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Editorial on the Research Topic
Computational methods to analyze RNA data for human diseases

RNA, as a type of nucleic acid, forms one of the four fundamental macromolecules
crucial for all known life forms. Unlike DNA (Deoxyribonucleic Acid), which typically serves
as the primary genetic material in cells, many viruses use RNA as their genetic material. RNA
viruses are known for their ability to mutate rapidly, and the emergence of novel strains and
variants (Yin et al., 2020) is potentially responsible for a wide range of diseases, leading to
epidemics or pandemics such as swine-origin flu pandemic (Yin et al., 2018) and COVID-19
(V’kovski et al., 2021; Yin et al., 2018; Ding and Xu, 2023). In addition, RNA plays critical
roles in various biological processes, including gene expression, protein synthesis (Frye et al.,
2018). Understanding the mechanisms and roles of RNA in disease pathogenesis and
progression is crucial for advancing our knowledge of human biology and developing
optimized therapeutic strategies to combat RNA-related diseases. Computational
approaches like machine learning and statistics, have captured much attention in this
field due to increasingly available diverse RNA datasets (Yin et al., 2022; Li et al., 2023; Yin
et al., 2023). This Research Topic of Frontiers in Genetics features a Research Topic of the
latest advances in applying and developing various kinds of computational methods to
analyze RNA data towards non-coding RNAs (e.g., miRNA, lncRNA) and RNA viruses (e.g.,
influenza, coronavirus).

The ncRNAs are crucial for regulating gene expression at both the transcriptional and
posttranscriptional levels within the transcriptome, without encoding proteins (Winkle et al.,
2021). In particular, miRNAs are a type of small, single-stranded noncoding RNAs, about
19–25 nucleotides long, that have highly conserved sequences and can regulate gene
expression at the post-transcriptional level. Through extensive research on miRNA in
the context of development and disease, it has emerged as a compelling target for innovative
therapeutic approaches (Shen et al., 2020a; Shen et al., 2020b; Li Peng et al., 2022). In this
Research Topic, Luo et al. presented a comprehensive perspective of recent progress in
miRNA-targeted therapeutics employing machine learning techniques. In addition to
discussing resources and preprocessing of pharmacogenomic data, they also presented
the main machine learning algorithms employed in identifying miRNA-disease associations.
Given the limitations of current methods in constructing negative sample sets, Wei et al.
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introduced a clustering-based sampling approach called CSMDA to
predict miRNA-disease associations. This method aims to address
the Research Topic associated with negative sample selection in the
context of miRNA-disease association prediction. Under a five-fold
cross-validation, CSMDA computed an impressive Area Under the
Curve (AUC) of 0.9610. Additionally, through validation with the
dbDEMC database, it was confirmed that all predicted miRNAs,
except hsa-mir-34c, were associated with colon cancer.

LncRNAs are a subset of ncRNAs characterized by their length,
which exceeds 200 nucleotides. They have important functions in
controlling gene expression at various levels, such as translational,
transcriptional, and epigenetic processes (Qin et al., 2020).
LncRNAs are crucial in controlling genes and proteins related to
a range of human diseases like cancer (Xiao et al., 2018), digestive
system Research Topic, and heart problems. Their role in disease
regulation is well-established and holds promise for future therapies.
Yao et al. proposed a computational model called GCHIRFLDA,
which utilizes geometric complement heterogeneous information
and random forest to predict lncRNA-disease associations. Under
five-fold cross-validation, GCHIRFLDA achieved impressive
performance metrics with an AUC of 0.9897 and an AUPR of 0.
7040. The study demonstrated that 18 of the predicted lncRNAs
were validated through records present in databases or published
literature. Meanwhile, the presence of inherent sparsity in known
heterogeneous bio-data poses a challenge for computational
methods aiming to enhance the accuracy of prediction. Thus,
Zhang et al. explored a novel multiple mechanisms to discover
underlying lncRNA-disease associations (MM-LDA). By integrating
the graph attention network (GAT) and inductive matrix
completion (IMC), this approach boosts the prediction accuracy.
Firstly, a multiple-operator aggregation was created as part of the
n-heads attention mechanism in the GAT. Then, IMC was
incorporated into the improved node feature, and subsequently,
the LDA network underwent a reconstruction to address the cold
start problem caused by insufficient data in either whole rows or
columns of a known association matrix. Under 5-fold cross-
validation, an AUC of 0.9395 and an AUPR of 0.8057 were
computed. The results from MM-LDA suggested a potential link
between HOTAIR and HTTAS and gastric cancer.

In recent years, there has been the proposal of a hypothesis about
competing endogenous RNA (ceRNA) network (Salmena et al., 2011).
Under this hypothesis, lncRNAs possess the capability to function as
endogenous molecular sponges for miRNAs, indirectly regulating the
expression of messenger RNAs (mRNAs). The intricate nature of the
lncRNA-miRNA-mRNA network makes their dysregulation closely
linked to the progression and onset of various human diseases. For
example, Ye et al. (2019) discovered that the lncRNA MIAT increases
the expression of CD47 by acting as a sponge formiR-149-5p, leading to
the inhibition of efferocytosis in advanced atherosclerosis. Yang et al.
(2021) conducted a study uncovering the role of lncRNA XIST as a
ceRNA, promoting atherosclerosis by upregulating TLR4 expression
through the mediation of miR-599. Additionally, they identified several
putative ceRNAnetworks, including those associated with implantation
failure (Feng et al., 2018), polycystic ovary syndrome (Ma et al., 2021),
and epithelial ovarian cancer (Zhao et al., 2019). Chen et al. employed
the CIBERSORT algorithm to investigate the potential ceRNA-related
mechanism of Peripheral arterial occlusive disease (PAOD) and to
identify the associated patterns of immune cell infiltration. They

developed an immune-related core ceRNA network that offered
valuable insights into the molecular mechanisms underlying
Peripheral Arterial Occlusive Disease (PAOD). This network
consisting of CREB1, LINC00221, miR-20b-5p, and miR-17-5p,
along with the infiltrating immune cells, specifically
M1 macrophages and monocytes. Luo et al. introduced a
lncRNA–mRNA network based on POI (POILMN) to identify
essential lncRNAs. This research yielded a Research Topic of
288 differentially expressed mRNAs and 244 differentially expressed
lncRNA. Ultimately, Through the application of topological analysis,
POILMN identified four intersecting lncRNAs based on two
centralities, namely, degree and betweenness.

CircRNA is a class of ncRNAs that forms a covalently closed
loop structures (Li et al., 2020; Xiao et al., 2020; Peng et al., 2022;
Peng et al., 2023). CircRNA molecules have been observed or
artificially synthesized in various organisms, including mammals
(Xu and Zhang, 2021) and viruses (Tan and Lim, 2021). The
interactions between miRNAs and circRNAs have been
demonstrated to modify gene expression and play a regulatory
role in diseases. Therefore, He et al. introduced a novel approach
called GCNCMI, which utilizes a graph convolutional neural (GCN)
network to uncover latent associations between miRNAs and
circRNAs. GCNCMI initially examines the underlying
connections between neighboring nodes in the GCN network.
Afterward, it iteratively spreads this connection information
across the graph convolutional layers. Lastly, the embeddings
produced by each layer were combined to output the ultimate
prediction results. GCNCMI achieved an AUC of 0.9312 and an
AUPR of 0.9412. The results from GCNCMI showed that
8 interactions involving hsa-miR-149-5p and 7 interactions
involving hsa-miR-622 were validated.

Additionally, mitochondrial dysfunction could be among the
molecular mechanisms implicated in obstructive sleep apnea (OSA)
and its concurrent conditions. Despite several studies reporting the
involvement of various proteins and miRNAs in OSA (Targa et al.,
2020; Pinilla et al., 2021), the impact of OSA on genes and pathways,
particularly concerning mitochondrial dysfunction, remains largely
unexplored. In a previous study by Li et al. (2017), differentially
expressed miRNAs were reported in OSA, but their specific
association with mitochondrial dysfunction was not established.
Liu et al.developed a novel diagnostic model consisting of a four-
gene signature related to mitochondrial dysfunction. Using gene
expression related to mitochondrial dysfunction, all samples were
categorized into two clusters, with an additional subdivision of three
clusters identified specifically among the samples with OSA. In the
OSA samples compared to control samples, Significant differences
were noted in the levels of M0 and M1 macrophages as well as
plasma cells. Additionally, within the clusters associated with
mitochondrial dysfunction in OSA samples, various immune cell
types, particularly T cells, showed significant differences.

Although multiple databases offer information on virus-host
protein interactions, they often lack detailed information about
strain-specific virulence factors or the specific protein domains
implicated in the interactions (Yin et al., 2017; Yin et al., 2021).
Several databases may have incomplete representation coverage of
influenza strains of influenza strains due to the challenge of sifting
through extensive literature to gather comprehensive information.
No existing database has provided complete records of strain-
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specific protein-protein interactions for all types of Influenza A
viruses. In particular, Ng et al. presented an innovative network that
predicts domain-domain interactions between proteins from the
mouse host and influenza A virus (IAV). By incorporating vital
virulence details like lethal dose, this network facilitates a methodical
exploration of disease factors. They created a network of interacting
protein domains from both mouse and viral proteins, representing
them as nodes and using weighted edges to show their interactions.

In summary, this Research Topic centers on the recent progress
in utilizing and refining diverse computational methods, including
machine learning and statistical techniques, to analyze RNA data
related to RNA viruses and non-coding RNA. As a result, these
analyses have delved into the biological disease mechanisms and
aided in the understanding of human diseases, leading to improved
preventive measures, diagnoses, and treatments.
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GCNCMI: A Graph Convolutional
Neural Network Approach for
Predicting circRNA-miRNA
Interactions
Jie He1, Pei Xiao1, Chunyu Chen1, Zeqin Zhu1, Jiaxuan Zhang2 and Lei Deng1*

1School of Computer Science and Engineering, Central South University, Changsha, China, 2Department of Electrical
Engineering, University of California, San Diego, San Diego, CA, United States

The interactions between circular RNAs (circRNAs) and microRNAs (miRNAs) have been
shown to alter gene expression and regulate genes on diseases. Since traditional
experimental methods are time-consuming and labor-intensive, most circRNA-miRNA
interactions remain largely unknown. Developing computational approaches to large-scale
explore the interactions between circRNAs and miRNAs can help bridge this gap. In this
paper, we proposed a graph convolutional neural network-based approach named
GCNCMI to predict the potential interactions between circRNAs and miRNAs.
GCNCMI first mines the potential interactions of adjacent nodes in the graph
convolutional neural network and then recursively propagates interaction information
on the graph convolutional layers. Finally, it unites the embedded representations
generated by each layer to make the final prediction. In the five-fold cross-validation,
GCNCMI achieved the highest AUC of 0.9312 and the highest AUPR of 0.9412. In
addition, the case studies of two miRNAs, hsa-miR-622 and hsa-miR-149-5p, showed
that our model has a good effect on predicting circRNA-miRNA interactions. The code and
data are available at https://github.com/csuhjhjhj/GCNCMI.

Keywords: circRNA, miRNA, deep learning, graph convolution neural network, circRNA-miRNA interaction

1 INTRODUCTION

Non-coding RNA (ncRNA) refers to various RNA molecules that will not translate into a protein.
There has been much agreement through numerous studies that ncRNA has monumental biological
functions though it only part a small fraction of the genomes. Since the discovery of RNA and
ribosomal RNA in the 1950s, non-coding RNA that plays a biological role has been known for
60 years (Palazzo and Lee, 2015). As well as their roles at the transcriptional and post-transcriptional
levels, ncRNA plays a critical role in epigenetic regulation of gene expression. The recent finding
suggests that some of these RNAs are also involved in translation and splicing (Steitz and Moore,
2003; Butcher and Brow, 2005; Gesteland et al., 2006).

MicroRNA (miRNA) was discovered in 1993 by the Ambros and Ruvkun groups in
Caenorhabditis elegans (Lee et al., 1993) and brought a revolution to molecular biology. They
are small single-stranded molecules that derive from transcripts’ unique hairpin structures called
pre-miRNA. Most miRNAs are transcribed from DNA sequences into primary miRNAs, then
processed into precursor miRNAs and becomemature miRNAs finally (O’Brien et al., 2018; Liu et al.,
2021). Furthermore, miRNAs have been found to regulate gene expression post-transcriptionally by
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affecting mRNA translation, implying that dysregulation of
miRNAs may be associated with various diseases by affecting
gene expression (Bartel, 2004). For instance, recent studies
showed approximately 50% of annotated human miRNAs are
located in cancer-associated regions of the genome called fragile
sites. This indicated that miRNA plays a crucial role in cancer
progression (Calin et al., 2004).

Circular RNA consists of large non-coding RNAs produced by a
non-canonical splicing event called back splicing. They are ubiquitous
in species ranging from viruses to mammals during post-
transcriptional processes. Viroids are the first circRNA to be
discovered, though they are not produced by a back splicing
mechanism (Sanger et al., 1976). A few years later, most
circRNAs are observed in the cytoplasm and some small fractions
in the nucleus. Circular forms of RNAs were observed or synthesized
in diverse species such as viruses (Kos et al., 1986), prokaryotes (Ford
and Ares, 1994), unicellular eukaryotes (Grabowski et al., 1981), and
mammals (Capel et al., 1993). Most circRNA are expressed from
known encoding proteins, composed of single or multiple exons.
With the progress of high-throughput RNA-sequencing and
bioinformatics tools, scientists have found the human
transcriptome’s general feature ubiquitous in many other metazoans.

A diverse set of circRNAs have been identified as having
functions such as sponges, decoys, or translatable elements that
alter gene or protein expression. Biological functions of circRNAs
have only been investigated for a small fraction, while most of which
are proposed as miRNA sponges (Hansen et al., 2013; Memczak
et al., 2013; Deng et al., 2022). Sponging up miRNA and interacting
with RNA-binding proteins (RBP), circRNA plays many
pathological functions like regulating miRNA activity. He et al.
(He et al., 2022) performed circRNA microarray analysis and found
its expression profile in diabetes. By acting asmicroRNA sponges for
miR-7 (ciRS-7) and miR-124-3p and miR-338-3p (circHIPK3),
ciRS-7 and circHIPK3 promote insulin secretion. circRNAs were
identified in cancers, so it also proposed to play a crucial role in the
intimation and development of tumors. (Ashwal-Fluss et al., 2014;
Dong et al., 2017; Soslau, 2018). Most studies focus on the role of
circRNA in tumors. circRNA was described as oncogenes. Diverse
cellular functions of circRNA suggest their potential for cancer
treatment as biomarkers and therapeutic targets (Chen and
Huang, 2018; Li et al., 2019).

The interactions between circRNA and miRNA have been
gradually discovered in recent years, and some related databases
have been established. The CircR2Cancer database (Lan et al.,
2020) contains 1,439 interactions between 1,135 circRNAs and
82 cancers. In addition, the database also includes basic
information such as detection methods and expression
patterns of circRNAs. However, there are few datasets on
direct circRNA-miRNA interactions. Moreover, the known
interactions are only a tiny part. Discovering the interactions
between circRNAs and miRNAs is beneficial to understanding
the interactions between circRNA andmiRNA and disease. Using
biological experiments to verify the interactions between
circRNA-miRNA is time-consuming and labor-intensive.
Computational methods can be used to mine the interactions
between circRNA-miRNA more effectively. Still, there is little
work to predict the circRNA-miRNA interactions.

As far as we know, GCNCMI is the first method to predict the
circRNA-miRNA interactions, but other methods in the field of
bioinformatics are still worth reference. Many methods based on
computational interactions have recently achieved good results in
predicting microbe-disease interactions and ncRNA-disease
interactions. AE-RF (Deepthi and Jereesh, 2021) build an
autoencoder to mine potential interaction features and then
train a random forest model to predict circRNA-disease
interactions. The DMFMDA (Liu et al., 2020) uses one-hot
encoding of diseases and microorganisms to convert a vector
representation in a low-dimensional space by embedding the
propagation layer. The obtained vector representation is then
input into amulti-layer neural network, and the parameters of the
neural network are continuously optimized through Bayesian
sorting to achieve accurate prediction. Deng et al. (Deng et al.,
2020) constructed a meta-pathway-based circRNA-disease
feature vector. This vector representation combines multiple
similarities such as circRNA similarity, disease similarity, etc.
The prediction is finally achieved using a random forest classifier.
KATZHMDA (Chen et al., 2017) predicts the interactions
between unknown microbes and disease by the Gaussian
kernel similarity between known microbes and disease.
NTSHMDA (Luo and Long, 2018) constructs a disease-
microbe heterogeneity network based on the known similarity
between microorganisms and diseases and assigns equal weights
to known disease-microbe interactions according to the different
contributions of diseases and microorganisms, which is
conducive to reducing prediction error. Liu et al. (Dayun
et al., 2021) established a multi-component graph attention
network, which first passed a decomposer to identify node-
level feature vectors, then combined the feature vectors to
obtain a unified embedding vector, which was finally input
into a fully connected network to predict microorganisms
unknown interactions with the disease. SDLDA (Zeng et al.,
2020) extract the linear and nonlinear interactions between
lncRNA and diseases through singular value decomposition
and neural network and finally unites the linear and nonlinear
features into a new feature vector, which is input to the fully
connected layer to realize prediction.

Although the above methods have achieved good prediction
results, there are still some problems that will affect mining
efficiency. Some existing association prediction methods rely
on known similarities, but it is difficult to construct such
similarities with the increasing number of miRNAs and
circRNAs. There are far fewer known associations than
unknown associations. Therefore, these methods are unsuitable
when the circRNA and miRNA data increase. When the scale of
data increases, how to mine the higher-order interactions of
circRNA-miRNA is an urgent problem to be solved. In this
paper, we construct a bipartite graph to describe the
interaction information between circRNA and miRNA using
known relationship pairs of them. Then we develop a graph
convolutional network method to mine the deep semantic
information that carries collaborative signal in the bipartite
graph. We propagate the information flow recursively over the
graph structure and continuously aggregate the interactive
information between nodes to refine the embedding of each
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node. Finally, We concatenate the embeddings generated by each
layer to predict the relationship of unknown circRNA-miRNA
pairs. Experimental results show that our GCNCMI model
outperforms the other six state-of-the-art methods.

2 MATERIALS AND METHODS

2.1 Datasets
We built the benchmark dataset from the circBank database (Liu
et al., 2019). circBank contains 140,790 circRNAs. Each circRNA
collects information such as miRNA binding sites, protein-coding
ability, etc. We removed redundant parts of the dataset and
extracted 2,115 circRNAs and 821 miRNAs from the circBank
database, including 9,589 known circRNA-miRNA interactions.
It now can be downloaded on the website http://www.circbank.
cn/downloads.html. In addition, we randomly selected
9,589 unlabeled samples from the benchmark dataset. The
detailed information can be seen in Table 1.

2.2 Problem Description
Our work aims to predict unknown relationships based on known
circRNA and miRNA relationships. We use U � u1, u2 . . . un{ }
andV � v1, v2, . . . , vm{ } to respectively represent the collection of
n circRNAs and m miRNAs, and use the interaction matrix
R ∈ Rn×m to represent the relationship between them. If the
circRNA ui is related to miRNA vj, then the Rij = 1, otherwise
Rij = 0. It should be noted that Rij = 0 can only indicate that the
two RNAs have not yet found a relationship, but may actually be
related.

2.3 Graph Construction
We use a bipartite graph G(U ∪ V, E) constructed by the
interaction matrix R ∈ Rn×m to show the relationship between
circRNAs and miRNAs, where U, V are the vertex sets denoting
the circRNAs and miRNAs, and E is the edge sets constructed
from the association matrix R ∈ Rn×m. This bipartite graph can be
expanded into a complex interaction graph as shown in Figure 1.
This interaction graph contains the higher-order interaction
information of circRNA and miRNA, from which we can
mine deep semantic information that carry collaborative
signal. For example, the path u1 − v1 − u2 and u1 − v2 − u2
indicate the behavior similarity between u1 and u2, as both
circRNAs have interacted with v1 and v2. Then, the interaction
between u2 and v3 suggests that u1 and v3 are likely to be related.

2.4 GCNCMI
To capture the deep interaction information embedded in the
interaction graph, we model the high-order interaction
information of circRNA-miRNA in the embedding function.

We propagate the information flow recursively over the graph
structure and continuously aggregate the information of
neighboring nodes to refine the embedding representation of
the nodes (Hamilton et al., 2017; Xu et al., 2018; Wang et al.,
2019). The architecture of our proposed GCNCMI model is
shown in Figure 2. There are three parts to the framework: 1)
An embedding layer that offers initialized circRNA embeddings
and miRNA embeddings from the input data; 2) multiple
embedding propagation layers that refine the embeddings by
aggregating higher-order interaction information; 3) the
prediction layer that concatenates the embeddings from
different propagation layers and outputs the prediction score
of a circRNA-miRNA pair.

2.4.1 Embedding Layer
We use the embedding vector ekui ∈ Rs(ekvi ∈ Rs) to describe the
circRNA u (miRNA v) in k-th layer, where s is the embedding
size. The initial state of circRNA embeddings and miRNA
embeddings in embedding layer can be abstracted as:

E0
u � e0u1 , e

0
u2, . . . , e

0
un

[ ] (1)
E0
v � e0v1 , e

0
v2, . . . , e

0
vm

[ ] (2)
Where E0

u is the initial embedding of circRNAs, and E0
v is the

initial embedding of miRNAs. The initial embedding will be
continuously optimized and improved end-to-end, which will be
mentioned in the next section.

2.4.2 Embedding Propagation Layers
Next, we continuously aggregate the information of the node
itself and its adjacent nodes to refine the embeddings of
miRNAs and circRNAs. This is based on the GNN message-
passing architecture (Hamilton et al., 2017; Xu et al., 2018).
During an embedding update, the message aggregated by each
node consists of two parts: the messages from the neighbor
nodes of the previous layer and the messages inherited from
the node itself.

As shown in Figure 3, in the k-th propagation layer, the
embedding of circRNA u can be recursively formulated as:

eku � σ m u, k( ) + ∑
v∈Nu

m u, v, k( )⎛⎝ ⎞⎠ (3)

TABLE 1 | The number of circRNAs, miRNAs, and circRNA-miRNA interactions
included in the dataset.

circRNA miRNA interactions unlabled interactions

2,115 821 9,589 9,589

FIGURE 1 | An illustration of the circRNA-miRNA association matrix (A),
a bipartite graph (B), and an interaction graph (C).
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Where eku represents the embedding of circRNA obtained in
the k-th embedding propagation layer, σ(·) is the activation
function LeakyReLU (Nikolakopoulos and Karypis, 2019), v
denotes the neighbor nodes of u, and m(u, k) represent the

messages delivered from the previous layer itself, while m(u, v, k)
representing the messages delivered by all neighbor nodes from the
previous layer. The m(u, k) and m(u, v, k) can be formulated as
follows:

m u, k( ) � Wk
1e

k−1
u (4)

m u, v, k( ) � Wk
1e

k−1
v +Wk

2 ek−1v ⊙ ek−1u( )�����������
N u( )‖N v( ) |√ (5)

Where Wk
1,W

k
2 ∈ Rdk×dk−1 are the trainable transformation

matrices used to extract propagation information, and dk is the
transformation size; ek−1u is the circRNA embedding
representation generated from the (k−1)-th propagation
layer, which will further contribute its information to the
circRNA embedding u at layer k. We use the graph
Laplacian norm 1/

��������|Nu||Nv|√
to control how much the

propagating message decays as the path length increases,
where N(u) represent the first-hop neighbors of circRNA u
(miRNA v). In Eq. 4, we consider the self-connection of nodes,
which can effectively retain the original feature information to
avoid information variation when the number of layers
increases. For the neighbor nodes of node u, we aggregate

FIGURE 2 | An illustration of GCNCMI model architecture (the arrowed lines present the flow of information). Using GCNCMI to predict the relationship between
circRNA u (green) and miRNA v (blue) mainly includes three steps: (1) In the embedding layer, we use input data to initialize circRNA embedding (e0u) and miRNA
embedding (e0v ); (2) In embedding propagation layers, the embeddings are continuously refined by recursively aggregating higher-order interaction information; (3) In the
prediction layer, we concatenate the embeddings from different propagation layers and make the final prediction.

FIGURE 3 | Illustration of message aggregation for circRNA u in k-th
embedding propagation layer, where the ek−1v represents the embedding of
the neighbor node v of u in (k-1)-th layer.
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not only the information of node v but also aggregate the
interaction information between the u and v. It is encoded via
ek−1v ⊙ ek−1u , where ⊙ is element-wise product operation. In this
way, more information from similar nodes can be passed,
which enhances the representation ability of the model and
helps to improve the accuracy of prediction results. Eqs 3–5
represent the calculation process of the embedding circRNA u
at the k-th layer. Analogously, the embedded representation of
miRNA can be obtained.

2.4.3 Model Prediction
After multi-layer propagation, we can obtain multiple
embedding representations of miRNAs and circRNAs. The
embeddings obtained by different propagation layers contain
different orders of interaction information, so they have
different contributions to reflecting the relationship
between circRNAs and miRNAs. Therefore, we concatenate
all embeddings to express the final embedding. The following
formula shows the final embedding representation of
circRNA u and miRNA v through K embedding
propagation layers:

epu � e0u‖e1u‖/‖eKu , epv � e0v‖e1v‖/‖eKv (6)
Where ‖ denotes concatenation operation, this simple

concatenation operation can makes our final embeddings
contain richer semantic information without increasing the
learning parameters. Finally, we perform an inner product
operation on the final embedding to obtain the interaction
prediction between circRNA u and miRNA v:

ŷGCNCMI u, v( ) � epu ⊗ epv (7)
Algorithm 1 shows the pseudocode description for predicting

the interaction between circRNA u and miRNA v using
GCNCMI.

2.4.4 Model Optimization
Pointwise loss and pairwise loss are two common methods
used to update model parameters (He et al., 2016). The
pointwise learning emphasizes the loss between the
predicted value ŷuv and target value yuv. Still, we prefer to
address predicting the interactions between circRNA and
miRNA from the perspective of ranking. Therefore, we
choose pairwise loss optimization to update model
parameters. Bayesian Personalized Ranking (BPR) is a
matrix factorization-based pairwise loss function that is
often used to optimize recommendation tasks similar to our
prediction task (Rendle, 2010). Specifically, it can be
formulated as follows:

min
Θ

L � ∑
u,i,j( )∈D

−ln s ŷui − ŷuj( ) + λ‖Θ‖22 (8)

where s(/) is the sigmoid function; D = {(u, i, j)|(u, i) ∈ R+,
(u, j) ∈ R−} is the pairwise training sample containing positive
samples R+(i.e., circRNA u has interacted with miRNA vi) and
negative samples R−(i.e., the interactions between circRNA u
and miRNA vj is unknown). ŷui denotes the prediction score of

u and vi. ŷuj denotes the prediction score of u and vj. Θ �
E, Wk

1 ,W
k
2{ }K

k�1{ } represents all model parameters that will be
trained. λ is a parameter used to control the strength of L2
regularization. We use Adam as the optimizer to update the
model parameters. Additionally, we use message dropout and
node dropout to avoid model overfitting during training.
Message dropout means that we will drop the message in
Eq. 3 with a certain probability during the propagation,
while node dropout randomly drops a specific node and
discards all its outgoing messages. Dropout operations can
reduce the influence of specific RNAs, making the model more
robust.

Algorithm 1. GCNCMI algorithm to predict the interaction
between circRNA u and miRNA v

3 EXPERIMENT

3.1 Experimental Settings
To evaluate the performance of our model in predicting
circRNA-miRNA interactions, we combined the known
9,589 interactions used as positive samples, and
9,589 unlabeled interactions were randomly selected from
the benchmark dataset as negative samples. We performed
five-fold cross-validation on the constructed dataset. The
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validated circRNA-miRNA interactions were randomly
divided into five parts. Take each part as a positive sample
and an equal number of unlabeled samples from the
benchmark data as negative samples to form a test set. At
the same time, perform the same operation on the remaining
four parts to obtain a training set. This operation is performed
until the loop is completed five times.

To measure the performance of GCNCMI more
comprehensively, we used AUC, AUPR, Recall, Accuracy
(Acc), precision (Pre), and F1 Scores. The definitions of each
indicator are as follows:

Accuracy � TP + TN

TP + TN + FP + FN
(9)

Precision � TP

TP + FP
(10)

Recall � TP

TP + FN
(11)

F1 � 2pPrecisionpRecall
Precision + Recall

(12)

Where TP and FP represent the number of correctly
classified samples and the number of misclassified samples
in known circRNA-miRNA interactions, respectively, TN
represents the number of correctly predicted unrelated
circRNA-miRNA interactions, and FN represents the

TABLE 2 | The five-fold cross-validation results of GCNCMI.

No. AUPR AUC ACC Pre Recall F1

1 0.9293 0.9288 0.8508 0.9390 0.8289 0.8805
2 0.9428 0.9352 0.8531 0.9424 0.8440 0.8905
3 0.9453 0.9372 0.8578 0.9450 0.8357 0.8870
4 0.9396 0.9282 0.8532 0.9392 0.8341 0.8835
5 0.9412 0.9312 0.8503 0.9408 0.8298 0.8818

Average 0.9396 0.9320 0.8530 0.9413 0.8345 0.8847

FIGURE 4 | GCNCMI performed the ROC curves of five-fold cross-
validation.

TABLE 3 | The performance of GCNCMI on different layers.

K AUPR AUC Acc Pre Recall F1

1 0.9283 0.9198 0.8368 0.9280 0.8319 0.8773
2 0.9412 0.9312 0.8503 0.9408 0.8298 0.8818
3 0.9393 0.9301 0.8480 0.9390 0.8340 0.8834
4 0.9374 0.9272 0.8446 0.9371 0.8444 0.8883
5 0.9361 0.9244 0.8295 0.9358 0.8371 0.8837

FIGURE 5 | The performance of GCNCMI model on different layers.

TABLE 4 | The performance of GCNCMI model on different embedding sizes.

D AUPR AUC Acc Pre Recall F1

16 0.9260 0.9170 0.8360 0.9257 0.8136 0.8660
32 0.9190 0.9102 0.8316 0.9187 0.8032 0.8571
64 0.9215 0.9110 0.8287 0.9212 0.8105 0.8623
128 0.9361 0.9265 0.8485 0.9357 0.8230 0.8757
256 0.9412 0.9312 0.8503 0.9409 0.8298 0.8819
512 0.9376 0.9268 0.8475 0.9373 0.8303 0.8806

FIGURE 6 | The performance of GCNCMImodel on different embedding
sizes.
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number of prediction errors in unrelated miRNA-circRNA
interactions. F1 is a weighted average of model precision and
Recall.

3.2 Cross-Validation Results
We performed five-fold cross-validations to evaluate the
performance of the GCNCMI model in predicting circRNA-
miRNA interactions. The experimental results of the five-fold
cross-validation are shown in Table 2. As shown in the table,
the AUC of the five-fold cross-validations are: 0.9288, 0.9352,
0.9372, 0.9282, 0.9312. On the AUPR, the AUPR of the five-
fold cross-validations are 0.9293, 0.9428, 0.9453, 0.9396,
0.9412, respectively. In addition, we also plotted the ROC
curve of GCNCMI, as shown in Figure 4. The above
experimental results show that GCNCMI has good
performance in predicting unknown circRNA-miRNA
interactions.

3.3 Parameter Influence
For GCNCMI, two essential parameters affect its performance:
K (the number of layers) and D (the dimension of the
embedding vector). When K is 2, and D is 256, our model
GCNCMI achieves the best performance under five-fold cross-
validation.

The setting of the number of layers K indicates that our final
embedding model incorporates the information of K-hop
neighbor nodes in the bipartite graph, which can learn more
hidden interaction information between nodes for the neural
network. Table 3 lists the detailed values, and Figure 5 shows the
trend chart for different layers. We tried from 1 to 5 layers for the
number of layers of the model and found that the model’s
accuracy at the beginning will increase with the increase of the
number of layers. The best performance of the model is when the
layer is 2. As the number of network layers increases, the hidden
feature pairs of nodes tend to converge to the same value, which
leads to an over-smoothing problem in the network.

On the other hand, under the framework of five-fold cross-
validation, we conducted experiments for D in 16, 32, 64, 128,
256, 512, and other 6 cases; the detailed data is shown in
Table 4. In general, as the dimension of the embedding vector
increases, the expressive power of the model increases. But as
can be seen from the Figure 6, from 16, 32, 64, 128, 256, the
model’s performance has been increasing at first, but at 256,
the commission has reached the maximum value. As D
continues to grow, it will adversely affect the model’s
performance.

3.4 Compared With State-Of-The-Art
Methods
Since circRNA and miRNA interaction is a relatively new field,
GCNCMI is the first method we know to predict the interaction
between circRNA and miRNA, but other advanced methods in
bioinformatics still provide us with reference. To better verify the
performance of GCNCMI in inferring the interaction between
circRNA and miRNA. We compare GCNCMI with six other
state-of-the-art methods in bioinformatics.

Considering the scarcity of related biological resources, in
calculating biological similarity, we only calculated Gaussian
interaction profile biological similarity (GIP). In addition,
since the adjacency matrix initialized each time is different, it
requires us to re-mine the information in the bipartite graph.
Strictly speaking, in similarity-based methods [AE-RF (Deepthi
and Jereesh, 2021), KATZHMDA (Chen et al., 2017),

TABLE 5 | Performance comparison of different methods under five-fold cross validation.

Methods AUC AUPR Acc Pre Recall F1

AE-RF 0.7662 ± 0.0050 0.8239 ± 0.0042 0.8333 ± 0.0013 0.8923 ± 0.0019 0.9279 ± 0.0019 0.9097 ± 0.0010
DMFCDA 0.7321 ± 0.0240 0.7115 ± 0.0171 0.6975 ± 0.0112 0.8160 ± 0.0265 0.7729 ± 0.1112 0.7938 ± 0.0707
DMFMDA 0.7922 ± 0.0057 0.8230 ± 0.0089 0.7307 ± 0.0049 0.7030 ± 0.0080 0.7246 ± 0.0116 0.7136 ± 0.0065
KATZHMDA 0.8469 ± 0.0017 0.8647 ± 0.0019 0.8073 ± 0.0030 0.8511 ± 0.0055 0.7227 ± 0.0106 0.7816 ± 0.0071
NTSHMDA 0.8526 ± 0.0016 0.8772 ± 0.0018 0.6276 ± 0.0083 0.7556 ± 0.0518 0.4040 ± 0.0531 0.5264 ± 0.0486
SDLDA 0.7875 ± 0.0307 0.8286 ± 0.0189 0.6693 ± 0.0019 0.8287 ± 0.0108 0.7891 ± 0.0809 0.8084 ± 0.0706
GCNCMI 0.9320 ± 0.0014 0.9396 ± 0.0406 0.8530 ± 0.0134 0.9413 ± 0.0204 0.8345 ± 0.0301 0.8846 ± 0.0068

FIGURE 7 | AUC values of different methods under five-fold cross-
validation.

TABLE 6 | The number of circRNAs, miRNAs, and circRNA-miRNA interactions
included in the independent test dataset.

circRNA miRNA interactions unlabled interactions

1,502 494 9,386 9,386
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NTSHMDA (Luo and Long, 2018)], the similarity matrix is
recalculated each time during the cross-validation process. In
the SDLDA method, we used SVD singular value decomposition
to obtain linear features of circRNAs and miRNAs. The
DMFMDA method chooses a Bayesian loss function over the
loss function instead of the mean squared error.

We performed a ten-times, five-fold cross-validation of
GCNCMI with six advanced methods, changing the random
number seed each time, and calculated the mean and standard
deviation of 10 experiments. Table 5 lists several methods such as

AE-RF (Deepthi and Jereesh, 2021), DMFCDA (Liu et al., 2020),
DMFMDA (Liu et al., 2020), KATZHMDA (Chen et al., 2017),
NTSHMDA (Luo and Long, 2018), SDLDA (Zeng et al., 2020),
and compared with the GCNCMI model. Figure 7 plots the AUC
curves to compare the seven methods. As can be seen from
Table 5 and Figure 7, GCNCMI mines the high-order
interactions between circRNA and miRNA; GCNCMI is
higher than other methods in most indicators, among which
the AUC value of GCNMCI is 0.9320, and the highest among
different methods is NTSHMDA, whose AUC value is 0.8526,
which is 7.94% lower than GCNCMI. GCNCMI value of AUPR is
0.9396, which is 6.24% higher than the second-best method,
NTSHMDA. The above experimental results show that ourmodel
performs well in predicting the relationship between circRNA
and miRNA.

The radar Figure 8 shows the performance of GCNCMI on
AUC, AUPR, ACC, Recall, F1, Pre. The evaluation index is set
from 0 to 1. As shown from Figure 8, the distance between the
point and the center of the circle reflects the level of the value. It is
evident that GCNCMI is better than other methods in predicting
the circRNA-miRNA relationship.

To further verify the accuracy of the GCNCMI model in
circRNA-miRNA association prediction, we retrieved the data
from the PubMed database, removed the known relationships
that overlapped with the training dataset, and established a
9,386 miRNA-circRNA association relationship, 494 miRNAs,
an independent test set of 1,502 circRNAs, and 9,386 unlabeled
interactions were randomly selected from the benchmark dataset
as negative samples. The specific information of the independent
test set can be found in Table 6. Although there may be a small
part of the independent test set and the unknown overlapping
relationship in the training set, it can be ignored because it

FIGURE 8 | Radar plots of different methods on various performances.

FIGURE 9 | Comparison of AUC and AUPR values of GCNCMI and several other methods on independent test sets.
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occupies a small proportion of the entire unvalidated sample set.
The basic model for predicting circRNA-miRNA associations was
obtained by training on our data set and tested on the
independent test set. The test results are as Figure 9. The
AUC of the GCNCMI model reached 0.9213, and the AUPR
value reached 0.9296, which is higher than several other methods
of comparison. The independent test results further showed that
GCNCMI is an effective tool for inferring miRNA-circRNA
associations.

3.5 Embedding Visualization
To more clearly demonstrate the learning ability of the GCNCMI,
We use T-SNE (Van der Maaten and Hinton, 2008) to visualize the
embedding of circRNA-miRNA interaction pairs. Because the
number of unknown relationships is much larger than the
number of known associations, and to better visualize the overall

mining of higher-order relationships by GCNCMI, we choose to
visualize more unlabeled samples than labeled samples. The main
goal of T-SNE is to convert multi-dimensional datasets into low-
dimensional datasets. Compared with other dimensionality
reduction algorithms, T-SNE is the most effective technique in
data visualization. Since T-SNE is not a linear dimensionality
reduction technique, it can capture the complex manifold
structure of high-dimensional data. We initially a 32-dimensional
vector to represent miRNA and circRNA. To explore the similarity
between vector representations, we used the T-SNE algorithm to
reduce the vector to 2-dimensional, as shown in Figure 10A. The
blue + represents unknown miRNA-circRNA interaction pairs, and
the red dots represent the known circRNA-miRNA interaction pairs.
Figure 10B shows the embedding of the circRNA-miRNA
interactions learned by the GCNCMI model. Comparing Figures
10A,B, it can be seen that GCNCMI has a good effect on mining

FIGURE 10 | Embedding visualization (A) represents the embedding of the initialized circRNA-miRNA interaction pairs, and (B) represents the embedding
representation of the circRNA-miRNA interaction pairs learned by the GCNCMI model. (C) represents the embedding of miRNA after learning by the GCNCMI model,
and (D) represents the embedding of circRNA after learning by the GCNCMI model.
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high-order interactions between miRNAs and circRNAs, and the
GCNCMI can better use the known interaction pairs to mine
potential miRNA-circRNA interaction pairs. In addition, we also
visualized the learned circRNA embeddings and miRNA
embeddings. Figure 10C shows the learned miRNA embeddings.
We used the GCNCMI model to predict the top 30 circRNAs most
closely associated with each miRNA, and also predicted the top
30 miRNAs most closely associated with each circRNA. The hsa-
miR-4786-5p and hsa-miR-3664-3p were associated with nine
similar circRNAs, and hsa-miR-4786-5p and hsa-miR-5692c were
associated with five similar circRNAs. Therefore, the hsa-miR-4786-
5p is more similar to hsa-miR-3664-3p. It can also be seen from
Figure 10C that the distance between hsa-miR-4786-5p and hsa-
miR-3664-3p is closer. Figure 10D shows the visualization of the
embedding of circRNAs after model learning. The hsa-circ-
0078873 and hsa-circ-0042658 were associated with three similar
miRNAs, and hsa-circ-0035141 and hsa-circ-0078873 were
associated with seven similar miRNAs. Therefore, hsa-circ-
0078873 is closer to hsa-circ-0035141, and it can be seen from
Figure 10D that hsa-circ-0078873 is closer to hsa-circ-0035141. The
experimental results show that GCNCMI can effectively learn the
potential higher-order interactions between miRNAs and circRNAs.

3.6 Case Studies
It is of great significance to discover unknown associations
between circRNAs and miRNAs. We selected two miRNAs,
hsa-miR-622 and hsa-miR-149-5p, for case studies.
Specifically, we first delete the circRNAs that have been

experimentally validated for the selected miRNAs. Then, the
remaining circRNAs were sorted in descending order
according to the values predicted by the GCNCMI model. The
following shows the results of the normalized prediction scores of
the GCNCMI model. Finally, we screened the top 10 circRNAs
and collected evidence in the published literature for testing.

miR-622 (Lu et al., 2022) is a miRNA of 13q31.3 in the
eukaryotic genome, and its expression is mainly in the
nucleus. In recent years, studies have found that miR-622 can
functionally inhibit the malignant proliferation of cells, which is
helpful for cancer treatment. In recent years, miR-149-3p (Yang
et al., 2017) can effectively inhibit the proliferation and apoptosis
of malignant tumors. Recent studies have found that miR-149-3p
can increase the sensitivity of drugs. Table 7 and Table 8 list the
top 10 candidate circNRAs of hsa-miR-622 and hsa-miR-149-
5p. We selected the top 10 candidate circRNAs as our predicted
circRNAs, respectively, and finally, we compared the predicted
results with the experimentally validated interactions. It can be
seen that 7 of hsa-miR-622 were confirmed by existing evidence,
and 8 of hsa-miR-149-5p were confirmed by existing evidence. It
should be noted that unproven associations may exist and require
further experimental verification.

4 CONCLUSION

CircRNAs are circular non-coding RNAs with regulatory functions,
most of which exist in eukaryotic excerpts, and most circRNAs are
composed of exons. Because circRNAs are less affected by nucleases,
circRANs are more stable than linear RNAs. Current studies have
shown that circRNAs can competitively adsorb miRNAs, and
circRNAs can bind to proteins to inhibit the activity. Therefore,
there is an urgent need to explore the relationship between
circRNA and miRNA. However, because traditional biological
experiments are time-consuming and labor-intensive, a more
efficient method is needed to explore the potential relationship
between circRNA and miRNA.

In this paper, we proposed a graph convolutional neural
network prediction model for circRNA and miRNA
interactions. To fully exploit the potential high-order
interactions between circRNAs and miRNAs, we designed a
graph convolutional neural network method to propagate the
interaction’s relation recursively without computing the
similarity of circRNAs and miRNAs. The experimental results
demonstrated the excellent performance of GCNCMI in
predicting the interactions between circRNAs and
miRNAs. The results of independent tests indicate that the
GCNCMI model has good generalization performance in
predicting unknown circRNA and miRNA relationships.
Finally, a case study compared our predictions with those
validated by biological experiments, further demonstrating
the model’s excellent predictive performance. The above
results indicate that GCNCMI is an excellent method for
predicting the potential interactions between circRNAs and
miRNAs.

While GCNCMI has excellent performance, it also has some
limitations. First, due to the scarcity of biological resources,

TABLE 7 | The top 10 circRNAs with the closest relationship to hsa-miR-
622 predicted by GCNCMI model.

Rank CircRNA Evidence(PMID) Score

1 hsa_circ_0000231 34183076 0.8822
2 hsa_circ_0101432 Unconfirmed 0.8820
3 hsa_circ_0119872 33579337 0.8815
4 hsa_circ_0008574 32616043 0.8798
5 hsa_circ_0000211 31668923 0.8796
6 hsa_circ_0001273 35567340 0.8712
7 hsa_circ_0086902 Unconfirmed 0.8592
8 hsa_circ_KCNQ5 35413218 0.8542
9 hsa_circ_0101432 35297300 0.8498
10 hsa_circ_0006000 Unconfirmed 0.8469

TABLE 8 | The top 10 circRNAs with the closest relationship to hsa-miR-149-5p
predicted by GCNCMI model.

Rank CircRNA Evidence(PMID) Score

1 hsa_circ_0061140 32224273 0.8737
2 hsa_circ_0075341 31706100 0.8722
3 hsa_circ_0008956 34153672 0.8702
4 hsa_circ_0000654 31778020 0.8693
5 hsa_circ_0051239 Unconfirmed 0.8689
6 hsa_circ_ROBO2 34649241 0.8673
7 hsa_circ_0011385 34720052 0.8672
8 hsa_circ_0087352 35286916 0.8671
9 hsa_circ_0123996 32707301 0.8661
10 hsa_circ_0031059 Unconfirmed 0.8648
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GCNCMI only uses the association data of circRNAs and
miRNAs, and the quality of the data will affect the
performance of GCNCMI model training. In the future, using
heterogeneous data from multiple perspectives will be considered
to improve the model’s performance further.
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More and more evidences have showed that the unnatural expression of long

non-coding RNA (lncRNA) is relevant to varieties of human diseases. Therefore,

accurate identification of disease-related lncRNAs can help to understand

lncRNA expression at the molecular level and to explore more effective

treatments for diseases. Plenty of lncRNA-disease association prediction

models have been raised but it is still a challenge to recognize unknown

lncRNA-disease associations. In this work, we have proposed a

computational model for predicting lncRNA-disease associations based on

geometric complement heterogeneous information and random forest.

Firstly, geometric complement heterogeneous information was used to

integrate lncRNA-miRNA interactions and miRNA-disease associations

verified by experiments. Secondly, lncRNA and disease features consisted of

their respective similarity coefficients were fused into input feature space.

Thirdly, an autoencoder was adopted to project raw high-dimensional

features into low-dimension space to learn representation for lncRNAs and

diseases. Finally, the low-dimensional lncRNA and disease features were fused

into input feature space to train a random forest classifier for lncRNA-disease

association prediction. Under five-fold cross-validation, the AUC (area under

the receiver operating characteristic curve) is 0.9897 and the AUPR (area under

the precision-recall curve) is 0.7040, indicating that the performance of our

model is better than several state-of-the-art lncRNA-disease association

prediction models. In addition, case studies on colon and stomach cancer

indicate that our model has a good ability to predict disease-related lncRNAs.

KEYWORDS

lncRNA-disease association prediction, geometric complement heterogeneous
information, random forest, autoencoder, machine learning
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1 Introduction

Long non-coding RNA (lncRNA) is a kind of non-coding

RNA with a length of more than 200 nucleotides, which have

received increasing attention from researchers. LncRNAs have

now been proved to play a key role in transcriptional and

posttranslational regulation (Taft et al., 2010; Mathieu et al.,

2014; Sun et al., 2018; Xie et al., 2018). The pathogenesis of a

series of diseases is significantly associated with mutations and

dysregulation of lncRNAs (Washietl et al., 2014; Chen et al.,

2017). For example, MALAT1 was discovered to be

overexpressed in many entity tumors such as lung cancer

(Cheetham et al., 2013). It was shown that clonogenic and

anchorage-dependent growth of lung cancer cells would be

significantly decreased when H19 was down-regulated

(Barsyte-Lovejoy et al., 2006). Confirming the associations

between lncRNAs and diseases by biological experiments is

time-consuming, labor-intensive and challenging, so using

computational method to predict the associations not only

provides a more efficient way for biological experiments but

also reduces a lot of unnecessary human and material resources.

Currently, dozens of computational models have been proposed

to identify disease-associated lncRNAs based on various

biological data. We can broadly classify the current

computational models for lncRNA-disease association (LDA)

prediction into three categories.

The first class of LDA prediction models is based on

biological networks. Sun et al. implemented random walk and

restart on lncRNA functional similarity network (Sun et al.,

2014). Zhou et al. integrated the LDA network, disease

similarity network and lncRNA-miRNA interaction network

into a heterogeneous network and applied random walk on

the network (Zhou et al., 2015). Chen et al. integrated the

known LDAs, lncRNA expression profiles, lncRNA functional

similarity, disease semantic similarity and Gaussian interaction

profile kernel similarity to predict potential LDAs (Chen, 2015a).

Ping et al. (2019) constructed a model based on the known LDA

network. However, these models need the known LDA network.

Thus, Liu et al. (2014) conceived a model by integrating the

known human expression profiles of lncRNA and disease genes,

which is the first computational model without relying on the

known LDAs. Chen et al. combined miRNA-disease association

and lncRNA-miRNA interactions to form a model called

HGLDA (Chen, 2015c). Zhou et al. developed a

computational method by integrating association among

lncRNA, protein, disease, miRNA, drug and high-order

proximity preserved embedding for predicting LDAs (Zhou

et al., 2021). Sumathipala et al. used the topology of a multi-

level network consisting of lncRNA-protein, protein-protein

interactions and protein-disease associations to identify LDAs

(Sumathipala et al., 2019). Yu et al. used Bi-Random Walks on

the lncRNA functional similarity network and disease network to

predict LDAs (Yu et al., 2017). Yu et al. (2020) constructed a data

fusion model called Attributed Heterogeneous Network Fusion

for LDA prediction (AHNF).

The second class of LDA prediction model is based on matrix

factorization. Fu et al. proposed a LDA prediction model called

MFLDA.MFLDA factored data from heterogeneous data sources

into low-rank matrices based on matrix trivialization to discover

and explore its intrinsic and shared structure (Fu et al., 2018).Wu

et al. constructed a GAMCLDA model by encoding local graph

structures and features. The graph convolution network was used

to encode the features of this map structure and nodes to learn

the potential factorial vectors of lncRNAs and diseases. In

addition, the inner product of lncRNA factor vectors and

disease factor vectors was used as a decoder to reconstruct the

LDA matrix (Wu et al., 2020). Gao et al. (2021) constructed a

multi-label fusion collaborative matrix decomposition approach

to predict LDAs. Wang et al. (2020) developed a weighted matrix

factorization model on multi-relational data to predict LDAs. Liu

et al. (2021) introduced a weighted graph regularized

collaborative matrix factorization (WGRCMF) method to

predict LDAs.

The third class of LDA prediction model is based on machine

algorithms. Machine learning methods focus on gaining insights

into features and imbalanced labels. Chen et al. formulated

Laplace regularized least squares method to predict LDAs

(called LRLSLDA) in a semi-supervised learning framework,

which is the first machine learning-based methods to predict

LDAs (Chen et al., 2015). However, for LRLSLDA, parameter

optimization is a challenge. Later, Chen et al. combined lncRNA

functional similarity with the LRLSLDA-LNCSIM prediction

model and enhanced its performance by introducing similarity

scores for predicting gene-disease associations (Huang et al.,

2016). In addition, Lan et al. implemented a LDAP model based

on SVM bagging by combining disease similarity and lncRNA

similarity (Lan et al., 2017). Yao et al. constructed a

computational model called RFLDA to identify associations

based on feature selection by integrating the experiment-

supported associations among lncRNA, miRNA, disease,

disease semantic similarity and lncRNA functional similarity

(Yao et al., 2020). Xuan et al. have developed a collection of

convolutional neural networks-based lncRNA-disease prediction

models, including CNNLDA (Xuan et al., 2019a), LDAPred

(Xuan et al., 2019b), GCNLDA (Xuan et al., 2019c) and

CNNDLP (Xuan et al., 2019d). The CNNLDA developed an

analysis of the associations between lncRNA and disease using

convolutional neural networks that combined semantic and

functional similarity as well as lncRNA-disease associations,

miRNA-disease associations and lncRNA-miRNA interactions

(Xuan et al., 2019a). The LDAPred integrated a convolutional

neural network and information flow propagation, combining

associations, interactions, similarity structures and topological

structures between lncRNAs, miRNAs and diseases (Xuan et al.,

2019b). The GCNLDA is based on the graph convolutional

network and convolutional neural network to obtain locally
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integrated topological information within the lncRNA-disease-

microRNA networks (Xuan et al., 2019c). By combining disease

similarity, lncRNA similarity, miRNA-disease association and

lncRNA-miRNA interactions, CNNDLP learned the attention

and the low-dimensional network representation of the lncRNA-

disease pairs (Xuan et al., 2019d). Wei et al. developed a method

(LDICDL) that denoised lncRNA and disease features with an

autoencoder, and used the matrix decomposition algorithm to

test for potential disease-lncRNA association (Lan et al., 2022).

Fan et al. proposed an lncRNA-disease prediction method that

implemented convolutional matrices with conditional random

fields and attention mechanisms for learning the embeddings of

nodes for scoring latent associations between lncRNAs and

diseases (Fan et al., 2022). Wu et al. proposed a method that

combined extra trees with multi-layer graph embedding

aggregation to predict LDAs (Wu Q. W. et al., 2021). Cui

et al. proposed a novel model based on bipartite local model

with nearest profile-based association inferring to predict LDAs

(Cui et al., 2020).

These methods described above have achieved good

prediction performance, but they also have some limitations.

The biological network-based approach was affected by the

scarcity of known LDA data; For the matrix factorization-

based approach, the combination of model parameters is a

very complex and necessary procedure; For the machine

learning-based approach, feature processing and the impact of

imbalanced data is a challenge. In this paper, we proposed a novel

LDA prediction model based on geometric complement

heterogeneous information and random forest (GCHIRFLDA

in short). Firstly, the geometric complementation of LDA matrix

was implemented by integrating the information of lncRNA-

miRNA andmiRNA-disease association information. Secondly, a

low-dimensional feature space was extracted from the obtained

LDA matrix by using an autoencoder, which combined Jaccard

similarity coefficient and Gaussian interaction profile kernel

similarity. Finally, a random forest classifier was trained on

the constructed sample set to score potential lncRNA-disease

associations. The AUC and AURP under five-fold cross-

validation demonstrated that the GCHIRFLDA had a better

performance than several state-of-the-art LDA prediction

models, and the case studies on stomach cancer and colon

cancer indicated that the GCHIRFLDA had excellent ability in

identifying disease-associated lncRNAs.

2 Materials and methods

2.1 Representation of lncRNA-disease
associations , miRNA-disease associations
and lncRNA-miRNA interactions

LncRNA-disease associations (LDA), miRNA-disease

associations (MDA) and lncRNA-miRNA interactions (LMI)

were obtained from previous reports (Fu et al., 2018). The

following l, d and m denote the number of lncRNA, disease

and miRNA, respectively. The LDAs are represented by a 240× ×

412 adjacency matrix LDi×j ∈ LDl×d, l is rows represent lncRNAs

and d is columns represent diseases. For each element LDi,j, its

value is equal to one if lncRNA i is related to disease j; otherwise,

its value is equal to 0. Similarly, the MDAs are represented by a

495× × 412 adjacency matrix MDi×j ∈ MDm×d, m is rows

represent miRNAs and d is columns represent diseases. For

each element MDi,j, its value is equal to one if miRNA i is

related to disease j; otherwise, its value is equal to 0. The LMIs are

represented by a 240 × ×495 adjacency matrix LMi×j ∈ LMl×m, l

is rows represent lncRNAs and m is columns represent diseases.

For each element LMi,j, its value is equal to one if lncRNA i is

related to miRNA j; otherwise, its value is equal to 0.

2.2 Calculation of jaccard similarity of
disease and lncRNA

Calculation of similarity of disease and lncRNA is an

important step in LDAs predicting process. So far, there are

many ways to calculate similarity, such as disease semantic

similarity, disease cosine similarity, lncRNA functional

similarity and lncRNA cosine similarity. In this work, we

combine the Jaccard similarity coefficient which is

complementary to the binary matrix and the Gaussian

interaction profile kernel similarity which encodes the non-

linear vectors in the LDA matrix. By experimental research on

different similarity measures, we found that the fusion of these

two kinds of similarity can greatly improve the performance of

the LDA prediction model. Therefore, we chose Jaccard

similarity and Gaussian interaction profile kernel similarity for

LDA prediction in this work. Thank you again for your

comment. The Jaccard similarity coefficient (Jaccard, 1908) of

disease was calculated by LDA matrix by Eq. 1:

JDS(i, j) � LD(: , i)∩​ LD(: , j)
LD(: , i)∪​ LD(: , j) (1)

In Eq. 1, LD(: , i) is the i-th column vector of the LDA

matrix, which represents the association feature of disease i;

LD(: , i)∩​ LD(: , j) represents the number of lncRNAs that are

associated with both disease i and disease j; LD(: , i)∪ ​ LD(: , j)
represents the sum of the number of lncRNAs associated with the

disease i and disease j.

Similarly to disease, the Jaccard similarity of lncRNA can be

calculated by LDA matrix by Eq. 2:

JFS(i, j) � LD(i, : )∩​ LD(j, : )
LD(i, : )∪​ LD(j, : ) (2)

In Eq. 2, LD(i, : ) is the i-th row vector of the LDA matrix,

which represents the association feature of lncRNA i;
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LD(i, : )∩ ​ LD(j, : ) represents the number of diseases that are

associated with both lncRNA i and lncRNA j;

LD(i, : )∪ ​ LD(j, : ) represents the sum of the number of

diseases associated with the lncRNA i and lncRNA j.

2.3 Calculation of Gaussian interaction
profile kernel similarity of disease and
lncRNA

The Gaussian interaction profile kernel similarity (Chen,

2015b) GIPlnc(li, lj) between lncRNA li and lncRNA lj was

calculated by Eq. 3:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

GIPlnc(li, lj) � exp( − λ




LD(i, : ) − LD(j, : )



2)

λ � ~λ/⎛⎝1
l
∑l
i�1
‖li‖2⎞⎠ (3)

From the above equation, the Gaussian interaction profile

kernel similarity matrix of lncRNA can be obtained. LD(i, : )
and LD(j, : ) represents i-th and j-th row of LDA matrix

respectively, ~λ controls the kernel bandwidth, in this work, we

set ~λ to 1.

Similarly, the Gaussian interaction profile kernel similarity

matrix of disease GIPdis(di, dj) can be obtained by Eq. 4.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

GIPdis(di, dj) � exp( − λ




LD(: , i) − LD(: , j)



2)

λ � ~λ/⎛⎝1
d
∑d
i�1
‖di‖2⎞⎠ (4)

In Eq. 4, LD(: , i) and LD(: , j) represents i-th and j-th

column of LDA matrix respectively, ~λ controls the kernel

bandwidth, in this work, we set ~λ to 1.

2.4 Fusing different similarities for lncRNA
and disease

In this paper, we used the maximum value method to

merge lncRNA Gaussian interaction profile kernel similarity

and lncRNA Jaccard similarity into LFJ similarity and fuse

disease Gaussian interaction profile kernel similarity and

disease Jaccard similarity into DSJ similarity by Eqs. 5, 6,

respectively.

LFJ similarity � {GIPlnc(li, lj) ifGIPlnc(li, lj)≥ JFS(i, j)
JFS(i, j) otherwise

(5)
DSJ similarity � {GIPdis(di, dj) ifGIPdis(di, dj) ≥ JDS(i, j)

JDS(i, j) otherwise

(6)

2.5 Geometric complement for lncRNA-
disease associations matrix

The process of constructing the GCHIRFLDA model is

divided into three steps (see Figure 1): 1) geometric

complement for LDA matrix; 2) feature representation and

extraction; 3) random forest classifier training and LDA

prediction. Next, we will introduce the process of constructing

the GCHIRFLDA model in detail.

Inspired by Francesco et al.‘s and Yin et al.‘s method (Wang

et al., 2021; Yin et al., 2022), from the previous data source, we

multiplied the LMI matrix with the MDA matrix and then

divided the [i, j]-th element of the result by the i-th row of

the LMI matrix and the j-th column of the MDA matrix to

represent the potential LDA matrix by Eq. 7:

LMD(i, j) � LM(i, : ) ·MD(: , j)
‖LM(i, : )‖1 +





MD(: , j)



1 (7)

The fusion matrix of LDA was obtained by taking the

maximum value of the potential LDAs computed above and

the original LDAmatrix in the i-th row and j-th column by Eq. 8.

LDnew(i, j) � max(LD(i, j), LMD(i, j)) (8)

In this way, the original LDA matrix can be geometrically

complemented.

2.6 Feature representation and extraction

For the obtained geometric complement matrix, each row

represents the feature vector of lncRNA and each column

represents the feature vector of disease. We combine the i-th

row of the geometric complement matrix and the i-th row of the

similarity fusion matrix of lncRNA to form a new feature vector

of the i-th lncRNA. Similarly, we combine the j-th column of the

geometric complement matrix and the j-th column of the

similarity fusion matrix of disease to form a new feature

vector of the j-th disease. Finally, each lncRNA and disease is

represented as a 652-dimensional feature vector.

Autoencoder is an unsupervised neural network model and

has a good performance in data denoising and dimensionality

reduction. In the GCHIRFLDAmodel, we employee autoencoder

to compress feature space of lncRNA and disease. We set hidden

layer to learn the high-dimensional feature space of the input

data so that the hidden layer can reconstruct the original input

data (Schmidhuber, 2015; Ji et al., 2021).

In this work, we use an autoencoder with an input layer, a

dense layer, an output layer and a fully-connected layer with an

activation function sigmoid. The learning process of the noise-

reducing encoder is to minimize the error between the

reconstructed data and the original data. As a result, each

lncRNA, which is originally represented by a 652-dimensional
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feature vector, is finally compressed into 256-dimensional by

autoencoder. Similarly, each disease, which is originally

represented by a 652-dimensional feature vector, is finally

compressed into 256-dimensional by autoencoder. MSE (mean

squared error) is used as model loss evaluation by Eq. 9:

loss � 1
n
∑(Yinput − Youtput)2 (9)

In Eq. 9, Yinput is the original input data, and Youtput is the

decoded and reconstructed data.

2.7 Random forest classifier training and
lncRNA-disease associations prediction

To train the GCHIRFLDA model, the experiment-supported

2697 LDAs in the original LDA matrix were used as positive

samples; the remaining lncRNA-disease pairs that were not

validated by biological experiments were used as unlabeled

samples. To maintain the balance of the training set, an equal

number of unlabeled samples were randomly selected from the

unlabeled samples as negative samples. The negative samples and

the positive samples were combined into the training sample set

which consisted of 5394 samples.

For accurately predicting potential LDAs, we employed

random forest (RF) for LDA prediction in the GCHIRFLDA

model. Random forest is an ensemble machine learning

model which combines bagging and random features to

add extra diversity of the decision tree model and finally

uses a voting method to combine the prediction results of

multiple base classifiers (Breiman, 2001). RF has many

advantages: 1) it can process a variety of data types,

including qualitative data or quantitative data; 2) it has

high classification accuracy; 3) it has good robustness for

noise data and data with missing values; 4) it has ability to

analyze complex interactions between features. In recent

years, RF has been widely used in a variety of classification

and prediction problems, including differential expression

analysis of microarray data, miRNA-disease association

prediction, etc. In this work, we have carried out

experimental research on six different classifiers, including

SVM and Xgboost. Considering AUC, AUPR, Recall and

other indicators, the performance of RF classifier is the

best. Therefore, RF was chosen as the final classifier in our

prediction model. RF has two important parameters, namely

the number of randomly selected features (mtry) and the

number of trees (ntree). These parameters have a great impact

on the performance of random forest classification model.

Here, we set mtry and ntree by the default value. Then, by the

obtained prediction model, all unconfirmed lncRNA-disease

pairs are scored, and the closer the score is to 1, the more

likely it is that lncRNA is associated with the disease.

FIGURE 1
The flowchart of constructing the GCHIRFLDA model.
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3 Results

3.1 Feature dimension analysis of lncRNA
and disease

For LDAprediction, the dimensionality of the training sample set

has an obvious impact on the accuracy of the prediction model. On

the one hand, for a smaller number of features of lncRNAs and

diseases,more features are not learned, which leads to under-fitting of

the model. On the other hand, for a larger number of features, more

time is spent and the model performance will not yet be greatly

improved or even over-fitting will occur. Therefore, we used the

experimental method to determine the appropriate feature

dimension. Specifically, we use autoencoder to compress the

dimensions of feature space into 16, 32, 64, 128, 256, and

512 respectively, and the feature dimension that makes the

prediction performance of the model the highest is adopted.

Table 1 shows the AUC obtained under five-fold cross-validation

by different dimensional features, from which one can see that the

maximum of AUC is reached when the feature dimension of both

lncRNAs and diseases is 256, so we set the feature dimension of

extracted lncRNAs and diseases by autoencoder to be 256.

3.2 Performance comparison between
random forest and other classifiers

In order to obtain better performance of the GCHIRFLDA

model, we compared RF classifier with several classical classifiers,

including extreme gradient boosting (Xgboost) (Chen and Guestrin,

2016), C50 (Kuhn, 2013), Gradient Boosting Decision Tree (GBDT)

(Ye et al., 2009), SVM (Lan et al., 2017) and LightGBM (Zhang et al.,

2021). In thiswork, we used the averageAUC,AUPR, Recall, F1-score

and Accuracy based on five-fold cross-validation as evaluation

criterion for the six classifiers.

Figure 2 showed the ROC curves and AUCs of different

classifiers, from which one can see that the AUC values of RF,

Xgboost, C50 and GBDT are 0.9897, 0.9814, 0.98959 and 0.9497,

respectively. Figure 3 showed the PR curves and AUPRs of four

classifiers, the AUPR values of RF, Xgboost, C50 and GBDT are

0.704, 0.4505, 0.1607 and 0.2336, respectively. Table 2 showed the

AUC, AUPR, Recall, F1-score and Accuracy of six classifiers. As

one can see from Table 2, all five metrics of RF is the largest

among the six classifiers. The results of the experiments

suggested that RF outperformed the other five classifiers for

LDA prediction. There, RF was finally determined as the final

classifier in the GCHIRFLDA model.

3.3 Performance comparison between
GCHIRFLDA and other lncRNA-disease
associations prediction models

To evaluate the prediction performance of the GCHIRFLDA

model, we compared it with seven state-of-the-art LDA

TABLE 1 The AUCs under different lncRNA/disease feature dimension.

Dimension 16 32 64 128 256 512

16 0.9576 0.9724 0.9768 0.9782 0.9750 0.9724

32 0.9492 0.9753 0.9775 0.9809 0.9804 0.9788

64 0.9577 0.9760 0.9791 0.9833 0.9842 0.9826

128 0.9561 0.9764 0.9808 0.9872 0.9884 0.9877

256 0.9539 0.9736 0.9804 0.9874 0.9897 0.9889

512 0.9109 0.9711 0.9793 0.9880 0.9891 0.9890

FIGURE 2
The ROC Curves of different classifiers in the GCHIRFLDA
model.

TABLE 2 The performance comparison of different classifiers in the
GCHIRFLDA model.

Classifier AUC AUPR Recall Accuracy F1-score

Xgboost 0.9815 0.4544 0.9523 0.9182 0.9523

RF 0.9897 0.7040 0.9673 0.9317 0.9597

C50 0.9513 0.1517 0.9340 0.8724 0.9265

GBDT 0.9497 0.2348 0.8942 0.8701 0.9253

SVM 0.9832 0.5826 0.9243 0.9313 0.9595

LightGBM 0.9832 0.5250 0.9428 0.9215 0.9541
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prediction models, including GAERF (Wu Q.-W. et al., 2021),

CNNLDA (Xuan et al., 2019a), GCNLDA (Xuan et al., 2019c),

MFLDA (Fu et al., 2018), Ping’s method (Ping et al., 2019) and

SIMLDA (Lu et al., 2018). The AUCs and AUPRs of all LDA

prediction models are listed in Table 3. Figure 3 showed the ROC

curves for these LDA prediction models.

From Table 3 and Figure 4, one can see that the AUC and

AUPR of the GCHIRFLDA model are maximal among all

LDA prediction models, which achieved 0.990 and 0.704,

respectively. In term of AUC, our model achieved

0.990 which was 0.99%, 3.23%, 3.96%, 58.19%, 13.63%, and

32.67% higher than GAERF, GCNLDA, CNNLDA, MFLDA,

Ping’s method and SIMCLDA, respectively. In term of AUPR,

our model achieved 0.704 which was 43.38%, 215.79%,

180.47%, 966.67%, 221.46%, 634.38% higher than GAERF,

GCNLDA, CNNLDA, MFLDA, Ping’s Method and

SIMCLDA, respectively. According to the results of cross

validation experiments, our GCHIRFLDA model has better

LDA prediction ability.

3.4 Case studies

To further validate the prediction ability of the GCHIRFLDA

model, we conducted case studies on two most common cancers,

colon cancer and stomach cancer. We used the GCHIRFLDA to

score all the unlabeled lncRNA-disease pairs, and selected the top

20 lncRNAs most likely to be associated with stomach cancer and

colon cancer respectively according to the score. Finally, the predicted

stomach cancer-associated and colon cancer-associated lncRNAs by

the GCHIRFLDA model were validated by data from Lnc2Cancer

v3.0 (Ning et al., 2016), LncRNADisease v2.0 (Bao et al., 2019) and

some published research literature.

Colon cancer is the third most common cancer worldwide and

the fourth leading cause of cancer-related death. The incidence of

colon cancer has increased dramatically in China because of a shift in

our habits as a society (Xue et al., 2015). In this work, we used the

GCHIRFLDA to predict colon cance-associated lncRNAs. As a

result, the top 20 predicted lncRNAs associated with colon cancer

and the provenances of the evidence are shown inTable 4. As one can

see from Table 4, 17 predicted lncRNAs have been confirmed by

records included in the Lnc2Cancer (v3.0) or LncRNADisease (v2.0)

or published literature. For example, Wan et al. showed that the

overexpressing of CDKN2B-AS1 exhibited accelerated proliferation

in colon cancer (Wan et al., 2013). Xu et al. reported the tumor

TABLE 3 The AUCs and AUPRs of different LDA prediction models.

Method AUC AUPR

GCHIRFLDA 0.990 0.704

GAERF 0.980 0.491

GCNLDA 0.959 0.223

CNNLDA 0.952 0.251

LDAP 0.863 0.166

MFLDA 0.626 0.066

Ping’s Method 0.871 0.219

SIMCLDA 0.746 0.095

FIGURE 3
The Precision-Recall Curves of different classifiers in the
GCHIRFLDA model.

FIGURE 4
The ROC Curves of different LDA prediction models.
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suppressor B-cell linker (BLNK) was reduced in expression via

MIR17HG, which resulted in an increase in invasion and

migration of colorectal cancer cells (Xu et al., 2019).

In the digestive tract, stomach cancer is one of themost prevalent

malignancies (Gu et al., 2017). The identification of new

biomolecular markers of stomach cancer is essential for treatment

and diagnosis. In this work, we used the GCHIRFLDA to predict

stomach cancer-associated lncRNAs. As a result, the top 20 predicted

lncRNAs associated with colon cancer and the provenances of the

evidence are shown in Table 5. As seen in Table 5, 18 predicted

lncRNAs have been confirmed by records included in the

Lnc2Cancer (v3.0) or LncRNADisease (v2.0) or published

literature. For example, Feng et al. revealed that

KCNQ1OT1 inhibited stomach cancer cell progression via

regulating miR-9 and LMX1A expression (Feng et al., 2020); Wu

et al. found the high expression of lncRNA-CCAT2 indicated poor

prognosis of stomach cancer and promoted cell proliferation and

invasion (Wu et al., 2017). Consequently, the case studies on colon

cancer and stomach cancer showed that GCHIRFLDA was an

excellent predictor.

4 Conclusion

In this work, we proposed a geometric complement

heterogeneous information and random forest-based approach

for predicting LDAs (named GCHIRFLDA). Firstly, the potential

TABLE 4 The top 20 colon cancer-related lncRNA candidates
predicted by the GCHIRFLDA model.

lncRNA Rank Evidence

CDKN2B-AS1 1 Lnc2Cancer 3.0& LncRNADisease v2.0

PVT1 2 Lnc2Cancer 3.0& LncRNADisease v2.0

UCA1 3 Lnc2Cancer 3.0& LncRNADisease v2.0

NEAT1 4 Lnc2Cancer 3.0& LncRNADisease v2.0

KCNQ1OT1 5 Lnc2Cancer 3.0

XIST 6 Lnc2Cancer 3.0& LncRNADisease v2.0

GAS5 7 Lnc2Cancer 3.0& LncRNADisease v2.0

SPRY4-IT1 8 Lnc2Cancer 3.0& LncRNADisease v2.0

MIR17HG 9 Literature (Xu et al., 2019)

TUG1 10 Lnc2Cancer 3.0& LncRNADisease v2.0

BANCR 11 Lnc2Cancer 3.0& LncRNADisease v2.0

HOTTIP 12 Lnc2Cancer 3.0& LncRNADisease v2.0

BCYRN1 13 LncRNADiseasev2.0

HNF1A-AS1 14 Lnc2Cancer 3.0

AFAP1-AS1 15 Lnc2Cancer 3.0

HULC 16 Lnc2Cancer 3.0

TUSC7 17 Lnc2Cancer 3.0

KIRREL3-AS3 18 unknown

LSINCT5 19 unknown

NPTN-IT1 20 unknown

TABLE 5 The top 20stomach cancer-related lncRNA candidates predicted by the GCHIRFLDA model.

lncRNA Rank Evidence

MALAT1 1 Lnc2Cancer 3.0& LncRNADisease v2.0

XIST 2 Lnc2Cancer 3.0& LncRNADisease v2.0

NEAT1 3 Lnc2Cancer 3.0& LncRNADisease v2.0

CCAT2 4 Lnc2Cancer 3.0& LncRNADisease v2.0

TUG1 5 Lnc2Cancer 3.0& LncRNADisease v2.0

KCNQ1OT1 6 Lnc2Cancer 3.0

HOTTIP 7 Lnc2Cancer 3.0& LncRNADisease v2.0

WT1-AS 8 Lnc2Cancer 3.0& LncRNADisease v2.0

HNF1A-AS1 9 Lnc2Cancer 3.0& LncRNADisease v2.0

HULC 10 Lnc2Cancer 3.0& LncRNADisease v2.0

MIR17HG 11 Literature (Bahari et al., 2015)

CRNDE 12 Lnc2Cancer 3.0& LncRNADisease v2.0

NPTN-IT1 13 Lnc2Cancer 3.0& LncRNADisease v2.0

LINC00675 14 Lnc2Cancer 3.0

KIRREL3-AS3 15 unknown

TP53COR1 16 unknown

BCYRN1 17 Lnc2Cancer 3.0

HOTAIRM1 18 Lnc2Cancer 3.0

AFAP1-AS1 19 LncRNADisease v.2.0

LINC01133 20 Lnc2Cancer 3.0
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LDA matrix is constructed by integrating the LMIs and MDAs

with the original LDA matrix. Then, the Jaccard similarity and

the Gaussian interaction profile similarity of lncRNA and disease

are combined to represent features of lncRNA and disease. Next,

a low-dimensional feature space is extracted by using

autoencoder. Finally, RF is employed as the classifier to

predict potential LDAs. In conclusion, the AUC and AUPR

comparison with other LDA prediction models based on five-

fold cross-validation and the case studies show that our model

has better LDA prediction performance.

Although the GCHIRFLDA model has a good performance,

it still has some limitations. Firstly, the lack of data verified by

biological experimental is a big shortcoming for computational

models. Secondly, randomly selecting the unknown lncRNA-

disease pairs as negative samples may incorrectly classify

potential positive samples as negative samples, which may

affect the prediction performance. Finally, only the

heterogeneous information of miRNAs is introduced in this

work, and in the future, more biological information will be

fused to improve the performance of the LDA prediction model.
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More andmore studies have proved thatmicroRNAs (miRNAs) play a critical role

in gene expression regulation, and the irregular expression of miRNAs tends to

be associated with a variety of complex human diseases. Because of the high

cost and low efficiency of identifying disease-associated miRNAs through

biological experiments, scholars have focused on predicting potential

disease-associated miRNAs by computational methods. Considering that the

existingmethods are flawed in constructing negative sample set, we proposed a

clustering-based sampling method for miRNA-disease association prediction

(CSMDA). Firstly, we integrated multiple similarity information of miRNA and

disease to represent miRNA-disease pairs. Secondly, we performed a

clustering-based sampling method to avoid introducing potential positive

samples when constructing negative sample set. Thirdly, we employed a

random forest-based feature selection method to reduce noise and

redundant information in the high-dimensional feature space. Finally, we

implemented an ensemble learning framework for predicting miRNA-disease

associations by soft voting. The Precision, Recall, F1-score, AUROC and AUPR of

the CSMDA achieved 0.9676, 0.9545, 0.9610, 0.9928, and 0.9940, respectively,

under five-fold cross-validation. Besides, case study on three cancers showed

that the top 20 potentially associated miRNAs predicted by the CSMDA were

confirmed by the dbDEMC database or literatures. The above results

demonstrate that the CSMDA can predict potential disease-associated

miRNAs more accurately.

KEYWORDS

miRNA-disease association, ensemble learning, clustering, sampling, computational
methods

1 Introduction

MicroRNAs (miRNAs) are a kind of non-coding RNAs with a length of

20–24 nucleotides, which play a critical role in gene expression regulation (Lee

et al., 1993; Wightman et al., 1993; He & Hannon, 2004). Accumulating evidences

have showed that the dysregulation of miRNA is associated with human complex

diseases (Hwang & Mendell, 2006; Mattick & Makunin, 2006; Jonas & Izaurralde,

2015). Wang et al. have proved that the expression level of hsa-mir20b-5p is
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associated with the pathogenesis of Alzheimer’s disease

(Wang et al., 2022). Taverner et al. have proposed that

microRNA-425–5p and microRNA-451 can be used as the

risk biomarkers of cardiovascular disease (Taverner et al.,

2021). Ma et al. have showed that the overexpression of

microRNA-10b promotes invasion and metastasis of

mammary tumor cells (Ma et al., 2007). Hashimoto et al.

have demonstrated that the abnormal expression of miR-

1307–3p in human serum is associated with a variety of

malignant tumors (Hashimoto et al., 2021). Therefore,

accurately identifying disease-associated miRNAs can

facilitate the study of the mechanism of miRNA in complex

diseases. To guide complex biological experiments, many

computational models have been developed for predicting

miRNA-disease associations (Chen et al., 2019a).

Thus far, scholars have proposed a series of network-based

miRNA-disease association prediction models

(Bandyopadhyay et al., 2010). Jiang et al. integrated a human

miRNA-phenome network and a miRNA function-related

network for predicting disease-associated miRNAs (Jiang

et al., 2010). Shi et al. mapped the pathogenic disease genes

and miRNA target genes into the protein-protein interaction

network, and employed the randomwalk with restart to identify

miRNA-disease associations (Shi et al., 2013). Zeng et al.

implemented a structural perturbation approach for miRNA-

disease association prediction on a bilayer network which

integrated the known miRNA-disease associations and

miRNA (disease) similarity network (Zeng et al., 2018). Xiao

et al. first calculated the weighted K nearest neighbor profiles of

miRNAs and diseases, and then used graph regularized matrix

factorization to predict miRNA-disease associations (Xiao et al.,

2018). Zhong et al. proposed a global method based on non-

negative matrix factorization, which could simultaneously

predict all disease-related miRNAs (Zhong et al., 2018). Ma

et al. presented a miRNA-disease association prediction model

which did not depend on any known miRNA-disease

associations (Ma et al., 2019). Li et al. constructed a

heterogeneous bilayer network by integrating similarity

networks and interaction network, and then utilized the

algorithm faster randomized partial matrix completion to

infer latent disease-lncRNA associations (Li et al., 2019). Yu

et al. proposed a knowledge-driven method to predict disease-

miRNA associations (KDFGMDA) (Yu et al., 2022). Based on

dynamic neighborhood regularized logistic matrix

factorization, Yan et al. proposed a method (DNRLMF-

MDA) to predict miRNA-disease associations (Yan et al.,

2019). Qu et al. proposed a biased random walk

computational method for miRNA-disease association

prediction (BRWRMHMDA), which was restarted on

multilayer heterogeneous networks (Qu et al., 2021). Jiang

and Zhu proposed a model of decision template-based

miRNA-disease association prediction (DTMDA) (Jiang &

Zhu, 2020).

In recent decades, dozens of miRNA-disease association

prediction models based on machine learning have been

proposed. One of the major challenges facing these models is

how to construct negative samples set. Yao et al. implemented

an improved random forest-based model for miRNA-disease

association prediction (IRFMDA) which constructed negative

samples by randomly combining miRNAs and diseases (Yao

et al., 2019). Zhao et al. proposed an adaptive boosting model

(ABMDA) which employed the k-means algorithm to cluster

the unlabeled samples and selected negative samples randomly

from each cluster (Zhao et al., 2019). Zhou et al. designed a

miRNA-disease association prediction model based on gradient

boosting decision tree and logistic regression (GBDT-LR)

which applied the k-means algorithm to cluster the

unlabeled samples and extracted negative samples from each

cluster by the ratio of the size of each cluster to the entire

unlabeled sample set size (Zhou et al., 2020). Li et al. proposed a

graph auto-encoder-based miRNA-disease association

prediction model (GAEMDA) which randomly selected

5,430 unlabeled samples as negative samples (Li et al., 2021).

Chen et al. proposed an anti-noise miRNA-disease association

prediction algorithm (ANMDA) which applied the k-means

algorithm to cluster the unlabeled samples and selected negative

samples equally from each cluster to reduce the noise (Chen

et al., 2021). Dai et al. presented a resampling-based ensemble

framework (ERMDA) which constructed multiple balanced

training subsets by resampling and obtained the final

prediction result by soft voting strategy (Dai et al., 2022).

Liu et al. proposed a new novel method via deep forest

ensemble learning based on autoencoder (DFELMDA) to

predict miRNA-disease associations (Liu et al., 2022). Chen

et al. presented a model of extreme gradient boosting machine

for miRNA-disease association (EGBMMDA), which calculated

the statistical measures and matrix factorization results for each

miRNA-disease pair to form an information feature vector

(Chen et al., 2018). The above methods inevitably

introduced potential positive samples into negative sample

set, which limited the prediction performance of these

models (Rayhan et al., 2017).

In this paper, we proposed a novel clustering-based sampling

method for miRNA-disease association prediction (CSMDA)

which could construct more reliable negative sample set.

Firstly, the CSMDA integrated a variety of similarity

information of miRNA and disease to represent the feature

vector of miRNA-disease pairs. Secondly, the CSMDA

constructed negative sample set based on MiniBatchKMeans

clustering to reduce the proportion of potentially positive

samples in the negative samples set. Thirdly, the CSMDA

generated numerous training subsets through multiple rounds

of sampling on the negative sample set to reduce the bias caused

by single small-scale sampling. Fourthly, the CSMDA applied a

random forest-based feature selection approach to reduce noise

and redundant information in the high-dimensional feature
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space. Finally, a set of base classifiers were trained on the training

subsets after feature selection and the final prediction result was

obtained by soft voting. The Precision, Recall, F1-score, AUROC

and AUPR of the CSMDA achieved 0.9676, 0.9545, 0.9610,

0.9928 and 0.9940 under 5-fold cross-validation, which was

significantly higher than that of the existing methods. Besides,

case study on three cancers showed that all the top 20 miRNAs

predicted to be most likely associated with these cancers by the

CSMDAwere confirmed by the dbDEMC database or literatures.

2 Materials and methods

2.1 Experimentally confirmed miRNA-
disease associations

Experimentally confirmed 5,430miRNA-disease associations

were obtained from the HMDD (Human microRNA Disease

Database) (Li et al., 2014), including 495 miRNAs and

383 diseases. Here, we stored these miRNA-disease

associations by a matrix MDNm×Nd, which was defined as:

MD(m(i), d(j)) � {1, miRNAm(i)and disease d(j)are verified to be related
0, miRNAm(i)and disease d(j)are not verified to be related (1)

Here, Nm and Nd represent the number of miRNAs and

diseases, respectively.

2.2 Disease semantic similarity

The descriptors of 383 diseases mentioned above were

obtained from the MeSH (Medical Subject Headings) database

and Directed Acyclic Graphs (DAGs) for each disease were

constructed by the previous methods (Wang et al., 2010; Xuan

et al., 2013). In aDAG (D), the nodes represent diseaseD and its

ancestral nodes, and the directed edges represent the relationship

of diseases. The semantic contribution of disease d to diseaseD in

DAG (D) was defined as follows:

D1D(d) � { 1, d � D
max{Δ × D1D(d′)|d′ ∈ children ofd}, d ≠ D

(2)
Here, Δ is the semantic contribution factor. As the distance

between D and other diseases in DAG(D) increases, the

semantic contribution of these diseases will decrease. Then,

the semantic value of disease D was defined as follows:

DV1(D) � ∑
d∈T(D)

D1D(d) (3)

Here, T(D) represents the disease D and its all ancestral

nodes. For two diseases, d(k) and d(l), the disease semantic

similarity between them was defined as follows:

SS1(d(i), d(j)) � ∑
t∈T(d(i))∩T(d(j))(D1d(i)(t) +D1d(j)(t))

DV1(d(i)) +DV1(d(j))
(4)

Considering two different diseases in the same layer of a

DAG (D), if the occurrence rate of one disease is different from
another, their semantic contribution to disease D should be

different. Inspired by Xuan et al. (Xuan et al., 2013), another

way to calculate the semantic contribution of disease d in

DAG (D) to disease D was defined as follows:

D2D(d) � −log the number of DAGs including d

the number of disease
(5)

Similarly, the disease semantic value DV2(D) of disease D

was defined as follows:

DV2(D) � ∑
d∈T(D)

D2D(d) (6)

Then, the disease semantic similarity between disease d(i)
and disease d(j) was defined as follows:

SS2(d(i), d(j)) � ∑
t∈T(d(i))∩T(d(j))(D2d(i)(t) +D2d(j)(t))

DV2(d(i)) +DV2(d(j))
(7)

Finally, we combined the above two methods to calculate the

disease semantic similarity of disease d(i) and d(j) as follows:

SS(d(i), d(j)) � SS1(d(i), d(j)) + SS2(d(i), d(j))
2

(8)

2.3 Gaussian interaction profile kernel
similarity for diseases

Based on the assumption that miRNAs with similar functions

tend to be related to diseases with similar phenotypes (van

Laarhoven et al., 2011), Gaussian interaction profile kernel

(GIPK) similarity for diseases was introduced to represent the

relationship between diseases from another perspective. Here, let

IP (d(i)) represent the i th column vector of the miRNA-disease

association matrixMD, which denotes whether there are verified

associations between disease d(i) and each miRNA. Then, the

GIPK similarity of disease d(i) and d(j) was defined as follows:

GD(d(i), d(j)) � exp( − γd
����IP (d(i)) − IP (d(j))����2) (9)

In Eq. 9, parameter γd controls the kernel bandwidth and was

calculated by the following formula:

γd �
γ′d

1
Nd

∑Nd

i�1‖IP (d(i))‖2 (10)
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According to the previous study (Chen & Yan, 2013; Chen

et al., 2016), γ′d was set to 1 here.

2.4 Integrated similarity of diseases

Since there may be no semantic similarity between two

diseases, we integrated semantic similarity and GIPK

similarity of disease here. Inspired by previous works (Dai

et al., 2022), the integrated disease similarity between d(i) and
d(j) was defined as follows:

IDS(d(i), d(j)) � { SS(d(i), d(j)), SS(d(i), d(j)) ≠ 0
GD(d(i), d(j)), SS(d(i), d(j)) � 0

(11)

2.5 MiRNA functional similarity

Based on the hypothesis that miRNAs with similar functions

tend to be associated with diseases with similar phenotypes,

miRNA functional similarity can be calculated (Wang et al.,

2010). Here, we directly obtained miRNA functional similarity

from the MISIM database (http://www.cuilab.cn/fi les/images/

cuilab/misim.zip) and represented them by FS(m(i), m(j)).

2.6 Gaussian interaction profile kernel
similarity for miRNAs

Similar to disease, the GIPK similarity between miRNAm(i)
and m(j) was defined as follows:

GM(m(i), m(j)) � exp( − γm
����IP (m(i)) − IP (m(j))����2)

(12)

γm � γ′m
1
Nm

∑Nm

i�1 ‖IP (m(i))‖2 (13)

Here, IP (m(i)) represent the i th row vector of miRNA-

disease associations matrix MD, which indicates whether there

are verified associations between miRNA m(i) and each disease.

Inspired by previous works (Chen & Yan, 2013; Chen et al.,

2016), γ′m was set to 1 here.

FIGURE 1
The method of sample representation.

FIGURE 2
The method of constructing a negative sample set.
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2.7 Integrated similarity of miRNAs

Since there may be no functional similarity between two

miRNAs, we integrated the miRNA functional similarity and the

GIPK similarity of miRNA m(i) and m(j). Inspired by previous

works (Dai et al., 2022), the integrated miRNA similarity between

m(i) and m(j) was defined as follows:

IMS(m(i), m(j)) � { FS(m(i), m(j)), FS(m(i), m(j)) ≠ 0
GM(m(i), m(j)), FS(m(i), m(j)) � 0

(14)

2.8 Sample representation

Here, a miRNA-disease pair was taken as a sample. The

feature vector of disease d(i) was defined as follow:

FD(d(i)) � (IDS(d(i), d(1)), IDS(d(i), d(2)), . . . , IDS(d(i), d(Nd))) (15)

Similarly, the feature vector of miRNA m(j) was defined as

follow:

FM(m(j)) � (IMS(m(j), m(1)), IMS(m(j), m(2)), . . . , IMS(m(j), m(Nm)))
(16)

Then, the feature vector of a sample (d(i),m(j)) was defined
as follow:

F(d(i), m(j)) � (FD(d(i)), FM(m(j))) (17)

The method of sample representation is shown in Figure 1.

2.9 Constructing negative sample set

In this work, the 5,430 experimentally confirmed miRNA-

disease associations were taken as positive samples and the

184,155 unverified miRNA-disease pairs as unlabeled samples.

Most methods (Yao et al., 2019; Zhao et al., 2019; Zhou et al.,

2020; Chen et al., 2021; Li et al., 2021; Dai et al., 2022) of

constructing negative sample set are to randomly select some

unlabeled samples as negative samples, or apply k-means

clustering on the unlabeled samples and sample negative

examples from the resulted clusters. However, these methods

may introduce potential positive samples into negative sample set

and lead to the performance degradation of the trained model

(Chen et al., 2021). Here, we proposed a novel and effective

method to construct negative sample set from the total sample

set. Firstly, we defined the positive sample set P, and the

unlabeled sample set U:

P � {F(d(i), m(j))∣∣∣∣MD(m(j), d(i)) � 1} (18)
U � {F(d(i), m(j))∣∣∣∣MD(m(j), d(i)) � 0} (19)

And we defined the total sample set T as follows:

T � P ∪ U (20)

Secondly, according to the hypothesis that in the total sample

set, the smaller the Minkowski distance between the two samples,

the more likely they are to be the same kind of samples (Hartigan

& Wong, 1979), we clustered T into K clusters by the

MiniBatchKMeans (Pedregosa et al., 2011). The formula for

calculating Minkowski distance was as following Eq. 21.

Dmk(x, y) � ⎛⎝∑n
u�1

∣∣∣∣xu − yu

∣∣∣∣p⎞⎠ 1
p (21)

MiniBatchkmeans is an optimization of K-Means

algorithm. It uses mini-batches to reduce the amount of

computation required to converge to a local solution,

thereby reducing the computing time required for

clustering the large-scale dataset. To ensure the accuracy of

clustering results, we repeated clustering ten times. Then, we

denoted the K clusters as follows:

C(1), C(2), . . . , C(K) (22)

The proportion of positive samples in the i th cluster was

defined as follows:

p(i) � |C(i) − U|
|C(i)| , i ∈ {1, 2, . . . , K} (23)

FIGURE 3
Ensemble learning framework.
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Thirdly, we ranked all clusters by p(i), and then denoted the

top n (n<K) clusters with the fewest p(i) as follows:
C(h(1)), C(h(2)), . . . , C(h(i)), . . .C(h(n)) (24)

Here, C(h(i)) represents the cluster with the i th fewest p(i).
Finally, we defined the i th negative sample set NS(h(i)) as

follows:

NS(h(i)) � C(h(i)) − P, i ∈ {1, 2, . . . , n} (25)

Here,NS(h(i)) represents the clusterC(h(i)) after removing

the positive sample.

Then, we constructed the total negative sample set N as

follows:

N � NS(h(1)) ∪ NS(h(2)) ∪ . . .NS(h(n)) (26)

The number of samples in the negative sample N set

constructed by the above method is 119,659. The method of

constructing a negative sample set is shown in Figure 2.

2.10 Ensemble learning framework

In this work, we implemented an ensemble learning

framework for miRNA-disease association prediction. Inspired

by the previous research (Chen et al., 2019b; Dai et al., 2020;

Sherazi et al., 2021; Wang et al., 2021; Zeng et al., 2021), we built

the CSMDA through the following three stages: 1) construct

multiple training subsets to increase the diversity of base

classifiers by randomly sampling from N; 2) perform the

random forest-based feature selection to reduce noise and

redundant information in the high-dimensional feature space;

3) use soft voting strategy to integrate the prediction results of all

base classifiers. The process of constructing the ensemble

learning framework is shown in Figure 3.

2.10.1 Constructing training subsets
In this work, we constructed multiple different training

subsets and balanced them to improve the prediction

performance of the CSMDA. On the one hand, the diversity

of subsets makes base classifiers discrepant from each other and

improves the generalization ability of the CSMDA. On the other

hand, multiple disparate training subsets can make full use of all

negative samples. Here, we defined the size of the P as |P|. First,
all samples in P were regarded as positive samples. Second, the

|P| negative samples were randomly sample fromN. Finally, the

positive and negative samples were combined into each training

subset. In this work, we constructed ten training subsets through

the above methods for the CSMDA.

2.10.2 Feature selection on each training subset
In the CSMDA, each miRNA-disease feature vector has

878 dimensions, which may contain a large amount of noise

and redundant information. Inspired by previous research (Yao

et al., 2019; Dai et al., 2022), we performed feature selection based

on random forest variable importance score on each training

subset. First, we trained a random forest model on each training

subset and sorted all features by the variable importance scores

which were generated by the random forest. Then, we selected

the top X features with the highest variable importance scores to

form a new feature space for each subset.

2.10.3 Soft voting strategy
In this work, the Extreme Gradient Boosting (XGBoost)

(Chen & Guestrin, 2016) was used as base classifier. Here, let

FIGURE 4
The silhouette coefficient of clustering results under different numbers of clusters.

TABLE 1 Performance comparison of the CSMDA using different base
classifiers.

Model Precision Recall F1-score AUROC AUPR

CSMDA-AB 0.9567 0.9267 0.9414 0.9885 0.9901

CSMDA-ERT 0.9666 0.9514 0.9589 0.9907 0.9926

CSMDA-RF 0.97 0.9468 0.9582 0.9912 0.9929

CSMDA-XGB 0.9674 0.9543 0.9608 0.9927 0.9939
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m represent the number of training subsets. Take an unknown

miRNA-disease pair as sample input, m base classifiers could

produce m prediction result for the sample, and then the m

prediction results were integrated by the soft voting strategy

(Sherazi et al., 2021; Wang et al., 2021; Zeng et al., 2021).

Specifically, the output of the i th sample by soft voting was

defined as follows:

O(i) � 1
m
∑m

j�1O(i, j) (27)

Here, O(i, j) represents the prediction scores of the j th

classifier for the i th sample. If O(i)> 0.5, the miRNA-disease

pair were regarded to be associated; otherwise, it was considered

to be not associated.

3 Results

3.1 Performance evaluation criteria

In this work, we employed five-fold cross-validation to

evaluate the performance of the CSMDA. Firstly, we adopted

the known 5,430 miRNA-disease association pairs as positive

samples and randomly selected an equal number of samples from

the negative sample set N as negative samples. Then, all positive

samples and all negative samples were combined into a sample

set. Next, the constructed sample set was divided into five parts,

and in each cross-validation, one part was taken out and merged

with unlabeled samples to make up the test sample set, and the

remaining four parts were all used as the training sample set.

Here, we evaluated the CSMDA by five metrics: Precision, Recall,

F1-score, AUC (Area under the receiver operating characteristic

curve) and AUPR (Area under the precision-recall curve). The

receiver operating characteristic (ROC) curves were obtained by

plotting the true positive rate (TPR) and false-positive rate (FPR)

under different levels of thresholds, and then the area under of

ROC (AUC) was computed (Hajian-Tilaki, 2013). The higher the

turning point of the ROC curve to the upper left, the closer the

AUC is to 1, indicating the better performance of the model. The

formulae for computing TPR and FPR were as following Eq. 28

and Eq. 29.

TPR � TP

TP + FN
(28)

FPR � FP

FP + TN
(29)

The Precision-Recall (PR) curves were obtained by plotting

the Precision and Recall rates under different levels of thresholds,

and then the area under of PR curve (AUPR) was computed

(Saito & Rehmsmeier, 2015). Similarly, the higher the turning

point of the PR curve to the upper right, the closer the AUPR is to

1, indicating that the model has a better performance in

predicting. The formulae for computing Precision and Recall

were as following Eq. 30 and Eq. 31.

TABLE 2 Performance comparison of the CSMDA under different dimension training samples.

Model Precision Recall F1-score AUROC AUPR

CSMDA-NOFS 0.9674 0.9543 0.9608 0.9927 0.9939

CSMDA-FS75 0.9676 0.9545 0.9610 0.9928 0.9940

CSMDA-FS50 0.9667 0.9551 0.9608 0.9927 0.9939

CSMDA-FS25 0.9657 0.9540 0.9598 0.9916 0.9930

FIGURE 5
The distribution of features from miRNAs and diseases among the top X features.
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Precision � TP

TP + FP
(30)

Recall � TP

TP + FN
(31)

Furthermore, F1-Score, as a comprehensive metric, is a

toned-down average of precision and recall and is used to

balance the effects of precision and recall and evaluate a

classifier more comprehensively. In addition, the Accuracy is

the result of the correct classification of the response model. The

F1-Score and Accuracy can be calculated as Eq. 32 and Eq. 33 as

followed.

F1-score � 2pPrecisionpRecall
Precision + Recall

(32)

Accuracy � TP + TN

TP + TN + FP + FN
(33)

3.2 Performance analysis of clustering

In constructing the negative sample set, the number of

clusters K is the key factor affecting the effectiveness of the

final clustering. In this work, the silhouette coefficient (SC)

(Rousseeuw, 1987) was adopted as the cluster validity index to

evaluate the validity of clustering results with different cluster

numbers. The silhouette coefficient is a kind of internal index to

judge criteria of clustering result and it is calculated as follows:

SC(o) � b(o) − a(o)
max{a(o), b(o)} (34)

Here, a(o) represents the average distance between sample o

and other samples in its cluster, and b(o) represents the

minimum average distance between sample o and samples in

other clusters. The value of SC(o) ranges from -1 to 1, and SC(o)
getting closer to 1 indicates that the cluster algorithm works

better. First, T was divided into 2, 3 . . . 24, and 25 clusters by

MiniBatchKMeans clustering. Then, according to each sample

and its label obtained through clustering, the silhouette

coefficient was calculated in turn. The silhouette coefficient

with a different number of clusters is shown in Figure 4. As

one can see, the silhouette coefficient decreases gradually with the

increase of the number of clusters and achieves a maximum of

0.349 when the number of clusters is 2. Therefore, we set the

values of K to 2 in the CSMDA.

3.3 Performance analysis of base classifier

Base classifier plays an importance role in the prediction

performance of the ensemble learning framework. In this work,

we compared the performance of four base classifiers: AdaBoost,

Random Forest (RF), Extreme Gradient Boosting (XGBoost) and

Extremely Randomized Trees (ExtRa Trees). For optimal

performance, we optimized the hyper-parameters of each

model. The prediction performance of the CSMDA using

different base classifiers are listed in Table 1. As one can see,

the Precision of the XGBoost is 0.9674, the Recall is 0.9543, the

F1-score is 0.9608, the AUROC is 0.9927 and the AUPR is 0.9939.

The XGBoost is lower than the RF in terms of Precision, but it is

higher than other models in all other metrics. Therefore, the

XGBoost was employed in the CSMDA.

3.4 Feature dimension analysis of samples

In the feature selection, according to the variable importance

scores, 100, 75, 50, and 25% features were selected from the

original feature space to construct the training set, denoted as

CSMDA-NOFS, CSMDA-FS75, CSMDA-FS50, and CSMDA-

FS25, respectively. Then, we evaluated the prediction

performance of the CSMDA with different number of

features, and the results were listed in Table 2. As one can

see, when the dimension of the training sample is 75% of the

length of the original feature vector, the effect of feature selection

on improving the performance of the CAMDA is optimum.

Therefore, we set the feature dimension of the training set to 75%

of the length of the original feature vector. We further analyzed

the contribution of miRNA and disease to the feature vector, the

distribution of features from miRNAs and diseases among the X

TABLE 3 Performance comparison of the CSMDA with other MDA prediction models.

Model Precision Recall F1-score AUROC AUPR

ABMDA [19] 0.8213 ± 0.0033 0.8371 ± 0.0044 0.8290 ± 0.0030 0.9023 ± 0.0021 0.8879 ± 0.0032

ANMDA [22] 0.8561 ± 0.0017 0.8728 ± 0.0020 0.8643 ± 0.0014 0.9373 ± 0.0005 0.9328 ± 0.0008

GAEMDA [21] 0.8146 ± 0.0031 0.9111 ± 0.0028 0.8597 ± 0.0010 0.9352 ± 0.0001 0.8850 ± 0.0010

GBDT-LR [20] 0.8403 ± 0.0026 0.8567 ± 0.0031 0.8484 ± 0.0021 0.9246 ± 0.0010 0.9177 ± 0.0015

IRFMDA [18] 0.8447 ± 0.0021 0.8598 ± 0.0025 0.8521 ± 0.0016 0.9267 ± 0.0009 0.9222 ± 0.0012

ERMDA [23] 0.8740 ± 0.0039 0.9043 ± 0.0019 0.8889 ± 0.0022 0.9561 ± 0.0013 0.9542 ± 0.0020

CSMDA 0.9676 ± 0.0052 0.9545 ± 0.0059 0.9610 ± 0.0042 0.9928 ± 0.0012 0.9940 ± 0.0009
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features with the highest variable importance scores is shown in

Figure 5. As we can see from Figure 5, the number of features

from miRNAs is generally greater than that from diseases, which

is consistent with the fact that the number of miRNAs is greater

than that from the diseases. This indicates that feature selection

based on the variable importance score is reasonable.

3.5 Performance comparison between
clustering-based sampling method for
miRNA-disease association prediction and
other miRNA-disease association
prediction models

To prove the ability of the CSMDA to predict potential

disease-associated miRNAs, we compared it with six state-of-

the-art MDA prediction models, including ABMDA (Zhao et al.,

2019), ANMDA (Chen et al., 2021), GAEMDA (Li et al., 2021),

GBDT-LR (Zhou et al., 2020), IRFMDA (Yao et al., 2019) and

ERMDA (Dai et al., 2022). First, the CSMDA and other MDA

prediction models constructed negative sample set by their

respective methods. Secondly, we used the recommended

hyper-parameters for these models. Finally, we performed

500 times five-fold cross-validation for each model. The

performance of the above MDA prediction models are shown

in Table 3. As one can see, the Precision, Recall, F1-score, AUC

and AUPR of the CSMDA is 0.9676 ± 0.0052, 0.9545 ± 0.0059,

0.9610 ± 0.0042, 0.9928 ± 0.0012, and 0.9940 ±

0.0009 respectively, which superior to other methods in all

TABLE 4 The top 20 miRNAs for three cancers predicted by the
CSMDA.

Disease Rank miRNA Evidence

breast cancer 1 hsa-mir-195 dbDEMC

2 hsa-mir-146a dbDEMC

3 hsa-mir-24 dbDEMC

4 hsa-let-7e dbDEMC

5 hsa-mir-9 dbDEMC

6 hsa-mir-219 dbDEMC

7 hsa-mir-148a dbDEMC

8 hsa-mir-218 dbDEMC

9 hsa-let-7a dbDEMC

10 hsa-mir-29a dbDEMC

11 hsa-mir-223 dbDEMC

12 hsa-mir-30d dbDEMC

13 hsa-mir-92a dbDEMC

14 hsa-mir-210 dbDEMC

15 hsa-mir-200c dbDEMC

16 hsa-mir-17 dbDEMC

17 hsa-mir-214 dbDEMC

18 hsa-mir-372 dbDEMC

19 hsa-mir-106b dbDEMC

20 hsa-mir-221 dbDEMC

colon cancer 1 hsa-mir-24 dbDEMC

2 hsa-mir-20a dbDEMC

3 hsa-mir-125b dbDEMC

4 hsa-mir-182 dbDEMC

5 hsa-mir-29a dbDEMC

6 hsa-mir-214 dbDEMC

7 hsa-mir-17 dbDEMC

8 hsa-mir-21 dbDEMC

9 hsa-mir-30b dbDEMC

10 hsa-mir-29b dbDEMC

11 hsa-mir-19b dbDEMC

12 hsa-mir-19a dbDEMC

13 hsa-mir-18a dbDEMC

14 hsa-mir-141 dbDEMC

15 hsa-mir-155 dbDEMC

16 hsa-mir-223 dbDEMC

17 hsa-mir-127 dbDEMC

18 hsa-mir-34c Hiyoshi, Y., et al. [40]

19 hsa-mir-1 dbDEMC

20 hsa-mir-126 dbDEMC

lung cancer 1 hsa-mir-29c dbDEMC

2 hsa-mir-92a dbDEMC

3 hsa-mir-206 dbDEMC

4 hsa-mir-214 dbDEMC

5 hsa-mir-183 dbDEMC

(Continued in next column)

TABLE 4 (Continued) The top 20miRNAs for three cancers predicted by
the CSMDA.

Disease Rank miRNA Evidence

6 hsa-mir-210 dbDEMC

7 hsa-mir-142 dbDEMC

8 hsa-mir-221 dbDEMC

9 hsa-mir-30e dbDEMC

10 hsa-mir-24 dbDEMC

11 hsa-mir-223 dbDEMC

12 hsa-mir-20b dbDEMC

13 hsa-mir-193b dbDEMC

14 hsa-mir-191 dbDEMC

15 hsa-mir-22 dbDEMC

16 hsa-mir-124 dbDEMC

17 hsa-mir-18b dbDEMC

18 hsa-mir-30a dbDEMC

19 hsa-mir-148a dbDEMC

20 hsa-mir-15b dbDEMC
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metrics. The results proved the outstanding prediction

performance of the CSMDA.

3.6 Case studies

To prove the application value of the CSMDA in guiding

biological experiments, we performed case studies on three

common cancers, including breast cancer, colon cancer and

lung cancer. Firstly, we combined the 5,430 positive samples

verified by the experiment and the 5,430 negative samples

randomly selected from the negative sample set N into the

training set of CSMDA. Secondly, we identified the positive

and negative samples to which the three diseases belong.

Thirdly, in the case study of current cancer, remove all

samples related to current cancer in the training set. Finally,

we trained CSMDA on this training set, and scored miRNA-

disease pairs related to current cancer by using the CSMDA. We

verified the top 20 miRNAs predicted to be associated with each

cancer, and the results were listed in Table 4. Here, we validated

these predicted miRNAs through the dbDEMC (Database of

differentially expressed miRNAs in human cancers) database

(Yang et al., 2017) or literatures. As one can see from Table 4, for

breast cancer and lung cancer, all predicted miRNAs were

confirmed by the dbDEMC database; for colon cancer, all

predicted miRNAs except hsa-mir-34c were confirmed by the

dbDEMC database. However, Hiyoshi et al. demonstrated that

the expression level of Mir-34C in human colon cancer cells was

higher than that in non-tumor cells (Hiyoshi et al., 2015). In

summary, case study demonstrated that the CSMDA was reliable

for predicting disease-associated miRNAs.

4 Conclusion

In this work, we presented a clustering-based sampling

method for predicting miRNA-disease associations, named

CSMDA. Firstly, the CSMDA integrated similarity of disease

and miRNA to represent samples. Secondly, the CSMDA

implemented an effective clustering-based sampling

method to construct negative sample set. Thirdly, the

CSMDA employed a random forest-based feature selection

method to reduce noise and redundant information in the

high-dimensional feature space. Finally, the CSMDA

implemented an ensemble learning framework for

predicting miRNA-disease associations by soft voting. The

experimental results and case studies on the three cancers

demonstrate that the CSMDA is a reliable model to predict

disease-associated miRNAs. The main contribution of the

CSMDA is to propose a new method to construct a more

effective negative sample set, which avoids the possibility of

introducing potential positive samples into negative sample

set as much as possible. The negative sample set constructed

by our method not only makes CSMDA perform well, but

also improves the performance of other MDA prediction

models. However, it should be noted that there are several

limitations to the CSMDA. First, it is still inevitable to

introduce potential positive samples in the stage of

constructing the negative sample set. Second, the

clustering algorithm used in the CSMDA is

MiniBatchKMeans which showed good clustering effect,

but other clustering algorithms may make the negative

sample set purer. We will study the clustering effect of

other clustering algorithms on the total sample set in the

next work. Finally, in current work, the information

associated with miRNA and disease is limited, which may

result in the essential features that are helpful to identify

miRNA-disease associations not being extracted in the

CSDMA. In the future, we will integrate more features

related to disease and miRNA into the CSMDA. In

summary, we hope that the CSMDA can help researchers

make breakthroughs in the treatment of complex human

diseases at the miRNA level.
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Background: Peripheral arterial occlusive disease (PAOD) is a peripheral artery

disorder that increases with age and often leads to an elevated risk of

cardiovascular events. The purposes of this study were to explore the

underlying competing endogenous RNA (ceRNA)-related mechanism of

PAOD and identify the corresponding immune cell infiltration patterns.

Methods: An available gene expression profile (GSE57691 datasets) was

downloaded from the GEO database. Differentially expressed (DE) mRNAs

and lncRNAs were screened between 9 PAOD and 10 control samples.

Then, the lncRNA-miRNA-mRNA ceRNA network was constructed on the

basis of the interactions generated from the miRcode, TargetScan, miRDB,

and miRTarBase databases. The functional enrichment and protein–protein

interaction analyses of mRNAs in the ceRNA network were performed.

Immune-related core mRNAs were screened out through the Venn method.

The compositional patterns of the 22 types of immune cell fraction in PAOD

were estimated through the CIBERSORT algorithm. The final ceRNA network

and immune infiltration were validated using clinical tissue samples. Finally, the

correlation between immune cells and mRNAs in the final ceRNA network was

analyzed.

Results: Totally, 67 DE_lncRNAs and 1197 DE_mRNAs were identified, of which

130 DE_mRNAs (91 downregulated and 39 upregulated) were lncRNA-related.

The gene ontology enrichment analysis showed that those down- and

upregulated genes were involved in dephosphorylation and regulation of

translation, respectively. The final immune-related core ceRNA network

included one lncRNA (LINC00221), two miRNAs (miR-17-5p and miR-20b-

5p), and one mRNA (CREB1). Meanwhile, we found that monocytes and

M1 macrophages were the main immune cell subpopulations in PAOD. After

verification, these predictionswere consistentwith experimental results. Moreover,

CREB1 was positively correlated with naive B cells (R = 0.55, p = 0.035) and
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monocytes (R = 0.52, p = 0.049) and negatively correlated with M1 macrophages

(R = −0.72, p = 0.004), resting mast cells (R = −0.66, p = 0.009), memory B cells

(R = −0.55, p = 0.035), and plasma cells (R = −0.52, p = 0.047).

Conclusion: In general, we proposed that the immune-related core ceRNA

network (LINC00221, miR-17-5p, miR-20b-5p, and CREB1) and infiltrating

immune cells (monocytes and M1 macrophages) could help further explore

the molecular mechanisms of PAOD.

KEYWORDS

peripheral arterial occlusive disease, PAOD, ceRNA, immune cell infiltration,
atherosclerosis

Introduction

Peripheral arterial occlusive disease (PAOD) is an

atherosclerotic condition involving non-cardiac and non-

cerebral arteries. Nowadays, it has developed into a

widespread disease with more than 200 million people

affected worldwide and has become the third most common

cause of death from cardiovascular disease (Fowkes et al., 2013).

The importance of it is growing by virtue of its increasing

incidence. Patients with PAOD often suffer from chronic limb

ischemia that results in intermittent claudication, resting pain,

disability, and even death. As PAOD is one common

manifestation of systemic atherosclerosis, it is essential to

study peripheral atherosclerosis for exploring the potential

pathogenesis and progression of PAOD and effective

therapeutic targets.

In recent years, more and more studies have shown that

atherosclerosis, as a chronic inflammatory disease, is significantly

associated with the infiltration of immune cells such as

neutrophils, macrophages, T cells, and B cells into the inner

layer of the vessel wall (Hansson andHermansson, 2011; Baptista

et al., 2018). In atherosclerosis, hypercholesterolemia leads to the

accumulation of plasma low-density lipoprotein (LDL) in the

artery wall, which stimulates and recruits monocytes and elicits

local inflammation. Then, monocytes are infiltrated to

differentiate locally into macrophages, and the lipid metabolic

disorders and efferocytosis of macrophages are reduced, leading

to irreversible inflammation (Tabas and Bornfeldt, 2016).

Macrophages polarized to M1 and M2 exert pro-inflammatory

and anti-inflammatory effects, respectively (Moore and Tabas,

2011). T cells account for about 40% of the total number of

immune cells in human atherosclerotic lesions. Among them,

regulatory T (Treg) cells produce transforming growth factor β,
which inhibits the proliferation of T-helper type 1 (Th1) and

T-helper type 17 (Th17) cells (Fantini et al., 2006). Th1 cells and

natural killer (NK) cells secrete pro-inflammatory factors, which

destroy collagen fibers and promote the transformation of

atherosclerotic plaques to vulnerable phenotypes (Konkel

et al., 2017). Th17 cells are a subtype of T cells, which can

promote the formation of thick collagen fibers and contribute to

the stability of plaques (Gisterå et al., 2013). Dendritic cells (DCs)

can make the innate and adaptive immune responses to act as

important modulators in atherosclerosis (Cybulsky et al., 2016).

Several B-lymphocyte subsets contribute to the inflammatory

process of atherosclerosis through cellular and humoral

responses (Tsiantoulas et al., 2014). However, in PAOD, the

landscape of immune cell infiltration has not been fully

elucidated. Moreover, the relationship between immune-

related genes and immune cells in PAOD is largely unknown.

Noncoding RNAs (ncRNAs) regulate gene expression at

transcriptional and posttranscriptional levels without coding

proteins in the transcriptome, including microRNAs

(miRNAs) and long noncoding RNAs (lncRNAs). miRNAs

are a class of highly conserved single-stranded noncoding

small RNAs, which contain approximately 19–25 nucleotides

and have post-transcriptional regulatory activity. lncRNAs are

defined as a type of ncRNAs that are longer than 200 nucleotides

in length, with multilevel regulatory functions in gene expression,

such as transcription, translation, and epigenetics. Accumulating

evidence has shown that functional ncRNAs play an important

role in the pathogenesis and progression of many diseases, such

as cancer, digestive system diseases, and cardiovascular diseases.

In recent years, a competing endogenous RNA (ceRNA) network

hypothesis has been proposed (Salmena et al., 2011). In the

ceRNA network, lncRNAs can serve as endogenous molecular

sponges for miRNAs to regulate the expression of messenger

RNAs (mRNAs) indirectly. In this way, the function of ncRNAs

can be linked to the function of mRNAs that encode proteins.

Given their complexity, the dysregulation of the lncRNA-

miRNA-mRNA network is closely related to the pathogenesis

and progression of many human diseases, such as cardiovascular

diseases. For instance, Ye et al. (2019) found that lncRNAMIAT

upregulates CD47 expression by sponging miR-149-5p and

inhibits efferocytosis in advanced atherosclerosis. Yang et al.

(2021) discovered that the lncRNA XIST serves as a ceRNA and

promotes atherosclerosis by increasing miR-599-mediated

expression of TLR4. Nevertheless, few data-based studies have

been conducted to analyze the relationship between the immune-

related ceRNA regulatory network and infiltrating immune cells

in PAOD.
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In this study, we compared differentially expressed (DE)

mRNAs and lncRNAs between 9 PAOD and 10 control samples

downloaded from the Gene Expression Omnibus (GEO)

database. Then, the target miRNAs of DE_lncRNAs and

DE_mRNAs of target miRNAs were predicted. Subsequently,

protein–protein interaction (PPI) analysis among the predicted

DE_mRNAs was conducted, and hub DE_mRNAs were

identified by the Cytoscape’s cytoHubba plugin. The

overlapping genes between the hub DE_mRNAs and immune-

related genes were identified as core mRNAs to construct the

potential immune-related core ceRNA regulatory network of

PAOD. Meanwhile, the CIBERSORT method was used to

analyze the different patterns of immune cell infiltration in

PAOD. The immune-related core ceRNA network and

immune infiltration were validated using clinical tissue

samples. Finally, we investigated and visualized the correlation

between the core mRNAs and infiltrating immune cells in an

effort to better understand the molecular immune mechanism

during the progression of PAOD.

Materials and methods

Data acquisition

In this study, the microarray dataset GSE57691 (Biros et al.,

2015) that assessed the relative gene expression in human

abdominal aortic aneurysm (AAA) and PAOD, and

GSE137580 that studied the global miRNAs in atherosclerotic

models that oxidative LDL treated human aortic endothelial cells

(HAEC) were obtained from the Gene Expression Omnibus

database (GEO, http://www.ncbi.nlm.nih.gov/geo) (Barrett

et al., 2013). The specimens of GSE57691 were obtained from

20 patients with small AAA, 29 patients with large AAA, 9 PAOD

patients, and 10 organ donors. Then, the data on PAOD and

normal artery were picked out for further analysis. The test

platforms of GSE57691 and GSE137580 were

GPL10558 Illumina HumanHT-12 V4.0 expression beadchip

and GPL24741 Agilent-070156 Human_miRNA_V21.0_

Microarray 046064 (gene name version), respectively. The

GSE137580 data were used to validate the relative expression

level of miRNAs in the potential ceRNA network. Additionally,

immune-related genes were downloaded from the Immunology

Database and Analysis Portal (ImmPort) database (http://www.

immport.org/) (Bhattacharya et al., 2014).

Differential expression analysis

First, the probe sets were converted into corresponding gene

symbols according to the platform profile with annotation

information. If multiple probe sets correspond to the same

gene, their mean value was calculated by R software (version

4.1.0). Then, based on the gene annotation information included

in the ENSEMBL database (https://asia.ensembl.org/Homo_

sapiens/Info/Index), the expression profile dataset was divided

into lncRNA and mRNA groups. The linear models for the

microarray data (LIMMA) package of R software were utilized

to normalize raw data and perform DE_RNA analysis between

PAOD and normal artery groups (Ritchie et al., 2015). p-values

were adjusted by the Benjamini–Hochberg (BH) false discovery

rate (FDR) method (Glickman et al., 2014). The cut-off value of

DE_RNAs was set as adj. p-value < 0.01 and |fold change (FC)| >
1.5 (Meng et al., 2019). The heatmap of the DE_lncRNAs and the

volcano plot of all RNAs were constructed for data visualization

by the “pheatmap” (https://CRAN.R-project.org/package=

pheatmap) and “ggplot2” packages in R software, respectively

(Ginestet, 2011).

Prediction of lncRNA-miRNA-mRNA
interactions

The highly conserved miRNA families of the miRcode

database (http://www.mircode.org/) were applied to predict

interactions between DE_lncRNAs and potential miRNAs

(Jeggari et al., 2012). Subsequently, the TargetScan (http://

www.targetscan.org/) (Agarwal et al., 2015), miRDB (http://

www.mirdb.org/) (Chen and Wang, 2020), and miRTarBase

(http://mirtarbase.mbc.nctu.edu.tw/) (Huang et al., 2020)

databases were utilized to forecast miRNA–mRNA pairs. Only

those genes that concurrently existed in all three databases were

considered as candidate targets of mRNAs for further analysis.

Venn method

The Venn method was employed to analyze overlapping

genes. Intersections between DE_lncRNA predicted mRNAs and

DE_mRNAs, as well as immune-related genes and lncRNA-

related DE_mRNAs (the intersections between DE_lncRNA

predicted mRNAs and DE_mRNAs), were calculated using an

online tool. (http://bioinformatics.psb.ugent.be/webtools/Venn/).

Moreover, the tool was also used to identify the hub genes.

Functional enrichment and
protein–protein interaction (PPI) analysis

First, the lncRNA-related DE_mRNAs were divided into

expression upregulated and downregulated groups. Then, the

“clusterProfiler” package (Yu et al., 2012) in R software was used

to perform gene ontology (GO) (Gene Ontology Consortium,

2006) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

(Kanehisa et al., 2010) enrichment analyses. GO enrichment

analysis included three categories: cellular component (CC),
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molecular function (MF), and biological process (BP). The

“ggplot2” package in R software was utilized to draw the

bubble charts for visualization of the results of the GO and

KEGG enrichment analyses. p-value < 0.05 was considered

significantly enriched when screening. Subsequently, the

online Search Tool for the Retrieval of Interacting Genes

(STRING, https://string-db.org/) database (Szklarczyk et al.,

2019) was used to determine the relationship between the

lncRNA-related DE_mRNAs. The minimum required

interaction score was 0.7, and the disconnected nodes in the

network were hidden. Then, Cytoscape software (version 3.8.2)

was used to develop the PPI network. Furthermore, the Maximal

Clique Centrality (MCC), Degree, and Maximum Neighborhood

Component (MNC) algorithms in the cytoHubba plugin were

used to screen out the top 10 mRNAs in the PPI network. The

overlapping genes obtained by the three different

aforementioned algorithms were identified as hub genes.

Finally, we identified the overlapping genes between the hub

genes before and the immune-related genes as immune-related

core genes.

Construction of the immune-related core
ceRNA network

First, the interactions between lncRNAs, miRNAs, and

immune-related core mRNAs were confirmed, as described in

the aforementioned item. Second, the immune-related lncRNA-

miRNA-mRNA ceRNA network was developed, and the

“ggalluvial” package (http://corybrunson.github.io/ggalluvial/)

in R software was used to draw a Sankey diagram for data

visualization. Subsequently, a correlation analysis between

lncRNA and immune-related core genes in the ceRNA

network was performed by the “LIMMA” package in R

software. Ultimately, the relative expression levels of miRNAs

in immune-related core ceRNA were validated in the

GSE137580 dataset and visualized by GraphPad Prism

(version 7.0). p-value < 0.05 was considered statistically

significant.

Estimation of immune cell infiltration

CIBERSORT (https://cibersort.stanford.edu/) is a versatile

analytical tool that uses gene expression data to quantify the cell

fractions from complex tissues and has been confirmed by flow

cytometry (Newman et al., 2015). To analyze the proportion of

22 infiltrating immune cells in atherosclerotic plaques of PAOD

patients and normal controls, the mRNA expression data were

uploaded to the CIBERSORT platform. Only samples that had a

CIBERSORT algorithm output of p-value < 0.05 were filtered out,

and the immune cell infiltration matrix was obtained for further

analysis. Histograms and heatmaps were drawn to show the rate

of immune cell infiltration in different samples. Subsequently, the

Wilcoxon rank-sum test was performed to assess the differential

composition of infiltrating immune cells between PAOD patients

and controls. Results were visualized by the “pheatmap” and

“vioplot” (https://github.com/TomKellyGenetics/vioplot)

packages in R software. Furthermore, Pearson’s correlation

analysis was adopted to explore the correlation among

22 immune cell subtypes. A correlation heatmap was drawn

by the “corrplot” package (https://github.com/taiyun/corrplot) in

R software to visualize the correlation analysis results. Finally, the

“ggstatsplot” package (https://github.com/IndrajeetPatil/

ggstatsplot) was used to perform correlation analysis on the

immune-related core DE_mRNAs and infiltrating immune

cells, and the “ggplot2” package was used to visualize the

results in R software.

Real-time quantitative PCR

From June 2021 to February 2022, we recruited five patients

with PAOD who underwent femoral endarterectomy and five

organ donors who donated normal iliac arteries in the First

Affiliated Hospital of Anhui Medical University. All tissue

specimens were divided into two parts and frozen in liquid

nitrogen immediately when they were isolated. One part of

these samples was pretreated, and total RNA was extracted

with TRIzol reagent (Invitrogen Life Technologies,

United States) for performing real-time quantitative

polymerase chain reaction (RT-qPCR). Spectrophotometry

was used to measure the purity of RNA. RNAs were reverse

transcribed into complementary DNAs using the Bestar qPCR

RT Kit (DBI, Germany), following the instructions of the

manufacturer. Subsequently, complementary DNA was

amplified by RT-qPCR using an Applied Biosystems SYBR

Green mix kit (ABI, United States). GAPDH was used as an

internal reference for lncRNAs and mRNAs, while U6 was used

as a reference for miRNAs. Primer sequences were obtained from

PrimerBank and miRprimer2 databases (Supplementary Table

S1). The reactions were measured on the ABI 7900HT Real-Time

PCR system (ABI, United States), and the 2−ΔΔCT method was

used for analysis.

Hematoxylin and eosin (H&E) and
immunofluorescence staining

The other part of those samples was demineralized after

fixation in 4% paraformaldehyde and then embedded in paraffin.

All samples were cut into 4-μm slices for further staining. H&E

staining was performed to assess the atherosclerotic lesions. The

protein expression levels of CD68 and iNOS were analyzed by

immunofluorescence staining. Antibodies (i.e., CD68 and iNOS)

were purchased from Proteintech (Chicago, IL, United States).
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All procedures were conducted according to the

recommendations of the manufacturer. Images were observed

with a fluorescence microscope (Leica DMI6000B, Germany)

and analyzed by ImageJ software.

Statistical analysis

The data are presented as the mean ± standard deviation

(SD). SPSS (SPSS Inc., Chicago, IL, United States, version: 19.0)

was used to conduct statistical analysis. Student’s t-test was used

for comparisons between two groups. A p-value of less than

0.05 was considered statistically significant. All experiments were

performed at least three times.

Results

Identification of DE mRNAs and lncRNAs

In order to clarify the process of this research and make it

easier for readers to read, a schematic representation is provided

in Figure 1. Raw data were downloaded from the

GSE57691 dataset in the GEO database. In total, RNA-seq

data from 9 PAOD and 10 normal tissues were analyzed

using criteria of |fold change (FC)| > 1.5 and adj. p-value <
0.01. A total of 2,142 lncRNAs and 18,219 mRNAs were re-

annotated according to the platform profile with annotation

information. Moreover, we identified 1264 DE RNAs,

including 67 lncRNAs (27 downregulated and 40 upregulated)

and 1197 mRNAs (752 down-regulated and 445 up-regulated)

meeting the thresholds. Then, the corresponding volcano plot

and heatmap of DE_lncRNAs are shown in Figure 2.

Functional enrichment analysis of
lncRNA-related DE_mRNAs

In order to construct the ceRNA network, DE_lncRNAs

were further analyzed. The miRcode database was employed to

predict potential DE_lncRNA-targeted miRNAs. Then,

potential miRNA–mRNA pairs were analyzed using the

miRTarBase, TargetScan, and miRDB databases. A total of

34 miRNAs were identified as DE_lncRNA-predicted

miRNAs, and 130 mRNAs (91 downregulated and

39 upregulated) were identified as DE_lncRNA-predicted

mRNAs. Subsequently, the Venn method was used to

analyze the overlapping genes between DE_mRNAs and

DE_lncRNA-predicted mRNAs. As shown in Figure 3A, the

intersection contains all of the DE_lncRNA-predicted mRNAs.

FIGURE 1
Schematic representation of our analytic process.
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These mRNAs were also called lncRNA-related DE_mRNAs. To

determine the potential mechanisms of lncRNA-related

DE_mRNAs, these mRNAs were divided into down- and

upregulated groups for further GO and KEGG enrichment

analyses (Figures 4A–D). A biological process analysis showed

that mRNAs in the downregulated group were significantly

enriched in dephosphorylation, regulation of autophagy, and

inositol phosphate catabolic processes, while mRNAs in the

upregulated group were mostly enriched in regulation of

translation, positive regulation of the cellular catabolic process,

and positive regulation of fat cell differentiation. A cellular

component analysis showed that mRNAs in the downregulated

group were significantly enriched in microtubules, while mRNAs

in the upregulated group were mostly enriched in the

endoplasmic reticulum–Golgi intermediate compartment. A

molecular function analysis showed that mRNAs in the

downregulated group were significantly enriched in ubiquitin-

like protein ligase binding and phosphatase binding, while

mRNAs in the upregulated group were mostly enriched in

Rho GTPase binding and vinculin binding. The KEGG

pathway enrichment analysis showed mRNAs in the

downregulated group were significantly enriched in the PI3K-

Akt signaling pathway, cellular senescence, and regulation of the

actin cytoskeleton. However, mRNAs in the upregulated group

were mostly enriched in human cytomegalovirus infection and

the cGMP-PKG signaling pathway.

PPI network construction and hub gene
identification

The PPI network of lncRNA-related DE_mRNAs containing

130 nodes and 61 edges was constructed based on the STRING

online database and visualized by Cytoscape software (Figure 5).

Subsequently, Cytoscape’s plugin cytoHubba was used to identify

the top 10 genes based on three commonly used classification

methods (MCC, Degree, and MNC) (Supplementary Table S1).

By overlapping these genes, seven hub genes (YWHAH, PTEN,

PIK3R1, FOXO3, YWHAE, CREB1, and FOXO1) were

consequently identified, as shown in Figure 3B.

Construction of the immune-related core
ceRNA network

To construct the immune-related core ceRNA network, the

Venn method was used to analyze the intersection between

lncRNA-related DE_mRNAs and immune-related genes

obtained from the ImmPort database. Consequently, a total of

seven genes (TNFAIP3, PLXND1, CREB1, PIK3R1, HMGB1,

PLAU, and KRAS) were identified as lncRNA-related immune

DE_mRNAs (Figure 3A). Subsequently, two genes (PIK3R1 and

CREB1) were identified as immune-related core genes by

overlapping the lncRNA-related immune DE_mRNAs and the

FIGURE 2
Differentially expressed (DE) mRNAs and lncRNAs in tissues between PAOD patients and normal controls. (A) Volcano plot of DE_mRNAs. (B)
Heatmap of DE_lncRNAs.
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seven hub genes acquired in Cytoscape software. After that,

immune-related core DE_mRNAs and their paired miRNAs

and lncRNAs were chosen to develop the ceRNA regulatory

network. In total, the immune-related core ceRNA network

contained eight lncRNAs, three miRNAs, and two mRNAs

(Figure 3C). Then, the correlation between the expression of

immune-related core DE_mRNAs and their paired lncRNAs was

analyzed. The results illustrated that the expression of CREB1

was positively correlated with LINC00221 (R = 0.861, p < 0.001)

and MEG3 (R = 0.492, p = 0.033) (Figures 6A,B). Similarly,

PIK3R1 was positively correlated with that of HSPB2-C11orf52

(R = 0.508, p = 0.026), (Figure 6C). Additionally, the relative

expression levels of miRNAs in the potential immune-related

core ceRNA network were validated in the GSE137580 dataset

and visualized by GraphPad Prism 7. As shown in Figures 6D–F,

compared with the negative control group, the relative

expression levels of miR-107, miR-20b-5p, and miR-17-5p

were all low in the atherosclerosis group, due to the

expression trend of miR-20b-5p and miR-17-5p being

consistent with that of prediction, while that of miR-107 was

opposite to that of prediction. Moreover, the correlation ship

between the expression of LINC00221 and CREB1was very close.

Hence, the final potential immune-related core ceRNA network

in this study contained one lncRNA (LINC00221), two miRNAs

(miR-20b-5p and miR-17-5p), and one mRNA (CREB1) in

Table 2.

FIGURE 3
Identification of lncRNA-related DE-mRNAs (A) and hub genes (B). The details of intersection in the Venn diagram are listed as follows.
Construction of the immune-related core ceRNA network in PAOD (C). MCC,maximal clique centrality; MNC,maximum neighborhood component.
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Composition of infiltrating immune cells

The composition of 22 infiltrating immune cells in

atherosclerosis tissues of PAOD patients and normal

controls was estimated using the CIBERSORT algorithm

(Figures 7A,B). Since the output p-values of GSM1386842,

GSM1386843, GSM1386849, and GSE1386836 were greater

than 0.05, they were excluded for further analysis. The

distribution of 22 immune cell types in each sample varied

significantly, among which M2 macrophages accounted for the

largest proportion. The relationships among 22 immune cells

are presented in Figure 7C. Monocytes were negatively

correlated with M1 macrophages (R = −0.75). Activated

mast cells were positively correlated with eosinophils (R =

0.75) and activated dendritic cells (R = 0.74). Activated

memory CD4 T cells were positively correlated with naive

CD4 T cells (R = 0.75) and activated dendritic cells (R =

0.71). Naive CD4 T cells were positively correlated with

activated dendritic cells (R = 0.98). Memory B cells were

positively correlated with plasma cells (R = 0.88). Other

immune cell subpopulations were weakly to moderately

correlated. The violin plot of the immune cell infiltration

difference showed that, compared with the normal control

sample, two types of immune cells, monocytes and

M1 macrophages, were differentially expressed. Monocytes

were upregulated, while M1 macrophages were

downregulated in atherosclerosis tissues of PAOD patients

(Figure 7D).

Biological experiments

To validate the immune-related core ceRNA network in

PAOD, RT-qPCR was used to detect the expression levels of

the core genes. As it is shown in Figures 8A–D, compared with

the normal control group, the expression of LINC00221 and

CREB1 in the PAOD group was increased, while the expression

ofmiR-20b-5p andmiR-17-5pwas decreased (all p-values < 0.05).

FIGURE 4
Functional enrichment analysis of lncRNA-related DE_mRNAs. (A,B) GO enrichment analysis of downregulated and upregulated lncRNA-
related DE-mRNAs. (C,D) KEGG enrichment analysis of downregulated and upregulated lncRNA-related DE-mRNAs.
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Intimal structure disorder, lipid infiltration, and smooth muscle

cell atrophy after endarterectomy of the femoral artery are found

in Figure 8E in comparison with normal arterial intima.

Subsequently, immunofluorescence staining of monocyte- and

macrophage-associated molecules CD68 (monocytes) and iNOS

(M1) showed that monocyte and M1 macrophage infiltration

were significantly increased and decreased, respectively, in the

PAOD group (all p-values < 0.05). The results of positive area

analysis of CD68 and iNOS are shown in Figures 8F,G. These

results are consistent with the bioinformatics results we

predicted.

Correlation analysis

Finally, the correlation between CREB1 and infiltrating

immune cells was estimated. In this analysis, the Wilcoxon

test was adopted and significantly correlated pairs with a

p-value < 0.05. As shown in Figure 9, CREB1 was positively

correlated with naive B cells (R = 0.55, p = 0.035) and monocytes

(R = 0.52, p = 0.049) and negatively correlated with

M1 macrophages (R = −0.72, p = 0.004), resting mast cells

(R = −0.66, p = 0.009), memory B cells (R = −0.55, p =

0.035), and plasma cells (R = −0.52, p = 0.047).

Discussion

PAOD is a peripheral artery disease increasing with age and

often leads to distal limb ischemia that results in reduced quality

of life and death. Despite improvements in surgical,

interventional, and pharmacological therapy of PAOD, the

progression of atherosclerosis is still not prevented or curbed

efficiently. Hence, in order to improve the treatment of PAOD, it

is of vital significance to explore the underlying molecular

mechanisms. For the past few years, the hypothesis of the

ceRNA network has greatly raised the interest of researchers,

and it makes the link between ncRNAs and mRNAs. On the basis

of the ceRNA hypothesis, lncRNAs can act as miRNA sponges to

regulate the expression of mRNAs. In this study, for exploring the

potential pathogenesis of PAOD, we constructed the immune-

related ceRNA regulatory network of PAOD based on the

GSE57691 microarray dataset. After comprehensive analysis

and careful verification, the final immune-related core ceRNA

network, including one lncRNA (LINC00221), two miRNAs

(miR-17-5p and miR-20b-5p), and one mRNA (CREB1), was

identified. The interaction between LINC00221, miR-17-5p, and

miR-20b-5p may regulate peripheral atherosclerosis via CREB1.

As post-transcriptional regulators, miRNAs play an

important role in influencing the expression of downstream

FIGURE 5
PPI network analysis. The PPI network consisting of 130 nodes and 61 edges was visualized in Cytoscape. Red and green notes symbolize the
upregulated and downregulated genes. The size of each node is positively correlated with its degree value.
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target genes, which are involved in a variety of physiological

and pathological processes (Valencia-Sanchez et al., 2006;

Bartel, 2009). During recent years, the dysregulation of

miRNA expression has been found to be associated with the

pathogenesis and progression of many diseases, including

atherosclerosis. In fact, several miRNAs have been found to

be associated with the pathogenesis of atherosclerosis. Tan et al.

(2019) demonstrated that inhibiting the expression of miR-17-

5p can suppress inflammation and reduce lipid accumulation in

atherosclerosis. An et al. (2019) reported that the expression of

miR-17-5p is significantly decreased, and lncRNA SNHG16 can

promote proliferation and inflammatory response of

macrophages through the miR-17-5p/NF-κB signaling

pathway in patients with atherosclerosis. Shen et al. (2019)

identified that the expression of circRNA0044073 was

upregulated, and the expression of miR-107 was

downregulated in atherosclerotic blood cells. Moreover,

circRNA-0044073 can suppress the levels of miR-107 via a

sponge mechanism and increase the proliferation and

invasion of cells in atherosclerosis. As for miR-20b-5p, the

reports related to its role are mainly in various cancers, but

there are few reports on atherosclerosis. More research studies

are needed on the role of miR-20b-5p in atherosclerosis in the

future.

The CREB1 gene encodes cyclic-AMP response-binding

protein 1, which is a transcription factor that is a member of

the leucine zipper family of DNA-binding proteins. CREB1 has

been shown to be involved in both positive and negative

regulation of atherosclerosis. On the one hand, CREB1

upregulation is observed in the vessels isolated from normal

mice compared to atherosclerotic mice (Schauer et al., 2010). On

the other hand, CREB1 can activate the pro-inflammatory

cytokine IL-17 that is directly responsible for macrophage

accumulation and the ensuing inflammation in the

atherosclerotic plaque in mice (Kotla et al., 2013). Being

equally ambiguous is the role of CREB1 in the endothelial

dynamic balance. A large body of data seems to suggest that

the deletion of CREB1 in endothelial cells may result in an

enhanced inflammatory response and barrier dysfunction

(Chava et al., 2012; Xiong et al., 2020). On the contrary,

CREB1 can promote leukocyte adhesion by directly binding to

human umbilical vein endothelial cell ICAM1 and activating its

transcription (Hadad et al., 2011). Similarly, CREB1 interacts

with BAF47 (BRG1-associated factor 47) and recruits BAF47 to

the proximal neogenin 1 promoter, leading to neogenin 1 trans-

activation that contributes to endothelial dysfunction (Li et al.,

2022). These discrepant roles ofCREB1may allude to its coupling

to various signaling pathways targeting either the stimulation or

FIGURE 6
Correlation between the expression of immune-related core DE_mRNAs and their paired lncRNAs (A–C). Validation of the miRNAs of the
immune-related core ceRNA network in GSE137580 (D–F). The results with statistically significant differences (p < 0.05) are shown.
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suppression of progression in atherosclerosis. Spatiotemporally

controlled CREB1 transgenic animal models should be employed

in future studies for delineating the implied role of CREB1 in

atherosclerosis.

Additionally, in this study, we described the infiltrating

immune cells in peripheral arterial plaques, analyzed the

differences in the abundance of immune cells between the

groups, and estimated the correlation between the immune-

related core genes (CREB1) and infiltrating immune cells. The

results demonstrated that monocytes and macrophages were the

main immune cell subpopulations in atherosclerosis of

peripheral artery tissues. In addition, atherosclerotic plaques

had increased infiltration of monocytes while having

decreased proportions of M1 macrophages compared to

normal artery tissues. The result that M1 macrophages are

found at higher levels in normal tissues appears to be in

contrast with the current knowledge of proatherogenic cells.

The immune cell number is a relative percentage among each

group. Atherosclerotic tissues have more immune cell

infiltration, so there is a relatively lower content of

M1 macrophages in these tissues than in the control tissues.

Owing to an increased infiltration of immune cells, the

diminution in percentage may not manifest a decreased

number of M1 macrophages. If the infiltration score is

readjusted, the absolute percentage of M1 macrophages in the

PAOD group may not be lower than that in the normal group.

Monocytes are derived from bone marrow-derived

progenitor cells, and the early stage of monocytes

development may be regulated by the content of cellular

cholesterol in a manner that can affect atherogenesis. Recent

insight suggests that the key initiating step of incipient

atherogenesis in human and animal models indicates

subendothelial accumulation of apolipoprotein B-containing

lipoproteins (apoB-LPs) (Williams and Tabas, 1995). The

pivotal early inflammatory response to accumulated apoB-LPs

is the activation of surficial endothelial cells, which leads to the

recruitment of circulating monocytes (Mestas and Ley, 2008).

Activated endothelial cells secrete chemokines and interact with

cognate chemokine receptors on monocytes in a manner that

promotes monocytes’ migration into the intima, where they

differentiate into macrophages and phagocytize lipoproteins,

leading to foam cell formation. Importantly, atherogenesis can

be prevented or retarded in mouse models of atherosclerosis

through preventing monocyte infiltration by blocking

chemokines or their receptors (Mestas and Ley, 2008). The

functions of macrophages within plaques are shaped largely

FIGURE 7
Composition of infiltrating immune cells assessed using the CIBERSORT algorithm in PAOD tissues. (A)Distribution of immune cell infiltration in
each sample. (B) Heatmap of immune cell types. (C) Correlation among infiltrating immune cells. (D) Violin plot of infiltrating immune cells.
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by external stimuli such as intracellular energy metabolism (Van

den Bossche et al., 2017), gut microbiota metabolites (Wang et al.,

2011), and genetic and epigenetic factors including ncRNAs

(Erbilgin et al., 2013; Amit et al., 2016). Traditionally,

macrophages are classified into pro-inflammatory

M1 macrophages (activated by lipopolysaccharide and

interferon-γ) and anti-inflammatory M2 macrophages

(induced by interleukin-4 and interleukin-13) (Johnson and

Newby, 2009; Rath et al., 2014). In general, M1 macrophages

perform processes that promote atherosclerosis progression,

whereas M2 macrophages carry out functions that can

restrain plaque progression and facilitate plaque regression

(Peled and Fisher, 2014). M1 macrophages, through secreting

cytokines, proteases, and other factors, increase the cellular

expansion of lesions and cause changes in plaque morphology

that result in plaque rupture and acute lumenal thrombosis. Two

key changes in plaque morphology promoted by

M1 macrophages are plaque necrosis and fibrous cap

thinning. A previous study has confirmed that

M1 macrophages can secrete matrix metalloproteinases

(MMPs), such as MMP9 and MMP2, which may contribute to

plaque rupture, and another study shows that MMPs co-localize

with M1 macrophages in advanced plaques (Huang et al., 2012).

In this study, we found that the expression of theCREB1 gene was

positively correlated with monocytes (R = 0.52, p = 0.049) and

negatively correlated with M1 macrophages (R = −0.72, p =

0.004). Potentially, the crosstalk between the ceRNA network and

the infiltration of immune cells plays a crucial part in regulating

FIGURE 8
RT-qPCR validation of the immune-related core ceRNA network and evaluation of monocytes and M1 macrophages in tissue samples.
Quantification of the relative expression levels of LINC00221 (A),miR-17-5p (B),miR-20b-5p (C), and CREB1 (D) using RT-qPCR. (E) Representative
pictures of H&E and immunofluorescence staining (magnification, ×20). Quantification of molecules in CD68 (monocyte) Fig: (F) and iNOS
(M1 macrophage) Fig: (G) positive areas.
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atherosclerosis progression. Further research studies are required

to clarify the complex interactions between these genes and

immune cells.

However, this article has some limitations. First, only one

dataset (GSE57691) that is from the west and lacks ethnic

diversity was used as a data source. Moreover, the analysis

of immune cell infiltration was based on the CIBERSORT

algorithm, the immune cell types of which were not

comprehensive. Finally, the underlying regulatory

mechanisms of the ceRNA network and immune cells were

not elucidated clear enough, and more functional biological

experiments with larger sample sizes are needed to further

verify this in the future.

Conclusion

Taken together, in this study, the immune-related ceRNA

network, by the composition of one lncRNA (LINC00221), two

miRNAs (miR-17-5p andmiR-20b-5p), and one mRNA (CREB1),

was first constructed in PAOD. Afterward, the immune cell

infiltration analysis was performed to estimate the abundance

and differences of different immune cells. The final results show

that monocytes and M1 macrophages were considered to be

important immune cells associated with PAOD formation.

Moreover, the expression of the CREB1 gene was positively

correlated with monocytes (R = 0.52, p = 0.049) and

negatively correlated with M1 macrophages (R = −0.72, p =

0.004). These findings provide new insights into the pathogenesis

and progression of PAOD and novel potential therapeutic

targets. Perhaps in the future, new drugs can be developed for

these novel potential therapeutic targets to delay the progression

of PAOD and improve the long-term patency rate of vascular

lumen in PAOD patients undergoing surgery or interventional

therapy.
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Glossary

AAA abdominal aortic aneurysm

apoB-LPs apolipoprotein B-containing lipoproteins

BP biological process

CC cellular component

CD cluster of differentiation

ceRNA competing endogenous RNA

CREB1 cAMP-responsive element-binding protein 1

DCs dendritic cells

DE differentially expressed

FC fold change

FDR false discovery rate

FOXO1 forkhead box O1

FOXO3 forkhead box O3

GEO Gene Expression Omnibus

GO gene ontology

HAEC human aortic endothelial cell

HMGB1 high mobility group box 1

IL interleukin

IMMPORT Immunology Database and Analysis Portal

iNOS inducible nitric oxide synthase

KEGG Kyoto Encyclopedia of Genes and Genomes

KRAS KRAS proto-oncogene GTPase

LDL low-density lipoprotein

LIMMA linear models for microarray data

lncRNA long noncoding RNA

MCC maximal clique centrality

MEG3 maternally expressed 3

MF molecular function

miRNA microRNA

MMPs matrix metalloproteinases

MNC maximum neighborhood component

mRNA messenger RNA

ncRNA noncoding RNA

NK natural killer

PAOD peripheral arterial occlusive disease

PIK3R1 phosphoinositide-3-kinase regulatory subunit 1

PLAU plasminogen activator urokinase

PLXND1 plexin D1

PPI protein–protein interaction

PTEN phosphatase and tensin homolog

RNA ribonucleic acid

RT-qPCR real-time quantitative polymerase chain reaction

STRING Search Tool for the Retrieval of Interacting Genes

Th1 T-helper type 1

Th17 T-helper type 17

TNFAIP3 TNF alpha-induced protein 3

Treg regulatory T

YWHAE tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase activation protein epsilon

YWHAH tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase activation protein eta
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Construction of a ceRNA-based
lncRNA–mRNA network to
identify functional lncRNAs in
premature ovarian insufficiency

Chao Luo1†, Jiakai Zhang1,2†, Le Bo1, Lun Wei1,
Guangzhao Yang1, Shasha Gao1 and Caiping Mao1*
1Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu,
China, 2Monash University, Caulfield East, Melbourne, VIC, Australia

Premature ovarian insufficiency, characterized by ovarian infertility and low

fertility, has become a significant problem in developed countries due to its

propensity for late delivery. It has been described that the vital role of lncRNA in

the development and progression of POI. The aim of this work was to create a

POI-based lncRNA–mRNA network (POILMN) to recognize key lncRNAs.

Overall, differently expressed mRNAs (DEGs) and differently expressed

lncRNAs (DELs) were achieved by using the AnnoProbe and limma R

packages. POI-based lncRNA–mRNA network (POILMN) construction was

carried out using the tinyarray R package and hypergeometric distribution.

To identify key lncRNAs, we used CentiScaPe plug-in Cytoscape as a screening

tool. In total, 244 differentially expressed lncRNAs (DELs) and 288 differentially

expressed mRNAs (DEGs) were obtained in this study. Also, 177 lncRNA/mRNA

pairs (including 39 lncRNAs and 86 mRNAs) were selected using the

hypergeometric test. Finally, we identified four lncRNA (HCP5, NUTM2A-AS1,

GABPB1-IT1, and SMIM25) intersections by topological analysis between two

centralities (degree and betweenness), and we explored their subnetwork GO

and KEGG pathway enrichment analysis. Here, we have provided strong

evidence for a relationship with apoptosis, DNA repair damage, and energy

metabolism terms and pathways in the key lncRNAs in our POI-based

lncRNA–mRNA network. In addition, we evaluated the localization

information of genes related to POI and found that genes were more

distributed on chromosomes 15, 16, 17, and 19. However, more experiments

are needed to confirm the functional significance of such predicted lncRNA/

mRNA. In conclusion, our study identified four long non-coding RNAmolecules

that may be relevant to the progress of premature ovarian insufficiency.

KEYWORDS

Premature ovarian insufficiency, long non-coding RNA, competing endogenous RNA,
bioinformatics analysis, lncRNA–mRNA network
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Introduction

Premature ovarian insufficiency (POI) is a clinical condition

exhibiting symptoms of ovarian hypofunction before the age of

40 (Touraine, 2020). It is characterized by menstrual disturbance

(amenorrhea or oligomenorrhea) with raised gonadotropins

(FSH>25 U/L) and fluctuating drop in estrogen levels, and is

estimated to affect 1% of women (European Society for Human

Reproduction and Embryology (ESHRE) Guideline Group on

POI et al., 2016). Since the pathogenesis of the disease is still

unclear, the lack of effective biomarkers and therapeutic targets

poses a challenge for early diagnosis and treatment. Furthermore,

China’s low fertility rate has also raised a serious question about

fertility preservation in women of childbearing age with POI

(Liang et al., 2019). Therefore, we must first identify the genes

that play an important role in the POI process.

Long non-coding RNAs (lncRNAs) are broadly classified as

transcripts longer than 200 nucleotides that are 5′ capped and

polyadenylated like most mRNAs, yet this class of transcripts has

limited coding potential (Klattenhoff et al., 2013). Because of the

development of microarray and RNA-sequencing, we can

explore key molecules in disease from multiple perspectives

(Raza et al., 2022, 6). Emerging evidence indicates that

lncRNAs play critical roles in various biological processes,

such as cellular development, differentiation, imprinting

control, immune response, and chromatin modification (Rinn

et al., 2007; Amaral and Mattick, 2008; Dinger et al., 2008;

Ponting et al., 2009; Lee, 2012). Conclusions drawn from

different microarray analyses proved that many lncRNAs are

unusually expressed in human granulosa cells; this means

lncRNAs may be involved in the pathogenesis and

progression of POI. For example, the decreased expression of

HCP5 is directly related to the apoptosis of granulosa cells and

DNA damage repair (Wang et al., 2020, 5). LncRNA DDGC was

able to ameliorate the etoposide-induced DNA damage and

apoptosis in vivo (Li et al., 2021b). Additionally,

PVT1 ameliorates granulosa cell apoptosis by promoting

SCP4-mediated Foxo3a dephosphorylation (Wang et al., 2021,

1). Therefore, only a few lncRNAs have been further elaborated

so far, while the discoveries and confirmations of the vast

majority are still an enigma. The competitive endogenous

RNA hypothesis is mainly composed of mRNAs and lncRNAs

who both share miRNA recognition elements and can compete

with each other to occupy miRNAs (Salmena et al., 2011). The

ceRNA mechanism in a variety of cancers and gynecological

illnesses has been reported; at the same time, they also isolated

some putative ceRNA networks, such as epithelial ovarian cancer

(Zhao et al., 2019), polycystic ovary syndrome (Ma et al., 2021),

and implantation failure (Feng et al., 2018). With insights into

the mechanism of ceRNA, in this study, we aim to design a POI-

based lncRNA–mRNA network (POILMN) to label key lncRNAs

and explore gene location information and functional

enrichment that may also point to directions for future research.

Materials and methods

Microarray data

In order to obtain the microarray analysis, the public

database Gene Expression Omnibus (GEO) (https://www.ncbi.

nlm.nih.gov/geo/) was searched using keywords such as

“premature ovarian insufficiency,” “POI,” “granulosa cells,”

and “Homo sapiens.” The GSE135697 dataset was selected for

further study. The GSE135697 dataset (platform: GPL21096,

Agilent-045997 Arraystar human lncRNA microarray V3)

included lncRNA and mRNA expression profiles consisting of

10 POI samples and 10 control samples. The profiling

construction and test of the datasets were authorized by the

local research ethics committee.

Differential gene expression analysis and
probe reannotation

Preprocessed data were acquired from GEO using the R

package “GEOquery”. After getting the expression matrix, and

subsequently, according to the annotation profile recorded in the

“AnnoProbe” package (version 0.1.6), probesets were annotated

to filter out the duplicate and unannotated probes and then

separated into two categories: protein-coding dataset and

lncRNA dataset. Log-transformed intensities were quantile

normalized using the “normalizeBetweenArrays” function in

the “limma” package of R. Then, the limma package was used

to identify differentially expressed mRNAs and lncRNAs,

respectively. The p-value was adjusted using the

Benjamini–Hochberg method. Unless stated otherwise,

“differentially expressed” (DE) mRNAs and lncRNA were

defined as FDR <0.05 and log2|fold change| > 1.

The location distribution of differential
genes on chromosomes

There is growing evidence that POI was judged to be related

to the genetically heterogeneous disorder. The chromosomal

location and the starting and ending positions were assessed

using the R package “AnnoProbe” (version 0.1.6). The R library

“RIdeogram” was used to visualize data along the chromosomes

of differentially expressed mRNAs and lncRNAs.

LncRNA–miRNA and miRNA–mRNA
interaction data and construction of the
POILM network

Starbase v3.0 (http://starbase.sysu.edu.cn) was used to extract

lncRNA–miRNA associations from HITS-CLIP and PAR-CLIP
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experiments. Sequence-predicted miRNA–mRNA pairs were

obtained from miRTarBase (https://mirtarbase.cuhk.edu.cn/).

The processed relation pairs are selected as the background

relation pairs for the hypergeometric distribution.

To construct the POILMN, the DELs and DEGs were

substituted in the background network via the R package

tinyarray. Then, the lncRNA–miRNA–mRNA network was

filtered via a hypergeometric test with p < 0.01, and

counts >3 denote the counts of the number of miRNAs

shared between lncRNA and mRNA. The value of p was

calculated as

P � 1 −∑r−1
i�0

(ti)(m−t
n−i)(mn) .

In the formula of hypergeometric distribution, m is the

total miRNA number in the miRTarBase database, n

represents the number of miRNAs interacting with a

lncRNA, t is the number of miRNAs interacting with an

mRNA, and r indicates the quantities of miRNAs united

between the lncRNA/mRNA pair.

Functional and pathway enrichment
analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analysis of the DEGs sifted out in the

POILMN and lncRNA subnetwork was performed and visualized

using the R package clusterProfiler (V4.2.2) (Wu et al., 2021).

KEGG pathways and Gene Ontology (GO) terms were

considered statistically significant using p < 0.05 as the cut-off

value. The GO enrichment analysis consists of three components

molecular functions (MFs), biological processes (BPs), and

cellular components (CCs).

Topological analysis and selection of key
lncRNAs

To explore the central nodes of the POILMN network, we

performed a topological analysis of DELs and DEGs and

calculated using the CentiScaPe plug-in Cytoscape. We

focused on two main topological parameters: “degree” and

FIGURE 1
Differentially expressed lncRNAs and mRNAs from granulosa cells in patients with premature ovarian insufficiency (POI). The dataset was split
into the lncRNA dataset and protein-coding dataset. Microarray data of dataset, (A) prior to normalization and (B) following normalization. (C)
Heatmap of top 50 DELs (sorted by adjusted p-value); (D) heatmap of top 50 DEGs (sorted by adjusted p-value). Volcano plot showing differentially
expressed lncRNAs (E) and mRNAs (F) after being screened by FDR <0.05 and log2|fold change| > 1. Red dots and green dots referred to the
upregulated and downregulated genes, respectively.
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“betweenness.” Retain the topped-eight lncRNA of each

parameterization and those overlapped were chosen as hub

genes for the follow-up stage.

Construction of ceRNA sub-networks

Through the implementation of the previous approach using

a hypergeometric test, we obtained all the key lncRNAs and their

adjacent mRNA neighbors. At the same time, we also get the

overlapped miRNAs that they commonly shared. Ultimately,

based on ceRNA theory, we imported a triple network into

Cytoscape software to visualize it.

Subcellular localization analysis

To investigate the intracellular localization of key lncRNAs in

topological analysis, we used a web-based public platform

lncLocator, for prediction. Target lncRNA sequences were

downloaded from NCBI in nucleotide FASTA format. Bar

plotting was performed using R with the ggplot2 (V3.3.5)

package.

Results

Differentially expressed lncRNAs and
mRNAs

Expression estimates were further normalized using quantile

normalization; box plots show mean expression level differences

before and after normalization in Figures 1A,B. In GSE135697,

244 DELs were identified with log2|fold change| > 1 and p < 0.05,

including 93 upregulated and 151 downregulated, in the POI

granulosa cells in the test compared to the control, as shown in

the volcano plot (Figure 1E); At the same time, there were

288 DEGs, with 160 upregulated and 128 downregulated

FIGURE 2
Schematic diagram of the distribution of differentially expressedmRNA and lncRNA on chromosomes, orange circles represent lncRNAs, green
triangles represent protein-coding, and the color on each chromosome represents gene density.
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(Figure 1F). The list of 288 DEGs and 244 DELs is shown in

Supplementary Table S1. Several genome-wide specific genomic

features were revealed at the chromosomal level, as shown in

Figure 2.

Construction of the POI-related
lncRNA–mRNA network

After the stringent filtering, we ended up with

63,698 lncRNA–miRNA pairs (including 642 miRNAs and

3,788 lncRNAs) and 502,653 miRNA–mRNA interaction pairs

(including 15,064 mRNA and 2,599 miRNAs). Total DELs/

DEMs were matched into those two interaction pairs, and

then 177 lncRNA/mRNA pairs (including 39 lncRNAs and

86 mRNAs) were selected using the hypergeometric test with

p < 0.01 and counts >3 in Figure 3A. The lncRNA/mRNA pairs

are shown in Supplementary Table S2.

Functional enrichment analysis of the
differentially expressed mRNAs in the
ceRNA network

To obtain a better understanding of the role of the DEGs in

the lncRNA–mRNA ceRNA network, we performed GO

classification and KEGG pathway analysis. Results showed

that 16 GO terms (p < 0.05) were significantly enriched in the

GO analysis. The top four GO terms in BP, MF, and CC are listed

in Figure 3D. Biological process (BP) analysis showed that the

associated mRNAs were “cellular response to DNA damage

stimulus”. Chen et al. (Wang et al., 2020, 5) have proved that

reduced expression of long non-coding RNA HCP5 in POI

modulates the repair of MSH5 transcription and DNA

damage interacting with YB1, leading to GC dysfunction,

providing potent evidence for POI pathogenesis in the cellular

response to DNA damage stimulus. On the MF dimension, the

top four terms associated with gene counts were protein binding,

FIGURE 3
POI-based lncRNA–mRNA network (POILMN) and functional enrichment analysis of mRNAs. The dark green triangles represent lncRNA, and
the red cycles represent mRNAs. There were 39 lncRNA nodes, 86mRNA nodes, and 177 edges in the network (A). Distribution of integrated DEGs in
premature ovarian insufficiency for different GO-enriched functions (B). KEGG pathway enrichment analysis of the integrated DEGs (C). The GO
enrichment bar chart of DEGs presents the number of DEGs enriched in biological processes, cellular components, and molecular
functions (D).
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RNA binding, mRNA binding, and motor activity. The KEGG

pathways showing the most significant enrichment were

glycosaminoglycan biosynthesis—chondroitin sulfate/dermatan

sulfate, SNARE interactions in vesicular transport, ubiquitin-

mediated proteolysis, and cellular senescence, as shown in

Figure 3C. Herein, these GO terms and KEGG pathways may

shed new light on POI pathogenesis and prognosis.

Topological characteristics of the POI-
based lncRNA–mRNA network and
locations of key lncRNAs

The topological features of the POILMN, including degrees

and betweenness, were chosen to forecast the biological functions

of the lncRNAs in POILMN. Then, the top eight sorted genes in

the POILMN with the highest value were extracted. The

intersection of lncRNAs was screened at the degree and

betweenness parameter, and four lncRNAs, that is, NUTM2A-

AS1, HCP5, SMIM25, and GABPB1-IT1, were jointly identified

by the intersection between two features.

Comprehensive rating had eight top results for HCP5,

NUTM2A-AS1, SMIM25, and GABPB1-IT1, respectively.

For HCP5, a total of eight mRNAs and 36 miRNAs were

composed of the subnetwork of the POILMN in Figure 4A. A

total of 8 KEGG pathways were significantly enriched (p <
0.05) in the KEGG pathways analysis, as shown in Figure 4B.

Most of HCP5 is localized in the cytoplasm (score = 0.819),

and only a small part of it is localized to the nucleus,

ribosome, cytosol, and exosome (Figure 4C). GO

classification with p ≤ 0.05 adjusted by

Benjamini–Hochberg found ten enriched GO terms for

molecular function, as shown in Figure 4D.

As for the NUTM2A-AS1 subnetwork, 13 mRNA and

43 miRNA comprised the subnetwork (Figure 5A). KEGG

pathways analysis showed that nine pathways were enriched

in the process, as shown in Figure 5B. Lnclocator analysis

revealed that NUTM2A-AS1 is mainly distributed in the

cytoplasm and is being distributed in the nucleus, ribosome,

cytosol, and exosome at the same time (Figure 5C). In the GO

enrichment analysis for the NUTM2A-AS1 subnetwork, we got

seven terms, two terms in BP, one in MF, and four in CC

(Figure 5D).

The GABPB1-IT1 subnetwork was made up of 10 mRNA

and 28 miRNA in all (Figure 6A). In conducting KEGG analysis,

11 KEGG pathways were significant among 14 KEGG pathways

FIGURE 4
HCP5-related ceRNA subnetwork analysis. ceRNA network of HCP5 (A). KEGG pathways enriched in HCP5 (B). Subcellular location analysis for
HCP5 (C). GO biological process enrichment results for HCP5 (D).
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in total (Figure 6B). GABPB1-IT1 was mostly localized to the

cytosol (score = 0.477) (Figure 6C). In contrast, GO term analysis

revealed that target genes were involved in 109 GO terms (p <
0.05). Only the top ten GO biological process terms are shown in

Figure 6D.

The SMIM25 subnetwork was composed of eight mRNA and

19 miRNA (Figure 7A). The enrichment analysis of KEGG

pathways included 18 KEGG pathways; among them, the top

10 pathways are visualized in Figure 7B. SMIM25 was mainly

localized to the cytoplasm (score = 0.352) and cytosol (score =

0.416), as shown in Figure 7C. Upon GO classification, 2 CC and

8 MF terms were obtained to be enriched in SMIM25

(Figure 7D).

Discussion

POIs are a common disorder of follicular development

characterized by hypertrophy of the initial follicle, slowed

growth of antral follicles, and selection of the dominant

follicle. In our study, we sought to identify these lncRNAs by

examining data from POI microchips and performing analyses to

determine their potential roles in POILMN.

Chromosomal abnormalities have long been recognized as a

frequent cause of POI. We restored the differentially expressed

mRNAs and lncRNAs to their chromosomal locations and found

that they were not only associated with autosomes but also with

sex chromosomes. At the same time, it was found that there are a

large number of distributions on the long arm of chromosome 15,

the short arm of chromosome 16, and chromosomes 17 and 19.

The lncRNA/miRNA and mRNA/miRNA pairs were

obtained from the starBase and miRTarBase databases,

respectively, and the lncRNA–mRNA network was

constructed by calculating the hypergeometric distribution

using differentially expressed mRNAs and lncRNAs. The POI-

based lncRNA–mRNA network (POILMN) was then extracted

with 86 mRNA nodes, 39 lncRNA nodes, and 177 edges. Results

were analyzed to determine putative functional POI biomarkers.

For the GO term enrichment analyses of DEGs in the

POILMN, we observed a large proportion in the number of

counts in the category of biological process (BP), such as

“apoptotic process,” “cellular response to DNA damage

stimulus,” and “protein transport.” Considering of its GC-

related diseases, some previous studies confirmed that

decreasing apoptosis of granulosa cells could improve the

function of the ovary in POI mice (Huang et al., 2019, 1; Ling

FIGURE 5
NUTM2A-AS1-related ceRNA subnetwork analysis. ceRNA network of NUTM2A-AS1 (A). KEGG pathways enriched in NUTM2A-AS1 (B).
Subcellular location analysis for NUTM2A-AS1 (C). GO biological process enrichment results for NUTM2A-AS1 (D).
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et al., 2019; Wang et al., 2019). A study found that low expression

of lncRNA HCP5 in granulosa cells from POI patients interfered

with GC DNA damage healing, promoting apoptosis of GCs, and

mediated the translocation of YB1 protein to the GC nucleus

(Wang et al., 2020, 5). As for the molecular functions (MFs) and

cellular components (CCs) categories, the primary term was

“nucleus” and “protein binding.”

Intriguingly, the most enriched KEGG pathway was

“metabolic pathways.” Aside from lower serum AMH levels

and higher FSH levels, we also retrieved some metabolism-

related case-control studies of POI. These association studies

pointed out that serum concentrations of total cholesterol (TC),

high-density lipoprotein cholesterol (HDL-C), and low-density

lipoprotein cholesterol (LDL-C) were significantly higher in the

POI group compared with a healthymatched control group (Ates

et al., 2014; Podfigurna et al., 2018). Another cross-sectional case-

control study points out women with POI were more likely to

exhibit increased serum levels of TG (β, 0.155; 95% CI, 0.086,

0.223) and glucose (0.067; 0.052, 0.083), decreased levels of HDL-

C (−0.087; −0.123, −0.051), LDL-C (−0.047; −0.091, −0.003) and

uric acid (−0.053; −0.090, −0.015), and impaired kidney function

(urea [0.070; 0.033, 0.107]; creatinine [0.277; 0.256, 0.299]; and

eGFR [−0.234; −0.252, −0.216]) compared with controls after

adjusting for age and BMI (Huang et al., 2021). In conclusion, a

higher risk of metabolic syndrome was associated with POI. It

also reminds us to adopt lifetime management of metabolic

abnormalities that are needed in the early diagnosis of POI.

Several carbohydrate metabolism-related pathways were also

enriched, including “glycosaminoglycan biosynthesis −

chondroitin sulfate/dermatan sulfate” and “N-glycan

biosynthesis.” Some studies have reported that

glycosaminoglycan chondroitin-4-sulfate may play a role in

altering gonadotrophin-stimulated and basal progesterone

secretion in follicles during the differentiation of granulosa

cells (Ledwitz-Rigby et al., 1987). “HIF-1 signaling pathway”

was another KEGG term enriched in our POILMN. According to

previous research studies, ROS accumulation induces oxidative

damage to ovarian GCs, hence prompting the onset of follicular

atresia and relevant anovulatory disorders, such as POI (Agarwal

et al., 2012). More importantly, ROS are involved in the hypoxia

response through a mechanism that stabilizes hypoxia-inducible

factor 1 (Chandel et al., 2000).

We performed a topology analysis of lncRNAs, calculated

topological parameters (betweenness and degree), and identified

four candidate lncRNAs (HCP5, NUTM2A-AS1, GABPB1-IT1,

and SMIM25) that may potentially affect POI susceptibility.

FIGURE 6
GABPB1-IT1-related ceRNA subnetwork analysis. ceRNA network of GABPB1-IT1 (A). KEGG pathways enriched in GABPB1-IT1 (B). Subcellular
location analysis for GABPB1-IT1 (C). GO biological process enrichment results for GABPB1-IT1 (D).
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The KEGG pathway of “vasopressin-regulated water

reabsorption” was enriched in the ceRNA subnetwork of

HCP5. Studies have shown that exposure to high doses of

PFOA increases the risk of premature ovarian insufficiency by

reducing pituitary expression in the suprachiasmatic nucleus

(SCN); this implies a possible connection between POI and

vasopressin in some way (Zhang et al., 2020). In addition, we

also found that “N-glycan biosynthesis” and “metabolic

pathways” exist in the enrichment of pathways; the same

pathways were also expounding in the DEGs enrichment as

before. Several energy metabolism-related GO terms, including

“ATP-dependent microtubule motor activity, plus-end-

directed,” “ATP-dependent microtubule motor activity,” and

“adenylate cyclase binding” were enriched. Energy metabolism

may play a central role in many physiological and pathological

processes when HCP5 is activated and functioning. As for

“protein kinase A regulatory subunit binding” and “protein

kinase A binding” terms, although a few hundreds of protein

kinases regulate key processes in human cells, protein kinases

play a pivotal role in health and disease. This study demonstrates

that protein kinase A appears to be an important upstream kinase

sufficient to initiate complex intracellular signaling pathways and

gene expression profiles associated with GC differentiation (Puri

et al., 2016).

The KEGG “mTOR signaling pathway” and GO term

“autophagy” were enriched in the ceRNA subnetwork of

NUTM2A-AS1. Autophagy is an evolutionarily conserved

cellular process controlled through a set of essential

autophagy genes (Atgs). As an important player in autophagy,

mTOR is essential for autophagosome formation and necessary

for the closure of isolation membranes of autophagosomes. The

activated mTOR pathway stimulates the proliferation of

granulosa cells (Kayampilly and Menon, 2007; Yu et al., 2011)

and also participates in the regulation of ovarian steroidogenesis.

In some cases, researchers unveiled a novel role for mTOR

signaling in the maintenance of granulosa cellular homeostasis

by regulating autophagy at the transcriptional level (Yin et al.,

2020).

For GO term enrichment analysis, the “oxidation-reduction

process” was enriched in the ceRNA sub-network of GABPB1-

IT1. Oxidative stress-induced granulosa cell (GC) death

represents a common reason for follicular atresia, which can

FIGURE 7
SMIM25-related ceRNA subnetwork analysis. ceRNA network of SMIM25 (A). KEGG pathways enriched in SMIM25 (B). Subcellular location
analysis for SMIM25 (C). GO biological process enrichment results for SMIM25 (D).
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cause amenorrhea beforehand. As for the KEGG pathway

“glycolysis/gluconeogenesis,” a recent study showed that the

energy stress-induced lncRNA ZNF674-AS1 regulates GC

proliferation and glycolysis, possibly contributing to follicular

dysfunction (Li et al., 2021a).

There are also glucose metabolism pathways enriched in

SMIM25 KEGG analysis, such as “glycolysis/gluconeogenesis”

and “propanoate metabolism,” that further emphasize the

relationship between POI and energy metabolism. By

comparing the analysis results of GO enrichments, we found

that the “extracellular exosome” term was enriched. Exosomes

are extracellular vesicles that mediate cellular communication in

health and disease. It has also been shown that exosomes contain

messenger RNAs (mRNAs) and microRNAs (miRNAs), which

can be delivered unidirectionally and functionally between cells

(Ratajczak et al., 2006; Valadi et al., 2007). Recent studies have

shown that MSC-derived exosomes supplementation can restore

ovarian function in premature ovarian insufficiency (Sun et al.,

2019; Ding et al., 2020, 7; Yang et al., 2020).

In brief, our research provided a global view of ceRNA,

lncRNA, and mRNA with potential implications for the onset

and development of POI. Nevertheless, further longitudinal

studies are necessary to extend and explore these potential

lncRNAs.
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Computable models as a fundamental candidate for traditional biological

experiments have been applied in inferring lncRNA–disease association

(LDA) for many years, without time-consuming and laborious limitations.

However, sparsity inherently existing in known heterogeneous bio-data is an

obstacle to computable models to improve prediction accuracy further.

Therefore, a new computational model composed of multiple mechanisms

for lncRNA–disease association (MM-LDA) prediction was proposed, based on

the fusion of the graph attention network (GAT) and inductive matrix

completion (IMC). MM-LDA has two key steps to improve prediction

accuracy: first, a multiple-operator aggregation was designed in the n-heads

attention mechanism of the GAT. With this step, features of lncRNA nodes and

disease nodes were enhanced. Second, IMC was introduced into the enhanced

node features obtained in the first step, and then the LDA network was

reconstructed to solve the cold start problem when data deficiency of the

entire row or column happened in a known association matrix. Our MM-LDA

achieved the following progress: first, using the Adam optimizer that adaptively

adjusted the model learning rate could increase the convergent speed and not

fall into local optima as well. Second, more excellent predictive ability was

achieved against other similar models (with an AUC value of 0.9395 and an

AUPR value of 0.8057 obtained from 5-fold cross-validation). Third, a 6.45%

lower time cost was consumed against the advanced model GAMCLDA. In

short, our MM-LDA achieved amore comprehensive prediction performance in

terms of prediction accuracy and time cost.

KEYWORDS

graph attention network, inductive matrix completion, association prediction,
aggregation, multiple-operator

OPEN ACCESS

EDITED BY

Rui Yin,
Harvard Medical School, United States

REVIEWED BY

Xing Chen,
China University of Mining and
Technology, China
Jin-Xing Liu,
Qufu Normal University, China

*CORRESPONDENCE

Yu Wang,
2007002@glut.edu.cn

SPECIALTY SECTION

This article was submitted to RNA,
a section of the journal
Frontiers in Genetics

RECEIVED 27 August 2022
ACCEPTED 03 October 2022
PUBLISHED 20 October 2022

CITATION

Zhang Y, Wang Y, Li X, Liu Y and Chen M
(2022), Identifying lncRNA–disease
association based on GAT multiple-
operator aggregation and inductive
matrix completion.
Front. Genet. 13:1029300.
doi: 10.3389/fgene.2022.1029300

COPYRIGHT

© 2022 Zhang, Wang, Li, Liu and Chen.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Abbreviations: ROC, receiver operating characteristic; AUC, area under the ROC curve; FPR, false
positive rate; TPR, GAT, IMC, and LDA true positive rate, graph attention network, inductive matrix
completion, and LncRNA–disease associations, respectively.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 20 October 2022
DOI 10.3389/fgene.2022.1029300

69

https://www.frontiersin.org/articles/10.3389/fgene.2022.1029300/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1029300/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1029300/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1029300/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.1029300&domain=pdf&date_stamp=2022-10-20
mailto:2007002@glut.edu.cn
https://doi.org/10.3389/fgene.2022.1029300
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.1029300


Introduction

Long non-coding RNA, named for its transcription length of

over 200 nucleotides, has received extensive attention from

biological researchers (Sun et al., 2018). With the in-depth

development of biomedicine, many literatures have confirmed

that lncRNA plays an important role in the activities of living

organisms through dose compensation effect, genetic expression,

cell differentiation, and other ways and gradually becomes the

focus of bioinformatics. Studies have shown that abnormal

lncRNA expression can lead to a variety of complex diseases,

especially as both oncogenes and tumor suppressors in the

tumorigenesis of diverse cancers (Chen et al., 2020). The

exploration of lncRNA leading to disease is helpful in

understanding the mechanism of disease generation and

provides reference for disease treatment and prognosis (Xia

et al., 2013). Therefore, the work on predicting

lncRNA–disease associations is significant for human disease

diagnostics and prognostics and will improve the development of

drug discovery (Chen et al., 2020).

As biological experiments are time-consuming and

laborious, numerous computational models are mostly used to

replace biological experiments in real life to identify disease-

related associations and provide efficient and more accurate

candidates for biological experiments in recent years (Chen

et al., 2019; Wang et al., 2021; Huang et al., 2022a; Huang

et al., 2022b; Huang et al., 2022c). Currently, computational

models for predicting lncRNA–disease associations (LDAs)

commonly fall into three categories.

The first category of methods is based on constructing

biological similarity networks. Label propagation algorithms are

used commonly in association-related prediction (Yin et al., 2020),

especially as restart random walk and KATZ, whose main

difference is applied in different underlying networks. Sun et al,

(2014) and Chen et al, (2016) established the global restart random

walk algorithm by using the lncRNA functional similarity network

so as to predict potential association information. However, these

models could not work on isolated diseases (diseases without

known association information) or new lncRNAs (lncRNAs

without known association information). Based on the

gene–disease association and lncRNA–disease similarity

network, Ma et al, (2019) introduced the HeteSim algorithm to

construct a gene–disease heterogeneous information network,

with which the network structure was strengthened by

increasing the number of edges in the network. Potential

associations can be propagated with more information and with

better prediction effects. Chen, 2015; Chen et al, (2019) combined

known LDA, lncRNA expression profile information, lncRNA

functional similarity, disease semantic similarity, and Gaussian

interaction spectrum kernel similarity to establish association

prediction models. Although these models could work on

isolated diseases or new lncRNAs, the prediction accuracy is

still not high enough.

The second category of methods utilizes machine learning

with a classifier to identify pathogenic lncRNAs. Chen and Yan,

(2013) used lncRNA expression profile information to develop a

classic and significant calculation model LRLSLDA for inferring

potential lncRNA–disease pair information. This model is the

first to use Laplacian regularized least squares in a semi-

supervised learning framework, and it could work on new

lncRNAs and isolated diseases without needing negative

samples. However, its selection of optimal parameters is

complicated because of its disease space and lncRNA space

belonging to two classifiers. Later, Chen et al, (2015)

developed an improved correlation prediction model LNCSIM

to further improve the prediction accuracy. However, with its

prediction results biased toward those lncRNAs with more

known associations, the prediction effect is not good enough

for isolated diseases and new lncRNAs with less known

information. In addition, selecting attenuation factors of

semantic contribution has not been well-solved. Zhao et al,

(2015) predicted potentially pathogenic lncRNA by integrating

known disease-related lncRNA and a variety of biological data

(genomic data, regulatory, and transcriptional biological data)

based on the Bayesian algorithm. Although the prediction

performance of this model is good, sufficient negative samples

of the Bayesian classifier are required to improve the prediction

performance.

The third category of methods is based on disease-related

genes, for example, mRNA, miRNA, and protein information.

Models belonging to the aforementioned two categories all rely

on the known LDA, whose number with experimental

verification is relatively small. Therefore, researchers have to

explore new ideas to infer the potential associations with using

third-party data, also known as genetic information. Zhou et al,

(2015) selected appropriate thresholds and coefficients to predict

lncRNA–disease pairs, using the expression data of three kinds of

non-coding RNAs (mRNA, miRNA, and lncRNA). Cheng et al,

(2016) introduced mRNA- and miRNA-related data into the

prediction of LDA. Compared with other methods, methods

within this category are more reliable and stable, but the model

performance is highly dependent on coactions found among the

three kinds of non-coding RNAs.

Utilizing deep learning technology has gradually become a

research hotspot to make up for the deficiencies in the

abovementioned three categories. The graph that can abstract

the relationship between entities is widely used as a data structure

(Wu et al., 2020). Wu et al, (2021) proposed a computational

method MLGCNET that applied the graph convolutional

network (GCN) to extract the node information with which

to feed into an extra tree (ET) classifier for accurately predicting

the potential lncRNA–disease associations. The graph attention

network (GAT), as a promising graph neural network, has been

applied to a number of bioinformatics tasks. Long et al, (2021)

proposed a newmethod GATMDA based on the GAT to identify

a microbial–disease association. Bian et al, (2021) proposed a
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model GATCDA to predict circRNA–disease associations based

on the GAT. Gu et al, (2021) predicted drug ADMET

classification based on the GAT. However, this model did not

discuss the time complexity consumed for achieving high

accuracy. Inductive matrix completion (IMC) that could fill

data sparsity existing in the bio-database inherently caused the

problem of low prediction accuracy when it was applied in

inferring LDA directly and separately (Natarajan and Dhillon,

2014; Huang et al., 2017; Chen et al., 2018; Lu et al., 2018;

Fraidouni and Zaruba, 2019; Chen et al., 2021). Therefore, to

break through the aforementioned limitations, multiple

mechanisms were fused into a new computational model,

such as MM-LDA, as shown in Figure 1. On one hand, a

multiple-operator aggregation used in the n-heads attention

mechanism of the GAT was designed, where it could enhance

the features of lncRNA nodes (or disease nodes) to avoid the low

prediction accuracy caused by known-data sparsity. On the other

hand, with enhanced node features, the LDA network was rebuilt

FIGURE 1
MM-LDA workflow.
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by IMC that could renew the missing elements in the bio-

database. In the end, the Adam optimizer was used to further

improve the prediction accuracy.

Materials and methods

Data source

Known lncRNA–disease association: After removing

repeated and redundant lncRNAs (diseases) in the original

dataset lncRNA disease V2.0 (Bao et al., 2019), a processed

dataset composed of associations between human diseases and

lncRNAs was used in our model. This dataset contains 352 LDAs

verified experimentally, involving 156 lncRNAs and 190 diseases.

It is an unbalanced dataset with existing inherent data sparsity

because of less known associations against unknown or non-

existent associations.

For formal description later, the number of lncRNAs and

diseases involved in this dataset (also called association matrix)

was denoted by nl and nd, respectively. In the association matrix

(Ald ∈ Rnl×nd), any known lncRNA–disease association that

relates to disease di and lncRNA lj with experimental

verification works as the positive sample, with denotation of

Ald(li, dj) � 1. Otherwise, any unknown or non-existent

lncRNA–disease association works as the negative sample,

with denotation of Ald(li, dj) � 0.

Multi-source heterogeneous networks

Disease–disease semantic similarity network: Directed

acyclic graph (DAG) was utilized to calculate the semantic

similarity between diseases (Wang et al., 2010). The semantic

contribution value of any disease dt to disease di was denoted

by Ddi(dt).

Ddi(dt) � { 1, dt � di,
max{γDdi(dt′)|dt′ ∈ children of dt}, dt ≠ di,

, (1)

where γ is the coefficient regulating semantic contribution

(Wang et al., 2010), and it was set to the optimal value of 0.5.

If two diseases have more overlaps in DAG, it implies greater

similarity between them (Wang et al., 2010).

MatrixDS ∈ Rnd×ndrepresents the semantic similarity network

of diseases, and its elementDS(di, dj) represents the semantic

similarity between diseases di and dj.

DS(di, dj) � ∑dm∈(Tdi
∩Tdj)(Ddi(dm) +Ddj(dm))
S(di) + S(dj) , (2)

where Tdi represents the DAG of disease di and S(di) represents
the semantic value of disease di.

S(di) � ∑
dt∈Tdi

Ddi(dt). (3)

LncRNA–lncRNA functional similarity network:

Functionally similar lncRNAs are often associated with

diseases in similar phenotypes (Wang et al., 2010). To

calculate the functional similarity between two lncRNAs, the

semantic similarity of diseases and its correlation to lncRNAs

were utilized. Set D � {d1, d2,/, dt,/, dnd} represents the

disease set, and max(dt, D) represents the maximum semantic

similarity of any disease dt in set D:

max(dt, D) � max
1≤ i≤ nd

(DS(dt, di)). (4)

Matrix FS ∈ Rnl×nl represents the functional similarity

network of lncRNAs, and matrix element FS(li, lj) represents

the functional similarity between lncRNA li and lj.

FS(li, lj) � ∑1≤ i≤mmax(di, D1) +∑1≤ j≤ nmax(dj, D2)
m + n

, (5)

where set D1 represents the set of diseases associated with

lncRNA li, set D2 represents the set of diseases associated

with lncRNA lj, and m and n represent the number of

diseases in set D1 and D2, respectively.

Gaussian interaction spectrum kernel similarity network: As

an efficient and useful method in biological information

classification, the Gaussian kernel function (Van Laarhoven

et al., 2011) has been applied to the association network when

some diseases do not have semantic similarity. Gaussian

interaction spectrum kernel similarity of diseases (Gaussian

similarity) calculated by the Gaussian kernel function could

replace the semantic similarity of disease. If disease di has a

known experimentally verified association with any lncRNA,

IP(di) � 1; if disease di does not have any known association

experimentally verified, IP(di) � 0. Matrix GD ∈ Rnd×nd

represents the Gaussian similarity network of diseases, whose

element GD(di, dj) represents the Gaussian similarity between

disease di and dj:

GD(di, dj) � exp( − λd
					IP(di) − IP(dj)					2), (6)

where λd is the standardized core bandwidth, with detailed

calculation as

λd � 1
1
nd∑nd

i�1‖IP(di)‖2
. (7)

Similarly, matrix GL ∈ Rnl×nl represents the Gaussian

similarity network of lncRNAs, and matrix element GL(li, lj)
represents the Gaussian similarity between lncRNA li and lj.

GL(li, lj) � exp( − λl
					IP(li) − IP(lj)					2). (8)

λl � 1
1
nl∑nl

i�1‖IP(li)‖2
(9)

.
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Integrated similarity network: Since not all diseases involved

could calculate the semantic similarity due to the inherent

sparsity in the dataset, an integrated similarity network D(I)
S

was constructed to improve the accuracy of disease semantic

similarity. The matrix element D(I)
S (di, dj) was formed as

D(I)
S (di, dj) � ⎧⎨⎩DS(di, dj) + GD(di, dj), DS(di, dj) ≠ 0,

GD(di, dj), DS(di, dj) � 0.

(10)
Similarly, matrix F(I)S represents the integrated similarity

network of lncRNAs, and the matrix element F(I)S (li, lj) has

the specific form as

F(I)
S (li, lj) � ⎧⎨⎩ FS(li, lj), FS(li, lj) ≠ 0,

GL(li, lj), FS(li, lj) � 0.
(11)

Finally, a multi-source heterogeneous network as a diagonal

matrix was constructed, preparing for the following calculation

in the model:

X � [ 0 D(I)
S

F(I)
S 0

]. (12)

Node feature enhancement

N-heads attention with multiple-operator aggregation: The

original GAT utilizes attention scores to adaptively aggregate

information from neighbor nodes during node updating and

learns the representation of nodes on the graph by assigning

different weights to its neighbor nodes. N-heads attention could

stabilize the process of self-attention, with n time iterations

(Fraidouni and Zaruba, 2019). However, n-heads attention

only uses the “concatenation” operator to aggregate the

features coming from each head. The aggregation effect needs

to be improved further by adding more operators in each head,

and a multiple-operator for n-heads attention was constructed to

enhance node features.

Attention-based feature training: Any element in the feature

vector matrix X was considered the node feature. In the kth

iteration, attention score ekij of node i to neighbor node j in

matrix X was calculated as

ekij � f(hk
iW, hk

jW), (13)

where f(·) denotes a single-layer neural network; hki denotes the
feature vector of node i in the kth iteration; and W ∈ R(nl+nd)×1

denotes the weighted matrix.

In order to make the attention score within the interval of

[0,1], the softmax function was used for normalization

αkij �
exp(ekij)∑t∈Ni

exp(ekit), (14)

where Ni represents the set of all neighbor nodes of node i in

matrix X. In the kth iteration, features of all nodes in setNi were

calculated as

hk
Ni

� ∑
t∈Ni

αkith
k
t . (15)

GNN-based feature aggregation: In order to enhance node

features further, based on a nonlinear graph neural network

(GNN), a multiple-operator that aggregated the features coming

from the attention-based feature training layer was designed:

Mk � LeakyReLU((hk
i + hk

Ni
)W1) + LeakyReLU((hk

i

				hk
Ni
)W1)

+(LeakyReLU((hk
i + hk

Ni
)W1) × LeakyReLU((hk

i

				hk
Ni
)W1))),

(16)
where Mk represents the feature vector after aggregating,

LeakyReLU(·) is the activating function, “+” denotes the

adding operation, “‖” denotes the concatenating operation,

and W1 ∈ R(nl+nd)×k is a weighted matrix. Finally, the feature

vectorMk via the n-heads attention mechanism formed the final

feature matrix M:

M � 				nk�1Mk � [Md

Ml ], (17)

where Md ∈ Rnd×(nl+nd) represents the feature matrix of diseases

and Ml ∈ Rnl×(nl+nd) represents the feature matrix of lncRNAs.

LncRNA–disease association
reconstruction

Inductive matrix completion: Known LDA was represented

as a low-rank matrix in original matrix completion which

recovers missing elements only with less sampling data (Chen

and Chen, 2017). However, a cold start phenomenon will occur,

when the entire row or column of data is missing. IMC

technology introduced could fix the cold start problem and

improve prediction accuracy because the number of

parameters that was learned in IMC only related to the

number of features of lncRNAs (or diseases), not the number

of lncRNAs (or diseases).

Âld � Mdγ(Mlγ)T, (18)

where Âld represents the reconstruction of association matrixAld

and γ is the weight decay parameter.

Model optimization: Optimization of MM-LDA mainly

focused on parameter training by minimizing the loss

function. During parameter training, improper selection of

learning rates will cause abnormal loss function. A large

learning rate will lead to the non-convergence of the loss

function. Otherwise, a small learning rate will make the model

trap into local optimization. Therefore, the Adam optimizer

(Kingma and Ba, 2014) that combined the advantages of an
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AdaGrad (adaptive gradient) optimizer (Lydia and Francis, 2019)

and RMSprop (root mean square propagation) optimizer (Xu

et al., 2021) was adopted in our model. Only requiring small

memory space, the Adam optimizer with a simple and efficient

implementation process could adjust the learning rate adaptively

without being affected by gradient scaling, thus speeding up the

model optimization speed. The optimization process by

minimizing the loss function was formalized as

minLoss � ‖Ald − Âld‖2F + λ‖W2‖
2

F, (19)

where λ is the equilibrium factor with the value of 1 and

W2 ∈ Rnl×nd denotes a weighted matrix.

Results

Experimental evaluation

Evaluation metrics: All known LDAs were randomly divided

into five groups with which 5-fold cross-validation was carried

out to evaluate the predictive performance of our model.

Successively selecting one group in five (as negative samples)

with a group of unknown lncRNA–disease pairs in the same size

(as negative samples) made up the test samples. The remaining

four groups in five and the remaining unknown lncRNA–disease

pairs were used to train the model. A total of five model

evaluation metrics were defined by setting different thresholds,

including true positive rate (TPR), false positive rate (FPR), and

recall rate. Model performance was measured by an area under

the ROC curve (AUC) and an area under the PR curve (AUPR).

In order to avoid the influence of grouping randomly, each

experiment was repeated 10 times. Finally, an AUC value and

AUPR value were calculated according to the average value of the

results from the 10 repeated experiments.

Parameter selection: Parameters used in our model could

impact the predictive performance in the process of model

training. Therefore, this section discussed the selection process

of these three parameters in detail.

Number of attention heads: According to the literature

(Fraidouni and Zaruba, 2019), the number of heads used in

n-heads attention was discussed by setting the weight decay

parameter γ as 5E-4 and the number of neurons as 8. After

implementing 5-fold cross-validation, the results shown in

Figure 2 proved that the number of heads impacted the

predictive performance significantly. When the number of

heads in n-heads attention was set to 6, the maximum AUC

value and AUPR value could be obtained.

Weight decay parameter: According to the previous training,

with the number of heads in a fixed value of 6 and the number of

neurons in fixed value of 8, the influence of the weight decay

parameter γ was discussed. The parameter value of γ was

increased from 5E-6 to 5E-1, with a step size of E-1. After

implementing 5-fold cross-validation, the results shown in

Figure 3 proved that the model achieved the best predictive

performance when γ was set to be 5E-2.

Number of neurons:With the number of heads in a fixed value of

6 and theweight decay parameter in fixed value of 5E-2, the influence

of the number of neurons on predictive performance was discussed

by choosing the value within the set of [4, 8, 16, 32, 64, and 128]. After

implementing 5-fold cross-validation, the results shown in Figure 4

proved that AUC and AUPR obtained the best values when the

number of neurons was set to 16.

Based on the previously mentioned discussion, by setting the

number of heads in a fixed value of 6, the weight decay parameter

γ in a fixed value of 5E-2, and the number of neurons in a fixed

value of 16, our MM-LDA achieved the best AUC value of

0.9395 and AUPR value of 0.8057.

Ablation experiments: In order to evaluate the role of each

kernel part in MM-LDA, such as multiple-operator aggregation

FIGURE 2
(A) AUC with different number of heads. (B) AUPR with different number of heads.
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in n-heads attention, IMC in lncRNA–disease association

reconstruction, three ablation experiments that were used to

compare with our MM-LDA were set up:

• GAT-NG: A prediction model was constructed without

kernel similarity of the Gaussian interaction spectrum as

the kernel part.

• GAT-GIMC: A prediction model was constructed only

based on a standard multiple-heads graph attention

network.

• GAT-GMC: A prediction model was constructed only

based on standard matrix completion.

For each ablation experiment, 5-fold cross-validation was

repeated 10 times, and the average values of the results are shown

in Figure 5.

From the results shown, MM-LDA obtained 5.65%, 3.3%,

and 3.1% higher AUC values than GAT-NG, GAT-GMC, and

GAT-GIMC, respectively. Furthermore, MM-LDA obtained

14.62%, 9.6%, and 13% higher AUPR values than GAT-NG,

GAT-GMC, and GAT-GIMC, respectively. Therefore, it proved

that the three kernel parts (integrated Gaussian interaction

spectrum kernel similarity, multiple-operator aggregation in

n-heads attention, and IMC) of MM-LDA could significantly

improve the predictive performance.

Comparison with other models: SDLDA (Zeng et al., 2020b),

DMFLDA (Zeng et al., 2020a), and GAMCLDA (Lu et al., 2019), the

three computational models based on machine learning and matrix

factorization in recent 3 years, were comparedwith ourMM-LDAon

the same dataset (Ald ∈ Rnl×nd). After 5-fold cross-validation was

carried out, the detailed results are shown in Figure 6 and Table 1 to

further prove the remarkable performance of MM-LDA.

FIGURE 3
(A) AUC with different weight decay parameters. (B) AUPR with different weight decay parameters.

FIGURE 4
(A) AUC with different number of neurons. (B) AUPR with different number of neurons.
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From the results shown, we could easily find that MM-LDA

obtained the best AUC value that is 5.9%, 6.05%, and 11.05%

higher than that of GAMCLDA, SDLDA, and DMFLDA,

respectively. In addition, MM-LDA also obtained the best

AUPR value that is 2.9%, 32.4%, and 49.5% higher than that

of GAMCLDA, SDLDA, and DMFLDA, respectively. Though

the running time of MM-LDA is 7.82% and 5.08% longer than

that of SDLDA and DMFLDA, MM-LDA achieved the

highest cost-effective prediction performance comprehensively.

FIGURE 5
(A) ROC curves of ablation experiments. (B) PR curves of ablation experiments.

FIGURE 6
(A) ROC curves of models compared. (B) PR curves of models compared.

TABLE 1 AUC value (AUPR value) and running time of models
compared.

Model AUC AUPR Time (hour)

MM-LDA 0.9395 0.8057 1.24

GAMCLDA 0.8871 0.7831 1.32

SDLDA 0.8660 0.6085 1.15

DMFLDA 0.8460 0.5391 1.18
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Case study

In order to further verify the independent prediction

performance of MM-LDA, gastric cancer was selected as the

target for the case study. All known associations relating to gastric

cancer composed the training set, and unknown associations

composed the testing set. Then, gastric cancer-related lncRNAs

identified by MM-LDA were sorted by scores. The top

10 lncRNAs with the highest scores were selected to validate the

predictive performance ofMM-LDA, with the evidence coming from

relevant literature and database, as shown in Table 2.

In Table 2, all but two out of 10 lncRNAs predicted by MM-

LDA have found evidence from relevant literature and database.

Even though, there is no direct evidence showing that HOTAIR

and HTTAS relate to gastric cancer so far, some studies found

that HOTAIR has stable expression in peripheral blood and can

be used as a non-invasive diagnostic marker for gastric cancer

(Dong et al., 2019). There is also no published literature which

finds the association between HTTAS and gastric cancer. We

firmly believe that there will be some researchers to find the

experimental evidence for this association inferred by MM-LDA.

Discussion

In this study, a new lncRNA–disease association prediction

model, namely, MM-LDA, combining the graph attention

network and inductive matrix completion technology was

established. MM-LDA designed a multiple-operator aggregation in

n-heads attention to enhance the features of nodes. The enhanced

features were input into the whole process of induction matrix

completion, and the original association matrix was reconstructed

by completing themissing elements of thematrix. The results from5-

fold cross-validation showed that MM-LDA obtained the best AUC

value andAUPR value comparedwith the other three state-of-the-art

computational models. Comparing with GAMCLDA, 6.45% of

training time was saved. In general, MM-LDA deserves to be

recommended as the highest cost-effective prediction model.

However, there are still some aspects that need to be further

improved and studied. First, more biological information relating

to lncRNAs and diseases should be effectively integrated. Second,

MM-LDA did not predict the associations relating to new lncRNAs

and isolated diseases becausewe could not capture the features of new

lncRNAs and isolated diseaseswithout known associations. Third, we

should continue to optimize the aggregators by considering the

research progress of association prediction in other fields.
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TABLE 2 Top 10 gastric cancer-related lncRNAs.

Rank LncRNA Evidence

1 UCA1 LncRNA disease

2 TCL6 Literature [6]

3 PCA3 Literature [6]

4 HOTAIR LncRNA disease

5 H19 LncRNA disease

6 MALAT1 Unconfirmed

7 BCAR4 LncRNA disease

8 HCP5 LncRNA disease

9 CDKN2B-AS1 LncRNA disease

10 HTTAS Unconfirmed
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Background: The molecular mechanisms underlying obstructive sleep apnea

(OSA) and its comorbidities may involve mitochondrial dysfunction. However,

very little is known about the relationships betweenmitochondrial dysfunction-

related genes and OSA.

Methods: Mitochondrial dysfunction-related differentially expressed genes

(DEGs) between OSA and control adipose tissue samples were identified

using data from the Gene Expression Omnibus database and information on

mitochondrial dysfunction-related genes from the GeneCards database. A

mitochondrial dysfunction-related signature of diagnostic model was

established using least absolute shrinkage and selection operator Cox

regression and then verified. Additionally, consensus clustering algorithms

were used to conduct an unsupervised cluster analysis. A protein–protein

interaction network of the DEGs between the mitochondrial dysfunction-

related clusters was constructed using STRING database and the hub genes

were identified. Functional analyses, including Gene Ontology (GO) analysis,

Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene set

enrichment analysis (GSEA), and gene set variation analysis (GSVA), were

conducted to explore the mechanisms involved in mitochondrial

dysfunction in OSA. Immune cell infiltration analyses were conducted using

CIBERSORT and single-sample GSEA (ssGSEA).

Results: we established mitochondrial dysfunction related four-gene signature

of diagnostic model consisted of NPR3, PDIA3, SLPI, ERAP2, and which could

easily distinguish between OSA patients and controls. In addition, based on

mitochondrial dysfunction-related gene expression, we identified two clusters

among all the samples and three clusters among the OSA samples. A total of

10 hub genes were selected from the PPI network of DEGs between the two

mitochondrial dysfunction-related clusters. There were correlations between

the 10 hub genes and the 4 diagnostic genes. Enrichment analyses suggested

that autophagy, inflammation pathways, and immune pathways are crucial in

mitochondrial dysfunction in OSA. Plasma cells and M0 and M1 macrophages
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were significantly different between the OSA and control samples, while several

immune cell types, especially T cells (γ/δ T cells, natural killer T cells, regulatory

T cells, and type 17 T helper cells), were significantly different among

mitochondrial dysfunction-related clusters of OSA samples.

Conclusion: A novel mitochondrial dysfunction-related four-gen signature of

diagnostic model was built. The genes are potential biomarkers for OSA and

may play important roles in the development of OSA complications.

KEYWORDS

mitochondrial dysfunction, obstructive sleep apnea, immunocyte infiltration,
bioinformatic analysis, gene signature

1 Introduction

Obstructive sleep apnea syndrome (OSA), a growing health

concern that affects nearly one billion people worldwide, is an

independent risk factor for cardiovascular and metabolic

diseases, but is highly underdiagnosed (Arnaud et al., 2020).

Continuous positive airway pressure is highly effective at

improving symptoms but cannot reduce the occurrence of

comorbidities. The use of biomarkers has been strongly

recommended, as the condition often goes undiagnosed

because patients remain oblivious to the severity of OSA and

its complications (Wang et al., 2022). Therefore, it is an urgent

task to find indicators for early diagnosis of OSA and decipher

the molecular pathways involved in OSA and its complications in

order to ensure earlier treatment and prevent complications.

The physiologic changes in OSA are vast and involve

complex mechanisms which play a role in the pathogenesis of

cardiovascular and metabolic disorders. Chronic intermittent

hypoxia (CIH) is the most deleterious feature of OSA, as it

can lead to oxidative damage in every organ (Shan et al., 2007).

CIH can suppress mitochondrial function and lead to the

generation of reactive oxygen species (ROS) (Wang et al.,

2010; Huang et al., 2014; Zhao et al., 2019; Lin et al., 2021;

Song et al., 2022). As mitochondrial status is important for the

metabolic function of all organs, mitochondrial dysfunction at

the cellular level that can affect systemic metabolic balance can

significantly contribute to many diseases and have been defined

as classical a hallmark of many diseases (Srinivasan et al., 2017;

Chapman et al., 2019). Mitochondrial dysfunction is a basic

mechanism in inflammation-related non-communicable diseases

(Hernandez-Aguilera et al., 2013). The wide acceptance of

mitochondrial dysfunction as a correlated factor of

Parkinson’s disease (Rocha et al., 2018), cardiovascular

diseases (Vásquez-Trincado et al., 2016), diabetic kidney

disease (Wei and Szeto 2019) and other numerous diseases

(Kasapoğlu and Seli 2020; Yapa et al., 2021) has led to the

presupposition that mitochondrial dysfunction markers are

associated with OSA. Although various microRNAs and

proteins (and their genes) have been reported to be involved

in OSA (Li et al., 2017; Cao et al., 2021; Shi et al., 2021; Tang et al.,

2021), the effects of OSA on genes and pathways remain largely

unknown, especially regarding mitochondrial dysfunction.

Previous studies have suggested that mitochondrial

dysfunction represents the molecular mechanism underlying

OSA and its comorbidities. First, sleep disorders are prevalent

in individuals with mitochondrial disorders; the clinical features

of the mitochondrial dysfunction affect the type of sleep

disturbance (Brunetti et al., 2021). Second, mitochondrial

DNA (mtDNA) copy number is significantly reduced in

patients with OSA, and it is a reliable biomarker for

predicting cardiovascular risk in patients with OSA (Kim

et al., 2014). Third, Banxia-Houpu decoction reduced CIH-

induced heart damage by regulating mitochondrial function

(Song et al., 2022). Fourth, attenuating mitochondria-

dependent apoptosis has been suggested as a novel adjunct

strategy for ameliorating OSA-induced neurocognitive

impairment (Xu et al., 2021). Fifth, mitochondrial dysfunction

and the oxidative stress were found to be involved in genioglossus

muscle injuries in OSA with obesity, which may provide

therapeutic targets for use in OSA with obesity (Chen et al.,

2021). Lastly, research has identified certain proteins associated

with CIH, and some may serve as novel biomarkers for OSA and

related disorders, such as acute coronary syndrome (Shi et al.,

2021) and Alzheimer’s disease (Wu et al., 2021). In conclusion,

patients with OSA exhibit several mitochondrial gene mutations,

deletions, and some mitochondrial dysfunction indexes.

Unfortunately, little has been reported whether mitochondrial

dysfunction related genes and pathways could be used as clinical

biomarkers of OSA susceptibility and severity so far.

In the present study, a four-gene (NPR3, PDIA3, SLPI, and

ERAP2) diagnostic model was built to diagnose OSA based on

mitochondrial dysfunction-related gene expression. The genes

are potential biomarkers and therapeutic targets for use in OSA.

Consensus clustering of all the samples (OSA and control) was

used to identify two mitochondrial dysfunction-related clusters

(A and B). Furthermore, to investigate the underlying biological

functions of the clusters, we identified 106 differentially

expressed genes (DEGs) between clusters A and B and

conducted functional enrichment analyses of these DEGs. A

protein–protein interaction (PPI) network of the DEGs was
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constructed using the STRING database. Thereafter, immune cell

infiltration was evaluated using both CIBERSORT and single-

sample gene set enrichment analysis (ssGSEA). In addition, the

correlations between the four diagnostic genes and immune cell

infiltration were calculated. To our knowledge, this is the first

study to integrate bioinformatics analyses in order to identify the

key mitochondrial dysfunction-related genes and pathways, and

the degree of immune cell infiltration, in OSA. These genes and

pathways may facilitate our understanding of the molecular

mechanism of OSA and further provide evidence for early

diagnosis, prevention, and treatment of this disease.

2 Methods

2.1 Data sources and processing

Two microarray datasets [GSE135917 (Gharib et al., 2020)

and GSE38792 (Gharib et al., 2013)] on adipose tissue samples

fromOSA patients and controls were downloaded from the Gene

Expression Omnibus (GEO) database. The sequencing platform

was GPL96 (HG-U133A)] Affymetrix (Supplementary Table S1).

Data of 58 OSA patients and 8 controls from GSE135917, and

10 OSA patients and 8 controls fromGSE38792, were analyzed in

our study. The datasets were log2 transformed and normalized

using the SVA R package. The expression distribution before and

after normalization was visualized using boxplots

(Supplementary Figure S1).

2.2 Analysis of differentially expressed
genes and mitochondrial dysfunction-
related genes

The limma R package (Ritchie et al., 2015) was used to

conduct a DEG analysis comparing the OSA and control

samples. The genes with |log(fold change [FC])|>1 and p <
0.05 were identified as DEGs. The RCircos R package (Zhang

et al., 2013) was used to map the chromosomal location of the

genes.

A total of 8334mitochondrial dysfunction-related genes were

then downloaded from the GeneCards database (https://www.

genecards.org/) (Safran et al., 2010) using the key words

“mitochondrial dysfunction”. The mitochondrial dysfunction-

related DEGs were then identified.

2.3 Correlation analysis among genes

Pearson correlations between pairs of genes were calculated.

The GGplot2 R package was used to construct scatter plots of the

expression correlations between pairs of genes that met the

criteria and to fit correlation curves. The criteria for

significant correlation comprised absolute correlation

coefficient value >0.5 and p < 0.05.

2.4 Establishment of diagnostic model

Least absolute shrinkage and selection operator (LASSO)

Cox regression was used for feature selection and dimensionality

reduction in order to generate a gene-based classifier [9]. To

verify the diagnostic value of the model, ROC curves of the single

genes and the four-gene model were plotted using R package

pROC (Robin et al., 2011). A nomogram and decision curve

analysis (DCA) curves were used for validation.

2.5 Consensus clustering

Using all the OSA and control samples, a consensus

clustering analysis of mitochondrial dysfunction-related genes

was used to identify distinct mitochondrial dysfunction-related

clusters using the k-means clustering algorithm (Sabah et al.,

2021). The optimum number of clusters, along with the

consistency of clusters, was determined by the consensus

clustering algorithm in the ConsensusClusterPlus package

(Seiler et al., 2010). A total of 1000 iterations were performed

to ensure the stability of the categories. Additionally, using only

the OSA samples, consensus clustering was again used to identify

distinct mitochondrial dysfunction-related clusters.

2.6 Protein–protein interaction network
construction

After determining the DEGs between the mitochondrial

dysfunction-related clusters (based on all samples), a PPI

network of the DEGs was constructed using STRING network

version 11.0 and the default confidence threshold of 0.4. The PPI

network was exported and then Cytoscape version 3.8.0 was used

to calculate the network attributes of each node. Next, cytoHubba

version 1.6 was used to identify hub nodes based on the degree of

the nodes.

We predicted the miRNAs and transcription factors related

to the hub genes using TarBase (Wang et al., 2013) and

miRecords (Fornes et al., 2020). Protein-chemical interactions

were obtained from the Comparative Toxicogenomics Database

(http://ctdbase.org/) (Davis et al., 2021).

2.7 Functional enrichment analyses of
differentially expressed genes

Using the DEGs between the mitochondrial dysfunction-

related clusters (based on all samples), Gene Ontology (GO)
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enrichment analysis was employed to study the large-scale

functional enrichment of the DEGs at three levels: biological

process (BP), molecular function (MF) and cellular

component (CC) (Ashburner et al., 2000). Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis was used to identify the biological pathways related to

the DEGs (Kanehisa and Goto 2000). The clusterProfiler R

package (Wu et al., 2021) was used to perform GO functional

annotation for all significant DEGs to identify significantly

enriched GO terms. The enrichment results were visualized

using the GOplot R package.

Gene set enrichment analysis (GSEA) using data fromMSigDB

(Liberzon et al., 2015) was employed to identify the significant

differences in biological pathways between the high- and low-

expression clusters. The “C2.cp.kegg.v7.4.entrez.gmt” (KEGG

pathways) gene set was selected as the reference gene set.

Gene set variation analysis (GSVA) using the

“c2.cp.kegg.v7.2.symbols.gmt” (KEGG pathways) and

“h.all.v7.2.symbols.gmt” (Hallmark pathways) gene sets

(Hanzelmann et al., 2013) was employed to identify the

significant differences in biological pathways between the

mitochondrial dysfunction-related clusters. The criteria for

significant enrichment comprised nominal p < 0.05,

normalized enrichment score (NES) > 1, and false discovery

rate (FDR) q < 0.25 using the GSVA R package.

2.8 Analysis of immune cell infiltration

The degree of immune cell infiltration was assessed twice,

using 1) CIBERSORT and 2) ssGSEA. First, the CIBERSORT R

package was used to determine the degree of immune cell

infiltration based on the CIBERSORT scores for immune

infiltrating cells (Steen et al., 2020). Second, the GSVA R

package method based on ssGSEA (Huang et al., 2021) was

used to evaluate the degree of immune cell infiltration.

FIGURE 1
Flow diagram of methodologies used in this study.
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2.9 Statistical analysis

All data processing and analysis were completed in R

software (version 4.0.2). Normally distributed continuous

variables were compared using independent-samples

Student’s t tests, and non-normally distributed continuous

variables were compared using Mann–Whitney U tests

(i.e., Wilcoxon rank-sum tests). Categorical variables were

compared using chi-square tests or Fisher’s exact tests.

Kruskal–Wallis tests were used for comparison of more

than two groups. Two-tailed p < 0.05 was considered

statistically significant.

3 Results

Figure 1 shows the study flowchart.

3.1 Identification of mitochondrial
dysfunction-related differentially
expressed genes

First, heatmaps and volcano plots were used to visualize the

DEGs between the OSA and control samples in the GSE135917

(Supplementary Figures S2A,B), GSE132651 (Supplementary

Figures S2C,D), and combined datasets (Supplementary

Figures S2E,F). Next, we analyzed the intersection of DEGs

among the GSE135917, GSE38792, and combined datasets, as

displayed in a Venn diagram (Figure 2A). A total of

21 overlapping genes were obtained. Moreover, 18 of the

overlapping genes were mitochondrial dysfunction-related

genes (Figure 2B), which were designated as the

mitochondrial dysfunction-related hub genes. Their expression

levels in the GSE38792 and GSE135917 datasets are presented in

boxplots (Figures 2C,D). Figure 2E shows the chromosomal

positions of the mitochondrial dysfunction-related hub genes.

3.2 Diagnostic model based on
mitochondrial dysfunction-related hub
genes

The 18 mitochondrial dysfunction-related hub genes were

subjected to LASSO Cox regression to create a diagnostic model

(Figure 3A). Four genes were gathered, the regression model

reached the optimal ability (Figure 3B). A plot of the diagnostic

genes was used to visualize their differential effectiveness for

diagnosing OSA (Figure 3C). The calibration curve regarding the

nomogram predictions (Figure 3D) and decision curve analysis

curve predicted by irrelevant nomogram (Figure 3E) were

constructed. Both showed that 4− gene diagnostic model had

good predictive value.

3.3 Verification of diagnostic value of four-
gene diagnostic model

Boxplots of the four genes (NPR3, PDIA3, SLPI, and ERAP2)

in the diagnostic model, as OSA-related risk genes, had

significant differences in expression between the OSA and

control samples in the GSE135917, GSE38792, and combined

datasets (Figures 4A–C).

The area under the ROC curve (AUC) was calculated to

measure the diagnostic value of the model. Figures 4D–F show

the ROC curves of NPR3, PDIA3, SLPI, and ERAP2 in the

GSE135917, GSE38792, and combined datasets, respectively.

Figures 4G–I show the ROC curves of the four-gene

diagnostic model in the GSE135917, GSE38792 and combined

datasets, respectively. The results indicated that the four-gene

signature of diagnostic model had high diagnostic value.

3.4 Mitochondrial dysfunction-related
clusters

To explore biological characteristics related to the expression

of mitochondrial dysfunction-related genes, all the samples were

first divided into k (k = 2, 3, 4, 5, 6, 7, and 8) clusters using

ConsensusClusterPlus. The optimal categorization occurred

when k = 2, based on the cumulative distribution function

(CDF) curves of the consensus score. Therefore, the samples

were divided into two mitochondrial dysfunction-related

clusters: cluster A (n = 28) and cluster B (n = 56) (Figures 5A–D).

3.5 Transcription factor and miRNA
predictions

To explore the interactions related to four-gene diagnostic

model at the post-transcriptional level, 41 transcription factors

that upregulate the genes and 134 miRNAs that target the genes

were identified (Supplementary Figure S3A), along with

104 protein chemical components (Supplementary Figure S3B).

3.6 Protein–protein interaction network

To investigate the underlying biological functions of the

mitochondrial dysfunction-related clusters A and B, we

identified 106 DEGs between clusters A and B (Figure 6A). We

then constructed a PPI network using the STRING database

(Figure 6B). The highly connected (hub) genes in the PPI

network were identified using the MCODE plug-in in

Cytoscape (Figure 6C). The top 10 genes, based on high scores

using the cytoHubba plug-in in Cytoscape, were also selected

(Figure 6D). A Venn diagram was used to identify the intersection

of the results of the MCODE and cytoHubba methods, which led
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to 10 hub genes being obtained (Figure 6E). A correlation network

diagram (Supplementary Figure S4A), scatter plots

(Supplementary Figures S4B–P) and Supplementary Table S2

show the correlations of the 10 hub genes and 4 genes in the

diagnostic model, revealing strong correlations between the hub

genes and diagnostic genes. This indicated that they may act in

synergistic way, contributing to OSA and related complications.

3.7 Functional enrichment analyses

Functional enrichment analyses of the 106 DEGs between

clusters A and B were performed (Figure 7). The GO analysis

indicated that the genes were significantly enriched in

cytoplasmic vesicle lumen, chemokine activity, collagen-

containing extracellular matrix, regulation of smooth muscle

cell proliferation, DNA binding, and transcription activator

activity (Supplementary Table S3). The KEGG analysis

showed that the genes were enriched in cytokine and cytokine

receptor, interleukin (IL)-17 signaling pathway, tumor necrosis

factor (TNF) signaling pathway, pathogenic Escherichia coli

infection, and complement and coagulation cascades

(Supplementary Table S4).

Subsequently, GSEA was performed between the high- and

low-expression clusters based on the four diagnostic genes in the

GSE135917 and GSE38792 datasets (Supplementary Table S5).

The results suggested that the samples in the high-expression

cluster were significantly enriched in IL-6 pathway, IL-12

pathway, IL6_7 pathway, DNA repair, IL-1 signaling,

nonsense-mediated decay, transcriptional regulation of

FIGURE 2
Identification of mitochondrial dysfunction-related hub genes. (A) Venn diagram of DEGs between the OSA and control samples in the
GSE135917, GSE38792, and combined datasets. (B) Venn diagram of hub DEGs and mitochondrial dysfunction-related genes. Boxplots of the
differences in expression of mitochondrial dysfunction-related hub genes in (C) GSE38792 and (D) GSE135917 datasets. (E) Chromosomal positions
and expression of mitochondrial dysfunction-related hub genes. *p < 0.05, **p < 0.01, ***p < 0.001, ns: no significant difference. DEGs:
differentially expressed genes.
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pluripotent stem cells, complement activation, and gastrin

signaling pathway (Figures 8A–H). The samples in the low-

expression cluster were significantly enriched in autophagy,

lysosome, proteasome, anaphase promoting complex/

cyclosome (APC/C)-mediated degradation of cell cycle

proteins, cell cycle check points, metabolism of polyamines,

FIGURE 3
Diagnostic model based on mitochondrial dysfunction-related genes. (A) Diagnostic model construction using a least absolute shrinkage and
selection operator (LASSO) Cox regression model. (B) Coefficient distribution plots to select the optimum lambda value. (C) Plot of diagnostic genes
demonstrating their differential effectiveness for diagnosingOSA. (D)Calibration curves based on nomogrampredictions and actual observations. (E)
Decision curve analysis (DCA) of diagnostic model.
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and stabilization of P53 (Figures 8I–P). Cytokines exert a vast

array of immunoregulatory actions critical to human physiology

and disease (Spangler et al., 2015). TNF-α, IL-17, IL-6, IL-12, and
IL-1 are inflammatory cytokines. The autophagy–lysosome

pathway and ubiquitin–proteasome system are the main

mechanisms of intracellular protein degradation and they help

to maintain normal cellular functions.

To further investigate the biological pathways that

mitochondrial dysfunction may affect, we conducted GSVA

between the mitochondrial dysfunction-related clusters A and

B to assess pathway enrichment. Regarding the KEGG pathways,

most of them, including regulation of pyrimidine metabolism,

proteasome, SNARE interactions in vesicular transport,

endocytosis, other glycan degradation, amino sugar and

nucleotide sugar metabolism, and lysosome, were more

enriched in cluster B (Figure 8Q). Regarding the Hallmark

pathways, the ROS pathway, heme metabolism, PI3K-AKT-

mTOR signaling, mTORC1 signaling, hypoxia, peroxisome,

and apoptosis were more enriched in cluster B, whereas

myogenesis and KRAS signaling pathways were more enriched

in cluster A (Figure 8R). ROS influence metabolic processes such

as proteasome function, autophagy, and general inflammatory

signaling (Forrester et al., 2018). Heme metabolism influences a

wide variety of biological processes relevant to OSA, including

redox balance and inflammatory response (Wang et al., 2022).

Autophagy, which can be activated by hypoxia, can be beneficial

in inflammatory disorders as it eliminates damaged organelles

and maintains homeostasis (Yao et al., 2021), and mTOR is a key

negative regulator of autophagy. It should be noted that the

enriched pathways were mainly autophagy, inflammatory, and

FIGURE 4
Expression differences and diagnostic value ofmitochondrial dysfunction-related four-gene diagnosticmodel. Boxplots of differences in NPR3,
PDIA3, SLPI, and ERAP2 expression between OSA and control samples in (A) GSE135917, (B) GSE38792, and (C) combined datasets. ROCcurves of
NPR3, PDIA3, SLPI, and ERAP2 in (D) GSE135917, (E) GSE38792, and (F) combined datasets. ROC curves of four-gene diagnostic model in (G)
GSE135917, (H) GSE38792, and (I) combined datasets.
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immune related pathways. This indicated that mitochondrial

dysfunction might be associated with autophagy, inflammation,

and the immune microenvironment in OSA.

3.8 Immune cell infiltration

The CIBERSORT algorithm was used to evaluate the

immune microenvironment in OSA. The correlations among

immune cells are shown in Figure 9A. A boxplot indicated that

the infiltration of several immune cells (plasma cells,

M0 macrophages, and M1 macrophages) were significantly

different between OSA and control samples (Figure 9B).

To explore the relationship between mitochondrial

dysfunction and immune cell infiltration, we compared the

immune cell infiltration between clusters A and B. The results

showed that several immune cells (activated B cells, CD56bright

natural killer cells, eosinophils, macrophages, monocytes, and

plasmacytoid dendritic cells) were significantly different between

clusters A and B (Figures 9C,D). Figure 9E further visualizes

immune cell infiltration differences between clusters.

We then performed consensus clustering of the OSA samples

only (n = 68) and identified three mitochondrial dysfunction-

related clusters, with 43 samples in cluster A, 8 in cluster B, and

17 in cluster C (Figures 10A–D). We assessed the degree of

immune cell infiltration using both CIBERSORT and ssGSEA.

Interestingly, the results were consistent with each other. Both

methods showed differences among clusters A, B, and C in the

infiltration degree of activated B cells, CD56bright natural killer

cells, γ/δ T cells, immature dendritic cells, natural killer T cells,

regulatory T cells (Tregs), and type 17 T helper cells (Figures

10E,F).

FIGURE 5
Identification of two mitochondrial dysfunction-related clusters using consensus clustering analysis of mitochondrial dysfunction-related
genes. (A) Tracking plot of consistent clustering. (B) Cumulative distribution function (CDF) curves for k = 2–9. (C) Elbow plot showing relative
change in area under the CDF curve (AUC). (D) Consensus clustering matrix for k = 2.
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To understand the correlations between the genes in the

diagnostic model and infiltrating immune cells, we constructed a

scatter plot of statistically significant results with correlation

coefficient (R) > 0.4. PDIA3 was correlated with plasma cells,

monocytes, M0 macrophages and T cells CD4 memory resting

(Supplementary Figures S5A–D). SLPI was correlated with

M0 macrophages, naive B cells, and plasma cells

(Supplementary Figures S5E–G). Taken together, the results

indicate that mitochondrial dysfunction plays an important

role in immune microenvironment regulation in OSA.

4 Discussion

OSA can cause many complications, such as

cardiovascular, metabolic, and neuropsychiatric disorders,

pose a major threat to human health (Wang et al., 2022).

However, the approaches to the management of OSA are

limited due to the incomplete understanding of the

underlying molecular mechanisms of OSA.

During respiratory events in OSA patients, intermittent

hypoxia together with post-apnea/hypopnea reoxygenation

triggers an increase in oxidative stress (Passali et al., 2015). As

the major energy-producing organelles, mitochondria, are highly

sensitive to hypoxic stress. They can respond dynamically under

hypoxia, which can minimize ROS formation and reduce the risk

of cell death and tissue damage. However, as a prominent

mechanism of mitochondrial dysfunction, abnormal metabolic

cues induced by hypoxia can disrupt the dynamic mitochondrial

balance. This results in a series of intracellular signaling cascades

and apoptosis, followed by the progression of diverse diseases

(Wang et al., 2022). Mitochondrial abnormalities may be one of

the pathological mechanisms underlying OSA-related cardiac

injury, while maintaining the integrity of mitochondria allows

the survival of cardiomyocytes under hypoxia. Aged relative to

young mouse hearts exhibited maladaptation to CIH because of

mitochondrial dysfunction (Wei et al., 2022).

Since the mitochondrial dysfunction appears to be involved in

the pathogenesis ofOSA and its complications, investigating the role

of mitochondrial dysfunction-related genes may provide novel

personalized and optimal management strategies for OSA and its

comorbidities. In the present study, we identified a mitochondrial

dysfunction-related four-gene signature of diagnostic model

involving NPR3, PDIA3, SLPIM, and ERAP2. The model easily

FIGURE 6
Protein–protein interaction (PPI) network construction and hub gene identification. (A) Volcano plot of DEGs between mitochondrial
dysfunction-related clusters A and B. (B) PPI network based on STRING database. (C)Hub genes identified by Cytoscape MCODE plug-in. (D) Top10
hub genes identified by Cytoscape CytoHubba plug-in. (E) Venn diagram showing the intersection of the two methods, identifying 10 hub genes.
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FIGURE 7
GO and KEGG enrichment analyses of DEGs between mitochondrial dysfunction-related clusters A and B. (A,B) Histogram, (C,D) bubble plot,
(E,F) circle plot, and (G,H) chord diagram of the results of GO and KEGG enrichment analyses.

Frontiers in Genetics frontiersin.org11

Liu et al. 10.3389/fgene.2022.1056691

89

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1056691


FIGURE 8
GSEA and GSVA. GSEA results: KEGG pathways with significantly differential enrichment between patients with (A–H) high and (I–P) low
expression of the four diagnostic genes. GSVA results: (Q) Hallmark and (R) KEGG pathways with significantly differential enrichment between
mitochondrial dysfunction-related clusters A and B.
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distinguished between OSA and control samples, which highlights

that mitochondrial dysfunction differs between OSA patients and

control individuals. Although there have been previous studies on

OSA diagnostic genes (Li et al., 2017; Ambati et al., 2020; Bencharit

et al., 2021; Cao et al., 2021; Li et al., 2022), we are the first group to

establish and validate a mitochondrial dysfunction-related

diagnostic model.

Among the mitochondrial dysfunction-related genes, NPR3

mediates natriuretic peptides degradation and was proved to act

as a tumor suppressor in certain types of cancers. Moreover,

previous study also showed that it played an important role in

modulating intravascular volume and vascular tone and could

protect cardiomyocytes from apoptosis. Thus, NPR3 might be a

viable therapeutic target to decrease cancer and cardiovascular

FIGURE 9
Immune cell infiltration. (A) Heatmap of correlations among 15 infiltrating immune cells, as analyzed by CIBERSORT. (B) Boxplot of differences
in 15 infiltrating immune cells between OSA and control samples, as analyzed by CIBERSORT. (C) Heatmap of correlations among 23 infiltrating
immune cells, as analyzed by ssGSEA. (D) Boxplot of differences in 23 infiltrating immune cells between clusters A and B, as analyzed by ssGSEA. (E)
Heatmap of the differences in immune cell infiltration (based on ssGSEA between clusters A and B.

Frontiers in Genetics frontiersin.org13

Liu et al. 10.3389/fgene.2022.1056691

91

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1056691


diseases risk in OSA patients (Lin et al., 2016; Li et al., 2021).

PDIA was reported to be able to intercept the endoplasmic

reticulum stress-related apoptotic cellular death and its

expression is significantly up-regulated in response to cellular

stress (Mahmood et al., 2021). SLPI is an important immunity

regulator, acts as a component of tissue regenerative programs,

and has anti-proteolytic, anti-microbial and immunomodulatory

activities (Majchrzak-Gorecka et al., 2016). ERAP2 plays roles in

the processing of antigenic peptides and influences cellular

cytotoxic immune responses (de Castro and Stratikos 2019).

Obviously, PDIA3, SLPI, and ERAP2 are involved in stress

and immune response. The experimental models of OSA

suggested that the metabolic and inflammatory changes

induced by chronic intermittent hypoxia and sleep

fragmentation may foster or exacerbate immune alterations

(Almendros et al., 2020).

We obtained 134 miRNAs related to the four genes in the

mitochondrial dysfunction-related diagnostic model. A previous

study reported differentially expressed miRNAs in OSA (Li et al.,

2017), but they were not necessarily associated with

mitochondrial dysfunction. Additionally, to identify another

set of key genes related to OSA, we selected 10 hub genes (IL-

6, FOS, FOSB, JUN, DUSP1, EGR1, PTGS2, ATF3, and ZFP36)

from the PPI network of DEGs between the two mitochondrial

dysfunction-related clusters. Interestingly, IL-6 receptor levels

have been reported to reflect OSA severity (Zheng et al., 2018);

FOS, FOSB, and JUN have been demonstrated to be involved in

obesity, osteoporosis, and colorectal cancer (Skrypnik et al.,

2017); and DUSP1 is upregulated in CIH in OSA patients

(Hoffmann et al., 2013). Additionally, in this study, we found

that SLP1 expression was positively correlated with IL-6, FOS,

FOSB, and JUN, whereas PDIA3 expression was negatively

correlated with FOS, FOSB, and JUN. Although most of the

10 hub genes have not been studied in OSA, we speculate that

these genes might be involved in the pathogenesis of OSA and its

complications and form a regulatory network to coregulate OSA.

Functional enrichment analysis was conducted after

reclassifying the microarray according to the mitochondrial

dysfunction and our results indicated that DEGs of two

clusters were primarily involved in autophagy, inflammation

and immune pathways. 1) Regarding autophagy, consistent

with our results, OSA is known to induce autophagy as a

FIGURE 10
Consensus clustering analysis of OSA subjects based on mitochondrial dysfunction-related genes and analysis of immune cell infiltration. (A)
Tracking plot of consistent clustering. (B) Consensus clustering cumulative distribution function (CDF) for k = 2–9. (C) Relative change in area under
CDF curve for k = 2–7. (D) OSA subjects were divided into three clusters when k = 3. Boxplots of degree of immune cell infiltration among clusters
A–C, based on (E) CIBERSORT and (F) ssGSEA methods.
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result of hypoxia, oxidative stress, and endothelial dysfunction

(Ding et al., 2021). Autophagy is related to metabolic disorders,

tumors, pulmonary diseases, and neurodegenerative disorders,

and mitophagy is an autophagic response that specifically targets

mitochondria (Bravo-San Pedro et al., 2017). 2) Regarding

inflammation, mitochondrial dysfunction can trigger innate

immune responses and inflammation (West 2017).

Additionally, inflammatory mediators and infiltrating immune

cells can trigger signaling cascades that alter mitochondrial

metabolism. Cytokines can inhibit mitochondrial oxidative

phosphorylation and induce mitochondrial ROS production,

which may alter mitochondrial dynamics and ultimately result

in cell death. In particular, it has been reported that OSA may

lead to atherosclerosis due to inflammatory processes induced by

CIH (Stanke-Labesque et al., 2014). 3) Regarding immune

pathways, high levels of IL-6 and TNF-α are predictors of

major adverse cardiovascular events in diabetic patients with

peripheral artery disease (Biscetti et al., 2019). The IL-1

superfamily of cytokines also plays a vital role in immunity by

regulating host defenses, inflammation, and injury. IL-1

inhibition improves glycemic control, and decreases the

incidence of cardiovascular disease (Herder et al., 2015; Zheng

et al., 2019). Notably, IL-33, a cytokine from the IL-1 family, is an

inflammatory mediator, that is, increased in OSA patients

compared to controls (Gabryelska et al., 2019). Importantly,

pro-inflammatory activation of monocytes activates mTORC1,

which enhances the production of chemokines and cytokines

(Lin et al., 2014), and the mTORC1 pathway was found to play a

key role in mitochondrial dysfunction (Condon et al., 2021). The

mTOR pathway was also reported to be the most important

DEG-enriched pathway in severe OSA patients with

hypertension (Ko et al., 2021). In summary, these results gave

a detailed description of the ways and mechanisms how

mitochondrial dysfunction participates in OSA’s progress,

which may benefit future development of precise treatment.

Our data demonstrated the differences in infiltrating immune

cells between OSA and control samples, and these cells may also be

responsible for OSA comorbidities. Immune cell infiltration may

also be of great importance in the remission of OSA (Fan et al.,

2021). Consistent with our findings, CIH in OSA was previously

found to induce adipose tissue macrophages towards a pro-

inflammatory M1 subtype (Ryan 2017), and macrophages are

known to contribute to adipose tissue insulin resistance and

vascular atherogenesis (Trzepizur et al., 2018). Additionally,

imbalanced effector T helper cells were found in patients with

OSA and hypertension (Zhang et al., 2022). Moreover, immune

cell infiltration in the myocardium adversely affects heart function

(Carrillo-Salinas et al., 2019), so OSA may elicit the immunologic

alterations that lead to cardiovascular changes. Lastly, there is also

a link between OSA and increased cancer incidence and mortality,

as intermittent hypoxia induces changes in signaling pathways

involved in the regulation of host immunological surveillance that

results in tumor formation and invasion (Martínez-García et al.,

2016; Picado and Roca-Ferrer 2020). Intermittent hypoxia may

lead to a tumor-promoting phenotype among tumor-associated

macrophages, leading to more aggressive tumor behavior (Cao

et al., 2015). Better understanding of immune infiltrationmay be of

great significance discovering novel therapeutic targets and

improving cardiovascular and cancer outcomes in OSA.

Mitochondria are not only important for energy supply

during immune activation, but they also induce host

immunological surveillance and are involved in immune

cell differentiation. We found that several immune cell

types, especially T cells (γ/δ T cells, natural killer T cells,

Tregs, and type 17 T helper cells), were significantly different

among the three mitochondrial dysfunction-related clusters of

OSA samples, so T cells are a promising choice for future OSA

treatment development. In addition, the diagnostic genes were

correlated with immune cell infiltration. Research has shown

that mitochondrial processes, along with cytosolic metabolic

processes, drive T cell activation, survival, proliferation, and

effector functions (Sena et al., 2013). Another study showed

that increased γ/δ T cell adhesion occurs in lesion-prone areas

of the arterial tree when high cholesterol induces the

translocation of ATP synthase β chain from the

mitochondria to membrane caveolae in endothelial cells

(Fu et al., 2011). Furthermore, research showed that

mTORC1 activation induces Treg proliferation while

inhibiting the suppressive activity of the Tregs (Procaccini

et al., 2010), which suppress immune activation via

immunosuppressive cytokines (Agita and Alsagaff 2017).

Lastly, T cells have been shown to be central to the

immune responses contributing to hypertension (Madhur

et al., 2021). In summary, our research revealed that

mitochondrial dysfunction might influence immune cell

infiltration, including T cell infiltration, in OSA and thus

promote OSA-related diseases.

However, our study has several limitations. First, the sample

size was small. To confirm the diagnostic value for OSA of the

hub genes, external validation using a larger sample size would

be helpful. Second, not only the identification of mRNA

expression level by real time PCR, but also the protein

expression levels of these genes would be necessary to

examine using western blot to deepen our understanding the

molecular mechanisms of OSA. To comprehensively identify

the nature of the mitochondrial dysfunctions in OSA,

integrated analysis at the molecular, cellular, and organismal

levels is warranted, with experimental evidence being required

to fully determine the roles of the hub genes and the underlying

mechanisms of OSA. Third, the role of each hub gene and the

mechanisms underlying OSA were not fully elucidated. Further

experimental verifications are necessary to elucidate the

biological functions of these genes in OSA. Fourthly, the

correlations between the expression of these genes and the

clinical parameters of OSA were not explored, so further

research on this is required.
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In conclusion, we established and validated a

mitochondrial dysfunction-related four-gene signature of

diagnostic model for OSA. Moreover, we revealed that

this model was related to immune cell infiltration. The

model could act as a diagnostic biomarker model and

might provide therapeutic targets the treatment of

OSA. Further studies should be conducted to clarify our

findings.
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SUPPLEMENTARY FIGURE S1
Normalization of datasets. Gene expression distribution in (A)
GSE38792 dataset before normalization, (B) GSE38792 dataset after
normalization, (C) GSE135917 dataset before normalization, (D)
GSE135917 dataset after normalization, (E) combined dataset before
normalization, and (F) combined dataset after normalization.

SUPPLEMENTARY FIGURE S2
Differentially expressed genes (DEGs) between OSA and control samples.
Heatmaps and volcano plots of DEGs betweenOSA and control samples
in (A,B) GSE38792, (C,D) GSE135917, and (E,F) combined datasets. The
upregulated, downregulated, and non-significant genes are marked in
blue, yellow and grey dots, respectively.

SUPPLEMENTARY FIGURE S3
(A) Prediction of transcription factors and miRNAs related to the genes in
the four-gene diagnostic model. Red and green dots in the middle
represent genes related to mitochondrial dysfunction and their related
transcription factors, respectively. Blue dots in the outer layer represent
the related miRNAs. (B) Molecular networks of protein chemical
interactions of the genes in the four-gene diagnostic model.

SUPPLEMENTARY FIGURE S4
Correlations of 10 hub genes and 4 diagnostic genes. (A) Correlation
network diagram of correlations among hub gene expression levels.
Scatter plots of significant (B–H) negative and (I–P) positive
correlations between hub and diagnostic gene expression.

SUPPLEMENTARY FIGURE S5
Correlations between genes in the diagnostic model and infiltrating
immune cells in OSA samples. Scatter plots of significant correlations of
(A–E) SLPI and (F–H) PDIA3 expression with the degree of immune cell
infiltration.
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AmicroRNA is a small, single-stranded, non-coding ribonucleic acid that plays a

crucial role in RNA silencing and can regulate gene expression. With the in-

depth study of miRNA in development and disease, miRNA has become an

attractive target for novel therapeutic strategies. Exploring miRNA targeting

therapy only through experiments is expensive and laborious, so it is essential to

develop novel and efficient computationalmethods to narrowdown the search.

Recent advances in machine learning applied in biomedical informatics provide

opportunities to explore miRNA-targeting drugs, thus promoting miRNA

therapeutics. This review provides an overview of recent advancements in

miRNA targeting therapeutic using machine learning. First, we mainly

describe the basics of predicting miRNA targeting drugs, including

pharmacogenomic data resources and data preprocessing. Then we present

primary machine learning algorithms and elaborate their application in

discovering relationships among miRNAs, drugs, and diseases. Along with

the progress of miRNA targeting therapeutics, we finally analyze and discuss

the current challenges and opportunities that machine learning confronts.

KEYWORDS

machine learning, mirna therapy, miRNA-disease association, miRNA-drug
association, deep learning

1 Introduction

As a kind of non-coding RNA transcript, MicroRNA (miRNA) plays a vital role in cell

proliferation, survival and differentiation by modulating the transcription of target

messenger RNA (mRNA) and disrupting the translation of mRNA (Rupaimoole and

Slack, 2017). The miRNA-mRNA interactions usually lead to translation inhibition or

mRNA degradation, which brings about the reduction of the final protein output (Guo

et al., 2010). MiRNAs act as novel therapeutic targets and potential diagnostic markers

due to they can regulate gene expression involved in the pathogenesis of cancer and other

complex diseases (Tay et al., 2008). Just a few years after the first miRNA was discovered

by Lee and others in 1993 (Lee et al., 1993), the research of miRNA biology dramatically

bloomed. The experimentally validated function of miRNAs laid a solid foundation for
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cellular biology, which enables researchers to study associated

diseases and drugs at the molecular level (Chen et al., 2020).

The efficacy of various miRNA therapies depends on the

accurate relationships between miRNAs and diseases. There are

many validated relationships that exist between miRNAs and

prevalent diseases, such as lung cancer, pancreatic, ovarian

cancer, and so on (Roldo et al., 2006). For example, excisions

and downregulation of the miR-15/16 cluster frequently occur in

chronic lymphocytic leukemia (Calin et al., 2008), and the

significant upregulation of miR-21 is involved in hematological

malignancies (Fulci et al., 2007). The decreased expression of

human let-7 miRNA family in lung cancer was associated with

poor prognosis in patients (Takamizawa et al., 2004). MiRNAs also

have been associated with several metabolic pathways (Fernández-

Hernando et al., 2013), for example, miR-33 influenced the level of

triglyceride and the high-density lipoprotein in serum (Marquart

et al., 2010). However, it costs a lot of time, money, and resources

to acquire associations verified in experiments, which brought

about a widespread interest in the computational discovery of

underlying miRNA-disease associations during the last few years.

More than 186,000 related articles were available online, andmany

relevant databases andmodels were designed (Huang et al., 2022a).

For instance, the latest version of Human MicroRNA Disease

Database (Huang et al., 2019) records 35,547 entries, and the

commonly used database miR2Disease (Jiang et al., 2009) contains

3,273 associations. Meanwhile, based on the conception that

similar miRNAs would be associated with similar diseases,

various computational models were adopted to identify

underlying associations. Usually, the homogeneous network and

the heterogeneous network were built to extract desired feature

embeddings via machine learning methods (Fu and Peng, 2017).

The therapeutic advance of diseases was deeply influenced by

the time-consuming and costly process of drug discovery and

development. Most drugs generally are small molecules, namely

low molecular weight organic compounds, that act as a regulator

in a biological process. It was indicated in studies that small

molecules could disrupt protein interactions, and also suppress

specific functions of a multifunctional protein; hence it may have

a positive effect on diseases (Melo et al., 2011). Unlike biologics

with which injection and other parenteral administration are

usually required, most small-molecule drugs can be taken orally.

The urgent request for novel therapeutic alternatives makes the

approach of targeting disease-related miRNA with small

molecules seem to be promising. Since Gumireddy et al.

(2008) developed the first small molecule inhibitor of miRNA

for specifically suppressing miR-21, numerous miRNA inhibitors

have been discovered via a sequence-based computational

approach or high throughput screening (Young et al., 2010).

For instance, the miR-122 inhibitors were identified to suppress

the miR-122 expression and reduce 50% of HCV viral load

in vitro (Kutay et al., 2006). Besides, streptomycin, neomycin,

tobramycin, and amikacin could impede miR-27a function,

which plays a role in the regulation of adipogenesis, gastric

cancer and so on, by directly interacting with pre-miR-27a

(Zhang et al., 2011; Chandrasekhar et al., 2012). Recently,

more and more miRNA-drug association research has been

launched, such as the Developmental Therapeutics Program

funded by the National Cancer Institute of United States,

which publicly published related datasets. Similarly, many

computational methods based on regression, matrix

factorization, neural networks and so on have been proposed.

In this review, we firstly listed several manually curated

mainstream databases of miRNA-disease associations and

miRNA-drug associations as comprehensive resources for

computational approaches. Then, with the rapid bloom of

machine learning approaches, we reviewed some representative

studies on predicting underlying relationships between miRNAs

and diseases or drugs using modified learning models. Due to the

length limit of the paper, not all papers related to the above

introduction are able to be included. Nevertheless, we collected the

commonly used databases and the most representative

computational methods to reveal promising development trends

for targeting miRNAs in human diseases and drugs.

2 Database

As we all know, miRNA expression deregulation is crucial to

the state transition from a physiological to a pathological one.

Many studies in recent have suggested that bioactive drugs can

act as the regulator of miRNA expression, hence indicating a new

therapy that miRNAs targeted with small molecules. Therefore,

more and more diversified databases containing various omics

data increased dramatically due to the development of system

biology andmolecular biology. The database of miRNAs-diseases

was generated from experimentally validated miRNA-disease

associations, and the miRNAs-drugs databases originated from

experimentally verified small molecules’ impacts on the

expression of microRNA. In this section, we concluded data

details in themost popularly used and commonly cited databases,

most of which were still in maintained status, from aspects of

miRNA-diseases and miRNA-drugs. Table 1 listed various

information about these mainstream databases.

2.1 miRNA-disease associations

2.1.1 miR2Disease
To date, the latest version of miR2Disease (Jiang et al., 2009)

curated 3,273 relationships between 349 human microRNAs and

163 human diseases, one-eighth of which suggested the

pathogenic roles of various human diseases related to miRNA

deregulation. Resources in the miR2Disease contained various

details about microRNA-disease relationships, in which every

entry could be retrieved by disease name, miRNA ID, or target

gene. Additionally, the literature reference, the detection method
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for miRNA expression, the expression pattern of miRNA, and a

brief description of a relationship are also included in this

database.

2.1.2 PhenomiR
The PhenomiR database (Ruepp et al., 2010) included

11,029 data points and 572 miRNAs, which were collected

from 542 related studies focusing on the differential regulation

of miRNA expression in diseases. In addition to some usual

information, PhenomiR provided in-depth information such as

the sample size, the quantitative fold-change of miRNA

expression, and the origin analysis of samples (cell culture or

patients). Depending on disease type in the PhenomiR dataset,

we can contrast conclusions originating from patient studies with

independent resources drawn from cell culture studies.

2.1.3 miRGen
The latest version miRGen v4 (Perdikopanis et al., 2021)

uniquely integrated annotations for numerous cell-specific

miRNA promoters with transcription factor binding sites

derived from experiments, which clearly revealed the

regulation of miRNA at the transcriptional level. Combined

with more than 1,000 cap analyses results from gene

expression samples (Shiraki et al., 2003) of 133 cell lines,

primary cells, and tissues derived from the FANTOM

Consortium (Forrest et al., 2014), miRNA transcription start

sites that specific in cell type were provided for more than

1500 miRNAs. Details in this database can be queried through

the sample-oriented method or miRNA-oriented method.

2.1.4 miRmine
The miRmine database (Panwar et al., 2017) contained

details of different miRNAs and collected expression profiles

from various miRNA databases. The miRmine functionality

included searches based on miRNA and cell-line/tissue,

comparison of multiple miRNAs, normal and human disease

information, and so on. For specific tissue or cell-line type,

miRmine could retrieve single or multiple miRNAs expression

information. Besides, retrieved results could be shown in various

graphs and interactive formats.

TABLE 1 Main databases for accelerating miRNA therapy based on machine learning.

Database Published year
(latest update)

Data type Number of data URL

miR2Disease 2008 (2022) Relationships between deregulated miRNAs
and diverse human diseases

3273 entries, 349 microRNAs, 163 human
diseases

http://www.
mir2disease.org/

PhenomiR 2009 (2011) Differential regulation of miRNA expression
in diseases

11029 data points and 572 miRNAs http://mips.helmholtz-
muenchen.de/
phenomir

miRGen 2007 (2020) miRNAs related to disease status information Over 1500 miRNAs and 133 cell lines,
primary cells, and tissues

http://www.microrna.
gr/mirgenv4

miRmine 2016 (2016) miRNA expression profiles in tissues, cell
lines, and diseases

304 miRNA sequencing datasets for 15 tissues
and 24 cell lines

https://guanfiles.dcmb.
med.umich.edu/

mirmine

miRTarBase 2011 (2022) miRNA-associated diseases and the
relationship between miRNA-target

interactions and disease

4630 miRNAs and 30tissues/cell lines from
440CLIP-seq datasets

https://miRTarBase.
cuhk.edu.cn/

HMDD 2007 (2022) miRNA-disease associations could be divided
into 6 categories of genetics, target,

circulation, tissue, epigenetics, and others

35547 entries of miRNA-disease association
between 1206 miRNA genes and 893 diseases

http://www.cuilab.cn/
hmdd

Pharmaco-miR
Verified Sets

2013 (2013) miRNA pharmacogenomic sets that were
verified in experiments

119 target genes, 72 drugs (whose function
depends on the gene), and 105 miRNAs

www.Pharmaco-
miR.org

SM2miR 2012 (2015) The experimentally verified small molecules’
effects on miRNA expression

4989 entries of relationships between
1658 miRNAs and 255 small molecules

http://www.jianglab.
cn/SM2miR/

DTP NCI-60
dataset

2016 (2022) A dataset of CellMiner database which
screened over chemical compounds by
utilizing diverse human cancer cell lines

335 miRNA expressions and half-cell growth
inhibition concentration from 18724 drugs

https://discover.nci.
nih.gov/cellminer

ncDR 2017 (2017) miRNA-drug resistance associations for
predicting non-coding RNA related to drug

resistance

5864 experimentally verified relationships
between 145 drug compounds and

877 miRNAs

http://www.jianglab.
cn/ncDR

The 1st column gives the database names. The 2nd column presents the published year and the latest update of the database. The 3rd column introduces data type included in the database.

The 4th column presents the number of data. The 5th column introduces the URL of the database.
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2.1.5 miRTarBase
The miRTarBase 9.0 (Huang et al., 2022b) released in

2021 documented over 360,000 miRNA-target interactions

between 27,172 targets and 4,630 miRNAs collected from

13,389 related studies, which facilitated the research of

miRNAs’ function in pathology and promoted the

improvement of diagnostic and therapeutic tools. Integrating

with increasing miRNA expression and biological data,

miRTarBase accumulated miRNA-target interactions verified

in experiments and satisfied biologists’ requirements.

Additionally, an optimized scoring system is utilized in the

updated version to reinforce the important identification of

related articles and relevant disease information.

2.1.6 HMDD
To date, 35,547 entries of miRNA-disease association

between 1,206 miRNA genes and 893 diseases curated from

19,280 papers were collected in HMDD (Huang et al., 2019).

Disease network analysis modules were applied in the latest

HMDD v3.3, which was released in Sep 2022. Covering

20 kinds of detailed evidence code derived from literature,

miRNA-disease associations in HMDD were divided into six

categories of genetics, target, circulation, tissue, epigenetics, and

others. Due to the wide coverage and abundant experimentally

verified associations, HMDD became one of the most popular

databases regarding association prediction and was widely

adopted as the benchmark in training and testing prediction

models.

2.2 miRNA-drug associations

2.2.1 Pharmaco-miR Verified Sets
In 2014, Pharmaco-miR Verified Set (Rukov et al., 2014)

manually curated 269 miRNA pharmacogenomic data from

149 original literature. It is a dataset of miRNA

pharmacogenomic sets that were verified in experiments,

containing119 target genes, 72 drugs (whose function depends

on the gene), and 105 miRNAs. In Pharmaco-miR Verified Sets,

the miRNA directly targeted the gene in a specified context,

which was typically exhibited via luciferase experiments.

Meanwhile, in the same context, the efficacy of drugs was

affected by the subsequent suppression of gene expression in

this database.

2.2.2 SM2miR
SM2miR (Liu et al., 2013) collected miRNA expression

influenced by experimentally verified small molecules’ effects

in 21 species curated from the published papers. To date, it

documented 4,989 entries of relationships between

1,658 miRNAs and 255 small molecules. Various details of

each entry encompass species, the miRNA expression pattern,

accession number in miRbase and DrugBank, detection

conditions, experimental method, PubChem Compound

Identifier, PubMed ID, and the related reference information.

2.2.3 DTP NCI-60 dataset
The U.S. National Cancer Institute launched the

Developmental Therapeutics Program, which screened over

100,000 chemical compounds by utilizing 60 diverse human

cancer cell lines, namely DTP NCI-60 (Blower et al., 2007). In

NCI-60 dataset, data consists of 335 miRNA expressions and

half-cell growth inhibition concentration (GI50) from

18,724 drugs. The DTP NCI-60 dataset can evaluate the

correlations between miRNA expression and drug sensitivity

by calculating the Pearson correlation coefficient between

miRNA expression level and GI50 value.

2.2.4 ncDR
In 2017, a comprehensive database called ncDR documenting

miRNA-drug resistance associations was released to predict non-

coding RNA related to drug resistance (Dai et al., 2017). This

database contains 5,864 experimentally verified relationships

between 145 drug compounds and 877 miRNAs through

manually curating from about 3,300 relevant literatures. In

addition, 226,109 predicted relationships between drug

resistance and miRNA were already provided in this database.

3 Predicting miRNA-disease
associations

In past biological experiments, plenty of relationships

between diseases and miRNAs have been verified, which laid

the foundation for discovering latent miRNA-disease

associations in silico. At first, both negative and positive

samples were included in the training set because the

association prediction was usually processed as a binary

classification task. Undoubtedly, the known miRNA-disease

associations constituted positive training samples; hence,

negative ones were randomly sampled from the remaining.

The remaining set may contain unknown disease miRNA. As

we all know, negative samples should only contain miRNAs and

diseases between which the relationship was actually nonexistent;

however, there are still many unknown miRNA-disease

associations that have not been detected in biological

experiments. It is most likely that the current negative

samples contained many undiscovered associations. Therefore,

to avoid bias brought by the sample, various computational

methods only learned from verified associations were

proposed to accurately predict miRNA-disease associations.

Furthermore, the miRNA-disease association prediction was

processed as a triplet classification in machine learning

approaches, which could identify the role miRNA played. The

main process for predicting miRNA disease associations based on

machine learning is presented in Figure 1.
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FIGURE 1
The processes of machine learning models for predicting miRNA-disease associations.
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3.1 Traditional machine learning models
for miRNA disease associations

As an example of using a negative training sample, a previous

study (Ji et al., 2020) learned graph representations with global

structure knowledge in a heterogeneous network consisting of

the known associations among miRNA, disease, drug, and

protein. Integrating these embeddings with miRNA sequences,

disease semantic similarities and so on, a classifier based on

Random Forest was applied to discover underlying relationships

between miRNAs and diseases.

Meanwhile, more and more approaches preferred to predict

unknown miRNA-disease associations only with known ones, so

researchers utilized verified associations, such as miRNA-disease,

miRNA-gene, and weighted gene-gene, to construct a regularized

framework for inferring the latent miRNA-disease associations

(Peng et al., 2017a). Similarly, using the identified disease-

associated miRNA information, (Luo et al., 2018) built a

semi-supervised classifier to calculate the probability of a

miRNA related to a given disease, and also utilized graph

regularization to avoid overfitting. Considering the sparsity of

known data, have also (Luo et al., 2016) proposed a transductive

learning-based collective prediction method in which the

relevance score was calculated and updated via the disease-

miRNA network.

To adequately discover disease-related candidate miRNAs, in

(Ding et al., 2018) for example, a heterogeneous disease-gene-

miRNA network consisting of three types of nodes and five types

of links was built to predict associations via a regression-based

model. For fully utilizing verified miRNA-disease associations. In

(Pan et al., 2019), the miRNA-disease associations were

synchronously predicted and updated via a multi-label, graph-

based model, which firstly introduced a set of kernel matrices and

then adaptively obtained two optimal kernel matrices.

Considering the inherent noise in current databases, a study

in (Liang et al., 2019) adaptively learned an affinity graph from

various similarity profiles and simultaneously updated the

prediction via multi-label learning. According to the latest

version of HMDD, a study in (Liang et al., 2018) obtained the

semantic similarities of disease and function similarities of

miRNA. Then, the similarity matrices and association matrix

were iteratively updated to generate the optimized association

outcome.

Matrix factorization, a method of multiplying two different

entities to generate potential features, is another essential method

for predicting miRNA disease associations. As in (Peng et al.,

2017b) for example, a matrix recovery approach was utilized to

integrate the weight matrix to recover association matrix; hence

novel latent associations were accurately inferred without the

need for negative samples. Integrated with the label propagation

algorithm, a study in (Peng et al., 2022) adopted robust

nonnegative matrix factorization to predict underlying

associations more precisely. To be specific, using the

integrated similarity information, the original adjacency

matrix was updated via matrix multiplication to reduce the

influence of negative samples. For sparse existing associations

and new diseases or miRNAs, a previous work (Xiao et al., 2018)

developed a preprocessing step that built the interaction score

profiles to facilitate prediction, and then utilized graph

regularized non-negative matrix factorization based on

integrated multisource data to discover underlying associations.

Although most methods in silico currently focus on

discovering unknown miRNA-disease associations, there are

some approaches that could identify the multiple relationship

types among various associations as the roles miRNAs played in

diseases significantly diverged. For example, the down-regulation

of mir-16 and mir-15 could induce chronic lymphocytic

leukemia in B cell (Calin et al., 2002), while the different

expression of serum miRNAs, such as mir-1307-3p, mir-1246

and so on, could assist researchers in tracing breast cancer early

(Shimomura et al., 2016). To this end, a more recent study

(Huang et al., 2021) innovatively constructed a tensor composed

of miRNA-disease-type triples, and then adopted tensor

decomposition that utilized the similarity information as

decomposition constraints to detect multi-type of miRNA-

disease associations. Another study built a novel model for

miRNA-disease-type associations by applying tensor robust

principal component analysis (Yu et al., 2021a).

3.2 Deep learning models for miRNA
disease associations

Currently, many prediction methods extracted feature

embeddings as the input of convolutional neural networks

(CNN). Xuan et al. (2018) constructed a dual convolutional

neural network, which was divided into the left and right part,

to detect underlying associations. The left CNN learned the

integrated feature embedding of original information to

produce an association score, and the right learned the feature

embedding of the network topology to generate the other score.

On this basis, a work in (Xuan et al., 2019) firstly projected nodes

of miRNAs and diseases into a low dimensional space to obtain

feature embeddings, and then utilized network representation

learning and two CNN to discover latent disease-associated

miRNAs. In (Peng et al., 2019), the low dimensional feature

embeddings were selected by an auto-encoder from a three-layer

network consisting of multisource data. Then, the association

score was calculated by a deep CNN structure, including the

fully-connected layer, max-pooling layer, and convolutional

layer.

Besides, some Graph Convolutional Network (GCN) based

end-to-end models were also implemented to capture candidate

associations. In 2020, a work (Li et al., 2020) respectively learned

underlying feature embeddings derived from the miRNA

function similarity network and the disease semantic
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similarity network with GCN encoders. Then an association

matrix completion was generated from a novel neural

inductive model that adopted learned embeddings as input.

As in (Chu et al., 2021), a miRNA-disease pair was regarded

as a node in homogeneous graphs, which were easier to learn.

Then based on graph sampling, the modified GCN algorithm was

implemented on the topology and feature graph to cluster similar

nodes. Meanwhile, some other graph neural network methods

were also employed in this regard. A graph attention network-

based method (Li et al., 2022) aggregated different neighbor

information with varying weights to obtain the non-linear

features of miRNAs and diseases. Combined with the linear

features constructed by correlation profiles, latent miRNA-

disease associations were inferred via the random forest

algorithm. In 2021, Li et al. (2021a) developed an end-to-end

framework based on a novel graph auto-encoder model to

discover unknown associations. This model aggregated nodes’

neighborhood information via a graph neural network-based

encoder, which consisted of the multi-layer perceptron and

aggregator function, to obtain low dimensional embeddings

and effectively integrate heterogeneous information.

Some methods aimed at predicting type instead of taking

association prediction as a binary task. In (Huang et al., 2021) for

example, miRNA-type- disease triples were innovatively

regarded as a tensor, and then tensor decomposition with

relation constraints was implemented to complete the type

prediction task. Similarly, a more recent work (Yu et al.,

2022) could identify dysregulation, downregulation, or

upregulation relationship between miRNA and disease because

a depth graph representation learning model was trained based

on a knowledge graph constructed by extracting disease-miRNA-

type triples from existing databases and numerous

experimental data.

To fully understand the synergistic effect of miRNA-miRNA

pairs on the pathogenesis of complicated diseases, a study (Luo

et al., 2021) proposed a new tensor decomposition model based

on a graph attention network to discover potential miRNA-

miRNA pairs related to diseases. The graph attention network

aggregated the feature embeddings from the miRNA function

similarity graph, disease semantic similarity graph, and miRNA

sequence similarity graph. With the aggregated feature

embeddings, the deep tensor factorization was implemented to

reconstruct the association tensor consisting of miRNA-miRNA-

disease triples.

4 Predicting miRNA-drug
associations

With the accumulated research on miRNA-small-molecule

interactions, computational approaches attract more and more

attention because they can efficiently promote miRNA-targeted

drug discovery and optimization when compared to

conventional routine. Varieties of computational models were

proposed to discover latent miRNA-drug candidates. Generally

speaking, they can be classified into two kinds of approaches for

predicting: the traditional machine learning method and the deep

learning method, as shown in Figure 2.

4.1 Traditional machine learning models
for miRNA drug associations

Some machine learning methods focused on constructing

novel feature engineering with varied features. A random forest

prediction model (Wang et al., 2019) adopted similarities of

miRNAs and small molecules as features to accurately predict

associations. Specifically for cancer, (Li et al., 2021b) innovatively

concatenated features extracted from small molecule structures,

miRNA sequences, and cancer symptoms to obtain a new feature

vector. Then a random forest model was utilized to predict latent

cancer-miRNA-small molecule associations. Similarly, Jamal

et al. (2012) developed a prediction model by utilizing Naïve

Bayes and Random Forest. In 2017, a work (Xie et al., 2017) was

proposed to discover the influential miRNA on the drug via the

support vector machine, in which feature vectors were drug-

miRNA pairs extracted from the related literature.

There are some methods based on random walk algorithm to

identify latent miRNA-small molecule associations. In (Liu et al.,

2020) for example, Random Walk was utilized in a triple-layer

heterogeneous network of disease-miRNA-small molecule

association after computing similarities and selecting negative

samples. Similarly, a restart algorithm-based Random Walk (Lv

et al., 2015) was implemented in a comprehensive network, in

which miRNA-miRNA associations, small molecule interactions,

and verified miRNA-small molecule targeting pairs were

integrated. Meanwhile, some other methods are based on

regression algorithm. In Chen et al. (2021) for example, a

matrix was defined to represent a heterogeneous network

consisting of small molecule similarity, miRNA similarity, and

verified miRNA-small molecule associations. Then, the model of

the Alternating Direction Method of Multipliers was designed to

minimize the nuclear norm of the matrix and obtain predicted

scores of underlying miRNA-small molecule associations.

Likewise, a work (Wang et al., 2022) developed a prediction

model based on the Ensemble of Kernel Ridge Regression. They

integrated feature dimensionality reduction with ensemble

learning to discover latent small molecule-microRNA

associations.

It can be seen in various studies that many computational

models adopted matrix factorization. In Yin et al. (2019) for

example, a sparse learning method (SLM) was proposed to

eliminate noises and improve performance. After the small

molecule-miRNA adjacency matrix was decomposed by SLM,

latent miRNA-small molecule associations would be obtained via

a heterogeneous graph that integrated the similarities of miRNAs
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and small molecules with the improved association information.

At the same time, Wang and Chen (2019) not only adopted

similarities of small molecules, miRNAs, and diseases but

also integrated with associations between miRNAs and

diseases/small molecule. Therefore, a three-layer network was

built to obtain potential representations of small molecule-

miRNA association via in-layer similarities and cross-layer

associations. Then cross-layer dependency inference on the

three-layer network was utilized to identify unknown miRNA-

small molecule associations. In addition, the model adopted

a regularized optimization to avoid overfitting. Afterward, a

study (Zhao et al., 2020) applied matrix decomposition in

integrated similarity matrixes and obtained small molecule-

miRNA pair similarity by calculating the Kronecker product.

Additionally, regularized least square method was applied to

acquire the mapping relationships between associated

probabilities and miRNA-small molecule pairs. Considering

the functional similarity of two miRNAs, clinical similarity

and chemical similarity of small molecules, a work (Luo

et al., 2020) adopted a nonnegative matrix decomposition

method for discovering the potential miRNA-small molecule

associations. Besides, combining small molecule-disease

associations with miRNA-disease associations, Shen et al.

(2020a) adopted graph regularization techniques and the

iterative approach in a heterogeneous network to obtain

the prediction scores of miRNA-small molecule pairs. In

Shen et al. (2020b), the prediction performance was improved

by a Restricted Boltzmann Machine-based joint

learning framework, which integrated miRNA sequence,

heterogeneous network knowledge, and small molecule

structure data.

4.2 Deep learning models for miRNA drug
associations

Currently, Graph Convolution Network is commonly used to

process node classification tasks in the homogeneous network. In

Huang et al. (2020) for example, a three-layer latent factor model

based on graph convolution was developed to discover unknown

miRNA-drug resistance associations. In this end-to-end learning

scheme, they could not only utilize high-dimensional attributes but

also learn graph embedding features of miRNAs/drugs. To

overcome the problem of over-smoothing in conventional graph

convolution networks, a work (Yu et al., 2021b) simplified GCN by

constructing the embedding propagation layer utilizing a weighted

sum aggregator. Then, the ideal representations were obtained by

summing over the embeddings in each layer. At last, they applied

the inner product to discover the unknown miRNA-drug

sensitivity associations. Wang et al. (2021) firstly extracted drug/

miRNA representations via a layer attention graph convolution

network in the heterogeneous network consisting of known drug

similarities, miRNA similarities, and drug-miRNA interactions.

Then they obtained the drug/miRNA embedding vectors by

concatenating their representations with drug features derived

from drug molecular graphs, and the miRNA expression

features, respectively. In addition, they utilized compressed

tensor network, tensor decomposition, and multi-layer

perceptron to extract node-pair embeddings. Eventually, the

potential relationship between miRNA and drug resistance was

predicted by the completely connected layer with concatenated

representations. Similarly focused on prediction for the

relationship of miRNA-drug resistance (Zhao et al., 2022),

constructed a graph neural network based on positional

FIGURE 2
The process of computational models for identifying miRNA-drug associations.
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encoding to extract embeddings from drug molecular graphs and

miRNA-drug heterogeneous networks. Then, these embeddings of

different layers were combined with a layer attentionmechanism to

learn powerful feature representations. Finally, the potential

miRNA-drug resistance association could be discovered via a

multi-channel neural network consisting of tensor network,

tensor decomposition, and the multi-layer perceptron.

Besides, there are some other deep learning models based on

varied neural networks algorithm. In Deepthi and Jereesh (2021),

firstly, the principal component analysis was applied to reduce

the dimensions of features extracted from the integrated

similarity pairs of drugs and miRNAs. Then, they trained a

convolutional neural network to obtain deep retrieved features

and adopted the support vector machine classifier to predict

latent association. Meanwhile, based on Long Short-Term

Memory (LSTM) (Abdelbaky et al., 2021), proposed an

encoder-decoder model that could perform on the character

level of a sequence. They utilized the LSTM Sequence Auto-

Encoders to obtain feature embeddings of miRNAs and small

molecules, and sequence-to-sequence learning with an RNN to

encode sequences. The input sequence reproduced by the

decoder was based on the outcome of the encoder.

5 Conclusion

As the miRNA-related data is explosively growing, developing

advanced computational methods for miRNA therapy is not only

an opportunity but also a challenge for medical research. Taking

advantage of the traditional machine learning method and deep

learning method, the discovery of unknown associations among

drugs, diseases, and miRNAs could be greatly anticipated.

Furthermore, the prediction results of machine learning models

could be compared to miRNA-disease/drug associations validated

in experimental methods. In this review, we collected commonly

used data sources of miRNA-disease and miRNA-drug, which laid

a solid foundation for designing feasible prediction models.

Various machine learning-based methods were classified into

two parts: predicting potential miRNA-disease association and

discovering latent miRNA-drug associations, which facilitated

exploring miRNA therapy.

Although machine-learning methods have exhibited

tremendous potential, it is still a big challenge to accelerate

development in miRNA therapy by adopting data-driven

computational approaches. This could be improved by utilizing

high-quality data resources and integrating domain knowledge

when selecting feature to build and verify models. Nevertheless,

considering the experimental data might be unavailable for some

miRNA, or only a few data points are accessible, reliablemodels are

difficult to construct. Therefore, machine learning approaches like

active learning might be a promising strategy to cope with the

limitation of available data used to construct reliable prediction

models. Meanwhile, generalizability is essential for the widespread

application of machine learning approaches, and it could be

examined via external validation or cross-validation in their

proposed model based on machine learning. Recent work

adopted anchor regression once a linear shift made training set

and test set distributions varied (Rothenhäusler et al., 2018).

Different from the “black box” design in which a specific

output conducted by a model cannot be explained, machine

learning/deep learning models with understandable results or

analytical processes are explainable artificial intelligence

(Sample, 2017). It is of great importance for domains like

miRNA therapy, in which an understandable relationship

between outcomes and features is essential. In general, machine

learning explainable tools can bemainly divided into twomethods:

1) The local model explainability method is helpful to discover

which specific features affected a specific decision; 2) The global

model explainability method is centered on the features that most

affect all decisions or the model’s results. Recently, an emerging

field as machine learning fairness has been proposed to study the

role of data biases and model biases like race, gender, disabilities

and so on, played in the prediction performance in miRNA

therapy.
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Virulence network of interacting
domains of influenza a and mouse
proteins

Teng Ann Ng, Shamima Rashid and Chee Keong Kwoh*

School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore

There exist several databases that provide virus-host protein interactions. While
most provide curated records of interacting virus-host protein pairs, information
on the strain-specific virulence factors or protein domains involved, is lacking.
Some databases offer incomplete coverage of influenza strains because of the
need to sift through vast amounts of literature (including those of major viruses
including HIV and Dengue, besides others). None have offered complete, strain
specific protein-protein interaction records for the influenza A group of viruses. In
this paper, we present a comprehensive network of predicted domain-domain
interaction(s) (DDI) between influenza A virus (IAV) and mouse host proteins, that
will allow the systematic study of disease factors by taking the virulence
information (lethal dose) into account. From a previously published dataset of
lethal dose studies of IAV infection in mice, we constructed an interacting domain
network of mouse and viral protein domains as nodes with weighted edges. The
edges were scored with the Domain Interaction Statistical Potential (DISPOT) to
indicate putative DDI. The virulence network can be easily navigated via a web
browser, with the associated virulence information (LD50 values) prominently
displayed. The network will aid influenza A disease modeling by providing
strain-specific virulence levels with interacting protein domains. It can possibly
contribute to computational methods for uncovering influenza infection
mechanisms mediated through protein domain interactions between viral and
host proteins. It is available at https://iav-ppi.onrender.com/home.

KEYWORDS

influenza a, lethal dose 50, protein, virulence, mouse model, domain-domain interaction

1 Introduction

Influenza A virus (IAV) is a single stranded, positive ribonucleic acid (RNA) virus that is
a respiratory pathogen across many species such as humans, swine, and wild waterfowl. It
consists of eight genomic segments which encode at least 11 proteins. The structure and
organization of the virus particle is shown in Figure 1, which is reproduced here from the
work of Jung and Lee (Jung and Lee, 2020).

Hemagglutinin (HA) and neuraminidase (NA) on the viral particle surface, are the
proteins responsible for mediating entry into and cleavage from the host cell, respectively.
Matrix protein 1 (M1) is a component of the viral envelop while matrix protein 2 (M2) is
found below the lipid bilayer of the viral membrane, strengthening it. Together with the
nucleoprotein (NP), they form the ribonucleoprotein complex (indicated as vRNP in
Figure 1). The final three proteins are the polymerase basic 1 frame 2 (PB1-F2), and
non-structural proteins 1 and 2 (NS1 and NS2), respectively.
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IAV can be highly pathogenic in humans and several highly
virulent strains have already caused millions of deaths worldwide in
multiple pandemic events. Estimated death tolls for the 1918
(H1N1), 1957 (H2N2) and 1968 (H3N2) pandemics are
50 million (Johnson and Mueller, 2002), 1.1 million (Viboud
et al., 2016) and 1-4 million (Rogers, 1968), respectively. Further,
IAV triggers various respiratory illnesses seasonally, making it
endemic in human populations. The yearly number of deaths
due to influenza associated respiratory illness from seasonal
influenza has been estimated to vary between nearly 300,000 to
646,000 (Iuliano et al., 2018). Since it is endemic in populations,
hosts harboring seasonal influenza strains can act as a reservoir for
reassortment events, leading to cross-infection with other
circulating pathogens such as SARS-CoV-2 to form potentially
harmful recombinant strains (Swets et al., 2022). These attributes
highlight the complexity of disease factors of respiratory pathogens
and indicate the need of wide-scale influenza studies. They also
make the continual monitoring of public health outcomes necessary.

Infectious studies of mouse models can help to elucidate host
factors responsible for virulence, since they are cost effective,
reproducible and allow mechanistic analyses that may not be
directly conducted on humans due to ethical reasons (Sarkar and
Heise, 2019). One way to measure the pathogenicity of IAV is by
obtaining the lethal dose at which 50% of the inoculated animal test
population is infected or perishes (abbreviated here as LD50)
(Eugene, 2001). By comparing outcomes of influenza infections
in different strains of mice, differences due to allelic variations in
mice strains could be possibly be established (Lu et al., 1999).

On one hand, databases such as HPIDB (Ammari et al., 2016)
and STRING Viruses (Cook et al., 2018) besides several others have
already covered the interactions between influenza A and human
proteins in an extensive manner. In comparison, the interactions in
mouse hosts are lacking. There exist very few database records of
IAV-mouse interactions (for both experimental and computational
methods).

On the other hand, it is challenging to directly study the effect of
influenza A virulence in human hosts owing to ethical
considerations. Mice have been used to infer disease pathology of
IAV in humans (Lu et al., 1999). While mice contain significant
differences in body size and distribution that affect tissue tropism in
pathogenesis (Masemann et al., 2020; Perlman, 2016), at present
they are widely accepted pre-clinical models for linking virulence
levels with IAV-host interactions (Masemann et al., 2020).
Collecting IAV-mouse protein interactions provides a practical
approach to identifying virulence factors. As an example, after
identifying influential mouse host factors from a network of
predicted interactions with IAV proteins, the corresponding set
of human homologues (target proteins) can be determined from a
combination of homology mapping, associated virulence levels and
literature evidence. In-vitro interactions found to be occurring
amongst target proteins and IAV (via biochemistry assays or cell
cultures) could assist in designing knock-out factors or drug targets
that will allow in-vivo validation of the interaction in mouse models.

Data records of mouse model infectious studies had been
previously collected in an earlier work by F.X. Ivan and C.K.
Kwoh (Ivan and Kwoh, 2019). Their study highlighted the role of
protein sites of PB2 in influenza virulence by a systematic meta-
analysis using rule-based models to predict the virulence. Therefore,
a link between macroscopic virulence labels (such as LD50

categories) and protein-protein interactions could prove
beneficial in understanding the factors contributing to IAV
virulence. Domain-domain interaction(s) DDI can be particularly
useful because a protein domain is often a discrete functional unit
that is modular, and protein-protein interactions rely on
combinations of DDI (Itzhaki et al., 2006; Alborzi et al., 2021).
Hence here, the network was constructed with domains representing
nodes. While ‘domain-domain’ interactions are by definition a
subset of ‘protein-protein’ interactions, here the quoted terms are
used interchangeably, unless specified otherwise.

FIGURE 1
IAV particle and its fully assembled constituent proteins.
Genomic RNA segments are shown in green, wrapped around
nucleoproteins. The hetero-trimeric RNA-dependent RNA
polymerase complex comprising of PB1, PB2, and PA is shown in
orange, light and dark blue circles. This figure is by Jung and Lee (Jung
and Lee, 2020).

FIGURE 2
Implementation procedure.
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To systematically identify potential interactions between IAV
and mouse host-proteins, a protein network consisting of putative
DDI between IAV and mouse proteins, scored by the Domain
Interaction Statistical Potential (DISPOT) (Narykov et al., 2019)
was developed in this work.

The protein network is presented in a clear graphical user
interface (GUI) that easily shows the LD50 values and interacting
protein domains from the C57BL/6J mouse strain as identified by
DISPOT. The virulence network of interacting protein domains will
assist studies of IAV disease modeling by providing data of putative
interacting protein domains that are associated with their LD50

values.
The rest of this manuscript is organized as follows. Section 2

details the contents and design and describes the data presented
in this database and the data curation procedure. Section 3 details
the web server implementation, describing the tools used,
graphical user interface layout and functionality. Section 4
details discussion of this data. Section 5 outlines the proposed
future work. Section 6 summarizes and concludes this paper.

2 Contents and design

Figure 2 outlines the steps taken to implement the IAV-
Mouse protein-protein interaction (PPI) database. The IAV-
Mouse PPI web server can be accessed at: https://iav-ppi.
onrender.com/home.

Table 1 provides an overview of the data collected. Five out of the
eight RNA segments of IAV genome, namely PB1, HA, NA,M1, and
NS1 were found to contain the interacting pathogen protein
domains. In summary, 31 unique pairs of DDIs were found
between seven IAV protein domains and 29mouse protein domains.

This work built on initial data records of mouse model infectious
studies collected in the previous work by F.X. Ivan andC.K. Kwoh (Ivan
and Kwoh, 2019). Their same process of assigning virulence levels was
followed here. LD50 value was the key information needed to identify
the virulence class of a specific IAV strain. Virulence was classified as
two-class (avirulent/virulent) and three-class (low/intermediate/high)
(shown in Figure 3). Essentially, the total infection records classified as
“virulent” under the two-class problem is the sum of records classified
as “intermediate” and “high” under the three-class problem. Likewise,
the total infection records classified as “avirulent” is equivalent to the
number of records classified as “low”. For the three-class virulence
classification, LD50 thresholds of 10

3.0 and 106.0 were applied (shown in
Table 2), referencing thresholds that are used by World Health
Organization (WHO), for classification of influenza virulence in
mice (EID50 infection unit) (WHO, 2003). LD50 infection units
include Plaque-forming Unit (PFU), Focus-forming Unit (FFU),
50% Egg Infective Dose (EID50), 50% Tissue Culture Infectious
Dose (TCID50) and 50% Cell Culture Infectious Dose (CCID50),
where the equality across all units was assumed.

SUPERFAMILY 2.0 sequence search (https://supfam.org/
sequence/search) (Pandurangan et al., 2019) was used to map
regions of an amino acid sequence to at least one Structural
Classification of Proteins (SCOP) superfamily using the
SUPERFAMILY hidden Markov models. SCOP is a

TABLE 1 Summary statistics of data collected.

# journal publications 57

# IAV subtypes 14

# IAV strains 109

# mouse proteins 2419

# DDIs 1936

FIGURE 3
Cross-tabulation of IAV subtypes and mouse strains, colored according to three-class virulence classification problem. ‘Others’ refers to the
aggregation of infection records from IAV subtypes—H1N2, H3N8, H5N2, H5N5, H5N6, H5N8, H7N2, H7N3, H7N7, and H7N9.

TABLE 2 Three-class virulence classification.

Low Intermediate High

LD50 > 106.0 LD50 ≤ 106.0 LD50 ≤ 103.0

and LD50 > 103.0
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representation of structure-based hierarchical classification of
relationships between protein domains, with “family” being the
first level and “superfamily” being the second level. Protein
domains from the same SCOP family are strongly related and
frequently share the same function (Andreeva et al., 2004).

DISPOT (http://dispot.korkinlab.org/home/pairs) (Narykov
et al., 2019) served as the web tool to determine presence of
DDIs between pairs of IAV and mouse SCOP superfamily
domains. DISPOT uses exclusively DDIs from DOMMINO
(Kuang et al., 2012), an in-depth database of structurally resolved
macromolecular interactions, where data about DDIs is the amplest,
as its source of data. For a given domain pair, DISPOT returns a
statistical potential, denoted as the probability Pij. Statistical
potentials take values across the entire scale of real numbers.
Negative and positive values can be respectively interpreted as
having more or less than average number of DDIs in the
DOMMINO database. Neutral values are corresponding to the
number of DDIs close to the average number. “No information”
will be returned instead of a numeric value if the DOMMINO
database does not have an entry for the particular domain pair.

The DISPOT calculation of statistical potential formula is given
in the equation as follows (Narykov et al., 2019):

Pij � 1
Z2

ln
Mpij

Mmean

whereZ2 � ∑∑ ln
Mpkl

Mmean

Z2 is the natural logarithm of observed frequencies of interactions
between domains in the DOMMINO database. Mmean is the average
number of interactions for a pair of domain families, calculated from
the non-redundant DOMMINO dataset. Non-redundant refers to
two corresponding pairs of domains that do not share 95% or more
sequence identity (Narykov et al., 2019).

2.1 Dataset

All 57 journal publications reviewed in this work were retrieved
fromNational Centre for Biotechnology (NCBI) PubMed (Lindberg,
2000), where LD50 values were explicitly stated in them.
55 publications referenced the supplementary information given
in F.X. Ivan and C.K. Kwoh’s publication (“Additional file 5:
Supplementary Table S1”) (Ivan and Kwoh, 2019), where LD50

values were stated as “values given”. LD50 values reflected in their
dataset were checked against the original publications and some
missing records were added. Additionally, seven new records from
two other papers (Shi et al., 2017) and (Shi et al., 2018) were
documented.

2.1.1 Data cleaning
The preliminary dataset presented in this work (https://github.

com/tengann/IAV-Host-PPI-Database/blob/main/RawData_2022.
xlsm) holds 488 infection records involving wild-type, laboratory,
mouse-adapted, recombinant or mutant IAV strains. IAV genomes
of wild-type strains are in their natural and non-mutated form while
laboratory strains were prepared by means of reverse genetics.
Mouse-adapted strains were derived from serial lung-to-lung
passages of virus in mice. Genetic amino acid sequences of

mutant virus were changed through point mutations via single
amino acid substitutions. Recombinant strains were formed by
the combination of protein segments from at least two different
IAV strains.

The initial dataset was manually curated to only include records
involving wild-type or laboratory IAV strains, thereby reducing the
number of infections to 190 (Supplementary Figure S1).
Subsequently, infection records comprising wild-type or
laboratory strains where their Taxonomy identification (ID)
number (otherwise known as accession number) (Schoch et al.,
2020) could not be found were dropped, further reducing the
records to 166 (shown in Figure 4). In these cases, it was not
possible to retrieve the complete protein sequences of IAV gene
segments for SCOP domain assignment via SUPERFAMILY 2.0.

Lastly, multiple records concerning the same combination of
IAV strain and mouse genome were condensed into a single record,
adopting the approach from F.X. Ivan and C.K. Kwoh’s publication
(Ivan and Kwoh, 2019). From this process, the tally of infection
records was reduced to 139 (shown in Figure 4). Whenever possible,
the majority class of the three-class virulence assignment scheme
was selected. Otherwise, the class that is more or most virulent was
considered. Next, if only the lower bound of the LD50 value was
presented, the record with the highest lower bound was selected. For
cases where the lowest exact or upper bound of LD50 value was
provided, the record was selected. The final cleaned dataset
containing 109 unique IAV strains was used to derive the
network of interacting protein domains.

2.2 Data annotation

Firstly, to distinguish between all journal publications
referenced, the NCBI PubMed (https://pubmed.ncbi.nlm.nih.gov/)
(Lindberg, 2000) ID number uniquely assigned to each publication
record was noted. Information collected in F.X. Ivan and C.K.
Kwoh’s dataset consists of IAV strain, mouse strain, LD50 value
and infection unit. Then, in this paper, to provide a deeper insight
into how the LD50 value was determined in each separate
experiment, additional evidence, namely, the experimental
method, weight loss and/or survival remarks and LD50

calculation method were documented. Also, for each IAV strain,
the Taxonomy ID number, a unique ten-digit code that designates
classification and specialization was retrieved fromNCBI Taxonomy
database (https://www.ncbi.nlm.nih.gov/ taxonomy) (Schoch et al.,
2020).

Amino acid sequences of both IAV and mouse proteins were
retrieved from the UniProt (release 2021_03) protein knowledgebase
(UniProtKB) (https://www.uniprot.org/) (Bairoch et al., 2005). IAV
protein sequences were retrieved using strain names and/or matching
Taxonomy ID number where available. Mouse protein sequences were
retrieved using the Proteome ID number, UP000000589. This reference
proteome was derived from the genome sequence of mouse strain
C57BL/6J, with Taxonomy IDnumber, 10090. For this work, among 55,
315 protein records that were available, 17, 120 Swiss-Prot gold star
reviewed entries (https://www.uniprot.org/uniprotkb?query=
UP000000589) were retrieved. Swiss-Prot reviewed refers to records
with information fully and manually extracted from literature or
curator-evaluated computational analysis (Bairoch and Apweiler,
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1997). It strives to provide high-quality annotations with a minimal
level of redundancy and high level of integration with other databases.

As an average protein consists of two or more domains, domain
start and end residue numbers, corresponding to regions of protein
sequences matching each assigned SCOP domain (by
SUPERFAMILY 2.0) were independently noted for every protein
sequence retrieved from UniProtKB. Since each domain has its

distinct structure and biological function, only a subset of domains
constituting each protein are involved in the interaction between a
pair of proteins. Thus, this enhances the complexity of host-
pathogen protein interaction analysis (Narykov et al., 2019).

Overall, IAV strains in the dataset were found to comprise
proteins domains belonging to 13 SCOP superfamilies (Table 3).
Then, these domains were paired up individually with 1102 unique

FIGURE 4
Proportion of all wild-type/laboratory IAV strains, separated into with and without taxonomy ID numbers, against remaining records (green bars) in
the cleaned dataset. Infection records involving wild-type IAV where taxonomy ID number could not be found (orange bars) were omitted, reducing the
number of infection records to 166 (blue bars). “Cleaned” refers to the final dataset of 139 infection records (green bars) available in IAV-Mouse PPI
database, where each record corresponds to a unique combination of IAV and mouse strain.

TABLE 3 IAV Domains identified by SCOP Superfamily. Red indicates domains identified as interacting with mouse proteins, while ‘-’ indicates no identified
domains.

IAV segment SCOP superfamily name/Accession number

PB2 PB2 C-terminal domain-like/160453

PB1 DNA/RNA polymerases/56672

PB1-F2 -

HA Viral protein domain/49818

Influenza hemagglutinin (stalk)/58064

NP Flu NP-like/161003

NA Sialidases/50939

M1 Influenza virus matrix protein M1/48145

Alpha-catenin/vinculin-like/47220

Methyl-accepting chemotaxis protein (MCP) signaling domain/58104

M2 -

NS1 NS1 effector domain-like/143021

S15/NS1 RNA-binding domain/47060

NS2 Nonstructural protein NS2, NEP, M1-binding domain/101156

Spectrin repeat/46966
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domains found among the mouse protein sequences, forming a total
of 14, 326 IAV-mouse protein domain pairs. Subsequently, domain
pairs were fed as input into DISPOT, for calculation of statistical
potential. Finally, seven domains in IAV proteins (indicated in red in
Table 3) and 29 domains in mouse proteins were found to be
involved in the host-pathogen PPI. Out of the 17, 120 mouse protein
sequences retrieved, 2419 unique proteins were found to contain to
at least one of the 29 interacting SCOP domains. In addition, the
mouse protein localization in vital organs (lungs, brain, liver, kidney,
spleen and heart) or blood was noted, whenever available. (available
in Supplementary Figure S2).

3 Web server implementation

IAV-Mouse PPI web server GUI has a comprehensible interface,
made up of two pages, with various features, including browsing via
subtype and strain to view information collected from literature
searches, an interactive network graph with accompanying
information on node and edge attributes as well as amino acid

sequences extracted from UniProt. Figure 5 illustrates navigation
and layout of the web server’s GUI.

3.1 Tools

Firstly, Microsoft Excel 2016 was used to store and organize
data collected from literature. Secondly, the web interface was
developed on the code editor Visual Studio Code V1.71.2, with
Python V3.7.4 as the programming language. Python libraries
used were Pandas V1.3.5, for transforming comma-separated
values (csv) from Excel files to dataframes. Dash V2.3.1 was
the framework for designing the application’s functionalities,
described as follows: Dash bootstrap components V0.3.0 for
building the application’s layout, graph visualization
component Dash Cytoscape V0.3.0 for constructing the
interactive network graph. Beautiful Soup V4.11.1 was the
HTML parser used for pulling protein sequences from the
UniProt database. Lastly, cloud hosting application, Render
(https://dashboard. render.com/) web service with Python web

FIGURE 5
(A) GUI functionality navigation. (B) Screenshot of GUI layout.
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server gateway interface HTTP server, Gunicorn V20.1.0 was
utilized to build and run the web interface entirely in the cloud.

3.2 Graphical user interface (GUI)

3.2.1 Home page
The home page features a dependent dropdown component to

firstly allow the user to search for a specific IAV subtype and
subsequently, browse and select the pathogen(s) belonging to the
selected subtype group.

3.2.2 Main page
The main page features three main sections—header, body and

footer (shown in Figure 5B).

3.2.2.1 Header
The header section consists of two components—pathogen

header text component and infection records information table.

3.2.2.1.1 Pathogen header. This text component displays the
IAV subtype, pathogen name and Taxonomy ID, based on selections
made by the user in the home page.

3.2.2.1.2 Infection records information. This section presents
infection records information collected directly from literature and
additional information collected from web tools, NCBI Taxonomy
and UniProt databases in the form of a table. Information is filtered
to present only those relevant to the user’s selections in the
home page.

3.2.2.2 Body
The body section consists of two panels, where the left panel

displays the network graph and edge properties. The right panel is
divided into two subsections and displays the virus and mouse node
properties, respectively.

3.2.2.2.1 Network graph. The network graph was designed such
that the user can clearly differentiate between IAV and mouse nodes
by colors, where pink was assigned to IAV nodes and blue to mouse
nodes. User can differentiate interaction statistical potentials by edge
weights, where a thicker edge line represents a higher possibility of
interaction. Also, the edge color will change to blue upon clicking, to
highlight the edge selection.

3.2.2.2.2 Node and edge properties. Node properties include
either the IAV protein segment or name of mouse protein, UniProt
ID, SCOP superfamily ID, superfamily name and SCOP start/end
residue(s). Edge properties comprise IAV and mouse SCOP
superfamily ID and name with the matching DISPOT statistical
potential score. All IAV node properties will be populated upon
clicking of any pink IAV node while only the mouse SCOP
superfamily ID field will be populated upon clicking of any blue
mouse node in the network graph. Similarly, the former, together
with its respective edge property will be presented upon click on any
edge. To display all mouse node properties, a mouse protein first
needs to be selected from the “Browse Proteins” dropdown under
the mouse node properties subsection.

3.2.2.3 Footer
The footer provides the user with the following supplementary

information—protein sequence, non-interacting viral segments and
abbreviations.

3.2.2.3.1 Protein sequences. Web scraping was applied to
extract amino acid sequences of IAV and mouse proteins from
the UniProt database.

3.2.2.3.2 Non-interacting viral segments. Non-interacting IAV
protein segments consist of the following cases: 1) The UniProt ID
could not be found. Therefore, the protein sequence for input to
SUPERFAMILY 2.0 is unknown and no domain information could
be retrieved. In this case, the UniProt ID field was indicated with
“Not Found” and remaining information was labelled as “N/A”. 2)
Some protein sequences retrieved were not mapped to any SCOP
superfamily based on the SUPERFAMILY 2.0 database. As such,
there was no protein domain information for input to DISPOT. 3)
IAV domain information was available but the DOMMINO
database did not have any entry between the IAV domain and all
of 17, 120 retrieved mouse proteins, hence no interaction
information was returned by DISPOT.

3.2.2.3.2 Abbreviations. This section conveys extra information
to the user; specifically, the definitions and expansions of
abbreviations used as well as notes targeted to help the user
better comprehend the network graph.

4 Discussion

This section lists domain pairs identified with high scoring
interaction potentials. In section 4.1 the interacting domain pairs
are verified against actual protein-protein interactions identified in
biochemistry or proteomics literature. It is organized as a series of
discussions on the functional role of interacting domains pairs, per
paragraph.

4.1 Interacting protein domains

According to DISPOT scores obtained, the top 10 domain pairs
with strongest statistical interaction potentials are as listed in
Table 4.

Of 109 unique IAV strains presented in this database, the PB1 gene
segment of three strains (Table 5) were assigned the DNA/RNA
polymerases domain. However, despite the strong interactions, it
was not possible to ascertain if the presence of the DNA/RNA
polymerases domain has an impact on the pathogenicity, due to
variation in virulence levels across the different IAV strains.

The M1 gene segment of eight IAV strains were assigned a
Methyl-accepting chemotaxis protein (MCP) signaling domain
instead of alpha-catenin/vinculin-like. No interaction was found
between the MCP signaling domain with all domains present in
mouse proteins. Comparing results from experiments carried out in
H3N2 IAV strains (Tables 6, 7), especially on mice strains BALB/c
and DBA/2, it is evident that presence of the alpha-catenin/vinculin-
like domain is a virulence factor responsible for IAV infection.

Frontiers in Bioinformatics frontiersin.org07

Ng et al. 10.3389/fbinf.2023.1123993

114

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1123993


Alpha-catenins are members of the vinculin family of proteins.
Vinculin is an actin-binding protein. Protease treatment revealed
that actin present in the interior of influenza virions presumably
participates in moving viral components to the assembly site and
cytoskeletal reorganization that occurs during bud formation (Peng
et al., 2012). Actin is a family of globular multi-functional proteins
that form microfilaments in the cytoskeleton. The host cytoskeletal
network takes part in transport of viral components in the cell,
predominantly during the stages of virus entry and exit (Shaw et al.,
2008).

Pleckstrin homology (PH) domain-like is a short peptide
module often found in cytoskeletal proteins (Yao et al., 1999).
Although cytoskeletal elements are known to be associated with
M1, the underlying mechanisms are not clear (Zhao et al., 2017).
Ezrin, [EZRI_MOUSE (UniProt accession number: P26040)] has a
PH-like domain. Based on meta-analysis of IAV interactome studies
on the M1 gene segment conducted by (Chua et al., 2022), Ezrin was
discovered to be a common interactor and is a positive regulator of
virus replication.

Information fromUniProtKB indicates that majority of proteins
that contain a nucleotidylyl transferase domain possess the tRNA
ligase enzyme, otherwise known as aminoacyl-tRNA synthetase
(ARSs). ARSs play a crucial role in protein synthesis by attaching
amino acids to their cognate transfer RNAs (tRNAs) (Nie et al.,
2019). Specifically, Cysteine-tRNA ligase [SYCC_MOUSE (UniProt
accession number: Q9ER72)], an interactor of NS1, catalyzes the
ATP-dependent ligation of cysteine to tRNA (Cys) and plays a role

in translation (de Chassey et al., 2013). Furthermore, ARSs plays a
vital role in the development of immune cells because of their
involvement in maturation, transcription, activation, and
recruitment of immune cells. More significantly, ARSs regulate
various biological processes and act as signaling molecules in
infectious disease (Nie et al., 2019), which supports the high
DISPOT score (≈−4.302) predicted for the S15/NS1 RNA-
binding domain in NS1 segments.

Ubiquitin-40S ribosomal protein S27a, [RS27A_MOUSE
(UniProt accession number: P62983)], is a protein with the Zn-
binding ribosomal protein domain. It is an NS1-interacting host
protein node, classified as belonging to the apoptosis pathway
(Thulasi Raman and Zhou, 2016). Although not required for
ribosome function, it plays an important role in the life cycle of
IAV through regulating viral nucleic acid replication and gene
transcription. When interrupted in host cells, the replication and
infectivity of IAV is stopped (Li, 2019).

CCCH zinc finger present in mouse proteins is the sole domain that
interacts with NS1 effector domain-like instead of the S15/NS1 RNA-
binding domain in the NS1 segment of IAV. This domain pair has a
DISPOT statistical potential score of -2.916 (rounded to 3 d.p.). Mouse
protein, cleavage and polyadenylation specificity factor subunit 4 (CPSF4)
[CPSF4_MOUSE (UniProt accession number: Q8BQZ5)] contains the
CCCH zinc finger domain. The interaction between NS1 and
CPSF4 controls the alternative splicing of tumor protein p53 (TP53)
transcripts, and alters the expression of TP53 isoforms in parallel. As a
result, cellular innate response, particularly via type I interferon secretion
is regulated, leading to efficient viral replication (Dubois et al., 2019).

The Immunoglobulin (Ig) domain, otherwise known as
antibodies is the sole SCOP protein domain that interacts with
three IAV domains, namely DNA/RNA polymerases, Viral protein
domain and Sialidases in the PB1, HA, and NA segments
respectively. Immunoglobulin is the most abundant domain
found among the 2419 unique mouse proteins containing
interacting SCOP domains (Supplementary Figure S2). During
natural infection with IAVs, immune response against both HA
and NA will be evoked (Creytens et al., 2021). IgM response is
dominant in primary infection, while IgG response is dominant in

TABLE 4 Top 10 Interactions according to statistical potentials returned by DISPOT. A more negative DISPOT score indicates a higher possibility of interaction.

IAV segment IAV SCOP domain Mouse SCOP domain DISPOT score

NS1 S15/NS1 RNA-binding
Nucleotidylyl transferase -4.301855801

L30e-like

PB1 DNA/RNA polymerases

DNA clamp

5′ to 3′ exonuclease, C-terminal subdomain

PIN domain-like

N-acetylmuramoyl-L-alanine amidase-like

NS1 S15/NS1 RNA-binding
Zn-binding ribosomal proteins −3.608708621

Ribosomal protein S6

M1 Alpha-catenin/vinculin-like
PH domain-like

I/LWEQ domain

TABLE 5 IAV strains with DNA/RNA polymerases domain assigned to PB1 gene
segment.

IAV strain Subtype Three-class virulence level

A/PuertoRico/8/1934 H1N1
High (BALB/c, DBA/2)

Intermediate (C57BL/6J)

rA/X-31 H3N2 Low (BALB/c)

A/HongKong/97/98 H5N1 Low (BALB/c)
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secondary infection, for Ig secretion. IgA present in nasal secretions
can neutralize HA and NA of IAVs (Chen et al., 2018).

4.2 Non-interacting protein domains

The non-interacting influenza hemagglutinin (stalk) SCOP
domain present in the HA is an example that not all domains
constituting a protein are involved in interaction between a pair of
proteins. The stalk evolves slower than the receptor binding head and
it is suggested that it has to remain structurally conserved owing to its
role in membrane fusion (Kirkpatrick et al., 2018). Studies have also
suggested that the stalk domain is not under immune pressure (Wu
andWilson, 2020; Petrova and Russell, 2018). Additionally, mutations
in the stalk domain do not drastically impact virus binding or aid in
avoiding neutralizing antibody responses from the host (Kirkpatrick
et al., 2018). Therefore a potential “true negative” interaction is also
identified in the protein domain network, in line with experimental
findings.

4.3 Limitations

Generally, DISPOT works as a tool to streamline the PPI
prediction problem through providing insight on the possibility

of specific DDIs in a given physical PPI. However, it is not a
classification method and statistical potentials returned are useful
for ranking DDIs but do not directly translate to the probability
score. DISPOT which solely uses information about interactions
between protein domain should not be used as a standalone PPI
prediction tool to identify virulence factors responsible for IAV
infections (Narykov et al., 2019). Based on results of this work, IAV
genomes across different strains comprise highly similar domains
due to their similar structure (i.e., eight segments, encoding at least
11 proteins) and biological function. Furthermore, interactions that
involve protein structures are facilitated not only by the protein
domains, but also by various non-structured regions, such as
interdomain linkers, N and C terminal structures or sequences,
protein peptides (Kuang et al., 2012). Therefore, utilizing DISPOT
exclusively may produce high number of false negative or false
positive PPI predictions.

Mitochondria play an imperative role in antiviral innate
immune response through the mitochondiral antiviral-
signaling protein (MAVS) [MAVS_MOUSE (UniProt accession
number: Q8VCF0)] protein, a component of the retinoic acid-
inducible gene I (RIG-I) antiviral pathway. This pathway along
with multiple others, is essential for combating and resolving
viral infection, repair of damaged tissues, and generating
adaptive immune response. It has been revealed that PB1-F2
inhibits antiviral cytokines and enhances expression of
inflammatory cytokines through direct interaction with MAVS
and other components of the RIG-I/MAVS system (Kamal et al.,
2017). However, as protein sequences of both PB1-F2 and MAVS
were not assigned any SCOP domain by SUPERFAMILY 2.0, it
was not possible to verify this interaction via DISPOT.

A homeodomain-like domain was identified by DISPOT to be
interacting with the viral protein domain present in the HA gene
segment of IAV, with a statistical potential score of −3.203
(rounded to 3 d.p.). However a study conducted by (Farooq
et al., 2020), which integrates both IAV-Mouse PPIs detected
using either small-scale or large-scale researches carried out
experimentally or computationally found no evidence for an
interaction with HA. In (Farooq et al., 2020), homeobox
protein MOX-2 (MEOX2) [MEOX2_MOUSE, (UniProt
accession number: P32443)], containing the homeodomain-like

TABLE 6 IAV strains with a Methyl-accepting chemotaxis protein (MCP) signaling domain assigned to M1 gene segment instead of alpha-catenin/vinculin-like.

IAV strain Subtype Three-class virulence level

A/Aichi/2/68

H3N2

Intermediate (BALB/c)

A/Brisbane/10/2007 Low (C75BL/6, DBA/2)

A/Memphis/8/1988 Low (BALB/c)

A/Panama/2007/1999 Low (C57BL/6, DBA/2)

A/Wisconsin/67/2005 Low (C57BL/6, DBA/2)

rA/X-31 Low (BALB/c)

A/duck/Guangxi/53/2002 H5N1 Low (BALB/c)

A/chicken/Shandong/lx1023/2007 H9N2 Low (BALB/c)

TABLE 7 H3N2 strains with alpha-catenin/vinculin-like domain assigned to
M1 gene segment.

IAV strain Three-class virulence level

A/Hong Kong/1/1968 Low (C57BL/6, DBA/2)

A/Philippines/2/1982 High (BALB/c)

A/swine/Spain/54008/2004
Low (C57BL/6)

Intermediate (DBA/2)

A/swine/Texas/4199-2/1998
Low (C57BL/6)

Intermediate (DBA/2)

A/Victoria/3/1975 Intermediate (BALB/c)
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domain, was identified to be interacting with IAV gene segments
PB1, PA, NA, and M2 but not HA. By comparison, for DISPOT
no interaction was detected between the homeodomain-like
domain and segments PB1 and NA. Likewise, as protein
sequences of segments PA and M2 were not assigned any
SCOP domain by SUPERFAMILY 2.0, DISPOT could not be
used to ascertain these interactions. Further, the cellular
localisation for proteins with homeodomain-like domains was
found to be in the nucleus according to UniProt, which indicates
its interaction with HA would be unlikely, given that HA,
mediates cell-surface recognition and viral entry.

Additionally, the reason for virulence levels to differ across
mouse strains infected with the same IAV strain has not been
uncovered as protein sequences of mouse strains retrieved from
UniProt were derived from referencing the C57BL/6J mouse strain
only. This limitation is because currently whole proteome sequences
of other mouse strains (i.e., BALB/c, DBA/2 and FVB/J) are not
available in any public database. Translation of strain specific
genomic sequences to whole proteomes is a challenging task
needing extensive experimental effort. In this work, obtaining
these proteomes by means of experimental protein sequencing
was not possible as the necessary materials and labor were not
available.

5 Future work

To bridge the gaps in this work, sequence-based PPI
prediction methods can be employed to substantiate DDIs
identified by DISPOT. An example is the Human-Virus
Protein-Protein Interactions (HVPPI) web server, developed
by X.Yang and colleagues (Yang et al., 2020a). HVPPI applied
an unsupervised sequence embedding technique (doc2vec) to
represent protein sequences as low-dimensional rich feature
vectors. Then, a random forest classifier was trained using a
training dataset that covers known PPIs between human and all
viruses to predict human-virus PPIs. Lastly, the HVPPI web
server automatically calculates the interaction probability of a
query protein pair. The data to be used as input to HVPPI can be
constructed as follows: Firstly, human protein sequences can be
obtained using mouse and human homologs. Next, all protein
sequences with SCOP domain(s) assigned to them can be
trimmed, following the collected start and end residue
numbers. Subsequently, trimmed protein sequences can be
paired corresponding to DDIs recognized by DISPOT.
Interaction probabilities provided as predicted outputs by
HVPPI for each IAV-human protein pair can then be used to
detect false positives. For protein sequences not assigned to any
SCOP domain, complete protein sequences can be used, which
will in turn aid with the detection of false negatives.

As an extension of this work from the raw dataset, instead of
ignoring non-standard strains, the protein sequences of
recombinant or mutant IAV strains can be reproduced via
manually changing the protein sequences of wild-type or
laboratory IAV strains that are available in UniProt. This
enriches the dataset further.

The DISPOT statistical potentials, HVPPI interaction
probabilities and LD50 values can be incorporated to represent

the PPI network as a weighted undirected graph. Later, graph
embedding methods can be applied to this weighted graph to
learn low-dimensional node representations (Yue et al., 2020).
Structural information of PPI, such as the degree, position and
neighbouring nodes in a graph has been recognized to be helpful in
PPI prediction (Yang et al., 2020b).

6 Conclusion

As IAV is a significant danger to global human health and life,
it is critical to have deeper, accurate as well as reliable insights
and knowledge on the virulence factors responsible for IAV
infections to counteract potential outbreaks (Ivan and Kwoh,
2019). This work built upon a previously curated dataset of lethal
dose studies of IAV infection in mice. Thereafter, superfamily
domains involved in DDIs between IAV and mice were
discovered, and ranked according to statistical interaction
potentials calculated by DISPOT. A one-stop web server
integrating information collated from literature and various
databases, namely, NCBI Taxonomy, UniProt and
SUPERFAMILY 2.0 with the DDI network was constructed.
Furthermore, the web server is scalable and can seamlessly
accommodate addition of new functions and data when future
research is carried out.
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