonstrating that gut microbiota homeostasis was disrupted in

the affected children. However, the Firmicutes/Bacteroidetes

ratio in healthy gut naturally increases from 1 to 3 with

growing age (43, 77), demonstrating the age-related dynamics

of human microbiota composition. That’s why the increased

Firmicutes/Bacteroidetes ratio in pediatric patients with MDD

was not suitable for serving as biomarkers for clinical childhood

depression diagnosis. With the deeply exploration of the gut–

brain axis in children with depression, the novel potential non-

invasive diagnostic tools, the aforementioned key functional gut

bacteria, could be used to discriminate the pediatric patients

with depression and healthy children. As in previous studies (16,

17, 23, 78), we found that several genera, such as Streptococcus,

Klebsiella, Gemmiger, and Escherichia/Shigella, could serve as

diagnostic factors for distinguishing between children with

MDD and healthy controls. To improve the diagnostic

performance, we employed multiple logistic regression analysis

to identify the best combinations of the key functional genera

(Bacteroides , Streptococcus , Faecalibacterium , Dorea ,

Romboutsia, and Parabacteroides) that could be used for the

diagnosis of depression in childhood (AUC reached 0.987). This

represents high diagnostic efficacy, and indicates the potential

suitability of this identification method. In the future, it may be

possible to diagnose depression in children based on changes in

the abundance of microbial biomarkers. However, the diagnostic

and therapeutic potential of microbiota-related biomarkers for

childhood depression should still consider microbiota-

associated confounders such as diet and hygiene.

This study had several limitations. First, because we only

enrolled school-aged children, no direct comparison could be

made between the gut microbiota of children and adults with

depression. Second, this case-control discovery study only served

to identify an association between the gut microbiota and

depression in childhood, and no causal effects were explored
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(79). Longitudinal follow-up validation studies, microbiota-

targeted interventional studies, and mechanistic studies using

animal models should be undertaken to verify the causal effects

of these key functional bacteria depression in children. Third,

although we identified several clues linking gut microbiota-

derived metabolites and childhood depression in this study, we

did not investigate this association further. Additional

metabolomics analysis is needed to provide direct evidence for

a link between microbiota-associated metabolites and the

development of depression in children.

In summary, school-aged children with depression

displayed disrupted gut microbiota homeostasis when

compared with healthy controls. The altered overall structure

of the gut microbiota was characterized by increased richness

index values (ACE, Chao 1, and observed species) and altered

b-diversity. LEfSe analysis demonstrated that the abundance of

several pro-inflammatory bacteria, such as Prevotella,

Bifidobacterium, and Escherichia/Shigella, was increased,

whereas that of anti-inflammatory bacteria, such as

Bacteroides and Faecalibacterium , was decreased. The

combination of Bacteroides, Streptococcus, Faecalibacterium,

Dorea, Romboutsia, and Parabacteroides may serve as novel

powerful biomarkers for distinguishing between children with

depression and healthy children. We further found that the

host cytokine profile was altered in child patients with

depression, that is, the levels of pro-inflammatory cytokines

were increased while those of anti-inflammatory cytokines

were decreased. The close correlation identified between the

altered fecal microbiota and systemic inflammation in the host

suggested that the gut microbiota might potentially play a role

in the pathophysiology of depression in childhood. Our

findings provide novel insights into the pathogenesis of

depression in school-aged children while key functional

bacteria in the gut may serve as novel targets for the non-

invasive diagnosis and patient-tailored early precise

intervention in children with depression.
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Activation of NOD1 and NOD2
in the development of liver
injury and cancer

Naoya Omaru, Tomohiro Watanabe*, Ken Kamata,
Kosuke Minaga and Masatoshi Kudo

Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine,
Osaka-Sayama, Japan
Hepatocytes and liver-resident antigen-presenting cells are exposed to

microbe-associated molecular patterns (MAMPs) and microbial metabolites,

which reach the liver from the gut via the portal vein. MAMPs induce innate

immune responses via the activation of pattern recognition receptors (PRRs),

such as toll-like receptors (TLRs), nucleotide-binding oligomerization domain 1

(NOD1), and NOD2. Such proinflammatory cytokine responses mediated by

PRRs likely contribute to the development of chronic liver diseases and

hepatocellular carcinoma (HCC), as shown by the fact that activation of TLRs

and subsequent production of IL-6 and TNF-a is required for the generation of

chronic fibroinflammatory responses and hepatocarcinogenesis. Similar to

TLRs, NOD1 and NOD2 recognize MAMPs derived from the intestinal

bacteria. The association between the activation of NOD1/NOD2 and

chronic liver diseases is poorly understood. Given that NOD1 and NOD2 can

regulate proinflammatory cytokine responses mediated by TLRs both positively

and negatively, it is likely that sensing of MAMPs by NOD1 and NOD2 affects the

development of chronic liver diseases, including HCC. Indeed, recent studies

have highlighted the importance of NOD1 and NOD2 activation in chronic liver

disorders. Here, we summarize the roles of NOD1 and NOD2 in

hepatocarcinogenesis and liver injury.

KEYWORDS

NOD1, NOD2, hepatocellular carcinoma, microbiota, microbe-associated molecular
patterns, pattern recognition receptor
Introduction

The liver is exposed to various bacterial components and metabolites derived from

the intestinal microbiota via the portal vein (1). The anatomical relationship between the

liver and gastrointestinal tract creates a unique immunological environment, as the liver

needs to maintain immunological tolerance to harmful microbe-associated molecular
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patterns (MAMPs) of the intestinal microbiota (1, 2). To fulfill

this task, the liver contains various types of antigen-presenting

cells (APCs), such as Kupffer cells (KCs), dendritic cells (DCs),

liver sinusoidal endothelial cells (LSECs), and hepatic stellate

cells (HSCs) (2). These unique types of APCs preferentially

induce tolerance to food antigens and allografts through the

production of anti-inflammatory cytokines and attenuation of

responses to toll-like receptor (TLR) ligands (2). Liver APCs

with immunosuppressive functions induce tolerance to gut-

derived food antigens and MAMPs; however, the presence of

these APCs predisposes individuals to viral infections, leading to

inflammation-associated hepatocarcinogenesis (2).

Chronic fibroinflammatory disorders of the liver are classified

into chronic hepatitis and non-alcoholic steatohepatitis (NASH) (3,

4). The unique immunosuppressive properties of the liver

predispose this organ to attack by microorganisms, including

hepatitis virus and intestinal microbiota (5). Indeed, the gut-liver

axis plays a critical role in the development of chronic liver diseases,

especially NASH, as evidenced by the fact that MAMPs and

microbial metabolites promote proinflammatory cytokine

responses in the liver through the activation of pattern

recognition receptors (PRRs) (6). Thus, gut microbiota and

hepatitis virus invading the liver cause persistent inflammation

due to proinflammatory cytokine responses when MAMPs are

sensed by PRRs. Such persistent inflammation also sets the stage for

the development of hepatocellular carcinoma (HCC) through

inflammation-associated carcinogenesis (7). Most cases of HCC

arise from persistent inflammation, e.g., as a result of viral hepatitis

or NASH (8, 9). TLRs and nucleotide-binding oligomerization

domain (NOD)-like receptors (NLRs) are major PRRs that detect

MAMPs derived from the intestinal microbiota (10–12). Liver

APCs and hepatocytes express functional TLRs and NOD

receptors to detect MAMPs and produce proinflammatory

mediators (13, 14). NOD1 and NOD2 are intracellular receptors

that recognize muropeptides derived from bacterial cell walls (10).

Although the roles of TLRs in the progression of liver injury and

cancer are being actively investigated, it remains largely unknown

whether activation of NOD1 and NOD2 is beneficial or harmful in

these diseases. Given that impaired sensing of intestinal bacteria by

NOD1 and NOD2 is associated with several human diseases,

including Crohn’s disease and Helicobacter pylori infection, it is

likely that the progression of liver injury and hepatocarcinogenesis

requires activation of NOD1 andNOD2 (10, 11, 15). In this Review,

we summarize the recent studies that examined the involvement of

NOD1 and NOD2 in hepatocarcinogenesis and liver injury.
Signaling pathways mediated by
NOD1 and NOD2

NOD1 and NOD2 are expressed in innate immune cells,

such as macrophages, DCs, KCs, LSECs, and hepatocytes (10, 14,

16, 17). NOD1 and NOD2 are intracellular receptors for
Frontiers in Immunology 02
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muropeptides derived from bacterial cell wall components,

such as peptidoglycan (PGN) (10, 16). Tripeptide-A-g-D-

glutamyl meso-diaminopimelic acid (Tripeptide-A-iE-DAP)

and muramyl dipeptide (MDP) are the minimal motifs

recognized by NOD1 and NOD2. Thus, these molecules are

widely used as NOD1 and NOD2 ligands (Figures 1, 2) (10, 16).

The main outcome of the stimulation of NOD1 and NOD2 is the

activation of transcription factors, including nuclear factor-kB
(NF-kB), interferon regulatory factor 3 (IRF3), and IRF7 (10, 15,

16). In addition to nuclear translocation of NF-kB and IRFs,

sensing of bacterial components by NOD1 and NOD2 leads to

activation of mitogen-activated protein kinases (MAPKs)

through TGF-b-activated kinase 1 (TAK1) (10, 15, 16). The

activation of NF-kB and IRFs by NOD1 and NOD2 depends

upon the molecular interaction between NOD receptors and

receptor interacting serine/threonine protein kinase 2 (RIPK2)

(Figure 1) (10, 16). NF-kB activation caused by the stimulation

of NOD1 and NOD2 results in the release of proinflammatory

cytokines and chemokines, such as IL-6, TNF-a, and C-C motif

chemokine ligand 2 (CCL2), whereas nuclear translocation of

IRF3 and IRF7 leads to the production of type I interferons

(IFNs) (10, 15, 16). Thus, activation of NOD1 and NOD2

induced by the recognition of components derived from

intestinal bacteria results in proinflammatory and type I

IFN responses.

RIPK2 is a downstream signaling molecule activated by

NOD1 and NOD2, and its activation is tightly regulated by

polyubiquitination (18) (Figure 1). Lys (K)63-linked

polyubiquitination of RIPK2 is necessary for NF-kB activation.

E3 ligases, including cellular inhibitor of apoptosis 1 (cIAP1),

cIAP2, Pellino3, TNF-receptor factor 6 (TRAF6), and X-linked

inhibitor of apoptosis protein (XIAP), mediate K63-linked

polyubiquitination (18). In addition to K63-linked

polyubiquitination, RIPK2 undergoes N-terminal methionine

(M1)-linked polyubiquitination mediated by the linear

ubiquitination chain assembly complex (LUBAC) when RIPK2

interacts with XIAP (18). K63-and/or Met1-linked

polyubiquitination modifications are necessary for the nuclear

translocation of NF-kB subunits following RIPK2 activation.

Polyubiquitination of RIPK2 activates a downstream signaling

cascade involving TAK1 and IkB kinase (IKK) complex

composed of IKKa, IKKb, and IKKg (10, 18). Negative regulators
of NF-kB activation suppress RIPK2 polyubiquitination. For

example, IRF4 and autophagy-related 16 like 1 (ATG16L1)

activated upon sensing of MDP by NOD2, inhibit K63-linked

polyubiqui t inat ion of RIPK2, thereby suppress ing

proinflammatory cytokine responses (19–21). In addition, Myb

like, SWIRM and MPN domains 1 (MYSM1) and A20 have been

shown to dampen NF-kB activation by RIPK2 through the removal

of the K63 and M1-linked polyubiquitin chains (22, 23).

Although NOD2 activation causes activation of NF-kB and

type I IFN pathways in a RIPK2-dependent manner, sensing of

cytosolic single-stranded RNA by NOD2 induces type I IFN
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FIGURE 2

Proinflammatory roles played by NOD1 and NOD2 in steatosis. A high-fat diet causes gut leakage and activates NOD1 and NOD2 in
gastrointestinal organs. g-D-glutamyl meso-diaminopimelic acid (iE-DAP) derived from intestinal bacteria activates NOD1 in circulating immune
cells. NOD1 activation in circulating immune cells results in the development of NASH and insulin resistance via the production of IL-1b and
TNF-a. In contrast, muramyl dipeptide (MDP) derived from intestinal bacteria activates NOD2, which is expressed in hepatocytes or dendritic
cells (DCs). The activation of NOD2 by MDP induces the expression of IFN regulatory factor 4 (IRF4) and thereby suppresses NOD1-mediated
proinflammatory cytokine responses. Endoplasmic reticulum (ER) stress also activates NOD1 and NOD2.
FIGURE 1

Signaling pathways of NOD1 and NOD2 leading to the development of liver injury. Nucleotide-binding oligomerization domain 1 (NOD1) and
NOD2 detect muropeptides derived from the intestinal bacteria and endoplasmic reticulum (ER) stress. Activation of NOD1 and NOD2 leads to
the polyubiquitination of receptor-interacting serine/threonine protein kinase 2 (RIPK2). Polyubiquitination of RIPK2 requires molecular
interactions between RIPK2 and E3 ligases, including X-linked inhibitor of apoptosis (XIAP), cellular inhibitor of apoptosis proteins (cIAPs), and
TNF-receptor associated factor 6 (TRAF6). A20 and MYSM1 remove polyubiquitin chains from RIPK2. Activation of RIPK2 induces the production
of TNF-a and IL-6 through the nuclear translocation of NF-kB subunits and activation of the mitogen-activated protein kinase (MAPK) pathway
and thereby promotes the development of liver injury.
Frontiers in Immunology frontiersin.org03
39

https://doi.org/10.3389/fimmu.2022.1004439
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Omaru et al. 10.3389/fimmu.2022.1004439
production via mitochondrial antiviral signaling protein-

dependent and RIPK2-independent mechanisms (24). In

addition, sensing of PGN by NOD1 and/or NOD2 leads to the

molecular interaction between ATG16L1 and NOD1/NOD2 and

thereby induces autophagy without involvement of RIPK2

activation (25).

Activators for NOD1 and NOD2 are not limited to the

fragments of bacterial PGN. Recent studies provide evidence that

NOD1 and NOD2 function as cytosolic and endoplasmic

reticulum (ER) stress sensors (26–29). Endogenous metabolite

sphingosine-1-phosphate induces NF-kB activation through

direct binding to NOD1 and NOD2 (30). ER-stress inducers,

thapsigargin and dithiothreitol, promotes IL-6 production in a

NOD1/NOD2-depdendent manner through activation of

TRAF2 (29). These new studies support the notion that NOD1

and NOD2 function as sensors not only for microbial

components but also for endogenous danger signals to

promote and suppress inflammation.
Activation of NOD1 and NOD2
in liver injury

Liver-resident APCs such as DCs, KCs, and LSECs express

functional NOD1 and NOD2 (14, 17, 31). NOD2-deficient mice

were resistant to the induction of autoimmune hepatitis (AIH)

induced by concanavalin A (ConA) compared to the

susceptibility of NOD2-intact mice, and this resistance was

associated with reduced expression of IFN-g-in the liver (32).

Consistent with this, MDP activation of NOD2 acted

synergistically with ConA to induce severe AIH (32). Such

synergistic action of MDP and ConA on the development of

AIH was accompanied by the expression of IFN-g and TNF-a
(32). Given that hepatocytes and APCs constitutively

express NOD2, these results suggest that NOD2 mediates

the development of AIH through pro-inflammatory

cytokine responses.

Injection of D-galactosamine (D-Gal) in combination with

lipopolysaccharide (LPS) is widely used to induce acute liver

failure (ALF) (33, 34). Recent studies have highlighted the

importance of RIPK2 polyubiquitination in this model.

Damagaard et al. reported that pretreatment with MDP

increased the severity of ALF induced by D-Gal and LPS

through the increase of proinflammatory cytokines such as

IL-6 and TNF-a (34). Mice deficient in XIAP, an E3 ligase

mediating RIPK2 polyubiquitination, displayed attenuated

ALF induced by MDP pre-sensitization in this D-Gal/LPS

model, suggesting that polyubiquitination of RIPK2 by XIAP

is required for the development of severe ALF (34).

Furthermore, in vitro studies showed that recruitment of

LUBAC to RIPK2 as well as K63-likned polyubiquitination

are necessary for the optimal NF-kB activation and subsequent
Frontiers in Immunology 04
40
production of IL-6 and TNF-a (34). These results suggest that

the NOD2-mediated activation of RIPK2 by K63-linked

polyubiquitination and LUBAC recruitment plays a

pathogenic role in the development of severe ALF (Figure 1).

Conversely, Panda et al. provided evidence that mice deficient

in MYSM1, a deubiquitinase of RIPK2, have increased levels of

IL-6, TNF-a, and serum liver enzymes upon MDP injection

compared with those in mice with intact MYSM1 (23). Thus,

MYSM1 attenuates NOD2-mediated liver injury by removing

polyubiquitination of RIPK2. These recent studies strongly

suggest that activation of NOD2 mediates liver injury

through RIPK2 polyubiquitination.

In contrast to the sensitizing action of NOD2, pre-activation

of NOD1 by the NOD1 ligand C14-Tri-LAN-Gly markedly

inhibited the development of ALF induced by D-Gal/LPS (33).

Suppression of ALF by NOD1 activation was associated with

enhanced expression of A20 in hepatocytes (33). Given that A20

removes polyubiquitin chains from RIPK2, it is likely that NOD1

suppresses ALF through RIPK2 deubiquitination (22). On the

other hand, NOD1 contributed to the development of acute liver

injury caused by the exposure to carbon tetrachloride (CCl4)

(35). NOD1-deficent mice were protected from the CCl4-

induced acute liver injury, and this resistance was

accompanied by reduced migration of neutrophils into the

liver (35). Such discrepancies in the effects of NOD1 on liver

pathologies induced by D-Gal/LPS and CCl4 could be partially

explained by differences in the types of immune cells recruited to

the liver: the latter model is driven by hepatic infiltration of

neutrophils rather than lymphocytes (35).

TLRs are the major PRRs for the detection of MAMPs (12).

Myeloid differentiation factor 88 (MyD88) is a downstream

signaling molecule for TLRs (12). MyD88-deficient mice were

protected from liver damage induced by ConA owing to the

downregulation of TNF-a, IL-6, and IFN-g expression levels

(36). Thus, TLR-MyD88 signaling pathways are involved in the

development of AIH. We and others showed that NOD2

negatively regulates TLR-mediated proinflammatory cytokine

responses (19, 20, 37, 38). As for the molecular mechanisms

accounting for the downregulation of TLR-mediated signaling

pathways, activation of NOD2 by MDP in DCs leads to the

expression of IRF4, which inhibits TLR-mediated signaling

pathways by binding to MyD88, TRAF6, and RIPK2 (19, 20,

37, 38). Therefore, it is possible that the development of TLR-

dependent liver injury is suppressed by IRF4 induced by the

activation of NOD2 with MDP. Indeed, proinflammatory

cytokine production induced by the TLR9 ligand CpG in liver

plasmacytoid DCs was markedly reduced upon the stimulation

with MDP, and accompanied by the induction of IRF4

expression (39). Although no reports have addressed whether

NOD2 inhibits the development of liver injury induced by TLRs,

the TLR-dependent liver damage may be successfully treated by

the activation of NOD2 with MDP.
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Activation of NOD1 and NOD2
in steatosis

Activation of NOD1 and NOD2 is involved in the

development of metabolic syndromes (26). In animal models,

NOD1 has been shown to contribute to the development of

insulin resistance and metabolic syndromes caused by the high-

fat diet (HFD) (40). Schertzer et al. reported that mice deficient

in both NOD1 and NOD2 were protected from hepatic lipid

accumulation caused by the HFD (41). Injection of a NOD1

ligand into mice led to adipose tissue inflammation and insulin

resistance (41). Moreover, administration of gefitinib, a RIPK2

inhibitor, attenuated metabolic inflammation and insulin

resistance caused by NOD1 activation (42). Expression of

NOD1 in hematopoietic cells has been highlighted as a

molecular mechanism accounting for the development of

metabolic inflammation and insulin resistance (Figure 2) (43).

Enhanced intestinal leakiness induced by the HFD leads to the

accumulation of NOD1 ligands in the serum as a result of

increased bacterial translocation (43). NOD1 expressed in

circulating hematopoietic cells recognizes NOD1 ligands and

induces the production of C-X-C motif chemokine ligand 1

(CXCL1) by macrophages to attract neutrophils into the adipose

tissues (43). In line with these findings, HFD-fed mice displayed

progressive impairment of insulin signaling, as was evidenced by

the impaired activation of AKT in the skeletal muscle (44).

Impairment of insulin signaling paralleled the increase in

intestinal permeability and accumulation of NOD1 ligands

derived from the intestinal bacteria in the serum (44). Thus,

NOD1 not only functions as a PRR for intestinal bacterial

components but also stimulates the development of insulin

resistance and metabolic syndrome, including steatosis.

NOD1-mediated insulin resistance and obesity are

negatively regulated by IRF4, which is induced by the

activation of NOD2 with MDP (37). Injection of MDP into

HFD-fed mice markedly reduced the expression of

proinflammatory cytokines and chemokines, such as TNF-a,
IL-1b, CXCL1, CXCL9, CXCL10, and CCL2, in white adipose

tissue (37). This suppressive effect of MDP on the

proinflammatory cytokine and chemokine responses was not

seen in mice deficient in IRF4 (37). Thus, NOD1 and NOD2

play, respectively, pathogenic and protective roles in the

development of metabolic inflammation (37). In line with this

idea, NOD2-deficient mice maintained on the HFD displayed

enhanced metabolic inflammation (45, 46). Higher

accumulation of T cells and myeloid cells producing IL-6 and

TNF-a was observed in the livers of HFD-fed NOD2-deficient

mice compared to that in the livers of NOD2-intact mice (45,

46). NOD2 expressed in non-hematopoietic cells, rather than in

hematopoietic cells, protects against insulin resistance and

metabolic inflammation, because hepatocyte-specific NOD2

deletion resulted in the development of severe steatosis and
Frontiers in Immunology 05
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hepatic fibrosis (47). Indeed, expression levels of the T helper

type 1 (Th1) chemokine CXCL9 and profibrogenic cytokine

TGF-b1 was enhanced in mice with hepatocyte-specific NOD2

deficiency (47). Furthermore, a bone marrow transplantation

experiment revealed that non-hematopoietic expression of

RIPK2 is required for the NOD2-mediated protection against

insulin resistance and metabolic syndrome (48).

As mentioned earlier, increased metabolic inflammation and

insulin resistance are associated with the translocation of gut

microbiota into adipose tissue and the liver due to the impaired

intestinal barrier. Metabolic inflammation and insulin resistance

are driven by the sensing of translocated intestinal microbiota by

NOD1, which is downregulated by the activation of NOD2. The

ER stress is a major trigger for the development of insulin

resistance and obesity (49), and it has been shown to activate

NOD1 and NOD2 (26). Therefore, it is possible that insulin

resistance and metabolic inflammation can be regulated by the

activation of NOD1 and NOD2 through the recognition of

intestinal bacteria or via the stimulation by the ER stress.
Involvement of NOD1 and NOD2
in hepatocarcinogenesis

Bacterial components and metabolites carried to the liver

from the gastrointestinal tract via the portal vein include MDP

(a NOD2 ligand), iE-DAP (a NOD1 ligand), lipoteichoic acid

(LTA, a TLR2 ligand), LPS (a TLR4 ligand), deoxycholic acid

(DCA), and short-chain fatty acids (SCFA) (50). Thus, immune

responses caused by these microbial components and

metabolites are involved in hepatocarcinogenesis (50).

Persistent inflammation plays an important role in the

development of HCC, as demonstrated by the established

notion that hepatitis virus and metabolic syndromes, which

cause chronic liver injury, are strong risk factors for

hepatocarcinogenesis (7, 9). Chronic liver injury, which leads

to compensatory liver regeneration, fibrosis, and cirrhosis, is

observed in many cases of HCC (9). A single administration of

the carcinogen, diethylnitrosamine (DEN) in combination with

repeated injections of CCl4, has been widely used to create an

experimental model of HCC. In this model, repeated liver

injuries induced by CCl4 are exacerbated by DNA damage

induced by DEN to mimic inflammation-associated

hepatocarcinogenesis. Recent data obtained from the DEN/

CCl4 HCC model supports the view that MAMPs and

microbial metabolites entering the liver can be possible

triggers of hepatocarcinogenesis.

The pathogenic role of NOD2 in the development of liver

injury prompted researchers to examine the involvement of this

PRR in hepatocarcinogenesis. Zhou et al. showed that NOD2

promotes hepatocarcinogenesis through proinflammatory

cytokines and autophagic responses via RIPK2 activation (51).
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They found that expression levels of NOD2 and phosphorylated

RIPK2 were higher in human HCC tissues than in noncancerous

tissues (51). Based on the results of human studies, they also

examined whether NOD2 promotes hepatocarcinogenesis in the

DEN/CCl4 model and found that HCC and inflammation were

significantly attenuated in mice with hepatocyte-specific NOD2

or RIPK2 knock-out mice (51). Hepatocyte-specific NOD2 or

RIPK2 deletion led to decreased activation of two oncogenic

transcription factors, signal transducer and activator of

transcription 3 (Stat3) and NF-kB, which resulted in

diminished expression of proinflammatory cytokines such as

IL-6 and TNF-a . Thus, NOD2 activation promotes

inflammation-associated hepatocarcinogenesis in a RIPK2-

dependent manner.

Obesity and NASH promote the development of HCC (7).

Combined treatment with the carcinogen dimethylbenzanthracene

(DMBA) and HFD is widely used as an experimental model of

NASH-associated HCC (52). DCA is a secondary bile acid

synthesized from the primary bile acids by intestinal bacteria.

DNA damage may be induced in the liver exposed to DCA (52).

Yoshimoto et al. addressed the role of DCA in the development of

obesity-associated HCC in this model (52). DCA activates HSCs,

which acquire the senescence-associated secretory phenotype

(SASP) and produce IL-1b, IL-6, CXCL1, and CXCL9, thereby

facilitating the emergence of the tumor microenvironment (52).

Given that NOD2 protects mice from HFD-induced NASH,

Gurses et al. investigated whether NOD2-deficient mice are

sensitive to NASH-associated liver cancer and showed that

upon the treatment with DMBA and consumption of HFD,

NOD2-deficient mice gained more weight and bore more HCC

tumors than NOD2-intact mice (45). Enhanced activation of

Stat3 and infiltration of immune cells were associated

with increased hepatocarcinogenesis in NOD2-deficient

mice treated with DMBA and HFD (45). Although HSCs

with SASP play pivotal roles in obesity-dependent

hepatocarcinogenesis (50), the effects of NOD2 activation on

HSCs have not yet been explored. In line with the data obtained

in obesity-associated HCC, Ma et al. examined the involvement

of NOD2 in the model of HCC induced by a combined

treatment with DEN and CCl4 (53). They found that NOD2

acted as a tumor suppressor, as more HCC tumors were seen in

the liver of NOD2-deficient mice than in the liver of NOD2-

intact mice (53). Expression of NOD2 was significantly

decreased in human liver regions affected by HCC compared

to that in the non-cancerous tissue (53). In addition, in vitro

studies in human HCC cell lines revealed that NOD2 is

required to enhance sensitivity to sorafenib and lenvatinib

through the activation of the adenosine 5′-monophosphate-

activated protein kinase (AMPK) pathway (53). As for

molecular mechanism, accounting for the NOD2-mediated

inhibition of HCC growth, NOD2 induces autophagy-

mediated apoptosis of HCC through its interaction with

AMPK-a and LKB1. In these models of experimental
Frontiers in Immunology 06
42
hepatocarcinogenesis, NOD2 acted not only as a tumor

suppressor but also as a chemotherapy enhancer (45, 53).

As mentioned above, data regarding the sensitivity to

carcinogen-induced hepatocarcinogenesis in NOD2-deficient

mice have been conflicting (51, 53). The reasons why NOD2

has oncogenic activity in the DEN/CCl4 model remain unknown

at present. Differences in cell types expressing NOD2 may

explain this discrepancy. In the DEN/CCl4 model, Zhou et al.

observed fewer HCC tumors in mice with hepatocyte-specific

NOD2 or RIPK2 deficiency, whereas in mice with NOD2

knockout in both hepatocytes and hematopoietic cells, the

number of HCC tumors was increased (51, 53). Therefore, it is

possible that NOD2 activation in KCs and DCs protects mice

from hepatocarcinogenesis and metabolic syndrome, whereas

NOD2 activation in hepatocytes promotes oncogenesis (51).

Confirmation of this idea awaits the results of experiments in

which mice with NOD2 deficiency specifically in myeloid cells

are challenged with DEN/CCl4. Contrasting data on

hepatocarcinogenesis by NOD2 activation may be not

surprising. NOD2 activation has been shown to suppress anti-

cancer immunity induced by the gut colonization with

Enterococcus hirae and Barnesiella intestinihominis (54, 55).

On the other hand, PGN sensing by NOD2 can be deleterious

in the intestinal epithelium (54, 55). Given such multifaceted

roles by NOD2, it is possible that NOD2 may both positively and

negatively regulate the hepatocarcinogenesis.

If activation of NOD2 negatively regulates TLR-mediated

chronic inflammation, it is likely that NOD2 attenuates

inflammation-associated cancer driven by TLRs (Figure 3). In

fact, activation of NOD2 by MDP suppressed colorectal

tumorigenesis through IRF4-mediated inhibition of TLR

signaling pathways (38). This scenario might also apply to the

development of HCC. Recognition of the intestinal microbiota by

TLR4 is required to trigger the development of HCC in the DEN/

CCl4 model (56, 57). In another inflammation-associated HCC

model, the occurrence of NASH-associated HCC was markedly

decreased in TLR2-deificinet mice (50). Thus, activation of TLRs

is an indispensable step in hepatocarcinogenesis. TLR-mediated

activation of NF-kB and production of proinflammatory

cytokines were markedly suppressed in the colonic mucosa of

experimental murine colitis upon the activation of NOD2 by

MDP (19, 20), which may also protect mice from

hepatocarcinogenesis induced by NASH or treatment with

DEN/CCl4. However, to the best of our knowledge, the

mechanisms suppressing hepatocarcinogenesis have not been

examined with respect to the crosstalk between NOD2 and TLRs.

Although several reports have addressed the role of NOD2 in

experimental models of HCC, no study has examined the role of

NOD1. However, the effects of NOD1 on cell survival and

proliferation have been tested in vitro (58). Expression of

NOD1 was found to be significantly lower in the HCC tissue

than in the non-cancerous parts of the liver (58). NOD1

activation suppressed HCC proliferation through the
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inhibition of SRC and induction of cell cycle arrest at the G1

phase (58). In addition, overexpression of NOD1 in HepG2 and

Huh7 cells resulted in higher sensitivity to sorafenib (58).

Despite in vitro data alone, these data suggest that NOD1 can

suppress the growth of HCC via the downregulation of SRC

activity and cell cycle progression.
Conclusion

The activation of NOD1 and NOD2 is involved in the

development of liver injury and hepatocarcinogenesis.

Conflicting data have been reported: NOD2 activation is

required for liver injury, whereas NOD1 activation plays both

protective and pathogenic roles in the development of hepatitis.

Similarly, administration of NOD1 and NOD2 ligands

exacerbated and improved steatosis, respectively. The NOD2

signaling pathways are both beneficial and pathogenic in

hepatocarcinogenesis. Further elucidation of the molecular

mechanisms by which NOD1 and NOD2 activation regulate

the development of liver injury and cancer is required for the

application of NOD1 and NOD2 ligands as treatments of human

diseases. Immune checkpoint inhibitors (ICIs) targeting

programmed death-1 (PD-1) or cytotoxic T lymphocyte

antigen-4 (CTLA-4) are widely used to treat advanced solid

cancers, including HCC (9). However, the efficacy of ICIs alone
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for HCC is 20%, as determined by the response rate (9).

Therefore, the restoration of anti-cancer Th1 immunity by

ICIs alone is not sufficient . A novel combination

immunotherapy consisting of ICIs and compounds that

enhance T cell immunity needs to be established. In this

regard, ligands for NOD1 or NOD2 can be promising

candidates, because activation of NOD1 and NOD2 efficiently

induces Th1 responses (15, 59). In addition to conventional

PGN sensors, recent studies highlight roles played by the NOD1

and NOD2 in the maintenance of ER homeostasis. Molecular

mechanisms accounting for the development of liver injury and

HCC through regulation of autophagy and ER stress by NOD1

and NOD2 need to be addressed in the future studies. In

conclusion, the elucidation of the association between NOD1/

NOD2-mediated signaling pathways and liver diseases opens

new avenues for the development of novel treatments for

hepatitis, steatosis, and HCC.
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FIGURE 3

Activation of TLRs and NOD2 in the development of liver cancer Microbe-associated molecular patterns (MAMPs), including lipopolysaccharide
(LPS) and lipoteichoic acid (LTA), enter the liver via the portal vein. These MAMPs activate TLR2 and TLR4 in hepatic satellite cells (HSCs).
Metabolites such as deoxycholic acid (DCA) act together with TLR2 and TLR4 ligands to induce differentiation of HSCs with a senescence-
associated secretory phenotype (SASP). HSCs with SASP produce large amounts of IL-1b, IL-6, and TNF-a. Differentiation of regular HSCs into
those with SASP promotes the development of HCC. Activation of NOD2 by MDP might inhibit the development of HCC through its negative
regulation of TLR2 and TLR4.
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Early treatment with anti-a4b7
antibody facilitates increased
gut macrophage maturity in
SIV-infected rhesus macaques

Samuel D. Johnson1,2, Lindsey A. Knight2, Narendra Kumar2,
Omalla A. Olwenyi1,2, Michellie Thurman2, Smriti Mehra3,
Mahesh Mohan3 and Siddappa N. Byrareddy2,4,5*

1Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha,
NE, United States, 2Department of Pharmacology and Experimental Neuroscience, University of
Nebraska Medical Center, Omaha, NE, United States, 3Southwest National Primate Research
Center, Texas Biomedical Research Institute, San Antonio, TX, United States, 4Department of
Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha,
NE, United States, 5Department of Biochemistry and Molecular Biology, University of Nebraska
Medical Center, Omaha, NE, United States
Despite advances in combination antiretroviral therapy (cART), people living

with HIV (PLWH) continue to experience gastrointestinal dysfunction. Infusions

of anti-a4b7 monoclonal antibodies (mAbs) have been proposed to increase

virologic control during simian immunodeficiency virus (SIV) infection in

macaques with mixed results. Recent evidences suggested that therapeutic

efficacy of vedolizumab (a humanized anti-a4b7 mAb), during inflammatory

bowel diseases depends on microbiome composition, myeloid cell

differentiation, and macrophage phenotype. We tested this hypothesis in SIV-

infected, anti-a4b7 mAb-treated macaques and provide flow cytometric and

microscopic evidence that anti-a4b7 administered to SIV-infected macaques

increases the maturity of macrophage phenotypes typically lost in the small

intestines during SIV disease progression. Further, this increase in mature

macrophage phenotype was associated with tissue viral loads. These

phenotypes were also associated with dysbiosis markers in the gut previously

identified as predictors of HIV replication and immune activation in PLWH.

These findings provide a novel model of anti-a4b7 efficacy offering new

avenues for targeting pathogenic mucosal immune response during HIV/

SIV infection.

KEYWORDS

simian immunodeficiency virus (SIV), a4b7 integrin, microbiome, butyrate, myeloid
cells, macrophage maturation, mucosal immunology, viral reservoir
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Introduction

Human immunodeficiency virus (HIV) infections are

associated with significant disruption to gut integrity,

including microbial dysbiosis, barrier dysfunction, and

resultant chronic immune activation (1, 2). These gut

pathologies are similar to the symptomology of inflammatory

bowel diseases (IBDs), such as Crohn’s disease (CD) and

ulcerative colitis (UC), during which abdominal pain, diarrhea,

constipation, fatigue, and mood disturbances are commonly

reported (3, 4). Currently, vedolizumab, a humanized anti-

a4b7 integrin monoclonal antibody (mAb) is effectively used

to ameliorate IBD symptoms and reduce associated damage by

blocking gut homing of inflammatory cells by antagonizing a4b7
integrin binding to its cognate ligand mucosal addressin cell

adhesion molecule 1 (MAdCAM-1) on intestinal endothelium

(5). Additionally, differences in a4b7 integrin surface expression

on circulating immune cells have been demonstrated between

disease-resistant natural primate hosts of the simian

immunodeficiency virus (SIV) that do not progress to AIDS-

like disease and non-natural hosts that do progress, often to fatal

disease, with the latter having significantly higher mean a4b7
integrin surface expression (6).

Recently, a primatized anti-a4b7 mAb reagent was

developed that could be repeatedly administered in vivo to

block the higher levels of a4b7 integrin expression in disease-

progressing rhesus macaques (RMs) (7). Furthermore, anti-a4b7
mAb was shown to reduce gut viral loads following SIV infection

(8, 9). Similarly, anti-a4b7 therapy was found to reduce gut

lymphoid aggregates that could serve as potential HIV-1

reservoirs (10). Despite this reduction, other studies have

reported conflicting results suggesting that anti-a4b7 therapy

does not reduce peripheral viral loads/viral reservoirs in SIV-

infected rhesus macaques (11–13). Intriguingly, in a clinical trial

involving the administration of anti-a4b7 mAb to HIV-infected

individuals revealed that five out of eighteen participants

controlled viremia to less than 1,000 copies per mL for the 26

week duration of analytical antiretroviral therapy interruption

highlighting the potential utility of anti-a4b7 therapy towards

HIV control (14). Likewise, recent findings noted that anti-HIV

broadly neutralizing antibodies-treated RMs that were given

anti-a4b7 therapy delayed viral rebound compared to those

treated with broadly neutralizing antibodies alone (15).

Because some studies have demonstrated benefi ts ,

understanding why certain individuals/macaques fail or

succeed in controll ing viremia following treatment

interruption could provide crucial insights into future designs

of HIV/SIV cure studies.

Although vedolizumab was initially developed to reduce

pro-inflammatory lymphocyte trafficking to the gut, thereby

reducing local tissue damage, several studies have questioned

this proposed mechanism (16). Compared to infliximab (anti-

TNF-a mAb), vedolizumab is not associated with changes to
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total, CD4+, CD8+, central memory, or effector memory lamina

propria T cells in rectal biopsies of CD and UC patients at week

14, following three mAb infusions (17). Even though infliximab

was associated with decreased T-cell recruitment to the gut, it

was less efficacious than vedolizumab in measures of both

clinical response and remission (17). However, vedolizumab

was associated with a decrease in pro-inflammatory M1 and

an increase in anti-inflammatory M2 macrophages. These

changes were predictive of remission (17). Interestingly,

macrophage turnover in the intestines is predictive of

accelerated disease progression in SIV-infected macaques (18,

19). Whether the similarities between IBD and HIV/SIV

pathogenesis include macrophage recruitment remains

poorly characterized.

In addition to the emerging understanding of myeloid cells

as potential mediators of IBD, new studies involving the role of

the microbiome are providing further insights into IBD

pathogenesis. Individuals with IBDs tend to have a decrease in

markers of overall microbiome richness, including a-diversity
measuring total operational taxonomic units (OTUs) and

Shannon diversity index, which incorporates weighting species

abundance evenness (20, 21). Additionally, IBD is associated

with an increase in the ratio of Bacteroidetes: Firmicutes (B: F),

including reductions in Firmicute butyrate-producing bacteria

(BPB) like Roseburia and Faecelibacterium (22–24). Similarly,

HIV infection is also associated with dysbiosis with an expansion

of the Bacteroidetes genus Prevotella and a decrease in BPB (25,

26). The relative abundance of BPB in people living with HIV

has been inversely correlated with markers of microbial

translocation, immune activation, and vascular inflammation

(25). These findings raise the question of whether microbiome

composition could further modulate anti-a4b7 efficacy in SIV

infection, possibly contributing to divergent outcomes

during therapy.

We characterized gut macrophage maturation dynamics in

the duodenum and ascending colon of SIV-infected RMs

utilizing both flow cytometry and microscopy techniques and

determined tissue viral loads in each compartment prior to and

following anti-a4b7 administration. Additionally, we performed

16S rRNA gene sequencing to determine if microbiome

composition impacted these immune dynamics. All macaques

were infected with SIVmac251 and CD8-depleted to accelerate

pathogenesis as part of a more extensive separate study. As

expected, without CD8+ cells, the RMs did not control viral

replication, reinforcing recent reports that when CD8+ cells are

depleted, anti-a4b7 therapy fails at maintaining viral control

during SIV-nef-stop infection (27). However, despite these

changes, significant decreases in myeloid cell turnover were

seen in the small intestine in the anti-a4b7 group compared to

IgG-treated controls. These changes were associated with

alterations in tissue viral loads and markers of dysbiosis in the

fecal microbiome, suggesting that myeloid cell dynamics and

microbiome composition may be crucial to the efficacy of anti-
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1001727
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Johnson et al. 10.3389/fimmu.2022.1001727
a4b7 mAb treatment during SIV infection. These findings

provide a new variable for differential experimental outcomes

that has until now remained undefined.
Materials and methods

Animals and ethics statement

A total of nine outbred Indian-origin rhesus macaques (Macaca

mulatta) (RMs) with a mean age of 6.1 years old (5.1 to 10.0) were

procured from the Yerkes National Primate Center of Emory

University, Atlanta, Georgia, the USA and the New Iberia

Research Center of University of Louisiana, Lafayette, Louisiana,

USA and used in this study as summarized in Table S1. All RMs

were housed at the Department of Comparative Medicine,

University of Nebraska Medical Center (UNMC), Omaha,

Nebraska, the USA, in compliance with regulations outlined in

the Animal Welfare Act and the Guide for the Care and Use of

Laboratory Animals. Animals were pair-housed with visual access

to other monkeys in a temperature-controlled (72°F) indoor climate

with a 12-hour light/dark cycle. Animals were fed a monkey diet

(Purina) twice daily, supplemented with fresh fruits and water being

available ad libitum. Animals were anesthetized (ketamine 10 mg/

kg or telazol 4 mg/kg) prior to all procedures, and meloxicam (0.2

mg/kg) was administered when appropriate. At the end of the

study, euthanasia was performed following the guidelines of the

American Veterinary Medical Association by a high dose of

ketamine-xylazine followed by exsanguination and cardiac

perfusion. This study was approved by the UNMC Institutional

Animal Care and Use Committee (IACUC) and the Institutional

Biosafety Committee (IBC) under protocol #15-102-12-FC entitled

“Gut Trafficking Cells in SIV Infection”.
Study design

Nine RMs were randomly divided into two groups: four in the

control group were administered control IgG and five in the

experimental group treated with a primatized monoclonal anti-

a4b7 IgG. All monkeys were depleted of CD8+ cells by the

administration of a rhesus recombinant IgG1 anti-CD8a mAb

(MT807R1) Lot: 100LBRX-3206-023-001 (NIH Nonhuman

Primate Reagent Resource) four times spanning several days

before and after infection (Day -4: 10 mg/kg subcutaneously and

on days -1, 3, and 6 administered 5mg/kg intravenously). On Day 0,

all macaques were intravenously inoculated with 1000 TCID50

SIVmac251 (Source: Simian Vaccine Evaluation Unit, NIAID,

NIH). During acute infection on Day 12, daily intramuscular

administration of a combination of anti-retroviral therapy (cART)

(20 mg/kg TFV + 40 mg/kg FTC + 2.5 mg/kg DTG) was initiated

and continued until Week 14. On day 15, while the controls were

administered 50 mg/kg rhesus IgG1 control antibody rhesus IgG1
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mAb (DSPR1) Lot: LH15-35 (NIH Nonhuman Primate Reagent

Resource), the experimental group monkeys were administered 50

mg/kg rhesus recombinant IgG1 anti-a4b7 mAb (A4B7, Lot: LH17-

14-NIHNonhuman Primate Reagent Resource). Antibody infusions

were continued every three weeks until week 23 for a total of eight

infusions. Blood was collected from the saphenous vein using K2-

EDTA vacutainer tubes (Becton, Dickinson, San Diego, CA, USA)

for monitoring plasma viral loads. Feces were collected using fecal

loops at baseline and on days 14, 98, and 161 and were snap frozen

for future analysis. At necropsy, gut tissues were collected, a portion

snap frozen, a portion fixed in 10% formalin, and additional tissue

used for immune cell isolation (below) for flow cytometry. An

illustration of the study design is available in Figure S1.
Intestinal cell isolation

At necropsy, duodenum and ascending colon were collected,

washed with DPBS, and dissected into two compartments: 1)

epithelium and lamina propria and 2) muscularis externa and

serosa. Tissue-specific immune cells were isolated by mincing,

digestion with 10,000 U Collagenase, Type 4 (Worthington

Biochemical Corporation, Lakewood, NJ, USA; Product

#LS004188) and 25 U DNAse I (Roche Diagnostics,

Mannheim, Germany; Product #LS004188) in 10 mL DPBS for

two hours, filtration through 100 mm and 40 mm sterile cell

strainers (Fisherbrand, Hampton, NH, USA; Product #22-363-

549 and 22-363-547), and density gradient centrifugation with

60% and 30% Percoll (Cytiva, Uppsala, Sweden; Product

#17089101) layers at 2000 rpm for 30 minutes. Isolated cells

were washed with DPBS and resuspended in RPMI.
Flow cytometry

Isolated gut cells were sequentially incubated with Zombie

Aqua Fixable Viability Dye (BioLegend, San Diego, CA, USA;

Product #423102) to discriminate live/dead cells and incubated

with Fc blocker to minimize non-specific binding and then stained

with a panel of fluorescent-dye conjugated antibodies (Table S2),

and then fixed with 1% PFA. Both compensation and fluorescent

minus one (FMO) controls were utilized to assist in gating

placement. Event acquisition was performed using a Fortessa

x450 flow cytometer (B-D, Mountain View, CA). Analysis was

performed with FlowJo 10.6.1 software (Treeland, OR). To

determine macrophage maturity, a gating strategy developed by

Bujko, et al. was utilized (see Figure S2) (28).
Viral loads

Viral loads were determined as has been described

previously (29). In brief, plasma was separated from whole
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blood by centrifugation at 1200 rpm for 20 minutes, and RNA

was isolated using a QIAamp viral RNA Mini Kit (Qiagen,

Germantown, MD, USA; Product #52906). Frozen gut tissue was

lysed using a TissueLyser LT (Qiagen, Germantown, MD, USA;

Product #69980), and then DNA and RNA were isolated using

an AllPrep DNA/RNA Mini Kit (Qiagen, Germantown, MD,

USA; Product #80204) according to manufacturer instructions.

Copies of SIVgag DNA were normalized to cell number by

quantifying genomic RPP30 as previously described to

determine copies/cell (30).
16S rRNA sequencing

Fecal samples were later thawed and approximately 100-200

mg of fecal sample was used to isolate DNA using spin column

chromatography-based Stool DNA Isolation Kit (Norgen

Biotek Corp; Product #27,600) following manufacturer

recommendations. DNA was quantified with a GE SimpliNano

spectrophotometer and shipped on dry ice to LC Sciences, LLC

(Houston, TX, USA) for 16S rRNA sequencing. A library was

generated by amplifying the V3 and V4 16S rRNA variable

regions and adding sequencing adapters and barcodes after the

first cycle. An Illumina cBot system was used to generate clusters

for sequencing with an Illumina MiSeq platform. Barcodes were

used to separate data, and an in-house script was used to

annotate taxa according to RDP, Greengenes, and NCBI

16SMicrobial customized databases for reference. Data output

statistics, including clustering into operational taxonomic units

(OTU), diversity analysis, species classification, and abundance

analysis were performed by LC Sciences, LLC (Houston, TX).

FASTQ files were deposited in the NCBI Sequence Read Archive

with the BioProject accession number PRJNA870961.
Immunofluorescence microscopy

Formalin-fixed gut tissues collected at necropsy were

embedded in paraffin blocks, cut into 5 µm sections using a

microtome (Leica Biosystems, Deer Park, IL, USA; Product

#RM2235), and placed on positively charged slides (Avantik,

Pine Brook, NJ, USA; Product #SL6332). Tissue sections were

deparaffinized with xylene and rehydrated with graded ethanol

to water. Antigen retrieval was performed by Decloaking

Chamber™ NxGen (Biocare Medical, LLC, Pacheco, CA, USA;

Product #DC2012). Tissues were washed three times with water,

and a blocking buffer (5% normal goat serum + 1% BSA in PBS)

was applied for one hour at room temperature to prevent non-

specific binding. Sections were incubated overnight with anti-

CD163 and anti-CD206 antibodies (Table S3) at 4°C. Tissues

were washed with PBS and incubated for one hour with

fluorescent secondary antibodies (Table S3) at room

temperature. Tissues were finally washed five times with PBS,
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Prolong™ Gold antifade reagent with DAPI (Invitrogen

Waltham, MA, USA; Product #P36935) was added, and

coverslips were applied. 20X images were captured using a

LIONHEART LX Automated Microscope (BioTek, Santa

Clara, CA) using Gen5 3.05 software. Co-localization was

performed using the JAKoP plug-in for Image J 1.53e (31).
Statistical analysis

Mann-Whitney tests were implemented when comparing

data obtained on the anti-a4b7 with those obtained on the

control groups. Multiple t-tests were utilized when comparing

myeloid cell phenotypes. Two-way ANOVA, linear regression,

and ratio paired T-tests were performed as specified. All

statistical analysis was performed with GraphPad Prism 7 for

Mac OS X. Statistical significance was determined as P ≤ 0.05.
Results

Anti-a4b7 therapy is associated with
increased macrophage maturity in the
duodenum

Contrary to early reports, more recent data has increasingly

suggested that the mechanism of action for anti-a4b7 mAbs is

more complex than blocking inflammatory lymphocyte

infiltration (16). These studies have indicated that myeloid

cells, particularly macrophages and DCs, may contribute to the

efficacy of vedolizumab (17, 32, 33). To characterize changes in

gut myeloid cell differentiation at necropsy, immune cells were

isolated from the lamina propria and muscularis externa of the

duodenum and ascending colon. The isolated cells were

subjected to flow cytometry and a gating strategy was utilized

based on a previously described method developed by Bujko,

et al., (Figure S2) which was focused on the characterization of

gut myeloid cells across developmental stages from monocyte-

like macrophages (Mf1), intermediate macrophages (Mf2), to

mature (Mf3) macrophages (28). Additionally, this strategy

identifies muscularis macrophages (Mf4), determining their

frequency as a percent of total macrophages.

Compared to the mean frequency of 63.0% Mf1

macrophages in the duodenum lamina propria of the control

group, as seen in Figure 1A, the anti-a4b7 treated group showed

a significant reduction (mean 14.6%) (P=0.01). Similarly, there

was a trend in reduction of Mf2s in the same tissues with mean

values of 16.1% in the control and 3.8% in the anti-a4b7 mAb

treated group (NS) (Figure 1A). In contrast, anti-a4b7-treated
RMs had higher mean frequencies of the Mf3 macrophages

(63.9%) than 20.4% in the control group (P=0.02). Similarly,

there was a trend in increased Mf4s with anti-a4b7-treatment

(17.7% compared to 0.6%, NS), a minority population in the
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duodenum lamina propria. Similarly, although statistically non-

significant, there was a trend in reduced Mf2s and increased

Mf3s in the duodenum muscularis externa in the control group

as compared to the anti-a4b7-treatment group.

As mentioned, Bujko, et al. developed a gating strategy for

analyzing cells isolated from the small intestine (28). We applied

this strategy to cells isolated from the ascending colon (28). No

significant differences were found in any of the macrophage

subtypes in either the lamina propria or muscularis externa

Figure 1B. Despite this, some trends existed between the small
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and large intestinal macrophage subtypes. In all tissue samples,

intermediate Mf2s were lower with anti-a4b7 treatment and,

when combined, were significantly different with a mean of 6.5%

compared to 26.2% with values from the IgG treatment group

(P=0.02). Conversely, in most samples, Mf4s were higher with

anti-a4b7 treatment. Combined, the anti-a4b7-treatment group

had a mean of 15.1% Mf4s compared to 5.8% in the control

group (P=0.03). As expected, there was a trend in higher

Mf1s and Mf3s in the lamina propria and Mf4s in the

muscularis externa.
A

B

C

FIGURE 1

Anti-a4b7 therapy is associated with reduced myeloid cell turnover in the small intestine. (A) Monocyte-like Mf1s were significantly lower in the
duodenal lamina propria of anti-a4b7-treated macaques compared with controls, while mature Mf3 were substantially higher. Similar trends
were seen in the muscularis externa. (B) This trend was not maintained in the ascending colonic lamina propria. (C) CD103 expression on CD11c
+ cells was quantified in each tissue type and was significantly lower in the duodenal lamina propria of the a4b7-treated group * P < 0.05.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1001727
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Johnson et al. 10.3389/fimmu.2022.1001727
In addition to pro-inflammatory macrophages, localization

of dendritic cells (DCs) to the gut has also been coupled to the

expression of the b7 integrin (33). This includes CD103+

conventional DCs responsible for imprinting lymphocytes with

gut-homing function by releasing retinoic acid (33). The

frequencies of CD103+ expressing CD11c+ dendritic cells were

quantified in each histological layer (lamina propria and

muscularis externa) of both the duodenum and colon

(Figure 1C). In the duodenum lamina propria, anti-a4b7
therapy was associated with a significantly lower CD103+ DCs

(4.8%) compared to controls (42.4%) (P=0.03). Similar trends

were seen in the duodenum muscularis (3.2%, 28.0%; P=0.08),

ascending colon lamina propria (4.7%, 33.0%; P=0.08), and

ascending colon muscularis (6.1%, 42.7%; P=0.05), with all

tissues having lower CD103+ CD11c+ cells in the anti-a4b7
group. A two-way ANOVA analysis was performed to determine

whether the response was dependent on tissue type. No

significance was found in the tissue (row factor) or interaction,

but the treatment (column factor) was significantly different

(P<0.0001), suggesting that the differences were due to treatment

and not secondary to the tissue being sampled.
Anti-a4b7 therapy is associated with
increased colocalization of CD206 with
CD163 in gut tissues

Previously, it has been suggested that intestinal macrophage

turnover is associated with peripheral monocyte turnover and is

predictive of disease progression in SIV-infected RMs (19). To

demonstrate these associations, a gating strategy determining

the ratio of CD163+CD206+ double-positive to CD163+CD206-

single-positive cells was utilized in conjunction with BrdU/EdU-

labeling and confocal microscopy, with the finding that disease

progression is associated with a reduction in the ratio of double-

positive to single-positive cells during SIV infection (19). To

validate our flow cytometry findings, we utilized a similar

strategy to determine the co-localization of CD206 with

CD163 in gut tissues (duodenum and ascending colon) of each

of the macaques obtained at necropsy (Figure 2A, C). In addition

to providing further evidence for increased macrophage

maturity utilizing different surface markers (Bujko’s strategy

does not include either CD163 or CD206), this strategy also

provided data for the two anti-a4b7-treated RMs with missing

flow cytometry data (19). When co-localization of CD206 with

CD163 was measured in the duodenum, Mander’s coefficient 1

(MC1) was measured providing the ratio of co-localization

compared with total CD163 expression. In the IgG-treated

controls, the mean MC1 was 0.07 compared with 0.53 in the

anti-a4b7-treated group (P=0.0159) (Figure 2B). When the same

strategy was performed for the ascending colon, while the

control group was 0.35, the anti-a4b7-treated group was 0.53

(P=0.0397) (Figure 2D). In each tissue, the lower MC1 in the
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control group suggests reduced macrophage maturity compared

with the experimental group.

These readings were next compared with macrophage

subtype in the duodenum, as expected, Mf1s were negatively

associated with MC1 (r=-0.8523, P=0.0148), and Mf3s

(r=0.7706, P=0.0426) and Mf4s (r=0.777, P=0.0398) were

positively associated with MC1 (Figure 2E). While there was a

trend in a negative association with Mf2s, this correlation was

not significant. This finding is consistent with Bujko, et al’s

decision to not use CD206 as a marker for their gating strategy

because CD206 is expressed at high levels on Mf2, Mf3, and Mf4

gut macrophages (28).
Anti-a4b7 therapy is associated with
changes in tissue viral loads

There were no statistical differences between plasma viral

loads during the post-treatment interruption between treated

and control animals (Figure S6). However, we found

significantly higher DNA viral load in the duodenum of anti-

a4b7-treated macaques (geometric mean: 536 copies/106 cells)

compared to controls (geometric means 106 copies/106 cells;

P=0.02) as determined by copies of SIVgag compared to the host

genomic gene RPP30 (Figure 3A). No difference in DNA viral

loads was found in the ascending colon (387 versus 382 copies/

106 cells). A similar trend was seen in RNA viral loads, with the

duodenum of the anti-a4b7 group having a geometric mean of

log10 5.8 copies/100 ng RNA compared with to log10 4.0 in

controls (Figure 3B). Again, no difference was found in the

ascending colon (log10 5.6 copies compared to log10 5.8 copies).

Next, to determine whether there was a relationship between

myeloid cells and viral loads, we performed linear regression

analysis on the lamina propria, which were the presumed foci

of anti-a4b7 activity. When both experimental design groups

are combined for the duodenum, RNA viral loads were

negatively correlated with Mf1s (r= -0.8758, P= 0.0098),

positively correlated with Mf3s (r= 0.9332, P=0.0021), and

negatively correlated with CD103+ DCs (-0.8298, P=0.0209)

(Figure 3C). Despite few differences between groups in tissue

viral load and macrophage maturity phenotype, the two were

similarly correlated in the ascending colonic lamina propria with

Mf1s negatively (-0.8366, P=0.0190) and Mf3s positively

(r=0.771, P=0.0424) correlated (Figure 3D). CD103+ DCs,

though were not significantly associated (r=-0.4899, P=0.2644).

Thus, in both the small and large intestines, more mature

macrophage phenotypes are associated with viral loads but not

necessarily CD103+ DCs. Additionally, the duodenum viral load

is associated with MC-1 (r=0.7255, P=0.0270) (Figure S5).

However, this Pearson’s coefficient is lower than that found

when comparing Mf3s (r=0.7255 vs. r=0.9332, respectively),

suggesting that fully mature Mf3s, but not all CD163+CD206+

cells, are closely associated with tissue viral loads.
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Acute SIV infection is associated with
acute intestinal dysbiosis

Increasingly, the microbial composition has been recognized

as a significant modulator of the inflammatory states of mucosal

gut myeloid cells (34). Additionally, specific taxa have been

linked with vedolizumab efficacy in IBD patients and

lymphocyte activation and viral load during HIV infection (25,

35). To determine whether the microbiome may be influencing

the efficacy of anti-a4b7 during SIV infection, 16S rRNA gene

sequencing was performed on DNA isolated from fecal samples

obtained at baseline, acute infection (Day 14), during therapy

(Day 98), and after cART interruption (Day 161). Using

unweighted principal component analysis, it was clear that

acute infection was associated with dysbiosis, with animals in

each group having microbial composition divergence at Day 14

compared with the other timepoints (Figure S3a). Additionally,

at the phylum level, non-significant differences were seen in the

Bacteroidetes: Firmicutes (B: F) ratio, with the anti-a4b7-treated
group experiencing an increase in Bacteroidetes (B) and a
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decrease in Firmicutes (F) resulting in an increased B:F ratio

at Day 14 (Figure S3c). Control animals had the opposite trend

suggesting that each group experienced divergent dysbiosis

before therapeutic intervention. It should be noted that in the

present study, all RMs were CD8-depleted to facilitate rapid

viremia and accelerated pathogenesis. Whether CD8 depletion

also modulates microbiome composition in SIV-infected

macaques remains to be fully elucidated. However, CD8

depletion prevents respiratory syncytial virus-associated

dysbiosis in mice, reversing losses in the Firmicute families

Lachnospiraceae and Lactobacillaceae (36).

For greater granularity in taxonomic changes, we next

analyzed the family composition of the microbiome over the

time course of the experiment. The data was examined using

stacked grouped abundance graphs that demonstrated that

samples from Day 14 in each group differed from other

timepoints with higher Bray-Curtis dissimilarity in both

control and experimental groups (Figure 4A). Other time

points in each group clustered together with reduced

dissimilarity, indicating that each group partially recovered
A B

D
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C

FIGURE 2

Anti-a4b7 therapy is associated with increased CD206+ expression on CD163+ cells. (A) Immunofluorescence microscopy was used to compare
the expression of CD163 and CD206 in duodenum tissue from anti-a4b7-treated (above) and IgG controls (below). (B) Co-localization was
quantified with Mander’s coefficient 1, showing the ratio of co-localization of CD206 with CD163. (C) Immunofluorescence and (D) co-
localization were also determined for anti-a4b7-treated (above) and IgG controls (below) in the ascending colon. (E) Linear regression analysis
was used to compare co-localization with duodenal lamina propria macrophage subtypes determined by flow cytometry. * P < 0.05.
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from acute dysbiosis. A heatmap demonstrates similar

dynamics, with data on Day 14 samples considered as outliers

in each experimental group (Figure 4B). Critical families from

the above analyses were separated to evaluate specific taxonomic

changes better, and longitudinal plots were generated

(Figure 4C). Prevotellaceae, the most abundant family across

all groups, was depleted during acute dysbiosis in the IgG

controls, making up only 6.7% in samples from Day 14

compared to 33.3% at baseline. This impact on the relative

abundance of Prevotellaceae did not follow a similar trend

in the anti-a4b7-treated experimental group. Conversely,

Spirochaetaceae were moderately increased in control IgG

group from baseline compared to samples on day 14 (7.8% as

compared with 17.6%). None of the above differences were

statistically significant between groups due to significant inter-

individual variations in microbiome composition. However,

both groups had an increase in the relative abundance of the

family Helicobacteraceae and a decrease in the family
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Lactobacillaceae, the latter was significantly different (from

5.8% to 0.3%, P=0.003), with every animal showing a decrease

in relative abundance during acute dysbiosis by an average of

88%. Aside from the differences in Prevotel laceae,

Lachnospiraceae dynamics were also different between the two

groups showing a decrease in the anti-a4b7-treated group (10.2%
at baseline to 8.3%) but an increase in the control group (6.6% to

7.6%). A final significant difference between the two groups was

seen in the numbers of the Veillonelaceae family, which was

significantly depleted (P=0.03) in the IgG-treated controls after

infection but rebounded (P=0.03).
SIV-associated dysbiosis is partially
ameliorated following anti-a4b7 therapy

HIV/SIV-associated dysbiosis has been extensively

characterized across human populations and non-human
A B
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C

FIGURE 3

Anti-a4b7 therapy was associated with higher small intestine tissue viral loads. (A) Tissue RNA viral loads were significantly higher in the
duodenum of anti-a4b7-treated macaques compared to controls. (B) Tissue DNA viral loads normalized to cell number followed the same trend.
(C) In the duodenum, viral loads were negatively associated with Mf1s and CD103+ DCs. Viral loads were positively associated with mature Mf3s.
(D) In the ascending colon, a similar association was found with local viral load and macrophage maturity but not with CD103+ CD11c+ cells.
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FIGURE 4

Microbiome family composition is disrupted by acute SIV infection: Both (A) stacked grouped abundance and (B) heatmap demonstrate acute
dysbiosis at Day 14 post-infection where family relative abundance does not group within experimental groups. (C) Longitudinal changes to
family abundance of Prevotellaceae, Ruminococcaceae, Porphyromonadaceae, Spirochaetaceae, Lachnospiraceae, Lactobacillaceae,
Helicobacteraceae, and Veillonelaceae.
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primate models. Consistently, infection is associated with an

increase in the Bacteroidete: Firmicute ratio in fecal samples.

These changes are primarily driven by increases in Prevotella and

loss of BPB (25, 26, 37, 38). Notably, the BPB genus Roseburia has

specifically been linked to vedolizumab efficacy, as a marker of

HIV-associated dysbiosis (35). The ratio of these two bacteria

groups has previously been used as a marker of dysbiosis during

HIV infection, significantly higher in PLWH (25). Further, this

ratio was positively associated with lymphocyte and colonic

dendritic cell activation (25). As previously noted, there was a

divergent dysbiosis prior to infection between the IgG and anti-

a4b7 groups. Because of this difference and for improved graphical

representation, the Prevotella: Roseburia ratio was normalized to

acute infection (Day 14), the time point at which the microbiome

is significantly disrupted and is unable to recover, even with cART

(Figure 5A). At acute infection, both groups trend to show an

increase in the Prevotella: Roseburia ratio, regardless of whether

normalization was performed, consistent with previous

observations of acute infection-associated dysbiosis in both HIV

and SIV infections (25, 38, 39). One fecal sample on Day 98 was

not collected from the anti-a4b7-treated group. However, in all

four animals from which samples were collected, the values were

lower following therapy. When normalized to acute infection

ratio, a significant difference was found between the IgG- and anti-

a4b7-treated groups (P=0.0286). Even without normalization, the

change from acute infection to post-treatment Prevotella:

Roseburia ratio was significant in the anti-a4b7-treated group
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compared using a ratio paired T-test that showed a decrease from

a geometric mean of 29.7 to 6.5 (P=0.0228).

When the Day 161 Prevotella: Roseburia ratio was compared

with macrophage turnover in the duodenal lamina propria, Mf1s

were positively associated (r=0.7833, P=0.0372) with a trend in

Mf3s (r=-0.704, P=0.0775) (Figure 5B). When the ratio of Mf1:Mf3

was compared with the Prevotella: Roseburia ratio, the Pearson

correlation coefficient was r=0.924 (P=0.0029) (Figure S4b). A

similar significant association was found in the Mf1:Mf3 ratio in

the ascending colon (r=0.8594, P=0.0132) (Figure S4b). The

Prevotella: Roseburia ratio was also positively associated with

CD103+ CD11c+ cells in the duodenum (r=0.8119, P=0.0266)

(Figure 5C) and ascending colonic (r=0.9077, P=0.0047) (Figure

S4c) lamina propria. Finally, the duodenum viral load was also

associated with the Prevotella: Roseburia ratio (r=-0.7565,

P=0.0183) (Figure 5D). A similar non-significant trend was seen

in the ascending colon (r=-0.6104, P=0.0809) (Figure S4d). This

analysis indicates that increased Prevotella and reduced Roseburia,

two key features of HIV/SIV-associated dysbiosis, are associated

with myeloid cell turnover in the duodenum. Further, this dysbiosis

was also associated with gut tissue viral loads.
Discussion

Recent interest in determining the mechanism of vedolizumab

action has offered new avenues for understanding HIV/SIV
A B

DC

FIGURE 5

Anti-a4b7 therapy is associated with a reduction in the Prevotella: Roseburia ratio. (A) The ratio of Prevotella: Roseburia was calculated and
normalized (for visualization and comparison) for the acute infection dysbiosis timepoint (Day 14) for longitudinal fecal samples utilized for 16S
rRNA sequencing. Linear regression was performed with this ratio (not normalized) on Day 161 for (B) the duodenal lamina propria macrophage
maturity phenotypes, (C) CD103+ CD11c+ cells, and (D) tissue viral loads.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1001727
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Johnson et al. 10.3389/fimmu.2022.1001727
pathogenesis. Contrary to results from earlier studies, clinical

samples and murine models of DSS-induced colitis showed an

association with an increase in infiltrating monocytes and a

decrease in mature macrophages (40). Additionally, b7-integrin-
expressing monocyte infiltration exacerbates DSS-induced colitis

in RAG2 mice, which lack mature lymphoid cells, emphasizing

the role of monocytes, not lymphocytes, in colitis development in

these models (32). Mature lamina propria macrophages express

reduced CD14 and have a reduced pro-inflammatory response to

lipopolysaccharide stimulation from the microbiome (28, 41).

However, during IBD, an influx of peripheral CD14+

monocytes and newly-differentiated M1 macrophages capable of

microbial pattern recognition enter this niche and release pro-

inflammatory cytokines (42). This signaling results in a self-

perpetuating cycle of pro-inflammatory macrophage infiltration.

These infiltrating monocytes and pro-inflammatory M1

macrophages in the lamina propria are thought to contribute to

barrier dysfunction in IBD thought to be secondary to dysfunction

of tight junction proteins and the induction of epithelial apoptosis

(42). Unlike infliximab, vedolizumab is associated with significant

changes in macrophage populations in human patients with CD

or UC, not in lymphocyte populations, including a shift from M1

phenotype dominance toM2 (17). Infliximab, though, by blocking

TNF-a, may additionally allow a similar increase in anti-

inflammatory macrophage phenotypes (43).

SIV infection is associated with a shift in pro-inflammatory

monocyte infiltration to gut tissues replacing mature tissue

macrophages, similar to the data from IBD patients (44, 45).

In RMs, the frequencies of CD163+ macrophages increased

four-fold during SIV infection associated with progression to

AIDS (46). Additionally, SIV infection is associated with a shift

from mature CD163+CD206+ macrophages in the lamina

propria to immature CD163+CD206- macrophages, with

changes primarily in the small intestine (19). By applying a

different flow cytometry gating approach, we provide evidence

for lower percent of Mf1 and higher Mf3 macrophages following

anti-a4b7 therapy that is initiated during acute infection,

compared with controls. Further, we found that it is the small

intestinal lamina propria on which anti-a4b7 mAb seems to

exert the most influence, given the fact that we found differences

only in CD206 co-localization with CD163 in the colon using

microscopy, but not by flow cytometry, and no differences in the

muscularis externa macrophage populations. Additionally, it has

been hypothesized that longer-lived macrophages are more

likely to serve as viral reservoirs in the tissue (19). Although

we did not measure this directly, we found tissue viral loads to be

closely associated with Mf3s and negatively associated with Mf1s

in both tissues. This was confirmed based on CD206 co-

localization with CD163, which also correlates with viral loads

in the duodenum. Despite this increase in tissue viral load, it

should be noted that natural hosts of SIV experience chronic

viremia without progressing to AIDS (47). Results of a recent

study in which whole gut tissue transcriptomic data were
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compared between African green monkeys (AGMs)

(Chlorocebus spp.; non-progressing natural hosts of SIV) and

disease-susceptible RMs following SIV infection demonstrated a

significantly higher expression of M2 wound-healing

macrophage associated genes in AGMs following SIV infection

compared with RM gut tissue which had an increase in pro-

inflammatory gene expression (48). Whether anti-a4b7
facilitates a similar switch to wound-healing remains an

additional possibility requiring further investigation.

While anti-a4b7 alone modulates monocyte trafficking

associated with an increase in pro-inflammatory Mf1

macrophages to the lamina propria, we also found the

frequency of multiple myeloid cell subsets to be related to the

Prevotella: Roseburia ratio. HIV and SIV are each associated with

acute and chronic dysbiosis, even during cART. Prominently,

the overall ratio of Bacteroidetes : Firmicutes increases, primarily

due to the rise in Prevotella at the expense of several Firmicute

taxa, a pattern consistent across populations (25, 26, 37, 38, 49,

50). Whether these findings are independent of sexual behavior

remains unclear, but similar trends are seen in children and SIV-

infected non-human primates (37, 38, 49, 50). In addition to

being characteristic of HIV-associated dysbiosis, Prevotella has

been associated with CD4+ and CD8+ T cell activation in HIV-

infected adults (51). Prevotella is also negatively related to CD4+

counts in perinatally-infected children and positively associated

with plasma IP-10 and soluble CD14 levels, the latter implicating

a role in monocyte and/or macrophage activation (37). Further,

the inclusion of Prevotella in specific pathogen-free mice leads to

a significant decrease in the relative abundance of the Firmicutes

such as Lachnospiraceae and Ruminococcaceae spp. and

exacerbates mucosal inflammation and disease progression in

models of colitis in mice suggesting the expansion of Prevotella

alone may be exacerbating HIV-associated inflammation and

dysbiosis (52–54). In contrast to Prevotella expansion, several

butyrate-producing Firmicute taxa are depleted during HIV

pathogenesis, even during cART (25, 26, 37, 38). Most

prominently, the relative abundance of colonic Roseburia is

negatively correlated with plasma viral loads, CD4+ T cell

activation, and markers of microbial translocation in PLWH.

The colonic ratio of Prevotella stercorea: Roseburia intestinalis is

closely associated with the activation of peripheral CD4+ T cells

and colonic DCs, CD4+, and CD8+ T cells in PLWH (25). The

short-chain fatty acid butyrate has a pleiotropic role in

maintaining gut homeostasis, acting as an energy source for

gut epithelial cells, a histone deacetylase inhibitor, and an agonist

of GPR41, GPR43, and GPR109A (34, 55). GPR109A agonism

specifically facilitates gut macrophages exposed to butyrate to

establish their anti-inflammatory phenotype (56). Further, ex

vivo colonic macrophages cultured with butyrate are imprinted

with anti-microbial activity without a concurrent increase in

tissue damage (57). Additionally, butyrate-producing bacteria

like Roseburia have previously been linked to vedolizumab

efficacy in IBDs (35), but the results presented herein, we
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submit, are the first to implicate the microbiome’s role, and the

ratio of Prevotella: Roseburia specifically, to be closely associated

with macrophage phenotype and function following anti-a4b7
therapy during SIV infection.

The data presented herein represents a study significantly

different from previous evaluations of anti-a4b7 that offers

insight into its potential mechanism during SIV infection.

Because of these differences, tissue viral loads, in particular,

were higher in anti-a4b7-treated animals compared to controls,

while previous reports found the opposite (8, 58). There are

several possible reasons for this discrepancy. Computer

modeling has shown that anti-a4b7 mAb’s facilitation of viral

clearance was a prominent mechanism in two of the eight

animals in the 2016 study (27). Additionally, the macaques in

the current study were depleted of CD8+ T and NK cells by

administering an anti-CD8a mAb. When performed in the

original 2016 cohort following prolonged virologic control,

anti-CD8a administration led to rapid viremia (27). Because

CD8+ cells have been demonstrated to play a role in anti-a4b7
efficacy, these findings provide a potential reason for differences

in gut tissue viral loads. Finally, diet significantly impacts

immune function and viral reservoir (59, 60). Specifically,

butyrate produced from the fermentation of dietary fiber can,

among other functions, act as an HDAC inhibitor (34).

Although HDAC inhibitors have been explored in HIV cure

strategies, these studies rarely characterized tissue macrophage

reservoirs resistant to cytolysis (61). Whether this mechanism or

the immune modulation induced by anti-a4b7 infusions

contributed to differences warrants further investigation, as

previously suggested (27). Further investigation is needed to

confirm changes in the colon with a larger number of animals to

see if the macrophage immunophenotypic differences in the

duodenum and its correlation with the Prevotella : Roseburia

ratio is also present in this tissue.

In addition to immunologic differences, the differences in virus

tropism may have also played a role in gut tissue viral load

compared with previous studies. Recently, the expression of HIV

restriction factor SERINC5 was shown to increase in the process of

macrophage differentiation (62). When incorporated into HIV

virions, SERINC5 inhibits fusion with target cells, but Nef

expression reduces SERINC5 incorporation. Further, HIV-1 DNef
has a reduced ability to infect mature macrophages. In comparison,

infection of HIV-1 DNef was non-statistically increased in

monocytes (62). If anti-a4b7 reduces the abundance of

monocytes, the lack of functional Nef at infection in the original

study may partially explain differences in gut viral loads (8). This is

particularly true if longer-lived, mature macrophages serve as

reservoirs (19). Even without the nef-stop mutation, SIVmac239

has comparatively lower macrophage tropism than dual tropic

SIVmac251 used in this study (63, 64). Additionally, it is known

that a4b7 becomes incorporated into SIV/HIV, and when

comparisons of a4b7 integrin incorporations were made in

diverse HIV and SIV strains, it was found that SIVmac251 had
Frontiers in Immunology 12
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the highest levels of incorporation of the 14 total viruses examined

(65). Such a4b7 incorporation into virions has been attributed to

increased trafficking to the gut facilitating trans-infection of cells

close to MADCAM-1 (65). Regardless of the SIV viral stock used,

rapid SIV diversification in vivo means that reduced myeloid

turnover likely enhances the viral reservoir, thereby increasing

tissue viral loads when control monkeys replace macrophages

with uninfected monocytes during cART suppression. However,

it should be noted that earlier anti-a4b7 administration studies have

been inconsistent, with some unable to replicate viral control and

others showing increased time to viral rebound when co-

administered with neutralizing antibodies (11, 12, 66, 67). While

macrophage turnover is rapid during SIV infection, complete

suppression may be necessary prior to anti-a4b7 therapy to

reduce tissue viral loads (19). Future studies need to determine if

macrophage turnover and therefore reduced maturity during cART

can help limit the tissue macrophage reservoir, thereby explaining

discrepancies between our study and previous findings. If true, a

delay in initiating anti-a4b7 administration may improve tissue

virologic outcomes.

Although our findings are statistically significant, the

interpretation of our data has limitations beyond differences in

study design compared with previous similar studies. First, the

study utilized for this analysis was designed to test a different

hypothesis and was meant to be preliminary. Because of this design,

the sample size was small, and two samples were missing for our

flow cytometry analysis, thus reducing their statistical power. Next,

cART was also interrupted several weeks before necropsy, making

translation to IBDs or cART-suppressed PLWH impossible since

ongoing viral replication may influence macrophage maturity.

Unlike previous studies determining macrophage and monocyte

turnover during SIV infection, we did not utilize BrdU to track

recently divided cells and instead relied on newly developed flow

cytometry techniques and previously validated microscopic

markers to determine gut macrophage maturity (19, 28). Finally,

the microbiome analysis was performed on fecal samples instead of

gut tissue, which are usually only partially correlated (68, 69).

Additionally, several factors, including local viral replication, may

modulate the microbiome, further complicating interpretation.

Therefore, future additional studies incorporating these

limitations may address the precise mechanisms behind these

observations, and further studies are warranted in this direction.
Conclusions

The in vivo administration of a primatized anti-a4b7 mAbs

during SIV suppression has yielded inconsistent results on

virologic control suggesting the involvement of a complex

mechanism and possible co-factors that may be responsible for

differential efficacy. First, we found that increased macrophage

maturity phenotypes were associated with tissue viral loads, a

difference from earlier studies that administered anti-a4b7 after
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infection. This may indicate that the timing of anti-a4b7
administration with regard to tissue viral suppression is an

essential determinant of efficacy. Second, we found that

dysbiosis markers are associated with the relative impact of

anti-a4b7 on macrophage maturity. Low dietary fiber

consumption in humans is associated with reduced butyrate

production and increased risk of IBD (59, 60), and the relative

abundance of BPB has been shown to impact the efficacy of

vedolizumab in humans (35). Based on the data presented

herein, we propose that important shifts in microbiome

composition during HIV/SIV infections like increases in

Prevotella spp. and depletion of BPB like Roseburia spp. may

be key independent factors in anti-a4b7-treated SIV-infected

macaques (Figure 6). Future studies aiming to modulate gut

immune function in HIV/SIV should include assays like 16S

rRNA sequencing of colon/fecal samples to characterize

microbiome dynamics at baseline, acute dysbiosis, during, and

following therapeutic intervention. Further, factors impacting

gut microbial diversity and composition, such as animal source,

age, co-housing, antibiotic use, and diet, should be considered

when interpreting such study results.
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Dietary supplementation with
Tolypocladium sinense
mycelium prevents dyslipidemia
inflammation in high fat diet
mice by modulation of gut
microbiota in mice

Xiaolong Wang1†, Lin Li1†, Mingjian Bai1, Jiaxin Zhao2,
Xiaojie Sun1, Yu Gao1, Haitao Yu1*, Xia Chen2*

and Chunjing Zhang1*

1Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China,
2National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and
Cultivation, School of Life Sciences, Jilin University, Changchun, China
Obesity is a risk factor for many serious health problems, associated with

inflammation, hyperlipidemia, and gut dysbiosis. Prevention of obesity is

especially important for human health. Tolypocladium sinense is one of the

fungi isolated from Chinese caterpillar fungus, which is a traditional Chinese

medicine with putative gut microbiota modulation effects. Here, we established

a high-fat diet (HFD)-induced hyperlipidemia mice model, which was

supplemented with lyophilized T. sinense mycelium (TSP) daily to evaluate its

anti-obesity effects. The results indicated that TSP supplementation can effectively

alleviate the inflammatory response and oxidative stress levels caused by obesity.

TSP significantly prevented obesity and suppressed dyslipidemia by regulating the

expression of lipid metabolism genes in the liver. TSP is also effective in preventing

the HFD-induced decline in short-chain fatty acid (SCFA) content. Gut microbiota

profiling showed that TSP supplementation reversed HFD diet-induced bacterial

abundance and also altered themetabolic pathways of functional microorganisms,

as revealed by KEGG analysis. It is noteworthy that, correlation analysis reveals the

up-regulated gut microbiota (Lactobacillus and Prevotella_9) are closely

correlated with lipid metabolism parameters, gene expression of liver lipid

metabolism and inflammatory. Additionally, the role of TSP in the regulation of

lipid metabolism was reconfirmed by fecal microbiota transplantation. To sum up,

our results provide the evidence that TSP may be used as prebiotic agents to

prevent obesity by altering the gut microbiota, alleviating the inflammatory

response and regulating gene expression of liver lipid metabolism.
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frontiersin.org01
62

https://www.frontiersin.org/articles/10.3389/fimmu.2022.977528/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.977528/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.977528/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.977528/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.977528/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.977528/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.977528&domain=pdf&date_stamp=2022-11-07
mailto:yht422@126.com
mailto:chenxiajlu@163.com
mailto:cjzhang2005@163.com
https://doi.org/10.3389/fimmu.2022.977528
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.977528
https://www.frontiersin.org/journals/immunology


Wang et al. 10.3389/fimmu.2022.977528
Introduction

Non-communicable Disease Risk Factor Collaboration

reported that the global rate of the prevalence of the age-

standardized obesity increased approximately 2-3 times in

2014 compared with that in 1975. Approximately 1.9 billion

people in the world are overweight, and among them, 600

million are obese. Obesity has become a serious hazard to

human health, it can induce diabetes, non-alcoholic fatty liver

disease, hypertension and certain (1, 2). Multiple factors

contribute to the development of obesity, including energy

consumption, high fat intake and the microbiome (3). Many

reports reveal that gut microbiota acts an important modulator

in the diet and metabolic syndrome is caused by obesity (4, 5).

Diet is a significant factor altering the diversification and

metabolism of the gut microbiota, consequently inducing or

preventing obesity (6, 7).

The over consumption of food in the host and consequent

increase in energy intake is the main cause of obesity; the

intestinal flora is involved in the regulation of nutrient

absorption and energy balance. The results of some basic

studies showed that the intestinal permeability of obese mice is

significantly enhanced, the diversity of the intestinal flora is

reduced, Bacteroidetes decrease by approximately 50%, and the

number of Firmicutes increased in proportion, as compared with

lean mice (8, 9). The results of a clinical research show that

Bacteroides ferment dietary fibers to produce short chain fatty

acids, while Firmicutes obtain energy from food and store it in

the form of adipose tissue (10). Studies in animal models suggest

that certain gut microbes can prevent diet-induced obesity.

Indeed, several probiotics have been used in clinical trials to

reduce lipid levels in obesity-regulated subjects, achieving good

results (11–13).

Chinese caterpillar fungus is a traditional Chinese medicinal

mushroom, which contain a wide range of immuno-modulatory

and bioactive compound with many medical effects, such as anti-

aging, anti-bacteria, anti-cancer, expanding blood vessels,

improving arteriosclerosis, hepatoprotective and hypolipidemic

(14). Tolypocladium sinense is one of the fungi isolated from

Chinese caterpillar fungus. The research and application of T.

sinense mainly focus on the culture conditions and the

preliminary pharmacological analysis of its chemical

components (15, 16). Fang (17) carried out pharmacological

experiments on the mycelium culture of T. sinense in mice. The

results showed that it possesses sedative effects, anti-

inflammatory activity, hypoxia tolerance, organ expansion and

androgen like promotion. In the acute toxicity test, the dose of

80 g (maximum allowable volume) per mouse was administered

once by gavage, and no adverse effects were found. Gao (18)

reported that the mycelium extract and polysaccharide extract of

T. sinense possess scavenging effects on DPPH free radicals. The

test results showed that T. sinense has potential application and

development prospects as antioxidant and anti-tumorigenic.
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At present, the research on the pharmacological value of T.

sinense is not complete, since its role in preventing obesity and

its ability to change the gut microbiota composition is still

unclear. Therefore, the purpose of our study was to determine

the effects of T. sinense mycelium (TSP) in the prevention of

hyperlipidemia and to understand its potential lipid-lowering

mechanism. This study could provide a theoretical basis for the

development of prebiotic agents to prevent obesity from a

Chinese traditional edible fungus.
Materials and methods

Materials and reagents

Serum biochemical detection index kit such as total

cholesterol (TC), triglyceride (TG) and ELISA detection kit

were purchased from Nanjing Jiancheng Institute of

Bioengineering (Jiangsu, China). Blood glucose assay kit was

obtained from Jiangsu Yuyue Medical Equipment & Supply Co.,

Ltd. (Jiangsu, China). All other chemical reagents were

analytical grade.
Preparation and identification of
Tolypocladium sinense fungus powder

Natural fresh Chinese caterpillar fungus was collected in the

plateau area at an altitude of 4000 ~ 4500 m in the Naqu, Tibet

Autonomous Region. The fungus was thoroughly rinsed with tap

water. Then it was submerged in 10% bleach water for 20 min and

rinsed with sterile distilled water. The fruiting bodies of Chinese

caterpillar fungus were cut into small pieces of 2 ~ 5 mm and

cultured on a separation medium (10 g/L peptone, 100 g/L

glucose, 3 g/L yeast extract, 0.5 g/L MgSO4, 1 g/L KH2PO4, 100

U/L penicillin, and 20 g/L agar) at 26 °C. After the grow of the

mycelium, the tip was collected and inoculated on fresh medium.

The separation and passages were repeated several times until the

colonies with consistent morphology were obtained (18, 19). The

strain identification was performed as follows: the mycelial DNA

was extracted, the whole genome was used as the template, and the

universal primers ITS1 and ITS4 as primers (Table S1) were used

for PCR amplification. The amplified products were sequenced

and analyzed by Shanghai Sangon Biotech Co., Ltd. The strain

screened by morphological observation and sequencing

identification was T. sinense. After the identification of the

strain, the metabolites of the bacterial mycelium were analyzed

by Beijing BioMarker Technology Co., Ltd. (Supplemental

Methods and Figure S1). In total, we detected 1652 metabolites

from T. sinense fungus mycelium, and most of them belong to

Organic acids, Nucleic acids, Glycerophospholipids, Fatty Acyls,

Organoheterocyclic compounds, Carbohydrates, Polyketides,
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Organic oxygen compounds and Sterol Lipids. Pick up the

cultured colonies, connect with 5% seed culture medium for

culture, shake at 26 °C for 4-5 days (150 r·min-1), centrifuge the

obtained fermentation culture medium at 4000 r · min-1 for

10 min, take the precipitation and freeze-dry to obtain the dried

mycelium powder.
Animals and diet

Six-week-old male C57BL/6 mice weighing 20.0 ± 1.0g were

provided by the experimental animal center of Qiqihar Medical

University (SYXK (HEI) 2016-001). The mice were then

randomly divided into the following groups (n = 8 per group):

NC group, in which the mice were fed with a standard diet (total

calories: 4.3 kcal/g, 10 kcal% fat); HFD group, in which the mice

were fed with a high-fat diet (total calories: 6.1 kcal/g, 60 kcal%

fat); TSP group, in which the mice were fed with a high-fat diet

supplemented with T. sinense mycelium (400 mg·kg-1·day−1).

Animal weight and food intake were recorded weekly during the

study. Fresh feces were collected in a separate sterile EP tube

after 10 weeks and stored at − 80°C for subsequent microbiota

analysis. The mice were sacrificed after fasting overnight. Liver

tissue, fat pad and blood samples were collected. Serum was

obtained by centrifugation (1200 g, 15 min) and stored at -80°C

for further study. Serological analysis and histology were

described in the supplementary data.
TSP treatment for antibiotic-treated mice

The male C57BL/6J mice aged 6 weeks (20.0 ± 2.0g) were fed

with the NC-diet and treated with antibiotics (0.5 g/L

vancomycin, 1.0 g/L ampicillin, 1 g/L metronidazole, 1 g/L

zincomycin sulfate) to establish pseudo germ-free mice, mixed

antibiotics diluted daily with distilled water for drinking (20).

After 14 days of antibiotics treatment, the microbiota-depleted

mice were randomly allocated into three groups, MTNC,

MTHFD and MTTSP (n=12/group) which were transplanted

with the microbiota from mice fed with NC, HFD, and TSP

(treated for 10 weeks) respectively. In detail, every 200 mg of

pollution-free feces was added into 5 mL PBS/DTT sterile

solution to a 5 mL sterile EP tube, which was shaken and

rotated for 2 min in anaerobic state (20). The impurities were

removed by 100 mm sterile filter for three times. After 7 days, 4

mice were randomly selected to collect fresh feces to detect

colonization by high-throughput sequencing (16SrDNA v3-v4).

The results are shown in the supplementary data (Figure S2).

Then half of the mice in each microbiota transplanted group fed

with the NC diet and the other half fed with HFD for 15 days.

Then, blood, tissues and feces were collected for analyses.
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Quantitative real-time PCR

Total RNA from hepatic tissue was isolated using Biozol

reagent (Invitrogen Carlsbad, CA, USA) by a method previously

described (21), and the concentration was determined by

NanoDrop spectrophotometer (BioTeke, Beijing, China).

cDNA was synthesized using a reverse transcriptase Kit

(manufacturer) according to the manufacturer’s instructions.

SYBR Green real-time (TransGen Biotech, Beijing, China) was

used for quantitative PCR in real time. The primer sequences

used in this study are listed in Table S1 of the supplementary

data. The quantification of the target genes was performed using

the 2-△△Ct method (22) using b-actin as the reference gene and

the NC group as control.
Short chain fatty acids analysis

The concentration of short chain fatty acids (SCFAs) was

measured by gas chromatography (GC) as previously described

with some modification (23, 24). Feces were collected from each

rat, 2 g into were placed into a sterile centrifuge tube, and 1 ml

methanol solution was added. The tube was left standing for

10 min, then it was shaken and well mixed to form a fecal

suspension. Then, a concentrated sulfuric acid was used to adjust

its pH to 2 ~ 3, the tube was left standing for 5 min, and then it

was shaken and mixed several times. Next, the tube was

centrifuged at 5000 r·min-1 for 20 min, the supernatant was

collected and centrifuged at 5000 r·min-1 for 5 min, and the

supernatant was collected and placed into the gas

chromatograph for the analysis. An Agilent kit was used to

determine the content of short chain fatty acids. The gas

chromatograph 7890a used in this analysis was equipped with

a flame ionization detector. The da-ffap column (30 m ×

0.320 mm × 0.25 m m) was used to separate short chain fatty

acids. The parameters of the gas chromatograph were the

following: temperature of injection port, 250°C; nitrogen as

carrier gas, with purity ≥ 99.99%; carrier gas flow rate, 30

mL·min-1 injection mode, split injection; split ratio, 50:1;

injection volume, 1 mL; detector temperature 250°C;

temperature rise procedure, 80°C, 10°C·min-1, 180°C.
Gut microbiota analysis

Genomic DNA was extracted using the MOBIO PowerSoil®

DNA Isolation Kit (MOBIO, UnitedStates), and the concentration

was determined by NanoDrop spectrophotometer (BioTeke,

Beijing, China). A total of 10 ng DNA template was used for

PCR amplification according to the sequence of 16SrDNA v3-v4

region with specific primers 338F/806R. Truseq© DNA PCR-Free
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Sample Preparation Kit was used to construct the library. The

constructed library was quantified by qubit and qPCR. After the

library was qualified, the sequencing was carried out on Illumina

Novaseq 6000 platform according to the manufacturer’s

instruction. The sequencing was completed by Beijing Bio

Marker Technology Co., Ltd. Usearch software (25) was used to

cluster the reads at 97.0% similarity level and OUT was obtained.

SILVA was used as the reference database, using naive Bayesian

classifier combined with comparison method to annotate the

feature sequence. The species classification information

corresponding to each feature was obtained, then the

community composition of each sample at each level (phylum,

class, order, family, genus, species) was counted, and the species

abundance at different classification levels was generated by the

QIIME software. Then, the community structure map of each

taxonomic level of the sample was drawn by R software (Version

3.4.1). Non-Metric Multi-Dimensional Scaling(NMDS);adopts

Bray Curtis algorithm; Lefse (26) (line discriminant analysis

(LDA) effect size) was used to find biomarkers with statistical

differences between different groups.
Serologic and hepatic index analysis

The concentrations of total triglyceride (TG), cholesterol

(CHO), low density lipoprotein (LDL-C), non-esterified fatty

acid (NEFA), malondialdehyde (MDA), superoxide dismutase

(SOD), glutathione peroxidase (GSH-Px), tumor necrosis factor-

a (TNF-a), interleukin-6 (IL-6) and interleukin-1b (IL-1b) in
serum and hepatic carried out in strict accordance with the

instructions of the kit (Nanjing Jiancheng Bioengineering

Institute, Nanjing, China).
Histological analysis

The hepatic of mice in each group were dissected and

extracted and fixed with 4% paraformaldehyde. After the

fixation was in good condition, they were trimmed,

dehydrated, embedded, sliced, stained, sealed, sliced, stained

with Hematoxylin eosin (HE), and the structure of liver tissue

was observed and analyzed under optical microscope, as it was

previously described (27).
Statistical analysis

Statistical analysis was performed using SPSS 20.0 software.

Statistical differences among different groups were analyzed by

one-way analysis of variance (ANOVA) followed by Tukey–

Kramer post hoc test. Other statistical tests for significance were

performed using R software (Version 3.4.1) for windows. Results
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were expressed as mean± SD. A value of p < 0.05 was considered

statistically significant.
Results

TSP supplementation alleviated HFD-
induced weight gain and fat
accumulation in mice

Our preliminary animal experiment was performed using

TSP at the doses of 100, 200, and 400 mg·kg-1 ·day−1. The

medium dose and high dose exerted a significant prevention of

the abnormal lipid metabolism compared to HFD group (p<

0.05; Table S2), while the low dose had no significant effect

compared to the HFD group. The effect of the high dose was

more remarkable than that of the medium dose. Therefore, 400

mg·kg-1·day−1 of TSP supplementation was the dose used in

this study.

During the 10-week experimental period (Figure 1A), the

average body weight of the NC mice group at week 10 was 29.27

± 2.89 g, and that of the HFD mice group was 40.28 ± 1.73 g

(p < 0.05 versus the NC group, Figure 1B). The increase in the

body weight of the TSP group was significantly suppressed

compared with the HFD group (p< 0.05). Consistently, the

body weight gain, liver weight and adipose tissue weight was

lower in the TSP group than that in HFD group (Figures 1C–E).

No differences were observed in the daily food intake among the

three groups (Figure 1F).

Additionally, HFD induced hepatic fat accumulation and

dyslipidemia could also be prevented by TSP supplemented, as

indicated by the serum levels of total cholesterol (TC),

triglycerides (TG), non-esterified fatty acids (NEFA) and low-

density lipoprotein-cholesterol (LDL-C) in the HFD-fed mice

sharply increased when compared with the NC group (p< 0.05,

Figures 2A–D). In addition, the HFD-fed mice were

characterized by higher levels of TC, TG, NEFA and total bile

acid (TBA) in the liver (p< 0.05, Figures 2E–H). TSP

supplementation significantly prevented these adverse changes

expect TBA in the HFD-fed mice. H&E staining showed less

ballooning degeneration in the TSP group than in the HFD

group Figure 2I).

To explore the mechanism of TSP in lipid metabolism, we

examined the expression of genes related to lipid metabolism in the

liver by qRT-PCR (Figure 3). Compared with the NC group, the

expression of ACC, HMGCR, LXRa and SREBP-1c was

significantly higher and the expression of AMPK and PPARa
was significantly lower expression in the HFD group (p<0.05).

Compared with the HFD group, TSP supplementation significantly

decreased ACC, HMGCR, LXRa and SREBP-1c expression in the

liver and enhanced AMPK and PPARa expression (p < 0.05). TSP

supplementation did not affect expression of CD36, CYP7A1, FAS,

Ldlg, LXRb or PPARg (Figure S3).
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A B D
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FIGURE 2

Effects of TSP supplementation on the serum and hepatic (A, E) total cholesterol (TC), (B, F) triglyceride (TG), (C, G) non-esterified fatty acid
levels (NEFA), (D) low-density lipoprotein cholesterol (LDL-C) in serum, (H) Hepatic total bile acid (TBA),(I) H&E staining of mouse livers. Values
are expressed as mean ± SD in each group (n = 8), *p < 0.05, **p < 0.01, and ***p < 0.001, ns, no significant p > 0.05.
A B

D EC F

FIGURE 1

Effects of TSP consumption on the (A)the experimental protocol used in this study, n=8, (B) body weight #p < 0.05, NC compare with HFD, *p <
0.05, TSP compare with HFD, (C) body weight gain, (D) liver weight (E) adipose tissue weight, (F) food intake. Data are expressed as means ± SD
(n = 8). #/*p < 0.05, **p < 0.01, and ***p < 0.001, ns, no significant p > 0.05.
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Intake of TSP notably alleviate systematic
inflammation and improve antioxidant
ability in high fat diet-fed mice

The levels of TNF-a, IL-6 and IL-1b in both serum and liver

were higher in the HFD group compared to those in the NC

group. The level of serum LPS showed the similar trends

(Figures 4A–C). TSP supplementation was able to significantly

reduce serum and hepatic TNF-a, IL-6, IL-1b and LPS (p< 0.05).
Thus, TSP supplementation significantly alleviated systemic

inflammation. In addition, the activity of the antioxidative

enzymes (SOD, GSH-Px) and MDA level were measured in

the serum and hepatic to evaluate the influence of TSP on the

antioxidant ability (Figures 4D–I). Compared with the NC

group, mice in the HFD group showed higher MDA level in

serum, while the GSH-Px activity were lower in HFD group (p <

0.05). TSP supplementation was able to significantly reduce

serum MDA level and improve SOD and GSH-Px activity (p<

0.05). The activity of SOD andMDA level in the liver showed the

same tendency. The activity of GSH-Px has no significant

differences between HFD and TSP in liver (p > 0.05).
TSP supplementation increased short
chain fatty acids contents in the feces

Compared with the NC group, the content of acetate, propionate,

butyrate, valerate and total short chain fatty acids was decreased by

34.54%, 49.58%, 33.02%, 11.11% and 35.16%, respectively, in the
Frontiers in Immunology 06
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HFD group (p < 0.05, Table 1). However, compared with the HFD

group, an increased short chain fatty acids level was observed by TSP

supplementation in the TSP group (p < 0.05).
TSP modulated composition and
function of gut microbiota at different
taxonomic levels

The gut microbiota composition was analyzed by Illumina

MiSeq platform.After quality filtering, the 24 samples (n = 8 for

each group) resulted in a total of 1,501,889 clean reads, and at

least 58,512 clean reads were generated per sample. Alpha

diversity reflected the community richness and microbial

evenness. Changes in alpha diversity due to the TSP treatment

are shown in Figure 5A. The results showed that the ACE index,

Chao 1 index, Shannon index and PD-whole-tree index of the

HFD group were significantly lower than those in the NC group

(p < 0.05), indicating that the HFD induced a lower microbiota

community diversity. TSP treatment ineffectively increased

microbial richness and diversity. The Beta diversity analysis

using UPGMA clustering (Figure S4) and NMDS on the Bray-

Curtis algorithm (Figure 5B) showed that the NC group

clustered separately from the HFD and TSP groups. The

results of PERMANOVA showed a significant difference

among NC, HFD, and TSP groups (p< 0.001, R2 =

0.414, Stress=0.1481).

The relative abundance at phylum, family, and genus level

was compared among groups to identify specific changes in the
A B

D E F

C

FIGURE 3

Effect of TSP on mRNA expression levels of hepatic metabolic regulators. (A) AMPK, (B) ACC, (C) HMGCR, (D) LXRa, (E) SREBP-1c, (F) PPARa.
Data are expressed as means ± SD (n = 8), *p < 0.05, **p < 0.01, and ***p < 0.001.
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gut microbiota due to TSP supplementation. At the phylum level

(Figure 5C), HFD induced a much lower relative abundance of

Bacteroidetes than the NC group, which increased after TSP

treatment (p < 0.05). The ratio of Firmicutes to Bacteroidetes (F/

B ratio) in the HFD group was higher than that in the NC group

(p < 0.05). TSP supplementation fully prevented HFD-induced

increase in the F/B ratio, a hallmark of obesity, which is a

common indicator for gut microbiota balance. Besides, the HFD

group showed a much higher relative abundance of

Patescibacteria than NC group, with no difference in the

relative abundance of Proteobacteria between the two groups

(p > 0.05). While, the relative abundance of Proteobacteria and
Frontiers in Immunology 07
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Patescibacteria significantly decreased in the TSP group

compared with HFD alone (p < 0.01).

At the family level (Figure 5D and Table S3), compare with the

NC group, the HFD group showed an increase in the abundance of

Peptostreptococcaceae and Saccharimonadaceae (p < 0.05), while

TSP supplementation decreased these two genera compared with

their abundance in the HFD group. HFD induced a much lower

abundance of Lactobacillaceae, Muribaculaceae and Prevotellaceae

and the three genera significantly increased after TSP

supplementation (p < 0.05). The mice in the TSP group showed a

lower Ruminococcaceae and Clostridiaceae_1 compared with the

mice in the HFD group (p< 0.05).
TABLE 1 Effect of TSP supplementation on the concentrations of acetate, propionate, butyrate, valerate and total SCFAs in the feces.

SCFAs(mmol/g) NC HFD TSP

Acetate 37.69 ± 4.45a 24.67 ± 4.76b 40.21 ± 5.77a

Propionate 2.38 ± 0.31a 1.20 ± 0.43b 2.56 ± 0.22a

Butyrate 3.21 ± 0.74a 2.15 ± 0.50b 4.29 ± 0.84c

Valerate 0.18 ± 0.04a 0.16 ± 0.04b 0.20 ± 0.05a

Total SCFAs 43.46 ± 4.29a 28.18 ± 4.81b 47.26 ± 6.21a
fro
Significant differences (p < 0.05) are indicated using different letters (a, b, c)
A B

D E F

G IH

C

FIGURE 4

Effect of TSP on inflammation in serum (A) and in hepatic, (B) Effect of TSP on LPS, (C) MDA level and antioxidative enzymes (SOD, GSH-Px) in
serum, (D–F) and in hepatic(G-I). Data are expressed as means ± SD (n = 8), *p < 0.05, **p < 0.01, and ***p < 0.001, ns, no significant
p > 0.05.
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LEfSe (LDA sore > 3.5) was used to recognize the specific

altered bacterial phenotypes at each phylogenetic level (Figures 6A,

B) to further explore the difference in the gut microbiota among

NC, HFD and TSP group. A total of 61 bacteria significantly

changed among the NC group, HFD group and TSP group; they

respectively showed 15, 33 and 13 dominant microorganisms. At

the genus level, the main microbiota in the NC group were

Prevotellaceae_NK3B31_group, Alloprevotella and Faecalibaculum.

The result showed eleven discriminative features in the HFD group,

and the main microbiota were Romboutsia , Rumino

coccaceae_UCG-014 , C lo s t r id ium_sensu_s t r i c to_1 ,

Candidatus_Saccharimonas and Lachnospiraceae_NK4A13

6_group. Moreover, Lactobacillus, Allobaculum, uncultured_bac

terium_f_Lachnospiraceae and Prevotella_9 were the main

microbiota in the TSP group.

At the genus level, the microbiota with significant differences

between groups were screened using Mann Whitney U test by

pairwise comparison (Figure 6C). Collectively, the HFD group

showed an increased level of Ruminococcaceae_UCG-014,

Romboutsia, Lachnospiraceae_NK4A136_group , Candi
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da tus_Sacchar imonas and uncu l tured_bac t e r ium_

f_Ruminococcaceae compared with the NC group (p < 0.05).

Therefore, TSP supplementation reduced the abundance of the

above gut microbiota except Lachnospiraceae_NK4A136_group

compared with HFD (p < 0.05), and TSP also effectively

increased the relative abundance of Lactabacillus, Prevotella_9

and Allobaculum which have a much lower abundance by HFD

induced (p < 0.05).
Effects of TSP supplementation on
the functional change of
microbial communities

PICRUSt analysis was carried out to explore the functional

change of microbiota communities, and the comparison of top 6

metabolism category in each group is shown in Figure 7A.

Compared with the NC group, HFD group decreased the

carbohydrate metabolism, lipid metabolism and energy

metabolism (p< 0.05), while TSP supplementation increased
A B

D

C

FIGURE 5

Effect of TSP supplementation on diversity and structure of the gut microbiota. (A) Alpha diversity analysis of ACE, Chao1, Shannon and PD-
whole-tree index (B) Non-metric multidimensional scaling (NMDS) result based on Bray Curtis algorithm. (C) significantly changes (p < 0.05) of
the composition of the gut microbiota at phylum taxa level. (D) Changes of the composition of the gut microbiota at family taxa level. Data are
expressed as mean ± SD, *p < 0.05, **p < 0.01, and ***p < 0.001, ns, no significant p > 0.05.
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the proportion of carbohydrate metabolism, lipid metabolism,

cofactors and vitamin metabolism and energy metabolism

compared with the HFD group (p< 0.05).

Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway showed a significant difference (p< 0.05) in the

predictive function between the HFD group and TSP group

(Figure 7B). Compare with HFD, carbohydrate metabolism such

as amino sugar and nucleotide sugar metabolism, glycolysis/

gluconeogenesis, pyruvate metabolism, fructose and mannose

metabolism and galactose metabolism were significantly

increased in the TSP mice (p<0.05). Lipid metabolism such as

fatty acid biosynthesis and degradation, glycerophospholipid

metabolism as well as biosynthesis of unsaturated fatty acids

was increased in the TSP group (p< 0.05). Moreover, the amino
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acid metabolism pathway such as alanine, aspartate and

glutamate metabolism, phenylalanine, tyrosine and tryptophan

biosynthesis, arginine biosynthesis, valine, leucine and isoleucine

biosynthesis and arginine, proline metabolism and histidine

metabolism were decreased in the TSP group (p < 0.05). Only

two functions of the gut microbiota in the amino acid

metabolism pathway were increased in the TSP group than in

the HFD group (p< 0.05). The functions related to cofactors and

vitamin metabolism were increased in the TSP group, mainly

involving porphyrin and chlorophyll metabolism, thiamine

metabolism and folate biosynthesis than in the HFD group

(p< 0.05). It is worth noting that the lipopolysaccharide

biosynthesis belonging to glycan biosynthesis was decreased in

TSP mice compared with HFD mice (p< 0.05).
A B

C

FIGURE 6

TSP supplementation induced gut microbial changes in mice. (A) Linear Discriminant Analysis Effect Size (LEfSe) analysis of key genera of gut
microbiota in mice, (B) and the LDA score, (C) significantly changes (p < 0.05) among top 15 taxa of the composition of the gut microbiota at
genus taxa level, *p < 0.05, **p < 0.01, and ***p < 0.001.
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Possible relationships between reshaped
gut microbiotas and biochemical
changes

The Spearman’s correlation analysis revealed between

the abundance of significantly differential bacteria at

genus level identified above and parameters associated with

obesity (Figure 8). We found that Prevotella_9 and Lactococcus
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both showed a significant negatively correlated with

parameters of lipid metabolism except body weight gain,

liver weight, NEFA, IL-1b in serum and TC, NEFA, HMGCR

expression in liver, and significant positive correlation with

the expression of PPARa, AMPK. Allobaculum has the

same correlation trend. Candidatus_Saccharimonas and

Romboutisia both showed a significant positive correlation

with parameters of lipid metabolism except TC, IL-1b
A

B

FIGURE 7

TSP supplementation induced function microbial changes in mice. (A) Abundances of top 6 KEGG pathways in level-2 of the functional
prediction by PICRUSt, (B) Functional profiles with significant different between HFD and TSP treated groups. n = 8, *p < 0.05, **p < 0.01, and
***p < 0.001, ns, no significant p > 0.05.
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inserum and TBA, HMGCR expression in liver. The

genus uncultured_bacterium_f_Ruminococcaceae and

Ruminococcaceae_UCG-014 had the same correlation trend.
Microbiota transplantation from TSP-
supplementation mice exerts an anti-
obese Effect in HFD-fed mice

The fecal bacteria from NC-, HFD-, or TSP-fed mice (ten

weeks) were transplanted to pseudo germ-free mice to explore

whether TSP supplementation could attenuate hyperlipidemia in

HFD-diet mice by altering gut microbiota (Figure 9). As revealed

in Figure 9A, after microbiota transplantation, the weight of

body, liver and adipose tissue and the indexes of lipid
Frontiers in Immunology 11
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metabolism in serum (TC, TG, NEFA, and LDL) in mice fed

with NC-diet have no significant different (p > 0.05).

It had different results in microbiota-transplanted mice fed

with HFD (Figure 9B). Compared with MTHFD group, the

weight of body and adipose tissue in MTNC and MTTSP mice

was significantly decreased (p < 0.05). Furthermore, MTNC

group mice significantly reduced the serum content of TG and

LDL compared to MTHFD group. However, there was no

significant different in the liver weight and serum levels of TC

and NEFA among the three groups (p > 0.05). The detailed

experimental scheme is shown in Figure 9C.

Then, the gut microbiota phylotypes of microbiota-

transplanted mice fed with HFD-diet were further measured

by sequencing the bacterial 16S rRNA. As revealed in

Figure 10A, no significant different was observed in alpha
FIGURE 8

Heatmap of Spearman’s correlation between the gut microbiota and obesity-related indices. The intensity of the colors represented the degree
of association (red, positive correlation; blue, negative correlation). Significant correlations are marked by *p < 0.05; **p < 0.01.
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diversity among all groups. Furthermore, we analyzed b diversity
which indicate the gut microbiota structural changes by using

the NMDS on the Bray-Curtis algorithm (Figure 10B) showed

significant different among the three groups (p< 0.01, R2 = 0.26,

Stress=0.1576). At the phylum level, the alterations in the

relative abundances of Bacteroidetes and Patescibacteria in

MTHFD mice showed the same trends as it of HFD-fed mice
Frontiers in Immunology 12
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(Figure 10C). Meanwhile, the relative abundance of

Peptostreptococcaceae at the family level in MTNC and

MTTSP mice tended to decrease relative to the MTHFD mice

(p < 0 . 0 5 ) , whe r e a s t h e r e l a t i v e abundanc e o f

Saccharimonadaceae in MTTSP group significantly decreased

compared with MTNC and MTHFD group (p < 0.05,

Figure 10D). Additionally, the relative abundance of
A

B

C

FIGURE 9

Microbiota Transplantation from TSP- supplementation Mice Exerts an Anti-Obese Effect in HFD-Fed Mice. (A) Microbiota-transplanted mice fed
with NC-diet; (B) microbiota-transplanted mice fed with HFD-diet; (C) The experiment design of microbiota transplantation. Data are presented
as mean ± SEM, differences were denoted as follows: *p < 0.05, **p < 0.01, ***p < 0.001; ns, no significant p > 0.05.
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Lactabacillus and Romboutsia at the genus level was significantly

changed among the three groups (p< 0.05, Figure 10E), and they

also showed the same trends as it of HFD-fed mice. The relative

abundance of Candidatus_Saccharimonas in MTTSP group was

significantly reduced compared with MTNC and MTHFD group

(p < 0.01). Overall, these data indicate that mechanism of TSP to

inhibit the occurrence of lipid metabolism disorder and obesity

may be realized by regulating intestinal microbiome.
Discussion

Tolypocldium sinenis is an entomogenous fungus isolated

from the mycelial tissue of the sclerotia and cotyledon

of Chinese caterpillar fungus. Some gene sequencing results of

TSP are compared with the gene sequencing results of
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Cordyceps sinensis (accession number AF291749) in the gene

database, and the similarity is 99% (28). Relevant studies

showed that TSP and C. sinensis have basically the same

pharmacological effects, indicating that TSP has a potential

pharmacological value. At present, some reports on the

bacteriostatic, anti-inflammatory, antioxidative stress and anti-

tumor effects of TSP are available, but the effect of TSP on

preventing obesity and on the change of the intestinal

microbiota has not been studied. The regulation of the

composition of the gut microbiota is a promising approach to

prevent the development of obesity and related metabolic

disorders. This study was the first showing that the dietary

supplementation TSP prevented HFD-induced obesity and

hyperlipemia. The potential mechanism could reduce systemic

inflammation and by regulating the composition and potential

function of the gut microbiota.
A B

D

E

C

FIGURE 10

Gut microbiota in response to microbiota transplantation from NC (MTNC), HFD (MTHFD), and TSP (MTTSP) groups (n = 6), (A) Indexes of Chao
1 and Shannon in a-diversity analysis, (B) NMDS plot analysis from each sample, (C) significantly changes of the composition of the gut
microbiota at phylum taxa level (p < 0.05), (D) microbiota compositions at the family level, and (E) significantly changes of the composition of
the gut microbiota at the genus level (p < 0.05). Data are expressed as mean ± SD, *p **p ***p/span>, ns, no significant, p > 0.05.
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As a global epidemic, obesity increases the risk of a variety of

chronic diseases, reduces life expectancy and brings a serious

personal and socio-economic burden (29–31). Different

theoretical explanations in obesity research are available. One

of the important reasons is the change of people’s diet, since the

high-fat diet is an important factor in obesity. The excessive

weight gain leads to the abnormal increase in blood lipid and

blood glucose levels (32). Our results also revealed that HFD

feeding promoted an evident increase in body weight, liver

weight, serum lipid levels, and fat vacuoles in hepatocytes in

mice when compared with these parameters in the NC group,

which was in agreement with previously published reports (33,

34). TSP supplementation reduced the accumulation of

abdominal adipose tissue induced by HFD and effectively

prevented the increase in body weight and liver weight in

mice. Moreover, TSP decreased the levels of TC, TG and

NFFA in serum and liver, and prevented the increase of serum

LDL-C and TBA in liver, indicating its potential preventive effect

on the development of fatty liver disease induced by HFD.

However, our results revealed that food consumption and

energy intake of mice supplemented with TSP were similar to

those in the HFD group, indicating that the role of TSP in

preventing obesity was not related to the reduction of appetite.

The genes related to liver lipid/cholesterol synthesis and

metabolism were measured by qRT-PCR to further clarify how

TSP supplementation prevented HFD feeding-induced liver

lipid metabolism disorder. The results revealed that TSP

supplement down-regulated the expression of ACC, HMGCR,

LXRa and SREBP-1c, which involved in hepatic lipid/

cholesterol synthesis and metabolism (35), and up-regulated

the expression of AMPK and PPARa, that involved in fatty acid

oxidation (36, 37), compared with their expression in the HFD

group. HMGCR catalyzes 3-hydroxyl in the process of

cholesterol synthesis 3-methylglutaryl CoA is the rate limiting

enzyme for the conversion of 3-methylglutaryl CoA to

mevalonate (37). Therefore, the inhibition of the activity of

HMGCR in the liver reduces the synthesis of cholesterol in the

body, thus regulating the disorder of lipid metabolism. SREBPs

promotes the regulation of cholesterol and adipose formation by

a strict transcription and post-translational regulation. SREBP1c

is an important subtype of SREBPs that positively regulates

cholesterol and fatty acid syntheses and uptake in the

hepatocytes (38). PPARa is one of the PPAR family proteins,

and play an important role in lipid metabolism, glucose

homeostasis and anti-inflammatory effects, and upregulation

the mRNA level of PPARa expression could promote fatty

acid catabolism and reduce fat mass (7, 39, 40). PPARa
enhances the antioxidant function of hepatocytes by regulating

the levels of SOD, ALT and AST (41). In addition, PPARa
reduces serum cholesterol and LDL levels by regulating

cholesterol 7A-hydroxylase, sterol 12a-hydroxylase, increases

the level of high-density lipoprotein (HDL), hydrolyzes very
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low-density lipoprotein (VLDL), and delays the progression of

coronary atherosclerosis (42). Thus, TSP supplementation might

partially contribute to the regulation of genes of the lipid

metabolism involved genes in liver, preventing adipose tissue

deposition and improved hyperlipidemia in HFD mice.

Studies showed that chronic obesity is closely related to low-

grade inflammation. Obesity-induced inflammation is called

metabolic inflammation, which is different from the classical

inflammation because the metabolic inflammation belongs to

the chronic and low-grade inflammation (43). Mice fed with

long-term HFD have hyperglycemia, hyperlipidemia, as well as

increased systemic chronic inflammation and proinflammatory

factors (44–46). Our results showed that HFD feeding promoted

the occurrence of inflammation in the serum and liver tissue,

and the daily supplement of TSP effectively inhibited the

inflammatory factors (TNF-a, IL-6, and IL-1b). Some studies

reported that oxidative stress is a part of the inflammatory

response, which activates the cascade of inflammatory signals

to promote the occurrence of inflammation. Furthermore, the

oxygen free radicals produced by inflammatory activated

immune cells further aggravate the oxidative stress response

(47). Obese people are often accompanied by impaired

mitochondrial function, such as decreased mitochondrial

density and ATP synthesis (48). It is reported that

mitochondrial dysfunction precedes hepatic steatosis and

insulin resistance in obese rodent model (49),. The increased

level of circulating fatty acids in obese individuals leads to the

excessive accumulation of lipids in cells, the damage of the

mitochondrial function and the increase in the content of ROS.

Excessive ROS not only damages the ability of mitochondrial

ATP synthesis and oxidative phosphorylation, but also interferes

with the replication of mitochondrial DNA and RNA, affecting

the structure and function of mitochondria, and leading to

mitochondrial dysfunction and further increase in the

production of ROS (50). Relevant studies confirmed that the

mycelial extract and mycelial polysaccharide of TSP have

sedative, anti-inflammatory and antioxidant effects (16, 18,

51), which might be due to the effect of cyclosporin A rich in

TSP. Cyclosporin A is widely used as an immunosuppressant to

avoid rejection of organs after transplantation, and has a certain

antifungal and anti-inflammatory effects (52, 53). Our study

found that TSP supplementation effectively inhibited the

increase of MDA level in the serum and liver caused by HFD,

as well as it significantly increased the SOD and GSH-Px activity.

Different dietary structure can modify and change the

composition and structure of the intestinal flora, so as to

change the physiological metabolism of the host. As a

bioreactor of human food, the intestinal microorganisms are

related to many physiological effects and diseases of the host,

especially obesity (54, 55). More and more studies showed that

intestinal microorganisms can affect host metabolism through

immune, endocrine and intestinal brain axis (56–58), so as to
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regulate human energy absorption, lipid metabolism and

inflammatory response. For example, the gut microbiota

metabolizes complex carbohydrates and plant polysaccharides

to produce short chain fatty acids, which are an important

substrate providing energy for the human body and

microorganisms (59). It mainly includes acetic acid, butyric

acid, and propionic acid. In addition to being a direct energy

supplier, short chain fatty acids also play a role in metabolic

regulation after entering the tissues and organs by blood

circulation, working as signal molecules by stimulating the

release of saturated hormone peptides (60) and glucagon

peptides (61, 62). The intestine by activating nutrient receptors

to reduce physical inflammation and brain signal transmission.

Previous studies showed that dietary short chain fatty acid

supplementation is effective in preventing obesity and

dyslipidemia in HFD-fed mice (63, 64). TSP supplementation

partially restored the HFD-induced decrease in SCFAs,

especially the content of butyrate was significantly higher than

that of the blank control, while acetate and propionate went back

to normal levels. Butyric acid strengthens the intestinal barrier

by affecting the length of small intestinal villi and mucosal

thickening to control the occurrence of metabolic diseases (65).

Since the gut microbiota serves as a pivotal mediator in the

regulation of host energy absorption, appetite and consumption

(66), our study also found that the alpha diversity of gut

microbiota was significantly lower in the HFD group than that

in the NC group. Generally, dietary supplementation or weight

loss contribute to the recovery of gut microbial diversity (67).

Our results showed that although TSP supplementation

inhibited weight gain, it did not restore gut microbial diversity,

which might be related to its pharmacological properties. The

efficacy of TSP is associated to immune regulation, anti-tumor

and antioxidant effect, as well as bacteriostasis (68). Therefore,

TSP supplementation might inhibit some non-probiotics and

reduce the gut microbial diversity. Our study demonstrated that

TSP supplementation could alter the gut microbiota structure

and composition revealed by NMDS and hierarchical cluster

analysis. TSP supplementation did not affect the relative

abundance of Firmicutes, but it significantly enhanced the

relative abundance of Bacteroidetes, thus significantly

decreasing the F/B ratio. The higher F/B ratio in the intestines

of obese individuals could promote obesity of the host by

absorbing energy from food (69). Wu et al (70). suggested that

reducing the HFD-induced increase of the F/B ratio together

with the reduction of the inflammatory markers IL-2, IL-6 and

TNF-a in mice serum could be obtained by promoting the

growth of Bacteroidetes. TSP also significantly inhibited the

proliferation of Proteobacteria and Patescibacteria. Studies

suggested that the proportion of Bacteroidetes in the gut

microbiota of NAFLD patients was lower than non-obese

people, accompanied by an increase in Actinomycetes,

Firmicutes and Proteobacteria and the abnormal increase of

Proteobacteria in gut microbiota reflects the imbalance of
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microecology or the instability of gut microbiota structure (71,

72). The specific families reported as increased by HFD include

Lactobacillaceae, Ruminococcaceae, Lachnospiraceae and

Clostridiaceae (70). Our results showed that daily

supplementation of TSP effectively and significantly reduced

the relative abundance Ruminococcaceae and Clostridiaceae

compared with the HFD mice. On the contrary, TSP mice

showed a higher and significant relative abundance of

Lactobacillaceae than HFD mice. Lactobacillus is traditional

probiotics that play an important role in the balance of the

human intestinal microecology. Some studies reported that the

increase in Lactobacillus effectively reduces serum cholesterol

level and body fat (73), and it also prevents chronic

inflammation and the worsening of insulin resistance and are

recognized as beneficial bacteria (74, 75). The correlation

analysis showed that Lactobacillus was significantly negatively

correlated with inflammatory factors and lipid metabolism in

our study. The comprehensive analysis revealed that the HFD

group showed a higher abundant of Romboutsia and

Candidatus_Saccharimonas which positively correlated with

obesity and obesity-related physiological markers. However,

TSP group mice had significantly lower abundance of bacteria

linked to obesity than HFD-fed mice. Romboutsia are linked

with obese like features and they are highly abundant in obese

mice (76–78). The spearman correlation analysis also found that

Romboutsia were positively correlated with serum and liver

inflammatory factors in our study. In some ways, TSP

supplementation also effectively increased the relative

abundance of the two species Prevotella_9 and Allobaculum.

The abundance of genera Prevotella is associated with

carbohydrate intake (79). A recent study further revealed that

individuals with a high abundance of Prevotella were more likely

to lose weight than those with Bacteroides, when these

individuals go on a diet (80). To summarize our discovery, our

work demonstrated that the beneficial bacteria that protects the

body increased after TSP supplementation and it protects the

balance of the gut microbiota from being destroyed by high-fat

diet, inhibiting the growth of bacteria that promote obesity, and

improving the relative abundance of beneficial bacteria.

The change of microbial composition is always accompanied

with significant functional alteration and changes in the gut

microbiota that inevitably lead to changes in the host

metabolism (81, 82). Therefore, in this study, the functional

abilities of the microbial communities were analyzed by

PICRUSt. The reduced lipid accumulation in the liver of TSP

mice might be caused by the functions related to carbohydrate

and lipid metabolism in microbiota. TSP effectively enhanced

the carbohydrate and lipid metabolism ability, suggesting that

the microbiome in TSP mice might consume more dietary lipid

and more carbohydrates. These findings are also consistent with

the more profound downregulation of lipogenic gene

expressions by TSP treatment. Combining with the existing

results, our hypothesis was that the effects of TSP on
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attenuating HFD-induced lipid metabolism disorders were

mediated, at least in part, by the modulation of the gut

microbiota. We confirmed this hypothesis with the fecal

bacteria transplant experiment, that gut microbiota might be

required for TSP to carry out its anti-obese and prevent

hyperlipidemia effects on HFD-fed mice.
Conclusion

In summary, TSP supplementation confers protective effects

against HFD-induced obese and hyperlipidemia by altering the

gut microbiota, alleviate the inflammatory response and

regulating gene expression of liver lipid metabolism. It raises

the possibility that TSP poses great therapeutic potential in

treating obesity and its complications. Therefore, the

development of TSP act as daily health food has a good prospect.
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Extracellular vesicles produced 
by the human gut commensal 
bacterium Bacteroides 
thetaiotaomicron elicit 
anti-inflammatory responses 
from innate immune cells
Sonia Fonseca 1, Ana L. Carvalho 1,2, Ariadna Miquel-Clopés 1, 
Emily J. Jones 1, Rokas Juodeikis 1, Régis Stentz 1 and Simon R. 
Carding 1,3*
1 Gut Microbes and Health, Quadram Institute Bioscience, Norwich, United Kingdom, 2 Department 
of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of 
Liverpool, Liverpool, United Kingdom, 3 Norwich Medical School, University of East Anglia, Norwich, 
United Kingdom

Bacterial extracellular vesicles (BEVs) produced by gut commensal bacteria 

have been proposed to play an important role in maintaining host homeostasis 

via interactions with the immune system. Details of the mediators and 

pathways of BEV-immune cell interactions are however incomplete. In this 

study, we provide evidence for the anti-inflammatory and immunomodulatory 

properties of extracellular vesicles produced by the prominent human gut 

commensal bacterium Bacteroides thetaiotaomicron (Bt BEVs) and identify 

the molecular mechanisms underlying their interaction with innate immune 

cells. Administration of Bt BEVs to mice treated with colitis-inducing dextran 

sodium sulfate (DSS) ameliorates the symptoms of intestinal inflammation, 

improving survival rate and reducing weight loss and disease activity index 

scores, in association with upregulation of IL-10 production in colonic tissue 

and in splenocytes. Pre-treatment (conditioning) of murine bone marrow 

derived monocytes (BMDM) with Bt BEVs resulted in higher ratio of IL-10/TNFα 

production after an LPS challenge when compared to LPS pre-conditioned or 

non-conditioned BMDM. Using the THP-1 monocytic cell line the interactions 

between Bt BEVs and monocytes/macrophages were shown to be mediated 

primarily by TLR2. Histone (H3K4me1) methylation analysis showed that Bt 

BEVs induced epigenetic reprogramming which persisted after infectious 

challenge, as revealed by increased levels of H3K4me1 in Bt BEV-conditioned 

LPS-challenged BMDM. Collectively, our findings highlight the important role 

of Bt BEVs in maintaining host immune homeostasis and raise the promising 

possibility of considering their use in immune therapies.

KEYWORDS

extracellular vesicles, Bacteroides, anti-inflammatory response, innate immune 
tolerance, BMDM, THP-1 cells, TLR2, IL-10
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Introduction

The ecosystem of the human gastrointestinal tract (GIT) is 
shaped by complex interactions between resident microbes (the 
microbiota), the epithelium and immune cells. Host–microbe 
interactions have traditionally been analyzed from the perspective 
of pathogenic relationships, but it has become evident that 
commensal microbes also exert important beneficial effects on the 
host. The ability of immune cells to discriminate between 
pathogens and commensal bacteria is therefore essential to 
maintain immune homeostasis and preserve host health, by 
simultaneously providing protection against pathogens and 
tolerance toward symbiotic microbiota (Bron et al., 2011).

Innate immunity plays an important role in intestinal 
protection and is the first line of host defense against infection 
comprising physical, chemical, and cellular barriers. Various 
stimuli and conserved microbe-associated molecular pattern 
(MAMPs) molecules can activate and modulate innate immunity 
and inflammatory responses with enhanced or decreased 
production of pro-inflammatory mediators and cytokines 
depending on the type and dose of the ligand recognized by 
individual pattern recognition receptors (PPRs; Ifrim et al., 2014). 
Bacterial lipopolysaccharides (LPS), one of the major triggers of 
inflammatory response via interactions with toll-like receptor 4 
(TLR4), can induce a state of tolerance in macrophages and 
monocytes after repeated or prolonged exposure, resulting in 
reduced pro-inflammatory cytokine production (Novakovic et al., 
2016; Seeley and Ghosh, 2017). The innate immune system can 
be also activated by sterile endogenous dietary substances from 
Western-type diets that can contribute to various chronic 
inflammatory diseases (Bekkering et al., 2014; Christ and Latz, 
2019). Innate immune activation leads to modifications in the 
chromatin state of the innate immune cells, with epigenetic 
changes persisting even after the cells return to homeostasis, 
altering their long-term responsiveness to re-infection (Netea 
et al., 2020). Enhanced inflammatory responses in trained innate 
immune cells and diminished activation in tolerized innate 
immune cells are based on epigenetic reprogramming events, 
including DNA methylation and histone modifications that up- or 
down-regulate the transcription of inflammatory genes (Netea 
et al., 2020). Identifying the receptors, signaling pathways and 
epigenetic modifications that induce and maintain immune 
tolerance is therefore important for understanding how immune 
tolerance contributes to a state of controlled inflammation with 
potential benefits for autoimmune conditions and chronic 
inflammation diseases without contributing to immunodeficiency.

All bacteria naturally produce and release nano-sized, 
non-replicative extracellular vesicles (BEVs) with roles in response 
to stress, quorum sensing, biofilm formation, and interspecies and 
interkingdom communication (Schwechheimer and Kuehn, 
2015). BEVs contain various cargo including enzymes, signaling 
molecules, and metabolites (Bryant et al., 2017). BEVs generated 
by Gram-negative pathogens contain toxins and virulence factors 
that can breach host defenses facilitating invasion and infection 

by parental cells (Kaparakis-Liaskos and Ferrero, 2015). By 
contrast, the role of BEVs produced by commensal microbes, and 
in particular the vast numbers residing in the GIT, is less clear, 
although recent studies have identified a potential role in host-
microbe communication and in maintaining immune homeostasis 
via interactions with dendritic cells (Durant et al., 2020). BEVs 
generated by prominent members of the microbiota such as 
Bacteroides thetaiotaomicron (Bt) can cross the epithelial barrier 
of the intestine and access underlying lamina propria cells and, via 
the vasculature, other organs and tissues. They mediate bacteria-
host interactions which modulate the physiology of various host 
cells including those of the innate and adaptive immune system 
(Stentz et  al., 2018; Jones et  al., 2020; Gul et  al., 2022). BEVs 
produced by the pathobiont Bacteroides fragilis have been 
implicated in immune homeostasis as they can mediate anti-
inflammatory effects by TLR2-dependent activation of dendritic 
cells and the production of IL-10 by regulatory T cells (Shen et al., 
2012). The inbuilt adjuvanticity and immune-potentiation 
properties of Bt-derived BEVs has also been exploited in drug 
delivery formulations and in mucosal vaccines for respiratory 
viruses (Carvalho et  al., 2019a,b), supporting their ability to 
modulate host immune cell function.

Based upon the biophysical and immunological properties of 
BEVs generated by commensal bacteria, we have investigated the 
potential of Bt-derived BEVs to act via their interactions with 
innate immune cells as modulators of the immune tolerance and 
the inflammation response using well-established in vivo and in 
vitro models. Identifying the interactions between BEVs and host 
innate immune cells is an important step toward considering their 
use in immunotherapy.

Materials and methods

Isolation and characterization of Bt BEVs

Bacteroides thetaiotaomicron VPI-5482 was grown in 500 ml 
of Bacteroides Defined Medium (BDM4; Supplementary Table S1) 
at 37°C in an anaerobic cabinet. For BEVs preparations, cells were 
harvested after 16 h at an approximate OD600nm of 2.5 
corresponding to early stationary phase. BEVs were isolated 
following a method adapted from Stentz et al. (2022). Briefly, Bt 
cultures (500 ml) were centrifuged at 6000 g for 50 min at 4°C and 
the supernatants filtered through polyethersulfone (PES) 
membranes (0.22 μm pore-size; Sartorius) to remove debris and 
cells. Supernatants were concentrated by cross-flow ultrafiltration 
(100 kDa molecular weight cut-off, Vivaspin 50R, Sartorius), the 
retentate was rinsed once with 500 ml of PBS (pH 7.4) and 
concentrated to 1 ml. Further purification of BEVs was performed 
by fractionation of the suspension by size-exclusion 
chromatography using qEVoriginal 35 nm columns (Izon) 
according to manufacturer’s instructions. Fractions containing 
BEVs were combined and filter-sterilized through a 0.22 μm PES 
membrane (Sartorius) and the suspensions were stored at 
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4°C. Absence of viable microorganisms was confirmed by plate 
count and absence of LPS was confirmed by Limulus Amebocyte 
Lysate (LAL) test.

The size and concentration of the isolated Bt BEV suspension 
was determined using nanoparticle tracking analysis and the 
ZetaView PMX-220 TWIN instrument according to 
manufacturer’s instructions (Particle Metrix). Aliquots of BEV 
suspensions were diluted 1,000-to 20,000-fold in particle-free 
water for analysis. Size distribution video data were acquired using 
the following settings: temperature: 25°C; frames: 60; duration: 2 s; 
cycles: 2; positions: 11; camera sensitivity: 80 and shutter value: 
100. The ZetaView NTA software (version 8.05.12) was used with 
the following post acquisition settings: minimum brightness: 20; 
max area: 2,000; min area: 5 and trace length: 30.

Animal studies

Specific-pathogen-free (SPF) C57BL/6 male mice were bred 
and maintained in the Disease Modeling Unit at the University of 
East Anglia (United Kingdom). Animals were housed in 
individually ventilated cages and exposed to a 12 h light/dark cycle 
with free access to drinking water and standard laboratory chow 
diet. Animal experiments were conducted in full accordance with 
the Animal Scientific Procedures Act 1986 under UK Home Office 
(HMO) approval and HMO project license 70/8232.

Acute colitis mouse model

The dextran sulfate sodium (DSS) induced mouse model of 
acute colitis was used to investigate the therapeutic potential of 
BEVs on intestinal inflammation. SPF C57BL/6 mice, 8 weeks old, 
were divided into two groups and administered with either PBS 
(n = 8) or BEVs (n = 6). Experimental colitis was induced by 
administration of 2.25% w/v DSS (36,000–50,000 Da, MP 
Biomedicals) in drinking water ad libitum for 5 days. From day 5 
until the end of the experiment, DSS was replaced by fresh water. 
PBS and BEVs were administered by oral gavage (100 μl at 1011 
BEVs/ml) on days 5, 7, and 9, and on day 11 mice were euthanized 
by cervical dislocation after exposure to rising concentrations of 
CO2. Distal colon tissue samples (1 cm) and spleens were collected 
for cytokine production analysis. The extent of colitis was 
evaluated using survival rate and a disease activity index 
(Supplementary Table S2) comprising daily body weights, stool 
consistency, tissue and content appearance, and 
bleeding assessments.

Each distal colon tissue sample was cut open longitudinally 
and incubated in flat-bottomed 24-well plates with 0.5 ml per well 
of complete RPMI medium (RPMI-1640 (Sigma-Aldrich) 
supplemented with 10% heat-inactivated fetal bovine serum (FBS; 
Biosera) and 1% Pen/Strep (Sigma-Aldrich)) for 24 h in a CO2 
incubator. Spleens were macerated in a cell strainer at 70 μm, 
washed with complete RPMI medium and incubated with 

Ammonium-Chloride-Potassium (ACK) lysis buffer (Gibco) for 
10 min to lyse red blood cells. Splenocyte count was adjusted to 
5×106 cells/ml and incubated in flat-bottomed 96-well plates with 
0.2 ml per well of complete RPMI medium, with or without 
restimulation with 109 BEVs/ml, for 72 h at 37°C and 5% CO2 in 
a humidified incubator. Supernatants from colon and splenocyte 
cultures were then centrifuged and store at −80°C prior to 
cytokine analysis.

Murine bone marrow-derived monocyte 
cultures

SPF C57BL/6 mice, 13–16 weeks old, were euthanized by 
cervical dislocation after exposure to rising concentrations of CO2. 
Femurs were immediately removed and placed into cold sterile 
PBS. Bone marrow cell suspensions were isolated by flushing the 
femurs and tibias with RPMI-1640 supplemented with 10% heat-
inactivated FBS and 1% Pen/Strep under sterile conditions. Debris 
was removed by passing the suspension through a 70 μm cell 
strainer. Cells were washed with complete RPMI media and 
concentration was adjusted to 6 × 106 cells/ml. Cells were seeded 
on flat-bottomed 12-well plates (1.2 ml/well) and incubated at 
37°C and 5% CO2 in a humidified incubator.

BMDM—Bt BEVs co-culture

Bone marrow-derived monocyte (BMDM) cells (1.2 ml at 6 × 
106 cells/ml) were incubated in flat-bottomed 12-well plates in 
complete RPMI medium for 24 h at 37°C and 5% CO2 in a 
humidified incubator, in the presence of either different 
concentrations of Bt BEVs (3 × 109, 3 × 107, and 3 × 105 BEVs/ml), 
LPS from E. coli (10 ng/ml; Sigma-Aldrich) as a positive control or 
PBS as negative control. After 24 h, supernatants were collected 
and stored at −20°C prior to cytokine measurements. Cells were 
washed with warm PBS and maintained in complete RPMI 
medium for 5 days at 37°C and 5% CO2, with fresh media added 
on day 3. Cells were then incubated with LPS (10 ng/ml) to mimic 
an infectious challenge, or PBS as negative control. After 24 h, 
supernatants were collected and stored at −20°C for subsequent 
cytokine measurement. Cells were washed with warm PBS and 
detached from the wells by gently scraping after 1 h incubation 
with ice-cold Macrophage Detachment Solution (PromoCell) at 
4°C. Cells were then washed with PBS containing 0.5 mM EDTA 
and stored at −80°C in FBS with 10% DMSO (Sigma-Aldrich) for 
histone methylation analysis. All incubations were performed in 
triplicate in two independent experiments.

Cytokine measurements

The production of IL-10 by colon tissue and splenocytes, and 
TNFα, IL-6, and IL-10 produced by BMDM after 24 h of 
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conditioning and after 24 h of challenge was measured by ELISA 
(Invitrogen) according to the manufacturer’s instructions. The 
results were recorded as pg of each cytokine per mL 
of supernatant.

THP1-Blue cell assay

THP1-Blue NF-κB cells (Invivogen) were derived from the 
human THP-1 monocyte cell line by stable integration of an 
NF-κB-inducible secreted alkaline phosphatase (SEAP) reporter 
construct. THP1-Blue cells were cultivated in RPMI-1640 
supplemented with 10% heat-inactivated FBS, 1% Pen/Strep and 
100 μg/ml Normocin (Invivogen) at 37°C and 5% CO2 in a 
humidified incubator. To maintain selection pressure during cell 
subculturing, 10 μg/ml blasticidin was added to the growth 
medium every other passage.

To establish the threshold dose of BEVs that allows for the 
quantification of THP-1 cells activation, cells were seeded in flat-
bottomed 96-well plates at a density of 5 × 105 cells/ml and 
incubated for 24 h at 37°C and 5% CO2 in a humidified incubator 
in the presence of different concentrations of Bt BEVs (from 3 × 
109 to 3 × 106 BEVs/ml) using LPS (10 ng/ml) as a positive control 
and BDM4 and PBS as negative controls.

To identify pattern recognition receptors (PRRs) involved 
in BEV-mediated THP1-Blue cell activation, cultures were 
incubated with different inhibitors of TLR2 (PAb-hTLR2 
(5 μg/ml), Invivogen), TLR4 (PAb-hTLR4 (5 μg/ml), 
Invivogen), NOD1 (ML130 (5 μg/ml), Abcam), and NOD2 
(GSK717 (5 μg/ml), Merck) prior to the addition of BEVs 
(3×108/ml). Heat-killed Listeria monocytogenes (HKLM, 107 
cells/ml, Invivogen), LPS (10 ng/ml, Sigma-Aldrich), lauroyl-
g-D-glutamyl-meso-diaminopimelic acid (DAP, 1 μg/ml, 
Invivogen) and N-acetylmuramyl-L-alanyl-D-isoglutamine 
(MDP, 10 μg/ml, Invivogen) were used as specific ligands for 
each inhibitor, respectively. Subsequently, 20 μl of the cell 
suspension was added to wells of 96-well plate, mixed with 
180 μl of Quanti-Blue (Invivogen) colorimetric assay reagent 
and incubated for 1 h at 37°C to allow color development. 
NF-κB-inducible SEAP levels were quantified by absorbance 
reading at 620 nm. All incubations were performed in 
triplicate in three independent experiments.

THP1-Blue cell—Bt BEVs co-culture

To investigate phenotypic changes in THP1-Blue cells after 
exposure to with Bt BEVs, the cells (1.2 ml at 106 cells/ml) were 
incubated on flat-bottomed 12-well plates in complete RPMI 
medium for 24 h at 37°C and 5% CO2 in a humidified incubator, 
in the presence of different concentrations of Bt BEVs (5 × 108 
BEVs/ml, 5 × 106 BEVs/ml, and 5 × 104 BEVs/ml), using LPS 
from E. coli (10 ng/ml; Sigma-Aldrich) as a reference and 
positive control and PBS as a negative control. Cells were 

washed with warm PBS and detached from the wells by gently 
scraping after 1 h incubation with ice-cold Macrophage 
Detachment Solution at 4°C. Cells were then washed with PBS 
containing 0.5 mM EDTA and collected for flow 
cytometry analysis.

Flow cytometry

THP1-Blue cells were stained with Zombie Aqua Fixable 
Viability kit (BioLegend) following the manufacturer’s protocol. 
Cells were washed with Cell Staining Buffer (BioLegend) before 
blocking Fc receptors by incubation with Human TruStain FcX 
(BioLegend) for 10 min at 21°C. Cells were then surface stained 
for 20 min at 4°C in the dark using APC/Fire 750 anti-human 
CD14 Clone 63D3 (BioLegend) and flow cytometry performed on 
BD LSRFortessa Cell Analyzer (BD Biosciences) with the data 
analyzed using FlowJo software 10.8.1 (BD Biosciences).

Histone methylation

Histone proteins from bone marrow-derived cells were 
extracted using the EpiQuik Total Histone Extraction Kit 
(Epigentek) according to the manufacturer’s instructions and 
quantified by measuring absorbance at 280 nm. The level of 
histone 3 lysine 4 mono-methylation (H3K4me1) was quantified 
using the ELISA-based colorimetric kit EpiQuik Global Mono 
Methyl Histone H3 K4 Quantification (Epigentek) and results 
were expressed as ng of H3K4me1 per μg of total protein.

Statistical analysis

Data were subjected to One-way ANOVA or Two-way 
ANOVA followed by Tukey’s multiple comparison post-hoc test or 
Dunnett’s multiple comparison post-hoc test using GraphPad 
Prism 5 software. Statistically significant differences between two 
mean values were established by a p < 0.05. Data are presented as 
the mean ± standard deviation.

Results

Anti-inflammatory effect of Bt BEVs in 
vivo

To investigate the ability of Bt BEVs to influence 
inflammatory responses in vivo we used DSS-induced murine 
colitis as a model of acute inflammation (Figure 1A). This is a 
well-established lymphocyte-independent model of intestinal 
inflammation in which the clinical severity can be quantified, 
providing a reliable method to study the contribution of the 
innate immune system to inflammatory responses in the host. 
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Mice orally administered with Bt BEVs exhibited a significantly 
higher (p < 0.01) survival rate throughout the experiment 
compared to mice that received vehicle (PBS) only (Figure 1B). 
Oral administration of Bt BEVs also contributed to a significant 
decrease (p < 0.05) in weight loss and disease activity index 
scores (Figures  1C,D). Analysis of cytokine production by 
freshly excised and cultured colonic tissue showed that 
production of the anti-inflammatory cytokine IL-10 was higher 
in distal colon tissue from mice previously administered with 
Bt BEVs (Figure  1E). When splenocytes from mice orally 
gavaged with Bt BEVs were restimulated ex vivo with Bt BEVs, 
IL-10 production was also significantly increased (p < 0.05). By 
comparison, there was no difference in IL-10 production from 
non-stimulated splenocytes across all experimental groups 
(Figure 1F).

Bt BEVs modulation of cytokine 
production in BMDM

Bone marrow mononuclear cells cultured under conditions 
that favor the growth of monocytes and macrophages were used 
to examine further the potential interaction of Bt BEVs with 
innate immune cells. Specifically, we investigated how Bt BEVs 
influence murine bone marrow-derived monocytes (BMDM) in 
response to an inflammatory stimulus. Cytokine production in 
BEV-conditioned BMDM was measured before and after an 
infection-like challenge with LPS (Figure  2A). We  observed 
significantly increased amounts (p < 0.001) of IL-10 in BMDM 
cultures after incubation for 24 h with 3 × 109 BEVs/ml. No 
significant changes in IL-10 production were detected in BMDM 
containing lower concentrations of Bt BEVs or with LPS and 

A B

C D

E F

FIGURE 1

Bt BEVs ameliorate DSS-induced colitis in mice. (A) Mice were provided with drinking water containing 2.25% DSS (w/v) for 5 days. On days 5, 7, 
and 9 mice were orally administered with either PBS or Bt BEVs (100 μl at 1011 BEV/ml). (B) Survival rates. (C) Percent weight loss at day 11. 
(D) Disease Activity Index (DAI) at day 11. (E) IL-10 production in distal colon tissue. (F) IL-10 production by splenocytes cultured in complete media 
alone or in media containing Bt BEVs. Graphs depict mean ± SD values. *p < 0.05, **p < 0.01.
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PBS. The concentrations of the pro-inflammatory cytokines TNFα 
and IL-6 were significantly higher (p < 0.001) in BMDM incubated 
with 3 × 109 BEVs/ml when compared to PBS alone. However, 
these levels were lower than in LPS-conditioned BMDM cultures 
(Figure 2B). Analysis of cytokine production in BEV-conditioned 
BMDM cultures after an LPS challenge revealed opposite trends 
when comparing anti- and pro-inflammatory activity. While IL-10 
production was directly associated with the Bt BEVs concentration 
used to condition BMDM, the levels of pro-inflammatory 
cytokines showed an inverse relationship with the Bt BEV 
conditioning dose, with TNFα production significantly decreased 
(p < 0.001) when BMDM were incubated with BEVs at 3 × 107 
BEVs/ml or higher concentrations (Figure 2C). Collectively, these 
data show that Bt BEVs exert in a dose-dependent manner anti-
inflammatory responses from monocytes/macrophages, which 
was particularly noticeable in a re-infection (LPS challenge) 
scenario.

Molecular basis of BEV-monocyte 
interactions and the involvement of 
specific pattern recognition receptors

The human monocytic cell line THP-1 that expresses an 
NF-κB inducible secreted alkaline phosphatase (SEAP) reporter 
construct (THP1-Blue) was used to identify the receptors and 
pathways in monocytes involved in the anti-inflammatory effect 

of Bt BEVs observed in both the in vivo and in vitro model 
systems. To investigate if Bt BEVs can activate THP-1 cells and 
to establish the activation threshold, cells (5 × 105 cells/ml) were 
incubated with different concentrations of Bt BEVs (3 × 106 
BEVs/ml to 3 × 109 BEVs/ml) using a chemically defined Bt 
media (BDM4) and PBS or LPS (10 ng/ml) as negative and 
positive controls, respectively. NF-κB activation in THP-1 cells 
in response to Bt BEVs was dose-dependent (Figure 3A) with 
no detectable activation seen in cultures containing BDM4 or 
PBS alone. Based upon the level of activation induced by 3 × 108 
BEVs/ml being equivalent (p > 0.05) to that of LPS (10 ng/ml), 
we established this as an optimal Bt BEVs concentration for 
subsequent inhibition assays. Specific inhibitors of key 
extracellular and intracellular PRRs were used in THP1-BEV 
co-cultures to identify those contributing to NF-κB activation 
in THP-1 cells. In a series of optimization experiments, the 
optimal concentration of each inhibitor was established by 
titration and their specificity at that concentration was 
confirmed with individual PRR-specific ligands 
(Supplementary Figure S1). The most potent inhibition of 
NF-κB activation (~60%) was seen in cultures containing 
PAb-hTLR2 (5 μg/ml), an antibody that specifically inhibits 
TLR2 activation (Figure  3B; Supplementary Figure S1), 
consistent with TLR2 activation mediating interactions between 
Bt BEVs and monocyte/macrophages (Figure 3B). By contrast, 
no significant inhibition of NF-κB activation was seen using 
inhibitors of TLR4, NOD1, or NOD2 (Figure 3B).

A

B

C

FIGURE 2

Bt BEVs modulate the production of anti- and pro-inflammatory cytokines by murine bone marrow derived macrophages (BMDM). 
(A) Experimental plan. (B) Cytokine production by BMDM 24 h after conditioning with Bt BEVs and LPS was assessed by ELISA. (C) Cytokine 
production by Bt BEV- and LPS-conditioned BMDM 24 h after exposure to LPS (10 ng/ml) determined by ELISA. Non-conditioned BMDM (PBS) 
were used as the reference group for statistical analysis. Graphs depict mean ± SD values. **p < 0.01; ***p < 0.001.

85

https://doi.org/10.3389/fmicb.2022.1050271
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Fonseca et al. 10.3389/fmicb.2022.1050271

Frontiers in Microbiology 07 frontiersin.org

Phenotypic changes in monocytes 
following stimulation with Bt BEVs

We investigated the phenotypic changes in THP-1 cells after 
exposure to Bt BEVs by measuring levels of CD14 expression 
using flow cytometry. CD14+ cells were gated based on a 
fluorescence minus one (FMO) strategy. CD14 expression is a 
marker of activation related to pro-inflammatory monocytes, is a 
co-receptor for TLR4 responsivity to LPS, and contributes to the 
activation of other PRRs including TLR2. Among THP-1 cells 
cultured in media alone approximately 22% were CD14+ 
(Figure 4). In cultures containing the highest concentration of Bt 
BEVs (5×108 BEV/mL equivalent to a ratio of 500 BEVs,THP-1) 
the proportion of CD14+ cells more than doubled to approximately 
51% and was equivalent to the levels seen in cultures containing 

LPS (~53%; Figure 4). By contrast, THP-1 cells stimulated with 
lower concentrations of Bt BEVs showed no significant changes in 
the proportion of CD14+ monocytes when compared to cells 
incubated with PBS (Figure 4).

Effect of Bt BEVs on histone 
modifications in BMDM

Inflammatory processes and innate immunity are tightly 
regulated by epigenetic mechanisms with genomic DNA 
methylation and modification of histones influencing the function 
of innate immune cells (Saeed et al., 2014; Fraschilla et al., 2022). 
To determine if Bt BEVs can induce epigenetic changes, and in 
particular histone methylation, we measured levels of H3K4me1 in 

A

B

FIGURE 3

Mediators of Bt BEV-monocyte/macrophage interaction identified using THP1-Blue monocytes. (A) THP-1 cells were incubated with a range of Bt 
BEV concentrations or with Bt growth media (BDM4), PBS or LPS for 24 h prior to assessing level of NF-kB activation. Statistical analysis was 
performed using LPS as the reference group. (B) THP-1 cells were pre-incubated with optimal concentrations of TLR2, TLR4, NOD1 or NOD2 
inhibitors prior to the addition of Bt BEVs and subsequent assessment of NF-kB activation. Graphs depict mean ± SD values. ns: p > 0.05; *p < 0.05; 
**p < 0.01; ***p < 0.001.
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BMDM, which indicates the mono-methylation at the 4th lysine 
residue of histone H3 protein and is an enhancer signature 
(Figure 5A). Varying levels of H3K4me1 were detected in BMDM 
after culture with Bt BEVs, with the highest levels seen in cultures 
containing 3 × 109 BEV/ml, comparable to those in BMDM 
cultured in media alone (PBS) and higher than that in cultures 
containing LPS (Figure  5B). By comparison, lower levels of 
H3K4me1 were seen in cultures containing fewer Bt BEVs (3 × 105 
and 3 × 107 BEV/ml) with the differences being significant 
(p < 0.05) for BMDM cultured with 3 × 107 BEV/ml. These data 
demonstrate that Bt BEVs altered the histone methylation status 
in innate immune cells.

Discussion

BEVs produced by gut bacteria can cross the intestinal 
epithelium, gaining access to host cells (Stentz et al., 2018; Jones 
et  al., 2020) and contribute to immune homeostasis via 
interactions with innate immune cells (Maerz et al., 2018; Diaz-
Garrido et al., 2019; Durant et al., 2020). However, the details and 
nature of this BEV-immune cell crosstalk is incomplete. In this 
study, we have provided in vitro and in vivo evidence for the anti-
inflammatory and immunomodulatory properties of BEVs 
produced by the major human gut commensal bacterium Bt and 
identified the molecular basis of their interaction with monocytes 
and macrophages. We recognize that different types of particles 

could be copurified with BEVs due to technical limitations but 
their effect is taken into consideration and appropriate controls 
were utilized wherever possible to aid data interpretation 
(Juodeikis and Carding, 2022).

Oral administration of Bt BEVs ameliorates DSS-induced 
colitis in mice, underlining their potential as a treatment for 
non-infectious autoimmune pathologies. Similar protective effects 
have been reported in DSS models after treatment with fresh and 
lyophilized cultures of Bt (Delday et  al., 2019) and other 
Bacteroides species (Hudcovic et al., 2009; Chiu et al., 2014; Chang 
et  al., 2017), although the mediators of these effects and the 
possibility that it includes BEVs were not investigated. The size, 
stability, and non-replicative status of Bt BEVs makes them good 
candidates for therapeutic interventions compared to whole 
bacteria. Conditions involving chronic inflammation of the gut are 
associated with dysregulation of mucosal innate immune response 
(Xu et al., 2014), increased NF-κB activation (Schreiber et al., 
1998) and increased levels of pro-inflammatory cytokines such as 
TNF-α and IL-6 (Atreya et al., 2000; Komatsu et al., 2001). In this 
context, the significance of BEV-elicited IL-10 from BMDM is 
implied from its role in the prevention of inflammatory bowel 
disease (Mazmanian et al., 2008; Hansen et al., 2009). Mice lacking 
IL-10 or IL-10 receptor genes spontaneously develop intestinal 
inflammation (Kuhn et al., 1993) with IL-10 acting by suppressing 
antigen presentation by downregulating MHC class II expression 
(Koppelman et  al., 1997) and inhibiting pro-inflammatory 
cytokine synthesis by blocking the activation of the inhibitor of 

A

B

FIGURE 4

Bt BEVs elicit phenotypic changes in THP1-Blue NF-κB cells (106 cells/ml). (A) THP-1 cells were incubated with different concentrations of Bt BEVs 
for 24 h and analyzed for CD14 expression by flow cytometry. Gating strategy was based on scatterplots of CD14 vs. side scatter signal. (B) The bar 
graph represents THP-1 cells with high expression of CD14 as percentage frequency of parent.
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NF-κB kinase (IKK) and dysregulating NF-κB (Schottelius et al., 
1999). The beneficial effects of BEVs or Bt (Li et  al., 2021) in 
DSS-colitis are associated with increased production of IL-10 in 
serum, colonic tissue and by peripheral splenocytes which can 
promote a non-inflammatory status by counteracting 
pro-inflammatory responses. The contribution of Bt BEVs to the 
maintenance of immune homeostasis by promoting IL-10 
production by innate immune cells is also implied by our previous 
study in which we reported the absence of Bt BEV-elicited IL-10 
production by innate immune cells isolated from patients with 
inflammatory bowel disease (Durant et al., 2020). It is interesting 
to note that lower levels of Bacteroides spp. are present in the gut 
microbiota of inflammatory bowel disease patients (Zhou and Zhi, 
2016). While the present study focused on BEVs, we  cannot 
exclude the possibility for other cell-associated or secreted 
constituents of Bt to contribute to immunoregulatory responses 
in vivo. Indeed, administration of live or dead (freeze dried) Bt to 
IL-10r-deficient mice protects the animals from developing colitis 
(Delday et  al., 2019) which may involve different bacterial 
mediators and multiple interactions with host cells. Nevertheless, 
Bt and BEV-elicited IL-10 production by host immune cells 
appears to be central to their protective effects.

In BMDM cultures pre-conditioned with BEVs prior to an 
infection-like challenge with LPS, high doses of Bt BEVs 

significantly upregulated the production of IL-10. Although Bt 
BEVs also increased the production of pro-inflammatory cytokine 
TNFα in BMDM, the levels were significantly lower than those 
achieved with LPS. This could be explained by the inhibitory effect 
of IL-10 on pro-inflammatory cytokine synthesis. This anti-
inflammatory effect was more evident in a subsequent 
LPS-challenge. Pre-conditioning by Bt BEVs altered the cytokine 
profile of BMDM in a dose-dependent manner, especially in the 
case of the IL-10/TNFα ratio. High doses of Bt BEV 
pre-conditioning produced a high IL-10/TNFα ratio, indicatory 
of a homeostatic or tolerance like status and an attenuated 
inflammatory response to LPS stimulation. This phenomenon 
resembles that of endotoxin tolerance which is characterized by 
upregulated IL-10 and downregulated TNFα production leading 
to an immune hyporesponsiveness (Biswas and Lopez-Collazo, 
2009; Gu et al., 2022). Interestingly, IL-6 levels were not affected 
by BEV conditioning which was also noted in a related study 
investigating the immunomodulatory effect of different 
Bacteroides species on murine bone marrow-derived dendritic 
cells (BMDC; Steimle et al., 2019). In this study, IL-6 secretion was 
also not reduced in Bacteroides-primed and E. coli-challenged 
BMDC, and priming of BMDC with Bacteroides resulted in 
decreased TNFα expression after E. coli challenge in contrast to 
non-primed BMDCs. Since IL-6 is a pleiotropic cytokine capable 

A

B

FIGURE 5

Histone mono-methylation (H3K4me1) as an epigenetic signature of Bt BEV modulation of innate immunity. (A) Experimental plan. (B) Methylation 
of histone proteins from Bt BEV- or LPS-conditioned BMDM 24 h after exposure to LPS (10 ng/ml) was quantified using an ELISA-based colorimetric 
kit and results were expressed as ng of H3K4me1 per μg of total protein. Non-conditioned BMDM (PBS) were used as the reference group for 
statistical analysis. Graph depicts mean ± SD values. *p < 0.05.
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of acting as a defense mechanism in acute inflammation, and 
conversely exhibits a pro-inflammatory profile in chronic 
inflammation (Scheller et al., 2011), further studies are required 
to determine the significance of IL-6 production in BMD-innate 
immune cells conditioned with BEVs. It is also interesting to note 
the contrasting impacts of intact Bacteroides cells versus their 
BEVs on cytokine production. Whereas we have identified and 
confirmed IL-10 production as a signature of BEV interaction 
with human (Durant et al., 2020) and murine innate immune cells, 
this signature is not as evident using intact Bacteroides cells as a 
stimulus, suggesting that commensal gut bacteria can utilize 
different means including both cell-associated and secreted 
mediators to communicate with and influence host immune cells.

The molecular basis of Bt BEV-monocyte interactions was 
established using the human monocytic reporter cell line 
THP1-Blue NF-κB. TLR2 activation was shown to mediate Bt 
BEV-elicited NF-κB activation, whereas TLR4, NOD1, and 
NOD2 made no significant contribution. In a previous study 
(Gul et  al., 2022), we  reported the influence of TLR2  in Bt 
BEV-host communication via the TLR2/TLR4 adaptor protein 
TIRAP (toll-interleukin-1 receptor domain-containing adaptor 
protein), although TLR4 alone also showed some involvement. 
This apparent discrepancy is most likely explained by our prior 
use of a complex bacteria growth media (Brain-Heart Infusion, 
BHI) containing animal tissue and cellular lipids which may 
function as TLR4 ligands. This factor was excluded in this 
study by the use of a chemically defined media (BDM4). TLR2 
recognizes several microbial products from both Gram-
positive and Gram-negative bacteria, including lipoproteins 
and peptidoglycans, and forms heterodimers with either TLR1 
or TLR6 for downstream signaling via NF-κB pathway (Akira 
and Takeda, 2004). The polysaccharide A (PSA) antigen 
expressed in BEVs from the closely related commensal 
Bacteroides fragilis also interact with dendritic cells in a TLR2-
dependent manner (Round et al., 2011; Shen et al., 2012). It has 
been recently reported the presence of serine-dipeptide lipids 
in Bt BEVs (Sartorio et al., 2022), which can also act as TLR2 
ligands (Clark et al., 2013; Nemati et al., 2017). Further detailed 
biochemical characterization of BEV-associated lipoproteins is 
required to identify the ligands triggering TLR2 signaling 
pathways in innate immune cells. TLR2 signaling has been 
reported to have a protective role in inflammatory conditions 
(Lowe et  al., 2010; Brun et  al., 2013) and colorectal cancer 
(Sittipo et al., 2018), and to promote immune homeostasis by 
inhibiting the expression of pro-inflammatory cytokines and 
enhancing IL-10 production (Chang et  al., 2017). These 
findings align with our proposal that the anti-inflammatory 
effect elicited by Bt BEVs is associated with modulations in the 
host innate immune system through the IL-10 signaling 
pathway, triggered by BEV-TLR2 interactions.

TLR activation depends on different co-receptors such as 
CD14, which is widely used as a marker of activation related to 
pro-inflammatory and classical monocytes (Lotz et  al., 2004). 
Although generally characterized as a co-receptor for the TLR4 

responsivity to LPS, CD14 also contributes to the activation of 
other PRRs including TLR2 (van Bergenhenegouwen et al., 2013). 
CD14 binds to triacylated lipopeptides, typically present in Gram-
negative bacteria including Bacteroides, to enhance their 
recognition by the TLR2/TLR1 heterodimer (Jin et al., 2007). The 
highest proportion of CD14+ THP-1 cells were seen after 
stimulation with high concentrations of Bt BEVs, with levels 
equivalent to those stimulated with LPS, which suggests the 
functional involvement of CD14  in TLR2-mediated innate 
immune response induced by Bt BEVs.

The functional phenotype of immune cells is highly dependent 
on the establishment of unique epigenetic profiles that integrate 
microenvironmental cues into the genome to establish specific 
transcriptional programs (Calle-Fabregat et al., 2020). Among key 
epigenetic markers is the acquisition of histone 3 lysine 4 
methylation (H3K4me1) in short lived monocytes and 
macrophages (van der Meer et al., 2015; Netea et al., 2016) and in 
long-lived myeloid bone marrow progenitors (Kaufmann et al., 
2018; Mitroulis et al., 2018). The highest levels of H3K4me1 in Bt 
BEV-conditioned LPS-challenged BMDM, were evident in 
monocyte/macrophages incubated with high concentrations of Bt 
BEVs. Unexpectedly, these levels of H3K4me1 were higher than 
in LPS-conditioned BMDM and comparable to those found in 
non-conditioned BMDM. This seems to contradict our cytokine 
production results, since the repressed pro-inflammatory cytokine 
expression prompted by Bt BEV conditioning would be expected 
to correlate with close chromatin and low H3K4me1 levels. 
However, the IL-10 genomic locus of monocytes is poised for 
activation with open chromatin already at the steady state 
(Northrup and Zhao, 2011; Tamassia et al., 2013) and the presence 
of H3K4me1 is associated with IL-10 gene enhancers (Taubert, 
2017), which could explain the increased levels of H3K4me1 
found in BMDM conditioned with Bt BEVs. However, we cannot 
confirm this since our approach comprised global histone 
modifications. To further investigate the role of H3K4me1 and 
other relevant modifications involved in immune tolerance 
chromatin immunoprecipitation sequencing (ChIP-seq) could 
be  used to localize these histone modifications throughout 
the genome.

Conclusion

We have shown that BEVs from the major gut commensal 
bacterium Bt elicit anti-inflammatory and immunomodulatory 
properties in innate immune cells, consistent with promoting and 
maintaining host immune homeostasis. Bt BEVs alleviated acute 
intestinal inflammation in DSS-treated mice, in association with 
increased IL-10 production. This was confirmed in vitro with 
increased IL-10 and decreased TNFα production in 
BEV-conditioned and LPS-challenged BMDM cultures. 
BEV-mediated monocyte activation and cytokine production was 
mediated by TLR2 interactions and resulted in stable epigenetic 
changes reflected by increased levels of H3K4me1. These findings 
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provide the rationale and basis for investigating the potential of Bt 
BEVs as an immune therapy.
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There is mounting evidence demonstrating that oral dysbiosis causes

periodontal disease and promotes the development of cardiovascular

disease. The advancement of omics techniques has driven the optimization

of oral microbiota species analysis and has provided a deeper understanding of

oral pathogenic bacteria. A bi-directional relationship exists between the oral

microbiota and the host, and oral-gut microbiota transfer is known to alter the

composition of the gut microbiota and may cause local metabolic disorders.

Furthermore, cardiovascular health can also be highly affected by oral

microbiota functions and metabolites, including short-chain fatty acids

(SCFAs), nitric oxide (NO), hydrogen sulfide (H2S), and some lipid metabolites.

Studies have found that trimethylamine oxide (TMAO) may have adverse effects

on cardiovascular health, whereas SCFAs, NO, and H2S have cardioprotective

effects. SCFAs and H2S exert varying oral and cardiovascular effects, however

reports on this specific topic remain controversial. Previous evidences are

accustomed to summarizing the functions of oral microbiota in the context of

periodontitis. The direct relationship between oral microbiota and

cardiovascular diseases is insufficient. By systematically summarizing the

methods associated with oral microbiota transplantation (OMT), this review

facilitates an investigation into the causal links between oral microbiota and

cardiovascular disease. The concomitant development of omics,

bioinformatics, bacterial culture techniques, and microbiota transplantation

techniques is required to gain a deeper understanding of the relationship

between oral microbiota and cardiovascular disease occurrence.

KEYWORDS

oral microbiome, cardiovascular disease, microbial metabolites, oral microbiota
transplantation, periodontal disease
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1 Introduction

With the advancement of multi-omics and bioinformatics,

the microbe-host interactions in the human body have begun to

gain an increasing amount of attention. There is mounting

evidence to suggest that the commensal microbiota plays a

crucial role in human health and disease development,

including cardiovascular disease (1, 2). The oral microbiota is

the second largest microbial community present in the human

body (3). The ecological niches in the oral cavity are divided into

the saliva, tongue, dental surface, gingiva, buccal mucosa, palate,

and subgingival/supragingival sites, with variations in

microbiota species and activity, as well as varying susceptibility

to diseases across the different niches. The oral microbiota is

dominated by Streptococcus, belonging to the Firmicutes phylum

(36.7%) (4), which produces an abundance of primary and

secondary metabolites, and is associated with the occurrence

of systemic diseases (5). Studies have shown that age-related

variations have little effect on the oral microbiota when

compared to other habitats in the bodies of healthy

populations (6, 7). Furthermore, new evidence suggests that

oral microbiota are involved in the preliminary digestion of food

in the oral cavity and produce a variety of metabolites (8, 9). Oral

microbiota sampling is also highly convenient, and the tongue-

coating morphology and dental plaques can be observed under

direct vision. These advantages have therefore enabled the

potentially rapid clinical translation of research on the

oral microbiota.

The oral microbiota has immense potential and value with

regard to research on cardiovascular disease, specifically

atherosclerosis (10, 11). The bi-directional interaction between

periodontal diseases and oral microbiota, as well as the

interaction between periodontal diseases and cardiovascular

disease, has long been investigated (12, 13). Periodontal

diseases are associated with transparent pathogens of

cardiovascular disease and are associated with hypertension,

heart failure, atherosclerosis, and coronary heart disease (14–

16). Aggressive treatment of periodontal disease can significantly

reduce the risk of cardiovascular disease development (17).

Therefore, the oral microbiota may have a substantial

impact on systemic disease. This review seeks to answer the

following questions based on existing evidence: (1) How does

the oral microbiota affect the progression of cardiovascular

disease? (2) Does cardiovascular disease have a reciprocal effect

on the oral microbiota? (3) What are the metabolites produced

by the oral microbiota that affect cardiometabolic health? How

do these metabolites regulate inflammation, oxidative stress, or

vascular function? (4) Can the novel techniques and methods

currently under investigation (such as oral microbiota

transplantation [OMT]) be applied to research on oral

microbiota? Our findings will potentially serve as a reference

for future investigations on the relationship between oral

microbiota and cardiovascular disease occurrence.
Frontiers in Immunology 02
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2 Oral dysbiosis and phenotypes
of cardiovascular disease:
Bi-directional causality

2.1 Periodontal diseases: The role of oral
dysbiosis in cardiovascular disease

It has been reported that the presence of periodontal disease

and dental plaque may exacerbate cardiovascular disease (18).

Research conducted on the correlation between oral dysbiosis

and cardiovascular disease is usually based on the effects of

periodontal diseases (19, 20). Therefore, understanding the

mechanism of these three comorbidities could be helpful

and necessary.

Oral dysbiosis is a key feature of periodontitis and research

has indicated that gram-negative bacterial populations are

significantly increased in patients with periodontitis (21). The

progression of periodontal inflammation is accompanied by

community dysbiosis. 16S pyrosequencing and metagenomic

sequencing results have indicated that the oral a-diversity was

higher in patients with periodontitis when compared to healthy

people (21–24) and this same trend has been observed in other

systemic diseases; however, the correlation between oral a-
diversity and cardiovascular diseases has still not been well

researched (25). Studies have reported that specific key

pathogens are significantly increased in patients with

periodontal disease and atherosclerosis, such as Streptococcus

mutans and Porphyromonas gingivalis (26, 27). Clinical studies

have reported that the density of the oral microbiota (in saliva, as

well as in supra- and subgingival sites) was positively correlated

with the severity of periodontal parameters, the number of

periodontal pathogens, and severity of abdominal aortic

aneurysm. These findings have been supported by serological

and immunological studies, in which immunoglobulin G

antibodies targeting Porphyromonas gingival is and

Aggregatibacter actinomycetemcomitans were detected in

patient oral tissues (28).

Certain oral commensal bacteria that are found in coronary

plaques are also present in non-cardiac organs, such as

Campylobacter rectus, Porphyromonas gingivalis, Porphyromonas

endodontalis, Prevotella intermedia and Prevotella nigrescens (29).

It is yet to be established if these bacteria specifically influence the

formation of atherosclerotic plaques or if it is an oportunistic

infection. The pathogenic mechanism of periodontitis may help us

understand the relationship between oral microbiota and

cardiovascular diseases. It has been reported that cardiovascular

disease may be caused by periodontal disease via mechanisms

such as inflammatory response, oxidative stress, immune

response, and platelet aggregation (19, 30). Variations in the

manifestations of dysbiosis have also been observed between

patients of different sexes and between patients with or without

dental caries/missing teeth (31, 32). Studies have found that
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patterns of oral dysbiosis may induce the host’s immune response

(30); however certain pathogens may synergistically induce

immunosuppression through an association with signaling

pathways. For example, pathogens may inhibit T helper 1

(TH1) cell-mediated immunity using complement Toll-like

receptor regulation, which may disrupt functional receptor

interactions (33), thereby aggravating the cardiovascular disease.

Periodontal disease is an important marker of oral dysbiosis;

however, it may not be the sole cause of cardiovascular disease.

Oral dysbiosis leads to a host immune response (30), which

exacerbates cardiovascular disease. Animal models of

periodontitis include different approaches, one is surgical

approach to periodontitis (34), and the others are associated

with the oral microbiota (inoculation with microbial pathogens

(35, 36) and lipopolysaccharide (LPS) injection (37)). Excluding

the effect of surgical approach (34), oral microbiota or LPS could

still promote systemic inflammation (38).

The relationship between oral microbiota and periodontal

diseases is constantly evolving (39). A new hypothesis has

recently emerged in microbial research suggesting that the

onset of inflammatory or immune response may not be

induced by a single type of pathogenic bacteria but by changes

in the overall microbiota, and this idea has challenged the

concept of oral pathobionts. Disrupted homeostasis may be

associated with a series of upstream and downstream bacteria,

rather than a specific low-abundance species (39). For example,

the “red complex” bacteria (Porphyromonas gingivalis,

Treponema denticola, and Tannerella forsythia) (40) were

initially considered a major etiological factor of periodontitis;

however, this perspective has now been challenged (41). This is

because previous studies on oral microbiota using in vitro

cultures may have overestimated the importance of bacterial

species that are prone to growth, such as Gram-negative bacteria.

However, more recent studies have found a significant increase

in the abundance of Gram-positive anaerobic bacteria in the oral

cavity of diseased individuals, sometimes even surpassing the

abundance of Gram-negative bacteria (42). Omics research (43,

44) has verified that the pathogenesis of periodontitis involves a

synergy and dysbiosis of multiple microorganisms, and is

referred to as the polymicrobial synergy and dysbiosis model

(45). Interestingly, the abundance of bacteria was negatively

correlated with the relative abundance of Porphyromonas

ginglivlis. In the low-abundance state, these typical pathogens

promote the overall increase of the bacterial load, which can be

indicated as a delicate ecological balance between mutualistic

and antagonistic interactions in the microbiome (21).
2.2 The oral microbiota affects
cardiometabolic health

Oral dysbiosis is thought to be closely linked to

cardiovascular disease and various species including,
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Streptococcus mutans and Porphyromonas gingivalis, which

have been shown to increase with the occurrence of

periodontal disease and systemic inflammation (26, 27). A

number of other species, namely; Treponema denticola,

Tannerella forsythia, Prevotella intermedia, Prevotella

nigrescens, Actict inobaci l lus actinomycetemcomitan,

Campylobacter rectus, Parvimonas micra, Porphyromonas

gingivalis, Porphyromonas endodontalis, Prevotella intermedia,

Eubacterium timidum, Eubacterium brachy, and Eubacterium

saphenum, have also been found to be associated with oral

dysbiosis and cardiovascular disease (29, 30, 46) (Figure 1). As

most of these reports were made after conducting cross-sectional

studies, researchers were unable to determine the causal

relationship between oral dysbiosis and periodontal disease

occurrence (39).

The oral microbiota induces inflammatory and immune

responses in oral tissues (49, 50), which in turn affects

cardiometabolic health and promotes the onset of

cardiovascular disease. The microbial invasion of the

bloodstream (51) and alterations in gut microbiota caused by

oral-gut microbiota transfer (52, 53) may also exacerbate

systemic inflammation. Oral dysbiosis ultimately manifests as

systemic inflammation, immunoreaction, oxidative stress, and

thrombosis. Systemic inflammation may also disrupt the balance

of the oral microbiota, as the relationship is bi-directional (54).

This paper primarily focuses on discussing the potential

upstream mechanisms of the abovementioned pathological

outcomes (55).

2.2.1 Crosstalk between the microbiota and
local environment

Oral microbiota participates in the inflammation and

immune regulation of local environment (56). Oral dysbiosis

induces the recruitment of neutrophils and macrophages, which

not only prevents further destruction of connective tissues by the

microbiota, but also stimulates the immune responses of cells

such as dendritic and gamma delta cells, thus inducing the

release of pro-inflammatory mediators (tumor necrosis factor a
(TNF-a); interleukin-1b (IL-1b); interleukin-17 (IL-17)), and

regulates the function of T helper cells (21). It has been reported

that these inflammatory states are positively correlated with the

oral microbiota load, thereby creating a vicious cycle (21).

An elevated concentration of bacterial surface molecules,

such as LPS or bacterial flagellins, stimulates the production of

inflammatory mediators and cytokines, thereby promoting

inflammation and immunoreaction (57, 58). The mechanisms

of this stimulation may involve the activation of inflammatory

pathways such as the matrix metalloproteinase 9 (MMP9) and

Nuclear factor kappa-B (NF-kB) and Basic Helix-Loop-Helix

ARNT Like 1 (BMAL1) pathways (27, 59). Under the effects of

TNF-a, interleukin 6 (IL-6), and transforming growth factor b
(TGFb), epithelial and immune cells trigger the production of

reactive oxygen species (ROS), reactive nitrogen species, and
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matrix metalloproteinases, which activate the NF-kB
pathway (56).

These mechanisms may be involved in the formation of

atherosclerotic lesions. In mice, Porphyromonas gingivalis

infection induces the accumulation of macrophages and

inflammatory mediators (such as CD40, interferon-g (IFN-g),
IL-1b, IL-6, and TNF-a) in atherosclerotic lesions; however, the

abovementioned inflammatory responses were shown to be

milder in mice with congenital immunodeficiency (60).

Animal experiments have demonstrated that Porphyromonas

gingivalis and other bacteria can cause abnormal endothelial

relaxation, and thus aggravate atherosclerosis and hypertension;

however, periodontal treatment may improve endothelial

function (16). In addition to Porphyromonas gingivalis, other

pathogenic bacteria can trigger destructive inflammation

involving both innate and adaptive immune factors (61). Host

oral tissue immunoreaction further induces inflammation,

thereby causing irreversible downstream pathological changes.

Mice with oral mucosal damage that underwent OMT from

healthy mice exhibited a reconstruction of the epithelium and

tongue papillae, decreased leukocyte infiltration in the oral

epithelium, and amelioration of oral mucositis, thereby

demonstrating the causal effects of the oral microbiota on local

tissues (62).

The oral microbiota also interacts with mucus such as saliva.

Moreover, mucus rinses microorganisms off from the inner

epithelial surface, while also establishing a protective barrier

between the microbiota and the oral epithelium (63). Oral

mucus is mainly composed of mucins, which are densely

glycosylated polymers that can form three-dimensional
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structures (64). The oral soft tissues and teeth are coated by a

thin film predominantly composed of mucins such as MUC5B

and MUC7. Mucins contain glycans that serve as the main

energy source for the oral microbiota. Many microorganisms

contain genes encoding the relevant enzymes that break down

and digest these glycans. Mucus also affects the competition

between the microbiota, and hence the viability of bacterial

species. For example, previous studies using an artificial model

of salivary mucins reported that mucins promote the co-

existence of two competing bacterial species, Streptococcus

mutans and Streptococcus sanguinis. Furthermore, other

studies have confirmed that mucins prevent the formation of

biofilms by pathogens, including Streptococcus mutans (65, 66).

MUC5B affects intraspecific interactions by promoting the

production of bacterial proteomes. For example, Streptococcus

gordonii cultured with MUC5B promoted the production of six

novel biofilm cell proteins and three planktonic proteins, thereby

eliciting specific responses in the bacterial biofilm cell proteome

(67). These findings highlight the important roles oral

environment on the microbiota. (Figure 2).

2.2.2 Bacteremia
Dysbiosis involves microbial invasion of the bloodstream. It is

usually transient due to the rapid immune response that follows.

Due to the unstable duration and nature of bacteremia (68), it is

hard to confirm that oral microbiota is directly involved in the

formation of atherosclerotic plaques (69). Similar findings have

been reported in gut microbiota research, but a clear link between

dysbiosis and cardiovascular disease occurrence has not yet been

established (70). Bacteremia may result from local tissue barrier
FIGURE 1

Oral microbiota and bacterial species related to cardiovascular disease occurrence The oral microbiota is influenced by multiple factors.
Pathogens gain entry into systemic tissues via oral-gut microbiota transfer and bacteremia, thereby endangering cardiovascular health. The table
presents the relationship between the microbiota and specific diseases. Red and blue indicate microorganisms with adverse and protective
effects, respectively. Oral microbiota and cardiovascular disease common influencing factors are on the left (7, 18, 47, 48).
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damage. Although the bacterial species found in atherosclerotic

plaque formation are common in the oral cavity, they are few (71)

(Figure 1). At the species level, Streptococcus spp., “red complex”

bacteria, Aggregatibacter actinomycetemcomitans, Fusobacterium

nucleatum, and Prevotella intermedia have been detected in

atherosclerotic plaques (10, 11, 72). The antibodies induced by

Porphyromonas gingivalis are commonly found in saliva and

subgingival sites (60, 72). The cross-reactivity of bacterial

antibodies (predominantly against Firmicutes, Pseudomonadota,

and Bacteroidetes) with human heat shock protein 60 in host

endothelial cells can elicit autoimmune responses, thereby

activating a series of cascade reactions and promoting

atherosclerosis (73). Bacterial surface proteins, such as

glycosyltransferase, the sialic acid-binding human serum

albumin (Hsa), and the co-aggregation proteins CshA and

CshB, play a key role in host endothelial cell invasion and

bacteremia development (51). Some bacterial surface proteins

bind to host pattern recognition receptors. For example,

bacterial surface proteins in the bloodstream that bind to

nucleotide-binding oligomerization domain 2 receptors in the

brain can regulate metabolism, body temperature, and appetite

(74). In addition, bacterial structures, such as the flagellum, may
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destroy tissue barriers by acting as virulence factors, thereby

increasing inflammation (75).

The microbiota dysbiosis could promote bone marrow

activity and increase risk of cardiovascular diseases. Cytokines

and bacterial by-products are known to increase marrow

myelopoiesis and glycolysis via the hematopoietic-arterial axis

or inflamed periodontal tissues which aggravate arterial

inflammation (76).

2.2.3 Oral-gut microbiota transfer
Studies have found that theremaybe anoverlapof approximately

45% between the oral and gut microbiotas (77), and the oral

microbiota may lead to gut dysbiosis via oral-gut microbiota

transfer or through other pathways (Figure 1). Similarities can be

detected between the microbial colonization of the oral and gut

microbiotas (78). Furthermore, certain genetic variations in the host

are associated with both types ofmicrobiotas, as demonstrated by the

identificationoffive genetic loci thatwere significantly associatedwith

the oral microbiota, three of which were also significantly associated

with the gutmicrobiota (79). Theoralmicrobiota ismainly composed

of five main phyla (Protebacteria, Firmicutes, Bacteroidetes,

Actinobacteria, and Fusobacteriota) (7), of which Proteobacteria;
FIGURE 2

Crosstalk mechanisms between the oral microbiota and local tissues Crosstalk of the oral microbiota with saliva and oral epithelial tissues,
causing epithelial cell apoptosis, immune cell proliferation, and inflammation, which may further exacerbate dysbiosis. Various cytokines act on
vascular endothelial cells to facilitate the onset of cardiovascular disease. MAMPs, microbe-associated molecular patterns; NDK, nucleoside-
diphosphate-kinases; LPS, lipopolysaccharide; TLR, toll-like receptors; MMPs, matrix metalloproteinases; ROS, reactive oxygen species; RNS,
reactive nitrogen species; TNF-a, tumor necrosis factor-a; MMPs, matrix metalloproteinases; Th, T helper; IL, interleukins.
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Neisseria, Firmicutes and Streptococcus are the most extensively

studied. However, studies have found that the dominant genus in

the oral cavity may differ between people in different countries

(Chinese population was dominated by Neisseria (7), Canadian

population was dominated by Veillonella (47), Qatari population

was dominated by Prevotella (48)), which may be related to

sociodemographics. The gut microbiota generally consists of six

main phyla (Firmicutes, Bacteroidetes, Actinobacteria,

Pseudomonadota, Fusobacteriota, and Verrucomicrobiota), of which

Firmicutes and Bacteroidetes are the dominant phyla (80). Hitherto,

the modes of oral-gut interactions remain poorly understood.

The majority of existing studies involve orally administering

mice with oral microbiota and observing changes in the

composition of gut microbiota. A previous study reported that an

oral administration of Porphyromonas gingivalis triggers a clear

floristic separation in gutmicrobiota,with a significant increase and

decrease in the proportions of Bacteroidetes and Firmicutes,

respectively. This was accompanied by a decreased mRNA

expression of tight junction proteins (TJPs) in the small intestines

and a downregulated genetic expression of TJP-1 and occludin,

which are involved in intestinal permeability, thus leading to

increased intestinal permeability and impaired barrier function

(53). In addition to altering immunomodulation and gut barrier

function, the oral administration of Porphyromonas gingivalis can

affect hostmetabolism.Mountingevidence suggests that alterations

in gut microbiota underlie the pathology of metabolic diseases via

gutmetabolite profilemodulation (53, 61). The oral administration

of Porphyromonas gingivalis in C57BL/6 mice decreased and

increased the relative abundances of Bacteroidetes and

Deferribacterota in the gut microbiota, respectively. Moreover,

Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis

revealed significant decreases in the activation of pathways

related to amino and nucleotide sugar metabolisms, chaperones

and folding catalysts, glycosyltransferases, limonene, and pinene

degradation, as well as folate biosynthesis (81). Interestingly, the

oral administration of Porphyromonas gingivalis had opposite

effects on the relative abundances of gut Bacteroidetes and

Firmicutes in both studies. Moreover, the proportions of gut

Bacteroidetes and Firmicutes are key biomarkers in patients with

cardiovascular disease (such as hypertension, coronary heart

disease, and stroke), which also decrease and increase the relative

abundances of Bacteroidetes and Firmicutes, respectively (82–84).

In a large-scale study of salivary and fecalmicrobiota in individuals

from five countries, bioinformatic analysis revealed that 10% of the

oralmicrobiota are transferred toand subsequently colonize the gut

(52). It has been found that the species transfer of opportunistic

pathogens is more frequent among diseased individuals; however,

the presence of Fusobacterium nucleatum subspecies may facilitate

this transfer, and therefore aggravate disease severity (85).

OMT can be employed to further investigate the effect of oral

microbiota on the composition of gut microbiota. Following the

oral transplantation of Fusobacterium nucleatum in healthy

mice, an elevated conversion of protein 1 light chain 3-I (LC3-
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I) to protein 1 light chain 3-II (LC3-II) was observed in the

colorectal tissue (LC3-II is an important molecular marker of

autophagy), and the administration of antibiotics such as

metronidazole eliminated this phenomenon. In addition,

Fusobacterium nucleatum transplantation led to changes in

fecal microbiota composition, as demonstrated by an increased

abundance of fecal Fusobacterium nucleatum (85). Thus, we can

assume that the gut microbiota affects the progression of oral

mucositis, whereas OMT reduces the malignant reduction of

oral and gut bacteria and regulates the gene expression of lingual

tissues, and hence OMT has potential therapeutic significance

(62). The abovementioned two studies illustrate the causality

behind oral-gut microbiota transfer. However, there is ongoing

debate as to whether the effects of the oral microbiota are

predominantly pathogenic or therapeutic, and further

investigations are needed on cardiovascular models.
2.3 Host genotype affects the
oral microbiota

Metagenome-genome-wide association studies have revealed

thathost genespromote thegrowthof specific oral bacteria. Leucine

zipper motif isoform 2 (APPL2) and glucose transporter 9

(SLC2A9) gene polymorphisms have been shown to affect the

abundances of multiple oral bacteria and fecal Bifidobacterium

animalis. These metabolism-related genes are closely associated

with obesity and insulin resistance; further, the mechanisms by

which these gene polymorphisms affect bacterial abundance may

involve specific oral bacterial growth regulation through host

microRNAs (79, 86). Loci CAMTA1 (intron variant)/VAMP3

(rs1616122) (p<5 ×10-6) (87) and loci VAMP8 (rs1561198) (p<5

×10-8) (88) may be replicated in the genetic risk locus of

cardiovascular diseases and periodontitis. The VAMP8 function

is related to membrane vesicular trafficking and corrupting host

immune defense (88). The long non-coding RNA ANRIL

(antisense noncoding RNA in the INK4 locus) regulates glucose

and fatty acidmetabolism and is associated with periodontitis (89).

In addition, epigenetic mechanisms can affect the microbiota

(90). Obesity, insulin resistance, and angiogenic responses are all

cardiovascular risk factors that are closely related to epigenetic

mechanisms, which may promote pathogenesis. In a pathological

state, host immunodeficiency may shift the balance towards

dysbiosis, thereby transforming commensals into pro-

inflammatory pathobionts (39).
3 The oral microbiota is involved in
the formation of products related to
energy metabolism

Previous studies have mostly focused on the identification of

microbial communities that are related to cardiovascular event
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occurrence, and less on oral microbiota metabolites. The oral

cavity is also responsible for the metabolism of energy

substances, and hence the effects of metabolites produced by

the oral microbiota on the host should not be overlooked (91).

As with the gut microbiota, the oral microbiota contains a large

number (approximately 1839) of biosynthetic gene clusters that

produce a variety of metabolites via a wide range of mechanisms

(78). Currently, bacteriocins and sactipeptides are the most

popular secondary metabolites in oral microbiota research,

although their actions have not been linked to cardiovascular

disease occurrence. This paper mainly introduces the

metabolites that are closely associated with cardiovascular

disease occurrence and examines the differences between oral

and gut microbiotas.
3.1 Short-chain fatty acids

SCFAs are key metabolites produced by the microbiota that

are involved in the host’s inflammatory response, lipid

metabolism pathway, and gluconeogenesis (92, 93). Pyruvate is

produced by the microbiota via glycolysis and the pentose

phosphate pathway, and then converted via other branch

pathways into SCFAs, such as acetic, propionic, butyric, and

isobutyric acids (94). Amino acids can also be metabolized to

produce small amounts of SCFAs (91). Oral bacteria can utilize

carbohydrate-active enzymes for the degradation of carbohydrates

into SCFAs, which then support their own energy metabolism

(95). The proteases and peptidases produced by the microbiota

break down proteins in food, and the resulting peptides and

amino acids are converted into SCFAs after deamination (96, 97).

Therefore, different dietary habits, especially sugar intake, can

immensely affect the oral microbiota (96–98). Bacteria that are

capable of utilizing sugars to produce SCFAs include

Streptococcus, Actinomyces, Lactobacillus, Propionibacterium,

and Prevotella (91, 99).

There is conflicting evidence surrounding the local and

systemic effects of SCFAs in the oral cavity. On the one hand,

whilst breaking down carbohydrates to produce SCFAs, the oral

microbiota also generates lactic and acetic acids, thereby causing

SCFA-producing bacteria to act as a double-edged sword. Lactic

and acetic acids reduce the local pH, leading to dysbiosis

development, which exacerbates periodontitis and dental caries

(98, 100). Lactic acid may also promote immune cell activation

and damage oral epithelial cells, leading to persistent local

inflammation (101). On the other hand, there is an ongoing

debate as to whether SCFAs exert protective or destructive effects

on the oral cavity. Due to the differences in host tissues, gut

SCFAs may reduce the occurrence of intestinal epithelial cell

apoptosis and autophagy via the phosphatidylinositide 3-

kinases/protein kinase B/mammalian target of rapamycin

(PI3K/Akt/mTOR) pathway, which leads to the protection of

the local mucosal barrier (102, 103); nevertheless, oral SCFAs
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have been found to alter the expressions of connexins and

adhesion proteins, thereby impairing oral epithelial cell

function (104). Pathogenic bacteria that cause tumor

proliferation and metastasis (105) generally exhibit glycolysis

and acid production functions, which decrease the pH and cause

dysbiosis. Examples of such bacteria include Bifidobacterium

longum, Bifidobacterium dentium, Streptococcus mutans, and

Scardovia wiggsiae (98, 106, 107).

SCFAs exhibit anti-inflammatory effects in plasma. Mice

supplemented with 1% butyrate for 10 weeks displayed a 50%

reduction in the area of aortic plaques compared with those in the

control group; this suggests that butyrate may have an anti-

inflammatory function (84). SCFAs are also known to inhibit

the NF-kB and Akt signaling pathways, thereby reducing plasma

cytokine (TNF-a, IL-12, and INF-g) levels to achieve anti-

inflammatory effects and increase peroxisome proliferator-

activated receptor-g (PPAR-g) pathway expression to improve

insulin sensitivity (108, 109). Furthermore, SCFAs suppress

histone deacetylases (HDACs) and bind with specific G protein-

coupled receptors (GPRs) to achieve cardiovascular protective

effects (110). SCFAs that act as HDAC inhibitors include valproic

acid and sodium butyrate; moreover, the reversible lysine

acetylation process is closely associated with myocardial infarct

size reduction, myocardial hypertrophy, and cardiac fibrosis

suppressions, as well as angiogenesis promotion (111, 112). In

spontaneously hypertensive rats, HDAC activation was found

to promote hypertension and myocardial hypertrophy

occurrence, whereas valproic acid administration led to the

reversion of inflammation and hypertension reversions (113,

114). Among the GPRs, GPR43 is expressed in the heart and

binds with a wide range of SCFAs from formic to valeric acid, to

enhance insulin sensitivity, energy expenditure, and anti-

inflammatory effects (115). Furthermore, Olfactory receptor78

(Olfr78) and GPR41, which are expressed in the kidneys, can

facilitate blood pressure reduction in response to propionate

administration (116). More specifically, Olfr78 is expressed

in the juxtaglomerular apparatus to mediate renin secretion

(117), and GPR41 is expressed in the smooth muscle cells of

renal blood vessels to reduce vascular resistance (116, 118).

Therefore, SCFAs are promising research target metabolites, and

the extent to which they are involved in cardiovascular disease

processes warrants further exploration (Figure 3).
3.2 Nitric oxide

Nitric oxide (NO) is an important gaseous signaling molecule

involved in endo- and exogenous metabolic pathways (119), and

the oral microbiota are a key NO source for exogenous

metabolism. When there is insufficient NO synthesis mediated

by endogenous nitric oxide synthase (NOS), the nitrite (NO2
-)

produced by the oral microbiota serves as an important NO

reservoir in the bloodstream and tissues. Thus, the absence of
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specific nitrate (NO3
-)-reducing bacteria or alterations in oral

microbiota structure may disrupt the NO3
–NO2

–NO pathway,

leading to NO insufficiency in the body (120). Dietary NO3
- is

mainly sourced from green leafy vegetables and can be reduced

by the oral microbiota to NO2
- and NO, via bacterial NO3

-

reductases. As humans lack these enzymes, this process cannot

be accomplished by the host alone. Dietary NO3
- is recycled in

the human body through enterosalivary NO3
- circulation.

NO3
- is first absorbed in the proximal digestive tract along

with food; approximately 25% of NO3
- is actively concentrated

in the salivary glands, such that NO3
- concentration in saliva is

20 times higher than that in plasma (121, 122). Following

concentration in the salivary glands, salivary NO3
- is reduced

via the action of NOS and the anaerobic pathway to form NO2
-,

which re-enters the body through mastication. Subsequently,

NO2
- is converted to nitrous acid in the digestive tract,

followed by the formation of NO and NO donors, as well as

a series of secondary nitrosation and nitrification products

from reactions facilitated by the low gastric pH (123), or

further reduction by nitrite reductases released by the gut

microbiota (124). The genera Veillonella, Actinomyces,

Haemophilus, Neisseria, Streptococcus have been reported to

exhibit NO3
- reduction function (125, 126).

Both NO2
- and NO have strong NO signaling effects that can

stimulate the circulatory system to promote systemic health

(127). NO2
- metabolism is activated by hypoxia, low pH, and

reactions with metalloproteins (128, 129). NO is a key molecule

in the oxidative stress pathway with vasoactive and endothelial
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protective effects. It can reduce blood pressure, ameliorate

atherosclerosis, protect against ischemia-reperfusion injury,

improve platelet aggregation, and exert anti-inflammatory

effects (129). NO deficiency is closely associated with

cardiovascular disease onset, and therefore NO can serve as a

predictor of cardiovascular events (130). The level of NO

produced by the oral microbiota affects the cardiovascular

disease course. Using a murine periodontitis model, a previous

study found that infection with Porphyromonas gingivalis,

Treponema denticola, and Tannerella forsythia for 16 weeks

led to significant plasma NO level reduction, NO-related

pathway (tetrahydrobiopterin/neuronal nitric oxide synthase/

Nuclear factor (erythroid-derived 2)-like 2 (BH4/nNOS/NRF2))

inhibition in the colon and plasma, and atherosclerotic plaque

area increase. Therefore, oral dysbiosis triggered a reduction in

NO synthesis and bioavailability, which resulted in impaired

vascular function (131). In ApoE-/- mice colonized with

Porphyromonas gingivalis, Treponema denticola, Tannerella

forsythia, and Fusobacterium nucleatum for 24 weeks, a

significant decrease in plasma NO levels was observed, which

was accompanied by significant increases in the levels of

inflammatory factors such as IL-1b, IL-13, IL-4, lymphotactin,

and the regulated chemokine (upon on activation normal T cell

expressed and secreted factor (RANTES) (132)). Furthermore,

the mice developed bacteremia, inflammatory response, and

atherosclerosis. These findings indicate that NO, which is

mediated by the oral and gut microbiotas, also plays a crucial

role in the pathogenesis of atherosclerosis (Figure 3).
FIGURE 3

Oral microbiota metabolites and its impact upon cardiovascular health. The oral microbiota produce short chain fatty acids (SCFAs), hydrogen
sulfide (H2S), nitric oxide (NO), trimethylamine oxide (TMAO), lipids and other metabolites from the digestion of different foods, which affect oral
and cardiovascular health. The red box displays the cardiovascular effects of the metabolites and the blue displays the oral effects. Red wrong
number refers to harmful, while green right number refers to beneficial. DANH/NAD+, Nicotinamide adenine dinucleotide; ox-LDL, Oxidized-
Low-Density Lipoprotein Cholesterol; Flavin-containing monooxygenase 3, FMAO3; Trimethylamine, TMA.
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3.3 Hydrogen sulfide

The oral environment is rich in sulfur-containing amino acids

(such as cysteine, and methionine) that can be metabolized via

proteolytic bacteria (including Prevotella and Porphyromonas) to

produce hydrogen sulfide (H2S). H2S is considered the third

most important endogenous gaseous signaling molecule, after

CO and NO, and plays a physiological role in life processes. Its

metabolic process in the body mainly involves the use of

L-cysteine and L-homocysteine as substrates and is completed

under enzymatic catalysis. A paradox also exists for H2S; the

presence of H2S in the oral cavity may lead to halitosis (133),

enhance oral inflammation (134), and even increase the risk of

oral cancer (135). However, in plasma, H2S triggers strong anti-

oxidation, anti-inflammation, as well as insulin resistance

improvement, and thus can regulate several cardiovascular

functions (136). Furthermore, H2S may exert more beneficial

effects by interacting with NO. For example, H2S can activate

endothelial NOS via the phosphorylation of Ser1177, which

significantly increases the bioavailability of NO and

NO-mediated cytoprotective signaling (137).

H2S is produced by a minority of oral bacteria, and hence

remains at low levels in healthy individuals; however, an elevated

oral microbial load associated with the oral disease can

significantly increase overall H2S levels (138), which amplifies

the inflammatory response, thereby leading to periodontal disease

onset. One possible explanation for the amplified inflammatory

response is that H2S can trigger the release of IL-1b and IL-18,

which are inflammatory cytokines. A previous study

demonstrated that the dose-dependent activation of the

cyclooxygenase-2 (COX-2), Akt, and extracellular regulated

protein kinases1/2 (ERK1/2) pathways by H2S can promote the

proliferation of oral cancer cells (135). It is currently unclear

whether the H2S produced by the oral microbiota can affect

plasma H2S concentration and the related metabolic pathways.

However, existing studies have confirmed that the oral

administration of H2S may have a beneficial effect on

cardiovascular metabolism (139, 140). Dietary supplementation

with garlic oil (a natural source of H2S) can help to increase renal

mRNA expression, H2S-generating enzyme activity, NO

bioavailability, and plasma SCFA levels. Moreover, garlic oil

supplementation during lactation and pregnancy reportedly

confers protection against hypertension in adult offspring (141).

In addition, the oral administration of sulfur-containing products

can restore the circulating levels of sulfides, and H2S therapy has

been found to restore adiponectin levels and suppress high-fat diet

(HFD)-induced cardiac endoplasmic reticulum stress. It has been

reported that intraperitoneal injection of Na2S improves survival

through attenuation of inflammasome-mediated adverse

remodeling (142). Furthermore, plasma and myocardial H2S

levels play important roles in the pathophysiology of diabetic

cardiomyopathy (143). However, oral bacteria produce very low
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concentrations of H2S, and there is no evidence of simultaneous

changes in H2S metabolism in oral and cardiac tissues (Figure 3).
3.4 Lipid metabolites

A HFD induces significant changes in the oral microbiota

(144); in addition, it causes lipid regulator activity elevation or

atherosclerosis-promoting metabolite production through

specific bacterial populations. For example, trimethylamine

oxide (TMAO) accelerates cardiac remodeling, stimulates the

renin-angiotensin system, increases oxidative stress, and

accelerates endothelial dysfunction, which can promote the

development of cardiovascular diseases such as heart failure,

hypertension, coronary heart disease, and arrhythmia. The gut

microbiota has been thought to be the main source of TMAO

(145). Specifically, the gut microbiota converts choline and

carnitine from ingested meat and eggs into trimethylamine

(TMA), which passively diffuses into the bloodstream through

the intestinal wall and enters via the portal vein into the liver,

where it is oxidized by flavin-containing monooxygenases into

TMAO. In the oral cavity, TMAO can also be produced by

Streptococcus sanguinis, which has been shown to enhance the

role of the gut microbiota in TMA-accelerated atherosclerosis

(146). Furthermore, oral dysbiosis may exacerbate dyslipidemia

and Porphyromonas gingivalis has been found to have a

significant proteolytic effect on (6)lipoproteins and is involved

in the aggravation of lipid peroxidation (147) (Figure 3).
4 Oral microbiota transplantation
facilitates research on
systemic diseases

Three issues are still heavily debated: 1) the causal relationship

between oral microbiota and cardiovascular diseases; 2) the

pathological mechanism of oral dysbiosis rather than periodontal

disease; 3) the therapeutic effect of oral microbiota. In terms of

treatment, dietary supplements, such as arginine, can also

substantially affect the composition and metabolic output of oral

microbial communities and are known to be involved in NO

regulation (148, 149). Microbiota sequencing suggests that

brushing the teeth could not only remove dental plaque but may

also have a positive effect on the oral chemical environment and the

metabolism of the oral microbial population (150). The combined

analysis ofmulti-omics and the support of experimental techniques

are improving the current situation.

OMT and animal models that mimic the oral dysbiosis of

humans could be used to reconstruct the oral microbiota in mice

and observe changes in cardiovascular disease phenotypes. It has

been reported that oral microbiota may influence the composition

of the intestinal microbiota and induce intestinal injury after
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transplantation. Oral Fusobacterium nucleatum infection is

reportedly an exacerbating factor of colon cancer and affects the

efficacy of radiotherapy (85). In terms of treatment, OMT

ameliorates oral mucositis, which manifests as a remodeling of

the oral mucosal epithelium and lingual papillae, a decrease in the

leukocyte count, and an increase in the number of proliferatingoral

epithelial cells (62). Standardized sampling strategies (151)and

sterilization of oral microbiota (152) are the basis of OMT. At

present, few animal-based studies have employed the OMT

technique; nevertheless, a consensus has not been reached with

regard to its protocol, and thus further investigation is warranted.

Based on the literature, we have compiled a standardized OMT

protocol for the mechanism of cardiovascular disease in the future

(62, 85, 153) (Figure 4).

Sample preparation: Aimed at human systemic diseases,

sampling sites include saliva, supragingival plaque, subgingival

plaque, tongue coating, etc (151). In animal experiments, due to

the limitation of the oral region, the whole oral cavity is generally

collected (152).

Recipient mice preparation: It’s not mandatory to deplete

the oral microbiota of recipient mice. To deplete specific

bacteria, fluoroquinolones are generally more effective against

gram-negative bacteria compared to gram-positive bacteria

(152). Metronidazole can remove gram-negative bacteria (85).
5 Discussion

In 2021,Nature specifically launched research on special topics

in oral health, and repeatedly proposed the potential research value
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of the oral microbiota and its relationship with chronic diseases

(154, 155). There is mounting evidence to support the crucial role

of oral microbiota in cardiometabolic health and diseases.

However, the effects of the oral microbiota on oral and

cardiovascular health remain paradoxical. A more conclusive

finding among the numerous studies is that oral Porphyromonas

gingivalis and Porphyromonas endodontalis can trigger oral and

systemic inflammation as well as immunoreaction in the host.

Under conditions of oral dysbiosis, chronic inflammation and

persistent infection may cause a buildup of immunological

memory in immune cells, which elicits an overreaction of the

immune system to inflammatory and bacterial signals, thereby

creating a mutually reinforcing vicious cycle. The oral microbiota

causes local barrier damage and bacteremia, which have been

previously demonstrated in the gut microbiota. However, the oral

microbiota is upstream to the digestive tract, and therefore can

affect the gut microbiota via microbial transplantation, thereby

further aggravating the cardiovascular disease. This may be a

pathogenic mechanism that is unique to the oral microbiota.

Furthermore, the oral microbiota is involved in various forms of

energy metabolism. Carbohydrates and proteins are metabolized

by the oral microbiota to produce SCFAs. Plant-based dietary

NO3
- are metabolized to produce NO, which has vasoactive effects.

Aromatic and sulfur-containing amino acids produce indole and

H2S, respectively; moreover, H2S causes vascular smooth muscle

relaxation and therefore confers cardiovascular protection. The

oral microbiota also intervenes in the HFD-induced elevation of

blood lipids. Hence, the oral microbiota is a catalyst for the

development of cardiovascular disease induced by poor

dietary habits.
FIGURE 4

Flowchart of a standardized oral microbiota transplantation protocol.
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The metabolites of the oral microbiota have not yet been

fully explored. Although it is known that microbiota structure,

LPS, and metabolites directly affect an individual’s health, there

is no consensus concerning which of the factors is the

predominant pathogenic factor. The effects and mechanisms of

secondary gut microbiota metabolites (such as bile acids and

TMAO) on cardiovascular disease occurrence have been

verified, although these effects have not been detected using

secondary oral microbiota metabolites. Despite ample research

demonstrating the potential significance of oral microbiota, no

study has reported a direct link between oral microbiota and

cardiovascular disease occurrence. Numerous questions remain

unanswered concerning the abovementioned relationship from

the perspective of microbiota metabolites or composition. Many

microbes in the oral cavity are dependent on commensals, and

thus cannot be cultured alone, which may pose obstacles to

understanding the functions of the microbiota. To overcome this

limitation and evaluate the effects of the oral microbiota on

cardiovascular disease occurrence, a future direction of research

should be aimed at developing culture-free deep metagenomic

sequencing and single-cell sequencing techniques. Interestingly,

gut microbiota research may provide numerous ideas and

methods for reference in oral microbiota research. Studies

have shown that the oral microbiota can be modulated using

mouthwash (156) or vegetable-derived nitrate (157, 158) hence

carrying out cardioprotective effects, while tooth brushing and

periodontal therapy can somewhat ameliorate the severity of

cardiovascular diseases (159–162). However, there is currently a

lack of targeted therapy for the oral microbiota, and dietary

interventions are still in the preliminary stage.

Traditional Chinese medicine theorizes that the human

tongue coating can assist in the diagnosis and treatment of

diseases. This clinical practice has been verified at the

microbiome level, and the presence of Campylobacter concisus

in the tongue coating can be used to guide the early diagnosis of

gastric cancer (163). There is a traditional Chinese medicinal

theory that “the tongue is the window of the heart”. Thus, an

accurate analysis of the composition and function of the oral

microbiota will contribute to the diagnosis and treatment of
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cardiovascular disease. This may be one of the most perceptive

insights for oral microbiota research derived from traditional

Chinese medicine and may yield brilliant results in the future.
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36. Blasco-Baque V, Garidou L, Pomié C, Escoula Q, Loubieres P, Le Gall-David
S, et al. Periodontitis induced by porphyromonas gingivalis drives periodontal
microbiota dysbiosis and insulin resistance via an impaired adaptive immune
response. Gut. (2017) 66:872–85. doi: 10.1136/gutjnl-2015-309897
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Impact of oral administration of
single strain Lactococcus lactis
spp. cremoris on immune
responses to keyhole limpet
hemocyanin immunization and
gut microbiota: A randomized
placebo-controlled trial in
healthy volunteers

Mahdi Saghari 1,2, Pim Gal1,2, Hendrika W. Grievink1,3,
Erica S. Klaassen1, Andrea Itano4, Duncan McHale4

and Matthijs Moerland1,2*

1Centre for Human Drug Research (CHDR), Leiden, Netherlands, 2Leiden University Medical Centre
(LUMC), Leiden, Netherlands, 3Leiden Academic Centre for Drug Research (LACDR), Leiden,
Netherlands, 4Evelo Biosciences Inc., Cambridge, MA, United States
Introduction: Lactococcus lactis spp. cremoris has been associated with

promising immunomodulatory results in preclinical trials. The aim of this

study was to investigate the pharmacodynamic (PD) effects of three

monoclonal microbial formulations of L. lactis spp. cremoris (EDP1066) on

the immune response to keyhole limpet hemocyanin (KLH). Potential effects on

the gut microbiota were also investigated.

Methods: The trial was registered on Netherlands Trial Register (trial ID NL7519,

https://trialsearch.who.int). Eighty-one healthy subjects (median 28, range 18–59

years) were randomized to 28 days of enteric-coated capsules at five doses (n =

13) (1.5 * 1012 total cells daily), freeze-dried powder at one dose (n = 12) (3.0 * 1011

total cells daily) or five doses (n = 12), minitablets at one dose (n = 12) or five doses

(n = 12), or placebo (n = 20) prior to KLH immunization. Antibody responses and

circulating regulatory T cells (Tregs) were measured after KLH immunization, and

skin responses were evaluated after a KLH rechallenge by laser speckle contrast

imaging and multispectral imaging. Ex vivo lymphocyte (phytohemagglutinin) and

monocyte (lipopolysaccharide (LPS)) cytokine release assays were explored in the

minitablet-treated groups only. The prevalence of L. lactis spp. cremoris in the

gastrointestinal tract and the impact on the fecal microbiota were assessed by

qPCR and 16S rRNA sequencing, respectively.

Results: Repeated-measures analysis of covariances revealed no significant

treatment effects on the antibody responses to KLH, number of Tregs, or KLH
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skin rechallenge outcomes. Ex vivo LPS-driven cytokine responses in whole blood

were lower in the low doseminitablet group compared to placebo: tumor necrosis

factor (estimated difference (ED) from placebo: −44.2%, 95% confidence interval

(CI)−65.3% to−10.3%), interleukin (IL)-1b (ED−41.4%, 95%CI−63.5% to−5.8%), and

IL-6 (ED −39.2%, 95% CI −56.8% to −14.5%). The fecal presence of L. lactis spp.

cremoris increased during treatment by all EDP1066 formulations and normalized

5 days after the last dose.Microbiomea-diversity did not change by the treatments

compared to placebo.

Discussion: The EDP1066 formulations did not affect the immune response to

KLH immunization in healthy individuals. However, exposure to L. lactis spp.

cremoris in minitablet formulation impacted ex vivo whole blood LPS cytokine

response. The clinical impact of these effects awaits further investigations.

Netherlands Trial Register: trialsearch.who.int, trial ID NL7519.
KEYWORDS

EDP1066, Lactococcus lactis spp. cremoris, gastrointestinal microbiome, keyhole
limpet hemocyanin, late-phase skin reaction, delayed-type hypersensitivity,
autoimmune disease
Introduction

Over the past decades, evidence has emerged for an interplay

between the systemic immune system and the intestinal

microbiome (1–3). The epithelium of the intestinal wall

contains immune cells throughout, including in aggregated

lymphoid nodules (Peyer’s patches), and the lamina propria

and linked mesenteric lymph nodes (1, 4). Regional

specialization of the gut immune network has been thoroughly

studied in mice with differences found in antigenic composition,

leukocyte populations, and gut-associated lymphoid tissue

(GALT) (1). Although less evident, similar observations have

been made in humans. The mucosa of the intestinal wall is also

home to an abundance of microorganisms, and the composition

and distribution of the microbial populations are dependent on

the location within the gastrointestinal (GI) tract (1). Alterations

in either the intestinal immune system or the gut microbiome

can lead to various ailments such as celiac disease and

inflammatory bowel disease (1, 5–7). Importantly, there is a

growing body of evidence that hypothesizes that the effects of

intestinal dysbiosis are not limited to local immunity and can

also modify the immune response more distally as observed in

systemic lupus erythematosus (8), rheumatoid arthritis (9),

psoriasis (10), and more (11, 12). Altering the intestinal

microbiota in these patient populations with intestinal

dysbiosis, therefore, seems a plausible approach to evoke

systemic immune modulation and consequently treat diseases

associated with dysregulated immune responses. This hypothesis
02
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has been tested in more recent trials with orally administered

probiotics (live microorganisms, when administered in adequate

amounts, confer a health benefit on the host) (13, 14), prebiotics

(non-digestible carbohydrates used as nutrients for probiotics),

and/or synbiotics (blend of probiotics and prebiotics), which

seem to have beneficial effects on dysregulated systemic immune

responses (15–19), with some exceptions (15). Intake of certain

probiotics has also been found to increase the responses to

certain vaccinations (e.g., influenza) in humans depending on

the choice, strain, dose, etc., of probiotics and vaccine type, dose,

timing, and route (20). Interestingly, oral probiotics have also

been demonstrated to be effective for the treatment of topical

skin conditions, such as atopic dermatitis, acne, and rosacea

(21), indicating induction of immune regulators. How oral

administration of probiotic bacteria can modulate systemic

immune responses and T cell-mediated inflammation in

remote skin tissue is however unclear. Furthermore, studies

us ing microbia l s t ra in mixtures suggest di fferent

immunomodulatory effects or even antagonism between

species when compared with single-strain microbes,

complicating the understanding of the underlying mechanisms

(22–25).

One such single-strain microbial intervention is EDP1066,

prepared from Lactococcus lactis spp. cremoris identified from

powders used in dairy product manufacturing. Preclinical data

of EDP1066 on both in vitro immune cell cultures and in vivo

murine immune challenge and disease models show promising

results; however, these data are not currently available in the
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public domain. In separate independent research, L. lactis spp.

cremoris restored T-cell impairment in aged mice (26), and

coadministration of L. lactis spp. cremoris with Lactobacillus

paracasei spp. paracasei relieved atopic dermatitis symptoms,

decreased serum IgE concentration, and rebalanced the

population of Th1/Th2 cells in an atopic dermatitis mouse

model (27).

Keyhole limpet hemocyanin (KLH) is a metalloprotein

derived from the hemolymph of the marine mollusk,

Megathura crenulata, which can be found in the Pacific coastal

waters of California and Mexico. As the human body is

unfamiliar with KLH, an in vivo immune response to this

protein can be used to “mimic” an immune response to a

pathogen or allergen in healthy volunteers (such as KLH-

specific antibody formation and increased T-cell response after

intradermal KLH rechallenge), providing essential information

on proof-of-pharmacology during early-phase drug

development (28–34). KLH was clinically introduced in 1967

to study the immunocompetence of humans (35) and since then

is proven to be safe and widely used in clinical trials (28–31,

36–41).

The primary aim of the present study was to characterize the

pharmacodynamic (PD) effects of EDP1066 on the systemic

immune response to an intramuscular immunization with KLH

and secondary to evaluate the effects on a subsequent KLH skin

rechallenge. Because the exposure sites within the GI tract for

ingested microbes may depend on the formulation and therefore

be important for the immunomodulatory effect (1, 42), we also

aimed at comparing different EDP1066 formulations (enteric-

coated capsules, free freeze-dried powder, and minitablets)

having different expected peak exposure sites. Furthermore,

EDP1066 effects on numbers of circulating regulatory T cells

(Tregs) were evaluated, and the ex vivo immunomodulatory

activity of EDP1066 was explored by whole blood stimulation

with the Toll-like receptor 4 ligand lipopolysaccharide (LPS) and

phytohemagglutinin (PHA) for monocyte and lymphocyte

stimulation, respectively. Finally, we aimed at assessing the

impact of EDP1066 on the fecal microbiota, next to routine

safety and tolerability assessments.
Materials and methods

Ethics

The independent Medical Ethics Committee “Medisch

Ethische Toetsingscommissie van de Stichting Beoordeling

Ethiek Biomedisch Onderzoek” (Assen, the Netherlands)

approved the study prior to any clinical study activity. All

subjects provided written informed consent before

participation. The trial was registered on the Netherlands Trial

Register, currently available for consultation at the International
Frontiers in Immunology 03
110
Clinical Trial Registry Platform (trial ID NL7519, https://

trialsearch.who.int).
Subjects

Healthy male and female participants were recruited via

media advertisements and from the subjects’ database of the

Centre for Human Drug Research, Leiden, the Netherlands.

Enrolled participants were 18 to 60 years of age with a body mass

index between 18 and 35 kg/m2 (2) and without previous

exposure to KLH. Health status was verified by recording a

detailed medical history, a complete physical examination, vital

signs, a 12-lead electrocardiogram (ECG), and laboratory testing

(including hepatic and renal panels, complete blood count, fecal

calprotectin, virology, and urinalysis). Subjects were excluded in

case of any disease associated with immune (e.g., active infection,

auto-immune disease, primary or acquired immune deficiency,

and clinically profound allergies) or GI system impairment (e.g.,

short bowel syndrome, diarrhea, inflammatory bowel disease,

irritable bowel syndrome, and celiac disease) or use of

prescription medication within 4 weeks prior to the first dose.

Other exclusion criteria were antibiotic treatment within 42 days

prior to initial dosing and during the course of the study and the

use of probiotic capsules within 14 days of screening and during

the course of the study.
Dose selection and regimen

All EDP1066 and placebo formulations were manufactured

and provided by Evelo Biosciences Inc. (Cambridge, MA, USA).

The doses tested were based on the results of a separate first-in-

man study (43). The highest dose tested contained 1.5 * 1012

total cells per dose, approximately five times the predicted

therapeutic dose level, calculated from allometric scaling of the

preclinically efficacious dose level based on conversion between

mouse and human gut surface area. This dose was well tolerated

in humans. Three different formulations of the investigational

drug were investigated: enteric-coated capsules containing

EDP1066 freeze-dried powder, EDP1066 as free freeze-dried

powder, and non-coated capsules containing enteric-coated

EDP1066 minitablets. For each EDP1066 formulation,

matching placebo formulations were used in order to preserve

the blinding. The three placebo formulations contained similar

excipients as their active treatment counterparts, without the

EDP1066 microbes. The excipients present in the three

EDP1066/placebo formulations (e.g., microcrystalline cellulose,

magnesium stearate, mannitol, citric acid, and sodium

hydroxide) are widely used in drug product manufacturing,

and none of the excipients were expected to elicit immune

system modulation.
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Study design and treatments

This was a phase 1, randomized, placebo-controlled, double-

blind, multiple-dose study in 80 healthy volunteers performed at the

Centre for Human Drug Research (CHDR), Leiden, the

Netherlands, based on the principles of the Declaration of

Helsinki. An overview of the study design is shown in Table 1.

Participants were randomized to one out of the five groups of

EDP1066 or placebo (12:4 per group) in a consecutive order starting

with the lowest number. The randomization code was computer-

generated by a study-independent statistician and was only made

available for data analysis after study completion. One group

received EDP1066 freeze-dried powder in enteric-coated capsules,

supplied as 1.5 * 1011 total cells per capsule, administered orally at a

dose of 10 capsules daily (5× Capsules). Two other groups received

EDP1066 as free freeze-dried powder with an achlorhydria regimen

administered orally at a dose of 3.0 * 1011 (1× Powder) and 1.5 *

1012 (5× Powder) total cells daily. The achlorhydria regimen

consisted of omeprazole 40 mg and aluminum hydroxide/

magnesium hydroxide 200/400 mg administration 3 h prior to

each EDP1066 dose. Both drugs increase the gastric pH (44–46) and

were expected to improve the transition of EDP1066 through the

stomach and into the duodenum. Omeprazole and aluminum

hydroxide/magnesium hydroxide are not known to induce

immune system modulation. Another two groups received non-

coated capsules containing enteric-coated EDP1066 minitablets,

supplied as 1.5 * 1011 total cells per capsule, administered orally

at a dose of 2 (1× Minitablets) and 10 (5× Minitablets) capsules

daily. Participants were dosed once daily for 28 consecutive days.

Compliance was confirmed by the supervised administration of the

study treatment during the in-clinic period. Administration at

home was recorded by an electronic diary. Intramuscular KLH

immunization was performed in the left deltoid muscle after the

completion of the third administration of EDP1066/placebo. KLH

immunization was administered as 0.1 mg of Immucothel®
Frontiers in Immunology 04
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adsorbed in 0.9 mg of aluminum hydroxide (Alhydrogel®) into

0.5 ml of NaCl 0.9% as previously described (47). All subjects were

administered KLH (0.001 mg of Immucothel®) and saline in 0.1 ml

of NaCl 0.9% intradermally in the left and right ventral forearms,

respectively, 23 days after KLH immunization. The skin challenge

response was quantified prior to and 2 days after intradermal KLH

administration. These are similar intervals between assessments as

in our previous studies, which also detail the methodology (29, 32,

36, 38, 41, 47, 48). To account for ambient and environmental

factors, the responses observed at the intradermal KLH

administration site were corrected against the intradermal saline

administration site on the contralateral forearm. A follow-up visit 5

days after the last EDP1066/placebo dose and a study discharge visit

12 days after the last EDP1066/placebo dose were included in order

to assess EDP1066 stool persistence and prevalence and EDP1066

effects on the gut microbiome.
Humoral immunity to keyhole
limpet hemocyanin

The humoral response to KLH immunization was measured

by anti-KLH IgM and IgG serum titers. Serum samples for the

analysis of anti-KLH IgM and IgG were obtained in non-additive

tubes by venipuncture at the time points indicated in Table 1.

Samples were centrifuged at 2,000 g for 10 min with a

temperature of 2°C–8°C, and the serum was aliquoted. The

aliquots were stored at a temperature of −40°C until shipment

and analysis. Samples were assessed by quantitative enzyme-

linked immunosorbent assay (ELISA) for anti-KLH IgM and

IgG as previously described (ELISA developed in-house by

Ardena Bioanalytical Laboratory (Assen, the Netherlands))

(47). For the analysis of human antibodies raised against KLH,

no reference material was available for the preparation of

calibration standards and quality checks. Quantitative
TABLE 1 Study timeline.

Treatment FU

Timepoint D -1 D 1 D 3 D 5 D 10 D 17 D 26 D 28 D 33 D 40

Activity

EDP1066 / placebo administration ←———————————————Once daily——————————————→

KLH immunization X

Anti-KLH IgM and IgG X X X X X

Tregs + ex vivo stimulation assays X X X X X X

Intradermal KLH administration X

Intradermal KLH readout (LSCI, MI) X

Fecal EDP1066 concentration X X X

Fecal microbiome X X X

Admission ←———————————————————→
frontiers
X indicates performed activity.
D, day; KLH, keyhole limpet hemocyanin; Tregs, regulatory T cells; LSCI, laser speckle contrast imaging; MI, multispectral imaging; FU, follow up.
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measurement of human anti-KLH IgG and IgM (in µg/ml) using

a standard curve was not an option. Therefore, the mean optical

density of baseline samples was set to 1.00, and relative ratios

were calculated for all subsequent samples.
Cutaneous blood perfusion
and erythema

Cutaneous blood perfusion quantification was performed

with laser speckle contrast imaging (LSCI) (PeriCam PSI System,

Perimed AB, Järfälla, Sweden), and erythema quantification was

performed with multispectral imaging (Antera 3D®, Miravex,

Dublin, Ireland) as previously described (47). Circular regions of

interest at the intradermal injection sites were defined.

Cutaneous blood perfusion (indicated as basal flow) was

quantitatively assessed and expressed in arbitrary units (AUs).

The homogeneity of cutaneous blood perfusion in the region of

interest (indicated as flare), expressed as values that are +1

standard deviation (SD) from the mean basal flow within the

region, was also quantitatively assessed and expressed in AUs.

Erythema was quantified using the average redness and CIELab

a* Antera 3D® software modalities expressed as AUs. The

average redness modality displays the distribution of redness

using an internal software algorithm, and the CIELab a* value,

which is part of the CIELab color space, expresses color as a

numerical value on a green–red color scale.
Circulating regulatory T cells and ex vivo
stimulation assays

The percentage of circulating Tregs was evaluated by flow

cytometry. Venous blood was collected in sodium heparin tubes

by venipuncture at the time points indicated in Table 1. Red

blood cell (RBC) lysis was performed on heparinized whole

blood using RBC lysis buffer (Thermo Fisher, Waltham, MA,

USA). Leukocytes were stained with fluorochrome-labeled

antibodies CD4-VioBlue, CD25-APC, and CD127-PE;

propidium iodide was used as viability dye (all Miltenyi Biotec,

Bergisch-Gladbach, Germany). Samples were analyzed on a

MACSQuant 16 analyzer (Miltenyi Biotec) using FlowLogic

software (Inivai, Mentone, VIC, Australia). Tregs were defined

as CD4+CD25+CD127−; see Figure S1 for the gating strategy. Ex

vivo lymphocyte and monocyte cytokine release assays were

incorporated later in the study to examine NF-kB-driven
responses and only performed in the minitablet-treated groups

in which the most optimal immunomodulatory results were

expected based on preclinical data. Sodium heparinized whole

blood was incubated with 10 µg/ml of PHA (Sigma-Aldrich,

Deisenhofen, Germany) or 2 ng/ml of LPS (strain O111:B4 from

Escherichia coli, Sigma-Aldrich) for 24 h at 37°C, 5% CO2. After

24 h, the supernatant was collected, and cytokines were
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measured using qualified ELISA-based assays by Ardena

Bioanalytical Laboratory. Interferon gamma (IFN-g) and IL-2

were measured in the PHA-stimulated samples; tumor necrosis

factor (TNF), IFN-g, IL-1b, IL-6, and IL-8 were measured in the

LPS-stimulated samples.
EDP1066 stool persistence and
gut microbiome

Fecal concentrations of EDP1066 for stool persistence and

prevalence and the gut microbiome were measured by

Diversigen Inc. (Houston, TX, USA) using validated

bioanalytical assay methods. In short, fecal microbial DNA

was extracted based on the Zymo Research (Irvine, CA, USA)

fecal DNA extraction methodology. EDP1066-specific primers

and probes had been developed to enable the detection of the L.

lactis spp. cremoris strain. The fecal samples were analyzed using

a qPCR with a lower limit of quantification of 5.0 copies/5 ng

DNA. For gut microbiome analyses, extracted DNA was

prepared for Illumina sequencing via PCR amplification of the

variable region 4 of the bacterial 16S rRNA gene. After PCR

purification using AMPure XP beads (Beckman Coulter Life

Sciences, Indianapolis, IN, USA), sample-specific barcodes using

Illumina Nextera XT Index kit (Illumina Inc., San Diego, CA,

USA) were appended to the PCR products during a second PCR.

The PCR products were purified for a second time, and lastly, the

PCR products were equimolarly pooled and sequenced on the

Illumina MiSeq platform using the MiSeq v3 sequencing kit.
Safety and tolerability

Safety and tolerability were monitored by physical examination,

assessment of vital signs, laboratory parameters (i.e., full blood

count, biochemistry, serology, immunophenotyping, circulating

cytokines, fecal calprotectin, and urinalysis), and ECG data from

12-lead ECGs at regular intervals. Subjects were monitored

continuously for adverse events (AEs). Participants were also

asked to daily complete the Bristol Stool Scale (BSS) and

questions regarding defecation patterns using an electronic diary

app in order to obtain insight into the participants’ stool patterns at

the time of fecal sample collection.
Statistics

The sample size was based on previously performed power

calculations on KLH challenge endpoints (47). In order to detect

a 75% inhibition of the KLH-specific antibody response,

cutaneous blood perfusion response (LSCI), and erythema

response (multispectral imaging), a sample size of 12 per

group was required using a parallel study design, with an a of
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0.05 and a power of 80%. It was deemed appropriate to pool the

placebo-treated participants for analyses in order to increase the

statistical power. Demographic and baseline variables were

summarized by treatment. PD endpoints measured at multiple

time points after baseline were analyzed with a mixed-effects

repeated-measures model with fixed factors treatment, time and

treatment by time, random factor subject, and the baseline value

as covariates. Endpoints with one post-dose measurement were

analyzed with a linear model with treatment as a fixed factor.

Anti-KLH antibody parameters were analyzed without baseline

as a covariate. Skin rechallenge endpoints were analyzed with an

analysis of covariance with treatment as a fixed factor and the

baseline and the change from baseline (CFB) of the saline-

injected control added as covariates. Anti-KLH IgM and IgG

titers and ex vivo monocyte cytokine release assays required log

transformation. The general treatment effect and specific

contrasts were reported as the estimated difference (ED) with

a 95% confidence interval (CI) and graphically as ED with 95%

CI, as least squares mean (LSM) with 95% CI, or as mean with

SD. Fecal EDP1066 concentration was reported graphically as

median with range. Fecal microbiome endpoints were analyzed

using Python (Python Software Foundation, Wilmington, DE,

USA) by Diversigen Inc. Read count and relative abundance

tables were calculated at the genus level and retrieved using

custom Python scripts and the One Codex Python library, an in-

house curated database of bacterial marker genes including 16S

ribosomal RNA. The relative abundances of all microorganisms

at the genus level were calculated to present the occurrence of

the Lactococcus genus relative to all microbial DNA in the

samples. Diversity trend analysis was performed using the

Shannon diversity index. The Shannon diversity index was

calculated for all samples using the One Codex Python library.

Results were aggregated and plotted using custom Python

scripts. To determine whether some genera were more or less

abundant in placebo vs. EDP1066 treated individuals, read count

tables were fed to ANCOM, a statistical framework for the
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analysis of microbiomes. Fecal microbiome diversity was

reported graphically as median with an interquartile range.
Results

Baseline characteristics

The study was conducted between February 2019 and

January 2020. Ninety-five subjects were enrolled in the study

of which 81 were treated (Figure 1). A total of 76 subjects

completed the treatment and the follow-up period. Five subjects

did not complete the study. One subject was withdrawn due to a

possible hypersensitivity reaction to EDP1066. Due to very

limited EDP1066 exposure (two doses) and collected data, it

was decided to replace this subject. The withdrawal in the other

four was unrelated to the study drug or procedures (emergency

dental procedure (one), tetanus vaccination and antibiotics

treatment (one), and consent withdrawal (two)). The baseline

characteristics of all treatment groups are presented in Table 2.

Treatment compliance was 99.4% in subjects who completed the

treatment and follow-up period (range number of days EDP1066

intake 26–28 days). Nine subjects missed one dosing day, and

two subjects missed two dosing days.
Humoral immunity to keyhole limpet
hemocyanin and cutaneous blood
perfusion and erythema

No statistically significant treatment or formulation effects

were observed on the humoral KLH challenge outcomes.

Observations closest to the desired treatment effect were lower

anti-KLH IgG (Figure 2, ED −16.8%, 95% CI −35.5% to 7.3%,

p = 0.15) and IgM (Figure 2, ED −16.8%, 95% CI −31.8% to
FIGURE 1

CONSORT 2010 flow diagram of the progress through the phases of the trial.
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1.4%, p = 0.07) levels in the 5× Minitablets group compared to

placebo, not reaching a level of statistical significance. No

statistically significant treatment or formulation effects were

observed on the KLH skin rechallenge outcomes (Figure 3).
Circulating regulatory T cells and ex vivo
stimulation assays

There were no consistent EDP1066-dependent changes in

the percentage of circulating Tregs over all groups, though

Tregs were significantly increased in subjects treated with 5×

Powder (Figure 4, ED 0.55%, 95% CI 0.14%–0.96%, p < 0.01)
Frontiers in Immunology 07
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compared to placebo. EDP1066 slightly impacted LPS-driven

cytokine release in whole blood cultures. Overall, all

cytokines (IFN-g , IL-1b , IL-6 , IL-8 , and TNF) in

supernatants from LPS-stimulated whole blood cultures

were lower in the 1× and 5× Minitablets groups compared

to placebo. Furthermore, a statistically significant decreased

TNF (Figure 4, ED −44.2%, 95% CI −65.3% to −10.3%, p <

0.05), IL-1b (Figure 4, ED −41.4%, 95% CI −63.5% to −5.8%, p

< 0.05), and IL-6 (Figure 4, ED −39.2%, 95% CI −56.8% to

−14.5%, p < 0.01) release were observed in the 1× Minitablet

group compared to placebo. There were no consistent

findings in supernatants of PHA-stimulated whole blood

samples over the biomarkers and groups.
TABLE 2 Baseline characteristics.

EDP1066 FORMU-
LATION

Enteric-coated
capsules

Free powder Minitablets Placebo

DAILY DOSE 1.5*1012 (5x)
total cells

3.0*1011 (1x)
total cells

1.5*1012 (5x)
total cells

3.0*1011 (1x)
total cells

1.5*1012 (5x)
total cells

n=13 n=12 n=12 n=12 n=12 n=20

DEMOGRPAHICS

Age (years) 30 (18-59) 26 (19-58) 29 (20-59) 25 (18-56) 51 (22-56) 26 (19-
59)

BMI (kg/m2) 24.5 (3.8) 23.7 (2.7) 26.0 (4.4) 21.9 (3.0) 22.0 (2.6) 24.3 (3.7)

Male gender (n) 9 (69.2%) 6 (50.0%) 8 (66.7%) 6 (50.0%) 6 (50.0%) 10
(50.0%)

VITAL SIGNS

Systolic blood pressure
(mmHg)

117 (13) 111 (9) 118 (11) 109 (13) 110 (10) 110 (8)

Diastolic blood pressure
(mmHg)

68 (10) 65 (9) 69 (9) 64 (10) 66 (8) 64 (6)

Heart rate (bpm) 60 (12) 56 (9) 59 (8) 62 (8) 61 (5) 56 (7)

Temperature (°C) 36.4 (0.3) 36.5 (0.3) 36.5 (0.3) 36.6 (0.3) 36.4 (0.5) 36.5 (0.5)

LABORATORY TESTS

Leucocytes (*109/L) 7.47 (2.00) 7.00 (1.50) 7.55 (1.79) 7.27 (2.42) 7.35 (1.34) 6.71
(1.53)

Lymphocytes (*109/L) 2.25 (0.49) 2.22 (0.55) 2.46 (0.50) 2.38 (0.81) 2.55 (0.73) 2.35
(0.77)

Thrombocytes (*109/L) 276.7 (61.3) 254.8 (49.3) 251.9 (35.4) 230.8 (48.7) 253.5 (64.0) 259.3
(46.4)

ALT (IU/L) 21.4 (6.7) 24.4 (8.9) 24.6 (10.4) 20.6 (13.0) 25.6 (11.3) 19.8 (7.7)

AST (IU/L) 20.3 (3.3) 22.4 (7.4) 23.9 (9.2) 20.1 (4.6) 25.7 (5.2) 20.4 (5.9)

CRP (mg/L) 1.05 (1.34) 1.56 (2.36) 1.41 (1.43) 1.58 (2.05) 0.53 (0.50) 1.61
(1.70)

Fecal calprotectin (µg/g) 34.0 (36.2) 11.0 (12.9) 9.0 (11.9) 17.4 (14.6) 16.8 (11.9) 18.0
(15.3)
front
Parameters are shown as mean (standard deviation), age as median (range), and male gender as count (percentage).
ALT, alanine transaminase; AST, aspartate transaminase; CRP, C-reactive protein; BMI, body mass index.
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EDP1066 stool persistence and
gut microbiome

L. lactis spp. cremoris was detected in all actively treated

groups in 64% to 73% of subjects on study day 26. Levels

returned toward baseline 5 days after the last EDP1066 dose

(Figure 5). Dosing by 5× Capsules formulation resulted in the

detection of fecal L. lactis spp. cremoris in all subjects on study

day 26 (Figure 5). Lactococcus genera were represented only in

trace amounts in all samples (Figure S2). The maximum number

of Lactococcus reads detected in any of the subjects was

approximately 500, which corresponds to 0.6% of the total

classified 16S reads. These results suggest that EDP1066 did

not colonize the gut of any of the participants. Microbiome

diversity (Shannon diversity index) was comparable among time

points and treatment groups, albeit some changes could be

observed on individual levels for a subset of the participants

(data not shown). Overall microbiome diversity seemed to be

slightly lower in EDP1066-treated samples; however, many of

these differences probably occured due to the small sample size

when calculations were performed for individual groups. When

Shannon diversity indices were aggregated across all the groups,

the mean Shannon diversity was very stable between time points

and treatment groups (Figure 6). The 10 most abundant genera

were very stable between EDP1066- and placebo-treated subjects

(Figure S3). There was some variation in relative abundance, but
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no large or consistent shifts were seen across all groups.

Variation was most likely due to individual differences in

microbiome composition between subjects and not dependent

on treatment.
Safety and tolerability

Overall, no major safety concerns were observed during the

study. No serious adverse events occurred. Most AEs were related

to the GI tract (93 AEs in 46 subjects) with no distinction between

EDP1066 and placebo treatment (Table S1). One subject was

withdrawn from further treatment after the second EDP1066 dose

due to a possible hypersensitivity reaction to EDP1066 consisting

of a mild burning sensation and itch of the throat lasting

approximately 6 h. No abnormalities were found upon physical

examination and additional vital sign measurements. Due to the

mild and limited nature of the AEs, no further diagnostics were

conducted. No earlier hypersensitivity AEs after EDP1066

administration had been reported. The subject also did not

report any allergies to cheese or other dairy products. Allergic

reactions to excipients used in the 5× Capsule formulation

(microcrystalline cellulose, magnesium stearate, and colloidal

silicon dioxide) have been reported before; however, these are

very rare (49–51). Placebo-treated subjects had slightly fewer AEs

(75%) compared to EDP1066-treated subjects (83.3% to 91.7%).
B
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FIGURE 2

Anti-keyhole limpet hemocyanin (A, B) IgG and (C, D) IgM antibody titers by EDP1066 treatment group. Data are shown as estimated difference
with 95% confidence interval expressed as percentage of placebo in panels (A, C) and as least square means with 95% confidence interval in
panels (B, D) The estimated difference was calculated with a mixed-effects repeated-measures model with fixed factors treatment, time and
treatment by time, and random factor subject as covariate. KLH, keyhole limpet hemocyanin; ED, estimated difference; LSM, least square means.
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No clinically significant changes were observed in laboratory

parameters, vital signs, ECG recordings, and the BSS and

feces questionnaire.
Discussion

In this study, we showed that daily EDP1066 treatment in

encapsulated, powdered, and minitablet formulations and daily

doses up to 1.5 * 1012 total cells, five times the expected

therapeutic dose, did not result in consistent significant effects

on KLH challenge responses and LPS- and PHA-driven cytokine

release in whole blood cultures. We demonstrated that L. lactis

spp. cremoris was detected in the fecal samples and increased

during the 28-day treatment period for all EDP1066

formulations tested. However, the fecal levels returned to

baseline levels 12 days after the end of treatment, indicating

no prolonged persistence. Overall, EDP1066 was considered safe

and well-tolerated. To the best of our knowledge, the current

trial is the first to investigate the effects of orally administered L.

lactis spp. cremoris in high doses on systemic immune responses

and the gut microbiome.
Frontiers in Immunology 09
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EDP1066 did not show a consistent immunomodulatory

effect on KLH-driven responses in the present study. Though no

statistical significance was reached, decreased anti-KLH

antibody titers and cutaneous blood perfusion and erythema

were observed in the 5× Minitablets group compared to placebo.

Although circulating Tregs as a percentage of CD4+ T cells were

significantly increased in subjects treated with 5× Powder

compared to placebo, it should be noted that these percentages

remained within the general range of Tregs in the CD4

population as reported in the literature (5%–10%) (52, 53).

The PD results observed in this study are in contrast with

preclinical data where EDP1066 induced IL-10 production in

in vitro human dendritic cell (DC) cultures, without significant

induction of pro-inflammatory cytokines (unpublished data),

and EDP1066 significantly reduced KLH- and ovalbumin-

induced ear inflammation in mice and improved intestinal

pathology and weight loss in an acute dextran sulfate sodium-

induced colitis mouse model (unpublished data). Also in

contrast to our results, other preclinical trials reported that L.

lactis spp. cremoris restored T-cell impairment in aged mice (26)

and that coadministration of L. lactis spp. cremoris with L.

paracasei spp. paracasei showed promising results in an atopic
C

B
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A

FIGURE 3

Cutaneous blood perfusion by (A) LSCI basal flow and (B) LSCI flare, erythema by (C) CIELab a* (multispectral imaging), and (D) average redness
(multispectral imaging) after intradermal KLH and saline administration by three EDP1066 formulations of Lactococcus lactis spp. cremoris: i)
enteric-coated capsules, ii) freeze-dried powder (dose 1× and 5×), and iii) minitablets (dose 1× and 5×). The average redness modality displays the
distribution of redness using an internal software algorithm and the CIELab a* value, which is part of the CIELab color space, expresses color as a
numerical value on a green–red color scale. Data are shown as mean change from baseline (CFB) with standard deviation. LSCI, laser speckle
contrast imaging; MI, multispectral imaging; KLH, keyhole limpet hemocyanin; CFB, change from baseline; AU, arbitrary unit; i.d., intradermal.
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dermatitis mouse model (27). Probiotics in general have been

shown to be effective in (the prevention of) multiple diseases (20,

25). Multiple studies have reported enhanced responses to

influenza vaccination after the intake of probiotics (54–58).

Another study showed an enhanced response to hepatitis A

vaccination after probiotic intake (59). Single strains of both

Lactobacillus rhamnosus GG and Lactobacillus helveticus R52

have been shown to reduce the risk of developing antibiotic-
Frontiers in Immunology 10
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associated diarrhea (25). L. rhamnosus GG single-strain

treatment was also effective in the prevention of necrotizing

enterocolitis (25). Furthermore, Bifidobacterium animalis spp.

lactis Bb12 prevented upper respiratory tract infections,

indicating distally evoked immune system effects (25).

EDP1066 treatment suppressed KLH-driven increases in LPS-

driven cytokine release ex vivo in both the 1× and the 5×Minitablets

groups, reaching statistical significance for IL-1b, IL-6, and TNF-a
FIGURE 5

Fecal concentration of Lactococcus lactis spp. cremoris measured by quantitative polymerase chain reaction. Data are shown as median with
range. qPCR, quantitative polymerase chain reaction.
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FIGURE 4

(A) Circulating regulatory T cells as percentage of CD4+ T cells from heparinized blood. Monocyte cytokine release assay of (B) tumor necrosis
factor, (C) interleukin-1b, and (D) interleukin-6 release from whole blood cultures after ex vivo lipopolysaccharide stimulation. X-axis represents
number of days after initial EDP1066 dose. Data are shown as least squares mean change from baseline (CFB) with 95% confidence interval.
LSM, least squares mean; CFB, change from baseline; LPS, lipopolysaccharide; TNF, tumor necrosis factor; IL = interleukin.
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in the 1× Minitablets group, which may indicate innate immune

system inhibition (60). The observed increase in LPS-driven

cytokine release by monocytes in placebo-treated subjects may be

attributed to KLH immunization, priming the innate immune

response for subsequent stimulation. Although KLH is primarily

recognized as an agent that induces cell-mediated responses, there is

evidence that KLH immunization and rechallenge most likely cause

a mixed reaction of innate, late-phase skin reaction and delayed-

type hypersensitivity (61). Furthermore, similar to LPS, KLH

induces innate immunity via the activation of NF-kB (60).

In the present study, we evaluated the immunomodulatory

activity of EDP1066 as powder formulation (free and in enteric-

coated capsules) and as minitablets in non-coated capsules. The

minitablets in non-coated capsule formulation were expected to

achieve the highest concentration of relatively intact EDP1066

bacteria in the duodenum. Non-coated capsules were used to ease

the intake of relatively large numbers of enteric-coated

minitablets and to preserve the blinding. Based on in vitro

experiments, the minitablet formulation was predicted to release

in the proximal small intestine (unpublished data). Duodenal

EDP1066 exposure was hypothesized to be important for the

immunomodulatory effect, as immune cell subsets are found at

the highest concentrations in the duodenum and jejunum,

particularly the CD103+CD11b+ DCs, which are thought to

play distinct roles in intestinal immune homeostasis (1). The

small intestine is the most likely point where luminal contents can

access GALT and have a pronounced immune-regulatory effect

(1). However, we did not observe any differences between the

formulations on the humoral KLH challenge and subsequent skin

KLH rechallenge, circulating Tregs, gut microbiome, and safety

and tolerability outcomes. We did observe increased fecal

detection of EDP1066 in the capsule formulation compared to

powder and minitablet formulations. This can possibly be

explained by the fact that the enteric-coated capsules dissolve
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lower in the GI tract leading to postponed EDP1066 release and

higher EDP1066 exposure toward the end of the GI tract.

The current human trial did not confirm previous findings

from preclinical trials that oral administration of EDP1066 had

immunomodulatory effects as measured on antibody response to

KLH immunization or skin immune responses to KLH re-

challenge. There are several potential explanations for the

suboptimal translation of EDP1066 activity between mice and

humans. Firstly, it was impossible to do conventional allometric

scaling between mice and humans. Other than for most

medicinal products, the exposure to EDP1066 was considered

to remain restricted to the GI tract. This was hypothesized to be

sufficient, since the mechanism of action of EDP1066 only

requires local interaction with cells of the GI mucosa, driving

subsequent systemic effects. Under these conditions,

assumptions of traditional allometric scaling may not hold

true. For this reason, relative GI mucosal surface area and

stool mass are key parameters for allometric scaling. The

relative GI mucosal surface area has been estimated as a

function of body mass to the ¾ power (62). As the dose

selection rationale was mainly hypothetical, the actual

EDP1066 doses administered might have been too low to exert

significant PD effects. For practical reasons, the administration

of higher EDP1066 doses was not explored since this would

require a daily intake of >10 capsules. Secondly, differences in

diet and also differences in microbial composition are likely to

introduce highly variable individual responses to microbial

exposure. As L. lactis spp. cremoris is used by the dairy

industry, it is likely that participants have developed at least

some intestinal tolerance to this microbe (63), possibly

explaining the differences observed between the current trial

and preclinical data. Furthermore, apart from the well-known

immunological differences between rodents and humans,

EDP1066 activity is dependent on relatively unknown
FIGURE 6

Fecal microbiome diversity calculated using the Shannon diversity index by treatment group per time point. Data are shown as median with
interquartile range. AU, arbitrary unit.
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physiological systems or principles such as the GI microbiome

and the interplay between the local and systemic immune

systems. The exact molecular target and target location for

EDP1066 are unknown, as are the exact EDP1066 components

required for biological effect, further complicating inter-species

translation. As intestinal dysbiosis can cause altered local as well

as systemic immune system changes, we hypothesized that live

EDP1066 would be required to interact with the gut microbiome

and local immune system. However, based on the results

observed in this study, we cannot exclude the possibility that

dead EDP1066 could potentially also provoke immune system

responses. Finally, the in vitro prediction of the release criteria of

the enteric-coated capsules and minitablets may underestimate

the time to release, suggesting that the true release of EDP1066

was in the distal small intestine or colon rather than in the

proximal small intestine.

In conclusion, oral EDP1066 treatment for healthy

volunteers did not consistently result in significant immune

modulation. Future clinical studies should build onto the

insights obtained in this study and further investigate

formulation versus local release and dose–effect relationships,

which will ultimately be beneficial not only for EDP1066 but also

for the field of therapeutic human commensals in general.
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Probiotic effects on immunity
and microbiome in HIV-1
discordant patients

Carlos Blázquez-Bondia1, Mariona Parera1,
Francesc Català-Moll1, Maria Casadellà1,
Aleix Elizalde-Torrent1, Meritxell Aguiló2,
Jordi Espadaler-Mazo2, José Ramon Santos3,
Roger Paredes1,3,4,5,6 and Marc Noguera-Julian1,4,6*

1IrsiCaixa AIDS Research Institute, Badalona, Spain, 2AB-BIOTICS SA (Kaneka Group), Barcelona, Spain,
3Infectious Diseases Department and Fundació Lluita contra les Infeccions, Hospital Universitari Germans
Trias i Pujol, Badalona, Catalonia, Spain, 4Centre for Health and Social Care Research (CESS), Faculty of
Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Barcelona, Spain,
5Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain, 6Infectious Disease Networking
Biomedical Research Center, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas
(CIBERINFEC), Carlos III Health Institute, Madrid, Spain
Background: Some HIV-1 infected patients are unable to completely recover

normal CD4+ T-cell (CD4+) counts after achieving HIV-1 suppression with

combined Antiretroviral Therapy (cART), hence being classified as immuno-

discordant. The human microbiome plays a crucial role in maintaining immune

homeostasis and is a potential target towards immune reconstitution.

Setting: RECOVER (NCT03542786) was a double-blind placebo-controlled

clinical trial designed to evaluate if the novel probiotic i3.1 (AB-Biotics, Sant

Cugat del Vallès, Spain) was able to improve immune reconstitution in HIV-1

infected immuno-discordant patients with stable cART and CD4+ counts

<500 cells/mm3. The mixture consisted of two strains of L. plantarum and

one of P. acidilactici, given with or without a fiber-based prebiotic.

Methods: 71 patients were randomized 1:2:2 to Placebo, Probiotic or probiotic +

prebiotic (Synbiotic), and were followed over 6 months + 3-month washout

period, in which changes on systemic immune status and gut microbiome were

evaluated. Primary endpoints were safety and tolerability of the investigational

product. Secondary endpoints were changes on CD4+ and CD8+ T-cell (CD8+)

counts, inflammation markers and faecal microbiome structure, defined by alpha

diversity (Gene Richness), beta diversity (Bray-Curtis) and functional profile.

Comparisons across/within groups were performed using standard/paired

Wilcoxon test, respectively.

Results: Adverse event (AE) incidence was similar among groups (53%, 33%, and

55% in the Placebo, Probiotic and Synbiotic groups, respectively, the most

common being grade 1 digestive AEs: flatulence, bloating and diarrhoea. Two

grade 3 AEs were reported, all in the Synbiotic group: abdominal distension

(possibly related) and malignant lung neoplasm (unrelated), and 1 grade 4 AE in
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the Placebo: hepatocarcinoma (unrelated). Synbiotic exposure was associated

with a higher increase in CD4+/CD8+ T-cell (CD4/CD8) ratio at 6 months vs

baseline (median=0.76(IQR=0.51) vs 0.72(0. 45), median change= 0.04

(IQR=0.19), p = 0.03). At month 9, the Synbiotic group had a significant

increase in CD4/CD8 ratio (0.827(0.55) vs 0.825(0.53), median change =

0.04(IQR=0.15), p= 0.02) relative to baseline, and higher CD4+ counts (447

(157) vs. 342(73) counts/ml, p = 0.03), and lower sCD14 values (2.16(0.67) vs

3.18(0.8), p = 0.008) than Placebo. No effect in immune parameters was

observed in the Probiotic arm. None of the two interventions modified

microbial gene richness (alpha diversity). However, intervention as

categorical variable was associated with slight but significant effect on Bray-

Curtis distance variance (Adonis R2 = 0.02, p = 0.005). Additionally, at month 6,

Synbiotic intervention was associated with lower pathway abundances vs

Placebo of Assimilatory Sulphate Reduction (8.79·10-6 (1.25·10-5) vs. 1.61·10-5

(2.77·10-5), p = 0.03) and biosynthesis of methionine (2.3·10-5 (3.17·10-5) vs.

4·10-5 (5.66·10-5), p = 0.03) and cysteine (1.83·10-5 (2.56·10-5) vs. 3.3·10-5

(4.62·10-5), p = 0.03). At month 6, probiotic detection in faeces was

associated with significant decreases in C Reactive Protein (CRP) vs baseline

(11.1(22) vs. 19.2(66), median change= -2.7 (13.2) ug/ml, p = 0.04) and lower IL-

6 values (0.58(1.13) vs. 1.17(1.59) ug/ml, p = 0.02) when compared with samples

with no detectable probiotic. No detection of the probiotic was associated with

higher CD4/CD8 ratio at month 6 vs baseline (0.718(0.57) vs. 0.58(0.4), median

change = 0.4(0.2), p = 0.02). After washout, probiotic non-detection was also

associated with a significant increase in CD4+ counts (457(153) vs. 416(142),

median change = 45(75), counts/ml, p = 0.005) and CD4/CD8 ratio (0.67(0.5)

vs 0.59(0.49), median change = 0.04 (0.18), p = 0.02).

Conclusion: A synbiotic intervention with L. plantarum and P. acidilactici was

safe and led to small increases in CD4/CD8 ratio and minor reductions in

sCD14 of uncertain clinical significance. A probiotic with the same composition

was also safe but did not achieve any impact on immune parameters or faecal

microbiome composition.
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Introduction

One of the key aspects of HIV infection is a fast and

widespread destruction of CD4+ T-lymphocytes (1), which

becomes more exacerbated in the latest stages of infection (2,

3). Additionally, the virus presents the ability to establish

reservoirs in which it can remain dormant mostly in high-

CCR5 memory CD4+ T-cells (4, 5), where it remains

integrated in the host genome (3–5). The ability to maintain a

latency state has made it impossible to achieve a complete

remission, although it can be life-long supressed in most

patients with combined Antiretroviral Therapy (cART) (6).

Nevertheless, even when the virus remains supressed, an
02
123
important fraction of HIV-infected people will become

immunodiscordant, as they fail to fully recover CD4+ counts

and immune function (7–9) especially those who failed to

receive cART on the early stages of infection.

This lack of recovery stems from the virus early replication

site and its reservoir sanctuary: the Gut-Associated Lymphoid

Tissue (GALT) (10), where the biggest population of high CCR5

+ CD4+ T-cells resides. Depletion of such cells in the gut is

coupled with a decrease in Treg numbers (11), but more slowly

than its CD4+ counterpart, lowering the ratio between Treg and

effector CD4+ cells, especially the Th17 subtypes (11, 12). A

relative decrease of the Th17/Treg ratio has been correlated to a

higher chance of disease progression (13). Th17 have also been
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shown to maintain gut barrier integrity, stimulating tight

junction expression in epithelial cells (14), as well as

modulating bacterial populations in the mucosa by secreting

antimicrobial peptides (15). Hence, the skew in the Treg/Th17

ratio compromises the gut barrier integrity, and creates a

feedback loop where dysbiosis and gut inflammation cause a

leakage of bacterial compounds into the bloodstream (16), which

increases residual systemic inflammation (17) and leads to

further T-cell exhaustion and senescence (18), which further

promotes dysbiosis and gut barrier. This vicious circle ends up

causing immune exhaustion and may hinder any attempt of

immune reconstitution.

While many approaches have been considered to recover

immunity and gut integrity, modulation of the gut microbiome

awakened great interest recently. It is now known that some

bacterial species directly affect the immunologic makeup of the

gut barrier (19) by modulating tryptophan to kynurenine

catabolism (17). This pathway is thought to promote Treg

differentiation (17) and has been shown to increase with

presence of some Proteobacteria (20) and decrease with

Lactobacillus species (20, 21). For this, probiotics have been

widely tested with promising results for wide variety of

ailments, both from the gut itself such as Inflammatory Bowel

Disease (IBD) (22), diarrhoea, both HIV-induced (23) and by

other pathogens (24) and even outside of the gut, such as

allergies and upper respiratory infections (25).

Recently, the gut microbiome has awakened a great interest in

the scope of HIV clinical management, as immune recovery has

been shown to be affected by the state of the gut mucosa (26).

Cross-sectional studies have found microbiome signatures

correlated to immune reconstitution such as higher Prevotella/

Bacteroides ratio and enrichment of Faecalibacterium prausnitzii

and Coprococcus comes (27) or increased abundance of

Fusobacterium negatively linked to immune recovery (28).

Consequently, probiotic interventions have have become an

interesting therapeutic target, as they promote tolerogenicity

(29), displace pathogenic strains, and reduce inflammation (30),

which could reduce T cell depletion and senescence, opening a

way to improve immune reconstitution after viral suppression.

However, many different combinations of probiotic strains and

prebiotic substrates have been tested with mixed results (30, 31).

In this study, we performed a randomized double-blinded

trial to test the safety, tolerability and effectiveness of a probiotic

consisting of two strains of Lactobacillus plantarum and one of

Pediococcus acidilactici, combined with prebiotic fibers over the

course of 6 months, followed by a 3-month long washout period

in immunodiscordant (<500 counts/ml) HIV patients with

stable cART. The primary endpoints consisted of safety and

tolerability. The secondary endpoints were changes in CD4+,

CD8+ counts, CD4/CD8 ratio, inflammation, and gut

permeability markers, as well as changes in the gut

microbiome taxonomical and functional composition after 6

months of intervention + 3 of washout.
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Materials and methods

Ethics statement

The study was reviewed and approved by the Institutional

Review Board of the Hospital Universitari Germans Trias i Pujol

(reference PI-13-046). All participants provided written

informed consent in accordance with the World Medical

Association Declaration of Helsinki, Fortaleza and Brazil,

October 2013 and personal data was managed according to

Spanish data protection law (LOPD 15/1999). The study

concept, design, patient information and results were discussed

with the FLSida Community Advisory Committee, in

accordance with AB-Biotics internal QC auditing. All available

information can be found in the protocol (Supplementary

Methods), and the study is registered in clinicaltrials.gov,

accession: NCT03542786.
Cohort description

This study took place in a two-year span between 2017 and

2019 and was designed as a masked randomized, placebo-

controlled, double-blinded three-arm study in a cohort of 100

HIV+ patients with the following inclusion criteria: 18 years of age

or older, chronic HIV infection with stable Anti-Retroviral

Treatment (cART) ongoing for longer than a year prior to the

start, peripheral CD4+ counts lower than 500 cells/ml in plasma,

<50 HIV copies/ml in plasma for at least 6 months before the start,

no antibiotic treatments at least 1 month before start, lack of

severe AIDS-defining diseases and no pregnancy. An additional

filter was later implemented, in which only those patients with at

least 2 samples along the trial would be selected for further

analysis, to preserve the longitudinal approach of the study.

After inclusion, patients were randomly assigned to one of

the three following groups: Placebo, Probiotic or Synbiotic in a

1:2:2 ratio and matched by 3rd cART drug class: Integrase Strand

Transfer Inhibitors (INSTI), Non-nucleoside reverse

transcriptase inhibitors (NNRTI) or Protease Inhibitors (PI),

and CD4+ nadir higher or lower than 200 cells/ml at the time

of screening.

All recruited patients followed a 6-month treatment

followed by a 3-month washout periods, with check-ups at

months 0,1,3,6 and 9. Every follow-up visit consisted of a

sample collection of both blood and faeces (except at the 1st

month checkout, where only stool was collected), a physical

examination and a questionnaire about quality of life, and self-

reported treatment adherence since last check-up. During the

treatment period, all participants received different formulation

depending on whether they received a prebiotic + probiotic

(Synbiotic), probiotic alone (Probiotic) or a placebo (Placebo),

which was administered orally as dissolved powder

sachets, daily.
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Treatment formulations

The probiotic used in this study consisted of a mix of 3

Lactobacillales strains: L. plantarum (strains CECT7484 and

CECT7485) and P. acidilactici (strain CECT7483). In the

Synbiotic group, the probiotic was co-administered with two

different mixes of vegetal fibers consisting of pectin, inulin, oat,

acacia, maltodextrin polydextrose and Partially Hidrolyzed Guar

Gum (PHGG) that were alternatively combined with the

probiotic every other week (the exact formulation can be

found in the protocol). The Probiotic and Placebo groups

received excipient-containing envelopes that were identical to

those of the Synbiotic group to preserve the double-blind. The

exact composition and manufacturing process can be found in

Supplementary Methods.
T-cell and inflammation
marker quantification

Blood samples were collected in fasting conditions at the

same time as stool samples, when possible. A fraction of these

samples was used as whole blood to perform peripheral CD4+

and CD8+ counts by flow cytometry at the Germans Trias i Pujol

Hospital. Soluble markers of microbial translocation in plasma

(sCD14 and LBP) and inflammation markers (IL-6, D-Dimer

and CRP) were quantified using sCD14 and LBP DuoSet ELISA

development system (pg/mL), R&D systems (Minneapolis,

MN), Human IL6- High Sensitivity ELISA, Invitrogen

(Waltham, Massachusetts, USA) and RayBio Human D-Dimer

or CRP Elisa Kit, RayBiotech (Peachtree Corners, GA,

USA), respectively.
Faecal DNA extraction, library
preparation and sequencing

Stool samples were collected by the patient or nursing staff

according to the GUT (DNA Stabilized-frozen Inc., Ottawa,

Ontario, Canada) extraction kit. Samples were stored at -80°C

till processing. Faecal DNA was extracted using the PowerSoil

DNA Extraction Kit (MO BIO Laboratories, Carlsbad, CA,

USA), which was then fragmented into 300 bp clone-sized

libraries using Nextera-XT Illumina kit (Illumina, Inc. San

Diego, CA, USA) and sequenced in an Illumina HiSeq

sequencer (Illumina, Inc. San Diego, CA, USA) with a

sequencing depth target of 20 million reads.
Frontiers in Immunology 04
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Sequence filtering and quality control

Raw.fastq files were first processed for quality control. Read

Quality fi ltering and trimming was performed with

trimmomatic (32), with a 30-nt sliding window approach,

trimming when the average phred score dropped below 20.

Trimmed reads were then aligned against the human Hg19

genomic database using bowtie2 to remove any human

DNA contamination.
Taxonomy annotation

Taxonomy assessment was performed with Metaphlan3

(33), performing a marker gene-based quantification, using the

CHOCOPhlan 201901.1 database. The obtained data was

packaged into an R phyloseq structure.
Gene function and pathway
diversity analysis

Parallel to taxonomic analysis, gene function and metabolic

pathway quantification was performed from the raw, quality-

filtered sequencing data using HUMAnN3.0 (33). The software

was run with its standard configuration and built-in databases.

Results from all samples were combined into a unique table

using HUMAnN3 inner script merge_tables.sh and clustered

into Metacyc pathway abundances.
Alpha and beta diversity metrics

In this study, ecological alpha diversity was studies as gene

richness. To obtain it, the post-QC sequencing data was aligned

against the Integrated Gene Catalog (IGC) database (34) using

Bowtie2 (35). The output was sampled at different numbers of

reads to obtain rarefaction curves, from which the minimum

sampling threshold was defined as the 95th percentile of

maximum per-sample coverages, which equalled 2·107 reads.

Samples with max coverages below this threshold were

discarded, and those above were subsampled to said value to

remove coverage biases.

For beta diversity, the taxonomy tables were used to

construct pairwise Bray-Curtis distance matrixes between

samples. The obtain matrices were then projected into NMDS

coordinates using the function MetaMDS from the R vegan (36)

package using their default configuration.
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Statistical testing

All statistical testing was performed using R 4.0.2. Since most

of the quantitative variables tested departed from normality,

assessed by Shapiro-wilk test, comparisons across group were

performed using Wilcoxon Rank-Sum test, while within-group,

longitudinal comparisons were performed using Wilcoxon rank-

sum matched-pairs test, with Benjamini-Hochberg correction.

In the case of gene pathways, Kruskal-Wallis tests between

groups were performed to filter out those pathways which

changed in any timepoint other than basal, before proceeding

to the pairwise group/timepoint comparisons using a p < 0.05

cut-off. Statistical results are reported as median (IQR), and

longitudinal tests included median change (IQR). The number

of patients per group for each statistical comparison performed

in this study can be found in Supplementary Tables 3, 4, for

categorical and longitudinal comparisons, respectively.

In addition, we studied the changes in time for numerical

variables (diversity, inflammation, T-cells, and pathways) with

Linear Mixed Models (LMM) using the Lme4 package. Models

were built in two different approaches: one where the dataset was

split by group, in which the LMM would be built for each using

time as the only fixed effect, in order to study the magnitude of

the change for each group and its significance, and another

where an LMM was used with the entire dataset with both group

and time as fixed effects, to assess the difference in change in

slope between groups and its significance via two-way ANOVA.

In all cases, the patients individual IDs were inputted as the

random variable.

Bray Curtis distances were compared between groups using

PERMANOVA. T-cell counts, inflammation and gut

permeability markers were correlated with the NMDS

coordinates using Spearman correlation.
Results

Cohort description and follow-up

From the original goal of 100 patients recruited of which 92

passed all the inclusion criteria, 89 patients were successfully

randomised for the study. At study ending, 53 patients had

complete follow-up and 36 had incomplete follow-up, of which

18 provided samples for at least two timepoints. Thus, 71

patients were finally selected for analysis, resulting in a

proportion of 18 patients in the Placebo, 21 in the Probiotic

and 32 in the Synbiotic groups (Figure 1). The self-reported

mean adherences to the treatment showed no significant

differences between groups (96% for the Placebo, 89.7% for

Probiotic and 96.6% for the Synbiotic group). Demographic and

clinical variables (Table 1, Supplementary Table 1) were tested

with the corresponding statistical method depending on their

normality according to a previous Shapiro test.
Frontiers in Immunology 05
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Safety and adverse events

The proportion of patients who suffered at least one Adverse

Event (AE) during the study remained comparable between all

arms, with no significant differences found: 9 patients with AE

(50%) in the Placebo, 7 (33%) in the Probiotic and 17 (53%) in

the Synbiotic groups (Supplementary Table 2). Most AEs

consisted of severity grade 1 and 2, being the gastrointestinal

conditions the most frequent, especially flatulence, dyspepsia,

and diarrhoea, although other conditions were reported, but

could not be associated with treatment group assignation. Two

instances of severe grade 3 AEs were reported: abdominal

distension (possibly related) and malignant lung neoplasm

(unrelated), cancer (unrelated), while one grade 4 event

(hepatocarcinoma, unrelated) was reported in the

Placebo group.
Synbiotic formulation does not affect
CD4+ and CD8+ counts but correlates
with increased CD4/CD8 ratio and
reduced inflammation

CD4/CD8 ratio showed a slight albeit significant increase in

the Synbiotic group at month 6 respect to baseline (median=0.76

(IQR=0.51) vs 0.72 (0.45), median change= 0.04 (0.19), p =

0.03). At month 9, the Synbiotic group still had increased CD4/

CD8 vs baseline (0.827 (0.55) vs 0.825 (0.53), median change =

0.04 (0.15), p= 0.02), CD4+ was higher (447 (157) vs 342 (73)

counts/ml, p = 0.03), and sCD14 was lower (2.16 (0.67) vs 3.18

(0.8) p = 0.008) than Placebo (Figure 2).

Analysis with LMMs mirrored most of these previous

findings, a significant increasing trend was found for both

CRP (ANOVA p = 0.049, slope = 4.5) and CD4/CD8 ratio

(p = 0.002, slope = 0.012) in the Synbiotic group

(Supplementary Figure 2).

Finally, CD8+ counts appeared to be impacted by overall

microbiome structure, as it was positively correlated with the 2nd

coordinate of the NMDS (Supplementary Figure 1) and, as a result,

CD4/CD8 ratio was negatively correlated (Supplementary Table 5)
Intervention doesn’t correlate with faecal
microbiome changes

No significant differences in gene richness were detected

either between groups or longitudinally within groups

(Figure 3A). Beta diversity did not increase either, as no

changes in Bray Curtis distance vs each patient’s respective

baseline could be observed (Figure 3B). NMDS showed no

significant clustering based on Bray-Curtis distance and the

intervention variable only explained 1.8% of the variance

(Adonis R2 = 0.02, P=0.0051; Figure 3C).
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Synbiotic supplementation affects
sulphate assimilation on the gut

An exploratory analysis between groups identified 3 biochemical

pathways with significant changes in relative abundance at month 6

(Kruskal-Wallis p < 0.01). Those pathways were consistently lower in

the Synbiotic group respective to the Placebo: L-methionine

biosynthesis (Met) (2.3·10-5 (3.17·10-5) vs 4·10-5 (5.66·10-5), p =

0.03), Assimilatory Sulphate Reduction (ASR) (median = 8.79·10-6

(IQR=1.25·10-5) vs 1.61·10-5 (2.77·10-5), p = 0.03), and cysteine

biosynthesis (Cys) (1.83·10-5 (2.56·10-5) vs 3.3·10-5 (4.62·10-5), p =

0.03). Atmonth 9, all three pathways increased in the Synbiotic group

vs month 6 (Met: 3.8·10-5 (4.2·10-5) vs 2.3·10-5 (3.17·10-5), median
Frontiers in Immunology 06
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change = 1.4·10-5 (3.12·10-5), p = 0.03; ASR: 1.5·10-5 (1.7·10-5) vs

8.79·10-6 (1.3·10-5) median change = 5.6·10-6 (1.3·10-5); p = 0.03; Cys:

3.1·10-5 (3.2·10-5) vs 1.8·10-5 (2.6·10-5), median change= 1.13·10-5

(2.42·10-5), p = 0.03), but no significant changes were found in the

other groups (Figure 4).

A more in-depth approach with LMMs suggested a significant

decreasing trend in the relative abundances of all three pathways

over time in the Synbiotic group (Met: p= 0.003, slope = -3.12·10-6;

ASR: p = 0.003, slope = -1.59·10-6; Cys: p = 0.003, slope = -2.53·10-6)

(Supplementary Figure 4). Additionally, a test of fixed effect

interaction found a significant effect of intervention over the

magnitude of change over time of pathway relative abundance

(ANOVA = 0.008, Supplementary Figure 6A).
FIGURE 1

CONSORT (Consolidated Standards of Reporting Trials) Flow diagram.
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Presence of probiotic strains in faeces
does not relate to changes in
faecal microbiome

To better understand the lack of microbiome changes and

the uncertain clinical changes, we tested how well the probiotic

strains could maintain their presence in the gut. Only 6 (28.6%)

patients in the Probiotic and 10 (31.3%) in the Synbiotic groups

had detectable levels of either L. plantarum or P. acidilactici in at

least two stool samples at months 1, 3 or 6, although in these

cases, probiotic species median relative abundance started

declining after the 3rd month of treatment, long before the

wash-out phase. In the remaining patients, probiotic species

were detected in only one of the timepoints in 5(23.8%) and 13

(40%) of the Probiotic and Synbiotic, respectively. None of the

probiotic strains was detected in any sample obtained at baseline,

month 9 or in the Placebo group at any time point (Figure 5A).

To better filter any potential probiotic strain-specific effect, as

well as uncover potential factors that may affect probiotic

engraftment, a new variable was defined. Two groups were

created that separated patients with or without detectable levels of

P. acidilactici in at least 2 stool samples belonging to different time

points, excluding those patients in the Placebo group. P. acidilactici

was chosen because it had presence in all samples where L.

plantarumwas detectable, but not the other way around (Figure 5B).
Frontiers in Immunology 07
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Microbiome analysis under this new stratification found no

significant changes in alpha diversity as gene richness (Figure 6A)

or beta diversity as Bray-Curtis distance from baseline (Figure 6B)

over time between groups with (Present) and without (Absent)

probiotic detection. This new variable only explained a 3.6% of the

variance of Bray-Curtis distances between samples (Adonis R2 =

0.0362, p = 0.001). No clear group clustering could be observed

under this new definition (Figure 6C)
Detection of probiotic in faeces
associates with decreased inflammation
(CRP, IL-6) while non-detection
associates with increased CD4/CD8 ratio

At month 6, the Present group was associated with a

significant decrease of CRP (median=11.1 (IQR=22) vs 19.2

(66), median change= -2.7 (13.2) ug/ml, p = 0.04), while the

Absent group related to an increase in CD4/CD8 ratio (0.72 (0.57)

vs 0.56 (0.4), median change = 0.4 (0.2) p=0.015) vs baseline. IL-6

differed between both groups at month 6, being lower in Present

than Absent group (0.58 (1.13) vs 1.17 (1.59) ug/ml, p = 0.02). At

month 9, an increase vs baseline was observed for CD4/CD8 ratio

(0.67 (0.5) vs 0.59 ± (0.49), median change = 0.04 (0.18), p = 0.02),

and CD4+ counts (457 (153) vs 416 (142), median change = 45
TABLE 1 Study population description of demographic variables and clinical markers at baseline: Age, height, LBP, and weight represented as
mean-(sd), as they followed a continuous normal distribution (Shapiro test pval < 0.05).

[ALL] Placebo Probiotic Synbiotic p.overall N
N = 71 N = 18 N = 21 N = 32

Age 49.9 (9.36) 52.8 (10.4) 49.1 (10.4) 48.8 (7.88) 0.316 71

CD4+ nadir 124 [74.5;236] 140 [81.8;212] 109 [74.0;186] 157 [70.0;261] 0.395 71

Gender: F 10 (14.1%) 1 (5.56%) 5 (23.8%) 4 (12.5%) 0.310 71

M 61 (85.9%) 17 (94.4%) 16 (76.2%) 28 (87.5%)

BMI 24.4 [22.1;25.6] 24.8 [22.6;26.3] 24.4 [22.7;25.3] 24.1 [22.2;25.4] 0.778 69

Weight (Kg) 72.8 (11.0) 75.2 (12.6) 72.8 (12.3) 71.3 (9.08) 0.491 69

Height (cm) 172 (7.13) 174 (9.26) 171 (6.98) 171 (5.71) 0.336 71

Third drug class INSTI 47 (66.2%) 9 (50.0%) 16 (76.2%) 22 (68.8%) 0.282 71

NNRTI 18 (25.4%) 6 (33.3%) 5 (23.8%) 7 (21.9%)

PI 6 (8.45%) 3 (16.7%) 0 (0.00%) 3 (9.38%)

LBP (mg/mL) 5.99 (2.17) 5.71 (2.31) 6.12 (2.54) 6.06 (1.86) 0.815 70

sCD14 (mg/mL) 2.48 [2.01;2.92] 2.62 [2.03;2.95] 2.62 [2.03;3.25] 2.36 [1.90;2.61] 0.087 70

IL6 (pg/ml) 0.95 [0.65;1.72] 0.87 [0.59;2.41] 0.74 [0.64;1.67] 1.02 [0.68;1.42] 0.934 70

CRP (mg/mL) 18.1 [10.0;64.5] 17.5 [9.14;48.0] 15.3 [13.4;56.9] 20.3 [10.4;65.6] 0.901 70

D-Dimer (mg/mL) 2.76 [2.14;3.69] 2.67 [2.02;3.96] 2.56 [1.97;3.48] 2.76 [2.39;4.02] 0.290 70

CD4+ (counts/mL) 397 [337;466] 358 [344;427] 403 [318;466] 422 [338;476] 0.259 68

CD8+ (counts/mL) 696 [507;870] 734 [603;819] 690 [507;877] 657 [500;865] 0.583 68

CD4/CD8 0.55 [0.42;0.83] 0.49 [0.42;0.61] 0.56 [0.40;0.67] 0.57 [0.45;0.88] 0.333 68
frontiersin.o
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(75), counts/ml, p = 0.005) in Absent but not in Present

group (Figure 7).

Analysis with LMM found little overall effect on immune

status and inflammation, with a slight increase of CD4/CD8

ratio (p = 0.008, slope = 0.012) and D-Dimer (p = 0.047, slope

= 0.236) in the Absent group (Supplementary Figure 3A).
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However, these trends changed when stratifying by treatment

group, especially for CRP, which increased in the Synbiotic

arm (p = 0.013, slope = 7.4) (Supplementary Figure 3C). Also,

CD4/CD8 ratio increase was specific to the subjects in Absent

group who were in the Synbiotic arm (p = 0.005, slope

= 0.015).
FIGURE 2

Evolution of T-cell counts, ratio, inflammation, and bacterial translocation markers between months 0 and 6, among treatment group.
Comparisons within group and between time points were performed by Wilcoxon test, in its paired form for longitudinal differences and
unpaired for cross-group comparisons. Significance was coded as follows: *(p < 0.05), **(p < 0.01).
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Probiotic presence in faeces is not
coupled with lower abundances of ASR
pathways

Sulphate assimilation pathways seemed slightly reduced in

the probiotic Present vs Absent group, but the differences were

statistically non-significant (Figure 8). Analysis with LMMs

found no significant trends for any of the three previously

studied pathways neither in the Present nor in the Absent

group. Interestingly, after stratifying by intervention, pathway

relative abundances did not change over time in the Present

patients within the Probiotic group but increased in the Absent

group (Met: p = 0.026, slope = 2.13·10-6; ASR: p=0.024, slope =

1.11·10-6; Cys: p = 0.021, slope = 1.256·10-6), while the Synbiotic

group showed a relative abundance decline in both Present and

Absent groups (Supplementary Figure 5). Fixed effect interaction

tests on unified models found no significant effect of presence/

absence in any of the pathways, with and without stratification

(Supplementary Figure 6).
Discussion

We assessed the efficacy and safety of long-term probiotic

supplementation on immunodiscordant (CD4+ counts < 500)
Frontiers in Immunology 09
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patients with supressed HIV after long, stable cART in a double-

blind, randomized trial. We found that Synbiotic intervention

with strains of L. plantarum and P. acidilactici along with

prebiotic fibers is safe and associated with slight increases of

CD4+ counts, CD4/CD8 ratio, and a decrease of the gut

leakiness, as measured with sCD14 which is a proxy for

bacterial endotoxin entering the bloodstream. However, the

clinical significance of such improvements is uncertain,

especially as they manifested 3 months after the intervention

stopped. A more in-depth analysis suggests that the presence of

the probiotic strains in stool was associated with lower levels of

proinflammatory cytokines (IL-6 and CRP), whi le

improvements in CD4/CD8 ratio appeared to be linked to the

prebiotic fibers. The lowering in proinflammatory cytokines

seems in agreement with previous reports using the same

probiotic composition in animal models of IBD (37). This

could point to a trade-off between immune activation and

modulation by the prebiotic and probiotic, respectively. Of

note, the reduction in inflammation markers happened during

the intervention period, when no changes in gut permeability

marke r s cou ld be obse rved , sugge s t ing tha t the

immunomodulatory activity of the probiotics may be

independent of the gut barrier status. Some gut barrier-

unrelated anti-inflammatory mechanisms have been described,

as Kawashima, Tadaomi et al. (38) found, lactic acid bacteria can
A

B

C

FIGURE 3

Effect of probiotics on the gut microbiome. (A) Gene richness counts for each intervention arm and month. Comparisons between group at
each timepoint were performed using Wilcoxon test, while the paired version was used for within-group comparisons between months. (B)
Distribution of Bray Curtis-Distances from baseline for each month and intervention arm. (C) NMDS showing sample ordination according to
Bray-Curtis distance. Group distance dissimilarity was tested using ADONIS.
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induce IgA secretion to the gut lumen, which is a known

immunomodulatory agent (39, 40).

The health-promoting properties of lactic acid bacteria have

been widely reported in vivo and in vitro (41, 42). Nevertheless,

the actual implantation and ecological viability of such strains is

a multidimensional problem where host related factors and

inherent ecological features of the host microbiome (such as

normal ecological succession across the intestine) (43). Within
Frontiers in Immunology 10
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the gastrointestinal (GI) tract, some lactobacilli show a nomadic

behaviour (44) and tend to stay most commonly on the upper GI

hence they tend to be underrepresented and transient in stool

samples (45). In turn, implantation itself is not a strict

requirement to generate change in the gut ecosystem or the

host’s physiology (46). In this study, P. acidilactici was more

consistently found than Lactobacillus plantarum in faeces but,

unlike the later, the former has been reported as having good
FIGURE 4

Changes in gene function at both start and end of the treatment period, among treatment group. Across group comparisons were performed
with regular Wilcoxon test and longitudinal comparisons were performed using matched-samples Wilcoxon test. Significance was coded as
follows: *(p < 0.05).
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adhesion to the lower GI and higher presence in stool (47).

Noteworthy, such differences may be strain-specific and not

generalizable to other formulations (43). Hence, assessing the

effectiveness of the probiotic strains in this study has been

problematic, due to the low proportion of patients having a

detectable presence of those, but also to the spatial and temporal

complexity that characterizes the gut microbiome.

Additionally, we found that synbiotic intake was linked to

decreases in the Assimilatory Sulphate Reduction (ASR) and

sulphur-containing amino acids biosynthesis pathways. ASR,

unlike the Dissimilatory Sulphate Reduction (DSR), takes

sulphate without producing hydrogen sulphide as a final

product, which has been shown to impair butyrate oxidation,

the primary source of energy of enterocytes, and has been linked

to gut inflammation and Ulcerative Colitis (48, 49). DSR is

exclusive of anaerobic bacteria that undergo sulphate

respiration, while ASR is more ubiquitous (50). Intake of

Fructose and Glucose Oligosaccharides (FOS and GOS

respectively) has been extensively used to modulate the

microbiome, and has been linked to metabolic changes,
Frontiers in Immunology 11
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especially of short chain fatty acids (51), but little is known

about their relationship with sulphate metabolism. The fact that

the Synbiotic group showed a consistent decline in such

pathways could point to metabolic modulation and a

population shift by the prebiotic fibers in the small intestine,

although such changes may have been partially represented in

the faecal samples.

Previous studies also found a lack of change in neither

peripheral blood T-cells and/or gut permeability markers with

probiotics only. Serrano-Villar et al. (52) found a significant

decrease in inflammation markers (IL-6 and CRP) but no

differential improvement in either circulatory T-cells nor

sCD14 after 48 weeks, using a synbiotic formulation of

Saccharomyces boulardii with various additives. However, this

study was performed on late presenter, cART-naïve individuals,

while our study was conducted on immunodiscordant patients

with stable cART.

Previous studies using HIV infected immune discordant

cohort reported diverse results. Presti et al. (53) tested a

probiotic treatment consisting of different strains of
A B

FIGURE 5

Detection of the probiotic strains in stool samples. (A) Relative abundances (in -log10) of P. acidilactici and L. plantarum in faeces for each of
the intervention arms. (B) Heatmap representing presence/absence of each arm in each sample. Rows represent single patients and columns
represent the month each sample belongs to. White cells represent lack of sample.
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streptococcus, bifidobacteria, and lactobacilli, without prebiotics,

over 12 weeks, finding no differences in gut integrity (sCD14)

and inflammation markers (D-Dimer, IP-10) but a significant

decrease in Proteobacteria. Stiksrud et al. (54) found a decrease

in inflammation (IL-6 and D-Dimer) but no differences in

bacterial translocation markers and CD4+ counts after 8 weeks

of intervention with formulation of skimmed milk, enriched

with various species of Lactobacillus and Bifidobacterium vs a

placebo of skimmed-milk only and a control groups. Geng et al.

(55) reported an improvement in gut integrity (D-Dimer, DAO)

and an enhanced CD4+ recovery in immune discordant patients

using pre-digested protein supplementation. Despite the

differences from the previously described studies (whether

from study design or probiotic formulation), our study found

improvement in inflammation and translocation markers but

not an overall improvement in immune reconstitution. In

addition, we could assess probiotic-related gut microbiome at

species-level resolution of the microbiome, coupled with

functional evidence and a washout period which adds

robustness to any finding of potential signal of treatment effect.
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Several limitations in this study should be considered.

First, since patients were randomized by class of third

antiretroviral drug, same-class ARV drgus might have

different effects of the gut microbiome. Additionally, the

cohor t s e l ec ted for th i s s tudy was composed by

immunodiscordant individuals, whose low CD4+ counts

after viral suppression made them prone to infections that

required antibiotic treatment, causing many dropouts.

However, no significant biases were created by dropouts

among the groups, although final sample size (n=71) was

clearly smaller than original target (n=100) and may have

been underpowered to detect some effects. Importantly, faecal

samples hold an inherent bias and may not be representative

of the actual gut microbiome composition, especially from the

upper GI. Also, diet and concomitant treatments may affect

faecal microbiome composition. While we found low rates of

concomitant medications and these were balanced among

groups, dietary information was not available, although

extreme diets were excluded. This may affect our capability

to detect any correlation between clinical outcomes and
A

B

C

FIGURE 6

Differences by presence or absence of the probiotic strains on the gut microbiome. (A) Gene richness counts for each group arm and month.
Comparisons between group at each timepoint were used simple Wilcoxon test, while the paired version was used for within-group
comparisons between months. (B) Distribution of Bray Curtis-Distances from baseline for each month and group. (C) NMDS showing sample
ordination according to Bray-Curtis distance. Group distance dissimilarity was tested using ADONIS.
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microbiome features. Finally, the fact that treatment intake

was self-reported, could have led to many patients not taking

the treatment but reporting otherwise during the 6 months

follow-up, thus overestimating the actual intake of the

probiotics. All these shortcomings add up to the limited

effect of probiotics in immune reconstitution and affect the

capability to translate research results from into clinical

practice and warrant further research.
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Conclusions

A synbiotic intervention with L. plantarum and P. acidilactici

was safe and well tolerated. Synbiotic intervention led to small

increases in CD4/CD8 ratio and minor reductions in sCD14 after

6 months and continued 3 months after discontinuing the

intervention, but such changes are of uncertain clinical

significance. A probiotic with the same composition but without
FIGURE 7

Evolution of T-cell counts, ratio, inflammation, and bacterial translocation markers between months 0 and 6, separated presence/absence of
probiotic strains. Comparisons within group and between time points were performed by Wilcoxon test, in its paired form for longitudinal
differences and unpaired for cross-group comparisons. Significance was coded as follows: *(p < 0.05), **(p < 0.01).
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prebiotics was also safe but did not achieve any impact on

immune parameters or faecal microbiome composition.
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FIGURE 8

Longitudinal and across-group comparisons of Assimilatory Sulphate Reduction and sulphur amino acid pathways across intervention groups.
Comparisons were performed across between groups by Wilcoxon test and longitudinally within-group with paired Wilcoxon test.
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Ferrando-Martıńez S, et al. The effects of prebiotics on microbial dysbiosis,
butyrate production and immunity in HIV-infected subjects. Mucosal Immunol
(2016) 10(5):1279–93. doi: 10.1038/mi.2016.122

52. Serrano-Villar S, De Lagarde M, Vázquez-Castellanos J, Vallejo A,
Bernadino JI, Madrid N, et al. Effects of immunonutrition in advanced human
immunodeficiency virus disease: A randomized placebo-controlled clinical trial
(Promaltia study). Clin Infect Dis (2019) 68(1):120–30. doi: 10.1093/cid/ciy414

53. Presti RM, Yeh E, Williams B, Landay A, Jacobson JM, Wilson C, et al. A
randomized, placebo-controlled trial assessing the effect of VISBIOME ES
probiotic in people with HIV on antiretroviral therapy. Open Forum Infect Dis
(2021) 8(12):ofab550. doi: 10.1093/OFID/OFAB550

54. Stiksrud B, Nowak P, Nwosu FC, Kvale D, Thalme A, Sonnerborg A,
et a l . Reduced levels of d-dimer and changes in gut microbiota
composition after probiotic intervention in HIV-infected individuals on
stable ART. J Acquir Immune Defic Syndr (2015) 70:329–37. doi: 10.1097/
QAI.0000000000000784

55. Geng ST, Zhang JB, Wang YX, Xu Y, Lu D, Zhang Z, et al. Pre-digested
protein enteral nutritional supplementation enhances recovery of CD4+ T cells
and repair of intestinal barrier in HIV-infected immunological non-responders.
Front Immunol (2021) 12:757935/FULL. doi: 10.3389/FIMMU.2021.757935/
FULL
frontiersin.org

https://doi.org/10.1097/QAD.0b013e3283112d29
https://doi.org/10.1016/j.celrep.2015.10.026
https://doi.org/10.1016/j.molmed.2004.01.002
https://doi.org/10.1007/s10875-010-9368-7
https://doi.org/10.1126/scitranslmed.3006438
https://doi.org/10.1093/infdis/jiv037
https://doi.org/10.1093/jn/137.3.819S
https://doi.org/10.3389/FPHAR.2021.570520/BIBTEX
https://doi.org/10.4161/GMIC.2.3.16106
https://doi.org/10.1097/MD.0000000000004509
https://doi.org/10.1093/INFDIS/JIAA714
https://doi.org/10.3389/FMICB.2018.01451/FULL
https://doi.org/10.1038/s41598-018-32585-x
https://doi.org/10.1038/s41598-018-32585-x
https://doi.org/10.1111/j.1365-2567.2007.02687.x
https://doi.org/10.1111/j.1365-2567.2007.02687.x
https://doi.org/10.4161/gmic.2.2.15787
https://doi.org/10.1007/S13197-020-04244-5
https://doi.org/10.1007/S13197-020-04244-5
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.7554/eLife.65088
https://doi.org/10.7554/eLife.65088
https://doi.org/10.1038/NBT.2942
https://doi.org/10.1186/gb-2009-10-3-r25
https://cran.r-project.org/package=vegan
https://doi.org/10.1007/S12602-016-9239-5
https://doi.org/10.1038/S41598-018-23404-4
https://doi.org/10.7150/IJBS.51362
https://doi.org/10.1038/MI.2016.57
https://doi.org/10.1016/J.JACI.2005.03.036
https://doi.org/10.1016/J.MOLIMM.2010.07.011
https://doi.org/10.1016/J.MOLIMM.2010.07.011
https://doi.org/10.1128/AEM.00753-08
https://doi.org/10.1111/1462-2920.13455
https://doi.org/10.1016/J.CELL.2018.08.041/ATTACHMENT/39F12DBE-F56A-4CD7-9089-962332F15476/MMC7.PDF
https://doi.org/10.1016/J.CELL.2018.08.041/ATTACHMENT/39F12DBE-F56A-4CD7-9089-962332F15476/MMC7.PDF
https://doi.org/10.3389/FCIMB.2019.00454
https://doi.org/10.1155/2013/583850
https://doi.org/10.1023/A:1010661706385
https://doi.org/10.1016/J.LFS.2017.09.014
https://doi.org/10.1016/J.LFS.2017.09.014
https://doi.org/10.3390/CELLS9030698
https://doi.org/10.1038/mi.2016.122
https://doi.org/10.1093/cid/ciy414
https://doi.org/10.1093/OFID/OFAB550
https://doi.org/10.1097/QAI.0000000000000784
https://doi.org/10.1097/QAI.0000000000000784
https://doi.org/10.3389/FIMMU.2021.757935/FULL
https://doi.org/10.3389/FIMMU.2021.757935/FULL
https://doi.org/10.3389/fimmu.2022.1066036
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


fmicb-13-1015130 December 10, 2022 Time: 14:57 # 1

TYPE Original Research
PUBLISHED 15 December 2022
DOI 10.3389/fmicb.2022.1015130

OPEN ACCESS

EDITED BY

Marius Trøseid,
Oslo University Hospital, Norway

REVIEWED BY

Sergio Serrano-Villar,
Ramón y Cajal University Hospital,
Spain
Xinchang Wang,
Zhejiang Chinese Medical University,
China

*CORRESPONDENCE

Li Yang
yl.tracy73@gmail.com

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Microbial Immunology,
a section of the journal
Frontiers in Microbiology

RECEIVED 09 August 2022
ACCEPTED 28 November 2022
PUBLISHED 15 December 2022

CITATION

Zhou B, Dong C, Zhao B, Lin K, Tian Y,
Zhang R, Zhu L, Xu H and Yang L
(2022) Bacteroides fragilis participates
in the therapeutic effect of
methotrexate on arthritis through
metabolite regulation.
Front. Microbiol. 13:1015130.
doi: 10.3389/fmicb.2022.1015130

COPYRIGHT

© 2022 Zhou, Dong, Zhao, Lin, Tian,
Zhang, Zhu, Xu and Yang. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.
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Methotrexate (MTX) is a preferred disease-modifying anti-rheumatic drug

in the management of rheumatoid arthritis (RA). However, the toxicity and

inefficiency of MTX limit its clinical application. Gut microbiota has been

implicated in the side effects and efficacy of MTX. In this study, the analysis of

the gut microbiota in RA patients revealed that the abundances of intestinal

Bacteroides fragilis was reduced after MTX treatment. We observed that

MTX has no obvious therapeutic effect in the absence of B. fragilis, while

transplantation of B. fragilis restored the efficacy of MTX in antibiotics-

pretreated collagen-induced arthritis (CIA) mice. In addition, B. fragilis gavage

was accompanied by an increase in butyrate. Supplementation of butyrate

restored the response to MTX in gut microbiota-deficient mice, to a similar

level achieved by B. fragilis gavage. These results show that gut microbiota-

regulated butyrate plays an essential role in the efficacy of MTX, which

will provide new strategies to improve the effectiveness of methotrexate in

RA treatment.

KEYWORDS

methotrexate, rheumatoid arthritis, gut microbiota, B. fragilis, butyrate

Introduction

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by
chronic synovial inflammation, cartilage and bone damage, and is associated with
progressive disability, systemic complications as well as early death (Mcinnes and Schett,
2011). With an incidence of 0.5–1%, RA has been one of the most common chronic
inflammatory diseases and adds a series of burdens to individuals, families and society
(Smolen et al., 2016). Disease-modifying antirheumatic drugs (DMARDs) are widely
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used as first-line RA drugs due to their clinical efficacy and
cost effectiveness. As one of DMARDs, methotrexate (MTX)
has been commonly used in the treatment of RA since the
1980s (Weinblatt et al., 1985; Bedoui et al., 2019). Whereas, the
clinical application of MTX is still limited by adverse events and
unsatisfactory therapeutic effects. More than 75% of patients
with low-dose MTX treatment suffer several common side
effects, such as gastrointestinal toxicities, hepatotoxicity and so
on (Iannone et al., 2016; Wang et al., 2018). In addition, about
one-third of patients do not respond to MTX (Weinblatt et al.,
1994; Saevarsdottir et al., 2011). Although several strategies have
been used to manage side effects of MTX, such as the treatment
with folic acid and changing the way of administration, the
results are not ideal because of the decreased efficacy of MTX
or other adverse effects (Tishler et al., 1988; Morgan et al., 1994;
Wang et al., 2018). Therefore, there is still an urgent need to
alleviate the side effects and to improve the efficacy of MTX.

The gut microbiota is closely related to the development of
cancers and autoimmune diseases (Kamada et al., 2013; Garrett,
2015; Zitvogel et al., 2017; Yachida et al., 2019). In addition
to this, there is accumulating evidence that the gut microbiota
plays a crucial role in the toxicity and efficacy of various drugs
(Kang et al., 2013; Alexander et al., 2017; Weersma et al., 2020).
Studies demonstrate that cyclophosphamide causes changes
in the composition of gut microbiota in mice and promote
the transfer of some gram-negative bacteria to secondary
lymphoid organs (Viaud et al., 2013). The bacteria stimulate a
specific subset immune cells and enhanced immune responses.
Moreover, cyclophosphamide has no effect on sterile mice,
suggesting that the gut microbiota help define the anticancer
effects of cyclophosphamide (Viaud et al., 2013). Similarly,
two studies have shown that gut microbiota can modulate
responses to PD-1-based immunotherapy in mice and in
patients, confirming the importance of gut microbiota in the
efficacy of drugs (Matson et al., 2018; Routy et al., 2018).
In our previous study, we observed that MTX treatment
led to alteration in the diversity and composition of the
gut microbiota, with significantly decreased abundance in
Bacteroides fragilis (B. fragilis), (Zhou et al., 2018) which is a
prominent human commensal. It was shown that B. fragilis
can inhibit T cell-mediated inflammation and prevent intestinal
inflammatory diseases, such as colitis (Wexler and Goodman,
2017). The immunomodulatory molecule polysaccharide A
(PSA), a component of the B. fragilis, induces an anti-
inflammatory immune response mediated by IL-10 produced
by T cells in intestinal tissue (Mazmanian et al., 2008;
Round and Mazmanian, 2010). In addition to PSA, B. fragilis
can regulate immune cells through short-chain fatty acids
(SCFAs) (Su et al., 2020). Our previous data suggested that
B. fragilis ameliorated MTX-induced mucositis by modulating
macrophage polarization. Since the regulatory effect of B. fragilis
in MTX-induced gastrointestinal toxicities has been known

(Zhou et al., 2018), it is of interest to investigate the role of
B. fragilis in the efficacy of MTX in RA.

In this study, we found that RA patients who were treated
with MTX exhibited lower abundances of B. fragilis. Then
we established a collagen-induced arthritis (CIA) model and
utilized antibiotics to remove B. fragilis in mice. B. fragilis-
deficient CIA mice were lack of response to MTX treatment.
Meanwhile, supplementation with B. fragilis restored the
efficacy of MTX in antibiotic-treated mice. We observed that
B. fragilis stimulated the production of immunomodulatory
M2 macrophages. In addition, we found that B. fragilis
supplementation led to elevated production of butyrate and
that butyrate restored the therapeutic effect of MTX in
gut microbiota-deficient CIA mice. These data suggest that
B. fragilis is critical for the therapeutic effect of MTX in RA.

Materials and methods

Patient fecal samples

Stool samples were collected from 21 RA patients with
MTX treatment at day 0 and day 30 in the Affiliated Hospital
of Zunyi Medical University. Patients were provided a feces
collection tube to collect stool sample at home. The samples
were sent to the lab within 24 h after collection. Stool bacterial
DNA was isolated using the Stool DNA Isolation Kit (Foregene,
Chengdu, China). The DNA and the rest of the sample was
stored at−80◦C. All human studies were approved by the Ethics
Committee of Affiliated Hospital of Zunyi Medical University.
Written informed consents were received from all patients prior
to inclusion in the study.

16S rRNA amplicon sequencing and
data analysis

The fecal samples were collected from CIA mice on day
0 and day 30 after MTX treatment. All samples were stored
at –80◦C. Stool bacterial DNA was extracted using the Stool
DNA Isolation Kit (Foregene, Chengdu, China). One nanogram
of purified fecal DNA was used for PCR amplification.
Amplicons spanning the variable region 4 (V4) of the 16S
rRNA gene were generated by using the following primers:
forward, 5′-GTGCCAGCMGCCGCGGTAA-3′; reverse, 5′-
GGACTACHVGGGTWTCTAAT-3′. The PCR products were
then sequenced on an Illumina Hi-seq sequencer at Novogene
(Novogene, Beijing, China). Paired-end reads from the original
DNA fragments were merged by using FLASH (Magoc
and Salzberg, 2011). Paired-end reads was assigned to each
sample according to the unique barcodes. Sequences were
analyzed using QIIME software package (quantitative insights
into microbial ecology) (Caporaso et al., 2010). Sequences
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with ≥97% similarity were assigned to the same operational
taxonomic units (OTUs). Taxonomical classification was
performed using the RDP-classifier. The alpha diversity (such
as ACE) for each subsample was calculated in Mothur. The
unpaired, two-tailed t test was used to calculate differences
between means (GraphPad Software). Principal component
analysis (PCA) and principal coordinate analysis (PCoA)
clustering were conducted using R. The linear discriminant
analysis (LDA) with effect size (LEfSe) method of analysis was
used to compare abundances of all bacterial clades using the
Kruskal–Wallis test at a pre-defined α of 0.05. Significantly
different taxa resulting from the comparisons of abundances
between groups were used as input for LDA.

Mice and generation of CIA model

Male 8-week-old DBA/1j mice were purchased from Beijing
Vital River Laboratories Animal Technology Co. Ltd. All
mice were maintained in a pathogen-free animal facility. All
experimental procedures and animal care were approved by
the Animal Care Committee of Sichuan University and were
performed in accordance with the relevant ethical guidelines
(Guidelines for Ethical Review of laboratory Animal Welfare
No. GB/T 35892-2018). The method for the generation of CIA
model was described previously (Zhou et al., 2019).

Treatment of CIA mice

In this study, we performed four experiments to explore
the relationship between gut microbiota and MTX efficacy in
CIA mice. Mice in MTX-treated group were intraperitoneally
(i.p.) injected with 1 mg/kg of MTX (Sigma-Aldrich, USA) every
3 days for 30 days. Control mice received PBS only. In the second
and third experiments, 1mg/ml or a combination of antibiotics
(Abs) (1 mg/ml ampicillin + 5 mg/ml streptomycin + 1 mg/ml
metronidazole) were added in sterile drinking water of
antibiotics-treated group on day−7 to day 0, The solutions and
bottles were changed every 3 days. In Abs + MTX + B. fragilis
and Abs + MTX + Escherichia coli group, mice were given oral
gavage with 1 × 109 bacterial cells on day 0. A total of 100 mM
butyrate (But) (Sigma-Aldrich, USA) was dissolved in drinking
water in Abs + MTX + But group on day 0 for 30 days. Each
group consisted of 6 or 10 mice.

Quantitative real-time PCR

Quantitative real-time PCR (qPCR) was conducted on
Bio-rad CFX Connect platform using the SYBR Fast qPCR
Mix (Takara, Japan) to detect the abundance of 16 rRNA

gene in fecal bacterial DNA. Gene specific primer sequences
were as follows: 16S rRNA (F: CGGTGAATACGTTCCCGG,
R: TACGGCTACCTTGTTACGACTT), B. fragilis (F: TGATTC
CGCATGGTTTCATT, R: CGACCCATAGAGCCTTCATC).

Cultivation of bacteria

Bacteroides fragilis (ATCC 25285) was cultured on brain
heart infusion (BHI) blood agar plates (Oxoid, USA) for 48 h at
37◦C under anaerobic conditions. B. fragilis was harvested from
the plates and suspended in sterile PBS. E. coli was cultured in
Luria-Bertani liquid medium for 16 h at 37◦C before harvest.
Then, the bacteria were washed with PBS and resuspended in
sterile PBS to achieve an OD600 = 1, which corresponds to
approximately 1× 109 colony forming units (CFUs) per ml.

Flow cytometry

Spleens were harvested from mice on day 30 after the first
injection of MTX. The tissues were cut into small pieces and
filtered through a 70 µm cell strainer. The cells were stained with
antibodies against the following surface markers: PerCP-CD11b,
PE-F4/80 and FITC-CD206. These antibodies were purchased
from BD Biosciences. Cell detection were conducted on a flow
cytometer (FACSCalibur and Accuri C6, BD Biosciences), the
data were analyzed with FlowJo 6.0 and NovoExpress.

Radiological and histological
assessment of joint tissues

On day 30, a micro-CT (PerkinElmer, USA) was used
to assess the degree of joint injury. Then, mice were
sacrificed and joint tissues were harvested. After fixation in 4%
paraformaldehyde for 24 h, the tissues were decalcified with
EDTA and embedded in paraffin. Finally, 4 µm sections of the
joint tissues were prepared and stained with HE.

Metabolomics analysis based on
GC-MS

Fecal samples were collected on day 7 after MTX treatment
with or without B. fragilis gavage. 50 µl 15% phosphoric acid,
100 µl 125 µg/mL isohexanoic acid solution and 400 µl diethyl
ether was added to 50 mg feces sample. After homogenate for
1min, the mixture was centrifuged at 12,000 RPM at 4◦C for
10 min, and the supernatant was used for short-chain fatty acids
(SCFAs) analysis by GC-MS.
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Butyrate treatment in vitro

Cells isolated from the spleen were stimulated with
lipopolysaccharide (LPS, 100 ng/ml) with or without butyrate
(100 µM–2 mM) for 24 h, after which cells were collected
for flow cytometry.

Statistical analysis

Data were analyzed using GraphPad Prism 8 (GraphPad, La
Jolla, CA, USA). Data were depicted as the means ± SEM, and
statistical comparisons were conducted using t-test or unpaired
one-way analysis of variance (ANOVA). p< 0.05 was considered
statistically significant.

Results

MTX therapy alters the composition of
gut microbiota in RA patients

In our previous study, we observed that the abundance
of B. fragilis was decreased in normal Balb/c mice after
MTX treatment. To evaluate whether MTX influences the
composition of intestinal microbiota in arthritis, stool samples
were collected from 21 RA patients before and after MTX
treatment. 16S rRNA gene amplicon sequencing was conducted
to assess the relationship between gut microbiota and clinical
response. Unlike the results of animal experiments, the alpha
diversity of gut bacteria did not change significantly after MTX
treatment in all patients (Figure 1A). PCoA and venn diagram
showed that the composition of gut microbiota was altered after
MTX treatment (Figures 1B–D). Clustering heatmap of species
abundance showed the changes of 30 bacteria, among which
14 bacteria had increased, such as Eubacterium ramulus, and
16 bacteria had decreased, such as Escherichia coli (Figure 1E).
Notably, the content of B. fragilis was reduced (Figure 1E),
which is in agreement with the results in our previous study,
confirming that B. fragilis is one of gut microbiota that related
to the MTX treatment.

Transplantation of B. fragilis enhances
the effect of MTX in gut
microbiota-deficient mice

To further verity the role of B. fragilis in the treatment of
RA with MTX, the CIA mice were pre-treated (or untreated as
controls) with antibiotics for 7 days, followed by MTX injection
with or without bacteria (B. fragilis or E. coli) transplantation
(Figure 2A). The concentration of stool DNA in the mice

treated with antibiotics was significantly lower than that of
the mice untreated with antibiotics (Figure 2B), indicating
that the gut microbiota was effectively reduced. After bacteria
gavage, transplantation with B. fragilis was able to restore
the abundance of B. fragilis (Figure 2C). Consistent with the
above experiment, the disease severity evaluation with the
clinical score data showed that MTX treatment could not
achieve a satisfactory result in the gut microbiota-deficient
mice (Figure 2D). Compared to the MTX group, the arthritis
degree of the mice in Abs + MTX group was not alleviated
effectively (Figure 2D). However, the inhibitory effect of MTX
on arthritis in antibiotics-treated mice was enhanced after
B. fragilis gavage, indicated by the delayed development of CIA
in the Abs + MTX + B. fragilis group, comparable to that in
the MTX group (Figure 2D). E. coli gavage did not yield a
similar effect as B. fragilis, no difference in clinical score was
observed between the PBS and the Abs + MTX + E. coli group
(Figure 2D). In addition, the swelling of joints was not evident
in the MTX or the Abs + MTX + B. fragilis group on day
30 (Figure 2E). HE staining showed that synovial hyperplasia,
cartilage injury, lymphocyte infiltration and bone erosion of
the knee joint in CIA mice were relieved in the MTX and the
Abs + MTX + B. fragilis groups (Figure 2F). It appears that
B. fragilis could restore the therapeutic effect of MTX in gut
microbiota-deficient mice.

Our previous data suggested that B. fragilis treatment can
lead to significant alternation in macrophages, which also
play a critical role in RA (Quero et al., 2017). Therefore,
we investigated the inflammatory status of spleen in mice.
MTX and antibiotic treatment did not alter the amount of
splenic CD4+F4/80+ macrophage and CD11b+CD206+ M2
macrophage in CIA mice, while there was a prominent up-
regulation of M2 macrophage in the Abs + MTX + B. fragilis
group, confirming the role of B. fragilis in regulating immune
cells in MTX-treated CIA mice (Figures 3A–D).

B. fragilis gavage promotes butyrate
metabolism in methotrexate-treated
mice

Bacteroides produces SCFAs in intestine (Macfarlane and
Macfarlane, 2003). One relevant question is whether B. fragilis
gavage affects the production of SCFAs in MTX-treated
mice. Therefore, the feces of MTX-treated mice with/without
B. fragilis gavage were harvested for SCFAs analysis. We found
that the concentration of acetic acid, propionic acid, isobutyric
acid, butyric acid (butyrate), isovaleric acid and valeric acid
was markedly reduced after MTX administration (Figures 4A–
G). In addition to butyrate, other SCFAs also decreased in
mice of MTX + B. fragilis group (Figures 4A–G), suggesting
B. fragilis gavage promoted the production of butyrate. To
verify the correlation between the content of B. fragilis and
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FIGURE 1

The changes of gut microbiota in MTX-treatment patients. Stool samples were collected from 21 RA patients with MTX treatment at day 0 and
day 30. Stool bacterial DNA was extracted using the Stool DNA Isolation Kit and detected using 16S rRNA amplicon sequencing. (A) ACE analysis
to predict species richness among different groups. (B,C) PCoA to assess differences between microbial communities. (D) Flower figure of
VennDiagram to show the common and unique OTUs among different groups. (E) Heatmap to present the change of different species.
(F) Cladogram to analyze different species between groups. ***p < 0.001.

the production butyrate, the relative units of B. fragilis was
detected. Correlation analysis showed that the person r = 0.7823
(p< 0.01) (Figure 4H), indicating a positive correlation between
content of B. fragilis and butyrate. These data reveal that
B. fragilis gavage could enhance the metabolism of butyrate in
MTX-treated mice.

Supplementation of butyrate recovers
the effect of MTX in gut
microbiota-deficient mice

As butyrate is mainly produced by the gut microbiota (Flint
et al., 2015; Forslund et al., 2015), and is an important regulator
of immune response (Liu et al., 2018; Silva et al., 2018), we

sought to determine the influence of butyrate administration
on the MTX treatment in CIA mice with/without pretreatment
of antibiotics. Butyrate was provided in drinking water until
the end of the experiment (Figure 5A). There was no obvious
remission of the arthritis score in CIA mice with butyrate
treatment alone (Figure 5B). Moreover, butyrate did not affect
the efficacy of MTX in CIA mice untreated with antibiotics
(Figure 5B). Nevertheless, the development of arthritis was
effectively inhibited in the Abs + MTX + But group compared
to that in the Abs + MTX group (Figure 5B). Consistently,
butyrate improved the swelling, deformation, cartilage injury,
lymphocyte infiltration and bone erosion of joints in the
Abs + MTX + But group (Figures 5C–E). Taken together,
butyrate can restore the efficacy of MTX in gut microbiota-
deficient mice as well as B. fragilis.

Frontiers in Microbiology 05 frontiersin.org

142

https://doi.org/10.3389/fmicb.2022.1015130
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-1015130 December 10, 2022 Time: 14:57 # 6

Zhou et al. 10.3389/fmicb.2022.1015130

FIGURE 2

The response to MTX was affected by Bacteroides fragilis in gut microbiota deficient CIA mice. (A) Schematic of treatments. Mice were treated
with antibiotics at the onset of arthritis. Mice received B. fragilis gavage and MTX injection on day 0. (B) The total stool DNA after Abs treatment
(n = 10). (C) The content of B. fragilis after gavage (n = 3). (D) Clinical scores of CIA mice (n = 6). (E) The photos of hindlimb. (F) HE staining of
joint tissues (magnification is 40×). Data are presented as the mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001. Abs, antibiotics.

We next investigated the impact of butyrate on splenic
macrophage. Butyrate promoted the expansion of M2
macrophage in CIA mice with MTX injection (Figures 6A–
D). In order to test whether butyrate exerts the same
effect on lymphocytes in vitro, splenic lymphocytes were
isolated from CIA mice and stimulated with LPS and
butyrate. We found that the percent of M2 macrophage
was increased in the presence of butyrate in a dose
dependent manner (Figures 6E, F). These data indicated
that butyrate can regulate the immune response by
promoting the development M2 macrophage both in vivo
and in vitro.

Discussion

Gut toxicity and lack of efficacy are still challenging
problems in the clinical treatment of RA with MTX. MTX
is an antagonist of folate, the folate metabolism pathway also
exists in microbiota, the intestinal microbial compositions
likely change after MTX treatment (Huang et al., 2020). In
addition, MTX-induced mucositis can also lead to bacterial
translocation (Ubeda et al., 2010). Previous studies showed
that gut microbiota can relieve the toxicity of various drugs,
including MTX (Zhou et al., 2018; Huang et al., 2020). Here,
with CIA models, we verified the role of gut microbiota in
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FIGURE 3

Bacteroides fragilis alters the polarization of macrophage. (A–D) FACS analysis of splenic cells. Percentages of (A,B) macrophages and (C,D) M2
macrophages (n = 3). Data are presented as the mean ± SEM. **p < 0.01, ***p < 0.001. Abs, antibiotics.

the efficacy of MTX in RA, and further demonstrated that
butyrate-regulating B. fragilis is an intestinal bacteria related to
the efficacy of MTX.

Studies have reported that B. fragilis can alleviate MTX-
induced intestinal inflammation (Zhou et al., 2018). Since
gut microbiota has been proven not only to reduce the
intestinal toxicity of drugs, but also to affect their efficacy
(Alexander et al., 2017; Weersma et al., 2020), and the
detection of gut microbiota of RA patients showed the
content of B. fragilis was decreased after MTX therapy, we
speculated that transplantation of B. fragilis may enhance
the therapeutic effect of MTX in gut-deficient CIA mice.
To test our hypothesis, we conducted B. fragilis gavage in
MTX-treated mice after removing microbiota with antibiotics.
While the arthritis-inhibitory effect of MTX was lowered
after the clearance of gut microbiota, supplementation with
B. fragilis could restore the therapeutic effect to a similar

level found in antibiotics-untreated mice, which did not occur
with the supplementation of E. coli. Anti-inflammatory M2
macrophages are crucial in the pathogenesis of immune-
inflammatory disorders (Tardito et al., 2019). Our observation
that B. fragilis up-regulated the number of M2 macrophage
suggested that B. fragilis contributed to the therapeutic
effects of MTX by regulating the development of anti-
inflammatory lymphocytes.

The mechanisms of intestinal microbiota affecting
drug efficiency include metabolism, immune regulation,
translocation, enzymatic degradation and ecological variation
(Panebianco et al., 2018). Gut microbiota metabolizes complex
dietary carbohydrates through a large number of enzymes,
and degrades dietary fiber to produce organic acids, gases
and a large amount of SCFAs (Martin-Gallausiaux et al.,
2021). Gut microbiota regulate the function of immune cells
through its metabolites SCFAs (Rooks and Garrett, 2016;

Frontiers in Microbiology 07 frontiersin.org

144

https://doi.org/10.3389/fmicb.2022.1015130
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-1015130 December 10, 2022 Time: 14:57 # 8

Zhou et al. 10.3389/fmicb.2022.1015130

FIGURE 4

Analysis of SCFAs in feces of mice. MTX-treated CIA mice were gavaged with PBS or PBS containing B. fragilis for 7 days. Fecal samples were
collected for GC-MS analysis of (A) acetic acid, (B) propionic acid, (C) isobutyric acid, (D) isovaleric acid, (E) valeric acid, (F) caproic acid and
(G) butyric acid (butyrate), (n = 10). (H) Correlation analysis between and the relative units of B. fragilis and the content of butyrate. Data are
presented as the mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.

Ratajczak et al., 2019). These biological functions of SCFAs are
mediated by SCFA receptors GPR41 and GPR43, expressed
on immune cells, adipocytes, and intestinal cells (Tan et al.,
2014; Sun et al., 2017). We found that the supplementation of

B. fragilis prevented the MTX-induced decrease of butyrate,
which can limits the autoimmune response (Takahashi et al.,
2020). It is possible that butyrate is involved in the beneficial
effect of B. fragilis on the efficacy of MTX. By adding butyrate
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FIGURE 5

Butyrate improves the efficacy of MTX in gut microbiota-deficient mice. (A) Schematic of treatments. Mice were treated with antibiotics at the
onset of arthritis. Mice received butyrate administration and MTX injection on day 0. (B) Clinical scores of CIA mice (n = 6). (C) The photos of
hindlimb. (D) Micro-CT assessment of paws. (E) HE staining of joint tissues (magnification is 40×). Data are presented as the mean ± SEM.
*p < 0.05, **p < 0.01. Abs, antibiotics; But, butyrate.

to the drinking water during MTX treatment, we observed
that butyrate restored the therapeutic effect of MTX in gut
microbiota-deficient CIA mice, to a similar level achieved
with B. fragilis gavage. Our in vivo and in vitro experiments
confirmed that butyrate promote the proliferation of M2
macrophage. Macrophage polarization is a complex process
of multi-factor interaction, which is regulated by a variety
of intracellular signaling molecules and their pathways,
including JAK/STAT signaling pathway, PI3K/Akt signaling
pathway (Vergadi et al., 2017). Butyrate has been reported to
improve inflammation by regulating the signaling pathway
PI3K/Akt via GPRs (Pirozzi et al., 2018). Taken together,

regulating the host immunity through the alternation in
butyrate metabolism is one of the potential ways that that
B. fragilis plays a role in MTX therapy. Notably, there
is no evidence that B. fragilis is a producer of butyrate.
Considering microbiota transplantation may alter the intestinal
microenvironment and nutrient competition, thereby altering
the gut microbiota population (Gu et al., 2016), we speculated
that B. fragilis supplementation resulted in structural changes
in gut microbiota and promoted the proliferation of butyrate-
produced species, suggesting that more attention should
be paid to the dynamics of intestinal microbiome after
microbiota transplantation.
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FIGURE 6

The impact of butyrate on macrophage. (A–D) FACS analysis of splenic cells. (A,B) Macrophages and C,D M2 macrophages (n = 3). (E,F) FACS
analysis of macrophage in vitro. Cells isolated from the spleen were stimulated with lipopolysaccharide (LPS, 100 ng/ml) with or without
butyrate (But, 100 µM–2 mM) for 24 h before FACS analysis. The alteration of (E,F) M2 macrophages (n = 3) were recorded. Data are presented
as the mean ± SEM. *p < 0.05, **p < 0.01. Abs, antibiotics; But, butyrate.

Although numerous studies have reported that metabolites
of gut microbiota are associated with the progression of arthritis
and suggest butyrate as a therapeutic strategy for arthritis, these
studies have not specifically explored the relationship between
gut microbiota produced-derived metabolites and drug therapy
(Kim et al., 2018; Rosser et al., 2020; He et al., 2022; Martinsson
et al., 2022). Based on the correlation between intestinal
microbiota and drug toxicity, this study evaluated the influence
of gut microbiota on drug efficacy, which is helpful to solve
the problems of intestinal toxicity and unsatisfactory response
of MTX. However, the comparison of 16S rRNA amplicon

sequencing analysis results between the animal model and the
patient showed that the changes of intestinal microbiota after
MTX treatment were not completely similar, suggesting that
the animal model could not completely represent the clinical
influence of gut microbiota. We need to design reasonable
clinical experiments to verify the role of B. fragilis. In addition,
gut microbiota is a complex system that interacts in human to
affect immune response. We have also observed changes in other
bacteria in MTX treatment, which suggested other bacteria may
also be involved in this effect except B. fragilis. Among these
altered strains, Escherichia coli has been reported to suppress
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the development of arthritis in germ-free rats (Kohashi et al.,
1986), but its effect on the MTX is not clear. In this study, we
found that E transplantation had no significant effect on the
therapeutic efficacy of MTX (Figures 2, 3). Bacteroides uniformis
and Prevotella copri have also been shown to be associated with
the development of arthritis (Miller et al., 2015; Seifert et al.,
2022). The effect of these bacteria on MTX is also worth further
investigation.

In summary, we found that MTX treatment was correlated
to the abundances of B. fragilis in the gut of the RA patients.
Next, we demonstrated that B. fragilis plays an essential role in
the efficacy of MTX by regulating the metabolism of butyrate.
These findings advocate for a potential microbial intervention
strategy for improving the efficacy of MTX in RA management.
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Elevated inflammatory fecal
immune factors in men who
have sex with men with HIV
associate with microbiome
composition and gut
barrier function

Katherine M. Littlefield1†, Jennifer M. Schneider1†,
Charles P. Neff1, Victoria Soesanto1, Janet C. Siebert1,2,
Nichole M. Nusbacher3, Nancy Moreno-Huizar3,
Ian M. Cartwright1, Abigail J. S. Armstrong3, Sean P. Colgen1,
Catherine A. Lozupone3 and Brent E. Palmer1*

1Department of Medicine, University of Colorado, Aurora, CO, United States, 2CytoAnalytics,
Denver, CO, United States, 3Department of Biomedical Informatics, University of Colorado
Anschutz Medical Campus, Aurora, CO, United States
Introduction: People living with HIV infection (PLWH) exhibit elevated levels of

gastrointestinal inflammation. Potential causes of this inflammation include HIV

infection and associated immune dysfunction, sexual behaviors among men

who have sex with men (MSM) and gut microbiome composition.

Methods: To better understand the etiology of gastrointestinal inflammation

we examined levels of 28 fecal soluble immune factors (sIFs) and the fecal

microbiome in well-defined cohorts of HIV seronegative MSM (MSM-SN), MSM

with untreated HIV infection (MSM-HIV) and MSM with HIV on anti-retroviral

treatment (MSMART). Additionally, fecal solutes from these participants were

used to stimulate T-84 colonic epithelial cells to assess barrier function.

Results: Both MSM cohorts with HIV had elevated levels of fecal calprotectin, a

clinically relevant marker of GI inflammation, and nine inflammatory fecal sIFs

(GM-CSF, ICAM-1, IL-1b, IL-12/23, IL-15, IL-16, TNF-b, VCAM-1, and VEGF).

Interestingly, four sIFs (GM-CSF, ICAM-1, IL-7 and IL-12/23) were significantly

elevated in MSM-SN compared to seronegative male non-MSM. Conversely,

IL-22 and IL-13, cytokines beneficial to gut health, were decreased in all MSM

with HIV and MSM-SN respectively. Importantly, all of these sIFs significantly

correlated with calprotectin, suggesting they play a role in GI inflammation.

Principal coordinate analysis revealed clustering of fecal sIFs by MSM status and

significant associations with microbiome composition. Additionally, fecal

solutes from participants in the MSM-HIV cohort significantly decreased

colonic transcellular fluid transport in vitro, compared to non-MSM-SN, and

this decrease associated with overall sIF composition and increased
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concentrations of eight inflammatory sIFs in participants with HIV. Lastly,

elevated levels of plasma, sCD14 and sCD163, directly correlated with

decreased transcellular transport and microbiome composition respectively,

indicating that sIFs and the gut microbiome are associated with, and potentially

contribute to, bacterial translocation.

Conclusion: Taken together, these data demonstrate that inflammatory sIFs

are elevated in MSM, regardless of HIV infection status, and are associated with

the gut microbiome and intestinal barrier function.
KEYWORDS

human immunodeficiency virus (HIV), inflammation, men who have sex with men
(MSM), gut microbiome, immune factors, cytokines
1 Introduction

Pathogenesis of HIV infection is closely tied with the

gastrointestinal (GI) tract because it is a major site of HIV

replication. Large numbers of activated CCR5-expressing CD4+

T cells, which are specifically targeted by HIV, reside in the

gastrointestinal tract (1). These cells fuel HIV infection in the

gut, resulting in profound depletion of T cells in the lamina

propria and chronic inflammation (2). Intestinal inflammation

can promote the breakdown of the epithelial barrier and

bacterial translocation, which in turn leads to systemic

immune activation/inflammation (3) that contributes to HIV

pathogenesis and disease progression (4). Furthermore, while

gut inflammation and impaired barrier function improve with

ART, these GI issues persist (5), and have been linked with

metabolic (6), and other co-morbidities (7) in people living with

HIV (PLWH) on ART. Microbiome differences, such as lower

alpha diversity in untreated individuals with low CD4+ T cell

counts (8) or ART-treated individuals with low NADIR (9), have

been observed in PLWH (10). In addition, bacteria from fecal

material of HIV-positive individuals has been shown to induce

higher immune activation in vitro (11). Furthermore, others

have shown that compositional shifts in the fecal microbiome

associated with HIV correlated with changes in metabolic

function and production of cytokines detectable in plasma

samples (12, 13) and mucosal biopsies (14).

In the United States men who have sex with men (MSM)

comprise over 60% of new cases of HIV infection annually (15).

We and others have shown gut microbiome composition in

MSM regardless of HIV infection is highly altered compared to

seronegative non-MSM (10, 16), and is characterized by high

relative abundance of the bacterial genus Prevotella and low

Bacteroides, as well as many additional differentiating taxa (16,

17). Intestinal microbiome composition has also been associated
02
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with the risk of HIV acquisition in MSM (14). Whole fecal

bacterial communities isolated from the stools of MSM with and

without HIV induce immune activation and increase HIV

infection of lamina propria mononuclear cells in vitro (11).

Additionally, gavage of fecal bacteria from these MSM cohorts

into gnotobiotic mice leads to elevated levels of intestinal

immune activation compared to non-MSM controls (18). This

has been linked in part through particular enriched bacteria in

MSM such as Holdemanella (19). Because of the importance of

gut immune activation for HIV pathogenesis, transmission

among MSM, and co-morbidity, in-depth profiling of

inflammation in the gut is essential for understanding

these processes.

Measurement of soluble immune factors (sIF) present in

feces, including chemokines, cytokines, growth factors and other

signaling factors, is an attractive method for studying gut

immune activation since collection of fecal material is

relatively non-invasive. Although such methods have been

used to assess GI inflammation in the context of GI diseases

(20–23), how they differ with HIV infection, treatment, and

MSM status has not been explored nor has whether their levels

associate with intestinal microbiome composition or effect

barrier function. Here we assessed well-vetted measures of

intestinal inflammation, fecal sIFs, microbiome composition

and markers of bacterial translocation to characterize and gain

mechanistic insights into the relationship between intestinal

inflammation and barrier function in HIV infection and in

MSM, using stool samples collected from HIV-seronegative

MSM (MSM-SN), MSM with HIV infection with (MSM-ART)

and without ART treatment (MSM-HIV) and male non-MSM-

SN participants. Taken together, our data demonstrate that

inflammatory sIFs are elevated in MSM and with HIV

infection, associate with gut microbiome composition, and

negatively influence intestinal barrier function in HIV.
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2 Materials and methods

2.1 Study participants

Participants from the Denver metropolitan area were

recruited under study protocol #14-1595 approved by the

Colorado Multiple Institutional Review Board (CoMIRB). All

participants provided written consent prior to collection of data

and samples and were separated into cohorts based on sex, HIV

infection and current use of ART, and sexual behavior. All

participants on ART underwent treatment for at least 12

consecutive months using a minimum of three separate ART

medications prior to study entry and displayed at least six

consecutive months of viral suppression. Participants not

undergoing ART were either never treated or off treatment for

six consecutive months prior to study participation. Use of

antibiotics within three months of sample collection, diagnosis

with an active gastrointestinal disease, opportunistic/chronic

infection or malignancy, and/or prescription of anticoagulant

or hypoglycemic medications were exclusionary for this study.

The four cohorts of male participants were MSM with HIV, not

currently using ART (MSM-HIV: n=15), HIV-positive MSM

undergoing ART (MSM-ART: n=13) and HIV-seronegative

men who either had sex with men (MSM-SN: n=17) or who

did not (non-MSM-SN: n=14). A cohort of female participants

with HIV and on ART treatment (F-HIV: n=5) were also

included and compared to a matched cohort of women with

no history of HIV infection (F-SN: n=5). Analysis of the female

cohorts was limited due to the small cohort size. All cohort

demographics data are included in Table 1.
Frontiers in Immunology 03
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2.2 Collection of fecal samples
and surveys

Participants collected full stool samples in a commode specimen

collector prior to their clinic visit, which were shipped or transported

within 48 hours either frozen or cool. Upon delivery, samples were

transferred to long-term storage at -80°C. During research visits,

participants completed a GI-symptoms questionnaire based on the

GSRS (24) comprised of 14 multiple choice questions covering

common GI issues experienced within the prior year and 24 hours

before stool sample collection, including diarrhea, constipation,

bloating, flatulence, vomiting and abdominal pain. Multiple choice

answers ranged from “1 – little to no symptoms” to “4 – debilitating

symptoms”. An aggregate GI Symptoms Score was calculated as the

average value across all 14 questions. Participants were also asked to

evaluate the consistency of their stool sample at the time of collection

by utilizing the visual Bristol stool scale (25). Each participant

assigned a subjective score (1-7) that most closely resembled their

fecal sample.
2.3 Fecal solute preparation
and sIF quantification

Fecal solute preparations were adapted from previously

described methods with significant alterations (21, 22). Specifically,

an aliquot of two grams of frozen feces was obtained and mixed with

8 mL of saline solution (DPBS, Protease Inhibitor, EDTA, DNase).

Samples were homogenized for 1 min and placed on ice for 30 min.

Samples were then ultra-centrifuged at 12,000 rpm for 45 min at 5°
TABLE 1 Participant cohort demographics and characteristics.

Male Female

Non-MSM-SN MSM-SN MSM-ART MSM-HIV F-SN F-HIV

N 14 17 13 15 5 5

Race (BA/A/W/O)a 0/1/13/0 1/0/17/0 2/0/12/0 2/0/13/0 0/0/4/1 0/0/5/0

Ethnicity (H/NH)b 2/12 1/17 0/13 2/13 1/4 2/3

Median age
(years)

32
(22-70)

35.5
(27-50)

56c

(44-65)
36

(23-55)
29

(24-61)
54

(30-63)

Median HIV-1 viral load
(RNA copies/mL)

NA NA
0

(0-20)
62800d

(159-5.2e5)
NA

20
(0-20)

Median CD4+ T cell
count (cells/mL)

NA NA
648

(177-1114)
577

(201-939)
NA

639
(187-1417)

Median fecal BCA
(ug/mL)

881.7 829.8 700.1 763.8 868.6 1025.8

Kruskal-Wallis tests were performed for all demographic characteristics, corrected for multiple comparisons and significant differences are indicated. Units are provided in parentheses
in the first column and all information in parentheses in subsequent columns are data ranges.
aBA, Black/African American; A, Asian; W, White; O, Other.
bH, Hispanic; NH, non-Hispanic.
cThe median age of MSM-ART is significantly higher compared to all cohorts excluding F-HIV. (Non-MSM-SN: P = 0.0017; MSM-SN: P = 0.0060; MSM-HIV: P=0.0051; F-SN:
P=0.020).
dP < 0.0001 in comparison to MSM-ART and P=0.0056 in comparison to F-HIV. NA, Not Applicable.
fro
ntiersin.org

https://doi.org/10.3389/fimmu.2022.1072720
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Littlefield et al. 10.3389/fimmu.2022.1072720
C, and the supernatant was passed through a 0.2 mm filter, aliquoted

and stored at -80°C until testing. Total protein levels were assessed

using a Bicinchoninic acid (BCA) assay. Standard sandwich ELISAs

were used to measure fecal calprotectin (Epitope Diagnostics, San

Diego, CA), IL-22 (eBioscience/Thermofisher, Waltham, MA),

sCD14 (Hyclone, Uden, Netherlands) and sIgA (BioVendor, Brno,

Czech Republic), while multi-plex ELISAs (MesoScale Diagnostics,

Rockville, MD) were used to measure multiple analytes

simultaneously each following manufacturer’s protocols. The

following V-Plex MSD (MesoScale Diagnostics, Rockville, MD)

kits were utilized: Proinflammatory Panel 1 (IFN-g, IL-1b, IL-2,
IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, TNF-a), Vascular Injury
Panel 2 (SAA, CRP, VCAM-1, ICAM-1), and Cytokine Panel 1

(GM-CSF, IL-1a, IL-5, IL-7, IL-12/23p40, IL-15, IL-16, IL-17A,
TNF-b, VEGF-A).
2.4 DNA extraction and sequencing

DNA was extracted from the same fecal samples used in the

ELISAs using the standard Power Soil Kit protocol (Qiagen).

Extracted bacterial DNA was PCR amplified with barcoded

primers targeting the V4 region of 16S rRNA according to the

Earth Microbiome Project (EMP) standard protocols (http://

www.earthmicrobiome.org). Each PCR product was quantified

using PicoGreen (Invitrogen, Carlsbad, CA), and equal amounts

of DNA from each sample were pooled and cleaned using the

UltraClean PCR Clean-Up Kit (MoBio, Carlsbad, CA).

Sequences were generated on three runs using a MiSeq

personal sequencer (Illumina, San Diego, CA).
2.5 Sequence data analysis

Raw sequences were quality filtered and assigned to samples

based on their barcodes using the default parameters of QIIME

version 1.5.0 (26). Sequences were assigned to 97% identity

operational taxonomical units (OTU)s by comparing them to a

nonredundant reference database of near-full length sequences

(Greengenes database) (27), and unassigned sequences were

clustered into de novo OTUs using UCLUST (28). Since samples

contained between 4,694 and 72,828 sequences, analyses were

standardized at 4,600 sequences per sample to avoid biases.

UniFrac (29) PCoA analyses were conducted using QIIME.

Bacterial families and genera in each sample were determined

using the RDP classifier retrained on the Greengenes taxonomy (30).
2.6 Fecal sIF and microbiome
PCoA analysis

Fecal sIF data was normalized by dividing each individual

value by the mean value of that sIF across all samples. All data
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were entered into a feature table with 17 features to perform

analysis using QIIME2 (31). Distances between fecal samples

based on their sIF levels were calculated using Canberra

distances. PCoA ordination and biplot functionality in

QIIME2 visually integrate the sample feature metadata.

Microbiome beta diversity was calculated using unweighted

UniFrac and plotted by PCoA. A one-sided Mantel test with

Pearson correlation was performed to test for a correlation

between the two distance matrices from the microbiome data

(unweighted UniFrac) and the immune data (Canberra).
2.7 Fecal solute stimulation of intestinal
epithelial cells

Human intestinal epithelial T84 cells were grown and

maintained in DMEM nutrient mixture F-12 ham (DMEM F-

12) media (Gibco, Grand Island, NY) as previously described

(32). Cells were plated on permeable transwell inserts (Costar,

Cambridge, MA) and grown to confluency and high resistance

(>1,000 W•cm2). Agonist-stimulated short circuit currents (Isc)

were measured in Hank’s balanced salt solution (Sigma-Aldrich)

on the apical side using an EVOM2 voltohmmeter (World

Precision Instruments, Sarasota, FL). Measurements were

taken before fecal solutes were added, 30 minutes post-

addition of fecal solutes, and then once an hour for four hours.

Cl- secretory responses are expressed as a change in short circuit

current (DIsc) as previously described (33).
2.8 Statistical analysis

Statistical analyses comparing differences between cohorts

and correlations for clinical measures, sIF levels, DIsc and PC

values were performed using GraphPad Prism Version 7

(GraphPad, San Diego, CA). These consist of Kruskal-Wallis

with Dunn’s corrections and rank Spearman correlation analyses

corrected for multiple comparisons with the false discovery rate

(FDR) method of Benjamini and Hochberg (34) were used to

determine significance of differences between cohorts. Any

correlations where P < 0.05 after FDR correction was

considered statistically significant.
3 Results

3.1 Gastrointestinal symptoms and
inflammation are increased in
MSM with and without HIV infection

There was no significant difference in the age between

cohorts except for the MSM-ART cohort, which was

significantly older (Table 1). There was also no significant
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difference in the median CD4+ T cell count between participants

with HIV with or without ART indicating those in the MSM-

HIV cohort were fairly healthy (Table 1). To ensure that stool

consistency was not responsible for differences in sIFs, we also

measured the total protein concentration of the fecal solutes

(total BCA) and no significant difference between cohorts was

noted (Table 1).

To evaluate differences in overall GI discomfort between our

cohorts the gastrointestinal symptom rating survey (GSRS) (24)

was completed by all study participants, and aggregate scores

compared. Both MSM-SN andMSM-HIV reported a statistically

significant increased GI symptom frequency and severity

compared to non-MSM-SN (P=0.031; P=0.029, respectively)

(Figure 1A). After providing a stool sample participants were

asked to rate the sample’s consistency using the Bristol stool

scale (25), and MSM-ART participants reported more watery/

loose stool consistency than non-MSM-SN participants

(P=0.039) (Figure 1B). We then measured fecal calprotectin, a

quantitative clinical marker of GI inflammation. Only MSM-

HIV participants had statistically elevated levels of calprotectin

in their fecal samples compared to non-MSM-SN (P=0.014)

(Figure 1C). However, all MSM cohorts had a higher proportion

of participants with calprotectin levels over 50 mg/g than the

non-MSM-SN cohort (non-MSM-SN: 21.4%, MSM-SN: 44.4%,

MSM-ART: 64.3%, MSM-HIV: 66.7%), which can indicate

potential GI inflammatory disease (35). Several MSM

participants had fecal calprotectin levels greater than 200 mg/g
which is strongly associated with GI inflammatory disease (35)
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(16.7%, 14.3%, and 33.3% of MSM-SN, MSM-ART, and MSM-

HIV respectively) while none in the non-MSM-SN cohort had

comparable levels. All three of these measures were also

examined in F-SN and F-HIV and while the aggregate GI

symptom score was significantly higher for F-HIV compared

to F-SN (P=0.047) there was no difference in stool consistency

(Supplementary Figure 1A). Fecal calprotectin showed a similar

pattern as for HIV-positive men but was a smaller cohort and

did not reach statistical significance (Supplementary Figure 1A).

Based on both reported symptoms and fecal calprotectin we

show a more inflammatory GI environment in HIV-positive

individuals and in MSM compared to non-MSM and HIV-SN,

which prompted further exploration into the specific

characteristics of this inflammation.
3.2 Distinct inflammatory MSM fecal sIF
profile is exacerbated with HIV infection

Twenty-seven sIFs, excluding calprotectin, were measured

from fecal samples using both multiplex and standard ELISAs.

Seventeen of these were measurable within the standard ranges

of each assay for more than 75% of all samples tested. Ten

markers (IFN-g, IL-2, IL-4, IL-6, IL-10, IL-12p70, SSA, IL-5, IL-
17A, TNF-a) where less than 75% of participants had detectable

levels in their fecal solute were excluded. Of those seventeen,

twelve sIFs showed significant differences across cohorts and

values for all participants (Figure 2). The five sIFs that were
A B C

FIGURE 1

Increased GI symptoms and inflammation in MSM with and without HIV infection. (A) GI Symptom Scores, and (B) Bristol Stool Scale Scores
calculated from survey responses. (C) Calprotectin levels (µg/g) determined by ELISA. Each point represents data from one participant and are
colored based on cohort: non-MSM-SN (dark blue), MSM-SN (green), MSM-ART (orange) and MSM-HIV (red). Black lines/hollow bars represent
the median of each cohort. The dotted line at 200 µg/g represents the cutoff for clinically significant fecal calprotectin. Kruskal-Wallis tests were
used to determine statistical significance with Dunn’s multiple comparisons test where * = p < 0.05, ** = p < 0.01, and *** = p < 0.001.
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detectable but did not have significantly different fecal levels

between cohorts were CRP, IL-1a, IL-8, sCD14 and sIgA. Nine

(GM-CSF, ICAM-1, IL-1b, IL-12/23, IL-15, IL-16, TNF-b,
VCAM-1, and VEGF) were elevated in either cohort of

part ic ipants with HIV compared to non-MSM-SN

(Figures 2A, B). The most striking example of fecal sIF

elevation for PLWH was seen in IL-1b, where there were 27-

fold (MSM-HIV) and 10.9-fold (MSM-ART) increases

compared to the non MSM-SN cohort. Many sIFs were

highest in MSM-HIV, though still significantly elevated in

MSM-ART with the exception of ICAM-1 which was not

significantly higher compared to non-MSM-SN. Interestingly,

three sIFs (GM-CSF, ICAM-1 and IL-12/23) were also

significantly higher in MSM-SN compared to non-MSM-SN

and IL-7 was not elevated in either HIV cohort (Figure 2B). We

also compared non-MSM-SN to MSM-SN using a Mann-

Whitney T test. In this analysis, seven (GM-CSF, ICAM-1, IL-

7, IL-12/23, IL-16, TNF-b and VCAM-1) of the sIFs were

significantly elevated while one (IL-13) was lower in HIV-

negative MSM compared to HIV-negative non-MSM

(Supplementary Table 1). In contrast, IL-22 levels were lower

across MSM cohorts compared to non-MSM, most significantly

in participants with HIV, and IL-13 was lower in MSM-SN alone

(Figure 2C). While fecal CRP, IL-1a, IL-8, sCD14 and sIgA

levels were detectable for the majority of participants, there were

no significant differences between cohorts (data not shown). A

separate comparison of only MSM cohorts was done where both
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MSM-HIV and MSM-ART were compared to MSM-SN and the

only significant difference was elevated IL-13 in MSM-HIV

(Supplementary Table 2). There were no other significant

differences between the MSM cohorts. Taken together, our

data show significant differences in sIF levels for MSM

compared to non-MSM that is present regardless of HIV-

infection, and further elevated in participants with HIV.

Levels of fecal sIFs were also examined in the cohorts of

female participants. Because we were unable to recruit enough

male non-MSM with HIV, we examined a small cohort of

females with HIV as their microbiome is similar. Significant

increases were observed in F-HIV compared to F-SN for IL-15

(p=0.016), IL-16 (p=0.0079), TNF-b (p=0.0079), GM-CSF

(p=0.0079), and IL-12/23 (p=0.0079) (Supplementary

Figure 1B). Most of these trends align with the observations of

fecal sIFs in the male cohorts; however, for IL-1b, ICAM-1 and

IL-22 there was no significance between F-HIV and F-SN. Due

to the small size of the female cohorts and known gut

microbiome differences of MSM (17) the remainder of

analyses focused on male participants.
3.3 Fecal sIF frequencies correlate with
fecal calprotectin

Fecal calprotectin is a standardly used clinical marker for

diagnosis and monitoring of inflammatory gut diseases, so we
A

B C

FIGURE 2

Concentrations of fecal sIFs are altered in MSM compared to non-MSM. Levels of (A) IL-1b, IL-15, IL-16, TNF-b, VCAM-1, VEGF (pg/mL), (B) GM-
CSF, ICAM-1, IL-7, IL-12/23 (pg/mL), (C) IL-13 (pg/mL), and IL-22 (ng/mL) comparing MSM-SN, MSM-ART, and MSM-HIV cohorts to non-MSM-
SN. Each point represents data from one participant and are colored based on cohort: non-MSM-SN (dark blue), MSM-SN (green), MSM-ART
(orange) and MSM-HIV (red). Black lines represent the median of each cohort. Kruskal-Wallis tests were used to determine statistical significance
with Dunn’s multiple comparisons test where *p < 0.05, **p < 0.01, and ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1072720
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Littlefield et al. 10.3389/fimmu.2022.1072720
examined associations between fecal calprotectin and sIF levels to

better understand their role in GI inflammation. Statistically

significant correlations were found between fecal calprotectin

levels and IL-1b, IL-8, IL-15, IL-16, GM-CSF, TNF-b, VEGF-A
and VCAM-1 (Table 2). The most significant of these correlations

was between calprotectin and IL-1b (P=0.0005, r=0.51), an

inflammatory cytokine associated with GI disease (36) (Table 2).

In fact, most of the fecal sIFs associated with calprotectin have

inflammatory properties (IL-1b, GM-CSF, TNF-b, IL-8, IL-16,
and VEGF-A) or are involved in trafficking of leukocytes into

tissue (VCAM-1). While the significant correlations between

calprotectin and inflammatory sIFs indicate these markers are

relevant to overall gut inflammation, it is notable that the two

cytokines that were decreased in one or all MSM cohorts, IL-13

and IL-22, did not correlate with calprotectin levels. Additionally,

none of the fecal sIFs correlated with the aggregate GSRS or

Bristol stool scores. The associations between fecal sIF

concentrations and fecal calprotectin indicate sIFs contribute to

clinically significant GI inflammation.
3.4 Fecal sIF profile is related to
microbiome compositional differences

Next, we compared the overall fecal sIF profile to

microbiome composition. The evaluation of global differences

in sIFs was made by performing a principal coordinate analysis

(PCoA) of Canberra distances calculated from sIF profiles after
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values were normalized (Figure 3A). Non-MSM-SN individuals

clustered separately from MSM cohorts across principle

coordinate 1 (PC1), which was separated by elevated IL-22

and sIgA for non-MSM-SN and higher levels of ICAM-1,

VCAM-1, IL-1b, TNF-b, and GM-CSF for MSM (Figure 3A).

Clustering of MSM-ART and MSM-HIV cohorts largely

overlapped and were both distinct from non-MSM-SN, while

the MSM-SN cohort was more diffuse. We and others have

reported that the enteric microbiome of MSM with and without

HIV infection is distinctly different than that of non-MSM, in

part due to an increase in Prevotella and decrease in Bacteroides

(17). To relate the microbiome composition to fecal cytokine

profiles, we generated 16S rRNA sequence data from the same

fecal samples. As shown previously (17), MSM microbiome

compositions did not clearly cluster by HIV or ART status

using PCoA (Figure 3B). Differences in between MSM and non-

MSM were again associated with relatively Prevotella rich and

Bacteroides poor microbiome composition in the MSM.

Comparison of the pairwise distance matrices of the fecal sIF

data and unweighted UniFrac values with a mantel test showed a

significant relationship (P=0.029) indicating that the

microbiome differences explained some of the variation in sIF

profiles across fecal samples. We also looked at the abundances

of Prevotella and Bacteroides individually and found patterns

similar to our previous study (17) (Supplementary Figures 2A–

C). When these abundances were correlated with fecal sIF

concentrations Prevotella did positively associate with IL-1b
levels (P=0.038, r=0.48) and negatively with IL-22 (P=0.004,

r=-0.52) for all participants, but there were no correlations

within MSM cohorts (Supplementary Figure 2D).
3.5 Inflammatory sIF composition of
MSM with HIV associates with decreased
intestinal barrier integrity in colonic
epithelial cells

To assess the effects of sIFs on the colonic epithelial barrier

we added fecal solutes to the apical portion of confluent T-84 gut

epithelial cells at resistance (1000 W•cm2). We measured short

circuit current (Isc), a measure of apical fluid transport (37), over

a 24-hour period of time and found the peak change from the

initial Isc occurred at 4 hours (DIsc). We found fecal solute from

MSM-HIV induced a significantly lower DIsc compared to non-

MSM-SN (p = 0.033) and MSM-ART also trended lower

(Figure 4A). None of the fecal solutes from non-MSM-SN had

a negative DIsc whereas solutes from 18% and 31% of the MSM-

ART and MSM-HIV cohorts respectively decreased Isc

compared to the initial reading. We then compared PC1

values of the sIF composition PCoA to DIsc using a stratified

analysis and found significant associations between PC1 and

DIsc for all participants (P=0.0003, r=-0.50), participants with

HIV (P=0.003, r=-0.59), and MSM-HIV (P=0.011, r=-0.69)
TABLE 2 Fecal calprotectin correlates with fecal sIF levels.

Correlate R-value P-value

IL-1b 0.5111 0.0005

VEGF 0.4692 0.0017

IL-15 0.4502 0.0017

VCAM-1 0.4384 0.0021

IL-16 0.4258 0.0024

GM-CSF 0.4156 0.0028

IL-8 0.4153 0.0024

TNF-b 0.4127 0.0023

IL-12/23 0.3662 0.0075

IL-7 0.3598 0.008

ICAM-1 0.3365 0.013

IL-1a 0.313 0.021

Significant correlations between fecal sIF concentrations and fecal calprotectin. Test
results for ranked Spearman correlations with an FDR<0.05 are shown, followed by
the corrected p-value.
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while there was no correlations in other stratifications by HIV

infection status or by cohort (Figures 4B–D). Positive PC1

values, categorized by increased concentration of inflammatory

sIFs ICAM-1, VCAM-1, IL-15 IL-1b and TNF-b and decreased

IL-22 and sIgA, were associated with decreased gut barrier

integrity. There were no correlations found between DIsc and

microbiome PC1 or levels of individual sIFs for all participants

or when stratified by cohort. (Supplementary Data 1). We

repeated this analysis stratified based on participants’ HIV

status and eight of the 12 sIF frequencies significantly

correlated with DIsc (Figure 4E). The strongest associations

among participants with HIV involve IL-15 (P=0.0072, r=-

0.63), TNF-b (P=0.0096, r=-0.61) and VCAM-1 (P=0.0099,

r=-0.59), and GM-CSF, IL-7, IL-12/23, IL-16 and VEGF-A

also negatively associate with DIsc (Figure 4E). There were no

significant associations among participants without HIV. These

findings indicate the reduced apical fluid transport of the gut

epithelial barrier is associated with elevated concentrations of

inflammatory sIFs in participants with HIV.
3.6 Elevated systemic sCD14 in HIV is
associated with fecal sIF induced
intestinal barrier dysfunction

Lastly, to examine the associations between barrier function

and systemic inflammation, we measured levels of inflammatory
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sIFs in plasma. Few significant differences between MSM and

non-MSM cohorts in plasma sIFs were noted, and many sIF

trends are antithetical to sIFs in the feces (Supplementary

Table 3). Of note, IL-22 levels in plasma were increased in all

MSM cohorts compared to non-MSM, while they were decreased

in feces, and of twelve matched sIFs in blood and feces only three

positively correlated (Supplementary Table 3). We also measured

plasma sCD14 and sCD163 to assess the connections between sIF

levels and bacterial translocation (38, 39). Plasma sCD14 was

significantly elevated in MSM-HIV (P=0.0050, Median=1760 mg/
mL) and trended higher in MSM-ART (P=0.074, Median=1726

mg/mL) compared to non-MSM-SN (Median=1398 mg/mL)

(Figure 5A). There was no significant difference in plasma

sCD14 between MSM-SN and non-MSM-SN (P>0.99,

Median=1376 mg/mL) (Figure 5A). DIsc was found to

negatively correlate with sCD14 (P=0.018, r=-0.38) for all

participants (Supplementary Figure 3A) and the relationship

was even stronger for participants living with HIV (P=0.021,

r=-0.51) (Figure 5B). There were no significant associations when

stratified by cohort or among HIV-seronegative participants.

Additionally, there was a much weaker association between

plasma sCD14 and fecal sIF PC1 (P=0.07, r=0.29) and no

association with fecal microbiome PC1 (P=0.87, r=0.02) (data

not shown). Of the 12 fecal sIFs tested there was one significant

association between VEGF and plasma sCD14 (P=0.029, r=0.40)

(Supplementary Table 4). Plasma sCD163 was also significantly

elevated in MSM-HIV (P=0.0003, Median=1166 mg/mL)
A B

FIGURE 3

Principal coordinate analyses of fecal sIF and microbiome composition segregate by MSM status. (A) PCoA plot of fecal sIF composition after
normalization across samples. Each point represents one participant’s sIF composition where the distance between points is representative of
relative similarity – two points closer together are more similar than two further apart. Labeled arrows of the 11 most influential sIFs on this
PCoA’s distribution are included with corresponding directionality and impact as shown by the arrow’s length. (B) Unweighted UniFrac PCoA
plot of fecal microbiome composition where each point represents one individual’s overall microbiome composition. Labeled arrows of the 4
most influential taxa on this PCoA’s distribution are included with corresponding directionality and impact as shown by the arrow’s length.
Points are colored based on cohort: non-MSM-SN (dark blue), MSM-SN (green), MSM-ART (orange) and MSM-HIV (red). Each colored oval
encircles the majority of participants in the cohort with corresponding color. The size and location were determined manually and <20% of
each cohort falls outside the oval. The P value below the double-sided green arrow between plots is the result of a Mantel test that shows a
significant positive correlation between these two matrices.
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compared to non-MSM-SN (Median=675 mg/mL), but neither

MSM-ART (Median=734 mg/mL) or MSM-SN (Median=794 mg/
mL) were significantly higher (Figure 5C). While plasma sCD163

did not have significant associations with sIF composition,

barrier function or microbiome composition for all participants

(Supplementary Figure 3B), when stratified by HIV status

participants with HIV show a significant correlation between

sCD163 and gut microbiome composition (P=0.04, r=-0.41)

(Figure 5D). There were no significant associations when

stratified by cohort. Additionally, there were no significant

correlations between individual fecal sIF levels and plasma

sCD163 (data not shown). These findings connect systemic

inflammation markers to both intestinal barrier function and

microbiome composition, both of which are also associated with

fecal sIF composition.
4 Discussion

HIV infection has long been associated with gastrointestinal

disease. Acquired immune deficiency syndrome (AIDS) was
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initially classified as a chronic wasting disease because of the

severe diarrhea and malabsorption seen in PLWH without ART

treatment (40). In recent years, profound depletion of CD4+ T

cells in the intestine and increased bacterial translocation from

the gut have been strongly associated with HIV disease

progression (41, 42), and these findings have sparked renewed

interest of the role of the gastrointestinal tract in HIV

pathogenesis. One area of particular interest is the intersection

between the gut microbiome and inflammation in HIV, in part

due to the strong connections between microbiome

composition, inflammatory gut diseases and various chronic

conditions (43, 44). Our group and others have shown that HIV

infection is associated with intestinal microbiome dysbiosis (45,

46) but interestingly, it has only been recently determined that

sexual behavior contributes more significantly to alterations in

microbiome composition in HIV-infected MSM than HIV

infection itself (17). Understanding the interactions between

the gut microbiome, inflammation and how these factors

influence HIV pathogenesis and transmission following

receptive anal intercourse (RAI) is of interest considering the

known associations between vaginal dysbiosis and HIV
A B
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FIGURE 4

Fecal solutes from MSM with HIV infection increase transcellular gut epithelial permeability and associate with sIFs. (A) The change in short
circuit current (DIsc) after 4 hours was calculated using Ohm’s law. A Kruskal-Wallis test was performed to determine statistical significance
where * = p < 0.05, ** = p < 0.01, and *** = p < 0.001. Correlations between DIsc and sIF PC1 values from PCoA from figure 3 for all (B), HIV
(C), and HIV-ART (D) participants. Each point represents data from one participant and are colored based on cohort: non-MSM-SN (dark blue),
MSM-SN (green), MSM-ART (orange) and MSM-HIV (red). Each black line represents the linear regression for all included points, and P- and R-
values are associated with this line. Each dotted line represents the linear regression for the cohort with the corresponding color. (E) A heat map
showing associations between sIF concentrations and 4 hour DIsc. Teal indicates a negative R-value whereas orange represents a positive R-
value. Rank order spearman correlations were run to determine statistical significance where * = p < 0.05, ** = p < 0.01, and *** = p < 0.001.
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transmission (47, 48). The relationship between fecal soluble

immune factors (sIFs), many of which are important in gut

inflammation (36, 49), and the gut microbiome and barrier

function has not been previously examined in the context of

HIV. Here we show that MSM-SN have higher levels of GI

inflammation than non-MSM-SN, and that many of these sIF

levels are further elevated in MSM with HIV infection. We also

found there was a significant association between the

inflammatory composition of fecal sIFs with microbiome

composition and associations between individual gut

microbiome species and sIF concentrations in a stratified

cohort analysis. Lastly, we found both the overall composition

of sIFs and increased levels of specific sIFs in MSM with HIV
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associated with decreased transcellular fluid transport, which in

turn strongly associated with measures of bacterial translocation

in the plasma of the participants.

We initially assessed gut health and inflammation in our

study cohorts using standard clinically validated techniques; GI

symptoms questionnaire (24), self-reported Bristol Stool scale

(25) and fecal calprotectin (35). As expected, participants with

untreated HIV infection reported more GI symptoms compared

to non-MSM-SN; however, surprisingly we found that MSM-SN

participants also reported more GI symptoms. This could be

explained by the higher rate of sexually transmitted infections

(STIs) among MSM than non-MSM populations (50), which

previously were thought to be the primary cause of increased gut
A B
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FIGURE 5

Elevated plasma markers of bacterial translocation in MSM-HIV correlate with increased gut epithelial permeability and microbiome
composition. (A) Plasma sCD14 levels determined by ELISA and separated by cohort. (B) Correlations between DIsc and plasma sCD14 for
participants with HIV. (C) Plasma sCD163 levels determined by ELISA and separated by cohort. (D) Correlations between Microbiome PC1 and
plasma sCD163 for participants with HIV. For (A) and (C), Kruskal-Wallis tests were used to determine statistical significance between cohorts
where * = p < 0.05, ** = p < 0.01, and *** = p < 0.001. For (B) and (D) rank order spearman correlations were run where * = p < 0.05, ** = p <
0.01, and *** = p < 0.001. Each point represents data from one participant and are colored based on cohort: non-MSM-SN (dark blue), MSM-SN
(green), MSM-ART (orange) and MSM-HIV (red). Each black line represents the linear regression for all included points and reported P- and R-
values are associated with this line. Each dotted line represents the linear regression for the cohort with the corresponding color.
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inflammation in MSM. However, there were no significant

correlations between sIF levels and either stool consistency or

the average severity of reported GI symptoms. Additionally, the

rates of STIs – including Neisseria gonorrhoeae and Treponema

pallidum which cause gonorrhea and syphilis, respectively –

have increased in recent years among MSM and may be

influenced by increased use of pre-exposure prophylaxis for

HIV and associated behavioral changes (51); however, these

bacteria were not detected in our microbiome analysis and no

viral or parasitic STIs were reported by participants. Another

notable finding was that the stool from MSM-ART participants

had a looser consistency compared to non-MSM-SN. This aligns

with known associations between diarrhea and other GI

symptoms with various ART regimens (52). We also measured

the levels of fecal calprotectin which is directly related gut

inflammation (53). HIV-ART participants were more likely to

have elevated levels of gut inflammation than non-MSM-SN,

marked by fecal calprotectin between 50mg/g and 200mg/g (35),
and fecal calprotectin in ART-naïve participants was

significantly higher compared to non-MSM-SN. In fact, many

had levels typical of those observed with IBD which is similar to

previous findings in HIV infection (54). We were surprised to

see that 44% of MSM-SN had fecal calprotectin above 50 mg/g
while only 21% of non-MSM-SN participants had comparable

levels. Cumulatively, these findings further solidify the

connection between MSM, regardless of HIV infection, and GI

inflammation and prompted further exploration into how a

broad range of fecal sIFs differ with both HIV infection and

MSM status.

Analysis of stool sIFs has been previously used to study

various inflammatory diseases in the gastrointestinal tract (20–

23). These studies found that analysis of fecal sIFs provide a

sensitive and noninvasive measurement of gastrointestinal

inflammation and provide information on the intestinal

environment during or after viral infection (55). Of the 17 sIFs

that fell into range, eleven were elevated in MSM with HIV

compared to seronegative non-MSM and many of these are

associated with inflammatory GI diseases. Both MSM-HIV and

MSM-ART had elevated levels of eight inflammatory sIFs (GM-

CSF, IL-1b, IL-12/23, IL-15, IL-16, TNF-b, VCAM-1 and

VEGF), while ICAM-1 was increased in MSM-HIV compared

to non-MSM-SN. Of these, IL-1b, IL-12/23, IL-16 and TNF-b
are all elevated in IBD and associated with its pathogenesis (36,

56, 57), IL-15 and GM-CSF are elevated in inflamed intestinal

tissues (58, 59), and anti-VEGF therapies have been shown to

reduce intestinal inflammation in models of IBD (60). Recently

elevated IL-23 in the gut has also been associated with disease

severity after infection with SARS-CoV-2, which has a high

incidence of GI symptoms (55). Since these sIFs have strong

connections to inflammatory diseases and viral infections, it is
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unsurprising to see elevated fecal levels in PLWH but levels of

four sIFs (GM-CSF, ICAM-1, IL-7 and IL-12/23) were similarly

elevated in MSM-SN compared to non-MSM-SN. Both GM-CSF

and IL-12/23 are pro-inflammatory, while ICAM-1 and IL-7

modulate the trafficking of immune cells into tissues and

proliferation of lymphocytes respectively, all functions that

support epithelial barrier integrity (59, 61–63). The elevation

of these sIFs in MSM-SN is reasonable following increased

prevalence of mechanical injuries and pathogenic microbes in

the rectum and colon, both of which can negatively affect gut

barrier health. Additionally, IL-16, TNF-b and VCAM-1 were

also significantly higher in MSM-SN when directly compared to

non-MSM-SN indicating GI inflammation, while exacerbated by

HIV infection, is elevated in seronegative MSM. Decreased IL-22

was observed across MSM cohorts, most significantly in

participants with HIV. This may be functionally significant

since IL-22 – produced in the gut by CD4+ T helper subsets

and innate lymphoid cells (ILCs) – is known to promote

epithelial barrier integrity (64–66). This is particularly

important in the context of HIV since IL-22 producing CD4+

T cells are preferentially infected by HIV and both these T cells

and ILCs are significantly depleted in the gut even following

long-term ART (66–68). Surprisingly, of the twelve sIFs that

were detectable in both the blood and feces of these participants

only three – CRP, IL-16 and VCAM-1 – had significant direct

correlations. Interestingly, while IL-22 was lower in both HIV

cohorts compared to non-MSM-SN in feces, these levels were

significantly elevated in all MSM cohorts in the blood. While

twelve of the seventeen sIF levels positively associated with fecal

calprotectin, there were five sIFs, including IL-22, that did not

have significant associations. Taken together, this indicates that

fecal sIFs measurement reveals immune processes that are

specific to the gut, are a valid measurement of inflammation

and more sensitive than fecal calprotectin alone. These data

provide broader insight into intestinal inflammation than other

non-invasive measures and allow for a deeper understanding of

the different interactions of the gut microenvironment of MSM.

Evaluation of the differences of fecal sIF profile by PCoA

showed clustering of MSM and non-MSM cohorts. This analysis

indicated IL-22 levels contributed the most of any sIF to the

clustering observed, and in addition to its contribution to

epithelial barrier integrity, IL-22 can modulate gut microbiome

composition (69, 70). Particularly commensal Clostridia,

through the production of short-chain fatty acids (71), can

increase IL-22 production in both in vitro and in vivo models

(72). Based on the known differences in microbiome

composit ion in MSM and non-MSM (17) and the

microbiome’s connection to IL-22, we hypothesized that the

gut microbiome may contribute to elevated inflammatory sIFs.

To assess this, we performed a mantel test to compare pairwise
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distances between fecal sIF profiles and gut microbiome

composition. However, the association was weak indicating

that other factors that we did not measure, such as sexual

practices (73, 74), may also contribute to the differences. We

also found plasma sCD163 was elevated in MSM-HIV and

associated with gut microbiome composition. A marker of

macrophage activation and bacterial translocation (39),

sCD163 has also been connected to mortality and viral

replication in PLWH (75, 76). Recent studies evaluating the

microbiome in MSM with HIV infection have also found both

altered microbiome and elevated sCD163 in this population, but

the cause of this association remains unclear (77). Interestingly,

this relationship between sCD163 and microbiome composition

is specific to PLWH, indicating the possibility of a mechanism

specific to HIV infection. Based on these findings, further

investigation of the relationship between the gut microbiome

and sIFs in MSM and PLWH is warranted.

Systemic immune activation in HIV is caused in part by

translocation of microbial products from the gut (78, 79). To

better understand the effect of sIFs on gut barrier integrity we

cultured T-84 cells with total fecal solutes and measured DIsc – a

measure of apical fluid transport. We found that addition of fecal

solutes fromMSM-HIV to T-84 monolayers significantly lowered

levels of apical fluid transport as compared to non-MSM-SN,

while MSM-ART trended similarly. Increased apical fluid

transport is associated both with improved mucosal hydration

and decreased bacterial translocation (37), therefore fecal

inflammatory sIFs could contribute to increased bacterial

translocation and decreased barrier integrity associated with

HIV (78). These data indicate there is a connection between

fecal sIF composition, decreased intestinal barrier function and

bacterial induced systemic inflammation. While the fecal solutes

used also included bacterial metabolites that are thought to

contribute to intestinal barrier function (80), we also found

negative associations between apical fluid transport and IL-15,

TNF-b, VCAM-1, VEGF, GM-CSF, IL-7, IL-12/23 and IL-13 in

participants with HIV. Interestingly, no significant association

between sIF concentration and resistance to intracellular transport

was seen in participants without HIV, suggesting HIV-specific

fecal sIF compositions are more disruptive to the gut barrier.

Various cytokines in the intestinal lumen, including IL-12,

negatively impact intestinal membrane permeability (81) and

IL-15 is known to drive epithelial tissue destruction (82), cause

inflammation downstream of the antiapoptotic signals it initiates

(83) and direct intraepithelial lymphocyte motility in the gut (84).

VEGF overexpression can be pathogen-induced and also

contributes to barrier permeability (85). T helper subsets, which

are preferentially depleted in the gut of PLWH (86), associate with

worse outcomes from infections and are also associated with
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increased GM-CSF (87). Most importantly, we discovered a

significant inverse association between our in vitro measure of

gut permeability and plasma sCD14 (38), a marker of bacterial

translocation levels, indicating that disruption of barrier function

in vitro correlated with in vivo levels of bacterial translocation. As

plasma sCD14 is associated with mortality in PLWH even with

ART (88) and the mechanisms behind microbial translocation in

HIV are not completely understood (89), further investigation

into the interactions between sIFs and gut barrier function could

reveal new therapeutic targets to decrease systemic inflammation

and associated co-morbidities (2, 90) in PLWH. Taken together,

these data outline the interactions between fecal sIFs, gut barrier

function and bacterial translocation and connects our in vitro

findings to direct ex vivo measurements.

Analysis of fecal sIF allows for a deeper understanding of

the gut microenvironment not detectable by other low-risk,

noninvasive methods. The relevance of fecal sIF analysis is

confirmed by strong relationships with fecal calprotectin, while

also i l luminating unique mechanist ic insights into

gastrointestinal inflammation in HIV infection. Here we

connect fecal sIFs to the overall composition of the gut

microbiome and individual bacterial taxa abundance, barrier

function and bacterial translocation. More work is needed to

determine if microbiome dysbiosis is causal, or if inflammatory

conditions allow for increased abundance of opportunistic

bacteria. However, this study clearly shows elevated levels of

multiple sIFs in the stool of MSM with and without HIV

infection. Furthermore, we show relationships between plasma

markers of bacterial translocation and fecal sIF and

microbiome compositions further supporting the theory that

gut dysbiosis contributes to chronic systemic inflammation

in HIV.
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Cassane diterpenoid ameliorates
dextran sulfate sodium-induced
experimental colitis by regulating
gut microbiota and suppressing
tryptophan metabolism

Ting Liu1,2, Zunxi Ning1,2, Pengyu Liu1,2 and Huiyuan Gao1,2*

1School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China,
2Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang
Pharmaceutical University, Shenyang, China
Ulcerative colitis (UC) is one form of inflammatory bowel disease (IBD),

characterized by chronic relapsing intestinal inflammation. As increasing

morbidity of UC and deficiency of conventional therapies, there is an urgent

need for attractive treatment. Cassane diterpenoids, the characteristic chemical

constituents of Caesalpinia genus plants, have been studied extensively owing to

various and prominent biological activities. This study attempted to investigate the

bioactivity of caesaldekarin e (CA), a cassane diterpenoid isolated from C. bonduc

in our previous work, on dextran sulfate sodium (DSS)-induced experimental colitis

and clarify the function mechanism. The results indicated that CA ameliorated

mice colitis by relieving disease symptoms, suppressing inflammatory infiltration

and maintaining intestinal barrier integrity. Furthermore, 16S rRNA gene

sequencing analysis indicated that CA could improve the gut microbiota

imbalance disrupted by DSS and especially restored abundance of Lactobacillus.

In addition, untargeted metabolomics analysis suggested that CA regulated

metabolism and particularly the tryptophan metabolism by inhibiting the

upregulation of indoleamine 2,3-dioxygenase 1 (IDO-1). It also been proved in

IFN-g induced RAW264.7 cells. Overall, this study suggests that CA exhibits anti-UC

effect through restoring gut microbiota and regulating tryptophan metabolism and

has the potential to be a treatment option for UC.

KEYWORDS

colitis, caesaldekarin e, anti-inflammation, gut microbiota, metabolomics,
tryptophan metabolism
1 Introduction

Inflammatory bowel disease (IBD), characterized by the chronic and relapsing

inflammatory disorder of the gastrointestinal tract, generally begin in young adulthood

and last throughout life (1). As the two main clinicopathological subtypes of IBD, ulcerative

colitis (UC) and Crohn’s disease (CD) show different inflammatory location and histological

alterations in the intestinal wall. For the UC, the inflammation is limited to the colon with
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fewer complications. While the CD involves the entire gastrointestinal

tract, usually accompanied by strictures, abscesses, fistulas as well as

other complications (2, 3). The etiology of IBD is complex, and

interactions between genetic factor, the host immune system and gut

microbiota are thought to underlie the development of IBD (2, 4).

From birth to death, the human gastrointestinal tract is colonized by a

vast and complex community of bacteria that approximately 10-fold

of the total number of cells in the human body. Interactions between

bacteria and their hosts can be viewed in terms of a continuum

between symbiosis, commensalism and pathogenicity, and the

relationship between gut microbiota and their hosts can shift from

commensalism to pathogenicity in certain disease states (5). The

development of novel analysis techniques, such as shut gun

sequencing, metagenomics and next-generation sequencing, allow

us to bypass the traditional culture-dependent bias and deepen and

broaden our understanding of the composition, diversity, and roles of

the gut microbiota in human health and diseases (6). IBD is associated

with tremendous changes in the composition of gut microbiota,

underlining the importance of the microbiota in disease etiology.

Notably, dysbiosis and decreased complexity of the gut microbiota

have been observed in CD and UC patients (7–9).

The current treatments for IBD are generally divided into two

types: nonbiological therapy and biological therapy. Nonbiological

therapies such as corticosteroids, immunomodulators and

aminosalicylates, characterized by short half-life, low production

cost and high patient’s satisfaction from oral administration, have

been used for a long time, which can improve clinical symptoms but

do not change the overall disease course of IBD (10–12). In addition,

these small molecule drugs pose various side effects such as

hyperglycemia, hypothalamic-pituitary-adrenal axis suppression,

opportunistic infections and osteoporosis for glucocorticoid,

leukopenia, increased susceptibility to infection and hepatotoxicity

for thiopurines, and headache, nausea and epigastric pain for

sulfasalazine (13–15). Biologics are a group of molecules including

monoclonal antibodies, recombinant cytokines and specific

antagonists of receptors and cytokines that participate in regulating

inflammation during immune-mediated process. They are attractive

treatment options for patients who poorly or do not respond to small

molecule drugs such as steroids or immunosuppressants, or patients

suffering from serious adverse reactions of other IBD drugs (16).

However, in addition to risks for side effects and patients failing to

response, higher manufacturing and quality control costs of biologics

impose a burden to economically disadvantaged patients and the

healthcare system (17–19). Collectively, the development of safe,

effective and economical therapeutics for IBD are urgently needed.

Cassane diterpenoids, the characteristic chemical constituents of

medicinal plants of the Caesalpinia genus, have attracted considerable

interest owing to their significant biological activities including

antimalarial, anti-inflammatory, antimicrobial, antitumor, and

antioxidant properties (20). Caesalpinin M2, a cassane

furanoditerpenoid isolated from the seeds of C. minax in our

previous work (21), exerted anti-inflammatory effect as a selective

glucocorticoid receptor modulator by repressing NF-kB-dependent
transcription without inducing glucocorticoid receptor

transactivation, providing therapeutic potential in the treatment of

inflammatory diseases (22). In this study, caesaldekarin e (CA), a

cassane diterpenoid isolated from the seed kernels from C. bonduc in
Frontiers in Immunology 02167
our previous work (23), was used to evaluate its anti-inflammatory

activity and invest igate its effect against DSS-induced

experimental colitis.
2 Materials and methods

2.1 Preparation of chemical and reagents

CA was isolated from seed kernels of Caesalpinia bonduc in the

laboratory and its purity (>95%) was confirmed by HPLC analysis in

our previous study. Its structure was determined by a combination of
1H and 13C NMR spectra and comparison with reference. Dextran

sulfate sodium (DSS, molecular weight 36-50 kDa) was purchased

from Meilunbio (Dalian, China). Sulfasalazine (SASP) was purchased

from Shanghai Xinyi Tianping Pharmaceutical Co. Ltd. Other

chemicals, solvents and reagents were analytical grade.
2.2 Cell culture

Murine macrophage RAW264.7 were obtained from the Shanghai

Institute of Cell Biology (Shanghai, China) and were cultured in

Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal

bovine serum, penicillin (100 U/mL) and streptomycin (100 mg/mL)

in 5% CO2 at 37 °C.
2.3 Animals

Male BALB/c mice (18-22 g) were purchased from Liaoning

Changsheng Biotechnology Co., Ltd (License no. SCXK (Liaoning)

2020-0001). Mice were housed under standard conditions

(temperature 23 ± 2 °C and 12 h light/dark cycle) and fed with

standard chow pellets and water ad libitum. Mice were acclimatized

for one week prior to the experiments. The experimental procedure

was performed according to the guidelines approved by the

Institutional Animal Care and Use Committee of Shenyang

Pharmaceutical University.
2.4 MTT assay

RAW264.7 cells were cultured in 96-well plates at a density of 1 ×

104 overnight, which were subsequently treated with compound CA

for 24 h. After removing the medium, MTT was added to the 96-well

plate and cultured at 37 °C for 4 h to form formazan. Finally, the

formazan was solubilized in DMSO, and the absorbance was detected

at 490 nm.
2.5 NO generation assay

RAW264.7 cells were seeded in 96-well plates at a density of 2 ×

104 and cultured overnight. Cells were pretreated with CA (3.125,

6.25, 12.5, 25 mM) as indicated concentrations for 2 h, then cells were

treated with LPS (0.1 mg/mL) for another 24 h. The culture medium
frontiersin.org
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was collected to determine the nitrite level using Griess reagent

according to the instructions (Beyotime Biotechnology,

Shanghai, China).
2.6 Induction and treatment of colitis

50 BALB/c mice were randomly divided into five groups: blank

control group (Control), DSS-induced UC model group (DSS), CA-

treated UC group by intraperitoneal injection (CAip), CA-treated UC

group by intragastric administration (CAig) and SASP-treated UC

group (SASP). Experimental colitis was induced by administration

with distilled water containing 3% DSS (wt/vol) for 7 days, followed

by distilled water for the next 2 days. Control group Mice were

supplied with distilled water without DSS throughout the experiment.

CAig and SASP groups were administered intragastrically with CA

(20 mg/kg) or SASP (200 mg/kg) suspended in 0.5% CMC-Na water

solution, while the mice in Control, DSS and CAip groups received

same volume of 0.5% CMC-Na as vehicle from day 1 to 9. For the

CAip group, CA (20 mg/kg, suspended in 0.2 mL saline) was provided

daily through intraperitoneal injection for 9 days, and animals in

Control, DSS, CAig and SASP groups received 0.2 mL normal saline

via intraperitoneal injection for 9 days.
2.7 Sample collection

The whole blood sample were collected on the 10th day from the

retroorbital venous plexus under ether anesthesia. After standing for 1

h at room temperature, the blood was centrifuged at 3500 rpm for 10

min and the serum was transferred to another tube and stored at -80 °

C for subsequent metabolites analysis. Next, Mice were sacrificed and

the colon was collected to measure the length between the proximal

rectum and the ileocecal junction. Then, colon samples were cut into

fragments and about 1 cm of distal colon was used for histological

analysis. Mouse feces in colon were transferred into sterile centrifuge

tubes and stored at -80 °C after liquid nitrogen freezing. The

remaining colon tissues were rinsed with normal saline and

subsequently stored in a refrigerator at -80 °C for further analysis.
2.8 Assessment of disease activity index

The body weight, rectal bleeding and fecal consistency were

monitored every day. The disease activity index (DAI) was

determined from a combination of following parameters: a) body

weight loss (0: none, 1: 1-5%, 2: 5-10%, 3: 10-20%, 4: >20%); b)

diarrhea (0: normal, 1: soft but formed, 2: very soft, 3: half diarrhea, 4:

diarrhea); c) hematochezia (0: none, 2: slight bleeding, 4:

serious bleeding).
2.9 Histopathological assessment

The distal colon was cut and fixed in 4% paraformaldehyde,

followed by paraffin embedding. Sections (5 mm thick) were stained

with hematoxylin and eosin (H&E). The histological damage and
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inflammation were observed using Eclipse Ci-L microscope

(Nikon, Japan).
2.10 Measurement of colonic
myeloperoxidase activity and cytokines

The MPO activity of colon tissues were measured by a

myeloperoxidase assay kit according to the manufacturer’s

instructions (Nanjing Jiancheng Biotechnology Company, Nanjing,

China). Colon tissues were weighed and homogenized with normal

saline on ice and then centrifuged at 3000 rpm for 10 min at 4 °C. The

supernatants were collected for the measurements of IL-6, TNF-a and

IL-1b using commercial ELISA kit (Servicebio, Wuhan, China).

Inflammatory cytokines and markers including IL-6, TNF-a, IL-1b
and serum amyloid A (SAA) in serum were also evaluated by ELISA

kit (Lianke Biotech Co. Ltd., Hangzhou, China).
2.11 Quantitative real-time PCR analysis

Total RNA was extracted from colon tissues using Trizol reagent

according to the manufacturer’s instructions (Takara, Japan). Total

RNA was reversely transcribed using the PrimeScript RT reagent Kit

with gDNA Eraser (Takara, Japan). Real-time PCR was carried out

using TB Green Premix Ex Taq II (Takara, Japan) in CFX96 Real-

Time PCR Detection System. Relative mRNA levels were calculated

using the 2-DDCt method and normalized to b-actin expression. Primer

sequences are shown in Table S1.
2.12 Western blot analysis

Colon tissues of the mice and cultured cells were lysed using RIPA

buffer with protease inhibitor and incubated 30 min on ice. The

homogenate was centrifuged at 12000 rpm for 10 min at 4 °C and the

supernatant was collected. The protein concentration was determined

with BCA protein assay kit (Beyotime Biotechnology, China). Total

proteins (20 mg) for each sample were separated by SDS-PAGE and

subsequently transferred to NC membranes. Membranes were

blocked with 5% non-fat milk for 2 h at room temperature, then

were incubated overnight at 4 °C with iNOS (1:2000), Occludin

(1:2000), Claudin-1 (1:1000) and IDO-1 (1:5000) antibodies

(Proteintech Group, Inc., China). Membranes were incubated with

horseradish peroxidase (HRP)-conjugated secondary antibody

(Proteintech Group, Inc., China) at room temperature for 1 h.

Images were detected by chemiluminescence detection system

(Amersham Imager 680, Sweden). The obtained chemiluminescence

signals were analyzed with Image J software.
2.13 Fecal DNA extraction and Illumina
Miseq sequencing

Fecal genomic DNA was extracted with kit according to the

manufacture’s instruction. Extracted DNA was used as template to

amplify the V3-V4 region of bacterial 16S rRNA gene with the
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pr imer s 341F (CCTAYGGGRBGCASCAG) and 806R

(GGACTACNNGGGTATCTAAT). After purifying the PCR

products, high-throughput sequencing was performed on Illumina

MiSeq PE250 system (Novogene, Beijing, China).
2.14 Processing of sequencing data and
diversity analysis

The raw 16S rRNA gene sequencing reads were pieced and

quality-filtered, followed by removing chimeric sequences to obtain

the effective tags for subsequent analysis. Operational taxonomic

units (OTUs) were clustered by UPARSE with 97% similarity.

Alpha diversity was measured based on the observed OTU number

and presented with Chao, Shannon and Simpson indices. Beta

diversity was determined by principal coordinate analysis (PCoA)

based on the distance matrix. Linear discriminant analysis (LDA)

effect size (LEfSe) method was used to identify significantly different

biomarkers between groups (LDA score threshold of 4).
2.15 UPLC-MS Global profiling of serum
metabolites

The refrigerated serum samples were thawed thoroughly before

proceeding. 100 mL of each serum sample from Control, DSS, CAip,

CAig and SASP groups was mixed with 400 mL of methanol. After

vortex mixing, the samples were incubated for 5 min on ice and

centrifuged at 15000 g, 4 °C for 20 min. 400 mL of supernatant was

transferred into another clean Eppendorf tube and diluted with LC-

MS grade water to contain 53% methanol. The samples were

subsequently centrifuged at 15000 g, 4 °C for 20 min, and the

supernatant was applied to LC-MS/MS analysis.

QC sample was prepared by mixing equal volume of each serum

sample. QC samples were analyzed every 10 runs to monitor the

instrument and evaluate the stability and reproducibility of LC-MS

system throughout the analysis procedure.

The UHPLC-MS/MS analysis was carried out on a Vanquish

UHPLC system (Thermo Fisher, Germany) coupled with an Orbitrap

Q Exactive™ HF mass spectrometer (Thermo Fisher, Germany).

Each sample was injected into a Hypesil Gold column (100 × 2.1 mm,

1.9 mm, Thermo Fisher) with a flow rate of 0.2 mL/min at 40 °C. The

mobile phase for the positive polarity mode consisted of eluent A

(0.1% formic acid in water) and eluent B (methanol)), and eluent A (5

mM ammonium acetate, pH 9.0) and eluent B (methanol) for the

negative polarity mode. The gradient elution program was set as

follows: 0-1.5 min, 2% B; 1.5-3.0 min, 2-100% B; 3.0-10.0 min, 100%

B; 10.0-10.1 min, 100-2% B; 10.1-12.0 min, 2% B. For mass

spectrometry analysis, the Q Exactive HF mass spectrometer with

an electrospray ionization source was used. The parameters employed

were as follows: ESI positive and negative mode; mass range, m/z 100-

1500 Da; spray voltage, 3.5 kV; capillary temperature, 320 °C; sheath

gas flow rate, 35 psi; aux gas flow rate, 10 L/min; S-lens RF level, 60;

aux gas heater temperature, 350 °C.

The raw data files obtained from UHPLC-MS/MS were imported

into Compound Discoverer 3.1 to perform peak alignment, peak

picking and quantitation for each metabolite. The main parameters
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were as follows: retention time tolerance, 0.2 min; actual mass

tolerance, 5 ppm; signal intensity tolerance, 30%; signal/noise ratio,

3, et al. After that, peak intensities were normalized to the total

spectral intensity. The normalized date was used to predict the

molecular formula based on additive ions, molecular ion peaks and

fragment ions. Finally, the peaks were matched with mzCloud,

mzVault and MassList database to obtain the accurate qualitative

and relative quantitative results.

KEGG database (https://www.genome.jp/kegg/), HMDB database

(https://hmdb.ca/metabolites) and LIPID MAPS database (http://

www.lipidmaps.org/) were used to annotate identified metabolites.

Partial least squares discriminant analysis (PLS-DA) was performed

at metaX. Statistical significance (P-value) was calculated by

univariate analysis (t-test). The metabolites with variable

importance in projection (VIP) > 1, P-value < 0.05, and fold change

(FC) > 1.2 or FC < 0.83 were considered as differential metabolites.
2.16 Statistical analysis

All data were expressed as mean ± standard error of the mean

(SEM). Statistical analysis was conducted by one-way analysis of

variance (ANOVA), followed by Tukey’s test using GraphPad Prism

9.0.0. # P < 0.05, ## P < 0.01, ### P < 0.001 vs. Control group, * P < 0.05,

** P < 0.01, *** P < 0.001 vs. DSS group.
3 Results

3.1 CA exhibited anti-inflammatory effect in
macrophages

MTT assay was used to test the cytotoxicity of CA (Figure 1A),

and the results indicated that CA did not affect the cell viability even

at the dosage of 100 mM (Figure 1B). Then, LPS-stimulated

RAW264.7 cells were used to investigate the anti-inflammatory

activity of CA. Nitric oxide (NO) is a free radical acting as a

cellular signaling molecule, mainly produced by inducible nitric

oxide synthase (iNOS), which has been associated with the

pathophysiological of inflammation (24, 25). In the present study,

LPS stimulation caused dramatic increase of NO in RAW264.7 cells,

however, CA treatment significantly inhibited the production of NO

in a dose-dependent manner (Figure 1C). ELISA assay revealed that

CA dose-dependently inhibited the release of inflammatory cytokines

including IL-6, IL-1b and TNF-a induced by LPS (Figures 1D, E, F).

Furthermore, CA concentration-dependently inhibited the

overexpression of iNOS protein induced by LPS (Figures 1G–H).

Overall, CA effectively suppressed inflammatory response in

RAW264.7 cells.
3.2 CA administration ameliorated the
clinical symptoms of DSS-induced colitis

A UC mouse model was induced through 3% DSS administration

in drinking water for 7 days. In the course of experiment, DSS group

showed body weight loss, diarrhea and hematochezia. By contrast,
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treatment with CA (CAip and CAig) and SASP alleviated these

pathological alterations and decreased DAI scores (Figures 2A, B).

The colon length of DSS group was evidently shorter than that of the

control group, while DSS-induced colon shortening was improved by

treatment with CA and SASP, especially by CA via intraperitoneal

injection (Figures 2C, D).
3.3 CA suppressed inflammatory infiltration
of colon tissue

Histopathological evaluations of colon were conducted by H&E

staining and representative results were shown in Figure 2F. In the

control group, the colon tissues showed intact mucosa, submucosa,

muscular layer and outer membrane. However, the colon from DSS

group showed disruption of the epithelial layer, loss of goblet cells,

crypts loss and inflammatory cell infiltration. However, CA and SASP

treatment had less distortion of epithelium, relative integral crypt

structures and fewer infiltration of inflammatory cells.
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Neutrophil infiltration leads to remarkable elevation of MPO

activity in colon, which is a typical inflammatory marker of colitis

(26). As shown in Figure 2E, MPO activity of DSS group significantly

higher than that of the control group, while CA and SASP treatment

significantly suppressed the elevation of MPO activity. Compared

with DSS group, the reductions in CAip, CAig and SASP groups were

70.8%, 55.4% and 61.2%, respectively. Taken together, these results

suggested that CA exhibited therapeutic effect on DSS-induced colitis

through inhibiting inflammatory infiltration.
3.4 CA decreased the level of inflammatory
markers in colon tissue and serum

To investigate the effect of CA on the release of pro-inflammatory

cytokines in the colon, colon tissues were collected and the expression

of pro-inflammatory cytokines were measured by ELISA and qRT-

PCR. As shown in Figure 3, the levels of pro-inflammatory cytokines

including IL-6, IL-1b and TNF-a in colon tissue significantly
A B
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C

FIGURE 1

CA exhibited anti-inflammatory effect in macrophages. (A) Chemical structure of caesaldekarin e (CA). (B) RAW264.7 cells were treated with CA for 24 h
as indicated concentrations. The cell viability was determined by MTT assay. (C) RAW264.7 cells were pretreated with the indicated concentration of CA
for 2 h, followed by LPS (0.1 mg/mL) stimulation for another 24 (h) Then, the culture medium was collected to determine the nitrite levels using the
Griess reagent. RAW264.7 cells were pretreated with the indicated concentration of CA for 2 h, followed by LPS (0.1 mg/mL) stimulation for another 24
(h) The culture medium was collected to determine the levels of IL-6 (D), IL-1b (E) and TNF-a (F) by ELISA. (G) RAW264.7 cells were pretreated with CA
(10, 20, 40 mM) for 2 h and stimulated with LPS (0.1 mg/mL) for another 12 (h) Then, iNOS protein expression was determined by Western blot analysis.
(H) The relative protein expression of iNOS was normalized to b-actin. Data are expressed as the mean ± SEM of three independent experiments.
### P < 0.001 vs. Control group, * P < 0.05, ** P < 0.01, *** P < 0.001 vs. LPS group. ns, no significant difference with DMSO treatment.
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increased in the DSS group. However, the administration of CA

markedly reduced the levels of these cytokines. Notably, the effects of

CA for decreasing the level of pro-inflammatory cytokines were

superior to SASP. Similarly, DSS caused considerable increase of

inflammatory markers including IL-6, IL-1b, TNF-a and SAA in

serum, which also been reduced through CA treatment.
3.5 CA improved intestinal barrier by
enhancing TJ protein expression

Intestinal barrier integrity is a prerequisite for mucosal functional

homeostasis and one of the main causes of several gastrointestinal

diseases such as IBD (27). In addition to depending on coordinated

proliferation and cell death, barrier function is also determined by

tight junction (TJ), the paracellular barrier of intestinal epithelium.

The TJ proteins responsible for barrier and passage function consist of

2 families: the TAMP family consisting of occludin, tricellulin and

marvelD3, and claudins family (28). To investigate the effect of CA on
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intestinal barrier function, the expression levels of TJ proteins

occludin and claudin-1 were detected by western blot. As shown in

Figure 4, compared with control group, occludin and claudin-1 were

obviously down-regulated in DSS group, indicating that the TJ

structure was disrupted. By contrast, CA treatment markedly

enhanced occludin and claudin-1 expression, suggesting that CA

could improve intestinal integrity.
3.6 CA altered gut microbiota diversity and
composition

To determine whether CA treatment changed the microbiome,

16S rRNA sequencing was performed for fecal samples of each group.

We next compared the alpha diversity and beta diversity among

different groups. The alpha diversity of a sample reflects the richness

and diversity of the microbial community. As shown in Figures 5A–C,

compared with the control group, DSS-treated colitis group exhibited

extremely significant reduction of diversity (Shannon and Simpson),
A B
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C

FIGURE 2

CA treatment ameliorated DSS-induced experimental colitis. (A) Body weight change. (B) Disease activity index (DAI) score. (C) Representative pictures of
colon appearance and colon length. (D) colon length. (E) MPO activity. (F) Representative microscopic pictures of H&E staining (200 × magnification). (A,
B, D) Data are presented as the mean ± SEM (n = 8~10). (E) Data are presented as the mean ± SEM (n = 6). # P < 0.05, ## P < 0.01, ### P < 0.001 vs.
Control group, * P < 0.05, ** P < 0.01, *** P < 0.001 vs. DSS group.
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whereas there was no significant difference of microbial species

richness (Chao) among the five groups. Notably, CA oral

administration and SASP treatment markedly improved the

microbial diversity.

The Beta diversity was displayed in Figure 5D. The principal

coordinate analysis (PCoA) based on Bray-Curtis distance at OUT

level showed overall structure shift of gut microbiota in mice after

DSS challenge compared with that of the normal mice. Although CA

and SASP treatment could not completely reverse the change of gut

microbiota, they still partially mitigate the abnormal gut microbiota

in DSS-induced UC mice.
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3.7 Gut microbiota composition of UC mice
at different level

Histograms were used to illustrate the microbial community

structure and show the differences in the relative abundance of

major microbiota at different levels. In terms of bacterial

composition at the phylum level, all groups possessed similar

taxonomic communities mainly composed of Firmicutes,

Bacteroidetes, Proteobacteria, Actinobacteria, Fusobacteria and

Desulfobacteria. Compared with control group, Firmicutes

and Fusobacteria were enriched, while Desulfobacteria and
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C

FIGURE 3

Effects of CA on inflammatory cytokines IL-6 (A), IL-1b (B) and TNF-a (C) by ELISA and mRNA expression of IL-6 (D), IL-1b (E) and TNF-a (F) by qRT-PCR
in colon tissue. Effects of CA on inflammatory markers IL-6 (G), IL-1b (H), TNF-a (I) and SAA (J) in serum by ELISA. Data are expressed as the mean ±
SEM (n = 6). # P < 0.05, ## P < 0.01, ### P < 0.001 vs. Control group, * P < 0.05, ** P < 0.01, *** P < 0.001 vs. DSS group.
A B C

FIGURE 4

CA protected intestinal epithelial barrier by enhancing TJs proteins. Representative western blotting images of occludin and claudin-1 (A), and the
relative protein expressions were normalized to b-actin (B, C). Data are shown as the mean ± SEM (n = 5). # P < 0.05, ## P < 0.01 vs. Control group, * P
< 0.05, ** P < 0.01, *** P < 0.001 vs. DSS group.
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Actinobacteria were reduced in DSS group. However, CAip and CAig

treatment could increase the level of Desulfobacteria, and CAig and

SASP could increase the level of Actinobacteria (Figure 5E,

Supplementary Figure 1). Taxonomic compositions of each group

were also compared at the class, order and family levels

(Supplementary Figures 2–5). At the genus level, bacterial genera

that ranked top ten in relative abundance were analyzed. As shown in

Figure 5F and Supplementary Figure 6, the DSS-treated group

exhibited significantly increased proportions of Bacteroides and

Erysipelatoclostridium, but decreased proportions of Alloprevotella,

Alistipes, Odoribacter and Ligilactobacillus compared to the control

group. However, CAip and CAig treatment could reduce the

proportion of Bacteroides, and notably, CAig could increase the

abundance of Ligilactobacillus. Besides, compared with the control
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group, the relative abundances of Lactobacillus murinus and

Lactobacillus reuteri were significantly decreased, whereas

Bacteroides sartorii was obviously increased in the DSS-induced

colitis group. However, the disorder of the microbiota community

could be partially restored by CAip and CAig treatment (Figure 5G,

Supplementary Figure 7).

Linear discriminant analysis effect size (LEFSe) analysis was

applied to identification of significant biomarkers and dominant

bacterial community that might be responsible for the impact on

DSS-induced colitis mice in each group. As shown in Figure 5H, the

genus Erysipelatoclostridium (the order Erysipelotrichales and

the family Erysipelatoclostridiaceae) and Bacteroides acidifaciens

(the family Bacteroidaceae and the genus Bacteroides) were the

crucial bacteria leading to gut microbiota dysbiosis in the DSS
A B D
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C

FIGURE 5

CA treatment altered the gut microbiota diversity and composition. Alpha diversity estimated by the Chao (A), Shannon (B) and Simpson (C) indices of
OTU level. (D) Principal coordinate analysis (PCoA) using Bray-Curtis metric distances of beta diversity. The relative abundance of fecal microbiota in the
top 10 of phylum (E), genus (F) and species (G) levels. (H) The LEfSe analysis. The criterion is log LDA score > 4.0. n = 6 for each group. ## P < 0.01, ###

P < 0.001 vs. Control group, * P < 0.05, ** P < 0.01 vs. DSS group.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1045901
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2022.1045901
group. Nevertheless, Prevotellaceae (the family and the genus

Alloprevotella) were identified to be the predominant microbiota in

CAip group, which might be correlated with its improvement on

DSS-induced colitis. Furthermore, Lactobacillaceae (the family and

the class Bacilli) and Reyranellaceae (the family and the order

Reyranellales) relatively enriched in CAig group, which might be

associated with its ameliorating effect on colitis. Taken together, CA

treatment, oral administration in particular, significantly altered the

gut microbiota diversity and composition.
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3.8 Identification of metabolite biomarkers
through metabolomics

Partial least squares discrimination analysis (PLS-DA) was

employed to evaluate metabolic variations between groups based on

the metabolomics data obtained from both ESI+ and ESI- modes. As

shown in Figure 6, metabolic phenotype separations were observed

between Control vs. DSS, DSS vs. CAip, DSS vs. CAig, and DSS vs.

SASP groups, indicating that there were remarkable variations in
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FIGURE 6

PLS-DA analysis of Control vs. DSS (A, B), DSS vs. CAip (C, D), DSS vs. CAig (E, F), and DSS vs. SASP (G, H) groups in positive ion and negative ion modes.
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endogenous metabolites among five groups. As shown in

Supplementary Table 2, 80 metabolites in serum were changed

obviously in the DSS group compared to those of control group,

whereas 30, 31 and 17 metabolites were reversed by CAip, CAig and

SASP treatment, respectively. In addition, a considerable number of

metabolites showed no significant difference between the Control and

DSS groups, but changed obviously after CA or SASP treatment.

Through the KEGG pathway enrichment analysis of serum

differential metabolites, potential metabolic pathways were

identified to separate the above groups. As shown in Supplementary

Figures 8, 9, metabolic pathways that were perturbed in DSS group

mainly including neuroactive ligand-receptor interaction, synaptic

vesicle cycle, gastric acid secretion, insulin resistance, fatty acid

degradation, glutathione metabolism, and tryptophan metabolism.

Tryptophan metabolism, phenylalanine metabolism, phenylalanine,

tyrosine and tryptophan biosynthesis, aldosterone synthesis and

secretion, pyruvate metabolism, and protein digestion and

absorption, participated in the therapeutic effect of CA via

intraperitoneal injection. Tryptophan metabolism, phenylalanine

metabolism, pyruvate metabolism, protein digestion and

absorption, oxidative phosphorylation, and nicotinate and

nicotinamide metabolism were the key metabolic pathways in the

CA treatment through oral administration. SASP-mediated metabolic

pathways were focused on the glutathione metabolism, nicotinate and

nicotinamide metabolism, arachidonic acid metabolism, vitamin

digestion and absorption, regulation of lipolysis in adipocytes, and

tryptophan metabolism. Collectively, tryptophan metabolism was the

common pathway of CA and SASP regulating the metabolites of

colitis mice.
3.9 CA regulated tryptophan metabolism via
inhibiting IDO-1

Tryptophan is an essential amino acid and is metabolized through

three major pathways in the intestines: kynurenine pathway in the

immune cells and intestinal lining, serotonin pathway in the

enterochromaffin cells, and indole pathway in the gut microbiota

(29). About 90-95% of dietary tryptophan is metabolized through

kynurenine pathway mediated by the rate-limiting enzyme

indoleamine 2,3-dioxygenase 1 (IDO-1) in the gut, leading to the

production of kynurenine and downstream products such as

kynurenic acid, 3-hydroxykynurenine, 3-hydroxyanthranilic acid,

xanthurenic acid and quinolinic acid (30). The metabolomics
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analysis demonstrated that the levels of kynurenine and kynurenic

acid in serum significantly increased in DSS group. However,

treatment with CA both via oral administration and intraperitoneal

injection, dramatically reduced the levels of kynurenine and

kynurenic acid, and even decreased the levels of other downstream

metabolites including N-formylkynurenine, xanthurenic acid and 3-

hydroxyanthranilic acid (Supplementary Table 2). We thus

investigated whether DSS increased the expression of IDO-1 in

colon tissue and CA regulated its expression. The result showed

that DSS could induce the upregulation of IDO-1 to some degree but

no statistical difference. However, the expression of IDO-1 was

significantly reduced by CAip and CAig treatment (Figure 7).
3.10 CA inhibited IDO-1 expression in IFN-g
induced RAW264.7 cell

IDO-1 is expressed in a variety of tissues and cell types, either

constitutively or in response to stimulation associated with

inflammatory and immune stimuli. Interferon gamma (IFN-g) is

considered to be the most effective IDO-1 inducer in a range of cell

types including dendritic cells and macrophages (31, 32). To further

confirm the effect of CA on IDO-1 expression, RAW264.7 cells were

pretreated with CA for 2 h, followed by IFN-g (0.2 mg/mL) incubation

for 8 h. Western blot analysis showed that IFN-g stimulation

remarkedly increased the expression of IDO-1 in RAW264.7,

however, CA treatment significantly inhibited the upregulation of

IDO-1 (Figure 8).
4 Discussion

In the present study, we found that treatment with CA both in

oral administration and intraperitoneal injection alleviated DSS-

induced experimental colitis in mice. Administration with CA

maintained the body weight, decreased DAI score, improved colon

length and ameliorated inflammatory cell infiltration. The therapeutic

effects of CA were attributed to relieving inflammation, improving

intestinal barrier, restoring the disrupted gut microbiota, and

modulating the metabolites (Figure 9). These results provided

insights into the protective effects of CA on colon inflammation.

Organisms used as probiotics are most frequently of the lactic acid

bacteria and Bifidobacterium species and are included in many

functional foods and dietary supplements. The main mechanisms of
A B

FIGURE 7

Effect of CA on the protein expression of IDO-1 in colon tissue. Representative western blotting image (A), and the relative protein expression was
normalized to b-actin (B). Data are shown as the mean ± SEM (n = 5). ** P < 0.01, *** P < 0.001 vs. DSS group.
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action of probiotics include: 1) colonization and modulation of

disordered intestinal microbial communities in children and adult;

2) competitive exclusion of pathogens and bacteriocin production; 3)

enzymatic activities and production of volatile fatty acids; 4) cell

adhesion and mucin production; 5) modulation of the immune

system; and 6) interaction with the brain-gut axis (33, 34).

Lactobacillus are a major component of symbiotic microbiota of

mammals and are one of the most commonly used probiotics (35).

Studies suggested that a variety of diseases, including infectious

disease, irritable bowel disease, IBD, rheumatoid arthritis, obesity,

multiple sclerosis, type 1 diabetes, type 2 diabetes, cancer, and

cognitive development and behavior, are correlated with the notable

variation of Lactobacillus in intestinal abundance. Moreover,

probiotic Lactobacillus administration play a broader role in the

prevention and mitigation of part of aforementioned diseases (36).

L. reuteri, one species of Lactobacillus, possessing features of surviving

in low pH and enzyme-rich environment, adhering to epithelium for

host-probiotic interaction, competition with pathogenic

microorganisms and safety, endows it with great probiotic

properties (37). Numerous studies have demonstrated that L.

reuteri can mitigate experimental colitis by maintaining intestinal

immune homeostasis through stimulating dendritic cell maturation

and IL-10 production (38, 39), modulating gut microbiota and
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metabolic disorders (40), increasing mucus thickness and tightening

epithelium (41), and decreasing bacterial translocation from mucosa

to mesenteric lymph nodes (42, 43). In the present study, we observed

that DSS treatment caused significantly reduced abundance of L.

reuteri compared with the control group. However, the decline was

reversed by CA oral administration, suggesting that the increase of L.

reuteri contributed to the therapeutic effect of CA against DSS-

induced colitis. Previous research has shown that L. murinus could

induce Treg cell expansion, thereby providing resistance against

experimental colitis (44). Interestingly, in our current study, the

abundance of L. murinus disrupted by DSS was also restored

through CAig treatment. To further identify the potential

biomarkers and dominant bacteria regulated by CA treatment,

LEfSe analysis was performed in each group. The family

Prevotellaceae and the genus Alloprevotella were relatively enriched

in CAip group. Consistent with our results, the genus Alloprevotella

was demonstrated to be lower in DSS-induced experimental colitis,

which was generally considered to be short chain fatty acid producer

and its abundance was inversely correlated with inflammation (45,

46). Collectively, the alleviative effects of CA on the experimental

colitis might be attributed to its gut microbiota modulation activity.

Metabolomics is a technique with advantages of high throughput,

satisfactory sensitivity and accuracy for the qualitative and
FIGURE 9

Graphical abstract of this article. The up arrow (↑) and down arrow (↓) represent upregulation and downregulation effects of CA, respectively.
A B

FIGURE 8

Effect of CA on the protein expression of IDO-1 in INF-g induced RAW264.7 cells. Representative western blotting image (A), and the relative protein
expression was normalized to GAPDH (B). Data are shown as the mean ± SEM of three independent experiments. # P < 0.05 vs. Control group, * P <
0.05, ** P < 0.01 vs. INF-g group.
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quantitative analysis of small molecule metabolites from biological

samples including serum, plasma, urine, feces, breath and biopsy

samples, which can not only achieve the quantification of change in a

single metabolite but also integrate the changes of multiple

metabolites through multivariate analysis to gain a holistic

comprehension of metabolic profile (47). In view of heterogeneity,

complex etiology and easy recurrence of IBD, metabolomics has

bounced into IBD in recent years for assessing disease activity,

elucidating the underlying mechanisms, predicting the therapeutic

response, and monitoring the disease relapse (47, 48). In this study,

untargeted metabolomics analysis of serum was conducted in each

group to clarify the mechanism of CA on experimental colitis. As

expected, we observed that DSS treatment caused remarkable changes

of metabolomic profile covering fatty acids, glycerophospholipids,

sphingolipids, sterol lipids, eicosanoids, and amino acids, which could

be partially reversed by CA or SASP administration. Through the

KEGG pathway enrichment analysis for differential metabolites,

tryptophan metabolism was considered to be the important

pathway affected by colitis and closely associated with the

therapeutic effects of CAip and CAig. Consistently, other studies

also reported disturbed metabolites associated with tryptophan

metabolism in DSS-induced experimental colitis (49, 50). Similar to

our findings, studies on IBD patients have reported that, compared

with normal subjects, serum concentration of kynurenine and

kynurenic acid significantly increased and IDO was overexpressed

in IBD patients, and IDO expression was positively associated with

disease activity (51, 52). Treatment with CAip and CAig reduced the

level of kynurenine, kynurenic acid and other downstream

metabolites, and even downregulated the expression of IDO-1 in

colitis mice. Furthermore, CA also inhibited the expression of IDO-1

in IFN-g induced RAW264.7 cells.

Lipids have several major functions in the organism, including as

structural components of cell membranes, energy storage, signal

molecules, protein recruitment platforms and substrates for

protein-lipid modification (53). Numerous studies have shown that

there existed significant disorder of lipid metabolism in IBD patients

and animal models (54–56). Phosphatidylcholines (PC), the most

abundant phospholipid in all mammalian cell types and subcellular

organelles, can be digested by phospholipase A2 to produce

lysophosphatidylcholine (LPC) (57). The decrease of PC content

and increase of LPC/PC ratio were observed in UC patients (56,

58). Consistently, the present study demonstrated that the PC

significantly reduced and LPC content increased in DSS group, with

respect to controls. However, the PC concentrations were restored by

CA treatment especially via intraperitoneal injection. Besides, the

contents of sphingomyelin (SM) and lysophosphatidylethanolamine

(LPE) declined in the DSS group, and similar results were obtained

from previous studies on patients with IBD (56, 59, 60). Treatment

with CA or SASP increased the levels of SM and LPE downregulated

by DSS, and even promoted those showing no difference between the

Control and DSS groups. Overall, CA could effectively regulate the

metabolic disorder of phospholipid caused by experimental colitis.

In conclusion, current results demonstrated that CA effectively

ameliorated DSS-induced experimental colitis. CA could obviously

relieve disease symptoms, suppress inflammatory infiltration and

restore intestinal barrier integrity. Meanwhile, CA regulated the

disturbance of gut microbiota, particularly by increasing the
Frontiers in Immunology 12177
abundance of Lactobacillus and decreasing the abundance of

Bacteroides. Furthermore, the therapeutic effects of CA might be

associated with its modulation on tryptophan metabolism, evidenced

by CA inhibited the upregulation of IDO-1 in colon tissue of colitis

mice and IFN-g induced RAW264.7 cells.
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Although the microbiota has largely been associated with the pathogenesis of viral

infections, most studies using omics techniques are correlational and hypothesis-

generating. Themechanisms affecting the immune responses to viral infections are

still being fully understood. Here we focus on the two most important sexually

transmitted persistent viruses, HPV and HIV. Sophisticated omics techniques are

boosting our ability to understand microbiota-pathogen-host interactions from a

functional perspective by surveying the host and bacterial protein and metabolite

production using systems biology approaches. However, while these strategies

have allowed describing interaction networks to identify potential novel

microbiota-associated biomarkers or therapeutic targets to prevent or treat

infectious diseases, the analyses are typically based on highly dimensional

datasets —thousands of features in small cohorts of patients—. As a result, we

are far from getting to their clinical use. Here we provide a broad overview of how

the microbiota influences the immune responses to HIV and HPV disease.

Furthermore, we highlight experimental approaches to understand better the

microbiota-host-virus interactions that might increase our potential to identify

biomarkers and therapeutic agents with clinical applications.

KEYWORDS
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1 Introduction

Evolutionary and ecological mechanisms have favored the cooperation of

microorganisms that ensure critical functions for host fitness, such as the response against

viral infections. The largest fraction of the microbiota resides in close interaction with the

mucosa-associated lymphoid tissue (MALT) (1). Therefore, the expectations that the

microbiota could exert a clinically relevant impact on viral infections, such as HPV and

HIV, are high. The pathogenesis of HPV and HIV infection is intimately associated with the

MALT, from the early establishment of infection to their persistence or progression (2–4).

For example, HIV infection causes chronic defects in mucosal immunity (5, 6) and

translocation of microbial products from the gut to the blood. These changes promote T
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cell activation, monocyte activation, and proinflammatory cytokine

release (7–10). In HPV, the gut microbiota appears to influence viral

persistence, immune responses, the host-mucosal environment, and

HPV-related cancer progression (11, 12).

Although omics technologies have allowed us to map the

functional alterations produced by viral infections, many studies

show correlations, and we lack a granular understanding of the

underlying mechanisms for the functional alterations. Omics

techniques have allowed linking specific microbiome profiles to

certain disease phenotypes (13, 14). The influence of bacterial

proteins and metabolites on disease is gaining interest and being

more deeply studied (15–21). However, most studies in the field are

still correlational and hypothesis-generating. Furthermore, although

proteomics and metabolomics are helpful tools to infer pathways and

generate hypotheses and they have become increasingly efficient, their

results still have limitations and biases and warrant experimental

validation. Thus, following the enthusiasm of omics-based studies, the

classical approach of designing hypothesis-driven studies focused on

digging deeper into particular questions after interrogating highly

dimensional datasets, is gaining attention. Here, we review specifically

the current concepts on the reciprocal interactions between the

microbiota and two persistent viral infections, HIV and HPV. We

discuss the opportunities for omics techniques and their limitations in

the field, highlight examples of studies aimed at understanding the

consequences of the microbiota in HIV and HPV infections, and

summarize the experimental approaches that have improved our

mechanistic insight.
2 Influence of the microbiota on HIV
and HPV infections

Correlations between changes in gut mucosa leading to

“dysbiosis” (i.e., alterations in the intestinal microbiota) and viral

infections are commonly studied. The commensal microbiota appears

to be a significant determinant of the acquisition and replication of

some pathogenic viruses. This may include mechanisms not well

understood yet, including pathogen growth regulation, competitive

metabolic interactions, localization in intestinal niches, and host-

immune response induction (22–26). However, as we will review

below, there is a clear connection between the microbiota status and

the clinical course of HIV and HPV.
2.1 Influence of HIV infection
on the microbiota

Acute HIV infection exerts dramatic and perhaps irreversible

MALT damage (27, 28). The fact that HIV replication has been

associated with a loss of anti-inflammatory bacteria (20, 29) has

spurred research into the hypothesis that HIV infection affects the

microbiota and that this altered microbiota may contribute to

persistent inflammation, increasing the risk of comorbidities.

Mechanistically, HIV infection could affect the microbiota by

inducing depletion of Th17 cells in MALT, enteropathy, mucosal

inflammation, aberrant cytokine production, and intestinal epithelial
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cell damage (25, 30–34). In the context of HIV infection, microbial-

induced immune activation occurs and correlates with markers of

intestinal damage, suggesting that the microbiota is a relevant driver

of systemic inflammation (35–41). Even the changes appreciated in

the oral microbiota of people living with HIV (PLWH), who exhibit

an increased prevalence of dental caries and periodontal

inflammation, seem to be connected to shifts in systemic immune

responses (reviewed in (42)). Specific Lactobacillus species-rich

vaginal microbiota have been associated to protection from HIV

infection (last reviewed in (43)).

It is now widely accepted that impairment of intestinal integrity

and dysbiosis lead to translocation of bacterial derivatives from the

gut to the bloodstream, resulting in chronic inflammation. This may

occur by immunosuppressive or immunostimulatory mechanisms

and via various non-mutually exclusive processes, including

augmented antigenicity, adjuvanticity, or bystander T-cell activation

(44, 45). This fact has been studied before for HIV-associated

inflammation, which has been associated with an increase of active

microorganisms leading to different pathways related to immune

modification (46), These pathways include (i) decreased amino acid

catabolism, leading to nutritional deficits (47). (ii) induction of

indolamine-2,3-dioxygenase-1 (IDO1) leading to an increased

transformation of tryptophan into the immunosuppressive

kynurenine derivatives, bacterial translocation, and systemic

inflammation, which has been linked with excess mortality risk

,45). (iii) increased butyrate synthesis, which, among other

functions, tempers intestinal inflammation (48). and (iv)

accumulation of inflammatory molecules, such as arachidonic acid

and leukotriene-B4 (49).

Inflammatory biomarkers levels remain increased in PLWH even

when ART is started early (50). Chronic inflammation has

consistently been associated with an excess risk of comorbidities

during treated HIV infection and is suggested as a contributing risk

factor (51, 52). Thus, the HIV field has pursued whether the

microbiota affects inflammation during treated infection. For

example, microbiota metabolic profiles affect HIV inflammation by

promoting changes in glutathione metabolism and zeatin

biosynthesis, butyrate production, or tryptophan catabolism (46, 49,

50, 53). Furthermore, a well-defined deleterious consequence of HIV

infection is bacterial translocation triggering immune activation (54–

56). A few sequence-based and ultramicroscopic studies have

uncovered a blood bacterial DNA profile in HIV. Following acute

SIV infection in macaques, analysis of bacterial DNA isolated from

the colon, liver, and mesenteric lymph nodes demonstrated a

preference for the phylum Proteobacteria to translocate to these

compartments and an increased metabolic activity of Proteobacteria

within the colonic lumen (57). In a study in PLWH diagnosed with

advanced disease and starting ART, we also found that Proteobacteria

was the predominant phylum in the blood, indicating commonalities

in the mechanisms by which bacterial translocate from the gut into

the bloodstream between SIV and HIV infections. The same study

showed that ART initiation in late-presenters attenuated the bacterial

signature of untreated HIV infection, characterized by the presence of

DNA from commensal bacteria with pathogenic potential (58).

Relationships between the translocated microbiome, systemic

inflammation, and clinical outcomes were described in a different
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study showing increased CD4 T cell counts following one year of ART

that were associated with high Serratia abundance, innate

proinflammatory cytokines and metabolites driving Th17 gene

expression signatures, and restoration of mucosal immunity (59).

Current evidence supports investigating therapeutic strategies for

immune modulation in HIV. However, so far, no intervention

targeting the microbiota of PLWH either by using prebiotics (16,

16, 60), probiotics (61–63), synbiotics (64), rifaximin (65, 66), or even

fecal microbiota transplants (67, 68) have convincingly proved to

effectively temper inflammation or enhance boost immune recovery

following ART initiation. In general, there was lack of standardization

in the outcomes assessed (ranging from studies designed to assess T

cell changes (60, 64) to exploratory studies evaluating multiple

markers of T cell activation (69) or soluble markers of

inflammation or bacterial translocation), the duration of the

intervention (from weeks (16, 61, 62, 69) up to one year), the

disease status (from ART naive patients followed without ART (60)

or patients presenting at advanced stages of the disease (64) starting

ART to patients under ART-mediated HIV RNA suppression (61–

63), and even the dosage and components of the prebiotic or probiotic

mixtures (16, 62–64, 69). Therefore, this still represents a field of

active research, and has been extensively reviewed elsewhere (70).
2.2 Influence of HPV infection
on the microbiota

We know less about the impact of HPV infection on the

microbiota epithelial surface integrity, mucosal state, and immune

regulation, all factors related to HPV persistence and progression to

cancer (46, 71–74). For example, metabolites associated with the

vaginal microbiome, including biogenic amines, glutathione, and

lipids, have been implicated in HPV persistence (75). It has been

described that the microbiota composition can affect all these factors

in the context of HPV infection (76–80). A meta-analysis found that

Lactobacillus iners and non-Lactobacilli species dominance in the

vaginal microbiota is associated with a higher risk of persistent HPV

infection and dysplasia (22) compared to the dominance of L. iners

and L. crispatus (81, 82).

A Lactobacillus-depleted microbiome has been associated with a

proinflammatory environment that may increase malignant cell

proliferation and HPV E6 and E7 oncogene expression (22, 83, 84)

and promote coinfections by other pathogens such as Chlamydia

trachomatis (80). Specifically, it has been shown that HPV down-

regulates some innate molecules, such as SLPI, S100A7, elafin, HbD1,
and TNFa/LPS that are used by some Lactobacillus species as an

amino acid source sustaining their growth, in keeping with their

decreased abundance in microbiome analyses of HPV infected

individuals (80). Even virome alterations are associated with

features of the vaginal microbiota and genital inflammation changes

related to HPV infection (85).

Some authors have connected the expression of proinflammatory

and chemotactic cytokines related to HPV-induced carcinogenesis

with an increased presence of Sneathia or Gardnerella in the vaginal

microenvironment (86–90). Furthermore, even though a certain level

of inflammation has been described as potentially beneficial to

decrease HPV dissemination, several studies have shown specific
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inflammation markers as related to the progression to a

carcinogenic status that could be used as clinical markers to prevent

high-grade squamous intraepithelial lesions (46, 86, 90–95) and

specific metabolic profiles (96–98). However, most studies in the

field are cross-sectional, so it is hard to assess whether the microbiota

influences HPV infection or vice versa.
2.3 Microbiota mechanisms with
consequences on viral infection

Viruses infecting epithelial cells can profoundly affect the mucosal

immune system—the central habitat of the mucosal microbiota—

altering the immunological signals required to orchestrate commensal

colonization and possibly affecting systemic immune responses and

other processes. While from an applied perspective, the gut

microbiota functionalities are more relevant for health, most studies

have focused on the compositional level, and only fewer studies have

focused on the functional consequences. Some microbiota-associated

mechanisms possibly influencing the clinical course have been

characterized for HIV and HPV (Table 1).
3 Potential and limitations of
current approaches for understanding
microbiota effects on HIV and
HPV infections

Studying the interactions between host factors and pathogens is

complex, especially when a third term—a virus— is added to the

multifaceted dichotomy of host and microbiota. However, multi-omic

techniques have allowed applying systems biology approaches and

ecological concepts to analyze host-microbiota interactions during

viral infections (130, 131). These approaches have boosted our ability

to understand viral infection to the level in which we are starting to

appreciate the importance of the commensal bacterial communities

on the pathogenesis of diseases that not so long ago were assumed to

depend only on the interactions between viruses and human cells.

Nevertheless, current omic techniques have several limitations, such

as the scarcity of standardized methods to integrate the different omic

levels (132). More importantly, the research potential and fascination

with the increasingly efficient omics approaches have often relegated

hypothesis-driven research to a second position. We believe that,

while the microbiome research primarily relying on 16S rRNA gene

studies has been crucial to generate hypotheses, the field needs to

move towards more mechanistic, hypothesis-driven studies and

applied research.
3.1 Multiomic techniques

Technologies such as Next Generation Sequencing (NGS), RNA

sequencing (RNA-seq), and mass spectrometry (MS/MS) and all their

different variations have already been used to describe the global

landscape of viral-host interactions. Typically, gain and loss-of-

function studies are performed to study the differential expression
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TABLE 1 Summary of the major mechanisms by which the microbiota influences HIV and HPV infection.

Pathway/
Function Virus Bacteria

implicated Biological Mechanism Clinical
Consequences References

Regulation of
innate
immune
molecules

HIV

↓ Lactobacilli
↓ Lachnospira spp.
↓ Roseburia intestinalis
↓ Ruminococcaceae

Peptidoglycan signaling
Decreased butyrate production
Increased local inflammation

Increased HIV
transmission

(16, 99–101)

HPV
↓ Lactobacilli
↓ Bifidobacterium
↑ Anaerobes and diversity

Down-regulation of SLPI, S100A7, elafin, HbD1, TNFa/LPS.
Cytokines and chemokines

Enhance antitumor
immunity and anti-
PD-L1 efficacy.
Higher risk of
sexually transmitted
infections

(102–105)

Tryptophan
catabolism

HIV

↑ Gammaproteobacteria
↑ Pseudomonas spp.
↑ Bacillus spp.
↑ Burkholderia spp.
↑ Prevotella
↑ Acidaminococcus

Immunotolerance Barrier failure Angiogenesis
IDO1 inhibition
↑ immunosuppressive kynurenine derivatives
↓ Th17 cells
Bacterial translocation

Higher risk of non-
AIDS comorbidities

(15, 53, 106,
107)

HPV N.f.
Increased kynurenine derivatives increase oxidative stress HPV malignant

transformation to
cancer

(108)

IL-10
signaling
pathway

HIV ↑ Bacteroides fragilis

Immunotolerance: Polysaccharide A production TLR-2 activation IL-10
expression
Systemic immune activation.
Inflammation

Periodontitis
Higher risk of non-
AIDS comorbidities

(53, 109–112)

HPV ↓ Lactobacilli
IL-10 increase breaks the balance with IL-2 leading to Th2 dominance Immunosuppression

state leading to
progress of lesions

(113)

Choline
metabolism

HIV

↑ Actinobacteria
↓ Bacteroidetes
↑ Firmicutes
↑ Gammaproteobacteria
↑ Clostridium XIVa
↑ Faecalibacterium spp.

Endothelial dysfunction Inflammation. TMAO production.
Monocyte activation

Increased
atherosclerosis and
cardiovascular risk

(114–116)

HPV -
Aberrant DNA methylation associated with HPV infection. Cervical

tumorigenesis
(117)

Activation of
adaptative
immunity

HIV ↑ Bifidobacteria

CTL responses Epithelial cell turnover Immunomodulatory strain-
dependent effects
↑ Dendritic cell activation
↑ CD8+ T cell priming and accumulation in the tumor
microenvironment
↑ Cross-reactivity with tumor antigens

Improved immune
recovery under ART

(118, 119)

HPV
↓ Lactobacillus dominance
↑ Anaerobes and diversity

Recruitment of immune cells Bacterial vaginosis
(BV)

(120)

Chemotaxis

HIV
↓ Akkermansia
muciniphila

Host immune regulation
↓ Mucin degradation.
Higher systemic inflammation (sCD14, IP10) and intestinal
inflammation (fecal calprotectin)

Higher risk of non-
AIDS comorbidities

(121, 122)

HPV
↓ Lactobacillus dominance
↑ Anaerobes and diversity

Reduction in the viscosity of the cervicovaginal fluid (CVF), due to the
production of mucin-degrading enzymes

Breaking the first line
of defense against
exogenous pathogen
colonization.

(120)

Cell
proliferation

HIV ↑ Fusobacterium spp.
Cell proliferation and oncogenesis: TLR-4 signaling. PPAK1 cascade.
Nuclear factor KB induction

Impaired immune
recovery after ART

(29, 123)

HPV

↑ Lactobacillus inners
↑ Gardnerella vaginalis
↑ Atopobium vaginae
↑ Sneathia

Persistent coinfection with other bacteria is linked to epigenetic
changes, oncogenes expression, non-coding RNA regulations, p53
deregulation, etc. But no direct experimental evidence for bacteria other
than C. thrachomatis and found LPS from bacteria in exosomes

Association with
cervical intraepithelial
neoplasia (CIN) to

(124)

(Continued)
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of DNA or RNA, either of human or bacterial origin, after viral

infections. However, since this cannot capture the whole picture of

the complex interactions between the virus and the host, mass

spectrometry started being used to study the complete proteome,

secretome, and metabolome, and even for bacterial identification in

clinical microbiology (133). In addition, some studies have used these

technologies, even performing integration of some of them (134), to

study the role of the microbiome in the inflammation state produced

by HIV infection (20) and reviewed in (24, 46, 135) and in

pathogenesis and progression to cancer after HPV infection (74,

93, 136).

Improvements in meta-omic techniques have mainly been used to

study the totality of the aimed compounds (genes, proteins, and

metabolites) in a set of commensal organisms (metagenomics,

metaproteomics, and metametabolomics). Currently, sophisticated

versions of these methodologies are becoming more commonly

used. For example, shallow metagenomics sequencing is being used

to obtain strain-level resolution (137). This, together with the

development of advanced computational methods (138), is

increasing our resolution allowing the identification of novel strains

with probiotic potential, an unmet need by previous studies with

prebiotics or probiotics in PLWH (39, 64). Other thriving methods

include single-cell technologies, which allow isolating, culturing, and

characterizing the genomes and transcriptomes of individual

microbes in complex communities (139), or tridimensional

mapping of the host microbiota interactions within the mucosa,

which is advancing our understanding of the microbiota-immune

response interactions to the next level (140).
3.2 From hypothesis-generating
microbiota studies to hypothesis-
driven and applied research

Inside and outside the HIV and HPV fields, the lack of

methodological standardization is one of the main limitations in the

study of the microbiome and challenges reproducibility (141). For

example, a comparison of the clinical impacts of the use of probiotic

showed very different results (142) (see Table 2). Although, as discussed

before, technologies are improving, and now is possible to perform

whole genome shotgun sequencing to enhance the detection of
Frontiers in Immunology 05184
diversity, prediction of genes, and accuracy of bacterial species

detection (166). However, it is also important to complement the

studies by using omics other than genomics to obtain information at

the functional level, although there are also challenges regarding the

standardization of these methodologies (136, 167, 168). One of these

challenges is the integration of datasets (169), which has led to the

proposal of the use of machine learning and artificial intelligence for

this task, which also have intrinsic limitations (170).

Omic technologies result in compositional profiles and large

taxonomic lists for which we lack culture methods in most cases.

‘Culturomics’—a high-throughput culture method— andMALDI-TOF

mass spectrometry allow the growth of fastidious bacteria together with

the identification of several bacterial species and longer incubation

periods. However, these techniques have only allowed us to partially

overcome the previously mentioned limitations (171). Furthermore,

validation of results obtained from the omic techniques is challenging

since, in most of the cases, if validation is performed, only a few of the

most statistically significant hits are selected for validation. Even when

results are validated, any assumption made or reductionist approach

used in the experimental design need to be revisited in order to ensure

that the results are physiologically relevant and translation to their

clinical use can be performed.

In the case of microbiota studies, omic techniques may often

result in compositional profiles and large taxonomic lists for which we

lack culture methods in most cases. ‘Culturomics’—a high-

throughput culture method—allows the growth of fastidious

bacteria and more extended incubation periods, and MALDI-TOF

mass spectrometry allows the identification of several bacterial

species. However, these techniques have only allowed us to partially

overcome the previously mentioned limitations (171).

Thus, the previously described shortcomings pose an enormous

challenge to unleashing the clinical potential of microbiota role in

medicine. If we want to assess the causal-effect relationship better and

move towards applied microbiome research, it will be necessary to start

with a clinical question and use the most consistent methodology to

perform hypothesis-driven research that identifies convincing

interactions and confounders. For this, we will need to define first the

best hypothesis inspired by a clinical question. Then, from the hypothesis,

we should carefully design the experimental approaches (e.g. different

omics) and analysis (e.g. network models) and further perform

experimental validation, including controls and complementary data
TABLE 1 Continued

Pathway/
Function Virus Bacteria

implicated Biological Mechanism Clinical
Consequences References

↑ Fusobacterium
↑ Chlamydia trachomatis

carcinoma in situ
(CIS)

Inflammation.
Antitumoral
immunity

HIV ↑ Lactobacillales
Enhanced antitumor response: Upregulated IFN-g, GZMB, and PRF1
expression in CD8+ T-cells

Improved immune
recovery after ART

(20, 123, 125)

HPV –

The interplay of viral oncoproteins and inflammatory cytokines leads to
continuous immune evasion, which promotes the progression of the
lesion. Also, increased oxidative stress has been attributed to
inflammation

Progression of the
initial lesion to
malignancy

(126–129)
↑ increased abundance and ↓ decreased abundance.
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sets (e.g., qPCR to confirm sequencing, immunoblot to confirm

proteomic, fluorescence resonance energy transfer to confirm AP-MS

data, infection kinetics, results validation in external cohorts, etc).

For example, we recently sought to solve a clinical need using

applied microbiome research. We asked whether the microbiome

could be harnessed to improve the prevention of anal precancer—a

leading neoplasia in PWLH— for which we need better screening

tools. After investigating a discovery and a validation cohort of at-risk

patients, we discovered twelve proteins, previously reported to be

associated with cancer progression, that were overexpressed in the

anal bacteria from subjects with precancerous lesions. Since these

proteins contribute to succinyl-CoA and cobalamin production, we

measured the intracellular bacterial concentrations of these

metabolites. We discovered that cobalamin and succinyl-CoA were

increased in the anal microbiome of patients with anal precancer and

overperformed the reference test—anal cytology—. Furthermore, we

validated the findings in an external validation cohort, and we

demonstrated greater in vitro production of succinyl-CoA and

cobalamin in bacteria associated with HSIL or cancer vs. those

presumably protective (172). Therefore, starting from a clinical

question and integrating data from different omic levels we were

able to define a new microbiome-based tool that could help in the

prevention of a common cancer in PLWH by discovering two

powerful biomarkers of anal precancer that could improve anal

cancer prevention.
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4 Experimental models commonly used
to study the effects of microbiota on
HIV and HPV infection

To overcome the limitations mentioned before and demonstrate

the mechanisms driving the effects of the microbiota on HIV and

HPV infection, hypothesis-driven experimental designs based on the

information generated from the omics technologies should be

encouraged. Some leading studies using this approach have been

performed in HIV and HPV fields and are summarized in Table 2.

Although some improvements are being established in the

experimental designs to demonstrate mechanisms led by microbiota

components, there are still several limitations. These include a lack of

standardization of the methods for obtaining the samples;

understanding of differences on the effect of microbiota

compartments (such as feces, tissues or EVs) and finding their

correct origin (173); or extrapolation of findings in other model

organisms, such as rodents (174), to human diseases, that are

unrealistic. Furthermore, the in vivo models have been helpful in

the past in proving the functional consequences of the microbiota.

However, the differences between the animal models and the human

anatomy, immune system, and genetic background are significant,

and the type and mechanisms of interactions of the host with the

pathogens are hard to reproduce, even in humanized mice models.
TABLE 2 Summary of the experimental models used to study the effects of microbiota on HIV and HPV infection.

Virus Experimental model Mechanism identified References

HIV

Immune cells stimulation with fecal bacterial communities isolated from HIV
patients

Enteric microbiota of untreated HIV-infected subjects induces
monocytes and T-cell activation.

(41, 143)

Immune cells stimulation with LPS from specific bacteria, such as
mycobacteria or Holdemanella, related to HIV infection

Chemokines and IL-1b released by macrophages. T-cell
activation. Macrophages tolerance. Higher frequency of CCR5
+CD4+T cells.

(41, 144–150)

Effect of fecal microbial transplantation on immunity-related to HIV
Increased Th17 and Th22 cells and reduced CD4+Tcell
activation.

(67, 68, 151,
152)

Study of immune activation after fecal transplant in gnotobiotic mice of feces
from HIV-negative vs HIV-positive individuals

Non-significant differences (143)

Treatment of infection with extracellular vesicles (EVs) or outer membrane
vesicles (OMVs) derived from bacteria such as Lactobacilli or Neisseria
meningitidis

Demonstrated direct interaction of EVs with viral proteins (153–157)

Characterization in vitro of the anti-HIV properties of differentially detected
candidates by metabolomics

Dipeptides bind to HIV, acting as antivirals and supporting
Prevotella growth.

(158)

HPV

OMVs containing HPV antigens create an antitumor vaccine
OMVs stimulated the expression of dendritic cell maturation
markers and interferon-gamma-expressing splenocytes.

(157, 159,
160)

Quantification of bacterial release from vaginal swabs Differential results depending on the used swab (161–163)

Coinfections of bacteria, protozoan, and viruses and quantification of
inflammatory cytokines

Galectin-mediated immunity dysregulation (164)

Three-dimensional cervical epithelial cell model to study bacterial vaginosis
Identification of some metabolites acting as inflammatory
mediators

(165)
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Even more, if we only look at studies based on the human model, we

still find difficulties in setting up proper validations and

standardizations. For example, a significant challenge for human

studies is controlling for confounding factors beyond age, sex, and

sexual preferences (175), such as host genetic, diet, life style or

presence of other pathologies or infections.
5 Future perspectives

Although in the last decade, we have witnessed remarkable

advances in the field of the microbiota in HIV and HPV infections,

we still need to improve our understanding of the specific

mechanisms by which the microbiota influences HIV and HPV

pathogenesis and how effectively modulate the relevant microbiota-

host interactions through targeted interventions. The current state-of-

the-art suggests that the microbiota could offer relevant clinical

applications for HIV and HPV diseases that might prove suitable to

stratify the risk of HIV acquisition (reviewed in (176)), helping to the

diagnosis of comorbidities (e.g., tuberculosis or anal dysplasia). This

field might also advance the therapeutic options for HIV and HPV,

including the development of new treatments or adjuvants through

probiotics or postbiotics that could lead to more personalized

medicine approaches, including targeting chronic inflammation

(67), enhancing immune recovery (60), or facilitating HPV

clearance (177). However, if we want to translate our current

knowledge into clinical applications, we will have to overcome

several methodological challenges, such as standardization of the

methods to assess the species level and identify unknown

microorganisms that represent today a significant fraction of the

microbiota. Advancing culturomic approaches, microbiome-imaging

techniques, multiomic integration, and validating the findings in

hypothesis-driven experimental designs will also help the field to

move forward. Finally, we will need to validate the conclusions from

translational research in observational or interventional studies

designed ad hoc to test previously generated hypotheses. While one

decade of research has paved the road for investigating clinical

applications of the microbiome in HIV and HPV infections, we
Frontiers in Immunology 07186
face the challenge of learning how to harness the microbiome in

medicine in the next years.
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15. Vázquez-castellanos JF, Jiménez-hernández SSN, Dolores M, Sara R, David G,
Manuel R, et al. Interplay between gut microbiota metabolism and in fl ammation in HIV
infection ISME J. (2018) 12, 1964–76. doi: 10.1038/s41396-018-0151-8

16. Serrano-Villar S, Vázquez-Castellanos JF, Vallejo A, Latorre A, Sainz T, Ferrando-
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The gut microbiota not only constitutes intestinal microenvironment homeostasis

and human health but also exerts indispensable roles in the occurrence and

progression of multiple liver diseases, including alcohol-related liver disease,

nonalcoholic fatty liver disease, autoimmune liver disease and liver cancer. Given

the therapeutic status of these diseases, their prevention and early therapy are

crucial, and the detailed mechanism of gut microbiota in liver disease urgently

needs to be explored. Meanwhile, multiple studies have shown that various

traditional Chinese medicines, such as Si Miao Formula, Jiangzhi Granules,

Liushen Capsules, Chaihu-Shugan Power, Cassiae Semen and Gynostemma, as

well as some natural products, including Costunolide, Coprinus comatus

polysaccharide, Antarctic krill oil, Oridonin and Berberine, can repair liver injury,

improve fatty liver, regulate liver immunity, and even inhibit liver cancer through

multiple targets, links, and pathways. Intriguingly, the aforementioned effects

demonstrated by these traditional Chinese medicines and natural products have

been shown to be closely related to the gut microbiota, directly driving the strategy

of traditional Chinese medicines and natural products to regulate the gut

microbiota as one of the breakthroughs in the treatment of liver diseases. Based

on this, this review comprehensively summarizes and discusses the characteristics,

functions and potential mechanisms of these medicines targeting gut microbiota

during liver disease treatment. Research on the potential effects on gut microbiota

and the regulatory mechanisms of traditional Chinese medicine and natural

products provides novel insights and significant references for developing liver

disease treatment strategies. In parallel, such explorations will enhance the
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comprehension of traditional Chinese medicine and natural products modulating

gut microbiota during disease treatment, thus facilitating their clinical investigation

and application.
KEYWORDS

liver disease, gut microbiota, traditional Chinese medicine, natural product,
therapeutic strategy
1 Introduction

Liver diseases are mainly categorized into alcoholic liver disease

(ALD), nonalcoholic liver disease (NAFLD), autoimmune liver

disease (AILD), liver injury, liver cancer, etc., according to different

etiologies and pathogeneses (1). Epidemiological studies have

indicated that liver diseases constitute an important part of global

morbidity and mortality and have become a huge economic burden

and an urgent public health crisis (2, 3). However, due to the lack of

understanding of their pathogenesis, late diagnosis and rapid

progression, the clinical therapeutic strategies for liver diseases are

still insufficient, which directly leads to unsatisfactory treatment

effects (4). Therefore, the clinical treatment and management of

liver diseases remains a considerable challenge, and there is an

urgent need to deeply explore the mechanism and develop

promising therapeutic drugs and strategies on this basis.

Increasing evidence has shown that gut microbes are closely

associated with the pathogenesis of liver diseases in general (5, 6).

A study found an interaction between gut microbiota and the

pathogenesis of NAFLD (7), whereas ALD patients exhibited

increased intestinal permeability and excessive gut microbiota

overgrowth (8). Short-term probiotic supplementation helps restore

the beneficial flora in the gut of ALD patients and effectively improves

liver function (9). Moreover, dietary cholesterol was found to induce

gut microbiota dysbiosis and metabolite alterations in mice that drive

NAFLD-hepatocellular carcinoma (HCC) formation, while both

cholesterol suppression and gut microbiota modulation showed

potential anti-HCC effects (10). Furthermore, gut commensal-

controlled bile acid metabolism increases the number of natural

killer T (NKT) cells and is related to antitumor immune

surveillance of the liver (11). These findings reflect the

nonnegligible role of gut microbes in the regulation of liver disease,

indicating that more detailed and in-depth mechanistic exploration

will provide valuable clues and directions for liver disease therapy.

At present, clinically effective therapeutic regimens and strategies

for liver diseases are far from sufficient, which makes it an urgent issue

to explore novel drugs and promising therapeutic strategies to

overcome the existing deficiencies. Importantly, such a status also

facilitates the gradual emergence of hepatoprotective effects of

traditional Chinese medicines (TCMs), such as Si Miao Formula,

Jiangzhi Granules, Liushen Capsules, Chaihu-Shugan Power, Cassiae

Semen and Gynostemma, as well as some natural products (NPs),

including Costunolide, Coprinus comatus polysaccharide, Antarctic

krill oil, Oridonin and Berberine, both at the basic exploration and

clinical research levels. Among them, some TCMs, such as Huazhi-
02192
Rougan Formula, have received increasing attention for their

protective effects against NAFLD, and terpenoids are considered to

be the main active ingredients (12–14). In addition, many NPs,

including fisetin, salidroside and oridonin, have also been proven to

modulate various liver injuries by regulating the NOD-like receptor

thermal protein domain associated protein 3 (NLRP3)

inflammasome, and their specific mechanisms remain to be further

explored (15). Moreover, TCMs, such as Curcumae rhizome (16) and

Xiaoyaosan (17), have shown excellent anticancer activity during liver

cancer treatment. These findings suggest that TCMs and NPs can be

valuable sources of drugs for liver disease therapy by virtue of their

low toxicity, multiple targets and multiple pathways. More delicately,

prior studies have found that the therapeutic effects of TCMs and NPs

on liver disease are closely related to their regulation of gut microbes.

For example, the active ingredient Poria cocos polysaccharides (PCP)

downregulates the nuclear factor kappa-B (NF-Kb)/CCL3/CCR1 axis

by regulating gut microbes to prevent nonalcoholic steatohepatitis

(NASH) (18); Si Miao Formula (19) and Ophiopogon polysaccharide

MDG-1 can alleviate NAFLD by inhibiting the gut microbiota and

gut-liver axis (20); and oridonin has also been proven to reduce liver

injury by altering gut microbiota and promoting the hepatic urea

cycle (21). The combination of these studies highlights the great

potential of TCMs and NPs in targeting gut microbiota for the

treatment of liver diseases.

Based on the crosstalk between TCMs/NPs, the liver and the gut

microbiota, this review comprehensively summarizes and explores

the effect and mechanism of such substances in liver disease treatment

by targeting the gut microbiota (Figure 1). Such exploration provides

novel mentality and important references for the establishment of

therapeutic strategies for liver diseases and deepens the

understanding of these medicines regulating gut microbiota during

disease treatment, thus promoting their clinical transformation

research and application.
2 Targeting gut microbiota for ALD

Studies have confirmed that the progression of ALD is modulated

not only by genetic factors, sex, duration and extent of alcohol abuse

but also by some potentially modifiable factors, especially the gut

microbiota, which provides insights for the mechanistic exploration

and therapy of ALD (22, 23).

Alcohol intake or exposure disrupts the ecological balance of the

gut microbiota in many ways, and gut microbiota dysbiosis promotes

ALD progression through complex mechanisms (Figure 2). In this
frontiersin.org
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process, alcohol directly leads to the overgrowth and enrichment of

some gut microbiota, such as Actinobacteria, Proteobacteria,

Enterobacteriaceae, Corynebacterium and Streptococcus, while the

abundance of other gut microbiota subsequently decreases, such as

Bacteroidetes and Akkermansia genera of the phyla Verrucomicrobia,

Lactobacillus, Ruminococcus, Faecalibacterium and Roseburia of the

phylum Firmicutes (24). The significant reduction in the number of
Frontiers in Immunology 03193
Lactobacilli leads to a reduction in the synthesis of saturated long-

chain fatty acids, which in turn accelerates hepatic lipid metabolism,

oxidative stress, inflammation and fibrosis, thereby attenuating its

protective effect on the liver (25). In addition, acute or long-term

drinking leads to injury or even death of intestinal epithelial and

immune cells, thus disrupting the integrity and barrier function of the

gut mucosa (23). These abnormalities promote some enteric
FIGURE 1

Overview of the therapeutic effects of TCM/NPs targeting the regulation of gut microbiota for liver disease treatment. AIH, autoimmune hepatitis; AILD,
autoimmune liver disease; ALD, alcoholic liver disease; ALI, acute liver injury; TCM, traditional Chinese medicine.
FIGURE 2

Roles of gut microbiota microenvironment alterations in the occurrence and development of liver diseases. There is growing evidence that gut
microbiota dysbiosis is closely associated with the development and progression of several liver diseases, such as alcoholic liver disease (ALD),
nonalcoholic fatty liver disease (NAFLD), autoimmune liver disease (AILD), acute liver injury (ALI) and liver cancer (LC). Specifically, alcohol exposure,
drugs and other factors induce dysbiosis in the diversity and abundance of gut microbiota species including probiotic, neutrophilic and pathogenic
bacteria, as well as abnormal changes in metabolites. These changes subsequently contribute to increased intestinal permeability, intestinal barrier
dysfunction, and flora shifts, which in turn accelerate the progression of these diseases through multiple mechanisms, such as the fatty acid metabolic
pathway, bile acid (BA) metabolic pathway, inflammatory responses, and immune disorders. These findings reflect the nonnegligible role of gut microbes
in the regulation of liver disease and provide valuable clues and directions for the treatment of liver disease. AIH, autoimmune hepatitis; AILD,
autoimmune liver disease; ALD, alcoholic liver disease; ALI, acute liver injury; BA, bile acid; FXR, farnesoid X receptor; LC, liver cancer; LCFA, long-chain
fatty acid; NAFLD, nonalcoholic fatty liver disease; NTKs, natural killer cells; PBC, primary biliary cholangitis; PSC, primary sclerosing cholangitis; SCFA,
short-chain fatty acid; TLR, toll-like receptor.
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pathogens (especially gram-negative bacteria) and harmful

metabolites (lipopolysaccharide (LPS), acetaldehyde, bacterial DNA,

and peptidoglycan) to enter the systemic circulation through the gut

mucosa, followed by transfer and retention in liver tissue (26). The gut

microbiota and harmful substances initiate the downstream immune

signal of liver cells through toll-like receptor 4 (TLR4) and other

pattern recognition receptors, which not only directly cause an

inflammatory response but also enhance the production of

inflammatory factors in Kupffer cells/macrophages, thereby

aggravating inflammation-induced liver injury (27). Subsequently,

inflammatory factors and chemokines gradually accumulate in the

hepatic lobules, leading to neutrophil accumulation and further

promoting the development of ALD (28).

During ALD treatment, strategies to modulate gut microbiota are

gradually being recognized, which is closely related to the

nonnegligible effects of TCMs and NPs (Table 1). According to

prior research, various TCMs and NPs have been found to affect

ALD by regulating the ecological balance and function of the gut

microbiota. A study showed that probiotic-fermented Pueraria lobata

(Willd.) Ohwi significantly reduced the abundance of Bacteroidetes

and Akkermansia muciniphila while increasing the abundance of

Firmicutes and Lactobacillus, which modulated aberrant gut

microbiota composition and activated nuclear transcription factor

(erythroid-derived 2)-like 2 (Nrf2)-mediated signals, thereby

improving lipid accumulation and inflammation and exerting

antioxidant effects and ultimately preventing ALD (29). One of the

naturally occurring sesquiterpene lactones is costunolide, which has

been extensively investigated for a wide range of biological activities.

A study found that costunolide treats ALD by modulating oxidative

stress and reducing inflammation in vivo and in vitro, which is

inseparable from its impact on the gut microbiota (30). Coprinus

Comatus polysaccharide, a polysaccharide extract of the edible

mushroom species Coprinus Comatus, has been shown to exert

prebiotic-like effects to increase gut microbiota diversity, which

might improve adverse changes in gut microbiota caused by alcohol

consumption and delay ALD progression (31). With extensive

research, an increasing number of TCMs, such as Jianpi Liqi

Huoxue Decoction (32), Semen Hoveniae Extract (33), and natural

products, including Antarctic Krill Oil (34), have been proven to

target the regulation of gut microbiota balance, bile acid metabolism

and intestinal permeability to treat ALD. Hence, such medicines

should be regarded as a valuable source of medicines to delay ALD

progression and even achieve therapeutic effects by regulating the

abundance, proportion and distribution of gut microbiota, bile acid

metabolism and intestinal permeability.

Although research on the treatment of ALD with these agents

targeting gut microbiota has gradually deepened from efficacy

observation to mechanism exploration, there are still many

deficiencies in the breadth and depth of the current research, such

as narrow research scope, unclear target and the lack of clinical trials.

Therefore, we need to perfectly integrate existing research with

advanced concepts, such as high-throughput screening based on

artificial intelligence, proteomics combined with network

pharmacology, and research based on clinical phenomena and

alterations, which are represented in Table 1. These measures will

be conducive to more accurate screening of promising therapeutic

targets for ALD, form a wider range of potential TCMs and NPs, and
Frontiers in Immunology 04194
establish a deeper target identification system between these drug

candidates and ALD-specific targets, which will provide an important

reference and novel direction for research on drugs targeting gut

microbiota during ALD therapy.
3 Targeting gut microbiota for NAFLD

NAFLD is a major cause of chronic liver disease worldwide and is

prone to developing into liver fibrosis, cirrhosis and even HCC (55).

Although the prevalence rate is increasing yearly, there is still a lack of

an ideal treatment method, which makes the exploration of in-depth

mechanisms and targeted therapeutic strategies necessary (56).

The exploration of enterohepatic circulation has confirmed that

gut microbiota dysbiosis is closely related to the progression of

NAFLD, which not only manifested in the great changes in the gut

microbiota diversity and abundance in NAFLD patients compared

with healthy subjects but also reflected that gut microbiota disrupted

the inflammatory balance and glucose and lipid metabolism through

intestinal metabolites (57), as shown in Figure 2. Specifically, gut

microbiota dysbiosis, such as increased abundance of Proteobacteria

and Actinobacteria and decreased numbers of Bacteroidetes,

Prevotella and Firmicutes phyla, reduces the expression of tight

junction protein genes, directly leading to the impairment of

intestinal barrier function, making harmful microbiota and

microorganisms pass through the intestinal barrier, stimulating the

immune system and inducing immune cell inflammation, and

ultimately accelerating NAFLD and liver fibrosis (58, 59). In

addition, a dysfunctional gut microbiota produces various

metabolites, such as ethanol, short-chain fatty acids, LPS, bile acids,

choline, and ammonia (60). The ethanol produced by Klebsiella

pneumoniae and Escherichia coli under anaerobic conditions can

increase the activity of the cytochrome P450 2E1 enzyme, resulting

in an increase in reactive oxygen species and free radicals, thus leading

to oxidative damage and necrosis of liver cells (61). Meanwhile, the

accumulated ethanol also stimulates the NF-kB signal to induce tissue

damage by impairing intestinal barrier function, leading to an

increased LPS concentration in the portal vein and entry into the

enterohepatic circulation. LPS not only stimulates Kupffer cells and

hepatic stellate cells and induces steatohepatitis but also promotes the

release of TNF-a from hepatocyte macrophages and subsequent

insulin resistance, accelerating the development of NAFLD (62).

Moreover, studies have found that the differences in bile acids may

also affect the dynamics of portal circulation, thus influencing hepatic

fat accumulation and the progression of NAFLD (63, 64), while

choline deficiency is also associated with the reduced production of

very low-density lipoprotein in the liver, which leads to intrahepatic

triglyceride accumulation as well as the occurrence of NAFLD (65). In

addition, ammonia, a marker of hepatic encephalopathy, is thought to

contribute to the pathogenesis of NAFLD through different pathways

(66). Hence, strategies targeting the gut microbiota to improve or

treat NAFLD will provide novel clues and directions for

disease treatment.

According to recent reports, numerous TCMs, including Si Miao

Formula [composed of Phellodendron chinense Schneid,

Atractylodes lancea (Thunb.), Coix lacryma-jobi L. var. mayuen

(Roman) Stapf and Achyranthes bidentata BI], Jiang Zhi Granules
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1086078
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2023.1086078
TABLE 1 Research overview of TCMs and NPs targeting gut microbiota for liver disease therapy.

Disease
Type TCM/NP Name Study Phase Main Ingredients Gut Bacterial

Alterations Possible Mechanism Reference

ALD

Probiotic-
fermented Pueraria
lobata (Willd.)

Ohwi

Preclinical
Polyphenols,
Flavonoids,
Lactic acids

Firmicutes/Lactobacillus↑
Bacteroidota/Akkermansia↓

Restore gut microbiota
composition,

Nrf2 signaling (+),
lipid accumulation and

inflammation↓,
antioxidant defense↑.

(29)

Costunolide Preclinical Costunolide
Firmicutes/Actinobacteria↑

Bacteroidetes/
Proteobacteria↓

Regulate gut microbiota
capacities,

LPS-TLR4-NF-kB signaling
pathway (-),

inflammation and oxidative
stress↓.

(30)

Coprinus comatus
polysaccharide

Preclinical
Coprinus comatus,
polysaccharide

Firmicutes/Muribaculacea/
Verrucomicrobia/
Lactobacillus↑
Rikenellaceae↓

Increase gut microbiota
diversity,

gut epithelium barrier
integrity damaged (-),
SCFA and hepatic
gluconeogenesis,

insulin resistance and
immune responses↓,

hepatic inflammation and
oxidative stress↓.

(31)

Jianpi Liqi Huoxue
Decoction

Real World Study

Rhizoma Atractylodis
Macrocephatae,

Puerariae Lobatae Radix,
Radix Paeoniae Alba, etc.

Reverses the abnormal
ERIC-PCR fingerprinting of

gut microbiota
(lacks of specific gut

microbials)

Regulates gut microbial
abundance/diversity,
gut epithelial mucosal

permeability↓,
endotoxin leakage↓,

reduction of fatty liver and
liver injury.

(32)

Semen Hoveniae
Extract

Preclinical
Dihydromyricetin,
dihydroquercetin,
Quercetin, etc.

Akkermansia/
Verrucomicrobia phylum/
Lactobacillus/Alloprevotella/

Parabacteroides/
Bacteroides↑,
Helicobacter↓

Alters gut microbial
abundance,

gut tight junction proteins↑,
gut epithelium barrier
integrity damaged (-),
gut leakiness and gut-

derived
endotoxin absorption↓,
inflammatory responses↓,
attenuates hepatic steatosis

and NAFLD.

(33)

Antarctic Krill Oil
Phase II

(NCT02089165)

N-3 PUFAs,
Astaxanthin,

Phospholipids, etc.

Clostridium
Ⅳ/Actinomyces↑,
Anaerovorax/

Methanobrevibacter/
Psychrobacter↓

Regulates gut microbial
abundance/diversity,

regulate BAs metabolism,
BA level↓,

gut-hepatic FXR/FGF15/
FGFR4 axis (+),

intrahepatic cholestasis-
induced hepatic injury↓,
attenuates hepatic steatosis

and NAFLD.

(34)

NAFLD

Si Miao Formula Real World Study

Phellodendron chinense
Schneid,

Atractylodes lancea (Thunb.),
Coix lacryma-jobi L. var.
mayuen (Roman) Stapf,
Achyranthes bidentata BI

Akkermansia muciniphila↑

Rebalances gut microbiota
composition,

gut barrier function↑,
lipids metabolism and
pro-inflammatory

cytokines↓,
attenuates hepatic steatosis

and NAFLD.

(19)

Jiangzhi Granules
Phase II

(ChiCTR2000034583)

Gynostemma pentaphyllum
(Thunb.) Makino,

Polygonum cuspidatum Sieb.
et Zucc.,

Salvia miltiorrhiza Bunge.,

S24_7/Lachnospiraceae↑,
Desulfovibrionaceae↓

Rebalances gut microbiota
composition,

lipopolysaccharide
biosynthesis and
sulfur metabolism

(35)

(Continued)
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TABLE 1 Continued

Disease
Type TCM/NP Name Study Phase Main Ingredients Gut Bacterial

Alterations Possible Mechanism Reference

Artemisia capillaris Thunb.,
Nelumbo nucifera Gaert.

pathway↓,
hepatic inflammation level
and lipid metabolism↓,

improves hepatic steatosis,
function and

insulin resistance,
ameliorates NAFLD.

Cassiae Semen Preclinical Cassiae Semen extract

Firmicutes/Bacteroidetes/
Dehalobacterium/

Oscillospira/
Coprococcus/Ruminococcus↑,

Erwinia/Klebsiella/
Morganella/Trabulsiella/

Proteobacteria↓

Rebalances gut microbiota
composition,

gut mucosal protein
expression↑,

gut mucosal barrier injury↓,
endogenous endotoxemia
and lipid accumulation↓,

liver injury and
inflammation↓,

ameliorates NAFLD.

(36)

Berberine
Phase II

(NCT04049396)
Berberine

Bifidobacterium/
Bacteroidetes/Firmicutes↑

Reconstructs gut microbiota
composition,

tight junction proteins↑,
regulates BA deconjugation,

transformation,
and gut barrier function↑,
bile acid/FXR signaling

pathway (+),
lipid metabolism/NF-kB

activation (-),
liver inflammation and

oxidative stress↓,
ameliorates NAFLD.

(37–39)

Gynostemma
Phase II

(NCT05118698)
Gypenosides

Relative abundance of
Bacteroides↑,

Relative abundance of
Fissicatena/Akkermansia↓

Enhances gut microbiota
diversity,

gut microbiota disorder↓,
gut/liver lipid metabolism/

insulin resistance↓,
gut and liver lesion↓,

liver steatosis and lobular
inflammation↓,

ameliorates NAFLD.

(40)

MDG-1 Preclinical
Polysaccharide derived from

Ophiopogon japonicus
Akkermansia muciniphila↑

Increases gut microbial
community

abundance/diversity,
gut barrier function↑,

liver lipid accumulation,
steatosis

and chronic inflammation↓,
attenuates NAFLD.

(41)

Psyllium husk Preclinical Psyllium husk
Sutterella/Faecalibacterium/

Coprobacillus/
Parabacteroides↑

Alters gut microbial
community,

bile acid/FXR signaling
pathway (+),

serum LPS level↓,
hepatic lipid metabolism

and NAFLD↓.

(42)

AILD

Liquiritin Preclinical Liquiritin

Bacillus sp. 46/Veillonella sp.
31 and sp. 48/Bacteroides sp.

22 and sp. 57/
Clostridium sp. 51↓

Lack of mechanism
exploration.

(43)

Liushen Capsules Real World Study
Muschus,

Artificial Bezoar

Bifidobacteria/
Lactobacillus↑,

Proteobacteria/Veillonella/
Prevotella/Neisseria/

Actinomyces↓

Lack of mechanism
exploration.

(44)

(Continued)
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TABLE 1 Continued

Disease
Type TCM/NP Name Study Phase Main Ingredients Gut Bacterial

Alterations Possible Mechanism Reference

Chaihu-Shugan
Power

Phase II
(NCT03018821)

Bupleurum Falcatum

Anaeroplasma genus↑,
Enterobacteriaceae/
Staphylococcaceae/
Veillonella genus↓

Rebalances gut microbiota
composition,

NLRP3 inflammasome
pathway (-),

fat accumulation/
inflammatory factor

expression↓,
chronic metabolic

inflammation/AILD/
NAFLD↓.

(45)

GS Preclinical
Flavonoids,
Saponins,
Alkaloids

Lactobacillus/
Bifidobacterium↑,

Streptococcus/Escherichia
Shigella/Veillonella/

Enterococcus↓

Rebalances gut microbiota
composition,
improves gut

microenvironment,
Nrf2 signaling pathway (+),

antioxidant activity↑,
ameliorates AILD.

(46)

ALI

Oridonin Preclinical Oridonin Bacteroides vulgatus↑

Enriches gut Bacteroides
vulgatus,

Bacteroides vulgatus-urea
cycle-Nrf2 axis (+)

anti-inflammatory and
antioxidative effects↑

balances redox homeostasis
against

APAP-induced ALI.

(21)

VTE
Phase II

(NCT05052515)

Dihydromyricetin,
myricetin,

kaempferol, etc.

Eubacterium_fissicatena
group/

Ruminococcaceae_UCG-
014↑,

Alistipes/Oscillibacter/
Helicobacter↓

Decreases gut microbiota
abundances,

tight junction proteins
expression↑,

intestinal permeability↑ and
gut leaky↓,

inflammatory response,
oxidative stress and

abnormal lipid metabolism↓,
ameliorates CCl4-induced

ALI.

(47)

Zhizichi Decoction Real World Study
Gardeniae Fructus,

Semen Sojae Praeparatum

Lactobacillus/Romboutsia/
Akkermansia/Prevotella↑

Enterococcus/Parasutterella↓

Rebalances the gut dysbiosis,
butyrate and SCFAs

production↑,
Keap-Nrf2 signaling

pathway (+),
oxidative stress↓,

host defense against ALI↑.

(48)

Ganshuang
Granules

Early Phase 1
(NCT05523648)

Radix Codonopsis,
Bupleurum Falcatum, Salviae

Miltiorrhiza

Lactobacillus/Akkermansia↑,
Allobaculum↓

Rebalances the gut dysbiosis,
intestinal permeability↓,

oxidative stress,
inflammatory and
hepatic fibrosis↓,

ameliorates CCl4-induced
ALI.

(49)

LC

Shaoyao Ruangan
Mixture

Real World Study
Herba Hedyotidis,

Scutellariae Barbatae Herba,
Paridis Rhizoma, etc.

Bacteroides↓

Bacteroides abundance↓,
IL-10 levels↓,

ameliorates unresectable
liver cancer.

(50)

Jiawei Xiaoyao
Powder

Real World Study

Radix Angelicae Sinensis,
Radix Bupleurum, Radix
Codonopsis Pilosulae,

Radix Paeoniae Alba, etc.

Firmicutes/
Lachnospiraceae↑,

Bacteroidetes/Proteobacteria/
Bacteroidaceae/Oscillibacter↓

Regulates gut microbiota
Composition and diversity,

affects 11 differential
metabolites biosynthesis,
anti-inflammatory and

immunomodulatory effect↑.

(51)

Panax ginseng (52)

(Continued)
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[A TCM prescription consisting of Gynostemma pentaphyllum

(Thunb.) Makino, Polygonum cuspidatum Sieb. et Zucc., Salvia

miltiorrhiza Bunge., Artemisia capillaris Thunb., and Nelumbo

nucifera Gaert.], and Cassiae Semen, as well as NPs, such as

Berberine and Gynostemma, have been reported to improve

NAFLD by regulating the gut microbiota, which provides a

promising strategy and direction for NAFLD research and therapy

(19, 35, 41, 67). A study found that the classic TCM formula, Si Miao

Formula, can significantly alter the composition of the gut microbiota,

specifically increasing the proportion of Akkermansia muciniphila,

which can regulate the expression of genes involved in fat synthesis

(e.g., decrease liver sterol regulatory element binding protein

expression) and different inflammatory markers (e.g., decrease the

expression of interleukin-1b (IL-1b) and IL-6 and the activity of

alanine transaminase and myeloperoxidase) (19). These actions

positively affect the intestinal barrier function of mice and hepatic

fat metabolism to reverse the formation of NAFLD. When exploring

the therapeutic effect of Cassiae Semen on NAFLD, Cassiae Semen

significantly increased the abundance of Firmicutes and Bacteroidetes

while reducing the number of Proteobacteria, thereby alleviating gut

microbiota dysbiosis. The restored gut microbiota increases the

expression of tight junction proteins in intestinal mucosa, such as

zonula occludens (ZO-1) and occludin-1, which will repair the
Frontiers in Immunology 08198
damaged gut barrier and reduce metabolic endotoxemia, ultimately

improving lipid accumulation, liver injury, inflammation and even

NAFLD (36). The well-known alkaloid active ingredient of NPs,

berberine, was shown not only to restore the abundance of

Bifidobacterium, Bacteroidetes and Firmicutes to reconstruct the gut

microbiota composition and increase tight junction proteins, thus

enhancing gut barrier function to ameliorate liver inflammation and

oxidative stress (37, 38). Meanwhile, the restored gut microbiota also

regulates bile acid deconjugation and transformation to promote the

expression of intestinal farnesoid X receptor (FXR) and fibroblast

growth factor 15 (FGF15) and further inhibits lipogenesis and NF-kB
activation in the liver, thereby activating bile acid/FXR signaling to

improve hepatic lipid metabolism (39). These findings suggest that

Berberine regulates gut dysbiosis and may be a valuable strategy for

the treatment of NAFLD. Furthermore, MDG-1, an Ophiopogon

polysaccharide, was shown to inhibit NAFLD by regulating the

abundance of Akkermansia muciniphila (41). It was found that PCP

can prevent the occurrence of NAFLD, which may be related to the

regulation of gut microbiota and inhibition of the NF-kB/CCL3/
CCR1 axis (18). In addition to the aforementioned medicines,

Jiangzhi Granules and Psyllium husk, as shown in Table 1, also

showed good anti-NAFLD effects by modulating the gut microbiota

(35, 40, 42).
TABLE 1 Continued

Disease
Type TCM/NP Name Study Phase Main Ingredients Gut Bacterial

Alterations Possible Mechanism Reference

Phase 1
(NCT03775837)

Ginsenosides,
Golysaccharides

Coprococcus/
Dehalobacterium/
Anaerotruncus/
Ruminococcus↑,

Bacteroides/Arthromitus/
Prevotella↓

Regulates gut microbiota
composition and diversity,
SCFAs and secondary BAs

biosynthesis↑,
chronic inflammatory

response↓.

Safflower yellow Preclinical Safflower yellow

Alloprevotella/
Ruminococcus/

Barnesiella/Bacteroides
Ersipelotrichaceae incertae

sedis↓

Regulates gut microbiota
composition,

CD8+ T-cell and Gr-1+

macrophage
mediated immune
suppression↑,

TNF-a and NF-kB-
mediated inflammation↓,
regulates tumor immune

microenvironment.

(53)

Zn (II)-curcumin
solid dispersion

Preclinical
Polyvinylpyrrolidone (PVP-
k30)-based solid dispersion

of Zn (II)-curcumin

Bacteroidetes/Barnesiella/
Paraprevotella/Prevotella↑,
Firmicutes/Lachnospiraceae/

Clostridium XIVa/
Oscillibacter↓

Modulates gut microbiota
composition,

propionate, SCFA and NKT
production↑,

liver cancer growth↓,
immunotherapy response

and efficacy↑.

(54)
f

AILD, autoimmune liver disease; ALI, acute liver injury; BA, bile acid; CCl4, carbon tetrachloride; FGF15, fibroblast growth factor 15; FGFR4, fibroblast growth factor receptor 4; FXR, farnesoid x
receptor; GS, ginseng and the seeds of Zizyphus jujuba var. spinosa; IL-10, interleukin-10; LC, liver cancer; LPS, lipopolysaccharide; MDG-1, an ophiopogon polysaccharide; N-3 PUFAs, omega-3
polyunsaturated fatty acids; NAFLD, nonalcoholic liver disease; NF-kB, nuclear factor kappa-B; NKT, natural killer T cells; NP, natural product; Nrf2, nuclear transcription factor (erythroid-derived
2)-like 2; SCFA, short-chain fatty acid; TCM, traditional Chinese medicine; TLR4, toll-like receptor 4; TNF-a, tumor necrosis factor a; VTE, Ampelopsis grossedentata.
(+) represents the activation of the signal/signaling pathway; (-) represents the suppression of the signal/signaling pathway; “↑” indicates an increase in content, level, or expression; “↓” indicates a
decrease in content, level, or expression.
The therapeutic effects of traditional Chinese medicine (TCM) and natural products (NPs) on liver diseases are expected to be inextricably linked to the targeted regulation of gut microbial dysbiosis.
Among them, it has been shown that various TCMs, such as Si Miao Formula, Jianpi Liqi Huoxue Decoction, Zhizichi Decoction, Jiangzhi Granules, Panax ginseng and Gynostemma, can affect
multiple liver diseases, including alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), autoimmune liver disease (AILD), acute liver injury (ALI) and liver cancer (LC). Meanwhile, a
variety of active ingredients of TCM, such as Berberine, Gynostemma saponin, Ophiopogon polysaccharide MDG-1, Semen hoveniae extract, and Safflower yellow, can also be used to prevent and
treat liver diseases by regulating gut microbial dysbiosis. Furthermore, some NPs, such as Vine tea extract, Costunolide, Antarctic krill oil, and Oridonin, may alleviate or mitigate liver disease by
inhibiting the gut microbiota and the gut-liver axis and promoting hepatic urea cycling, among other mechanisms. The table highlights the great potential of TCM and NPs targeting the gut microbiota
during the treatment of liver disease.
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An increasing number of TCMs and NPs have been found to

alleviate NAFLD in vitro and in vivo, which is inseparable from their

regulatory effects on gut microbiota. These findings not only indicate

that targeting the gut microbiota is a therapeutic strategy with great

potential to improve NAFLD but also provide important references

for the treatment of NAFLD with these drugs based on gut

microbiota. However, although multiple TCMs and NPs have

shown promising therapeutic effects at both the cellular and animal

levels, research on their transformation and clinical application is

seriously insufficient, which is represented in Table 1. Meanwhile, we

have found that most studies depended on 16S rRNA sequencing

analysis, but it can provide only limited analytical value for

mechanistic studies. Therefore, alternative methods relevant to

human disease models and in vivo sterile animal model systems,

such as metabolomics and macrometabolic transcriptome analysis,

need to be further developed to evaluate microbial functions and their

effects on host cells and thus explore mechanisms in depth.

Additionally, nonhuman primate (NHP) models and animal

models obtained from gut stem cell cultures are of great value to

examine those hypotheses derived from clinical observations and for

the formation of mechanistic and conceptual conclusions, which will

accelerate their clinical translation and application. Nevertheless, the

relevance of these findings to initial clinical observations must

be confirmed.
4 Targeting gut microbiota for AILD

AILD mainly includes autoimmune hepatitis (AIH), primary

biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC).

It is generally believed that multiple factors, such as heredity,

immunity, inflammation, infection, and dysbacteriosis, contribute

to the progression of AILD. However, as the complex etiology and

pathogenesis of the disease have not yet been fully elucidated, there is

currently a lack of specific diagnostic criteria and safe and effective

drugs (68). Such a situation urgently requires researchers to conduct

in-depth exploration to elucidate the pathogenesis of AILD, identify

promising therapeutic targets, and provide a powerful impetus for

screening ideal drugs and formulating effective therapeutic strategies.

As shown in Figure 2, various lines of evidence have linked gut

microbiota dysbiosis with barrier autoimmunity and beyond,

especially in the setting of AILD (69, 70). The detection of 16S

rDNA sequencing in AIH patients showed that the abundance of

Enterococcus gallinarum in liver tissue was significantly higher than

that in healthy individuals. Moreover, the number of Bifidobacterium

and Lactobacillus in their feces was significantly reduced, which

induced a decrease in the proportion of Bifidobacterium to

Enterococcus (71). These alterations lead to intestinal mucosal

damage and increased blood endotoxin levels in patients, thus

inducing the immune tolerance damage mechanism and

exacerbating liver injury in AIH (72). Meanwhile, liver injury of

concanavalin A (ConA)-induced AIH can be significantly alleviated,

suggesting that the targeted regulation of gut microbiota is beneficial

to AIH therapy. Moreover, a prospective randomized controlled

clinical study found that the diversity of gut microbiota in PBC

patients was significantly lower than that of healthy controls (P =

0.03), and 6 months of ursodeoxycholic acid (UDCA) treatment
Frontiers in Immunology 09199
significantly increased the diversity and abundance of gut

microbiota, thereby alleviating PBC progression, which indicates a

nonnegligible role for modulating gut microbiota in PBC treatment

(73). Furthermore, a study on PSC found a unique correlation

between gut microbiota and bile acid, which may be involved in the

pathogenesis of PSC by affecting bile acid metabolism and the gut

microenvironment; meanwhile, the number of Veillonella genera

increases with the severity of PSC, suggesting the important role of

gut microbiota and its metabolites in the prevention and treatment of

PSC (74, 75). These results emphasize the nonnegligible role of gut

microbiota dysbiosis in the occurrence and progression of AILD

through different pathways or mechanisms, indicating that targeted

regulation of the abundance and diversity of gut microbiota may

provide new directions and clues for future research and treatment of

the disease.

In view of the unignorable or noticeable roles of various gut

microbiota in the progression of AILD, it is of great significance to

explore TCMs and NPs targeting gut microbiota for AILD research

and treatment, as shown in Table 1. Liquiritin, the active ingredient

extracted from licorice, has been found to significantly inhibit the

growth of multiple pathogenic bacteria, such as Bacillus sp. 46,

Veillonella sp. 31 and sp. 48, Bacteroides sp. 22 and sp. 57 and

Clostridium sp. 51, while it has little impact on the growth of

commensal probiotics (such as Lactobacillus and Bifidobacterium),

which provides valuable evidence for the potential activity of this herb

against gut microbiota during AILD treatment (43). A Chinese

medicine called “Liushen Capsule”, produced by Lei Yun Shang

Pharmaceutical Group Co., Ltd. with Muschus and Artificial Bezoar

as the main ingredients was found to significantly alter the diversity

and distribution of gut microbiota in healthy volunteers. Specifically,

Liushen Capsule significantly increases the abundance of intestinal

anaerobic bacteria (such as Bifidobacterium and Lactobacillus) while

reducing the abundance of some intestinal opportunistic pathogenic

microbiota (such as Proteus, Veillonella, Prevotella, Neisseria and

Actinomyces) (44). Meanwhile, both Bifidobacterium and

Lactobacillus were found to be significantly reduced in multiple

types of AILD, while opportunistic pathogens were significantly

elevated. Thus, Liushen Capsule may be considered a promising

drug for the treatment of AILD by targeting the regulation of gut

microbiota. In exploring the therapeutic efficacy of Chaihu-Shugan

Power, a TCM with Bupleurum Falcatum as its main ingredient, in

the treatment of NAFLD. Research showed that the drug significantly

reduced the abundance of multiple opportunistic pathogenic bacteria,

such as the Enterobacteriaceae, Staphylococcaceae and Veillonella

genera, and increased the abundance of the Anaeroplasma genus,

which shows the potential of Chaihu-Shugan Power targeting gut

microbiota dysbiosis during the treatment of AILD (45). In addition,

the extract of ginseng and the seeds of Zizyphus jujuba var. spinosa

(GS) significantly increased the relative abundance of Lactobacillus

and Bifidobacterium and decreased Streptococcus, Escherichia coli-

Shigella, Veillonella and Enterococcus in rats, suggesting that GS

extract may be a promising AILD therapeutic drug by balancing the

structure and diversity of gut microbiota (46).

Presently, research on gut microbiota-focused AILD treatment

has progressed but has mainly concentrated on the exploration of

antibiotic applications. Therefore, targeting the gut microbiota to

explore novel and promising AILD therapeutic strategies remains an
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1086078
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2023.1086078
urgent clinical issue. Notably, research on the regulation of gut

microbiota dysbiosis in diseases by TCMs and NPs is well

underway, which will provide a novel direction for targeting the gut

microbiota to explore promising drugs and potential therapeutic

strategies for AILD. Even though it is highly expected, the existing

studies have the following inadequacies: 1. More studies are still at the

efficacy observation stage and fail to address the in-depth mechanism;

2. Research results are more based on the exploration of fecal 16S

rDNA sequencing rather than on the gut microbiota. However, the

composition or function of the fecal microbiome is different from that

of the gut microbiota, which should be taken into account. Therefore,

further investigations should be designed to clarify the specific types

and targets of bacteria located in the gut, to elucidate the detailed

mechanisms by which the gut microbiota regulates AILD and to

provide an impetus for large-scale screening and clinical studies of

promising TCMs and NPs.
5 Targeting gut microbiota for acute
liver injury

Various factors, such as drugs, toxicants, and viral infections,

produce hepatotoxicity and lead to ALI, which severely damages liver

function and inevitably damages human health (76). Prior surveys

have shown that ALI frequently occurs year by year and is directly

responsible for approximately 3% of global mortality (77, 78).

Therefore, preventing and eliminating ALI has become an urgent

issue to be solved globally. At present, epigenetics, oxidative stress,

inflammatory immunity and other pathological mechanisms have

been confirmed to be widely involved in the abnormal activities of

hepatocytes and inflammatory immune cells and metabolism-

induced ALI, and promising targets and potential therapeutic

strategies have also been hotly discussed (79). Meanwhile, the role

of gut microbiota in ALI has become increasingly prominent and has

gradually attracted attention (80). However, the contribution of the

existing studies on the gut microbiota to ALI has not been well

characterized, which directly leads to the ineffectiveness of strategies

targeting the gut microbiota for disease therapy. In view of this, in-

depth exploration of the impact of gut microbiota on ALI will provide

new ideas and directions for the treatment of such diseases.

Drug hepatotoxicity is the major cause of clinical ALI in many

countries, among which acetaminophen (APAP) is widely studied.

16S rRNA sequencing showed that excessive APAP significantly

changed the composition and diversity of gut microbiota, including

increasing the ratio of Firmicutes/Bacteroidetes and reducing the

abundance of Proteobacteria, Roseburia, Lactobacillus, Akkermansia

muciniphila and Saccharomyces cerevisiae (81). The increase in the

proportion of Firmicutes/Bacteroidetes exacerbates liver inflammation

and immune disorders, while the decrease in the abundance of

Saccharomyces cerevisiae leads to the accumulation of the gut

microbial metabolite 1-phenyl-1,2-propanedione, which participates

in APAP-induced ALI by depleting hepatic glutathione levels (82).

The reduction in the proportion of gut Lactobacillus promotes

oxidative stress and inflammatory responses (83), while

Akkermansia muciniphila has been shown to modulate immune

and metabolic functions (84). In addition, ALI caused by
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commonly used medications, such as tacrine and diclofenac, has

also been proven to be closely related to gut microbial dysbiosis (85,

86). These results indicate that gut microbial dysbiosis is an important

factor in promoting drug-induced hepatotoxicity and even ALI.

Carbon tetrachloride (CCl4) is one of the most common toxicants

causing ALI. Integrating 16S rRNA sequencing and LC‒MS

metabonomic analysis, CCl4 caused the dysbiosis of 32 specific gut

microbes in 10 phyla, such as significantly reduced levels of

Firmicutes, Clostridiales and Lactobacillus and an increased

percentage of Bacteroides. The reduction in the abundance of gut

Lactobacillus promotes CCl4-induced liver oxidative stress and the

inflammatory response (87), while the elevated ratio of Firmicutes/

Bacteroidetes aggravates liver inflammation and immune disorders75.

Meanwhile, Clostridiales is significantly positively correlated with 3-

hydroxybutyric acid, which has been proven to reduce inflammation

and liver injury (88). Moreover, ALI caused by toxicants, such as D-

galactosamine and cisplatin, has also been proven to be closely related

to gut microbial dysbiosis (82, 86). The aforementioned findings

suggest that gut microbial dysbiosis accelerates toxicant-induced ALI

(Figure 2). Based on these studies, it is of great clinical value and

practical significance to target gut microbes to reduce hepatotoxicity

and ALI caused by various factors.

In view of the multicomponent, multitarget, multipath and mild

effects of TCMs and NPs, their rational use has greater advantages in

reducing liver toxicity and even treating ALI. Recently, many studies

have demonstrated the great potential of such drugs in this field, which

is inseparable from their targeted regulation of gut microbiota, as

shown in Table 1. Oridonin, a liver protective agent derived from

Rabdosia rubescens, is believed to reduce APAP-induced

hepatotoxicity and ALI by regulating the Bacteroides vulgatus-urea

cycle-Nrf2 axis (21). A study on the extract of Ampelopsis

grossedentata (VTE) indicated that it could alleviate CCl4-induced

hepatotoxicity and ALI by restoring gut microbiota dysbiosis in mice.

Specifically, VTE significantly reduced the content of harmful

gut microbiota, such as Helicobacter and Oscillibacter, and

increased the abundance of beneficial gut microbiota, such as

Ruminococcaceae_UCG-014 and Eubacterium_fissicatena_group. The

gradually restored gut microbiota not only reduces liver inflammation

and oxidative stress but also enhances the intestinal barrier by

promoting the expression of zonula ZO-1, Occludin-1, and Mucin-1

in intestinal tissues and ultimately achieves the effect of reducing

hepatotoxicity and ALI (47). When the gut microbiota was depleted,

the disappearance of VTE efficacy verified its targeted regulatory

mechanism on the gut microbiota. A TCM composed of Gardeniae

Fructus and Semen Sojae Praeparatum, named Zhizichi Decoction,

was found to reduce liver injury by regulating the gut microbiota

population, promoting butyric acid production and activating the

antioxidant reaction (48). In addition, Ganshuang Granules

[composed of Chinese herbs such as Radix Codonopsis, Bupleurum

Falcatum and Salviae Miltiorrhiza] can rebalance the gut microbiota

and reduce intestinal permeability, thereby reducing oxidative stress

and inflammation and ultimately ameliorating CCl4-induced

hepatotoxicity and ALI (49). At present, the potential roles of these

agents based on gut microbiota in alleviating hepatotoxicity and ALI

have been constantly explored, which not only provides a promising

target for the prevention and treatment of the disease but also deepens
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the awareness of the important research value of TCMs and NPs in

disease treatment. More importantly, it offers a novel idea and

direction for the establishment of hepatotoxicity and ALI therapeutic

strategies by targeting gut microbiota dysbiosis.

Although such medicines targeting gut microbiota dysbiosis have

great potential in the prevention and treatment of hepatotoxicity and

ALI, there are still some deficiencies and challenges, including the

following: 1. Most of the existing studies focus on preset animal

experiments while ignoring the characteristics of hepatotoxicity and

ALI, which are difficult to observe at the early stage and are

progressing rapidly. In other words, it is a huge challenge to

consider both mild effects and rapid effects. 2. Hepatotoxicity and

ALI are heterogeneous due to different influencing factors, which

forces us to choose broad-spectrum or specific treatments. 3. How to

avoid the hepatotoxicity of some drugs with different properties while

paying attention to their liver protective effect. The above issues

provide a direction for subsequent research. Regardless of how

difficult the road ahead is, therapeutic strategies based on gut

microbiota to regulate hepatotoxicity and ALI will be further

developed in the future with the continuous deepening of basic

research and the extensive development of clinical research, and the

role of these potential drugs will be more clearly clarified.
6 Targeting gut microbiota for
liver cancer

Liver cancer is one of the most common malignant tumors in the

world, and its morbidity and mortality increase each year (89).

Although surgical ablation combined with novel targeted drugs,

such as sorafenib and atezolizumab, has brought some light to liver

cancer patients, the limited types and efficacy of drugs still cannot

meet the urgent clinical needs since the pathogenesis of the disease is

complex and has not yet been clarified, and most patients are

diagnosed at an advanced stage (90). Therefore, it is urgent to

elucidate the pathogenesis, explore more potential targets, discover

promising drugs, and establish effective targeted therapy strategies for

liver cancer treatment.

During the process of exploring potential mechanisms and

promising targets, multiple studies have focused on the

indispensable role of gut microbiota dysbiosis in promoting liver

cancer progression (Figure 2). Based on the fecal gut microbiome

analysis of HCC patients, it was found that the diversity and

abundance of gut microbiota were significantly abnormal, mainly

manifested in the increase in Bacteroides and Ruminococcus and the

decrease in Bifidobacterium (91). In contrast to patients with liver

cirrhosis, early-stage HCC patients had more intestinal

Actinobacteria, Bacteroides, Klebsiella and Haemophilus, while

Verrucomicrobia , Alis t ipes , Phasco larctobacter ium and

Ruminococcus decreased significantly (92). These differences

indicated that gut microbiota diversity may be a noninvasive

biomarker of HCC and demonstrate an integral role in HCC

development. Meanwhile, integrating the microbiome and

transcriptome found that Bacteroidetes, Lachnospiracea incertaesedis

and Clostridium XIVa were enriched in HCC patients, and their

changes in the tumor immune microenvironment through serum bile
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acids may be important factors associated with liver cancer burden

and poor clinical outcomes (93). Gut microbiota omics analysis

partially explains the pathogenesis of liver cancer and shows the

potential to predict its clinical outcome. Subsequently, C. scindens and

other Clostridium enterica species were shown to utilize bile acid as a

messenger to control the accumulation of chemokine-dependent

hepatic NKT cells and antitumor immunity in the liver, thus

protecting against both primary and metastatic liver cancer (11).

This study establishes the relationship between gut microbes, their

metabolites and liver cancer, which provides new ideas for future liver

cancer treatment. Based on the aforementioned explorations, the gut

microbiota should be widely recognized as a valuable and potential

therapeutic target in the process of liver cancer research and

treatment, and corresponding targeted drug screening, research and

the establishment of therapeutic strategies should be emphasized.

TCM and NPs have attracted increasing attention in the

treatment of liver cancer, which is inseparable from their targeted

modulation of gut microbiota (Table 1). In the therapeutic

exploration of primary liver cancer (PLC), a TCM preparation

produced by Zhejiang Cancer Hospital called Shaoyao Ruangan

Mixture (SRM) [composed of 19 Chinese herbs including Herba

Hedyotidis, Scutellariae Barbatae Herba, Paridis Rhizoma,

Tetrastigma hemsleyanum Diels et Gilg, etc.], could significantly

reduce the abundance of Bacteroides in the intestine, which was

positively correlated with elevated IL-10 levels and liver cancer

development (50). SRM modulates Bacteroides to treat PLC,

providing an important reference for targeting gut microbiota by

TCMs for liver cancer treatment. Meanwhile, fecal microbiology

combined with 16S rDNA analysis showed that Jiawei Xiaoyao

Powder [consisting of Chinese herbs such as Radix Angelicae

Sinensis, Radix Bupleurum, Radix Codonopsis Pilosulae, Radix

Paeoniae Alba and Radix Paeoniae Lactiflora] significantly altered

the composition of gut microbiota and affected the biosynthesis of 11

differential metabolites, such as primary bile acids and interferon-g, in
liver cancer rats, thus achieving the goal of adjuvant therapy for liver

cancer (51). This study provides favorable evidence that TCMs and

NPs target the gut microbiota for the treatment of liver cancer. In

addition, various TCMs and NPs, such as Panax ginseng (52),

Safflower yellow (53) and Zn(II)-curcumin solid dispersion (54),

showed valuable therapeutic effects on liver cancer, which is

inseparable from their targeted modulation of gut microbiota.

Based on these findings, TCMs and NPs targeting gut microbiota

are promising therapeutic strategies for liver cancer, while in-depth

mechanistic and translational studies need to be further explored.

Currently, research on TCMs and NPs targeting gut microbiota

for the treatment of liver cancer is in full swing, and the contribution

of multiomics studies with high-throughput screening is outstanding.

However, the existing studies still have many limitations, mainly

including the following: 1. Most studies have focused on exploring the

effects of these medicines on the gut microbiota in vitro, ignoring the

complexity of the real environment of the organism; 2. Most studies

have focused on the changes in gut microbiota after the inhibitory

effects of those agents on liver cancer but neglected direct evidence of

their targeting of gut microbiota; 3. Insufficient sample size directly

led to different individuals showing high variability in the

composition and abundance of gut microbiota, which limited the
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1086078
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2023.1086078
generalizability of conclusions regarding gut microbiota. Based on the

present situation, subsequent studies should focus on 1. In-depth

exploration of pharmacological mechanisms; 2. Research targeting

specific gut microbiota; 3. Larger sample sizes are needed to overcome

such variability and draw meaningful conclusions; 4. Exploration

oriented to the metabolic processes and metabolites of TCMs

and NPs.
7 Concluding remarks and perspectives

The gut microbiota is essential for maintaining body metabolism

and health, while dysbiosis plays a vital role during the occurrence

and progression of various diseases, including liver disease (94, 95).

Therefore, regulating the gut microbiota to maintain it in a relatively

stable state, including gut microbiota diversity, distribution and

metabolic stability, has great potential and clinical research value in

the treatment of various types of liver diseases. Meanwhile, we should

realize that the current research mostly emphasizes the correlation

between gut microbiota dysbiosis and disease, as well as disease

outcome and gut microbiota alterations, which is far from

sufficient. The importance of the gut microbiota is increasingly

prominent. However, we must recognize that current research has

emphasized the correlation between gut microbiota dysbiosis and

disease and the correlation between disease outcome and gut

microbiota alteration, which is insufficient. Hence, future research

should give more attention to 1. Exploring in depth the detailed

mechanisms by which gut microbiota dysbiosis directly contributes to

disease pathogenesis; 2. How to develop precision medicine by

accurately regulating gut microbiota to implement disease-specific

treatments. Based on these findings, it is first necessary to perform in-

depth information exploration of bioinformatics resources such as gut

microbiomics and metabolomics. Subsequently, the acquired precise

information will be explored and validated mechanistically in specific

cellular and organoid models. Eventually, the clinical effects will be

explored through bacterial colonization and the achievements will be

translated. These lines of thought are quite helpful for establishing

therapeutic strategies targeting the gut microbiota.

TCMs and NPs provide a huge source for the research and

discovery of new drugs by virtue of their obvious anti-

inflammatory, antioxidant, liver protective and other effects and

have attracted widespread attention. As reported by many

researchers, such drugs have played a beneficial role in regulating

liver diseases such as ALD, NAFLD, AILD, hepatotoxicity, and liver

cancer, which are inseparable from the regulation of gut microbiota

dysbiosis (96). However, the majority of existing studies remain at the

stage of preliminary pharmacodynamic validation, which makes the

development of such drugs and the establishment of therapeutic

strategies inadequate. Therefore, future research should emphasize

the following: 1. To adequately integrate technical solutions such as

artificial intelligence, omics and high-throughput screening to screen

and expand the fingerprint profiles and databases of TCMs and NPs

to provide resources for the discovery of more drugs; 2. To develop
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diverse therapeutic routes to meet the broad spectrum of TCMs and

NPs to regulate gut microbiota for disease treatment; 3. To advance

the isolation techniques of TCMs and NPs together with the

improvement of formulation technology and preparation

procedures to provide the basis for targeted regulation of gut

microbiota therapy rather than wide scattering to cure diseases.
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Gut and airway microbiota
dysbiosis and their role in
COVID-19 and long-COVID
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Antonio Muscatello1, Andrea Gori1,4* and Alessandra Bandera1,4
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The gut microbiota plays a crucial role in human health and disease. Gut

dysbiosis is known to be associated with increased susceptibility to respiratory

diseases and modifications in the immune response and homeostasis of the

lungs (the so-called gut-lung axis). Furthermore, recent studies have highlighted

the possible role of dysbiosis in neurological disturbances, introducing the notion

of the “gut-brain axis.” During the last 2 years, several studies have described the

presence of gut dysbiosis during coronavirus disease 2019 (COVID-19) and its

relationship with disease severity, SARS-CoV-2 gastrointestinal replication, and

immune inflammation. Moreover, the possible persistence of gut dysbiosis after

disease resolution may be linked to long-COVID syndrome and particularly to its

neurological manifestations. We reviewed recent evidence on the association

between dysbiosis and COVID-19, investigating the possible epidemiologic

confounding factors like age, location, sex, sample size, the severity of disease,

comorbidities, therapy, and vaccination status on gut and airway microbial

dysbiosis in selected studies on both COVID-19 and long-COVID. Moreover,

we analyzed the confounding factors strictly related to microbiota, specifically

diet investigation and previous use of antibiotics/probiotics, and the

methodology used to study the microbiota (a- and b-diversity parameters and

relative abundance tools). Of note, only a few studies focused on longitudinal

analyses, especially for long-term observation in long-COVID. Lastly, there is a

lack of knowledge regarding the role of microbiota transplantation and other

therapeutic approaches and their possible impact on disease progression and

severity. Preliminary data seem to suggest that gut and airway dysbiosis might

play a role in COVID-19 and in long-COVID neurological symptoms. Indeed, the

development and interpretation of these data could have important implications

for future preventive and therapeutic strategies.

KEYWORDS

microbiota, microbiome, gut-brain-axis, gut-lung-axis, dysbiosis, COVID-19, long
Covid, SARS-CoV-2
frontiersin.org01205

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1080043/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1080043/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1080043/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1080043&domain=pdf&date_stamp=2023-03-08
mailto:emanuele.palomba@unimi.it
mailto:andrea.gori@unimi.it
https://doi.org/10.3389/fimmu.2023.1080043
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1080043
https://www.frontiersin.org/journals/immunology


Ancona et al. 10.3389/fimmu.2023.1080043
1 Introduction

1.1 COVID-19, long-COVID, and
gastrointestinal disease during
SARS-CoV-2 infection

Coronavirus disease 2019 (COVID-19) is a highly contagious

infectious disease caused by the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) virus, a novel RNA beta-coronavirus,

with more than 663 million cases and 6.71 million deaths worldwide

documented until 20 January 2023 (1). COVID-19 is mainly a

respiratory illness, ranging from asymptomatic, mild-moderate,

severe, and critical illness (2), especially affecting elderly subjects

with underlying medical conditions (3).

After COVID-19, some patients may experience persistent

symptoms or other conditions that are colloquially referred to as

long-COVID. The Centers for Disease Control and Prevention have

defined post-COVID conditions as new, returning, or ongoing

symptoms that people experience ≥4 weeks after being infected

with SARS-CoV-2 (4). The prevalence of these conditions varies

widely from 5% to 80%, and the most frequently reported

symptoms are fatigue, cough, shortness of breath, and chest pain

(2, 5). Furthermore, half of the patients report persistent

neurological symptoms at 6 months, the most frequent being

“brain fog” and cognitive changes, described in up to one-third of

subjects (6).

With regard to the gastrointestinal (GI) tract involvement, early

reports from Wuhan showed that 2% to 10% of patients with acute

COVID-19 had GI symptoms including nausea and diarrhea (7),

but more recent metaanalyses reported a higher prevalence, up to

20% of patients (8). SARS-CoV-2 virus has been detected in anal

swabs and stool samples in almost 50% of patients with COVID-19,

suggesting that the digestive tract might be an extrapulmonary site

for virus replication and activity (9), through ACE2 receptors

binding with spike protein-S.
1.2 Gut microbiota and its role in health
and disease

The human gut microbiota harbors up to 1014 resident

microorganisms, including bacteria, archaea, viruses, fungi, and

other eucaryotes, with bacteria being the most abundant

microorganisms at the gut level. The most represented phyla at

the gut level are Firmicutes, Bacteroidetes, Actinobacteria,

Proteobacteria, Verrucomicrobia, and Fusobacteria (10). An

increase in bacteria has been documented from duodenum to

colon, with a decrease in facultative anaerobic Bacilli (Firmicutes)

and Enterobacterales (Proteobacteria) taxa and an increase in

obligate anaerobic bacteria, especially Bacteroidia (Bacteroidetes)

and Clostridia (Firmicutes) classes (11, 12).

Gut microbiota is crucial for several functions, such as energy

extraction from the diet, vitamin and short-chain fat acids (SCFAs)

production, and immunomodulation, with the regulation of TH17

and T reg balance (13–15). A complex equilibrium exists among

prebiotics, like microbiota accessible carbohydrates (MAC),
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probiotics, and postbiotics, like their products, SCFAs (16, 17),

with involvement of several networks between gut microbiota and

other body sites through axes (i.e., gut-lung, gut-liver, gut-brain

axis), influencing processes in health and disease.

An unbalance of the crucial homeostasis between Firmicutes,

Bacteroidetes, Actinobacteria, and Proteobacteria phyla (Figure 1) is

often associated with a change in the numbers of microbes and/or

diversity of the microbiota; such a condition is defined as dysbiosis

(18). Recently, a new definition of dysbiosis has been suggested,

based on a model represented in several diseases, defined by the

increase in facultative anaerobic bacteria, like Bacilli class and

Enterobacterales order, and a parallel decrease in obligate

anaerobic bacteria, such as propionate and butyrate-producing

bacteria (BPBs) (11).

Gut microbiota dysbiosis can have a role in several disease

models affecting the lung, brain, liver, and heart (19).

In the last decade, research on lung microbiota and its

pathogenetic link to pulmonary conditions has significantly

improved. Previously, the lung has been considered a sterile

organ; however, numerous studies have demonstrated the

presence of bacterial DNA in the lower respiratory tract in

healthy individuals. The lung microbiota of healthy subjects is

characterized by the presence of differentiated ecological niches

belonging to Bacteroidetes, Firmicutes, and Proteobacteria phyla

and Prevotella, Streptococcus, Veillonella, Fusobacterium, and

Haemophilus genera (20). Its balance is the result of acquisition

and clearance (Figure 1). Many other factors contribute to this

complex mechanism, such as the immune system (innate and

adaptive immune recognition, secretory IgA), in addition to

various exogenous components such as diet, environmental

biodiversity, and drug treatments, in particular antibiotics (21).

Chronic respiratory diseases are often characterized by an

imbalance between microbial immigration and elimination in the

lung. Moreover, the presence of chronic inflammation results in the

alteration of physicochemical proprieties that facilitate the growth

of select species in the microbial community, such as

microorganisms from the Proteobacteria phylum, that are linked

to a proinflammatory state (22). It is important to emphasize that

lung and gut microbiota are in close communication with each

other through the circulation of soluble metabolites (i.e.,

peptidoglycan or LPS) transported by the blood (21). These

peptides are recognized by host cells that express pattern-

recognition receptors (PRRs), such as Toll-like receptors (TLRs)

and Nod-like receptors (NLRs). The interplay between lung and gut

microbiota, defined as the gut-lung axis, has been demonstrated in

different animal models (23–26).

Further studies are needed to better understand the complex

gut-lung interplay and characterize the gut microbial metabolites

(i.e., indole derivative, niacin, polyamines, urolithin, and pyruvic

acid) that act as immunomodulants and might have a possible

impact on respiratory health (27, 28).

Another captivating field of microbiota studies is related to its

connection with the brain through the so-called gut-brain axis,

which is thought to be a bidirectional system. On one side, there is

the involvement of microbiota-derived metabolites on the blood–

brain barrier like SCFAs, tryptophan, and linoleic acid metabolites
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as well as cytokines produced at the gut level; on the other side, the

brain controls gut activity through the neuroendocrine and

parasympathetic systems (i.e., regulation of intestinal permeability

through the vagus nerve) (29). Such connections have been studied

in animal models: physiological aging affects gut microbiota in

mouse models through cognitive frailty (30).

Gut microbiota dysbiosis seems to play a role in several

neurodegenerative and psychiatric disorders (31), as well as in

other neurological conditions (32). For example, damage to the

GI barrier is a possible pathological pattern for depression

disorders; moreover, increased LPS and microbiota-cytokine

production seems to be related to Alzheimer’s disease (29).

The relationship between gut microbiota and the brain could be

deeper and more complex: alteration of the hypothalamic “master

clock” could impact the diurnal environmental fluctuations and

lead to dysbiosis-related metabolic disorders like obesity and/or

diabetes (33). Furthermore, gut dysbiosis could determine sleep

disturbances (sleep loss, alteration of circadian rhythm), eventually

leading to fatigue (34). Following this hypothesis, the gut

microbiota, which is mostly influenced by diet, could represent a

link between the immune and endocrine systems through brain

function and the host metabolism (35).

High-fat food intake can indeed damage the GI barrier, affecting

both the “intestinal epithelial barrier” (characterized by the mucus

layer and the epithelial cells) (36) and the “gut vascular barrier,”

regulated by the expression of plasmalemma vesicle-associated

protein-1 (PV1). This condition, known as “leaky gut,” can favor

microbial translocation to the liver (37), leading to hepatic and

systemic disease.
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Finally, another example of the role of dysbiosis in disease has

been studied in the cardiological setting, where the increased

production of trimethylamine (and its metabolite-liver

trimethylamine-N-oxide) by gut microbiota has been linked to

the development of cardiovascular disease (29).
2 Gut microbiota dysbiosis in
acute COVID-19

2.1 Study characteristics and
confounding factors

We identified 22 studies on gut microbiota in COVID-19

patients published in a 2-year window period between 03 January

2020 and 03 January 2022 (Table 1A).

To critically revise the studies, we first considered all the

variables potentially influencing the final observations: study

design, location, material source, microbial technology used,

sample size, and patient characteristics—age, body mass index

(BMI), gender, sexual behaviors, COVID-19 severity index,

comorbidities, recent previous use of antibiotics/probiotics, diet,

and lifestyle.

The cross-sectional study design was the most common. Less

than half of studies (45%) had a longitudinal/prospective design,

20% of which focused on long-COVID-19.

The study location was a critical factor: most studies (19/22, 86%)

were set in Asia (18 in China, one in South Korea), and three of 22

(14%) in Europe; no other geographic regions were represented.
GUT

DYSBIOSIS 
COVID-19

EUBIOSIS

GUT COVID-19 DYSBIOSIS

↓α DIVERSITY
↑ FACULTATIVELY ANAEROBIC

↓ OBLIGATELY ANAEROBIC 
(propionate-butyrate producers) 

AND OTHER ANTI-
INFLAMMATORY BACTERIA

OBLIGATELY ANAEROBIC, SCFAs
(proprionate†and butyrate*) 

PRODUCERS

FIRMICUTES
Clostridia class
Clostridiales order
Lachnospiraceae
• Eubacterium*†
• Roseburia *†
• Anaeros�pes*
• Coprococcus*
• Blau�a †
Ruminococcaceae
• Faecalibacterium*
• Subdoligranulum*
Erysipelotrichia class
Erysipelotrichales order
Erysipelotrichaceae
• Holdemanella*
Nega�vicutes class, 
Selenomonadales order
Veillonellaceae
• Dialister †
Acidaminococcaceae
• Phascolarbacterium†

FACULTATIVELY ANAEROBIC 
BACTERIA

FIRMICUTES
Bacilli class
Bacillales order
• Staphylococcaceae and other taxa
Lactobacillales order
• Enterococcaceae
• Streptococcaceae and others taxa

BACTEROIDETES
Bacteroidia class,
Bacteroidales order
Bacteroidaceae
• Bacteroides †
Prevotellaceae
• Prevotella †
Rikenellaceae
• Alis�pes †

VERRUCOMICROBIA
Verrucomicrobiae class
Verrucomicrobiales order
Verrucomicrobiaceae
• Akkermansia †

ACTINOBACTERIA
Ac�nobacteria class
Bifidobacteriales order
Bifidobacteriaceae
• Bifidobacterium
Coriobacteriia class
Coriobacteriales order 
Coriobacteriaceae
• Collinsella

ANTI-INFLAMMATORY 
TAXA (Not propionate, 

Not butyrate producers)

PROTEOBACTERIA
Gammaproteobacteria class
Enterobacterales order
• Enterobacteriaceae

and others taxa

LUNG MICROBIOTA

Bacteroidetes, Firmicutes, and Proteobacteria phyla

Comamonadaceae family

Prevotella, Streptococcus, Veillonella, Fusobacterium and 

Haemophilus genera

LUNG COVID-19 DYSBIOSIS

↓/= (↑) α DIVERSITY
↓ PROTEOBACTERIA, FUSOBACTERIA 

AND SACCHARIBACTERIA PHYLA
↓ UNBALANCE OF SEVERAL ASPECIFIC 

TAXA

ACQUISITION OF MICROBIAL COMMUNITY BY 
TRANSLOCATION FROM UPPER AIRWAY BY 
MISCRO-ASPIRATION

ELIMINATION OF BACTERIA VIA 
MUCOCILIARY TRANSPORT AND 
BRONCHOALVEOLAR 
CLEARANCE

DIET

ANTIBIOTICS INTAKE

PROBIOTICS
CONCOMITANT
MEDICATIONS

GEOGRAPHICAL
LOCATION

AGE GENDER SEXUAL
BEHAVIOUR

BODY MASS INDEX

PHYSICAL
ACTIVITY

SOCIAL
CONTEST

KIND OF DELIVERYBREAST MILKING
VS FORMULA

GENETIC
FACTORS

FIGURE 1

Gut-lung axis microbiota in COVID-19. This figure shows a summary of the gut-lung axis and its alterations during COVID-19. Left: the gut
microbiota taxa obligately anaerobic short-chain fatty acids (propionate and butyrate) producers and anti-inflammatory taxa, not propionate and
butyrate producers. Upper: facultatively anaerobic bacteria. Right: the homeostasis of the lung microbiota, resulting from acquisition (blue arrow)
and elimination (red arrow) clearance. Bottom: the most significant alterations detected in gut and lung microbiota during COVID-19. All around, the
confounding factors are strictly related to Microbiota. BMI: Body Mass Index; ° indicates propionate-producing bacteria, * indicates butyrate-
producing bacteria, Upward arrows “↑”: increase; Downward arrows “↓”: decrease.
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TABLE 1A Selected studies on gut microbiota and COVID-19.
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Yu et al.
(38)

China Cross-sectional
study
Anal swab
Nanopore-
targeted
sequencing
technology

-2 hospitalized patients
are “critical”
-Age: 65 and 78 years
old
-Men: 100%
-BMI: no data
During ABT and
antiviral ongoing
lesser comorbidities

No data COVID-19 vs. controls
Relative abundance comparison
↑ Actinobacteria and Firmicutes phyla
↑ Corynebacterium and Ruthenibacteriu
↓ Bifidobacterium, Lactobacillus, and Eu

Tang et al.
(39)

China Cross-sectional
study
Stool samples
qPCR 10 taxa

-57 hospitalized patients
(general, 20 patients;
severe, 19 patients;
critical disease, 18
patients)
-Age (median): 59, 66,
68
-Men: 40%, 47%, 66%
-BMI: no data
A total of 50.9%, 5.3%,
and 12.3% of patients
received antibiotics,
antifungal drugs, and
probiotics, respectively
Many patients have
more comorbidities
especially in critical
(hypertension) ones

No data Comparison among COVID-19 subgro
Relative abundance comparison
↑ In Enterococcus genus/Enterobacteriac
ratio (in critical patients)
↓ Bifidobacterium, Lactobacillus, Faecali
Clostridium butyricum, Clostridium leptu
rectale

Zuo et al.
(40)

China Cross-sectional
study (15
patients)
Prospective study
subgroup (5/15)
Fecal samples
Shotgun
metagenomic
sequencing

-15 hospitalized patients
(2 mild, 8 moderate, 3
severe, 2 critical
COVID-19)
-Age (median): 55
-Men: 46.6%
-BMI: no data
6/15 patient
comorbidities (46.7%
had stool positivity for
SARS-CoV-2. Only 1
patient had diarrhea at
presentation)

No data Relative abundance comparison
Patients with high SARS-CoV-2 infecti
aerofaciens, Collinsella tanakaei, Streptoc
Morganella morganii
Patients with low-to-none SARS-CoV-
Parabacteroides merdae, Bacteroides ster
onderdonkii, and Lachnospiraceae bacter
Longitudinal arm: all patients showed s
fecal microbiome composition regardles
viral infectivity (confirmed by the longit

Gu et al.
(41)

China Cross-sectional
study
Fecal samples
V3–V4 of the 16S
rRNA gene

-30 hospitalized patients
with COVID-19 (15
general, 15 severe
COVID-19)
24 hospitalized patients
with H1N1

a-Diversity
↓ Shannon diversity Index
↓ Chao-1 diversity Index in COVID-19 and
H1N1 patients compared to healthy
controls
b-Diversity

LEfSe analysis
COVID-19 subgroup vs. controls
↓ Ruminococcaceae family, Fusicatenibac
Agathobacter, unclassified Lachnospirace
halli belong to the Lacnospiraceae family
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TABLE 1A Continued

dance analyses Correlations and other findings

e COVID-19 patients
Agathobacter, Fusicatenibacter, Roseburia, and
Ruminococcaceae
−Correlated with CRP, PCT, or D-dimer
levels
CRP and D-dimer levels + correlated with
COVID-19-enriched bacteria
Significant depletion of BPB in the COVID-19
cohort

, and Bifidobacterium

Coprococcus, and

+Correlation IL-18 and gut marker and
Peptostreptococcus, Fusobacterium, and
Citrobacter taxa
−Correlation between Bilophila and
Citrobacter genera and disease severity
Streptococcus genus

wayi, and Bacteroides

milies
Roseburia, and

prausnitzii,
, Lachnospiraceae
pecies
antly associated with

ewai,
odontolyticus,
r cloaceae,
indistinctus species
genera
rea longicatena,

Clostridium ramosum and Clostridium
hathewayi were +associated with COVID-19
disease severity. Alistipes onderdonkii and
Faecalibacterium prausnitzii showed a
−correlation with COVID-19 severity
14 Bacterial species associated with a fecal
viral load of SARS-CoV-2:
-Bacteroides dorei, Bacteroides
theteiotaomicron, Bacteroides massilinesis, and
Bacteroides ovatus showed significant
−correlation with fecal SARS-CoV-2 load
Erysipelotrichaceae bacterium showed the
strongest +correlation with fecal SARS-CoV-2
load
Antibiotic treatment in patients with a more
heterogeneous microbiome configuration
In antibiotic-naive patients with COVID-19 ↑
opportunistic pathogens ↓ multiple bacterial
species, which are symbionts beneficial
COVID-19 condition the strongest factor on
gut microbiota followed by hyperlipidemia,
pneumoniae, and antibiotics
Gut dysbiosis persistence over time regardless
of clearance of SARS-COV-2
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30 matched healthy
controls
-Age (median): 55 vs. 53
-Men: 56% vs. 56%
-BMI: 24.6 vs. 22.9
In the COVID-19 group,
33.3% had at least 1
coexisting medical
condition; hypertension
(30.0%); 16.7% patients
with diarrhea
All subjects who
received antibiotics,
probiotics, or both
within 4 weeks before
enrollment were
excluded.

No differences between general and severe
COVID-19 patients
b-Diversity separation according to Bray–
Curtis between COVID-19 and controls
(and H1N1 subgroup)
No b-diversity separation according to the
severity index

↑ Streptococcus genus
No differences between general and sever

Tao et al.
(42)

China Cross-sectional
Fecal samples
V4 of the 16S
rRNA gene

-26 patients COVID-19
33 influenza patients
40 controls
Clinical information not
shown

a-Diversity
↓Chao-1
b-Diversity
The Unifrac-weighted separation between
COVID-19 and controls

LEfSe analysis
COVID-19 vs. controls
↑ Streptococcus, Clostridium, Lactobacillu
genera
↓ Bacteroides, Roseburia, Faecalibacterium
Parabacteroides

Zuo et al.
(9)

China A prospective
study (short-
term, from
admission until
discharge)
Fecal samples
Shotgun
metagenomic
sequencing

-15 hospitalized patients
with COVID-19 (1 mild,
9 moderate, 3 severe, 2
critical)
6 hospitalized patients
with pneumonia
15 healthy individuals
-Age: 55 median
(COVID-19), 48-year-
old median controls
-Men: 47% (COVID-19)
vs. 60% (controls)
-BMI: no data
40% of patients with
COVID-19 had
comorbidities, especially
hypertension,
hyperlipidemia, and
diabetes mellitus (only 1
patient had diarrhea)
Antibiotic used: amox/
clav, cephalosporin,
tetracyclin
7/15 patients ABT naïve

a-Diversity
No data
b-Diversity
Bray–Curtis dissimilarity between
antibiotic-naive patients, patients who
received antibiotics, and controls

Relative abundance comparison
Antibiotic-naïve subgroup vs. controls:
↑ Actinomyces viscosus, Clostridium hath
nordii
↓ Eubacterium ventriosum
In the antibiotic subgroup:
↓ Eubacteriaceae and Ruminococcaceae fa
↓ Blautia, Eubacterium, Faecalibacterium
Coprococcus genera
↓ Dorea formicigenerans, Faecalibacterium
Eubacterium rectale, Ruminococcus obeum
bacterium, and Eubacterium ventriosum
23 bacterial taxa were found to be signifi
COVID-19 disease severity:
↑ Erysipelotrichia class
↑ Erysipelotrichales order
↑ Erysipelotrichaceae family
↑ Coprobacillus, Enterobacter genera
↑ Clostridium ramosum, Clostridium hat
Erysipelotrichaceae noname, Actinomyces
Erysipelotrichaceae bacterium, Enterobact
Parabacteroides unclassified, and Alistipe
↓ Dorea, Roseburia, and Faecalibacteirum
↓ Bifidobacterium pseudocatenulatum, Do
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TABLE 1A Continued

dance analyses Correlations and other findings

achnospiraceae
nd Alistipes

The link between gut dysbiosis and the
expression of ACE2: possible role of
Firmicutes members to upregulate ACE2-R
expression; possible role of Bacteroidetes
members to downregulate ACE2-R expression

ues, Bacteroides dorei

terium prausnitzii, and

accae species
cigenerans, Clostridium

−Correlation in Faecalibacterium prausnitzii
and Bifidobacterium bifidum with severity
+Correlation in CXCL10, IL-10, TNF-a, AST,
GGT CRP, LDH, NT-proBNP, and
erythrocyte sedimentation rate with
microbiota composition
Microbiota distribution was associated with
COVID-19 and antibiotics but not with stool
SARS-CoV-2 viral replication, antiviral,
corticosteroids, and pomp inhibitor use.
Continuum PCA visualization of a gut
microbial composition according to severity
index disease
Postulated that gut microbiota was associated
with the magnitude of immune response to
COVID-19

e, Staphylococcaceae,
aceae families,

romonadaceae,
ilies

oritellaceae,
and Coriobacteriaceae

icrococcaceae,
hales taxa

abacteraceae,
cobacteriaceae,
ilies; Actinobacteria

d Mycoplasmataceae

High levels of ferritin detected in i-COVID-19
patients in comparison to w-COVID-19
↓ Of SCFA-producing bacteria
A distinct profile can be distinguished
between i-COVID-19 and w-COVID-19 with
the latter being closer to CTRL.
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Antiviral therapy: LPV/
RTV; ribavirin, INFbeta-
1b

Bacteroides ovatus, Anaerostipes hadrus,
bacterium, Faecalibacterium prausnitzii,
onderdonkii

Yeoh et al.
(43)

China 2 Hospital cross-
sectional study
Longitudinal arm
subgroup 30 days
after virological
clearance
Fecal samples
Shotgun
metagenomic
sequencing

100 Hospitalized
patients with COVID-19
(mild, 45; moderate, 45;
severe, 5; critical, 3)
78 controls
-Age: 36 vs. 45 years old
-Men: 53% vs 42%
-BMI: no data
ABT: 34 patients
Antivirals: 46 patients
prior to stool collection
(LPV/RTV, ribavirin,
oseltamivir)
Comorbidities:
hypertension,
hyperlipidemia, diabetes,
and heart conditions
(17% diarrhea at
admission)
For control hypertension

a-Diversity
No significant differences in species richness
and Shannon diversity between COVID-19
and controls
b-Diversity
Separation among COVID-19 with
antibiotics, without antibiotics, and controls
After virological cure, gut microbiota
remained significantly distinct at 30 days
(more dissimilar composition in patients
who had received antibiotics)

Relative abundance comparison
COVID-19 vs. controls
↑ Bacteroidetes phylum
Ruminococcus gnavus, Ruminococcus torq
species
↓ Actinobacteria phylum
↓ Bifidobacterium adolescentis, Faecalibac
Eubacterium rectale species
After antibiotic effects evaluation:
↑ Parabcteroides genus
↑ Sutterella wadsworthensis, Bacteroides c
↓ Adlercreutzia equolifaciens, Dorea form
leptum species

Mazzarelli
et al. (44)

Italy Cross-sectional
monocenter study
Anal swab
V2, V4, V8, and
V3–6, 7–9 of the
16S gene

-15 hospitalized
inpatients (9 in the ward
w-COVID-19, 6
intensive cure unit, i-
COVID-19)
8 hospitalized inpatient
controls (3 in the
intensive care unit, 5 on
the floor)
Severity: not possible
stratification; all patients
(including controls)
pneumonia
-Age: 67 (ward), 70
(ICU), 69 controls
-Men: 55%, 50%, and
62%, respectively, in
wards, ICU, and controls
-BMI: no data
ABT: 55%, 50%, and
37%, respectively, in the
ward, ICU, and controls

a-Diversity
↓ Chao-1
Trend ↓ Shannon diversity index
b-Diversity
According to Bray–Curtis distinct patterns
among the 3 groups

Relative abundance comparison
w-COVID-19 vs. controls
↑ Proteobacteria phylum
↑ Peptostreptococcaceae, Enterobacteriace
Vibrionaceae, Aerococcaceae, Dermabacte
Actinobacteria taxa
↓ Spirochaetes and Fusobacteria phyla
↓ Nitrospiraceae, Propionibacteriaceae, A
Moraxellaceae, and Mycoplasmataceae fa
w-COVID-19 vs. i-COVID-19:
↑ Carnobacteriaceae, Peptobacteriaceae, M
Selenomonadaceae, Micromonosporaceae,
families
↓ Staphylococcaceae, Microbacteriaceae, M
Pseudonocardiaceae families; Erysipelotric
i-COVID-19 vs. CTRL:
↑ Staphylococcaceae, Aerococcaceae, Derm
Erysipelotrichaceae, Microbacteriaceae, M
Pseudonocardiaceae, Brevibacteriaceae fam
taxa
↓ Carnobacteriaceae, Coriobacteriaceae, a
families
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TABLE 1A Continued

ndance analyses Correlations and other findings

Collinsella genera

FMT effect on B lymphocytes ↓ naïve B cells,
↑ memory B cells, and non-switched B cells
Alleviated GI symptoms were observed after
FMT.
First intervention study with FMT in a
COVID-19 setting

clustering:

own butyrate-producing
utia, and Coprococcus
rium Finegoldia genus
rs

lower-diversity
er-diversity type (I or
ts who had anal swab

ity and the relative
terium from early to
of gut microbiota

Respiratory microbiome:
a-Diversity decreased from type I to type IV.
Except for the duration of COVID-19, the
upper respiratory and gut microbial
community divergence seemed not to be
associated with age, gender, antibiotics use,
and detection of SARS-CoV-2 RNA (the use
of antibiotics could emphasize both dysbioses)
The shift of microbiome community types
over time appeared to match between the
throat and the gut in 6/8 patients
−Correlation a-diversity with serum LPS
Dysbiosis of the upper airways seems to
appear early and worse compared to the gut,
due to a different resilience status in
association with a high permeability among
organs due to inflammation.

ntrols
ncultured, Blautia,
sia, Lachnospiraceae

aecalibacterium,

Oral microbiome alterations:
a-Diversity ! Shannon index and Simpson
index significantly decreased in the CPs vs.
HCs
b-Diversity ! Significant distinction of oral
microbial communities between both groups

(Continued)
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ID Country Study character-
istics

Population characteris-
tics

a/b-Diversity Microbiome modifications: relative abu

48% antibiotics 1 or 2
days before the anal
swab

Liu et al.
(45)

China Prospective,
interventional,
single-centered
pilot study on
fecal microbial
transplantation
(FMT)
Fecal samples
before and after 1
week of FMT
16S sequencing

11 COVID-19 patients
1-month after a hospital
discharge form
-Age: 50 average
-Men: 6/11 (54%)
-BMI: no data
10 patients non-severe, 1
patient severe
No antibiotics or an
anti-inflammatory drug
for 2 weeks prior to the
treatment
5 out of 11 patients
suffered from GI

a-Diversity
-6 months ↑ Chao-1 after TMT
No differences with other indexes
(Shannon, Simpson, observed, OUT num)
b-Diversity
No data

Relative abundance comparison
Before vs after 1 week of FMT
↓ Proteobacteria
↑ Actinobacteria
↑ Bifidobacterium, Faecalibacterium, and

Xu et al.
(46)

China Prospective study
35 days after
symptomatic
resolution
Throat samples
and anal swabs
V4 region of
bacterial 16 S
rRNA gene

-35 COVID-19 patients,
19 healthy controls
10 non-COVID-19
patients with other
diseases
34/35 COVID-19
patients with mild
symptoms
-Age: 47 average
-Men: 57%
-BMI: no data
ABT: 13/35 37%,
essentially
fluoroquinolones
1 patient receiving
steroids
14 patients receiving
oseltamivir or INF
Comorbidities: 16/35,
with hypertension, more
representative

a-Diversity
↓ Richness (observed) and Evenness
(Pielou’s evenness) indexes from types I to
III during the early phase of COVID-19
b-Diversity: according to Bray–Curtis, 3
microbial community types were identified
(types I–III)

Dirichlet multinomial mixture (DMM)
comparison among groups
Type I: Bacteroides genus and several kn
bacteria: Faecalibacterium, Roseburia, Bl
genera; 1 opportunistic pathogenic bacte
Type II: Neisseria, Actinomyces, and oth
Type III: Pseudomonas genus members
-A shift of the gut microbiome from the
community type (II or III) toward a hig
II) was observed over time in 7/10 patie
tests at different timepoints
-Clear trend of increased bacterial diver
abundance of Bacteroides and Faecalibac
late stages of COVID-19 like restoration

Ren et al.
(47)

China Cross-sectional
study
-Fecal samples
and tongue-
coating samples
V3–V5 region of
the 16S rRNA
gene

The discovery cohort:
CPs: 24 fecal samples
48 tongue-coating
samples HCs: 48 fecal
samples 100 tongue-
coating samples
-Age: 48 years old, 48
years old for controls

a-Diversity
↓ Observed richness and evenness/diversity
index (Shannon index)
b-Diversity
PCoA separation among groups

Relative abundance comparison
Comparison between COVID-19 and c
↓ Pseudobutyrivibrio, Ruminococcaceae u
Faecalobacterium, Bacteroides, Akkerma
incertae sedis, and Bifidobacterium taxa
↑ Streptococcus and Enterococcus genera
The article described 5 reduced genera (
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TABLE 1A Continued

dance analyses Correlations and other findings

reased genera (not

rmed Patients with reduced post-convalescence
richness had higher levels of CRP as well as a
higher occurrence of ICU admission and
HFNC during the acute phase.
In post-convalescence, low richness was
associated with reduced FVC, FEV1,
inspiratory vital capacity, and total lung
capacity.
Post-convalescence patients with lower
microbial richness had worse pulmonary
functions.
Patients with lower richness at 6 months had
an illness severity during the acute phase with
a strong link between inflammatory response
and COVID-19 gut microbiota dysbiosis.

obacillaceae,
phylococcaceae, and

Staphylococcus,
es, Serratia,
cter, Acidaminococcus,

ococcaceae,

, Coprococcus, Blautia,
buria, Anaerofustis,
lister, Oscillospira,
nella genera
were E. faecium (8.4%)
%), and E. villorum

developing BSI.

The severity of COVID-19-related dysbiosis is
strongly associated with the development of
BSI and ICU admission
The percentage of patients who developed E-
BSI was significantly higher during the
COVID-19 pandemic than in the previous 3
years.
Due to the severity of the clinical setting of
the population, they could not exclude
previous antibiotic intake before ICU
admission, but controls were matched also for
this parameter
After an intragroup comparison between
patients ICU admitted vs. patients COVID-19
no-ICU admitted, they did not see a-diversity
differences but only a b-diversity separation
among groups (including ICU controls).
Both COVID-19 subgroups (ICU and no-
ICU) expressed high levels of Enterococcus

(Continued)
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ID Country Study character-
istics

Population characteris-
tics

a/b-Diversity Microbiome modifications: relative abu

-Men: 28% vs. 8%
-BMI: not calculated
Severity index not
calculated: probably mild
No clinical information
about comorbidities

Lachnospira genera, and others) and 5 in
specified)

Chen et al.
(48)

China Prospective study:
6 months follow-
up
Fecal samples
V3–V4 of the 16S
rRNA gene

-30 patients subdivided
post-convalescence
phase using the median
Chao-1 cutoff 259 in low
a-diversity (N = 15),
high a-diversity (N =
15)
-Acute phase (from
illness onset to viral
clearance)
-Convalescence (from
viral clearance to 2
weeks after hospital
discharge)
-Post-convalescence (6
months after hospital
discharge)
30 control patients
-Age: 53
-Men: 63%
-BMI: 24
33.3% severe illness

a-Diversity
↓ Richness Chao-1 Index in the acute phase
compared to controls
Richness was not restored to normal levels
after 6-month recovery (trend toward
controls)
b-Diversity
A Bray–Curtis analysis separation between
COVID-19 and controls

Abundance relative analysis was not perf

Gaibani
et al. (49)

Italy Cross-sectional
multicentered
study
Fecal samples
V3–V4 of the 16S
rRNA gene

-69 COVID-19 control
patients: healthy age-
gender-therapy and
hospitalization-related
confounder-matched
(like exposure to
antibiotics 2 weeks
before: 69%) Italians
For a subanalysis, a non-
COVID-19 in ICU
controls matched for
age, gender, antibiotics,
and other factors
-Age: 73
-Men: 55%
-BMI: 24 median (16%
with obesity); 22–27 IQR
77% presented with
moderate/severe

a-Diversity
↓ Evenness index (inv.Simpson index)
b-Diversity
According to Bray–Curtis, the a significant
separation between COVID-19 patients and
healthy controls.
Note: gut microbiota profiles of COVID-19
patients showed no segregation by age, sex,
antibiotic intake in the 2 weeks prior to
fecal sampling, length of hospital stay, the
time interval between fecal sampling, length
of hospital stay, the time interval between
fecal sampling and hospital admission, and
outcome (death/discharge).

LefSe analysis
COVID-19 patients vs. controls
↑ Enterococcaceae, Coriobacteriaceae, Lac
Veillonellaceae, Porphyromonadaceae, Sta
Eysipelotrichaceae families
↑ Enterococcus, Lactobacillus, Collinsella,
Akkermansia, Parabacteroides, Actinomy
Lactococcus, Phascolarbacterium, Odoriba
and Methanobrevibacter genera
↓ Bacteroidaceae, Lachnospiraceae, Rumi
Prevotellaceae, and Clostridaceae families
↓ Prevotella, Bacteroides, Faecalibacterium
Ruminococcus, Erwinia, Oxalobacter Rose
Lachnospira, Scardovia, Anaerofilum, Dia
Holdemania, Cloacibacillus, and Cristense
Note: sequences assigned to Enterococcus
along with E. hirae (5.5%), E. faecalis (1.
(1.1%)
↑ Enterococcus in ICU patients and those
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TABLE 1A Continued

dance analyses Correlations and other findings

other
lostridiales taxa in
d those who had not

species compared to ICU controls
No-ICU COVID-19 had an
overrepresentation of Ruminococcus,
Oscillospira, Dorea, and Coprococcus.
ICU controls had an overrepresentation of
Enterobacteriaceae (in particular, Klebsiella
species)

s genera
ii, Citrobacter
and Saccharomyces

s, Phascolarbacterium,

gilis, Bacteroides
s, Eubacterium

Patients with fever: more pathogens, and lack
butyrate-producing species.
5 epitopes were enriched in the fever group.
Some of these were +correlated with clinical
indices (IL-6, WBC, neutrophils, CRP, D-
dimer, and LDH). 4 of the 5 epitopes were all
+correlated with E. faecalis (↑ in the fever
group).
Same background, although during ABT
treatment and with no available diet
investigation information

; Bacteroidaceae,
s
r

es, Butyricimonas, and
spiraceae and

↑ Firmicutes/Bacteroidetes ratio in an infected
state, in the absence of antimicrobial therapy
and without obese patients
+Correlation between Escherichia/Shigella,
Citrobacter, Collinsella, and Bifidobacterium
and COVID-19

(Continued)
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ID Country Study character-
istics

Population characteris-
tics

a/b-Diversity Microbiome modifications: relative abu

pneumonia during
hospitalization:
33% severe respiratory
failure, 23% ICU, and
14% mechanically
ventilated
Hydroxychloroquine,
low-molecular-weight
heparin (LMWH): 88.4%
Tocilizumab: 36%
DRV; DRV/Cobi: 4.4%,
7.2%
Several comorbidities:
hypertension, 63%;
COPD, 22%; diabetes,
17%; and others

↑ Streptococcus, Oscillospira, Blautia, and
Ruminococcaceae, Lachnospiraceae, and C
patients who had not entered the ICU an
developed BSI

Zhou et al.
(50)

China Cross-sectional
study
-Fecal samples
-Shotgun
metagenomic
sequencing

-187 COVID-19 patients
(127 patients with fever
and 60 patients with no
fever).
All moderate COVID-19
-Age: 39 median (37 in
the fever subgroup vs. 48
in the no-fever
subgroup)
-Men: 34% (36% vs.
31%)
-ABT: No data
Several comorbidities
especially hypertension

a-Diversity
↓ In patients with fever with a strong trend
according to Chao-1 (not significant
according to Shannon)
b-Diversity
According to Bray–Curtis, different
compositions in the gut microbiota between
the 2 groups

LEfSe analysis
Fever group vs. no-fever group
↑ Ascomycota phylum (fungal)
↑ Saccharomyces (fungal) and Enterococc
↑ Enterococcus faecalis, Citrobacter freun
unclassified, Haemophilus parainfluenzae
cerevisiae species
↓ Bacteroidetes phylum
↓ Anaerostipes, Prevotella, Parabacteroide
Eggerthella genera
↓ Bacteroides cellulolyticus, Bacteroides fr
thetaiotaomicron, Bacteroides xylanisolve
ramulus, and Erysipelotrichacae bacterium

Kim et al.
(51)

South
Korea

Prospective
monocenter study
2 time points:
from positive to
negative
virological cure
Fecal samples
V3–V4 of the 16S
rRNA gene

12 out-patients
Longitudinal analysis
from positive (infected
state) to negative
virological test
(recovered state)
36 controls
Asymptomatic infection
or mild COVID-19
-Age: 26
-Men: 66%
-BMI: 23
No medicines and/or
antibiotics and/or
probiotics ongoing
Few comorbidities but
gastrointestinal tract

a-Diversity
↑ Evenness index in the recovered state
(Pielou’s evenness) (the trend for Shannon;
not for richness indexes like faith and
observed) trend toward controls
b-Diversity
Differences for quantitative indexes Bray–
Curtis and weighted Unifrac (respectively
phylogenetic and no-phylogenetic
measures).
No differences for qualitative indexes
Jaccard and unweighted Unifrac
(respectively no-phylogenetic and
phylogenetic measures) trend toward
controls

Relative abundance comparison
Infected state vs. recovered state
↓ Bacteroidetes, Bacteroidia, Bacteroidale
Marinifilaceae, and Tannerellaceae famili
↑ Actinomycetals order, Actinomyces ord
COVID-19 vs. controls
↓ SCFA-producing bacteria and Bacteroi
Odoribacter taxa and members of Lachno
Ruminococcaeae families
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ndance analyses Correlations and other findings

ibacter genera
artlett, Clostridium
ctor plautii, and

milies
bacter, Ruminococcus,
Romboutsia,

inulinivorans,
occus bromii, Blautia
Intestinimonas

−Correlation between Faecalibacterium
prausnitzii and chest tightness after activity
−Correlation between Intestinimonas
butyriproducens and cough
+Correlation between Escherichia unclassified
and fatigue, chest tightness after activity, and
myalgia
+Correlation between Intestinobacter bartlettii
and anorexia and fatigue
Compared with HCs, the fecal microbiota of
recovered HCWs at 3 months after discharge
exhibited decreased bacterial diversity

19 and mild COVID-

e and from moderate

s) and Coriobacteriaceae
ifferences ↓ for
achnospira genera)
) with COVID-19

ed through severity

In a multivariate analysis, the Shannon index
and CRP were associated with COVID-19
severity, with cut-off values of 2.25 and 96.8
ml/L.
RNA viral replication: no associations were
found for SARS-CoV-2 replication and
COVID-19 severity
Patients with lower Shannon diversity
displayed SARS-CoV-2 fecal replications
4 features:
↓ Firmicutes/Bacteroidetes ratio; ↑
Proteobacteria phylum; ↓ butyrate-producing
bacteria from Lachnospiraceae family
(Roseburia and Lachnospira genera)
↓ Actinobacteria essentially Bifidobacteria
(Collinsella)

ntrols
nera
ilous, Blautia obeum,

othia, Lactobacillus,

Granulicatella and Rothia increased in both
districts investigated (oral and gut) of
COVID-19 patients.
At the gut level, SARS-CoV-2 replication:
+Correlation to P. copri and E. dolichum
−Correlation to other taxa like S. anginosus,

(Continued)
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ID Country Study character-
istics

Population characteris-
tics

a/b-Diversity Microbiome modifications: relative abu

involvement (reflux
esophagitis, irritable
bowel disease, fatty liver)

Zhou et al.
(52)

China Cross-sectional
prospective study
of recovered
COVID-19
healthcare
workers (HCWs)
after 3 months
Fecal samples
V3–V4 of the 16S
rRNA gene

-15 HCWs, 14 controls
80% had at least 1 long
COVID-19-related
symptom (especially
cough and fatigue)
-Age: 29 medians vs. 37
controls
-Men: 20% vs. 35% in
controls
-BMI: 22 vs. 24
2 recovered HCWs with
hypertension; no
comorbidities in the
controls
Excluded patients with
previous antibiotics and/
or probiotics within 3
months before
enrolment (no
information on lifestyle/
diet)

a-Diversity
HCWs vs. controls
↓ with Shannon (and not sign with other
indexes)
b-Diversity
According to Bray–Curtis, a significant
difference in the fecal microbiota between
recovered HCWs and HCs

Relative abundance comparison
HCWs vs. controls
↑ Actinobacteria phylum
↑ Escherichia, Flavonifractor, and Intesti
↑ Esherichia unclassified, Intestinibacter
aldenense, Clostridium bolteae, Flavonifr
Clostridium ramosum species
↓ Lachnospiraceae, Desulfovibrionaceae f
↓ Faecalibacterium, Roseburia, Fusicaten
Clostridium XVIII, Dorea, Butyricicoccus
Intestinimonas and Bilophila genera
↓ Faecalibacterium prausnitzii, Roseburi
Fusicatenibacter saccharivorans, Rumino
faecis, Butyricicoccus pullicaecorum, and
butyriciproducens species

Moreira-
Rosario
et al. (53)

Portugal Multicenter
cross-sectional
study
Fecal samples
V3–V4 of the 16S
rRNA gene

-115 COVID-19 patients
Severity index: 19 mild,
37 moderate, 59 severe
Location: 14 ambulatory,
40 wards, 61 ICU
-Age: 68 median
-Men: 63%
-BMI: not shown,
percentage of overweight
or obese: 65%
Comorbidities:
hypertension, diabetes,
and other
ABT: 38% during the
last 6 months

a-Diversity
Decrease trend for a-diversity Shannon
index (diversity index) from mild to severe.
b-Diversity
No data

Relative abundance comparison
Mild COVID-19 vs. moderate COVID
19 vs. sever COVID-19:
Decrease tendency from mild to modera
to severe for:
Bifidobacteriaceae (Bifidobacterium genu
(Collinsella genus) taxa with significant
Lachnospiraceae family (Roseburia and L
↑ Ralstonia genus (Proteobacteria phylu
severity score index
Firmicutes/Bacteroidetes ratio has decrea
increase

Wu et al.
(54)

China Longitudinal
study for both
(oral and fecal
districts) during
hospitalization
from positive to

-53 COVID-19 patients
divided into 2
subgroups: non-severe
COVID-19 (mild-
moderate) and severe
group (sever–critical)

a-Diversity
↓ Faith in severe COVID-19 and non-
severe COVID-19 subgroups compared to
controls (with increased gradient among
groups from severe to non-severe to
controls)

LEfSe analysis
Comparison between COVID-19 and c
↓ Blautia, Coprococcus, and Collinsella g
↓ Bacteroides caccae, Bacteroides coproph
Clostridium colinum species
↑ Streptococcus, Weisella, Enterococcus, R
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TABLE 1A Continued

dance analyses Correlations and other findings

ongum, Rothia
Dialister, Alistipes, Ruminococcus, C.
citronieae, Bifidobacterium, Haemophylus, and
H. parainfluenzae taxa
SARS-CoV-2 infection associated with oral
microbiome alterations
In b-diversity: distinguishing ongoing
antibiotics: both subgroups (with and without
antibiotics) displayed different clusters
compared to controls (but not between
subgroups)

omic approach:

um, Ruminococcus,
genera)

Feature of this study: enrichment of gut
bacteria-related deleterious metabolites as well
as altered host and bacterial lipids.

rium longum,
a (note that several
e: Bifibacterium
actobacillus bulgaricus)
s, Bacteroides
ptococcus thermophilus,
, Erysipelotrichaceae

orionacteriaceae family
genera

ius, Coprococcus catus,
s, and Adlercrutzia

−Correlation between COVID-19 severity and
Rosebura and Megasphaer genera
−Correlation between COVID-19 severity and
Roseburia inulinivorans, Bacteroides faecis,
Bifidobacterium bifidum, Parabacteroides
goldsteinii, Lachnospiraceae bacterium, and
Megasphaera species
+Correlation between Paraprevotella,
Lachnospiraceae, Erysipelotrichaceae taxa, and
COVID-19 severity
+Correlation between Paraprevotella species,
Streptococcus thermophilus, Clostridium
ramosum, and Bifidobacterium animalis

(Continued)
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ID Country Study character-
istics

Population characteris-
tics

a/b-Diversity Microbiome modifications: relative abu

negative
virological cure
Fecal samples
and throat swabs
V3–V4 of the 16S
rRNA gene

73 controls
Also, throat analyses
Clinical features not
shown

b-Diversity
Separation among 3 groups (severe
COVID-19, non-severe COVID-19 and
controls) according to unweighted Unifrac

Actinomyces, and Granulicatella genera
↑ Clostridium citroniae, Bifidobacterium
mucilaginosa species

He et al.
(55)

China Longitudinal
study until 3
months follow-up
Fecal samples
Multi-omics
profiling
(metaproteomics,
glycoproteomics,
metabolomics,
lipidomics)

-13 COVID-19 patients
with different severity
index disease (7 mild, 5
moderates, 1 severe)
21 controls
-Age 27 median but 2
patients < 3 years old (1
patient 1 year old, 1
patient 10 months), 1
patient 5 years old;
controls 43 years old
-Male 77%; controls 57%
-BMI 24 with 2 obese
patients and 1
underweight
Comorbidities: 1 diabetic
patient, 2 patients with
sinusitis or rhinitis;
several patients with
gastrointestinal disorders
and anorexia

a-Diversity
No data
b-Diversity
Multiomics profiling confirmed the
separation between COVID-19 and controls

Relative abundance from the metaprote
COVID-19 vs. controls
↓ Lachnospiraceae family (Lachnoclostrid
Butyrivibio, Dorea, Blautia, and Tyzerella
↑ Bacteroides genus

Li et al.
(56)

China Cross-sectional
study
Fecal samples
Shotgun
metagenomic
sequencing

-37 COVID-19 and 10
controls in the discovery
cohort
10 COVID-19 and 9
controls in the validation
cohort (controls
matched for age, gender,
and BMI. No antibiotics
and/or probiotics 4
weeks before
enrollment)
According to the severity
index: 7 mild, 29
moderate, 8 severe, and
3 critical (patients from
both cohorts)

a-Diversity
Comparison between COVID-19 and
controls
↓ Number of species
In the intragroup COVID-19 analysis
according to the severity index:
↓ Evenness and Pielou indexes in mild type
vs. controls
b-Diversity
Bray–Curtis separation

Relative abundance comparison
COVID-19 vs. controls
↑ Bacteroidetes phylum and ↑ Bifidobacte
Streptococcus thermophilus, and other tax
patients received probiotics, which includ
longum Streptococcus thermophilus, and L
↑ Bacteroides stercoris, Bacteroides vulgat
massiliensis, Bifidobacterium longum, Stre
Lachospiraceae bacterium, Prevotella bivi
bacterium (2 variants)
↓ Firmicutes phylum
↓ Candidatus saccharibacteria taxa and C
↓ Ruminococcus, Dorea, and Adlercreutzi
↓ Clostridium nexile, Streptococcus saliva
Eubacterium hallii, Enterobacter aerogene
equolifaciens
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undance analyses Correlations and other findings

s controls
at 1 and 6 months
a. When the effect of
d at 6 months, overall
r between antibiotic-naïve
s the overall gut
1 month
t least 1 COVID-19
ed a different gut
by:
lgatus, Bacteroides
erium oral taxon,
des distasonis, Clostridium
bacillus delbrueckii,
nella morganii,
lutetiensis
lla aerofaciens,
minococcus torques,
ecis, Adlecreutzia

The first study to demonstrate persistent gut
dysbiosis at 6 months after recovery from
COVID-19 and the link between altered gut
microbiota and common lingering symptoms.
Specific gut microbiome profiles were
associated with the presence of PACS and
with different PACS symptoms
+Correlation between PACS patients with
respiratory symptoms and opportunistic
pathogens
+Correlation between the abundance of
nosocomial pathogens with neuropsychiatric
symptoms and fatigue
−Correlation between the relative abundance
of multiple bacterial species beneficial to host
immunity and the presence of PACS at 6
months
−Associations of walking distance test with
pathogenic bacteria species
+Correlation between walking distance and
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ID Country Study character-
istics

Population characteris-
tics

a/b-Diversity Microbiome modifications: relative ab

-Age: 44-year-old
patients and 37-year-old
controls in discovery
cohort; 56-year-old
patients and 46-year-old
controls in validation
cohort
-Men: 51% COVID-19
vs. 70% controls in the
discovery cohort; 50%
vs. 55% in the validation
cohort
BMI: 23 vs. 21 in the
discovery cohort; 23 vs.
23 in the validation
cohort
ABT: 32% in the
discovery cohort; 60% in
the validation cohort
Antiretroviral: 0% in the
discovery cohort; 100%
in the validation cohort
Probiotic during
hospitalization: 0% in
the discovery cohort:
50% in the validation
cohort

Liu et al.
(57)

China A prospective,
multicentered
pilot study with a
6-month follow-
up after hospital
discharge (after
virological
clearance)
Fecal samples
shotgun
metagenomic
sequencing

-68 patients (from 106
enrolled) followed up
from admission to 6
months
68 non-COVID controls
Post-acute COVID-19
symptoms (PACS): at
least 1 persistent
symptom 4 weeks after
clearance ! N = 50/68
at 6 months
Severity of COVID-19:
most patients had mild
to moderate severity of
COVID-19 (81.1%)
-Age, 48 years old
-Men: 47%
-BMI: no data
Comorbidities (45%):
hypertension is the most

a-Diversity
Longitudinal comparison from baseline to 6
months and vs. controls
↓ Shannon diversity and Chao-1 richness at
6 months compared to controls
↓ Shannon diversity and richness at
admission in patients who developed PACS
compared to controls
b-Diversity
Separation among groups: basal COVID-19
naïve antibiotic patients (and overall),
longitudinal time points (1 month and 6
months with essential overlap), and controls
No differences between COVID-19-naïve
antibiotic patients and antibiotic patient
subgroups during follow-up

LEfSe analysis
Longitudinal COVID-19 subgroups v
↓ Ruminococcus and Bifidobacterium (
compared with controls) and other tax
antibiotics was examined at baseline a
gut microbiota composition was simila
and antibiotic-treated patients. Where
microbiota composition was distinct a
PACS analysis: patients who referred a
symptom at 6 months (76%) maintain
microbiota composition characterized
↑ Ruminococcus gnavus, Bacteroides vu
thetaiotaomicron, Lachnospiraceae bac
Bacteroides xylanisolvens, Parabacteroi
innocuum, Flavonifractor plautii, Lacto
Erysipelatoclostridium ramosum, Morg
Lactobacillus acidophilus, Streptococcus
↓ Faecalibacterium prausniztii, Collins
Eubacterium rectale, Blautia obeum, R
Ruminococcus bicirculans, Roseburia fa
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TABLE 1A Continued

dance analyses Correlations and other findings

ongicatena, Firmicutes
riciproducens, Dorea
1, Roseburia
mans, Gemigger
hominis, Ruminococcus

several short-chain fatty acids and butyrate
producers.
No significant correlations between viral load
and PACS development.

ees
n BNT162b2 vaccinees
lercreutzia
utia obeum, Blautia
ngicatena, Coprococcus
la aerofaciens, and
ved in both vaccine

ignificant dietary
72 randomly selected
tailed dietary intake
fter the second dose of

CoronaVac vaccinees:
-21/37 (56.8%) showed sVNT (surrogate virus
neutralization test) lower than 60% (low
responders). Distinct baseline gut microbiome
from those with sVNT higher than 60% (high
responders).
Bifidobacterium adolescentis was enriched in
high responders while Bacteroides vulgatus,
Bacteroides thetaiotaomicron, and
Ruminococcus gnavus were more abundant in
the low responder.
BNT162b2 vaccinees:
Similar to CoronaVac, low responders had a
persistently low level of Actinobacteria,
particularly B. adolescentis. 4 specific bacteria
in the baseline gut microbiome, including
Eubacterium rectale, Roseburia faecis, and 2
Bacteroides species, B. thetaiotaomicron, and
Bacteroides sp. OM05-12 were significantly
increased in the highest-tier responders with
the top 25% of sVNT level

ass spectrometry; HCWs, healthcare workers; HCs, healthy controls; SCFAs, short-
ative and positive correlation.
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ID Country Study character-
istics

Population characteris-
tics

a/b-Diversity Microbiome modifications: relative abu

common comorbidity
followed by type 2
diabetes mellitus
ABT 23% but analyses
on antibiotic-naïve
patients
Antiviral: 52% LPV/
RTV, 28%RBV, 36%
INF, 5% remdesivir
Symptoms 6 months:
fatigue, poor memory,
hair loss, anxiety,
difficulty sleeping
They documented
dietary records during
the time of
hospitalization
Exclusion criteria for
non-COVID-19 controls
were the use of
antibiotics in the past 6
months, the use of
laxatives or antidiarrheal
drugs in the past 3
months, and recent
dietary changes

equolifaciens, Coprococcus comes, Dorea l
bacterium CAG-83, Agathobaculum buty
formicigenerans, Eubacterium sp CAG-25
inulinivorans, Ruthenibacrerium lactatifo
formicilis, Enterococcus avium, Roseburia
lactaris

Ng et al.
(58)

China Prospective
observational
study
Fecal samples
Shotgun
metagenomic
sequencing

-138 adults who have
received 2 doses of
either the inactivated
vaccines (CoronaVac; n
= 37) or the mRNA
vaccine (BNT162b2; n =
101)
-Age; 47 years
-Men: 32.6%
-BMI 38.4% were
classified as OWOB (i.e.,
BMI ≥ 23).
It is a study to
determine whether
baseline gut microbiome
composition was
associated with the
immune response to
COVID-19 vaccines

a-Diversity
↓ At 1 month after the second dose of
vaccination compared with baseline samples
in both vaccine groups
b-Diversity
Shift at 1 month after the second dose of
vaccination compared with baseline samples
in both vaccine groups

At the species level:
↑ Bacteroides caccae in CoronaVac vaccin
↑ Bacteroides caccae and Alistipes shahii
↓ Common bacterial species including A
equolifaciens, Asaccharobacter celatus, Bla
wexlerae, Dorea formicigenerans, Dorea l
comes, Streptococcus vestibularis, Collinse
Ruminococcus obeum CAG 39 were obse
groups
↓ Actinobacteria and Firmicutes
Note: None of the participants reported
changes during the study period. Among
participants, no significant changes in de
were recorded at baseline and 1 month a
vaccination
Note: BNT162b2 ! Comirnaty

ICU, Intensive Care Unit; BSI, bloodstream infections; OWOB, overweight and obese; sVNP, surrogate virus neutralization test; UPLC-MS, ultra-performance Liquid chromatography-m
chain fat acids; BPBs, butyrate-producing bacteria; upward arrows “↑”, increase; downward arrows “↓”, decrease. In correlation and other findings, “−” and “+” means respectively ne
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Lifestyle and diet were not analyzed, even though both factors

are crucial elements in shaping microbial core composition (32,

59, 60).

The material source was a fecal sample in 19/22 (86%) studies,

while three of 22 (14%) were based on anal swab analysis. Most

studies (12/22) used next-generation sequencing (NGS) technology

through ribosomal-S16-DNA hypervariable region sequencing (V4

or V3–V4 regions preferred) to analyze microbiota; shotgun

metagenomic sequencing was used in seven of 22 studies, whereas

one study used multi-omics methodologies (55), one study

nanopore technology (38), and another used quantitative PCR (39).

Regarding patients’ characteristics, all studies included both

men and women, but no studies considered sexual behavior,

although its impact on microbiota core is known in several

disease models (61, 62). Only one-third of studies (seven of 22)

included BMI data, and control groups, when included, were often

matched for BMI. Fifty percent of the subjects in the studies, 50%

were aged 50 or younger.

The small sample size was a limit reported by several authors,

with a total number of enrolled subjects below 40 in almost two-

thirds of studies 13/21 (62%). The COVID-19 severity index was

reported by most studies, with high heterogeneity in the

works analyzed.

Scarce data were available on comorbidities and concomitant

medications; hypertension was the most commonly reported,

followed by diabetes.

No data were generally reported on COVID-19 vaccine status

for subjects enrolled after the introduction of the vaccine; only one

study investigated the microbiota changes in two groups of patients

vaccinated with two different vaccines (58). During hospitalization,

both antibiotics and/or antiretroviral treatments and probiotics

were administered in several studies; however, these data were

not critically investigated in most published studies.
2.2 Microbiota analysis

After assessing the possible confounding factors, we compared

the gut microbiota features according to two ecological measures,

a-diversity and b-diversity, in association with relative

abundance results.

In humans, a-diversity measures the level of diversity within

individual samples; it includes several indexes gathered in two

groups: richness indexes (Faith index, Observed and Chao-1

index) and evenness indexes (Shannon index, Peliou’s evenness,

Simpson, and inverse Simpson indexes) (63, 64).

In parallel to other disease models, a-diversity at the gut level,

more frequently described with richness indexes (like Chao-1),

resulted in a global reduction in all COVID-19 patients compared

to controls (see details in Table 1A). An interesting study observed

this reduction already in the acute phase of the disease (48). On the

contrary, Yeoh et al. (43) did not report alterations in a-diversity
indexes, even though they enrolled most COVID-19 patients with a

mild or moderate severity index (90% of patients).

In a Korean longitudinal analysis performed on patients who

were asymptomatic or affected by the mild disease, an increase in a-
Frontiers in Immunology 14218
diversity (Peliou’s evenness) was observed in the recovered

subgroups compared to infected patients (51). Interestingly, Xu

et al. (46) observed a trend toward increased bacterial diversity from

the early to late stages of COVID-19 in a 35-day longitudinal

analysis of inpatients with mild disease. Furthermore, the same

study described an interesting synchronous restoration of

microbiota in both gut and upper airways, suggesting a possible

role of the gut-lung axis.

Moreira-Rosario et al. (53) described a reduced a-diversity
gradient trend (Shannon index) from mild to severe COVID-19

patients, and Chen et al. (48) showed how richness was not restored

to a normal level even after 6 months in 30 COVID-19 patients

(one-third with severe disease), although a trend toward healthy

controls was noticed.

b-Diversity measures the level of diversity (or dissimilarity)

between samples, mostly by using a Permanova analysis (65, 66). All

the studies showed a difference between COVID-19 patients and

controls, in general, and according to different severity

index categories.

Mazzarelli et al. (44) have shown a difference in b-diversity
among patients hospitalized in regular wards compared to ICU

patients and hospitalized no-COVID-19 controls, although no data

on prior antibiotic intake was gathered. Regarding this aspect, two

studies (9, 43) compared microbiota composition in COVID-19

patient subgroups (with and without antibiotics) with healthy

controls, confirming a separation among groups, with high

heterogeneity revealed in the antibiotic subgroup.

Regarding relative abundance analysis, several studies described

a significant reduction in Firmicutes members, especially for BPBs

(both Lachnospiraceae and Ruminococcaeae families, mostly

Faecalibacterium prausnitzii) in COVID-19 patients compared to

no-COVID controls, while discordant data have been reported

about Erysipelotrichaceae and Veillonellaceae taxa.

Conversely, several facultative anaerobic bacteria like members

of the Bacilli class, resulted in increased growth, mostly in the

Enterococcaceae family as well as Streptococcaceae and

Lactobacillaceae (Table 1). Contrasting data have been described

regarding the Bacteroidetes phylum during COVID-19, with some

works reporting an increase in Bacteroidetes phylum with a

consequent reduction of the Firmicutes/Bacteroidetes ratio (53) as

opposed to other studies reporting a reduction in taxa belonging to

this phylum. Other factors, like diet and/or antibiotics, could play a

role in these findings, highlighting the importance of assess for

confounding factors when considering the study results.

Reduction in the Actinobacteria phylum, including the

Bifidobacterium genus and Collinsella genus (recently associated

with SARS-CoV-2-ACE2 binding inhibition), represents another

significant finding in COVID-19 studies (67). The Bifidobacterium

genus was found to be increased only in three studies (notably, in

one study, a probiotic including this taxon was administered (56)),

while the Collinsella genus resulted was increased in a few other

studies (40, 45, 49); the reason for this last difference is not clear.

Proteobacteria resulted increased in almost all studies performed on

COVID-19 patients, although some authors have described an

increase in Enterococcaceae/Enterobacteriaceae ratio (39),

probably linked to the use of antibiotics. Finally, the Akkermansia
frontiersin.org
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genus (Verrucomicrobia), a propionate-producing bacterium genus

with anti-inflammatory features, resulted in reduced COVID-19

(but not in all studies). To note, the severity of COVID-19 disease

seems to emphasize differences in the relative abundance of gut

microbiota, although most studies included asymptomatic/mild/

moderate categories.
3 Airway microbiota dysbiosis in acute
COVID-19

We analyzed 13 studies on airway microbiota changes during

SARS-CoV-2 infection, mostly comparing COVID-19 patients with

healthy subjects and/or patients with different respiratory

diseases (Table 1B).

Nasopharyngeal swabs were the most studied material, with the

exception of three studies analyzing samples from the lower

respiratory tract, such as bronchoalveolar lavage fluid and

endotracheal aspirate. Bacterial communities were prevalently

mapped by amplification of 16S gene hypervariable regions, with

only a few studies employing genome sequencing. Eighty percent of

the studies were set in China or Europe (five studies each). No data on

possible confounding factors such as diet, BMI, relevant comorbidity,

and antibiotic/antiviral consumption were investigated.

Overall, patients with SARS-CoV-2 infection showed

diminished diversity in airway microbiota composition, by means

of Shannon, Simpson, and Chao-1 indexes, when compared to both

healthy subjects (46, 69, 70, 75, 77–79) and patients with

community-acquired pneumonia (70).

A similar reduction in diversity measures is reported in

critically ill COVID-19 patients, as opposed to subject with

milder symptoms, other coronavirus infections, and healthy

subjects (69). Interestingly, a reduction in diversity and greater

difference at principal coordinate analysis (PCoA) is observed in

patients needing mechanical ventilation compared to non-

intubated patients regardless of SARS-CoV-2 infection (75). Such

data suggest that COVID-19 impacts airway microbiota diversity

mostly in severe infections, and this imbalance is strongly biased by

other confounding factors such as intubation.

Of note, a number of the report showed no significant

differences between COVID-19 patients and the control group in

both bacterial richness and diversity/evenness indexes (observed

species, Shannon index, and inverse Simpson index) (68, 71, 76).

These findings can be partially explained by the heterogeneous

population included in the studies and by the different methods

used to sequence bacterial communities and assess diversity.

Curiously, Rosas-Salazar et al. (74) observed higher overall a-
diversity in SARS-CoV-2-infected subjects compared to healthy

controls, with no significant differences in any of the measured

b-diversity.
COVID-19 severity correlates to a-diversity in oropharyngeal

samples at the first time point, with lower diversity associated with

higher disease severity (79). However, no significant association

between high versus low SARS-CoV-2 viral load and any of the a-
diversity or b-diversity metrics was observed (74).
Frontiers in Immunology 15219
In the studies analyzed, the airway microbiota of healthy

individuals is characterized by the predominance of Bacteroidetes

and Comamonadaceae taxa (46, 68), and no specific microbiota

pattern has been found in COVID-19 patients. However, some

peculiar alterations in relative composition have been observed.

Reduced abundance in Proteobacteria and Fusobacteria phyla is

reported in subjects with SARS-CoV-2 infection as compared to

controls, and decreased oropharyngeal Proteobacteria and

Actinobacteria phyla correlate with greater disease severity (71,

79). At the genus level, patients with more severe diseases have

significantly lower relative abundances of Haemophilus,

Actinomyces, and Neisseria, all of which are abundant in the

normal oropharyngeal microbiome (74, 79). Interestingly,

Fusobacterium periodonticum is less represented in COVID-19

patients, negatively correlating with the severity of symptoms

(71). A possible explanation is that these bacteria could modulate

sialic acid metabolism and regulate ACE expression, impacting

SARS-CoV-2 binding to the epithelium of the respiratory tract, as

shown for other intestinal microorganisms (71, 80).

Conversely, COVID-19 patients show a high abundance of

Saccharibacteria (formerly known as TM7), Streptococcus mitis

group, Streptococcus bovis group, and Rothia mucilaginosa taxa

(46, 72, 73), the latter often associated with cancer and

bacteremia (81).

Significant changes among operational taxonomic unit (OTU)

abundances are also reported, with decreased complexity of

coabundance networks in severe COVID-19. OTUs associated

with higher disease severity are members of the genus Prevotella

and Veillonella. Particularly, it has been postulated that Prevotella

spp. can worsen disease progression by activating immune signaling

pathways that modulate inflammation (73).

Critically ill COVID-19 patients display a complete depletion of

Bifidobacterium and Clostridium genera, with the presence of

Salmonella, Scardovia, Serratia, and Pectobacteriaceae taxa. In

these subjects, there is also a relative abundance of the

Pseudomonaceae family, known to be associated with pathogenic

conditions such as severe acute respiratory syndromes (69).

Another characteristic of the airway microbiota in severe

COVID-19 patients is low diversity and more richness in non-

fermenting bacteria like Acinetobacter, Pelomonas, Ralstonia, and

Sphingomonas genera. As mentioned before, these changes might be

attributed to intubation and mechanical ventilation rather than

COVID-19 pneumonia per se (75).

Interestingly, similar characteristics of an imbalanced

microbiota wi th an enr ichment of pro inflammatory

Enterobacteriaceae are found in patients with other respiratory

diseases (46).

To date, there is scarce data coming from longitudinal studies

on airway microbiota in SARS-CoV-2 infection. Analyzing throat

swabs from 64 patients, 35 of which with confirmed infection, Xu

et al. (46) postulated that a peculiar microbial community might

represent the progressive imbalance of the respiratory microbiota.

Interestingly, even though over half COVID-19 patients analyzed

maintained relatively stable microbiome community types, 70% of

the subjects experienced a gradual decrease of microbial diversity,
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TABLE 1B Selected studies on airway microbiota and COVID-19.

ID Country Study
characteristics

Population
characteristics

a/b-diversity Microbiome modifications:
relative abundance analyses

Correlations and
other findings

De Maio
et al. (69)

Italy Cross-sectional study
Nasopharyngeal swab
Amplification V1–
V2–V3 regions of the
bacterial 16S rRNA

40 patients; 18
with confirmed
SARS-CoV-2
infection, 22 HCs

No difference
(observed species,
Shannon index,
and inverse
Simpson)

Most sequences in all samples (98% in
both SARS-CoV-2 and HCs) belonged to
5 phyla: Firmicutes (42% and 51%,
respectively), Bacteroidetes (25% and
20%, respectively), Proteobacteria (18%
and 16%, respectively), Actinobacteria
(8% and 6%, respectively), and
Fusobacteria (5% and 5%, respectively)

Rueca et al.
(70)

Italy Cross-sectional study
Nasal and
oropharyngeal swabs
Amplification V1–
V2–V3 regions of the
bacterial 16S rRNA

39 patients, 21
with confirmed
SARS-CoV-2
infection; 8
affected by a
different human
coronavirus
(HKU, NL63, and
OC43); 10 HCs
Disease severity:
critically ill (ICU)
vs.
paucisymptomatic
(Pauci)

Chao-1 decreased
SARS-CoV-2 ICU
as compared to
SARS-CoV-2
Pauci patients,
other HCoVs and
HCs
Shannon index
decreased in
SARS-CoV-2 ICU
patients compared
to HCs and SARS-
CoV-2 Pauci
patients

At the phylum level:
-Deinococcus Thermus was present only
in controls as compared to SARS-CoV-2
ICU patients, SARS-CoV-2 Pauci, or
other HCoV patients
- Candidatus Saccharibacteria (TM7) was
strongly increased in negative controls
and SARS-CoV-2 Pauci patients as
compared to SARS-CoV-2 ICU patients
and Other HCoV patients
At the family level:
- Alicyclobacillaceae, Chromobacteriaceae,
Deinococcacaee, Hydrogenophilaceae,
Thermoanaerobacteraceae,
Sporomusaceae, and
Thermoanaerobacterales family III.
Incertae Sedis were exclusive
microorganisms detected in neg control
patients
-Pectobacteriaceae were exclusive to
SARS-CoV-2 ICU patients
At the lower taxonomic level:
-Johnsonella, Tepidiphilus,
Thermoanaerobacter,
Thermoanaerobacterium, Thermosinus,
and Variovorax were exclusive to neg
control patients
-Salmonella, Scardovia, Serratia, and
unk_Pseudomonadaceae were included
exclusively in SARS-CoV-2 ICU patients

SARS-CoV-2 ICU
patients displayed a
complete depletion of
Bifidobacterium and
Clostridium
The presence of
Moraxellacaea spp.
was observed
exclusively in SARS-
CoV-2 Pauci patients
The presence of
Pseudomonaceae was
found exclusively in
SARS-CoV-2 ICU

Shen et al.
(71)

China Cross-sectional study
BALF
RNA extraction,
reverse-transcripted,
amplified

53 patients, 8 with
confirmed SARS-
CoV-2 infection;
25 with CAP, and
20 healthy
controls

Significative lower
in patients with
pneumonia (both
COVID-19 and
CAP)

3 types of microbiotas:
-Type I dominated by the possible
pathogens
-Type II were mostly environmental
organisms (contamination)
-Type III mainly commensal species

Nardelli
et al. (72)

Italy Cross-sectional study
Nasopharyngeal swab
Amplification V1–
V2–V3 regions of the
bacterial 16S rRNA

38 patients, 18
with confirmed
SARS-CoV-2
infection; 20 HCs

No difference
(Chao-1: p = 0.28,
Shannon: p =
0.27, and
Simpson: p =
0.32)

5 phyla prevalent in both HCs and
COVID-19:
- Firmicutes, Bacteroidetes, Actinobacteria,
Proteobacteria, and Fusobacteria
In COVID-19:
-Significant lower abundance of
Proteobacteria and Fusobacteria
-At the genus level, reduced Leptotrichia,
Fusobacterium, and Haemophilus

Negative correlation
between the relative
abundance of
Fusobacterium
periodonticum and the
severity of the
patient’s symptoms

Budding
et al. (73)

The
Netherlands

Cross-sectional study
Throat swab
Differentiation of
species by length
polymorphisms of
the 16S-23S rDNA
region combined
with phylum-specific
sequence

135 patients, 46
with confirmed
SARS-CoV-2
infection, 89 HCs

No data A cluster of 77 samples with a similar
microbiota composition (both HCs and
COVID-19) with a high abundance of
Haemophilus parainfluenzae, Neisseria
cinerea, Streptococcus mitis group,
Streptococcus bovis group, Leptotrichia
buccalis, and Rothia mucilaginosa

(Continued)
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TABLE 1B Continued

ID Country Study
characteristics

Population
characteristics

a/b-diversity Microbiome modifications:
relative abundance analyses

Correlations and
other findings

polymorphisms of
the 16S rDNA

Ventero
et al. (74)

Spain Cross-sectional study
Nasopharyngeal swab
Amplification V1–
V2–V3 regions of the
bacterial 16S rRNA

74 patients, 56
with confirmed
SARS-CoV-2
infection; 18 HCs

No data Most abundant phylum:
-Firmicutes (52.9% ± 4.0%)
-Bacteroidota (22.1% ± 6.1%)
-Proteobacteria (12.7% ± 7.3%)
-Actinobacteria (5.4% ± 0.6%)
At the genus level:
-Streptococcus (25.2% ± 2.0%)
-Prevotella (16.2% ± 5.7%)
-Veillonella (14.4% ± 2.2%)
-Haemophilus (5.23% ± 4.78%)
-Moraxella (3.2% ± 3.6%)
OTUs:
-Bacteroidota (18)
-Firmicutes (25)

The most common
genera among the
OTUs found
exclusively on
COVID-19-positive
patients were
Prevotella (13),
followed by
Leptotrichia (4) and
Streptococcus
Among the OTUs
positively associated
with COVID-19
severity, 3 were
classified as members
of the genus
Prevotella, and 1 to a
closely related genus,
Alloprevotella

Rosas-
Salazar
et al. (75)

USA Cross-sectional study
Nasal swab
Amplification V1–
V2–V3 regions of the
bacterial 16S rRNA

59 patients, 38
with confirmed
SARS-CoV-2
infection; 21 HCs

Higher a-diversity
in SARS-CoV-2
No differences in
any of the
measured b-
diversity metrics
between groups

HCs:
-Staphylococcus (41.56%),
Corynebacterium_1 (28.09%), Moraxella
(8.48%), Dolosigranulum (3.56%), and
Neisseria unclassified (1.98%)
COVID-19:
-Corynebacterium_1 (33.66%),
Staphylococcus (29.34%), Dolosigranulum
(5.29%), Peptoniphilus (3.91%), and
Lawsonella (3.22%)
COVID-19 with high viral load:
-Corynebacterium_1 (35.69%),
Staphylococcus (28.83%), Peptoniphilus
(6.67%%), Anaerococcus (4.79%%), and
Bacteroides (3.83%)
COVID-19 with low viral load
-Corynebacterium_1 (41.44%),
Staphylococcus (20.75%), Dolosigranulum
(12.30%), Lawsonella (4.50%), and
Peptoniphilus (2.76%).

No correlation
between SARS-CoV-2
viral load and
diversity measures

Miao et al.
(76)

China Cross-sectional study
BALF, ETA
RNA and DNA
extraction, reverse
transcription, and
use of DNA libraries

50 airway samples
from 323 patients
with confirmed
SARS-CoV-2
infection

a-Diversity of
critically severe
COVID-19
patients is lower
than non-
intubated patients
but similar to
intubated non-
COVID-19 group
PCoA analysis: the
greatest difference
between non-
intubated patients
versus the other 2
groups with
intubation

Higher relative abundance in COVID-19:
-Acinetobacter, Klebsiella, Pelomonas,
Ralstonia, and Sphingomonas
Lower relative abundance in COVID-19:
-Actinomyces, Haemophilus, Neisseria,
Prevotella, Streptococcus, and Veillonella

Braun et al.
(77)

Israel Cross-sectional study
Nasopharyngeal swab
Amplification V1–
V2–V3 regions of the
bacterial 16S rRNA

33 patients with
confirmed or
suspected SARS-
CoV-2 infection

No difference in
a-diversity (faith’s
phylogenetic
diversity,
Shannon) and
evenness

No cluster identified

(Continued)
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TABLE 1B Continued

ID Country Study
characteristics

Population
characteristics

a/b-diversity Microbiome modifications:
relative abundance analyses

Correlations and
other findings

(Wilcoxon rank
sum test)
Unweighted
Unifrac-based
PCoA: no
clustering by
COVID-19 test
results

Zhang et al.
(78)

China Cross-sectional study
Nasopharyngeal swab
and sputum
RNA isolation,
reverse transcription
with N6 random
primers after adaptor
ligation with T4
ligase and library
amplification,
sequencing

187 patients, 62
with confirmed
SARS-CoV-2
infection; 125 HCs

Shannon diversity
index in sputum
samples is
significantly lower
in COVID-19
cases

31 species in nasopharyngeal samples and
178 species in sputum samples with
different abundance between COVID-19
and non-COVID-19 cases
Most species less abundant in COVID-19
cases

Mostafa
et al. (79)

China Cross-sectional study
Nasopharyngeal swab
cDNA sequencing
for sequencing poly
(A) RNA full-length
transcripts

50 patients; 40
with confirmed
SARS-CoV-2
infection; 10 with
suspected SARS-
CoV-2 infection
Each patient was
assigned a 4-point
severity index
according to the
clinical
presentation

Lower diversity in
COVID-19
(Shannon
diversity index,
Chao-1 richness
estimate, Simpson
diversity)

Propionibacteriaceae are proportionately
more abundant in COVID-19
Corynebacterium accolens decreased in
COVID-19

Merenstein
et al. (80)

USA Longitudinal study
Oropharyngeal,
nasopharyngeal,
ETA, BALF
Amplification V1–
V2–V3 regions of the
bacterial 16S rRNA

83 patients with
confirmed SARS-
CoV-2 infection;
42 HCs

Lower diversity in
COVID-19

Upper airway microbiota comparison
between COVID and HCs:
-COVID-19 patients lower abundance of
Proteobacteria, a greater abundance of
Bacteroidetes
Association with disease severity:
-Different microbiota between COVID-19
patients with moderate/severe (WHO 4–
6) and critical/fatal outcomes (WHO 7–
10)
-Decreased oropharyngeal Proteobacteria
and Actinobacteria correlated with greater
WHO score over the course of
hospitalization
-At the genus level, patients with more
severe disease had significantly lower
relative abundances of Hemophilus,
Actinomyces, and Neisseria, all of which
are abundant in the normal
oropharyngeal microbiome

a-Diversity in
oropharyngeal samples
at the first time point
correlated with
COVID-19 severity,
with lower diversity
associated with higher
severity
The rate of change in
oropharyngeal
bacterial community
structure was
significantly greater in
COVID-19 than in
non-COVID subjects

Xu et al.
(46)

China Longitudinal study
Throat swab
Amplification V1–
V2–V3 regions of the
bacterial 16S rRNA

64 patients, 35
with confirmed
SARS-CoV-2
infection, 10 with
other diseases

Decrease in a-
diversity,
significantly lower
richness and
evenness in
COVID-19

HCs:
-Prevalence of genus Bacteroides and
unclassified Comamonadaceae
COVID-19, 4 community types, with a
progressive imbalance of microbiota:
-Type 1: Alloprevotella
-Type 2: Porphyromonas, Neisseria,
Fusobacterium, and unclassified
Bacteroidales
-Type 3: Pseudomonas
-Type 4: Saccharibacteria incertae sedis,
Rothia, and unclassified Actinomycetales

Among 22 COVID-19
adults who had
specimens at 2 or
more timepoints, over
half (12, 54.5%)
maintained a relatively
stable microbiome
community types
F
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ICU, Intensive Care Unit; HCs, healthy controls; BALF, bronchoalveolar lavage fluid; CAP, community acquired pneumonia; OTU, operational taxonomic unit; ETA, endotracheal aspirate.
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with the enrichment of opportunistic pathogenic bacteria such as

Saccharibacteria and Rothia and a reduction of Alloprevotella. This

shift toward dysbiosis shows how impaired homeostasis of

inflammation pathways, a hallmark of the advanced stage of

SARS-CoV-2 infection, affects microbial communities and can

represent a biomarker of disease progression.
4 Microbiota dysbiosis in long-COVID

4.1 Microbiota changes in long-COVID

Few studies tried to investigate a-diversity alterations during

long-COVID: in this setting, Zhuo et al. (52) reported a reduced

Shannon index in a 15-patient cohort, followed up for 3 months

with at least one persistent COVID-19 symptom. Coherently with

these findings, in a 6-month follow-up, Liu et al. (57) have

confirmed in long-COVID patients both a persistently reduced a-
diversity (Shannon and Chao-1 indexes) and different gut

microbiota clusters compared to controls. Notably, the subgroup

who had COVID-19 at baseline without developing long-COVID

did not show the same dysbiosis pattern. Reduced BPBs were

reported in both COVID-19 subgroups compared to controls, but

only in the long-COVID subgroup the microbial composition was

different compared to controls at 6-month follow-up (Table 1A).

Interestingly, the authors found no correlation between viral load in

the gut and respiratory levels and long-COVID development at 6

months, nor did they find any effect of previous antibiotic intake.

On the contrary, in the long-COVID subgroup, increased fecal

relative abundance of opportunistic pathogens was positively

associated with fatigue, respiratory and neuropsychiatric

symptoms, while decreased other anti-inflammatory/BPB taxa

was negatively correlated with long-COVID at 6 months.

Coherently, Zhuo et al. (52) described both a negative correlation

between some taxa (Faecalibacterium prausnitzii, Intestinimonas

butyriproducens) and chronic respiratory symptoms as well as a

positive correlation between Proteobacteria members and long-

COVID symptoms.
4.2 Microbiota role in neurological and
pulmonary symptoms

Persistent dysbiosis in long-COVID and its pathogenic role still

need to be studied in humans, while rodent and non-human

primate animal models of COVID-19 already showed long-term

changes in both lung and gut microbiome (82, 83). The influence of

gut microbiota on neurological symptoms, via the gut-brain axis,

has been investigated in the animal model since the early decades of

the new millennium. In murine models, Bercik at al. suggested that

gut microbiota could influence the behavior of mice (84). Recently,

Carloni et al. identified a closing in the choroid plexus vascular

barrier during gut inflammation, suggesting a link between

intestinal inflammation and neurologic/psychiatric symptoms, like

a deficit in short-term memory and anxiety-like behavior (85).
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Moreover, a recent review summarized three different arms of

inflammation for the gut-brain axis in a non-COVID-19 setting,

where the systemic humoral pathway, cellular immune pathway,

and neuronal pathway are involved (86). By translating these

inflammatory patterns to the long-COVID setting, where gut

dysbiosis persists at least after 6 months of follow-up, we can

conclude that this microbial imbalance plays a role in

maintaining both a chronic inflammatory status at the gut level

and favoring the development of neurological/neuropsychiatric

symptoms, as seen in the animal models mentioned above.

However, it is not clear which immunologic pathway is dominant

during long-COVID. It is plausible that several factors could coexist

in the same disease model: (a) reduction in BPBs leading the

butyrate loss linked to neuropsychiatric disorders (87); (b)

development of the cytokine release syndrome during COVID-19,

in particular with increased kynurenine:tryptophan ratio, already

linked to depression syndrome (88); and (c) changes in L-DOPA

production, regulated by ACE2 activation at the gut level (89).

There is still a lack of evidence on the role of microbiota

dysbiosis in respiratory symptoms during long-COVID. Shortness

of breath, frequently experienced by subjects after recovery from

primary SARS-CoV-2 infection, could represent a clinical

manifestation of the fibrosis secondary to chronic inflammation

of lung parenchyma, leading to reduced total lung capacity. Such a

condition is already linked to gut dysbiosis in non-COVID patients,

as described in a recent review (90).
5 Relationship between gut dysbiosis,
fecal SARS-CoV-2 replication, and
immune-inflammation in COVID-19

It is well known that some microbial species can modulate

ACE2 receptor expression and/or prevent SARS-CoV-2-ACE2

binding (67). Moreover, some studies found that the gut

microbiota composition of COVID-19 patients, especially during

hospitalization, is correlated with plasma concentrations of several

cytokines, chemokines, and inflammation markers, suggesting that

the gut microbiota could play a role in modulating host immune

response and potentially influence disease severity and

outcomes (43).

Interestingly, Zhuo et al. (50) studied a-diversity in a COVID-

19 cohort stratified according to the presence of fever, discovering

that COVID-19 patients with fever have shown a trend in reduced

Chao-1 index compared to patients without fever, and similarly a b-
diversity separation measured with Bray–Curtis. A negative

correlation between PBPs and both inflammatory markers (9, 39,

43) and viral gut SARS-CoV-2 replication (40) was reported, despite

the presence of GI disease and/or virological clearance.

Interestingly, Zuo et al. (9) have discovered a negative correlation

between Bacteroides taxa and fecal SARS-CoV-2 load and a positive

correlation between Erysipelotrichaceae taxa and fecal SARS-CoV-2

replication. In contrast, Moreira-Rosario et al. (53) failed to see an

association between fecal RNA viral replication and COVID-

19 severity.
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Wu et al. (46) reported a positive correlation between fecal

SARS-CoV-2 replication and P. copri, E. dolichum taxa and a

negative correlation between SARS-CoV-2 replication and other

taxa like Streptococcus, Dialister, Alistipes, Ruminococcus,

Clostridium, Bifidobacterium, and Haemophylus genera.

Finally, a longitudinal interventional study implementing fecal

microbiota transplantation (FMT) in COVID-19 (45) described

modulation of both gut microbiota core and peripheral lymphocyte

subsets, with an increase in healthy taxa associated with a reduction

in peripheral naïve B cells and an increase in memory B cells.

Data coming from clinical trials enrolling COVID-19 patients

analyzing other possible drugs modulating gut microbiota, such as

probiotics, are still scarce and not conclusive (91).
6 Conclusion

Microbiota homeostasis plays a role in human health and

disease, and that applies to SARS-CoV-2 infection as well. During

the last 2 years, several studies reported dysbiosis in COVID-19

patients for both gut and lung microbial composition. The main

microbiota alterations that have been observed during COVID-19

were (a) significant reduction in a-diversity, already during the

early phase of the disease and especially at the gut level, with a

gradient from mild to severe clinical categories; (b) different b-
diversity composition of microbiota core, characterized by a profile

with higher facultative anaerobic bacteria and lower obligate

anaerobic bacteria; and (c) possible connections between gut

dysbiosis and peripheral inflammation markers, such as cytokines.

Data from longitudinal analyses currently available do not

clearly show whether gut dysbiosis in COVID-19 ends with a

complete functional restoration or if it does persist, posing the

physiopathological premises for long-COVID. Indeed, a prolonged

alteration of gut microbiota following the primary infection could

contribute to causing some of the neurological and respiratory

symptoms reported via the gut-brain and gut-lung axis. Further

longitudinal studies are needed to characterize these conditions and

assess the impact of prior comorbidity on the natural history of

dysbiosis in SARS-CoV-2 infection.

Moreover, a knowledge gap regarding the role of FMT and other

therapeutic approaches emerged, reinforcing the necessity for new

evidence on the interaction of microbiota with host immunity. Such

information is paramount to developing microbiota interventions

aimed at improving COVID-19 and long-COVID outcomes.
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