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Supervised Autonomy for Exploration
and Mobile Manipulation in Rough
Terrain with a Centaur-Like Robot
Max Schwarz*, Marius Beul, David Droeschel, Sebastian Schüller,
Arul Selvam Periyasamy, Christian Lenz, Michael Schreiber and Sven Behnke

Autonomous Intelligent Systems, Institute for Computer Science VI, University of Bonn, Bonn, Germany

Planetary exploration scenarios illustrate the need for autonomous robots that are capable
to operate in unknown environments without direct human interaction. At the DARPA
Robotics Challenge, we demonstrated that our Centaur-like mobile manipulation robot
Momaro can solve complex tasks when teleoperated. Motivated by the DLR SpaceBot
Cup 2015, where robots should explore a Mars-like environment, find and transport
objects, take a soil sample, and perform assembly tasks, we developed autonomous
capabilities for Momaro. Our robot perceives and maps previously unknown, uneven
terrain using a 3D laser scanner. Based on the generated height map, we assess
drivability, plan navigation paths, and execute them using the omnidirectional drive. Using
its four legs, the robot adapts to the slope of the terrain. Momaro perceives objects with
cameras, estimates their pose, and manipulates them with its two arms autonomously.
For specifying missions, monitoring mission progress, on-the-fly reconfiguration, and
teleoperation, we developed a ground station with suitable operator interfaces. To handle
network communication interruptions and latencies between robot and ground station,
we implemented a robust network layer for the ROS middleware. With the developed
system, our team NimbRo Explorer solved all tasks of the DLR SpaceBot Camp 2015.
We also discuss the lessons learned from this demonstration.

Keywords: mapping, mobile manipulation, navigation, perception for grasping and manipulation, space robotics
and automation

1. INTRODUCTION

In planetary exploration scenarios, robots are needed that are capable to autonomously operate
in unknown environments and highly unstructured and unpredictable situations. Since human
workers cannot be deployed due to economic or safety constraints, autonomous robots have to
robustly solve complex tasks without human intervention. To address this need, the German
Aerospace Center (DLR) held the DLR SpaceBot Camp 2015.1 Ten German research groups were
supported to foster the development of robots, capable of autonomously solving complex tasks that
are required in a typical planetary exploration scenario. During the SpaceBot Camp, the robots need
to tackle these tasks:
• Find and identify three previously known objects in a planetary-like environment (cup, battery,

and base station).

1http://www.dlr.de/rd/desktopdefault.aspx/tabid-8101/
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• Take a soil sample of a previously known spot (optional).
• Pick up and deliver the cup and the battery to the base station.
• Assemble all objects.

All tasks had to be completed as autonomously as possible,
including perception, manipulation, and navigation, in difficult
terrain with slopes up to 15° that need to be traversed and larger
untraversable slopes. The overall weight of the deployed robotic
system was limited to 100 kg, and the total time for solving all
tasks was 60min. A rough heightmapwith 50 cm resolution of the
environment was known prior to the run. The use of any global
navigation satellite system (GNSS) was prohibited. No line-of-
sight between the robot and the crew was allowed, and communi-
cation between the robot and the operators was severely restricted.
Data transmission was bidirectionally delayed by 2 s, resulting in
a round trip time of 4 s – too large for direct remote control.
Furthermore, the uplink connection was blocked entirely after
20min and 40min for 4min each. More details on the SpaceBot
Camp itself and our performance are provided in Section 11.

To address the tasks, we used the mobile manipulation robot
Momaro (see Figure 1), which is configured and monitored from
a ground station. Momaro is equipped with four articulated com-
pliant legs that end in pairs of directly driven, steerable wheels.
To perform a wide range of manipulation tasks, Momaro has
an anthropomorphic upper body with two 7 degrees of freedom
(DOF) manipulators that end in dexterous grippers. This allows
for the single-handed manipulation of smaller objects, as well as
for two-armed manipulation of larger objects and the use of tools.
Through adjustable base height and attitude and a yaw joint in
the spine, Momaro has a work space equal to the one of an adult
person.

The SpaceBot Camp constitutes a challenge for autonomous
robots. Since the complex navigation and manipulation tasks
require good situational awareness, Momaro is equipped with a
3D laser scanner, multiple color cameras, and an RGB-D camera.
For real-time perception and planning, Momaro is equipped with
a powerful onboard computer. The robot communicates to a relay
at the landing site via WiFi and is equipped with a rechargeable
LiPo battery (details provided in Section 3).

The developed system was tested at the SpaceBot Camp 2015.
Momaro solved all tasks autonomously in only 20:25 out of

FIGURE 1 | The mobile manipulation robot Momaro taking a soil
sample.

60min including the optional soil sample. No official ranking
was conducted at the SpaceBot Camp, but since we were the
only team solving all these tasks, we were very satisfied with the
performance. We report in detail on how the tasks were solved.
Our developments led to multiple contributions, which are sum-
marized in this article, including the robust perception and state
estimation system, navigation andmotion–planningmodules and
autonomous manipulation and control methods. We also discuss
lessons learned from the challenging robot operations.

2. RELATED WORK

The need for mobile manipulation has been addressed in the past
with the development of a variety ofmobilemanipulation systems,
consisting of robotic arms installed on mobile bases with the
mobility provided by wheels, tracks, or leg mechanisms. Several
research projects exist that use purely wheeled locomotion for
their robots (Mehling et al., 2007; Borst et al., 2009). In the previ-
ous work, we developed NimbRo Explorer (Stückler et al., 2015),
a six-wheeled robot equipped with a 7 DOF arm designed for
mobile manipulation in rough terrain, encountered in planetary
exploration scenarios.

Wheeled rovers provide optimal solutions for well structured
and relatively flat environments; however, outside of these types
of terrains, their mobility quickly reaches its limits. Often they
can only overcome obstacles smaller than the size of their wheels.
Compared to wheeled robots, legged robots are more complex to
design, build, and control (Raibert et al., 2008; Roennau et al.,
2010; Semini et al., 2011; Johnson et al., 2015), but they have
obvious mobility advantages when operating in unstructured
terrains and environments. Some research groups have started
investigating mobile robot designs that combine the advantages
of both legged and wheeled locomotion, using different coupling
mechanisms between the wheels and legs (Adachi et al., 1999;
Endo and Hirose, 2000; Halme et al., 2003). In the context of the
DARPA Robotics Challenge, multiple teams (beside ours) used
hybrid locomotion designs (Hebert et al., 2015; Stentz et al., 2015).
In particular, the winning team KAIST (Kim and Oh, 2010; Cho
et al., 2011) used wheels on the knees of their humanoid robot to
move quickly and safely between different tasks on flat terrain.

In 2013, DLR held a very similar SpaceBot competition which
encouraged several robotic developments (Kaupisch et al., 2015).
Heppner et al. (2015) describe one of the participating systems,
such as the six-legged walking robot LAURON V. LAURON is
able to overcome challenging terrain, although its six legs limit the
locomotion speed in comparison to wheeled robots. As with our
system, the software architecture is based on the Robot Operating
System [ROS (Quigley et al., 2009)].

Sünderhauf et al. (2014) developed a cooperative team of two-
wheeled robots, named Phobos andDeimos. The straightforward,
rugged design with skid steering performed well, compared to
more complicated locomotion approaches. We made the same
observation in our participation at the SpaceBot Competition
2013 and opted to include wheels (opposed to a purely legged
concept) in the Momaro robot. In the 2013 competition, Phobos
and Deimos mainly had communication issues such that the
ground station crew could neither stop Phobos from colliding
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with the environment nor start Deimos to resume the mission.
These problems highlight why we spent considerable effort on
our communication subsystem (see Section 9) to ensure that the
operator crew has proper situational awareness and is able to
continuously supervise the robotic operation.

Schwendner et al. (2014) and Joyeux et al. (2014) discuss the six-
wheeled Artemis rover. Artemis is able to cope with considerable
terrain slopes (up to 45°) through careful mechanical design.
In contrast, Momaro has to employ active balancing strategies
(see Section 6) to prevent tipping over due to its high center of
mass. The authors emphasize the model-driven design of both
hardware and software. The latter is partly ROS based but also
has modules based on the Rock framework. Artemis demon-
strated its navigation capabilities in the 2013 competition, but
eventually its navigation planners became stuck in front of a
trench, again highlighting the need to design systems with enough
remote access, so that problems can be diagnosed and fixed
remotely.

A few articles on the SpaceBot Camp 2015 are already avail-
able. Kaupisch and Fleischmann (2015) describe the event and
report briefly on the performances of all teams. Wedler et al.
(2015) present the general design of their Lightweight Rover Unit
(LRU), which competed in the SpaceBot Camp 2015, successfully
solving all tasks except the optional soil sample task. The LRU is
a four-wheeled rover with steerable wheels, similar to Momaro’s
drive. Comparable to our flexible legs, the suspension uses both
active and passive mechanisms. However, the LRU wheels are
rigidly coupled with pairs, and the base height cannot be adapted.
Overall, the LRU seems geared toward building a robust and
hardened rover for real missions, while Momaro’s components are
not suitable for space. On the other hand, Momaro can solve tasks
requiring stepping motions and is capable of dexterous bimanual
manipulation.

In our previous work, we describe the Explorer system used in
the 2013 competition (Stückler et al., 2015) and its local naviga-
tion system (Schwarz and Behnke, 2014). Compared to the 2013
system, we improve on the

• capabilities of themechanical design (e.g., execution of stepping
motions or bimanual manipulation),

• grade of autonomy (execution of full missions, including
assembly tasks at the base station),

• situational awareness of the operator crew, and
• robustness of network communication.

The local navigation approach has moved from a hybrid laser
scanner and RGB-D system on three levels to a laser scanner-only
systemon two levels – allowing operation in regionswhere current
RGB-D sensors fail to measure distance (e.g., in direct sunlight).

In contrast to many other systems, Momaro is capable of driv-
ing omnidirectionally, which simplifies navigation in restricted
spaces and allows us to make small lateral positional corrections
faster. Furthermore, our robot is equipped with six limbs, two of
which are exclusively used for manipulation. The use of four legs
for locomotion provides a large and flexible support polygonwhen
the robot is performing mobile manipulation tasks. The Momaro
system demonstrated multiple complex tasks under teleoperation
in the DARPA Robotics Challenge (Schwarz et al., 2016).

Supervised autonomy has been proposed as a develop-
ment paradigm by Cheng and Zelinsky (2001), who shift
basic autonomous functions like collision avoidance from the
supervisor back to the robot, while offering high-level interfaces
to configure the functions remotely. In contrast to human-in-
the-loop control, supervised autonomy is more suited toward the
large latencies involved in space communications. Gillett et al.
(2001) use supervised autonomy in the context of an unmanned
satellite servicing system that must perform satellite capture
autonomously. The survey conducted by Pedersen et al. (2003)
not only highlights the (slow) trend in space robotics towardmore
autonomous functions but also points out that space exploration
will always have a human component, if only as consumers of the
data produced by the robotic system. In this manner, supervised
autonomy is also the limit case of sensible autonomy in space
exploration.

3. MOBILE MANIPULATION ROBOT
MOMARO

3.1. Mechanical Design
Our mobile manipulation robot Momaro (see Figure 1) was
constructed with several design goals in mind:

• universality,
• modularity,
• simplicity, and
• low weight.

In the following, we detail how we address these goals.

3.1.1. Universality
Momaro features a unique locomotion design with four legs end-
ing in steerable wheels. This design allows to drive omnidirection-
ally and to step over obstacles or even climb. Since it is possible
to adjust the total length of the legs, Momaro can manipulate
obstacles on the ground, as well as reach to heights of up to 2m.
Momaro can adapt to the slope of the terrain through leg length
changes.

On its base, Momaro has an anthropomorphic upper body
with two adult-sized 7 DOF arms, enabling it to solve complex
manipulation tasks. Attached to the arms are two 8-DOF dexter-
ous hands consisting of four fingers with two segments each. The
distal segments are 3D printed and can be changed without tools
for easy adaption to a specific task. For the SpaceBot Camp, we
designed distal finger segments that maximize the contact surface
to the SpaceBot objects: the finger tips are shaped to clamp around
the circumference of the cylindrical cup object (see Figure 3).
The box-shaped battery object is first grasped using the proximal
finger segments, and then locked in-place with the distal finger
segments as soon as it is lifted from the ground.

The upper body can be rotated around the spine with an addi-
tional joint, thus increasing the workspace. Equipped with these
various DOF, Momaro can solve most diverse tasks. If necessary,
Momaro is even able to use tools. We showed this ability by
taking a soil sample with a scoop at the SpaceBot Camp (see
Figure 2).
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A

B

FIGURE 2 | Manipulation capabilities. (A) Momaro is using a scoop to take a soil sample. (B) After filling the blue cup with previously scooped soil, Momaro
discards the scoop and grasps the cup to deliver it to a base station.

3.1.2. Modularity
All joints of Momaro are driven by Robotis Dynamixel actuators,
which offer a good torque-to-weight ratio. While the finger actua-
tors and the rotating laser scanner actuator are of the MX variant,
all others are Dynamixel Pro actuators. Figure 3 gives an overview
of the DOF of Momaro. For detailed information on Momaro’s
actuators, we refer to Schwarz et al. (2016).

Using similar actuators for every DOF simplifies maintenance
and repairs. For example, at the SpaceBot Camp, one of the
shoulder actuators failed shortly before our run. A possibility
could have been to repair the vital shoulder using a knee
actuator, since the knees were hardly used in this demonstration.
Fortunately, we acquired a spare actuator in time. Details can be
found in Section 11.

3.1.3. Simplicity
For Momaro, we chose a four-legged locomotion design over
bipedal approaches. The motivation for this choice was mainly
the reduction in overall complexity, since balance control and fall
recovery are not needed. Each leg has three degrees of freedom
in hip, knee, and ankle. To reach adequate locomotion speeds
on flat terrain, where steps are not needed, the legs are equipped
with steerable wheel pairs. For omnidirectional driving, the wheel
pairs can be rotated around the yaw axis, and each wheel can be
driven independently. The legs also provide passive adaption to
the terrain, as the leg segments aremade from flexible carbon fiber
and act as springs. The front legs have a vertical extension range of
40 cm. For climbing inclines, the hind legs can be extended 15 cm
further. Using these features, obstacles lower than approximately
5 cm can be ignored.

3.1.4. Low Weight
Momaro is relatively lightweight (58 kg) and compact (base foot-
print 80 cm× 70 cm). During development and deployment, this
is a strong advantage over heavier robots, which require large
crews and special equipment to transport and operate. In contrast,
Momaro can be carried by two people. In addition, it can be
transported in standard suitecases by detaching the legs and torso.

3.2. Sensing
Momaro carries a custom-built 3D rotating laser scanner (see
Figure 3) for simultaneous mapping and localization (see
Section 5). As with previous robots (Stückler et al., 2015), a
Hokuyo UTM-30LX-EW laser scanner is mounted on a slip ring
actuated by a Robotis Dynamixel MX-64 servo, which rotates it
around the vertical axis. For state estimation andmotion compen-
sation during a 3D scan, a PIXHAWKIMU ismounted close to the
laser scanner.

For object detection, Momaro features an ASUS Xtion Pro
Live RGB-D camera. Since Momaro’s origins are in teleoperated
scenarios (Schwarz et al., 2016), it also carries seven color cam-
eras – three panoramic cameras and one downward-facing wide-
angle camera mounted on the head, one camera mounted in each
hand, and one wide-angle camera below the base. In a supervised
autonomy scenario, these cameras are mainly used formonitoring
the autonomous operation.

3.3. Electronics
Figure 3 gives an overview of the electrical components of
Momaro. For onboard computation, an off-the-shelf main-
board with a fast CPU (Intel Core i7-4790K @4–4.4GHz) and
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A

B C D

E

FIGURE 3 | Hardware components. (A) Sensor head carrying 3D laser scanner, IMU, four cameras, and an RGB-D camera. (B) The 8-DOF hand has specialized
fingers for grasping the objects. (C) Kinematic tree of one half of Momaro. The hand is excluded for clarity. Proportions are not to scale. (D) The front left leg. The red
lines show the axes of the six joints. (E) Simplified overview of the electrical components of Momaro. Sensors are colored green, actuators blue, and other
components red. We show USB 2.0 data connections (red), LAN connections (dotted, blue), and the low-level servo bus system (dashed, green).

32GB RAM is installed in the base. Communication with up
to 1300Mbit/s to the ground station is achieved through a
NETGEAR Nighthawk AC1900 WiFi router. The hot-swappable
six-cell 355Wh LiPo battery yields around 1.5–2 h run time.
Momaro can also run from a power supply for more comfortable
development.

For more details on Momaro’s hardware design, we refer to
Schwarz et al. (2016).

4. SOFTWARE ARCHITECTURE

Both the Momaro robot and the scenarios we are interested will
require highly sophisticated software. To retain modularity and

maintainability and encourage code re-use, we built our software
on top of the popular ROS [Robot Operating System (Quigley
et al., 2009)]middleware. ROS provides isolation of software com-
ponents into separate nodes (processes) and inter- and intrapro-
cess communication via a publisher/subscriber scheme. ROS has
seen widespread adoption in the robotics community and has a
large collection of freely available open-source packages.

To support the multitude of robots and applications in our
group,2 we have a set of common modules, implemented as Git
repositories. These modules (blue and green in Figure 4) are
used across projects as needed. On top of the shared modules, we

2http://ais.uni-bonn.de/research.html
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catch ros dynalib laser mapping momaro actuators

config server fsm kf server network vis

rosmon rviz oculus xtion grabber

spacebot

ROS Indigo Igloo

Package Description

fsm Finite state machine library
kf server Keyframe editing and interpolation, see Section 8
laser mapping Laser scanner SLAM using Multi-resolution Surfel Maps, see Section 5
momaro Hardware support for the Momaro robot
network Robust network transport for ROS, see Section 9
robotcontrol Plugin-based real-time robot control node
rosmon ROS process monitoring
rviz oculus Oculus Rift integration for RViz

FIGURE 4 | Organization of software modules. At the base, the ROS middleware is used. The blue colored boxes correspond to software modules, shared
across robots, projects, and competitions. Finally, the spacebot module contains software, specific to the SpaceBot Camp. Modules colored in green have been
released as open source, see https://github.com/AIS-Bonn.

have a repository for the specific application (e.g., DLR SpaceBot
Camp 2015, yellow in Figure 4), containing all configuration, and
code required exclusively by this application. The collection of
repositories is managed by the wstool ROS utility.

Protection against unintended regressions during the develop-
ment process is best gained through unit tests. The project-specific
code is hard to test, though, since it is very volatile, on the one
hand, and testing would often require full-scale integration tests
using a simulator, on the other hand. This kind of integration tests
have not been developed yet. In contrast, the core modules are
very stable and can be augmented easily with unit tests. Unit tests
in all repositories are executed nightly on a Jenkins server, which
builds the entire workspace from scratch, gathers any compilation
errors and warnings, and reports test results.

5. MAPPING AND LOCALIZATION

For autonomous navigation during a mission, our system contin-
uously builds a map of the environment and localizes within this
map. To this end, 3D scans of the environment are aggregated in a
robot-centric local multiresolution map. The 6D sensor motion is
estimated by registering the 3D scan to themap using our efficient
surfel-based registration method (Droeschel et al., 2014a). In
order to obtain an allocentric map of the environment – and to
localize in it – individual local maps are aligned to each other
using the same surfel-based registration method. A pose graph
that connects the maps of neighboring key poses is optimized
globally. Figure 5 outlines our mapping system.

5.1. Preprocessing and 3D Scan Assembly
Before assembling 3D point clouds from measurements of the
2D laser scanner, we filter out the so-called jump edges. Jump
edges arise at transitions between two objects and result in spu-
rious measurements. These measurements can be detected by
comparing the angle between neighboring measurements and
are removed from the raw measurements of the laser scanner.
The remaining measurements are then assembled to a 3D point
cloud after a full rotation of the scanner. During assembly, raw
measurements are undistorted to account formotion of the sensor
during rotation.

We estimate the motion of the robot during a full rotation of
the sensor from wheel odometry and measurements from the
PIXHAWK IMU mounted in the sensor head. Rotational motions
are estimated from gyroscopes and accelerometers, whereas linear
motions are estimated by filtering wheel odometry with linear
acceleration from the IMU. The resulting motion estimate is
applied to the remaining measurements by means of spherical
linear interpolation.

5.2. Local Mapping
The filtered and undistorted 3D point clouds are aggregated in a
robot-centric multiresolution grid map as shown in Figure 5. The
size of the grid cell increases with the distance from the robot,
resulting in a fine resolution in the direct workspace of the robot
and a coarser resolution farther away. The robot-centric property
of the map is maintained by shifting grid cells according to the
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FIGURE 5 | SLAM and navigation architecture. (A) Overview of our mapping, localization, and navigation system. After filtering spurious measurements and
assembling 3D point clouds (Section 5.1), measurements are aggregated in a robot-centric multiresolution map (Section 5.2) using surfel-based registration.
Keyframe views of local maps are registered against each other in a SLAM graph (Section 5.3). A 2.5D height map is used to assess drivability. A standard 2D
grid-based approach is used for planning (Section 6). (B) 3D points stored in the map on the robot. Color encodes height from ground. (C) The robot-centric
multiresolution map with increasing cell size from the robot center. Color indicates the cell length from 0.25m on the finest resolution to 2m on the coarsest resolution.

robot motion – efficiently implemented by using circular buffers.
Using robot-centric multiresolution facilitates efficiency in terms
of memory consumption and computation time.

Besides 3D measurements from the laser scanner, each grid
cell stores an occupancy probability – allowing to distinguish
between occupied, free, and unknown areas. Similar to Hornung
et al. (2013), we use a beam-based inverse sensor model and
raycasting to update the occupancy probability of a cell. For
every measurement in the 3D scan, we update the occupancy
information of cells on the ray between the sensor origin and the
endpoint.

After a full rotation of the laser, the newly acquired 3D scan is
registered to the so far accumulatedmap to compensate for drift of
the estimated motion. For aligning a 3D scan to the map, we use
our surfel-based registration method (Droeschel et al., 2014a) –
designed for this data structure, it leverages the multiresolution
property of the map and gains efficiency by summarizing 3D

points to surfels that are used for registration.Measurements from
the aligned 3D scan replace older measurements in the map and
are used to update the occupancy information.

5.3. Allocentric Mapping
We incorporate measurements from the wheel odometry, IMU,
and local registration results to track the pose of the robot over a
short period of time. To overcome drift and to localize the robot
with respect to a fixed frame, we build an allocentric map from
the robot-centric multiresolution maps acquired at different view
poses (Droeschel et al., 2014b).

We construct a pose graph consisting of nodes, which are
connected by edges. Each node corresponds to a view pose and
its local multiresolution map. Nearby nodes are connected by
edges, modeling spatial constraints between two nodes. Each
spatial constraint is a normally distributed estimate with mean
and covariance. An edge describes the relative position between
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two nodes, arising from aligning two local multiresolution maps
with each other. Similar to the alignment of a newly acquired 3D
scan, two local multiresolution maps are aligned by surfel-based
registration. Each edge models the uncertainty of the relative
position by its information matrix, which is established by the
covariance from registration. A new node is generated for the
current view pose, if the robot moved sufficiently far.

In addition to edges between the previous node and the current
node, we add spatial constraints between close-by nodes in the
graph that are not in temporal sequence. By adding edges between
close-by nodes in the graph, we detect loop closures. Loop closure
allows us to minimize drift from accumulated registration errors,
for example, if the robot traverses unknown terrain and reenters
a known part of the environment.

From the graph of spatial constraints, we infer the probability
of the trajectory estimate given all relative pose observations using
the g2o framework (Kuemmerle et al., 2011). Optimization is
performed when a loop closure has been detected, allowing for
online operation.

5.4. Localization
While traversing the environment, the pose graph is extended and
optimized whenever the robot explores previously unseen terrain.
We localize toward this pose graph during mission to estimate
the pose of the robot in an allocentric frame. When executing a
mission, e.g., during the SpaceBot Camp, the robot traverses goal
poses w.r.t. this allocentric frame.

To localize the robot within the allocentric pose graph, the
local multiresolution map is registered toward the closest node in
the graph. By aligning the dense local map to the pose graph –
instead of the relative sparse 3D scan – we gain robustness, since
information fromprevious 3D scans is incorporated. The resulting
registration transform updates the allocentric robot pose. To gain
allocentric localization poses during acquisition of the scan, the
6D motion estimate from wheel odometry, and IMU is used to
extrapolate the last allocentric pose.

During the SpaceBot Camp, we assumed that the initial pose
of the robot was known, either by starting from a predefined
pose or by means of manually aligning our allocentric coordinate
frame with a coarse height map of the environment. Thus, we

could navigate to goal poses in the coarse height map by localizing
toward our pose graph.

5.5. Height Mapping
As a basis for assessing drivability, the 3D map is projected into
a 2.5D height map, shown in Figure 6. In case multiple measure-
ments are projected into the same cell, we use the measurement
with median height. Gaps in the height map (cells without mea-
surements) are filled with are local weighted mean if the cell has
at least two neighbors within a distance threshold (20 cm in our
experiments). This provides a good approximation of occluded
terrain until the robot is close enough to actually observe it. After
filling gaps in the height map, the height values are spatially
filtered using the fast median filter approximation using local
histograms (Huang et al., 1979). The resulting height map is
suitable for navigation planning (see Section 6).

6. NAVIGATION

Our autonomous navigation solution consists of two layers: the
global path planning layer and the local trajectory planning layer.
Both planners are fed with cost maps calculated from the aggre-
gated laser measurements.

6.1. Local Height Difference Maps
Since caves and other overhanging structures are the exception
on most planetary surfaces, the 2.5D height map generated in
Section 5.5 suffices for autonomous navigation planning.

The 2.5D heightmapH is transformed into amulti-scale height
difference map. For each cell (x, y) in the horizontal plane, we cal-
culate local height differences Dl at multiple scales l. We compute
Dl (x, y) as the maximum difference to the center cell (x, y) in a
local l-window:

Dl(x, y) := max
|u−x|<l;u̸=x
|v−y|<l;v̸=y

|H(x, y) − H(u, v)| . (1)

H(u, v) values of NaN are ignored. In the cases where the center
cell H (x, y) itself is not defined, or there are no other defined l-
neighbors, we assign Dl (x, y):=NaN. Small, but sharp obstacles

A B C

FIGURE 6 | Navigation planning. (A) 2.5D height map generated by projecting the 3D map. (B) Calculated traversability costs for each cell. (C) Inflated costs used
for A* path planning. The orange dot represents the current robot position, the blue square represent the target position. Yellow regions represent absolute obstacles,
red regions indicate missing measurements.
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show up on theDl maps with lower l scales. Larger inclines, which
might be better to avoid, can be seen on the maps with a higher l
value.

6.2. Path Planning
During the SpaceBot Camp, we used the standard ROS navfn3

planner. Afterward, we replaced it with a custom A* planner
to consider gradual costs fully, which the ROS planner was not
designed to do.We transform the height differencemap into a cost
map that can be used for path planning.

A combined difference map, D̃ is generated by linear combina-
tion of different Dl maps to comprise information about smaller
obstacles and larger inclines. The summands from the D3 and D6
maps are constrained to a response of 1/2 to prevent the creation of
absolute obstacles from a single scale alone. The smallest scale D1
is allowed to create absolute obstacles, since sharp obstacles pose
great danger to the robot:

D̃(x, y) :=
∑

l∈{1,3,6}

{
λlDl if l = 1
min

{
0.5; λlDl

}
otherwise.

(2)

Theλ1,λ3, andλ6 parameter values for drivability computation
were empirically determined as 2.2, 3.6, and 2.5, respectively.

6.2.1. Global Path Planning
For global path planning, we implemented an A* graph search
on the 2D grid map. The Euclidean distance (multiplied with the
minimum cost in the grid map) is used as the heuristic function
for A*. This planning does not account for the robot foot print
and considers the robot as just a point in the 2D grid. To ensure
the generation of a safe path, we inflate obstacles in the costmap to
account for the risk closer to obstacles. The inflation is done in two
steps. The cells within the distance of robot radius from absolute
obstacles are elevated to absolute obstacle cost, yielding cost map
D̄. Then for all other cells, we calculate local averages to produce
costs DD that increase gradually close to obstacles:

P(x, y) := {(u, v) : (x − u)2 + (y − v)2 < r2}, (3)

DD(x, y) :=

1 if D̄(x, y) = 1∑
(u,v)∈P(x,y)

D̄(x,y)
|P(x,y)| otherwise. (4)

Figure 6 shows a planned path on the height map acquired
during our mission at the SpaceBot Camp.

6.2.2. Local Trajectory Rollout
The found global path needs to be executed on a local scale.
To this end, we use the standard ROS dwa_local_planner4

package, which is based on the Dynamic Window Approach (Fox
et al., 1997). Thedwa_local_planner accounts for the robot foot
print, so cost inflation is not needed.

In order to prevent oscillations due to imperfect execution
of the planned trajectories, we made some modifications to the
planner. The dwa_local_planner plans trajectories to reach the

3http://wiki.ros.org/navfn
4http://wiki.ros.org/dwa_local_planner

given goal pose (x, y, θ) first in 2D (x, y) and then rotates in-place
to reach θ (this is called “latching” behavior). Separate cartesian
and angular tolerances determine when the planner starts turning
and when it reports navigation success. We modified the planner
to keep the current “latching” state even when a new global plan
is received (every 4 s), as long as the goal pose does not change
significantly. We also wrote a simple custom recovery behavior
that first warns the operator crew that the robot is stuck and then
executes a fixed driving primitive after a timeout.

6.3. Omnidirectional Driving
The wheel positions r(i) relative to the trunk determine not only
the footprint of the robot but also the orientation and height of the
robot trunk. During autonomous operation, the wheel positions
are kept in a configuration with a base height.

Either autonomous navigation or manual operator input gen-
erates a velocity command w= (vx, vy, ω) with horizontal linear
velocity v and rotational velocity ω around the vertical axis. The
velocity command is first transformed into the local velocity at
each wheel i:v(i)x

v(i)y

v(i)z

 =

vx
vy
0

 +

0
0
ω

 × r(i) + ṙ(i), (5)

where r(i) is the current position of wheel i relative to the
base. The kinematic velocity component ṙ(i) allows simultaneous
leg movement while driving. The wheels rotates to yaw angle
α(i) = atan2(v(i)y , v(i)x ) first and then moves with the velocity
||(v(i)y , v(i)x )

T
||. While driving, the robot continuously adjusts the

orientation of the ankle, using IMU information to keep the axis
vertical and thus retains omnidirectional driving capability.

6.4. Base Orientation Control
To prevent the robot from pitching over on the high-incline areas
in the arena, we implemented a pitch control mechanism. The
pitch angle of the robot is continuously measured using the IMU.
We then use a simple proportional controller to compensate for
the disturbance. With the commanded angle w, disturbance z,
controller gain Kp, plant gain Ks, and plant disturbance gain
Ksz, the steady-state error eb of the linearized proportional plant
evolves with

eb =
1

1 + Ks · Kp
· w − Ksz

1 + Ks · Kp
· z. (6)

Since the incline is directly measured, Ks = 1 and Ksz = 1. We
found Kp = 0.8 to sufficiently stabilize for inclines present at the
SpaceBot Camp. When driving up the ramp with z≈ 15°, and
setpoint w= 0° the resulting error (robot pitch) is eb ≈ 8.3°.

We found that this compensation enables Momaro to even
overcome inclines greater than 20° without pitching over. Due to
the lack of integral control, the robot is even (eb= 0°) only on a
completely flat surface. Since this poses no balance problem, there
is no need for integral control.
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7. OBJECT PERCEPTION

For approaching objects and adapting motion primitives to
detected objects, RGB images, and RGB-D point clouds from
the wide-angle camera and ASUS Xtion camera, mounted on the
sensor head are used. We differentiate between object detection
(i.e., determining an approximate object position) and object
registration (i.e., determining the object pose accurately).

The objects provided by DLR are color coded. We classify
each pixel by using a precomputed lookup table in YUV space.
The lookup table is generated from a collection of ellipses for
each color class in UV space (see Figure 7), and lower/upper
limits in brightness (Y). Thus, we assume that the object color
measurements are governed by a Gaussian mixture model in the
UV plane. In practice, a single ellipse sufficed for each of the
SpaceBot Camp objects.

When approaching an object, object detection is initially
performed with the downward-facing wide-angle camera
mounted on the sensor head (see Figure 7). Using the connected
component algorithm, we obtain object candidate clusters of
same-colored pixels. An approximate pinhole camera model
calculates the view ray for each cluster. Finally, the object position

is approximated by the intersection of the view ray with the local
ground plane. The calculated object position is precise enough
to allow approaching the object until it is in the range of other
sensors.

As soon as the object is in range of the head-mounted ASUS
Xtion camera, the connected component algorithm can also take
Cartesian distance into account. We use the PCL implementa-
tion of the connected component algorithm for organized point
clouds. Since the depth measurements allow us to directly com-
pute the cluster centroid position, and the camera is easier to
calibrate, we can approach objects much more precisely using the
RGB-D camera.

When the object is close enough, we use registration of a CAD
model to obtain a precise object pose (see Figure 7). Since color
segmentation often misses important points of the objects, we
perform a depth-based plane segmentation using RANSAC and
Euclidean clustering as detailed by Holz et al. (2011) to obtain
object clusters. The clusters are then registered using Generalized
ICP (Segal et al., 2009).

ICP approaches often have problems with partially observed
box shapes. For example, only the front and the top face of a box
may be visible if the box is partially outside of the camera view

A B C

D E

FIGURE 7 | Object perception. (A) Classification ellipses in UV space. (B) RGB input image (first row: Xtion camera, second row: RGB wide-angle camera).
(C) Pixel classes (white= unknown). (D) RGB-D point cloud showing the cup and battery objects on SpaceBot Camp terrain. The registered models are shown in
green. (E) Registration of the base station. Although neither the left nor the right face is visible, the pose ambiguity is resolved correctly.

Frontiers in Robotics and AI | www.frontiersin.org October 2016 | Volume 3 | Article 5713

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

frustum. To resolve the resulting ambiguity, we initialize the ICP
pose using PCA under the assumption that the visible border of
the object which is close to the image border is not an actual object
border but is caused by the camera view frustum. In practice, this
problem particularly occurs with the large base station object (see
Figure 7).

The ICP pose is then normalized respecting the symmetry
axes/planes of the individual object class. For example, the cup is
symmetrical around the Z axis, so the X axis is rotated such that it
points in the robot’s forward direction (see Figure 7).

8. MANIPULATION

Since Momaro is a unique prototype, the time used for devel-
opment and testing had to be balanced between individual sub-
modules. To reduce the need for access to the real robot, we
made extensive use of simulation tools. For manipulation tasks,
we developed a Motion Keyframe Editor GUI to design motion
primitives offline. Finished motions are then tested and finalized
on the real robot with the original objects to bemanipulated in the
field.We show theMotion Keyframe Editor GUI in Figure 8.With
its help, we designed dedicated motions for all specific tasks in the

SpaceBot Camp. We give an overview of our custom motions and
their purpose in Figure 8.

8.1. Kinematic Control
We use straightforward kinematic control for Momaro (see
Figure 9). Both arms and the torso yaw joints are considered
independently.

A goal configuration is specified by telemanipulation (see
Section 10) or predefined keyframe sequences either in Carte-
sian or in joint space. To interpolate between current and goal
configuration, the Reflexxes Motion Library (Kröger, 2011) is
used. Goals for different limbs can be defined concurrently; the
interpolation is configured in a way that goals for all limbs are
reached simultaneously. Cartesian poses are converted to joint-
space configurations, using inverse kinematics after interpolation.
We use the selectively damped least squares approach (SDLS)
described by Buss and Kim (2005) to calculate the inverse kine-
matics of the arms. Before the configurations are sent to the hard-
ware controllers for execution, they are checked for self-collisions
using theMoveIt! Library.5 Detecting a collision will abort motion

5http://moveit.ros.org

A B C

D

FIGURE 8 | Keyframe editor GUI. (A) Motions are designed step by step and can be absolute or relative to perceived objects. (B) The user can select which joint
groups are included in the currently edited keyframe and if interpolation between keyframes is Cartesian or joint space. (C) The real position of the robot is indicated
in black. The currently edited keyframe target is shown in yellow. Interactive markers can be used to modify the keyframe pose in 6D (here only for the right hand). A
model of the cup (blue, circled red) is placed in front of the robot to assist designing relative motions. (D) Overview of the custom motions designed for the SpaceBot
Camp 2015.
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A

B

FIGURE 9 | Object manipulation. (A) Kinematic control architecture for Momaro. Joint configurations can be generated using magnetic trackers or the keyframe
player. Cartesian poses in keyframes can be adapted to a measured pose p. The interpolated configurations Tperceived are checked for collisions before they are sent
to the hardware. (B) Grasping objects dynamically using motion adaption. Left: the blue reference object is grasped as the primitive was designed in the Keyframe
editor. Right: the primitive is automatically adapted to the perceived pose of the yellow object.

execution. For safety reasons, different methods of manipula-
tion control (i.e., telemanipulation and the keyframe player) will
preempt each other.

8.2. Motion Adaption
Since it is often impossible or too slow to precisely approach an
object in all 6 dimensions, we relax the assumption of absolute
positioning. Motions can be designed around a reference object
Trefernce. When the motion is executed, the predefined endeffector
poseTendeffector is transformed in selected keyframes i tomatch the
perceived object Tperceived:

Trelative = T(i)
perceived(Treference)

−1T(i)
endeffector (7)

Figure 9 shows how a motion, designed relative to a refer-
ence object, is adapted to a perceived object pose to account for
imprecise approach of the object.

As described in Section 7, the perceived objects are represented
in a canonical form, removing all ambiguities resulting from
symmetries in the original objects. For example, the rotation-
symmetric cup is always grasped using the same yaw angle. After
adaption, the Cartesian keyframes are interpolated as discussed
earlier.

9. COMMUNICATION

Communication between the ground station and a planetary rover
is typically very limited – in particular, it has high latency due to
the speed of light and the large distances involved. The SpaceBot
Camp addressed this limitation by imposing several constraints
on the network link:

• Packets were delayed by 2 s in each direction, as expected to
occur on a lunar mission,

• the uplink from the ground station to the robot could only be
opened for 5min at a time, and

• the 60-min schedule included two 4-min windows where
uplink communication was not possible (e.g., due to planetary
occlusions).

Furthermore, our system uses a wireless data link inside the
arena, which introduces packet loss.

The main idea of our communication system is to minimize
latency by exploiting the different characteristics of the local
wireless link inside the arena and the simulated inter-planetary
network.

9.1. Communication Architecture
Our communication architecture is shown inFigure 10. TheDLR-
provided network emulator is the central element limiting all
communication between robot and operator crew. To be able to
exploit the different link characteristics, we place an additional
field computer between the network emulator and the robot.
Thus, it is connected to the network emulator via a reliable Eth-
ernet connection and communicates directly with the robot over
WiFi. As the WiFi link is unreliable, but has low latency, while
the network emulator link is reliable, but has high latency, this
places the field computer in an ideal position to exploit both link
characteristics.

As the network emulator allows communication only through a
single port per direction, we use the Linux tun interface to create
a network tunnel over two ports. For UDP tunneling, we adapted
code from the quicktun project.6 The tunnel wraps all pack-
ets in UDP packets, transmitted over the two designated ports.

6http://wiki.ucis.nl/QuickTun
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FIGURE 10 | Communication architecture. Components in the vicinity of the operators are shown in yellow, DLR-provided components in blue, and components
in the “arena”-network in red. Solid black lines represent physical network connections. Thick lines show the different channels, which stream data over the network
(dotted: UDP, solid: TCP). The ROS logo ( ) indicates a ROS master. UDP tunnel endpoints are designated by triangles. Streaming links (Section 9.1.2) are colored
red, message links (Section 9.1.3) are shown in blue.

This allows us to use multiple communication channels without
interference.

Separate ROSmasters run on the robot, the field computer, and
the ground station.Multiple operator computers can be connected
to the ROS master running on the ground station to provide
additional views and means for intervention.

9.1.1. Communication Software Module
Since our participation in the DLR SpaceBot Cup 2013 (Stück-
ler et al., 2015), our group develops a robust software module
(nimbro_network) for communication between multiple ROS
masters over unreliable and high-latency networks. We used it
with very good results in the DLR SpaceBot Cup 2013 and in
the DARPA Robotics Challenge (Schwarz et al., 2016). Since the
DRC, the module is now freely available7 under BSD-3 license.
In contrast to custom-engineered network stacks for a particu-
lar purpose, it allows the generic transport of ROS topics and
services. The module is ideally suited for situations where the
connection drops and recovers unexpectedly, since it avoids any
configuration/discovery handshake.

Several specific transports and compression methods exist,
such as a ROS log transport, tf snapshotting, or H264 video
stream compression.

For large messages, a transparent BZip2 compression can be
enabled. Automatic rate limiting with configurable upper and
lower bounds ensures that bandwidth limits are met.

nimbro_network also allows forward error correction (FEC),
i.e., augmenting the sent packets with additional packets allowing
content recovery from arbitrary subsets of sufficient size of trans-
mitted packets. Depending on the message size, a Reed–Solomon
codec (Lacan et al., 2009) or a LDPC-Staircase codec (Roca et al.,
2008) is chosen.

Note that in principle ROS offers built-in network trans-
parency. Since this functionality heavily relies on the TCPprotocol
for topic discovery and subscription, even when the “UDPROS”
transport is chosen, this is unsuitable for unreliable and high-
latency networks.

7http://github.com/AIS-Bonn/nimbro_network

9.1.2. Streaming Data
Most high-bandwidth data from the robot are of streaming type.
The key feature here is that lost messages do not lead to system
failures, since new data will be immediately available, replacing
the lost messages. In this particular application, it even would not
make sense to repeat lost messages because of the high latencies
involved. This includes

• video streams from the onboard cameras,
• transform information (TF),
• servo diagnostic information (e.g., temperatures),
• object detections, and
• other visualizations.

In the uplink direction, i.e., commands from the operator crew
to the robot, this includes, e.g., direct joystick commands.

Consequently, we use the nimbro_network UDP transport
for streaming data (red in Figure 10). The transport link
between robot and field computer uses the FEC capability of
nimbro_network with 25% additional recovery packets to com-
pensate WiFi packet loss without introducing new latency.

9.1.3. Message Data
Other data are of the message type, including

• Laser pointclouds,
• SLAM maps,
• SLAM transforms,
• ROS action status messages, and
• ROS service calls.

Here, a message loss might be costly (e.g., SLAM maps are
only generated on every scanner rotation) or might even lead
to system failure (e.g., loss of a ROS action state transition).
Therefore, the TCP transport is used for this kind of messages
over the WiFi link to eliminate the possibility of packet loss. The
link over the network emulator is still implemented with the UDP
protocol, since there is no packet loss here and the high latencies
prohibit TCP handshakes. The message links are colored blue in
Figure 10.
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10. MISSION CONTROL INTERFACES

For the operator crew, situational awareness is most important.
Our system shows camera images, 3D visualization, and diagnosis
information on a central ground station with four monitors (see
Figure 11).

In order to cope with the degraded communication link, the
system needs to be as autonomous as possible, while retaining the
ability to interrupt, reconfigure, or replace autonomous behavior

by manual intervention. To this end, our system provides three
levels of control to the operator crew. On the highest level, entire
missions can be specified and executed. The intermediate level
allows configuration and triggering of individual autonomous
behaviors, such as grasping an object. On the lowest level, the
operators can directly control the base velocity using a joystick or
move individual DOF of the robot.

The last aspect of our control paradigm is remote debugging.
Operators need to be able to directly introspect, debug, and

A

B C D E

F G H

FIGURE 11 | Operator interfaces. (A) Overview of the GUI shown on the three lower screens of the main ground station. The left, center, and right screens are
dedicated to system monitoring and diagnosis, mission planning, and camera images, respectively. (B) Mission plan on rough height map provided by DLR.
(C) Mission plan on detailed height map generated from the SLAM map. (D) List representation of the first 8 poses. The “Nav” column can be used to disable
navigation (e.g., start grasping an object immediately). (E) Pose editing using interactive marker controls. The position can be modified by dragging the rectangle. The
pose is rotated by dragging on the blue circle. Teleoperation interfaces: operator uses (F), oculus rift DK2 HMD, and (G) Razer Hydra 6 DOF controllers for immersive
teleoperation. (H) 3rd person view of the scene rendered in the Oculus HMD during debris cleaning (see Figure 13).
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manipulate the software on the robot in order to prevent relatively
simple problems from escalating to mission failures.

We describe the developed operator interfaces in the following.

10.1. Mission Planning and Execution
Ourmission control layer is able to execute all required tasks in the
SpaceBot Camp specification. The mission can be specified fully
in advance on a rough height map and can later be interactively
refined as the mission progresses, and a more detailed map of the
environment is created.

A specified mission consists of a list of 2D poses in the height
map frame. Attached to each pose is an optional action, which
is executed when the robot reaches the pose. Poses without an
associated action are just used as navigation targets. Supported
actions include:

• Taking a soil sample using the scoop in one hand,
• approaching and grasping the battery,
• approaching the cup, filling it with the soil sample and grasping

it, and
• approaching the base station and performing all stationmanip-

ulation tasks.

The mission can be configured and monitored using our Mis-
sion GUI (see Figure 11). During the mission, execution can be
stopped at any time, mission updates can be performed, and the
execution resumed. Missions can also be spliced in the sense that
the currently performed action is carried out and then execution
switches to a new mission.

In the case of a failure of the mission control level, or if the
operator judges that the system will not be able to carry out
the mission autonomously, the execution can be interrupted and
the task in question can be carried out using the lower control
levels. Afterward, the mission can be resumed starting after the
completed task.

10.2. Semiautonomous Control
The semiautonomous control level gives direct access to all indi-
vidual, less autonomous behaviors. This includes

• approaching an object,
• grasping an object,
• performing single manipulation tasks, and
• navigating to a goal pose.

10.3. Low-Level Control
If all autonomous behaviors fail, the operators can also directly
teleoperate the robot. For manipulation, our operators can choose
between on-screen teleoperation using 6D interactive markers in
either Cartesian or joint space or immersive 3D telemanipulation
(see Figure 11) using an Oculus Rift HMD and 6D magnetic
trackers [see Rodehutskors et al. (2015) for details].

For navigation, the operator can use a joystick to directly con-
trol the base velocity. Teleoperation speed is of course limited by
the high feedback latency, so that this method is only used if the
navigation planners get stuck. Finally, several macros can be used
to influence the robot posture or recover from servo failures such
as overheating.

10.4. Remote Introspection and Debugging
To be able to react to software problems or mechanical failures,
operators first need to be aware of the problem. Our system
addresses this concern by

• providing direct access to the remote ROS log,
• showing the state of all ROS processes, and
• transmitting and displaying 3D visualization data from the

autonomous behaviors.

Once aware of the problem, the operators can interact with
the system through ROS service calls over our nimbro_network
solution, parameter changes, or ROS node restarts through
rosmon. In extreme cases, it is even possible to push small Git
code patches over the network and trigger re-compilation on the
robot. If everything else fails, the operators can access a remote
command shell on the robot using the mosh shell (Winstein and
Balakrishnan, 2012), which is specifically optimized for high-
latency, low-bandwidth situations. The shell gives full access to the
underlying Linux operating system.

11. EVALUATION

Momaro has been evaluated in several simulations and lab exper-
iments as well as in the DARPA Robotics Challenge (DRC) Finals
in June 2015, during the DLR SpaceBot Cup Qualification in
September 2015, and the DLR SpaceBot Camp in November 2015
(Kaupisch et al., 2015). For details on our performance at the DRC
Finals, we refer to Schwarz et al. (2016). Here, we will focus on our
performance at the SpaceBot Qualification and Camp.

In preparation for the DLR SpaceBot finals, the SpaceBot Cup
Qualification tested basic capabilities of the robotic system. To
qualify, participants had to solve three tasks which involved explo-
ration and mapping of an arena and manipulation of the cup
and the battery, but no assembly. In contrast to the finals, the
communication uplink time was unlimited, which lowered the
required autonomy level. Using our intuitive telemanipulation
approaches, our team was the only team to successfully qualify
in the first attempt. Further information about our performance
is available on our website.8 Since only two other teams managed
to qualify using their second attempt, the planned SpaceBot Cup
competition was changed to an open demonstration, called the
SpaceBot Camp.

The SpaceBot Camp required participants to solve mapping,
locomotion, and manipulation tasks in rough terrain. As detailed
in Section 1, the battery and cup (with soil sample) had to be found
and transported to the base station object, where an assembly
task was to be performed. The participants were provided with a
coarsemap of the environment that had to be refined by the robot’s
mapping system. As detailed in Section 9, the communication link
to the operator crew was severely constrained both in latency (2 s
per direction) and in availability.

11.1. Locomotion
While Momaro was mainly evaluated on asphalt at the DRC
(Schwarz et al., 2016), the SpaceBot Camp arena included various

8http://www.ais.uni-bonn.de/nimbro/Explorer
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A B

FIGURE 12 | Map refinement. (A) Rough map of the SpaceBot Camp 2015 arena. (B) The resulting global map from data acquired during the competition.

types of soil and stones (see Figure 14). We did not experience
any problems on the main traversable area, which was covered
with flattened soil mixed with stones. During our run, we avoided
the gravel and sand areas. We also traversed the soil sample area
(loose granulate), and parts of the slopes covered with gravel, as
long as the inclination permitted. Testing after our run confirmed
that Momaro’s wheels were not suited for the fine sand areas on
the edge of the ramp, causing the robot to get stuck.

While preparing for the SpaceBot Camp, we learned that our
pitch stabilization control method works reliably, even under
extreme conditions. Being able to reliably overcome ramps with
inclines greater than 20°, we were confident that locomotion
would not pose a problem during the competition. Unfortunately,
we only employ stabilization in pitch direction. Turning around
the yaw axis on a pitched slope can result in a dangerous roll angle.
We dealt with this issue during our final run by placing enough
waypoints on the primary slope in the course to ensure proper
orientation (see Figure 11).

11.2. Mapping and Self-Localization
Our mapping system continuously built an allocentric map of the
environment during navigation, guided by waypoints specified on
the coarse height map. The coarse map and the allocentric map,
generated from our mapping system, are shown in Figure 12.
While showing the same structure as the coarse map, the resulting
allocentric map is accurate and precisely models the environment.
During a mission, the map is used for localization and to assess
traversability for navigation. The estimated localization poses are
shown in Figure 14.

Despite the challenging planetary-like environment, causing
slip in odometry and vibrations of robot and sensor, our mapping
system showed very robust and reliable performance. There was
only one situation during the run where the operators had to
intervene: due to traversing the abandoned scoop tool – used to
take the soil sample – the robot was exposed to a fast and large
motion, resulting in a distorted 3D scan. This distorted 3D scan
caused spuriousmeasurements in themap. The operators decided
to clear the SLAM map using a remote service call to prevent
localization failures. The map was rebuilt from this point on and
successfully used for the rest of the mission.

11.3. Object Manipulation
While preparing our run, we found the battery slot in the base
station to have a significant resistance due to a build-in clamping

A B

FIGURE 13 | Details of our run at SpaceBot camp. (A) Due to a failed
finger actuator, Momaro failed to take the soil sample in the first attempt.
(B) After finishing all tasks of the SpaceBot Camp, we showed Momaro’s
universal capabilities by removing debris from the terrain under teleoperation.

mechanism. Due to our flexible motion design workflow, we were
able to alter the motion, so that Momaro would execute small up-
and downward motions while pushing to find the best angle to
overcome the resistance.

The insertion of the battery requires high precision. To account
for inaccuracies in both battery and station pose, we temporarily
place the battery on top of the station. After grasping the battery
again, we can be sure that any offset in height is compensated.

Furthermore, we found it to be error prone to grasp the battery
at the very end, which is necessary to entirely push it inside the
slot. Instead, we push the battery in as far as possible until the hand
touches the base station. After releasing the battery, we position
the closed hand behind it and push it completely inside with part
of the wrist and proximal finger segments.

Overall, our straightforward keyframe adaption approach
proved itself to be very useful. Compared to motion–planning
techniques, it lacks collision avoidance and full trajectory opti-
mization, but it is sufficient for the variety of performed tasks.

11.4. Full System Performance at DLR
SpaceBot Camp 2015
After a restart caused by a failed actuator (described below),
Momaro solved all tasks of the SpaceBot Camp with supervised
autonomy. Our team was the only one to demonstrate all tasks
including the optional soil sample extraction. Figure 14 gives
an overview of the sequence of performed tasks. A video of our
performance can be found online.9 While overall the mission was

9https://youtu.be/q_p5ZO-BKWM
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FIGURE 14 | Overview of the executed mission at SpaceBot Camp. The mission starts by scooping the soil sample, filling it into the cup and grasping the cup,
then locating and grasping the battery pack. After waiting until the end of scheduled communication blackout, the mission is concluded by Base station assembly.
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TABLE 1 | Timings of our run at the DLR SpaceBot Camp 2015.

Task Start time
(mm:ss)

End time
(mm:ss)

Duration
(mm:ss)

Soil sample collection 1:05 1:40 0:35
Fill and grasp cup 2:15 3:05 0:50
Grasp battery 7:00 7:40 0:40
Base station assembly 18:25 20:25 2:00

Total (including locomotion) 0:00 20:25 20:25

successful, we experienced a number of problems which will be
discussed in detail.

In our run, Momaro failed to take the soil sample in the first
attempt. During the vigorous scooping motion, the scoop turned
inside the hand (cf. Figures 2 and 13).We found the problem to be
a malfunctioning finger actuator in the hand holding the scoop.
Since we were confident that Momaro would be able to solve all
tasks even in the remaining 50:20min, we restarted the whole run
after performing a software reset on the affected finger and letting
it cool down.

In the second attempt, scooping succeeded and Momaro was
able to complete all remaining tasks as well. See Figure 14 for
detailed images of the subtasks. Timings of the run are listed in
Table 1.

Although Momaro was able to complete all tasks, this was not
possible fully autonomously. While approaching the battery, a
timeout aborted the process. This built-in safety feature made
operator interaction necessary to resume the approach. Without
intervention, Momaro would have executed the remainder of the
mission without the battery object.

As Momaro reached the main slope of the course, we also
approached the time of the first communication blackout, because
we lost time in the beginning due to the restart. The operator
crew decided to stop Momaro at this point, as we knew that going
up would be risky and intervention would have been impossible
during the blackout. After the blackout, autonomous operation
resumed and Momaro successfully went up the ramp to perform
the assembly tasks at the base station (Figure 14). Although the
operators paused autonomous navigation at one point on the
slope to assess the situation, no intervention was necessary and
navigation resumed immediately.

After finishing the course in 20:25min, we used the remaining
time to show some of Momaro’s advanced manipulation capabil-
ities by removing debris from the terrain with Momaro and our
intuitive teleoperation interface (Figure 13).

12. LESSONS LEARNED

Our successful participation in the SpaceBot Camp was an
extremely valuable experience, identifying strong andweak points
of our system in a competitive benchmark within the German
robotics community. Lessons learned include

• Mechanical Design. While the humanoid torso raised the center
of gravity and thus caused stability concerns on high terrain
inclines, it allowed us to performbimanualmanipulation. Being
able to carry both objects in the hands allowed us to omit

storing the objects in separate holders on the robot, saving
time. Furthermore, our end effector design allowed us to use
a scoop to take the soil sample. The soil extraction task was not
attempted by any other team. In future work, we will further
improve the robot balance control to operate in more difficult
rough terrain. For instance, adaptive roll stabilization could
advance Momaro’s locomotion capabilities.

• Actuator Monitoring. Our system provides extensive diagnostic
actuator feedback such as temperature and current consump-
tion. Still, this was not enough to prevent the failure of the finger
actuator during our run. Actuator monitoring and damage
prevention should have a high priority during development.

• Software Design: Autonomy Follows Teleoperation. Our unique
history of competing previously in the DARPA Robotics Chal-
lenge, a competition heavily focused on intuitive teleoperation,
set us apart from other teams. In particular, resulting from
the DRC competition, we had extensive intuitive teleoperation
abilities before starting work on the higher autonomy required
by the SpaceBot Camp. We suspect that most other teams
followed the opposite approach, augmenting the autonomy later
on with teleoperation facilities, which can be difficult if the sys-
tem was not designed for teleoperation from the start. Treating
the autonomy as an additional layer on a teleoperable system
ensures that the operator crew has full control of the system
at all time. Furthermore, this also accelerates development,
since missing autonomous functionalities can be substituted
by intuitive teleoperation. We demonstrated the ability of our
telemanipulation solution after our run by removing debris and
thus clearing the robot’s path.

• Intelligent Progress Monitoring. Our mission control layer
included some very basic error handling, e.g., fixed timeouts on
certain actions. Unfortunately, one of these timeouts resulted
in an early abort of the battery approach in our run, which
had to be corrected by operator action. A more intelligent
system, tracking the progress of the current task, would have
noticed that the approach was still progressing and would have
continued the approach. In future, we will investigate such
resilient progress monitoring methods in more detail.

13. CONCLUSION

In this article, we presented the mobile manipulation robot
Momaro and its ground station. We provided details on the soft-
ware and hardware architecture of the integrated robot system and
motivate design choices. The feasibility, flexibility, usefulness, and
robustness of our design were evaluated with great success at the
DLR SpaceBot Camp 2015.

Novelties include an autonomous hybrid mobile base combin-
ing wheeled locomotion with active stabilization in combination
with fully autonomous object perception and manipulation in
rough terrain. For situational awareness, Momaro is equipped
with a multitude of sensors such as a continuously rotating 3D
laser scanner, IMU, RGB-D camera, and a total of seven color
cameras. Although our system was build with comprehensive
autonomy inmind, all aspects fromdirect control tomission spec-
ification can be teleoperated through intuitive operator interfaces.
Developed for the constraints posed by the SpaceBot Camp, our
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system also copes well with degraded network communication
between the robot and the monitoring station.

The robot localizes by fusing wheel odometry and IMU mea-
surements with pose observations obtained in a SLAM approach
using laser scanner data. Autonomous navigation in rough terrain
is tackled by planning cost-optimal paths in a 2D map of the
environment. High-level autonomous missions are specified as
augmented waypoints on the 2.5D height map generated from
SLAM data. For object manipulation, the robot detects objects
with its RGB-D camera and executes grasps using parametrized
motion primitives.

In the future, shared autonomy could be improved by automatic
failure detection, such that the robot reports failures and recom-
mends a suitable semiautonomous control mode for recovery.
Currently, only vision-based manipulation is supported by the
system. Additional touch and force-torque sensing could poten-
tially lead to more robust manipulation capabilities.
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Programing sophisticated robots, such as service robots or humanoids, are still a 
complex endeavor. Although programming robotic applications requires specialist 
knowledge, a robot software environment should support convenient development, 
while maintaining full flexibility needed when realizing challenging robotics tasks. 
In  addition, several desirable properties should be fulfilled, such as robustness, 
reusability of existing programs, and skill transfer between robots. In this work, we 
introduce the ArmarX statechart concept, which is used for describing control and 
data flow of robot programs. This event-driven statechart approach of ArmarX helps 
realizing important features, such as increased robustness through distributed program 
execution,  convenient programming through graphical user interfaces, and versatility 
by interweaving dynamic statechart structure with custom user code. We show that 
using hierarchical and distributed statecharts increases reusability, allows skill transfer 
between robots, and hides complexity in robot programming by splitting robot behavior 
into control flow and functionality.

Keywords: robot software framework, robot programing, statecharts, graphical user interfaces, distributed 
processing

1. inTrODUcTiOn

Programing complex robots like humanoids is challenging and is often divided into at least two 
domains. One being, low-level control, which is essential for smooth execution, system stabiliza-
tion, safety, and consideration of dynamic effects. On the other hand, high-level robot programing 
copes with perception, task and motion planning, user interaction, memory concepts, and reus-
ability of robot skills. Well-designed robot software frameworks should support the development 
of complex robot programs on all system levels. Therefore, a framework needs to provide well-
defined interfaces for all available robot components and the flexibility to additionally implement 
application- or task-specific behaviors. In addition, a basic set of robot skills (i.e., robot programs 
for a special behavior) should be available, which can be used to assemble more complex robot 
programs. One challenge in building a robot framework is to provide means for doing this in a 
robust and convenient way.

In this work, we focus on high-level robot programing and discuss how using hierarchical, 
distributed statecharts for encoding robot skills aid in achieving convenient programing and 
reusable, transferable robot behaviors. Possible candidates of statechart implementations must 
meet the following requirements to be considered eligible: full control over data flow and control 
flow, local scoping of data similar to encapsulation in programing, runtime-reconfigurability as 
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FigUre 1 | Basic structure of armarX. The low-level hardware access is 
abstracted through the Sensor–Actor unit concept. These Sensor–Actor 
units realize hardware or simulator access and hide the low-level 
communication from higher-level layers of the robot software. On the 
mid-level, robot capabilities, such as perception, planning, and motion 
generation, are implemented in a network transparent way. The high-level 
layer comprises a set of robot skills, realized as statecharts, which are used 
for assembling complex robot programs. The arrows depict middleware 
communication, which can be local or remote. The decision if a 
communication channel is local or incorporates remote calls is transparently 
taken on the fly by the middleware based on the current deployment.
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well as runtime introspection. It should also not be necessary 
to recompile programs upon structural or control flow changes. 
Furthermore, a graphical user interface is desirable in order to 
reduce the unavoidable complexity of describing robot behavior 
and to minimize development and comprehension efforts. This 
convenience feature should provide means for defining and 
parametrizing both control and data flow, online visualization 
of active states and transitions in running programs, and a 
convenient way to incorporate custom user code. Additionally, a 
code generator should be provided for enforcing type-safety and 
catching errors in user code as early as possible as well as allowing 
source code auto-completion in development environments of 
statechart-related data types and functions.

We will discuss the statechart concept of the robot develop-
ment environment ArmarX (Vahrenkamp et al., 2015) in detail 
and show how it provides both reusability of high-level robot 
skills realized as distributed, hierarchical statecharts, and the 
possibility to add user code with access to the external robot 
components. Figure  1 shows how statecharts are integrated in 
the basic structure of ArmarX.

In Section 2, we elaborate on the state of the art and compare 
it to our approach. Our statechart concept is presented in detail 
in Section 3. This is extended in Section 4 in regard to usability 
and integration in the robot development framework ArmarX. 
In Section 5, we show some use cases for the presented approach 
to give a better understanding of how it can be utilized. The 
discussion in Section 6 reflects our experience with the ArmarX 
statecharts, and Section 7 concludes the paper.

2. relaTeD WOrK

Robot Development Environments (RDEs) have coevolved with 
the increasing complexity and capabilities of modern robots. 
Taking a closer look at recent RDEs, there has been an agreement 
on the necessity of distributed processing for complex robotic 
systems [e.g., Scholl et  al. (2001), Bruyninckx et  al. (2003), 
Metta et  al. (2006), Ando et  al. (2008), Quigley et  al. (2009)]. 
Communication in such distributed systems is often performed 
via middlewares, such as CORBA (2006) or Ice (Henning, 2004). 
In other cases, specialized middleware systems or messaging pro-
tocols have been developed based on task-specific requirements.

2.1. robot Development environments
Already several years ago, Schlegel and Wörz (1999) saw the 
necessity to develop modular and distributed frameworks for 
complex multi-sensorimotor systems and presented the software 
framework SmartSoft. Apart from distribution and communica-
tion, RDEs differ depending on which part of robot program-
ing they target. For example, MiRPA (Finkemeyer et  al., 2007) 
provides a low-level message-oriented real-time communication 
middleware. OpenRTM (Ando et  al., 2008) is situated on the 
lower control level and provides a component model with input, 
output, and configuration interfaces as well as basic execution 
state machines (inactive, active, error states). MOOS (Newman, 
2008) is located on a similar level than OpenRTM and provides 
a publish–subscribe-based communication and data exchange 
between MOOS applications via a central database. OpenRDK 

(Calisi et al., 2008) is also a low-level framework and uses agents 
as main abstraction, which dynamically instantiate modules-
containing functionality. Modules communicate through a 
blackboard-type mechanism and can access input, output, and 
parameter data of any other module. YARP (Metta et al., 2006), 
being used for the iCub robots (Metta et  al., 2008), provides 
low-level communication as a basis for higher-level robot capa-
bilities implemented in the iCub software. Last, ROS (Quigley 
et  al., 2009) and Orocos (Bruyninckx et  al., 2003) lean toward 
the implementation of higher-level system capabilities. In ROS, 
software modules called nodes span a peer-to-peer network and 
send messages, whereas Orocos provides an explicit component 
model and separates the structure of the control system from its 
functionality.

In 2010, Bischoff et al. (2010) started an initiative to structure 
and formalize the robot development process by identifying and 
documenting best practices and refactoring existing components 
to increase reusability and robustness.

Schlegel et al. (2015) and Thomas et al. (2013) strive in their 
approaches to divide tasks into different complexity levels to 
reduce the knowledge required to adapt a robot to new but 
similar tasks.
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A different type of architecture for robot skill specification 
was proposed by Nordmann et al. (2015). They fuse methods of 
software design and classical motion primitives to form a model-
driven approach for complex motion control architectures.

2.2. statecharts and coordination systems
Besides the original publications (Harel, 1987; Harel and Politi, 
1998), there are many other publications (Coleman et  al., 
1992; Von der Beeck, 1994; Samek, 2002) and software projects 
(Angermann et al., 2014; EasyCODE, 2015; Yakindu, 2015) on 
statecharts for a variety of different use cases.

The concept of statecharts as new formalism to represent and 
describe complex systems was presented first by Harel (1987) 
and Harel and Politi (1998). The concept extends the finite state 
machines (FSM) proposed by Gill et  al. (1962) to a powerful 
representation, which significantly reduces the complexity for 
system developers by introducing several notations features. Like 
FSMs, statecharts consist in their core of states and transitions 
between these states and extend FSMs by the following features. 
The most important addition is the introduction of hierarchically 
nested states. Harel introduced inter-level-transitions to allow 
direct transitions into sub-states as well as orthogonality to allow 
parallel execution of different states at the same statechart level. 
Moreover, a history-connector was added to provide states with 
a memory, which store the information about which sub-state 
should be reactivated when a state is revisited. Condition-
connectors control to which subsequent state a transition leads. 
Finally, each state can be connected to actions being triggered 
during different phases of the state: entering, leaving, and an 
action that is executed repeatedly as long as the state is active.

Several general purpose frameworks exist, which can be used 
to specify the program flow based on statechart mechanisms. 
In late 2015, the W3 consortium released version 1.0 of an XML 
statechart notation [ScXML, World Wide Web Consortium 
(W3), 2015] to establish one format describing Harel statecharts. 
Similarly, the Object Management Group defined the UML 
StateMachines notations [Object Management Group (OMG), 
2015]. While these specifications mainly focus on general pur-
pose notations of the Harel formalism, the ArmarX statecharts 
aim at providing a ready-to-use statechart framework in the 
robotics context.

The well-known de facto extension of C++ Boost (Huber, 
2007) contains a subproject called the Boost Statechart Library, 
which offers a statechart implementation close to the original 
formalism of Harel. It has the unique feature of specifying the 
statecharts with C++ templates and achieving compile-time stat-
echart validation. While this is a valuable feature to ensure valid 
statecharts, it does not fit our requirements. For our purposes, we 
require runtime-reconfigurability and no recompilation on lay-
out changes as well as runtime introspection, which is difficult to 
achieve if the structure is specified implicitly with C++ templates. 
On the side of graphical tools, the statechart graphical modeling 
tool QM (Quantum Leaps, 2015) provides means for designing 
and implementing event-driven low-level statecharts for embed-
ded systems with a strong focus on traceability at the code level. 
The complete statecharts are generated into C++ code, meaning 
that for statechart structure changes recompilation is necessary. 

In our statecharts, we aim to generate code only to catch errors 
in the user code as early as possible and for IDE auto-completion 
purposes. In Yakindu (2015), another graphical statechart mod-
eling tool is presented, aiming at usability and assistance inside 
the editor during typing. Though it seems to target low-level 
statecharts like QM with limited data flow control, which is of 
high importance in the ArmarX statecharts, as described later.

Statecharts are widely used in robotics to control behavior 
on a high level (Nilsson and Center, 1973; Merz et  al., 2006; 
Billington et al., 2010; Bohren and Cousins, 2010; Klotzbücher 
and Bruyninckx, 2012), since they address several of the problems 
of robotics like state-based control and event-triggered execution. 
In the well-known RDE ROS (Quigley et al., 2009), an approach 
called SMACH (Bohren and Cousins, 2010) is employed that 
focuses on data flow in statecharts. However, scope of data flow 
in ROS SMACH is handled differently than in ArmarX. In ROS 
SMACH, a child state can access all data used by its parent state. 
This not only eases programing because it is easy to operate with 
data on several levels but also violates the principle of modularity 
of states and creates implicit data dependencies between states. 
A state using datafields of a parent state cannot easily be reused 
in another state, since it depends on the availability of specific 
datafields in a parent state. Due to this, we do not allow data 
scopes over several state levels in ArmarX and require explicit 
mapping of data between state levels. Also, ROS SMACH only 
supports graphical online visualization of states but does not 
provide any tool for graphical programing. In many aspects, 
the statecharts of ArmarX are similar to the restricted Finite 
State Machine (rFSM) (Klotzbücher and Bruyninckx, 2012) from 
Orocos (Bruyninckx et  al., 2003). However, the statecharts in 
Orocos focus on coordination of components but offer only 
very limited support to specify transition-based data flow. They 
promote the “pure coordination” concept, where the coordina-
tion part of the framework should be strictly decoupled from 
the computation capabilities to avoid unresponsiveness and 
blocking. This resembles the state-phases of our approach, which 
are split into coordination and computation phases. Though, to 
give the developer the ability to easily create critical sections 
separation of coordination and computation is only encouraged 
and not enforced in the ArmarX statechart framework.

Stampfer and Schlegel (2014) present an aspect similar to our 
dynamic structure, where they modify the statechart-formalism 
to allow for dynamic replacement of states with alternatives 
from a “robot app store” to increase robustness and reduce 
complexity. This enables usage of different implementations of 
a state in the same context, which is usually needed if a differ-
ent robot should be used. Further, they also provide means for 
controlling data flow in their statecharts. The main difference 
to our approach regarding data flow control is that Stampfer 
and Schlegel (2014) attach data directly to events, while in our 
approach a transition contains a parameter mapping, which 
defines the sources to be used to fill a target parameter on 
triggering of a transition (see Section 3.3.5).

Behavior-based systems [e.g., Arkin (1998), Nicolescu and 
Matarić (2002), Frank et  al. (2012), Paikan et  al. (2014)] are 
another way to specify high-level robot functionality. The 
most striking difference is that statecharts are state-based, and 
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behavior-based systems are rule-based. This means statecharts 
have an explicit current state, while behavior-based systems only 
have an implicit state. Additionally, behavior-based systems are 
inherently parallel, whereas statecharts are sequential. While 
behavior-based systems may be closer to behavior of humans or 
animals, we do not think they scale well for programing purposes. 
For the developer, an explicit state is easier to comprehend, and 
it eases the debugging process. Both are vital criteria for software 
development and maintenance.

2.3. graphical robot Programing
When developing high-level software on a robotic platform, it is 
desirable to configure and connect existing components using a 
graphical user interface to prevent writing repetitive and therefore 
error-prone source code. This allows new as well as experienced 
users to intuitively and efficiently combine mid- and high-level 
components in order to create a functional system structure. 
Since writing software is one of the main challenges in robotics 
for beginners, such as students, Graphical Robot Programing 
offers a great entry point. It removes the obstacle presented by 
syntax and control flow of a conventional programing language 
(Rahul et al., 2014). Graphical software development often com-
bines complexity hiding by connecting modular components on 
a macroscopic scale with the option to write low-level software, 
facilitating control tasks on joint level or performing motions in 
Cartesian space (Pot et al., 2009). Graphical and tabular repre-
sentations are an accessible way to model system behavior in the 
context of simulation, validation, and consistency checking of a 
system design before final implementation (MathWorks, 2015c). 
Hirzinger and Bauml (2006) are using Simulink (MathWorks, 
2015b) in conjunction with MATLAB (MathWorks, 2015a) 
to graphically model subsystems to later generate executables 
running on a real-time target. The Microsoft Visual Programing 
Language (Microsoft, 2012b), as part of Microsoft Robotics 
Developer Studio (Microsoft, 2012a), proposes developing 
the complete logic and program flow in a visual development 
environment as it lowers the bar for beginner programmers. 
However, we decided to limit the visual development in ArmarX 
to the definition of structure, used data types, and data flow in 
our statecharts for the benefit that the user can write unrestricted 
C++ code. The RDE YARP (Metta et al., 2006) also offers means 
of graphical programing with the gyarpbuilder (Paikan, 2014), 
yet on another level. With gyarpbuilder, it is possible to connect 
continuous input and output data of components graphically and 
to insert arbitrators in these connections to manipulate data flow 
easily. RtcLink (AIST, 2015) from the OpenRTM project offers a 
GUI to operate on RT-Components existing in a network. It can 
activate and deactivate components as well as connect their ports. 
It leverages the capabilities of an established IDE by providing the 
GUI as an Eclipse plugin.

3. armarX sTaTecharTs

The complexity of multicomponent systems can be challenging 
in terms of program and data flow. Hence, only skilled experts 
are capable of designing and realizing highly connected software 
systems, as they are needed on humanoid robots. The aim of the 

ArmarX statechart concept is to reduce such complexity and 
increase reusability of already created functionality.

With ArmarX, we provide a generic robotics software pro-
graming environment, which combines event-driven programing 
with distributed component-based robot applications. A robot 
framework in ArmarX consists of several distributed components 
providing access to sensors and actors (i.e., the hardware), offer-
ing computation functionality, and realizing a robot memory 
system as a common data source for the robot software. On top 
of these robot components, the ArmarX statechart mechanism 
can be employed to define the structure of the mid- to high-level 
robot behavior (i.e., the program flow). In order to gain full 
flexibility within the robot applications, the programmer can use 
well-defined entry points to implement user-specific source code. 
By separating structure from behavior, the task of building new 
robot software applications can be supported through graphical 
user interfaces, while maintaining full flexibility on source code 
level. ArmarX provides means of designing such statecharts 
textually and graphically with the possibility to link them with 
user code to perform custom operations. The graphical way is 
presented in Section 4.1 in detail.

In the following sections, we present the design principles we 
chose for statecharts in ArmarX and the resulting differences to 
Harel’s formalism. The details of the ArmarX statechart concept 
are explained in the remainder of this section.

3.1. Design Principles
Key principles of the ArmarX statecharts are modularity, reus-
ability, runtime-reconfigurability, decentralization, and state 
disclosure.

•	 Modularity in our statecharts comes naturally through the 
individual states and explicitly specified input and output. 
There is no direct interaction allowed between sub-states of 
different parent states.

•	 Reusability is ensured, since every state can be used as a 
sub-state in any other state and has a specific interface for 
interaction. The interface is specified with the state parameters 
like the parameters of a function.

•	 Runtime-reconfigurability means that a statechart can be 
defined in configuration files, and that the statechart structure 
can be changed completely at runtime.

•	 Decentralization means that a statechart does not need to be 
resided in one process, but can be spread over several pro-
cesses and hosts. This enables load balancing and robustness. 
A crashed distributed state component would not crash the 
whole statechart but would just create an event for higher 
layers that this specific state has failed (see Section 5.1, for an 
example of crash recovery).

•	 State disclosure means that the current state and all its parame-
ters can be inspected at runtime and logged for future behavior 
adaptation via a network interface (see Section 4.5).

3.2. Differences to harel’s formalism
The statecharts in ArmarX differ in several points from Harel’s 
original formalism. We omitted some of Harel’s features to 
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appear as a sub-state in multiple other states and can even occur multiple times within one state. Control flow is defined by transitions between sub-states. 
Transitions starting at the current state can be triggered by events. The control flow within a state is terminated if any end-state (yellow state) is reached. The parent 
state can also be left if an external event occurs.
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comply with our design principles and to simplify the statechart 
design process for the developer. We added one important aspect 
to our statechart, which is not covered in Harel’s formalism: data 
flow specification and control during transitions. The hierarchy 
and condition-connectors are available like in the original 
statecharts. We do not allow direct inter-level-transitions to not 
violate the principle of modularity. The history-connector is not 
available, since it conflicts with the data flow specifications, and 
to reduce side effects during execution as well as to simplify 
the comprehension of the current state of the system during 
introspection. Each entering of a state with the same parameters 
must provide the same internal state. Orthogonality is currently 
available only in a smaller scope. Each active state can contain an 
asynchronous user code function executed in a separate thread. 
Thus, the different hierarchy levels can run in parallel.

3.3. armarX statechart internals
Statecharts in ArmarX are organized in groups (see Figure  2). 
Following the composite pattern, a statechart in ArmarX is a 
state itself. A state can contain sub-states and transitions between 
these sub-states. Every state can be nested in another state to 
construct state hierarchies. Transitions between sub-states are 
triggered by events. Transitions do not only specify control flow 
but also data flow by attaching a parameter mapping to each 
transition. This mapping contains instructions on how to fill the 
input parameters of the next state. Distribution of statecharts 
over multiple processes is possible with Remote States, which 
transparently represent states located in another process.

In the following sections, we are describing the main technical 
aspects of the ArmarX statecharts: sub-states, transitions, events, 
state phases, data flow, interfacing with external components, 
distributed statecharts, and the dynamic statechart structure.

3.3.1. Sub-State Types
Sub-states are not the same as states in ArmarX. States are 
templates, which are instantiated as sub-states of other states. 

Though, only one type of sub-states is direct instantiations of 
states. ArmarX statecharts consists of four different types of sub-
states, each with a specific purpose.

3.3.1.1. LocalState
Local states are normal state instances with no special features.

3.3.1.2. EndState
EndStates trigger leaving the parent state immediately. They can-
not contain sub-states or execute any user code. EndStates are one 
way to specify outgoing transitions of the parent state. The name 
of an EndState specifies the name of the outgoing transition of 
the parent state.

3.3.1.3. RemoteState
Remote states behave like local states but point internally to a 
specific state in another process.

3.3.1.4. DynamicRemoteState
Dynamic remote states are similar to remote states but are like 
generic pointers. On entering, a dynamic remote state morphs 
into a specific remote state based on parameters mapped during 
the transition.

3.3.2. Transitions
Transitions in ArmarX statecharts define control flow and data 
flow. Each transition is associated with one event that the cor-
responding source state can process. A transition is comprised 
of a source state, a destination state, the associated event, and a 
data mapping that defines the data flow between states during 
this transition.

Each state has exactly one initial transition if the parent state 
has at least one sub-state. The initial transition can be seen as the 
transition from the parent state to the first sub-state. This transi-
tion is triggered immediately when the parent state is entered. 
Thus, when the top-level state of a state hierarchy is entered, 
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BOX 1 | an exemplary definition of an event condition.

Literal objectDistance(“ObjectMemoryObserver.hand.pose”,  
checks::poseDistance, {object2PoseRef, 10});
Literal forceMagnitude(“ForceTorqueObserver.forces.TCP R”,  
checks::magnitudeLarger, {5.0});
installCondition(“ObjectReachedEvent”, objectDistance || forceMagnitude);

Wächter et al. The ArmarX Statechart Concept

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 33

initial sub-states on each level are entered recursively until the 
lowest level of the statechart is reached.

Each end-state defines one outgoing transition in the cor-
responding parent state. When the control flow reaches an end-
state, the control flow within the parent state is terminated, and 
the associated transition of the parent state is triggered.

Transitions do not only describe the control flow but also carry 
data and define the data flow between states. The data flow during 
transitions is realized through a parameter mapping definition, 
which is attached to transitions (see Section 3.3.5). One important 
detail to mention is that transitions can only be created between 
sub-states of the same parent state, unlike in Harel statecharts. We 
decided to create this restriction to keep the modularity principle 
of states. If states would have transitions to other hierarchy levels 
or other parent states, the parent state could not be reused without 
disconnecting that transition.

3.3.3. Events
Transitions between sub-states can only be triggered by events. 
Events can be fired either by user code, if an end-state is reached, 
or if a certain condition is met. Events from user code or from 
end-states are fired immediately, while events from conditions are 
fired as soon as the condition is fulfilled.

Conditions are specified by terms based on Boolean algebra 
comprising literals and Boolean operators.

3.3.3.1. Event Generation with Conditions
A literal is defined by a data field of an observer, and a parametrized 
check that is to be performed on this data field. Conditions are 
installed in sensor-observers and are evaluated by the appropri-
ate observer after each sensor update. To clarify the concept of 
distributed conditions, the following listing gives an example that 
will be explained in detail below.

The first statement in Box  1 defines the literal object-
Distance that describes the distance between the hand and 
object2 and checks if this distance is below 10 mm. object-
2PoseRef is a reference to the current pose of object2 
and is updated continuously. “ObjectMemoryObserver.
hand.pose” describes the current pose of the hand within 
the ObjectMemoryObserver. The poseDistance check 
compares the position components of both poses and evaluates 
to true if the distance falls below the provided argument value 
(here 10 mm).

The second statement defines forceMagnitude, 
which checks if the force in the right TCP is larger than the 
given threshold. Both literals are combined using a disjunc-
tion. So, if either of both conditions is true, the corresponding 
event ObjectReachedEvent is fired. The condition is 
evaluated in a distributed fashion. A central component called 

ConditionHandler distributes the literals to the appropriate 
observers. This approach avoids unnecessary transmission of high 
frequency sensor values, since only changes of the Boolean state 
of a literal are signaled by the observers. When the Boolean term 
of a condition evaluates to TRUE, the ConditionHandler 
fires the associated event. The middleware passes the event to the 
state that originally installed the condition.

In the context of event processing, the ArmarX state disclosure 
concept is consistently realized, e.g., by providing an event inspec-
tion GUI, as shown in Figure 9. This GUI enables the developer 
to explore condition trees of currently active conditions, and it 
further allows inspecting the history of past conditions.

3.3.3.2. Event Processing
Arriving events are queued and processed sequentially by the 
receiving process. Due to the distributed and asynchronous 
nature of the software framework, processing of events need to be 
performed with caution in order to ensure stability and consist-
ency. One aspect that needs to be considered is the fact that a state 
may already be left when an event arrives. To address this issue, 
all events contain the id of the destination state.

Additionally, special care needs to be taken to consistently 
consider parallelism. Since statecharts in ArmarX can be distrib-
uted over several processes, events can arrive and be processed in 
parallel. In order to deal with this situation, the ArmarX statechart 
framework protects critical sections, allowing concurrent multi-
threaded access. Such critical sections are the event-processing 
function (one per statechart level) and the state phases, where 
the state coordination is performed (see next section for details). 
Thus, transitions can only be taken once, and states are only 
entered or exited once.

3.3.4. State Phases
During the visit of a state, different phases are passed through: 
OnEnter, running, onBreak, and onExit. To enable developers to 
execute own code in a state, each phase is linked to a user code 
function, i.e., C++ code. OnEnter, onBreak, and onExit are atomic 
coordination phases, while running is the computation phase of 
a state for complex, long-running computations. The order of 
execution of the phases is as follows: onEnter, running, and then 
onBreak or onExit. Before entering a state (i.e., phase onEnter), 
the parameters (explained in the next paragraph) are mapped 
or set to default values. In the onEnter phase, local variables can 
be set to be mapped into sub-states or prepared for later phases. 
When a transition is triggered, the onExit or onBreak phase is 
entered. Which phase is executed depends on the level where 
the transition was triggered: as aforementioned, statecharts are 
hierarchical. Thus, it is possible for a higher state to receive an 
event, although its sub-states are not finished yet. In this case, the 
sub-statecharts cannot finish in an expected manner. To give the 
developer an option to deal with this unexpected behavior, each 
state provides the onBreak phase. If no behavior is specified for 
the onBreak phase, the user code function of the onExit phase is 
executed. When a top-level state received an event, the complete 
stack of child states needs to exit first. This starts at the leaf-sub-
state, a sub-state with no further sub-states, and proceeds up 
level by level.
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FigUre 3 | available types of parameter mapping during transitions. 
Each state has three parameter dictionaries: input, local, and output 
parameters. In the blue sub-states, only the relevant dictionaries for the 
mapping during the transition are shown. The green arrows show possible 
mappings to the input parameters of the next state. The blue arrows show 
possible mappings from the output of the previous state to the local and 
output parameters of the parent state. These mappings happen after leaving 
the previous state and before entering the next state.
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Whenever a state is entered, its initial sub-state is entered 
as well. This means that after executing the onEnter phase of a 
state, the onEnter phase of the initial sub-state is also executed 
immediately afterward.

Since the user has freedom of implementation in the coordina-
tion phases, she/he is discouraged by warnings if computation-
ally costly code is detected. After entering, the running-phase is 
launched in its own thread to allow the execution of computation-
ally costly user code without interfering with the coordination. 
In the default-behavior, the coordination does not wait for the 
run-function to finish and ignores all results produced by the 
running-phase after the state was left. During each of these phases, 
the developer can access different parameter dictionaries in the 
user code functions, which are explained in the next paragraph.

Although C++ code is difficult to verify, we decided to employ 
C++, since all our algorithms and most robotics algorithms in 
general are written in C++.

3.3.5. Transition-Based Data Flow
One important, and to our best knowledge in this extend, unique 
feature of the ArmarX statecharts is the extensive control of 
the data flow in the statecharts, which eases accomplishing the 
modularity and reusability principles. All states are equipped 
with input and output parameter dictionaries to decouple states 
from external global data storage. Input parameters are read-only 
in user code functions and specify all parametrization the state 
needs for its computations. Output parameters can be set in the 
user code functions, contain the results of a state, and can be used 
as source for input parameters of the next state or mapped back 
to the parent’s local or output parameters.

Additionally, so-called local parameters are provided and 
accessible for the user code. Local parameters are intended to be 
used for temporal local storage of parameters that are passed down 
to sub-states’ input, passed up from sub-states’ output, or passed 
between different state phases. Once a state is left, all parameters 
are reset in order to avoid side effects of previous visits.

Each parameter dictionary field consists of a string identifier 
and a variant data type that can manifest itself into arbitrary 
types. ArmarX already provides the basic types bool, integer, 
float, double, and string as well as several types associated with 
robotics, like vectors, matrices, 3D poses, or probability distribu-
tions. If needed, developers can implement new types easily.

These parameter dictionaries are defined by the developer and 
specify the interface of each state, i.e., which data it needs for 
execution. Each parameter can be optional, can have a default 
value,1 and/or can be filled from several sources. We call this 
parameter mapping. When a state is used, its non-optional input 
parameters without default values need to be connected with 
other parameters of the same type. Thus, a parameter mapping 
for each of these input parameters needs to be created for each 
state instance. The developer can choose between mappings 
from the output of a previous state from the same hierarchy 
level, the input or local parameters of the parent state, or from 
a parameter attached to the transition-event. Additionally, 

1 Consequently, if parameters have a default value, the optional flag does not make 
much sense any more, thus these two Boolean flags basically form a tri-state.

developers can map values from the output of a state to the local 
or output parameters of the parent state. Later, when another 
sub-state needs the calculated value as an input parameter, the 
local parameter is mapped to that input parameter. For example, 
generic counter states can be implemented following this pattern, 
so that counting loop sequences of states can be defined without 
writing any additional specialized custom code. With this, it is 
possible to pass data from a sub-state to another state later in the 
chain more easily. Otherwise, the parameters would need to be 
mapped from state to state. Figure 3 shows the different types of 
mappings during transitions.

3.3.6. Interfacing with External Components
Statecharts that can only access functionality and data of them-
selves are not particularly useful for robotics. Therefore, they 
must be able to access all available components. Since ArmarX is 
a heavily distributed system, it cannot be assumed that required 
components are running in the same process or on the same 
host. Hence, states require network proxies to these components, 
and it should be ensured that a state is only started if all required 
components are available. Dependencies for a group of states 
can therefore be defined in a so-called StatechartContext, which 
manages dependencies and enables states to communicate with 
external components.

3.3.7. Distributed Statecharts
Another important feature of ArmarX is the possibility to dis-
tribute statecharts over several processes or hosts. To this end, 
states in ArmarX are organized in groups, which, for example, 
contain states that are semantically similar and share the same 
dependencies to external components. In this context, semanti-
cally similar means, states that share common aspects regarding 
their purpose. For example, all states for controlling holonomic 
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FigUre 4 | statecharts in armarX are organized in groups, which can be distributed over several processes and hosts. Each statechart group resides 
by default in one process. By creating RemoteState instances, it is possible to incorporate states of another group transparently into a statechart.
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platform movements, from a PD-controller to calls to a path 
planning component, should be encapsulated in one statechart 
group. Though, this is just a useful convention.

Each group is executed as one component in a so-called 
RemoteStateOfferer. These RemoteStateOfferers offer states to 
be used by others states as RemoteStates over the network. For 
robustness, each RemoteStateOfferer is located in its own process. 
Thus, a RemoteState is inserted whenever a state uses a state of 
another group as a sub-state. This process is completely transpar-
ent for the developer. The only difference to a local state is that 
the RemoteStateOfferers name needs to be specified in addition 
to the state name. Theoretically, each state could have its own 
group for maximized robustness. Since distributed statecharts 
are slower than local statecharts, developers need to decide care-
fully when to split statecharts in more than one group. Another 
advantage of distributed statecharts is the possibility to deploy 
them close to their components. A statechart that makes heavy 
use of the robot’s memory should ideally be located on the same 
host as the database servers, whereas a visual servoing statechart 
should be close to the vision system and the host, where joint-
level control takes place. Figure  4 depicts the linkage between 
different statechart groups and RemoteStates.

Due to the sophisticated underlying middleware Ice, which 
transforms network communication into normal, transparent 
function calls, the step from local statecharts to distributed 
statecharts was fairly easy. Sub-states pointing to a remote state 
just use another implementation of the state interface, which 
reroutes all the function calls over the middleware. On the other 
side, there is the aforementioned RemoteStateOfferer component, 
which offers a network interface to the normally, local functions 
of a state. This way, consistency is assured in the same way as it is 
done locally, with mutexed access and storage of data only on the 
offerer side. Thus, synchronization of data is not needed.

3.3.8. Dynamic Statechart Structure
In most statechart frameworks, the structure of the statecharts is 
fixed, once it has been designed by the developer. This limits the 
usability of statecharts in a highly dynamic environment, e.g., in 
the context of humanoid service robots. In this context, a symbolic 
planner may be incorporated, which needs to be able to change 
the statechart structure on the fly, according to the currently 
planned program flow. ArmarX supports dynamic online stat-
echart restructuring by offering so-called DynamicRemoteStates, 
which provide generic entry points for exchangeable statecharts. 
As the name suggests, a DynamicRemoteState connects to a state 
in another (or its own) process. It decides upon entering, into 
which state it is morphed based on specific parameters passed 
by the transition. Additionally, it can specify more parameters 
that are mapped into the connected state. The correctness and 
completeness of the parameters is verified at runtime, i.e., when 
the state is loaded.

3.4. Textual statechart specification
While the advised method to create statecharts is to use the 
Statechart Editor (see Section 4.1), it is also possible to specify 
statecharts textually, as shown in Box 2.

First, each state needs to be added with its state class 
(TemplateParameter) and the instance name (parameter of 
addState()). Afterward, transitions between these sub-states can 
be created by specifying the start and end-state, and on which 
event these transitions should be triggered.

4. The sTaTecharT cOncePT 
eMBeDDeD inTO armarX

Statecharts can be implemented in various ways by using a 
lookup table for transitions, by implementing transition tables 
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BOX 2 | an exemplary textual definition of a state.

void defineSubstates()
{
//add sub-states
setInitState(addState < InitialState > (“Initial”));
StateBasePtr finalSuccess = addState < SuccessState > (“Success”);
StateBasePtr finalFailure = addState < FailureState > (“Failure”);
//add transitions
addTransition < Next > (getInitState(), getInitState());
addTransition < TimerExpired > (getInitState(), finalFailure);
addTransition < Success > (getInitState(), finalSuccess);
}
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via switch-case statements, by implementing an object-oriented 
state pattern, etc. Since all these approaches are based on writing 
code to perform the state transitions, a lot of repetitive textual 
description is usually necessary to define large statecharts. This 
textual description becomes rapidly incomprehensible for other 
developers. To overcome this tedious and error-prone work, a 
graphical statechart editor was developed for ArmarX statecharts.

4.1. statechart editor: Defining control 
and Data Flow
The goal of the statechart editor is to enable all users to create 
new statecharts with sub-states, to define input and output 
parameters, and to connect states with transitions. The editor 
covers all major use cases related to editing a statechart: creation 
of structure, definition of control flow, and definition of data flow 
during transitions. The user is not required to write any custom 
code to create a functional statechart. We decided to store the 
statechart definition in a custom xml-based format.

Figure  5A shows the main window of the statechart editor. 
Statecharts are organized in statechart groups. A statechart group 
can contain multiple statecharts and sub-states. For further 
organization of statecharts, folders and sub-folders are avail-
able. All statechart groups are listed on the left side of the main 
window. The user can open any statechart from the state library 
for graphical editing or reuse a statechart by including it as a sub-
state within another statechart.

When a statechart is opened for graphical editing, it is dis-
played on the right side of the editor. The editor offers a variety 
of options to edit a statechart, including specialized dialogs and 
context menus.

4.1.1. Sub-States
By dragging a statechart from the statechart library into the right 
editing area, a sub-state is created. A state can be reused multiple 
times as a sub-state within a statechart. The editor displays sub-
states in two different colors: states from within the same statechart 
group are colored blue; states from different statechart groups are 
displayed in turquoise (RemoteState). DynamicRemoteStates are 
violet.

4.1.2. End-States
End-states are special sub-states, which are colored yellow. Each 
end-state implicitly creates an outgoing event/transition. When 
the statechart transitions to an end-state, the execution within 

the statechart is terminated. Additionally, the corresponding 
event/transition is triggered so that control flow moves back to 
the parenting statechart where execution is continued. When 
transitioning to an end-state, a statechart completes by terminat-
ing its execution entirely if no parenting statechart is present, i.e., 
the statechart in question is the top-level statechart.

4.1.3. Events and Transitions
As mentioned before, an end-state implicitly creates an event, 
which in turn implicitly creates an outgoing transition. When a 
statechart is initially added as a sub-state, all outgoing transitions 
of this sub-state are displayed as detached transitions. Transitions 
can be connected to other sub-states by dragging them onto the 
target sub-state. To create a valid statechart, all transitions have to 
be connected from a source state to a target state. The target state 
can be another sub-state, end-state, or the source state itself in case 
of a reflexive transition. When no detached transitions remain, 
the transitioning behavior of the statechart is fully defined, which 
implies that no event is left unhandled. Additional events can be 
specified in the state properties, which are fired from the code 
directly or on fulfilled conditions.

4.1.4. State Parameters
Each state has a list of input, output, and local parameters. 
A parameter is defined by its name, data type, and an optional 
default value. Figure  5B displays the input parameters of the 
PlaceObjectSkill, as it is used in ArmarX. Role and usage of the 
three parameter types is similar to those of parameters, return 
values, and local variables of functions in imperative programing 
languages.

4.1.5. Data Flow
A transition can be accompanied by several data mappings that 
define the data flow within the statechart during this transition. 
The statechart editor does not support global data storage, since 
global data storage breaks the concept of data encapsulation. 
Data are only passed between states during a transition. Data 
can be passed in 6 different ways, as depicted in Figure 3. The 
editor ensures that only parameters of the same type are mapped, 
while parameter mappings are edited in the transition dialog. An 
example is given in Figure 5C.

For many use cases, it is possible to compose a complete stat-
echart by combining the capabilities listed above and by using 
existing states from the state library. Writing any additional 
source code in C++ is not required in these cases.

More complex applications may require implementing custom 
behavior of states using source code. For these cases, the editor 
offers the option to jump directly into the source code of any 
state. Additionally, the source code of a state can be viewed in the 
bottom panel below the graphical editing area (see Figure 5A).

4.2. linking implementation and 
control Flow
Using a graphical definition for statecharts implies that all 
parameters, parameter types, parameters mappings, events, and 
transitions are identified via names. Since states are reusable 
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FigUre 5 | Dialogs of the statechart editor. (a) The Statechart Editor is a graphical programming tool to conveniently design the control and data flow of a 
statechart. (B) The parameters of a statechart including their types and default values are defined in the Statechart Editor. (c) Transitions between states contain a 
parameter mapping which can be easily specified in the transition dialog of the Statechart Editor.
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and do not store any information about previous or following 
states, all states have to share the same basic interface for passing 
input and output data. We decided to define this interface using 
string-Variant maps, as described in Section 3.3.5. Additionally, 
the state functions OnEnter, Run, OnBreak, and OnExit can be 
implemented in C++. Since C++ is a statically typed language 
without reflection, accessing an input parameter would look 
similar to this:

float myInput = ((FloatContainer*)
getInput(“MyValue”))- > get();

The resulting code overhead to access input parameters 
and to write output parameters is substantial, if one takes into 
consideration that not only basic types but also lists and maps 
of any data type are supported. Furthermore, the identification 

of parameters by strings and run time casts can lead to run time 
errors that could have been detected during the compile time. 
Instead, accessing an input without self-written overhead code 
should look like this:

float myInput = getMyValue();

To achieve this type safe and auto-completion friendly inter-
face, we employ a code generator that generates custom wrapper 
functions to access inputs and outputs. Inside a generated func-
tion, the parameter is referenced by name, and necessary casts 
are applied. Since these functions are generated automatically, 
access by name and the casts will never lead to run time errors. 
Instead, all possible errors related to parameter accessing occur 
at compile time. Detecting these kinds of errors before executing 
the statechart saves a lot of time during development.
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statecharts.
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4.3. connecting statecharts and armarX 
components
One of the main aspects of statecharts in ArmarX is to interact with 
components. Since different statecharts for different tasks often 
require different sets of components, each statechart depends on 
a set of components. The statechart editor generates a complete 
list of all available ArmarX components from component meta 
information. The user can pick any number of components from 
this list and add them to the dependencies of the statechart, as 
shown in Figure  6A. Every selected component can then be 
accessed inside the states via a proxy object. Also, additional 
code is automatically generated so that the statechart registers 
these dependencies within the ArmarX framework before start-
up. Then, the dependency resolver in ArmarX ensures that all 
necessary components are running before the statechart starts 
execution.

The list of component proxies for a state can be interpreted as 
the interface of this state to the ArmarX framework. Similar to 
object-oriented development, our goal is to keep these interfaces 
small. For example, a pick and place statechart requires compo-
nents to operate the robotic platform, the arms, the hands, do 
visual servoing, etc. Without encapsulation of proxies, this would 
lead to a very wide interface for high-level tasks.

To approach this challenge, we offer a wrapping statechart 
group for each important component. Each state within a group 
encapsulates a common task of the encapsulated component. 
For example, the HandGroup offers states to open or close the 
hands. A high-level statechart can then use these wrapper 
states to indirectly interact with components without the need 
of a direct dependency on all components. For example, the 
PlaceObjectGroup needs to control the arms and hands as well 
as to perform visual servoing to increase accuracy. This demands 
interaction with the KinematicUnit, HandUnit, and MemoryX, 
among others. Each of these units is encapsulated by a statechart 

group, namely the MotionControlGroup, HandGroup, and 
VisualServoGroup. The PlaceObjectGroup uses these statechart 
groups to indirectly interact with the encapsulated components, 
as shown in Figure 6B.

4.4. statechart Profiles and state cloning: 
reusing statecharts for Different robots
When developing a new skill for a robot, we usually start in 
simulation. During the transfer of the statechart to the real robot, 
a lot of parameters usually need to be adapted. For example, when 
picking up objects from a table, the height of the table might be 
different in simulation and in reality or the force torque sensor 
thresholds differ. But, these are just differences in parametrization 
and not on source code level. Thus, our goal is to have the same 
source code working in simulation as well as on the real robot.

To meet this requirement, we introduce the concept of profiles. 
When working with the statechart editor, the user first selects 
which profile he or she wants to work with. Every parameter of 
every state can have specialized values in different profiles, but 
it is also possible to define default values that apply to multiple 
profiles if no specialized value is set.

Figure  7 displays the parameter edit dialog for the place 
object example mentioned above. The parameter ObjectName 
is set to “GreenCup” and is applied in simulation as well as on 
the real robot. The parameter TableHeight is set to 900 mm for 
simulation and to 800 mm for the real robot. The statechart will 
be executed with the appropriate parameters depending on the 
selected profile.

When reusing statecharts for new robots, simple parameter 
adjustment is often not sufficient. The underlying behavior imple-
mentation of states might require adaptation or the statecharts 
need to communicate with different components altogether. To 
cover these cases, the statechart editor offers the option of cloning 
complete statecharts, including all sub-states as well as cloning all 
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FigUre 8 | cloning the PlaceObjectGroup for the icub.

Parameters for simulation

Parameters for the real robot ARMAR-IIIb

A

B

FigUre 7 | The figure shows statechart profiles for simulation (a), and a real robot (B) to compensate for differences between simulation and robot.
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state-dependencies of the statechart in question. Dependencies 
are determined by finding all external statecharts that are used 
in the statechart to be cloned. This process is applied recursively 
until the list of dependencies is complete. In addition, the stat-
echart editor checks if some of the dependencies have already 
been cloned for the target robot and omits these states while 
cloning accordingly. When cloning states, it is possible to apply 
a prefix to all new states to avoid later confusion. Additionally, 
all necessary C++ source code files are copied, renamed, and 
modified to match the new names. Statecharts yielded by the 

cloning process can be compiled and executed without any 
manual adaptations or amending of source code.

Figure 8 shows an exemplary use case, in which the statechart 
group for placing objects (PlaceObjectGroup) is cloned to be 
adapted for the iCub robot. In this example, the HandGroup has 
already been cloned previously and has been adapted for the iCub 
under the name ICubHandGroup. The editor recognizes that the 
ICubHandGroup already exists inside the ArmarX iCub package. 
All newly cloned states that have a dependency to the HandGroup 
will use the adapted ICubHandGroup instead of the original.
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FigUre 9 | Plugin for visualizing active and already expired conditions 
based on Boolean terms. The top part of the figure shows available 
conditions and their origin in respect to components and/or states as well as 
the corresponding event and its status. In the middle, a visualization of the 
condition as a binary tree is shown. Each sub-term of the expression tree is 
colored green upon fulfillment and red otherwise. The leafs of the tree are 
literals of the condition term. They are Boolean predicates and correspond to 
the table in the bottom part of the image. Each predicate consists of a 
datafield, a check-type, and values it is compared to.
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4.5. system state Disclosure
Disclosing the state of a robotic system is one of the key features 
of ArmarX for diagnosing problems at runtime and inspecting 
the internal state during development. Programmers are able to 
access data of many parts of the system required for debugging, 
monitoring, and profiling purposes. Different built-in frame-
work mechanisms provide this information, which includes 
sensor data, conditions, statechart-related events, as well as 
component dependencies, and the execution state of statecharts 
and components. Specialized visualizations are available for pre-
senting and inspecting these different aspects. Textual output is 
presented as a time-stamped log, memory contents are displayed 
in a 3D view, and a plotter is provided for one dimensional 
sensor data. Statecharts, their control flow, and active states 
are visualized in the StatechartViewer (see Figure 10). Within 
statecharts, conditions are used to generate events based on 
sensor data and can be viewed as Boolean expression trees, as 
shown in Figure 9.

Additionally, ArmarX discloses the system state on a very 
low level for determining bottlenecks or providing hints for 
partitioning the distributed application. On the component level, 
CPU-, memory-, and network utilization data are accessible via 
the observer mechanism [see Vahrenkamp et al. (2015)] for easy 
visualization with the graphical plotter. On the statechart level, 
state transitions and timing information about state durations are 
available. To enable later processing and evaluation, this low-level 
data can be stored persistently in the memory structure provided 
by ArmarX.

4.6. Validation
Validation is always an important point in software development. 
Since generic formal validation of a statechart with arbitrary user 
code is difficult, we supply the possibility to create statechart test 
cases like unit tests. Since ArmarX statecharts usually interact 
with robot components, the user can specify a simulation 
environment that should be started alongside the statechart test. 
In the statechart test, the output parameters of a state or whole 
statechart can be validated, or the status of robot components like 
the memory can be checked.

5. aPPlicaTiOns anD Use cases

In this section, several applications and use cases realized with 
ArmarX will be presented, which show how distributed stat-
echarts support robustness and provide both convenient usage 
and flexibility.

5.1. robustness and Fault recovery
In this use case, we show how fault recovery concepts are realized 
within ArmarX. This is important, since most robotics software is 
written in C++, which allows writing program, crashing imple-
mentations easily. Hence, a robust robot framework must be able 
to deal with crashing applications in a way that other components 
are informed but not affected by a component fault. Further, fault 
recovery mechanisms should be provided for high- and low-level 
robot control.

Several concepts support robustness in ArmarX.

•	 Dependency management: due to the distributed nature of 
ArmarX, crashing components do not affect other compo-
nents in a non-deterministic way. If component A depends on 
another component B, the dependency manager of ArmarX 
only sets A to the state connected after B is fully initialized and 
connected. If component B stops working (i.e., crashes), A is 
informed and reset to its prior initialized state. If the system 
is capable of restarting B, A will be set to connected again.

•	 Automatic restart: the deployment mechanisms of the dis-
tributed Ice middleware can be used to automatically check 
for running applications. In case an application (an ArmarX 
component) stopped working, it can be automatically 
started again.

•	 High-level fault recovery: if an implementation of a robot 
statechart is erroneous and causes the statechart to crash, the 
encapsulating statechart is automatically informed that the 
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FigUre 11 | Distribution of statecharts increases robustness of the system. Left: the CrashTestMain state encapsulates a remote sub-state, which faults 
from time to time due to a segmentation fault. Right: the C++ code of the enter method of the state CrashingRemoteState, which causes a segmentation fault error 
in a non-deterministic way. The error results in an immediate termination of the application that executes the sub-state.

FigUre 10 | The current state of an executed statechart can be inspected live in the statechartViewer. The statecharts are layouted on the fly. The red 
state border signals that this state is active. On the right, current state parameters of the selected state can be examined. Executed transitions are highlighted as 
well in red, which fades to black over a few seconds to visualize the transition trace.
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execution of its sub-state resulted in a failure. Hence, the high-
level robot program can consistently handle defective parts in 
the robot program, which could result in a non-deterministic 
behavior of the robot otherwise.

In the following section, we will show how a crashing sub-
statechart can be handled by the robot program. In Figure 11, 
a statechart is depicted on the left. The execution of the 
statechart starts with the MainState, which emits the event 
EvProceed (1 in Figure  11) causing the execution to pass to 

the CrashingRemoteState statechart (2 in Figure 11). A normal 
execution would result in a success event (3 in Figure 11), but 
as shown in Figure  11 on the right, the statechart crashes in 
a non-deterministic way due to a segmentation fault. Such a 
segmentation fault results in an immediate termination of the 
application executing CrashingRemoteState. The encapsulating 
statechart CrashTestMain automatically gets informed by the 
ArmarX runtime system via the Failure event (4 in Figure 11) and 
can recover from this faulty behavior in a deterministic manner 
(5 in Figure 11).
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TaBle 1 | generic set of skills available for use with different robots.

skill Description

MoveJoints Moves joints either in position or velocity control mode
MoveTCP Moves the tool center point to a Cartesian target
VisualServo Implements a position-based visual servo approach
MovePlatform Moves a platform-based robot along a graph or to a 

specific point
LookTo Centers a Cartesian position with the head
GraspObject Picks up an object with an end effector
BringObject Picks up an object and delivers it to a specified location
ZeroForce Enables zero force control for an end effector
StopRobot Stops all movements
PlaceObject Puts down a grasped object
ScanForObject Applies a scanning strategy to search for an object
TrackObject Tries to track an object
ViewSelection Changes view direction, according to an automatic 

attention mechanism
Open/Close/Shape 
Hand

Move hand to specific shapes
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5.2. generic robot skills
ArmarX provides a library of generic skills, implemented as 
statecharts, which can be configured and used for a wide variety 
of robots. The skills cover most basic capabilities needed to setup 
a robot skill library. In addition to these skills, robot-specific 
statecharts can be implemented to account for specific features of 
the platform. The set of generic skills currently provided by the 
ArmarX framework is listed in Table 1.

Generic skills can be applied to a specific robot by configuring 
their parameters and by providing robot-specific components on 
the mid-level of the ArmarX architecture (see Figure 1). Hence, 
statecharts provide a dependency list of components, which 
must be running before execution is possible. For example, the 
ShapeHand skill needs a HandUnit to be running, and the skill 
parameters must specify which shapes are available for execution.

5.2.1. Use Case: Generic Skills on Different Robots
To show how skills can be applied to different robots, we present 
a use case for YouBot (Kuka, 2015) and ARMAR-4 (Asfour et al., 
2013), showing the required steps to use the skills MoveTCP and 
MoveJoints on different robots.

In general, two steps are needed to program a robot platform 
with ArmarX. First, a basic set of (robot) components must be 
configured in order to realize the mid-level structure of the robot 
software, as shown in Figure  1. Second, the initial set of skills 
has to be configured, defining the basic capabilities the robot 
programmer can use to build robot applications.

5.2.1.1. Robot Components
Initially, several components must be realized for the different 
robots. Beforehand, the robot’s visualization, kinematics, and 
dynamics properties must be defined. In ArmarX, these prop-
erties are specified with the Simox (Vahrenkamp et  al., 2012) 
robot file format. The minimal set of components needed for the 
MoveJoints and MoveTCP skills is listed below:

•	 KinematicUnit: encapsulates access on joint level. In the 
following examples, the robots are simulated with kinematic 

simulation units provided by ArmarX. On a real robot, 
this component is connected to the robot’s hardware layer. 
In case of ARMAR-4, the KinematicUnit connects to the 
ArmarX-RT layer to communicate with the motors and sen-
sors (Vahrenkamp et al., 2014).

•	 KinematicUnitObserver: observes the raw joint data in order 
to trigger events.

•	 RobotStateComponent: a network transparent representation 
of the robot used for forward and inverse kinematics.

•	 TCPControlUnit: allows control of the tool center point (TCP) 
in Cartesian space.

Access to the real robot (i.e., to the drivers) needs to be 
implemented via the KinematicUnit component, while all these 
components are already available in simulation and can be 
configured for use with a new robot. Hence, a basic framework 
can be quickly realized by configuring provided ready-to-use 
components of ArmarX.

5.2.1.2. Robot Skills
Once all components are set up for the specific robot, high-level 
robot program can be implemented. As a starting point, several 
skills can be taken from the ArmarX skill template library and 
configured to be used on the robot. In this example, the MoveTCP 
and MoveJoints skills are used, and a waving statechart is pro-
gramed via the Statechart Editor tool. As shown in Figures  12 
and 13, the realization can take advantage of the ready-to-use 
skill library of ArmarX on such different robots as ARMAR-4 
and YouBot. In addition, the waving statechart that is used in 
Figure 13 at the top can be directly executed on the real ARMAR-
4, as shown in Figure 13 at the bottom. Such a skill transfer for 
the complex reactive grasping skill (similar to 3) is also shown in 
the work presented by Paikan et al. (2015).

5.3. reactive grasping of Unknown 
Objects
In the context of the Xperience (2011) Project, we developed a 
statechart and extended accompanying components to perform 
Reactive Grasping based on vision and haptics on the humanoid 
robot ARMAR-III (Asfour et  al., 2006). This use case demon-
strates reusability of ArmarX statecharts through extension of the 
programed behavior and the incorporation of sensor feedback on 
different hierarchy levels. The approach presented in Schiebener 
et al. (2011) was used to initially learn an object hypothesis and 
pose. The pose and the forward kinematics are not perfectly 
exact. Therefore, correcting actions during grasping are neces-
sary. Guidance of the hand during the grasping approach phase is 
based on visual servo. To accommodate for inaccuracies, we need 
an extended visual servoing that reacts on collisions of the hand 
with the object. Instead of implementing a specialized version of 
visual servoing, we created a wrapping statechart called Visual 
Servo with Collision Detection, which is used in our Reactive 
Grasping (see Figure 14).

In parallel to the statechart execution, three different collision 
detection components are running to detect visual collisions, 
tactile collisions, and collisions inferred from proprioceptive 
data. These components run independently, monitor different 
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FigUre 13 | arMar-4 executing a waving motion with the same statechart in simulation and on the real robot.

FigUre 12 | The waving statechart executed on YouBot, while running a kinematic simulation.
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sensors of the robot, and offer event notifications usable in 
statecharts. The wrapping statechart Visual Servo with Collision 
Detection monitors the output of the collision detection com-
ponents by installing conditions with given thresholds on the 
output data. Then, the visual servoing statechart is started as a 
sub-state. If any of the conditions is met during servoing, the 
appropriate event is fired. The wrapping state Visual Servo with 
Collision Detection is exited, and the execution of all sub-states 

is stopped. Hereby, the visual servoing is interrupted, and the 
collision can be handled appropriately by correcting the grasp 
pose. After correcting the pose, the statechart transitions back 
to the extended visual servoing.

By wrapping the visual servoing skill in a statechart, we can 
reuse and extend the visual servoing without modifying it. The 
used visual servoing skill is the standard visual servoing from 
the ArmarX statechart library.
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Visual Collision
Detection Component

Tactile Collision
Detection Component

Proprioceptive Collision
Detection Component

FigUre 14 | simplified statechart for reactive grasping in the Xperience project.
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5.4. Dynamic state replacement
One use case for the dynamic state replacement feature of 
ArmarX is the combination of a symbolic task planning system 
with ArmarX statecharts for execution. To connect the planning 
system to statecharts, a control statechart, as shown in Figure 15, 
was built around one DynamicRemoteState (depicted in violet). 
Since statecharts do not offer an interface for remote procedure 
calls, it is not possible to communicate with states directly. States 
react on external changes by observing changes in datafields. Thus, 
we inserted an additional component, the plan step observer, on 
which the statechart can install conditions to receive an event 
(EvNextStepPlanned) on changes related to the current planning 
step. The planning system manages this datafield containing the 
current action and its parameters. After the event was received, 
the desired skill statechart is loaded into the DynamicRemoteState 
and is directly executed. With this powerful mechanism, it is pos-
sible to implement interactive and dynamic robotic applications 
in a consistent and robust way.

6. DiscUssiOn

In the following section, we are discussing our experiences with 
implementing and developing robot programs with the ArmarX 
statechart framework. Since we realized a large number of robot 
programs for a wide variety of applications for the robots of 
the ARMAR series, we gained rich experience that allows us 
to elaborate on advantages and disadvantages of the proposed 
concept. The presented statechart approach has extensively been 
used not only to demonstrate simple tasks like the examples 
in this paper but also for complex skills applied in real world 
scenarios, including grasping, opening and closing doors, mix-
ing, or pouring as presented in Ovchinnikova et al. (2015).

We think that the decision to restrict the ArmarX statecharts 
to a subset of Harel’s original statechart definition has been shown 
to benefit our statechart concept, since the removed features 
(inter-level-transitions, history-connector) were rarely missed 
but improved comprehension and reusability significantly.

Compared to the framework (Scholl et  al., 2001) we used 
before, in which robot behaviors were also encoded by state 
machines, we see the advantages of now having a clear structure, 
advanced graphical tools, and a consistent concept for defining 
the data flow. In particular, the explicit definition of the data 
flow, i.e., specifying input and output parameters of a state with 
a defined and clear scope, helps immensely with understanding 
and reusing existing states. Another effect of this explicit data flow 
definition is that implicit data dependencies to other states are not 
possible, which ensures that entering a state with the same set of 
input parameters leads to the same result. Naturally, specifying 
the data flow explicitly and in detail is development overhead, 
but we are sure that it is worth the effort in the long run. Though, 
specifying and inspecting data flow with graphical tools simplifies 
this process greatly.

Such graphical tools are not only useful for defining the 
data flow but also indispensable for developing complex state 
machines (although ArmarX allows defining statechart structures 
manually, it is infeasible to realize complex robot programs this 
way). Hence, the graphical Statechart Editor is one of the most 
important tools of the ArmarX framework, which supports the 
convenient development of robot programs.

From our experience, we can confirm the necessity seen 
by Harel of introducing the concept of hierarchies into state 
machines. Hierarchies are essential for developing complex 
state machines and for maintaining reusability. For example, the 
grasping skill consists of up to six hierarchy levels, where some 
of the sub-states are used several times. Unrolling this into one 
hierarchy level results into a statechart that is practically impos-
sible to design due to the number of required states.

The ArmarX statecharts proved to be applicable for use cases 
from low-level to high-level. An example of a low-level statechart 
is a controller for holonomic platform movements, where the 
leaf state is the PD-controller (using the asynchronous user code 
run-function), and the level above decides on the waypoints. An 
example for a high-level statechart is the statechart from Section 
4, which is used for symbolic plan execution.
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Symbolic Planning System Plan Step Observer

Sets plan step

Observes for 
new skill result

Observes for 
new plan step

Set skill results

FigUre 15 | Planning statechart with a DynamicRemoteState (violet) that can be changed at runtime.
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Currently, there are many small decider or preparation states, 
performing some minor, but necessary calculations like coordi-
nate transformations. This introduces clutter, since new states 
need to be created frequently. In the future, we plan to improve 
this by the possibility to attach conversion-functions to transitions 
to perform such minor calculations.

7. cOnclUsiOn

We presented the statechart concept of the robot development 
environment ArmarX and showed how high-level robot pro-
graming can be realized in a robust and convenient way. The 
event-driven statechart approach within ArmarX helps real-
izing important features, such as increased robustness through 
distributed program execution, convenient programing through 
graphical user interfaces, and versatility by interweaving dynamic 
statechart structure with custom user code. Additionally, we 
extended the original statechart concept by Harel with the possi-
bility to explicitly specify data flow between states. These features 
build a solid base for implementing higher-level robot programs, 
which is accompanied by advanced framework capabilities, such 
as reusable robot programs and the presented ability to transfer 
skills to different robots.

In future work, we will improve the framework in terms of 
high-level robot program development, validation, and debug-
ging. Therefore, we will introduce orthogonality into the stat-
echart concept to enable parallel statechart structures. Currently, 

parallel execution is supported only between hierarchy levels, 
but there are use cases where orthogonal skill execution eases the 
design of a high-level robot program. In addition, we will work 
on automatic statechart validation in order to eliminate faults 
in robot programing and to speed up the development process. 
Furthermore, we plan to offer break points in statecharts, which 
will greatly improve debugging on statechart level.
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While recent advances in approaches for control of humanoid robot systems show 
promising results, consideration of fully integrated humanoid systems for solving com-
plex tasks, such as disaster response, has only recently gained focus. In this paper, a 
software framework for humanoid disaster response robots is introduced. It provides 
newcomers as well as experienced researchers in humanoid robotics a comprehensive 
system comprising open source packages for locomotion, manipulation, perception, 
world modeling, behavior control, and operator interaction. The system uses the Robot 
Operating System (ROS) as a middleware, which has emerged as a de facto standard in 
robotics research in recent years. The described architecture and components allow for 
flexible interaction between operator(s) and robot from teleoperation to remotely super-
vised autonomous operation while considering bandwidth constraints. The components 
are self-contained and can be used either in combination with others or standalone. 
They have been developed and evaluated during participation in the DARPA Robotics 
Challenge, and their use for different tasks and parts of this competition are described.

Keywords: urban search and rescue, humanoid robots, mobile manipulation, human–robot interaction, motion 
planning

1. InTRoDUcTIon

The 2015 DARPA Robotics Challenge (DRC) Finals showed that robotic systems provide promising 
capabilities for providing assistance in disaster scenarios that necessitate complex locomotion and 
manipulation abilities (see Figure 1). At the same time, the competition showed that there are still 
numerous research challenges that have to be solved before robot systems are capable and robust 
enough for use in real disasters.

Toward this goal, we present our ROS-based framework for solving complex locomotion and 
manipulation tasks. To our knowledge, it is the first fully open-sourced framework featuring 
documentation that allows other researchers to replicate the provided functionality and results in 
simulation or, after necessary interfacing, on their own robot systems. Our framework is based on 
ROS (Quigley et al., 2009), which has evolved to be the de facto standard robotics middleware within 
the robotics research community and parts of the robotics industry.
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FIgURe 1 | Two of the robot systems used. The Boston Dynamics Inc. (BDI) Atlas robot and the Robotics THOR-MANG robot.
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The contribution of this work is twofold:

•	 The framework and architecture of our approach for enabling 
complex humanoid robots to fulfill challenging tasks in disas-
ter environments are detailed.

•	 We provide a detailed discussion of different components for 
perception, locomotion, and manipulation contributing to 
achieve the overall task of flexible disaster response.

2. RelATeD WoRK

While humanoid robotics is an active research area, the DRC 
program demonstrated the wealth of open research challenges in 
areas, such as controls, planning, and human–robot interaction. 
For the first time, humanoids had to fulfill a variety of tasks in a 
common competition setup, which shifted focus from concen-
tration on specialized research topics toward the realization of 
humanoid (and other) systems that provide integrated percep-
tion, locomotion, and manipulation capabilities.

After the DRC Trials, publications by multiple teams described 
their approaches, but the majority of teams did not make their 
software available as open source that would allow for reproduc-
tion of the presented results. The MIT DRC team uses optimi-
zation-based planning and control (Fallon et  al., 2015), LCM 
(Huang et al., 2010) as a middleware, and the Matlab-based Drake 
system as a planning and control backend.1 Team IHMC uses a 
proprietary middleware based on Java (Johnson et al., 2015). Both 
teams provide significant parts of their software as open source 
software, but do not provide instructions and a setup that allows 
running their full setup as used for the DRC in simulation. We 

1 https://github.com/RobotLocomotion/drake 

provide an overview of our DRC related research in Kohlbrecher 
et al. (2015) and detail aspects in separate publications on footstep 
planning (Stumpf et al., 2014), manipulation (Romay et al., 2014, 
2015), and behavior control (Schillinger et al., 2016).

In Du et al. (2014), a manipulation approach used with the BDI 
Atlas robot is described, focusing on some of the DRC tasks. In 
Banerjee et al. (2015) another human-supervised manipulation 
control approach is described with a focus on the door DRC task.

For manipulation, bilateral teleoperation approaches allow 
teleoperation by the operator, while the robot simultaneously 
provides force feedback. Although demonstrations show the 
approach to be highly promising where applicable, there are 
potential stability issues when using bilateral approaches (Willaert 
et al., 2012) that make their use infeasible with constrained and 
significantly varying communications conditions, such as those 
considered in this work.

A relevant account by various teams of “What happened at the 
DRC” is available online (DRC-Teams, 2015). This gives a brief 
summary of issues and results from many teams.

3. ARchITecTURe

The goal of this work is to provide a comprehensive and re-
usable software ecosystem to enable humanoid robot systems to 
perform complex locomotion and manipulation tasks. To provide 
compatibility with a wide range of robot systems and to reduce 
integration effort with existing open source software, the system 
uses ROS as middleware.

3.1. Requirements
The ability to leverage existing developments and software in 
a way that allows users to avoid the duplication of efforts and 
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spending time re-implementing approaches is highly relevant for 
advancing the field of robotics research. While this requirement 
is not as relevant for mature commercialized robotic systems, 
using standard software for functional system components 
allows new users to reproduce results quickly. This is major driver 
for accelerating research in robotics and, thus, a key factor for 
accelerating the development of disaster response robots; that is, 
developing supervised autonomous systems that are deployable 
in real disaster situations.

The achievable complexity of robotic system architectures 
is limited unless the architectural design allows a transparent 
exchange of functional components (e.g., for manipulation or 
footstep planning) and also can be extended by additional func-
tional components. Modularity, re-usability, and extensibility 
are key properties of the architectural design needed to enable 
sustainable robotic system development.

While robots can be considered expendable in the sense that 
a loss is acceptable (in contrast to human responders), high reli-
ability and resilience are important aspects that disaster response 
robotic systems have to provide. Failures in disaster situations can 
have grave consequences; for instance, when a robot gets stuck 
or otherwise unresponsive, it can then block future access for 
responders, or tie up responders that could be required elsewhere.

As communications in disaster environments can be degraded, 
the possibility of delayed, reduced bandwidth, intermittent, or 
even completely absent communication has to be considered in 
the system design. Appropriate measures have to be taken to be 
tolerant of variations in communication link quality. This also 
motivates the need for autonomous capabilities. Autonomous 
performance under ideal (communications) conditions might 
actually be inferior to a human expert using teleoperation; how-
ever, under constrained communication conditions with outages 
or very high latencies, teleoperation might become impossible 
to use. In that case, leveraging autonomous functionality, for 
instance, for motion planning and control, is the only possible 
way to proceed.

3.2. System Architecture
To achieve high reliability, as discussed for the coactive design 
concept (Johnson et  al., 2014) observability, predictability, and 
directability of the robotic system are required. When consider-
ing the human supervisor and robot as a team, the members, 
thus, have to allow each other to understand the state of the 
other side (observability). They also have to be able to predict 
and understand the intent of the other side (predictability). Lastly, 
team members have to be able to communicate meaningful and 
accurate commands (directability).

The capability of informing the operator about the robot 
state using appropriate information and visualization must be 
considered (Kohlbrecher et al., 2015). Predictability is achieved 
by visualizing action outcomes prior to the command being 
sent to the robot. Achieving directability requires interfaces that 
allow for efficient and reliable interaction. These concepts will be 
revisited in following sections.

As noted previously, to achieve high reliability and versatility, 
the capability to flexibly change control and interaction modes 
between autonomous and teleoperated operation is crucial. 

While autonomous and assistive functions promise to reduce 
workload of operators and in some cases higher reliability, they 
can be brittle in real-world scenarios, where unexpected situa-
tions and failures can foil prior mission plans. In such cases, the 
capability of flexible switching between modes can significantly 
improve the reliability of the system, as the human supervisor has 
a toolbox of options at her disposal and can dynamically switch 
between them, adapting to the situation.

As the lowest level of interaction between operator and robot, 
teleoperation should always be available, communication permit-
ting. Bypassing autonomous functions, this interaction mode 
shifts burden to the operator. Importantly, connectivity between 
robot and operator has to be sufficient in both directions; oth-
erwise teleoperation becomes slow, unsafe, or even impossible.

With currently fielded robotic systems, these good communi-
cations conditions have to be met, as otherwise the robot becomes 
inoperable. Once autonomous assistance functionality is in more 
widespread use, the capability to fall back to teleoperation can 
be impeded by communication constraints, allowing for new 
applications. As teleoperation is the last fallback mode in case 
autonomous components fail, availability of it, no matter how 
limited, is important for overall reliability as it provides the ability 
to recover from unexpected scenarios.

In supervised autonomy mode, the operator provides task-
level goals to the robot that are then followed autonomously using 
onboard systems. The operator observes actions, and generally 
provides permission to proceed at significant steps. This reduces 
reliance on connectivity and low latency communication, as 
the robotic system can follow task-level goals even when com-
munication is intermittent; however, such an approach requires 
sophisticated sensing and planning capabilities for onboard 
systems. Using full autonomy, the human operator only specifies 
the mission and associated tasks and provides a start command, 
monitors data provided by the robot to maintain situation aware-
ness, and either reacts to requests from the robot or switches to a 
lower autonomy mode on her own discretion. The clear advantage 
of full autonomy is that there is no need for communications as 
long as everything works well. The onboard autonomy system 
leverages the capabilities for task-solving used in the supervised 
autonomy mode and also makes use of planning capabilities, 
either directly or via task-level autonomy functionality.

It is crucial that when using a flexible level of interaction, the 
system stays in a well-defined state. For instance, when teleopera-
tion commands are sent, autonomous control components have 
to be notified of the switch in interaction level as to not cause 
undefined behavior when commands both from the operator 
and autonomous executive are executed at the same time. This is 
discussed in Section 6.

3.3. Middleware
Developing a modular system requires a common communica-
tion framework, or middleware. To satisfy the research-level 
requirements on reproducibility and modularity, ROS is chosen 
as the underlying middleware. The nearly ubiquitous prolifera-
tion of ROS in the research community allows for using estab-
lished standard interfaces and the ROS infrastructure allows 
for the development of highly modular code. With a large user 
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base, the barrier of entry for other researchers to use open source 
 developments is much lower, which is highly advantageous con-
sidering the goal of advancing research for challenging applica-
tions, such as versatile disaster response robots.

While ROS provides solutions for many common robotics 
tasks, there are capabilities that received less attention by the 
research community than others. This is also true for disaster 
response using humanoid robots. The following areas were 
identified as requiring significant contributions to enable robot 
to perform complex disaster response tasks:

•	 Communication over constrained connections. ROS does not 
provide built-in facilities for communication over a degraded 
link.

•	 Footstep planning for locomotion in challenging terrain.
•	 Operator guided manipulation.

In the remainder of this work, components that address these 
shortcomings are detailed. It should be noted that the focus is not 
on low-level control of humanoid robots; it is assumed that basic 
control and locomotion capabilities are provided. The presented 
contributions leverage and interface with these basic control 
capabilities to achieve flexible high-level control.

3.4. constrained communications
While ROS provides transparent capability for distributing com-
ponents over different machines by means of the network-based 
TCP/IP-based transport, communication constraints can impose 
additional challenges that make using ROS standard transports 
not feasible in some highly constrained scenarios. For those, spe-
cialized communication bridge tools need to be used, separating 
the ROS networks of the onboard and operator control station 
OCS sides. Such software has been developed by Team ViGIR 
during participation in the DRC (Kohlbrecher et  al., 2015). In 
the sections that follow, we reference communications across the 
comms bridge; therefore, this section provides a basic description 
of the functionality.

The ROS middleware presumes a connection to a centralized 
communications manager (ROS master). Furthermore, com-
munication with the ROS master requires a non-trivial amount 
of communication as modules come on line. As the degraded 
communications allowed by the DRC rules did not permit such 
unrestricted communications, Team ViGIR used a dual master 
setup between the OCS side and the robot onboard side.

The communication bridge system (comms bridge) developed 
by Team ViGIR uses mirrored components on either side that 
pass data across dedicated network channels. The components 
subscribe to messages on one side, compress them using custom 
encodings, send them across to the other side for uncompressing, 
and republish them as standard ROS messages. The messages use 
consistent names on each side to allow the system to also run 
transparently as a single ROS network without the comms bridge.

As the communication channels and compression are opti-
mized for the specific rules of the DRC, and contain certain 
proprietary data for the Atlas robot, we have not open sourced the 
comms bridge and, therefore, it is not the focus of this paper. The 
general idea of a comms bridge is generally applicable, so that this 

paper describes several of the approaches to data communication 
over constrained links in the sections that follow.

4. peRcepTIon AnD STATe eSTIMATIon

The worldmodel system has to provide state estimation and situa-
tional awareness (SA) to the supervisor–robot team. To effectively 
leverage the human supervisor’s cognitive and decision-making 
capabilities, a state estimate of both the internal and external state 
of the system has to be made available via the often constrained 
communication link between robot and operator. With current 
state of the art sensors often providing sensor data at rates in 
excess of 100 MB/s, this is both crucial and challenging.

The type of communication constraints under which the 
perception system has to work depends on used hardware and 
encountered scenario. They can include limited bandwidth, 
significant latency, and intermittent communication outages. The 
worldmodel system is designed to provide situational awareness 
and state estimation for the operator under all of these conditions. 
To achieve reliable and efficient manipulation with a remote 
operator in the loop, obtaining 3D geometry data is crucial. In the 
following sections, the approach and components for providing 
SA to both human supervisors and the robot are described.

4.1. Worldmodel Server
The worldmodel server2 component preprocesses, collects, and 
aggregates sensor data and makes it available to both onboard and 
OCS system components. Leveraging established open source 
libraries, such as PCL (Rusu and Cousins, 2011) and octomap 
(Hornung et al., 2013), the worldmodel server allows queries of 
information about the environment with flexible level of detail 
and bandwidth consumption.

Three-dimensional sensing is provided by onboard sensors, 
providing point cloud data. A frequently used setup used here is 
a LIDAR and optionally a RGB-D type camera system. As RGB-D 
sensing generally has a smaller field of view, is sensitive to light-
ing conditions, and has less consistent measurement accuracy, 
LIDAR data are used as the default main source for creating a 
3D geometry model of the environment onboard the robot. To 
achieve this, the planar scans of the LIDAR have to be preproc-
essed and aggregated, so full 3D point clouds can be generated 
from them. The following preprocessing steps are employed:

First, scan data are filtered for spurious measurements com-
monly called “mixed pixels” that occur at depth discontinuities 
(Tuley et al., 2005; Tang et al., 2007), using the shadow point filter 
available as a ROS package.

The filtered scan is then converted to a point cloud representa-
tion. During this process, motion of the LIDAR on the relative to 
the robot is considered and a high fidelity projection is employed, 
transforming every scan endpoint separately.

In a last step, parts belonging to the robot have to be filtered 
out of LIDAR data. To increase robustness against errors in 
kinematics calibration, a specialized robot geometry model uses 

2  h t t p s : / / g i t h u b. c o m / t e a m - v i g i r / v i g i r _ p e r c e p t i o n / t r e e / m a s t e r /
vigir_worldmodel_server 
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simplified and enlarged collision geometries for self-filtering 
purposes.

LIDAR scans are saved in a ring buffer along with snapshots 
of coordinate frames used within the system. By employing this 
method, aggregate point clouds relative to different coordinate 
frames can be provided on request. A ROS API allows querying 
the world model via both ROS topics or services and flexibly 
retrieving region of interest point cloud or octomap data relative 
to different coordinate frames. This capability can be employed by 
both onboard and OCS system components.

The primary onboard 3D geometry model is created using 
octomap, a volumetric, probabilistic approach using an octree 
as a back-end. Using this approach, the environment represen-
tation maintained onboard can be updated efficiently and in a 
probabilistically sound way. Even in case of changes in the envi-
ronment or drift in state estimation, the environment model 
is updated accordingly and maintains a useful representation. 

The octomap environment model provides the main geom-
etry representation and is used for multiple purposes. Using ray 
casting, distances to geometry can easily be determined. This 
feature can be used from within the OCS to perform ray cast 
distance queries against onboard geometry. In this case, only 
the ray cast information has to be transmitted to the robot and 
the distance information is transmitted back, utilizing only very 
low bandwidth.

The capability to request ROI data of the environment model 
allows to transfer small ROI geometry over the constrained 
connection on supervisor demand and also makes geometry 
available to other modules on request, like the footstep planning 
system. Similarly, it is possible to request 2D grid map slices of 
the octomap representation, aggregating 3D data into a 2D grid 
map. Using compression during transmission, this representation 
is very compact and often sufficient for supervisors to gain SA.

4.2. lIDAR Data compression
In case of intermittent communication, the approach for query-
ing the onboard worldmodel for data from the OCS as described 
in the previous section can fail, as no data can be transmitted in 
periods of communication loss. Instead, it is desirable to transmit 
all geometry information available onboard to the OCS side as 
long as a communication window is available. A mirror of the 
worldmodel can then be queried on the OCS side instead of 
relying on a connection to the remote onboard worldmodel. The 
approach described in the following is available online.3

In case of intermittent communication between supervisors 
and robot, two instances of the worldmodel server are used: one 
for the onboard/robot side and one for the OCS side. As direct 
transmission of point cloud data is error prone when experiencing 
packet loss, additional processing on LIDAR data is performed to 
make each packet compact enough to fit within a standard 1500-B 
UDP packet and compress it as to be able to transmit a maximum 
of data during a communications burst.

3 https://github.com/team-vigir/vigir_manipulation_planning/tree/master/
vigir_lidar_octomap_updater 

For compression of LIDAR data, the GIS research community 
developed solutions for large-scale airborne LIDAR datasets 
(Isenburg, 2013), but these significantly differ in structure from 
those by small planar scanners. For this reason, an approach lev-
eraging the special structure of data provided by planar scanners 
is presented here.

Direct transmission of point cloud data generated onboard the 
robot would cause prohibitive bandwidth cost as a point cloud 
representation with at least three floating point values for each 
Cartesian point is not a compact one. For this reason, the natural 
and compact representation of a laser scan as an array of range 
values is leveraged and used instead. To fully reconstruct the 3D 
geometry captured by a single scan, a high fidelity projection 
of the scan has to be performed, however, taking into account 
motion of the LIDAR mirror during the data capture process. If 
this motion is not considered, scan data show visible skew and 
ghosting (double walls) once it gets converted to a point cloud 
representation. The following approach is thus utilized:

•	 Perform a 3D high fidelity projection onboard the robot and 
perform self-filtering. The onboard octomap and worldmodel 
are updated simultaneously.

•	 Compress the scan data by writing the range values to a 2-Byte 
array representing millimeters and also encoding self-filtering 
information. Threshold and map intensity information to a 
single Byte.

•	 Add information about the scanner transform in world frame, 
one transform for the start of the scan and one for the end. 
This information allows performing a high fidelity projection 
of the scan after unpacking on the OCS side.

•	 Split the compressed scan into chunks that are small enough 
to be compressible to <1500 B. A schematic of this approach is 
available in Figure 2. By using this approach, each compressed 
scan packet is a self-contained unit and can be unpacked 
and used on the receiver side without the need for packet 
reassembly.

On the OCS side, the compression process is reversed, and 
resulting scan data are used to update the OCS world model. 
The size of a LaserScan message is dominated by the range and 
intensity fields. A typical Hokuyo LIDAR, for instance, provides 
1080 measurements per scan. For compression, floating point 
range values in meters are converted to millimeters and stored 
in an unsigned 16 bit number. Self-filtering of robot parts from 
LIDAR data requires knowledge of the whole transform tree of 
the robot and, thus, has to be performed on the onboard side 
if transmission of high bandwidth transform data to the OCS 
side is to be avoided. Per default, self-filtering is, thus, performed 
onboard and compressed laser scan data are annotated with a 
single bit per scan point, indicating if the self-filter determined 
that it belongs to the robot or objects attached to the robot.

Intensity data are converted from a floating point intensity to 
an unsigned 8 bit number. Here, a loss in fidelity is acceptable as 
intensity is mainly used for visualization and a range of 28 values 
is sufficient for presentation to the human supervisors.

Table  1 shows the different scan representation and their 
relative size. In Figure  3, the setup using one worldmodel 
instance each on the onboard and OCS sides is visualized. The 
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FIgURe 2 | Splitting lIDAR scans for compression. A schematic view from the top is shown here and the rotation direction indicated by an arrow. A LIDAR 
scan can be described by the start angle αstar and end angle αend. With a known angular resolution, scan points can be projected. To achieve a small packet size, the 
scan is split and intermediate start and end angles computed.

TABle 1 | Different lIDAR scan representations and the associated data 
size.

Data laserScan  
(Bytes)

localizedlaserScan  
(Bytes)

compressed  
(Bytes)

Header ≥16 – –
Metadata 7 × 4 – –
Ranges 4 × 1080 2 × 1080 < × ×1

3 2 1080

Intensities 4 × 1080 1080 < × ×1
3 2 1080

Total 8684 3240 <1080

As shown, the compressed size results in a packet size below the 1500 B of a standard 
size UDP packet.
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synchronization is performed using the previously described 
compressed scan transmission mechanism.

4.3. Sensor Data processing for Situation 
Awareness
To provide the supervisor(s) with the necessary SA for complex 
manipulation tasks, not only geometry but also image and texture 
data are crucial. In this section, components allowing for the 
processing of sensor data to achieve suitable representations and 
visualizations for obtaining supervisor SA are discussed.

4.3.1. Region of Interest Image Data
As images are readily compressible using standard compression 
methods, providing such data to the operator is often possible and 
can be feasible even when bandwidth is constrained. Often, only 
a limited region of interest in the full image is required. Examples 
are visually inspecting the quality of a grasp or the accuracy of 
end-effector positioning. To provide this capability, the opera-
tor can request full image and region of interest independently, 
making it possible to show coarse resolution full images, but 
high-resolution regions of interest. To minimize communica-
tion requirements, an optional video frame-rate is part of the 
request and images can be sent at a fixed rate without need for 
bi-directional communication.

4.3.2. Mesh Generation
To provide a high fidelity visualization for 3D geometry data, 
an infrastructure for generating meshes from both LIDAR 
point clouds and camera or LIDAR-based depth images was 
developed.4 Compared to plain point cloud visualization, this 
approach allows for a clear view of geometry and texturing of 
mesh surfaces, which allows for easier scene understanding by 
human supervisors.

Figure 4 shows a schematic of the mesh generation data flow. 
As indicated by the light blue OR gates, the mesh generation 
process can be based on different kinds of input data. Based on 
depth images, a mesh can be generated using a FastMesh (Holz 
and Behnke, 2013) approach. The depth image can either be 
provided by a RGB-D type camera or it can be generated from 
LIDAR data. In the latter case, data have to be aggregated over 
time, however. Instead of depth images, LIDAR-based point 
clouds can also be used for mesh generation; in this case, the 
mesh is generated from LIDAR point cloud data directly. This 
approach does not have the restricted field of view of the depth 
image-based one.

An example of generating meshes based on stereo camera 
RGB and depth data is shown in Figure 5. Three novel rendered 
viewpoints are shown, demonstrating how the approach com-
bines the fidelity of image data with 3D geometry.

4.3.3. Fisheye Camera
The Atlas robot could not rotate the Multisense sensor head 
around the yaw axis, greatly limiting the field of view of the main 
sensor system. With early versions of the Atlas robot, this was a 
severe issue, as the volume of good manipulability for the arms 
was outside the Multisense sensor field of view. To remedy this 
issue, a system for rectification the Fisheye lenses of the fisheye 
cameras was developed.5 Using a ROS-integrated version of the 
OCamLib library (Scaramuzza and Siegwart, 2007), the fisheye 

4 https://github.com/team-vigir/vigir_perception/tree/master/vigir_point_cloud_proc 
5 https://github.com/team-vigir/vigir_wide_angle_image_proc 
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FIgURe 4 | options for generating a mesh representation of the environment. The RGB camera image gets texture mapped on a mesh generated from 
LIDAR or depth image data. The depth image is either provided by a camera directly or can be generated from aggregated LIDAR point cloud data.

FIgURe 3 | overview of the Worldmodel server setup. Worldmodel information is synchronized via compressed LIDAR data. One instance of the worldmodel 
server is running on the onboard and OCS side each.
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distortion is calibrated. This allows generating novel rectified 
views from fisheye images not exhibiting severe distortion 
that otherwise makes judging of spatial relations difficult for 
operators.

Recomputing the rectification online, the system can track 
arbitrary frames on the robot or in the environment. It is, thus, 
possible to create a virtual pinhole camera that, for instance, 
tracks an end effector of the robot.

5. plAnnIng

For manipulation, motions to move manipulators into desired 
configurations for grasping or other tasks need to be generated. As 
it can reduce operator workload considerably, a crucial capability 
is automated collision avoidance, both considering self-collisions 
of the robot (e.g., arm coming in contact with torso) and col-
lision of robot parts with the environment. When performing 
manipulation in contact with the environment, motion must not 
lead to unplanned high internal forces acting on the robot, as 
these can quickly lead to damage to the robot, especially if it loses 

balance as a result. While force or admittance control approaches 
can reduce this risk, they are often difficult to implement due to 
limited force sensing and control performance on real systems. 
Preventing unintended contact in the first place thus serves as a 
risk reduction measure.

As high latency limits the usefulness of otherwise promising 
approaches for teleoperation of end effectors that rely on real-
time feedback (Leeper et al., 2013), direct control is not feasible. 
Instead, the supervisor(s) specify goal joint configurations or 
Cartesian goal poses and requests robot onboard systems to reach 
them.

The system described in this section is available as open 
source.6

5.1. previewing Manipulation
As described in Chapter 4, the worldmodel server provides the 
supervisor(s) with the necessary tools to achieve situational aware-
ness of the environment state in a variety of different  bandwidth 

6 https://github.com/team-vigir/vigir_manipulation_planning  
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FIgURe 5 | Rendering novel views based on textured mesh data. (A) RGB image, (B) depth image, and (c–e) novel view points rendered based on applying 
texture to a mesh generated from the depth image.
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conditions. To be able to reliably perform  manipulation, an 
approach for predictive visualization of how the robot interacts 
and likely will interact with the environment in the future is 
required.

With the high number of DOF of humanoid systems and 
the challenges of balance control, judging the reachability and 
manipulability of the robot for a given task can be much more 
difficult than for more conventional robots. While inverse 
reachability approaches show promising results in the literature 
(Vahrenkamp et al., 2013; Burget and Bennewitz, 2015), they do 
not consider constraints beyond kinematics and self collisions. 
Such additional constraints are for instance sensor visibility 
constraints or control-related constraints due to appendage 
control performing better in some configurations than others. It 
would be possible to incorporate those into inverse reachability 
analysis, but this remains a largely unsolved topic for research 
at this time.

To provide an intuitive interface to human operators, the so 
called “ghost robot” is used. This is a interactive puppet robot 
that can be used to predictively simulate the kinematics of 

manipulation tasks. The state of the ghost robot can be modified 
in the user interface without effects on the real robotic system. 
Once the supervisor is satisfied with ghost robot based plan-
ning, planning and motion requests can be generated based on 
the ghost robot state using variety of different options detailed 
below.

The ghost robot is an essential tool for teleoperation and 
supervised autonomy and is used for the full range of manipula-
tion and locomotion control. While it remains possible to move 
the robot by sending joint angles directly, this is discouraged due 
to the high risk involved in such actions.

As shown in Figure 6 the ghost robot state can be modified 
based via a ROS API that allows for the following options:

•	 Joint angles. The ghost robot can externally be set to be in a 
desired joint angle configuration. Importantly, a subset of 
joints can be used here.

•	 Cartesian goals for end effectors. The ghost robot end effectors 
can be moved to Cartesian goals. In this case, an IK solver is 
used internally to solve for the joint positions.
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FIgURe 6 | Schematic showing inputs and outputs for the ghost robot that is used for pre-planning manipulation tasks.
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•	 Cartesian goals for the robot pose. The ghost robot root frame 
(frequently the pelvis in case of a humanoid) can be moved to 
a desired Cartesian goal pose.

If a whole body IK solver is used externally, the ghost can 
also be set to a desired state by jointly using the joint angle and 
Cartesian robot pose interfaces simultaneously.

Based on the ghost robot state, the following types of com-
mands can be generated to be executed on the real robot:

•	 A goal pose for the footstep planner based on the ghost robot 
pelvis position in the global frame.

•	 The joint configuration of one of the ghost’s appendage groups 
can be sent to the onboard controller as a motion target.

•	 The same joint configuration can be sent to the onboard 
motion planner, which then generates a collision free trajectory  
for it.

•	 The Cartesian end-effector pose can be sent to the onboard 
motion planner, which then generates a collision free trajec-
tory to reach it.

It should be noted that the last two options are not equivalent 
on most humanoid robots, as balance control generally will shift 
the pelvis pose when the arm configuration of the robot changes, 
resulting in an offset for the first option.

Figure 7 shows use of the ghost robot during the DRC Trials. It 
is used for determining a stand pose for the robot on the left and 
for planning manipulation of a valve on the right.

5.2. planning System Details
Manipulation for disaster response often incorporates prolonged 
contact situations, for instance when opening a door or turning 
a valve. Especially in disaster response applications, cluttered 
environments present a challenge, as obstacles have to be avoided 
during motion planning.

The manipulation planning system is based on the MoveIt!7 
(Chitta et  al., 2012) motion planning framework available for 
ROS. This framework provides a powerful API for planning and 
different planning components.

The system enables planning to goal joint configurations and 
to goal end-effector poses and thus is directly compatible with 
the ghost robot approach described in the previous section. Two 
planning modes are available: the default mode is unconstrained 
planning, with joints free to move between the start and goal joint 
configurations. The other mode is a constrained motion mode. 
Here, motion is constrained to follow a Cartesian path between 
the start and goal end-effector pose. In this case, waypoints are 
generated based on linear interpolation between start and goal 
position and orientations for waypoints are generated using slerp 
(Shoemake, 1985) between start and goal end-effector quaterni-
ons. More complex constrained motions such as circular motion 
for turning a valve are generated by concatenating multiple short 
linearly interpolated Cartesian paths.

7 http://moveit.ros.org/
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FIgURe 7 | Two examples of using the ghost robot for previewing manipulation. (A) The ghost robot is used to preview the stand pose before performing 
manipulation. (B) Previewing arm motion during the valve task at the DRC Trials. The solid robot is the current true state, while the translucent green one is the ghost 
robot.
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For obstacle avoidance, the volumetric octomap representa-
tion as described in Chapter 4 is used. As contact with the 
environment is required in many manipulation tasks, collision 
checking between end effectors and the environment can option-
ally be disabled by the supervisor(s). For instance, collision 
avoidance is needed to safely bring the robot hand into a position 
to pick up a drill. In order to grasp the drill, collisions between 
the palm and fingers of the hand and the drill handle must be 
allowed, however.

In challenging conditions, noise in sensor data that lead 
to geometric artifacts, preventing successful planning due to 
spurious collisions cannot be ruled out completely. To cope 
with such situations, collision checking against the octomap 
environment model can also be disabled for the complete robot 
geometry; in this case, the ghost robot changes color to warn 
the operator.

For motion planning, the number of joints (DOF) to use can 
be selected by the supervisor(s). For instance, on Atlas, planning 
can be performed using either 7 DOF with the arms only, or by 
including the torso joints and using up to 10 DOF. As the 10 
DOF planning mode tends to result in higher control error or 
oscillation in some joint configurations, the operator can lock a 
selection of torso joints to restrict the planning space. The same 
approach can be used on other robotic systems transparently.

To allow for safety and robustness, the ability to select 
the desired trajectory execution speed with every planning 
request was introduced. Using standard MoveIt! functionality, 
trajectories were previously time parameterized according to 
the velocity limits supplied in the URDF robot model. This 
approach turned out to be not flexible enough for challenging 
manipulation in contact that might require moving appendages 
slow for safety.

5.3. planning Interface
To implement the described manipulation back-end, the MoveIt! 
API was used and DRC-specific capabilities were implemented in 
a separate move_group capability plugin. This offers the advantage 
of retaining standard MoveIt! library planning features, while 
simultaneously allowing the development of extended capabili-
ties specific for disaster response manipulation tasks.

As shown in Figure 8, the planning system is exposed via a 
ROS Action server interface and, thus, provides feedback about 
the planning and plan execution process. The Action interface is 
the sole entry point for requesting and executing motion plans 
and (in order of increasing autonomy) used for teleoperation, 
affordance-based manipulation planning and for motion plan 
requests generated by the behavior executive. For teleoperation, 
an onboard node translates compressed and compact motion 
requests by the operator into an Action request that then gets 
forwarded to the planning system.

5.4. Supervised and Autonomous control
The described planning system offers a powerful API that can be 
used to plan for complex manipulation tasks. In the preceding 
sections, both the teleoperation interface and the planning back-
end are described.

To achieve both task-level supervised operation and 
autonomous control, two additional software components for 
manipulation use the described planning system as a back-end 
for performing manipulation: an object template framework and 
the FlexBE behavior engine.

Figure  9 shows an overview of how the different system 
components interact to achieve the full range of capability from 
teleoperation to full autonomy in interaction with one or more 
human supervisors.

53

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


FIgURe 8 | overview of the planning back-end. Both the planning interface and the LIDAR octomap updater are loaded into the standard MoveIt! move_group 
process as plugins. Using this approach, existing functionality provided by MoveIt! is kept, but extended.

FIgURe 9 | Supporting multiple levels of interaction for manipulation capable avatar robots.
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5.4.1. Object Templates
Instead of directly controlling appendages, the object template-
based approach for manipulation (Romay et  al., 2014, 2015) 
uses models of objects to be manipulated, the so-called object 
templates. These are placed by the human operator in the virtual 
environment model where 3D sensor data of the environment are 
visualized and serve as references to achieve manipulation task at 
a higher level of abstraction.

Object Templates contain relevant information about the 
objects they represent, such as physical and abstract information. 
With this, the operator can provide the robot with potential stand-
ing poses, grasp poses, usable parts of the object, and manipula-
tion skills or affordances (Gibson, 1977) to manipulate the object. 
With each template offering a set of affordances, motion can be 
specified by the operator on the affordance level. A door opening 
motion can, for instance, be commanded by using the “open” 
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FIgURe 10 | Atlas traversing chevron hurdles based on computed footstep plan.

Kohlbrecher et al. A Comprehensive Software Framework for Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 31

affordance defined for the door handle and the “push” affordance 
defined by the door hinge.

The information that object templates provide can also be 
abstracted by higher system layers, such as autonomous behaviors.

5.4.2. Automatic Behavior Control
For autonomous execution of complex manipulation and loco-
motion tasks, the Flexible Behavior Engine (FlexBE) has been 
developed during the DRC. A detailed overview is provided in 
Section 6. The object template system is also used within FlexBE 
to represent manipulatable objects. The behavior executable can, 
thus, take over responsibility for coordinating complex tasks 
from remote human supervisors where applicable.

5.5. Whole-Body planning
While the developed motion planning system performs well for 
many manipulation tasks requiring only upper body motion, 
sampling-based planning falls short for planning whole-body 
motions that require the consideration of balance constraints. 
To also support this, the optimization-based planning approach 
available as part of the Drake framework (Fallon et al., 2015) has 
been integrated with the Team ViGIR planning system. Planning 
using Drake can transparently be used by specifying the plan 
request. Drake has also been integrated with the ghost robot on 
the OCS side and the operator can use Drake-based whole-body 
inverse kinematics to pre-plan tasks, such as reaching toward the 
ground for picking up objects.

5.6. Footstep planning
A key challenge of the DRC was enabling the robot be able to 
tackle locomotion tasks, such as the traversal of sloped stairs, 
ramps, and rubble. While Team ViGIR depended on a manu-
facturer supplied footstep controller for stepping and stability, 
the specification of footstep placements remained a significant 
challenge; Team ViGIR extended an existing planner for 2D 
environments to handle this more complex 3D terrain.

The footstep planner has to satisfy two main requirements: 
the planner has to solve the navigation problem of finding the 
shortest safe path in a given environment. Second, it has to gen-
erate a feasible sequence of footstep placements, which can be 
executed by the robot with minimal risk of failure. Additionally, 
the DRC competition discouraged the use of slow footstep 

planning approaches due to mission time limits. Here, operator 
performance highly depends on the speed and performance of the 
used footstep planning system, so planning efficiency becomes 
important. It is desirable that the planning system provides all 
parameters of the walking controller for each step, so that the 
complex low-level walking controller interface is completely 
hidden from the operator to reduce the chance of operator error. 
This kind of footstep planning systems has not been applied to 
human-size real robots in complex terrain scenarios, such as the 
DRC before.

5.6.1. Overview
Our footstep planning approach satisfies the requirements 
mentioned above and requires the operator to only provide a 
goal pose to start planning. During the DRC competition, we 
have introduced the first search-based footstep planner capable 
of generating sequences of footstep placements in full 3D under 
planning time constraints and using an environment model based 
on online sensor data (Stumpf et al., 2014). The planner solves the 
navigation problem of finding shortest and collision-free paths 
in difficult terrain scenarios while simultaneously computing 
footstep placements appropriate for a given walking controller. 
A 3D terrain generator allows to generate terrain models for the 
footstep planning system online. It is able to efficiently compute 
the full 6 DoF foot pose for foot placements based on 3D scans 
of the environment. In addition, a novel collision check strategy 
based on ground contact estimation allows the planner to con-
sider overhanging steps, significantly enhancing performance in 
rough terrain scenarios.

The described approach has been successfully applied to three 
different biped humanoid robots during the DRC Finals. As the 
only team at the DRC Trials, we demonstrated that our approach 
is able to generate suitable footstep plans over entire obstacles that 
had been executed without interruptions (see Figure 10).

5.6.2. Terrain Modeling
Planning in difficult terrain scenarios needs a suitable 3D terrain 
model that can efficiently be generated and utilized by the footstep 
planner. Therefore, a terrain model generator8 was implemented 
which analogously to the worldmodel server (see section 4.1) 

8 see https://github.com/team-vigir/vigir_terrain_classifier 
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accumulates all incoming LIDAR scans given as point clouds. 
All data are stored in a discrete octree to reduce the amount of 
needed memory and enable efficient data fusion.

For each point in an incoming point cloud, a normal estima-
tion9 with respect to the point neighborhood is immediately 
performed. Afterwards, the octree is updated with this new 
information. Each node within the octree, thus, provides the 
3D position of the scan point and the estimated surface normal. 
Through the sparse laser scan updates of the spinning LIDAR, 
this operation can be performed in real-time on a single core of a 
CPU. In general, performing this operation with stereo vision or 
RGB-D systems is possible too, but needs further investigation as 
they generate more noisy data.

The described approach allows to run real-time terrain model 
generation on a robotic system as long as it is capable of providing 
point clouds given in an absolute world frame.

5.6.3. Footstep Planning Framework
The main objective is to provide an integrated footstep planning 
framework that may be deployed easily into an existing ROS 
setup. Providing a framework, the planner has to be expandable 
for new features but closed for modifications. Any user of the 
framework should only have to implement and extend robot-
specific elements to use the planning system instead of develop-
ing a modified version of an existing planner or even starting 
from scratch each time. Already implemented and, thus, proven 
algorithms are kept untouched, reducing the likelihood of errors 
and saving implementation effort. Although the framework 
must generalize well, it has to be able to solve difficult terrain 
task problems and utilize the versatile locomotion capabilities of 
robot-specific walking controllers.

In order to meet this objective, parameter (vigir_generic_
params)10 and plugin (vigir_pluginlib)11 management systems 
have been implemented.

5.6.3.1. Parameter System
In real-world applications, different terrain scenarios need to be 
tackled (e.g., flat surface, stairs or sloped terrain). The footstep 
planner can perform best if an appropriate set of parameters is 
defined for each kind of terrain scenario. This allows the operator to 
easily switch between different planning behaviors. Furthermore, 
it is desirable to be able to modify a parameter set if the situation 
requires it. In general, these requirements can be solved using 
the available ROS message infrastructure. Frameworks, such 
as the presented footstep planner, however, are supposed to be 
extended with new features. The structure of parameter sets may 
vary during runtime that is in conflict to ROS messages requiring 
a static structure. A simple solution would be separate configura-
tion files and well as user interfaces for each plugin. Due to high 
maintenance effort this, however, is undesirable.

9 http://pointclouds.org/documentation/tutorials/normal_estimation.php 
10 https://github.com/team-vigir/vigir_generic_params 
11 https://github.com/team-vigir/vigir_pluginlib 

5.6.3.2. Plugin System
The vigir_pluginlib provides the capability to manage versatile 
plugins that can be also used outside of the footstep planning 
domain. The approach is based on pluginlib that already allows for 
dynamically loading plugins using the ROS build infrastructure. 
We have extended the package into a semantic plugin manage-
ment system. The practical implementation consists of two parts: 
the plugin base class and the plugin manager.

5.6.3.3. Framework Overview
The plugin and parameter management systems form the infra-
structure base of the footstep planning framework.12,13,14 The foot-
step planner pipeline has multiple injection points where a user 
might want to customize the behavior of the planner. For each of 
those, a semantic base class has been introduced as follows:

•	 CollisionCheckPlugin: basic collision check for a given state or 
transition,

•	 CollisionCheckGridMapPlugin: specialized CollisionCheckPlugin 
for occupancy grid maps,

•	 HeuristicPlugin: computes heuristic value from current state 
to goal state,

•	 PostProcessPlugin: allows performing additional computation 
after each step or step plan has been computed,

•	 ReachabilityPlugin: check if transition between two states is 
valid,

•	 StepCostEstimatorPlugin: estimates cost and risk for given 
transition,

•	 StepPlanMsgPlugin (unique): marshaling interface for robot 
specific data, and

•	 TerrainModelPlugin (unique): provides 3D model of 
environment.

The last two semantic base classes are defined to be unique; only 
a single instance might be running instance at a time. Figure 11 
shows the use of plugins within the planner pipeline. For a quick 
deployment of the framework, concrete plugin implementations 
for common cases already exist for all semantic-based classes.

A major goal is maintaining footstep planner efficiency. 
Therefore, the computational overhead of the plugin system 
must be kept to a minimum. It obviously is inefficient to reload 
needed plugins in each single iteration of the planning process. 
For this reason, the planner loads all plugins only once and sets 
their parameters once before starting planning. Additionally, a 
mutex locks all critical callback functions of the planning system. 
The footstep planner is, thus, protected against any changes of the 
plugin as well as parameter manager during the planning process.

Advanced walking controllers usually need very specific data 
to allow for performing complex locomotion tasks. For instance, 
these data could be intermediate trajectory points of the foot or 
the convex hull of expected ground contact. The framework has 
been designed to be able to provide this capability. The plugin 
system allows to inject additional computation needed by the 

12 https://github.com/team-vigir/vigir_footstep_planning_msgs 
13 https://github.com/team-vigir/vigir_footstep_planning_basics 
14 https://github.com/team-vigir/vigir_footstep_planning_core 
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walking controller. Analogously to the parameter management 
system, all custom data can be carried as a byte stream within 
regular step plan messages. Marshaling algorithms already avail-
able for basic data types can be applied here as well. Marshaling 
for complex data types has to be implemented as a customized 
StepPlanMsgPlugin. The framework is, thus, able to pack all 
custom data into the generic step plan message and send it to 
the hardware adapter, where it gets unpacked and forwarded to 
the walking controller. The framework, thus, supports any kind 
of walking controller via the plugin system without required 
modifications to the framework code base.

5.6.4. Interactive Footstep Planning
During the DRC Trials, the inability to refine generated footstep 
plans was identified as a shortcoming. Even though the planner 
is able to generate feasible plans, the possibility that the resulting 
plan contains undesirable steps due to noisy sensor data remains. 
In this case, the operator previously had to request a new step 
plan in the hope to get a better result. For this reason, the foot-
step planning system was extended to provide multiple services 
to manage footstep plans. These services can be used by user 
interfaces to enable interactive footstep planning, allowing full 
human in the loop planning. This mode allows for plan stitch-
ing, plan revalidation, and editing single steps with assistance 
of the footstep planner. The operator is able to quickly adjust 
single steps, while the planner will automatically update the 3D 
position of the new foot pose if enabled and provides immediate 
feedback if the modified step sequence is still feasible for the 
walking controller.

6. BehAVIoR eXecUTIVe

Combination of multiple, complex software components on 
a high level is an often underestimated issue when composing 
robot systems. Existing solutions are often very application 
specific and require expert developers for implementing mission 
specifications. Thus, in order to provide a suitable task-level layer 
of control for full or assisted robot autonomy, the behavior engine 
FlexBE15 (Schillinger, 2015) has been developed. It is based on 
SMACH (Bohren and Cousins, 2010) and extends it by several 
helpful capabilities in order to facilitate both development and 
execution of high-level behaviors. Furthermore, FlexBE provides 
an extensive user interface, enabling even non-expert users 
to compose and execute mission specifications within short 
time frames. During runtime, execution can be monitored and 
controlled remotely and the robot autonomy level can be flexibly 
adjusted.

6.1. component Interface
FlexBE (standing for “flexible behavior engine”) adapts the 
concept of hierarchical state machines similar to the implementa-
tion in SMACH. Each state corresponds to an action executed 
by the robot and transitions reflect the possible outcomes of 
these actions while data gathered during runtime can be passed 
between states. This approach enables to focus on the internal 
state of the robot (i.e., the current state of action execution). 
Knowledge about the external environment is only considered 

15 http://flexbe.github.io 
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implicitly when designing a behavior, but is not needed to be 
exactly known during execution. Especially in disaster response, 
where the environment cannot be precisely modeled and events 
are typically the result of own actions, this concept helps to effec-
tively define high-level behaviors.

Each action state is given by a class definition implementing a 
specific interface. Depending on the situation, a state returns one 
of its outcomes, leading to a transition in the respective containing 
state machine. Furthermore, states can declare input and output 
keys for sharing common data during runtime. As depicted by the 
concept overview in Figure 12, these state implementations form 
the atomic building blocks from which behaviors are composed. 
Each action state refers to a well-defined and encapsulated high-
level capability of the robot, for example, closing fingers, planning 
footsteps, or executing a trajectory.

6.2. Behavior Development
In order to support the user in composing state instantiations to 
a complete behavior, FlexBE provides a comprehensive graphical 
user interface, including a state machine editor. Figure 13 shows 
a screenshot of this editor displaying a behavior as used for the 
DRC task of turning the valve. Yellow boxes denote states, white 
boxes are embedded state machines, and the boxes in pink refer 

to other complete stand-alone behaviors, which can be  embedded 
as well. Transitions are given by arrows between the states, where 
their labels refer to the outcomes of the outgoing states, i.e., 
under which condition the respective transition is taken. Their 
color corresponds to the required level of autonomy, which can 
be selected by the user.

The editor also provides a set of useful tools for making sure 
that states are composed in the correct way. For example, a 
dataflow graph can be displayed in order to check how data will 
be accessed and potentially modified by the different robot capa-
bilities during runtime. More importantly, each time a behavior 
is saved, or on demand, consistency of a behavior is validated. 
This includes checks such as that each outcome corresponds to 
a well-defined transition and no runtime data are potentially 
accessed before being written. FlexBE allows to make behavior 
modifications even during runtime and for updating behaviors 
while they are executed. With the static check functionality, the 
state machine editor ensures that such modifications do not lead 
to runtime failure.

Experience from designing task-level behaviors for the DRC 
showed that the usage of these concepts and the related tools 
not only helped facilitating the definition of complex behaviors 
since state machines could be modeled graphically instead 
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FIgURe 13 | Behavior to solve the DRc task of turning the valve, visualized by FlexBe’s state machine editor. Even during execution, the structure can 
easily be re-arranged with just a few mouse-clicks and without manually writing code.
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of manually writing code, but also because a well-defined 
encapsulation of robot capabilities and the re-usability of all 
parts encouraged proper software engineering practices, such 
as modularity and a clear separation of control and data flow. 
Furthermore, the augmentation of states by detailed documen-
tation was helpful when working with a multitude of different 
capabilities.

6.3. Behavior execution
Execution of behaviors is embedded in the graphical user 
interface as well. During runtime, the currently active state is 
displayed in the center, with transitions pointing to the possible 
successor states. While a robot would always proceed to the 
next state whenever possible in full autonomy, the operator is 
able to limit the autonomy level of the robot in order to prevent 
wrong transitions in phases of limited situational awareness. If a 
transition requires more autonomy than allowed by the operator, 
this transition will be highlighted in the runtime control user 
interface and the operator is asked to either confirm or decline 
this decision. The operator can also force a completely different 
one at any time.

Although this concept of collaborative autonomy is helpful for 
the control flow of behaviors, the operator also needs to be able 

to provide specific data to the robot as required during runtime if 
the robot fails to retrieve it on its own. For this purpose, an input 
data server is running as part of the OCS. Whenever requested by 
the robot, the operator can assist and provide the required data 
manually, for example, place an object template. This is invoked 
by using an input state, which is implemented as a robot capability 
like any other perception state.

In order to account for constrained communication, robot–
operator collaboration is carefully designed to be bandwidth 
efficient. A behavior mirror component runs on the OCS and 
mimics the onboard behavior, requiring only minimal runtime 
updates. It is, thus, possible to abstract from the fact that the 
behavior is not running locally and components, such as the user 
interface, can work on this mirror in order to retrieve the data 
they need for monitoring the runtime status.

7. eXpeRIMenTS

7.1. DRc Finals
The DRC Finals took place at Pomona, CA, USA on June 5th 
and 6th 2015. In the DRC Finals, three teams used the software 
described in this work, demonstrating the claimed flexibility and 
modularity.
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Unlike in the previously held DRC Trials, tasks were not 
attempted separately. Instead teams had 60  min time to score 
as many of the 8 tasks as they could. Each team was allowed 
two runs in the competition, one on the first and one on the 
second competition day. The first objective was reaching the 
door, behind which the other tasks were situated. This could 
be done either by starting the robot in a Polaris Ranger vehicle 
and letting the robot drive up to the goal line close to the door, 
or by starting outside the vehicle and letting the robot walk the 
whole distance. Scoring awarded 0 points for walking, 1 point for 
driving, and 1 point for egress from the vehicle. Teams could opt 
out from performing egress. In this case, a reset had to be called 
and the robot manually extracted from the vehicle, resulting in 
a 10 min reset penalty and no point for egress. Traversing the 
door was the next task, with one point for full traversal through 
the door frame.

After traversing the door, communication constraints went 
into effect, meaning that the high bandwidth connection for 
perception data had pseudo-random dropouts of up to 30  s 
length, with 1 s windows of communication in-between. Fifteen 
minutes before run end, the drop outs stopped, allowing for full 
communication again.

7.1.1. Team Hector
Team Hector used a THOR-MANG robot. While the system 
showed promising capabilities during the qualification for the 
DRC Finals and prior to them during testing, slope of the ground 
at the Trials and hardware problems resulted in the robot falling 
in both Final runs.

The driving task was performed reliably, but on both days the 
robot fell while attempting to perform the door task.

7.1.2. Team Valor
Team VALOR used the ESCHER robot in the DRC Finals. The 
team decided to not attempt the driving task. ESCHER was one 
of two robots that successfully walked the complete distance from 
the start point up to the door. The attempt at opening the door 
was not successful due to encountered hardware issues.

7.1.3. Team ViGIR
Team ViGIR used the most recent, untethered version of the BDI 
Atlas robot. Originally, the team intended to skip the driving task. 
When it became clear that it would be allowed to not perform 
egress, but instead call for a reset, a decision was made to attempt 
the driving task. The performance for both competition days is 
briefly described the next two paragraphs.

7.1.3.1. Finals Day One
Starting in the Polaris Ranger vehicle, teleoperation was used to 
drive the robot down the vehicle course. A worldmodel of the 
course was obtained through LIDAR and cameras, and it was 
visualized in the OCS as described in Section 4. With this percep-
tion information, operators were able to use a driving controller 
system that generated the necessary joint motions to actuate the 
steering wheel and actuate the gas pedal. Details on the driving 
controller system will be described in Section 7.2. After com-
pleting the driving course, an intervention (with an associated 

10-min penalty pause as specified in the DRC rules) was then 
used to manually extract the robot from the car.

After the penalty time, the door task was attempted. During 
the attempt to perform the door task, the supervisor team 
noticed that high-level behavior execution did not work as 
intended. This was later traced back to a faulty setup of the 
communications bridge system and increased saturation of the 
wireless links used in the competition. The supervisor team, 
thus, switched from using assisted autonomy via FlexBE behav-
iors to using object templates and teleoperation. Operators 
inserted the door template in the OCS where the sensor data 
of the door was displayed and commanded the robot to walk 
to the pre-defined stance pose for opening the door. After 
locomotion was performed, the operators attempted to open 
the door using the “open” affordance defined in the door object 
template. The robot hand slipped away from the door handle 
and, thus, the autonomous execution of the affordance failed. 
For this reason, the operators switched to Cartesian-space 
teleoperation. Using this approach, the door was successfully 
opened as seen in Figure  14A. After opening the door, the 
operators manually commanded the robot to walk toward a 
stance pose to open the valve. The valve task was solved using 
mainly the affordance-level control provided by the valve object 
template (see Figure 14B). Finally, before being able to actuate 
the switch in the surprise task, time ran out, ending the run. A 
video is available online.16

7.1.3.2. Finals Day Two
The second-day mission again started by the supervisor team 
using teleoperation for driving the Polaris vehicle. Due to erratic 
network connectivity and possible operator error, a barrier was 
touched and a reset had to be called. In the second attempt, the 
driving task was performed successfully. The door opening task 
was performed using object template and automated behavior 
control. After the door was opened, the pump of the robot shut 
down for unknown reasons and the robot fell. After this forced 
reset, another attempt at traversing the door was made, resulting 
in another fall. A video is available online.17

7.1.4. Discussion
The perception system worked as designed during the compe-
tition, providing image and full LIDAR-based environment 
geometry data. It provided the necessary data also under com-
munication constraints after traversing the door only allowed 
intermittent communication over the 300MBit high data rate 
connection from the robot.

All three teams using Team ViGIR’s software were able to lever-
age the contributions described in this work, which enabled them 
to perform supervised locomotion and manipulation with highly 
diverse bipedal robot systems. Due to encountered issues, the full 
potential, however, could not be demonstrated at the DRC Finals. 
The DRC competition operated on a tight schedule. This meant that 
delays in hardware availability presented significant challenges, 

16 https://youtu.be/VEsUICAa4rg 
17 https://youtu.be/Whw-tG0Wh9U 
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FIgURe 14 | Team VigIR Atlas robot view of performing tasks at the DRc Finals. (A) Door task. From left to right: Door Template aligned, Pre-grasp, Grasp, 
Turn Clockwise affordance, Push affordance (fails to open), door opened after Cartesian teleoperation. (B) Valve task. From left to right: Valve Template aligned, 
Pre-grasp, Grasp, Open affordance 45°, 135°, and 270°. Images courtesy of Alberto Romay.

Kohlbrecher et al. A Comprehensive Software Framework for Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 31

as they would reduce the time available for testing software and 
training operators. This general constraint is a contributing factor 
to the issues encountered, such as the communications setup issue 
experienced, during the first day by Team ViGIR.

Open source whole-body controllers for the ATLAS and Thor-
MANG robot were not available; instead manufacturer-provided 
libraries were used for low-level control of these robots. While 
capabilities offered by these libraries proved useful, their closed 
source nature provided little transparency and did not allow for 
tighter coupling between high-level and low-level control. The 
fact that ATLAS teams who developed their own controller based 
on prior research scored higher than those who used the BDI-
supplied one supports this assertion.

While using a sliding level of autonomy up to full teleoperation 
worked well, offloading the task of object perception and pose 
estimation from supervisors is an aspect that has not been focused 
on so far. Instead, the described approach relied on providing 
supervisors with the necessary situational awareness to perform 
these tasks. Reliable automated solutions have the potential to 
improve performance and speed at which complex tasks can be 
performed.

7.2. Driving a Vehicle
Demonstrating the applicability of the framework to different 
robot systems and tasks, we focus here on the realization of the 
driving task for both the ATLAS and Thor-MANG robot as an 
example.

7.2.1. Controlling the Vehicle
To control the vehicle, both the steering wheel and gas pedal 
have to be actuated. Depending on the robot used, this can be 

challenging due to factors, such as size, strength, and sensing 
capabilities. To increase robustness, adapters that can be added 
to the Polaris Ranger XP900 vehicle were developed. As shown in 
Figure 15A, a knob attached to the steering wheel with a spring 
was used for steering control. While allowing for actuation of 
the steering wheel, the spring adds compliance to the setup and 
prevents high forces being exerted on either robot or vehicle. For 
the pedal shown in Figure 15B, an adapter was used that limits 
pedal travel as to limit the maximum speed of the vehicle. For 
the ATLAS robot, the adapter also had to mechanically transfer 
the steering command from the passenger side of the vehicle 
to the pedal, as the robot was too big to fit at the driver side.  
As a safety measure, a spring was added to the pedal adapter that 
always brings the adapter back into the idle position when not 
pressed down.

7.2.2. Perception
As generic and robust ego-motion estimation for humanoid 
robots placed in vehicles is highly challenging and prone to fail-
ure, a teleoperation-based approach was used. Steering angle and 
gas pedal angle are set by the operator. As a safety measure, the 
system automatically stops if no commands have been received 
within a threshold duration.

7.2.3. Results
In the DRC Finals, for both ATLAS and THOR-MANG, the 
capability to drive a car as required in the DRC Finals rules was 
demonstrated. A video is available online.18

18 https://www.youtube.com/watch?v=noxAK7YdJUE 
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FIgURe 15 | hardware attachment for driving a car. (A) Compliant steering wheel adapter. (B) Pedal adapter for the Thor-MANG robot.
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7.3. Simulation
Due to the high cost of complex humanoid robot systems, it is 
highly desirable to be able to simulate them. This allows perform-
ing research and experiments when real systems are not available.

7.3.1. Simulation of Humanoids
The components described in this work are available as open 
source software and an example setup using the THOR-MANG 
robot in Gazebo simulation can be reproduced easily using avail-
able install instructions.19 A tutorial video showing the use of the 
example setup is available online.20

7.3.2. Example of Use with a Non-Biped Robot
Demonstrating the flexibility and modularity of the provided 
architecture, we show how manipulation capabilities can be 
added to a robot system that combines the proven mobility of a 
tracked base with a humanoid upper body.

The robot is capable of fully autonomous exploration of 
environments using the software components described in 
Kohlbrecher et  al. (2014). In a demonstration video,21 it first 
explores parts of the environment fully autonomously, with the 
supervisor observing progress. When the supervisor notices that 
the closed door prevents the robot from continuing exploration, 
she uses the manipulation capabilities of the robot to open the 
door using teleoperation or affordance-level control using the 
contributions described in this work. Afterwards, the supervi-
sor can command the robot to keep exploring the environment 
autonomously or continue operating in a lower autonomy mode. 

19 https://github.com/team-vigir/vigir_install/wiki/Install-thor-mang-vigir-gazebo 
20 https://www.youtube.com/watch?v=6fS89HGPEf4 
21 https://youtu.be/6ko27gKZGdA 

Instructions for install and use of the shown system are available 
online.22

8. conclUSIon

This work discusses a comprehensive software framework for 
performing complex disaster response tasks using humanoid 
robots with human supervisors in the loop. System architecture 
design considerations are detailed and comprehensive contribu-
tions toward different aspects, such as communication, percep-
tion, manipulation and footstep planning, and behavior control, 
are detailed.

The described contributions are available as open source 
software23 for ROS. In contrast to other approaches, it has been 
successfully used on three different highly complex humanoid 
systems, demonstrating the flexibility and modularity of the 
system.

As discussed in the Section 7.1.4, while abstraction and 
decoupling from the low-level control system provided by 
robot systems can be considered a strength, achieving highest 
possible performance with a biped robot system requires full 
integration with and leveraging the capabilities of a whole-
body control system. The realization of this is a subject of 
future work.

AUThoR conTRIBUTIonS

SK: Perception and manipulation; AS: Footstep planner; AR: 
Object/affordance tem plate approach; PS: FlexBE behavior engine; 
OS: Advisor, overall design; and DC: Advisor, overall design.

22 https://github.com/tu-darmstadt-ros-pkg/centaur_robot_tutorial 
23 https://github.com/team-vigir/vigir_install 
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We describe our software system enabling a tight integration between vision and control 
modules on complex, high-DOF humanoid robots. This is demonstrated with the iCub 
humanoid robot performing visual object detection and reaching and grasping actions. 
A key capability of this system is reactive avoidance of obstacle objects detected from 
the video stream while carrying out reach-and-grasp tasks. The subsystems of our 
architecture can independently be improved and updated, for example, we show that 
by using machine learning techniques we can improve visual perception by collecting 
images during the robot’s interaction with the environment. We describe the task and 
software design constraints that led to the layered modular system architecture.

Keywords: humanoid robots, software framework, robotic vision, eye–hand coordination, reactive reaching, 
machine learning

1. inTrODUcTiOn

In the last century, robots have transitioned from science fiction to science fact. When interacting 
with the world around them robots need to be able to reach for, grasp, and manipulate a wide range 
of objects in arbitrary positions. Object manipulation, as this is referred to in robotics, is a canonical 
problem for autonomous systems to become truly useful. We aim to overcome the limitations of 
current robots and the software systems that control them, with a focus on complex bi-manual 
robots. It has previously been suggested that better perception and coordination between sensing 
and acting are key requirements to increase the capabilities of current systems (Kragic and Vincze, 
2009; Ambrose et al., 2012). Yet with the increasing complexity of the mechanical systems of modern 
robots programing these machines can be tedious, error prone, and inaccessible to non-experts. 
Roboticists are increasingly considering learning over time to “program” motions into robotic 
systems. In addition, continuous learning increased the flexibility and provides the means for self-
adaptation, leading to more capable autonomous systems. Research in artificial intelligence (AI) 
techniques has led to computers that can play chess on a level good enough to win against (and/or 
tutor) the average human player (Sadikov et al., 2007). Robotic manipulation of chess pieces on a 
human-level of precision and adaptation is still beyond current systems.

The problem is not with the mechanical systems. Sensory feedback is of critical importance for 
acting in a purposeful manner. For humans particularly, vision is an important factor in the develop-
ment of reaching and grasping skills (Berthier et al., 1996; McCarty et al., 2001). The essential challenge 
in robotics is to create a similarly efficient perception system. For example, NASA’s Space Technology 
Roadmap is calling for the development of autonomously calibrating hand-eye systems enabling 
successful off-world robotic manipulation (Ambrose et al., 2012). This ability is fundamental for 
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humans and animals alike, leading to many experimental studies 
on how we perform these actions (Posner, 1989; Jeannerod, 1997). 
The process is still not fully understood but basic computational 
models for how humans develop their reaching and grasping 
skills during infancy exist (Oztop et al., 2004). Where 14-month-
old infants can imitate and perform simple manipulation skills 
(Meltzoff, 1988), robots can only perform simple, pre-programed 
reaching and grasping in limited scenarios. Our ability to adapt 
during motion execution to changing environments is lacking in 
robots right now. Yet this adaptation is important as even if the 
environment can be perceived precisely, it will not be static in 
most (interesting) settings.

Coming back to the chess example, for an autonomous system 
to pick up a chess piece, it needs to be able to perceive the board, 
detect the right piece, and locate the position accurately, before 
executing a purposeful motion that is safe for the robot and its 
environment. These sub-problems have turned out to be much 
harder than expected a few decades ago. With the progress in 
mechanical design, motion control, and computer vision, it is 
time to revisit the close coupling between those systems to create 
robots that perform actions in day-to-day environments.

1.1. Motion and action: interacting with 
the environment
In the chess example, even if the state of the board and its loca-
tion are known perfectly, moving a certain chess piece from one 
square to another without toppling other pieces is a non-trivial 
problem. Children, even at a very young age, have significantly 
better (more “natural,” smoother) hand movements than almost 
all currently available humanoid robots. In humans, the develop-
ment of hand control starts at an early age, albeit clumsily, and 
the precision grasp is not matured until the age of 8–10  years 
(Forssberg et al., 1991). Even after manipulation skills have been 
learnt, they are constantly adapted by a perception–action loop 
to yield desired results during action execution. Vision and action 
are closely integrated in the human brain. Various specializations 
develop also in the visual pathways of infants related to extracting 
and encoding information about the location and graspability of 
objects (Johnson and Munakata, 2005).

To enable robots to interact with objects in unstructured, 
cluttered environments, a variety of reactive approaches have 
been investigated. These quickly generate control commands 
based on sensory input – similar to reflexes – without sampling 
the robot’s configuration space and deliberately searching for a 
solution (Khatib, 1986; Brooks, 1991; Schoner and Dose, 1992). 
Generally such approaches apply a heuristic to transform local 
information (in the sensor reference frame) to commands sent 
to the motors, leading to fast, reflex-like obstacle avoidance. 
Reactive approaches have become popular in the context of 
safety and human-robot interaction (De Santis et  al., 2007; 
Dietrich et al., 2011) but are brittle and inefficient at achieving 
global goals. A detailed model of the world enables the planning 
of coordinated actions. Finding a path or trajectory is referred 
to as the path planning problem. This search for non-colliding 
poses is generally expensive and increasingly so with higher DOF. 
Robots controlled this way are typically slow and appear cautious 

in their motion execution. These reactive approaches started to 
appear in the 1980s as an alternative to the “think first, act later” 
paradigm. Current robotic systems operate in a very sequential 
manner. After a trajectory is planned, it is performed by the robot, 
before the actual manipulation begins. We aim to move away 
from such brittle global planner paradigms and have these parts 
overlap and have continuous refining based on visual feedback. 
The framework provides quick and reactive motions, as well as, 
interfaces to these for so higher-level agents or ‘‘opportunistic’’ 
planners can control the robot safely.

Once the robot has moved its end-effector close enough to 
an object, it can start to interact with it. In recent years, good 
progress has been made in this area thanks to the development 
of robust and precise grippers and hands and the improvement 
of grasping techniques. In addition, novel concepts of “grippers” 
appeared in research, including some quite ingenious solutions, 
such as the granular gripper (Brown et al., 2010). As alternative 
to designing a grasping strategy, it may be possible to learn it 
using only a small number of real-world examples, where good 
grasping points are known, and these could be generalized or 
transferred to a wide variety of previously unseen objects (Saxena 
et al., 2008). An overview of the state of research in robot grasping 
is found in Carbone (2013). Our framework provides an interface 
to “action repertoires.” In one of the examples later on, we show 
how we use a simple grasping module that is triggered when the 
robot’s end-effector is close to a target object. While vision may 
be suitable for guiding a robot to an object, the very last phase of 
object manipulation – the transition to contact – may require the 
use of sensed forces.

1.2. robotic Vision: Perceiving the 
environment
For a robot to pick a chess piece, for example, finding the chess 
board and each of the chess pieces in the camera image or even 
just to realize that there is a chess board and pieces in the scene 
is critical. An important area of research is the development of 
artificial vision systems that provide robots with such capabili-
ties. The robot’s perception system needs to be able to determine 
whether the image data contain some specific object, feature, or 
activity. While closely related to computer vision, there are a few 
differences mainly in how the images are acquired and how the 
outcome will provide input for the robot to make informed deci-
sions. For example, visual feedback has extensively been used in 
mobile robot applications for obstacle avoidance, mapping, and 
localization (Davison and Murray, 2002; Karlsson et  al., 2005). 
Especially in the last decade, there has been a surge of computer 
vision research. A focus is put on the areas relevant for object 
manipulation1 and the increased interest in working around and 
with humans.

Robots are required to detect objects in their surround-
ings even if they were previously unknown. In addition, we 
require them to be able to build models so they can re-identify 

1 In recent years, various challenges have emerged around this topic, such as the 
Amazon Picking Challenge and RoboCup@Home.
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FigUre 1 | During a stereotypical manipulation task, object detection is a hard but critical problem to solve. These images collected during our 
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integration of multiple, new detectors (Leitner et al., 2013a).
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and memorize them in the future. Progress has been made 
on detecting objects  –  especially when limiting the focus on 
specific settings  –  the interested reader is referred to current 
surveys (Cipolla et al., 2010; Verschae and Ruiz-del Solar, 2015). 
A solution for the general case, i.e., detecting arbitrary objects 
in arbitrary situations, is elusive though (Kemp et  al., 2007). 
Environmental factors, including changing light conditions, 
inconsistent sensing, or incomplete data acquisition seem to be 
the main cause of missed or erroneous detection (Kragic and 
Vincze, 2009) (see also the environmental changes in Figure 1). 
Most object detection applications have been using hand-crafted 
features, such as SIFT (Lowe, 1999) or SURF (Bay et al., 2006), or 
extensions of these for higher robustness (Stückler et al., 2013). 
Experimental robotics still relies heavily on artificial landmarks 
to simplify (and speed-up) the detection problem, though there 
is recent progress specifically for the iCub platform (Ciliberto 
et al., 2011; Fanello et al., 2013; Gori et al., 2013). Many AI and 
learning techniques have been applied to object detection and 
classification over the past years. Deep-learning has emerged 
as a promising technology for extracting general features from 
ever larger datasets (LeCun et al., 2015; Schmidhuber, 2015). An 
interface to such methods is integrated in our framework and 
has been applied to autonomously learn object detectors from 
small datasets (only 5–20 images) (Leitner et al., 2012a, 2013a; 
Harding et al., 2013).

Another problem relevant to eye–hand coordination is 
estimating the position of an object with respect to the robot 
and its end-effector. “Spatial Perception,” as this is known, is 
a requirement for planning useful actions and build cohesive 
world models. Studies in brain- and neuro-science have uncov-
ered trends on what changes, when we learn to reason about 
distances by interacting with the world, in contrast how these 
changes happen is not yet clear (Plumert and Spencer, 2007). In 
robotics, to obtain a distance measure multiple camera views 
will provide the required observations. Projective geometry and 
its implementation in stereo vision systems are quite common 
on robotic platforms. An overview of the theory and techniques 
can be found in Hartley and Zisserman (2000). While projec-
tive geometry approaches work well under carefully controlled 
experimental circumstances, they are not easily transferred to 

robotics applications though. These methods are falling short 
as there are either separately movable cameras (such as in the 
case of the iCub, which can be seen in the imprecise out-of-
the-box localization module (Pattacini, 2011)) or only single 
cameras available (as with Baxter). In addition, the method 
needs to cope with separate movement of the robot’s head, gaze, 
and upper body. A goal for the framework was also to enable 
the learning of depth estimation from separately controllable 
camera pairs, even on complex humanoid robots moving about 
(Leitner et al., 2012b).

1.3. integration: sensorimotor 
coordination
Although there exists a rich body of literature in computer vision, 
path planning, and feedback control, wherein many critical sub-
problems are addressed individually, most demonstrable behav-
iors for humanoid robots do not effectively integrate elements 
from all three disciplines. Consequently, tasks that seem trivial 
to humans, such as picking up a specific object in a cluttered 
environment, remain beyond the state-of-the-art in experimental 
robotics. A close integration of computer vision and control is of 
importance, e.g., it was shown that to enable a 5 DOF robotic arm 
to pick up objects just providing a point-cloud generated model of 
the world was not sufficient to calculate reach and grasp behaviors 
on-the fly (Saxena et al., 2008). The previously mentioned work 
by Maitin-Shepard et  al. (2010) was successful, manipulating 
towels due to a sequence of visually guided re-grasps. “Robotics, 
Vision, and Control” (Corke, 2011) puts the close integration 
of these components into the spotlight and describes common 
pitfalls and issues when trying to build systems with high levels 
of sensorimotor integration.

Visual Servoing (Chaumette and Hutchinson, 2006) is a com-
monly used approach to create a tight coupling of visual percep-
tion and motor control. The closed-loop vision-based control can 
be seen as a very basic level of eye–hand coordination. It has been 
shown to work as a functional strategy to control robots without 
any prior calibration of camera to end-effector transformation 
(Vahrenkamp et al., 2008). A drawback of visual servoing is that 
it requires the robust extraction of visual features; in addition, 
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the final configuration of these features in image space needs to 
be known a priori.

Active vision investigates how controlling the motion of the 
camera, i.e., where to look at, can be used to create additional 
information from a scene. (Welke et  al., 2010), for example, 
presented a method that creates a segmentation out of multiple 
viewpoints of an object. These are generated by rotating an object 
in the robot’s hand in front of its camera. These exploratory 
behaviors are important to create a fully functioning autonomous 
object classification system and are highlighting one of the big 
differences between computer and robotic vision.

Creating a system that can improve actions by using visual 
feedback, and vice versa improve visual perception by performing 
manipulation actions, necessitates a flexible way of representing, 
learning, and storing visual object descriptions. We have devel-
oped a software framework for creating a functioning eye–hand 
coordination system on a humanoid robot. It covers quite distinct 
areas of robotics research, namely machine learning, computer 
vision, and motion generation. Herein, we describe and showcase 
this modular architecture that combines those areas into an inte-
grated system running on a real robotic platform. It was started as 
a tool for iCub humanoid but thanks to its modular design it can 
and has been used with other robots, most recently on a Baxter 
robot as well.

1.3.1. Robotic Systems Software Design and Toolkits
Current humanoid robots are stunning feats of engineering. 
With the increased complexity of these systems, the software 
to run these machines is increasing in complexity as well. In 
fact, programing today’s robots requires a big effort and usu-
ally a team of researchers. To reduce the time needed to setup 
robotics experiments and to stop the need to repeatedly invent 
the wheel, good system level tools are needed. This has led to 
the emergence of many open source projects in robotics (Gerkey 
et  al., 2003; van den Bergen, 2004; Metta et  al., 2006; Jackson, 
2007; Diankov and Kuffner, 2008; Fitzpatrick et al., 2008; Quigley 
et al., 2009). State-of-the art software development methods have 
also been translated into the robotics domain. Innovative ideas 
have been introduced in various areas to promote the reuse of 
robotic software “artifacts,” such as components, frameworks, 
and architectural styles (Brugali, 2007). To build more general 
models of robot control, robotic vision and their close integration 
robot software needs to be able to abstract certain specificities 
of the underlying robotic system. There exists a wide variety of 
middleware systems that abstract the specifics of each robot’s sen-
sors and actuators. Furthermore, such systems need to provide 
the ability to communicate between modules running in parallel 
on separate computers.

ROS (Robot Operating System) (Quigley et al., 2009) is one 
of the most popular robotics software platforms. At heart, it is a 
component-based middleware that allows computational nodes 
to publish and subscribe to messages on particular topics, and 
to provide services to each other. Nodes communicate via “mes-
sages,” i.e., data blocks of pre-defined structure, and can execute 
a networked distributed computer system and the connections 
can be changed dynamically during runtime. ROS also contains a 
wider set of tools for computer vision (OpenCV and point-cloud 

library PCL), motion planning, visualization, data logging and 
replay, debugging, system startup as well as drivers for a mul-
titude of sensors, and robot platforms. For the iCub YARP (Yet 
Another Robotics Platform) (Metta et al., 2006) is the middleware 
of choice. It is largely written in C++ and uses separately running 
code instances, titled “modules.” These can be dynamically and 
flexibly linked and communicate via concise and pre-defined 
messages called “bottles,” facilitating component-based design. 
There is a wide range of other robotic middleware systems 
available, such as ArmarX (Vahrenkamp et al., 2015), OROCOS 
(Soetens, 2006), and OpenRTM (Ando et al., 2008), all with their 
own benefits and drawbacks, see (Elkady and Sobh, 2012) for a 
comprehensive comparison.

The close integration of vision and control has been addressed 
by VISP (Visual Servoing Platform) developed at INRIA 
(Marchand et  al., 2005). It provides a library for controlling 
robotic systems based on visual feedback. It contains a multitude 
of image processing operations, enabling robots to extract useful 
features from an image. By providing the desired feature values, 
a controller for the robot’s motion can be derived (Hutchinson 
et al., 1996; Chaumette and Hutchinson, 2006). The framework 
presented here is building on these software systems to provide 
a module-based approach to tightly integrate computer vision 
and motion control for reaching and grasping on a humanoid 
robot. The architecture grew naturally over the last few years 
and was initially designed for the iCub and, hence, used YARP. 
While there exists also a “bridge” component in YARP allowing 
it to communicate with ROS topics and nodes, it was easy to port 
it to ROS and Baxter. Furthermore, there is currently a branch 
being developed aimed to be fully agnostic to the underlying 
middleware.

2. The eYe–hanD FraMeWOrK

The goal of our research is to improve the autonomous skills of 
humanoid robots by providing a library giving a solid base of 
sensorimotor coordination. To do so, we developed a modular 
framework that allows to easily run and repeat experiments on 
humanoid robots. To create better perception and motion, as 
well as a coordination between those, we split the system into 
two subsystems: one focusing on action and the other one on 
vision (our primary sense). To deal with uncertainties, various 
machine learning (ML) and artificial intelligence (AI) techniques 
are applied to support both subsystems and their integration. We 
close the loop and perform grasping of objects, while adapting 
to unknown, complex environments based on visual feedback, 
showing that combining robot learning approaches with 
computer vision improves adaptivity and autonomy in robotic 
reaching and grasping.

Our framework, sketched in Figure 2A, provides an integrated 
system for eye–hand coordination. The Perception (green) and 
Action (yellow) subsystems are supported by Memory (in blue) 
that enables the persistent modeling of the world. Functionality 
has grown over time and the currently existing modules that have 
been used in support of eye–hand coordination framework for 
cognitive robotics research (Leitner, 2014, 2015) are as follows:
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FigUre 2 | (a) Overview of the common subsystems for a functional eye–hand coordination on humanoid robots. In broader terms, one can separate the (visual) 
perception side (in green) from the action side (yellow). In addition to these, a memory subsystem (blue) allows to build-up an action repertoire and a set of object 
models. (B) The presented framework herein consists of a modular way of combining perception tasks, encapsulated in the icVision subsystem [green, as in (a)], 
with the action side and a world model, represented by the MoBeE subsystem (in yellow and blue). In addition, agents can interface these systems to generate 
specific behaviors or to learn from the interaction with the environment (see Results). To allow portability, the system uses a communication layer and a robot 
abstraction middleware, e.g., ROS or YARP.
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•	 Perception: Object Detection and Identification: as mentioned 
above, the detection and identification of objects is a hard 
problem. To perform object detection and identification, we 
use a system called icVision. It provides a modular approach 
for the parallel execution of multiple object detectors and 
identifiers. While these can be hard-coded (e.g., optical flow 
segmentation of moving object, or simple color thresholding), 
the main advantage of this flexible system is that it can be 
interfaced by a learning agent (sketched in Figure 2B). In our 
case, we have successfully used Cartesian Genetic Programing 
for Image Processing (CGP-IP) (Harding et  al., 2013) as an 
agent to learn visual object models in both a supervised and 
unsupervised fashion (Leitner et  al., 2012a). The resulting 
modules perform specific object segmentation of the camera 
images.

•	 Perception: Object Localization: icVision also provides a module 
for estimating the location of an object detected by multiple 
cameras – i.e., the two eyes in the case of the iCub. In this case, 
again the flexibility of the perception framework allows for 
a learning agent to predict object positions with a technique 
based on genetic programing and an artificial neural network 
estimators (Leitner et al., 2012b). These modules can be easily 
swapped or run in parallel, even on different machines.

•	 Action: Collision Avoidance and Motion Generation: MoBeE is 
used to safeguard the robot from collisions both with itself and 
the objects detected. This is implemented as a low-level inter-
face to the robot and uses virtual forces based on the robot 
kinematics to generate the robot’s motion. A high-level agent 
or planner can provide the input to this system (more details 
in the next section).

•	 Memory: World Model: In addition to modeling the kinematics 
of the robot to MoBeE also keeps track of the detected object 
in operational space. It is also used as a visualization for the 
robot’s current belief state by highlighting (impeding) colli-
sions (see Section 2.2).

•	 Memory: Action Repertoire: a light-weight, easy-to-use, one-
shot grasping system is used. It can be configured to perform 
a variety of grasps, all requiring to close the fingers in a coor-
dinated fashion. The iCub incorporates touch sensors on the 
fingertips, but due to the high noise, we use the error reported 
by the PID controllers of the finger motors to know when they 
are in contact with the object.

Complex, state-of-the art humanoid robots are controlled by 
a distributed system of computers most of which are not onboard 
the robot. On the iCub (and similarly on Baxter), an umbilical 
provides power to the robot and a local-area-network (LAN) 
connection. Figure 3 sketches the distributed computing system 
used to operate a typical humanoid robot: very limited on-board 
computing, which mainly focuses on the low-level control and 
sensing, is supported by networked computers for computational 
intensive tasks. The iCub, for example, employs an on-board 
PC104 controller that communicates with actuators and sensors 
using CANBus. Similarly, Baxter has an on-board computing 
system (Intel i7) acting as the gateway to joints and cameras. 
More robot-specific information about setup and configuration, 
as well as the code base, can be found on the iCub and Baxter Wiki 
pages,2 where researchers, from a large collection of research labs 
using the robot, contribute and build up a knowledge base.

All the modules described communicate with each other 
using a middleware framework (depicted in Figure  2B). The 
first experiments were performed on the iCub; therefore, the first 
choice for the middleware was YARP. A benefit of using a robotic 
middleware is that actuators and sensors can be abstracted, i.e., 
the modules that connect to icVision and MoBeE do not require to 
know the robot specifics. Another benefit of building on existing 
robotics middleware is the ability to distribute modules across 

2 iCub Wiki URL: http://wiki.icub.org Baxter Wiki URL: http://api.rethinkrobotics.
com
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FigUre 3 | a sketch of the computing setup we used to operate the 
iCub at the iDsia robotics lab. The pc104 handles the on-board data 
processing and controls the motors via CAN-bus. The icubServer is 
running the YARP server and is the router into the IDSIA-wide network and 
the internet. Dedicated computers for vision (icubVision) and collision 
avoidance (MoBeeBox) are used.
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multiple computers. In our setup, the various computational 
tasks were implemented as nodes, which were then distributed 
throughout the network of computers. For the experiments 
on the iCub, a separate computer was used to run multiple 
object detection modules in parallel, while another computer 
(MoBeEBox) performed the collision avoidance and visualizing 
the world model. During the development of new modules, an 
additional user PC was connected via Ethernet to run and debug 
the new modules. Component-level abstraction using middle-
ware increases portability across different robotic systems. For 
example, running MoBeE with different robot arms is easily done 
by simply providing the new arm’s kinematic model as an XML 
file. Transferring to other middleware systems is also possible, 
though a bit more intricate. We have ported various parts of the 
architecture to ROS-based modules allowing to interact with 
ROS-based robots, such as Baxter.

Humanoid robots, and the iCub in particular, have a high DOF, 
which allows for complex motions. To perform useful actions, 
many robots need to be controlled in unison requiring robust 
control and planning algorithms. Our framework consists of an 
action subsystem, which in turn contains collision avoidance and 
grasping capabilities.

2.1. Object Detection and localization 
Modules: icVision
Our humanoid robot should be able to learn how to perceive and 
detect objects from very few examples, in a manner similar to 
humans. It should have the ability to develop a representation that 
allows it to detect the same object again and again, even when the 
lighting conditions change, e.g., during the course of a day. This is 
a necessary prerequisite to enable adaptive, autonomous behav-
iors based on visual feedback. Our goal is to apply a combination 
of robot learning approaches, artificial intelligence, and machine 
learning techniques, with computer vision, to enable a variety of 
proposed tasks for robots.

icVision (Leitner et al., 2013c) was developed to support cur-
rent and future research in cognitive robotics. This follows a “pas-
sive” approach to the understanding of vision, where the actions 

of the human or robot are not taken into account. It processes 
the visual inputs received by the cameras and builds (internal) 
representations of objects. This computation is distributed over 
multiple modules. It facilitates the 3D localization of the detected 
objects in the 2D image plane and provides this information 
to other systems, e.g., a motion planner. It allows to create 
distributed systems of loosely coupled modules and provides 
standardized interfaces. Special focus is put on object detection 
in the received input images. Figure 4 shows how a simple red 
detection can be added as a separate running module. Specialized 
modules, containing a specific model, are used to detect distinct 
patterns or objects. These specialized modules can be connected 
and form pathways to perform, e.g., object detection, similarly to 
the hierarchies in the visual cortex. While the focus herein is on 
the use of single and stereo camera images, we are confident that 
information from RGB-D cameras (such as the Microsoft Kinect) 
can be easily integrated.

The system consists of different modules, with the core module 
providing basic functionality and information flow. Figure  5 
shows separate modules for the detection and localization and 
their connection to the core, which abstract the robot’s cameras 
and the communication to external agents. These external agents 
are further modules and can do a wide variety of tasks, for exam-
ple, specifically test and compare different object detection or 
localization techniques. icVision provides a pipeline that connects 
visual perception with world modeling in the MoBeE module 
(dashed line in Figure  5). By processing the incoming images 
from the robot with a specific filter for each “eye,” the location of 
the specific object can be estimated by the localization module 
and then communicated to MoBeE (Figure 6 depicts the typical 
information flow).

2.2. robot and World Modeling for 
collision avoidance: MoBee
MoBeE (Modular Behavior Environment for Robots) is at the 
core of the described framework for eye–hand coordination. It is 
a solid, reusable, open-source3 toolkit for prototyping behaviors 
on the iCub humanoid robot. MoBeE represents the state-of-the-
art in humanoid robotic control and is similar in conception 
to the control system that runs DLR’s Justin (De Santis et  al., 
2007; Dietrich et al., 2011). The goal of MoBeE is to facilitate the 
close integration of planning and motion control (sketched in 
Figure  2B). Inspired by Brooks (1991), it aims to embody the 
planner, provide safe and robust action primitives, and perform 
real-time re-planning. This facilitates exploratory behavior using 
a real robot with MoBeE acting as a supervisor preventing col-
lisions, even between multiple robots. It consists of three main 
parts all implemented in C++: a kinematic library with a visuali-
zation, and a controller, running in two separate modules. These 
together provide the “collision avoidance” (yellow) and “world 
model” (blue) as depicted in Figure 2A. Figure 5 shows the con-
nections between the various software entities required to run the 
full eye–hand coordination framework. MoBeE communicates 

3 URL: https://github.com/kailfrank/MoBeE

69

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/kailfrank/MoBeE


FigUre 4 | little coding is required for a new module to be added as filter to icVision. This shows a simple red filter being added. The image acquisition, 
connection of the communication ports, and cleanup are all handled by the superclass.
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with the robot and provides an interface to other modules. One 
of these is the perception side icVision.

In its first iteration, MoBeE provided virtual feedback for a 
reinforcement learning experiment. This was necessary as most 
current robotic systems lack a physical skin that would provide 
sensory information to perform reflexive motions. It was intended 
to enforce constraints in real time while a robot is under the 
control of any arbitrary planner/controller. This led to a design 
based on switching control, which facilitated experimentation 
with pre-existing control modules. A kinematic model is loaded 
from an XML file using “Zero Position Displacement Notation” 
(Gupta, 1986).

When the stochastic or exploratory agent/controller (light gray 
at the top in Figure 5) does something dangerous or undesirable, 
MoBeE intervenes. Collision detection is performed on the loaded 
kinematic robot model consisting of a collection of simple geom-
etries to form separate body parts (see Figure 7). These geom-
etries are created as C++ objects that inherit functionality from 
both the fast geometric intersection library and the visualization 
in OpenGL. The joint encoders provided by the robot abstraction 
layer are used to calculate collisions, i.e., intersecting body parts. 
In the first version, this collision signal was used to avoid colli-
sions by switching control, which was later abandoned in favor 
of a second-order dynamical system (Frank, 2014). Constraints, 
such as impeding collisions, joint limits, or cable lengths, can be 

addressed by adding additional forces to the system. Due to the 
dynamical system, many of the collisions encountered in practice 
no longer stop the robot’s action, but rather deflect the requested 
motion, bending it around an obstacle.

MoBeE continuously mixes control and constraint forces to 
generate the robot motion in real time and results in smoother, 
more intuitive motions in response to constraints/collisions 
(Figure 8). The effects of sensory noise are mitigated passively 
by the controller. The constraint forces associated with collisions 
are proportional to their penetration depth; in the experimenta-
tion, it was observed that the noise in the motor encoder signal 
has a minimal effect on collision response. The sporadic shallow 
collisions, which can be observed when the robot is operating 
close to an obstacle, such as the other pieces of a chess board, 
generate tiny forces that only serve to nudge the robot gently away 
from the obstacle. MoBeE in addition can be used for adaptive 
roadmap planning (Kavraki et al., 1996; Stollenga et al., 2013), the 
dynamical approach means that the planner/controller is free to 
explore continuous spaces, without the need to divide them into 
safe and unsafe regions.

The interface for external agents is further simplified by allow-
ing to subscribe to specific points of interest in the imported 
models (seen in yellow in Figure 7). These markers can be defined 
both on static or moving objects or the robots. The marker posi-
tions or events, such as the body part being in a colliding pose, 
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FigUre 5 | The framework described consists of multiple software entities (indicated by cogwheels), all connected via a communication layer, such 
as YarP or rOs. The provided robot abstraction is used by the main modules. On the perception side, icVision processes the incoming camera images in its core 
module and sends them to (possibly multiple) separately running detection filters. Another separate entity is performing the localization based on the detected 
objects and robot’s pose. The icVision Core also provides interfaces for agents to query for specific objects or agents that learn object representations (such as a 
CGP-IP based learner). The interface also provides the objects location to MoBeE. There a world model is created by calculating the forward kinematics from the 
incoming joint positions. The same entity performs the collision avoidance between separate body parts or the objects that have been detected by icVision. The 
controller is independent and translates the virtual forces created by MoBeE or provided by higher level planning agents into motor commands.
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are broadcast via the interface allowing connected agents to react, 
e.g., to trigger a grasp primitive. More details about the whole 
MoBeE architecture and how it was used for reach learning can be 
found in Frank (2014). Additionally, we have published multiple 
videos of our robotic experiments while using MoBeE foremost: 
“Toward Intelligent Humanoids.”4

2.3. action repertoire: leOgrasper 
Module
Robotic grasping is an active and large research area in robotics. 
A main issue is that in order to grasp successfully the pose of the 
object to be grasped has to be known quite precisely. This is due 
to the grasp planners required to plan the precise placement and 
motion of each individual “finger” (or gripper). Several methods 
for robust grasp planning exploit the object geometry or tactile 
sensor feedback. However, object pose range estimation intro-
duces specific uncertainties that can also be exploited to choose 
more robust grasps (Carbone, 2013).

A different approach is used in our implementation that does 
use a more reactive approach. Grasp primitives are triggered 
from MoBeE, which involve the controlling the five digit iCub 
hand. These primitives consist of target points in joint space to be 
reached sequentially during grasp execution. Another problem 

4 Webpage: http://Juxi.net/media/ or direct video URL: http://vimeo.com/51011081

is to realize when to stop grasping. The iCub has touch sensors 
on the palm and finger tips. To know when there is a successful 
grasp, these sensors need to be calibrated for the material in use. 
Especially for objects as varied as plastic cups, ceramic mugs, and 
tin cans, the tuning can be quite cumbersome and leads to a lower 
signal-to-noise ratio. We decided to overcome this by using the 
errors from the joint controllers directly. This approach allows 
to provide feedback whether a grasp was successful or not to a 
planner or learning system.

LEOGrasper is our light-weight, easy-to-use, one-shot grasp-
ing system for the iCub. The system itself is contained in one 
single module using YARP to communicate. It can be triggered 
by a simple command from the command line, network, or as in 
our case from MoBeE. The module can be configured for multiple 
grasp types, these are loaded from a simple text file, containing 
some global parameters (such as the maximum velocity) as well as 
the trajectories. Trajectories are specified by providing positions 
for each joint individually, containing multiple joints per digit as 
well as abduction, spread, etc. on the iCub. We provide power and 
pinch grasp and pointing gestures. For example, to close all digits 
in a coordinated fashion, at least two positions need to be defined, 
the starting and end position (see Figure 9). For more intricate 
grasps, multiple intermediate points can be provided. The robot’s 
fingers are controlled from the start point to each consecutive 
point, when an open signal is received. For close, the points 
are sent in reverse order.
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FigUre 6 | To provide information about the 3D location of an object 
to MoBeE, the following is performed: at first, camera images are 
received by the core from the hardware via a communications layers. 
The images are split into channels and made available to each individual 
icVision filters that is currently active. These then perform binary 
segmentation for a specific object. The objects (center) location in the image 
frame, (u,v) is then communicated to a 3D localization module. Using the joint 
encoder values and the object’s location in both eyes, a location estimate is 
then sent to the MoBeE world model (Leitner et al., 2013a).
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LEOGrasper has been used extensively in our robotics lab 
and selected successful grasps are shown in Figure  10.5 The 

5 Source code available at: https://github.com/Juxi/iCub/ 

existing trajectories and holding parameters were tuned through 
 experimentation; in the future, we aim at learning these primi-
tives using human demonstrations or reward signals.

3. MeThOD OF inTegraTing acTiOn 
anD VisiOn: aPPlYing The 
FraMeWOrK

The framework has been extensively used over the last few years 
in our experimental robotics research. Various papers have been 
published during the development of the different subsystems and 
their improvements. Table 1 provides an overview. MoBeE can be 
pre-loaded with a robot model using an XML file that describes 
the kinematics based on “Zero Position Displacement Notation” 
(Gupta, 1986). Figure 11 shows a snippet from the XML describ-
ing the Katana robotic arm. In addition a pre-defined, marked-up 
world model can be loaded from a separate file as well. This is 
particularly useful for stationary objects in the world or to restrict 
the movement space of the robot during learning operations.

Through the common interface to MoBeE object properties 
of each object can be modified, through an RPC call, following 
YARP standard and is accessible from the command line, a 
webpage, or any other module connecting to it. These objects are 
placed in the world model by either loading from a file at start-up 
or during runtime by agents, such as the icVision core. Through 
the interface an object can also be set as an obstacle, which means 
repelling forces are calculated, or as a target, which will attract the 
end-effector. In addition, objects can be defined as ghosts, leading 
to the object being ignored in the force calculation.

As mentioned earlier on, previous research suggests that 
connections between motor actions and observations exist in the 
human brain and describes their importance to human develop-
ment (Berthier et  al., 1996). To interface and connect artificial 
systems performing visual and motor cortex-like operations on 
robots will be crucial for the development of autonomous robotic 
systems. When attempting to learn behaviors on a complex 
robot, such as the iCub or Baxter, state-of-the-art AI and control 
theories can be tested (Frank et al., 2014) and shortcomings of 
these learning methods can be discovered (Zhang et al., 2015) and 
addressed. For example, Hart et al. (2006) showed that a devel-
opmental approach can be used for a robot to learn to reach and 
grasp. We developed modules for action generation and collision 
avoidance and their interfaces to the perception side. By having 
the action and motion side tightly coupled, we can use learning 
algorithms that require also negative feedback. We can create this 
without actually “hurting” the robot.

3.1. example: evolving Object Detectors
We previously developed a technique based on Cartesian Genetic 
Programing (CGP) (Miller, 1999, 2011) allowing for the auto-
matic generation of computer programs for robot vision tasks, 
called Cartesian Genetic Programming for Image Processing 
(CGP-IP) (Harding et al., 2013). CGP-IP draws inspiration from 
previous work in the field of machine learning and combines it 
with the available tools in the image processing discipline, namely 
in the form of OpenCV functions. OpenCV is an open-source 
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FigUre 9 | Defining a grasp in LEOGrasper is simple: defining a start 
and end position in joint space is all that is required. The open 
command will revert the hand into the start state (left), close will attempt to 
reach the end state (right). For more complex grasps intermediate states can 
be provided.

FigUre 7 | a scene of the iCub avoiding an object (inset) during one of our experiments (leitner et al., 2014b) and its corresponding visualization of 
the MoBeE model. Red body parts are highlighting impeding collisions with either another body part (as in the case of the hip with the upper body) or an object in 
the world model (hand with the cup). (See video: https://www.youtube.com/watch?v=w_qDH5tSe7g).

FigUre 8 | The virtual forces created by the dynamical system within 
MoBeE. It continuously mixing control and constraint forces (orange vectors) 
to generate the robot motion in real time. It results in a smoother, more 
intuitive motions in response to constraints/collisions (dashed green line). To 
calculate the force, the distance of the object to the hand in its coordinate 
frame CSHand is used. MoBeE handles the transformation from the 
coordinate systems of the cameras (CSR/CSL) to the world frame CSWorld 
and CSHand.
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framework providing a mature toolbox for a variety of image 
processing tasks. This domain knowledge is integrated into 
CGP-IP allowing to quickly evolve object detectors from only a 
small training set – our experiments showed that just a handful 
of (5–20) images per object are required. These detectors can then 
be used to perform the binary image segmentation within the 
icVision framework. In addition, CGP-IP allows for the segmen-
tation of color images with multiple channels, a key difference to 
much of the previous work focusing on gray scale images. CGP-IP 
deals with separate channels and splits incoming color images 

into individual channels before they can be used at each node 
in the detector. This leads to the evolutionary process selecting 
which channels will be used and how they are combined.

CGP-IP manages a population of candidates, which consists 
of individual genes, representing the nodes. Single channels are 
used as inputs and outputs of each node, while the action of each 
node is the execution of an OpenCV function. The full candidate 
can be interpreted as a computer program performing a sequence 
of image operations on the input image. The output of each can-
didate filter is a binary segmentation. GPs are supervised, in the 
sense that a fitness will need to be calculated for each candidate. 
For scoring each individual, a ground truth segmentation needs 
to be provided. A new generation of candidates is then created 
out of the fittest individuals. An illustrative example of a CGP-IP 
candidate is shown in Figure  12. CGP-IP can directly create 
C# or C++ code from these graphs. The code can be executed 
directly on the real hardware or pushed as updates to existing 
filter modules running within icVision. CGP-IP includes classes 
for image operations, the evolutionary search and the integration 
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TaBle 1 | Overview of experiments facilitated by parts of the architecture 
presented herein.

experiment description Framework reference

Autonomous object detection icVision, CGP-IP Leitner et al. (2012a, 2013b)
Multi robot collision avoidance MoBeE (vSkin) Leitner et al. (2012b,c)
Safe policy learning MoBeE (vSkin) Pathak et al. (2013)
Object detection and 
localisation

icVision Leitner et al. (2013a)

Spatial perception learning MoBeE, icVision Leitner et al. (2013d)
Learning object detection CGP-IP Leitner et al. (2013e)
Humanoid motion planning MoBeE Stollenga et al. (2013)
Reinforcement learning for 
reaching

MoBeE Frank et al. (2014)

Improving vision through 
interaction

Full system Leitner et al. (2014a)

Reactive reaching and grasping Full system Leitner et al. (2014b)
Cognitive and developmental 
robots

Full system Leitner (2015)

FigUre 10 | The iCub hand during grasp execution with a variety of objects, including tin cans, tea boxes, and plastic cups (leitner et al., 2014b).
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with the robotic side through a middleware. Currently, we are 
extending the C# implementation to run on various operating 
systems and be integrated into a distributed visual system, such 
as DRVS (Chamberlain et al., 2016).

CGP-IP allows not just for a simple reusable object detection 
but also provides a simple way of learning these based on only 
very small training sets. In connection with our framework, 
these data can be collected on the real hardware and the learned 
results directly executed. For this, an agent module was designed 
that communicates with the icVision core through its interface. 
Arbitrary objects are then placed in front of the robot and 
images are collected while the robot is moving about. The col-
lected images are then processed by the agent and a training set 
is created. With the ground truth of the location known, so is 
the location of the object in the image. A fixed size bounding 
box around this location leads to the ground truth required to 
evolve an object detector. This way the robot (and some prior 
knowledge of the location) can be used to autonomously learn 

object detectors for all the objects in the robot’s environment 
(Leitner et al., 2012a).

3.2. example: reaching While avoiding  
a Moving Obstacle
The inverse kinematics problem, i.e., placing the hand at a given 
coordinate in operational space, can be performed with previously 
available software on the iCub, such as the existing operational 
space controller (Pattacini, 2011) or a roadmap-based approach 
(Stollenga et  al., 2013). These systems require very accurate 
knowledge of the mechanical system to lead to precise solu-
tions, requiring a lengthy calibration procedure. These systems 
also tend to be brittle when change in the robot’s environment 
requires adapting the created motions.

To overcome this problem, the framework, as described above, 
creates virtual forces based on the world model within MoBeE to 
govern the actual movement of the robot. Static objects in the 
environment, such as, e.g., the table in front of the robot, can be 
added directly into the model via an XML file. Once in the model, 
actions and behaviors are adapted due to computed constraint 
forces. This way we are able to send arbitrary motions to our sys-
tem, while ensuring the safety of our robot. Even with just these 
static objects, this has been shown to provide an interesting way 
to learn robot reaching behaviors through reinforcement (Pathak 
et al., 2013; Frank et al., 2014). The presented system has the same 
functionality also for arbitrary, non-static objects.

For this after the detection in both cameras, the object’s loca-
tion is estimated and updated in the world model. The forces 
are continually recalculated to avoid impeding collisions even 
with moving objects. Figure 7 shows how the localized object 
is in the way of the arm and the hand. To ensure the safety of 
the rather fragile fingers, a collision sphere around the end-
effector was added – seen in red, indicating a possible collision 
due to the sphere intersecting with the object. The same can 
be seen with the lower arm. The forces push the intersecting 
geometries away from each other, leading to a movement of the 
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FigUre 12 | example illustration of a cgP-iP genotype, taking three input channels of the current image. A sequence of OpenCV operations is then 
performed before thresholding occurs to produce a binary segmented output image.

FigUre 11 | (left) The XMl files used to describe the kinematics of the Katana arm. (Right) Visualization of the same XML file in MoBeE.
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end-effector away from the obstacle. Figure 13 shows how the 
robot’s arm is “pushed” aside when the cup is moved close to 
the arm, therefore avoiding a non-stationary obstacle. It does 
so until the arm reaches its limit, then the forces cumulate and 
the end-effector is “forced” upwards to continue avoiding the 
obstacle. Similarly the reaching behaviour is adapted while the 
object is moved. Without an obstacle, the arm starts to settle 
back into its resting pose q*. By simply sending a signal through 
the interface the type of the object within the world model can 
be changed from obstacle into target. This leads to the 
calculated forces now being attracting not repelling. MoBeE 
also allows to trigger certain responses when collisions occur. 
In the case when we want the robot to pick-up the object, we 
can activate a grasp subsystem whenever the hand is in the close 
vicinity of the object. We are using a prototypical power grasp 
style hand-closing action, which has been used successfully in 
various demos and videos.6 Figure 10 shows the iCub success-
fully picking up (by adding an extra upwards force) various 
objects using our grasping subsystem, executing the same 

6 See videos at: http://Juxi.net/media/ 

action. Our robot frameworks are able to track multiple objects 
at the same time, which is also visible in Figure 7, where both 
the cup and the tea box are tracked. By simply changing the 
type of the object within MoBeE, the robot reaches for a certain 
object while avoiding the other.

3.3. example: improving robot Vision by 
interaction
The two subsystems can further be integrated for the use of 
higher level agents controlling the robot’s behavior. Based on the 
previous section, the following example shows how an agent can 
be used to learn visual representations (in CGP-IP) by having a 
robot interact with its environment. Building on the previously 
mentioned evolved object detectors, we extended the robot’s 
interaction ability to become better at segmenting objects. 
Similar to the experiment by Welke et  al. (2010), the robot 
was able to curiously rotate the object of interest with its hand. 
Additional actions were added for the robot to perform, such as 
poke, push, and a simple viewpoint change by leaning left and 
right. Furthermore, a baseline image dataset is collected, while 
the robot (and the object) is static. In this experiment, we wanted 
to measure the impact of specific actions on the segmentation 
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FigUre 13 | The iCub’s arm is controlled by MoBeE to stay in a non-colliding pose of the moving obstacle and the table by using reactive virtual 
forces. (See video: https://www.youtube.com/watch?v=w_qDH5tSe7g).

Leitner et al. Framework for Eye–Hand Coordination

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 26

performance. After the robot performed one of the four pre-
programed actions, a new training set was collected, which con-
tains the images from the static scenario and the images during 
action execution. While more data mean generally better results, 
we could also see that some actions were leading to better results 
than others. Figure  14 shows visually how the improvement 
leads to better object segmentation, in validation images. On the 
left is the original camera image, in the middle the segmentation 
performed by an evolved filter solely based on the “static scene 
baseline,” and on the right is the segmentation when integrating 
the new observations during a haptic exploration action.

By providing a measurable improvement, the robot can select 
and perform the action yielding the best possible improvement 
for a specific detector. Interaction provides robots with a unique 
possibility (compared to cameras) to build more accurate and 
robust visual representations. Simple leaning actions change the 
camera viewpoint sufficiently to collect a different dataset. This 
does not just help with separating geometries of the scene but also 
creates more robust and discriminative classifiers. Active scene 
interaction by e.g., applying forces to objects enables the robot to 
start to reason about relationships between objects, such as “are 
two objects (inseparably) connected,” or, find out other physical 
properties, like, “is the juice box full or empty,” We are planning 
to add more complex actions and abilities to learn more object 
properties and have started to investigate how to determine an 
object’s mechanical properties through interaction and observa-
tion (Dansereau et al., 2016).

4. DiscUssiOn

Herein, we present our modular software framework applied in 
our research toward autonomous and adaptive robotic manipula-
tion with humanoids. A tightly integrated sensorimotor system, 
based on subsystems developed over the past years, enables a basic 
level of eye–hand coordination on our robots. The robot detects 
objects, placed at random positions on a table, and performs a 
visually guided reaching before executing a simple grasp.

Our implementation enables the robot to adapt to changes in 
the environment. It safeguards complex humanoid robots, such 
as the iCub, from unwanted interactions – i.e., collisions with the 
environment or itself. This is performed by integrating the visual 
system with the motor side by applying attractor dynamics based 
on the robot’s pose and a model of the world. We achieve a level 
of integration between visual perception and actions not previ-
ously seen on the iCub. Our approach, while comparable to visual 
servoing, has the advantage of being completely modular and the 
ability to take collisions (and other constraints) into account.

The framework has grown over recent time and has been used 
in a variety of experiments mainly with the iCub humanoid robot. 
It has since then been ported in parts to work with ROS with the 
aim of running pick and place experiments on Baxter; the code 
will be made available on the authors webpage at: http://juxi.net/
projects/VisionAndActions/. The overarching goal was to enable 
a way of controlling a complex humanoid robot, which combines 
motion planning with low-level reflexes from visual feedback. 
icVision provides the detection and localization of objects in the 
visual stream. For example, it will provide the location of a chess 
board on a table in front of the robot. It can also provide the 
position of chess pieces to the world model. Based on this, an 
agent can plan a motion to pick up a specific piece. During the 
execution of that motion, MoBeE calculates forces for each chess 
piece, attracting for the target piece, repelling forces for all the 
other pieces. These forces are updated whenever a new object (or 
object location) is perceived, yielding a more robust execution 
of the motion due to a better coordination between vision and 
action.

The current system consists of a mix of pre-defined and 
learned parts, in the future, we plan to integrate further machine 
learning techniques to improve the object manipulation skills of 
robotic systems. For example, learning to plan around obstacles, 
including improved prediction and selection of actions. This will 
lead to a more adaptive, versatile robot, being able to work in 
unstructured, cluttered environments. Furthermore, it might be 
of interest to investigate an even tighter sensorimotor coupling, 
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FigUre 14 | segmentation improvements for two objects after interaction. On the left, the robot’s view of the scene. The middle column shows the first 
segmentation generated from the “static scene baseline.” The last column shows the improved segmentation after learning continued with new images collected 
during the manipulation of the object.
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e.g., by working directly in the image space – similar to image-
based visual servoing approaches (Chaumette and Hutchinson, 
2006)  –  this way avoiding to translate 2D image features into 
operational space locations.

In the future, we are aiming to extend the capabilities to allow 
for the quick end-to-end training of reaching (Zhang et al., 2015) 
and manipulation tasks (Levine et  al., 2015), as well as, easy 
transition from simulation to real-world experiments. We are 
also looking at developing agents that interface this framework 
to learn the robot’s kinematics and adapt to changes occurring 
due to malfunction or wear, leading to self calibration of a robot’s 
eye–hand coordination.
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A software and control architecture for a humanoid robot is a complex and large proj-
ect, which involves a team of developers/researchers to be coordinated and requires 
many hard design choices. If such project has to be done in a very limited time, i.e., 
less than 1 year, more constraints are added and concepts, such as modular design, 
code reusability, and API definition, need to be used as much as possible. In this work, 
we describe the software architecture developed for Walk-Man, a robot participant 
at the Darpa Robotics Challenge. The challenge required the robot to execute many 
different tasks, such as walking, driving a car, and manipulating objects. These tasks 
need to be solved by robotics specialists in their corresponding research field, such as 
humanoid walking, motion planning, or object manipulation. The proposed architecture 
was developed in 10 months, provided boilerplate code for most of the functionalities 
required to control a humanoid robot and allowed robotics researchers to produce their 
control modules for DRC tasks in a short time. Additional capabilities of the architecture 
include firmware and hardware management, mixing of different middlewares, unreliable 
network management, and operator control station GUI. All the source code related to 
the architecture and some control modules have been released as open source projects.

Keywords: software architecture, humanoid robot, modular design, Drc challenge, teleoperation, robotic 
middlewares, emergency response

1. inTrODUcTiOn

In this paper, we describe the design decisions and the resulting software architecture of the Walk-
Man robot, developed for the participation to the DARPA Robotics Challenge (DRC).

The goal of the DRC was to develop robots (not necessarily humanoid) capable to operate in a 
disaster scenario and to perform tasks, such as search and rescue, usually done by humans. During 
the challenge, the robot was required to perform different tasks, such as walk, drive a car, grasp and 
use objects, open doors, and rotate valves. The operator was located far from the robot, without 
line-of-sight, and not necessarily with a high bandwidth connection to the robot, so that direct 
teleoperation was not possible and a semi-autonomous approach was required. Thus, the operator 
was responsible for choosing the order and the timing of commands to solve the DRC tasks, depend-
ing on the level of autonomy of the robot. For example, the main task of opening a door might be 
handled by the operator with the following actions: reach the door handle, grasp it, turn and finally 
release it, or just with a single command: “open that door.”
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The Walk-Man team was composed by engineers and 
 technicians with different background and fields of expertise 
ranging from compliant manipulation, walking pattern gen-
eration, control, to artificial vision. Each contribution have been 
integrated in the software architecture thanks to the proposed 
design so that also non-experts in software engineering and code 
development were able to develop dedicated modules. This choice 
has avoided the necessity of training the whole team and, hence, 
reduced the time effort. In this paper, we use the terms “software 
users” and “control module developers” interchangeably to refer 
to the users of the software architecture we developed. Our design 
choices are motivated by the needs of such users, and they aim 
to maximize the output of any developer through a well-tailored 
software infrastructure, inter-process communication facilities, 
and shared libraries with various tools.

While some of our implementation decisions may not apply 
to large long-term projects, we followed many principles that are 
in common with the state of the art of robotic software develop-
ment: specifically, we adopted a component-based approach that 
focuses on modularity to support code reuse and rapid develop-
ment (Brugali and Shakhimardanov, 2010), for example, with 
similar requirements in the ROS ecosystem refer to Coleman 
et al. (2014) and Walck et al. (2014).

Following the standard approach of YARP (Metta et  al., 
2006) and ROS (Quigley et al., 2009) middlewares, we decided 
to build a distributed network of applications (nodes), so 
that each different process is independent and users can have 
more freedom when developing their own modules. To save 
development time and to focus on the specific tasks for the 
DRC, we relied as much as possible on software components 
available within existing frameworks. A first design choice has 
been the development of a Generic YARP Module (GYM) to 
provide a set of libraries for control purpose both to enhance 
code reuse and to have a common interface to manage the 
modules execution flow.

We decided to adopt the YARP middleware for the develop-
ment of our software architecture, and in particular for the design 
of the software interface between the robot hardware and the 
nodes related to motor control. This choice was motivated by our 
direct expertise in the development of YARP and because YARP 
has proved to be quite reliable in experimental settings (Hammer 
and Bäuml, 2013). In addition, YARP provides functionalities 
for setting channel prioritization using QoS and different com-
munication protocols. These features, at the time of writing, are 
not yet available with ROS (although the upcoming version of 
ROS will provide similar functionalities with the adoption of 
Data Distribution Service at the transport layer).

To get advantage of the large codebase available in the ROS 
ecosystem, we designed a mixed architecture that integrates ROS 
nodes. In the final architecture, ROS was used in the high-level 
operator GUI and for the 3D perception. The operator graphic 
interface is a fundamental component of the architecture, it allows 
the remote control of the robot by enriching the pilot awareness 
with the data coming from the robot. The single components of 
the GUI inherit basic functionalities from a Generic Widget, i.e., 
the graphical interface of a GYM.

Similar works have been developed by teams participating in 
the DRC Trials, such as Johnson et al. (2015) and Yi et al. (2015), 
and Hebert et  al. (2015). Most of these works have a custom 
 low-level communication library, or middleware, which ensures a 
real-time control loop and a high level inter-process communica-
tion system (such as ROS, Orocos, OpenRTM, and PODO). Given 
the requirements on the network bandwidth imposed by DARPA, 
a custom manager was used to connect the operator control sta-
tion to the robot computer, usually using TCP and UDP protocols 
without any abstraction layer, with two middleware servers (e.g., 
RosCores) in the operator station and the robot. The same solu-
tion has been adopted by the Walk-Man team whose architecture 
is based both on ROS and YARP that did not properly handle 
unreliable channels at the time of the DRC. Indeed, centralized 
servers are limiting for unreliable networks, and a custom bridge 
communicating with different reliable networks (robot, pilot 
station, etc.) using a TCP/UDP protocol is required. To cope 
with such problems, a custom network bridge that handles both 
protocols with a custom, optimized serialization of messages has 
been developed.

The aim of this paper is to describe the software with par-
ticular attention on how the proposed architecture helped the 
Walk-Man team and, in turn, how the team feedback affected the 
architecture design. The main contributions of this paper are as  
follows:

•	 a generic module template that captures a development pattern 
of robot control modules, avoiding the need to write the same 
boilerplate code multiple times in each module,

•	 an hybrid communication middleware architecture that 
includes ROS and YARP, along with a custom bridge used 
to handle both unreliable networks and environments with 
multiple nameserver (i.e., roscore and yarpserver), and

•	 the integration of the generic module template into the oper-
ator GUI, which is developed as a generic reconfigurable GUI 
capable of adapting to the DRC tasks as well as to future demos 
and lab projects.

The source code for the software described in this work 
can be found here: https://gitlab.robotology.eu/groups/
walkman-drc

1.1. robot Platform
The Walk-Man robot (see Figure 1) is a humanoid robot with 
33 DoFs, each actuated by an electric series elastic actuator 
whose design is described in Negrello et al. (2015). Each motor 
is controlled by its own electronic board at a frequency of 1 kHz. 
These boards are connected to a shared ethercat network with 
1 Gb bandwidth, used to send and receive joint position refer-
ence, along with other information such as temperatures, torques, 
and PID values. Five additional electronic boards in the ethercat 
network provide readings from the robot IMU and the four Force/
Torque sensors, located in the wrists and ankles. A control pc with 
a quad-core i7-3612 runs the control software and is configured 
as the ethercat master.

Finally, a Multisense SL head, which contains a stereocamera 
and a LIDAR, is connected through its own 1 Gb network to a 
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vision pc, with the same hardware components as the control pc. 
An external pilot pc is connected through a wireless network to 
the control pc and vision pc.

The operating system on all the computers is Ubuntu 14.04 
modified with Xenomai, all the code is written in C++ except 
for the firmware, which uses a subset of C. See Figure 2 for an 
overview of the hardware and networks. It is worth mentioning 
that the whole robotic platform has been assembled for the first 
time 4 months prior of the DRC. As a consequence, all the motion 
control software tests on the hardware have been delayed until few 
weeks before the DRC. On the other hand, at the time of assembly, 
the proposed architecture was in an advanced stage of develop-
ment and testing. Such asynchronous development of software 
control algorithms and the architecture has led to the necessity of 
a highly flexible and modular implementation of the latter.

1.2. Design choices Overview
In this section, the strategies used to design the Walk-Man soft-
ware architecture. A complete software stack has been built for the 
DRC consisting in a custom firmware, control modules tackling 
different tasks, a remote pilot graphical interface, and the whole 
architecture to manage and connect the different applications.

Due to the limited time constraint (around 10 months) and the 
variety of programing skills among our robotics researchers, our 
design choices were oriented to:

•	 avoid code duplicates and enhance code reuse;
•	 provide common shared C++ classes and utilities to the 

software users;
•	 ease and speed up the production of significant code by hiding 

code complexity in simple APIs;
•	 fast testing and debugging leveraging on simulators.

Following these principles, our core developers focused on 
low level interfaces, middleware management, and network and 
performance optimization.

We devised a layered component-based architecture, where 
each task of the DRC is handled by a single control module 
and modules interact with the hardware and each other 
through well-defined APIs. Once a rough and primitive API 
was defined, modules could be developed in parallel; in the 
meantime, shared functionalities could be improved under the 
hood of the high level control software without requiring code 
changes.

The YARP middleware has been chosen to obtain an 
abstraction layer for the hardware of the robot (sensors and 
motors) together with the set of interfaces. This abstraction 
layer allows to write code that can seamlessly interface to 
simulators or to the real robot (either remotely through the 
network or on the same machine using inter process com-
munication). The initial phase of the development focused on 
the implementation of this abstraction layer for the simulated 
robot in Gazebo (Hoffman et al., 2014). This allowed to start 
performing experiments early on during the project. The same 
interface was implemented on the real robot allowing to trans-
fer the code developed on the simulator with only minimal 
parameters changes.

2. sOFTWare archiTecTUre

The Walk-Man architecture has been organized into four software 
layers (see Figure 3).

•	 The top layer is the operator control unit, named pilotInterface.
•	 A network bridge connects the pilot to the robot, where vari-

ous control and perception modules form another layer.
•	 An hardware abstraction layer remotizes the robot hardware 

and provides to the control modules a set of shared libraries 
(GYM) used to interact with the remote driver, called Ethercat 
Master.

•	 The lowest layer is represented by the firmware running in 
embedded boards, each controlling one actuator.

2.1. Firmware-ethercat
At the lowest level, each joint of Walk-Man is controlled by a 
PID position loop in a distributed embedded electronic system 
with one board per joint. Our main aim was to have a hard 
real-time loop in the firmware: the execution time of each 
firmware function was measured and tuned so that a 1  kHz 
loop could be implemented. In the software architecture, we 
developed for the Coman platform, the communication from 
the control pc to each board was performed on an ethernet 
BUS using a combination of UDP and TCP packets. The lack 
of synchronization between boards led to conflicts and conse-
quent packets loss with UDP and delays with TCP protocols. 
We decided to move to an ethercat implementation, which 
allows synchronized communication and, therefore, much 
better control on the data traveling on the BUS. In particular, 
we measured the maximum number of bytes that each board 
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FigUre 4 | Dimension of various packet fields (bytes).

FigUre 3 | complete view of the software architecture.

FigUre 2 | Walk-Man network.
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could handle at 1 kHz and defined a standard packet size with 
standard information, as shown in Figure 4.

This standard packet definition is an example of the various 
interfaces between software levels that will be described in this 
work and that allow software decoupling and testing.
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FigUre 5 | as an example, during the Drc driving task three modules 
were using joint readings at 250, 10, and 1 hz, one required torques 
and temperatures at 10 hz, two were controlling the joints at  
250 and 10 hz.

FigUre 6 | Detailed low level software stack, including robot 
hardware abstractions and a whole-body class used by the generic 
Yarp Module.
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2.2. ethercat Master – YarP
In the real robot, the hardware manager runs on the control pc 
and is called Ethercat Master. It manages Ethercat slaves (i.e., the 
electronic boards), keeps them synchronized, and sends/receives 
position references in real-time.

The Master can be seen as a hardware robot driver, which 
handles low level communication and exposes a simpler and 
asynchronous API to the higher levels. Writing real-time code 
requires expertise that were not available in all the software 
developers. Therefore, a separation between the Master and 
the modules implementing higher-level behaviors has been 
introduced. This separation was achieved through the YARP mid-
dleware using the remotization functionalities that it provides 
for the robot abstraction layer. Usually, developers write software 
that communicates with the Master through the network; this 
has been achieved using asynchronous communication with 
the YARP middleware. This decoupling was beneficial because 
it allows stopping and starting modules without interfering with 
the Master. More importantly, it prevents modules that behave 
erratically to affect the real-time performance of the Master.

The Master creates an input and output YARP port for each 
control module and for each type of information required by 
them. In Figure 5, the modules running during the DRC driving 
task are reported together with communication frequencies.

2.3. hardware/simulation  
abstraction layer
The Ethercat-Master exposes the robot sensors and actuators 
in a YARP network by remotizing the robot with a set of YARP 
communication channels (this is achieved in YARP using special 
objects called network wrappers). An additional set of libraries, 
named WholeBodyInterface, hides YARP channels from control 
modules, and relieves the developers from the bureaucracy 
required to prepare and parse the messages to and from the robot. 

The composition of the YARP wrapper in the Ethercat-Master 
and the whole-body libraries realizes a two-tier Habstraction 
Layer (HAL) for the robot. This abstraction layer between the 
hardware driver and the control modules allowed us to easily 
switch between simulation and the real robot, since the Gazebo 
plug-ins for the Walk-Man robot implements exactly the same 
YARP classes and interfaces as the Master (see Figure 6).

In the simulation case, the Gazebo Plugin substitutes the HAL 
standalone application and it is fully compatible with the same 
set of shared libraries.

The two-tier abstraction layer implements a whole-body 
interface on top of the robot interface defined by YARP. The main 
difference between the two layers is that the latter separates joints 
in kinematic chains and implements interfaces for individual sen-
sors; for practical reasons, the logical separation of the kinematic 
chains at this level is subject to fluctuations (for example, it affects 
how joint states are broadcast on the network). The whole-body 
interface groups all joints and associated sensors in a single kin-
ematic chain. The advantage of this separation is that it exposes 
to the user the whole-body interface, which is stable because it is 
defined solely by the number of joints of the robot.

As an extreme example, 15  days before the DRC, we had to 
intentionally break the functions responsible for moving the robot 
joints. To reduce resource usage (and reduce jitter due to CPU 
overload), we changed how joints are grouped and transmitted on 
the network; all the required changes affected the YARP abstraction 
layer and remain limited to the implementation of the whole-body 
interface. All the user code remained untouched. The simula-
tion, the real robot, and all the control modules were updated in  
just 2 days.
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FigUre 7 | structure of the generic YarP Module, with inputs and outputs from/to the pilot and the ethercatMaster.
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As suggested by Johnson et  al. (2015), we fully understand 
(and wish) that in a long-term project APIs must not be modified, 
especially few days before the demo. However, we are convinced 
that, in a research environment APIs may need to be changed in 
critical moments, and the proposed approach is a way to mitigate 
the effect of such changes.

Finally, an advantage of this two-layer architecture is that it 
separates control modules from the middleware. This will allow 
to change the communication layer (i.e., the middleware) without 
affecting the control code.

2.4. generic control Module Template
A control module software can be summarized as a sense-compute-
move loop, where sense receives all the inputs from the robot, the 
inputs are used by compute in order to implement the control law 
of the module. Finally, move sends to the robot the newly computed 
desired position of the joints. In reality, developers usually spend 
a part of development effort into initialization code: i.e., reading 
control parameters, starting the communication facilities, reading a 
description of the robot kinematics, and so on. We provided explicit 
support for this implementation pattern in the Generic YARP 
Module (GYM). The GYM has been designed as a C++ abstract 
class that provides a common and standard way to execute these 
initialization steps, along with a sense and move default implementa-
tion that provide boilerplate code required to initialize the YARP 
remotization interfaces. The source code of GYM can be found here: 
https://github.com/robotology-playground/GYM

GYM functions handle all the required YARP communica-
tion between a module, the Master, and the PilotInterface, effec-
tively hiding YARP communication mechanisms and classes. 
GYM was iteratively improved driven by the effort to remove 
duplicated code across modules and based on the team feedback 
(10 developers) which helped revising the specifications and 
debugging.

Our experience showed that the adoption of GYM reduced 
duplicated code significantly. In addition GYM provides another 
separation between the code and the middleware. In fact, a 
Generic ROS Module is currently in development and complies 
with the GYM API, so that any module using GYM could also be 
used in the ROS system.

GYM is organized in two threads: a watchdog running at 1 Hz 
and a main control loop running in a range of frequencies between 

100 and 500 Hz (Figure 7). Developers can write their own code 
inside the control loop function run(), they also have access to a 
set of helper function providing a standard kinematic description 
of the robot based on the robot URDF. The watchdog thread is not 
customizable and listens for standard commands from the pilot, 
through one of the standard communication interfaces (switch 
interface) described in the next section.

The GYM C++ class that needs to be inherited by the user has 
the following signature:

class generic_thread
{
public:

/**
 * @brief custom initialization function: called before 

    run(),
 * must be overrided by sub-classes
 */

  virtual bool custom_init()=0;

  virtual bool custom_pause(){
   return true;

}

virtual bool custom_resume(){
    return true;

}

/**
* @brief loop function, called at the desired
* frequency read from configuration file
*/

  virtual void run(){}

};

Notice that the user can override the default (empty) imple-
mentation of pause and resume functions so that he can take 
the required actions in order to save and resume the state of his 
own control module. Instead, to keep different modules organ-
ized in a similar structure, the init function was required to be 
implemented by the user and to contain all the initialization code. 
Moreover, with this approach, executables could be started in any 
moment, while the pilot kept the possibility of choosing when a 
module was going to be initialized and connected to the rest of 
the running software.
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FigUre 8 | state machine of the gYM.
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In order to show some of the GYM library functions, we report 
a simple run implementation:

virtual void run()
{

//get the command from the pilot
  command_interface.getCommand(cmd);

//evolve the state machine accordingly to the received 
   command
  current_state=sm.evolve_state_machine 
   (current_state,cmd);

//get updated joint values
  vector q_sensed,q_des;
  robot.sensePosition(q_sensed);

//compute desidered joint values in a control law function
  q_des=control_law(q_sensed,current_state);

//move the joints
  robot.move(q_des);

//set the status to be streamed back to the pilot
  status_interface.setStatus(current_state);

}

The variable robot is provided by GYM and is used to interact 
with the hardware with simple functions such as sensePosition 
and move.1

Examples of what a complex implementation may do is to use 
multiple state machines depending on the cmd values, to read or 
ignore commands from the user, to selectively avoid sensing or 
moving the robot while planning a complex movement, or even 
to evolve a state machine automatically without requiring user 
commands.2

2.4.1. Communication Interfaces
One of the features implemented in GYM code is a set of commu-
nication interfaces between the module and the pilot: Command, 
Status, Warning, and Switch. These interfaces in their default 
implementation send through the network an array of characters; 
the Command and Status interfaces support the addition of a 
custom data serializer that can be implemented by the user in 
order to send any type of data.

The Command Interface is used to send commands to the robot 
related to the precise task being executed, such as “go_straight 10” 
to make the robot walk for 10 meters or “set_valve 0.5 0 0.1 0 0 0 1 
Waist” to set the valve data for the turning valve task with respect 
to the Waist robot reference frame.

The Status Interface is used to send back to the pilot any 
information the developer considers necessary to understand 
the internal state of the control module, such as “turning valve,” 
“walking,” “ready.”

1 For the complete list of the helper functions, see https://github.com/robotology-
playground/idynutils/blob/whole_robot_wrapper/src/RobotUtils.cpp 
2 For some GYM real modules, please see https://gitlab.robotology.eu/walkman-
drc/drc_drive/blob/master/src/drc_drive_thread.cpp or https://gitlab.robotology.
eu/walkman-drc/gaze_control/blob/whole_robot/src/gaze_control_thread.cpp 

The Warning Interface is an advanced interface that can be 
used in dangerous situations (e.g., when the balancing is com-
promised) to raise warning states in which the robot can assume a 
particular behavior (e.g., blocking every movement), from which 
specific actions can be performed to restore a safe state. The main 
differences between this interface and the Status are the priority 
of the data in the communication between control pc and pilot 
pc, and the different visualization in the pilotInterface, where 
Warning messages are red (see Section 2.7).

The Switch Interface is used to send the following commands 
to each module: start, pause, resume, stop, and quit. Since some 
of these commands are critical, they cannot be overridden with 
different implementations: modules are allowed to re-implement 
only pause and resume functions. This approach guarantees that 
any bug or misbehavior of the code running inside a GYM does 
not propagate to the whole system, since a module can always 
be forced to stop by the pilot with a stop command. Note that, 
differently from pause, the stop command does not activate any 
soft exiting procedure. For example, trying to stop the walking 
module while the robot is dynamically walking may result in a 
fall: if the pilot wants to stop the robot from walking and avoid 
falling, he should send the pause command to the current walk-
ing module, which in turn, depending on the robot status, should 
either stop immediately (double stance phase) or finish the cur-
rent step phase and put both feet on the ground. Manipulation 
modules are safer in this sense since the robot is usually stable 
when moving its arms, nevertheless, a pause procedure should 
still be implemented as it allows the module to save its internal 
state and resume it later. Thus, the stop is used to quit a module 
when it is no longer needed, or to force-quit a module that is not 
controlling the robot but could be stuck in a loop due to bugs.

2.4.2. State Machine
The behavior of the GYM state machine is reported in Figure 8. 
Except for the special states Constructor and Destructor, there 
are three available states. The unique state accessible from the 
Constructor is Running through the start command. From this 
state, the module can be put into Paused state using the pause 
command or stopped (i.e., put into Stopped state using the com-
mand stop). From the Paused state, the module can be switched 
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FigUre 9 | a control module generic infrastructure.
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to the Running one by the resume command or can be stopped. 
Once the module is in the Stopped state, it can be only started 
(i.e., put into Running state through the command start). The 
Destructor state is accessible from every state sending the quit 
command. Changes of state are triggered by the watchdog thread 
in response to a message from the Switch Interface.

In the Running state, the internal control module loop is 
executed, the robot can receive the commands and send the state. 
The Paused state is used to freeze the internal control module 
loop so that, once resumed, the last command is executed. In the 
Stopped state, the internal control module loop is exited, as the 
program is closed, but it can be restarted again using the Switch 
Interface. To develop this state machine, we have been inspired 
by the OROCOS (Bruyninckx, 2001) Component Lifecycle 
StateMachine.

A generic representation of a control module using the GYM 
template together with the related widget is depicted in Figure 9.

2.5. control Modules
Thanks to the GYM classes and functions, our team managed 
to focus on the core development of each DRC task in very 
short time (e.g., the module used to drive was developed in 
10 working days by one single developer). It is worth noting 
that, although the perception module is not a proper control 
module, since it does not send references to the robot joints, 
it has been developed using the GYM template. This module 
uses ROS drivers to acquire data from the Multisense SL head 
and the standard command/status/switch interfaces to interact 
with the pilot. We will now describe the main components of a 
GYM Module, using the module designed for the driving task 
as an example.

The underlying structure of every control module is composed by:

•	 an Inverse Kinematics solver;
•	 a Finite State Machine (FSM); and
•	 a trajectory generation library,

and resembles the structure of a hybrid control architecture 
with discrete states associated with continuous control laws. 
For example, the state machine for the driving module is shown 
in Figure  10. The principle of the module is the following: a 
message arrives through the command interface and depend-
ing on the message information, a different transition event is 
triggered, which may result in a change of state. After a new 
state transition, a new trajectory is created for one or more end-
effectors. During the control loop, a portion of the trajectory 
is sent to the Inverse Kinematics solver, which computes the 
correspondent portion of joint displacement to be sent to the 
robot. Modules related to manipulation tasks uses a WholeBody 
Inverse Kinematics library by Rocchi et  al. (2015), while the 
module related to walking uses a different strategy and Inverse 
Kinematics inspired by Kryczka et  al. (2015). Indeed, we 
decide to give freedom to the control module developers, so 
that they could use the control laws and IK approaches that 
they were more familiar with. Two control modules, based on 
the proposed architecture, are described in detail in Ajoudani 
et al. (2014) (for the valve task) and Lee et al. (2014) (for the 
door task).

2.5.1. Finite State Machine
In order to cope with complex tasks, a Finite State Machine is 
used to switch between different actions of the robot. Once the 
operator receives the new status from the status interface, he 
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can send a message through the command interface to change 
the module state accordingly to the structure of the FSM. As an 
example, referring to the driving task and the FSM reported in 
Figure 10, once the pilot receives the information that the status 
“reach” has been achieved, he can send the “approach” command. 
Many transitions are not possible because they would result in an 
incoherent behavior of the robot, such as moving a hand away 
from the wheel while still grasping it. Every state corresponds to 
a specific action or to a waiting state.

2.5.2. Trajectory Generator Library
The trajectory generator library consists of a set of trajectories of 
two types: linear and circular. The linear trajectories are created 
via fifth-order polynomials, interpolating from the initial and 
final positions. On the other hand, the circular trajectories are 
parameterized on the angle of rotation: the polynomial inter-
polates from the initial to the final angular displacement of the 
trajectory. The library provides a C++ class that can be initialized 
with the desired type of trajectory. The API methods allow to set 
the trajectory parameters, get an arbitrary point of the trajectory, 
and reset the generator to start a new trajectory.

2.6. Unreliable channel Management
Our robot is used with two common types of network configura-
tion between the pilot pc and the robot. The first setup is similar 
to a lab environment, where the network is fully operational and 
the bandwidth is at least 100 Mb/s. The second one is inspired by a 
realistic disaster scenario, where a wireless network is discontinu-
ously working and the average bandwidth is less than 1 Mb/s. It is 
desirable to have most of the software architecture independent 
from the network capabilities, in particular the code running in 
control modules and in the pilot interface should not require 
any changes depending on the network. Both YARP and ROS 
use centralized servers for naming look-up (respectively called 
yarpserver and roscore).

When working in the first configuration, we used a single 
yarpserver and roscore so that modules can communicate 
directly with each other; there are no networking issues from 
pilot to robot.

In the real-world scenario, a direct communication may 
result in frequent disconnections and the centralized YARP/
ROS servers may not be able to recover from such disconnec-
tions. Thus, a strong division between pilot pc and the robot has 
been proposed, with two pairs of roscore/yarpserver running, 
respectively, on the pilot pc and the control pc, splitting modules 
into a robot subsystem and a pilot subsystem. The two subsystems 
are bridged using a network manager that transparently intercon-
nects modules between the two. The developed network manager 
behaves as a two-way bridge between the pilot pc and the robot, 
it is completely transparent to the processes it connects, meaning 
that there is no way for the processes to understand if they are 
communicating through a bridge or directly. Our bridge is devel-
oped as a pair of processes, running on two different computers, 
called BridgeSink (in the sender pc) and BridgeSource (in the 
receiver pc). The Boost Asio library (Kohlhoff, 2003) was used to 
abstract UNIX sockets and obtain an asynchronous behavior in 
the communications.

For the sake of clarity, we introduce an example of the bridge 
transparency capabilities. Consider two PCs (PC1 and PC2) with 
one module each (Module Alice and Module Bob, respectively). 
In the first scenario, Module Alice on PC1 is sending info to 
Module Bob on PC2 using YARP through a direct connection 
(i.e., disabled bridge), Alice will try to connect to Bob and will 
find a YARP port PB in the remote PC2, while Bob will listen from 
Alice’s remote YARP port PA in PC1.

In a second scenario the bridge is enabled, and it reproduces 
the port PB in PC1 and the port PA in PC2 so that Alice will 
actually connect to a local (in PC1) YARP port faking PB that 
is provided by the BridgeSink process running on PC1. On the 
other hand, Bob will listen from a local(PC2) YARP port fak-
ing PA provided by the BridgeSource running on PC2. Finally, 
BridgeSink and BridgeSource will internally transfer informa-
tion from PC1 to PC2.

For network management purposes, the proposed bridge uses 
heuristics whose most important options are the bridge channel 
protocol (UPD or TCP) and the middleware (YARP or ROS). It 
is worth noting that the only unsupported combination is a TCP-
ROS bridge, since ROS data would saturate the channel.
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Table 1 | bandwidth usage from the robot to the Pilot, not including TcP 
overhead, assuming T = 1.

From robot number Dimension 
(bit) 

Total  
(bit/s) 

info

Joint IDs 33 8 264 Robot state
Joint encoders 33 16 528 Robot state
Joint toques 33 8 264 Robot state
Board temperatures 7 16 112 Seven joints per second
Module statuses 5 16 80 Dictionary-based 

compression 
Overhead fixed 1 512 512 Serialization overhead
Overhead variable 10 64 640 Serialization overhead
Total – – 2400

FigUre 11 | system Pcs connections and interactions.
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In Figure 11, we report the location (motor PC, vision PC, 
pilot PC) where the various programs are executed, focusing on 
the TCP/UDP bridge role.

2.6.1. TCP Bridge
Recall that YARP is used for all the communications between pilot 
pc and control pc, i.e., starting and stopping modules, modules 
status, modules commands. Those data are relatively small (see 
Table 1) and have high priority; thus, they are usually transmit-
ted through a TCP channel. The bridge is heavily optimized to 
reduce the data overhead, such as TCP or YARP headers. It uses 
a configuration file to know which module should be redirected 
through the bridge, and associates with each module port an 8-bit 

identifier that is used as a header. An example of the configuration 
file is shown below:

<modules>
<module name=”walking” id=”0”/>
<module name=”drc_valve” id=”2”/>
<module name=”drc_drive” id=”4”/>
<module name=”drc_wall” id=”5”/>
<module name=”drc_door” id=”6”/>
<module name=”gaze_control” id=”7”/>
<module name=”temperature” id=”8”/>
<module name=”drc_plug” id=”11”/>

</modules>

<!– –IDs are unique and shared between modules and custom 
    modules, do not overlap!!– –>

<custom_modules>
<module name=”encoder_bridge” id=”9”>
  <connection port_to_open=”/command:i” 
  source_port=”/command:o” target_port=”/command:i”

    location=”robot” direction=”robot_to_pilot”/>
  <connection port_to_open=”/switch:i” 
  source_port=”/switch:o” target_port=”/switch:i”

   location=”pilot” direction=”pilot_to_robot”/>
</module>
  <module name=”walking_publish” id=”12”>
  <connection port_to_open=”/command:i” 
  source_port=”/command:o” target_port=”/command:i”

   location=”robot” direction=”robot_to_pilot”/>
</module>

</custom_modules>
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FigUre 12 | The pilot interface.

Ferrati et al. The Walk-Man Robot Software Architecture

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 25

Note that standard GYM modules are handled automatically, 
while custom modules require some more information. Indeed, 
they offer more configurability and allow for port renaming.

All the communications requested during T seconds are 
packed in a single TCP packet using the 8-bit identifier to keep 
the original header information. In the case where a port pro-
duces multiple packets, they are all dropped except the last one. 
This effectively reduces the frequency of streaming port, while 
maintains intact pilot commands.

T is chosen depending on the network bandwidth and delay, in 
the DRC it was set to 0.5 s. This leaves almost 50% of the channel 
free to be used, e.g., to send commands from the PilotInterface to 
the robot modules or to start a ssh shell in the control pc.

2.6.2. UDP Bridge
ROS perception-related data and other streaming information 
from the robot require low latency. For this type of informa-
tion, it makes little sense to implement a reliable transport that 
requires retransmission when packets are loss. Lost data become 
obsolete and it is much better to read new messages than require 
re-transmission. For this reason, it is preferable to use UDP  
protocol.

Since PointClouds and RGB Images are usually larger than the 
UDP packet size, they need to be split and reconstructed. This is 
usually done automatically by the UDP protocol implementation, 
but if a single packet is lost, the whole data are dropped.

Our bridge avoids this problem by splitting point clouds 
and images into smaller ones, each representing a 3D or 2D 

sub-region of the original data, so that each one is a standalone 
pointcloud/image contained into a UDP packet (1500 bytes). 
By using timestamps, the original data are reconstructed in 
the pilot pc. This choice results in a delay in the visualization, 
since BridgeSource waits to receive as many data pieces as 
possible in an amount of time δt. In the DRC, the parameter 
δt was set to 0.4 s, which ensured receiving more than 90% 
of the original point cloud with a delay that was visible by 
the pilot but not critical since there was no teleoperation 
involved.

All the module statuses, the robot temperatures, and encoder 
readings (YARP based) are also sent in the UDP channel at a 
different (higher) frequency than the TCP one.

2.7. Pilot interface
To remotely control Walk-Man, a GUI, called Pilot Interface (PI), 
has been developed. We followed a modular approach, using Qt 
libraries and ROS libRViz for 3D rendering (Kam et al., 2015). 
Every DRC task has a dedicated widget and can be used stan-
dalone. Moreover, we also developed widgets that allow interac-
tion with the 3D representation of the environment and widgets 
for monitoring the robot state.

Using our approach, the operator could monitor the environ-
ment and the robot status and could make correct decisions to 
perform the tasks. Figure 12 shows a screenshot of the PI during 
the driving task.

Following the approach adopted for the GYM, we developed 
the Generic Widget (GW) so that every control module widget 
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FigUre 14 | Driving task dedicated widget.

FigUre 13 | generic Widget switch and status interface. The red led turns green if the module is running, displaying the relative status description.
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has the same basic features. In particular, the GW has already the 
capability to send messages to the Switch Interface and receive 
information from the Status Interface (see Figure 13).

For the sake of clarity, the driving task widget is reported in 
Figure 14. On the top of the widget, there is the Switch/Status 
Interface-related buttons, the rest is divided into three parts. On 
the left, we put the buttons to set the steering wheel position and 
place the hand on it, together with the buttons to adjust the posi-
tion of the foot dedicated to the throttle. In the center, there are 
the buttons to rotate the steering wheel, while sliders are used to 
help the pilot understanding the current steering wheel position. 
Finally, on the right, we placed the button for the throttle. In this 
case, the operator can specify the duration and the amount of 
throttle.

In contrast to the other DRC teams, we managed the interac-
tion between the robot and the pilot from the motion planning 
perspective. In fact, our pilots did not explicitly ask and check 
for a motion plan before the execution started. Instead, the pilots 
completely relied on the correct on-board open-loop Cartesian 
generation and kinematic inversion, and checked only the result-
ing robot position at the end of the execution. This approach was 
a viable choice thanks to the structural compliance of the robot 
joints, which handles small unexpected forces from outside, such 
as the effect of pushing a door with the arm. Moreover, with its 
soft and adaptable design, the robot hand can grasp an object 
with a large position/orientation error, it can even hit a surface 
with its finger without breaking them, and finally it can keep its 
grasping capabilities even with some broken fingers. With these 
premises, it is clear that a collision with the environment or a 
wrong placement of the end-effector with respect to the object do 
not affect the result of the task. If the robot hand misses the grasp 

or hits a surface, the operator will simply move the arm back 
and try again. The use of the Warning Interface to inform the 
operator of external forces or robot instability further improved 
our strategy.

An early work describing the initial design of the Pilot Interface 
is in Settimi et al. (2014). In the months between this preliminary 
work and the DRC, many features such as the Generic Widget 
have been added. The pilot was given the possibility to activate 
advanced modes, where commands, usually hidden, are shown 
and all the buttons are enabled (the pilot knew that this mode 
was risky, but it might be needed to override safety behavior in 
an unexpected situation).

Based on the forgiveness design principle an implementation of 
the Qt:QPushButton named QtTimedButton has been provided: 
after the click, a countdown of 3  s is displayed on the button 
before sending the command; the command can be stopped by 
re-clicking on it (this is used for dangerous commands to undo 
erroneous or undesired clicks).

To improve the pilot awareness of the robot state, we intro-
duced a tab dedicated to the status, showing temperatures of the 
boards, torques of the motors, and battery level (see Figure 15) 
together with the modules statuses and warning messages. 
A logging utility for commands sent to the robot and statues 
received has been added, the visual data from the robot is logged 
as well in order to be able to completely reproduce and analyze 
the events.

Configuration files give the user the possibility to customize 
the displayed widgets. In the Darpa Robotic Challenge, three 
pilots with three different PCs were in the pilot station, each one 
being focused on different critical aspects: execution of the tasks, 
perception of the environment, and robot status.
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FigUre 15 | status widget. (a) On the left, the different modules status is reported, and the warning message are reported next. On the bottom, the battery 
percentage is represented by a horizontal bar. (b) Two human-like displays show the temperature and torque of every board.
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3. resUlTs: The Drc eXPerience

The first important test of the proposed architecture has been 
the DRC. Later, other 4 official occasions have occurred between 
September and November 2015 during which both the hardware 
and software Walk-Man platforms have been tested. Regarding the 
DRC, the team got 2 out of 8 points in the competition (consisting 
in 2 runs) for the accomplishment of the drive and door tasks. Team 
strategy was to get a penalty in time and avoid the egress of the 
vehicle task. The dimension of the DRC door has obliged the pilot 
to enter the indoor scenario walking sideways. The cameras on the 
Walk-Man head could not provide an accurate vision feedback to 
compute footstep poses and the irregularity of the terrain made 
the robot falling after the door was crossed in one of the two runs. 
During another run issues with the battery and the electronic power 
management forced the team to accept another time penalty to 
reset the robot and unfortunately the time left for the run was over.

3.1. software components analysis
The components running on the robot were a set of control 
modules, the network bridge, a point cloud grabber, multiple 
webcam grabbers, and the hardware abstraction layer, with ROS 
and YARP nameservers. In particular, the control modules were 
paused and resumed when needed, in order to avoid multiple 
modules controlling the same joints at the same time. On the 
other hand, on the pilot computers, multiple pilot interfaces and 
the network bridge were running, along with ROS and YARP 
nameservers. The data flows inside the robot computers were very 
simple: all the control modules were connected to the bridge (and 
consequently to the pilot) and to the hardware abstraction layer. 
The perception modules were only sending data to the pilot, while 
the hardware abstraction layer was connected to the ethercat 
network and received data from the control modules. Finally, all 
the pilot GUIs were connected to the bridge (and consequently to 
the control modules on the robot) and to each other.

During the drive task, the driving control module was acti-
vated along with the previous listed modules. After the reset, 
the driving module was stopped, while the walking module was 
enabled; and the latter was paused and resumed multiple times 
during the door task in order to allow the door control module 
to open the door. Indeed, as mentioned, the ethercat master is 
able to receive inputs from different modules at the same time, 
and since walking and door modules operate on the same joints, 
they could not be run together, although they were both needed 
to execute the task.

The gaze control module was instead active all the time, this 
way the perception pilot could watch around and place virtual 
markers in the 3D visualization window. The window was seen 
and used by all the pilots on their respective computers thanks to 
the distributed structure of the pilot interface.

The software components used for networking were the first 
to be tested during the rehersal of the DRC, and performed 
in a stable and deterministic way. The setup of the bridge was 
straightforward; during the simulated DRC outdoor mode, the 
pilot interface received all the information published by the robot, 
each data at its own designed frequency. Instead, during the simu-
lated indoor mode the TCP channel kept providing critical data, 
and UDP started to provide pieces of point clouds and images at 
random times, as expected.

In the competition, we did not have the chance to test the 
indoor mode, but in the outdoor part, the pilots faced multiple 
resets, including complete power-offs of the on-board computer. 
Once restarted, the bridge automatically re-established all the 
YARP and ROS connections, showing the power of its transpar-
ent behavior.

During the days before the competition, multiple pilot GUI 
configurations were used to test the robot components.

For example, the developers of the walking control 
modules used a single computer with a GUI configuration 
having few status widgets and only one control widget (the 

92

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Ferrati et al. The Walk-Man Robot Software Architecture

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 25

walking one) to tune their controller parameters, while the 
driving test required two pilots, one controlling the gaze and 
the other using the driving module to steer the wheel and 
accelerate.

Finally, the pilot checking the robot and network status could 
add another computer and another GUI during the tests when-
ever he needed to.

In the 5 days of tests inside the DRC garage, we experienced a 
single crash of one GUI, probably due to a graphic driver error. 
After the crash, it was sufficient to start again the GUI with the 
same configuration and both ROS and YARP middleware allowed 
to reconnect the GUI and the robot with no issues.

The GUI design helped pilots avoiding errors and parallel-
izing tasks. The QtTimedButton safety feature, which was never 
needed during trainings, has been exploited for the first and only 
time during the DRC. During a locomotion phase, the robot was 
positioning itself sideways with respect to the door; the pilot sent 
a command to the Walk-Man robot to rotate on the spot. The 
locomotion expert in the pilot room suddenly figured out that 
rotating on the spot in that particular inclined terrain could lead 
to a fall, if an extra stabilization procedure was not used, and he 
alerted the main pilot. Since the button related to the rotate on 
the spot command is a QtTimedButton, and the 3-s safety time 
window was not expired, the pilot was able to re-click the button 
and stop the sending of the command. This prevented the robot 
from falling in that situation.

The start/stop feature of GYM and the capability of modules 
to initialize in any robot configuration was used by the pilots a 
couple of times when they were no longer sure about the module 
status, e.g., after an unexpected network problem that discon-
nected the TCP safe channel (an issue of the DRC network).

As we already pointed out, the use of multiple pilots and a 
distributed interconnected architecture between their computers 
represented a remarkable choice. The advantages were demon-
strated during various moments of the challenge, especially in 
the cooperation between the main pilot and the perception one. 
Indeed, the main pilot delegated to the perception pilot, among 
other duties, the superimposition of 3D objects to the scene in the 
manipulation tasks (e.g., grabbing the steering wheel or the door 
handle) and the continuous checking of the robot surroundings to 
decide how to avoid collisions and what to do during the driving. 
Thus, the main pilot could just focus on the correct execution of 
the various control sub-tasks required by each DRC task, reduc-
ing the amount of stress and consequently the error probability.

3.2. beyond Drc
As mentioned, the Walk-Man platform has been used in several 
occasions after the DRC verifying its simple usage and longevity. 
A first example of a lab experiment is the development of a visual 
servoing manipulation task to improve robot autonomy. This 
work uses both a perception ROS module and a manipulation 
GYM module, which was successfully developed in few days 
thanks to the code and tasks already available.

During Eurathlon 2015 and IROS15, the Walk-Man robot 
performed various exhibitions. The executed tasks were walk-
ing, door opening, and valve turning. The walking and door task 

performed as during the DRC, in a stable and repeatable fashion. 
It was the first time that the valve task was publicly shown 
outside the lab and outdoor. The task performed very well and 
multiple times, demonstrating its reliability and robustness to 
positioning errors.

The last exhibition of the robot has been in Rome for the 
Maker Faire Rome 2015: in this occasion the robot had to break 
a band to inaugurate the event and then greet the audience. We 
were enough confident in the behavior of the hardware abstrac-
tion layer that a colleague located in another city developed the 
band breaking task in the Gazebo simulator and then sent the 
code to the Istituto Italiano di Tecnologia labs in order to have it 
tested on the hardware. The code worked on the real robot out 
of the box.

Another relevant aspect of this demo has been the use of a sin-
gle pilot. This was required due to limited space on the stage and 
the necessity of a quick setup. By using a reconfigured lighter pilot 
interface, the pilot, who was the one responsible for the  status of 
the robot during the DRC, was able to manage every aspect, from 
the communication to the successful execution of the task.

4. DiscUssiOn

The Walk-Man architecture has proven to be functional and 
robust in several different occasions and environments (indoor/
outdoor challenges, labs experiments for research). Even during 
the architecture development, no particular criticality has been 
encountered to make us deviate from the original design. Three 
main factors have contributed to the chosen architecture design: 
limited time for implementation, heterogeneity of expertise of 
code users, and no prior availability of the hardware and, hence, 
lack of tested control laws.

Solutions adopted to cope with those factors, and discussed in 
this paper, have worked properly in any occasion the platform has 
been used. Even though not all the choices were a priori optimal, 
they have proven to work properly in our particular case. We will 
now discuss the outcomes of some of those choices starting from 
those made to overcome the strict time deadlines.

The most striking example of the effort done in avoiding 
the boilerplate code, together with the use of GYM, is the DRC 
driving module. Indeed, it was developed in a very small amount 
of time by a master student (i.e., non-expert code developer), 
which managed to control the gas pedal and to steer the wheel 
in less than 2 weeks. The module was then refined and tested for 
a week by two developers of the team and eventually used in the 
challenge.

It is well known that the design of a modular architecture does 
not always come for free, requiring significant time effort. Indeed, 
each software layer requires its own API to interface with others, 
and dedicated maintenance and update. Nevertheless, our team 
could have never been able to develop and change the modules 
without such APIs: the few main issues (e.g., multi-threading 
issues, network bridge incompatibility with custom YARP ports) 
encountered during the few months before the competition have 
been solved in a small amount of time without compromising or 
delaying the work of other software users.

93

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Ferrati et al. The Walk-Man Robot Software Architecture

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 25

An unintuitive and apparently wrong practice, in case of 
complex hardware and software platforms, such as Walk-Man, 
is the arbitrary choice in critical components implementations as 
we did for the network bridge. Indeed, non-architecture develop-
ers were not informed at all of the inner structure of the bridge. 
Although this in principle may lead to errors or integration issues, 
the alternative approach of discussing the design of the bridge 
among all the team members was prohibitive and required too 
much time. After the bridge implementation, each of the few 
issues emerged was solved jointly with the involved people.

Usually, in large companies and in organized open-source 
projects, coding quality standards, style, and procedures are man-
datory and adopted by the whole team. Such approach requires 
dedicated advanced training and hence time. In our case, the team 
was formed on purpose for the DRC by including researchers of 
different groups with different expertise and standards. In similar 
situations, we strongly suggest to let every programmer choose 
his programing style and control approaches designing a flex-
ible architecture to support the different users. Our  architecture 
reflects this need by not enforcing any specific control algorithm 
in the modules implementation, so that developers were free to 
read just the sensors and to control the joints they required to 
achieve their specific tasks. As an example, control approaches 
could range from open-loop joint-space trajectories to inverse 
dynamics using a combination of force-torque, joint torques, and 
IMU measurements.

Another solution to cope with short time, which should not 
be underestimated, is the human pilot capabilities and improve-
ments thanks to training. In particular, there was a trade-off 
between the effort required from the pilots during the challenge 
and the software development effort required to offload them 
from some tasks. As an example, we decided to skip the develop-
ment of an artificial vision system for automatic object detection 
and recognition, and trained the perception pilot in order to be 
very fast and accurate in those tasks. We also noticed that, in the 
short time, accustom the pilot to each module’s behavior pays off 
as much as an improvement in the module code or control law. 
Note that this solution cannot be used successfully in every situa-
tion. For example, in case on untrained pilots or in high complex 
tasks (e.g., teleoperated balancing), the only possible approach is 
the use of a dedicated control software.

For example, our architecture requires tens of modules to be 
running at the same time across multiple computers, and the 
modules starting order may become complex to maintain. After 
the first tests with the whole architecture running, we noticed 
that lot of pilot effort had to be put in starting the modules in 
the right order. We decided to reduce such requirements as 
much as possible, and finally ended up with only the ROS and 
YARP nameservers to be started before all the other modules. 
We believe that the effort to provide asynchronous starting order 

is compensated whenever the architecture complexity increases 
up to the point where the pilots can no longer manage the order.

While the whole architecture has demonstrated to work 
properly, some useful utilities were not integrated and left to 
each developer preferences. In particular, multiple different 
logging utilities in each module were storing information useful 
for debugging purposes both on the robot and on the pilot PCs. 
Some pieces of the stored information were sent commands, 
status of the robot, point clouds, failures, and warnings from the 
control modules. Although these logging utilities were custom 
designed and simple in their capabilities, they provided enough 
information to speed up the unavoidable debugging process. 
Their helpfulness prompted us to include, in future architecture 
updates, a generic logging class integrated in each module with 
the same style of GYM and GW.

To conclude, the architecture structure and implementation 
did not affect any task during the DRC, and did not impose any 
constraint on the control strategies implemented in each task 
module. Few main issues (e.g., multi-threading issues, network 
bridge incompatibility with custom YARP ports) were detected 
during the months before the competition, and they were solved 
in a small amount of time without affecting or compromising 
the software developers work. Indeed, the future progressive 
improvements planned by all the team members mostly relate 
to the perception modules providing artificial vision and object 
tracking, a walking module capable of reflex-style reactions to 
terrain irregularities and an increased automatic error handling in 
manipulation modules in order to provide single-click complete 
task execution improving robot autonomy. On the other hand, 
the architecture general structure is widely accepted by team 
members and will require very few changes. The main features to 
be added are hard real-time support and a Matlab-EthercatMaster 
interface.

aUThOr cOnTribUTiOns

MF, LM, AS, AR, EMH, AC, DK, CP, and LN worked on the 
design of the global architecture and on the network. LM, MF, 
AR, EMH, AC, and NT designed and developed GYM and the 
HAL. AS and CP developed the operator control station GUI and 
many control modules. LP and NT coordinated and advised other 
authors on all the aspects of this work.

acKnOWleDgMenTs

This work is supported by the European commission project 
Walk-Man EU FP7-ICT no. 611832. The authors would like 
to thank Stefano Cordasco and Alessio Margan for their work 
on the design and implementation of electronic boards and  
firmware.

reFerences

Ajoudani, A., Lee, J., Rocchi, A., Ferrati, M., Hoffman, E. M., Settimi, A., et  al. 
(2014). “A manipulation framework for compliant humanoid coman: appli-
cation to a valve turning task,” in Humanoid Robots (Humanoids), 2014 14th 
IEEE-RAS International Conference on (Madrid: IEEE), 664–670.

Brugali, D., and Shakhimardanov, A. (2010). Component-based robotic engi-
neering (part II): systems and models. IEEE Robot. Autom. Mag. 17, 100–112. 
doi:10.1109/MRA.2010.935798 

Bruyninckx, H. (2001). “Open robot control software: the orocos project,” in 
Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International 
Conference on, Vol. 3 (Seoul: IEEE), 2523–2528.

94

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://dx.doi.org/10.1109/MRA.2010.935798


Ferrati et al. The Walk-Man Robot Software Architecture

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 25

Coleman, DT., Sucan, IA., Chitta, S., and Correll, N. (2014). Reducing the barrier to 
entry of complex robotic software: a moveit! case study. J. Software Eng. Robot. 
5, 3–16.

Hammer, T., and Bäuml, B. (2013). “The highly performant and realtime deter-
ministic communication layer of the aRDx software framework,” in 16th 
International Conference on Advanced Robotics, ICAR 2013 (Montevideo).

Hebert, P., Bajracharya, M., Ma, J., Hudson, N., Aydemir, A., Reid, J., et al. (2015). 
Mobile manipulation and mobility as manipulation design and algorithms of 
RoboSimian. J. Field Robot. 32, 255–274. doi:10.1002/rob.21566 

Hoffman, E. M., Traversaro, S., Rocchi, A., Ferrati, M., Settimi, A., Romano, F., et al. 
(2014). “Yarp based plugins for gazebo simulator,” in Modelling and Simulation 
for Autonomous Systems: First International Workshop, MESAS 2014, Vol. 8906 
(Rome: Springer), 333.

Johnson, M., Shrewsbury, B., Bertrand, S., Wu, T., Duran, D., Floyd,  M., et  al. 
(2015). Team IHMC’s lessons learned from the DARPA robotics challenge 
trials. J. Field Robot. 32, 192–208. doi:10.1002/rob.21571 

Kam, H. R., Lee, S.-H., Park, T., and Kim, C.-H. (2015). Rviz: a toolkit for real 
domain data visualization. Telecommun. Syst. 60, 337–345. doi:10.1007/
s11235-015-0034-5 

Kohlhoff, C. (2003). Boost. Asio. Available at: http://www.boost.org/doc/libs/1
Kryczka, P., Kormushev, P., Tsagarakis, N., and Caldwell, D. G. (2015). “Online 

regeneration of bipedal walking gait optimizing footstep placement and 
timing,” in Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS 
2015) (Hamburg).

Lee, J., Ajoudani, A., Hoffman, E. M., Rocchi, A., Settimi, A., Ferrati, M., et  al. 
(2014). “Upper-body impedance control with variable stiffness for a door open-
ing task,” in Humanoid Robots (Humanoids), 2014 14th IEEE-RAS International 
Conference on (Madrid: IEEE), 713–719.

Metta, G., Fitzpatrick, P., and Natale, L. (2006). Yarp: yet another robot platform. 
Int. J. Adv. Robot. Syst. 3, 43–48. 

Negrello, F., Garabini, M., Catalano, M. G., Malzahn, J., Caldwell, D. G., Bicchi, A., 
et al. (2015). “A modular compliant actuator for emerging high performance 

and fall-resilient humanoids,” in 2015 IEEE-RAS 15th International Conference 
on Humanoid Robots (Seoul: IEEE), 414–420. 

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al. (2009). “Ros: 
an open-source robot operating system,” in ICRA Workshop on Open Source 
Software, Vol. 3 (Kobe: IEEE-RAS).

Rocchi, A., Hoffman, E. M., Caldwell, D. G., and Tsagarakis, N. G. (2015). “Opensot: 
a whole-body control library for the compliant humanoid robot coman,” in 
Robotics and Automation (ICRA), 2015 IEEE International Conference on 
(Seattle: IEEE), 6248–6253.

Settimi, A., Pavan, C., Varricchio, V., Ferrati, M., Hoffman, E. M., Rocchi, 
A., et  al. (2014). “A modular approach for remote operation of humanoid 
robots in search and rescue scenarios,” in Modelling and Simulation for 
Autonomous Systems: First International Workshop, MESAS 2014, Vol.  
8906 (Rome: Springer), 192.

Walck, G., Cupcic, U., Duran, T. O., and Perdereau, V. (2014). A case study of 
ROS software re-usability for dexterous in-hand manipulation. J. Software Eng. 
Robot. 5, 36–47. 

Yi, S.-J., McGill, S. G., Vadakedathu, L., He, Q., Ha, I., Han, J., et al. (2015). Team 
THOR’s entry in the DARPA robotics challenge trials 2013. J. Field Robot. 32, 
315–335. doi:10.1002/rob.21555 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2016 Ferrati, Settimi, Muratore, Cardellino, Rocchi, Mingo Hoffman, 
Pavan, Kanoulas, Tsagarakis, Natale and Pallottino. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other forums is permitted, provided the 
original author(s) or licensor are credited and that the original publication in this 
journal is cited, in accordance with accepted academic practice. No use, distribution 
or reproduction is permitted which does not comply with these terms.

95

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://dx.doi.org/10.1002/
rob.21566
http://dx.doi.org/10.1002/
rob.21571
http://dx.doi.org/10.1007/s11235-015-0034-5
http://dx.doi.org/10.1007/s11235-015-0034-5
http://www.boost.org/doc/libs/1
http://dx.doi.org/10.1002/rob.21555
http://creativecommons.org/licenses/by/4.0/


April 2016 | Volume 3 | Article 24

Original research
published: 26 April 2016

doi: 10.3389/frobt.2016.00024

Frontiers in Robotics and AI | www.frontiersin.org

Edited by: 
Samer Alfayad,  

Université de Versailles  
Saint-Quentin-en-Yvelines, France

Reviewed by: 
Arnaud Blanchard,  

University of Cergy-Pontoise, France  
Vincent Hugel,  

Université de Toulon, France

*Correspondence:
Lorenzo Natale  

lorenzo.natale@iit.it

Specialty section: 
This article was submitted to 

Humanoid Robotics,  
a section of the journal  

Frontiers in Robotics and AI

Received: 23 November 2015
Accepted: 04 April 2016
Published: 26 April 2016

Citation: 
Natale L, Paikan A, Randazzo M and 

Domenichelli DE (2016) The iCub 
Software Architecture: Evolution and 

Lessons Learned.  
Front. Robot. AI 3:24.  

doi: 10.3389/frobt.2016.00024

The icub software architecture: 
evolution and lessons learned
Lorenzo Natale* , Ali Paikan , Marco Randazzo and Daniele E. Domenichelli

iCub Facility, Istituto Italiano di Tecnologia, Genova, Italy

The complexity of humanoid robots is increasing with the availability of new sensors, 
embedded CPUs, and actuators. This wealth of technologies allows researchers to 
investigate new problems like multi-modal sensory fusion, whole-body control and multi-
modal human-robot interaction. Under the hood of these robots, the software architec-
ture has an important role: it allows researchers to get access to the robot functionalities 
focusing primarily on their research problems and supports code reuse to minimize 
development and debugging, especially when new hardware becomes available. But 
more importantly, it allows increasing the complexity of the experiments that can be car-
ried out before system integration becomes unmanageable, and debugging draws more 
resources than research itself. In this paper, we illustrate the software architecture of the 
iCub humanoid robot and the software engineering best practices that have emerged 
driven by the needs of our research community. We describe the latest development of 
the middleware supporting interface definition and automatic code generation, logging, 
ROS compatibility, and channel prioritization. We show the robot abstraction layer and 
how it has been modified to better address the requirements of the users and to support 
new hardware as it became available. We also describe the testing framework, and we 
have recently adopted for developing code using a test-driven methodology. We con-
clude the paper discussing the lessons we learned during the past 11 years of software 
development on the iCub humanoid robot.

Keywords: humanoid robotics, software engineering, software middleware, Quality of service, test-driven development

1. inTrODUcTiOn

The rapid evolution of humanoid robots is pushing the requirements on their software infrastruc-
ture. The availability of low-cost, off-the-shelf sensors for depth perception, IMUs, tactile and force 
sensing allows robots to be equipped with richer and redundant sensory systems. New actuators 
give joints higher maximum torque, allow designers to increase the dexterity of the robots and to 
implement force or impedance control. New technology for optical or magnetic encoders allows 
measuring movement in various points in the kinematic chain providing redundancy, fault tolerance 
or, in presence of elastic elements, accurate torque measurement. This evolution opened up new 
research problems, such as multi-modal sensory fusion, whole-body force control, and multi-modal 
human–robot interaction to mention just a few. However, exploring these research directions comes 
at a high cost in terms of software development. When existing hardware is replaced with new 
one, it yields to software obsolescence, new development, debugging and consequent changes in 
low-level software layers that trigger the redesign of higher layers. Experiments that build on top of 
simpler capability are possible only if the software architecture supplies researchers with appropriate 
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tools that allow them to focus on the goals of their research. Also, 
the software itself evolves. Languages, operating systems, and 
libraries get upgraded and change, sometimes without maintain-
ing backward compatibility. The appearance of Robot Operating 
System (ROS) and its rapid adoption and growing community 
(Quigley et al., 2009) have changed how people develop software 
and pushed many robot developers to provide ROS compatible 
interfaces for their software or to adopt it altogether.

These problems have been present since the beginning of the 
development of the iCub platform and through the past 11 years 
of its evolution. The iCub is a humanoid robot platform that 
was designed for research in cognitive system. Its main goal is 
to support experimental research and, for this reason, it is not 
designed with a specific application in mind. The hardware 
development of the robot was also driven by research goals. The 
software infrastructure of the robot was designed and adapted 
following these constraints. At the lowest level, it had to support 
new hardware as soon as it was released and reduce the impact of 
hardware changes to the user code. At the higher level, the soft-
ware architecture was designed to support rapid prototyping of 
experiments that required integration of many capabilities: visual 
and speech perception, control of attention, learning, reaching, 
grasping, and, more recently, balancing and walking.

In this paper, we provide a review of the software architecture 
of the iCub robot including recent developments aimed to better 
support the evolution of the robot and the needs of the research 
community. We describe the Yet Another Robot Platform (YARP) 
middleware and how it has been extended with facilities to increase 
determinism in time-critical loops. We present new tools and best 
practices that have been adopted for logging and to aid developers 
in the task of developing component interfaces, defining new data 
types, and interoperate with software developed for other robots 
(including software from the ROS eco-system). We describe the 
robot abstraction layer, which allows the same code to control the 
real robot or a simulation, on-board, or through a network link. 
This abstraction layer separates high-level components from the 
hardware implementation including the communication infra-
structure. The core of the robot abstraction layer has not changed 
much in the years preserving backward compatibility, but it has 
been extended to better support new control modes and sensors. 
We describe the component that provides access to the robot, 
i.e., robotinterface, showing how it can be configured depending 
on the available hardware and to run time-critical control loops 
directly on the robot.

Robotic software applications quickly grow in the number of 
components and are therefore difficult to engineer and develop. 
Software engineering best practices suggest to divide such sys-
tems in simple units that are independently developed, tested, 
and integrated at a later stage. In the second part of the paper, we 
describe the tools that we have developed to support deployment 
and monitoring of components (i.e., the yarpmanager) and, more 
recently, testing. Test-driven development (Beck, 2003) was used 
to develop the YARP middleware but was adopted only recently to 
validate the robot software interface and the control algorithms. 
We developed the Robot Testing Framework (RTF) that allows 
testing robot software using the real robot as well as simulations. 
We describe the design choices that have driven the development 

of the RTF and how it has been adopted for testing software 
components and interfaces of the iCub robot. We conclude the 
paper with a discussion on the lessons we have learned in the 
past years of software development on the iCub robot drawing 
the conclusions of this work.

2. a BrieF OVerVieW OF The icUB 
anD iTs eVOlUTiOn

The iCub is an open humanoid robot platform that was developed 
for research in cognitive systems (Metta et al., 2010; Parmiggiani 
et  al., 2012). It has 53 joints actuated with brushless and DC 
motors. Motion generation is carried out in dedicated boards 
embedded on the robot and interconnected through a local bus 
(initially we used CAN bus, but shifted recently to Ethernet to 
increase the available bandwidth). These boards host program-
mable CPUs that can perform position control with trajectory 
interpolation, velocity, and torque control. The iCub was initially 
equipped with cameras for vision, microphones an IMU on the 
head, and motor encoders for measuring motion. This initial set 
of sensors grew with time, by introducing 6 axis F/T sensors in 
various points of the kinematic chains (roughly located at the 
shoulders and hip, and eventually at the ankles), and a system of 
tactile sensors1 that, starting from the hands and forearms, has 
been extended to cover a large part of the whole robot (for a total 
of 4000 sensing units located on the arms, torso, legs, and feet 
soles). At the same time, inertial units and gyroscopes became 
inexpensive and easy to integrate in the electronics that control 
the tactile systems and the motors. The robot mounts on the head 
a PC104 computer equipped with an Intel CPU that runs Linux. 
This computer works as a bridge interconnecting the CPUs on 
the local bus with the external cluster of computers that performs 
heavy computation outside the robot. Connection with the exter-
nal cluster is achieved using either gigabit Ethernet or wireless.

The software architecture of the robot can be broadly sepa-
rated in two layers. The firmware consists in the first layer and 
runs on the embedded CPUs. Communication between boards 
and PC104 computer uses a custom networking protocol (over 
CAN or Ethernet). The second layer consists in all the software 
components that run on the head computer and on the external 
cluster. These components communicate using a peer-to-peer 
publish-subscribe architecture implemented using the YARP 
middleware (Fitzpatrick et al., 2008; Metta et al., 2010).

3. MiDDleWare

Best practices in robotics advocate adoption of component-
based development (Brugali and Scandurra, 2009) and the 
so-called separation of concerns between computation, com-
munication, coordination, and configuration (Bruyninckx et al., 
2013). Following this approach, components encapsulate robot 
functionality in a way that promotes interoperability, compos-
ability, and reuse, irrespective of the robot, programing language, 

1 Tactile sensors on the iCub are based on capacitive technology (Maiolino et al., 
2013).
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operating system, computing architecture, and communication 
protocol being used.

Computation is the core of the components and includes 
functionalities and algorithms. Communication allows modules 
to exchange data in a way that is agnostic with respect to the 
underlying operating system, medium or protocol. The separa-
tion of concerns is implemented by the middleware in the form of 
read/write primitives to receive and transmit data. Coordination 
is the code required to orchestrate modules: it determines how 
modules interact to achieve a certain task (Lütkebohle et  al., 
2011; Klotzbücher and Bruyninckx, 2012; Paikan et al., 2014a). 
Configuration allows reconfiguration of modules to better adapt 
them to specific domains, it allows controlling all parameters 
that affect the functioning of the system, including dependencies 
across modules and protocols.

Software middleware supports some or all the functionalities 
described above. Generic middleware like CORBA,2 Ice,3 D-Bus,4 
or ∅MQ,5 provide complete communication backbones. They 
are rarely employed in robotics because they lack specific com-
ponents and have a steep learning curve. Robotics middleware 
[OROCOS (Bruyninckx, 2001), Player (Collett et al., 2005), YARP 
(Fitzpatrick et al., 2008), Orca (Brooks et al., 2005), ROS (Quigley 
et al., 2009), OpenRDK (Calisi et al., 2012), Mira (Einhorn et al., 
2012), LCM (Huang et al., 2010) to mention just a few] provide 
a subset of communication paradigms (Remote Procedure Call 
and/or publish-subscribe). Some middleware defines interfaces 
for families of devices (Collett et al., 2005) for better modularity 
and portability.

The iCub software architecture is similar to the port-based 
software abstraction (Stewart et al., 1997) and is built on top of the 
facilities provided by the YARP middleware. To better illustrate 
the communication patterns supported by the YARP middleware, 
we will adopt the terminology introduced in (Eugster et al., 2003) 
for publish-subscribe architectures. Eugster et  al. (2003) intro-
duce three levels of decoupling to characterize various flavors of 
communications, namely: space decoupling, time decoupling, and 
synchronization decoupling. Space decoupling is achieved when 
components produce messages without being explicitly aware 
of the number and location of the receivers. Time decoupling 
guarantees message delivery even if senders and receivers are 
not active or connected at the same time. Finally, synchronization 
decoupling requires that messages are sent and received asynchro-
nously by the communicating entities. When communication 
is asynchronous, it is sometimes important to guarantee that 
messages are correctly received by slow recipients [this is called 
persistence and is another key property of publish-subscribers 
architectures Eugster et al. (2003)]. In this respect, robotic mid-
dleware often implements policies that aim at reducing latency 
in real-time control loops, even at the cost of dropping messages 
[e.g., Fitzpatrick et al. (2008) and Dantam et al. (2015)].

YARP (Fitzpatrick et  al., 2008) implements a variant of the 
publish-subscribe paradigm, i.e., the observer pattern (Gamma 

2 http://www.corba.org/
3 https://zeroc.com/products/ice
4 https://www.freedesktop.org/wiki/IntroductionToDBus/
5 http://zeromq.org/

et  al., 1995), which is a type of distributed publish-subscribe 
providing space and synchronization decoupling. In addition 
it is multi-platform, in that it provides a portable abstraction 
for the operating system, the communication protocol and 
the robot hardware. In YARP Port objects deliver messages of 
any size and type across a network, using various underlying 
 protocols – including shared memory. Ports can be configured to 
implement publish-subscribe with different levels of decoupling 
and dynamically reconfiguration of connections and protocols. 
YARP Ports have read and write primitives that can be blocking 
or non-blocking for synchronous or asynchronous communica-
tion. A component that uses Port objects to perform a synchro-
nous write, waits until all receivers confirm reception of the 
message. Similarly, a component that performs a synchronous 
read waits until a new message is received by the Port. By default, 
Port objects in YARP are configured for both synchronous read 
and write: this guarantees correct delivery of messages without 
extra code. The BufferedPort object is a specialization of a Port, 
which provides synchronization decoupling. BufferedPorts are 
active objects able to store and handle messages internally either 
for transmitting or receiving them using dedicated threads. 
Possible buffering policies are: First In First Out (FIFO) and 
Oldest Packet Drop (ODP). In the first case, messages are queued 
in a list that grows and guarantees that no messages are dropped. 
In the second case, the size of the queue is fixed, and new mes-
sages overwrite old ones to guarantee minimum latency. Read 
operations in a BufferedPort can be blocking in case we want 
execution to wait for incoming messages. Publish subscribe is 
convenient for one-way communication. In some cases, however, 
communication requires replies. In YARP, this is called RPC and 
is supported via two specialization of the Port class: RPCServer 
and RPCClient, respectively, for managing the server and client 
side of the communication.

In the iCub software, architecture components are runnable 
pieces of software (usually implemented as executables, but 
sometimes also as software drivers) that export a certain interface 
using one or more Port (or BufferedPort) objects. The component 
sends and receives data through its Port objects; depending on 
the type of service provided by the components the port can be 
configured for synchronous, asynchronous or RPC operations.

YARP is multi-platform and implements all its functionalities 
on Linux, Windows, and MacOS. With respect to other robotics 
middleware-like OROCOS (Bruyninckx, 2001), Player (Collett 
et  al., 2005), and ROS (Quigley et  al., 2009), the communica-
tion layer of YARP supports a richer set of protocols. A notable 
example is the multicast protocol, which reduces bandwidth and 
transmission overhead in case of one-to-many communication 
[which to the best of our knowledge is implemented only by 
LCM (Huang et al., 2010)]. More importantly, YARP implements 
a plug-in system that allows users to write custom protocols and 
interconnect it with other systems (like cameras providing images 
in mjpeg format or a web server). This mechanism was used to 
add ROS compatible protocols [i.e., tcpros, xmlrpc, see Fitzpatrick 
et  al. (2014) for more details], port monitor (Paikan et  al., 
2014a) and to add QoS and channel prioritization, as described 
in Section 3. The Thrift IDL provides a language for defining 
component interfaces that is more flexible than the one that can 
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TaBle 1 | YarP libraries footprint.

library Footprint (KB)

libACE 1673
libYARP_OS 2088
libYARP_sig 244
libYARP_dev 94
libYARP_math 1530

See text for details.
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be implemented using ROS’s services. Similarly to Player (Collett 
et  al., 2005), YARP provides interfaces for hardware devices, 
and, in particular, a sophisticated hardware abstraction layer for 
motor control, as described in Section 4. These interfaces simplify 
the control of robots hiding complexity due to the underlying 
 communication layer and vendor-specific APIs.

Communication performance of various middleware has been 
compared experimentally in Hammer and Bäuml (2014). In this 
study, YARP demonstrated comparable  –  and sometimes even 
faster  –  performance than ROS. Interestingly, round-trip time 
of both middleware was consistently better than OROCOS. It 
is worth noticing that YARP was not designed to support hard 
real time. The recent QoS and channel prioritization extensions 
partially cope with this, providing significantly performance 
improvement in terms of communication and scheduling jitter, 
especially when adopted together with the RT-PREEMPT Linux 
kernel. For applications that require lower latency and higher 
determinism OROCOS (Bruyninckx, 2001) and aRDx (Hammer 
and Bäuml, 2014) may be a preferable choice. It is worth noticing 
that OROCOS offers a YARP compatible transport that can be 
used for interoperability with YARP applications.

YARP is written in C++, but similarly to ROS, it can be used 
from other languages. Through SWIG,6 YARP provides language 
bindings for many languages, namely: Perl, Python, Ruby, Lua, 
TCL, C#, Java, Octave, Chicken, and Alegro. Java also provides 
seamless integration with the Matlab environment, although, to 
achieve better performance, we have recently started developing 
support for Matlab and Simulink via mex functions. YARP was 
interfaced with Android and iOS devices.

Compilation of YARP is simple. YARP can be compiled under 
various operating systems, including major distribution of Linux 
(Debian and Ubuntu), MacOS X, and Windows.7 Dependencies 
have been voluntarily kept at minimum. The main dependency is 
ACE8 which is – by design – a portable library that can be com-
piled on a plethora of systems. The build system automatically 
detects optional dependencies and disables features or plug-ins 
accordingly. To simplify compilation with Linux, we decided to 
support a set of distributions and to use features available only on 
the libraries provided therein. This greatly simplified compilation 
and distributions of binaries for the Linux system. Compilation 
on Windows was made more complicated by the lack of a proper 
packet management system. For this reason we decided to build 
and distribute precompiled binaries of the required dependencies 
for all the supported compilers. For compilation on MacOS X, 
we rely on homebrew9 and maintain appropriate recipes scripts 
for both YARP and the iCub main software. To ensure correct 
compilation of the software on all the supported platforms, a 
compile farm performs compilation tests, periodically and upon 
any commit to the YARP and iCub main repositories.

6 http://www.swig.org/
7 At the time of writing YARP (and the iCub main software) were supported on 
Debian 7-9 and Ubuntu 14.04-16.04. On Windows supported compilers were 
Visual Studio 10-12. Support for MacOS included the latest release 10.11, code-
name El Captain.
8 http://www.cs.wustl.edu/~schmidt/ACE.html
9 http://brew.sh/

To conclude this section, we report additional information 
about YARP. Table 1 reports the footprint of the YARP libraries. 
The table reports the value obtained running the Linux com-
mand size. These values corresponds to YARP 2.3.64 compiled in 
“Release” mode, gcc version 5.3.1, libc 2.21, CMake 3.4.1, libACE 
6.3.3, and libGSL 2.1 (the latter is optional and it provide signal 
processing and linear algebra routines to YARP). Notice that 
libACE in the Linux environment is optional and is required only 
for compilation on Windows. YARP is adopted by a large number 
of people. The iCub community consists in approximately 30 
teams. YARP is also adopted on the COMAN (Tsagarakis et al., 
2013) and in the projects Walkman,10 DREAM (Vernon et  al., 
2015), and Fireswarm,11 while OROCOS includes a YARP com-
patible transport protocol. YARP received contributions from 75 
developers in total and from 29 developers in the past 12 months 
(source: Open HUB12).

3.1 logging
YARP provides macros that allow users to log messages with 
increasing levels of importance and severity (i.e., trace, debug, 
info, warning, error, and fatal). These macro print on the standard 
output using the facilities provided by the host operating system. 
To implement the logging system we follow these guidelines: (i) 
in a distributed architecture messages should be collected from 
different machines, (ii) logging should be optional to avoid using 
unnecessary resources and finally, (iii) it should be possible to  
collect output from components that have been written without 
YARP. These features have been achieved by relying on the 
yarprun service. The latter is a software service that is used to 
execute components remotely using a GUI (the yarpmanager, 
as described in Section 8). yarprun spawns processes and can 
therefore manipulate and redirect their output. This offers a 
simple way to log the output of all components without modify-
ing their code or forcing adoption of YARP specific macros for 
logging. yarprun prefixes all messages from a component with 
the name of the machine on which it is running and the process 
identifier of the component itself. All messages are redirected to 
common recipient using YARP Ports; the recipient can either be 
a command line tool or a graphical interface that allow logging, 
filtering, and visualization of these messages. This solution allows 
capturing and logging the output of components even when they 
do not use YARP’s logging functions (although with limited 
functionalities).

10 https://www.walk-man.eu
11 http://fireswarm.nl/
12 https://www.openhub.net
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adder.thrift
service Adder {

/** Documentation for get_answer*/
i32  get_answer();
/** Documentation for get_answer*/ 
bool set_answer(1:i32 val)
/** Documentation for add*/      
i32  add (1:i32 x);

}

adder.h:
class Adder: public yarp::os::Wire {
public:

/** Documentation for get_answer */
virtual int32_t get_answer();
/** Documentation for get_answer */ 
virtual bool set_answer(const int32_t val);
/** Documentation for add */
virtual int32_t add(const int32_t x);

};

adder.thri�
yarpidl_thri�

adder.h

adder.cpp

client.cpp:
#include "adder.h"
int main() {

Port port;
Adder client;
port.open("/client");

client.yarp().attachAsClient(port);

client.set_answer(10);
client.add(1);
cout<<client.get_answer();

}

server.cpp:
#include "adderserver.h"
int main() {

Port port;
AdderServer server;
server_port.open("/server");

client.yarp().attachAsServer(port);

while(true)
{...}

}

adderserver.h:
#include "adder.h"
class AdderServer : public Adder {
public:

int32 _val
int32_t get_answer()

{ return _val; }
bool set_answer(const int32_t val)

{_val=val; }
int32_t add(const int32_t x)

{ _val+=x; return _val}
};

Server codeCient code

FigUre 1 | service implementation using Thrift. The definition of the service Adder is written using the Thrift IDL (adder.thrift); from this file, the yarpidl_thrift 
compiler generates the corresponding C++ interface (adder.h) and the full implementation of the client (adder.cpp). At the client side, function calls take care of 
marshaling the parameters and shipping them across the YARP network. At the server side, a Port object receives these messages, performs de-marshaling, and 
invokes the corresponding C++ function. Notice that comments in the Thrift file are preserved in the C++ class. Bottom: the client main function instantiates the 
YARP Port that will be used for the communication, it then instantiates the client object, attaches the Port to it and invokes the service functions as if they were local 
calls. At the server side, the developers provides implementations for the service functions in an new class (AdderServer) that overrides the virtual functions defined 
in Adder (adder.h); it then instantiates the Port that handles the communication and attaches it to an instance of AdderServer. At this point, all messages received by 
the Port at the server side are dispatched to AdderServer.
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3.2. The Thrift iDl
A Port object can transmit a data type only if proper serializa-
tion and deserialization functions are defined. YARP supports 
a few basic types that already include serialization functions: 
Vector, Matrix, Image, and Bottle. The first three types are self-
explaining, they define containers for double precision floating 
point vectors, matrices, and images with various pixel types. The 
Bottle object is a list of mixed type values: it can store arbitrarily 
integers, strings, doubles, lists, or binary blobs of memory. This 
type is quite flexible and can be used to send virtually anything, 
provided the sender and receiver agree on the data they exchange. 
The compiler in fact cannot determine if the data sent through a 
Bottle is correctly parsed by the receiver. This can be acceptable 
for small applications but become soon a limitation, especially 
when modules are developed asynchronously by different devel-
opers. Services are also a concept that is not natively supported 
by YARP. Services can indeed be implemented with YARP, but 
the programmer has to manually write all the code required 
to parse incoming messages and prepare replies. Writing this 
code is boring and error prone, its maintenance becomes soon 
complex and difficult.

All these problems have been solved in YARP with the adop-
tion of an Interface Definition Language (IDL) based on the Thrift 
language. The Thrift IDL can define services. From this definition, 
the yarpidl_thrift compiler generates all the code that implements 
the communication between the clients and the service across 
the YARP network. This process is exemplified in Figure  1. A 
new network type can be implemented in a similar way. In this 
case, the yarpidl_thrift compiler generates the .h and .cpp files for 
the C++ class that implements the type in YARP. The compiler 
automatically generates serialization and deserialization routines. 
See Figure 2 for details.

The Thrift IDL is currently adopted as best practice for defin-
ing new types and interfaces for components in the iCub software 
architecture. An important feature of the Thrift YARP compiler 
is that it copies verbatim all comments from the Thrift file to the 
C++ implementation class. This feature is used to document the 
interfaces using Doxygen. All Doxygen comments are added to 
the Thrift file(s) that defines the interface of components, when 
code is generated, these comments are copied in the resulting 
C++ header files and parsed to produce the documentation. In 
this way, the documentation of the interfaces is stored with the 
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point3d.thrift
struct Point3D {

1: i32 x;
2: i32 y;
3: i32 z;

}

yarpidl_thri�
point3d.h

point3d.cpp

sender.cpp:
#include "point3d.h"
int main() {

Port port;
Adder client;
port.open("/sender");
Point3D p;
p.x=1;p.y=2;p.z=3;

port.write(p);
}

receiver.cpp:
#include "point3d.h"
int main()
{

Port port;
port.open("/receiver");
Point3D p;
while(true) {

port.read(p);
cout<<p.x<<p.y<<p.z<<endln;

}
}

FigUre 2 | specification of a new type using Thrift. The yarpidl_thrift compiler generates the C++ object that implements the type Point3D starting from its 
specification in the Thrift IDL. Bottom: this object contains serialization and deserialization functions and can be used directly for read/write operations in a YARP 
Port or BufferedPort (not shown).
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code that generates them; this results in better documentation 
and easier maintenance.

A recurring pattern in the development of software on the 
robot is the following: A module defines a set of inner param-
eters that modify its behavior and exports them through a 
Port, together with a set of functions for manipulating them. 
Thrift allows defining a structure for grouping parameters so 
that YARP can provide support for reading and writing this 
structure through a Port. In addition to this, YARP generates 
an object called Editor, which provides methods for setting 
and getting individual values within the structure as well as 
callbacks that can be customized to execute code before and 
after the value is modified. This feature reduces the amount of 
code that is manually written and maintained when writing 
interfaces for modules, which, in robotics applications usually 
consists in several parameters. The Editor has been introduced 
only recently in YARP but is currently adopted as best practice 
when writing new modules. Figure 3 illustrates this concept in 
more details.

3.3. increasing Determinism  
in Distributed applications
Many robotic applications require real-time functionalities, espe-
cially when timing constraints on task execution, data processing, 
and synchronization are crucial. In distributed architectures, 
extra care must be taken to avoid mutual interference between 
components in the communication layer. The YARP middleware 
deals with this problem by providing functionalities at the level 
of the connections (in the Port and BufferedPort objects) that 
allow assigning different priorities to individual communication 
channels (we call this approach “channel prioritization”) (Paikan 
et  al., 2015b). This approach simply leverages the operating 
system functionalities to prioritize specific communication 

channels between publishers and subscribers.13 The properties of 
individual connection channels are extended to specify (i) the 
priority level and scheduling policy of the threads that handle the 
communication and (ii) the priority of the packets on the network 
(i.e,. the network Quality of Service parameters). This approach 
does not require specific components for message prioritization 
and it does not add any overhead to the communication. In addi-
tion, and, more importantly, it allows for remote configuration of 
Quality of Service (QoS) and for run time, dynamic prioritization 
of communication channels. Configuring real-time properties 
such as priority or scheduling policy of the user thread can be 
done either programmatically from the user code or automati-
cally using component middleware functionalities and dedicated 
tools (Mastrogiovanni et al., 2013).

When configured for asynchronous communication Port 
objects send and receive user data in separate threads. A concep-
tual example is depicted in Figure 4, where a publisher (Publisher 
1) pushes data to two subscribers. When a publisher writes data 
to a Port, it passes it to the corresponding thread. At this point, 
execution is determined by the operating system and the thread 
real-time properties decide with which priority the thread will 
manage to write data to the socket. Similarly at the receiver side, 
real-time properties of a thread affect the chances that it will 
deliver data to the user (i.e., high priority will reduce jitter). This is 
useful when a subscriber receives data from multiple senders, and 
the application requires to assign higher priority to one of them.

Each connection in YARP has a state that can be manipulated 
by external (administrative) commands, which in turn manage 

13 Notice that in this section we refer to “best-effort” or “soft” real-time, as opposed 
to “hard” real-time performance. Because the implementation of YARP has not 
been developed to support hard real-time constraint, we rely on the RT-PREEMPT 
Linux to reduce scheduling latency.
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receiver.cpp:
#include "MyPoint3d.h"
int main() {

Port port;
Point3D p;
Point3D::Editor editor(p);
port.setReader(editor);
port.open("/receiver");
while (true) {
printft("%d %d %d\n",p.x p.y p.z); 
/* wait some time */
}

}

MyPoint3d.h
#include "Point3d.h"
class MyPoint3d: public MyPoint3d  {
public:

bool will_set_x()
{ prinf "about to set x"; }

bool did_set_x()
{ printf "finished setting x"; }

};

$ ./receiver
yarp: Port /receiver ac�ve at tcp://127.0.0.1:10001
yarp: Receiving input from /writer to /receiver
0 0 0
about to set x
10 0 0
finished se�ng x

$ yarp write /writer /receiver
yarp:Port /writer ac�ve at tpc://127.0.0.1:10002
set x 10
...

FigUre 3 | The Editor. For each new type, the Thrift compiler generates an Editor object, which provides methods for manipulating only a subset of the type. The 
listing on the top-left shows how to use the Editor. An instance of the Editor is connected to Point3D (see Figure 2) and to the module’s Port object (i.e. port). 
Messages received by port are parsed by the Editor, which decodes and handles them appropriately. Top-right: optionally, the user can define call-back functions 
that are invoked before and after data is modified. Bottom: we show how the value of the field x in Point3D can be modified by sending text messages to a Port (left: 
output of receiver, right: text commands sent to the receiver’s Port using the standard tool yarp write).

FigUre 4 | an example of components asynchronous communication 
in YarP. A publisher is pushing messages to two different subscribers using 
separate dedicated threads.
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the connection and/or obtain state information from it. Using 
Port administrative commands, QoS and real-time properties of 
Port objects can be configured with the granularity of individual 
connections. In the current implementation, the Port admin-
istrator provides two set of commands that affect the priority 
of a communication channel: setting the scheduling policy/
priority of a communication thread and configuring network 
QoS parameters (i.e., the TOS/DSCP bits) for the data packets 
it delivers.

In the example from Figure 4, we can configure the real-time 
properties of the channel that links/publisher1 to/subscriber1:

$ yarp admin rpc/publisher1

> > prop set/subscriber1 (sched
((policy SCHED_FIFO)
(priority 30)))

$ yarp admin rpc/publisher1
> > prop set/subscriber1 (qos ((priority HIGH)))

The first line “yarp admin rpc” simply opens an administrative 
session with the Port object of /publisher1. The second line is the 
real command to the administrative Port. It adjusts the schedul-
ing policy and priority of the thread in/publisher1, which handles 
the connection to /subscriber1 respectively to SCHED_FIFO and 
30 on Linux machines.14

Ip networks define four classes of services  (Almesberger et al., 
1999). These classes are selected so that packets can be treated 
similarly by the OS queuing policy (if available) and in the network 
switch. For example, a packet with priority class Low will be in 
the lowest priority band (Band 2) of the Linux queuing policy and 
will have the lowest priority in the network switch. Analogously, 
data packet priority can be configured via administrative com-
mands by setting one of the predefined priority classes:

This simply sets the outbound packets priority to HIGH for the 
connection from /publisher1 to /subscriber1.

These parameters can be set for every channel in the same way 
and jointly define the actual priority of a communication channel 

14 The thread scheduling properties and policies are highly OS dependent and a 
proper combination of priority and policy should be used.
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IEncoders->read()
//read other sensors
IPosi�on->move()
...
IPosi�on->checkMo�onDone()
...

.

//read sensors
ICartesian->goToPose()
...
ICartesian->waitMo�onDone()

IEncoders->read()
//read other sensors
IPosi�on->move()
...

On-board loops

FigUre 5 | interfaces to the robot. User-level drivers communicate to the hardware using device drivers. These objects (dark gray) implement a set of standard 
interfaces (light gray) for reading sensors and controlling the motors at the joint level. Other controllers can be connected (via an action called attach) to these drivers 
to implement control loops (like for example Cartesian control of the limbs). Special network stubs (black) export the functionalities of the drivers through the YARP 
network and allow users to execute control loops externally to the robot. To do so, the user instantiates clients network stubs that implement the same interfaces by 
dispatching requests through the network using YARP Ports. These messages are received by the remote servers, which translate messages via function call to the 
hardware device using the user drivers. If needed, the server also takes care of preparing the reply and sending it to the client, which, finally, returns control to the 
user code.
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in our publish/subscribe architecture. Alternatively, real-time 
properties of the communication channels can be configured 
from the user code using the YARP API:

We have experimentally demonstrated that channel prioritiza-
tion significantly reduces latency and increases communication 
determinism in presence of conflicting connections in robotic 
applications (Paikan et al., 2015a,b).

4. rOBOT inTerFace

The interface to the sensors and motors of the robot is imple-
mented by a set of user-level drivers that access the hardware 
using vendor-specific API. On the iCub, cameras use a IEEE1394 
Firewire bus whereas the majority of the other sensors use 

custom electronics connected via can bus or, in recent versions, 
Ethernet. These devices use custom protocols, whose details are 
not important for this paper. For such devices YARP defines a 
set of C++ interfaces that provide an abstraction layer that is 
independent of the specificities of the hardware components that 
implement them. Communication with the hardware is achieved 
by instantiating user-level devices, which directly send messages 
to the hardware. These devices implement a set of interfaces 
that allow reading sensor values and controlling the motors at 
the joint level. A second layer of devices can be instantiated and 
connected to these (via a function called attach) to implement 
functionalities like robot calibration, on-board control loops, and 
network remotization (see Figure 5 for more details).

The life-cycle of all objects is decoupled: all instances are 
created independently and references to drivers are passed to 
higher layers using the function attach. The opposite operation 
is performed by calling a function called detach, which removes 
all references held by a device before shutting down and releasing 
memory. In the development of the iCub interfaces have played an 
important role because they have preserved the user code in face 
of deep changes in the hardware. The code required to perform 
basic functionalities like reading images or controlling the motors 
in position or velocity modes has not changed significantly while 

Qosstyle style;
style.setThreadPolicy(SCHED_FIFO);
style.setThreadPriority(30);

style.setPacketPriorityByLevel 
(QosStyle:PacketPriorityHigh);

NetworkBase:setConnectionQos(“/publisher1”, “/subscriber1”, 
style);
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FigUre 6 | state machine of robotinterface. Left: We defined a set of phases that are executed upon activation of certain events, namely: startup, interrupt1, 
interrupt2, interrupt3, and shutdown. Each phase is further separated in a set of numbered levels each linked to a specific set of actions to be executed. When 
entering a given phase robotinterface executes all the actions that correspond to the levels that have been configured. Actions at the same levels are executed in 
parallel in different threads; execution waits for the termination of all threads before proceeding to the next level. In the configuration files, each object can specify 
one or more actions to be executed, when to execute them (i.e., the phase) and in which order (the level). The startup and shutdown phases are executed, 
respectively, at the beginning and before robotinterface terminates execution. The phases interrupt1, interrupt2, interrupt3 are entered upon subsequent reception of 
the termination signal (in Linux it is the SIGTERM signal) and are followed by the shutdown phase. During startup robotinterface configures the devices. All network 
stub objects and controllers register an action called attach specifying the device they will use to perform their tasks. This is usually done at level 1, i.e., just after all 
devices have been created. They also register the action detach in the phase shutdown (level 5, i.e., after the robot is parked). The calibrators objects register 
actions calibrate in the startup phase. This is done at level 10, after all attach are executed. Calibrators also register the action park corresponding to phase 
interrupt1 (level 1) so that the robot is brought to the homing position upon reception of the first termination signal. The calibrators also support an abort action that 
is executed to abruptly stop any on-going parking or calibration routines after the third termination signal is received. This action is registered for execution at level 1 
in the interrupt3 phase. The objects that perform Cartesian control are instantiated during the startup phase and execute attach to get an instance to the joint-level 
controllers. Proper operation of the Cartesian controllers requires that calibration is performed and that all network objects are instantiated; the attach action for 
these objects is therefore scheduled at level 15. Symmetrically, their disconnection (i.e., detach action) is scheduled early on during shutdown, i.e., at level 2. Right: 
Main steps of execution of a typical run of the iCub robot.
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the robot underwent subsequent revisions of the electronics and 
improved with the addition of new sensors and capabilities like 
impedance or force control. The set of robot interfaces are generic 
and have been implemented various simulators, thus allowing 
switching control of simulators and the real robot at no cost 
(Tikhanoff et al., 2008; Mingo et al., 2014; Habra et al., 2015).

The startup of the robot consists in running a single execut-
able called robotinterface. This executable reads a configuration 
file that specifies the list of drivers to be instantiated and their 
parameters. In addition, the configuration file may specify a 
list of special objects that perform specific operations using 
the drivers. The first example is the network stubs objects that 
provide remote communication. Other objects are calibrators 
and controllers. Calibrators are objects that implement routines 
for calibrating the joints and bringing them in a home posi-
tion (parking). Controllers are objects that implement control 
functionalities using low-level drivers; an example of this is the 
Cartesian Controller, which implements on top of joint-level 
controllers the functionalities required to control the arm (or 
the head) in Cartesian space. These controllers are time-critical 
and safety-critical and therefore must communicate with the 
low-level drivers with minimal latency using function calls (and 
avoiding network communication).

To allow robot configuration and shutdown robotinterface 
implements, a state machine that can be configured to execute 
custom activities with a predefined order. Figure  6 describes 
the finite state machines. Immediately after execution, robotint-
erface instantiates all objects passing the required parameters 
(usually specified in a XML file); it then enters the startup phase. 
The latter is further configured to execute custom actions with 
a specific order. These actions include calibrating the robot and 
invoking attach functions to configure high-level objects. These 
operations are executed in reverse order to park the robot and 
uninitialize the objects during shutdown. robotinterface also 
defines states that are triggered upon reception of termination 
signals to interrupt or abort on-going operations. The left side of 
Figure 6 illustrates the finite state machine and provides further 
details. An example of a typical execution of robotinterface in a 
typical run is reported on the right in Figure 6. robotinterface 
opens a YARP Port that can be queried to know the its state 
of execution of robotinterface. This functionality was added 
recently to allow modules to make sure that the robot is func-
tional and synchronize their execution with the termination of 
the startup phase.

As we discussed above, the robot interfaces are generic and 
can be implemented for robots other than iCub. All objects that 
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are instantiated by robotinterface have been implemented using 
the YARP plug-in system. This means that robotinterface is not 
statically linked against any of the libraries or device driver’s API 
that are required to operate the hardware devices. All the objects 
instantiated by robotinterface are contained in dynamic libraries 
that are loaded at runtime and can therefore be compiled, main-
tained, and distributed separately for each robot.

4.1. Motor control interfaces
During the development of the robot the motor interfaces 
underwent several revisions. To the original position and veloc-
ity control interfaces, we have added interfaces for open-loop, 
torque, and impedance control. In this paper, we revise the 
control modes implemented on the iCub and the corresponding 
interfaces. Full specifications can be found in the iCub control 
modes specifications document (Randazzo, 2004) and online in 
the YARP documentation of control board interfaces.15

An important concept in iCub is the fact that high-level 
 components need to be aware only whether the robot can receive 
position, velocity commands, or open-loop commands control-
ling the reference for the controller directly. However, they do 
not need to know how the low-level controllers implement these 
functionalities. This is achieved by separating control modalities 
in groups and by defining a special control mode called interac-
tion mode. The interaction control mode determines whether 
the low-level controls PWM with a PID (stiff interaction) or the 
torque in closed-loop (compliant interaction). Stiff interaction 
is the conventional control mode of industrial robots, which 
are required to execute accurate position/velocity trajectories 
in controlled environments. In compliant interaction mode, 
instead, it is possible to control the joint impedance (i.e., stiff-
ness and damping) during the execution of position or velocity 
commands. To simplify usage many of the interfaces provide 
functions for controlling individual, all or only a subset of the 
joints in a kinematic chain.

IPositionControl and IVelocityControl define the simplest form 
of control for the robot. With IPositionControl, the controller 
receives a new reference position, and it generates a trajectory 
that smoothly interpolates the current and desired state of the 
robot (position and velocity). On the iCub, the trajectory gen-
erator produces velocity profiles that follow the minimum jerk 
principle. In addition, the interface allows setting the acceleration 
and velocity values that will be used to generate the trajectory. 
IVelocityControl requires joints to move with a certain speed. The 
controller accelerates the joints (using a user-defined value) until 
it reaches the required speed. This control paradigm is suitable 
for visual servoing, typically for controlling the end-effector or 
the robot gaze using vision.

IPositionDirect has been introduced mode has been intro-
duced lately to accommodate specific research requirements. It 
allows skipping trajectory generation and immediately setting the 
reference value of the position controller. This modality allows 
generating custom trajectories in small incremental steps.

15 http://www.yarp.it/namespaceyarp_1_1dev.html

ITorqueControl sets  the torque exerted by a motor. This control 
mode requires that force feedback is available and that a proper 
torque loop is implemented. Finally, the IOpenLoopControl 
interface allows to by-pass all controllers and set the PWM refer-
ence of the motors directly. This interface is used mostly for fast 
prototyping control algorithms or for identification. An example 
is the implementation of control algorithms that use and estimate 
the parameters of the motors (i.e., back-emf, friction etc.).

The interfaces described above provide the first layer of control 
at the joint level. Higher level interfaces have been defined for 
controlling kinematic chains in Cartesian space either in position 
or orientation (Pattacini et  al., 2010). These interfaces separate 
the robot in different kinematic chains that are controlled inde-
pendently. Research is today progressing further and new work 
is currently being done to coordinate whole-body movement for 
balancing and locomotion (Nori et  al., 2015). To support this 
research, a specific interface for whole-body control is currently 
being developed.

The state of the robot is available through interfaces that 
expose joint encoder values (IEncoders), motor currents 
(IAmplifierControl), and allow setting and getting control modes 
(IControlMode). An important improvement in the latest revi-
sions of the iCub has been the introduction of additional high 
resolution encoders that measure the position of the motor shaft 
(rotor). To give the user access to this additional information, we 
introduced a new interface (IMotorEncoders). Other sensors like 
F/T, tactile sensors, and IMU are mapped into a generic interface 
for analog sensors (IAnalogSensor), which gives methods for 
reading the most recent sensor values and perform calibration 
by setting the zero.

Interfaces are a powerful abstraction. However, getting access 
to the hardware solely through generic interfaces may be restric-
tive because a developer often needs access to functionalities 
that are hardware specific. This usually happens for testing and 
debugging especially when new functionalities are added to a 
robot. In this case, there is a big pressure to extend interfaces 
to make them accessible to the higher levels, and this forces 
premature design choices and unnecessary code refactoring. For 
this purpose, we defined a new interface (IRemoteVariables) that 
gives access to generic variables identified with a string of text. 
This interface defines methods to get the list of available variables 
as well as methods for setting and getting them individually. This 
interface can be used to read and manipulate quantities inside 
the memory space of the control boards. It can be conveniently 
used for monitoring or changing the internal state of a board for 
testing, debugging, and code fast prototyping.

4.2. remotization
As explained in the previous section, YARP provides special objects 
that remotize interfaces across the network. This is achieved using 
network objects that come in client-server pairs (identified as 
network stub in Figure 5). The client is loaded locally in the user 
code; it converts function calls into messages that contain all the 
parameters and dispatches them across the network to the remote 
server. Communication is done using three Port objects: one for 
RPC and two for unidirectional communication to and from the 
server with reduced latency.
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The RPC Port dispatches all the function calls that require a 
reply and that are not time-critical. Examples of such functions 
are: getting or setting the PID and changing control modes. 
Notably RPC also handles commands for moving the joints in 
position mode with trajectory interpolation. This is because 
when sending requests to the server, the client always waits for 
an acknowledgment message. This prevents flooding the server or 
the network with requests and ensures that no commands are lost. 
This is not a problem because the additional delay is negligible 
with respect to the typical time requested by a joint to complete 
a trajectory.

The other interfaces for joint control (IVelocityControl, 
ITorqueControl, IOpenLoopControl, IPositionDirect) send data to 
the server using BufferedPort. In this case, buffering policy ODP 
avoids that latency is accumulated in the control loops. Finally, the 
state of the robot is collected by the server and broadcast periodi-
cally using another BufferedPort. The client stores this message as 
soon as it is received and propagates its most recent content upon 
request by the user (thus avoiding explicit requests). This strategy 
is convenient because it avoids the need for the client to perform 
remote requests, and it reduces latency; for this reason the state of 
the robot has been extended to include not only motor encoders 
(as it was initially) but other variables like motor currents, speed, 
acceleration, torque, and status flags. Using the functionalities 
described in Section 5, the BufferedPort that broadcasts the state 
of the robot can be configured as a ROS topic that publishes 
the “common” ROS joint state message (sensor_msgs/jointState.
msg16). This allows better interoperability with ROS, for example, 
using ROS visualization tools like the popular rviz GUI.17

5. Using The icUB sOFTWare  
WiTh OTher rOBOTs

Recent efforts have been devoted to provide functionalities at the 
level of the middleware to interoperate the iCub software with 
other robots. This was achieved in two ways: (1) by extending 
YARP so that it provides compatibility with the ROS middleware 
and (2) by extending YARP Ports so that they can be dynamically 
configured to execute code that manipulates input and output 
data. The second mechanism was adopted to interoperate iCub 
with the ARMARX software system. As the latter approach 
has been already described elsewhere (Paikan et al., 2015c), we 
provide here more details on the extensions that allow YARP to 
interoperate with the ROS middleware.

ROS is today the most popular middleware for robotics. 
Similarly to YARP, it supports developing software architectures 
based on the publish-subscribe paradigm. A distinguishing 
feature of ROS is that it requires the user to define all types that 
are transferred on the network with an IDL. Thanks to this ROS 
can statically and dynamically check that all the parties involved 
in a communication expect the same type. Like YARP, ROS uses 
a central name server which, optionally, can store parameters. 
To  communicate with ROS, YARP had to be extended with 

16 http://wiki.ros.org/common_msgs
17 http://wiki.ros.org/rviz

protocols that allow communication between the name servers 
and with the ROS topics. More importantly, the type system of 
YARP had to be extended to support translating ROS data types 
in YARP compatible structures.

YARP can be configured to use the ROS name server (roscore). 
This is the simplest solution for ROS users, although it implies 
that some functionalities are not available in YARP (for example 
the multicast protocol). Alternatively, the YARP name server 
(yarpserver) can be configured to talk to roscore and to propagate 
queries and topic registrations from/to the ROS. We decided to 
implement both solutions because each addresses the needs of the 
YARP and ROS communities.

YARP can register nodes. This can be done in code using 
dedicated functions in the API or dynamically by using a special 
syntax when registering a YARP Port (for example, the Port name 
/reader@/chatter creates and associates a topic called /reader to a 
node called /chatter).

YARP Ports can understand messages coming from ROS 
topics or generate valid ROS messages. To do so, YARP needs to 
be aware of ROS types. We identified two application scenarios. 
In one case, the user has both YARP and ROS installed. This is 
the easier case because YARP can read types directly from the 
ROS installation, and using a compiler (i.e., yarpidl_ros), it can 
generate appropriate data structures. In the second scenario, ROS 
is not installed on all machines that are running YARP. For this 
situation YARP provides a type server that can answer queries at 
run time and provide to YARP programs the information they 
need to interpret ROS messages.

As an example, Figure 7 shows the code required to control 
ROS’s turtlesim from YARP. Similarly, Figure  8 shows how 
to dynamically connect an existing YARP Port to a ROS topic 
without recompiling the code.

6. cOMPOnenT reUsaBiliTY 
anD cOOrDinaTiOn

Developing high-quality reusable software components requires 
careful design that strikes a good balance between potential 
reuse, functionalities, and ease of implementation (Sametinger, 
1997). Coordination of software components in a distributed 
architecture usually adds considerable overhead to the robotic 
application design process and, often, pulls the development 
of software components in a specific direction. This can have 
a negative impact on the development process and can reduce 
reusability of software components.

Software should be extensible enough to be adapted to possibly 
unanticipated changes (Zenger, 2004). One direction to extend a 
module is via its interfaces. In YARP, interfaces are implemented 
by exchanging messages through the middleware connection 
points (Ports). To enhance the reusability of the iCub software, 
we extended the Port’s functionality so that it can dynamically 
load and execute a run-time script. In our framework, this port 
extension is called Port Monitor: in brief, it allows accessing data 
passing though a connection from/to the Port for monitoring, 
filtering, and transforming it. Multiple instances of Port Monitor 
can interact to allow an input Port to select data from multiple 
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yarpidl_rosmsg –name  /typ@yarpidl

C:\yarp read /turtle1/pose@/reader
yarp: Receiving input from /turtlesim to 
/turtle1/pose-@/reader
5.544445 5.544445 0.0 0.0 0.0
5.544445 5.544445 0.0 0.0 0.0
...

[type] BEGIN turtlesim/Pose
[type]   float32 x
[type]   float32 y
[type]   float32 theta
[type]   float32 linear_velocity
[type]   float32 angular_velocity
[type] END turtlesim/Pose

turtlesim/Pose?

ROS types

$ rosrun turtlesim turtlesim_node 
[ INFO] [1444722896.501281004]: Star�ng turtlesim 
with node name /turtlesim

turtlesim/Pose
[Data]

YARP machine ROS machine

ROS+YARP machine

FigUre 8 | reading a rOs topic from an existing YarP Port. This figure shows how to read the output of the topic /turtle1/pose from an existing YARP Port. 
On the left, we run the yarp read tool, which opens a Port and prints to console the data it receives. To make ROS aware of this Port, we decorate its name using a 
special syntax that instructs YARP to create a ROS node called /reader and subscribes it to the topic /turtle1/pose. To properly interpret the type turtlesim/Pose 
YARP queries the typeserver. Notice that all processes are running on different machines and that, in this case, the machine that runs yarp read knows nothing 
about ROS. To simplify the figure, we omit all the handshakes required for naming look up and establishing the connections. The opposite operation (writing from a 
YARP Port to a ROS topic) can be done in a similar fashion.

#include "Pose.h"
#include "Twist.h" 
/* create ROS Node /controller */
yarp::os::Node node("/controller"); 
/* create a subsriber for Pose.msg */
yarp::os::Subscriber<Pose> pose; 
/* subscribe to /turtle1/pose  */
pose.topic("/turtle1/pose");    
/* create a publisher for Twist.msg */
yarp::os::Publisher<Twist> cmd; 
/* publish to /turtle1/cmd_vel */
cmd.topic("/turtle1/cmd_vel");  
while(true) {

Pose p;
/* read a new value from the topic */
pose.read(p); 
cout<<p.x<<" "<<p.y<<" "<<p.theta<<"\n";

/* prepare a command for the turtle_sim */
Twist t;
t.linear.x=1.0;
t.angular.z=1.0;

/* publish the command */
cmd.write(t);

}

yarpidl_rosmsg

Pose.msg

Twist.msg
Pose.h

Twist.h

FigUre 7 | interfacing YarP with rOs’s topics. The figure illustrates the code required to interface YARP with the turtlesim. Starting from the ROS messages 
definition in Pose.mgs and Twist.msg the yarpidl_rosmsg tool produces compatible YARP types, Pose.h and Twist.h. The code creates a ROS compatible node, a 
subscriber and a publisher, reads data that contains the state of the turtlesim from the topic /turtle1/pose, and sends velocity commands to the topic /turtle1/cmd_
vel to control it and sends velocity commands to control it.
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sources in an exclusive way. We call this mechanism Port arbitra-
tion: it allows coordinating components by specifying arbitration 
rules in the input port of a component (Paikan et al., 2014b).

6.1. Port Monitoring and arbitration
Figure 9 (left) represents represents the situation in which the 
Port Monitor (shown as a box with M) is attached to the output 
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FigUre 9 | conceptual representation of Port Monitor (left) and its use for arbitration (right). Left: the output Port of Face-Detector is extended with a 
plug-in, which provides access to the outgoing data through scripting language (e.g., Lua). Right: at the input Port, the Port Monitor can arbitrate data from multiple 
connections.
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of the Face-Detector module and the input Port of the Head-
Control module. The Port Monitor can load a script file [written 
using a standard scripting language such as, in our case, Lua 
(Ierusalimschy et al., 1996)] and can access and modify the data 
traveling through the Port using a simple API. This idea allows 
adding extra functionalities to a component like data filtering, 
transformation, and monitoring without modifying or rebuilding 
it (Paikan et al., 2014a).

As an example, the code below illustrates the pseudo-script in 
Lua that filters messages from Face-Detector when its confidence 
level drops below a defined threshold (in this case 0.8):

7. cOnFigUraTiOn OF cOMPOnenTs

Components support re-use by exposing a set of parameters that 
affect their behavior. Parameters that are specified at the com-
mand line configure the component when it is executed.

Components choose the name of the Ports that they use. 
Because different Ports cannot have the same name, component 
reuse can be achieved only if components provide a way to 
change the name of the Ports. This is so fundamental that YARP 
enforces it via the environment variable YARP_PORT_PREFIX: if 
specified this variable defines a prefix that is added to all the Ports 
within a component (similarly ROS provides a way to remap topic 
names at the command line: in YARP, this solution was not viable 
because YARP does not monitor command line parameters).

All other configuration parameters should be specified at the 
command line, either explicitly or using configuration files. YARP 
uses a directory hierarchy to organize these files. One problem 
we had to solve was how to allow users to add configuration 
files to the ones already existing and how to package them in 
binary distributions. To support packaging, YARP defines a set 
of OS-dependent default locations for files and a set of rules that 
define the search priorities. To provide users with the freedom to 
install the software on custom directories, these default locations 
can be overridden or extended by modifying certain environment 
variables. YARP provides an helper class that allows organizing 
and locating configuration files, this class is called ResourceFinder 
because it allows managing all types of configuration files (called 
resources in YARP terminology) for a component.

The design of the ResourceFinder follows the rationale adopted 
in the Linux OS, i.e.,

•	 The software installation should be able to provide reasonable 
defaults for configuration files so that applications can run 
out-of-the-box;

•	 Installation directories are generally non-writable, users 
without root privileges cannot edit installed configuration files 
unless they first copy them inside their own private directories, 
the latter must take precedence and hide the others;

•	 Therefore it is normal that configuration files can be in mul-
tiple places, inside user-specific, private or shared installation 
directories;

•	 External packages can install files so that YARP can find them;
•	 Files are organized in families that are placed in specific 

sub-directories.

PortMonitor.accept = function(data)
 -- read face_pos from ‘data’
 if face_pos.certainty <0.8 then
   return false
 end
 return true
end

Using the Port Monitor, an input Port can be configured to 
arbitrate data from multiple sources, based on user-defined con-
straints. Figure 9 (right) represents a simple application where 
a humanoid robot looks around in search of a person’s face and 
then tracks it. This is a common coordination problem, which 
can be solved in different ways (e.g., using a separate coordina-
tor or by extending modules to interact with each other). One 
way to achieve this is to use a selector in the input Port of the 
Head-Control module and constrain it to receive data from 
each module under specific conditions. The concept is shown in 
Figure 9 (right) where the Port Arbitrator is used in the input Port 
of the Head-Control (shown as box labeled with two “M”). The 
arbitration logic can be written using the Lua scripting language 
and is loaded by the Port Arbitrator.

In our approach, a Port Monitor is attached to each con-
nection that delivers data to a Port. The Port Monitor analyzes 
the data it receives and produces (or removes) events from a 
container. A set of constraints in boolean logic determines from 
the events and for each connection if data is allowed to be deliv-
ered to the component (otherwise it is discarded). Arbitration 
is achieved because only one connection at the time is granted 
the permission to deliver data to the component. This type of 
arbitration mechanism can be effectively used to implement 
complex tasks without resorting to centralized coordinators 
(Paikan et al., 2013).
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Resource files belong to the following families: modules, appli-
cations, and plugins. Modules and plugins are text files describing 
modules and plugins (i.e., manifest files). Applications are files 
required to instantiate, configure, and connect components usu-
ally to achieve a certain task (called application). Configuration 
parameters for components are organized as key-value pairs 
and stored in one ore more  configuration files. Different files, 
therefore, configure a component depending on the application. 
To easily switch configuration, YARP components support the 
parameter --from which allows reading configuration files from 
a well-defined directory (the context of execution). For example, 
the following commands:

execute myModule in two different ways, using files in the contexts 
experiment1 and experiment2, respectively.

The directories modules, applications, plugins, and contexts 
are installed in the system directory <prefix>/share/yarp.18 Users 
have read-only access to system directories, and they need to copy 
the files they want to edit in private directories in which they 
have write access.19 To install and remove resource files, YARP 
provides the yarp-config tool.20

The ResourceFinder searches for configuration files in the fol-
lowing order of precedence:

•	 First, it looks in the current working directory;
•	 Then, it searches within contexts in the user private directory;
•	 Finally, it searches within contexts in the shared, installation 

directory(ies).

When searching for files and directories, the ResourceFinder 
follows the above order, so that files in the working directory or 
those modified by the user take precedence over installed ones. 
Search of files proceeds from the user private directories to shared 
installation directories. The same context directory can appear in 
multiple places and is likely to contain files with the same name. 
In this case, files that found first take precedence and hide those in 
other locations. This shadowing or masking mechanism is useful 
when the user needs to customize only a subset of the files for a 
specific context.

To allow users to modify where files are stored or to add other 
contexts to the existing ones, the ResourceFinder search path 
can be extended in two ways. Through the YARP_DATA_DIRS 
environment variables, a user can specify a list of locations, each 
used by the ResourceFinder when looking for shared installation 
directories. Third party package developers can add a text file that 
contains additional search directories in the directory <prefix>/
yarp/path.d. This solution allows an installation package to extend 
YARP search path without requiring changes to the environment 

18 The actual value of <prefix> is system dependent, on Linux it is usually equal to 
/usr/share, while on Windows it maps to %PROGRAMFILES%/YARP, i.e. usually 
C:/Program Files/YARP.
19 On Linux systems this is $HOME/.local/share/yarp while on Windows it is 
%APPDATA%/yarp.
20 Online documentation is available at: http://www.yarp.it/yarp_yarp-config.html

myModule --from experiment1

myModule --from experiment2

(to simplify this task YARP offers a set of CMake functions). For 
example, a user can install the YARP middleware and the iCub 
additional software without changing the environment. This is a 
useful feature for packaging and because we have found that modi-
fying the environment is confusing and error prone for most users.

It is worth mentioning that the ResourceFinder follows the 
XDG Base Directory Specification for Linux systems.21

8. aPPlicaTiOn ManageMenT

To facilitate the application development and execution for the 
iCub robot, we developed a few graphical tools. The yarpbuilder 
(see Figure 10) enables users to easily develop an application by 
configuring and interconnecting the available modules. It makes 
use of a YARP module description in XML format and represents 
them as graphical entities. To build a new application, a developer 
can drag and drop modules, configure, and interconnect them. 
This tool also performs some simple model checking to ensure 
that some of the constraints, such as required input connections or 
parameters for a module, are satisfied for that specific application.

Using a resource description of the available machines in a 
cluster, the deployment information can be manually set for the 
execution of the modules or they can be configured to be deployed 
using the automated load balancer. Eventually, the application 
can be created and launched using the yarpmanager22 deployment 
tool (see Figure 11). It has been developed using a multilayered 
software architecture, which abstracts the representation of 
modules, resources, and applications from their execution. The 
latter can employ different deployment methods (e.g., yarprun 
or SSH), which potentially allows executing components from 
different robotic middleware. The yarpmanager provides a rich 
set of functionalities such as module configuration, execution 
and monitoring, cluster resource discovery, load balancing, as 
well as establishing and checking connections. We are currently 
working toward integrating the yarpbuilder and yarpmanager in 
a single tool in which applications are developed, executed, and 
monitored using the same graphical representation.

9. sOFTWare TesTing On The icUB

Testing is an important topic in software engineering that has, 
however, received little attention in robotic research. Because 
robots in the future are expected to work in close interaction with 
humans, safety of robotic systems is going to become a funda-
mental issue. In this context, it is likely that software testing will 
play an important role. To test the iCub software we have adopted 
strategies for static as well as dynamic testing.

Static testing consists in checking the code without executing 
it. This approach includes code inspection, peer-to-peer reviews, 
and code verification using formal techniques. Code reviews 
allows increasing software quality by removing common prob-
lems and enforcing coding styles to improve readability, especially 
when development happen in a in distributed, open-source 

21 http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
22 http://www.yarp.it/yarpmanager.html
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FigUre 10 | a screenshot of yarpbuilder. The GUI allows to build applications by dragging and dropping components and by wiring the connections. 
The applications designed in the yarpbuilder can be executed by the yarpmanager.
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community. On the iCub code reviews have been adopted only 
recently and so far mostly in the context of the development of 
the YARP middleware. At this aim, we rely on the functionalities 
offered by github,23 the web service that hosts the majority of the 
repositories we manage. Non-trivial modifications to YARP are 
developed on a separate branch and are integrated in the master 
(the main development branch) only after other developers have 
revised and approved it. Common problems that have been iden-
tified through code reviews are: race conditions, memory leaks, 
and buffer overflows to mention a few. An important feature 
provided by github is the possibility to test software patches before 
they are integrated in the main branch (using Travis24 ). However, 
Travis supports only a specific distribution of Linux (at the time 
of writing Linux Ubuntu 12.04 LTS). Therefore, compilation tests 
are also executed for all the supported platforms on our com-
pile farm. This happens periodically (nightly builds) and upon 

23 https://github.com
24 https://travis-ci.org/

any commit (continuous builds) to the YARP and iCub main 
repositories.

Static code analysis can also be performed automatically 
using model checking techniques [see Baier and Katoen (2008) 
for a review]. These techniques allow ensuring that a piece of 
code satisfies given requirements (usually expressed in tem-
poral logic). Model checking is preferable to other techniques 
because it explores systematically the behavior of a program 
and is completely automated. However, it requires that a 
model of the software is available –  for example in the form 
of a finite state automata – and hardly scales to large systems. 
It has had practical applications in the verification of circuits 
and protocols (Kaufmann et al., 2000). In recent work, we have 
investigated the use of automatic techniques to derive a model 
of some of the components of the YARP middleware (namely 
Ports and BufferedPorts) and successfully applied model check-
ing to verify properties of code that uses YARP (Khalili et al., 
2014). Although promising, these techniques still require 
a certain degree of manual intervention from an expert and 
do not scale well to large programs. Further research is still 
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FigUre 11 | a screenshot of yarpmanager. On the left, the GUI shows the list of applications that are available and can be loaded. Each tab in the center 
window contains one of the four applications that have been loaded. For each application, the GUI shows the status of the components, the host in which it should 
be ran and the parameters. The bottom windows show the status of the Port and connections that are used by the current application. The bottom-right window 
shows the status of the nodes in the network.
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required before they can be integrated in the software develop-
ment workflow.

Dynamic testing on the other hand consists of running and 
testing the dynamic behavior of the code. This involves writ-
ing specific pieces of code, specifically devised to exercise the 
functionalities of the software and verify that it complies with 
the specifications. Test-driven development has gained increasing 
attention in software engineering (Beck, 2003). Proper applica-
tion of this technique requires (i) alternating writing tests and 
developing functional code in small and rapid iterations and 
(ii) executing tests automatically to ensure that modifications to 
existing code (new components, bug fixes, or new features) do not 
break existing functionalities. In the remainder of this section, 
we describe how unit-testing has been adopted for testing the 
software on the iCub robot.

9.1. The robot Testing Framework
Unit-testing was adopted for the development of YARP since 
the beginning, whereas systematic testing of the software that 

controls the iCub was started only recently. This is because robot 
software cannot be tested in isolation, and it requires running 
other components, device drivers, or just the robot simulator 
(these resources are called fixture). Automating testing requires 
therefore that the testing framework is able to setup the required 
resources and monitor them to ensure that they remain functional 
during the execution of the tests, offering hooks to handle failure 
appropriately (i.e., restarting the robot, performing parking rou-
tines, etc.). To comply with these requirements, we developed the 
Robot Testing Framework (RTF) (Paikan et al., 2015d).

The RTF25 is a generic testing framework for test-driven 
development of robotic systems. Its architecture is detailed in 
Figure  12. It is based on the well-known xUnit test patterns, 
which includes a test runner, test result formatters, and a test 
fixtures manager. In addition, it provides functionalities for 

25 The source code and documentation of the RTF can be accessed on-line at http://
robotology.github.io/robot-testing/index.html.
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FigUre 12 | The architecture of the Robot Testing Framework. Test cases can be developed as independent plug-ins using scripting languages or can be 
built as dynamically loadable libraries. The plug-ins are loaded by the Test Case Loader and are executed by the Test Runner. Test cases can also be grouped in 
different test suites, which are represented using XML. In the latter case, the Test Suite Loader parses the XML file and, using the Test Case Loaders, it loads the 
corresponding test plug-ins. Each test suit can optionally have a fixture manager, which is implemented as a separate plug-in (which is loaded by the Fixture 
Loader). This fixture plug-in is responsible for setting up the fixture and informing the Test Suite Loader when the fixture fails (e.g., crashes). In this case, the Test 
Suite Loader restarts the fixture and resumes execution of the remaining test cases. The result of the tests can be monitored from the console (through the Console 
Reporter) or remotely from a Web browser (through the Web Reporter). The Test Result Collector allows storing data in different formats. For example, this figure 
shows two components for storing output in text format or XML, (Text result Outputter and XML Result Outputter, respectively).
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defining test cases (i.e., unit tests), suits, and assertions. RTF sup-
ports multiple middleware, languages, and operating systems. 
This is achieved by providing abstraction layers for the platform 
(i.e., operating system), the middleware, and the programing 
language. Moreover, RTF provides functionalities for managing 
complex fixtures, which support stress testing at the level of 
individual components (robot hardware like sensors or actua-
tors) as well as integrated (sub) systems. It is worth pointing out 
that the RTF is not a tool for static analysis of code. As such it 
does not perform an exhaustive analysis of the code to ensure 
given properties of absence of deadlocks. The code is evaluated 
by running tests that call individual functions and verify the 
value of the return parameters or observe the internal status of 
the system under test by calling specific functions. Deadlocks 
can be detected indirectly by setting a timeout on the execution 
of individual tests.

A test suite is a set of test cases, which share the same test 
fixture (Meszaros, 2007). In RTF, a set of test cases (plug-ins) can 
be grouped as a test suite using an XML file and executed using 
the test runner. This allows the unit tests to be easily organized in 
different test suites, which are easy to maintain and extend.

The fixture manager is implemented as a separate plug-in 
so that it can be implemented using the deployment tools and 
policy of the middleware of choice. (for example OROCOS 
uses the component deployer, deployer-corba, ROS components 
use roslaunch toolset). For YARP, it is implemented using the 
yarpmanager.

Notably, RTF provides test results in different formats includ-
ing Junit XML file. This allows the test results to be published and 

monitored using standard integration tools such as Jenkins. The 
next section describes the tests that are currently implemented for 
the iCub. The test cases can be run directly on the iCub robot or 
using a simulator. Some of the tests are executed automatically on 
the simulator using Jenkins upon any change in YARP middleware 
or the iCub software. These tests check that any new update in the 
software is compatible with the robot interfaces. There are also 
some tests that check the robot hardware; these tests are executed 
directly on the robot and under human supervision.

9.2. Testing on the icub
We conclude this section with a description of the tests that have 
been implemented so far on the iCub robot. We can distinguish 
four categories of tests: (i) tests on the correctness of the robot 
configuration files, (ii) tests for specific hardware devices, (iii) 
tests for the compliance of low-level software and firmware with 
system specifications, and finally (iv), tests that are specifically 
written after a specific bug is identified and fixed.

The first category of tests may seem unusual. There exists 
about 30 iCub units, and, over the years, many of them under-
went hardware customizations, revisions, or upgrades. Therefore, 
each unit has a specific set of configuration XML files, typically 
manually written and therefore subject to errors. Automatic tests 
attempt to minimize such errors by verifying the correct behavior 
of the robot.

JointLimits, for example, is a test which belongs to the first 
category. This test checks that range of motion written in the 
configuration files is achievable by the system by moving each 
joint to the maximum and minimum position. If a hardware 
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TaBle 2 | some of the test cases which has been developed for the icub 
robot.

Test Description

CameraTest Checks the robot camera’s frame rate and 
size

ControlModes Checks control mode specifications, 
validates allowed, and forbidden transitions

FtSensorTest Checks the robot force sensors against a 
predefined, known value

JointLimits Checks the software joint limits configuration
MotorTest Checks the IPositionControl and IEncoders 

interfaces, moves the motors individually 
or in groups, and verifies that the required 
position is actually obtained within a 
predefined amount of time

MotorEncodersSignChecks Check that motor encoder readings increase 
when positive PWM is applied to a motor

OpticalEncodersConst Checks the consistency between encoders 
at the motors and at the joints

OpticalEncodersDrift Performs repetitive movements to verify that 
encoders do not drift

PortFrequencyTest Checks the rate at which state information is 
published by the robot interfaces

PositionDirect Checks the IPositionDirect control mode
SensorsDuplicateRd Checks that a YARP Port publishes unique 

values at each update
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limit is unexpectedly encountered, the test fails, informing of a 
possible mistake in the robot configuration files. This kind of tests 
can be considered rather static over time: additional tests may be 
added if new configuration parameters are introduced, however, 
individual tests do not typically require maintenance.

The second category includes all the tests which validate 
the correct operation of a hardware device. For example, the 
OpticalEncodersDrift test moves a joint generating a sinusoidal 
trajectory. The test checks that, after a repeated number of cycles, 
the measurements of the optical encoder do not drift. A drift 
suggests a hardware defect such as the presence of dust on the 
encoder disk (for optical encoders) or electrical interference. This 
category of tests is dynamic: new devices are continuously intro-
duced and new tests have to be designed for the new hardware, 
while existing tests have to be periodically reviewed as a result of 
a hardware revision of an existing device.

The third category includes all the tests which verify that the 
robot behavior complies with the specifications and requirements. 
The simplest test of this category is MotorEncodersSignChecks, 
which tests that individual encoders increase their value when 
the corresponding motor rotates with positive input. This is 
an important convention that determines the sign of the PID 
controllers but may be affected by incorrect mounting of the 
encoders, motor wiring, or firmware configuration. As previ-
ously mentioned, iCub control boards implements the concept 
of control mode. If a joint is controlled in position mode, for 
example, only position commands sent through the IPosition 
interface are accepted, while other commands (e.g., velocity, 
torque) must be rejected. ControlModes extensively verifies that 
all the possible states described in the specifications of control 
mode state machine are reachable and that the corresponding 
transitions are correct. Also prohibited transitions are tested. For 
example, if a hardware fault occurs (the test intentionally causes 
a hardware fault by sending an invalid command) the user has to 
set the joint in idle mode before switching to any other control 
mode. MotorTest exercises the interfaces for reading encoders and 
moving the joints in position mode. This category of tests typi-
cally evolves over time: for example, when a new control mode 
or interface is implemented, these tests may be extended in order 
to check the compatibility of the new features with existing ones.

The fourth category of tests is written when individual soft-
ware defects are discovered. In this case, it is good practice to 
first write a test that triggers the specific defects and then ensure 
that a candidate software patch effectively passes the test. These 
tests remain in the system to ensure that future changes will 
not cause the same defect to reappear. An example of this test 
is SensorsDuplicateRd, which verifies that sensors values are not 
broadcast multiple times on a Port.

Table 2 lists all the tests that are currently implemented on 
the robot. These tests are executed periodically on the simulator 
and manually on the real robot. As the development is currently 
in progress, the list covers only partially the functionalities that 
could and should be tested.26

26 The source code and description of the available tests for iCub can be accessed 
on-line at https://github.com/robotology/icub-tests.

10. lessOns learneD

We report here a list of lessons we learned during the development 
of the YARP middleware and the iCub software architecture.

10.1. Freedom of choice versus Freedom 
from choice
The iCub is a research platform developed by and for researchers. 
We tried to accommodate as much as possible the need for the 
users of the robot giving maximum freedom in terms of develop-
ment environment and tools. We support MacOS X, different 
flavors of Linux, and Windows. In several occasions, this turned 
out to be a good choice that allowed us to run the code on legacy 
hardware and to reach a wider group of users. It, however, required 
to keep support for various versions of compilers and libraries 
and resulted in considerable maintenance cost, sometimes slow-
ing down the introduction of new features made available in new 
compilers or libraries. On the software development side, we also 
gave users freedom to code their components in the way the liked; 
for this reason, we did not introduce a rigid component model 
but only provided helper classes and best practices through 
documentation and on-line tutorials. This choice in the short 
term was beneficial because it reduced the learning curve, but 
in the long term may hinder standardization and actually slow 
down development. A somewhat opposite approach would be to 
rely on design tools and code generation to leverage the user from 
the task of implementing infrastructure code [this approach is 
followed for example by Smartsoft (Schlegel and Worz, 1999)]. 
Striking a good balance between the two approaches is a difficult 
design decision, which depends on background and expectations 
of the target users.
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10.2. in-house Middleware
When we started the development of iCub back in 2004, only 
a few middleware existed in the robotics community and their 
use was quite fragmented. The first version of YARP was already 
mature and the consortium that designed the iCub included 
YARP’s core developers in the team. This was one of the main 
reasons that has motivated the adoption and consequent devel-
opment of YARP. Having in-house control of the middleware 
code-base has given us great flexibility to address the needs of 
the iCub community. Such examples have been described in this 
paper and include: the definition of the motor control interfaces 
and corresponding communication paradigm for remotiza-
tion, the functionalities for remote execution and logging, and 
organization of parameters. Not less importantly it allowed us to 
come up with novel extensions like the Port Monitor and chan-
nel prioritization. YARP can be easily compiled on many Linux 
distributions, MacOS, and Windows. All these reasons still 
prevent us today from adopting ROS altogether and motivated 
us to add support for ROS interoperability, instead. Developing, 
debugging and maintaining the communication back-bone of 
the robot, however, has quite a high cost and should not be 
underestimated when developing a new robot. Our experience 
has shown that user code become quite entangled with the mid-
dleware data structures and build system (middleware lock-in). 
Considered that middleware technology is in constant evolution 
it may be a good idea to design the software architecture of the 
robot to reduce such dependency, so that changing middleware 
is possible and inexpensive.

10.3. Packet Management system
The build system of the iCub software is based on CMake. CMake 
offered a great degree of flexibility, allowing to customize and to 
automate the compilation process, including finding and config-
uring dependencies. However, the software ecosystem suffered 
from the lack of a sophisticated packet management system. The 
main stumbling block in this respect was the decision to sup-
port Windows, for which there are no mature systems for packet 
management and distribution. To partly cope with this problem, 
we developed custom scripts for packaging dependencies in 
binary distributions for Windows, Linux, and, hombrew recipes 
for MacOS X. Yet, the development of an iCub software ecosystem 
was slowed down from the lack of a powerful packet management 
system like the one that is available in many Linux distributions.

10.4. lack of iDl
YARP was not born with an IDL language supporting the 
definition of data type and services. The reason for this choice 
was to facilitate adoption by reducing complexity and learning 
curve. Interfaces were developed using self-describing data types 
(i.e., the YARP Bottle), which allowed code to parse messages 
dynamically by inspecting their content. With the growth of the 
community, this became a limitation because it made it difficult 
to document modules interfaces, perform versioning, and verify 
compatibility between modules. In retrospect it would have been 
preferable to introduce the IDL much earlier in the development, 
enforcing its use like, for example, ROS. Finally, another advan-
tage of the IDL is that it allows documenting service interfaces 

using Doxygen keeping services documentation and their code 
in the same files. 

10.5. external configuration of Ports
YARP provides different communication policies through the 
Port API (like buffering, streaming versus RPC). However, 
understanding how components communicate requires looking 
at the code; this increases the probability of introducing subtle 
bugs. It would be beneficial if the available polices were visible 
and configurable at run time. In Section 3, we showed initial steps 
in the direction for providing policies for channel prioritization; 
however, further development is required to give users access to 
the other configuration parameters.

10.6. robot interface abstraction layer
The robot interface abstraction layer had a positive impact during 
the development. It allowed to introduce new functionalities via 
new interfaces without affecting existing code and to execute code 
on-board, remotely on the real robot or simulators. These features 
gave a useful level of flexibility that facilitated debugging, code 
re-use, and fast-prototyping. Robot interfaces have evolved with 
time to accommodate the research requirements and to support 
new hardware as it became available; we tried to limit as much 
as possible the impact of these changes on the user code and 
introducing new functionalities in optional interfaces. The robot 
interface abstraction layer hides the user code from the details of 
the communication and the specific communication middleware. 
This allowed to extend the representation of the data structure that 
broadcasts the robot state without changes outside library code. 
In the future, it may even allow us to change the transport layer 
(i.e., the communication middleware) altogether with minimal 
impacts. Another improvement in the robot interface followed 
the refactoring of the plugin system, which was modified to load 
plug-ins at runtime using dynamic libraries (it was initially based 
on static linking). This decoupled all dependencies and allowed 
us to separate device drivers contributed by users in separate 
repositories, resulting in simpler packaging and maintenance.

10.7. Test-Driven Development
The development cycle of the YARP middleware adopted unit 
testing since the beginning. For practical reasons, this approach 
was extended only recently to the other layers of the iCub 
software architecture. The Robot Testing Framework is being 
used to test the low-level code that is developed for the new 
version of the iCub and although tests still cover a relatively 
small portion of the code, we already see its benefits: besides 
detection of bugs due to programmers errors, it allowed us to 
detect problems that were due to lacking or imprecise specifica-
tions. The latter is a problem that is particularly frequent in 
research environments.

11. cOnclUsiOn

In this paper, we described the software architecture of the iCub 
humanoid robot, including some of its recent development. We 
illustrated the design choices that have guided and constrained 
its development, including the lessons that we learned during 
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this endeavor. We do not claim these choices to be optimal and 
equally good in all cases. However, we hope that in the future, 
this paper may provide a useful guide for the design of other 
humanoid robots.
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Robot Systems

 

Trent Houliston* , Jake Fountain , Yuqing Lin , Alexandre Mendes , Mitchell Metcalfe , 
Josiah Walker and Stephan K. Chalup

Newcastle Robotics Laboratory, School of Electrical Engineering and Computer Science, The University of Newcastle, 
Callaghan, NSW, Australia

This paper discusses the design and interface of NUClear, a new hybrid message- 
passing architecture for embodied humanoid robotics. NUClear is modular, has low 
latency, and promotes functional and expandable software design. It greatly reduces the 
latency for messages passed between modules as the message routes are established 
at compile time. It also reduces the number of functions that must be written using 
a system called co-messages, which aids in dealing with multiple simultaneous data. 
NUClear has primarily been evaluated on a humanoid robotic soccer platform and on 
a robotic boat platform. Evaluations show that NUClear requires fewer callbacks and 
cache variables over existing message-passing architectures. NUClear does have lim-
itations when applying these techniques on multi-processed systems. It performs best 
in lower power systems where computational resources are limited. This article aims 
at readers with interest in modern software engineering concepts and development of 
systems in areas such as robotics, smart devices and virtual reality.

Keywords: humanoid robot, robot vision, robot learning, software architecture, message passing, blackboard, 
co-messages, compile time message routing

1. InTRoDUcTIon

A system’s software architecture is the arrangement of its high level structures based on the layout 
of its functional code elements. As the software components of modern humanoid robotic systems 
become more capable, their code becomes larger and more complex. This can increase the cost of 
maintaining and enhancing the system. Software architecture design improves high level structures 
encouraging better maintainability and re-usability of components, and supports the reduction in 
effort in understanding and modifying software systems. However, this is difficult in embodied 
humanoid robots where computational hardware is limited in power, as architectural decisions to 
improve the maintainability of the system impact the performance of the robot. Therefore, architec-
tures for this domain should aim to improve the efficiency for systems with limited performance.

Latency is also a key concern in robotic systems. Information must flow quickly between compo-
nents for real-time control. Latency between sensing and acting reduces the robot’s ability to correct 
issues in time. Architectural decisions that increase modularity also increase the latency between 
components, as their interfaces become more general. This impacts on the robot’s ability to process 
and function as required.
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The NUClear framework has been designed to address these 
concerns using novel techniques to improve the communication 
between modules. It utilizes C++ template meta-programing and 
smarter interfaces to reduce or eliminate costs while maintaining 
an expressive and easy to use interface.

2. RoBoTIc SoFTWARe 
ARchITecTUReS

When designing or improving software architecture for autono-
mous robots, it is important to analyze the techniques of exist-
ing systems. The software architectures used in the majority of 
autonomous humanoid robots are within a spectrum between 
two primary architectural paradigms. These systems can be 
defined by the way in which data is communicated between mod-
ules in the system. On one end of the spectrum are global data 
store systems, in which all data are stored centrally and accessed 
by expert system modules. At the other end of the spectrum are 
message-passing systems, where systems receive messages and 
perform actions on the data received. Systems also exist within 
this spectrum that have a degree of hybridization (Figure  1). 
These hybrids utilize message passing and also include features 
from the global store. This section of the paper explores various 
properties that contribute to the architecture quality of existing 
systems. Also discussed are techniques available to improve the 
performance of the system.

2.1. Blackboard
A blackboard architecture is a form of global store architecture 
(Figure 2). Modules within a blackboard system communicate 
with each other through the manipulation of data elements stored 
on a central data store called the blackboard. This manipulation 
is achieved through expert systems (Hayes-Roth, 1985) that are 
responsible for performing particular tasks. For example, an 
expert system responsible for vision may read images from the 
blackboard. When it has analyzed them, it writes the observed 
visual features to the blackboard. This design ensures that the 
other components are able to gather the information required by 
accessing it from the global data store without having to com-
municate directly with each other.

Blackboard architectures were originally developed from the 
blackboard concept that was used as a theoretical tool in the field 
of AI research. They were developed into a software architecture 
and effectively utilized in the HEARSAY-II system (Erman et al., 

1980) to implement a speech processing artificial intelligence. 
Blackboard systems were then enhanced by Hayes-Roth (1985) 
to provide not just a communal data store but to also provide 
the control elements required for developing a robotic system. 
This enhancement formed the foundation of the blackboard 
architecture used in autonomous robotics.

Blackboard architectures are also frequently used in develop-
ment projects where limited computation resources are a concern. 
The RoboCup contest, an annual contest involving teams from 
research institutions around the world, provides an excellent case 
study to compare robotic systems that are required to run using 
limited on-board computational resources (Kitano et al., 1997). 
Each team competing in RoboCup is required to construct and 
program robots to perform in a modified soccer contest with the 
goal of defeating the FIFA world champions by the year 2050. As 
all of the robots are performing the same task, the differences 
in programing and construction provide an excellent test bed to 
compare design choices.

Within RoboCup, there are numerous teams who have inde-
pendently implemented software architectures. These robotic 
systems are all designed to achieve the same task. Therefore, 
the primary differences in the systems are either algorithmic 
or architectural. Three of the more successful teams using 
blackboard architectures have released their codebase, allowing 
a comparison of their implementations. Teams from B-Human 
(Röfer et  al., 2011), UT-Austin (Barrett et  al., 2013), and the 
University of Newcastle’s NUbots (Kulk and Welsh, 2012) all 
have achieved success in the contest and have released code and 
technical reports on their architectures. Each of these teams use a 
slightly different implementation of the blackboard system.

Barrett et al. (2013) base their system around a pure blackboard 
architecture. This system uses a single storage location labeled as 
“memory” where all information generated by the expert systems 
is stored. This flat implementation is the original design of a 
blackboard system with a single, large data store.

Kulk and Welsh (2012) also use a single, centralized blackboard 
for communication of data between modules. However, several 
of the sub components have their own private blackboards that 

Global Store Messaging

B
lackboard

W
hiteboard

N
U

C
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M
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FIgURe 1 | The spectrum of robot software architectures. Most of the 
architectures used in robotics are some combination of global store and 
messaging.

Blackboard
Data
Data
Data
Data

Module Module

ModuleModule

Module ModuleModule

FIgURe 2 | In a blackboard architecture, all modules communicate 
by reading from and writing to a single global data store. Due to the 
central data store, all components are coupled through common coupling.
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are used for internal communication and memory. This results 
in a hierarchy of blackboards where each successive blackboard 
becomes more specialized to an individual task.

The architecture of Röfer et  al. (2011) involves numerous 
individual blackboard elements that are held within separate 
processes for a particular task. Each of the individual components 
may have overlapping access to a blackboard. However, each 
component will only access the blackboards that are relevant to 
their data requirements. This results in a system where individual 
blackboards are able to be modified without significantly impact-
ing modules that do not use them.

The B-Human, UT-Austin, and NUbots teams have used 
blackboard architectures for many years due to the ease of 
implementation and low computational overhead. A blackboard 
system has a single location for all data and is easily understood. 
New states are easily added to a blackboard, and the addition of 
new data does not require modification to the other systems. This 
is valuable when performing tests for research purposes as well 
as being able to add debugging data to the system temporarily.

The system developed by Team KAIST for the 2015 DARPA 
Robotics challenge (Lim et al., 2015) utilizes a global store system 
as its primary method of communication. The code executes on 
multiple processes spread across seven machines in different 
physical locations. It uses a shared memory system called MPC 
to communicate data among its processes. The system also 
uses a message-passing architecture for its vision system based 
on ZeroMQ. Its control system uses message passing based on 
POSIX IPC and shared memory. This heterogeneous system has 
the potential to cause confusion in future development, as it is 
unclear which architectural style must be used to communicate 
with a specific component.

In relation to the level of coupling in a system, blackboard 
architectures perform poorly. In the best case, they exhibit com-
mon coupling. All the elements depend on a single data store 
[Page-Jones (1988), p. 73]. At worst, there can be pathological 
coupling. This is where modules interact and operate by modify-
ing each others’ internal state [Page-Jones (1988), p. 77]. These 
forms of coupling make it difficult to perform modifications to 
the codebase due to the flow on effects of modifying the black-
board [Page-Jones (1988), p. 80]. Additionally, despite providing 
a successful platform for playing soccer, these systems are unable 
to easily adapt to other roles due to the necessary specialization 
of the blackboard itself.

Blackboards also present challenges in multithreading situ-
ations as individual components are not aware when new and 
relevant data becomes available. This is of concern in modern 
multi-core embedded platforms, as modules may miss data 
updates, read the same data twice, or even read a partially written 
data element. This makes it difficult to use time-series data effec-
tively, as it requires modifications to both the provider of the data 
and the blackboard to ensure elements are not missed. Finally, 
as use cases change and data formats are updated, it becomes 
necessary to make modifications to all the modules accessing 
the updated items in the blackboard. This leads to a situation 
where it is easier to add new data types to the blackboard, rather 
than refactor the existing data types to improve flexibility in the 
system.

2.2. Messaging
Message-passing systems are a generalization of a pipeline system 
where the output from one system is used as the input into the 
next system (Figure  3). Each module creates information and 
then publishes this information to the rest of the system. Other 
modules subscribe to these information updates and on receipt of 
the information, perform their own operations using it.

There have been several successful message-passing architec-
tures developed for robotic systems. Most of these are designed 
for robots with significant computational resources. However, 
there are more recent frameworks designed that have considered 
performance and latency.

OROCOS (Bruyninckx, 2001) is an early open source robotics 
framework based on a CORBA object broker system. This system 
allows it to work across multiple languages and processes. It 
provides a consistent interface for robotics use and is designed 
to keep code modular for code reuse among systems. However, 
compared to modern methods, OROCOS is slow (Hammer and 
Bäuml, 2014) and does not support systems that are not based on 
object-oriented design patterns.

Dynamic Data eXchange (DDX) (Corke et  al., 2004) is a 
message-passing robotic software architecture developed at the 
Commonwealth Scientific and Industrial Research Organization 
(CSIRO). DDX was designed to improve on the slow speed of 
previous message-based robotic software architectures. These 
previous systems required messages to pass through a signifi-
cant amount of the network stack, limiting performance. DDX 
uses interprocess communication (IPC) to provide a publish/
subscribe architecture. As a message-passing system, it suffers 
from the requirements of serialization of data. Serialization 
reduces performance significantly as large amounts of data 
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FIgURe 3 | Message-passing systems treat each module as a 
producer/consumer. Data are sent through a message routing system to 
subscribers to that type. This message router may be a single entity, or the 
task may be distributed among individual modules.
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must be processed and copied. To resolve this, DDX provides 
direct shared memory access between modules. However, if 
used incorrectly, this functionality transforms DDX into a 
blackboard system and takes on its associated architectural 
issues. Problems within DDX are also compounded due to the 
lack of type safety in a system that communicates interprocess. 
This makes it difficult to ensure that the data received are the 
anticipated format.

YARP (Metta et al., 2006) is a recent message-passing system 
for robotics based on the observer pattern. It provides observable 
entities called ports that can be provided over network and local 
protocols. YARP utilizes C++ templates to enable customizable 
serialization of types for transfer. It is able to use shared memory 
models to reduce the number of data transfers that occur and uses 
networked methods to distribute information to other systems. 
YARP modules listen to the observable data either by waiting 
on a port or by scheduling a callback function to execute when 
data come in. YARP is an excellent example of a flexible message-
passing system.

A common research-oriented robotic software architecture is 
the Robot Operating System (ROS) (Quigley et al., 2009). It has 
a centralized node named the ROS Master that is responsible for 
establishing message routes within the system. Messages do not 
pass through the ROS Master. Instead, the ROS Master enables 
nodes to form direct connections. These routes are established 
using IP networking protocols (TCP or UDP).

Each individual component of the robotic system runs in its 
own environment without direct knowledge of other components. 
These components are expert systems responsible for individual 
tasks, such as localization or visual processing. Communication 
is handled through predefined messages that are able to be serial-
ized into a transferrable byte representation. Messages that only 
travel within a single node or systems built to run as a single 
node, such as ROS nodelets, are able to transfer without copying 
or serialization.

ROS was designed to provide a platform capable of running 
code in multiple programing languages on a number of distinct 
computers to control a robotic system. The flexibility of its pro-
graming language and the large number of researchers using this 
system has made it standard for modern robotics research. This 
has seen it implemented on numerous robotic platforms ranging 
from robotic vacuum cleaners to large humanoid robots. The use 
of ROS has also gained interest in industrial robotics through the 
ROS-Industrial project (Edwards and Lewis, 2012).

Ach (Dantam et al., 2015) is a messaging system inspired by 
POSIX message queues. POSIX message queues are suboptimal 
for robotic systems, as queues create a preference for older data. 
It caters to multi-processed systems that run on a POSIX operat-
ing system and is implemented using a circular array of shared 
memory that can be accessed by any process that is a part of the 
system. The shared memory for a particular message is described 
as a channel. Messages are distributed by adding them to the 
circular buffer for a channel. Subscribers request new data from 
the channels they need and then wait for it to become available. 
Each subscriber has an individual pointer that tracks which mes-
sages in the queue have been read. The circular buffer will wrap 
around and overwrite the old data, potentially causing issues for 

a subscriber if every data element must be processed. Ach has the 
advantage as it operates at a low latency due to its use of shared 
memory. A limitation of Ach is that its use of shared memory 
restricts its use to a single machine. Additionally, the pull style 
interface adds complexity for the developer when managing 
multiple simultaneous requests.

Message-passing systems solve many of the issues encountered 
with a blackboard system. In relation to the tight coupling of a 
blackboard, there is no longer any single object that is required 
to know the entire state of the system. This makes it easier to 
adapt existing modules for use in a new system. Listening to 
changes in data allows the system to catch every event as it is 
modified, removing the need for polling a data store. The ability 
to distribute the program across multiple threads of execution 
or even multiple systems makes message-passing excellent for 
systems with ample computational power. Time-series operations 
are also possible as every event is accessible without requiring 
modification to other modules.

Message-passing modules are also able to act as a service. A 
common pattern is to send a request message and another mod-
ule will reply with a response message.

Message-passing interfaces will either have a pull interface, 
where a function must be called to wait for new messages, or a 
push interface, where a function is provided and executed when 
data becomes available. In a pull interface, multiple message reads 
must be multiplexed or have multiple threads listening to receive 
data. This adds extra complexity to the interface, as there is often 
increased work required to wait on multiple messages. Push inter-
faces are simpler to develop, as there is no additional complexity 
to wait on multiple messages simultaneously. Additionally, push 
interfaces make multithreading easier as each callback function 
can be executed on separate thread.

However, there are several disadvantages that exist in these 
systems that are not present in a blackboard system. A message-
passing system must either provide a copy of the data for each 
subscriber of a message or make all access read only. This results 
in a performance penalty in the system. Messaging also means 
that there is no longer a central data store that can be used. 
Therefore, if a module requires information from more than one 
message, it must handle the storage of this data itself to access it. 
This adds significant extra load on the modules, which makes 
development harder and reduces its performance.

2.3. Whiteboard
Thórisson et al. (2005b) have developed an enhanced version of 
blackboards in order to utilize some advantages of a message-
passing system. Whiteboard architectures have publish/subscribe 
extensions added to the blackboard in addition to the statically 
stored data (Figure 4). This hybrid system of global storage and 
message-passing solves several concerns associated with a tradi-
tional blackboard system. It is able to use the publish/subscribe 
features to remove the need for polling in the system, allowing the 
system to react when data has changed. It also allows the system 
to perform computations only on new data, rather than repeat-
edly calling the old data.

The whiteboard design has been used in robotics develop-
ment. Reykjavik University (Thórisson et  al., 2005a) integrates 
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whiteboard architecture in robotic software, and the Mi-Pal team 
from Griffith University utilizes a whiteboard architecture to solve 
issues associated with blackboard architectures (Coleman et al., 
2013). Mi-Pal is able to use the publish/subscribe architectural 
feature to ensure that a module will receive every data update 
posted. They have recently improved this architecture to provide 
compile time checking of data types, easing the debugging of the 
system. Systems that hybridize message passing and global store 
architectures are a midpoint between the fields of AI that use 
blackboards extensively and modern software architecture that 
focus on decoupled design.

Despite these advantages, whiteboard architecture experi-
ences several drawbacks. In a whiteboard system, the weakness 
of requiring a single blackboard at the center results in common 
coupling. Even when a stream is used, the stream is stored on the 
blackboard. This means that modifications to a stream alter the 
components that use them. The other major issue that arises from 
using a whiteboard architecture is the use of an implementation 
that is not a true hybrid of global storage and message passing, 
but instead two architectures deployed in parallel. In this case, 
the user either takes on the benefits and weaknesses of a message-
passing system or those of a blackboard system.

The performance of the robotic platforms these architectures 
are deployed on provides insight into why they are utilized. 
Robots that execute on hardware with tighter performance 
constraints, such as those with on-board computation, are 
designed using the blackboard model and occasionally using 
the whiteboard model. In robotic systems where performance 
is not restricted, message-passing systems are used to allow 
greater collaboration between developers. Although message-
passing systems provide excellent maintainability, testability, 
and modifiability, the performance of these systems in relation 
to latency and overhead is a significant concern when there is 
limited processing power.

2.4. 2012 nUbots’ Architecture
The 2012 NUbots’ software architecture was designed as an easy to 
understand and extend object-oriented system (Kulk and Welsh, 
2012). However, over time, design-limited module communica-
tion and workarounds limited the overall value of the system. This 
resulted in the system fragmenting and impacted on its quality as 
the use cases for the system diversified. It resulted in a system that 
used different assumptions and design patterns. The architecture 
also caused duplication of effort and the use of similar, redundant 
classes in various modules due to the lack of a clear architecture. 
A simplified diagram of the architecture modules and flow of the 
existing system can be seen in Figure 5.

Common with many embodied robot architectures, the 2012 
NUbots’ architecture revolved around a central blackboard data 
store. Several modules utilized a global queue known as the 
jobs system, with most communicating through direct function 
calls, implicit or global state such as singletons. This diversity in 
communication resulted in a technical debt and reduced pro-
ductivity as the system grew. As in order to make modifications 
to a component, an understanding of the interface, including 
anything it interacted with or any of the interface’s new com-
ponents, was required. This was problematic as the NUbots’ 
architecture had components that needed to communicate to 
three or more other components. This required an understand-
ing of a minimum of four different systems before a developer 
could make any change.

The vision system provides a good example of this unneces-
sary complexity. The vision system communicated utilizing a two 
step process. It accessed the sensor system directly and asked 
it to process a new frame. It then waited on the sensor system 
to place the frame information on blackboard. Once the frame 
information was placed on blackboard, the vision system read 
the information from blackboard and continued its processing. 
Although the vision system waited for a new frame, the entire 
robot was blocked and could not make any decisions. It was also 
important to ensure that no other systems intended to request 
the latest frame, as doing so would break the robots functionality.

Another unresolved architectural challenge was experienced 
in the Movement module. The 2012 NUbots’ system defined 
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a number of movement handlers, each responsible for a set 
of movements. This could include kicking a ball or walking.  
The movement system periodically retrieved all of the jobs in the 
queue and sent them to the appropriate movement handler. The 
movement handlers then communicated to the action system 
to execute the selected motions. This base case did not have any 
issues. However, it was not possible for any other component 
to talk to the movement handlers directly via the blackboard 
system. Therefore, at any point in time, any class in the system 
was a potential candidate for triggering a movement. This made 
it very easy to create hard to maintain access paths and added to 
the complexity of the system.

Additionally, each movement handler is indirectly dependent 
on each other. Movement handlers can lock specific motors and if 
they attempt to use a motor in use by another system, the action 
failed. Forgetting to check the ownership of a motor broke the 
currently executing motion, causing the robot to fall down and 
possibly injure itself. In order to add a new movement, the code 
was written for the movement, and the developer was required 
to understand how all the existing motion modules worked and 
interacted. This included cases where any of the managers might 
be triggered, in order to avoid interrupting a critical movement 
when the motors were locked. Additionally, the developer needed 
to understand the locking model to prevent accidentally trying 
to move a motor that should not be moved. These are only 
two examples of a number of pitfalls within the 2012 NUbots’ 
architecture.

2.5. comparisons
Previous studies have compared the techniques used in tradi-
tional blackboard systems and messaging systems (Orebäck and 
Christensen, 2003; Magyar et al., 2015; Matamoros et al., 2015). 
This research concludes that blackboard architectures are easier 
to maintain and provide greater performance than peer-to-peer 
systems. However, a significant body of research (Page-Jones, 
1988; Pressman, 2005; Beck and Diehl, 2011) has found that 
loosely coupled messaging systems should provide much greater 
maintainability and extensibility than globally coupled black-
board systems.

A possible explanation for this discrepancy is that a blackboard 
system is much easier to comprehend than a message-passing 
system. This makes it easier for a small blackboard system to be 
worked on by a developer. However, as the system grows and 
contains more components, increased complexity should reveal 
message-passing systems as having the advantage.

3. The nUclear FRAMeWoRK

The NUClear framework was designed to utilize the advantages 
and address the problems that exist with the architectural styles 
of message passing and blackboards. The primary advantages of 
the two competing architectures are the high data availability 
in a blackboard system and the excellent decoupling properties 
of a message-passing system. A message-passing system must 
be used as the primary architectural paradigm to achieve loose 
coupling. The challenge is to incorporate the advantages that 
a global store provides into the message-passing system. An 

ideal system should maintain the loose coupling that message-
passing affords, without suffering from data management issues. 
In order to address these issues and provide a more effective 
software architecture, a solution called co-messages has been 
implemented. It more effectively hybridizes the two paradigms 
in NUClear.

NUClear introduces a modification to how messages are 
dispatched to the subscribers of the data. In robotic systems, 
modules will typically have a primary information type that they 
will perform their operations on. However, they often require 
additional supplementary data provided from other sources. 
These additional data must be available when the operations are 
performed, and they may be created at a different rate to that 
of the primary data source. Accessing these data at any time is 
impossible in a pure message-passing system, as the data are only 
available transiently. If a system requires information created by 
another module, it must subscribe and then store this information 
itself to ensure it is available. In NUClear, one of the subscribed 
types will be designated the primary message type and messages 
will only be delivered when this message is created by a publisher. 
The most recent messages of the remaining types are then bound 
to the subscription, allowing access to the messages without 
requiring that the modules store the information (Figure  6). 
These additional messages are co-messages. By controlling when 
messages are received based on the arrival of other messages, the 
modules in the system are no longer required to manage their 
own cache of variables.

This method of accessing data is distinct when compared 
to multiplexing multiple message channels into a single input. 
In comparison to using select or poll on multiple channels, 
co-messages do not introduce a cost for messages that are not 
used. This is often the case when the rate of the messages do not 
match. When one message occurs more frequently than another, 
a system using select or poll system must inspect and discard each 
of these updates when they are not relevant. Instead, in NUClear, 
those messages are fetched on demand when the primary data 
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FIgURe 6 | The nUclear co-messaging system. The latest version of 
each message is stored in NUClear. A module requests a primary data type, 
along with the most recent version of a secondary data type. When these 
primary data are generated, the stored most recent copy of this co-message 
is bound into the callback. This affords the module a more expressive 
interface for gathering messages.
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type is received, reducing the overhead both computationally and 
for the developer.

Additionally, as the latest version of each message must be 
stored in order to be bound when needed, a virtual global store is 
created from these messages. These globally stored data are not an 
explicit component, but a byproduct of the architecture. It does not 
increase the coupling between modules. Therefore, the developer 
is not required to write code for data elements in this global store. 
This resulting architecture has the advantages of loose coupling 
from the message-based system, while gaining the advantages of 
high data availability provided by a centralized store.

The virtual data store is also able to be explicitly accessed, 
providing direct access that is similar to a blackboard. As the mes-
sages are persistent, they are able to be accessed without setting 
up a listener for the message. This form of access is discouraged, 
as it increases the coupling in the system. However, this provides 
an advantage to NUClear in its compatibility with code written 
for other architectures. NUClear is able to accommodate the 
access patterns of any of the three other architectures with only 
minimal modification to the components themselves.

A key requirement of a multi-platform robotic system is the 
replacement of components with functional equivalents. For 
example, it should be possible to replace the system that reads 
camera frames from the hardware with one that reads frames 
from a file without changing the rest of the system. However, 
another important aspect of robotics is the requirement for 
real-time interaction with the world. This requires optimized 
code paths. As identified in the background research, the archi-
tectures excel in one of these categories, but often trade speed 
for decoupling.

The majority of mature robotic systems are developed with 
a message-driven architecture. ROS has a serialization penalty 
associated with message passing, as communication between 
modules is achieved using sockets. This is unacceptable for 
low-power embedded platforms, such as the Darwin-OP. Other 
robot systems, such as Dynamic Data eXchange and Pack Service 
Robotic Architecture, also experience similar issues. These con-
temporary robotic systems have traded performance for message 
passing and cross-language compatibility, anticipating that future 
hardware performance will accommodate them.

3.1. Simple ApI
NUClear is designed to have a simple and intuitive interface that 
requires minimal training to use. It is designed for use by second 
year software engineering students who have a basic understand-
ing of C++. There must be a well-defined function for the two 
key features of the architecture: sending and receiving messages. 
Sending is accomplished using the emit function, whereas receiv-
ing is accomplished using the on function. NUClear provides a 
small domain specific language (DSL) for easy access to common 
message pattern use cases. This DSL is designed to match an 
English description of the task if possible. Having a small API 
improves understandability and reduces the learning curve for 
using the NUClear system. This makes it easier for new program-
mers to learn and use NUClear.

In addition to the DSL words that are already in the sys-
tem, NUClear is designed to be able to extend its vocabulary 

with new words developed by the user of the framework. 
This allows common functionality to be provided across 
modules specific to the needs of a system. Internally, 
all NUClear DSL words are implemented using the same 
 extension system.

3.1.1. Domain-Specific Language
The following is a list of the DSL words that are included and 
most commonly used in NUClear along with a description and 
an example of their use.

on on<...>(runtime...).then(function);
The on DSL word is the wrapper for every subscription in NUClear. 
NUClear uses this to wrap the template descriptions of the subscription’s 
purpose. The other DSL words are entered as template arguments to this 
function, with any runtime arguments passed as function arguments.

emit emit(message)
Emit is the function that handles the publish part of the messaging system. 
It takes data and forwards it to the functions that have subscribed directly 
(routed at compile time).

Trigger on<Trigger<Type>>()
Trigger statements set up the callbacks and execute when the type is 
emitted. It flags the used data type as a triggering (primary) data type. 
When this callback is executed, it will pass the data that were emitted.

With on<Trigger<TypeA>, With<TypeB>>()
With statements describe additional information that is used by the 
callback. The provided function will not be executed when these data are 
emitted. However, when this function is executed, the latest copy of this 
data will be provided.

Every on<Every<10, milliseconds>>()
Every statement fills the role of periodic callbacks in the system. When an 
every statement is used, the function will execute at that rate.

Always on<Always>().then(function);
Always is used in the rare case that functions must continually execute as 
fast as possible. It allows the system to terminate as a whole when it shuts 
down by ending the execution of this function.

Single on<Trigger<Type>, Single>()
Single is a DSL keyword that ensures that only a single instance of a 
message will be executed at one time. When additional messages of the 
same type are given to this function, they will be dropped.

Buffer on<Trigger<Type>, Buffer<3>>()
Buffer is the general case of the Single keyword. It ensures that only 
the requested number of messages will execute simultaneously. When 
additional messages beyond the requested number are given to this 
function, they will be dropped.

Sync on<Trigger<Type>, Sync<Group>>()
Sync is used to ensure mutual exclusion between several functions at a 
scheduling level. Rather than blocking a thread on a mutex, it will delay 
execution until it has exclusive access among a group of functions. 
Additional messages of the same type are queued for execution unless 
combined with single.

Priority on<Trigger<Type>, Priority::HIGH>()
Priority can control the response of the callback. It will control both the 
priority used to determine the scheduling order in the thread pool and also 
the priority of the thread it will execute on.

Startup on<Startup>()
Functions with this word will execute at startup.

Shutdown on<Shutdown>()
Functions with this word will execute at shutdown.

Configuration on<Configuration>(“File.yaml”)
This allows a program to watch a file in a configuration directory and be 
provided with the latest version of the file when it changes. It is used to 
keep configuration up to date.
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3.2. low performance penalty
In the context of embedded or low performance hardware, it is 
essential that message routing is performed as quickly as pos-
sible. Other message-passing systems use technologies that incur 
performance penalties from message serialization and copying. 
Instead, NUClear uses shared memory for messages passed 
within a single process. This removes the cost of serializing a mes-
sage and can greatly improve the performance of large messages.

It is also important to minimize the time it takes to dispatch 
a message. To achieve this, NUClear uses template meta- 
programing to establish message routes at compile time. Generally, 
when a message is sent in a message-passing system, there is a 
message broker that executes code to find subscribers who are 
interested in the message. Alternatively, in simpler systems, there 
is a message bus that all subscribers listen to and gather messages 
they are interested in. NUClear eliminates this cost by evaluating 
the route messages take at compile time. The result is that when 
messages are dispatched from a module they are directly sent to 
the modules that require them. This reduces the cost of routing 
the message to acquiring the required data and directly calling the 
subscribers callback function. The downside to this technique is 
that it is only applicable when running within a single process.

NUClear also has an additional latency improvement for 
modules arranged in a pipeline structure. This improvement is 
used when a module emits a message at the end of its callback, 
and that message is only consumed by only one other module. 
In this case, NUClear is able to continue and execute the follow-
ing code directly rather than returning to the thread pool. This 
greatly reduces the latency between the two modules, as when 
combined with compile time routing, there is little that occurs 
between the executions.

Additionally, NUClear is able to perform compile time mes-
sage memory allocation using template meta-programing. It uses 

the information to preallocate the space before the program runs. 
This allows it to scale to any number of messages while maintain-
ing 𝒪(1) dispatch look-up time. The mechanism used to allocate 
messages also enables optimizing compilers to use the knowledge 
of message memory allocation to apply a number of powerful 
optimizations to how messages are sent.

3.3. Simple Utilization of System 
Resources
Another requirement derived from resource-constrained 
environments is the need to easily utilize the full power of the 
hardware. This is primarily achieved by introducing transparent 
multithreading that automatically uses every CPU core available 
on the system. Transparent multithreading in NUClear utilizes a 
thread pool that has enough threads to saturate every CPU core. 
Using this thread pool, NUClear is able to schedule each execu-
tion of a callback function to a different thread. This allows the 
system to utilize all of the cores without the developer needing to 
interact with threads directly.

When a message is sent in the system, the central coordination 
object, known as the PowerPlant, takes ownership of it. From this 
point forward, no modules can modify the message. It is provided 
to other modules with read-only access. The PowerPlant then 
executes callbacks that, known as reactions, are subscribed to 
this message. Each reaction receives an immutable reference to 
the original message and can perform any read operations on it.

The immutability of the data makes transparent multithread-
ing in the system easier. If multiple reactions want to read the 
data, and if it can be guaranteed that they do not modify it, then 
the reactions can be run in parallel without concern for race 
conditions. By forcing immutability, all threading logic can be 
moved directly into NUClear, allowing developers to concentrate 
on their modules instead of threading problems. This technique 
of using immutable data to allow easy multithreading systems 
has been proven in programming languages, such as Erlang and 
Elixir.

In most cases, multithreading will be completely transparent. 
However, it is still important that developers understand that 
they are working in a multi-threaded environment. If a single 
module shares data between two reactions and those reactions 
run in parallel, then the shared data will need to be secured with 
a thread-safe mechanism such as a mutex. NUClear also provides 
functionality in its DSL to let the user specify that certain reac-
tions should not be run in parallel. Specifically, it provides the 
word Single to ensure that only a single instance of a reaction 
is running and to drop any future messages. It also provides 
the word Sync to ensure that only one of a group of reactions is 
running and to queue the remainder. These can be used to solve 
threading concerns.

Differences exist between a multi-threaded system and a 
multi-processed system. In robotic systems, it is common to 
run in a multi-processed mode rather than multi-threaded. 
This allows the system to be distributed across multiple physical 
hardwares, making more efficient use of available resources. It 
can provide a level of crash safety. If a single process in the cluster 
crashes, it does not result in an entire system crash provided 
the remaining modules can run independently. Multi-threaded 

optional on<Trigger<TypeA>, Optional<With<TypeB>>>()
Optional allows statements to signify certain requested types as optional. 
In a traditional co-message call, if both messages are not available, the 
function will not run. If optional is used, these functions can run with an 
empty second argument.

last on<Last<10, Trigger<Type>>>()
Last instructs NUClear to cache the last messages that were emitted. 
When the function is called, it will receive all of the collected messages.

Io on<IO>(file_descriptor)
Used to interact with file descriptors and execute when they are read/
writeable. This is used for communicating with serial devices as well as 
network ports.

network on<Network<Type>>()
NUClear provides a networking protocol to send messages to other 
devices on the network. This can be used to make a multi-processed 
NUClear instance, or communicate with other programs running NUClear. 
The serialization and deserialization is handled by NUClear.

Tcp on<TCP>(port)
TCP allows a program to make a callback on TCP activity, listening on a 
port.

UDp on<UDP>(port)
UDP allows a program to make a callback on UDP activity, listening on 
a port. It also supports listening to UDP broadcast and UDP multicast 
sockets.
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systems also have this property if the threads the code executes on 
are managed correctly. This requires additional work by designer 
of the multi-threaded system.

Multi-processed systems also have disadvantages. Multi-
processed systems do not always run in a shared memory envi-
ronment, as they may be distributed across machines. They must 
serialize and copy data to the destination nodes. This adds an increase 
in latency between modules and when there is a large amount of 
data to be transferred, this can have significant implications.

Multi-processed systems also suffer from an increase in the 
context switching time. When the operating system in a multi-
processed system switches from one process to another, it changes 
its virtual memory space. This requires the translation lookaside 
buffer to be dumped. Multi-threaded processes share their virtual 
memory space, allowing the buffer to be retained.

NUClear is able to run in a multi-threaded mode, a multi-
processed mode, or a hybrid of the two by grouping modules into 
individual processes. However, when it runs in a multi-processed 
mode, it loses many of its advantages from compile time message 
routing. This is a necessary side effect, as the compiler can no 
longer optimize code paths and it must pass messages by serial-
izing them over a socket.

3.4. Time-Series Data
A common need when interfacing with real-world electrical 
systems is to keep a record of recent data for validation and 
decision-making. The simplest example of this is de-bouncing the 
electrical noise in a button press. To perform this task, the on/
off state is monitored over a time-series, with an internal stateful 
check deciding whether the switch is deemed to have closed or 
not. These types of tasks commonly access the last n instances of 
created data when performing an evaluation.

NUClear handles time-series data at an architectural level 
by increasing the number of previous messages that are stored 
latent in the system. This functionality is provided through the 
Last keyword.

A blackboard system is unable to receive a history of elements, 
as there is no notification of when data are updated. This may 
result in duplicate and missed data depending on the rate of poll-
ing. Rather, the functionality must be added by the producer of 
the data. They must store the additional data on the blackboard 
unaware of when it is not needed.

Message-passing systems are able to provide time-series data, 
as the arrival of messages allows the subscriber to maintain a 
history of the last few messages. This requires the subscriber of 
the messages to maintain their own data store of the most recent 
messages.

In a whiteboard system, it is possible to obtain time-series data 
using the same mechanism as message passing, or blackboard, 
depending on the stored data. However, they are also able to use 
the publish/subscribe channel in order to remain informed of 
changes to static data, allowing the data to be copied.

3.5. Soft Real-Time
Using the functionality provided by Every and Priority, NUClear 
can operate as a soft real-time system. One reason NUClear is suc-
cessful at operating at soft real-time is its compile time dispatch of 

messages. When the binaries are compiled, the periodic functions 
are compiled with them. This allows the periodic functions to 
operate with the jitter and accuracy that the operating system 
providing the timing is capable of. The jitter in NUClear’s peri-
odic Every function was measured at 80 μs when triggering at a 
rate of 1 kHz.

Additionally, as NUClear routes messages at compile time, it 
can achieve lower end-to-end latency between modules. This is 
a reduction in time between dispatching and receiving a mes-
sage. This lower latency can assist systems that have strict timing 
requirements such as hardware feedback loops.

A simple test system was constructed in NUClear and ROS that 
timed and transferred an empty message from end to end. This 
should eliminate any performance differences due to serialization 
and copying of information. The tests were completed with and 
without the CPU being loaded to 100%. All tests were completed 
on an Intel i7 1.8 GHz with 16-GB RAM running Ubuntu 14.04 
Desktop (Linux kernel version 3.13.0.74.80). This test generated 
100,000 data points for each of the sets. The results are shown in 
Figure 7. A TCPROS node was included in the test, as this is the 
default communication method within ROS. To use ROS inter-
node communication requires special setup using ROS nodelets, 
which may not always be possible. The inclusion of TCPROS also 
provides a reference point for network communication speeds.

These results show that NUClear is faster at routing messages 
than ROS. In fact, the latency between modules in NUClear is 
faster than routing within a node in ROS. Interestingly, NUClear’s 
performance improved when using a thread pool under system 
load. This is believed to have been caused by the delay in waking 
up a sleeping thread. When the system is already under load, 
these threads do not go to sleep, which reduces latency. More 
rigorous testing of the compile time message routing system is 
planned for future research.

3.6. Statistics, logging, and Traceability
In complex systems, it can be difficult to determine a system’s 
operational state. NUClear is designed to support powerful sta-
tistics and logging tools. NUClear stores runtime statistics about 
each module and provides mechanisms to receive the information 

FIgURe 7 | Frequency distribution of end-to-end latency for nUclear 
via a thread pool, nUclear directly sending messages, RoS within a 
single node, and RoS between nodes on a single machine (TcpRoS). 
Dashed lines represent the test done with the system running at 100%  
CPU load.
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logs on a per-module or per-event basis. These features provide 
useful information that assist with debugging and understanding 
the robot’s system.

If an error occurs, it is possible to capture the input that 
caused the error and replay it on the module. This is possible as 
the architecture itself is aware of the information used by each 
callback. Each callback requests the list of all messages required to 
complete its task. This represents the current state of the system. 
Since these messages can be captured at the point of callback, 
data that cause errors can be captured and examined more closely. 
This recording functionality can be used to develop a powerful 
array of tests that accurately reproduce real-world scenarios. 
These features are compiled on demand, with unused features 
not impacting on the performance of the system.

A networked visual debugger, NUsight, is also built into the 
NUbots’ codebase. This system supports streaming operational 
data in real time to a web-based visualizer. The visualizer can per-
form real-time charting of time-series and 3D visualization of the 
robot’s believed state. These features are easy to use in modules in 
the system due to NUClear’s extensibility. Additional DSL words 
are added making code to view internal state only to exist when 
needed and easy to use.

4. nUclear eVAlUATIon

The NUbots’ codebase is used as an example to quantitatively 
assess the improvements provided by the NUClear framework. 
This codebase was chosen as it is a large (~80,000 LOC) codebase 
that previously implemented a blackboard architecture that can 
be used for comparison. Additionally, this codebase has multiple 
distinct binaries with each performing a distinct functional or 
testing role. Each of these roles includes a different set of modules. 
Due to the compile time message passing of NUClear and the 
fact that it uses co-messages, it is possible to extract the graph 
of message relationships between modules from each compiled 
binary. Once extracted, it is possible to transform this graph 
into the equivalent graph for a more traditional message-passing 
system, such as ROS or YARP, by taking all non-triggering data 
and creating a separate subscription event for it. This adds a new 
subscription for this type, as well as a local cache to store the mes-
sage for when it is used. Only one cache is needed per module, so 
it is only counted for the first instance of a type.

4.1. Interface Size
Using co-messages in NUClear reduces listener code compared 
to other message and event-based systems. Rather than having 
a separate subscriber and cache for each data type, there can 
be a single subscriber for multiple data types without needing 
a separate cache. This directly reduces the number of functions 
that must be written to handle these cases. The difference in the 
number of functions that must be written can be seen in Figure 8. 
In this graph, the number of subscription handlers is shown 
for a NUClear system, compared to the theoretical equivalent 
message-passing system for each module.

Figure  8 shows that while some modules have the same 
number of callbacks in both systems, there are many cases 
where up to double the number of subscription handlers must 

be written for a traditional message-passing system. A large 
number of these handlers will also be caching the variable for 
use by the primary function. When refactoring these, caching 
handlers can be forgotten and contribute to dead or poorly 
documented code.

Direct comparison with a blackboard system is difficult, as 
it does not use callbacks and the data must instead be polled. 
However, variables can be read at any time in a blackboard sys-
tem. This results in various problems, including thread safety and 
synchronization.

Whiteboard-based systems allow a similar level of performance 
to the NUClear system in relation to the code efficiency of each 
module, as data are accessible at any time. However, whiteboards 
move the burden of dead and poorly documented data from the 
individual modules to a large, central data store. Over time, this 
can become difficult to maintain.

In comparison with these systems, the callbacks in the NUClear 
system specify which data are needed for a specific operation. This 
removes the responsibility of implementing cached data storage 
from the system and results in a system with significantly less 
implementation overhead, while retaining the speed benefits of 
universally accessible data structures, such as blackboard archi-
tectures. It also maintains most of the modularity and flexibility 
of traditional message-passing systems, such as ROS.

4.2. Memory Usage
NUClear provides a reduced memory footprint in comparison 
to message-passing or blackboard-based systems. This is because 
it is able to determine and store only the data that are live at any 
time. Figure 9 shows the number of additional cache variables 
required for a messaging implementation of each of the binaries 
present in the NUbots’ codebase. These additional variables are 
required as each module must cache any data type that arises 
as a result of a non-triggering message (“With” messages in the 
NUClear framework). As a result of NUClear managing all of 
these variables centrally, additional caching variables are not 
required in a NUClear system. This can be useful for memory 
constrained systems.

FIgURe 8 | The number of functions needed by a module in nUclear 
compared to a messaging system. Each point is a module in the NUbots’ 
codebase. The height above the y = x line indicates how many additional 
callback functions must be written in a message passing system.
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An indication of memory usage in a theoretical blackboard 
system can be seen in Figure 10. In the NUbots’ system, there 
are currently 121 message types displayed as an 11  ×  11 grid. 
However, only a subset of these messages is used in any binary. 
The binary that uses the largest number of messages only uses 
110. If a blackboard were to be used, all of these messages would 
be stored for every binary. This can also be seen by comparing 
the system to the previous blackboard based NUbots’ system. By 
comparison, NUClear is able to determine which messages are 
needed for listeners at compile time and does not store unused 
data types.

4.2.1. Cache Computational Overhead
In a message-passing system, there is an additional cost incurred. 
When a message is received in a traditional messaging system and 
is used as additional data, it must be cached. Writing this cache 
costs performance from copying the data to a local variable for 

storage. Large messages can have a significant cost if they must be 
repeatedly copied to local variables. Additionally, when the data 
rates are not matched, much of the copied data are never used. For 
example, in the NUbots’ codebase, the sensors are read at a rate of 
120 Hz and images at 30 Hz. Ninety sensor messages per second 
would not be used, but in a message-passing system would still be 
cached. When the code is running on a system with limited CPU 
power, these costs reduce the available computational resources 
for other tasks.

5. TARgeT plATFoRMS

The current primary target for the NUClear architecture is the 
Darwin-OP platform (Ha et al., 2011). Modified versions of the 
Darwin-OP that have slightly different kinematics and camera 
sensors are also supported, pictured in Figure  11. These plat-
forms have twenty degrees of freedom provided by ROBOTIS 
serial controlled servomotors, a six degree-of-freedom IMU and 
a webcam for sensing. On-board processing is provided by an 
embedded Atom z530 processor running at 1.6 GHz.

The NUClear architecture has also been used in the RobotX 
Maritime challenge on an autonomous marine platform. This 
platform involved the use of an embedded control system and a 
set of four global shutter cameras with wide field of view lenses. 
Due to the system modularity that NUClear allows, large parts of 
the vision system were taken from the NUbots’ soccer codebase 
with minimal changes.

Future plans include deploying NUClear to the NimbRo-OP 
platform (Allgeuer et al., 2015) and autonomous quadcopters. 
These will be interesting platforms to test the flexibility of the 
NUClear architecture. The larger Nimbro-OP platform also 
provides opportunities for direct comparisons with a ROS-
based framework. This future work will support a comparison 
of maintainability and efficiency across a spectrum of robot 
software architectures with the factor of hardware variation 
removed.

FIgURe 9 | The number of additional cache variables that would be 
required if the nUbots’ codebase was implemented in a message-
passing system. These additional variables would be required to store data 
that were requested as a non-triggering type. Each point represents a single 
binary from the NUbots system.

100%

0%

Message usage across binaries

FIgURe 10 | The distribution of usage for the 121 message types 
across binaries in the nUbots’ system. This serves as an indication as to 
how much memory an equivalent blackboard system would use.

FIgURe 11 | Modified Darwin-ops of the 2015 nUbots team equipped 
with new 3D-printed heads using a higher resolution camera, padded 
jackets to soften falls, and soccer studs to improve grip on artificial 
grass.
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6. cASe STUDy – nUbots’ coDeBASe

The architecture implemented in NUClear allows a humanoid 
robot to perform a variety of tasks within structured and semi-
structured environments. Taking advantage of the message pass-
ing and storing capabilities of the system and building on these 
in each of the subsystems has allowed a flexible, but principled 
approach to robot control. A simplified flow of information 
through the NUbots’ system is given in Figure 12.

The core of the NUbots’ system is a see-think-do type infor-
mation flow. This is common to previous architectures. It allows 
for information to be taken in from the surroundings and for 
planning and movement to take place. In addition to innova-
tions and improvements within the subsystems of this loop, the 
architecture also allows a generic fast-path that enables all motor 
skills to react to changes in the environment quickly. This can 
provide balance and reflexive protection skills more easily than in 
previous systems, with reaction speeds that are faster than current 
message-passing systems.

6.1. Vision pipeline
Many challenges for mobile and embedded robotics involve the 
use of computer vision to sense and navigate environments. In 
recent years, environments for humanoid robotics challenges 
have transitioned from a well-defined color and pattern-based 
structure toward more realistic environments. As these challenges 
increasingly reflect the real-world, semi-structured environments 
where shape and context give vital additional information about 
the world must be considered. The machine vision community 
has developed many approaches to structure-based detection. 
However, most of these cannot yet be computed in real-time 
on lower power embedded systems. The vision pipeline of the 
NUClear system represents an efficient compromise between 
structure-based and color-based systems by using color classi-
fication to find regions of interest, followed by edge-based shape 
fitting to find particular objects (Quinlan et al., 2004; Henderson 
et al., 2008; Houliston et al., 2015).

The vision system used in the NUbots’ system shows one 
significant difference to embodied vision systems, popular in 
the ROS message-passing system. The source code provided by 

Allgeuer et al. (2015) uses a monolithic vision module in ROS, 
as the performance penalty for message-passing (particularly for 
large data types such as images) for ROS communications is con-
sidered quite high. This can make message-passing vision systems 
in ROS slow to process and report changes in the environment. 
Due to the much faster message dispatch, the NUClear architec-
ture is able to provide both better modularity and performance by 
parallelizing module execution where possible. Additionally, the 
multithreading controls provided by the NUClear architecture 
remove the need for detecting when the system is overloaded 
and lagging. This removes the need for implementing queues and 
high-watermark throttling.

The first stage in the vision pipeline involves reducing an 
image from raw pixel data to color and edge information. Using 
the thread-aware features of the NUClear architecture, the vision 
pipeline ignores incoming images when the compute load is too 
high. It is also possible to define multiple input camera streams, 
each of which processes and drops frames independently and 
fairly. This allows smooth operation for multi-camera robots, 
as well as avoids loading down the system with heavy image 
processing. The image color classification itself is performed 
using a look-up table that converts pixel values into symbolic 
colors.

Several investigations have been made into automating and 
improving color classification within these systems (Henderson 
et al., 2008; Röfer et al., 2011). The current system furthers this 
work by dynamically adapting to light and color conditions based 
on detected objects and regions. Using the NUClear framework’s 
Priority keyword, it is possible to run the dynamic color adapta-
tion as a low priority process that does not interfere with the 
system’s normal running or process outdated data.

Objects are detected using a collection of independent color 
and shape-based detector modules (Murch and Chalup, 2004). 
As the inputs and outputs for detector modules are defined as 
messages and the NUClear system is compiled as a collection of 
modules, it is very simple to include or swap out detectors for 
various testing purposes. This strength is similar to the utility that 
ROS provides; however, message dispatch times are significantly 
reduced. This allows real-time tracking of relatively fast-moving 
objects such as rolling balls. NUClear also provides a functional-
ity to disable and enable the execution of modules at run time, 
allowing detectors that are not needed for the current task to be 
switched off.

Versions of image color classification have been used within 
the context of robot competition environments for some time. 
However, improvements in camera sensors and noise filtering 
have reached a level of robustness suitable for deployment in 
more difficult and dynamic environments. As such, this system 
was also used in the RobotX Maritime Challenge with minimal 
modification.

6.2. localization and Mapping
With the modularity of the rest of the NUClear architecture, it 
is important when developing localization components to allow 
for a range of inputs and drop-in replacements. Localization 
modules take visual detector observations and orientation sensor 
updates as inputs. The structure of observations provides an angle 

Robot Sensors

Camera Color
Classification

Object
Detection

Localization

PlanningMotor
Skills

FIgURe 12 | high level overview of the nUbots’ information flow loop. 
Each of the elements represents a collection of modules that work together 
to achieve the goal of that element.
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and distance from the robot in three dimensions. This supports 
inputs to be as diverse as users’ faces to marker symbols on the 
ground, while using the same interface. Multiple estimations 
with differing confidences are allowed for each detection, as 
there may be more than one hint in the image about the distance 
of the object. The significant difference between NUClear and 
other message-passing architectures for localization and map-
ping is that NUClear removes the need for maintaining caches 
and matching sensor timestamps when performing data fusion 
updates reducing the amount of code required. This improves 
the clarity of the code and algorithms used, as well as improving 
efficiency slightly.

6.3. planning and Actuation
The NUbots’ system utilizes an extended form of subsumption 
logic (Brooks, 1986) to arbitrate access between skill modules 
and the robot’s hardware. The system operates through the 
registration of each module at system start-up (which can be 
specified by the NUClear Startup event), along with their current 
subsumption priority and the hardware components they wish to 
control. The subsumption controller then allocates resources to 
the registered modules based on which module has the highest 
priority for a subset of the robot’s limbs. The subsumption prior-
ity of a module can be changed in real time by request from that 
module, allowing the system to dynamically allocate control as 
priorities change.

The use of a flexible, thread-aware message-passing system 
with very fast dispatch times supports the implementation of 
modular reflexive behaviors and failsafes without impacting on 
the implementation of the rest of the system. This has been used 
in the NUbots’ system to implement universal reflexive responses. 
An obvious candidate for reflexive behavior on a bipedal platform 
is the implementation of a protective reflex to reduce damage from 
falls. This reflex acts on the filtered gyroscope and accelerometer 
data produced from the sensors without going through any other 
processing or delays. If the robot is falling, the reflex takes high-
est priority on all limbs until the accelerometer indicates that the 
robot has come to rest.

The fall reflex was originally designed to mimic humans, put-
ting arms out to soften the impact. It was found that throwing the 
arms forward with elbows bent and then deactivating the motors 
to become fully compliant was effective at reducing the impact 
to the robot’s body. These types of reflexes are only effective if 
action is taken almost at the instant the robot realizes it will fall; 
otherwise, there will not be enough time to effectively reposition 
the body. For this reason, slower message-passing systems may 
not be able to effectively implement reflexes as independent 
modules.

Head behavior is one of the unique challenges involved with 
humanoid robotics. If a robot is to be truly humanoid, it should 
not use a visual system that has a field of view greater than that 
of a human. This limits the amount of the environment that can 
be perceived at any one time. Humans meet this challenge with 
two key behavioral systems: head movement and eye movement. 
The movement of the head adjusts the coarse field of view, while 
the much faster movement of the eye defines where high detail is 
perceived (Duchowski, 2007).

The NUbots’ head behavior system has been developed to 
mimic the blur-reduction of human eye behavior, in particular, 
the vestibulo-ocular reflex (Fetter, 2007). The vestibulo-ocular 
reflex is the mechanism by which stationary objects in the world 
are stabilized on the retina of the eye during head movement. 
This works through a tight feedback loop with both vestibular 
information from the balance system and visual information. 
Humanoid robots have a similar problem with image stabiliza-
tion. When the robot’s body rotates, typically the head rotates 
with it. This can blur the camera images. The NUbots’ system 
takes the most recent orientation information, in the form of a 
rotation matrix, and uses this to set a constant look direction 
in the global reference frame regardless of the robot’s motion. 
As with the fall-protection reflex, this type of reflexive behavior 
requires very fast end-to-end response times to be effective.

6.4. Robot learning
Learning is a fundamental human skill. As online planning 
and machine learning algorithms advance, it is important to 
incorporate features that simplify their implementation on any 
robot software architecture. Distinctions must be made between 
online learning, offline learning, on-board learning, and learning 
processed on an more powerful external system. Most message-
passing systems support network communication and data out-
put for offline learning. The NUClear architecture also provides 
a high efficiency framework for implementing embodied and 
online learning systems, as well as methods for sharing, storing, 
and visualizing the data produced by these systems.

Of particular use in the context of learning is the NUClear 
Last keyword. This provides a cached stream of events to be 
processed during learning updates. This simplifies the imple-
mentation and maintenance of embodied movement-based 
optimization and learning algorithms, which often operate 
in batch mode on a stream of evaluation data at the end of a 
movement (Kalakrishnan et al., 2011; Budden et al., 2013). As 
such, NUClear simplifies the development process for many 
embodied machine learning algorithms when compared to 
previous architectures such as the platform of Kulk and Welsh 
(2012). Due to lower system overhead and faster inter-module 
communications, NUClear is also more efficient than traditional 
message-passing architectures such as ROS when fulfilling this 
role. NUClear has key advantages over other systems due to its 
co-messaging and built-in keywords that allow simpler imple-
mentation of machine learning algorithms.

7. conclUSIon

Message-passing systems are an ideal solution to robotic archi-
tectures. This is supported by the popularity of the ROS research 
architecture and other message-passing architectures. Systems 
based on message passing have been at the forefront of software 
architectures for high functioning robots for the last decade. The 
isolated components operate independently and when coupled 
with a message-passing system, they can be altered and replaced 
with much greater ease.

The limitations that prevented these architectures from being 
deployed on robots without sufficient performance have been 
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This article presents the core elements of a cross-platform tactile capabilities interface
(TCI) for humanoid arms. The aim of the interface is to reduce the cost of developing
humanoid robot capabilities by supporting reuse through cross-platform deployment.
The article presents a comparative analysis of existing robot middleware frameworks
as well as the technical details of the TCI framework that builds on the existing YARP
platform. Currently, the TCI framework includes robot arm actuators with robot skin
sensors. It presents such hardware in a platform-independent manner, making it possible
to write robot control software that can be executed on different robots through the TCI
frameworks. The TCI framework supports multiple humanoid platforms, and this article
also presents a case study of a cross-platform implementation of a set of tactile protective
withdrawal reflexes that have been realized on both the NAO and iCub humanoid robot
platforms using the same high-level source code.

Keywords: tactile capabilities interface, humanoid robotics, robot skin, protective reflexes, robot software
engineering

1. INTRODUCTION

During the last few decades, robots have been used with success in various domains ranging
from manufacturing (Merzouki et al., 2010), space exploration (Ambrose et al., 2010), and surgery
(McMahan et al., 2011) to mining (Bednarz et al., 2011) and military assistance (Wooden et al.,
2010). Developing robotic software is difficult and time-consuming, especially when the same
functionality must be developed separately for robots with different physical dimensions, hardware
control protocols, mechanical configurations, or actuators and sensors. Even on a single robot, it is
common for low-level components, such as dynamics and servos, to vary due to upgrades during the
robot’s lifetime. The cost of robot software development can be reduced significantly if the software
can be reused across different models and platforms. In general, the main challenges of developing
humanoid robot software aremodeling complexity,modularity, and repeatability.

Humanoid robots are often equipped with a large number of actuators and sensors. The first
difficulty a developer may encounter is to learn these specifications. Even when building a simple
robotic behavior with just handful devices, nevertheless, it may be time consuming for the developer
to work out the correct mappings from the platform-related infrastructure to build an appropriate
behavioral model. For example, a humanoid robot NAO that our research employed has 21 DoF
servos and 648 tactile sensors (see Figure 1), but a withdrawal reflex behavior studied in §4 is only
interested in 5 servos and about 30 taxels. To identify and configure the correct taxels may become
a challenge for the robotic behavior engineer.

From the perspective of the software engineering, modularity is also important in humanoid
robot. Currently, humanoid robot projects are usually requiring intensive collaboration among
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iCub

A B

NAO

FIGURE 1 | (A,B) illustrate iCub and NAO robots, respectively. Their equipped robotic skin is highlighted. The TCI framework presented in this article was evaluated
on both platforms and both on the real robots and in simulations.

different specialists. Developers may use diverse programming
languages, operating systems, or even computing hardware. Thus,
the need to separate functions into reusable modules has been
increasingly growing, so people can just focus on smaller-scaled
problems. Without a cross-platform interface, however, it makes
communication and integration difficult as it typically triggers
extra work to facilitate the interaction between the separate com-
ponents and thus makes modularity difficult to achieve. Shared
generic interfaces can make robotic software more extensible and
reduce the couplings among modules. They can also facilitate
the development by supporting multiple operating systems and
programming languages.

After the development of a behavior for a specific robot, soft-
ware engineers are commonly interested in transferring the same
behavior to other types of robot. As a matter of fact, behavioral
transfer is not easy to achieve and the repeatability of humanoid
robotics is sometimes criticized for being difficult to reproduce
outside of their original laboratories (Anderson and Thomaz,
2010). The main reason making repeatability difficult is the hard-
ware differences among the humanoid robots. The cost of directly
migrating a platform-specific solution to a new type of robot
is high without a decent generic interface, because a developer
needs to figure out the geometric transformations and adjust high-
level behavioral parameters correspondingly. By doing this, the
repeatability of the behavior is broken and so it becomes obscure
to verify and compare the effectiveness of the same behavior on
the new robot.

The work presented in this article goes beyond traditional
robot middleware platform by attempting to hide all platform-
specific details from developers and, thus, allow them to produce
reusable cross-platform behaviors via an abstract interface. The
interface focuses on interpreting abstract information for different
native different robot armswith different physiologies. This article
presents results in developing a cross-platform tactile capabilities
interface (TCI) that aims to improve the reusability of humanoid
robot software and hardware. The results presented are limited to
humanoid arms but includes a standardization of both actuators
and tactile sensors that covers a large area of a robotic arm.

The research presented is directly motivated by our experi-
ences from developing cross-platform software during the FP7
ROBOSKIN project (Cannata et al., 2012). Our research involved
different humanoid robots, including the NAO and iCub robots
(see Figure 1). During the research, the main challenges were
to develop generic robot capabilities. In particular, we devel-
oped prototype algorithms for one robot platform and later re-
implemented them on others. The objective of TCI is to facilitate
such transfers of robot capabilities by providing a generic inter-
face that is practical for a range of different humanoid robots.
Our approach aims to enable the developers working on cross-
platform capabilities, in particular protective withdrawal reflexes,
to focus on controlling an abstract, platform-independent robotic
component through a set of abstracted interfaces. TCI consists
of generic actuator interfaces and generic robot skin interfaces.
It acts as an interpreter translating the messages between the
cross-platform algorithms and the platform-specific layers of the
actual robots. High-level algorithms then become reusable and
extensible, and new robots can be supported by providing them
with support for TCI.

In §2, related concepts, systems, and literature are reviewed.
The theories and methods for promoting robot software reusabil-
ity are discussed, and a selection of robot middleware platforms
compared. §3 presents the architecture implementing our inter-
face and discusses its design. The TCI specifics of the arm actu-
ators and the arm skin sensors are presented in §3.1 and §3.2,
respectively. This is followed by a case study of how TCI was
used to support a cross-platform implementation of a humanoid
robot protective arm withdrawal reflexes in §4. Conclusions are
made in § 5.

2. RELATED WORK

A humanoid robot system commonly consisted of a set of layered
modules. Low-level modules focus on solving hardware-related
preprocessing and reasoning problems, such as localization and
sensory data fusion, whereas high-level ones are making cognitive
behavioral decisions based on the high-level states produced by

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 17133

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Ma and Dahl Tactile Capabilities Interface for Robots

mother modules. To develop a generic software for controlling
multiple type of humanoid robots is usually difficult, and the key
problem is to design a high-level robot behavior that can be easily
deployed on different robots.

Machine learning (ML) algorithms can be one possible solu-
tion, which provides a generic way of giving different robots the
same capabilities, even in the absence of a detailed understanding
of the underlying specifications or kinematics model. The core
philosophy of ML is data driven; it focuses on the mappings
from a robotic action to the corresponding feedback. Instead of
directly solving transformation problems, ML undertakes a train-
ing process to understand the outcomes of actions. During the
training, it continuingly changes action with an aim of achieving a
certain behavior on a robot. Such approaches include learning the
kinematics and dynamics of a generic robotic arm (Atkeson, 1989;
Caligiore et al., 2010), generic trajectory tracking using neural
control (Martins et al., 2008), and high-level humanoid behaviors
such as learning biped locomotion (Huang et al., 2001; Ma and
Cameron, 2009a,b, 2011).

The training processes of the ML approaches can be time
consuming both in terms of acquiring and processing training
data. The learning results may also be unreliable without per-
formance guarantees, as sometimes the results are represented
in the form of an implicit neural network, making users diffi-
cult to verify behavioral effectiveness. However, in reality, robot
developers are not completely accessible to the specifications of a
new robot. Instead, they are commonly interested inmodel-driven
approaches that directly translate actuator and sensor data to a
new platform. More importantly, the translation should be better
processed in real time without waiting for the learning phase to
complete. ML approaches, therefore, have disadvantages in real-
time data processing. Compared with ML approaches, even hard-
coded solutions can be implemented quicker and can sometimes
provide reliable performance across a problem space.

In order to improve the reusability of hard-coded transfor-
mations, we have proposed the cross-platform tactile capabilities
interface (TCI). This is a model-driven approach consists of a
set of standardized representations and functions for humanoid
actuators and tactile sensors. We have realized the interface for
the humanoid arms of iCub and NAO robots.

This section reviews related approaches to increase the reusabil-
ity of robot software and hardware. Currently, there are sev-
eral popular robot middleware platforms, and their features are
discussed and compared in §2.2. Since TCI provides a generic
platform not only for tactile sensors but also for the actuators
using them, this section also includes the kinematics features of
the middleware. TCI uses YARP (Yet Another Robot Platform)
(Metta et al., 2006) as its middleware platform because it was
already been supported on several humanoid robots. YARP also
supports a wide range of networking protocols that can be flexibly
deployed in diverse circumstances. Technical details of YARP will
be further discussed in this section.

2.1. The Reusability of Robotic Software
Robot software reusability can be achieved by decomposing
robot functions into modules connected to each other within
a shared middleware framework. A middleware framework

typically provides a fundamental infrastructure for module inter-
action including abstractions for sensors and actuators, so that
different abstract modules are not restricted to specific robot
hardware or operating systems, but can be instantiated bymultiple
specific solutions. With the help of such middleware, supple-
mental tools, such as behavioral abstraction composition appli-
cations, can also be provided in order to promote reusability
further.

2.1.1. Modularity
In software engineering, modularity implies that software is bro-
ken down into a number of simpler modules. High modularity
means more modules and less coupling, i.e., dependency among
them. At the other end of the spectrum, monolithic approaches
implement all the required tasks within a single program. Design-
ing reusable software involves finding the best trade-off between
too much modularity, which can be wasteful, and too little, which
limits reusability (Brugali and Scandurra, 2009). A monolithic
approach must include all the aspects of robot control, from low-
level messaging to high-level algorithms. This approach includes
solving platform-specific issues and, as a consequence, reusability
is difficult to achieve. On the other hand, too much modularity
can also reduce reusability. Practically, it is time consuming to
integrate a large number of modules, and maintaining and docu-
mentingmanymodules also demands a large amount of resources.
With the balanced level of modularity, the high-level modules
can focus on cross-platform capabilities using abstract interfaces.
The low-level modules are then responsible for translating the
abstract representations and algorithms to platform-specific data
and instructions.

2.1.2. Middleware and Toolkits
In order to promote modularity, much effort has been made
to create shared robot middleware for different robots. Middle-
ware platforms typically provide a communications framework for
robot software modules, supporting both low-level control and
high-level algorithms. Middleware typically also aims to reduce
infrastructure-level programming and promote the development
of reusable robotmodules. This can be done through standardized
interfaces, drivers for diverse hardware, and supporting multi-
ple programming languages. The last point is often achieved by
basing module communication on cross-platform communica-
tion technologies, such as TCP/IP sockets, supported by most
programming languages.

Standardized data representations and control and communi-
cation interfaces allow middleware platforms to also provide a
number of development toolkits for speeding up development
and debugging. These toolkits can comprise visualization tools
to display data, such as playercam (from Player) that remotely
monitors camera images, a graphical user interface (GUI) that
manages the modular processes and their connections, such as
yarpmanager (from YARP), and a utility to query and inspect
code trees and find dependencies, such as rospack (from ROS).
Abstraction mechanisms, such as Rosbridge (Crick et al., 2012),
can further increase reusability by allowing third-party tools, e.g.,
the image processing library (IPL) and the OpenCV library to be
accessed from within reusable robot modules. A detailed analysis
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of the specific features of a selection of popular middleware
platforms is presented in §2.2.

2.1.3. Behavior Abstraction and API Standardization
Another mechanism that increases the reusability of robot soft-
ware is behavior abstraction. Complex robotic tasks are easier to
achieve if they can be decomposed into a hierarchy of capabilities
or behaviors. In cases where such decomposition is possible, sub-
behaviors constitute potential reusable modules, leaving high-
level deliberative decision-making mechanism, such as planning
to focus on scheduling abstract behaviors, rather than handling
a higher number of low-level actions directly. Such behavioral
decomposition has been widely used in various AI systems (Maes,
1991; Stone and McAllester, 2001; Nesnas et al., 2006), espe-
ciallymulti-agent systems (MAS) where cooperative behaviors are
needed (Stone, 2000; Ma, 2011). It has also been successful in
learning scenarios.

Abstract robot behaviors need to present standard data struc-
tures and application programming interfaces (APIs) in order
to be used by high-level decision processes. The task descrip-
tion language (TDL)1 is a C++ library that provides syntactic
support for behavioral decomposition, synchronization, and exe-
cution monitoring. TDL reduces the difficulties of maintaining
task-level behaviors, and it has been successfully used in several
mobile robot projects, including CLARAty (Nesnas et al., 2006),
a reusable platform for NASA’s robots. Another similar example
is the humanoid motion planner that is designed for humanoid
robots in the Joint French-Japanese Robotics Lab (JRL) (Yoshida
et al., 2005). The motion planner uses hierarchical architecture to
control multiple reusable dynamic tasks such as path planning,
gait generation, and collision checking.

2.2. Robot Middleware
Robot middleware platforms provide abstract platforms for robot
software. They promote software modularity by providing tools
that support flexible communication between different robot
components, including communication between distributed pro-
cesses. Most robot middleware uses networking packages to con-
nect modules, making modules platform independent. Allowing
distributed modules also means that modules can be executed on
different processors, potentially under different operating systems
and stored on diverse media.

YARP (Yet Another Robot Platform)2 is a robot middleware
platform designed for humanoid robots. It is a lightweight open-
source platform derived from University of Genova andMIT, and
it supports many mainstream programming languages, such as
C++, Matlab, Python, JAVA, Perl, and L. It connects modules
using various protocols, such as TCP, UDP, UDP multicast, and
HTTP. A YARP-based system is a peer-to-peer network of port
objects, where each object has read and write ports to receive
and send data streams, respectively. One of the advantages of
YARP is its synchronization mechanism. A write port can choose
whether to wait for all its read ports before or after each update
step. From the perspective of a developer of high-level behaviors,

1TDL is available at http://www.cs.cmu.edu/~tdl/
2YARP is available at http://eris.liralab.it/yarp

a kinematic chain, such as a robotic arm or leg, is implemented
using a PolyDriver class. Modules based on this class can be read
from and written to using an ordered vector of values based on
the kinematic joint angles. The low-level limits of an actuator,
however, are not effectively managed by the framework, e.g.,
YARP does not check the velocity limits of a servo before sending
a command. It may even break the servo.

ROS (Robot Operating System)3 takes slightly different mes-
saging approach. Instead of using read and write ports it employs
a publish–subscribe mechanism (Quigley et al., 2009). Nodes are
computational processes, which communicate with each other
by passing messages. A node sends messages by publishing it to
a given topic, and nodes subscribe to selected topics to receive
messages. ROS is also written in C++ but supports other pro-
gramming languages as well, including Python, Octave, and LISP.
In terms of communication, ROS supports the TCP and UDP
protocols. In ROS, a kinematic chain is presented as an actuator
array, where actuator properties are also defined such as velocity
and torque limits. Actuator channels can be subscribed separately
or manipulated at the same time by sending vectors of joint angles
in a particular order.

The OROCOS (Open Robot Control Software) project (Bruyn-
inckx, 2001; Bruyninckx et al., 2003) is different from YARP and
ROS in that it does not emphasize communication between robot
components. Instead, it focuses on toolkit libraries for solving
common problems encountered by industrial robots. OROCOS
is designed for a single robot, and it is not suitable for multi-
robot systems where different robots need to cooperate with
each other (Namoshe et al., 2008). Based on the GPL license,
OROCOS is composed of four C++ libraries: a Kinematics and
Dynamics Library (KDL) that solves real-time kinematics and
dynamics problems, a Bayesian Filtering Library (BFL) that pro-
vides generic filtering functions such as Kalman Filter and Particle
Filter, and two supporting libraries that couple robotic compo-
nents with each other using debugging tools, i.e., Component
Library (OCL) and Real-Time Toolkit (RTT). Originally, ORO-
COS only supported C++, but libraries have been integrated to
connect OROCOS to other robotic middleware such as YARP
and ROS. Through this mechanism, other languages are indi-
rectly supported. The advantage of the OROCOS libraries is that
they implement dynamics algorithms independently of platforms
using a predefined abstraction and formalization of the underlying
platform hardware, such as the kinematics.

Other robot middleware platforms include the Player/Stage
Project4 and LCM (Lightweight Communications and Marshal-
ing).5 The Player/Stage Project (Gerkey et al., 2003) consists of
Player, a robot device server with standardized interface to sen-
sors and actuators, and Stage, a 2D multi-robot simulator. Player
provides a network interface to a variety of robot and sensor
hardware, and many Player-based applications have been adapted
for use under ROS. Player can be regarded as a cut-down version
of YARP in that it only supports reliable TCP protocols with-
out advanced synchronizing mechanism. In particular, in Player,

3ROS is available at http://www.ros.org
4Player/Stage project is available at http://playerstage.sourceforge.net
5LCM is available at http://lcm-proj.github.io/
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device interfaces are not buffered. Compared to Player, LCM is a
relatively new library that aims to provide a low-latency message
passing system for real-time robotics applications. Comparing
to ROS, LCM showed notably better transmission efficiency by
leveraging its UDP multicast infrastructure (Huang et al., 2010).
With regards to representing a kinematic chain, the original Player
does not support chained actuators. Instead, each actuator has
to be used on its own, and it is up to the client application
to keep track of any kinematic relations. Similarly, LCM is a
lightweight platform for sharing information efficiently. It also
does not natively support the management of kinematic chains.

Table 1 compares the properties of different robot middleware
platforms in terms of network protocols, communication mech-
anisms, and open-source licenses. Although the number of the
robotic devices in YARP is not as great as in ROS, YARP supports
a greater number of humanoid robots. Player is a popular platform
for wheeled robots, especially in the navigation domain. However,
it is rarely used for humanoid robot control. Therefore, the work
presented in this article has adopted YARP as themiddleware plat-
form due to its better support for humanoid robots and network
communication.

The aforementioned frameworks provide general-purpose
mechanisms to design and implement concurrent and distributed
software robot components. However, in the particular domain of
robot skin area, these frameworksmay have problem in processing
tactile sensory data. Robot skin often contains a large scale of
taxels, which will cause latency for the frameworks to handle a
huge volume of data. To solve this problem, Skinware, a frame-
work designed for the large-scale skin, was proposed recently
(Youssefi et al., 2014, 2015a,b). Skinware especially emphasizes
on real-time tactile data processing and minimizes the latency
for concurrent queries. It provides a unified interface to access
information originating from heterogeneous robot skin systems
and assures portability among different robot skin solutions.

Different from the Skinware, TCI proposed in this article
focuses on solving geometrical transformations of the taxels and
providing online actuator translations for tactile-based behaviors.

TABLE 1 | A comparison of popular robot middleware platforms, including
the supported humanoid robot platforms, communication protocols, and
interaction models.

Platform Humanoid robots Protocols Model License

YARP NAO, iCub, Babybot,
Obrero, Domo, COG,
Kismet, and BERT2
KASPAR

TCP, UDP, UDP
multicast HTTP,
and QNet

R/W LGPL

ROS NAO, Romeo, Reddy,
and Kondo KHR

TCP and UDP P/S BSD

OROCOS Robonaut TCP C/S
ORB
SRB

GPL

Player – TCP R/W GPL

LCM – UDP multicast P/S LGPL

The license under which they are published is also included.
R/W, read/write; P/S, publish/subscribe; C/S, client/server; ORB, object request broker;
SRB, service request broker.

Real-time data processing and latency analysis is not the focus
of our work. Currently, even with the help of the aforemen-
tioned robotic middleware, it is still difficult to directly repre-
sent a generic kinematic chain of an arm for multiple humanoid
robots. This is due to the fact that different robots use different
reference systems for angles and speeds and also due to their
different kinematics. Listing 1 demonstrates the different code
implementing the same reflex motion (see Figures 6C,D) on the
iCub (Gamez et al., 2012) and NAO humanoid robots through
YARP. For the right arm, NAO has 6 DoF while iCub has 16.
The iCub robot also has more low-level limits, e.g., for damp-
ing and speed. The two extracts of code introduce difficulties
for maintainability and reusability because each robot arm has
a unique initial position tuple and unique coordinate systems.
These differences introduce extra costs when it comes to sup-
porting multiple humanoid platforms, even for simple generic
motions. This problem is addressed by the TCI, which forces arms
to be represented in the form of abstracted five DoF, disregarding
the DoF it actually has. The interface is presented in detail in this
article.

3. THE CROSS-PLATFORM TACTILE
CAPABILITIES INTERFACE

One way of reducing the cost of developing cross-platform
humanoid behaviors is to provide a generic interface that allows
developers to reuse the same code for different robots. Since the
robot control process is bidirectional, a generic robotic interface
at least consists of two functions: incoming sensor abstraction and
outgoing actuator abstraction. The differences in robot control
software for various robots platforms stem from hardware issues,
such as different physical dimension and mechanical configura-
tion, as well as from software issues, such as platform-specific
speed and angle units and servo-indexing mechanism.

Different humanoid platforms also have different schemas for
joint indexing, as can be seen from the code provided in Listing 1.
Whenmigrating high-level code, it is up to the developer to figure
out how to transfer abstract motions to the target robot. The
problem is that this transfer is robot specific and, as a result, a
different transfer is required for each robot that is to be supported,
accommodating their unique joint indexing or naming. TCI pro-
vides a generic representation of humanoid robot arms, including
joint control, joint position data, and kinematic chain information
and data from robot skin sensors covering large areas of the arm.
Such standardization promotes robotic reusability by hiding the
low-level differences between specific robot platforms. In order to
implement the interface, other platforms must be represented in
a way that conforms to the specified data and command formats,
e.g., a robot using log-encoded joints must provide a translation
layer to convert the generic interface commands into platform-
specific commands. Similarly, it must provide a translation layer
converting the platform-specific data format to the format used by
our interface.

In TCI, the DoF of a generic arm is fixed. All arms are repre-
sented by 5 DoF with indices from 0 to 4, always referring to the
shoulder pitch/roll/yaw and the elbow pitch/yaw. Our interface
enforces such a referencing standard even when the underlying
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LISTING 1 | YARP-based code for NAO and iCub implementations of a single reflex motion.

/**** NAO robot ****/
const int DOF = 6;
double StiffnessArr[DOF]={0.8, 0.8, 0.8, 0.8, 0.8, 0.8};
double ReflexArr[DOF]={1.19, −1.10, 2.07, 0.04, 0.0, 0.0};
double MIN[DOF]={−2.09, −0.31, −2.09, −1.54, −1.82, 0.0};
double MAX[DOF]={2.09, 1.33, 2.09, −0.03, 1.82, 1.00};
pos− >SetStiffness(StiffnessArr);
for (int i=0; i<DOF; i++){

StiffnessArr[i]=CheckLimits(MIN[DOF], ReflexArr[i], MAX[DOF]);
}
pos− >positionMove(ReflexArr);
/**** iCub robot ****/
const int DOF = 16;
double StiffnessArr[DOF]={0.4, 0.4, 1, 0.2, 0.2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
double DampingArr[DOF]={0.03, 0.03, 0, 0.01, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
double SpeedArr[DOF]={20, 20, 0, 20, 40, 0, 0, 50, 50, 50, 50, 50, 50, 50, 50, 50};
double ReflexArr[DOF]={−16.1, 83.3, 0, 15.5, −59, −0.45, 0, 0.3, 50, 24, 90, 5, 90, 16, 90, 115};
double MIN[DOF]={−90, 15, −30, 15, −90, −90, −20, 0, 10, 0, 0, 0, 0, 0, 0, 0};
double MAX[DOF]={10, 95, 50, 105, 90, 0, 40, 60, 90, 90, 180, 90, 180, 90, 180, 270};
SetStiffness(StiffnessArr);
SetDamping(DampingArr);
SetSpeed(SpeedArr);
for (int i=0; i<DOF; i++){

StiffnessArr[i]=CheckLimits(MIN[DOF], ReflexArr[i], MAX[DOF]);
}
pos− >positionMove(ReflexArr);

platform is missing a particular DoF, e.g., no elbow yaw, or has
extra DoF. Our interface also standardized the kinematic chain
information, using a fixed grounding point, fixed units, ranges,
and signs to represent angles and distances.

For the skin sensor data, rather than providing information
related to indexed touch-sensitive transistors known as “taxels,”
our interface uses a spatial reference framework where a taxel is
represented as a point in space, defined relatively to the under-
lying kinematics. Our implementations of the TCI translate the
messages between the abstract high-level representations and the
specifics of the individual robot representations in real time. This
frees a developer from the tedious task of repeatedly resolving the
low-level configuration differences.

In practice, developers need an interface to be flexible. Generic
capabilities that can be potentiallymigrated to different robots can
be implemented using our abstract interface. However, it is com-
mon tomix the generic capabilities with platform-specific capabil-
ities making use of platform-specific sensors and actuators. In our
layered architecture, presented in Figure 2, the platform-specific
API is available through YARP. The complete architecture consists
of four layers. Layer L1 is the low-level robotic controller layer.
This is the lowest layer that a module can access and contains the
hardware specific APIs. Layer L2 is the YARP middleware layer,
which provides the communicative platform for modules to send
commands and transfer data. This layer also includes the YARP
converters that connect specific platforms to the YARP frame-
work, e.g., NaoYarp6 is a YARP interface for the NAO humanoid
platform that wraps up the official NaoQi interface using YARP
ports. Our abstract humanoid arm interface forms layer L3, which
contains two core interfaces, the actuator interface, i.e., the arm

6The NaoYarp software can be found at https://github.com/cbm/NaoYARP
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FIGURE 2 | The layered architecture of TCI. L1 and L2 are the low-level
robotic controller layers and the YARP middleware layer, respectively. The
tactile capabilities interface is defined in L3, which is followed by L4 that
consists of reusable cross-platform capabilities.

kinematic chain, and the skin interface. These interfaces are pre-
sented in detail in §3.1 and §3.2, respectively. Our architecture also
provides platform-specific information and calculations through
modules, such as forward kinematics (FK) and inverse kinematics
(IK), and technologies that have been extensively discussed by
Diaz-Calderon et al. (2006). The run-time availability of platform-
specific data, such as the kinematics, would allow the integration
of our abstract interface and generic libraries such as OROCOS.
We aim to include a querying mechanism in future versions of
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our interface in order to enable the use of third-party libraries
in the implementation of platform-independent capabilities. In
the top layer, L4, high-level capabilities use our abstract inter-
face to achieve generic tasks, such as withdrawal reflexes, gesture
reproduction, and other robotic learning activities.

3.1. The Generic Actuator Interface
The configuration of the actuators of humanoid robots varies
dramatically even when they are located on the same kinematic
chain of a humanoid part. Practically, each actuator has some
unique properties such as speed limits, position limits, initial
position, axes, and stiffness settings.

A humanoid robot is usually designed with a specific domain
of research in mind, e.g., the iCub robot supports research on
cognitive representations for control of the robot head, arms, and
hands. On the other hand, NAO robots are designed for locomo-
tive behaviors in research domains such as robot football. As a
result, corresponding robot parts on different platforms often have
different features, including different degrees of freedom (DoF)
and different sequencing of the individual DOF on a kinematic
chain. The robot head for example has six DoF on the iCub but
only two on the NAO. Similarly, the robot arm has sixteen DoF
on the iCub but only six on the NAO.

Currently, our implementation relies on XML to specify the
platform-specific elements of the actuator and skin interfaces.
The generic actuator interface consists of a vector of abstract
robot parts. Each part is accessible to the high-level compo-
nents at runtime, providing platform-specific information in a
standardized generic format. This unified interface reduces the
development complexity for high-level modules by allowing them
to focus on the key actuators and ignore any redundant ones that
are not needed within a module. In the XML configuration file,
the platform-specific information must be presented in terms of
the defined number of actuators, axes, and initial positions. As
our first attempt, each generic actuator is considered as a linear
transformation, e.g., a specific abstract actuator, GS maps to a
specific destination servo DS. The transformation can be defined
as in equation (1). Nevertheless, our interface is not limited to
this transformation. Other controls, such as transformation in
Cartesian space, can also be configured using XML. However,
the implementation of other kinematics models will be further
evaluated in our future work.

GS = γDS+ σ (1)

In equation (1), γ is the transform factor and σ is the trans-
form displacement. Thus, a complex robot part can be generically
defined as a vector of generic actuators, each of which is a trans-
formation to a specific destination servo. This representation is
formalized in equation (2).

GenericPart =
⟨
GSi|ni=1

⟩
=

⟨(
γiDSmapping(i) + σi

)∣∣n
i=1

⟩
(2)

This is the configurations of a vector of servos, and the other
properties of a kinematic chain, such as length information,
are defined elsewhere. The difference of the limb lengths also
affects the position of the end-effector position for given angles.

LISTING 2 |An example of the XML configuration file of a generic robot part.
It defines an abstracted head part with 2 generic servos mapping from the robot
part called icub_head. The generic servo 1 is transformed from the destination servo
2 with predefined transform properties and servo limits. The initial position of each
generic servo vector is also configured.

<Generic_Robot_Part>icub_head</Generic_Robot_Part>
<generic_servo_number>2</generic_servo_number>
<generic_servo id="1">

<destination_servo_id>2</destination_servo_id>
<transform_factor>1.00</transform_factor>
<transform_displacement>0.00</transform_displacement>
<stiffness>1.00</stiffness>
<damping>0.00</damping>
<speed>20.00</speed>

</generic_servo>
......

<initial_positions>
<servo type="deg" destination_servo_id>="0" pos="−2.00"/>
<servo type="deg" destination_servo_id>="1" pos="15.00"/>

</initial_postions>

For position-based behaviors, inverse kinematics and forward
kinematics modules (see Figure 2) are used to calculate the low-
level angles. The servos that make up one generic robot part are
not necessarily from the same destination robot part; this feature
gives users more flexibility to design robot parts properly. An
example of the XML configuration file of a generic robot can be
found in Listing 2. The generic servo 1 is transformed from the
destination servo 2 with γ= 1 and σ= 0.

The XML configuration file contains not only the underlying
data needed for controlling the real servos but also the information
necessary to support a run-time reconstruction of the kinematic
chain, e.g., TCI can provide a YARP device that gives run-time
access to the Denavit–Hartenberg parameters as well as servo-
specific information such as angle and velocity limits. Such a
device facilitates the use of generic code that uses third-party
libraries for generic computations such as inverse kinematics (IK)
calculations (Diaz-Calderon et al., 2006).

3.2. The Generic Robot Skin Interface
A robotic skin sensor is a tactile sensor that gives a robot the
“sense of touch” over large areas of its surface. Recently, Dahiya
et al. (2010) have extensively compared more than 30 robotic
tactile sensors in terms of their transduction method, number
of taxels, range of force, and force sensitivity. Though there is
no standardized representation of robot skin sensors, they can
be regarded as a set of taxels (tactile pixels), where each taxel is
located on the same continuous surface and each taxel is able
to report, in real time, the force of any contacts. Our interface
assumes that the different skin sensors represented have the same
level of sensitivity. If this is the case, their readings may be nor-
malized in interface implementation layer, L3, in Figure 2. Our
interface, as presented here, is not yet sophisticated enough to
cover skin sensors with different sensitivity.

One of the main difficulties in creating a generic interface
for robot skin sensors has been the identification of a generic
representation of a geometric model of the surface on which
the taxels are located. Without such a model, it is difficult to
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reconstruct accurately and reliably the relative position and prox-
imity of taxels across the surface of the robot. Although other
information, such as the number of taxels, may also be useful,
in practice, we have found that many high-level behaviors nor-
mally do not require such information and so we can achieve an
acceptable performance level using only spatial taxel coordinates.
An example of a generic high-level behavior based on two skins
with different number of taxels and different taxel distributions
are illustrated in § 4.1.

Tomake practical use of the taxel data, it is commonly necessary
to relate this spatial information to the underlying kinematic
chain, making it obvious where a taxel is located in relation
to the robot’s body, e.g., on the upper left arm. The generic
robotic skin interface maps individual taxels to points in space
relative to elements in the kinematic chain, abstracting away any
underlying platform-specific taxel-indexing mechanisms as well
as any related connectivity information. The abstract spatial taxel
information removes any platform-specific representations and
provides a skin representation that can support the implementa-
tion of cross-platform capabilities. An example of the forearm skin
of the iCub robot represented using the TCI 3-dimensional spatial
skin model is presented in Figure 3, where each small blue dot is a
taxel on the skin. Our work leveraged the existing work of spatial
calibration to generate the skin model, in the joint research (Prete
et al., 2011; Denei et al., 2015).

In some cases, the three-dimensional position information of
each taxel of the robot skin sensors is not available to support
the calculations that are needed to present the taxels using the
spatial coordinates required by the generic skin interface. In this
case, it is time consuming and inaccurate tomanually measure the
precise 3D positions for all the taxels and instead they have to be
approximated.

In our experience, for a taxel t, the displacement along the
limb and the transverse angle of the taxel location relative to
the limb orientation are typically more important than its distance
from the central axis of the limb. As a consequence, we have
approximated the spatial distribution of the taxels on the NAO
robot skin using truncated cone. Given the estimated dimensions
of the truncated cone, our 3D skin model can approximate the

FIGURE 3 | An example of 3-dimensional generic robotic skin model:
the forearm skin of iCub.

real taxel distribution. As a consequence, in order to support
a TCI representation of the NAO skin sensors, the position Pt
of a taxel t is modeled as a vector <xi, θ, rt> formalized in
equation (3).

SKIN =
⟨
Pt|nt=1

⟩
=

⟨
⟨xt, θt, rt⟩|nt=1

⟩
(3)

In equation (3), the value xt represents the displacement of
the taxel along the central axis of the element of the kinematic
chain on which it is located. The value θt represents the dis-
placement angle within the transverse plane relative to the ori-
entation of the element, along which the taxel is located. The
value rt represents the distance (radius) from the central axis at
which the taxel is located. With this taxel model, a generic robot
skin sensor can be approximated and represented within the TCI
framework. The truncated cone model is presented graphically in
Figure 4.

Our truncated cone representation has the added benefit that
the radius rt need not be explicitly represented but can be cal-
culated from the displacement xt. As a consequence, we end up
with the approximated skin representation SKIN given in equation
(4). Admittedly, this model has its limitations on a robot with
complex tactile surface where multiple curvatures are present.
More investigations are needed as our future work.

SKIN =
⟨
Pt|nt=1

⟩
=

⟨
⟨xt, θt⟩|nt=1

⟩
(4)

4. A TCI CASE STUDY: HUMANOID
TACTILE WITHDRAWAL REFLEXES

In the previous sections we presented the TCI architecture and
its two core interfaces, the Generic Actuator Interface and the
Generic Robot Skin Interface. This section presents the application
of the TCI framework to the design and the implementation of a
cross-platform tactile withdrawal reflex for humanoid robots. The
behavior was realized and demonstrated on two physical robots,
the iCub and the NAO.

Robotic tactile withdrawal reflexes aim to improve the safety
of human–robot interaction by reducing the potential for harm
to humans and robots. Safe-path planning, padding, compliant
limbs, and withdrawal reflexes all contribute at strategic point in

 x

 θ

 T

 O

FIGURE 4 | The simplified model of generic robotic skin. The shape of
the skin is arbitrarily approximated as a truncated cone.
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time to improve safety and increase the scope for the application
of human robots in unstructured human environments.

Based on a new robot skin sensor that covers large areas
of a robot (Schmitz et al., 2011) and information about the
mechanisms supporting human withdrawal reflexes, Dahl and
Paraschos (2012) proposed a force–distance reflex model for
humanoid robots. This model represents the reflex motion as
a base motions moderated by two discount factors: the force
of the impact and the distance between the stimulus and the
center of the closest reflex receptive field (RRF). The RRFs will
be discussed in details in §4.1. The base motions for the robot
withdrawal reflexes were established through a set of experiments
capturing reflexmotions fromhumans using amotion capture suit
(Dahl and Palmer, 2010). In our previous research, withdrawal
reflex data was obtained using five stimulation locations on the
upper and lower arm (four on the lower arm and one on the
upper arm).

4.1. The Force–Distance Reflex Model
The force–distance (FD) reflex model is inspired by the concept
of reflex receptive fields (RRFs), where each reflex has a trigger in
the form of a continuous area on the surface of the skin, within
which stimulation will provoke a reflex motion. The strongest
response, i.e., the largest motion, is produced when the stimulus
is in the center of the field. The strength of the response is
gradually reduced as the distance between the stimulation point
and the center of the field increases. The edge of the field acts
as a threshold, beyond which no motion is triggered. In addition
to being sensitive to the location of the stimulus, the size of the
response under the FD model is also sensitive to the intensity of
the stimulus, i.e., its force. The force–distancemodel is formalized
in equation (5).

θi,j =

{
ϕFiψdiΘi,j if di < ri and Fi > δf

0 otherwise
(5)

The FD reflex model is essentially a set of mappings from
tactile stimulus to robotic reflex motions. Each mapping i defines
the radius ri of a circular receptive field centered at location Ci.
The actual reflex motion θi,j is a vector of angle displacements,
which is a moderation of a vector of base angle displacementsΘi,j.
The base angle displacements were obtained by analyzing reflex
motions captures from the human subjects. They are discounted
by two factorsϕ andψ, respectively, corresponding to the stimulus
force F and the stimulus distance d to the center Ci. Simulation
of a location, not covered by a receptive field, will not trigger a
response.

Using the tactile capabilities interface, the FD reflex model
can be made generic by representing the values involved using
values and structures available in the generic robotic skin
model discussed in §3.2 and the Generic Actuator Interface pre-
sented in § 3.1.

Reproducing the reflex motions θi,j using the tactile capabil-
ities interface required us to calculate the stimulation distance
d using the generic spatial taxel model. The FD reflex model,
rewritten using this representation, is presented in equation (6).

§ 4.2 discusses, in detail, the implementation of the robotic
reflexes under TCI.

θi,j =

{
ϕF̄iψ |P̄i − Ci|Θi,j if |P̄i − Ci| < ri and F̄i > δf

0 otherwise

|P̄i − Ci| = |⟨x, r sin θ, r cos θ⟩ − ⟨xi, ri sin θi, ri cos θi⟩| (6)

In equation (6), P̄i denotes the position of the center of the
pressure and F̄i is the average force of the triggered taxels Ci of
the receptive field and the stimulus point P̄i. In practice, as taxels
are close to each other, a stimulation typically triggers multiple
taxels simultaneously. For a stimulation with n triggered taxels,
Ft and Pt are the force and the position of a taxel t, respectively.
P̄i is the center of the stimulation weighted by the force of the
triggered taxels. Similarly, F̄i is the average taxel force weighted
by the distance to P̄i. The position of the center of the pressure P̄i
and the average force F̄i are formalized in equation (7).

P̄i =

n∑
t=1

Ft · Pt
n∑

t=1
Ft

, F̄i =

n∑
t=1

Ft · (2ri − |Pt − P̄i|)
n∑

t=1
(2ri − |Pt − P̄i|)

(7)

In equation (7), 2ri denotes the diameter of the receptive circle,
which is the maximum geometrical distance for which a tactile
stimulation can produce a response.

4.2. The Implementation of the
Robotic Reflexes
This section presents the implementations of the force–distance
reflex model on two real robot platforms, NAO and iCub using
the tactile capabilities interface. The problem of using the same
reflexmodule on two different robots to establish the same robotic
withdrawal reflex motions is discussed in detail. A NAO robot
is a 4.5-kg, 58-cm tall humanoid robot designed and manufac-
tured by Aldebaran Robotics. It has 21 DoF (for the RoboCup
edition) and is equipped with a range of sensors including two
cameras, sonars, touch sensors, and accelerometers. An iCub
is a 1-m high humanoid robot test-bed for research on cogni-
tive robot behaviors. The robot is open source both in terms
of the hardware design and the software resources. An iCub
has 53 DoF and weighs around 22 kg. Both the NAO and iCub
robots used for the work presented here were equipped with
robot skin sensors developed under our previous joint research
(Cannata et al., 2012). The robot reflexes were implemented and
evaluated on both the simulated and the real robots. The FD
model implementation on the iCub is illustrated in Figure 5.
The blue dots are taxels of the forearm skin. When stimula-
tions occur within receptive fields, i.e., the four circular red
areas, the Reflexmodule produces the generic withdrawal actions.
The actions are further translated to iCub specific commands
by TCI. According to the FD model (equation (6)), iCub does
not response to the stimulations located outside of the receptive
fields. Similarly, the FD model on the real NAO is illustrated in
Figure 1B.
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Using the layered structure presented in Figure 2, the FD reflex
model was implemented as a Reflex module located in layer L4.
The actual robots APIs in layer L1 send raw tactile data to the
YARP interface in layer L2. Within the TCI structures in layer
L3, the Skin Interfacemodule translates the raw skin data into the
abstract spatial representation presented in §3.2.

The high-level Reflex module uses the abstracted skin data
to calculate the moderated reflex motion θi,j using equation (6).
Correspondingly, controlling the specific actuators is the reverse

FIGURE 5 | An example of the 3D receptive fields of iCub forearm
using generic robotic skin interface. The blue dots are the taxels, and the
four circular areas are receptive fields.

FIGURE 6 | The generic robotic reflexes produced and executed by the same Reflex module through TCI. Two stimulations are simulated on the NAO and
iCub robots, respectively. Images (A,B) illustrate the reflexes from the stimulations located on the bottom of the forearms, while stimulations illustrated in images
(C,D) are inside of the forearms.

process. The reflex motion θi,j found by the layer L4 module is,
sent down to the generic actuator interface located in layer L3
which again translates the generic motion to platform-specific
commands. The YARP layer, L2, further translates the high-level
commands to the actual actuators on the specific robot in the
bottom layer, L1. Figure 6 illustrates the robot reflexes produced
by the same Reflex module being executed on simulated NAO
and iCub robots through TCI. Two stimulations are simulated on
the bottom and inside parts of the forearms of the two robots,
respectively.

5. CONCLUSION AND FUTURE WORK

This article presented a cross-platform tactile capabilities inter-
face (TCI) for development of humanoid tactile capabilities.
TCI promotes reuse of high-level modules by providing abstract
hardware-independent representations of humanoid robot sen-
sors and actuators. These representations allow control software
to focus on the platform-independent elements of the control
algorithms, delegating the translation of these abstracted repre-
sentations to platform-specific commands, to the lower levels of
the TCI infrastructure. The literature related to generic interfaces
and current approaches to improve robot software reusability was
reviewed in §2. As an important method to promote reusability,
the state-of-the-art robotic middleware platforms are compared.
In §3, a layered architecture for reusable generic robotic modulars
was proposed, where TCI is used as an “interpreter” between
high-level modules and YARP. TCI contains two core interfaces,
a generic actuator interface (§3.1), which solves the configura-
tion differences of the low-level actuators, and a generic robotic
skin interface (§3.2) that abstracts the skin data. The article has
presented the case study of generic humanoid tactile withdrawal
reflexes. The force–distance (FD) reflex model is extended so as
to be used under the TCI framework. The FD model has been
implemented, and the same module was used to control two
different real robots, the NAO and the iCub robots, equipped
with different skin sensors. Experiments show that generic reflex
motions have been successfully realized under TCI both in simu-
lated environments and on real robots.
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The tactile capabilities interface is our first attempt at develop-
ing a cross-platform humanoid robot interface. Currently, only
position-based actuator control is implemented and evaluated,
although the framework is ready to integrate other types of actua-
tor controls such as velocity control and torque control. Another
limitation of our interface is that it does not provide an abstrac-
tion for tactile force. This is because in the study case, both the
platforms used the same type of the tactile sensors and so the
intensity representations are identical. Extra transformations will
be needed if the comparison of the forces is required.

Our aim for the future work is to further investigate other
control methods and other parts of common humanoid robots
in the TCI framework. Also, the integration of forward and
inverse kinematics is to be addressed. This feature will remove
the requirement for platform-specific kinematics calculations if
more sophisticated behaviors are needed. Recently, some research
on defecting the direction of tactile force has also been proposed

(Fumagalli et al., 2012; Stassi et al., 2014), and this could also
become an extension to our current interface.
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Robot software combines the challenges of general purpose and real-time software, 
requiring complex logic and bounded resource use. Physical safety, particularly for 
dynamic systems such as humanoid robots, depends on correct software. General 
purpose computation has converged on unix-like operating systems  –  standardized 
as POSIX, the Portable Operating System Interface – for devices from cellular phones 
to supercomputers. The modular, multi-process design typical of POSIX applications 
is effective for building complex and reliable software. Absent from POSIX, however, 
is an interproccess communication mechanism that prioritizes newer data as typically 
desired for control of physical systems. We address this need in the Ach communication 
library which provides suitable semantics and performance for real-time robot control. 
Although initially designed for humanoid robots, Ach has broader applicability to com-
plex mechatronic devices – humanoid and otherwise – that require real-time coupling of 
sensors, control, planning, and actuation. The initial user space implementation of Ach 
was limited in the ability to receive data from multiple sources. We remove this limitation 
by implementing Ach as a Linux kernel module, enabling Ach’s high performance and 
latest-message-favored semantics within conventional POSIX communication pipelines. 
We discuss how these POSIX interfaces and design principles apply to robot software, 
and we present a case study using the Ach kernel module for communication on the 
Baxter robot.

Keywords: real-time software, middleware, robot programing, humanoid robots, software engineering

1. inTrODUcTiOn

Humanoid robot software presents a broad set of requirements. Humanoids have physical dynamics, 
requiring fast, real-time software. Humanoids have many sensors and actuators, requiring high per-
formance network code. Humanoids, ideally, operate autonomously, requiring complex application 
logic. Satisfying these three requirements is a challenging software design and development problem. 
Fortunately, there are existing solutions to many of these challenges. Unix-like operating systems 
have served over many decades as the foundation for developing complex software. The standards 
and design principles learned developing these operating systems and applications provide many 
lessons and tools for humanoids and other robots.
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Humanoid robotics would benefit by building on the sig-
nificant design and engineering effort employed in unix develop-
ment.1 These operating systems are codified in POSIX, the IEEE 
standard for a Portable Operating System Interface (POSIX, 
2008). POSIX provides a vendor neutral interface for systems 
programing, and there are numerous high-quality implementa-
tions that run on all major computer architectures. However, 
POSIX is more than just a standard for accessing filesystems and 
networks. Many POSIX applications follow a common design 
approach based on composing multiple, independent, modular 
processes. The multiprocess design promotes rapid development 
of robust and flexible software by isolating errors to a single 
process and enabling composition of existing tools to address 
new requirements (Raymond, 2003; Tanenbaum and Bos, 2014), 
a lesson already largely adopted by the robotics community with 
frameworks that often, though not always, compose applications 
from multiple processes (Bruyninckx et  al., 2003; Brugali and 
Scandurra, 2009; Quigley et al., 2009). Unix-like systems are also 
pervasive in network-intensive applications, leading to powerful 
communication capabilities. Moreover, the widespread use and 
long history of unix has bred a variety of tools and conventions 
to aid system integration – a major challenge for robotics – by 
producing and configuring software that is flexible and portable. 
These features and corresponding design approaches present in 
Unix-like systems address many, though not all, the needs of 
humanoid robot software.

While Unix-like operating systems have been phenomenally 
successful for general purpose computing, they are less prevalent 
in real-time control of physical processes. Typically, a physical 
process such as a robot is viewed as a set of continuous, time-
varying signals. To control this physical process with a digital 
computer, one must sample the signal at discrete time intervals 
and perform control calculations using the sampled value. To 
achieve high-performance control of a physical system, we must 
process the latest sample with minimum latency. This differs 
from the requirements of general computing which focus on 
throughput over latency and favor older data over newer data. 
While nearly all POSIX communication favors the older data, in 
robot control, the newest data are critical. However, some parts of 
the system, such as logging, may need to access older samples, so 
this also should be permitted at least on a best-effort basis. In this 
paper, we address the need for real-time communication within 
the larger context of POSIX programing. We demonstrate a Linux 
kernel module for high performance, real-time communication, 
and discuss its use in the application of POSIX programing practice 
to humanoid robots.

The Ach interprocess communication library provides fast 
communication that favors latest message data as typically 
desired for real-time control of physical systems. Ach is not a new 

1 Historically, the capitalized, trademarked “Unix™” referred to operating systems 
based on the original code from AT&T Bell Laboratories, while the terms “unix-
like,” the lower-cased “unix,” and the wildcards “un*x,” “*nix,” etc. conventionally 
refer to the larger family of similar, often independently developed operating 
systems (Raymond, 2008). Currently, Unix™ is a trademark of The Open Group, 
which licenses the brand to certified, conforming operating systems (Gray v. 
Novell, 2011).

framework that discards or duplicates the existing and significant 
tools for systems programing. Instead, Ach is a mechanism that 
integrates and builds upon the vast useful features of the POSIX 
and Linux ecosystem. In previous work, we presented an imple-
mentation of the Ach data structure in the POSIX user space 
(Dantam and Stilman, 2012; Dantam et al., 2015). User space Ach 
was limited in the ability to receive data from multiple sources. 
Now, we present an implementation of Ach as a Linux kernel 
module. Kernel space Ach enables applications to efficiently 
receive data from many sources, a crucial feature for mechatronic 
systems such as humanoid robots which contain many sensors, 
actuators, and software modules. The Ach Linux kernel module 
presents the conventional file descriptor interface used for com-
munication in POSIX, enabling direct integration into existing 
communication systems and frameworks.

Though this work was initially developed for humanoid 
robots, it is broadly applicable to other complex mechantronic 
systems such as robot manipulators and intelligent vehicles. 
These evolving technologies all present similar requirements for 
complex software with real-time performance. The unix philoso-
phy is effective for building complex software systems, and the 
Ach library grounds this approach to real-time, physical control.

2. learning FrOM UniX

Humanoid robotics can learn from of the POSIX programing 
community. Important and challenging issues for humanoid 
robot software, such as high-performance communication, real-
time memory allocation, and software integration, are largely 
addressed by existing techniques and standards. The humanoid 
robotics community would benefit by building on this work.

2.1. communication and scalability
Humanoid robotics can benefit from the strong communication 
capabilities of unix-like operating systems. Historically, Unix 
and the Internet developed in concert (Quarterman et al., 1985). 
POSIX provides a variety of communication and networking 
approaches, which largely address the performance and scal-
ability needs of humanoid robot software. We summarize com-
munication with many other nodes in Section 2.1.1 and service 
lookup in Section  2.1.2. Later, we address the unique needs of 
humanoid robots with the Ach library in Section 3, building on 
the capabilities offered by POSIX.

2.1.1. Multiplexing Approaches
Both general network servers and humanoid robots must com-
municate with a large number of other devices, be they network 
clients or hardware sensors and actuators. There are several 
techniques to communicate with multiple different nodes, each 
having trade-offs in implementation complexity and computa-
tional efficiency.

2.1.1.1. Fixed Interval Loop
A simple method to handle multiple connections is to service each 
connection at a fixed interval. The advantages of this approach are 
that it is simple to implement and it is similar to the fixed timestep 
commonly used in discrete-time control. However, there are 
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computational disadvantages. Messages may be delayed because 
the connections are only serviced once per step. Additional 
computation may be required to check connections that have no 
new messages. Furthermore, readers may block if attempting to 
service a connection with no data to read, and writers may block 
on full write buffers. While this approach can handle a small, 
fixed number of connections, it is not a practical consideration 
for network servers because it performs poorly with a large and 
varying number of connections.

2.1.1.2. Process-Per-Connection
One approach to handle varying numbers of connections is to 
create a separate worker process or thread for each connection. 
Creating worker processes was traditionally popular because it 
is easy to implement, process creation on unix-like systems is 
inexpensive, and separating connections in different processes 
provides isolation between them. The inetd superserver is 
based entirely on the approach of starting a handler process 
for each new connection. In addition, on modern multi-core 
machines, separate processes provide true concurrency. 
Separate handler processes also provide the unique feature of 
user-based access control; this is useful for low-volume and 
security-critical services such as SSH. The downside of using 
separate processes is the overhead to create and maintain the 
additional processes (Tanenbaum and Bos, 2014). Each con-
nection requires memory for the process’s function call stack, 
and context switching between processes introduces overhead. 
Consequently, this approach does not scale to very large num-
bers of connections.

2.1.1.3. Asynchronous I/O
Asynchronous I/O promises to allow applications to initiate 
operations, which are performed in the background with the 
application notified on completion. This would seem to address 
the scalability issues of the process-per-connection approach. 
However, current implementations of asynchronous I/O are not 
mature. The implementation on GNU/Linux uses threads to 
handle background I/O and scales poorly (Kerrisk, 2014).

2.1.1.4. Event-Driven I/O
Event-based methods allow efficient handling of many connec-
tions through a synchronous interface that notifies applications 
when a connection is ready for I/O. These methods use the 
traditional select call from System V UNIX and poll from 
BSD. The more recent kqueue call on FreeBSD and epoll on 
Linux reduce the overhead for very large numbers of connec-
tions. Though all these calls differ slightly in their semantics, 
the underlying premise is the same. The application provides 
the kernel with a list of file descriptors, and the kernel noti-
fies the application when one of those descriptors is ready for 
a requested I/O operation. While this approach does require 
explicitly managing lists of active connections, it efficiently 
scales to large numbers of connections.

A rough benchmark for network servers is the ability to handle 
10 thousand concurrent network connections (C10K) (Kegel, 
2006). Though at one point this was a challenging problem, it is 
now easily handled through event-based methods such as epoll 

and kqueue. The popular and efficient Nginx2 webserver uses 
event-based methods as does the libevent3 library, which under-
lies communication in memcached and the Google Chrome web 
browser, among others. For handling many concurrent connec-
tions, event-based methods are widely used and scale on ordinary 
hardware to thousands of concurrent connections.

2.1.2. Name Resolution and Service Discovery
Another important issue in communication is name resolution 
and service discovery. Humanoid robots have many distinct 
software modules that need to locate the underlying mechanism 
for communication. Many middlewares provide their own form 
of service discovery: CORBA (CORBA, 2011) provides its nam-
ing service to locate remote objects, ONC RPC provides the 
port mapper (Srinivasan, 1995) to resolve the port numbers to 
connect to a desired program, and ROS resolves topic names in 
the rosmaster process (Quigley et al., 2009). However, name 
resolution and service discovery are addressed in a standard and 
general way via multicast DNS (mDNS) (Cheshire and Krochmal, 
2013), a peer-to-peer variation of the traditional, hierarchical 
domain name system (DNS). DNS and mDNS are flexible pro-
tocols and can even store arbitrary information in TXT records 
(Rosenbaum, 1993). Of course, non-naming features such as con-
nection monitoring are outside the scope of DNS. Multicast DNS 
is a standard protocol with existing implementations, so using 
mDNS instead of a specialized resolution method reduces the 
number of separate daemons which must run as well as separate 
code which must be maintained. Consequently, we use mDNS in 
Ach to locate communication channels on remote hosts.

2.1.3. Lesson Learned
Humanoid robots need communication that is both scalable and 
real-time. Event-based methods impose the lowest overhead of 
the various POSIX communication approaches and are the typi-
cal choice for scalability-critical network servers (Gammo et al., 
2004). Communication for humanoid robots would benefit from 
the scalability of an event-based approach, and we discuss the 
real-time requirements next in Section 2.2. Event-based methods 
operate on kernel file descriptors (Stevens and Rago, 2013), 
which motivated the development of the Ach kernel module (see 
Section 3.2). To name and locate services, the standard mDNS 
protocol and implementations provide the necessary capabilities; 
there is no need to duplicate the features of mDNS.

2.2. real-Time software
Humanoid robot software requires not only the complex logic 
and efficient communication of general purpose software but 
also real-time response to handle physical dynamics. The soft-
ware infrastructure for humanoids should address the need for 
real-time performance without unnecessarily sacrificing the 
capabilities of general purpose systems. While it is a challenge to 
develop real-time software on general purpose systems, accept-
able performance can still be achieved.

2 http://nginx.org/ 
3 http://libevent.org/ 
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2.2.1. Real-Time Communication
POSIX provides a variety of general purpose communication 
mechanisms; however, none are ideal for robot control. Robot 
control requires the latest data sample each control cycle. General 
purpose communication, however, gives priority to older data, 
which must be read or flushed before newer data can be received. 
This is the Head of Line (HOL) Blocking problem. The specific 
issues of each POSIX communication mechanism are discussed 
in Dantam et al. (2015). It was this HOL blocking challenge that 
motivated the initial development of Ach (Dantam and Stilman, 
2012), which always provides access to the most recent data 
sample.

Though general network servers can handle thousands of 
concurrent connections (Gammo et  al., 2004), there is a key 
difference from the needs of humanoid robots. Network servers 
are primarily concerned with maximizing throughput – serving 
as many clients as possible. Robot control, on the other hand, 
requires minimizing latency  –  handling each communication 
operation in minimal and bounded time. Throughput-focused 
methods often attempt to reduce copying, e.g., by eliding a 
copy to a kernel buffer for network socket communication or 
directly mapping a buffer into another process’s addresses space 
via shared memory or relaying a file descriptor through a local 
socket. However for robots, individual real-time messages are 
typically small, e.g., a few floating point values read from a sensor, 
so the overhead of copying the data is minimal. Instead, overhead 
from system calls and process context-switching dominates. This 
shift in focus from throughput to latency is one aspect of the dif-
ference between general-purpose and real-time systems, and is a 
concern that we consider in the design of the Ach data structure 
(see Section 3.1).

Network communication uses Quality of Service (QoS) mech-
anisms to improve response for traffic with special requirements, 
for example, by reserving bandwidth or offering predictable delays 
(Huston, 2000). Linux provides queuing disciplines to prioritize 
sent traffic and reduce HOL blocking at the sending end (Siemon, 
2013). However, HOL blocking or dropped packets may still occur 
at the receiving end if the receiver does not process messages as 
quickly as they are sent. The popular, real-time Controller Area 
Network (CAN) includes a dedicated priority field in messages 
to guarantee that higher priority messages are sent first, though 
messages of equal priority are still processed first-in-first-out, 
different senders must use unique message priorities to avoid col-
lisions, and packet routing is not considered (ISO 11898-1:2015, 
2015). Higher-level communication frameworks also employ 
QoS, the improve predictability of communication (DDS 1.2, 
2007; Hammer and Bauml, 2013; Paikan et al., 2015). Appropriate 
use of QoS can improve real-time network performance, but the 
underlying queuing of network communication still presents 
challenges when one needs the most recent data sample.

The Ach library that we present in Section  3.1 is an inter-
process communication mechanism rather than a network 
protocol, resulting in a distinct set of capabilities and challenges. 
Network communication must address issues such as limited 
bandwidth, packet loss, collisions, clock skew, and security. In 
contrast, processes on a single host can access a unified physical 
memory, which provides high bandwidth and assumed perfect 

reliability; still, care must be taken to ensure memory consist-
ency between asynchronously executing processes. While 
network protocols use QoS to prioritize traffic, Ach maintains 
a specific data structure (see Figure 1B) to guarantee constant-
time access to the most recent data sample. Furthermore, Ach 
communication is compatible with process priorities and prior-
ity inheritance, so higher priority processes gain first access to 
read from and write to an Ach channel. Overall, we view Ach is 
complementary to network communication. The low latency and 
fast latest-message-access of Ach make it well suited for real-time 
interprocess communication.

2.2.2. Real-Time Kernels
The trade-off between throughput and latency exists also at the 
level of the operating system kernel. General purpose kernels 
such as Linux and XNU (used in MacOSX) focus on maximizing 
throughput while real-time kernels focus on minimizing latency. 
QNX and VxWorks are POSIX kernels that focus on real-time 
performance, but both are proprietary. Open source kernels 
provide greater flexibility for the user, which is important for 
research where requirements are initially uncertain. There are 
two real-time variants of the open source Linux kernel. The 
Linux PREEMPT_RT patch (Dietrich, 2005) seamlessly runs 
Linux applications with significantly reduced latency compared 
to vanilla Linux, and work is ongoing to integrate it into the main-
line kernel. However, it is far from providing formally guaranteed 
bounds on latency. Xenomai runs the real-time Adeos hypervisor 
alongside a standard Linux kernel (Gerum, 2004). It typically 
offers better latency than PREEMPT_RT but is less polished 
(Brown, 2010; Dantam et al., 2015) and its dual kernel approach 
complicates development. Because of the maturity, positive 
roadmap, and open source code base of Linux PREEMPT_RT 
(Fayyad-Kazan et al., 2013), we initially implement multiplexable 
Ach channels within this kernel.

2.2.3. Memory Allocation
Memory allocation is a particularly critical part of software devel-
opment, even more so for real-time software. The ubiquitous 
malloc and free pose issues for real-time performance. Typical 
implementations are tuned for throughput over latency. The 
allocator in the GNU C Library (glibc) commonly used on Linux 
lazily batches manipulation of free lists. Calls to glibc’s free are 
usually fast but sometimes take very long to complete (Lea, 2000). 
In contrast, the real-time focused Two-Level Segregate Fit (TLSF) 
allocator (Masmano et  al., 2004) promises O(1) performance, 
though it is not tuned for multi-threaded applications. For garbage 
collected languages, latency is even more severe. Collection cycles 
introduce pause times that are unacceptable for real-time perfor-
mance on humanoid robots (Johnson et al., 2015). Research on 
real-time garbage collection is ongoing (Yuasa, 1990; Bacon et al., 
2003; Kalibera et al., 2011), while (Smith et al., 2014) use Java for 
real-time control by disabling garbage collection in the real-time 
module. If we can constrain the ordering of allocations and frees, 
then the situation improves. Region-based allocators impose a 
last-allocated, first-freed constraint, and operate in O(1) time 
with low overhead (Hanson, 1990). In addition, they provide the 
software-engineering advantage that all objects allocated from a 
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region can be freed with a single call, potentially reducing the 
bookkeeping necessary to avoid memory leaks. Though none of 
these memory allocation approaches are the universal solution 
for real-time constraints, each has advantages and is useful in the 
appropriate circumstances.

2.2.4. Lesson Learned
Wringing real-time performance out of a general purpose system 
is a careful balancing act. It requires understanding the overheads 
introduced by low-level calls and avoiding those with the poten-
tial to cause unacceptable resource usage. Selecting appropriate 
kernels and runtime support helps, but universal and guaranteed 
solutions are rare. A fundamental challenge is that general 
purpose computation considers time not in terms of correctness 
but only as a quality metric – faster is better – whereas real-time 
computation depends on timing for correctness (Lee, 2009). This 
is one area where continuing research is needed.

2.3. system integration
System integration is a major challenge in robotics (Johnson 
et  al., 2015; Zucker et  al., 2015). While this is a broad issue 
covering algorithms, software, hardware, and operating envi-
ronments, there are still lessons from the unix community that 
inform integration of humanoid robot software. In this regard, 
the humanoid robotics community mirrors the general open 
source world, depending on a wide variety of software packages 
from globally distributed authors and running on a wide variety 
of underlying platforms. We discuss design issues for software 
extensibility and compatibility in this section. In Appendix B, we 
discuss how build systems and package managers help integrate 
the many software packages required by humanoids. These 
general approaches for extensible design and software manage-
ment are useful for similar software integration problems on 
humanoids.

2.3.1. Compatibility and Extensibility
Flexible and adaptable software is crucial to humanoid robots, 
where requirements and platforms are continually evolving. 
Tools and design principles from the POSIX programing com-
munity enable software that gracefully handles both the constant 
churn of ongoing development and the larger shifts of evolving 
platforms.

2.3.1.1. Mechanism vs. Policy
A key consideration in designing flexible software is the Separation 
of Mechanism and Policy (Silberschatz et al., 2009). Flexible soft-
ware helps both in development by making it easier to prototype 
new systems and in long-term maintenance by making it easier to 
adapt to changing requirements. Software is more flexible when it 
provides mechanisms to perform some activity, but does not dic-
tate overly restrictive policies over when or how to execute those 
activities. A canonical example of this approach is the X Window 
System (X11), which provides a mechanism for handling the dis-
play, but defers on policies for window management and “look-
and-feel” (Scheifler, 2004). Compared to other, more integrated 
windowing systems, X11 has been extraordinarily long-lived, 
surviving various alternatives, e.g., Gosling et al. (1989), Linton 
and Price (1993), and Thomas et  al. (2003), through changing 
graphics platforms. For research in particular, the separation of 
concerns is critically important to handling requirements that 
evolve as understanding of the project grows. We have followed 
this approach also in Ach by providing a communication mecha-
nism but not dictating policies for message encoding or event 
handling. This separation of policy from mechanism is important 
for flexibility.

2.3.1.2. Binary Compatibility
When we modify a library on the robot, it is desirable to avoid 
the need to modify or recompile programs using that library. This 
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requires maintaining binary compatibility. Preserving binary com-
patibility requires the library to export a compatible Application 
Binary Interface (ABI). Maintaining ABI compatibility helps users 
by avoiding the requirement to install multiple library versions and 
by reducing the need to recompile applications. Drepper (2011) 
provides a detailed explanation of shared libraries and compat-
ibility. In general, preserving binary compatibility requires that 
symbol names not be changed or removed and that client-visible 
structures preserve both their total size and the offsets of their fields. 
In C++, changes to the class hierarchy or virtual methods break 
binary compatibility. These requirements present challenges as 
new features are added to software. Adding new functions will not 
break compatibility; however, changes to structures may. There are 
some options to change structures while still preserving the ABI. 
One option, used in Ach, is to reserve space in structure declara-
tions for fields to be added in the future. Reserving space maintains 
the total size of the structure when new fields are added. The cost is 
additional memory usage for the reserved space. Another option is 
to encapsulate all structure allocation and access within the library, 
exposing structures only as opaque pointers along with functions 
to access their fields. Encapsulating allocation permits changes to 
the underlying structure. The cost is the additional indirection and 
function call overhead to access the structure. When breaking the 
ABI is necessary, it is desirable to permit multiple ABI versions of 
the library to be installed together. Installing multiple ABI versions 
can be done by changing the library name, typically by includ-
ing the version number in the library name; however, this may 
unnecessarily create different ABI versions when the new library 
version actually maintains binary compatibility. The alternative is 
to maintain a separate ABI version from the library version num-
ber. ABI versioning is handled differently on different operating 
systems; however, the Libtool component of Autotools provides 
a uniform interface for library versioning (GNU Libtool, 2015). 
While preserving ABI compatibility requires care and planning, it 
is generally possible and benefits library users.

2.3.1.3. Source Compatibility
If we cannot maintain binary compatibility when we modify 
a library, it is desirable to at least require only a recompilation 
of programs using the library rather than modifications to the 
programs’ source code. This requires maintaining source com-
patibility. Preserving source compatibility requires a library to 
export a compatible Application Programing Interface (API). 
Maintaining API compatibility helps users by avoiding or reduc-
ing the need for them to modify their code to accommodate 
API changes. API compatibility is easier to maintain than ABI 
compatibility, generally requiring only that symbols not be 
removed or renamed and that argument lists remain the same. 
If such changes are necessary, there are some options to reduce 
the burden on users. One can give users time to change their 
code by first deprecating symbols before they are removed. For 
example, the gets function, vulnerable to buffer overflows, was 
deprecated in ISO/IEC 9899:1999 (1999) and removed in ISO/
IEC 9899:2011 (2011). When structure fields must be renamed, 
one can preserve API compatibility by including both names 
within an anonymous union field. The old name can then be 
marked as deprecated. If it is possible that additional arguments 

may at some point be needed for a function, one can pass multiple 
arguments as fields within a structure or as items in a bitmasked 
integer. This allows additional arguments to be later included as 
fields in the structure or bits of the integer. This approach is used 
by the POSIX theads API (pthreads) in their various attribute 
structure arguments (POSIX, 2008). Several functions in Ach 
also take a similar attribute structure as an argument. Taking 
these precautions to preserve API compatibility eases the task of 
software maintenance for library users.

2.3.1.4. Language Selection
Programing language selection is an important, though contentious 
issue, and no language is universally ideal for the diverse needs 
of humanoid robots. Developing complex applications is easier 
in high-level, garbage-collected languages, while strict real-time 
requirements preclude garbage-collection, leaving lower-level lan-
guages such as C and C++. Though C++ has many features over C 
that are sometimes useful, it comes at a cost which should be consid-
ered. C is often preferred by performance-sensitive projects, e.g., the 
Linux kernel, because it is easier for the programmer to understand 
and control important, low-level details such as error handling and 
memory allocations which C++ abstracts through exceptions and 
constructors. C++ also presents compatibility issues. Because C 
identifiers map directly to assembly language symbols, it is gener-
ally possible to link C code built with different compilers. C++, on 
the other hand, uses implementation-specific name mangling on 
identifiers, e.g., to handle overloaded functions, so linking C++ 
code built with different compilers may not be possible. Changes 
to operating systems ABIs for C++, though still infrequent, occur 
more often than for C. When performance requirements permit 
high-level, garbage-collected languages, binding low-level libraries 
written in C is generally easier than for C++. C is universally sup-
ported among high-level languages for foreign function bindings, 
e.g., JNI for Java, CFFI for Lisp, and ctypes for Python, whereas the 
ability to directly interact with C++ classes is less common. Because 
Ach is performance sensitive and real-time, it is implemented in C. 
To interface with high-level, non-real-time modules, Ach provides 
foreign function bindings for Common Lisp, Python, and Java. 
Given the trade-offs among programing languages, one should be 
judicious in selecting languages for implementations and interfaces.

2.3.2. Lesson Learned
The unix programing tradition provides many tools and con-
ventions to assist with system integration of humanoid robot 
software. Following established conventions to preserve ABI and 
API compatibility makes software easier to use by reducing the 
system administration and software maintenance task for users. 
Appropriate languages ease software development and mainte-
nance while still providing acceptable performance. Though this 
is far from covering the full range of system integration issues for 
humanoid robots, it goes a long way toward addressing software-
specific system integration.

3. eXTenDing linUX cOMMUnicaTiOn

POSIX provides a rich variety of communication methods that 
are well suited for general purpose information processing, but 
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none are ideal for real-time robot control. General computation 
favors throughput over latency. POSIX communication favors 
older data over newer. In contrast, real-time control requires low 
latency access to the newest data. Dantam et al. (2015) discusses 
the challenges of POSIX communication in detail. This gap has 
made it difficult to develop real-time applications in the multi-
process POSIX style. To address this communication need, we 
developed the Ach library.

3.1. The ach iPc library
Ach provides a message bus or publish-subscribe style of com-
munication between multiple writers and multiple readers 
(Dantam et al., 2015). Robots using Ach have multiple channels 
across which individual data samples are published. Messages are 
sent as byte arrays, so arbitrary data may be transmitted such as 
floating point vectors, text, images, and binary control messages. 
The primary unique feature of Ach is that newer messages always 
supersede older messages whereas POSIX communication gives 
priority to older data and will block or drop newer messages when 
buffers are full. Ach’s latest-message semantics are appropriate for 
continuous, time-varying signals such as reference velocities or 
position measurements. In other cases where reliable messaging 
is required, such as updating a PID gain value, Ach may provide 
sufficient reliability by using a separate channel with a large 
buffer; however, this is a secondary consideration. Ach’s primary 
focus on latest-information, publish-subscribe messaging give it 
unique capabilities for real-time communication of physical data 
samples.

3.1.1. Relation to Robotics Middleware
There are many other communication systems developed for 
robotics; however, Ach provides a unique set of features and 
capabilities. First, many other systems operate as frameworks 
(Bruyninckx et al., 2003; Metta et al., 2006; Quigley et al., 2009) 
that impose specific structure on the application. Sometimes this 
structure is helpful when it fits the desired application, and other 
times such imposed structure may impede development if the 
requirements are outside the particular framework’s model. In 
contrast, Ach strictly adheres to the idea of mechanism, not policy 
(see Section 2.3.1.1), providing a flexible communication method 
that is easily integrated with other approaches (see Appendix 
A). One could also view Ach as providing low-level capabilities 
that could serve as a useful building-block for such higher-level 
frameworks. Second, many other systems focus on network 
communication (Metta et al., 2006; Quigley et al., 2009; Huang 
et al., 2010; Hammer and Bauml, 2013). In contrast, Ach focuses 
on local, interprocess communication. This focus enables it to 
achieve superior performance in its domain (Dantam et al., 2015), 
and we view Ach as complementary to various network protocols. 
Finally, Ach provides unique semantics that make it especially 
suited to real-time communication of continuously varying data. 
Similar to multicast methods (Huang et al., 2010), Ach efficiently 
supports multiple senders and receivers. Ach implicitly supports 
process priorities whereas network-based methods use QoS (DDS 
1.2, 2007; Hammer and Bauml, 2013). Crucially, Ach eliminates 
any possibility HOL blocking (see Section  2.2.1). Network-
based methods can handle HOL blocking at the sending and 

receiving ends (Metta et al., 2006), but dealing with assumptions 
in intermediate infrastructure and code is a difficult challenge 
(Gettys and Nichols, 2012). Overall, the unique design decisions 
underlying Ach result in special advantages for local, real-time 
communication, and we consider Ach as a key component within 
a larger robot software system.

3.1.2. Design of Ach
The data structure for each channel, shown in Figure  1B, is 
a pair of circular buffers, (1) a data buffer with variable sized 
entries and (2) an index buffer with fixed-size elements indi-
cating the offsets into the data buffer. Ach provides additional 
capabilities compared to a typical circular buffers, such as in 
Figure 1A:

•	 Ach allows multiple receivers;
•	 Ach always allows access to the newest data;
•	 Ach drops the oldest data – instead of the newest data – when 

the buffer is full.

Two procedures compose the core of ach: ach_put and 
ach_get. Detailed pseudocode is provided in Dantam and 
Stilman (2012), and their use is discussed in the Ach manual 
(Dantam, 2015b) and programing reference (Dantam, 2015a).

The procedure ach_put inserts new messages into the 
channel. It is analogous to the POSIX write, sendmsg, and 
mq_send functions. The procedure is given a pointer to the 
shared memory region for the channel and a byte array contain-
ing the message to post.

Algorithm 1 (ach_put). There are four broad steps to the 
ach_put procedure:

 1. Get an index entry. If there is at least one free index entry, use 
it. Otherwise, clear the oldest index entry and its correspond-
ing message in the data array.

 2. Make room in the data array. If there is enough room already, 
continue. Otherwise, repeatedly free the oldest message until 
there is enough room.

 3. Copy the message into data array.
 4. Update the offset and free counts in the channel structure.

The procedure ach_get receives a message from the chan-
nel. It is analogous to read, recvmsg, and mq_receive. 
The procedure takes a pointer to the shared memory region, a 
storage buffer to copy the message to, the last message sequence 
number received, the next index offset to check for a message, 
and option flags indicating whether to block waiting for a new 
message and whether to return the newest message bypassing 
any older unseen messages.

Algorithm 2 (ach_get). There are four broad steps to the 
ach_get procedure:

 1. If given the option argument to wait for a new message and 
there is no new message, then wait. Otherwise, if there are no 
new messages, return a status code indicating this fact.

 2. Find the index entry to use. If given the option argument to 
return the newest message, use the newest entry. Otherwise, if 
the next entry we expected to use contains the next sequence 
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number, we expect to see, use that entry. Otherwise, use the 
oldest entry.

 3. According to the offset and size from the selected index entry, 
copy the message from the data array into the provided stor-
age buffer.

 4. Update the sequence number count and next index entry 
offset for this receiver.

Ach provides unique semantics compared to traditional 
POSIX communication. Processes on a single host can access a 
unified physical memory, which provides high bandwidth and 
assumed perfect reliability; still, care must be taken to ensure 
memory consistency between asynchronously executing pro-
cesses. In contrast, real-time communication across a network 
need not worry about memory consistency, but must address 
issues such as limited bandwidth, packet loss, collisions, clock 
skew, and security.

3.1.3. User Space Limitations
The initial implementation of Ach located the data structure 
shown in Figure 1B in POSIX shared memory and synchronized 
access using a mutex and a condition variable. This presented 
a few potential error modes and limitations: a rogue or faulty 
process could deadlock or corrupt a channel and each thread was 
limited to waiting for data on single channel at a time. We discuss 
these potential issues next and resolve them with the kernel space 
implementation described in Section 3.2.

While the formal verification of Ach (Dantam et  al., 2015) 
guarantees that it will not deadlock with regular use of the library 
calls, deadlock may still occur if a reader or writer dies, e.g., with 
a kill -9, inside a library call. This is partially mitigated by the 
use of robust POSIX mutexes, which detect this condition and 
handle interrupted reads. Additional code could be added, which 
would rollback an interrupted write.

Because all processes accessing the channel must have read and 
write access to the shared memory region, a rogue process could 
corrupt the channel data structures. Currently, unintentional 
corruption is weakly detected with guard bytes. This could be 
improved with better sanity checks of the channel and automatic 
recreation of corrupted channels.

The use of POSIX threads synchronization primitives limits 
each thread to wait for new messages on a single channel at a 
time. Readers wait for new messages on a per-channel POSIX 
condition variable and are notified by the writer when a new 
message is posted. POSIX threads are limited to waiting on only 
a single condition variable at a time; thus, there is no way in this 
implementation for a thread to simultaneously wait for data on 
multiple channels. Alternative file-based notification, e.g., using 
pipes or sockets, would allow multiplexing but may cause extra 
context-switching and additional logic would be required to 
ensure that tasks run in priority order. This semantic limitation 
was the primary motivation for the development of the kernel 
space Ach implementation.

3.2. Kernel space ach
To address the limitations of user space Ach presented in 
Section 3.1.3, we develop a new kernel space implementation of the 

Ach data structure and procedures. This implementation runs in the 
Linux kernel. The channel buffers shown in Figure 1B are located in 
kernel memory, protecting channels from corruption and deadlock 
(see Figure  2). Critically, channels are accessed from user space 
via file descriptors, enabling efficient multiplexing through event-
based poll/select style calls. This enables efficient real-time 
communication using established network programing idioms.

3.2.1. Kernel Module Implementation
Ach is implemented in kernel space as a Linux module that cre-
ates a device file for each channel. When the module is loaded, it 
creates the /dev/achctrl device to manage channel creation 
and removal. Each channel is represented with a separate virtual 
device, e.g., /dev/ach-foo for channel foo. These virtual 
devices are not accessed directly by applications but instead are 
accessed through the Ach library using the same API as user space 
channels. This provides backward source-compatibility with the 
user space implementation and allows applications to freely switch 
between user and kernel space channels. The library functions to 
create channels (ach_create) and remove channels (ach_
unlink) operate on kernel channels through ioctl system 
calls on the /dev/achctrl device. The library functions to send 
(ach_put) and receive (ach_get) messages map to write 
and read, respectively. Additional parameters for receiving mes-
sages, such as timeouts or flags to retrieve the newest message, are 
passed to the kernel via ioctls. Event-based multiplexing of ach 
channels – alongside sockets, pipes, and other file descriptors – is 
possible by passing the file descriptor for the channel device file to 
poll, select, etc; the kernel module performs the appropriate 
notification when a new message is posted to the channel. By pro-
viding this kernel-supported, file-descriptor-based interface to ach 
channels, we improve the ability to handle multiple data sources 
and to interoperate with other communication mechanisms using 
the standard POSIX event-based I/O functions.
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Multiplexing of Ach kernel channels is possible with the fol-
lowing steps:

Algorithm 3 (Ach Multiplexing).

 1. Open all channels with ach_open.
 2. Obtain the channels’ file descriptors by calling ach_chan-

nel_fd, and record the file descriptors in the struct 
pollfd.

 3. Call poll to wait for new data on any channel.
 4. Call ach_get on channels with new data.

Appendix A provides a complete example of multiplexing Ach 
channels alongside conventional POSIX streams.

3.2.2. Advantages of Kernel Space Ach
The in-kernel Ach implementation removes the limitations of the 
user space implementation discussed in Section 3.1.3. Primarily, it 
permits multiplexing of multiple channels alongside other POSIX 
communication mechanisms using standard and efficient event-
based I/O, e.g., select and poll. For humanoid robots, where a 
process may need to receive data from a large number of sources, this 
ability to conduct efficient I/O is a critical advantage. In addition, the 
potential of user space channels for corruption and deadlock from 
rogue processes is eliminated in the kernel implementation. Kernel 
channels are in kernel memory which cannot be directly accessed 
by user space processes. The kernel implementation eliminates the 
faults of user space Ach, giving it the same features and robustness 
as standard POSIX communication mechanisms.

3.2.3. Disadvantages of Kernel Space Ach
The in-kernel implementation does present some potential 
disadvantages for portability and a caveat regarding robustness.

While the user space implementation used standard POSIX 
calls, the in-kernel implementation is Linux-specific, running on 
vanilla and PREEMPT_RT kernels. This would present an issue 
if it is necessary to use a non-Linux kernel, requiring additional 
work to implement Ach within that separate kernel. However, the 
Ach code is modular and well-factored – the core code is largely 
shared between the user and Linux kernel space implementations. 
Adding an additional backend for another kernel should not be 
a major challenge, and we hope to develop a kernel module for 
Xenomai in the future.

Code in kernel space faces stricter correctness requirements than 
in user space. Software errors in the Ach kernel module – as with 
any kernel space code – can potentially crash the entire operating 
system. However, for humanoid robots, any software error, whether 
in user or kernel space, can potentially – and literally – crash the 
entire robot. Thus, moving Ach to the kernel does not significantly 
change the severity of potential errors. Still, it is important to 
understand the strict requirements on kernel space code.

3.3. Benchmarks
We provide benchmark results of message latency for Ach 
compared to a variety of other kernel communication methods.4 

4 Benchmark code available at http://github.com/golems/ach 

Latency is often more critical than bandwidth for real-time 
control as the amount of data per sample is generally small, e.g., 
state and reference values for several joint axes. Consequently, 
the actual time to copy the data is negligible compared to other 
sources of overhead such as process scheduling. The benchmark 
application performs the following steps:

 1. Initialize communication structures;
 2. fork sending and receiving processes;
 3. Sender: Post timestamped messages at the desired frequency;
 4. Receivers: Receive messages and record latency of each mes-

saged based on the timestamp.

Figure 3 shows the results of the benchmarks, run on an Intel® 
Core™ i7-4790 at 3.6 GHz under Linux 3.18.16-rt13 PREEMPT 
RT. We compare Ach with several common POSIX communica-
tion mechanisms. In contrast to Ach and these lightweight, kernel 
methods, heavyweight middleware such as ROS and CORBA 
impose several times greater communication latency (Dantam 
et al., 2015). All the methods shown in Figure 3 are similar in 
performance, indicating that the bulk of overhead is due to the 
process context switch rather than the minimal time for the actual 
communication operation. For the single receiver case, both user 
and kernel space Ach provide comparable latency to POSIX com-
munication. While the latency is similar, there are also important 
feature differences. Kernel space Ach can multiplex across mul-
tiple channels while user space Ach cannot, and unlike POSIX 
communication, Ach directly supports multiple subscribers. The 
results in Figure 3 show that Ach provides strong performance, 
along with its ability to handle multiple subscribers and its unique 
latest-message-favored semantics.

3.4. case study: Baxter robot
We use the new kernel space Ach implementation in our control 
system for the Baxter robot. The Baxter is a dual-arm manipula-
tor. Each arm has 7 degrees of freedom and a parallel jaw gripper. 
The integrated electronics enable position, velocity, and torque 
control of the robot’s axes. We implement several modes of multi-
axis control using this interface.

Figure 4 shows our Ach-based control system for the Baxter 
robot. In this system, each driver and controller runs as a separate, 
isolated operating system process. Previous ach-based systems 
ran drivers as separate processes, but multiple controllers were 
combined into a single processes (Dantam et al., 2015). Because 
kernel space Ach channels are efficiently multiplexable, we can 
run the Baxter controllers in separate processes, each outputing 
to a distinct channel. The ref process receives messages from 
all these channels, selecting the highest priority message to com-
municate to the robot. This design efficiently integrates multiple 
control modes for the robot, each running in separate processes.

In addition to the processes shown in Figure 4, we also run a 
separate, non-real-time logging process. All the control system 
processes write log messages to a single event channel. In normal 
operation, the logger waits for new messages on the event chan-
nel, stepping through each posted message and recording it to a 
log file. However, if log messages are posted faster than the logger 
can process them, for example whether due limited CPU cycles 
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FigUre 4 | ach-based control system for the Baxter robot. Three control pipelines run concurrently: a teleoperation pipeline for manual control (top), a camera 
registration and visual servoing pipeline (middle, Dantam et al., 2016), and a joint planning (Sucan et al., 2012) and interpolation pipeline (bottom). The ref process 
multiplexes the output of these three pipelines and selects the highest priority command to send to the robot. A non-real-time logging process (not shown) also 
receives informational and error messages from the other control system processes over a single Ach channel and records the messages in a log file.

FigUre 3 | Message latency for ach and POsiX communication. Ach has comparable performance to optimized POSIX communication, and unlike POSIX 
methods, Ach enables multiple receivers and prioritizes newer data. In the plots, “Mean” is the average latency over all messages, “99%” is the latency that 99% of 
messages beat, and “Max” is the maximum recorded latency. The long-tail of the worst-case behavior arises from the focus of general purpose platforms on 
average-case performance instead of bounded response needed by real-time systems. For example, lazy algorithms and hardware memory caches improve 
average performance, but still leave the worst-case cost to pay.
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or a programing error, some messages will be skipped as they are 
overwritten in the circular buffer (see Figure 1B). The alternative 
to skipping messages would be to block the message sender until 
the logger can process messages or to buffer an unbounded num-
ber of unprocessed log messages. Neither blocking a real-time 
process nor growing a buffer without bound is desirable in a real-
time control system. Instead, Ach overwrites the oldest message 
and the system continues, missing only the skipped log messages.

The primary advantages of this multi-process control sys-
tem design are modularity and robustness to software errors. 
Separating drivers and controllers into different processes 
means they can be developed and tested independently. This 
separation is particularly useful to prototype new controllers, 
which can be developed without disturbing previously tested 
work. For example, we developed and tested the workspace 
controller described in Kingston et  al. (2015) without any 
modification to the processes in Figure 4. Failures encountered 
while developing and testing the new controller did not affect 
the other running control processes. In contrast, combining 

multiple controllers in a single process as was necessary for 
the user space Ach systems presented in Dantam et al. (2015) 
means that errors encountered while prototyping a new control-
ler will not interfere with existing control modes. In research 
applications on robot control, easing controller development 
and testing is a key advantage.

4. cOnclUsiOn

We have discussed the application of unix design principles to 
robot software. Among the various unix tools and conventions, 
the multiprocess design typical of unix applications improves 
modularity and robustness, critical needs for complex systems 
such as humanoid robots. We enable this multiprocess design for 
real-time control with the efficient Ach communication library. 
This approach is general, applying to multiple types of robots and 
other complex mechatronic systems that require coordination of 
many hardware devices and software modules. Ach fills a need 
in robot software unmet by POSIX, providing a communication 
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mechanism that supports multiple receivers and gives priority to 
newer messages. The kernel space implementation presented in 
this paper exposes a file descriptor interface, enabling multiplex-
ing of messages from many sources and efficient integration with 
other communication methods. Kernel space Ach enables devel-
opment of real-time robot software in the conventional modular, 
robust, multi-process unix style.

The approach to robot software development we have pre-
sented – advocating use of existing tools and conventions from 
the unix programing community  –  is inherently conservative. 
While building on unix provides a mature set of capabilities, new 
research in techniques to automate software development have 
the potential to radically improve the development process.

Formal methods for software verification and synthesis can 
greatly ease software development. Some tools are already in 
widespread use (Cimatti et  al., 2002; Ball et  al., 2004), and we 
used SPIN (Holzmann, 2004) to verify Ach in Dantam et  al. 
(2015). Formal methods continue to be an active research area 
in robotics (Wang et al., 2009; Dantam and Stilman, 2013; Liu 
et al., 2013; Nedunuri et al., 2014; Lignos et al., 2015), bridging the 
fields of software engineering, automatic control, and planning 
and scheduling. Though limits remain on which problems admit 

formal reasoning, further research has the potential to broaden 
the scope of formal methods for humanoid robot software, 
changing our fundamental approach to software development.
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aPPenDiX

a. ach Multiplexing example
Ach kernel channels can be multiplexed using the conven-
tional select, poll, etc. functions. We provide an example 
program that multiplexes two Ach channels along with the 

program’s standard input and echoes all data to standard 
output. This example demonstrates Ach’s efficient handling of 
multiple data sources and compatibility with other forms of 
POSIX communication.

26 exit(EXIT_FAILURE);
27 }
28 /* Get channel file descriptor */
29 r = ach_channel_fd( &channel[i], &pfd[i].fd );
30 if( ACH_OK != r ) {
31 fprintf(stderr, "could not get file descriptor for channel ’%s’: %s\n",
32 names[i], ach_result_to_string(r));
33 exit(EXIT_FAILURE);
34 }
35 /* Set events to poll for */
36 pfd[i].events = POLLIN;
37 }
38 /* Also, poll() standard input */
39 pfd[n_channels].fd = STDIN_FILENO;
40 pfd[n_channels].events = POLLIN;
41
42
43 /***************/
44 /* poll() loop */
45 /***************/
46 for(;;) {
47 /* poll() for new data */
48 int r_poll = poll( pfd, n_pfd + 1, -1 );
49 if( r_poll < 0 ) {
50 perror("poll");
51 exit(EXIT_FAILURE);
52 }
53 /* Find file descriptors with new data */
54 for( size_t i = 0; i < n_pfd && r_poll > 0; i++ ) {
55 if( (pfd[i].revents & POLLIN) ) {
56 char buf[512];
57 size_t data_size = 0;
58 if( i < n_channels ) {
59 /* Get new data on an Ach channel */
60 enum ach_status r = ach_get( &channel[i], buf, sizeof(buf), &data_size,

1 #include <stdlib.h>
2 #include <pthread.h>
3 #include <inttypes.h>
4 #include <stdio.h>
5 #include <poll.h>
6 #include <unistd.h>
7 #include <ach.h>
8
9 int main(int argc, char **argv)

10 {
11 const char *names[] = {"channel-0", "channel-1"};
12 const size_t n_channels = sizeof(names) / sizeof(names[0]);
13 const size_t n_pfd = n_channels + 1;
14 struct ach_channel channel[n_channels];
15 struct pollfd pfd[n_pfd];
16
17 /*****************************/
18 /* Initialize pollfd structs */
19 /*****************************/
20 for( size_t i = 0; i < n_channels; i ++ ) {
21 /* Open Channel */
22 enum ach_status r = ach_open( &channel[i], names[i], NULL );
23 if( ACH_OK != r ) {
24 fprintf(stderr, "could not open channel ’%s’: %s\n",
25 names[i], ach_result_to_string(r));
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B. configuration, Building, and Packaging
Software build systems and package managers are useful tools to 
address the system integration needs of humanoid robot software. 
Open source software distributions such as Debian and FreeBSD 
have developed approaches for integrating and maintaining 
enormous numbers of software packages. Their goal is to make 
software that is portable, that builds robustly, and that is easy to 
install, upgrade, and remove. These tools are general and suited 
to the needs of humanoids as well.

Different humanoid robots provide varying hardware 
capabilities and software environments, and it is important that 
humanoid software be adaptable across these different robots. A 
key step to achieving this portability is the configuration step of 
the build process, where the software adapts to conditions of the 
environment in which it must run. For example, configuration 
may determine whether to use the previously mentioned epoll 
or kqueue calls depending on whether it must run on Linux or 
FreeBSD, or it may determine how to interface with the fieldbus 
linking the robot’s embedded electronics. In general, configura-
tion chooses alternate implementations or optional components 
to build based on the available features of the host system. This 
adaptability is vital to building software that is portable and that 
builds robustly.

The two predominant build systems are the GNU Autotools 
and CMake. Overall, both offer similar capabilities with a 
number of superficial differences. There is, however, a difference 

in design philosophy that influences the use of these systems. 
Autotools assumes little about the host platform beyond a POSIX 
shell, testing at compile-time for essentially every other feature, 
an approach that is robust to new and changing platforms but 
requires additional time for the feature tests. In contrast, CMake 
maintains a database of modules for platforms and libraries, 
which can reduce compilation time by omitting feature tests but is 
unhelpful for differing platforms and dependencies. One can also 
maintain a build-system agnostic database of available libraries 
using pkg-config (pkg-config, 2013), which works with CMake, 
Autotools, and other build systems. Additionally, projects using 
Autotools generally follow a strict set of conventions such that 
all can be configured, built, and installed by the same procedure 
(GNU Standards, 2015). There are fewer established conventions 
for CMake so it is common for different CMake projects to require 
different steps in the build process. One should consider the need 
for adaptability, conformity, and configuration performance 
when selecting a build system.

We use Autotools to build Ach due to their maturity and strict 
conventions compared to CMake. In addition, Autotools enable 
more direct integration with the Make-based build system of the 
Linux kernel, which simplifies building and installing the Ach 
Linux kernel module (see Section 3.2).

To manage the large number of software packages on humanoid 
robots, package managers are an invaluable tool. Package manag-
ers handle the details of installation, cross-package dependencies, 

61 NULL, ACH_O_NONBLOCK | ACH_O_FIRST );
62 switch(r) {
63 case ACH_OK:
64 case ACH_MISSED_FRAME:
65 break;
66 default:
67 fprintf( stderr, "Error getting data from ’%s’: %s\n",
68 names[i], ach_result_to_string(r));
69 exit(EXIT_FAILURE);
70 }
71 } else {
72 /* Read new data on a file descriptor */
73 ssize_t r = read(pfd[i].fd, buf, sizeof(buf));
74 if( r < 0 ) {
75 perror("read()");
76 exit(EXIT_FAILURE);
77 } else {
78 data_size = r;
79 }
80 }
81 /* Echo the data to standard output */
82 ssize_t wr = write(STDOUT_FILENO, buf, data_size);
83 if( wr < 0 ) {
84 perror("write");
85 exit(EXIT_FAILURE);
86 }
87 r_poll--;
88 }
89 }
90 }
91 return 0;
92 }
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and package versioning. The two main styles of package 
managers are binary-based and source-based. Binary-based 
package managers download and install pre-compiled packages. 
Examples include Redhat’s RPM, Debian’s APT, and – if viewed 
broadly  –  “App Stores” such as that of Apple’s iOS and Google 
Play. Source-based package managers download package source 
code and build it on the local machine. Examples include FreeBSD 
ports, Gentoo Portage, and Homebrew for MacOSX. The advan-
tage of binary packages is that no time must be spent to compile 
the package on the local machine. The advantage of source-based 
package managers is that packages can be custom-configured with 
optional features based on the users preferences and fewer server 
resources are required to store the compiled binaries. The choice 
of a package manager is typically dictated by the operating system 
distribution of the user. For handling software deployment, these 
package managers are mature and useful tools.

Two new data storage tools offer the potential to improve 
existing build systems and package managers: distributed revi-
sion control – e.g., git and mercurial – and copy-on-write (COW) 
filesystems  –  e.g., ZFS and BTRFS. Existing build systems and 
package managers were developed at a time when source code 
was typically downloaded as tarballs from a scattered collection of 
servers. Today, source code is often downloaded via a distributed 
version control system. Directly accessing the revision controlled 
files is a poor fit for Autotools’ approach of generating a port-
able configuration script, and it makes some features of current 

package managers redundant, such as hosting and distributing 
multiple tarball versions and applying patches before building. 
Second, COW filesystems provide the capability to make cheap, 
writable snapshots. This could be used to maintain multiple 
concurrent images of the operating system, for example to install 
different versions of one package or two different conflicting 
packages. One view on how these new tools could change build 
systems and packages managers is given by Poettering (2014). 
These new developments show that while existing build systems 
and package managers are useful and mature, there is room for 
ongoing development and new innovation.

ROS (Quigley et al., 2009) provides a different view on build 
systems and package management, focusing on robots. ROS com-
bines the build system and package manager into a single frame-
work based on CMake (Catkin, 2015); however, binary packages 
are still distributed using the existing APT package manager. This 
approach eliminates some duplication of metadata – i.e., which 
files must be installed – necessary with the traditional distinction 
between package managers and build systems. However, this is 
unhelpful if packages are to be installed on a non-ROS system. 
Additionally, packages are also constrained to use the given 
CMake-based build system which may not always be the best 
fit, e.g., for non-C/C++ packages, or provide necessary capabili-
ties, e.g., the site-based configuration feature of Autotools. Still, 
ROS presents an interesting take on how we build and package 
software.
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Introduction

With the expected introduction of robots into our daily lives, providing mechanisms to avoid unde-
sired attacks and exploits in robot communication software is becoming increasingly required. Just
as during the beginnings of the computer age (Pfleeger and Pfleeger, 2002), robotics is established
in a “happy naivety,” where security rules against external attacks are not adopted, assuming that
robotics knowledgeable people are well intended. While this may have been true in the past, the
mass adoption of robots will increase the possibilities of attacks. This fact is especially relevant in
defense, medical and other critical fields involving humans, where tampering can result in serious
bodily harm and/or privacy invasions. For these reasons, we consider that researchers and industry
should deploy efforts in cyber safety and acquire good practices when developing and distributing
robot software. We propose the term Cryptobotics as a unifying term for research and applications
of computer and microcontrollers’ security measures in robotics.

Stating the Problem

The problems that the field of robotics will face are similar to those the computer revolution faced
with the widespread of the Internet 30 years ago. Among the common attacks computers may suffer,
there are: denial-of-service, eavesdropping, spoofing, tampering, privilege escalation, or information
disclosure for instance. To these problems, robots add the additional factor of physical interaction.
While taking the control of a desktop computer or a server may result in loss of information (with
its associated costs), taking the control of a robot may endanger whatever or whoever is near.

As robots become more integrated on the communications networks, it seems appropriate to
reuse the tools designed for web applications in order to controls the robots. However, the authors
consider there are differences between regular computers communicating through the network, and
robots performing the same actions. Mohanarajah et al. (2015) states differences between web and
robotic applications: “Web applications are typically stateless, single processes that use a request-
response model to talk to the client. Meanwhile, robotic applications are stateful, multiprocessed,
and require a bidirectional communication with the client. These fundamental differences may
lead to different tradeoffs and design choices and may ultimately result in different software
solutions for web and robotics applications.” To these differences, we could also add the real-time
constraints that characterize robotics applications. Despite other sources of issues, like software
bugs or vulnerabilities [buffer overflow, command injection, etc. (Tanenbaum and Bos, 2014)], we
consider that communications currently are one of the main vulnerabilities in robotics.

A number of fields in robotics where security and privacy are particularly relevant can be
addressed.
• Defense and Space: The military field should be very aware of the best practices in cyber security

to be followed regarding its robots. Unmanned aerial vehicles, commonly called “drones,” are
being destined to surveillance and also to combat missions. Common sense dictates that any
communications with these vehicles should be encrypted (Javaid et al., 2012), but reality shows us

Frontiers in Robotics and AI | www.frontiersin.org September 2015 | Volume 2 | Article 23160

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://dx.doi.org/10.3389/frobt.2015.00023
https://creativecommons.org/licenses/by/4.0/
mailto:smorante@ing.uc3m.es
http://dx.doi.org/10.3389/frobt.2015.00023
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2015.00023&domain=pdf&date_stamp=2015-09-29
http://www.frontiersin.org/Journal/10.3389/frobt.2015.00023/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2015.00023/abstract
http://loop.frontiersin.org/people/242139/overview
http://loop.frontiersin.org/people/210952/overview
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Morante et al. Cryptobotics

differently. For example, in the year 2012 it was reported that
only between 30 and 50 percent of America’s Predators and
Reapers (two of the most used drones in US) were using fully
encrypted transmissions.1

Situation: a non-authorized entity eavesdrops
surveillance images of drones, takes its control,
exploiting a non-encrypted connection, and crashes
it into a populated area.
Situation: a non-authorized entity takes control of a
robot inside International Space Station and sabo-
tages an ongoing experiment.

• Telemedicine and Remote surgery: This exciting field canmake
remote surgery become an everyday reality, where experts can
operate patients from the other side of the world. While this is
beneficial to society, we must consider the potential dangers. In
2009, the Interoperable Telesurgery Protocol (ITP) (King et al.,
2009) was proposed as a preliminary specification for interop-
erability among robotic telesurgery systems. Recently, the fact
that ITP does not use any form of encryption or authentication
was discovered.2 This is an obvious system exposure to exploits
using aman-in-the-middle attack for taking control of the robot
(Bonaci et al., 2015).

Situation: a non-authorized entity takes control of a
surgery robot during an operation, endangering the
life of the patient.

• Household robots: This market is growing both in research and
commercially available robots. Robots will be used as assistants
at home. For instance, one of these projects is Care-O-bot (Hans
et al., 2002), a robotic assistant in homes. In one of the available
versions, this robot is equippedwithmicrophones, cameras and
3D sensors. This set of sensors can collect a huge amount of
information, which must be protected (Denning et al., 2009).
Service robots may one day also collect data about the health
status of a person; law regulations require that this data is
handled with extra care.

Situation: a non-authorized entity takes control of a
household robot and obtains streams of images with
private data.

• Disaster robots: Since the Fukushima Daiichi nuclear disaster
in 2011, the robotics community has increased its efforts to
build and deploy robots for disaster scenarios. One of the
expected tasks these robots will have to face in a disaster
scenario is related to accessing and repairing/disconnecting
dangerous systems. Due to the potential danger that
may arise in these situations (Vuong et al., 2014), robots
should not be able to be externally modified by an external
attack.

Situation: a non-authorized entity takes control of a
robot deployed to disconnect a nuclear platform that

1Most U.S. Drones Openly Broadcast Secret Video Feeds: http://www.wired.com/
2012/10/hack-proof-drone/
2Interoperable Telesurgery Protocol (ITP) Plaintext Unauthenticated MitM Hijack-
ing: http://osvdb.org/121842

may suffer a partial meltdown, and can thwart the
disconnection operation.

Current State of Security in Mainstream
Robotic Software

Robots are a combination of mechanical structures, sensors, actu-
ators, and computer software that manages and controls these
devices. Mainstream practices in robotics involve component-
based software engineering. Each component is designed as an
individual computer program (e.g., a motor moving program)
which communicates with other components using predefined
protocols. While a large quantity of software libraries for com-
munication already exist, the robotics community has devel-
oped a number of “software architectures.” Currently, one of
the most popular robotics-oriented architecture is ROS (Robot
Operating System) (Quigley et al., 2009). Another co-existing
architecture is YARP (Yet Another Robot Platform) (Metta et al.,
2006). Both systems work similarly: a system built using ROS
or YARP consists of a number of programs (nodes or modules),
potentially on several different hosts, connected in a peer-to-peer
topology.

According to ROS documentation3: “Topics are named buses
over which nodes exchange messages. Topics have anonymous
publish/subscribe semantics (.) In general, nodes are not aware
of who they are communicating with.” From the point of
view of security, this anonymous communication scheme is
a welcome sign toward exploits (McClean et al., 2013). Mes-
sages are sent unencrypted through TCP/IP or UDP/IP. The
default check performed is an initial MD5 sum of the mes-
sage structure, a mechanism used to assure the parties agree
on the layout of the message. Some researchers have developed
an authentication mechanism for achieving secure authentica-
tion for remote, non-native clients in ROS (Toris et al., 2014).
While it can increase the security of the overall system, without
data encryption, an eavesdropper could acquire non-encrypted
information.

Part of the ROS community is dedicating efforts to integrating
OMG’s DDS (Data Distribution Service) as a transport layer for
ROS 2.0.4 A preliminary alpha version has just been released.
DDS is a standard specification followed by several vendors for
a middleware providing publish-subscribed communications for
real-time and embedded systems. RTI provides plugins which
comply with the DDS Security specification including authenti-
cation, access control and cryptography. It would be a big step
forward for securing our robots if ROS 2.0 aimed to comply with
the DDS Security specification as well.

YARP states among its documentation5: “A [default] new con-
nection to a YARP port is established via handshaking on a TCP
port. So everyone who can access this TCP port can connect
to your YARP port. So if you are not behind a firewall, you
are exposing your YARP infrastructure to the world (.) And if
your application is vulnerable to corrupted data, it is a security

3http://wiki.ros.org/Topics
4http://design.ros2.org
5http://wiki.icub.org/yarpdoc/yarp_port_auth.html
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leak.” Other YARP documentation reads clearly6: “If you expose
machines running YARP to the Internet, expect your robot to
1 day be commanded to make a crude gesture at your funders
by a script kiddie in New Zealand.” However, an authentication
mechanism can be activated in YARP, which adds a key exchange
to the initial handshaking in order to authenticate any connec-
tion request. It has been enabled by default so it is always com-
piled. However, to preserve backward compatibility, the feature is
skipped at runtime if the user does not configure it by providing a
file that contains the authentication key.

Additionally, a new port monitoring and arbitration (Paikan
et al., 2014) functionality inside YARPhas been used to implement
a LUAencoder/decoder of data.7 Data are passed through aBase64
encoder before being sent, and decoded upon reception at the
target port. A similar mechanism could potentially be used to
encrypt and decrypt the data.

A limited amount of other works has also focused on secur-
ing robot communications. In Groza and Dragomir (2008), they
implement an authentication protocol to assure the authenticity of
the information when controlling a robot via TCP/IP. However,
they do not implement encrypted communications. In Coble
et al. (2010), they implemented a hardware system that verifies
integrity and health of the system software (to avoid tampering) in
telesurgical robots. Regarding the previously mention ITP proto-
col, some researchers are working on security enhancements (Lee
and Thuraisingham, 2012). One commercially available robot
that does take cyber security into account is BeamPro, a telep-
resence robot8 where secure protocols, symmetric encryption,
and data authentication are used, thus providing security and
privacy.

Secure communications are evenmore important in new trends
in robotics which aim at outsourcing computation, namely Cloud
Robotics. In this paradigm, robots use their sensors to collect data,
and then upload the information to a remote computation center,
where the information is processed, and may be shared with other
robots. Rapyuta (Mohanarajah et al., 2015) is an example of this
paradigmwhere the technologies used (e.g., WebSockets) allow to
secure the information.

Another usual way of communications between robot’s devices
is through communication buses (CAN, EtherCAT, etc.). Cur-
rently, none of the traditional field buses offers security fea-
tures against intentional attacks (Dzung et al., 2005). However,
those based on ethernet could potentially make use of the secu-
rity measures included in TCP/UDP/IP. For instance, secure
routers (e.g., EDR-G903), include firewalls andVPNs, and support
EtherCAT.

Discussion

A big market of opportunities for research regarding cyber safety
in robotics exists.Most robots are not yet prepared, from a security
point of view, to be deployed in daily life. The software is not
prepared to protect against attacks, because communications are
usually unencrypted.

Regarding the dates of the exploits presented, and the current
hype in deployment of daily robotics (vacuum cleaners, amateur
drones, etc.), Cryptobotics, understood as a mix of cyber security
and robotics, comes just in time to prepare these systems to be
safely used.

An important issue to be discussed is whether the implemen-
tation of encrypted communications may affect the performance,
especially in real-time systems. The question about performance is
highly dependant on the hardware, the software and the network
used. Encrypted communications on the Internet (https, ssh)
show us that it is possible to perform secure communications
and offer remote services. For instance, Adam Langley (Google
Senior Staff Software Engineer) has stated: “whenGoogle changed
Gmail from http to https (.) we had to deploy no additional
machines and no special hardware. On our production front-end
machines, SSL/TLS accounts for less than 1 of the CPU load.9”
From our experience in humanoid robotics, a 1% overhead (while
respecting determinism in time) can be acceptable if it means our
devices can be less vulnerable to cyber attacks. Could an 8MHz
microcontroller perform real-time encryption? Is it reasonable to
implement authentication mechanisms along field buses in time-
constrained scenarios? This article intends to raise awareness for
developers to determine whether it is viable to integrate these
mechanisms depending on each specific use case.

Some may ask why these problems have not been addressed
previously. In recent years, intrinsically safe industrial robots, the
rise of domestic robots, and the use of mobile robots in public
spaces, have arisen issues that the robotics community did not
have to face in its previous 60 years of existence. Researchers are
now focused on developing applications to make robots useful,
which may have made cyber safety a low priority.
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