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Single-cell omics is a progressing frontier that stems from the sequencing of the 
human genome and the development of omics technologies, particularly genomics, 
transcriptomics, epigenomics and proteomics, but the sensitivity is now improved 
to single-cell level. The new generation of methodologies, especially the next 
generation sequencing (NGS) technology, plays a leading role in genomics related 
fields; however, the conventional techniques of omics require number of cells to 
be large, usually on the order of millions of cells, which is hardly accessible in some 
cases. More importantly, harnessing the power of omics technologies and applying 
those at the single-cell level are crucial since every cell is specific and unique, and 
almost every cell population in every systems, derived in either vivo or in vitro, 
is heterogeneous. Deciphering the heterogeneity of the cell population hence 
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becomes critical for recognizing the mechanism and significance of the system. 
However, without an extensive examination of individual cells, a massive analysis 
of cell population would only give an average output of the cells, but neglect the 
differences among cells. 

Single-cell omics seeks to study a number of individual cells in parallel for their 
different dimensions of molecular profile on genome-wide scale, providing 
unprecedented resolution for the interpretation of both the structure and function 
of an organ, tissue or other system, as well as the interaction (and communication) 
and dynamics of single cells or subpopulations of cells and their lineages. Importantly 
single-cell omics enables the identification of a minor subpopulation of cells that 
may play a critical role in biological process over a dominant subpolulation such 
as a cancer and a developing organ. It provides an ultra-sensitive tool for us to 
clarify specific molecular mechanisms and pathways and reveal the nature of cell 
heterogeneity. Besides, it also empowers the clinical investigation of patients when 
facing a very low quantity of cell available for analysis, such as noninvasive cancer 
screening with circulating tumor cells (CTC), noninvasive prenatal diagnostics (NIPD) 
and preimplantation genetic test (PGT) for in vitro fertilization. Single-cell omics 
greatly promotes the understanding of life at a more fundamental level, bring vast 
applications in medicine. Accordingly, single-cell omics is also called as single-cell 
analysis or single-cell biology.

Within only a couple of years, single-cell omics, especially transcriptomic sequencing 
(scRNA-seq), whole genome and exome sequencing (scWGS, scWES), has become 
robust and broadly accessible. Besides the existing technologies, recently, 
multiplexing barcode design and combinatorial indexing technology, in combination 
with microfluidic platform exampled by Drop-seq, or even being independent of 
microfluidic platform but using a regular PCR-plate, enable us a greater capacity of 
single cell analysis, switching from one single cell to thousands of single cells in a 
single test. The unique molecular identifiers (UMIs) allow the amplification bias among 
the original molecules to be corrected faithfully, resulting in a reliable quantitative 
measurement of omics in single cells. Of late, a variety of single-cell epigenomics 
analyses are becoming sophisticated, particularly single cell chromatin accessibility 
(scATAC-seq) and CpG methylation profiling (scBS-seq, scRRBS-seq). High resolution 
single molecular Fluorescence in situ hybridization (smFISH) and its revolutionary 
versions (ex. seqFISH, MERFISH, and so on), in addition to the spatial transcriptome 
sequencing, make the native relationship of the individual cells of a tissue to be in 
3D or 4D format visually and quantitatively clarified. On the other hand, CRISPR/cas9 
editing-based in vivo lineage tracing methods enable dynamic profile of a whole 
developmental process to be accurately displayed. Multi-omics analysis facilitates 
the study of multi-dimensional regulation and relationship of different elements 
of the central dogma in a single cell, as well as permitting a clear dissection of the 
complicated omics heterogeneity of a system. Last but not the least, the technology
and biological noise, sequence dropout, and batch effect bring a huge challenge to 
the bioinformatics of single cell omics. While significant progress in the data analysis 
has been made since then, revolutionary theory and algorithm logics for single cell 
omics are expected. Indeed, single-cell analysis exert considerable impacts on the 
fields of biological studies, particularly cancers, neuron and neural system, stem cells, 
embryo development and immune system; other than that, it also tremendously 
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motivates pharmaceutic RD, clinical diagnosis and monitoring, as well as precision 
medicine.

This book hereby summarizes the recent developments and general considerations 
of single-cell analysis, with a detailed presentation on selected technologies and 
applications. Starting with the experimental design on single-cell omics, the book then 
emphasizes the consideration on heterogeneity of cancer and other systems. It also 
gives an introduction of the basic methods and key facts for bioinformatics analysis. 
Secondary, this book provides a summary of two types of popular technologies, 
the fundamental tools on single-cell isolation, and the developments of single cell 
multi-omics, followed by descriptions of FISH technologies, though other popular 
technologies are not covered here due to the fact that they are intensively described 
here and there recently. Finally, the book illustrates an elastomer-based integrated 
fluidic circuit that allows a connection between single cell functional studies 
combining stimulation, response, imaging and measurement, and corresponding 
single cell sequencing. This is a model system for single cell functional genomics. 
In addition, it reports a pipeline for single-cell proteomics with an analysis of the 
early development of Xenopus embryo, a single-cell qRT-PCR application that 
defined the subpopulations related to cell cycling, and a new method for synergistic 
assembly of single cell genome with sequencing of amplification product by phi29 
DNA polymerase. Due to the tremendous progresses of single-cell omics in recent 
years, the topics covered here are incomplete, but each individual topic is excellently 
addressed, significantly interesting and beneficial to scientists working in or affiliated 
with this field.
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Experimental Considerations for
Single-Cell RNA Sequencing
Approaches
Quy H. Nguyen1, Nicholas Pervolarakis2, Kevin Nee1 and Kai Kessenbrock1*

1 Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States, 2 Center for Complex
Biological Systems, University of California, Irvine, Irvine, CA, United States

Single-cell transcriptomic technologies have emerged as powerful tools to explore
cellular heterogeneity at the resolution of individual cells. Previous scientific knowledge
in cell biology is largely limited to data generated by bulk profiling methods, which only
provide averaged read-outs that generally mask cellular heterogeneity. This averaged
approach is particularly problematic when the biological effect of interest is limited to
only a subpopulation of cells such as stem/progenitor cells within a given tissue, or
immune cell subsets infiltrating a tumor. Great advances in single-cell RNA sequencing
(scRNAseq) enabled scientists to overcome this limitation and allow for in depth
interrogation of previously unexplored rare cell types. Due to the high sensitivity of
scRNAseq, adequate attention must be put into experimental setup and execution.
Careful handling and processing of cells for scRNAseq is critical to preserve the
native expression profile that will ensure meaningful analysis and conclusions. Here,
we delineate the individual steps of a typical single-cell analysis workflow from tissue
procurement, cell preparation, to platform selection and data analysis, and we discuss
critical challenges in each of these steps, which will serve as a helpful guide to navigate
the complex field of single-cell sequencing.

Keywords: single-cell genomics, single-cell analysis, cell isolation, computational biology, cellular heterogeneity

INTRODUCTION

Elucidating cellular heterogeneity represents a major scientific challenge in many areas of
biology and biomedical research including developmental and stem cell biology, immunology,
neurobiology, and cancer research (Wagner et al., 2016). Recent convergence of next generation
sequencing (NGS) and bioengineering approaches to manipulate individual cells has led to
unbiased single-cell DNA (Navin et al., 2011), RNA (Pollen et al., 2014; Treutlein et al., 2014; Tanay
and Regev, 2017), and ATAC (Buenrostro et al., 2015) sequencing. These technological advances
are redefining our understanding of how biological systems function and have formed the basis
for large-scale, international collaborations such as the Human Cell Atlas project (Rozenblatt-
Rosen et al., 2017). In this spirit, a recent endeavor using microwell-based single-cell RNAseq
(scRNAseq) created the first cell atlas to map out most tissues of the mouse (Han et al., 2018).
Moreover, scRNAseq has provided critical new insights into key developmental processes such as
the earliest steps of cardiovascular lineage segregation in mice (Lescroart et al., 2018), and our
recent work utilized scRNAseq to reveal the spectrum of cellular heterogeneity within the human
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breast epithelium identifying three major cell types each
harboring multiple distinct cell states (Nguyen et al., 2018).

Due to the high sensitivity of these methods, in particular
scRNAseq, it can be difficult to choose an adequate approach
to minimize batch effects and unwanted technical variation
that may overshadow true biological insights. Here, we provide
helpful insights and delineate a step-wise approach for designing
single-cell analysis workflows (Figure 1).

CELL DISSOCIATION AND SINGLE-CELL
PREPARATION

The process of single-cell preparation is arguably the greatest
source of unwanted technical variation and batch effects in
any single-cell study (Tung et al., 2017). Different tissues can
vary significantly in extracellular matrix (ECM) composition,
cellularity, and stiffness, and therefore dissociation protocols
must be optimized for the specific tissue type of interest.
Conventional protocols for single-cell preparation typically
involve the following steps: (1) tissue dissection, (2) mechanical
mincing, (3) enzymatic/proteolytic ECM breakdown (e.g.,
dispase, collagenase, trypsin) often accompanied by mechanical
agitation, and (4) optional enrichment for cell types of interest
by flow cytometry, bead-based immune-selection, differential
centrifugation, or sedimentation. Each step can affect the
cells’ expression signatures, and should therefore be carefully
optimized to introduce the least artifact. An optimal tissue
dissociation protocol will yield as many viable cells as possible
in the shortest possible duration without preferentially depleting
or significantly altering the frequencies of certain cell types.

Recent advances in bioengineering of innovative microfluidic
cell dissociation devices (Qiu et al., 2014) have the potential
to radically change the way tissue samples are dissociated into
single cells, while avoiding inter-assay variation due to human
handling of the tissue. Several microfluidic devices have been
optimized for streamlined tissue digestion, cell dissociation,
filtering, and polishing. In brief, these devices were designed
to work with tissue sequentially through progressively smaller
size scales, starting from tissue specimen, through cellular
aggregates and clusters, and finally eluting a solution containing
close to 100% single cells, which will be ideal for scRNAseq
applications. In addition, new semi-automated commercially
available systems can help streamline tissue dissociation (e.g.,
Miltenyi gentleMACS). These devices offer tissue-type specific
kits that may allow more reproducible, time-saving and efficient
tissue dissociation and single-cell preparation (Meeson et al.,
2013; Baldan et al., 2015). Ultimately, determining a “best
practices” dissociation strategy through heuristic optimization
will be critical for downstream single-cell library quality.

Cell Type Enrichment
There are various methods for isolating specific cell populations
or removal of unwanted populations that should be optimized
for any specific tissues type. Manual isolation utilizing magnetic
beads or gradient purification are potential methods for removal
of unwanted cells such as dead cells. Flow cytometry is a widely

used, high-throughput method to enrich for rare cells such
as hematopoietic stem cells (Radbruch and Recktenwald, 1995;
Will and Steidl, 2010). However, these methods are not without
drawbacks, since they can introduce artificial stress on cells and
change their expression profile (Van Den Brink et al., 2017).
Methods that involve antibody binding for purification can also
affect the cell expression profile if binding of the antibodies to
cell surface molecules induce intracellular signaling (Kornbluth
and Hoover, 1989; Christaki et al., 2011). Flow cytometry-isolated
cells are exposed to high pressure during sorting and these
osmotic and pressure changes introduced to cells during cell
sorting and handling can induce change to the cell expression
profile of multiple cell types (Xiong et al., 2002; Romero-
santacreu et al., 2009; Van Den Brink et al., 2017).

Quality Control
Due to the high cost of single-cell sequencing experiments,
careful quality control measurements should be executed. The
performance of alternative protocols can be assessed using a
number of readouts. A useful first metric can be acquired using
imaging of viability such as using the Countess platform (Thermo
Fisher Scientific). Flow cytometry is particularly valuable to
measure several critical metrics simultaneously, such as cell
viability, and contamination with doublets and small cell
clusters which can confound single-cell sequencing results. Flow
cytometry can also be used to evaluate whether cell populations
of interest, such as immune cells, stromal fibroblasts, or stem
cell populations, are maintained in the cell preparation and in
the appropriate frequency. Finally, an additional metric on RNA
quality can be acquired using the RNA integrity number (RIN)
method (Schroeder et al., 2006).

SINGLE-CELL TRANSCRIPTOMIC
PLATFORM

Protocols for transcriptome analysis have advanced rapidly,
resulting in several robust methods which range in cell and
mRNA capture strategy, barcoding, throughput, and level of
automation (Fan et al., 2015; Macosko et al., 2015). Selection
of the optimal approach depends largely on the research
question. Recent high-throughput protocols for scRNAseq have
dramatically increased scalability through automation, increasing
the number of cells that can be processed simultaneously,
and decreasing reagent cost through reaction miniaturization.
Using microwell-based (Cytoseq, Wayfergen), microfluidics-
based (Fluidigm C1 HT), or droplet-based (inDrop, Drop-seq,
and 10× Chromium) approaches, hundreds to thousands of cells
can be captured in a single experiment (Islam et al., 2014; Picelli
et al., 2014; Klein et al., 2015; Heath et al., 2016; Zheng et al.,
2017). The newest of these protocols utilize beads functionalized
with oligonucleotide primers, which each contain a universal
PCR priming site, a cell-specific barcode, an mRNA capture
sequence, and Unique Molecular Identifiers (UMI). Individual
cells are captured in wells or droplets with a single bead. Cell-
specific barcode are similar within a droplet but unique UMI
sequence on the primer allows for individual transcripts within

Frontiers in Cell and Developmental Biology | www.frontiersin.org September 2018 | Volume 6 | Article 1088

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-06-00108 September 3, 2018 Time: 9:35 # 3

Nguyen et al. Designing Single-Cell Analysis Experiments

FIGURE 1 | Overview of step-wise approach to designing single-cell analysis workflows. RNA integrity number (RIN); Reads per cell (RPC).

a cell to be counted. This provides a quantitative readout of
the number of transcripts of each gene detected in a cell,
thereby reducing the effects of amplification duplicates that occur
with earlier technologies (Ramsköld et al., 2012; Patel et al.,
2014). High-throughput 3′-end counting approaches have several
important limitations. Since only the 3′-end of each mRNA are
sequenced, differential splicing analyses are not feasible (Macosko
et al., 2015; Heath et al., 2016). High-throughput approaches
typically only achieve ∼10% transcriptome coverage, relative to
∼40% for full-length scRNAseq protocols that use Switching
Mechanism at 5′End of RNA Template (SMART) chemistry
(Tirosh et al., 2016; Yuan et al., 2017). This is partly due to lower
mRNA capture efficiency, but also due to lower sequencing depth.
Single-cell qPCR platforms (e.g., Fluidigm C1 and Biomark)

remain superior in sensitivity for detecting low-expressed genes
(Lawson et al., 2015).

Protocols for processing rare cells usually involve an upstream
capture step by flow cytometry or micromanipulation, followed
by dispensing single cells into microtubes or microwell plates.
Studies investigating rare cell populations that require selection
via specific markers (e.g., adult tissue stem cell populations),
are best performed using these protocols. Single-cell libraries
are prepared using SMART-based chemistry, which utilizes a
template-switching oligonucleotide (TSO) (Tirosh et al., 2016).
This TSO can be used to prime off of the untemplated nucleotides
added by the reverse transcriptase, enabling subsequent PCR
using a single primer and capture of full length transcripts
(Tirosh et al., 2016; Yuan et al., 2017). cDNAs are then
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amplified by PCR and libraries are prepared for sequencing
using standard protocols. Although there have been several large
scale projects utilizing these protocols, because they are manual
in nature and utilize larger microliter reaction volumes, they
limit the number of cells that can be processed at reasonable
cost.

Another area of ongoing debate is how to determine how
many cells one should be analyzed to reach sufficient statistical
power. Several methods have been developed using power
analysis statistics, such as Scotty1 or web-based tools2, but one
must estimate the number and expected frequencies of cell
populations present in the sample, and such information is
often not available. Therefore, these decisions are usually made
based on logistical restraints (i.e., the number of cells available),
financial considerations, or re-iterative experiments where an
initial sample of cells is sequenced to get a sense for overall
population structure, and then increasing numbers of cells are
sequenced until one is satisfied that all the main populations have
been identified.

SINGLE NUCLEI ISOLATION AND
SEQUENCING

Single-cell RNA sequencing methods are optimal when cells can
be harvested intact and viable (Grindberg et al., 2013). However,
certain cell types (e.g., neurons, adipocytes), are not amenable
to standard organ dissociation protocols, since enzymatic and
mechanical forces easily disrupt the cytoplasmic contents (Habib
et al., 2017). In these cases, an option could be to isolate intact
nuclei for single-nucleus RNAseq (snRNAseq) (Grindberg et al.,
2013; Habib et al., 2016, 2017; Krishnaswami et al., 2016; Lacar
et al., 2016; Lake et al., 2016). To prepare single nuclei, cells
are lysed with detergent and dounce homogenized to expel
cytoplasmic contents and nuclei from the cellular membrane,
(Habib et al., 2016), which may avoid transcriptomic changes
(Van Den Brink et al., 2017). Nuclei can then be purified by
flow cytometry or gradient centrifugation (Grindberg et al., 2013;
Ambati et al., 2016; Habib et al., 2016). When cell-type specific
nuclear proteins exist, they can be used for nuclei isolation from
specific cell types using antibody labeling (Lacar et al., 2016;
Habib et al., 2017).

Single-nucleus RNAseq is not only amenable for difficult
to isolate cell types, but can also be used for archived tissues
such as flash-frozen clinical samples. Individual nuclei isolated
from frozen adult mouse and human brain tissues have
been successfully sequenced, demonstrating that snRNAseq has
sufficient resolution to identify many different cell types from
frozen and post-mortem tissue (Grindberg et al., 2013). With the
rapid development of many applications for snRNAseq, nuclei
are amenable to other studies not easily done by scRNAseq.

An important question remains: To what degree is the
nuclear transcriptome representative of the whole cell? Recent
studies have demonstrated that many transcripts of cell

1http://scotty.genetics.utah.edu/
2http://satijalab.org/howmanycells

and nucleus are equally represented and that nuclear RNA
represents an important and significant population of transcripts
that contribute greatly to the overall diversity of transcripts
(Barthelson et al., 2007; Trask et al., 2009). Comparative studies
of scRNAseq and snRNAseq in neural progenitor cells have
also demonstrated that genes are expressed in equal proportion
between whole cell and nuclei (Grindberg et al., 2013). Nanogrid
single-cell and nuclei RNA sequencing studies in the same breast
cancer lines found that overall copy number, expression level,
and abundance had a high (rs = 0.95) Spearman’s correlation
(Gao et al., 2017). Similarly, the transcriptomes of single cells
and nuclei of 3T3 cells have also demonstrated high correlation
(Pearson, r = 0.87) (Habib et al., 2017). Together these results
suggest that nuclei and cells have highly correlated relative gene
expression.

Despite the similarities between single-cell and nuclei
transcriptomic profiles there remain notable differences. Not
surprisingly, nuclear transcriptomes are enriched for several
types of nuclear RNAs (Grindberg et al., 2013; Habib et al.,
2016, 2017; Krishnaswami et al., 2016; Gao et al., 2017). Since
ncRNAs are only polyadenylated in the nucleus, snRNAseq
provides a feasible strategy to capture the heterogeneity of ncRNA
transcription in single-cell resolution (Krishnaswami et al., 2016).
In addition, nuclear transcriptomes are enriched for lncRNAs
and nuclear-function genes (Gao et al., 2017). Another difference
between cell and nuclear RNAseq is the higher abundance of
intronic sequences in snRNAseq, which ranged between 10–40%
of mapped reads (Grindberg et al., 2013; Gao et al., 2017; Habib
et al., 2017). These features need to be accounted for when
comparing datasets from cellular versus nuclear transcriptome
analyses.

In conclusion, snRNAseq has emerged as a promising avenue
for profiling archived samples or cell types that are hard to viably
isolate from tissues.

SINGLE-CELL LIBRARY SEQUENCING

The next critical part of designing single-cell workflows is to
align the analysis pipeline with the respective NGS platform and
sequencing depth. It is important to confirm that the chemistry
used for library construction is compatible with the sequencing
technology. Currently, there are two major outputs for libraries
from scRNAseq: full-length transcript or 3′-end counted libraries,
which each require different read depths (Haque et al., 2017).
Full-length transcript libraries are typically sequenced at a depth
of 106 reads per cell, but may still yield important biological
information at as low as 5× 104 reads per cell (Pollen et al., 2014).
For specific applications such as alternative splicing analysis
on the single-cell level, much higher sequencing depth up to
15– 25× 106 reads per cell is necessary. On the other hand,
3′-end counting libraries are sequenced at much lower depth of
around 104 or 105 reads per cells (Haque et al., 2017). Reaching
the optimal sequencing depth can be an iterative process and may
require multiple rounds of optimization. Sequencing saturation
can be estimated by plotting down-sampled sequencing depth in
mean reads per cell (e.g., 10× Genomics Cell Ranger).
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FIGURE 2 | Single-cell analysis of primary human breast epithelial cells. (A) Approach overview summarizing individual steps of single-cell analysis approach from
primary human breast epithelial cells using scRNAseq. (B) Combined computational analysis of 24,465 single-cell transcriptomes from primary breast epithelial cells
harvested from four human individuals. Standard Seurat analysis shows clear separation by individual as shown in tSNE plot. Applying canonical correlation analysis
(CCA) successfully removes individual-specific clustering giving rise to three major clusters corresponding to the three main breast epithelial cell types, namely Basal,
L1-Luminal, and L2-Luminal (outlined by dotted lines).

STUDY DESIGN AND DATA ANALYSIS

In the following section, we highlight several key considerations
from a data analysis perspective for adequately designing a
successful scRNAseq study. As mentioned, many single-cell
technologies can be greatly affected by technical variation,
and without proper study design the results can be difficult
to interpret. One critical aspect of this is the separation
of batch and condition. Batch refers to a library that was
singularly generated in a contained workflow (i.e., harvesting
tissue specimen, disassociating into single-cell suspension, and
generating scRNAseq library). Condition refers to a biological
state or experimental treatment that is being analyzed in the
study. Technical variation can be difficult to separate from
relevant biological variation when conditions are interrogated
individually. To help correct for this, the generation of
replicates (biological or technical) whenever possible is strongly
recommended.

In addition to replicates, an option is to mix samples and
conditions within a batch, such that they can be treated without
confounding each other (Hicks et al., 2015). One example is
the Demuxlet workflow, where samples from genetically distinct
individuals can be processed within the same library generation
protocol and sequenced together (Kang et al., 2018). Prior to
library generation, genotyping of distinct samples is performed
and subsequently used in conjunction with the scRNAseq library
to demultiplex the mixed cell sample into the samples of origin.
In situations where genetically identical samples are used, or

genotypic data is not readily available, cellular hashing can be
employed (Stoeckius et al., 2017). This involves oligo-tagged
antibodies specific to each sample in the study and then pooling
and generating the scRNAseq library from the sample mixture.
The antibodies labeled with unique barcodes can be traced back
to its sample of origin (Stoeckius et al., 2017).

Efforts can be made computationally to mitigate batch-to-
batch variation. Batch effects are not unique to scRNAseq data,
but the assumptions made by correction algorithms are not
always appropriate for the bimodality of gene expression in
zero-inflated scRNAseq data. Here, we highlight recent analytical
frameworks that may be used to correct for this phenomenon.
A recently developed approach by Haghverdi et al. (2018) builds
a mixed nearest neighbor model for cells between datasets or
samples that does not require known or equal proportions of
cell types between data sets. In addition, the widely used Seurat
pipeline for scRNAseq analysis recently employed canonical
correlation analysis (CCA) that allows for discovery of co-
correlated gene modules between datasets that can then be used
to cluster upon (Butler et al., 2018). This approach identifies
the cell types common between datasets and samples, as well as
those that are unique to an individual set by finding common
sources of variation in gene expression. As an illustration
of this method, we applied CCA to our recently published
droplet-enabled scRNAseq dataset from four individual primary
human breast tissue samples (Figure 2). Finally, the single-cell
batch correction framework MAST (Finak et al., 2015) models
the positive expression mean and the over-the-background
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expression of transcripts, and calculates a fraction of detected
genes per cell and uses this as a covariate that is independent of a
previously specified control set of genes. Together, these methods
serve as recent examples to handle batch-to-batch variation
computationally, resulting in improved dimensionality reduction
and clustering for meaningful scRNAseq data analysis.

Beyond accounting for technical variation, a common
question that researchers address is the relatedness of described
cell populations through the lens of a differentiation processes.
The key assumption of pipelines that seek to address this is
that the tissue sample analyzed using scRNAseq contains cell
types/states that represent not only the ends of a differentiation
process, but also stem/progenitor cells and transitional cell states
along the path of differentiation. Common analysis suites that
seek to reconstruct these differentiation trajectories are Monocle
(Qiu et al., 2017), TSCAN (Ji and Ji, 2016), and CellTree (duVerle
et al., 2016). Each use different methods, but their goal is
to visualize differentiation trajectories and identify expression
signatures that change through pseudotime.

CONCLUSION

To fully harness the potential of single-cell analysis tools to
decipher complex biological systems on the level of individual
cells, careful study design and rigorous optimization of every
step along the experimental procedure are mandatory. Here,
we delineate a step-wise experimental approach for optimizing

tissue handling, cell dissociation and enrichment, single-cell
platform selection, library sequencing, and data analysis for
designing single-cell workflows. A move toward standardized
and automated processing of tissues will minimize changes
introduced by tissue handling that may obscure biologically
relevant transcriptomic profiles. For tissues that are problematic
to dissociate into high-quality and viable single-cell suspensions,
snRNAseq offers a solution to this problem, and can be used
to achieve uniform extraction and sequencing of multiple
cell types for cross comparison. Numerous computational
frameworks are currently emerging that help mitigate batch
effects to separate biological variation from unwanted technical
variation.
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The importance of diversity and cellular specialization is clear for many reasons, from
population-level diversification, to improved resiliency to unforeseen stresses, to unique
functions within metazoan organisms during development and differentiation. However,
the level of cellular heterogeneity is just now becoming clear through the integration
of genome-wide analyses and more cost effective Next Generation Sequencing
(NGS). With easy access to single-cell NGS (scNGS), new opportunities exist to
examine different levels of gene expression and somatic mutational heterogeneity, but
these assays can generate yottabyte scale data. Here, we model the importance of
heterogeneity for large-scale analysis of scNGS data, with a focus on the utilization
in oncology and other diseases, providing a guide to aid in sample size and
experimental design.

Keywords: single-cell sequencing, heterogeneity, scRNA-seq, NGS, RNA, single cells

INTRODUCTION

It has been well-documented, both theoretically (Elsasser, 1984) and experimentally, that nearly all
cellular systems are heterogenous (Altschuler and Wu, 2010). Heterogeneity may arise for a number
of different reasons, and at many different levels, in order to improve survival and functionality.
Both single-celled and multicellular organisms employ population-level survival strategies such
as bet-hedging in order to achieve a better chance of survival when faced with new stresses
though having a diverse population (Grimbergen et al., 2015). At a single-organism level, diversity
further enables the existence of specialization and, within metazoan organisms, differentiation
(Hadjantonakis and Arias, 2016).

Cellular heterogeneity can be measured in several different ways, most commonly via genomic,
epigenomic, transcriptomic, and proteomic studies. However, the level of heterogeneity at one level
of expression or regulation may not be the same at another level. Cells within a given person
have nearly identical genomes, yet through specific modifications throughout development and
disease, may generate many distinct cell types with unique expression profiles. Even the genome
itself may be specifically rewired to generate increased genetic diversity within specific cell types,
most notably B- and T-cells through V(D)J recombination. Uncovering the true diversity of cells
is crucial to better understand cellular communication and responsibility within both healthy and
disease states. It is now well understood that differentiation throughout development allows for
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the necessary cellular specialization required for complex
multicellular system function. Further, specific epigenomic
modifications allow for this precise differentiation which
inevitably results in the cascade of cellular diversity present in
humans, and also is important in cancer (Li et al., 2014, 2016).

Next generation sequencing (NGS) is continuously being used
more and more due to its rapidly decreased costs and ability to
generate a large amount of data (Mason et al., 2014), with new
data sets even being generated in zero gravity (McIntyre et al.,
2016; Castro-Wallace et al., 2017). Within bulk-NGS analyses,
many, typically hundreds of thousands to millions, of cells are
analyzed at once. This generates an averaged picture of a given
population of cells, and thus majority of our understanding of
different cell and tissue types comes from the analysis of bulk
experimentation which may underestimate the true heterogeneity
of cells. Bulk-NGS is simply ill-equipped to address some
important questions revolving around cellular heterogeneity.
Single-cell NGS (scNGS) attempts to resolve issues facing bulk-
NGS through the ability to relate sequences to a given cell, across
the genetic, transcriptomic, epigenomic, and proteomic levels.
This approach reduces the issue of data generalization which
is prevalent in some bulk-NGS studies. However, scNGS is not
without its faults. One of the main issues with scNGS is its cost
and, though it has considerably decreased in recent years, it is
still a large factor when designing experimentations, as well as
technical issues and challenges in sensitivity. Here, we will outline
the importance of cellular heterogeneity, assess factors of scNGS
heterogeneity, and provide a practical sample size guide to aid in
experimental design.

THE IMPORTANCE OF CELLULAR
HETEROGENEITY

Having a heterogeneous (i.e., diverse) population is beneficial
for cellular systems for the same reason why it is beneficial
for there to be variation among many organisms in a single
species – bet-hedging (Beaumont et al., 2009). Bet-hedging is a
population-level survival strategy in which less-fit individuals are
maintained in a population as a precaution; if the environment
were to drastically change, the originally less-fit organisms may
be adapted to the new environment, thereby assuring the survival
of the population (Grimbergen et al., 2015). In an ever-changing
environment, a population has a greater overall fitness if there
is greater diversity. In this way, the evolution adaptation of all
cellular systems can be modeled in terms of Darwinian evolution.

There are many causes of cellular heterogeneity. Firstly,
populations of cells will naturally contain individuals that
develop random mutations. These unique subclones can
become significant portions of the population if that mutation
confers a selective advantage and proliferates. However, not all
cellular heterogeneity is genetic. Rather, much heterogeneity
is phenotypic, and is frequently expressed in transcriptomes
that vary from cell to cell. This heterogeneity can arise via
external or internal factors. Extrinsic heterogeneity can lead to
phenotypic plasticity in response to an environmental change,
and only affects the part of the population that is exposed to

the causative environment (Huang, 2009). It can also include
variables such as cell-cycle stage and cell size (Singh and Soltani,
2013). Intrinsic heterogeneity is a more nuanced phenomenon,
and is a result of stochastic events, such as gene expression noise
(Huang, 2009), rather than a changing intracellular environment
(Elowitz et al., 2002).

Because of stochastic gene fluctuation, there are varying
levels of protein abundance in different cells in a population
at any given time. This is most easily visualized via flow
cytometry, which yields a bell-shaped curve (Brock et al.,
2009). Stochastic gene expression may have its evolutionary
advantages, as well. In the same way that populations of
cells maintain random mutations in bet-hedging, populations
of clonal, unicellular organisms may maintain variation via
stochastic gene expression to ensure overall survival (Raj and van
Oudenaarden, 2008). Although stochastic gene expression is a
significant contributor to heterogeneity, it is not the only cause.
The sub-state of any given genome/cell depends on a number
of factors, including epigenetics, alternative splicing sites, post-
translational modifications, and sometimes even microbial
interactions (Shabaan et al., 2018). These processes are not always
stochastic, and can therefore lead to “directed” heterogeneity,
instead of the more random “non-directed” heterogeneity of
stochastic gene expression (Chang and Marshall, 2017).

Interestingly, non-genetic, cellular heterogeneity also
plays an important role in development. Early in the
developmental process, before the small population of cells
is beginning to differentiate, these cells are theoretically
identical. However, as the cells begin to differentiate, they
display non-genetic heterogeneity. The body of research on
the role of heterogeneity in development is largely focused
on transcriptional heterogeneity (Griffiths et al., 2018), which
is a driver of differentiation of pluripotent stem cells. More
recent work has also shown that RNA modifications, called
the epitranscriptome (Saletore et al., 2012), can also lead to
differential response of human cells to both disease and infection
(Gokhale et al., 2016; Vu et al., 2017). Also, some transcriptional
sub-states are heritable through several generations of cell
divisions. Signaling factors, developmental regulators, and
chromatin regulators contribute to transcriptional heterogeneity
in stem cells (Kumar et al., 2014). “Directed” heterogeneity has
been shown to lead the process behind the development of a body
plan in Drosophila melanogaster (Chang and Marshall, 2017).

Even after development, all human tissue systems experience
some level of differentiation. This allows cells to specialize,
leading to a more flexible biological system. This principle
has been most notably studied in the nervous and immune
systems. In the central nervous system, for instance, there are
dozens of different types of neurons. Subsets of these neurons
form the myriad different regions within the brain (Emery
and Barres, 2008). One phenotypic hallmark of heterogeneity
in the nervous system, for example, is the distribution of
mitochondria within the neuron. This heterogeneity is exhibited
both regionally within the brain (e.g., brain regions that
require more energy are composed of neurons with more
mitochondria) (Dubinsky, 2009) and within individual neurons.
This distribution differs greatly depending on the immediate
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and current needs of the neuron, and is regulated by a complex
system of proteins (Course and Wang, 2016). In the immune
system, monocytes, macrophages (Gordon and Taylor, 2005),
B-cells, and T-cells show heterogeneity. As an example, T-cell
heterogeneity is essential for an effective immune response,
since subtle differences in T-cell receptors (TCRs) enable the
identification and elimination of foreign invaders (Durlanik
and Thiel, 2015). However, in autoimmune disease, faulty TCR
diversification can result in the improper identification of “self ”
as an invader resulting in normal tissue destruction.

Different diseases leverage heterogeneity to their advantage.
A “survival of the fittest” model for cellular heterogeneity can
be applied not only to populations of single-celled organisms,
but also to tumors. Cancer cells continuously acquire and
pass down genetic and epigenetic modifications to subsequent
generations of cancer cells resulting in heterogeneity. These
genetic mutations and epigenetic shifts may further lead to
changes in fitness (Li et al., 2016). Cancer cells are often exposed
to hostile environments, such as chemotherapy and radiation,
during treatment (Afshinnekoo and Mason, 2016). Through
bet-hedging, and therefore maintenance of a heterogeneous
population, the chance of resistance or relapse from treatment is
dramatically increased. As these cancer cells are all in the same
small environment and are all competing for the same limited
resources, there are complex interactions between different
subclones that further reinforce these Darwinian relationships
(Tabassum and Polyak, 2015). Cancer cells can be further driven
into a “survival of the fittest” scenario via treatment with a
chemotherapeutic drug, as this may lead to the selection for
cancer-variants that are resistant to the drug. Over time, this
could lead to chemotherapeutic resistance within the whole
tumor (Dagogo-Jack and Shaw, 2017), as well as tumor sub-
types (Shih et al., 2017). Indeed, it has been shown that a
single tumor biopsy dramatically underrepresents the genetic
diversity present within an entire tumor (Gerlinger et al.,
2012). However, heterogeneity is not only clinically relevant
in regards to chemotherapy. Immunotherapies can also be
profoundly impacted by heterogeneity. Liver cancer-targeted
immunotherapy is designed around tumor-infiltrating T-cells.
Through the use of single-cell RNA sequencing, 11 tumor-
infiltrating T-cell sub-states have been identified. Each of these
sub-states has a unique profile of up- and downregulated
genes, which may impact the efficacy of any immunotherapies
(Zheng et al., 2017).

Intratumoral heterogeneity has been extensively studied
through single-cell sequencing methods. For example, single-
cell RNA sequencing has revealed significant heterogeneity in
primary glioblastomas (Patel et al., 2014). Additionally, increased
levels of heterogeneity in these tumors was inversely correlated
with survival, indicating that intratumor heterogeneity should
be an essential clinical factor, including events from DNA
transposition (Henssen et al., 2017). Metastatic melanoma is also
highly transcriptionally heterogeneous, and this heterogeneity is
multifaceted; it is associated with a number of factors, including
cell cycle stage, location, and chemotherapeutic resistance (Tirosh
et al., 2016). The use of RNA sequencing here is key, as
transcriptomics captures fine details of non-genetic heterogeneity

that other sequencing methods may have missed. Shifting of
cellular heterogeneity is not just a hallmark of cancer, but of many
other diseases, but here we will focus on the relevance for cancer.

ASSESSING HETEROGENEITY

Heterogeneity itself is a gradient which may be based on variable
changes in the transcriptome or more permanent changes within
the genome. Differences seen between cells may be temporal due
to cell-cycle states, or spatial due to external stimuli (Dagogo-Jack
and Shaw, 2017). Also, differences between cells may exist at any
processing level of the cell, from the genome to transcriptome
to proteome, or due to any additional modifications which may
exist. With this in mind, it could be possible to define all cells
as heterogeneous. However, two disparate cells might not behave
functionally different, and their heterogeneity would therefore
not be considered impactful (Altschuler and Wu, 2010). The
overall assessment of cellular heterogeneity is therefore context-
specific and the technologies used to assess cellular differences
need to be considered carefully.

Proteomic and cell-marker classification has been historically
used to discern cell types. Immunohistochemistry (IHC) can be
used to distinguish immune cell types within healthy systems
(Reuben et al., 2017b) or even the cancer subtyping such as
HER2 expression within breast cancer (Potts et al., 2012). Surface
markers help to distinguish cell types into broad classification, but
this type of analysis required prior gene expression knowledge
and specific antibody usage. Other approaches, such as whole
genome sequencing (WGS), bisulfite sequencing, and RNA
sequencing, allow for genome-wide analysis (Mason et al.,
2017). Historically these techniques are done on heterogeneous
tissue samples, generating an averaged picture of the tissue
of interest (bulk-NGS). Although bulk-NGS has a tendency to
generalize heterogeneity, certain biological understanding and
computational modeling can mitigate this effect within genomic
and epigenomic analyses.

Bulk-WGS can be directly used to assess the existence of
subclonal mutations through the use of variant allele frequencies
(VAFs). Through the modeling of VAFs and copy number
changes, an understanding of the clonal architecture may be
inferred from such bulk-NGS data. One such method, Canopy,
uses a Bayesian analysis to identify subpopulations and build a
phylogenetic tree detailing their likely evolutionary history (Jiang
et al., 2016). Long read bulk TCR sequencing can also be used
directly to assess clonal structures under the assumption that
there is a unique V(D)J recombination per subclone. As such,
the quantity of a given TCR gene can be directly related to the
abundance of that subclone and the number of different TCR
genes relates to the overall heterogeneity and diversity of the
T-cell population. TCR sequencing has also been used, and has
shown intratumoral heterogeneity in localized lung carcinomas,
which may confer post-surgical recurrence (Reuben et al., 2017a).
As epigenetics also plays a significant role in heterogeneity,
bisulfite sequencing can be used to study patterns of DNA
methylation and estimate clonality, such as with the algorithm
methclone (Li et al., 2014). Bisulfite sequencing has also been
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used to reveal heterogeneity in DNA methylation of the MLH1
(a mismatch repair gene) promoter across several endometrial
tumors (Varley et al., 2009).

While many bulk-NGS methods rely on mixture models of
the VAFs to analyze small indels and point mutations, these
methods often rely on the copy number of the gene in question,
which can be altered in cancers, and are unable to relate multiple
mutations which exist at low frequencies (Jiang et al., 2016).
Additionally, bulk sequencing has a tendency to report what an
“average” cell in a population would look like and for that reason
would not be usable in the analysis of an all-or-nothing response
(Altschuler and Wu, 2010). For example, Xenopus oocytes, have
a binary response when signaled by progesterone to begin a
process of maturation; they either mature or they do not (Ferrell
and Machleder, 1998). In this case, looking at an average of
two distinct oocyte subpopulations – one that has been signaled
to mature and one that has not – would artificially yield a
biologically impossible “mean oocyte” that has committed to
maturation half-way (Altschuler and Wu, 2010).

There has been a significant effort within the field to
quantitatively measure heterogeneity and relate it to a functional
change. One approach to this is to quantify stochastic gene
expression. This has been done through dividing stochastic
gene expression into its intrinsic and extrinsic components
via a two-color reporter experiment and deriving analytical
formulas to measure each component of noise (Singh and
Soltani, 2013). Systems have also been developed to quantify
the individual contribution of unique processes to stochastic
gene expression, and therefore to heterogeneity. For example,
experimentally generated models have been used to quantify
the individual contribution to chromatin dynamics in isogenic
chicken-cell populations (Viñuelas et al., 2013). Also, shifted gene
expression dynamics have been shown to drive cell fate choice
for hematopoietic progenitors (Kleppe et al., 2017), induced
pluripotent stem cells (iPSCs), and the mouse inner-cell mass
during embryogenesis (Mojtahedi et al., 2016; Bargaje et al., 2017;
Mohammed et al., 2017).

UTILIZATION OF scNGS

To best understand cellular heterogeneity, single cells must be
studied individually through the use of scNGS. Since assessing
cellular co-occurrence is the main drawback of bulk-NGS,
many studies have also been conducted to further elucidate
clonal structures using single-cell DNAseq [including whole
exome sequencing (WES) or WGS], bisulfite sequencing, and
ATACseq (assay for transposable accessible chromatin, ATAC).
Given the variability and importance of gene expression, sc-
RNAseq is one of the most used single-cell sequencing techniques
(Supplementary Table S1). Single-cell multi-omic analyses are
also possible to uncover the true level of heterogeneity across
expression levels within cells (Macaulay et al., 2017), which enable
examination of the genome, transcriptome, and epigenome at
once. scNGS has the ability to resolve noise in bulk-NGS through
the additional ability to trace generated reads back to their cell
of origin. Though, this added benefit comes at a steep monetary

cost, as single-cell sequencing is still much more expensive than
more traditional bulk NGS given the need to sequence more
(Supplementary Table S2). Also, subpopulations of cancer cells
can be found by scATAC-seq, which has the power to identify
specific chromatin motifs. Indeed, when combined with RNA-
seq, it has been used to identify epigenetic plasticity between two
cell subpopulations (Litzenburger et al., 2017).

There are currently dozens of variations of techniques to study
the genome, epigenome, transcriptome, and epitranscriptome
of cells, and here, we focus on those most commonly in
use (Supplementary Table S1). Each of these technologies
has had a significant impact on numerous fields, including
immunology, oncology, and microbiology. Because the scope of
the benefits of single-cell analysis is so wide, there is tremendous
pressure to advance the technologies in the field. This is
evident in the dramatic increase in recent years in publications
referencing single-cell technologies (Wang and Navin, 2015).
These techniques are highly varied, from manual manipulation
(Pan et al., 2013) to droplet microfluidics used for sc-WGS
(Hosokawa et al., 2017) to the creation of an RNA-library
(Hedlund and Deng, 2018), such as bisulfite sequencing, can
also be used on the single-cell level (Clark et al., 2017). A novel
approach that combines Raman spectroscopy with an algorithmic
biomolecular component analysis (microRaman-BCA) allows
for the profiling of single organelles from a cell. Because this
technique does not destroy the cell during analysis, the study can
be performed multiple times on the same cell, providing a better
picture of heterogeneity over time (Kuzmin et al., 2017).

While much of the current knowledge of cellular heterogeneity
is transcriptional, newer techniques such as single-cell
epigenomics have tremendous potential to study heterogeneity
(Hassan et al., 2017) and may be able to provide further insights
into the characterization and mechanisms of heterogeneity (Clark
et al., 2016). Several topics in epigenomics are best suited to study
with single-cell methods, including the relationship between
transcriptional heterogeneity and epigenetic heterogeneity,
which may vary greatly from cell to cell. Another application
of single-cell sequencing is to study tumor resistance and
therapeutic response to decrease the chance of resistance or
relapse. scNGS can be used to not only detect heterogenous
subclones within a tumor, but also to characterize these cells.
Additionally, it can be used to characterize metastases and to
create an effective treatment plan that minimizes the chance
of chemotherapeutic resistance of specific subclones (Liang
and Fu, 2017). In one study, analysis via deep whole-exome
sequencing revealed that 75% of relapsed tumors in pediatric
B-acute lymphoblastic leukemia were descendants of originally
rare subclones (Ma et al., 2015). Given technical and sampling
limitations, it is possible that resistant subclones existed within
more patients. Although scNGS is currently expensive, treatment
for cancer is often much more expensive. For this reason, any
possible technique that could lead to a more effective therapy
(even an expensive one like scRNA-seq) has clinical potential
(Shalek and Benson, 2017).

Additionally, subclones can communicate and interact with
each other, leading to complex relationships that may only
be fully elucidated via scNGS. Although some of these
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interactions are neutral, they can also be positive (leading
to a commensalistic/mutualistic relationships in which one
or both of the subclones benefit), or negative (leading to
competition between subclones, e.g.), and can contribute to the
chemotherapeutic resistance of one or more subclones within
a tumor (Tabassum and Polyak, 2015). For instance, one study
demonstrated that various clonal lineages in a case of colorectal
cancer responded differently to treatment with chemotherapy
(Kreso et al., 2013). Additionally, there is evidence that parallel
evolution of various subclones within a tumor can lead to

polyclonal resistance (Gerlinger et al., 2014). Additionally, intra-
tumor heterogeneity makes it more difficult to precisely identify
either histologically or genetically a tumor via a traditional biopsy
(Tellez-Gabriel et al., 2016).

The implications of tumor heterogeneity in cancer evolution,
clinical treatment, and tumoral spatial organization are not yet
fully understood (Alizadeh et al., 2015), but scNGS provides
a mechanism for beginning to unravel these relationships.
Although heterogeneity makes the histological and genetic
identity of a tumor more ambiguous, if the mechanisms

FIGURE 1 | Model of cells required for detection of variants. Minimum number of cells to sample to capture at least one (A) or three (B) subclone with varying
probabilities (lines) across varying concentrations in a tissue with 1 billion cells. Hypergeometric calculations were done using R’s phyper() function with lower.tail = F
and q = 0 (A) or two (B) across varying sample sizes and clonal frequencies such that m+n = 1,000,000,000.
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driving heterogeneity are further elucidated, they may lead
to a better understanding of carcinogenesis (Gay et al.,
2016). Moreover, data gathered from single-cell sequencing
may help to clarify the methods of cancer progression
and subclone resistance to chemotherapeutic treatment by
sequencing both smaller transcripts and whole genomes in
single cellular representatives of heterogeneous populations
(Baslan and Hicks, 2017).

Interestingly, scNGS also has implications in lineage tracking
in the development of differentiated tissues, as it may help
to further clarify the developmental pathways involved in
tissue differentiation (Kester and van Oudenaarden, 2018).
As discussed, the nervous and immune systems are both
well-studied examples of cellular systems that display cellular
heterogeneity. For example, this technique can be used to study
the central nervous system, and has the potential to not only
molecularly classify various neurons or groups of neurons, but
also to further study the molecular mechanisms behind, and
possible therapies for, neurological diseases (Ofengeim et al.,
2017). Indeed, this application can also be utilized to type sperm
and oocytes, allowing for the confirmation and subsequent study
of recombination events and polymorphisms in these haploids
(Zhang et al., 1992).

DESIGN OF scNGS EXPERIMENTS

One of the key questions in planning the methodology of a single-
cell study is how many cells to sequence. Sequencing more cells
enables a greater representation of the cells in a population, giving
a more accurate model of the diversity of subclones. The number
of single-cells sequenced in a study has scaled exponentially
with the development of new technologies. In 2009, for example,
only one cell could be sequenced at a time. By 2017, however,
the technology has advanced enough to permit the analysis of
hundreds of thousands of cells at once (Svensson et al., 2018) and
the possibility to generate exobytes and even yottabytes of data in
the future.

Many complexities exist with scNGS analyses and need to
be carefully considered. Other work have covered the specific
differences, benefits, and drawbacks between the various scNGS
protocols (Kanter and Kalisky, 2015; Clark et al., 2016; Haque
et al., 2017; Liang and Fu, 2017). Previous data have shown that
the best scNGS technology should be used for a given hypothesis,
in tandem with a proper experimental design for the number
of cells. Due to this, the required number of cells necessary
to address a given question or tissue model will largely vary
depending on the overall hypothesis. However, the question of
“how many cells should I sequence” can be simplified to how
many cells do you need to sample in order to capture at least
one subclonal cell. The chance of sampling a subclone from a
tissue of interest depending on the subclonal prevalence, the
size of the tissue, and the size of the sample. Therefore, this
question can be modeled using the hypergeometric distribution
with varying degrees of probability (Figure 1A). It is common
within sc-NGS analysis to require multiple cells to contain a given
phenotype, and therefore may be more appropriate to ask the

question of “how many cells should I sample to capture at least
three subclonal cells” (Figure 1B).

We have built a model to demonstrate the number of cells
required for a sampling design can widely vary. As an example,
if the goal was to sample a tissue which has 1 billion cells for
a previously undefined stem-cell which exist at a population of
0.01%, you would have a 99% chance of sampling at least one
stem-cell if you analyzed approximately 46,000 cells. However,
to truly characterize and identify this subclonal population or
to detect a lower threshold, the number of cells required could
easily reach, or even surpass, 100,000 depending on tissue size
(Figure 1B). Given the recent advances in scNGS and decreases in
costs, this is now possible to do. Such a design – while completely
impossible 5 years ago – should be strongly considered when
designing experimentations today.

THE FUTURE OF SINGLE-CELL
ANALYSES

While single-cell sequencing has many advantages, it certainly
is not a perfect technique. There are many different techniques
for obtaining single-cell sequencing data and single-cell whole
genome sequencing (sc-WGS), and each of these methods
presents its own unique strengths and weaknesses. Multiple
displacement amplification (MDA) and other PCR-based
sequencing techniques often experience significant amplification
bias (de Bourcy et al., 2014; Ahsanuddin et al., 2017). This could
lead to incorrect interpretation of the prevalence and diversity
of certain genes. Nonetheless, thanks to the breakthroughs
in scNGS, the long-sought goal of sequencing of single cells
is possible. This has created significant opportunities for
advancement in the study of heterogeneity, especially as it applies
to cancer. While it may be necessary to sample thousands or
even millions of cells to encounter a unique subclone at low
prevalence within a large tissue, sequencing continues to get
cheaper, and thus scNGS will continue to open up many new
research directions into the mechanisms of heterogeneity study
variation on cell-by-cell resolution.
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The emerging single-cell RNA-Seq (scRNA-Seq) technology holds the promise to

revolutionize our understanding of diseases and associated biological processes at an

unprecedented resolution. It opens the door to reveal intercellular heterogeneity and

has been employed to a variety of applications, ranging from characterizing cancer

cells subpopulations to elucidating tumor resistance mechanisms. Parallel to improving

experimental protocols to deal with technological issues, deriving new analytical methods

to interpret the complexity in scRNA-Seq data is just as challenging. Here, we review

current state-of-the-art bioinformatics tools and methods for scRNA-Seq analysis, as

well as addressing some critical analytical challenges that the field faces.

Keywords: single-cell genomics, single-cell analysis, bioinformatics, heterogeneity, microevolution

INTRODUCTION

Characterization of genomic signatures in individual patients is a key step toward the realization of
precision medicine. Recently, next-generation sequencing (NGS) based RNA expression profiling
(RNA-seq) has made broad impacts on biomedical fields. However, population-averaged RNA-seq
has limited discovery power, and it can also mask the presence of rare subpopulations of cells (such
as cancer stem cells) and thus may overlook important biological insights. The emerging single-cell
RNA-Seq (scRNA-Seq) technology is designed to overcome these limitations by investigating
expression profiles at the cell level. In just a few years, the number scRNA-Seq experiments
has grown beyond exponentially. This new approach offers the potential to revolutionize our
understanding of diseases and associated biological processes, with the capacity to reveal the
intercellular heterogeneity within a specific tissue at an unprecedented resolution (Yan et al.,
2013; Trapnell et al., 2014). Using single-cell level features, we can infer cell lineages (Treutlein
et al., 2014), identify subpopulations (Trapnell et al., 2014) and highlight cell-specific biological
characteristics (Tang et al., 2010). Moreover, single-cell analyses have already demonstrated their
utilities in the clinical applications, ranging from characterizing cancer cells subpopulations (Navin
et al., 2011; Patel et al., 2014; Ting et al., 2014), highlighting specific resistance mechanisms (Kim,
K. T. et al., 2015; Miyamoto et al., 2015) to being used as diagnostic tools (Ramsköld et al., 2012;
Kvastad et al., 2015).

Despite the expansion of scRNA-Seq studies and rapid maturing of experimental methods,
major analytical challenges remain as the consequences of experimentation. One major challenge is
that scRNA-Seq datasets present a very high level of noise (Brennecke et al., 2013; Kharchenko
et al., 2014). Much of the noise is due to the nature of single-cell technologies. Because of the
extremely low amount of starting biological material in the single cell, amplification processes are
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required. These procedures are prone to distortion and
contamination (Leng et al., 2015). To tackle these issues,
rigorous efforts have been made to develop analytical methods
for scRNA-Seq data. Here, we summarize current state-of-the-
art bioinformatics analysis tools and methods for scRNA-Seq
(Figure 1 and Table 1), and address some critical analytical
challenges that we are facing. The first section describes specific
pre-processing steps for noise removal of scRNA-Seq datasets.
The second section reviews specific scRNA-Seq bioinformatics
analysis procedures with emphasis on subpopulation detection.
The third section focuses on microevolution analysis for scRNA-
Seq data. In the last section, we highlight the challenges to
be addressed and work to be accomplished in scRNA-Seq
bioinformatics field.

DATA PREPROCESSING AND NOISE
REMOVAL

Quality Control
scRNA-Seq experiments generate FASTQ files from the
sequencing machine, which contain millions of reads composed
of RNA sequences and add-on sequences (UMI tag and the
cell tag etc). These reads need to be pre-processed before
being aligned back to the reference genome. For scRNA-seq,
pre-processing and quality control (QC) analyses similar to
bulk RNA-seq are used. Cutadapt (Martin, 2011) is a tool that
removes adapter sequences, and Trimmomatic (Bolger et al.,
2014) performs quality-based trimming in addition to removing
adapter sequence. These tools are commonly used in scRNA-seq
experiments (Treutlein et al., 2014; Handel et al., 2016; Hou
et al., 2016). Other generic quality control tools such as FASTQC
or HTQC (Yang et al., 2013) might also be useful to produce
quality metrics. Finally, it is worth noting that platform-specific
QC tools such as SolexaQA (Cox et al., 2010) provide QC
pipelines specific for Illumina sequencing, with trimming and
quality-based filtering.

Other QC procedures for scRNA-seq involve the analysis of
the expression of housekeeping genes (Ting et al., 2014; Treutlein
et al., 2014), overall gene expression patterns (Zeisel et al., 2015)
and the number of genes or reads detected per cell (Kumar
et al., 2014). However, one issue of these approaches is that the
thresholds chosen for filtering are arbitrary and should differ
according to the dataset (Jiang, P. et al., 2016). SinQC (Jiang,
P. et al., 2016) and SCell (Diaz et al., 2016) are two QC tools
specifically designed for scRNA-seq data. SinQC uses sequencing
library quality to confirm gene expression outliers. It computes
different quality metrics (e.g., total number of mapped reads,
mapping rate and library complexity) to identify a user-specified
fraction of the dataset as noise. SCell is a versatile tool that allows
for outlier detection. It estimates genes that are expressed at the
background level using Gini index, which measures statistical
dispersion, and removes samples whose background fraction is
significantly higher than the average. Recently, a new mapping
and quality assessment pipeline Celloline detects low quality cells
from expression profiles, using curated biological and technical
features (Ilicic et al., 2016).

Alignment
To our knowledge, there are currently no specific aligners
dedicated to scRNA-seq, and scRNA-seq studies use existing
aligners made for bulk RNA-Seq. Tophat is one of the most
popular aligners capable of detecting novel splice (Trapnell et al.,
2009; Kim et al., 2013), and it is widely used in scRNA-seq studies
(Treutlein et al., 2014; Fan et al., 2016; Freeman et al., 2016;
Handel et al., 2016; Hou et al., 2016). RNA-Seq by Expectation
Maximization, or RSEM, is a popular framework that includes
an aligner (Li and Dewey, 2011). It is also used in some scRNA-
seq studies (Gao et al., 2016; Kimmerling et al., 2016; Meyer
et al., 2016). Other aligners used in scRNA-Seq studies include
MapSplice (Wang et al., 2010), GSNAP (Brennecke et al., 2013;
Buettner et al., 2015; Wu et al., 2016), and STAR (Dobin and
Gingeras, 2015; Moignard et al., 2015; Petropoulos et al., 2016).
Among these aligners, TopHat and STAR were found to be
about one to two magnitudes faster than GSNAP and MapSplice
(Engström et al., 2013). More recently developed aligners include
Kallisto (Bray et al., 2016) and HISAT (Kim, D. et al., 2015).
Kallisto uses pseudo-alignment with hashing de Bruijn graphs
and avoids alignment altogether, which drastically improves the
speed of expression quantification. HISAT (hierarchical indexing
for spliced alignment of transcripts) seems also promising in term
of the speed and accuracy. It is worth mentioning that some
major scRNA-Seq methods do not get enough coverage across
the gene to measure alternative splicing, therefore algorithms for
isoform measurements are not as critical in scRNA-Seq, at least
at this stage.

Feature Quantification
Feature quantification is the process of converting alignment
results into a gene expression profile. An expression profile is
conventionally represented as a numeric matrix where rows are
genes and columns are cells. Each entry in the matrix is the
abundance of a particular gene or transcript in a particular
sample. Just as is the case for aligners, most scRNA-Seq studies
use canonical feature quantification methods applied to bulk
RNA-Seq.

Quantification methods for gene expression differ
dramatically. The simplest approach, employed by programs
such as HTSeq (Anders et al., 2014) and FeatureCounts (Liao
et al., 2013), is to count the number of reads located within the
boundaries of a gene (Liao et al., 2013; Anders et al., 2014). These
programs have simple but flexible parameters for determining
read counts in the case of overlapping genes, and were used in
some scRNA-Seq studies (Brennecke et al., 2013; Moignard et al.,
2015; Fan et al., 2016; Handel et al., 2016). More sophisticated
approaches calculate probabilistic estimates of gene expression.
For example, RSEM and Cufflinks both employ a maximum
likelihood approach (Trapnell et al., 2010; Li and Dewey, 2011).
These programs are based on statistical models where reads in
a RNA-Seq sample are observed random variables predicted
from the latent variables, such as the transcript sequence,
strand and length. The new Kallisto pipeline (Bray et al., 2016)
as described before, is shown to have up to two orders of
magnitude speed improvement over previous aligner-quantifier
combinations (Ntranos et al., 2016). Interestingly, while
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FIGURE 1 | General workflow of Single-cell analysis.

probabilistic approaches are conceptually more refined, simple
counting programs such as HTSeq and FeatureCounts showed
comparable or even stronger performance (Chandramohan et al.,
2013; Fonseca et al., 2014), suggesting that these probabilistic
models are yet to be improved.

Given the uncertainties of quantifying fragments post-
amplification, a new technique was shown to reduce
amplification noise by introducing random sequences called
unique molecular identifiers, or UMIs (Islam et al., 2014). UMIs
are tagged on individual RNA molecules before amplification
and used for tracking transcripts directly rather than using
sophisticated statistical modeling. This approach may lead
to a different workflow than conventional fragment-based
quantification methods (e.g., gene filtering and normalization).

Gene Filtering
Due to the high level of noise in scRNA-Seq datasets, it is
necessary to filter out low quality genes and samples. Various

practices have been made to filter out genes that are expressed
in too few samples (Brennecke et al., 2013; Treutlein et al., 2014;
Petropoulos et al., 2016). Usually, a gene is defined as “expressed”
by a minimal expression level threshold. For experiments
that quantify gene expression with fragment counting, an
FPKM (Fragment per Kilobase per Million Reads) threshold is
appropriate. Common FPKM thresholds are 1 (Freeman et al.,
2016) and 10 (Petropoulos et al., 2016). Other studies also
set the threshold by Transcript Per Million (TPM) instead of
FPKM (Meyer et al., 2016). Yet better filtering reference could
come from External RNA Controls Consortium (ERCC) spike-
ins added to the experiment, which provides calibration of the
relative amount of starting material (Brennecke et al., 2013;
Treutlein et al., 2014).

Recently, specific methods have been developed to filter genes
from scRNA-seq dataset. OEFinder is designed to identify artifact
genes from scRNA-seq experiments using the Fluidigm C1
platform for cell capture (Leng et al., 2016). For experiments that
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TABLE 1 | List of single-cell analytical tools mentioned in this chapter.

Category Tool name References Availability

Preprocessing cutadapt Martin, 2011 https://cutadapt.readthedocs.org/en/stable/index.html

Preprocessing Trimmomatic Bolger et al., 2014 http://www.usadellab.org/cms/?page=trimmomatic

Preprocessing FASTQC Andrews, 2010 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Preprocessing SolexaQA Cox et al., 2010 http://solexaqa.sourceforge.net/

Preprocessing BIGpre Zhang et al., 2011 https://sourceforge.net/projects/bigpre/

Preprocessing HTQC Yang et al., 2013 https://sourceforge.net/projects/htqc/

Preprocessing SinQC Jiang, P. et al., 2016 http://www.morgridge.net/SinQC.html

Preprocessing SCell Diaz et al., 2016 https://github.com/diazlab/scell

Preprocessing celloline Ilicic et al., 2016 https://github.com/Teichlab/celloline

Alignment Tophat Trapnell et al., 2009; Kim et al.,

2013

https://ccb.jhu.edu/software/tophat/index.shtml

Alignment RSEM Li and Dewey, 2011 http://deweylab.github.io/RSEM/

Alignment GSNAP Wu et al., 2016 http://research-pub.gene.com/gmap/

Alignment STAR Dobin and Gingeras, 2015 https://github.com/alexdobin/STAR

Alignment Mapsplice Wang et al., 2010 http://www.netlab.uky.edu/p/bioinfo/MapSplice2

Quantification Cufflinks Trapnell et al., 2010 http://cole-trapnell-lab.github.io/cufflinks/

Quantification HISAT Kim, D. et al., 2015 https://ccb.jhu.edu/software/hisat2/index.shtml

Quantification HTSeq Anders et al., 2014 http://www-huber.embl.de/HTSeq/doc/overview.html

Quantification FeatureCounts Liao et al., 2013 http://bioinf.wehi.edu.au/featureCounts/

Quantification Kallisto Bray et al., 2016 https://pachterlab.github.io/kallisto/about.html

Gene filtering OEFinder Leng et al., 2016 https://github.com/lengning/OEFinder

Cofounding factor removal scLVM Buettner et al., 2015 https://github.com/PMBio/scLVM

Cofounding factor removal COMBAT Johnson et al., 2007 https://github.com/brentp/combat.py

Normalization GRM Ding et al., 2015 http://wanglab.ucsd.edu/star/GRM/

Normalization BASICS Vallejos et al., 2015 http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/

journal.pcbi.1004333.s009

Normalization SAMstrt Katayama et al., 2013 https://github.com/shka/R-SAMstrt

Normalization Deconvolution Aaron et al., 2016 https://github.com/MarioniLab/Deconvolution2016

Dimension Reduction pcaReduce Zurauskiene and Yau, 2015 https://github.com/JustinaZ/pcaReduce

Dimension Reduction t-SNE der Maaten and Hinton, 2008 https://lvdmaaten.github.io/tsne/

Dimension Reduction ACCENSE Shekhar et al., 2014 http://www.cellaccense.com/

Dimension Reduction ZIFA Pierson and Yau, 2015 https://github.com/epierson9/ZIFA

Differential Expression SCDE Kharchenko et al., 2014 http://hms-dbmi.github.io/scde/

Differential Expression PAGODA Fan et al., 2016 http://hms-dbmi.github.io/scde/

Differential Expression EdgeR Robinson et al., 2010 https://bioconductor.org/packages/release/bioc/html/edgeR.html

Differential Expression DESeq2 Love et al., 2014 https://bioconductor.org/packages/release/bioc/html/DESeq2.html

Differential Expression MAST Finak et al., 2015 https://github.com/RGLab/MAST

Subpopulation Detection GiniClust Jiang, L. et al., 2016 https://github.com/lanjiangboston/GiniClust

Subpopulation Detection Geneteam Harris et al., 2015

Subpopulation Detection AscTC Ntranos et al., 2016 https://github.com/govinda-kamath/clustering_on_transcript_compatibility_

counts

Subpopulation Detection SIMLR Wang et al., 2016 https://github.com/BatzoglouLabSU/SIMLR

Subpopulation Detection BISCUIT Prabhakaran et al., 2016 http://www.c2b2.columbia.edu/danapeerlab/html/pub/prabhakaran16-supp.pdf

Subpopulation Detection BackSPIN Zeisel et al., 2015 https://github.com/linnarsson-lab/BackSPIN

Microevolution Moncole Trapnell et al., 2014 http://cole-trapnell-lab.github.io/monocle-release/

Microevolution embeddr Campbell et al., 2015 https://github.com/kieranrcampbell/embeddr

Microevolution SCUBA Marco et al., 2014 https://github.com/gcyuan/SCUBA

Microevolution Oscope Leng et al., 2015 https://www.biostat.wisc.edu/∼kendzior/OSCOPE/

Microevolution SLICER Welch et al., 2016 https://github.com/jw156605/SLICER

Microevolution TSCAN Ji and Ji, 2016 http://bioconductor.org/packages/release/bioc/html/TSCAN.html

Workflow SINCERA Guo et al., 2015 https://research.cchmc.org/pbge/sincera.html

Links for their availability are attached.
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quantify gene expression with UMI counting, one can directly set
up a molecule number threshold, e.g., 25 (Zeisel et al., 2015). It
is also recommended to remove UMIs that have reads <1/100 of
average non-zero UMI reads, in order to avoid erroneous UMIs
generated during amplification.

Removal of Confounding Factors
When the entire data set consists of several runs of experiments
with potentially varied conditions, systematic variations called
batch effects might be introduced. These artifacts may pose
substantial problems to downstream statistical analysis, or even
mask biological signals. For studies concerning over-dispersion
of gene expression, it is necessary to factor out the extra
variance caused by the systematic differences between batches
(Fan et al., 2016). The appropriate way to compensate for
batch effect depends on the quantification method as well as
the downstream analysis. For most studies batch effects can
be eliminated by using down-sampling methods, however the
complexity is reduced (Wang et al., 2012; Dey et al., 2015; Grün
and van Oudenaarden, 2015). For studies that use traditional
fragment counting, COMBAT (Johnson et al., 2007) is a batch
effect eliminating method based on empirical Bayes frameworks
and purports to be robust to outliers for small sample sizes. It was
originally designed for microarray data but was used in scRNA-
Seq experiments (Kim, K. T. et al., 2015). Although unsupervised
batch effect detection or removal methods exist (Leek, 2014),
the batches called by such methods often correlate highly
with subpopulations detected by other scRNA-Seq methods
(Finak et al., 2015). Since it is usually desirable to consider
subpopulations for valuable biological insights, unsupervised
batch effect removal methods should be used with discretion in
single-cell experiments.

Besides batch-effect removal, it is also important to remove
technical variability within the noise. The technical noise level
of a genes correlates with its average expression level. Thus,
a probabilistic model can be built to fit this correlation using
technical spike-ins and further infer the biological variability of
each gene (Brennecke et al., 2013). For most studies, it is also
desirable to avoid the ubiquitous cell-cycle induced variation to
mask other interesting biological variations. scLVM is a package
that tries to introduce a cell-cycle factor removal step before
subpopulations detection (Buettner et al., 2015). Recently, a
new package called ccRemover was developed to remove the
principal components that are identified as cell-cycle affected,
which claimed to perform better than scLVM in several simulated
and real datasets (Barron and Li, 2016).

Normalization
In scRNA-seq experiments, technical factors such as read
depth, cell capture efficiency, 3′ bias or full sequence coverage
due to particular library prep methods, might differ among
different scRNA-Seq data sets. Thus, raw read counts should
be normalized before downstream analyses. This procedure
maximally ensures that the difference between the values in the
matrix correctly reflects the abundance difference of transcripts
or genes between the cells. When experiments are designed
with ERCC spike-ins, ERCC can be used as internal controls

and serve as anchors for normalization. GRM is a scRNA-seq
normalization tool fitting a Gamma Regression Model between
the reads (FPKM, RPKM, TPM) and spike-ins (Ding et al., 2015).
The trained model is then used to estimate gene expression
from the reads. BASICS, another recent workflow, provides
a Bayesian model allowing to infer cell-specific normalization
factor (Vallejos et al., 2015). This workflow estimates the
technical variability using spike-ins. Finally, SAMstrt (Katayama
et al., 2013) is an earlier algorithm that applies the resampling
normalization procedure of the SAMseq algorithm to spike-
ins, which was originally developed for bulk RNA-seq (Li and
Tibshirani, 2013).

For experiments without spike-ins, if the quantification
is count-based, one can normalize the expression profile by
the scaling methods used in DESeq and edgeR etc. (Love
et al., 2014). A new specific scRNA-seq procedure proposes
a de-convolution approach on the pooled counts of gene
expression for multiple cells, thus allows to infer the size factor
for individual cells without using spike-ins (Aaron et al., 2016).
The authors claimed that their approach improved the accuracy
of the normalization compared with existing methods. However,
experiments designed with UMIs as mentioned earlier quantify
gene expression on an absolute basis and thus they do not need
computational normalization.

Differential Expression
Differential expression (DE) analysis is the process of calling gene
expression that show statistically significant difference between
pre-specified groups of samples. Although DE is typically not the
main objective of a single-cell experiment design, as it requires
pre-defined grouping information among cells of interest, it
is nevertheless common in scRNA-Seq experiments. Simple
statistical methods such as t-test and Wilcoxon rank sum test
are used in scRNA-Seq workflows such as SINCERA (Guo
et al., 2015). Interestingly, EdgeR and DESeq2, two DE methods
developed for bulk RNA-Seq, gave the best results for some
scRNA-Seq data (Schurch et al., 2016).

The dropout event is a unique type of noise of scRNA-Seq
that rarely occurs in bulk RNA-Seq experiments. It refers to
the phenomenon that a gene is shown expressed abundantly in
one cell but not detectable in another cell, as a consequence of
the transcript loss in the reverse-transcription step. To account
for frequent dropout events and biological variability within cell
population, more sophisticated algorithms have been developed
for scRNA-Seq data. Single-Cell Differential Expression (SCDE)
is a package developed specifically for single-cell differential
expression (Kharchenko et al., 2014). The model assumes
that observed expression levels in scRNA-Seq data follow a
mixture of negative binomial distribution for amplified genes,
as proposed before (Anders and Huber, 2010); and a low-
mean poisson distribution for dropout genes, as is observed in
transcriptionally silenced genes. This model is then fit using
Expectation Maximization (EM) algorithm (Kharchenko et al.,
2014). It claimed higher sensitivity of differentially expressed
genes compared toDESeq andCuffDiff.More recently, PAGODA
improved upon SCDE’s method in several aspects, including
optimization of the computational process and a refined model
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for better fitting (Fan et al., 2016). MAST is another scRNA-
Seq differential expression detection method that uses a two-part
generalized linear model and adjusts for the fraction of cells that
express a certain gene (Finak et al., 2015).

Another challenge unique to scRNA-Seq is that some genes
may exhibit bimodality, meaning that the expression levels across
a group of cells concentrate around two modes instead of one.
A beta-Poisson distribution was proposed in order to provide
a more accurate differential expression analysis that captures
bimodality (Vu et al., 2016). Another tool Monocle (Trapnell
et al., 2014) also has a module for differential expression, which
fits the data with a non-parametric generalized additive model.
Finally, the workflow of BASICS as described earlier, provides an
criterion to detect high- or low-variable genes within the single
cells dataset (Vallejos et al., 2015). However, it is not clear which
methods have generally superior performance.

SUBPOPULATION AND MODULE
DETECTION

General Machine-Learning Approaches
Different classical unsupervised approaches have been used to
highlight single cell subgroups among a population. Principal
Component Analysis (PCA) and its variants (e.g., Robust PCA
and Kernel PCA) have been used in different single cell studies
(Amir et al., 2013; Yan et al., 2013; Pollen et al., 2014; Trapnell
et al., 2014; Treutlein et al., 2014; Satija et al., 2015; Fan
et al., 2016; Ilicic et al., 2016). K-means and other distance
based clustering algorithms such as hierarchical clustering or
WARD are also widely used (Yan et al., 2013; Jaitin et al.,
2014; Kharchenko et al., 2014; Lohr et al., 2014; Marco et al.,
2014; Pollen et al., 2014; Shin et al., 2015). For example,
Jaitin et al. combined hierarchical clustering and probabilistic
mixture models to classify single cells from different tissues
(Jaitin et al., 2014). A refined clustering method called pcaReduce
(Zurauskiene and Yau, 2015) was designed for scRNA-Seq. It
iteratively uses PCA combined with K-means to produce the
hierarchical tree of the cells. For distance metrics employed
by these methods, Euclidean distance, Pearson and Spearman
correlation coefficients have been popular (though may not be
optimal) choices (Pollen et al., 2014; Rotem et al., 2015).

Machine-Learning Approaches Tailored for
scRNA-Seq Analysis
More sophisticated machine-learning algorithms have great
potentials to overcome some issues of scRNA-Seq functional
analysis. A main issue of scRNA-Seq analysis is that gene
expression data cannot be expressed as a linear combination
of the relationships between two cells in general (Buettner and
Theis, 2012; Bendall et al., 2014; Levine et al., 2015). Also classical
similarities (such as cosine or Euclidean distances) are less
meaningful as the dimensionality increases (Beyer et al., 1999),
and may not be appropriate for scRNA-Seq (Xu and Su, 2015).
Possible irrelevant associations may arise with inappropriate
metrics, while searching for the nearest neighbors on noisy
data (Balasubramanian and Schwartz, 2002). Adequate analytical

methods for scRNA-Seq data should also be able to highlight
“rare events,” such as the small fraction of metastatic cancer
cells amongst a large cell population (Bose et al., 2015; Shin
et al., 2015). We describe the scRNA-Seq specific algorithms
below in the order of dimension reduction, clustering, and other
clustering variant methods. The datasets that were used to test
these algorithms are listed in Table 2.

Among the dimension reduction methods, Zero-inflated
factor analysis (ZIFA) algorithm is a new method that includes
dropout events by representing the probability of gene dropout
as an exponential function of its mean expression (Pierson and
Yau, 2015). Using a latent variable model based on factor analysis,
ZIFA reduces the dimension of scRNA-Seq dataset and allows the
probability of each gene expression to be zero. Experiments in
the original study suggest that ZIFA is a more robust alternative
to PCA. As mentioned earlier, scLVM is another method
for identifying cell subpopulations, which features removal of
confounding factor like cell-cycle effects (Buettner et al., 2015). It
first computes cell-to-cell covariance using a set of marker genes
related to biological hidden factors of interest (such as the cell
cycle). Another approach, PAGODA as mentioned before, uses a
weighted PCA to characterize multiple aspects of heterogeneity
in mouse neuronal progenitors (Fan et al., 2016). PAGODA
evaluates over-dispersion of individual genes using error models.

SIMLR is a new clustering method designed to learn
a distance metric that best fits the structure of the data.
It infers a distance function as a linear combination of
several distance metrics (Wang et al., 2016). It is designed to
tackle the heterogeneity observed amongst single-cell datasets
related to both technological difference across platforms as
well as biological difference across studies. In another single-
cell clustering approach named analysis of scRNA-seq based
on transcript-compatibility counts (AscTC), read counts from
scRNA-Seq dataset are transformed into probabilities using
transcript-compatibility counts, rather than the conventional
transcript abundance (Ntranos et al., 2016). Individual cells are
clustered using an affinity propagation algorithm, a derivative of
spectral clustering.

A few other hierarchical clustering approaches are worth
mentioning. Geneteam is a multi-level recursive clustering
method that searches for bipartitions of cells sharing exclusive
expression profiles for a subset of genes (Harris et al., 2015).
Similarly, Backspin is another hierarchical dividing clustering
algorithm, allowing to cluster both genes and cells (Zeisel et al.,
2015). It uses the SPIN algorithm (Tsafrir et al., 2005) at each
iteration to sort the expression matrix and then separates genes
(rows) and cells (columns) into two groups by a specific splitting
criterion. Alternatively, BISCUIT is a new iterative normalization
and clustering procedure based on Dirichlet Process, which was
designed to correct technical variation in scRNA-seq together
with cell clustering (Prabhakaran et al., 2016).

Graph Approaches beyond Clustering
Traditional clustering methods lack the function of inferring
the inherent lineage between cells. Common approaches for
cell lineage inferences require the creation of a graph or a
tree, where single cells are represented as nodes and edges
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TABLE 2 | Description of the main datasets for subpopulation and module detection analysis.

Dataset description Accession References Species Number of Original analysis Applied algorithms

cells

Cortex and hippocampus cells GSE60361 Zeisel et al., 2015 Mouse 3005 BackSPIN Geneteam, PAGODA,

AscTC, BISCUIT,

GiniClust

11 different cell types SRP041736 Pollen et al., 2014 Human 301 PCA and hierarchical

clustering

ZIFA, SILMR, pcaReduce

Myoblast differentiation GSE52529 Trapnell et al., 2014 Human 372 MONOCLE ZIFA, AscTC, TSCAN,

Embeddr

Embryomic T-cells under different cell

cycle stages

E-MTAB-2512 Buettner et al., 2015 Mouse 182 scLVM ZIFA, SLIMR

Preimplementation embryos and

embryonic stem cells at different stages

GSE36552 Yan et al., 2013 Human 124 PCA and hierarchical

clustering

scLVM, SNN-Cliq

Cells from developing bronchioalveolar at

four different stages of development

GSE52583 Treutlein et al., 2014 Mouse 202 PCA and hierarchical

clustering

SLICER, EMBEDDR

between the cells indicate their similarities. The lengths of the
edges are computed from a similarity matrix based on a given
metric. Before constructing the graph, a de-noising procedure
is necessary. A useful de-noising procedure is to compute the
k-Nearest-Neighbor graph (kNNG; Bendall et al., 2014; Levine
et al., 2015; Xu and Su, 2015). Samples from the kNNG could then
be compared using the geodesic distance, defined as the shortest
path between two nodes (Bendall et al., 2014). Such an approach
can remove “shortcuts” between irrelevant pairs of samples due
to the curse of high dimensionality (Tenenbaum et al., 2000).
Clustering analysis can then be performed on the graph using
community detection algorithms (Fortunato, 2010). Xu and
Su first used Euclidean distance to compute Shared Nearest-
Neighbor (SNN) graph, then searched for quasi-cliques to obtain
clusters of cells (Xu and Su, 2015). Quasi-cliques are communities
of nodes, densely but not necessarily fully connected. Highly
Connected Sub-graph (HPC) is another community detection
algorithm that showed very similar performances as SNN
(Hartuv and Shamir, 2000).

MICROEVOLUTION OF SINGLE CELLS

Inference without Spatial and Temporal
Information
scRNA-Seq data are also informative to reveal single-cell
microevolution. Different algorithms have been specifically
designed for scRNA-Seq to infer a pseudo temporal ordering of
single cells. Moncole is the first scRNA-Seq bioinformatics tool
to infer the temporal ordering of single cells (Trapnell et al.,
2014). It first uses Independent Component Analysis (ICA) to
reduce the dimension, then computes a Minimum Spanning
Tree (MST) on the graph constructed by Euclidean distance
between cell pairs. MST connects all nodes of a graph using edges
with a minimal total weighting, based on the hypothesis that
the longest path through the MST corresponds to the longest
series of transcriptionally similar cells. Another similar method,
Waterfall, uses PCA coupled with k-means to produce clusters,
then connects the cluster centroids with MST (Shin et al., 2015).

Similar to Waterfall, TSCAN is a new approach based on MST.
Cells are first clustered using a model-based approach before
constructing an MST, allowing the reduction of the tree space
complexity (Ji and Ji, 2016).

Embeddr is a method that uses the correlation metric between
cells to construct kNNG, then projects the samples into a low-
dimensional embedding using Laplacian eigen maps. The pseudo
time order is then fitted using the principal curves (Campbell
et al., 2015). Embeddr aims to tackle the drawbacks of Monocle,
where gene expression ismodeled as a linear combination and the
result is highly sensitive to outliers. This scheme is also used in
the workflow of SLICER, a recent algorithm using Locally Linear
Embedding (LLE) to project the dataset and to construct a kNNG
among cells (Welch et al., 2016).

Since visualization is key in understanding reconstructed
single-cell trajectories, better visualization algorithms are
as important as methods to reconstruct the single-cell
microevolution. t-SNE is a popular method to visualize
single cells, as part of a more complex workflow (Jiang, L. et al.,
2016; Petropoulos et al., 2016). Another approach derived from
diffusion map was developed, allowing one to visualize a clear
bifurcation event among the cells which may be missed by
independent component analysis (ICA) or t-SNE (Haghverdi
et al., 2015; Moignard et al., 2015).

Modeling Microevolution with Spatial and
Temporal Information
Cell subpopulations can also be characterized by different
temporal and/or spatial gene expressions. Several approaches
have been designed to exploit datasets with explicit temporal
information. SCUBA is a method to detect bifurcation events
using time course data (Marco et al., 2014). It assumes that the
switch between cell states is a stochastic punctual process. To
infer cellular hierarchy, it iteratively divides cells using k-means
algorithm and uses a gap statistic to determine if a bifurcation
event should occur. This process creates a binary tree, which
can then be used to model gene expression dynamics (Marco
et al., 2014). However, one drawback of SCUBA is that it requires
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data with temporal features. Free from such a requirement,
Oscope is another method to infer oscillatory genes among
single cells collected from a single tissue (Leng et al., 2015). It
hypothesizes that these cells represent distinct states according to
an oscillatory process. Oscope fits a two-dimensional sinusoidal
function for each pair of genes, clusters gene pairs by frequency
and reconstructs the order of the cells in a cyclic fashion.
However, Oscope is unable to infer bifurcation events.

Other models also consider the spatial organization of cells in
a tissue. Seurat is an approach that infers the spatial localization
of single cells by integrating RNA-Seq with in situ RNA patterns
(Satija et al., 2015). Seurat divides a cellular tissue into distinct
spatial bins, linked by the expression of landmark genes per RNA
in-situ hybridization. Within each bin, it builds a mixture model
using expression values among correlated genes. The posterior
probability is generated for each cell and assigned to a given bin.
Another approach models the tissue as a 3D map and assumes
that cells spatially close share common scRNA-Seq profiles (Pettit
et al., 2014). This method uses a hidden markov random field
to assign each bin of the map to a given cluster. Similar to
Seurat, it takes the input of spatial gene expression measurement
using whole mount in situ Hybridizations (WiSH) technology,
a confocal microscopic approach that detects the presence of
mRNA linked to a fluorescent probe.

CHALLENGES AND FUTURE WORK

Compared to bulk-cell analysis, single-cell genomics has the
advantage of exploring cellular processes with a more accurate
resolution, but it is more vulnerable to disturbances. Besides
perfecting the experimental protocols to deal with issues such
as dropouts in gene expression and biases in amplification,
deriving new analytical methods to reveal the complexity in
scRNA-Seq data is just as challenging. In this review, we
have listed the different bioinformatics algorithms dedicated
to single-cell analysis. Although the initial few steps of
workflow for scRNA-Seq analysis are similar to bulk-cell
analysis (data pre-processing, batch removal, alignment, quality
check, and normalization), the subsequent analyses are largely
unique for single cells, such as subpopulations detection, and
microevolution characterization (Figure 1). With the increasing
popularity of single-cell assays and ever increasing number
of computational methods developed, these methods need to

be more accessible to research groups without bioinformatics
expertise. Moreover, datasets where cell classes have already
been previously charaterized should be identified as benchmark
data, in order to accurately assess the performance of new
bioinformatics methods.

Although this review focuses on scRNA-Seq analyses, with
the rapid development of technologies, coupled DNA-based
genomics data can be obtained from the same cell, in parallel
with scRNA-Seq data (Han et al., 2014; Dey et al., 2015; Kim, K.
T. et al., 2015; Macaulay et al., 2015). This will further increase
the analytical challenges. Previous multi-omics bioinformatics
tools applied to bulk samples could be leveraged. The use
of graphs and tensor approaches that integrate heterogeneous

features in bulk samples may be good starting points for multi-
dimensional single cell data (Li et al., 2009; Levine et al.,
2015; Katrib et al., 2016; Zhu et al., 2016). Efforts should also
be made toward developing computational methods to make
use of spatial information (possibly guided by imaging) in
combination of scRNA-Seq (Pettit et al., 2014; Satija et al.,
2015). Also most emphasis in scRNA-Seq by far has been made
on protein coding genes, and the dynamics and roles of non-
coding RNAs such as lncRNAs (Travers et al., 2015; Ching
et al., 2016) and micro-RNAs are poorly explored. Finally, a
large number of single-cells (n = 4645) in a single data set
was reported recently (Tirosh et al., 2016), and the scRNA-
Seq data volume is expected to continue growing exponentially.
Foreseeably, this poses a large spectrum of challenges from
developing more efficient aligners to better data storage and data
sharing solutions.
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Individual cell heterogeneity within a population can be critical to its peculiar function

and fate. Subpopulations studies with mixed mutants and wild types may not be as

informative regarding which cell responds to which drugs or clinical treatments. Cell

to cell differences in RNA transcripts and protein expression can be key to answering

questions in cancer, neurobiology, stem cell biology, immunology, and developmental

biology. Conventional cell-based assays mainly analyze the average responses from a

population of cells, without regarding individual cell phenotypes. To better understand

the variations from cell to cell, scientists need to use single cell analyses to provide

more detailed information for therapeutic decision making in precision medicine. In this

review, we focus on the recent developments in single cell isolation and analysis, which

include technologies, analyses and main applications. Here, we summarize the historical

background, limitations, applications, and potential of single cell isolation technologies.

Keywords: heterogeneity, single cell, isolation, analysis, sequencing

INTRODUCTION

The cell is the fundamental unit of biological organisms. Despite the apparent synchrony in cellular
systems, analyzed single cell results show that even the same cell line or tissue, can present different
genomes, transcriptomes, and epigenomes during cell division and differentiation (Schatz and
Swanson, 2011). For example, a developing embryo, brain, or tumor have intricate structures
consisting of numerous types of cells that may be spatially separated. Thus, the isolation of distinct
cell types is essential for further analysis and will be valuable for diagnostics, biotechnological and
biomedical applications.

Conventional cell-based assays mainly measure the average response from a population of cells,
assuming the average response is representative of each cell. However, in doing this important
information about a small but potentially relevant subpopulation maybe lost, particularly in cases
where that subpopulation determines the behavior of the whole population. For example, the
tumor microenvironment is a complex heterogeneous system that consists of multiple intricate
interactions between tumor cells and its neighboring non-cancerous stromal cells. The stromal
cells are composed of endothelial cells, fibroblasts, macrophages, immune cells, and stem cells.
Due to the variation in genetic and environmental factors, different kinds of cells have unique
behaviors and present different implications in pathogenic conditions (Schor and Schor, 2001).
These challenges make conventional analysis insufficient. Therefore, new technologies to isolate
individual single cells from a complex sample and study the genomes and proteomes of single cells
could provide great insights on genome variation and gene expression processes. It is believed that
single cell analyses have influences on various fields including life sciences and biomedical research
(Blainey and Quake, 2014).

33

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org/Cell_and_Developmental_Biology/editorialboard
http://www.frontiersin.org/Cell_and_Developmental_Biology/editorialboard
http://www.frontiersin.org/Cell_and_Developmental_Biology/editorialboard
http://www.frontiersin.org/Cell_and_Developmental_Biology/editorialboard
http://dx.doi.org/10.3389/fcell.2016.00116
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2016.00116&domain=pdf&date_stamp=2016-10-25
http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:yaguangdeng@126.com
http://dx.doi.org/10.3389/fcell.2016.00116
http://journal.frontiersin.org/article/10.3389/fcell.2016.00116/abstract
http://loop.frontiersin.org/people/95689/overview
http://loop.frontiersin.org/people/352454/overview


Hu et al. Single Cell Isolation and Analysis

In early times, researchers have applied low-throughput
single cell analysis techniques, such as immunofluorescence,
fluorescence in situ hybridization (FISH) and single cell PCR, to
detect certain molecular markers of single cells (Taniguchi et al.,
2009; Citri et al., 2012). These techniques allow quantification
of a limited number of parameters in single cells. On the other
hand, high-throughput genomic analysis, such as DNA and RNA
sequencing are now widely used. However, genomic studies rely
on studying collective averages obtained from pooling thousands
to millions of cells, precluding genome-wide analysis of cell
to cell variability. Therefore, single cell sequencing developed
alongside its necessity in research awarding it “method of the
year” by Nature Methods in 2013 (2014). By using single cell
analysis, researchers have profiled many biological processes
and diseases at the single cell level including tumor evolution,
circulating tumor cells (CTCs), neuron heterogeneity, early
embryo development, and uncultivatable bacteria.

In this review, we discuss the technologies recently developed
for single cell isolation, genome acquisition, transcriptome, and
proteome analyses, and their applications. We also briefly discuss
the future potentials of single cell isolation technologies and
analyses.

TECHNOLOGIES FOR SINGLE CELL
ISOLATION

Before initiating a single cell analysis, scientists need to isolate or
identify single cells. The performance of cell isolation technology
is typically characterized by three parameters: efficiency or
throughput (how many cells can be isolated in a certain
time), purity (the fraction of the target cells collected after the
separation), and recovery (the fraction of the target cells obtained
after the separation as compared to initially available target cells
in the sample). The current techniques show different advantages
for each of the three parameters.

Based on the variety of principles used, current existing
cell isolation techniques can be classified into two groups.
The first group is based on physical properties like size,
density, electric changes, and deformability, with methods
including density gradient centrifugation, membrane filtration
and microchip-based capture platforms. The most advantageous
physical properties is single cell isolation without labeling. The
second group is based on cellular biological characteristics,
comprising of affinity methods, such as affinity solid matrix
(beads, plates, fibers), fluorescence-activated cell sorting, and
magnetic-activated cell sorting, which are based upon biological
protein expression properties (Dainiak et al., 2007). Thus, in
what follows we briefly summarize the principle of each method,
as well as the advantage and limitation of their applications
(Table 1). We will not discuss limiting dilution since it is well
known in the field of monoclonal cell cultures production.

Fluorescence Activated Cell Sorting (FACS)
Fluorescence Activated Cell Sorting (FACS), a specialized type of
flow cytometry with sorting capacity, is the most sophisticated
and user-friendly technique for characterizing and defining

different cell types in a heterogeneous cell population based on
size, granularity, and fluorescence. FACS allows simultaneous
quantitative and qualitative multi-parametric analyses of single
cells (Gross et al., 2015). Before separation, a cell suspension is
made and the target cells are labeled with fluorescent probes.
Fluorophore-conjugated monoclonal antibodies are the most
widely used fluorescent probes (mAb) that recognize specific
surface markers on target cells. As the cell suspension runs
through the cytometry, each cell is exposed to a laser, which
allows the fluorescence detectors to identify cells based on the
selected characteristics. The instrument applies a charge (positive
or negative) to the droplet containing a cell of interest and
an electrostatic deflection system facilitates the collection of
the charged droplets into appropriate collection tubes for later
analysis (Figure 1A). Although FACS has been widely used for
isolation of highly purified cell populations, it has been reported
that FACS can also be used to sort single cells (Schulz et al., 2012).
For example, BD cell sorting systems (such as the BD FACSAria
III Cell Sorter) are able to isolate single cells of interest from
thousands of cells in a population using up to 18 surface markers.

Since the late 1960s, remarkable advances have been made
on the FACS technology including the instrumentation and the
availability of a large number of highly specific antibodies. The
capability of FACS technology has improved significantly from
a technique limited to measuring 1–2 fluorescent species per
cell to 10–15 species. The maximum number of proteins that
can be simultaneously measured has progressively increased (Wu
and Singh, 2012). Due to this progress, our understanding of
immunology and stem cell biology has improved tremendously
alongside the discovery of scores of functionally diverse cell
populations (Bendall et al., 2012). It has also been reported that
using the next generation cytometry, “post-fluorescence” single
cell technology termed mass cytometry is theoretically capable of
measuring 70–100 parameters.

Although FACS has been widely used in both basic and clinical
research, there are several limiting disadvantages. First, FACS
requires a huge starting number of cells (more than 10,000) in
suspension. Therefore, it fails to isolate single cells from a low
quantity cell population. Second, the rapid flow in the machine
and non-specific fluorescent molecules can damage the viability
of the sorted cells rendering the isolation a failure. Moreover, cells
or cell cultures must be subjected to stimulation experiments and
treated in a separate environment before FACS analysis.

Magnetic-Activated Cell Sorting (MACS)
Magnetic-Activated Cell Sorting (MACS) is another commonly
used passive separation technique to isolate different types of cells
depending on their cluster of differentiation. It has been reported
that MACS is capable of isolating specific cell populations with a
purity >90% purification (Miltenyi et al., 1990). MACS is based
on antibodies, enzymes, lectins, or strepavidins conjugated to
magnetic beads to bind specific proteins on the target cells. When
a mixed population of cells is placed in an external magnetic
field, the magnetic beads will activate and the labeled cells will
polarize while other cells are washed out. The remaining cells
can be acquired by elution after the magnetic field is turned off
(Figure 1B). With this technique, the cells can be separated by
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TABLE 1 | Overview of single cell isolation techniques.

Techniques Throughput Advantage Disadvantage References

Fluorescence-activated cell sorting (FACS) High High specificity multiple parameters Large amount of material,

dissociated cells, high skill needed

Gross et al., 2015

Magnetic-activated cell sorting (MACS) High High specificity, cost effective Dissociated cells, non-specific cell

capture

Welzel et al., 2015

Laser capture microdissection (LCM) Low Intact fixed and live tissue Contaminated by neighboring cells,

high skill needed

Espina et al., 2007;

Datta et al., 2015

Manual cell picking Low Intact live tissue High skill needed, low throughput Citri et al., 2012

Microfluidic High Low sample consumption,

integrated with amplification

Dissociated cells, high skill needed Bhagat et al., 2010;

Lecault et al., 2012

FIGURE 1 | Overview of single-cell isolation technologies discussed in the section. (A) Schematic of fluorescence-activated cell sorting. The suspended

labeled cells are passed as a stream in droplets with each containing a single cell in front of a laser. The fluorescence detection system detects the fluorescent and light

scatter characteristics. Based on their characteristics, the instrument applies a charge to the droplet containing a cell of interest and an electrostatic deflection system

facilitates collection of the charged droplets into different collecting tubes. Cells labeled with green, purple, and yellow indicate different cell types. (B) Schematic of

magnetic-activated cell sorting. Cells of interest are labeled with specific antibody conjugated magnetic beads. An external magnetic field is used to separate the

labeled cells from the cell suspension. S and N indicate magnetic field. (C) Schematic of laser capture microdissection. The technique utilizes a laser which fired

through the cap over the cells of interest to melt the membrane to let the cells adhere to the melted membrane. When the cap is removed, captured cells are removed,

leaving the unwanted cells behind. (D) Schematic of manual cell picking. The cells of interest are monitored under a microscope. By using a glass pipette connected

to a micromanipulator, single cells can be collected and transferred to a new tube for following analysis. (E) Schematic of microfluidic used for single cell isolation.

Before starting the experiments, cells need to be dissociated then flow into a chip. Thus, the cells may be separated into different tubes containing only one cell.

charge with respect to the particular antigens. Positive separation
techniques use coated magnetic beads and attract cells. The cells
of interest are labeled while the unlabeled cells are discarded.
In contrast, if species-specific substances are unavailable, a good
choice is to use negative separation techniques which employ a
cocktail of antibodies to coat untreated cells. In this case, labeled
cells are discarded while unlabeled are retained (Grützkau and
Radbruch, 2010).

Of the two most common affinity-based techniques for
specific cell isolation, MACS technology is comparatively
simple and cost-effective. However, the MACS system’s obvious
shortcoming lies in its initial costs in the separation magnet,
and running costs including not only the price of the conjugated
magnetic beads, but also replacement columns. In addition, the
final purity of isolated cells in MACS devices depends on the
specificity and the affinity of the antibodies used to select the
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target cells. It also depends on the amount of non-specific cell
capture. Non-specific contamination can be from adsorption of
background cells to the capturing device or their entrapment
within the large excess of magnetic particles needed for labeling
rare cells in large volumes. Using new materials can eliminate
contamination from non-specific adsorption or entrapment of
other blood cells. Another disadvantage of MACS is that it can
only utilize cell surface molecules as markers for separation of
live cells. Furthermore, it should be noted that MACS is far more
limited than FACS because of immunomagnetic techniques that
can only separate cells into positive and negative populations.
High and low expression of a molecule cannot be separated while
it is possible by using FACS sorting.

Laser Capture Microdissection (LCM)
Laser Capture Microdissection (LCM) is an advanced technology
for isolating pure cell populations or a single cell from
mostly solid tissue samples on a microscope slide (Emmert-
Buck et al., 1996). It can accurately and efficiently target
and capture the cells of interest to fully exploit emerging
molecular analytical technologies, including PCR, microarrays
and proteomics (Espina et al., 2007). Today, there are two general
classes of laser capture microdissection systems: infrared (IR
LCM) and ultraviolet (UV LCM). The LCM system consists of
an inverted microscope, a solid state near infrared laser diode,
a laser control unit, a joy stick controlled microscope stage with
a vacuum chuck for slide immobilization, a CCD camera, and a
color monitor (Datta et al., 2015). The basic principle of LCM
starts with visualizing the cells of interest through an inverted
microscope, then a fixed-position, short duration and focused
laser pulse is delivered to melt the thin transparent thermoplastic
film on a cap above the targeted cells. The film melts and fuses
with the underlying cells of choice. When the film is removed,
the target cells remain bound to the film while the rest of the
tissue is left behind. Finally, transfer the cells to a microcentrifuge
tube containing buffer solutions required for a wide range of
downstream analysis (Kummari et al., 2015; Figure 1C).

The most important advantage of LCM is its speed
while maintaining precision and versatility (Fend and Raffeld,
2000). LCM provides a rapid, reliable method to procure
pure populations of target cells from a wide range of
cell and tissue preparations via microscopic visualization
(Bonner et al., 1997). Conventional techniques for molecular
analysis require dissociation of tissue. This may introduce
inherent contamination problems and reduce the specificity and
sensitivity to subsequent molecular analysis. On the other hand,
LCM is a “no touch” technique that does not destroy adjacent
tissues after initial microdissection. Morphology of both the
captured cells as well as the residual tissue is well preserved and
reduces the danger of tissue loss (Esposito, 2007). In addition,
after removing the chosen cells, the remaining tissue on the
slide is fully accessible for further capture, allowing comparative
molecular analysis of adjacent cells.

The major requirement for effective LCM is correct
identification of cell subpopulations or single cells in a complex
tissue. Thus, the major limitation is the need to identify cells of
interest through visual microscopic inspection of morphological

characteristics, which in turn, requires a pathologist, cytologist,
or technologist trained in cell identification (Espina et al., 2007).
Another significant limitation is that the microdissected tissue
section does not have a cover slip. Cover slipping would prevent
physical access to the tissue surface, which is crucial to any
current microdissection method. Without a cover slip, and the
index matching between the mounting media and the tissue, the
dry tissue section has a refractile quality, which might obscure
cellular detail at high magnifications. Moreover, LCM introduces
a number of technical artifacts, including slicing the cells during
the preparation of tissue sections and UV damage to DNA or
RNA from the laser cutting energy (Allard et al., 2004).

Manual Cell Picking/Micromanipulation
Manual cell picking is a simple, convenient, and efficient
method for isolating single cells. Similar to LCM, manual
cell picking micromanipulators also consists of an inverted
microscope combined with micro-pipettes that are movable
through motorized mechanical stages. Each isolated single cell
can be observed and photographed under the microscope,
thus enabling unbiased isolation (Figure 1D). Unlike LCM
that mainly isolates single cells from sections of fixed tissue,
micromanipulation plays an important role in isolating live
culture cells or embryo cells.

Micromanipulation can be easily performed in an
electrophysiology lab equipped with a patch clamp system.
For example, after investigating neuronal function in brain
slices preparations after standard whole-cell patch-clamp
electrophysiological recordings, scientists would apply negative
pressure through the patch pipette so that the cytosolic material
containing cellular mRNA can be aspirated for further analysis
(Eberwine et al., 1992; Citri et al., 2012). However, the throughput
is limited and it requires highly skilled professionals to perform,
it has the utility limitation when detecting complex changes.

Microfluidics
Microfluidics is recognized as a powerful enabling technology
for investigating the inherent complexity of cellular systems
as it provides precise fluid control, low sample consumption,
device miniaturization, low analysis cost, and easy handling of
nanoliters-volumes (Whitesides, 2006; Figure 1E). Cell Sorting
by a microfluidic chip can be divided into four categories:
cell-affinity chromatography based microfluidic (Nagrath et al.,
2007), physical characteristics of cell based microfluidic
separation, immunomagnetic beads based microfluidic
separation, and separation methods based on differences
between dielectric properties of various cell types.

Cell-affinity chromatography based microfluidic is the most
commonly used method for microfluidic chip analysis. It is based
upon highly specific interactions between antigen and antibody,
ligand and receptor. At the beginning of the process, the micro-
channel in the chip is modified with specific antibodies capable
of binding to cell surface antigen or aptamer, such as an epithelial
cell adhesion molecule. Once the sample flows through the
micro-channels, its cell surface antigen can bind to the specific
antibodies or aptamer immobilizing the cells on the chip, while
the remaining cells flow off the chip with the buffer. Finally,
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using a different buffer, we can elute the immobilized cells for
downstream analysis. Compared to other separation methods,
affinity based systems have higher specificity and sensitivity
because of the recognition-binding event.

Today, microfluidics can be combined with different
separation methods, such as filtration and sedimentation
or affinity-based technologies like FACS and MACS. In the
recent years, numerous investigations and applications in
microfluidic devices have been reported, including cancer
research, microbiology, single-cell analysis, stem cell research,
drug discovery, and screening (Arora et al., 2010; Li et al., 2012a).
Recently, microfluidic chips have been fabricated from silicon
or glass, elastomer, thermosets, hydrogel, thermoplastics, and
paper (Ren et al., 2013, 2014). The advantages and disadvantages
of the materials used in microfluidic chips have been well-
summarized previously (Ren et al., 2014). Microfluidics are
used to manipulate liquids (dimensions from 1 to 1000µm) in
networks of micro-channels in a single device. At such ultralow
volumes, fluids exhibit different physico-chemical properties
compared to their behavior at the macro-scale (Squires and
Quake, 2005). Other common fluids can be used in microfluidic
devices include bacterial cell suspensions, whole blood samples,
protein or antibody solutions, and various buffers.

Taking advantages of integrating cell handling and processing
concurrently, microfluidic chips show potential applications in
DNA sequencing (Hashimoto et al., 2007; Liu et al., 2007),
protein analysis (Emrich et al., 2007), cell manipulation, and cell
composition analysis (VanDijken et al., 2007; Bhagat et al., 2010).
For example, Fluidigm developed a commercially available valve-
based microfluidic qPCR system called the Dynamic ArrayTM.
This system advanced on providing low-volume (nanoliter)
and high-throughput (thousands of PCR reactions per device)
methods to the researchers and has become increasingly
popular for large-scale single cell studies. Moreover, microfluidic
technology has shown increasing applications in studying
diversity and variations in single cell genomes, spanning from
cancer biology to environmental microbiology and neurobiology.
Beyond genomics applications, the scalability and small volume
advantages of microfluidic methods have found applications in
the measurement of intracellular and secreted proteins from
single cells.

SINGLE CELL ANALYSIS

Single cell analysis tools can be divided into three groups:
genomics, transcriptomics, and proteomics. Due to next
generation sequencing (NGS) technologies as well as whole
genome/transcriptome amplification (WGA/WTA) approaches,
a new scientific field of single cell genome studies have
been established. A combination of high-throughput and
multiparameter approaches is used in single cell analysis which
can reflect cell to cell variability and heterogeneous differences
in the individual cells. Therefore, the development of efficient
single cell analysis methods requires attention. In this section,
we discuss novel technologies designed for single cell analysis of
genomics, transcriptomics, and proteomics (Table 2).

Single Cell Genomics
Single cell genome sequencing allows us to identify chromosomal
variations, such as copy number and single-nucleotide variations.
It also allows us to study tumor evolution, gamete genesis,
and somatic mosaicism, which is reflected in the genomic
heterogeneity among a population of cells. However, in humans,
it often faces the low amount of genome materials, for example,
the weight of one genomic DNA is only 6 pg and each gene
in the genome only has two copies in a single normal cell
which is not quite enough for the current NGS use. However,
amplification using traditional PCR suffers from severe biases
and allelic dropout across the genome when it is applied to
single cells. Therefore, a precise, unbiased amplification of
the DNA is critical to single cell genome sequencing. Lots
of attempts were made, mostly by modifying the traditional
PCR methodology to linker-adapter PCR (LA-PCR) (Klein
et al., 1999), interspersed repetitive sequence PCR (IRS-PCR),
primer extension pre-amplification PCR (PEP-PCR) (Hubert
et al., 1992), degenerate oligonucleotide-primed PCR (DOP-
PCR) (Telenius et al., 1992), and its variant displacement
DOP-PCR (D-DOP-PCR) (Langmore, 2002). For example, by
using DOP-PCR, Navin and colleagues demonstrated accurate
and robust determination of genome wide copy number in
rearranged cancer genomes (Navin et al., 2011). This is the first
report of single cell genome sequencing applied to a cancer
genomic heterogeneity study. However, these methods also have
some limitations in low coverage, amplification bias, and allele
dropout.

The multiple displacement amplification (MDA) is the most
popular method applied in genome analysis due to its high
fidelity and simplicity. It can amplify DNA in a 30◦C isothermal
reaction with random hexamer primers and phi29 DNA
polymerase. The kernel of MDA is that phi29 DNA polymerase
can extend the primers with high fidelity and strong processivity,
which exhibits powerful strand displacement ability during the
new strand synthesis (Dean et al., 2002). The displacement
process generates single stranded DNA templates, which are
reprimed and extended, thereby amplifying the DNA in an
isothermal reaction. Based on MDA, Xu and colleagues provided
the first intratumoral genetic landscape at a single-cell level
and demonstrated that clear cell renal cell carcinoma (ccRCC,
the most common kidney cancer) may be more genetically
complex than previously thought (Xu et al., 2012). However,
MDA also suffers from strong biases and high allelic dropout rate
across the genome, making the reaction vulnerable to generating
“chimeras,” resulting in unwanted noise and false results.

Another new method, multiple annealing and looping-based
amplification cycles (MALBAC) showed faithful copy number
variation detection (Zong et al., 2012), which can amplify the
genome of a single cell with high uniformity. MALBAC is
based upon strand displacement pre-amplification that generates
amplicons with complementary ends. Thus, the full amplicons
generated in the reaction seal themselves to form loops to prevent
them from being amplified again. This also ensures that each new
amplicon is replicated from the original templates. Therefore,
the obvious advantage of MALBAC is that it can reduce the
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TABLE 2 | Techniques for single cell analyses.

Methods Classification Throughput Advantage Disadvantage References

Genome PCR* LA-PCR*, IRS-PCR*,

PEP-PCR*, DOP-PCR*

High High coverage Uneven coverage,

amplification bias, allele

dropout

Klein et al., 1999

MDA* None High Homogeneous

coverage

Amplification bias, allele

dropout, “chimera” structure

Spits et al., 2006

MALBAC* None High Homogeneous

coverage

Amplification bias, allele

dropout

Lu et al., 2012: Van

Loo and Voet, 2014

Transcriptome PCR-based amplification RNA-seq, TPEA*, SMART* High Amplify quickly Distort the difference Pan, 2014

IVT* CEL-seq Quartz-seq High Specificity, ratio

fidelity

Low efficiency Hebenstreit, 2012;

Liu et al., 2014

Phi29 DNA polymerase TTA* PMA* High High efficient,

low bias

RNA need to be selected

from the gDNA

Pan et al., 2013; Liu

et al., 2014

Protein Flow cytometry None High More species Spectral overlap Haselgrübler et al.,

2014

Microfluidic flow cytometry None High Small number of

cells

Dissociated cells, high skill

needed

Wu and Singh, 2012

Mass spectrometry LDI-MS*, SIMS*

(MALDI)-MS*

High Low sensitivity No molecular labels,

Femtomolar sensitivity

Haselgrübler et al.,

2014; Liu et al., 2014

*PCR, Polymerase chain reaction; *LA-PCR, linker-adapter PCR; *IRS-PCR, Interspersed repetitive sequence PCR; *PEP-PCR, Primer extension pre-amplification PCR; *DOP-PCR,

degenerate oligonucleotide-primed PCR; *MDA, Multiple displacement amplification; MALBAC, Multiple annealing and looping-based amplification cycles; *TPEA, 3′-end amplification;

*SMART, strand-switch-mediated reverse transcription amplification; *IVT, in vitro transcription; TTA, Total transcript amplification; *PMA, Phi29 mRNA amplification; LDI-MS, Laser

desorption and ionization mass spectrometry; *SIMS, Secondary ion mass spectrometry; *MALDI-MS, Matrix-assisted laser desorption/ionization mass spectrometry.

amplification errors and biases as the starting materials of the
exponential amplification are amplicon separately copied from
the original template. However, it is still needed to improve the
fidelity and lower the bias (Marcy et al., 2007; Wu et al., 2014).

Single Cell Transcriptomics
Single cell transcriptome sequencing has recently emerged as a
powerful technology for revealing differential gene expression
and diverse RNA splicing patterns during early embryonic
development, differentiation and reprogramming. The main
application of single-cell transcriptomics is to connect a cell’s
genotype to phenotype. It is able to detect thousands of
transcripts in various kinds of tissues and cells (Cloonan et al.,
2008; Mortazavi et al., 2008). Although mRNA is not as rare as
DNA in a single cell, there are still thousands of copies. This
is ideal since NGS transcriptome sequencing also requires a
large amount of RNA as the starting material. The mRNA from
single cells needs to be reverse-transcribed to cDNA followed by
cycles of PCR amplification (Sandberg, 2014). The key process in
completing single cell mRNA amplification successfully is based
on performing reverse transcription to double-strand DNA with
high efficiency and low biases.

PCR-based amplification was first reported in single-cell
transcriptome analysis of the preparation of single-cell cDNAs
using cDNAmicroarray and RNA-seq analysis (Brady and Iscove,
1993). The disadvantage of a microarray is the low detection
sensitivity that would likely miss many low-level but key
transcripts. Compared to microarray analysis, RNA-seq analysis
expanded the spectrum of detected genes with high accuracy
and effectively increased the proportion of full-length cDNA.

One advantage of PCR-basedmRNA transcriptome amplification
bias is that it makes the expression difference more visible
between samples and any RNA starting amount can be employed.
But on the other hand, it may distort the original difference
when it is marginal. Several modified PCR-based methods of
cDNA amplification have been developed, such as global PCR
amplification (GA), 3′-end amplification (TPEA), and strand-
switch-mediated reverse transcription amplification (SMART)
(Pan, 2014).

In vitro transcription (IVT)-based amplification linear RNA
amplification is the first strategy that has been used to successfully
amplify RNA for molecular profiling studies, which promoted
the birth of the era of single cell analysis (Liu et al., 2014). It is
based on T7 RNA polymerase-mediated IVT and requires three
rounds of amplification. The main advantages of the IVT strategy
include its specificity, ratio fidelity, and reducing accumulation
non-specific products, but has the drawback of low efficiency and
a time consuming procedure.

Recently, single cell RNA amplification methods have been
raised based on the Phi29 DNA polymerase (Blanco and Salas,
1984; Dean et al., 2002). This polymerase is a highly processive
enzyme with strong strand displacement activity that allows for
highly efficient isothermal DNA. The phi29 DNA polymerase-
based transcriptome amplification method is a simple, fast and
isothermal reaction (Liu et al., 2014). The primary advantage of
this method is the highly efficient, low bias, and uniform nature
of amplification.

Furthermore, in order to retain the spatial and temporal
information of RNAs in cells, several new RNA sequencing
methods have been developed, including transcriptome in vivo
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analysis (TIVA), single molecule fluorescent in situ hybridization
(smFISH), fluorescent in situ RNA sequencing (FISSEQ), and
so on (Lee et al., 2014; Lovatt et al., 2014). These technologies
become powerful tools for unraveling longstanding biomedical
questions.

Single Cell Proteomics
Single cell analysis of DNA and RNA can provide qualitative
information about protein expression. However, they cannot
give information on protein concentration, location, post-
translational modifications, or interactions with other proteins.
Thus, single-cell proteomics help us obtain much more
information that is crucial in cell signaling and cell to cell
heterogeneity. Traditional protein analysis techniques, such as
gel electrophoresis, immunoassays, chromatography, and mass
spectrometry require numerous cells for analysis. Therefore,
the major challenges of analyzing proteins at the single-cell
level are the exceedingly small copy number of individual
proteins and the lack of amplification methods. However, recent
advances in multiparameter flow cytometry, microfluidics, mass
spectrometry, mass cytometry, and other techniques have led to
new single cell proteomics studies that could be performed with
greater sensitivity and specificity.

Not only widely used in cell sorting, flow cytometry is also the
most established and user-friendly method for both qualitative
and quantitative multiparameter analysis of single cells. As
mentioned before, by using multiparameter flow cytometry,
scientists can simultaneously measure 10–15 key proteins in
signaling pathways in individual cells (De Rosa et al., 2001; Perez
and Nolan, 2002). In addition, in an immunological proof-of-
concept study, as many as 19 separate parameters including
17 fluorescent colors and 2 physical parameters were analyzed
(Perfetto et al., 2004). This strong ability has turned flow
cytometry into a powerful tool to semi-quantitatively analyze
pathways underlying many diseases (Irish et al., 2004; Sachs
et al., 2005). The main limitation is the spectral overlap due
to the broad spectral emission bands of organic fluorescent
dyes. Quantum dots mitigate but do not eliminate the problem.
Hence, complex correction algorithms are required for spectral
deconvolution. Moreover, commercial flow cytometers use cell
suspensions, which in turn allow individual interrogation of cells.
The sample preparation is still done manually and therefore,
requires a large numbers of cells (More than 10,000). This makes
it hard to analyze small samples, such as cells recovered from a
biopsy, tissue specimens or small volumes of blood.

To overcome these limitations, efforts have been made
to develop microfluidic-based miniaturized flow cytometers
which permit analysis of small numbers of cells (100–1000)
(Lindström and Andersson-Svahn, 2010). For example, Su and
colleagues developed a microscope-based label-free microfluidic
cytometer. It is capable of acquiring two dimensional light scatter
patterns from the smallest mature blood cells (platelets), cord
blood hematopoietic stem/progenitor cells (CD34 + cells), and
myeloid precursor cells (Su et al., 2011). Srivastava et al. (2009)
developed an integrated microfluidic device which retro-fitted
to commercial. The major advantage of this microfluidic device
is its ability to perform cell culture, stimulation and sample

preparation in combination with conventional fluorescence
imaging and microfluidic flow cytometry to monitor immune
response in macrophages. These microfluidic devices not only
drastically reduced the amount of sample and reagent required,
but also provided a means to perform two orthogonal modes of
measurements-imaging and cytometry, in one experiment.

Mass spectrometry (MS) is the most powerful tool for protein
analysis. However, MS’s use for analyzing proteins in single
cells is limited due to the lack of sensitivity to detect low
amounts of proteins. Fractionation of the cell lysate by capillary
electrophoresis (CE) prior to MS offers a good way to improve
sensitivity. Recently, a format for flow cytometry has been
developed that leverages the precision of mass spectrometry
which is termed mass cytometry. It can uniquely enable the
measurement of over 40 simultaneous cellular parameters on
single cells with the throughput capacity to survey millions of
cells from an individual sample (Mellors et al., 2010).

APPLICATION OF SINGLE CELL ANALYSIS

The exponential growth in studies applying single cell analysis is
explicitly tied to the acceptance of the technique by biologists.
Single cell analysis has influenced and impacted different
domains of science including cancer biology, neuroscience, and
immunology and so on. It is impossible to document each of
these developments. Therefore, a short overview of the fields of
applications that are typically addressed by single cell analysis is
presented in the research and application for cancer, brain and
stem cell, etc.

Application of Single Cell Analysis in
Cancer, Neuron Research
Intra-tumor heterogeneity has been widely reported in numerous
human cancer types. Tumors are frequently composed of
individual, molecularly distinct clones that differ in their
proliferation rates and metastatic potential, most critically,
in their sensitivities and responses to drug treatment. Those
cells that can cause distant metastases should possess unique
characteristics when compared to the remaining subpopulation.
Exome sequencing of single cells isolated from primary renal
carcinomas showed that only 31–37% of the genetic lesions
within a tumor are identical to the rest of the tumor cells
(Gerlinger et al., 2012; Xu et al., 2012). Therefore, analyzing the
occurrence, development and metastasis of these tumors at a
single cell level provides muchmore detailed information on how
a drug will respond to the tumor cells. It has been reported that
the PIK3CA mutations were detected in primary and metastatic
tumor tissues, but it is different periodically in single cells of
CTCs and DTCs indicated the drug efficacy (Deng et al., 2014).

Several important types of cancer cells have been discovered,
including primary tumor cells, metastatic tumor cells,
cancer stem cells (CSC), circulating tumor cells (CTC), and
disseminated tumor cells (DTC) (Zhang et al., 2016). CTC and
DTC play a vital role in cancer dissemination, self-renewal, and
distant metastases. They are being increasingly recognized for
their potential utility in disease monitoring and therapeutic
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targeting. Many cancer patients are diagnosed with early-stage
cancer with no clinical symptoms of metastasis but subsequently
succumb to metastatic relapse. One important reason is that
CTCs in the blood and DTCs have already reached a secondary
organ but have not yet grown to become clinical metastasis.
However, the CTCs are so rare among massive numbers of blood
cells, as few as one cell per 10 million white blood cells and 5
billion red blood cells, that the accurate identification of CTCs
turns out to be the most difficult step in the isolation process
(Deng et al., 2008). In recent years, a variety of enrichment and
detection techniques have been developed, making significant
progress in CTC detection. For example, the CellSearch R©

system (Janssen Diagnostics, NJ, USA) is the first and the
only technique that has been approved by the US FDA for the
detection, enrichment and quantification of CTCs in peripheral
whole blood samples (Riethdorf et al., 2007). This system
utilizes magnets with ferrofluid nanoparticles conjugated to
antibodies that target epithelial cell adhesion molecules, such
as EpCAM and CD45. EpCAM is the most commonly used
epithelial marker that is present on epithelial tumor cells while
CD45 is an immunocyte marker that is present on many
blood cells but absent in epithelial cells. Thus, the findings of
EpCAM-positive and CD45-negative cells indicate the presence
of CTCs. Another new immunomagnetic separation technology,
called MagSweeper (Illumina), involves dipping a rotating
magnetic rod with bound EpCAM antibodies in order to isolate
CTCs. Then moving the magnetic rod into a new buffer to
release the CTCs (Talasaz et al., 2009; Powell et al., 2012). The
MagSweeper can be used reliably to extract functional human
CTCs from the blood of mice inoculated with human tumor
xenografts, while retaining both their tumor-initiating and
metastasizing capacities (Ameri et al., 2010). This highlights the
most advantageous aspect of MagSweeper is that CTCs can be
completely isolated while preserving the integrity and viability of
these fragile cells.

In recent years, a large number of studies have been reported
using single cell analysis to analyze individual tumor cells isolated
from breast cancer (Navin et al., 2011; Deng et al., 2014; Wang
et al., 2014; Eirew et al., 2015), colon cancer (Zong et al., 2012;
Yu et al., 2014), pancreatic adenocarcinomas (Ruiz et al., 2011),
muscle-invasive bladder cancer (Li et al., 2012b), intestinal cancer
(Grün et al., 2015), lung adenocarcinoma cancer (Kim et al.,
2015), renal cell carcinoma (Gerlinger et al., 2012; Li et al.,
2012b), and acute myeloid leukemia (Ding et al., 2012; Hughes
et al., 2014; Paguirigan et al., 2015). For example, Navin and
colleagues investigated copy number variation in single tumor
cells usingDOPWGA followed byDNA sequencing to determine
cell population structure and tumor evolution patterns in a
single breast tumor (Navin et al., 2011). This study provided an
important breakthrough for research on tumor evolution and
offered a way to assess the genetic details of tumor structure.
Hou and colleagues applied MDA based single cell sequencing
technology for the first time to analyze primary thrombocytosis
disease (essential immature, ET) in patients at single bone
marrow cell level (Hou et al., 2012). Thus, understanding
tumor heterogeneity via single cell analysis is considered
the biggest challenge in cancer research and if elucidated

would enhance our ability to determine the best treatment
options.

It is no exaggeration to say that the brain is the most
complex structure in the human body. There are more
than 100 billion neurons in the human brain. Each of
them can make approximately 10,000 direct connections with
others, totaling some 100 trillion nerve connections. This
makes the brain a complicated network (Herculano-Houzel,
2009). The brain is divided into several regions. Each region
consist of various morphologically and/or neurochemically
distinct neurons surrounded by various types of glial cells
(oligodendrocytes, microglia, and astrocytes). Additionally,
distinct regions in the brain, such as areas of the cerebral
cortex, hippocampus have specific functions. The cerebral
cortex is responsible for many "higher-order" functions like
language and information processing while the hippocampus is
involved in spatial learning and memory. Increasing evidence
shows that each brain region contains different types of
neurons according to their location, neurotransmitter identity,
connectivity, electrophysiological properties, and molecular
markers. Changes of genomic content and epigenetic profiling of
specific neuronal or glia subtypes are involved in the pathogenesis
of neuropsychiatric diseases, such as Parkinson’s and Alzheimer’s
diseases and autism spectrum disorders(Citri et al., 2012).

Hence there is no doubt that single cell isolation and
analysis have made increasingly significant contributions to
our understanding of the role that somatic genome variations
play in neuronal diversity and behaviors. For example, MACS
based technique has been successfully applied to isolating
immature neuronal cells from a large number of embryonic
zebrafish; the antibody of PSA-NCAM conjugated microbeads
were used within a semi-automated dissociation process. (Welzel
et al., 2015). Moreover, the MACS was also used for the
isolation of embryonic spinal oligodendroglial progenitor cell
populations from the rat embryonic spinal cord. By using
superparamagnetic MicroBeads combined with A2B5 antibodies
(a specific oligodendroglial development marker) and the Mini-
MACS separator column, the oligodendroglial cells were isolated
with a cell purity of 58–61% in comparison to 6–12% in an
unseparated population (Cizkova et al., 2009).

Moreover, basolateral amygdala (BLA) neurons are used to
activate distinct populations of the lateral central nucleus of
the amygdala (CeL) neurons to either promote fear or reduce
anxiety. Namburi and colleagues identified two populations
of neurons in the basolateral amygdala neurons that undergo
opposing synaptic changes following fear (negative emotion)
or reward (positive emotion) conditioning. By using RNA-
seq they identified few differentially expressed candidate genes
between these two population neurons that may mediate the
effects (Namburi et al., 2015). Usoskin and colleagues used
comprehensive transcriptome analysis of 622 single mouse
neurons from sensory system and discovered 11 fundamentally
distinct types of sensory neurons. Interestingly, each neuron
is associated with a different type of sensation (Usoskin et al.,
2015). Even cells that appear to be morphologically similar may
show marked differences in expression patterns. In neuroscience
research, electrophysiological analysis combined with molecular
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biology within the same cell will provide convincing results for
us to better understand of how changes at the molecular level are
manifested in functional properties (Eberwine et al., 1992).

Applications of Single Cell Analysis in Stem
Cell Research
Stem cells are undifferentiated cells that are characterized as
both being capable of self-renewal and having the potential to
differentiate into specialized types of cells. How stem cells balance
their self-renewal capacity and their ability to differentiate are
central questions in stem cell research. Stem cells can be generally
classified into pluripotent stem cells, which can give rise to cells of
all three germ layers (the ectoderm, mesoderm, and endoderm)
or tissue-specific stem cells (also referred to as somatic or adult
stem cells), which play essential roles in the development of
embryonic tissues and the homeostasis of adult tissues. Both of
these two types of stem cells are intermingled with a variety
of differentiated and intermediate cell types in the embryonic
or adult tissues, forming heterogeneous populations. Therefore,
isolation, analysis, and development of specific therapies that
target stem cells give cancer patients hope for improvement in
terms of survival and quality of life, (Li et al., 2008; Sharma et al.,
2010).

Cancer stem cells (CSCs) are hypothesized to persist in tumors
as a distinct population and cause relapses and metastases by
forming new tumors. CSC are intrinsically more refractory to the
effects of a variety of anticancer drugs possibly via enhanced drug
efflux (Trumpp and Wiestler, 2008). These cells are especially
resistant to therapeutic drugs. Due to the limited number of CSCs
in cancer tissues, isolation and analysis CSCs are still a hard work.
Single cell sequencing provides powerful tools for identifying
these cells providing new insight into complex intra-tumoral
heterogeneity. For example, Patel et al. (2014) used single-cell
RNA sequencing to profile 672 single cells from five primary.
Each tumor showed high intra-tumoral cell heterogeneity in
many aspects, including copy number variations as well as
cell cycle, immune response and hypoxia. By examining a set
of “stemness” genes, they identified continuous, rather than
discrete, stemness-related expression states among the individual
cells of all five tumors, reflecting the complex stem cell states
within a primary tumor. It has been suggested that CSCs are
more resistant to chemo—and radiotherapy than other cells in
a tumor. This could be one explanation to why most tumors
relapse after therapy. Thus, understanding how cancer stem cells
resist medical therapy could lead to the development of new,
more efficient cancer treatments. Although the existence of these
CSCs is still controversial in many cancer types, there is no doubt
that CSCs have the potential to provide a foundation for new
innovative treatment targeting the roots of cancer.

The neural stem cells (NSCs) in the subventricular zone (SVZ)
and the subgranular zone (SGZ) of the dentate gyrus continually
divide and differentiate into mature neurons and glia in the
adult rodent brain (Aimone et al., 2014). Although it has been
documented that endogenous NSCs can be activated to produce
multiple types of progeny to contribute to brain repair after brain
injury, people do not know how distinct pools of NSCs may

react to brain injury and which molecules trigger injury-induced
activation of NSCs. Single-cell sequencing reveals a population
of dormant neural stem cells in the SVZ that become activated
upon brain injury by down regulation of glycolytic metabolism
and a concomitant up regulation of lineage-specific transcription
factors and protein synthesis (Llorens-Bobadilla et al., 2015).

Increasing evidence shows that multiple molecularly distinct
groups of stem cells that respond differently to physiological
stimuli coexist in the tissues. Understanding and implementing
this molecular diversity will be critical in harnessing the potential
of disease treatment.

CONCLUSION AND OUTLOOK

The biological relevance of cell to cell variations and the high
potential of single cell analysis in both basic research and
clinical diagnostics have drawn the attention of the scientific
community. Single cell gene expression analysis can be used
for tumor cell identification; single cell DNA mutation analysis
can be used for tumor cell monitoring and clinical decision
making (Powell et al., 2012; Deng et al., 2014). Understanding
cellular heterogeneity has been a major thrust of technological
development over the past decade, resulting in an increasingly
powerful suite of instrumentation, protocols, and methods for
analyzing single cells at the DNA sequence, RNA expression and
protein abundance levels (Kalisky et al., 2011; Wu and Singh,
2012). As remarkable examples, technical developments, and
appropriate clinical solutions based on single cell analyses of
CTCs and CSCs showed the promise to uncover personalized
medicine to fight against cancer.

Although much progress has been made during the recent
years in single cell gene analysis, live single cell isolation and
molecular analyses are more favorable for global profiling of
RNA expression and DNA mutation (Powell et al., 2012). We
are still only beginning to face the measurement challenges of
cellular heterogeneity. There is still more room for improvement
in enabling new modes of analysis and improving the sensitivity,
precision, speed and throughput (Lecault et al., 2012).

For single cell genomic and gene expression analyses,
the greatest obstacle for direct detection of diverse genomic,
transcriptomic, and epigenetic events is whether there is a
sufficient amount of DNA or RNA. On the one hand, purification
of high-quality nucleotides from a single sample plays a pivotal
role for the following studies. A problem that is commonly faced
is tube absorption which causes loss of sample materials. Low
absorption material containers instead of ordinary tubes and
single tube reaction analysis are recommended to reduce the
loss of DNA and RNA, single cell direct PCR/RT-PCR without
nucleotide isolation are also often used. Another problem is the
low replication efficiency of secondary structure DNA sequences.
Methods for current single cell sequencing still have relatively
high technical noise. It is acceptable when studying highly
expressed genes, but the biological variations of genes that are
expressed at low levels may be masked. Thus, the efficiency of
reverse transcription and PCR amplification should be urgently
improved. On the other hand, this problem could be overcome
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by the third-generation sequencing platforms, which are based
on sequencing single molecules and real-time signal monitoring
(Schadt et al., 2010; Liu et al., 2012). Within third-generation
sequencing technology, no amplification is required and it
also overcomes the issue of PCR amplification bias. However,
the detection sensitivity, accuracy of sequencing reads, sample
handling, recovery, and sequence assembly still need to be further
improved.

Protein analysis is far more challenging than nucleic acid
analysis. Undoubtedly, the complexity of the proteome, lack of
amplification methods and highly specific high-affinity probes
make protein analysis technically demanding. Because the cell
contents are highly diluted after lysis, high affinity probes (not
only monoclonal antibodies), and highly sensitive detection
methods are needed to detect low abundance proteins and post-
translational modifications.

To summarize, single cell analysis now stands poised to
illuminate this new layer of biological complexity under normal
development and disease conditions. Considering the rapid
progress in either the development of single cell isolation or
analysis technology, many of the problems mentioned above will
be solved in the near future. Nevertheless, further developments
and interdisciplinary co-operative work between technologists,

scientists, and clinicians will be necessary. In the distant future,
we expect that the single cell techniques will become a powerful
tool to unravel longstanding questions in both biological research
and clinical diagnostics.
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In the era of precision medicine, multi-omics approaches enable the integration of data

from diverse omics platforms, providing multi-faceted insight into the interrelation of

these omics layers on disease processes. Single cell sequencing technology can dissect

the genotypic and phenotypic heterogeneity of bulk tissue and promises to deepen

our understanding of the underlying mechanisms governing both health and disease.

Through modification and combination of single cell assays available for transcriptome,

genome, epigenome, and proteome profiling, single cell multi-omics approaches have

been developed to simultaneously and comprehensively study not only the unique

genotypic and phenotypic characteristics of single cells, but also the combined regulatory

mechanisms evident only at single cell resolution. In this review, we summarize the state-

of-the-art single cell multi-omics methods and discuss their applications, challenges, and

future directions.

Keywords: single cell transcriptome, single cell multi-omics profiling, single cell epigenome, single cell proteome,

gene regulation, epigenetics

INTRODUCTION

According to the central dogma, also known as the DNA-RNA-protein axis, DNA provides the
code for RNA, which is translated to produce proteins that fulfill biological functions (Crick, 1970).
To discover the regulatory mechanisms behind RNA transcription and protein translation, the
most straightforward approach is to analyze both DNA and RNA, or both RNA and protein, from
the same sample. Despite the complexity of tissues comprised of heterogeneous cell populations,
such as cancer, most experimental results to date have been based on analysis of bulk samples,
which theoretically read an averaged signal from the population and prevent resolution of cellular
variation (Navin et al., 2011; Huang et al., 2015; Gawad et al., 2016). To decipher the mechanism of
heterogeneous gene transcriptional regulation, integratedmeasurement and co-analysis of multiple
types of molecules, such as DNA, RNA, and protein, at single cell level is required.

The invention of PCR methods in 1983 made it possible to analyze the picogram amounts
of DNA in single cells, although these initial methods could only amplify small, targeted
regions of the genome. However, the development of whole genome amplification (WGA)
and whole transcriptome amplification (WTA) methods (Tang et al., 2009; Zong et al., 2012;
Huang et al., 2015; Wang and Navin, 2015; Gawad et al., 2016) soon allowed quantitative
measurement of DNA and RNA for multiple genes in single cells. At the same time, the
development of next generation sequencing technology has enabled genome-wide analysis of
DNA and RNA in single cells. Inspired by the very first report of single cell DNA sequencing
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and single cell RNA sequencing, scientists have developed
numerous methods to measure other omics at single cell level,
including single cell DNA methylation, single cell chromatin
sequencing and single cell proteome analysis [Figure 1, A
detailed introduction of single cell sequencing methods has been
reviewed elsewhere (Wang and Navin, 2015; Gawad et al., 2016)].

Single cell genome-wide approaches provide a valuable
opportunity to measure different molecules, such as DNA, RNA,
protein, and chromatin with ultimate resolution. By isolating
multiple types of molecules (DNA, RNA, or protein) from
a single cell simultaneously, it is feasible to profile different
types of molecules in parallel. For example, genomic DNA
can be used to assay the single cell genome, methylome
or chromatin accessibility, while RNA from the same cell
can be used to profile the transcriptome, and protein the
proteome. Utilizing these different single cell omics profiling
strategies as building blocks, we can construct a multi-
omics profile for the same cell. Here, we summarize current
single cell multi-omics approaches, such as scG&T-seq (single
cell Genome & Transcriptome sequencing), scMT-seq (single
cell Methylome and Transcriptome sequencing), scM&T-seq
(single cell Methylome & Transcriptome sequencing), scTrio-
seq (single-cell triple omics sequencing), and scCOOL-seq (single
cell Chromatin Overall Omic-scale Landscape Sequencing)
(MacAulay et al., 2015; Angermueller et al., 2016; Hou et al.,
2016; Hu et al., 2016), with each of them measuring a different
combination of omics data (Figure 2). We also review the
bioinformatics advances that have been necessary to understand
the large amounts of multi-dimensional data arising from single
cell multi-omics profiling, and we examine the potential for this
technology to elucidate numerous biological enigmas.

METHODS FOR ISOLATING MULTIPLE
TYPES OF MOLECULES FROM A SINGLE
CELL

Isolating multiple types of molecules from a single cell is the
starting point for single cell multi-omics measurement, and
generally can be divided into two steps.

The first step is to collect a single cell randomly from a
population with heterogeneity. The standard protocol is to get
viable, intact cells by mechanical or enzymatic dissociation and
then capture single cells from the dissociated cell suspension.
Several approaches can be used, including mouth pipetting,
serial dilution, robotic micromanipulation, flow-assisted cell
sorting (FACS), and microfluidic platforms (Wang and Navin,
2015). Although these collection approaches are borrowed from
methods developed for single cell mono-omics sequencing,
additional considerations must be taken for multi-omics to
ensure that multiple types of molecules can be viably measured
in the same cell. The success of this first collection step
is critical for preserving an accurate representation of the
DNA, RNA, and protein within the cell for downstream
measurements. The method used for the initial dissociation
of tissues into single cells—mechanical or enzymatic—needs
to be selected with consideration for both the nature of the

starting material and the types of sequencing to be performed.
Clinical samples such as solid tumors are often obtained flash
frozen or embedded in paraffin (FFPE), making multi-omics
measurements that include cytoplasmic RNA or protein more
challenging. However, because this type of freezing process
perturbs the cytoplasmic membrane while keeping the nuclear
membrane intact, multi-omics measurements that involve the
genome, epigenome, and chromatin-associated RNA are still
possible after creation of nuclear suspensions (Navin, 2015). For
fresh tissues, choice of mechanical or enzymatic dissociation
reflects the need for both cell integrity and dissociation quality.
Prolonged exposure to common dissociation enzymes such as
papain, collagenase, dispase, and neutral protease can result
in degradation of RNA and proteins, or generation of cell
debris that aberrantly activate cell signaling pathways and cell
surface proteins (Autengruber et al., 2012; Volovitz et al., 2016).
Mechanical mincing of the starting material through trituration
or nanofiltration may also disrupt accurate representation of the
proteome or transcriptome in cells that contain long projections
such as neurons. These pitfalls in turn can complicate the
subsequent computational analyses performed on the data, which
often involve identification of correlative relationships among the
different layers of multi-omics data obtained. Thus, both tissue-
specific and measurement-specific aspects of obtaining multi-
omics measurements need to be considered in order to achieve
optimized single cell suspensions.

Next, the technique used to select single cells after separation
of bulk tissues also has an impact on the feasibility of
combinatorial multi-omics measurements. The advantages of
techniques such as mouth pipetting and serial dilution include
the simplicity and rapidity of moving single cells from the cell
suspension to individual reaction chambers. This helps limit the
degradation of more volatile molecules such as RNA or protein
and may reduce the possibility of non-physiologic changes in
chromatin accessibility and chromatin conformation (Wang and
Navin, 2015; Svensson et al., 2017). Robotic manipulation, FACS,
and microfluidic capture platforms have the advantage of the
ability to sort through subpopulations by cell labeling, but require
more extensive manipulation of single cells using expensive
equipment (Ortega et al., 2017). Of the numerous options,
selection of a protocol for isolating single cells for multi-omics
data collection will ultimately depend on the molecules that need
to be preserved, the type of tissue obtained, and the cost.

The second step is to isolate multiple types of molecules
from the same cell, for which there are four main strategies:
To isolate DNA and RNA of a single cell, the first strategy is
physical separation, including separation of nucleus from cytosol,
as genomic DNA is contained in the nucleus and the majority
of mRNAs are located in the cytosol. Single cells are treated
with a membrane-selective lysis buffer, through which the cell
membrane is broken down while the nucleus is kept intact. Then,
single nuclei are separated from cytoplasm by micropipetting,
centrifugation, or antibody-conjugated magnetic microbeads
(Hou et al., 2016; Hu et al., 2016; Han et al., 2018; Table 1).
This method has been demonstrated to be highly efficient by
several research groups, including our lab. Our data indicates that
profiling of cytosolic RNA can resemble the transcriptome of the
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FIGURE 1 | Timeline of single cell sequencing methods milestones.

FIGURE 2 | Strategies for multi-omics profiling of single cells. Three major types of molecules relating to biological central dogma (Top). Single cell genomics methods

profiling the genome, epigenome, transcriptome, and proteome are shown by different shapes with variable colors (Middle). Single cell multi-omics methods are built

by combining different single cell sequencing methods to simultaneously profile multiple types of molecules of a single cell genome wide (Bottom). For example,

G&T-seq was built by combining genome (orange) and transcriptome (yellow) to simultaneously detect DNA and RNA of the same cell genome wide.

whole cell. However, this method is low throughput (Hu et al.,
2016), as the nucleus-picking procedure is manual and cannot be
automated easily. Methods based on centrifugation (Hou et al.,

2016) or antibody conjugated magnetic microbeads (Han et al.,
2018) can achieve relatively higher throughput in isolating DNA
and RNA from single cells.
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The second strategy uses oligo-dT primer coated magnetic
beads to bind and separate polyadenylated mRNA from DNA
(MacAulay et al., 2015; Angermueller et al., 2016). Genome
wide sequencing of single cell DNA and RNA purified by
this method indicated that breadth of genome coverage and
number of genes were not affected by the process of separation,
indicating high efficiency in the recovery of DNA and RNA.
Since this strategy is adaptable to liquid-handling robots or
automated work stations, higher throughput can be achieved.
However, coverage of isolated DNA was less evenly distributed
across the genome compared to that of the whole single
cell sequencing, which may result in less accuracy for copy
number analysis of certain genomic regions at a suboptimized
sequencing depth.

Besides direct physical isolation of DNA and RNA at the
beginning, the third strategy is to preamplify DNA and RNA
simultaneously, followed by separation into two parts (Dey et al.,
2015). Whole transcriptome sequencing of preamplified RNA of
one part showed a similar number of genes covered compared
to that of whole single cells. However, as the amplified DNA
does not retain methylation states, this method is not suitable for
methylome analysis.

The fourth strategy is to split the material of a single cell
into two parts directly. For example, a recent report used
the splitting strategy to split a single cell into two parts and
simultaneously analyze the RNA and protein of the same cell
(Darmanis et al., 2016). This splitting strategy is not an ideal
method to isolate substrates such as DNA because some material
will inevitably be lost due to the uneven split. However, for RNA
and protein molecules with high copy number in the single cells,
this method is feasible as long as the split is even between the
two parts.

INTEGRATION OF GENOME AND
TRANSCRIPTOME

The first single cell transcriptome analysis was reported in
2009 (Tang et al., 2009), and many additional single cell
RNA sequencing methods have been developed since, such
as Quartz-seq (Sasagawa et al., 2013), smart-seq (Switching
mechanism at 5′ end of the RNA transcript) (Goetz and
Trimarchi, 2012; Picelli et al., 2014), Cel-seq (Cell expression
by linear amplification and sequencing) (Hashimshony et al.,
2012) etc., which were developed using different strategies for
different purposes. For example, Quartz-seq detects the 3′ end
of transcripts, while Smart-seq detects full length transcripts.
Cel-seq barcodes and pools samples before linearly amplifying
mRNA to multiplex single cell samples. In parallel, due to
the development of single-cell whole-genome amplification
(WGA) methods, single cell genome sequencing technologies
have also been established. At present, four major WGA
methods have been reported: DOP (degenerate oligonucleotide-
primed polymerase chain reaction) (Telenius et al., 1992),
MDA (Multiple Displacement Amplification) (Dean et al., 2001),
MALBAC (Multiple Annealing and Looping Based Amplification
Cycles) (Zong et al., 2012) and PicoPLEX (Rubicon Genomics

PicoPLEX Kit). In 2013, Han et al. first reported a co-detection of
DNA and RNA from the same single cell (Han et al., 2014), which
was achieved by physical isolation of cytoplasm (containing
cytoplasm RNAs) from nucleus (containing the intact genome)
from the same single cells, followed by separate amplification
of the transcriptome and genome, and further by respective
sequencing of both. Although the initial report showed only
the data of the whole transcriptome but not the whole genome,
instead of Sanger sequencing of a selected set of genomic
sequences, it paved a way to establish multi-omic profiling
methods. Later, experimental protocols that simultaneously
sequenced the genome and transcriptome were developed by
elegantly integrating existing single cell sequencing methods,
namely DR-seq (gDNA and mRNA sequencing) (Dey et al.,
2015) and G&T-seq (Genome & Transcriptome sequencing)
(MacAulay et al., 2015). In DR-seq, a cell is lysed completely,
releasing its DNA and RNA into the same reaction system.
Genomic DNA and cDNA initially being amplified at the same
time is split into two halves: one for RNA-seq using the CEL-
seq protocol, and the other half for genome sequencing using
MALBAC (Dey et al., 2015). Different from DR-seq, G&T-seq
separated poly-A tailed mRNAs from DNA by using oligo-
dT-coated magnetic beads. Separated mRNA and DNA were
then sequenced using SMART-seq2 and various WGA protocols
(MDA or PicoPLEX), respectively (MacAulay et al., 2015). Most
recently, Han et al. reported a novel method for simultaneous
isolation of genomic DNA and total RNA (SIDR) from single cells
by using hypotonic lysis to preserve nuclear lamina integrity and
subsequently capturing the cell lysate using antibody-conjugated
magnetic microbeads. They found that copy-number variations
positively correlated with the corresponding gene expression
levels (Han et al., 2018). In summary, using DR-seq, G&T-seq and
SIDR, researchers were able to directly determine the correlation
between large-scale copy number variation and transcription
levels in the CNV regions.

As discussed previously by MacAulay et al. (2017), a
substantial advantage of direct measurement of multiple
molecular types from the same single cell over separate
measurement of each type of molecule from different cells
is that genotype-phenotype correlation can be determined
unambiguously. First, the genomic variation can be directly
linked to the transcriptional variation without being confounded
by cell heterogeneity, enabling the dissection of potential
molecular mechanisms underlying variable phenotypes among
single cells. Second, coupled with lineage record technology,
simultaneous sequencing of the genome and transcriptome can
be used for reconstruction of lineage trees. Genomic profiling of
single cells can divulge the lineage relationship among single cells,
based on inherited mutations. The transcriptome profiling of the
same single cells can in parallel provide information about the
cell’s phenotype and function. One intriguing application of this
method is to dissect the mechanism of heterogeneity of tumor
cells to inform our knowledge of tumor formation and potential
therapeutic targets (Shapiro et al., 2013). Third, simultaneous
sequencing of DNA and RNA of the same cell can detect DNA
mutations with higher accuracy, as the mutations found in DNA
or RNA can be verified by each other. This strategy can be
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very helpful in situations where highly accurate mutation calling
from a single cell is required, such as genetic diagnosis screening
during in vitro fertilization, when only 1–2 single blastomeres are
available (Vermeesch et al., 2016). Of note, post-transcriptional
modification such as RNA editing (Tan et al., 2017) which may
affect the concordance of variations in both DNA and RNA,
should be taken into consideration to precisely call themutations.

INTEGRATION OF EPIGENOME WITH
TRANSCRIPTOME

Based on the development of technologies for single cell
epigenome and transcriptome profiling, the methods for the
integrated analysis of the epigenome and transcriptome were
developed (Angermueller et al., 2016; Hou et al., 2016; Hu
et al., 2016). DNA methylation has been demonstrated to have
key regulatory functions on gene expression in many biological
process, so the relationship between the DNA methylome and
transcriptome from the same single cell is of great interest. Two
major methods for single cell methylome analysis are single
cell reduced representative bisulfite sequencing (scRRBS) (Guo
et al., 2013) and single cell whole genome bisulfite sequencing
(scWGBS) (Smallwood et al., 2014). The first reported combined
DNAmethylome and transcriptome profiling method is scM&T-
seq (single cell methylome and transcriptome sequencing), which
is developed using the procedure of G&T-seq to isolate DNA
and RNA from the same single cell. The protocols for mRNA
capture, amplification and sequencing are the same as those in
G&T-seq. In parallel, the genomic DNA is subjected to bisulfite
treatment and sequencing, allowing the simultaneous profiling
of the DNA methylome and RNA transcriptome from the same
single cell (Angermueller et al., 2016). Subsequently, scMT-seq
(Hu et al., 2016) and scTrio-seq (Hou et al., 2016) were reported
using a different strategy to isolate DNA and RNA from a single
cell, in which cell membrane but not nucleus was selectively
lysed to release RNA, and then intact nucleus was physically
separated from the cell lysate (Hou et al., 2016; Hu et al., 2016;
Guo et al., 2017). In the scMT-seq method, the single cell nucleus
is collected by micropipette and subjected to scRRBS, and mRNA
in the lysate is amplified by a modified Smart-seq2 protocol.
In the scTrio-seq, the nucleus and cytosol are separated by
centrifugation, and genomic DNA contained in the nucleus is
sequenced by scRRBSwhilemRNA is amplified by the scRNA-seq
protocol reported by Tang et al. (2009).

The simultaneous profiling of methylome and transcriptome
of a single cell provides a unique opportunity to directly
measure DNA methylation and gene transcription within the
same single cell, and to study the correlation of DNAmethylation
differences with gene transcription variance across single cells.
For example, scM&T-seq investigated the relationship between
the transcriptome and DNA methylome, and found that low
methylated regions (LMR) showed high variance in methylation
level, which is consistent with their role as distal regulatory
elements that control gene expression (Angermueller et al., 2016).
Our results using scMT-seq found that variable CpG sites were
significantly enriched at non-CGI (non-CpG island) promoters

but depleted at CGI (CpG island) promoters, suggesting that
non-CGI promoters could be the major region contributing
to methylome heterogeneity among dorsal root ganglion single
cells. We also found that transcription level was positively
correlated with genebody methylation, but negatively correlated
with promoter methylation. In addition, by integrating the
genomic SNP information, we found a correlation between
allelic gene body methylation and allelic expression at single
cell level. Thus, scMT-seq allows us to profile genome, DNA
methylome and transcriptome in parallel within a single cell
(Hu et al., 2016). Similarly, scTrio-seq enables profiling of DNA
methylome, genome (CNV) and transcriptome at the same time,
in which the copy number variation is computationally inferred
from the scRRBS (Hou et al., 2016). Most recently, Guo et al.
from the same group reported another single cell multi-omics
sequencing method called single-cell COOL-seq that can profile
DNA methylation and chromatin state/nucleosome positioning,
copy number variation and ploidy simultaneously from the same
cell (Guo et al., 2017). Although they did not incorporate the
RNA sequencing in this protocol (which is theoretically possible),
this method provided new insights into the comprehensive
study of genome-wide gene regulation at single cell level.
Most recently, Clark et al. reported the scNMT-seq (single-
cell nucleosome, methylation, and transcription sequencing),
which can simultaneously profile single cell nucleosome, DNA
methylation and transcription. By profiling themouse embryonic
stem cell, they found novel links between all three molecular
layers and revealed dynamic coupling between epigenomic layers
during differentiation (Clark et al., 2018).

PARALLEL PROFILING OF RNA AND
PROTEIN

RNA and protein have distinctive biochemical properties.
Compared to genomic sequencing methods, the throughput
in terms of the number of proteins that can be detected by
the single cell proteome profiling is limited. Until now, a few
single cell proteomic methods have been developed based on
different strategies, including fluorescence-activated cell sorting
(FACS), western blot, metal-tagged antibodies followed by mass
cytometry, and oligonucleotide labeled antibodies. Although the
multiplexing of these approaches were still limited to tens of
proteins for a single cell, they still demonstrated the feasibility
of detection of protein and RNA expression, paving a way to
discover the dynamics of RNA and protein within the same cell.
Darmanis et al. developed a method based on homogeneous
affinity-based proximity extension assay that converts protein
abundance into tag-oligo levels (Darmanis et al., 2016), and both
transcript level and protein level were quantified by qPCR. This
method has succeeded in capturing parallel profiles of protein
and RNA for up to 96 genes (Darmanis et al., 2016). Another
approach to simultaneously detect the RNA and protein of the
same cell is PLAYR (proximity ligation assay for RNA). Briefly,
the RNA transcripts are bound by and ligated to isotope labeled
probes. Transcript levels are converted into isotope label levels
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that can be easily measured together with elemental isotope-
labeled protein using mass cytometry (Frei et al., 2016). With this
method, simultaneous quantification of more than 40 different
mRNAs and proteins can be achieved, although improvement
is required to achieve genome-wide measurement with higher
throughput. Most recently, two methods named REAP-seq and
CITE-seq with higher throughput have been reported, in which
oligonucleotide-labeled antibodies are used to integrate cellular
protein and transcriptomemeasurements into an efficient, single-
cell readout (Peterson et al., 2017; Stoeckius et al., 2017).
Quantified proteins with 82 barcoded antibodies and more than
20,000 genes can be detected in a single workflow.

STRATEGIES FOR BIOINFORMATICS
ANALYSIS OF SINGLE CELL SEQUENCING
DATA

Single cell sequencing technologies for genome wide profiling
of DNA and RNA, as well as the subsequent integrative
computational analysis methods, are central to the interpretation
of single cell multi-omics data. The prelude to this type of
analysis hinges first on the development of bioinformatics
approaches for single cell single-omics sequencing data for
various individual types of molecular measurements. Because
technical characteristics of various single cell sequencing
protocols are different, the bioinformatics methods involved
must also be customized to correctly analyze each data type.
The need to address the specific characteristics of different single
cell sequencing approaches has inspired many computational
methods that allow us to better analyze sequencing datasets
involving multiple layers.

Single Cell Genome Sequencing
Two major purposes of single-cell genome sequencing are
identifying copy number variation and identifying point
mutations/SNPs. Both these questions have been addressed in
bulk WGS, and the methods developed for bulk WGS data have
provided guidance for single cell WGS analysis.

Copy number variation can be robustly identified using
HiddenMarkov Model (HMM) or Circular Binary Segmentation
(CBS), and these methods have proved effective for scWGS data
(Knouse et al., 2016). Although these two methods perform
similarly in many situations, user-defined parameter adjustments
within the algorithms can affect the sensitivity and specificity
of copy number calls. For example, comparison of these two
methods on scWGS data with a range of parameters indicated
that CBS was more sensitive in calling copy number losses,
while HMM was more sensitive in calling gains (Knouse
et al., 2016). In the context of single cell CNV analysis, one
strategy to reconcile the two approaches has been to take the
overlap of CNVs identified by CBS and HMM to increase
confidence (Knouse et al., 2016). Considerations in choosing
between the methods involve the biological properties of the
samples, such as the expected sizes of the CNVs, which could
range from whole-arm changes seen in aneuploid tumors to
dinucleotide changes observed in inherited polymorphisms or in

microsatellite instability. CBS is more flexible than HMM in that
the algorithm recursively searches for segmentation points in an
unsupervised approach, while HMM depends on the assumption
that segmentation points follow a homogenous Poisson process,
which is not always the case and may therefore compromise
flexibility (Wineinger et al., 2008).

Many tools have been developed for detecting variations in
bulk WGS data (Depristo et al., 2011; Koboldt et al., 2012),
and these methods, in principle, should perform well in scWGS
data. However, scWGS data suffers from high allele coverage
bias and high PCR amplification error, which could impair
the performance of variant calling methods if not corrected.
Recently, with increased understanding of coverage bias in
scWGS data (Zhang et al., 2015), Dong et al. reported a
computational method that can correct amplification bias to
reduce false positive SNPs resulting from PCR or sequencing
errors (Dong et al., 2017). Although this new method still
partially relies on GATK to identify new variants, it achieved
better accuracy by removing false positive variants resulting from
PCR error.

Single Cell Transcriptome Sequencing
Single cell RNA-seq data enables the discovery of exciting and
new biological phenomena while presenting new challenges
for data analysis. For example, single-cell RNA-seq can help
us identify cell subtypes with unprecedented resolution, and
reconstruct continuous cell lineages. Some early studies showed
that identification of cell subtypes or reconstruction of cell
lineage could be done manually by experts with sufficient
biological prior knowledge using basic statistical methods (Xue
et al., 2013; Treutlein et al., 2014). However, recently, huge
datasets with extremely heterogeneous cell populations have
precluded the feasibility of manual annotation, and many
computational pipelines have been developed. For example, tools
based on different theoretical frameworks have been developed
to cluster cells based on their gene expression similarity, such
as SINCERA (Guo et al., 2015), pcaReduce (Žurauskiene and
Yau, 2016), SC3 (Kiselev et al., 2017), and SNN-Cliq (Xu and
Su, 2015). Additional tools have been developed to reconstruct
cell lineage by ordering cells according to computationally
inferred pseudo-time (Trapnell et al., 2014; Cannoodt et al., 2016;
Qiu et al., 2017). However, despite the availability of myriad
computational software packages for clustering and lineage
inference, few benchmarking studies have been done to compare
their performance.

In addition to those two classical biological questions, the
technical problem of imputation of missing values in single-
cell RNA-seq data has recently attracted increasing attention.
Single-cell RNA-seq, especially for cells captured by droplet-
based methods, is often plagued by missing values due to drop-
out events, leading to an exceedingly sparse depiction of the
single cell transcriptome. Simply removing genes containing
missing values restricts the analysis to only highly expressed
genes. To overcome this problem, much effort has been made
to impute missing values (Kiselev et al., 2017; Lin et al., 2017).
These imputation methods can not only enable us to investigate
lowly expressed genes but can also improve the performance of
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existing computational methods for other purposes by reducing
noise from drop-out events.

Single Cell Methylome Analysis
Compared to bulk WGBS (whole genome bisulfite sequencing)
data, the analysis of single cell WGBS requires distinct
bioinformatics techniques due to the sparse and uneven coverage
of scWGBS (single cell WGBS) libraries across the genome.
Although many tools have been developed for bulk WGBS
data analysis, these methods will fail if applied to scWGBS
data directly. To make scGWBS data analysis possible, the first
strategy is to merge data from single cells and analyze the merged
data as a sample (Farlik et al., 2016). By combining data from
many single cells (usually hundreds), the data coverage becomes
high, and the bias from allele dropout is averaged out. However,
this strategy cannot be used to address the heterogeneity of
methylation among different single cells, because methylation
data are merged and averaged among the cell population.

Aside from adapting scWGBS data to existing computational
pipelines by merging data, the second strategy is to develop
new methods specifically for scWGBS data, and many of these
methods aim to aggregate methylation levels from adjacent CpG
sites or regions with similar biological properties to overcome
the sparseness of scWGBS data. For example, Smallwood et al.
segment the genome into 5-kbp, non-overlapping bins and
use average methylation level among bins as the feature for
subsequent analysis (Smallwood et al., 2014). Similarly, by
aggregating methylation signal on regulatory elements, we can
reveal regulatory mechanisms behind the changes in the DNA
methylome (Farlik et al., 2015). In these methods, each single cell
is treated as a sample separately, thus enabling the discovery of
DNA methylome heterogeneity among single cells.

Interestingly, besides aggregating existing methylation
information to reduce noise, a method based on the deep
neuronal network was recently developed, which infers missing
methylation information from sequencing motifs (Angermueller
et al., 2017). Although this method achieved high prediction
accuracy for whole genome, its performance on low-methylated
regions, the regulatory regions where methylation level
influences gene expression greatly, were not satisfying. However,
we believe that the prediction accuracy on LMRs can be further
improved by incorporating more features into the same deep
learning framework.

Single Cell Sequencing for Chromatin
Status Analysis
Success in single cell genome and transcriptome sequencing
inspired the development of single cell epigenome sequencing.
So far, single cell ChIP-seq (Rotem et al., 2015) (Chromatin
Immunoprecipitation Sequencing), DNase-seq, and ATAC-seq
(Buenrostro et al., 2015) (Assay for Transposase-Accessible
Chromatin using sequencing) has been reported from different
groups. Since this type of single cell epigenome data has just
begun to emerge, the related computational analysis methods
are still in their infancy and only a few methods have been
developed specifically for single cell data. For example, scChIP-
seq and scATAC-seq have been developed to investigate histone

modification and chromatin accessibility landscapes at single cell
level (Buenrostro et al., 2015; Rotem et al., 2015; Corces et al.,
2016), and the reads from one single cell are extremely sparse due
to the low amount of DNA in a cell. To identify the regions that
have histone modification or regions with open chromatin, reads
from several dozen to hundred single cell libraries were pooled
together, and only this “pooled library” has enough reads for
conventional peak calling methods. In the subsequent analysis,
these putative peaks will be used as guidance to aggregate sparse
signal and remove background signal. Although this method
enables the meaningful analysis of scChIP-seq and scATAC-
seq without requirement of any new computational methods,
concerns have been raised about the sensitivity of this strategy
(Zamanighomi et al., 2017). Interestingly, methods designed for
scATAC-seq analysis are emerging, such as chromVAR (Schep
et al., 2017) and scABC (Zamanighomi et al., 2017). We believe
these pipelines will also inspire the development of effective
pipelines for scChIP-seq data.

APPLICATION OF SINGLE CELL
MULTI-OMICS METHODS

As described above, single cell multi-omics analysis integrates
multiple data sets from the genome, epigenome, transcriptome,
proteome, providing a unique chance to uncover novel biological
processes. By extending and integrating methods developed for
single-omics analysis, we can obtain a multi-channel molecular
readout and utilize these features from multiple omics types to
achieve a more comprehensive depiction of the state of a single
cell. In combination with continuously advancing bioinformatic
algorithms and computational resources, experimental collection
of multi-omics data has allowed us to uncover increasingly
important and complex insights.

The first application of single cell multi-omics methods is
to identify cell subtypes from a heterogeneous cell population.
Previously, for example, single cell RNA-seq approaches were
shown to be effective in identifying cell subtypes such as human
blood dendritic cells, monocytes, and neurons in human brain
cortex (MacOsko et al., 2015; Ofengeim et al., 2017; Villani
et al., 2017). Recently, single cell DNA methylation sequencing
was also applied to study human brain cortex. By examining
non-CpG methylation among single cells, they identified novel
cell subtypes that were masked in scRNA-seq analysis (Luo
et al., 2017). Epigenetic modifications such as DNA methylation
are developmentally regulated and cell type-specific, yet stable
over the life span, and therefore profiling the epigenome and
transcriptome simultaneously can compensate for the limitation
of single cell RNA-seq, which mainly yields information about
highly expressed transcripts. Thus, different omicsmeasurements
can provide non-redundant information about cell identity
and enable more detailed and more accurate dissection of
complicated tissues.

Second, single cell multi-omics can be used to reconstruct
cell lineage trajectories. Understanding cell lineage trajectories
during the complete time course of multicellular animal
development is the holy grail of developmental biology. DNA
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mutations, as well as epigenetic modifications gained during the
cell division and passed to the daughter cells, can be used for
lineage tracing, while the transcriptome of the matching single
cells can reveal the concomitant alteration of gene expression
and transcriptional cell fate change during cell proliferation
and differentiaion. For example, cancer cells have extremely
unstable genomes, and understanding cancer genome evolution
is crucial for revealing “driver” mutations or copy number
changes that cause carcinogenesis. Single cell multi-omics can
not only help us determine the occurrence order of different
mutations during cancer evolution, but can also reveal their
functional consequences, such as alteration in gene expression,
which will eventually help us identify the causal mutations that
induce the transition from normal cell to cancer cell.

Lastly but most importantly, single cell multi-omics data
provides the resolution to definitively reveal the relationship
between different omics readouts. Correlation analysis between
different omics is a prevailing approach to generate regulatory
hypotheses between two omics data types. For example, cytosine
methylation is among the best-studied epigenetic modifications
and has been shown to regulatemany critical biological processes.
With both DNA and RNA sequencing data, DR-seq and G&T-
seq have allowed us the ability to reveal correlation between
copy number variation and gene expression level at a single
cell scale. Further, scTrio-seq showed that large-scale CNVs
caused proportional changes in RNA expression of genes within
the gained or lost genomic regions, whereas these CNVs
generally do not affect DNA methylation in these regions. Our
work using scMT-seq not only showed allele-specific expression
patterns based on SNV information, but also showed correlation
of DNA methylation with allele-specific expression, providing
new insight into the study of imprinting and its underlying
mechanism. In the near future, multi-omics methods may
be helpful for understanding the correlation between DNA
mutations with epigenetic modifications and their effects on
gene expression to reveal the mechanisms underlying interesting
biological questions such as dosage compensation and X-
inactivation, among others (Livernois et al., 2012; Graves, 2016).
Inevitably, even with single cell multi-omics technology, we
are still limited to identifying correlation but not causality. We
therefore believe that single cell multi-omics, once combined
together with experimental perturbation, will be effective in
allowing us to understand causal relationships among omics data
types.

Essential to all these applications is the development of
computational approaches that help to integrate multiple data
layers and to recover information lost due to the sequencing
of minute amounts of biological material. Bioinformatic and
computational techniques have advanced single cell multi-omics
technology in several arenas, such as (1) imputation of “dropped-
out” single cell measurements, (2) indirect measurement of
another omics layer from a measured one (Farlik et al.,
2015; Bock et al., 2016), and (3) mathematical and statistical
quantification of multi-dimensional associations (Lane et al.,
2017). Imputation methods pull information from groups of
similar cells to help to restore measurements for molecules
originally in very low abundance, such as lowly expressed

RNA transcripts, filling in sparse data matrices for better
representations of the original relationships (VanDijk et al., 2017;
Li and Li, 2018). Furthermore, as our knowledge of biological
regulatory relationships increases, one data type may be able to
serve as proxy for inference of another omics layer. For example,
transcription factor binding or copy number alterations have
been indirectly inferred from single cell methylation data (Farlik
et al., 2015; Hou et al., 2016). Likewise, copy number information
can be inferred from the single cell transcriptome (Tirosh et al.,
2016), and chromatin state from the methylome (Guo et al.,
2017). In addition, as single cell multi-omics technology becomes
progressively high throughput, computational resources and
time needed for processing of the raw data will be an important
aspect in the flexibility of data analysis. Pipelines and new
algorithms that streamline and shorten the computational time
needed for data processing will be important for increasingly
complex, multi-dimensional experiments. Raw files for each omic
type must be separately processed, aligned, filtered, and quality-
controlled in a manner that accounts for complications inherent
in single cell measurements, such as low signal-to-noise ratio,
technical amplification artifacts, and technical variation (Bock
et al., 2016). Each omics layer of processed data is then assigned
back to the single cell and co-analyzed with both mathematical
and statistical models to reveal patterns of regulation. These new
computational methods, while still nascent, allow us the capacity
to bypass experimental limitations and expose excitingly novel
relationships.

CONCLUSIONS AND FUTURE
DIRECTIONS

Single cell multi-omics methods have provided countless
opportunities to systematically understand biological diversity,
and to identify rare cell types and their characteristics with
unprecedented accuracy through integration of information
from multiple omics levels, including DNA, RNA, and protein.
These single cell multi-omics methods will play an important
role in many diverse fields, and their applications are rapidly
expanding, including (1) delineating cellular diversity, (2) lineage
tracing, (3) identifying new cell types, and (4) deciphering
the regulatory mechanisms between omics. Although some of
the applications have been reported in initial studies, there
are still many avenues open for exploration, and the further
development of new multi-omics methods will also facilitate
their increasing utility. It is anticipated that better performance
of multi-omics methods will be generated based on the
optimization of current single cell sequencing methods. There
are currently several main challenges and thus opportunities for
further development of single cell multi-omics technology: (1)
Overcoming the limitations of current single cell sequencing
methods will facilitate the development of more types of
omics measurements on single cells. For example, outside of
single cell DNA methylome analysis, there are other single
cell epigenome sequencing methods such as scAba-seq (DNA
hydroxymethylation) (Mooijman et al., 2016), single cell ATAC-
seq (open chromatin) (Buenrostro et al., 2015), single cell Hi-C
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(chromatin conformation) (Nagano et al., 2013), and single
cell ChIP-seq (histone modifications) (Rotem et al., 2015).
However, due to limitations such as low genome coverage
and high noise signals derived from locus dropout and PCR
amplification, no reliable multi-omics approach based on these
methods has been reported yet. Optimization of the existing
single cell sequencing methods as well as newly developed
methods will provide more opportunities to integrate diverse
methods with transcriptomic analysis to reveal the relationship
between epigenetic states and RNA transcription variation. (2)
New approaches to isolate and label multiple types of molecules
of the same single cell will help to increase the number of
omics profiled in parallel, from dual-omics to triple-omics
or more. Even multiple functional parameters of single cells
could be included, such as with the development of patch-seq,
which combined whole-cell electrophysiological patch-clamp
recordings, single-cell RNA-sequencing, and morphological
characterization to identify new cell types in the nervous
system (Cadwell et al., 2016, 2017). (3) In contrast to the rich
resources of experimental protocols, computational methods

for single cell multi-omics data analysis have just started to
emerge. New computational approaches tailored to the analysis
of single cell multi-omics data will also substantially facilitate
the application of the methods (Yan et al., 2017). In summary,
with further development of multi-omics methods, the future
will witness an even wider application of single cell multi-omics
technology that will result in meaningful findings never before
achieved.
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Fluorescence in situ hybridization (FISH) is a macromolecule recognition technology

based on the complementary nature of DNA or DNA/RNA double strands. Selected

DNA strands incorporated with fluorophore-coupled nucleotides can be used as probes

to hybridize onto the complementary sequences in tested cells and tissues and then

visualized through a fluorescencemicroscope or an imaging system. This technology was

initially developed as a physical mapping tool to delineate genes within chromosomes. Its

high analytical resolution to a single gene level and high sensitivity and specificity enabled

an immediate application for genetic diagnosis of constitutional common aneuploidies,

microdeletion/microduplication syndromes, and subtelomeric rearrangements. FISH

tests using panels of gene-specific probes for somatic recurrent losses, gains, and

translocations have been routinely applied for hematologic and solid tumors and are

one of the fastest-growing areas in cancer diagnosis. FISH has also been used to

detect infectious microbias and parasites like malaria in human blood cells. Recent

advances in FISH technology involve various methods for improving probe labeling

efficiency and the use of super resolution imaging systems for direct visualization of

intra-nuclear chromosomal organization and profiling of RNA transcription in single

cells. Cas9-mediated FISH (CASFISH) allowed in situ labeling of repetitive sequences

and single-copy sequences without the disruption of nuclear genomic organization in

fixed or living cells. Using oligopaint-FISH and super-resolution imaging enabled in situ

visualization of chromosome haplotypes from differentially specified single-nucleotide

polymorphism loci. Single molecule RNA FISH (smRNA-FISH) using combinatorial

labeling or sequential barcoding by multiple round of hybridization were applied to

measure mRNA expression of multiple genes within single cells. Research applications

of these single molecule single cells DNA and RNA FISH techniques have visualized

intra-nuclear genomic structure and sub-cellular transcriptional dynamics of many genes

and revealed their functions in various biological processes.

Keywords: fluorescence in situ hybridization (FISH), genetic diagnosis, aneuploidy, pathogenic copy number

variants (CNV), microdeletion/microduplication syndromes, Cas-9 mediated FISH (CASFISH), oligopaint-FISH,

single molecule RNA FISH (smRNA-FISH)
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INTRODUCTION

Fluorescence in situ hybridization (FISH) uses DNA fragments
incorporated with fluorophore-coupled nucleotides as probes to
examine the presence or absence of complementary sequences
in fixed cells or tissues under a fluorescent microscope.
This hybridization-based macromolecule recognition tool was
very effective in mapping genes and polymorphic loci onto
metaphase chromosomes for constructing a physical map of
the human genome (Langer-Safer et al., 1982; Lichter et al.,
1993). FISH technology offers three major advantages including
high sensitivity and specificity in recognizing targeted DNA
or RNA sequences, direct application to both metaphase
chromosomes and interphase nuclei, and visualization of
hybridization signals at the single-cell level. These advantages
increased the analytic resolution from Giemsa bands to the
gene level and enabled rapid detection of numerical and
structural chromosomal abnormalities (Klinger et al., 1992;
Ried et al., 1992). Clinical application of FISH technology
had upgraded classical cytogenetics to molecular cytogenetics.
With the improvement in probe labeling efficiency and the
introduction of a super resolution imaging system, FISH has
been renovated for research analysis of nuclear structures and
gene functions. This review presents the recent progress in
FISH technology and summarizes its diagnostic and research
applications.

CELL BASED GENETIC DIAGNOSIS BY
FISH

Analytical and Clinical Validities and
Practice Guidelines
Most DNA fragments used as probes are extracted from bacterial
artificial clones (BACs) which contain cloned human genomic
DNA sequences in the size of 100–200 Kilobases (Kb). These
DNA fragments could be directly labeled by nick translation
to incorporate nucleotides coupled with different fluorophores
such as coumarins, fluoresceins, rhodamine, and cyanines (Cy3,
Cy5, and Cy7) (Morrison et al., 2003). According to the targeted
regions and labeling design, FISH probes can be divided into
locus-specific probes targeted to specific regions or genes and
regional painting probes for specific chromosomal bands, an
entire chromosome or whole genome. Commonly used locus-
specific probes include alpha repetitive sequences for centromeric
regions and single copy sequences for subtelomeric and gene
regions. Multi-color locus-specific probes allow simultaneously
detection of numerical abnormalities of two to three regions
in one FISH assay. For structural rearrangements, locus-
specific probes with different fluorophores for two genes
or for the 5′ and 3′ regions of a gene have been used
to detect “double-fusion” signals resulting from a reciprocal
translocation or “break apart” signals from a gene rearrangement,
respectively. Painting probes have been used mostly in a research
setting to dissect chromosome domains within a nucleus or
structural rearrangements in metaphase chromosomes. Figure 1
shows representative FISH applications of locus-specific and

chromosome painting probes in the detection of numerical and
structural chromosomal abnormalities.

Earlier studies had evaluated signal-to-noise ratios, spatial
resolution of the fluorescent signals, and hybridization/detection
efficiencies of FISH tests on lymphocytes and aminocytes
(Klinger et al., 1992; Ried et al., 1992). These studies led to
the commercialization of FISH probes with optimized probe
selection and standardized labeling, and the clinical utility of
FISH testing in large case series (Ward et al., 1993). To ensure
safe and effective diagnostic application, a clinical cytogenetics
laboratory needs to establish the analytical and clinical validities
for every FISH assay. The analytical validity of a FISH assay
is evaluated by its targeted accuracy, sensitivity, specificity, and
normal reference ranges following a standardized laboratory
procedure (Wolff et al., 2007; Ciolino et al., 2009). FISH testing
could be used as an adjunctive assay or a stand-alone diagnostic
assay for constitutional and somatic abnormalities. The clinical
validity for its intended use should be evaluated by calculating
the sensitivity from patients with targeted abnormalities and the
specificity from normal controls. Other analytical and clinical
considerations include possible false positive or negative results,
continuous monitoring of signal variations, periodical evaluation
and batch-to-batch comparisons of probe performances (Test
and Technology Transfer Committee, 2000).

FISH technology enabled the detection of an increased
spectrum of genetic disorders from chromosomal abnormalities
to submicroscopic copy number variants (CNVs) and extended
the cell-based analysis from metaphases to interphases (Xu
and Li, 2013). The analytical resolution of FISH is in the
range of 100–200 Kb as determined by the probe size, which
is 50-fold higher than the 5–10 megabase (Mb) Giesma
banding of a high resolution karyotyping. Locus-specific probes
detected submicroscopic CNV and led to the identification of
a group of genomic disorders (also termed contiguous gene
syndromes or microdeletion syndromes), such as DiGeorge
syndrome (OMIM#188400) by a deletion at 22q11.2, Prader-
Willi syndrome (OMIM#176270) and Angelman syndrome
(OMIM#105830) by a deletion at 15q11.2. FISH can be
performed directly on interphase nuclei, which eliminated
the time consuming cell culture procedure and extended its
diagnostic application toward rapid screening of chromosomal
and genomic abnormalities. In the following sections, the
diagnostic applications of FISH technology are focused on
three main areas: prenatal screening and postnatal diagnosis of
constitutional chromosomal abnormalities and submicroscopic
pathogenic CNVs, identification and monitoring of acquired
chromosomal abnormalities in hematopoietic and solid tumors,
and the detection of infectious diseases caused by microbials and
parasites.

Detection of Constitutional Chromosomal
Abnormalities and Pathogenic CNVs
A Multiplex FISH panel with differentially labeled probes has
been developed for prenatal screening of common aneuploidies
involving gains or losses of chromosomes X, Y, 13, 18, and
21 (Ried et al., 1992; Ward et al., 1993). Pregnant women
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FIGURE 1 | Adjunctive and diagnostic assays of FISH in clinical cytogenetics. (A) The detection of di-centric, tri-centric, and tetra-centric ring chromosome 18

using a centromeric probe D18Z2 for chromosome 18. Left panel shows normal chromosome 18, dicentric ring 18 in top, and tetracentric ring 18 in bottom, right

panel shows dicentric ring 18 and tricentric/tetracentric ring 18 in insets by FISH. (B) The detection of a derivative chromosome 16 from a 2q32/16p13.3 translocation

by whole chromosome painting probes for chromosomes 2 (WCP2) and 16 (WCP16). (C) The detection of ABL1/BCR gene fusions in interphase and metaphase cells

by dual color double fusion probes (thin arrows point to the normal signal and thick arrows point to the abnormal fusion signals). (D) Diagnostic use of ETV6 and

RUNX1 probes for the detection of two fusion signals for a cryptic t(12;21)(p13;q22), loss of an ETV6 signal and gain of three extra RUNX1 signals (thin arrows point to

the fusion signals and thick arrows to extra RUNX1 signals). All images are from Yale clinical cytogenetics laboratory.

with a single indication or combined indications of advanced
maternal age, abnormal ultrasound findings, or abnormal
maternal serum screening have an increased risk of 4–30% for
carrying numerical and structural chromosomal abnormalities;
among these abnormalities, 84% were numerical abnormalities
mostly detectable by the multiplex FISH panel, and 16% were
structural abnormalities required further microarray analysis (Li
et al., 2011). For prenatal cases with cardiac anomalies detected
by prenatal ultrasound examination, DiGeorge syndrome was
detected by FISH. Recently, the application of non-invasive
prenatal testing by massive parallel sequencing on maternal cell-
free fetal DNA significantly improved the accuracy of aneuploidy
screening, which resulted in a 57% decline in invasive prenatal
procedures and an increase of diagnostic yield of chromosomal
abnormalities (Xu Z. Y. et al., 2013; Meng et al., 2015). Despite
these technology advances in prenatal diagnosis, the multiplex
FISH panel is still used as an adjunctive assay for rapid detection
of common aneuploidies. It should be noted that false positive
or negative results as well as maternal cell contamination have
been noted in prenatal FISH analysis. Therefore, an irreversible
therapeutic action should not be initiated on the basis of FISH
results alone. The current guideline recommended that clinical
decisions should bemade based on two of three pieces of available
information: FISH results, conventional cytogenetic analysis and

clinical information (Test and Technology Transfer Committee,
2000). Furthermore, aneuploidies and polyploidies have been
detected in about 50% of first trimester spontaneous abortions
by chromosome analysis and in 35% of products of conception
culture failure cases by microarray analysis; it is recognized that
an extended FISH panel for chromosomes X/Y/18, 13/21, and
15/16/22 will detect all polyploidies, 84% of aneuploidies, and
69% of multiple aneuploidies causing miscarriages (Zhou et al.,
2016).

Developmental delay, intellectual disabilities, and multiple
congenital anomalies are present in 1–5% of newborns, and
chromosome microarray analysis as the first tier genetic testing
has detected a spectrum of cytogenomic abnormalities in
10∼20% of these patients (Miller et al., 2010; Li et al., 2015).
Analysis of abnormal findings from consecutive pediatric cases
observed genomic disorders (microdeletion/microduplication
syndromes), subtelomeric rearrangements, interstitial
imbalances, chromosomal structural rearrangements, and
aneuploidies in about 37, 26, 19, 10, and 8% of these cases,
respectively (Xu et al., 2014). Cell-based FISH testing has
been a cost-effective adjunctive assay to confirm microarray
detected genomic disorders and then to detect carrier statues
in a follow-up parental study. Microdeletions can be detected
as a loss of one signal in metaphases and interphases, while
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microduplications can be detected as “twin-spot” like two signals
in the interphase nuclei. For subtelomeric rearrangements,
a complete set of subtelomeric FISH probes for all human
chromosomes was developed (Ning et al., 1996) and have been
used routinely as an adjunctive assay in visualizing cryptic and
complex subtelomeric rearrangements (Li et al., 2006; Rossi
et al., 2009). For many newly defined loci of genomic disorders
and interstitial imbalances, there are no commercially available
FISH probes. Therefore, “home-brew” targeted BAC clone FISH
probes were used for these unique cases (Li et al., 2006; Khattab
et al., 2011).

Structural rearrangements like ring chromosomes and small
supernumerary marker chromosomes (sSMC) present not only
segmental gains or losses but also a mosaic pattern due to
their dynamic behavior in mitosis. As shown in Figure 1A,
centromeric FISH probes are routinely used to track the changes
from dicentric, tricentric, and tetracentric ring chromosomes to
loss of the ring through mitosis. Subtelomeric and interstitial
FISH probes have been used to define the intactness of the ring
chromosome and the level of mosaicism (Zhang et al., 2004; Xu F.
et al., 2013). A cytogenomic approach combining chromosome,
FISH, and microarray analyses has been recommended for
characterizing the genomic structure, mitotic instability, and
mechanisms of ring formation for cases with a ring chromosome
(Zhang et al., 2012). sSMC are extra centric chromosome
fragments usually in the forms of an inverted duplication or
a small ring chromosome and present in 0.043% of newborn
children. Several sSMC have syndromic phenotypes such as inv
dup(22q11.2) for cat-eye syndrome (OMIM∗607576) and i(12p)
for Pallister Killian syndrome (OMIM#601803), and others
like inv dup(15q) and i(18p) can have variable phenotypes
(Liehr et al., 2004, 2006). About 30% of sSMC are derived
from chromosome 15; the D15S10 or SNRPN probes are
routinely used to assess inv dup(15q) (Wang et al., 2015). The
euchromatic material in sSMC can be detected by a microarray
analysis. A set of pericentric core probes for each arm of
human chromosomes has been validated for characterizing
unambiguously the chromosomal origin of sSMC and the level
of mosaicism (Castronovo et al., 2013).

Identification and Monitoring of Acquired
Chromosomal Abnormalities
The discovery of Philadelphia chromosome in chronic
myeloid leukemia (CML) followed by the characterization
of t(9;22)(q34;q11) with underlying ABL1/BCR gene fusions
supported the causative role of chromosomal abnormalities in
carcinogenesis and set the foundation for cancer cytogenetics
(Mitelman et al., 2007). Cancer is considered a genetic disease
at the cellular level resulting from either a progressive process
or a one-off catastrophic event (Stephens et al., 2011; Li
and Cui, 2016). The two main pathogenetic pathways for
hallmarks of cancer development are the inactivation of tumor
suppressor genes by deletions, mutations, miRNA upregulation,
or epigenetic mechanisms, and the activation or deregulation of
oncogenes as a consequence of point mutations, amplification
or balanced cytogenetic abnormalities (Vogelstein and Kinzler,

2004; Hanahan and Weinberg, 2011). Recurrent chromosomal
abnormalities including translocations, deletions, duplications,
and gene amplifications associated with distinct tumor entities
have been characterized; specifically designed FISH panels have
been widely used in the diagnosis and monitoring of acquired
chromosomal abnormalities in hematologic and solid tumors
(Hu et al., 2014; Liehr et al., 2015; Mikhail et al., 2016).

Current guidelines recommend an integrated approach for
cancer cytogenetic diagnosis (Wolff et al., 2007). In general, both
conventional karyotyping and FISH testing are used for initial
diagnosis and follow up monitoring of clonal abnormalities. For
hematopoietic and lymphoid tumors, the most commonly used
FISH probes and disease-specific panels in a clinical cytogenetics
laboratory are listed in Table 1. Results from a FISH panel
offer a quick evaluation of targeted abnormal patterns and
their percentage within the bone marrow cells or leukocytes.
Chromosome analysis will then reveal the clonal abnormalities
and clonal evolution. For leukemias requiring urgent treatment,
such as acute promyelocytic leukemia (APL) caused by the
t(15;17)(q24;q21) with underlying PML/RARa fusions, rapid
FISH result is mandated for the administration of all-trans
retinoic acid (ATRA). Targeted therapy against the ABL1/BCR
fusion protein by small molecule tyrosine inhibitors like imatinib
mesylate (Gleevec), dasatinib (Sprycel), and nilotinib (Tasigna)
has increased the 10-year overall survival from 20 to 80–90%
(Li et al., 2013). For many cryptic rearrangements undetectable
by routine chromosome analysis, such as t(12;21)(p13;q22)
with ETV6/RUNX1 gene fusions, t(4;14)(p16.3;q32) with
FGFR3/IGH gene fusions, deletions of 12p13 (ETV6), 13q14
(RB1), and 17p13 (TP53), FISH tests are considered a stand-
alone diagnostic assay. Adjunctive use of FISH probes to further
define ambiguous or hidden chromosomal abnormalities is
required for many cases (Kamath et al., 2008; Massaro et al.,
2011). Additionally, FISH is a sensitive and timely method
to monitor residual diseases with known clonal abnormality
and bone marrow transplantation by sex-mismatch donor
at cellular level. Considering some hematologic tumors may
be morphologically similar and the abnormalities may not
be detected by low-resolution karyotyping and/or in low
percentage of leukemic cells, FISH could be important for
differential diagnosis between these diseases. For example,
cyclin D1 (CCND1) translocation can be detected by FISH
as a characteristic abnormality in mantle cell lymphoma,
which provides differential diagnosis for morphologically
similar chronic lymphoid leukemia (CLL). Furthermore, FISH
for nuclear DNA can be combined with immunostaining
of cytoplasmic markers for simultaneous identification of
chromosomal abnormalities and cell types. For example, IGH
translocation is present in multiple myeloma and monoclonal
gammopathy of undetermined significance (MM/MGUS)
with high frequency, which is usually detected in plasma
cells. In a two-step assay with first the hybridization of IGH
probe and then immune-staining by fluoresceinisothiocyanate
(FITC)-conjugated antibodies against κ- or λ-light chain, the
FITC-stained cytoplasm and IGH break apart signals within
the nuclei were visualized in plasma cells simultaneously. This
modified immuno-FISH was expected to improve the diagnostic

Frontiers in Cell and Developmental Biology | www.frontiersin.org September 2016 | Volume 4 | Article 8961

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Cui et al. FISH in Genetic Diagnosis and Research

TABLE 1 | List of FISH panels and probes for hematopoietic and lymphoid tumors.

Gene (G-band) Probe Design Myeloid leukemia Lymphocytic leukemia Lymphoma MM/MGUS MPD

CML MDS AML CLL B-ALL T-ALL

CKS1B (1q21), CDKN2C

(1p32)

DCE 1p/1q+

PBX1 (1q23.3), TCF3

(19p13.3)

DCDF t(1;19) t(1;19)

ALK (2p23) DCBAP ALK

MECOM (3q26) DCBAP inv(3)

BCL6 (3q27) DCBAP BCL6

D4Z1 (4cen), D10Z1

(10cen), D17Z1 (17cen)

TCE +4/10/17

PDGFRA (4q12) DCBAP PDGFRA

FGFR3 (4p16.3), IGH

(14q32)

DCDF t(4;14)

TAS2R1 (5p15.31), EGR1

(5q31)

DCE 5q−/−5

PDGFRB (5q33) DCBAP PDGFRB PDGFRB

MYB (6q23), D6Z1 (6cen) DCE 6q−

RELN (7q22), TES (7q31) DCE 7q−/−7

TCRB (7q34) DCBAP TCRB

FGFR1 (8p11) DCBAP FGFR1

RUNX1T1 (8q21), RUNX1

(21q22)

DCDF t(8;21)

cMYC (8q24) DCBAP cMYC

cMYC (8q24), D20S108

(20q12)

DCE +8/20q−

PAX5 (9p13.2) DCBAP PAX5

CDKN2A (9p21), D9Z3

(9cen)

DCE 9p− 9p−

ABL (9q34), BCR (22q11) DCDF t(9;22) t(9;22) t(9;22)

CCND1 (11q13), IGH

(14q32)

DCDF t(11;14) t(11;14)

ATM (11q22), TP53

(17p13)

DCE 11q−/17p−

KMT2A (11q23) DCBAP KMT2A KMT2A KMT2A

ETV6 (12p13), RUNX1

(21q22)

DCDF t(12;21)

DLEU1 (13q14), D13S25

(13q34)

DCE 13q−

DLEU1 (13q14), D13S25

(13q34), D12Z3 (12cen)

TCE 13q−/+12

TCRA/D (14q11) DCE TCRA

IGH (14q32) DCBAP IGH IGH IGH

IGH (14q32), BCL2

(18q21)

DCDF t(14;18)

SNRPN (15q11.2), TP53

(17p13)

DCE +15/17p−

PML (15q24), RARA

(17q21)

DCDF t(15;17)

MYH11 (16p13), CBFB

(16q22)

DCDF inv(16)

MALT1 (18q21) DCBAP MALT1

CRLF2 (Xp22.33) DCBAP CLFR2

DCE,dual-color enumerate; TCE, tri-color enumerate; DCBAP, dual-color break apart; DCDF, dual-color double fusion; CML, Chronic myeloid leukemia; MDS, Myelodysplastic

syndrome; AML, Acute myeloid leukemia; CLL, Chronic lymphocytic leukemia; B-ALL, B-cell acute lymphocytic leukemia; T-ALL, T-cell acute lymphocytic leukemia; MM/MGUS, Multiple

myeloma/Monoclonal mopathy of undetermined significance; MPD, Myeloproliferative disorder. Shaded for recurrent abnormalities detected by a primary FISH panel, unshaded for

secondary FISH probes for specific abnormalities. For references see (Hu et al., 2014; Liehr et al., 2015), and (Mikhail et al., 2016).
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accuracy but the low sensitivity limited its application only in
follow-up study (Boersma-Vreugdenhil et al., 2003).

FISH tests are widely used in various types of solid
tumors. For example, FISH can define gene rearrangements
in congenital fibrosarcoma with a novel complex translocation
(Marino-Enriquez et al., 2008) and validate subclone markers
in heterogeneous melanoma biopsies (Parisi et al., 2011).
FISH results can be used to guide cancer treatment. For
example, Herceptin-targeted therapy is effectively against HER2
over-expressed breast cancer. For routine clinical specimen,
immunohistochemistry, real-time polymerase chain reaction,
and FISH were used to assess the HER2 protein level, RNA
expression, and DNA copy numbers, respectively. Among
these methods, FISH offered a cell-based evaluation for the
ratio of HER2 gene copy number to the number of copies
of chromosome 17 (HER2/CEP17 ratio). The FISH scoring
criteria for HER2/CEP17 ratio and the interpretive guidelines
were reported (Hicks et al., 2005). Many targeted therapies
for recurrent translocations in various types of solid tumors
have been either approved by FDA or are under clinical trials.
For example, lapatinib, sorafenib, sunitinib, termsirolimus, and
pazopanib have been used for papillary renal cell carcinoma with
translocations involving the TFE3 gene at Xp11.2; cixutumumab
and mithramycin are in phase II clinical trial for Ewing sarcoma
with translocation involving the EWSR1 gene at 22q12 (Li
et al., 2013). FISH assays using probes for specific recurrent
translocations from different solid tumors could guide effective
targeted therapy. FISH tests were also used to evaluate sperm
aneuploidy frequencies before and after chemotherapy in patients
with testicular cancer and Hodgkin’s lymphoma; significantly
increased frequencies of aneuploidies for a duration up to 24
months were noted (De Mas et al., 2001; Tempest et al., 2008).
It was recommended that genetic counseling about potentially
increased reproduction risk from chemotherapy should be
offered to cancer patients.

Detection of Infectious Diseases by FISH
The majority of FISH probes target to specific chromosomal
and genomic abnormalities in the human genome. Rapid
phylogenetic identification of single microbial cells was achieved
using fluorescently labeled oligonucleotides complementary to
16S ribosomal RNA (rRNA) (DeLong et al., 1989). Some
segments in the 16S rRNA are invariant in all organisms but
phylogenetic group-specific 16S rRNA in different groups of
organism can be used as oligonucleotide FISH probes (length 17–
34 nucleotides) to identify infectious agents in clinical samples.
For example, FISH probes complementary to specific sequence
of 16s rRNA can detect malaria infection in blood samples. The
Plasmodium Genus (P-Genus) FISH assay has a Plasmodium
genus specific probes that detect all five species of Plasmodium
known to cause the disease in humans. The sensitivity of this
FISH assay is better than the Giemsa staining method. A LED
light source may be an available device to read FISH result,
which can extend the clinical application of FISH especially in the
resource-limited areas. Since rRNA has a short life and is present
in a live organism with plenty of copies, FISH should be done in
the live pathogens (Shah et al., 2015).

SINGLE-CELL DNA STRUCTURAL AND
RNA TRANSCRIPTIONAL ANALYSES

FISH assays using locus-specific and regional painting probes
are still a powerful tool in visualizing simple and complex
chromosomal and genomic rearrangements. Fiber-FISH by
locus-specific BAC clone probes within a 900 Kb 17q12
inversion hybridizing onto stretched DNA fibers correlated
the inversion orientations with associated haplotypes,
which allowed the evaluation of inversion frequencies
among human populations globally (Donnelly et al., 2010).
Pericentriomeric heterochromatin probes were used in a three
dimensional FISH (3D-FISH) to study intra-nuclear centromeric
positions in cultured cells from patients with ICF syndrome
(immunodeficiency, centromeric region instability, facial
anomalies) and Robert syndrome (cohesion defect by mutations
in the ESCO2 gene) (Dupont et al., 2012, 2014). Multi-color FISH
(M-FISH) by painting probes specific for a human chromosome
and multi-color banding FISH (M-BAND) by painting probes
specific for every band in a chromosome were used to visualize
complex chromosomal rearrangements from chromothripsis
in two patients with acute myeloid leukemia (Mackinnon and
Campbell, 2013). Chromothripsis are seen as regional clustering
of breakpoints and regularity of oscillating copy-number
states by microarray analysis and as heterogeneous staining
regions, marker or ring chromosomes, and other undefinable
rearrangements by chromosome analysis (Stephens et al., 2011).
Selected FISH probes targeting to the oscillating copy-number
gains and losses could be used to monitor the abnormal clones
with chromothripsis.

FISH technology has made significant progress with the
innovation of novel labeling methods and the introduction of
super resolution imaging systems for fine mapping of intra-
nuclear genomic structures and for single cells single molecule
profiling of cytoplasmic RNA transcription. Recently, a novel
FISH method using nuclease-deficient clustered regularly
interspaced short palindromic repeats (CRISPR)/CRISPR-
associated caspase 9 (dCas9) system was developed. The initial
design used enhanced green fluorescent protein (EGFP) tagged
dCas9 and small guide RNA (sgRNA) targeting to repetitive
telomere sequences or sgRNAs tiling along a non-repetitive
genomic sequences at the MUC4 locus. This method enabled
the visualization of intra-nuclear locations and dynamics of
telomeres and MUC4 loci during mitosis in living human
cells (Chen et al., 2013). Further modification by using both
fluorophore-coupled sgRNA and fluorophore-coupled dCas9
was termed Cas9-mediated FISH (CASFISH); rapid and
robust labeling of repetitive DNA elements in preicentromere,
centromere, G-rich telomere, and MUC4 gene by CASFISH was
demonstrated (Figure 2A; Deng et al., 2015). This CASFISH
did not require the denature treatment for targeted DNA and
therefore preserved the nature spatiotemporal organization
of the nucleus. The CASFISH process is remarkably rapid
(within 1 h) and can be used directly on fixed tissues or
living cells. However, using tiling sgRNAs for single-copy
gene regions could have low labeling efficiency and higher
background. Further optimization of this CASFISH technology
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FIGURE 2 | Single molecule FISH techniques for research application in single cells. Schematic drawings of single molecule FISH methods: (A) Cas-9

mediated FISH (CASFISH) using fluorophore-coupled sgRNAs and dCAS9. (B) Oligopaint-FISH using fluorophore-coupled primary oligonucleotides for targeted SNP

loci and fluorophore-coupled second oligonucleotide to enhance labeling efficiency shows differential labeling of paternal (pat) and maternal (mat) chromosomes. (C)

single molecule RNA FISH by rolling cycling amplification (RCA) using padlock probes targeting to reverse transcripted cDNA with different alleles followed by ligation,

cycling amplification and specific fluorophore-couple probe hybridization and visualization. (D) Sequential barcoding of multiplex different mRNAs by repeat rounds of

hybridization, imaging, and stripping. Star, diamond, and triangle are symbols for different fluorophores.

is needed before its application for basic research and genetic
diagnosis.

A synthesized primary single-strand oligonucleotide
library targeting to a single copy region of the genome
along with fluorophore-coupled second oligonucleotides
complementary to a portion of the primary oligonucleotides
were developed for so-called oligopaint FISH (Beliveau et al.,
2015). Co-hybridization of a set of hundreds to thousands of
primary fluorophore-coupled oligopaint probes (30–42 bases
in length for targeted genome region and hinged 14–32 bases
for second oligonucleotides) with fluorophore-coupled second
oligonucleotide (14–32 bases) can visualize a 52 Kb–3Mb regions
in nuclei with a 96–100% hybridization efficiency. Oligopaint
FISH probes designed with one fluorophore for specified single
nucleotide polymorphisms (SNPs) in a targeted region from one
chromosome and another fluorophore for these SNPs in the
homology chromosome enabled differential labeling of the two
homologous chromosomes. Stochastic optical reconstruction
microscope (STORM) was used for single-molecule super-
resolution imaging. Therefore, with prior information of the

specific SNP alleles from the two homologous chromosomes,
oligopaint FISH showed in situ haplotyping for paternal and
maternal chromosomes (Figure 2B). The oligopaint probes are
chosen bioinformatically to avoid repetitive DNA sequences and
they can be selected to target any organisms whose genomes have
been sequenced. With further improvement on signal pattern
recognition from the SNP loci, oligopaint FISH should enable
direct analysis of fine-scale chromatin structure, differential
visualization of homologous chromosomes, and allele-specific
studies of gene expression.

RNA FISH is a cell-based technique for detecting mRNA
transcripts. With the advance of various methods for signal
amplification and super-resolution imaging, single molecule
RNA FISH (smRNA-FISH) techniques have been developed.
Several approaches, including branched DNA probes, tyramide
signal amplification, quantum dots, and padlock-rolling circle
amplification (RCA), have been used for signal enhancement
(Kwon, 2013). RCA is the only method capable of distinguishing
single nucleotide allelic changes in transcripts. Briefly, reverse
transcription was performed in situ on cells and tissue sections to
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generate complementary DNA (cDNA), themRNAwas degraded
by ribonuclease H, and then padlock probes were hybridized to
targeted cDNA with 5′ and 3′ arms circularized by a T4 DNA
ligase. The circularized padlock probes served as a template for
RCA by 829 DNA polymerase, and then fluorophore-couple
oligonucleotide probes specific for each padlock probe could be
hybridized and visualized (Figure 2C; Larsson et al., 2010). To
increase the capacity for multiplex detection of different mRNA
molecules in single cells, combinatorial labeling, and optical
super-resolution microscope were used to measure mRNA levels
of 32 genes simultaneously in single Saccharomyces cerevisiae
cells (Lubeck and Cai, 2012). Further modification introduced
a sequential barcoding scheme for multiplex different mRNA
quantitation (Lubeck et al., 2014). In this scheme, the mRNAs
in cells were barcoded by sequential rounds of hybridization,
imaging and probe stripping (Figure 2D). Theoretically, the
multiplexing capacity scaled up quickly as the number of
fluorophores and rounds of hybridization increased. In practice,
the available fluorophores were limited and each round of
hybridization introduced loss of the RNA integrity in the tested
cells.

Various smRNA-FISH methods have been used in imaging
cell-type specific RNA profiles and sub-cellular localization
patterns of mRNAs in in vitro cellular systems (Ronander
et al., 2012; Lalmansingh et al., 2013; Shaffer et al., 2013;
Sinnamon and Czaplinski, 2014) and model animals such as
Drosophila (Zimmerman et al., 2013), Caenorhabditis elegans
(Bolková and Lanctôt, 2015), and Zebrafish (Hauptmann et al.,
2016). Additionally, smRNA FISH has been used to study
the subcellular localization and cell-to-cell variability of long
non-coding RNAs (lncRNA); systematically quantification and
categorization based on the subcellular localization patterns were
achieved for a representative set of 61 lncRNAs in three different
cell types (Cabili et al., 2015). Knowledge of lncRNA subcellular
localization patterns is essential to understand its biological
processes. An interesting application of smRNA FISH is the
study on nuclear RNA foci in genetic diseases resulting from the
expansion of tri-, tetra-, penta-, and hexa-nucleotide repeats; a
detailed protocol was reported for detecting mRNAs containing
expanded CAG and CUG repeats in fibroblasts, lymphoblasts,
and induced pluripotent stem cells (Urbanek and Krzyzosiak,
2016).

Simultaneous detection of mRNA and protein quantity
and their subcellular distribution in single cells by combining
a RNase-free modification of the immunofluorescence (IF)
technique and the smRNA FISH method observed direct
interaction of RNase MCPIP1 with IL-6 mRNA (Kochan
et al., 2015). Real-time live imaging using laser-scanning
confocal microscope with photon-counting detectors for
quantitative studies of transcription in culture cells and model
animals have been achieved by smRNA-FISH and GFP-tagged
reporter gene for RNA polymerase (Gregor et al., 2014).
Using Drosophila embryo as a testing system, smRNA-FISH
observed stochastic transcriptional activity of four critical
patterning genes and co-packaging of transcripts as multi-
copy heterogeneous granules to selected subcellular domains
(Little et al., 2013, 2015). These results indicated that there are T

A
B
L
E
2
|
F
IS
H

a
p
p
li
c
a
ti
o
n
s
in

g
e
n
e
ti
c
d
ia
g
n
o
s
is

a
n
d
re
s
e
a
rc
h
.

G
e
n
e
ti
c
s
d
ia
g
n
o
s
is

R
e
fe
re
n
c
e
s

R
e
s
e
a
rc
h
a
p
p
li
c
a
ti
o
n
s

R
e
fe
re
n
c
e
s

C
o
n
s
ti
tu
ti
o
n
a
l
c
h
ro
m
o
s
o
m
a
l
a
n
d
g
e
n
o
m
ic

a
b
n
o
rm

a
li
ti
e
s

A
n
a
ly
s
is

c
o
m
p
le
x
c
h
ro
m
o
s
o
m
a
l
re
a
rr
a
n
g
e
m
e
n
ts

R
a
p
id

sc
re
e
n
in
g
o
f
c
o
m
m
o
n
a
n
e
u
p
lo
id
ie
s

R
ie
d
e
t
a
l.,

1
9
9
2

M
a
p
p
in
g
b
re
a
kp

o
in
ts

a
n
d
g
e
n
o
m
ic
o
rie

n
ta
tio

n
D
o
n
n
e
lly

e
t
a
l.,

2
0
1
0

D
e
te
c
tio

n
o
f
m
ic
ro
d
e
le
tio

n
/m

ic
ro
d
u
p
lic
a
tio

n
sy
n
d
ro
m
e
s

W
e
ie
t
a
l.,

2
0
1
3

T
h
e
st
u
d
y
o
f
3
D
c
h
ro
m
o
so

m
a
ls
tr
u
c
tu
re
s

D
u
p
o
n
t
e
t
a
l.,

2
0
1
2

C
h
a
ra
c
te
ri
za
tio

n
o
f
su

b
te
lo
m
e
ric

re
a
rr
a
n
g
e
m
e
n
ts

N
in
g
e
t
a
l.,

1
9
9
6

D
e
fin
e
c
o
m
p
le
x
re
a
rr
a
n
g
e
m
e
n
ts

M
a
c
ki
n
n
o
n
a
n
d
C
a
m
p
b
e
ll,
2
0
1
3

A
n
a
ly
si
s
o
f
su

p
e
rn
u
m
e
ra
ry

m
a
rk
e
r
a
n
d
rin

g
c
h
ro
m
o
so

m
e
s

Z
h
a
n
g
e
t
a
l.,

2
0
1
2

C
h
a
ra
c
te
ri
z
in
g
n
u
c
le
a
r
g
e
n
o
m
ic

s
tr
u
c
tu
re
s

S
o
m
a
ti
c
re
c
u
rr
e
n
t
c
h
ro
m
o
s
o
m
a
l
a
b
n
o
rm

a
li
ti
e
s

S
p
a
tio

te
m
p
o
ra
lo

rg
a
n
iz
a
tio

n
o
f
c
e
n
tr
o
m
e
re
s/
te
lo
m
e
re
s

C
h
e
n
e
t
a
l.,

2
0
1
3

D
e
te
c
tio

n
o
f
tr
a
n
sl
o
c
a
tio

n
s,

d
e
le
tio

n
s,

d
u
p
lic
a
tio

n
s/
a
m
p
lifi
c
a
tio

n
s

H
u
e
t
a
l.,

2
0
1
4

C
h
ro
m
a
tin

in
te
ra
c
tio

n
d
u
rin

g
c
e
ll
c
yc
le

D
e
n
g
e
t
a
l.,

2
0
1
5

M
o
n
ito

rin
g
d
is
e
a
se

p
ro
g
re
ss
io
n
a
n
d
c
lo
n
a
le
vo

lu
tio

n
M
ik
h
a
il
e
t
a
l.,

2
0
1
6

in
s
it
u
c
h
ro
m
o
s
o
m
e
h
a
p
lo
ty
p
in
g

B
e
liv
e
a
u
e
t
a
l.,

2
0
1
5

A
ss
e
ss
m
e
n
t
o
f
se
x-
m
is
m
a
tc
h
b
o
n
e
m
a
rr
o
w

tr
a
n
sp

la
n
ta
tio

n
L
ie
h
r
e
t
a
l.,

2
0
1
5

P
ro
fi
li
n
g
R
N
A
tr
a
n
s
c
ri
p
ti
o
n
a
n
d
lo
c
a
li
z
a
ti
o
n

In
fe
c
ti
o
u
s
d
is
e
a
s
e
s

Q
u
a
n
tit
a
tio

n
o
f
m
u
lti
p
le
x
m
R
N
A
s
in
si
n
g
le
c
e
lls

L
u
b
e
c
k
e
t
a
l.,

2
0
1
4

D
e
te
c
tio

n
o
f
m
a
la
ria

b
y
1
6
s
rR
N
A

S
h
a
h
e
t
a
l.,

2
0
1
5

S
u
b
c
e
llu
la
r
lo
c
a
liz
a
tio

n
o
f
m
R
N
A
s
a
n
d
n
o
n
-c
o
d
in
g
R
N
A
s

C
a
b
ili
e
t
a
l.,

2
0
1
5

Frontiers in Cell and Developmental Biology | www.frontiersin.org September 2016 | Volume 4 | Article 8965

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Cui et al. FISH in Genetic Diagnosis and Research

conserved mechanisms of precision mRNA transcription and
localization for spatiotemporal control of protein synthesis in
regulating cellular and embryo development.

CONCLUSIONS AND FUTURE
DIRECTIONS

In summary, FISH has a wide spectrum of diagnostic and
research applications as shown in Table 2. FISH has the
advantage that it can be used in metaphase chromosomes and
interphase nuclei, and thus offers a cell-based genetic diagnosis
in complementary to DNA-based molecular testing (Xu and Li,
2013). FISH has been used as adjunctive and diagnostic assays
for both constitutional and somatic cytogenomic abnormalities.
FISH analysis of uncultured interphase cells from amniotic fluid
or chorionic villus samples is a standard procedure for rapid
prenatal testing of common aneuploidy and genomic disorders,
which alleviates much anxiety for patients and physicians. The
use of interphase FISH has been particularly fruitful for cancer
cytogenetics, where the detection of recurrent chromosomal
abnormalities and clonal evolution is crucial for classifying
different types of tumors, selecting treatment protocols, and
monitoring outcomes. Even with the introduction of genomic
technologies like microarray analysis and exome sequencing,
FISH analysis will still be an integral part of genetic diagnosis
(Parisi et al., 2012; Wei et al., 2013; Martin and Warburton,
2015). Microfluidic devices for miniaturized and automatic FISH
applications are currently under development (Vedarethinam
et al., 2010; Kwasny et al., 2012; Kao et al., 2015). The validation of

these devices in the near future and the available of more disease-
specific probes will further enhance and expand the diagnostic
FISH application.

Novel FISH techniques and super-resolution imaging systems
have been introduced to study the spatiotemporal changes
of intra-nuclear genomic organization and cytoplasmic RNA
profiling. These FISH techniques such as CASFISH, oligopaint-
FISH, and smRNA-FISH have been developed mainly for genetic
research applications. A current trend in FISH is toward
simultaneous single-cell measurement of DNA, RNA, cell surface
proteins, and intracellular proteins (Lai et al., 2016; Soh et al.,
2016). The translation of these single molecule single cells
FISH techniques into cell-based genetic diagnosis is expected to
improve the analytical resolution and capacity for a spectrum of
genetic defects from chromosomal and genomic abnormalities to
epigenetic aberrations.
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Single-Cell in Situ RNA Analysis With
Switchable Fluorescent
Oligonucleotides
Lu Xiao and Jia Guo*

Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, AZ, United States

Comprehensive RNA analyses in individual cells in their native spatial contexts promise

to transform our understanding of normal physiology and disease pathogenesis. Here

we report a single-cell in situ RNA analysis approach using switchable fluorescent

oligonucleotides (SFO). In this method, transcripts are first hybridized by pre-decoding

oligonucleotides. These oligonucleotides subsequently recruit SFO to stain their

corresponding RNA targets. After fluorescence imaging, all the SFO in the whole

specimen are simultaneously removed by DNA strand displacement reactions. Through

continuous cycles of target staining, fluorescence imaging, and SFO removal, a large

number of different transcripts can be identified by unique fluorophore sequences and

visualized at the optical resolution. To demonstrate the feasibility of this approach, we

show that the hybridized SFO can be efficiently stripped by strand displacement reactions

within 30min. We also demonstrate that this SFO removal process maintains the integrity

of the RNA targets and the pre-decoding oligonucleotides, and keeps them hybridized.

Applying this approach, we show that transcripts can be restained in at least eight

hybridization cycles with high analysis accuracy, which theoretically would enable the

whole transcriptome to be quantified at the single molecule sensitivity in individual cells.

This in situ RNA analysis technology will have wide applications in systems biology,

molecular diagnosis, and targeted therapies.

Keywords: transcriptomics, genomics, fluorescence in situ hybridization, strand displacement reactions, RNA

expression, oligonucleotides, fluorescent probes, single-cell

INTRODUCTION

The ability to profile a large number of distinct transcripts in single cells in situ is crucial
for our understanding of cancer, neurobiology, and stem cell biology (Crosetto et al.,
2014). The differences between individual cells in complex biological systems may have
significant consequences in the function and health of the entire systems. Thus, single
cell analysis is required to explore such cell heterogeneity. Due to the inherent complexity
of gene expression regulatory networks, comprehensive molecular profiling is required to
systematically infer the functions and interactions of different RNA species. The precise
location of cells in a tissue and transcripts in a cell is critical for effective cell-cell
interactions and gene expression regulation, which can determine cell fates and functions.
Therefore, to fully understand the organization, regulation, and function of a heterogeneous
biological system, highly multiplexed single-cell in situ RNA analysis is critically needed.
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Next-generation sequencing (Guo et al., 2010; Metzker, 2010)
and microarray technologies (Hoheisel, 2006) have been widely
used to study gene expression regulation in health and disease by
profiling RNA on a genome-wide scale. However, as transcripts
are extracted, purified and then analyzed in these approaches,
the RNA location information is lost. Imaging-based methods,
such as molecular beacons (Guo et al., 2012; Huang and Martí,
2012), templated fluorescence activation probes (Franzini and
Kool, 2009), and fluorescence in situ hybridization (FISH) (Raj
et al., 2008), allow transcripts to be quantified in their native
spatial contexts in single cells. Nonetheless, due to the spectral
overlap of commonly available fluorophores, these methods can
only detect a handful of different RNA species in one sample.

To enable comprehensive single-cell in situ RNA analysis,
several approaches have been investigated. For instance, in situ
sequencing (Ke et al., 2013; Lee et al., 2014) has been explored
to enable transcriptome profiling in individual cells. However,
this method has limited detection efficiency and may miss low-
expression transcripts. Combinatorial labeling (Levsky et al.,
2002; Lubeck and Cai, 2012; Levesque and Raj, 2013) and
reiterative hybridization (Xiao and Guo, 2015; Guo, 2016; Shaffer
et al., 2017; Mondal et al., 2018) offer single-molecule detection
sensitivity, but these approaches suffer from limited multiplexing
capacities. Recently, sequential hybridization (Lubeck et al., 2014;
Shah et al., 2016) and multiplexed error-robust fluorescence
in situ hybridization (MER-FISH) (Chen et al., 2015; Moffitt
et al., 2016a,b) have been developed for highlymultiplexed single-
molecule RNA detection. In these methods, to stain the same
RNA molecules in different analysis cycles, several approaches
have been explored to remove the fluorescence signals at the
end of each cycle. Such approaches include probe degradation by
DNase, photobleaching, and disulfide based chemical cleavage.
Nevertheless, probe degradation by DNase is limited by its low
signal removal efficiency. In addition, DNase removes all the
probes, including the large oligonucleotides library hybridized to
their RNA targets. Consequently, this expensive oligonucleotides
library has to be re-hybridized in every analysis cycle, which
will increase the assay time and cost. Photobleaching erases
fluorescence signals in different imaging areas sequentially. As a
result, it is less time-effective and has low sample throughput. The
disulfide based probes can cross-react with the endogenous thiol
groups and the thiol groups generated by fluorophore cleavage
in previous cycles, which will lead to high background and false
positive signals.

Here, we report a single-cell in situ RNA analysis approach
using switchable fluorescent oligonucleotides (SFO). In this
method, RNA molecules are first hybridized by pre-decoding
oligonucleotides, which subsequently recruit SFO to stain their
RNA targets. After imaging, SFO are removed by strand
displacement reactions. Upon continuous cycles of target
staining, fluorescence imaging, and SFO removal, varied RNA
species are identified by unique fluorophore sequences at
the optical resolution. To demonstrate the feasibility of this
approach, we show that the hybridized SFO can be efficiently
removed by strand displacement reactions within the cellular
environment in 30min. We also demonstrate that this probe
removal process maintains the RNA integrity and keeps the

pre-decoding oligonucleotides hybridized to their RNA targets.
Additionally, we show that RNA can be quantified with high
accuracy in at least eight continuous hybridization cycles, which
theoretically would allow the whole transcriptome to be profiled
in individual cells in situ.

MATERIALS AND METHODS

General Information
Chemicals and solvents were purchased from Sigma-Aldrich
or Ambion and were used without further purification, unless
otherwise noted. Biogreagents were purchased from Invitrogen,
unless otherwise indicated.

Cell Culture
HeLa CCL-2 cells (ATCC) were maintained in Dulbecco’s
modified Eagle’s Medium supplemented with 10% fetal bovine
serum, 10U mL−1 penicillin and 100 g mL−1 streptomycin in a
humidified atmosphere at 37◦C with 5% CO2. Cells were plated
on chambered coverglass (Thermo Scientific) and allowed to
reach 60% confluency in 1–2 days.

Cell Fixation
Cultured HeLa CCL-2 cells were first washed with 1 X PBS at
room temperature for 5min, fixed with fixation solution [4%
formaldehyde (Polusciences) in 1 X PBS] at room temperature
for 10min, and subsequently washed another 2 times with 1
X PBS at room temperature, each for 5min. The fixed cells
were then permeabilized with 70% (v/v) EtOH at 4◦C at least
overnight.

Probe Design
The pre-decoding probes with a length of 70 nt contain three
20 nt sequences: (i) a target-binding sequence for in situ
hybridization to the target RNA, and (ii) two repeated readout
sequences for decoding hybridization. The three sequences
are separated from each other by a flanking 5T spacer. The
target-binding sequence was designed by the Stellaris Probe
Designer provided by Biosearch Technology. The sequences of
pre-decoding probes are provided in Table S1.

The decoding probe (SFO) with a length of 40 nt contains two
20 nt sequences: (i) a binding sequence complimentary to the
readout sequence of the pre-decoding probes, and (ii) a toehold
sequence for strand displacement reactions. The decoding probe
is conjugated to fluorophores with the 5′-amino modification.
The sequence of the decoding probe is provided in Table S1.

The eraser oligonucleotide with a length of 40 nt is
complimentary to the decoding probe. The sequence of the eraser
oligonucleotide is provided in Table S1.

The SFO-orthogonal oligonucleotide with a length of 40 nt is
conjugated to fluorophores with the 5′-amino modification. The
sequence of the SFO-orthogonal oligonucleotide is provided in
Tabl S1.

To further ensure the specificity, all the sequences above were
screened against the human transcriptome by using Basic Local
Alignment Search Tool (BLAST) (Camacho et al., 2009) to ensure
there were no more than 10 nt of homology. Sequence alignment
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test were also performed by BLAST within these sequences to
ensure there were no more than 8 nt of homology.

Probe Preparation
Pre-decoding oligonucleotides belonging to one library (IDT)
were mixed and then stored as pre-decoding probe stock solution
(10mM in 0.01X Tris EDTA, pH 8.0) at 4◦C.

The 5′-amino modified decoding probe or the SFO-
orthogonal oligonucleotide (IDT), at a scale of 1 nmol, was
dissolved in 3 µL of nuclease-free water. To this solution was
added sodium bicarbonate aqueous solution (1M, 3 µL) and
Cy3 (AAT Bioquest) or Cy5 (AAT Bioquest) in DMF (20mM,
5 µL). The mixture was incubated at room temperature for
2 h and then purified using a nucleotide removal kit (Qiagen).
The fluorophore conjugated oligonucleotides were subsequently
purified via an HPLC (Agilent) equipped with a C18 column
(Aligent) and a dual wavelength detector set to detect DNA
absorption (260 nm) and the fluorophore absorbtion (555 nm
for Cy3, 650 nm for Cy5). For the gradient, triethyl ammonium
acetate (Buffer A) (0.1M, pH 6.5) and acetonitrile (Buffer B)
(pH 6.5) were used, ranging from 7 to 30% Buffer B over the
course of 30min, then at 70% Buffer B for 10min followed by
7% Buffer B for another 10min, all at a flow rate of 1mL min−1.
The collected fraction was then dried in a Savant SpeedVac
Concentrator and stored as decoding probe stock solution or
SFO-orthogonal oligonucleotide stock solution at 4◦C in 100 µL
0.01X Tris EDTA (pH 8.0).

The eraser oligonucleotide was dissolved and stored as
displacement stock solution (10mM in 0.01X Tris EDTA, pH 8.0)
at 4◦C.

Pre-decoding Hybridization
To 100 µL of pre-decoding hybridization buffer (100mg mL−1

dextran sulfate, 1mgmL−1 Escherichia coli tRNA, 2mM vanadyl
ribonucleoside complex, 20 µg mL−1 bovine serum albumin,
and 10% formamide in 2 X SSC) was added 1 µL of pre-
decoding probe stock solution. Then the mixture was vortexed
and centrifuged to obtain pre-decoding hybridization solution.

HeLa CCL-2 cells after fixation and permeabilization were
first incubated with wash buffer (2mM vanadyl ribonucleoside
complex and 10% formamide in 2 X SSC) for 5min at room
temperature, then incubated with 100 µL of pre-decoding
hybridization solution at 37◦C overnight. Cells were then washed
three times with wash buffer, each for 30min, at 37◦C.

Cells were then post-fixed with post-fixation solution [4%
formaldehyde (Polusciences) in 2X SSC] at room temperature for
10min, and subsequently washed another three times with 2X
SSC at room temperature, each for 5min.

Decoding Hybridization
To 100 µL of decoding hybridization buffer (100mg mL−1

dextran sulfate, 2mM vanadyl ribonucleoside complex, and 10%
formamide in 2 X SSC) was added 5 µL of decoding probe stock
solution with or without 5µL of SFO-orthogonal oligonucleotide
stock solution. Then the mixture was vortexed and centrifuged to
obtain decoding hybridization solution.

Cells labeled with pre-decoding probes were directly
incubated with 100 µL of decoding hybridization solution at
37◦C for 30min, and washed once with wash buffer at 37◦C for
30min. After incubation with GLOX buffer (0.4% glucose and
10mM Tris HCl in 2 X SSC) for 1–2min at room temperature,
the stained cells were imaged in GLOX solution (0.37mg mL−1

glucose oxidase and 1% catalase in GLOX buffer).

Displacement of Decoding Probes
To 100 µL of displacement buffer (100mg mL−1 dextran sulfate,
2mM vanadyl ribonucleoside complex, and 10% formamide in
2 X SSC) was added 5 µL of displacement stock solution. Then
the mixture was vortexed and centrifuged to obtain displacement
solution.

Cells after imaging were incubated with 100 µL of
displacement solution at 37◦C for 30min, and washed 3 times
with 1X PBS at 37◦C, each for 15min, then followed by the next
cycle of decoding hybridization.

Imaging and Data Analysis
Cells were imaged under a Nikon Ti-E epofluorescence
microscope equipped with a 100X objective, using a 5µm range
and 0.3µm z spacing. Images were captured using a CoolSNAP
HQ2 camera andNIS-Elements Imaging software. Chroma filters
49004 and 49009 were used for Quasar 579 and Cy5, respectively.

Fluorescent spots in each hybridization cycle were identified
and localized by SpotDetector (Olivo-Marin, 2002). For the
detected FISH spots, their intensities in the Cy3 and Cy5 channels
were compared to determine the color of the spots. Raw images
of the same cells in different cycles of hybridization were aligned
to the same coordination system established by the images
collected in the first cycle of hybridization based on one specific
spot reappearing in each cycle. Spots in the first hybridization
cycle with the distance less than 2 pixels (320 nm) to those in
the second hybridization cycle were extracted as the barcodes,
which corresponded to a potential mRNA molecule. Spots in
the following hybridization cycles that shared the distance less
than 2 pixels (320 nm) with the barcodes were identified as the
reappearance of the barcodes. And the barcode reappearance
percentage in each hybridization cycle was then calculated.

RESULTS

Platform Design
In this SFO-based RNA profiling approach (Figure 1), individual
RNA target is first hybridized by a set of non-fluorescent pre-
decoding oligonucleotides with varied target binding sequences.
These oligonucleotides also have one or multiple decoding
oligonucleotides binding sequences, which can recruit SFO
as decoding probes. Each of the subsequent analysis cycles
consists of three steps. First, SFO are hybridized to pre-
decoding probes to stain the RNA targets. In the second step,
fluorescence images are acquired with each RNA molecule
visualized as a single spot. Finally, oligonucleotide erasers,
which are perfectly complementary to SFO, are applied to
remove SFO by strand displacement reactions (Zhang and
Seelig, 2011). These oligonucleotide erasers hybridize to the
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FIGURE 1 | Highly multiplexed single-cell in situ RNA analysis with SFO. (A) Each transcript is first hybridized with a set of pre-decoding probes, which have varied

target-binding sequences to hybridize to the different regions on the target RNA and the shared decoding sequence to recruit SFO as decoding probes. After imaging,

the hybridized SFO is removed by strand displacement reactions. Through reiterative cycles of SFO hybridization, fluorescence imaging and strand displacement, the

target RNA is sequentially stained by a set of SFO labeled with varied fluorophores. (B) Schematic diagram of the N cycles of hybridization images. In each cycle,

individual transcript is visualized as a single spot with a specific color. (C) As RNA molecules remain in place during different hybridization cycles, different RNA species

can be identified by the unique color sequences.

FIGURE 2 | (A) GAPDH transcripts are stained by Cy3 labeled SFO. (B) SFO

is removed by the eraser oligonucleotide. (C) Signal intensity profiles

corresponding to the marked FISH spot in (A,B). (D) GAPDH transcripts are

stained by Cy3 labeled SFO. (E) The stained cells are incubated with an

orthogonal oligonucleotide. (F) Signal intensity profiles corresponding to the

marked FISH spot in (D,E). Scale bars, 5µm.

toehold on SFO, branch migrate and release SFO from
the pre-decoding probes. Through reiterative cycles of target
staining, fluorescence imaging and SFO release, each transcript
is identified by a fluorescence sequence barcode. With M
fluorophores applied in each cycle and N sequential cycles,
a total of MN RNA species can be quantified in single cells
in situ.

SFO Removal Efficiency
One requirement for the success of this SFO-based RNA
profiling technology is that fluorescent decoding probes need
to be removed very efficiently at the end of each analysis
cycle. In this way, the minimized fluorescence signal leftover
will not lead to false positive signals in the subsequent cycles.
Additionally, the efficient removal of SFO will regenerate
the single-stranded SFO-binding sequences on pre-decoding
probes, so that SFO can be recruited in the following cycle
to stain the target RNA again. To assess the SFO stripping
efficiency, we stained mRNA GAPDH with Cy3 labeled decoding
probes (Figure 2A). After incubating the stained cells with
the oligonucleotide eraser for 30min at 37◦C, almost all the
original FISH spots become undetectable (Figures 2B,C). We
also performed control experiments by incubating the stained
cells with an SFO-orthogonal oligonucleotide (Figure 2D). The
fluorescence intensities of the Cy3 stained GAPDH remained
largely the same before and after the oligonucleotide incubation
(Figures 2E,F). These results indicate that SFO can be efficiently
removed by strand displacement reactions.

Effects of the Strand Displacement
Reactions
Another requirement for the success of this SFO-based approach
is that the strand displacement reactions should maintain the
RNA integrity, so that the same transcripts can be restained in
the subsequent cycles. Additionally, it is preferred to keep the
pre-decoding probes hybridized to their RNA targets throughout
the assay, rather than to apply them in every analysis cycle.
This is essential for the following reasons. First, due to the
theoretical hybridization efficiency of ∼75% (Lubeck and Cai,
2012), a small percentage of transcripts are not hybridized with
enough pre-decoding probes to make them detectable. And
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these undetectable RNA can be different transcripts in different
analysis cycles, if the pre-decoding probes are removed and
rehybridized in each cycle. Consequently, many missing spots
in the aligned fluorophore sequences will be generated, leading
to the increased error rate. Furthermore, as the hybridization
of the pre-decoding probes takes overnight to 36 h, it is time-
consuming to apply this step in each cycle. Finally, for highly
multiplexed RNA profiling, the pre-decoding probes library is
usually composed of thousands of oligonucleotides. Thus, it will
make the assay less cost-effective if the expensive pre-decoding
library is removed and re-hybridized in every cycle.

To assess the effects of the strand displacement reactions on
the RNA targets and the hybridized pre-decoding probes, we
stained mRNA GAPDH in three continuous hybridization cycles
(Figure 3). In each cycle, Cy3 or Cy5 labeled SFO were applied
to stain the transcripts, and were subsequently removed very
efficiently using the same oligonucleotide eraser. We counted
1032 and 1045 spots in the first and second cycle, respectively.
Among these spots, 803 spots were colocalized. These results are
consistent with the ones obtained by using two sets of different
colored FISH probes to stain the same transcripts (Raj et al.,
2008). The small fraction of spots that did not colocalize may
correspond to the non-specifically bound probes. To exclude
these off-target signals, we define only the spots colocalized in the
first two cycles as true mRNA signals. With our approach, 99%
of the true signals reappeared in the third cycle. In comparison,
when both pre-decoding and decoding probes are degraded using

DNase, only 78% of spots reoccur in the third cycle (Lubeck et al.,
2014). These results suggest that the DNA displacement reactions
do not damage the RNA integrity, and the pre-decoding probes
remain hybridized to their RNA targets throughout the assay. In
this way, the analysis accuracy is improved and the assay time and
cost are reduced.

Eight-Cycle RNA Restaining
To demonstrate the multi-cycle potential of our approach,
we stained mRNA GAPDH in eight consecutive hybridization
cycles using SFO (Figure 4). To evaluate the target staining
specificity, we incubated the cells with Cy3 conjugated SFO
together with a Cy5 labeled orthogonal oligonucleotide in the
odd hybridization cycles, and with Cy5 conjugated SFO and
a Cy3 labeled orthogonal oligonucleotide in the even cycles.
In the first cycle, the FISH spots were only observed in the
Cy3 channel, suggesting that mRNA GAPDH is specifically
stained by the corresponding SFO. After signal detection and
strand displacement reactions, we imaged the cells again to
confirm the efficient stripping of SFO. This process of staining,
imaging and stripping was repeated eight times to obtain the
8-bit fluorophore sequence barcode for the target mRNA. For
the spots co-localized in the first two cycles (n = 1470), more
than 97% of these spots reappeared in each of the following
cycles (Figure 5). And over 95% of the spots were successfully
identified in all the hybridization cycles (Figure 6). A plot of
the signal intensities of the FISH spots in both the Cy3 and

FIGURE 3 | (A) In the first hybridization cycle, GAPDH transcripts are stained by Cy3 labeled SFO. (B) SFO is removed by the eraser oligonucleotide. (C) In the

second hybridization cycle, GAPDH transcripts are stained by Cy5 labeled SFO. (D) SFO is removed by the eraser oligonucleotide. (E) In the third hybridization cycle,

GAPDH transcripts are stained by Cy3 labeled SFO. (F) SFO is removed by the eraser oligonucleotide. (G) Signal intensity profiles corresponding to the marked FISH

spot in (A,B). (H) Signal intensity profiles corresponding to the marked FISH spot in (C,D). (I) Signal intensity profiles corresponding to the marked FISH spot in (E,F).

Scale bars, 5µm.
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FIGURE 4 | GAPDH transcripts are stained by SFO in eight consecutive hybridization cycles. In the odd cycles, cells are incubated with Cy3 conjugated SFO and a

Cy5 labeled orthogonal oligonucleotide. In the even cycles, cells are incubated with Cy5 conjugated SFO and a Cy3 labeled orthogonal oligonucleotide. After target

staining, images are captured in the Cy3 and Cy5 fluorescence channels. Following strand displacement reactions, images are captured in the Cy3 channel in the odd

cycles and in the Cy5 channel in the even cycles. Scale bars, 5µm.
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FIGURE 5 | Fractions of the spots colocalized in the first two hybridization

cycles that reappear in the following analysis cycles.

Cy5 channels vs. the hybridization cycles is shown in Figure 7.
Due to the high staining specificity, all the FISH spots were
unambiguously detected in the correct fluorescence channels.
We also performed control experiments to stain mRNA GAPDH
using the conventional smFISH method. The copy numbers per
cell obtained by the two methods (Figure 8), together with those
reported previously using RNA-Seq (Uhlén et al., 2015), are
consistent with each other. These results suggest that transcripts
can be quantitatively profiled in single cells in situ by multi-cycle
staining using the SFO-based approach.

In each cycle of MER-FISH, only certain transcripts are
stained and other RNA targets remain unlabeled. Thus, to
determine which transcripts are stained in a specific cycle, a
detection threshold has to be manually selected by comparing
the signal intensities of different FISH spots. However, due to
the imperfect probe hybridization efficiency, RNA secondary
structures, proteins bound to transcripts and other factors,
even individual transcripts from the same RNA species can
have significantly different staining intensities (Figure 7). As a
result, the artificial detection threshold can lead to false negative
signals, if the stained transcripts have low signal intensities.
This threshold will also result in false positive signals, if the
un-stained transcripts have high fluorescence intensities, which
are generated as the signal leftovers from the previous cycles.
In contrast, all the RNA targets are stained simultaneously in
every cycle in the SFO-based approach. Rather than using a
threshold to identify the stained transcripts, we compare the
signal intensities of the same spot in different fluorescence
channels to determine which SFO is hybridized to the specific
RNA target. In this way, the correct fluorescence sequence can
be unambiguously identified for both the weak spots (Figure 9A)
and the strong spots (Figure 9B) in each analysis cycle. These
results suggest that the SFO-based approach avoids the false
positive and negative signals generated by the artificial threshold,
and have enhanced detection sensitivity and analysis accuracy.

DISCUSSSION

We have developed an SFO-based technology for in situ RNA
profiling. Compared with the existing methods, our approach

FIGURE 6 | Fractions of the identified barcodes with different numbers of bits.

FIGURE 7 | Intensity distributions of GAPDH FISH spots (n = 60 spots) in Cy3

and Cy5 channels over the eight hybridization cycles.

has the following advantages. (i) By detecting transcripts
directly without target sequence amplification, our technology
enables RNA analysis at the single-molecule sensitivity. (ii) In
this method, different RNA species can be distinguished
by the varied color sequences, whose number increases
exponentially with the number of hybridization cycles. Thus,
our approach has the potential to enable highly multiplexed
RNA analysis. (iii) All the distinct SFO in the whole specimen
can be simultaneously removed by their corresponding eraser
oligonucleotides. Therefore, our approach has high sample
throughput, and allows a large number of cells to be quantified in
a short time. (iv) As SFO can be very efficiently removed and have
minimized cross-reactions with endogenous biomolecules and
other probes, our approach has enhanced signal to noise ratio.
(v) By keeping the pre-decoding oligonucleotides hybridized to
their targets throughout the assay, our method has increased
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FIGURE 8 | The GAPDH mean copy numbers per cell (n = 45 cells) obtained

using the SFO-based approach and the conventional smFISH (p > 0.65).

FIGURE 9 | Signal intensities of (A) a weak and (B) a strong GAPDH FISH

spot in Cy3 and Cy5 channels over the eight hybridization cycles.

analysis accuracy and decreased assay time and cost. (vi) With
each transcript stained in every cycle, this SFO-based approach
avoids the false positive and false negative signals generated by
the manually selected detection thresholds.

The number of RNA species that can be quantified using
this SFO-based approach depends on two factors: the number
of hybridization cycles and the number of different fluorophores
used in each cycle. As we have demonstrated, at least eight
hybridization cycles with high analysis accuracy can be carried

out in the same set of cells. And it is well-established that
hundreds of thousands of oligonucleotides can be prepared

cost-effectively by massively parallel synthesis on a microarray
slide (Murgha et al., 2014). Thus, further implementation of
the SFO-based approach with four classical fluorophores applied
in each cycle will potentially enable the whole transcriptome
to be profiled using the 65, 536 (48) distinct fluorophore
sequences. Additionally, multispectral fluorophores (Dai et al.,
2011; Guo et al., 2011; Wang et al., 2012) coupled with the
hyperspectral imaging (Garini et al., 2006) can be applied to
allow more fluorophores to be distinguished and applied in each
hybridization cycle. In this way, the cycle number together with
the assay time can be further reduced. Furthermore, following
the RNA profiling by this SFO-based approach, the nuclear
and cellular membranes can be counterstained using nuclear
staining dyes (such as DAPI) and fluorescent antibodies targeting
membrane proteins (such as E cadherin), respectively. With
individual cells precisely segmented by this counterstaining
approach, the SFO-based approach will allow RNA analysis
in single cells of intact tissues. Finally, the combination of
this SFO-based approach with multiplexed in situ protein
analysis technologies (Bodenmiller, 2016; Mondal et al., 2017,
in press) will enable the comprehensive and integrated RNA and
protein profiling in single cells in situ. This molecular imaging
platform will bring new insights into systems biology, signaling
network regulation, molecular diagnosis and cellular targeted
therapy.
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Fluidic logic Used in a Systems 
Approach to enable Integrated 
Single-cell Functional Analysis
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Myo Thu Maung, Wiganda Yorza, Michael Norris, Chris Cesar, Joe Shuga, 
Michael L. Gonzales, Chad D. Sanada, Xiaohui Wang, Rudy Yeung, Win Hwang, 
Justin Axsom, Naga Sai Gopi Krishna Devaraju, Ninez Delos Angeles, Cassandra Greene,  
Ming-Fang Zhou, Eng-Seng Ong, Chang-Chee Poh, Marcos Lam, Henry Choi,  
Zaw Htoo, Leo Lee, Chee-Sing Chin, Zhong-Wei Shen, Chong T. Lu, Ilona Holcomb,  
Aik Ooi, Craig Stolarczyk, Tony Shuga, Kenneth J. Livak, Cate Larsen, Marc Unger and 
Jay A. A. West*

New Technologies Research Department, Fluidigm Corporation, South San Francisco, CA, USA

The study of single cells has evolved over the past several years to include expression 
and genomic analysis of an increasing number of single cells. Several studies have 
demonstrated wide spread variation and heterogeneity within cell populations of similar 
phenotype. While the characterization of these populations will likely set the foundation 
for our understanding of genomic- and expression-based diversity, it will not be able 
to link the functional differences of a single cell to its underlying genomic structure and 
activity. Currently, it is difficult to perturb single cells in a controlled environment, monitor 
and measure the response due to perturbation, and link these response measurements 
to downstream genomic and transcriptomic analysis. In order to address this challenge, 
we developed a platform to integrate and miniaturize many of the experimental steps 
required to study single-cell function. The heart of this platform is an elastomer-based 
integrated fluidic circuit that uses fluidic logic to select and sequester specific single 
cells based on a phenotypic trait for downstream experimentation. Experiments with 
sequestered cells that have been performed include on-chip culture, exposure to various 
stimulants, and post-exposure image-based response analysis, followed by preparation 
of the mRNA transcriptome for massively parallel sequencing analysis. The flexible sys-
tem embodies experimental design and execution that enable routine functional studies 
of single cells.

Keywords: single-cell, mRnA-seq, functional studies, Fluidigm, polaris

InTRoDUcTIon

Recent single-cell transcriptomic analyses have documented the importance of cellular heterogene-
ity in studying cancer (Ennen et al., 2014; Saadatpour et al., 2014; Kim et al., 2015), immunology 
(Shalek et al., 2014), developmental biology (Briggs et al., 2015), stem cell research (Wilson et al., 
2015), and neurobiology (Pollen et al., 2015). It has been estimated that the human body contains 
37.2 trillion cells (Bianconi et al., 2013), excluding the complex microbiome that lives in the human 
body. High-throughput single-cell mRNA sequencing provides an unbiased path to classifying this 
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FIgURe 1 | Typical workflow for single-cell functional studies. The input single-cell suspension can be obtained from blood, primary cells, or cell culture. In 
the case of rare cells or a subset of cell population, there is an option to enrich them prior to use with Polaris using either fluorescence-assisted cell sorting (FACS) or 
other methods. Subsequently, the cells are labeled with a universal fluorescent marker for tracking the cells on the Fluidigm® Polaris system. Most of the single-cell 
functional study steps are automated on the Polaris system. The Polaris system generates preamplified full-length cDNA, which can be further processed for library 
preparation and massive parallel sequencing for mRNA sequencing.
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vast number of cells into cell types. This endeavor has stimulated 
the development of methods to increase throughput (Fan et al., 
2015; Klein et al., 2015; Macosko et al., 2015). The classification 
of cell types can be thought of as a high-resolution anatomy. At 
the single-cell level, moving from anatomy to physiology or from 
description to mechanism means moving from cell type to cell 
function. This will require integrating transcriptional data with 
other cellular measurements. In this regard, progress has been 
made in obtaining transcriptomic and genomic information (Dey 
et  al., 2015; Macaulay, 2015), transcriptomic and epigenomic 
information (Angermueller et al., 2016), or transcriptomic and 
proteomic information (Darmanis et al., 2016; Frei et al., 2016) 
from the same single cell.

Moving from cell type to cell function will also require under-
standing how single-cell profiles change in response to perturba-
tions. It is important to examine these effects at the single-cell level 
because cell-to-cell heterogeneity has been observed in a diverse 
set of circumstances, such as the response of macrophages to 
bacterial invasion (Avraham et al., 2015), the response of hemat-
opoietic cells to various drugs (Bendall et  al., 2011), and drug 
resistance in adenocarcinoma cells (Kim et al., 2015). Progress in 
the long-term culture of circulating tumor cells (Gao et al., 2014; 
Yu et  al., 2014; Cayrefourcq et  al., 2015; Alix-Panabières et  al., 
2016) enables single-cell functional studies on this important 
class of cells, which should lead to improved cancer diagnosis 
and therapy. Performing perturbation experiments on single cells 
requires care in maintaining the appropriate microenvironment. 
Examining the effects of serum on mouse embryonic stem cells 

(ESCs), researchers (Guo et  al., 2016) concluded that “a large 
proportion of intracellular network variability is due to the extra-
cellular culture environment.” Microfluidic-based approaches 
are attractive for the precise control of the microenvironment 
because they enable structures at a size appropriate for single 
cells. Microfluidic systems for high-throughput preparation of 
sequencing libraries, though, have cell lysis as the initial step and 
thus are not suitable to maintain single cells for experimentation. 
What is required is a system specifically designed to capture, 
maintain, perturb, and observe single cells and then prepare these 
cells for high-dimensional analysis.

In this paper, we report development of an integrated fluidic 
circuit (IFC) that uses fluidic logic to actively select and seques-
ter desired single cells based on particular biological markers of 
interest. This Polaris™ IFC can sequester up to 48 single cells. 
If required, the cells can be cultured in appropriate medium in 
order to control and manipulate the microenvironment around 
the sequestered cells. For adherent cells, appropriate extracel-
lular matrix (ECM) can be coated inside the culture chambers. 
The single cells can be perturbed with a drug or other stimuli 
(i.e., mRNA, cytokines, bacteria, or viruses), with the response 
to perturbation monitored and measured by fluorescence 
imaging. Subsequently, the single cells are processed for cell 
lysis, reverse transcription (RT), and full-length transcriptome 
amplification using template-switching chemistry. Following 
harvest from the IFC, sequencing libraries are generated using 
a modified Nextera® protocol and sequenced on any Illumina® 
platform (Figure 1).
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FIgURe 2 | (A) Polaris mRNA-seq dosing integrated fluidic circuit (IFC). The 
polydimethylsiloxane (PDMS) elastomer is attached to a plastic carrier. In 
order to image the cells with low-fluorescence background on the Polaris 
system, the PDMS is backed with a black material. This black backing is 
removed after cell perturbation and fluorescence response measurement. 
Removal of black backing enables high-resolution imaging of cells on a 
fluorescent microscope. The CAD drawing of the microfluidic components is 
shown on the right. The green channels are the control lines. (B) Polaris IFC 
uses fluidic processor to receive serial control inputs and converts them to 
parallel shift register elements. Traditional microfluidic control elements use 
one external control for every internal control.
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MATeRIAlS AnD MeThoDS

Design and Fabrication of logic-Based 
Integrated Fluidic circuit
The nanoscale IFC consists of a plastic carrier and a polydi-
methylsiloxane (PDMS) core (Figure 2A) or fluidic circuit. The 
carrier contains reservoir wells for input and output of reagents 
and circuit control. It provides a platform to facilitate interfac-
ing with the fluidic circuit. The fluidic circuit with the desired 
microfluidic control components was fabricated using multilayer 
soft lithography (MSL®) process (Unger et  al., 2000). Fluidic 
circuit components include flow and control channels, valves, 
multiplexors, and logic devices [such as serial-to-parallel shift 
register (SR)]. Fabrication and operational details of the fluidic 
logic circuits and devices were reported earlier (Devaraju and 
Unger, 2012). The IFC is designed to have the capability to actively 
select single cells based on fluorescent markers, isolate them to 
a desired holding location (cell capture site), apply individual 
conditions (feed medium and dose reagents to cells), and finally 
study the functional response. Execution of all these complex 
functions in a routine fashion requires flexible, programmable 
operational control, which in turn requires many controls in 
a parallel manner. Traditionally, in microfluidics, a dedicated 
external control line is required to independently control a set 
of valves. This imposes a limitation on the number of practical 

on-chip control operations and poses a challenge for scalability by 
requiring more external hardware. On-chip control architecture 
capable of receiving and processing data by elementary compu-
tation and decision-making can integrate programmability of 
controls on-chip and allows an increase in the number of on-chip 
control lines for the same number of external chip connections 
(Figure 2B). We developed such a microfluidic fluidic logic and 
implemented it on our Polaris IFC.

The state-based microfluidic fluidic logic devices and circuits 
utilize static gain and normally closed valves (NCVs). NCVs are 
fabricated by filling specialized control channels with a flash cur-
able prepolymer and curing while the valve is closed. The resulting 
closed valve exerts certain force against fluidic pressure to keep 
the valve closed. The valves are characterized by breakthrough 
pressure: the threshold pressure in the flow channel required 
to push open the valve and restore the continuity of the flow. 
Breakthrough pressure for an NCV can be tailored by controlling 
the pressure at which they are cured. Using these NCVs, we have 
developed static gain valves (SGV) that have the ability to control 
higher (or equal) fluidic pressure using a lower pressure. This 
type of valve is essential to create any logic/feedback structures 
(to account for signal strength losses), which can receive the 
output of the previous element/gate and use it as an input for 
decision making.

Utilizing the SGV, we next built an inverter (NOT gate), which 
was further used to build more complex circuits including bi-
stable flip flops, clocked flip flops (latches), delay flip flops (D-FF, 
one bit of the SR), and complex microprocessors (SR). A SR that 
is capable of processing n + 1 bits of data is formed by combining 
n D flip flops (bits of SR). The SR presented here uses air as the 
medium and receives three active high-pressure inputs: source, 
clock, and data (Figure 3). The pneumatic output of the SR cannot 
be used to control the flow of liquids in microchannels directly, 
due to risk of introducing bubbles. In order to address this issue, 
the signal medium is converted from air to liquid using an inverter.

The Polaris IFC microprocessor receives 28 external signals 
serially and processes them into 28 parallel independent controls 
capable of controlling individual valves or a set of valves. Five 
dedicated high-pressure external active signals are required for a 
SR. The CAD drawing of the various microfluidic components on 
a Polaris IFC is shown in Figure 3. The IFC can accept up to 20 
independent reagents. The fluorescently labeled cells are loaded 
in a serpentine partition channel. Based on a desired combina-
tion of up to three fluorescent markers (refer to Section “Polaris 
Instrument Design” for excitation and emission details), single 
cells are selected and sequentially isolated to the cell capture sites 
through a multiplexer. Up to 48 single cells can be sequestered 
on a single Polaris IFC. Subsequently, these 48 cells are processed 
through template-switching chemistry for full-length cDNA 
generation for mRNA-seq. In brief, the cells are lysed and reverse-
transcribed, and full-length cDNA is preamplified by long and 
accurate PCR.

polaris Instrument Design
The Fluidigm Polaris system (Figure 4A) consists of four major 
modules: (1) thermal control module; (2) imaging module; 
(3) pneumatic control module; and (4) environmental control 
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FIgURe 3 | cAD drawing of microfluidic control components on polaris mRnA-seq dosing IFc (A). The shift register (B) enables active selection of single 
cells. The dilute single-cell suspension is loaded into a serpentine partition channel (D). The cell suspension liquid flow is stopped, and the partition channel is 
imaged to identify single cells based on a particular set of fluorescence markers. The selected cells are then microfluidically moved downstream to a cell capture site 
(F) through a multiplexer (e). The IFC is capable of accepting 20 reagents (g) as input. The shift register uses inverter (c) and a set of source, clock, and data (h).
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(EC) module. The thermal module consists of a Peltier-based 
thermoelectric couple (TEC) device for heating/cooling. The 
TEC module can provide temperature in the range of 4–99°C. 
Vacuum grooves on the thermal module are designed to enable 

tight contact with the glass-based integrated heat spreader (IHS) 
on the Polaris IFC. This ensures thermal uniformity across the 
fluidic circuit. The imaging module contains a five-color LED 
light engine for excitation (Ex wavelengths: 438, 475, 530, 575, 
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FIgURe 4 | (A) Components of Polaris instrument. The instrument consist of four major modules: (1) thermal module, enables preparative chemistry on sequestered 
single cells; (2) imaging module, consists of LED excitation and emission collection by a camera; (3) pneumatic module, controls the movement of reagents inside 
microfluidic channel by application of positive pressure on the IFC carrier; and (4) environmental control module, maintains the temperature, humidity, and blood gas 
flow rate for single-cell culture on-IFC. (B) Components of environmental control interface plate. The top of the interface plate contains glass coated with indium tin 
oxide. Internal heaters are used to maintain the temperature of the closed chamber between the interface plate and Polaris IFC. The temperature and relative 
humidity inside the closed chamber (after clamping with Polaris IFC) are measured by T/RH sensor. Blood or premixed gas required for cell culture is pumped 
through mixed gas inlet port on the interface plate. Polaris IFC is shown for reference.
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TABle 1 | Recommended stains and corresponding excitation and 
emission filter on polaris system.

channel 
name

excitationa emission Recommended stains

FAM™ 475/40 525/25 Alexa Fluor 488 (selection marker)
VIC® 530/20 570/30 CellTracker Orange CMRA Dye 

(universal marker)
Cy5® 632/28 700/30 Alexa Fluor 647 (selection marker)

aExcitation values are center wavelength/band pass (≥90%).
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and 632 nm). The light source from the engine is collected and 
projected onto the fluidic circuit using fiber optics. The emitted 
signal from the fluidic circuit passes through an emission filter 
(five Em wavelengths: 488, 525, 570, 630, and 700  nm) and is 
collected by CCD camera with 6-μm pixel resolution through a 
custom-designed collimator lens.

The pneumatic control module generates and stores air with 
volume up to 1 L. The system can achieve a maximum pressure of 
100 psi. The pneumatic controller generates a vacuum on the ther-
mal chuck, clamps the Polaris IFC against the EC interface plate 
(IP) to enable a closed environment around the IFC, and loads 
reagents from the inlets on the IFC carrier to the microchannels 
and reagent chambers of the fluidic circuit. The system contains 
segregated zones to regulate four different pressures simultane-
ously. The EC module provides an environment suitable for 
cell culture using user-desired gas composition. Environmental 
parameters such as temperature, relative humidity (RH), and 
mix gas flow rate across the fluidic circuit are monitored and 
controlled. The gas inside the closed chamber is heated by two 
heater coils. The gas inlet on the EC IP is used to regulate the flow 
of gas across the fluidic circuit. The EC IP (Figure 4B) contains an 
indium tin oxide (ITO) coated glass on the top to maintain ther-
mal control in the EC while allowing imaging through the EC IP. 
During cell culture operation, the ITO glass is heated to prevent 
condensation. During cell culture, the environment around the 
fluidic circuit is maintained by blood gas (5% CO2, 5% oxygen, 
and 90% nitrogen) or premixed gas of choice (for example, 5% 
CO2, 20% oxygen, and 75% nitrogen). Before on-IFC cell culture, 
a rectangular sponge saturated with water is installed inside the 
closed chamber to provide the desired humidity through heating. 
The EC IP is equipped with two sensors (T/RH) to measure and 
maintain temperature at 37°C and RH at 90%.

K562 cell culture and cD59 Staining
K562 cells (ATCC® CCL-243) are cultured in T25 flasks in a vol-
ume ranging from 10 to 15 mL in an incubator (37°C, 5% CO2). 
The culture medium contains IMDM + GlutaMAX™-I + 25 mM 
HEPES + 3.024 g/L sodium bicarbonate (Gibco, 31980-030) and 
is supplemented with 10% FBS. The cells were fed every 2–3 days 
by dilution to 200,000 cells/mL. The K562 cells were stained 
with CellTracker™ Orange (CTO) CMRA Dye (Thermo Fisher 
Scientific, C34551) as universal marker and Alexa Fluor® 647 
conjugated CD59 antibody. The recommended dyes and cor-
responding excitation and emission filters on the Polaris system 
are shown in Table 1. Immediately before use, the cell staining 

solution was prepared by adding 0.6 μL of 1 mM CTO to 2 mL of 
HBSS without calcium or magnesium (−/−) at a final concentra-
tion of 0.3 μM. The cell staining solution was protected from light 
until use within 30 min. A total of ~1.5 × 106 cells was aliquoted 
in a 15 mL non-pyrogenic conical tube. The cell suspension was 
centrifuged at 300 × g for 3 min. Following this, the medium was 
aspirated without disturbing the pellet, and 2 mL of cell staining 
solution was added to the pellet and gently suspended by pipet-
ting up and down three times. The cells were then incubated in 
the dark at 37°C for 20 min with occasional inverting and flicking. 
Following this, the cells were washed by adding 12 mL of HBSS 
to the cells in the 2 mL of staining buffer and then centrifuged 
at 300 × g for 5 min. Supernatant was aspirated and discarded 
without disturbing the pellet. The pellet was then resuspended 
in 200  μL of HBSS. The CTO-stained K562 cells were split 
into two tubes of 100 μL each. One tube was used as negative 
surface-stained cell population, and the other tube was processed 
further to stain CD59 epitope. In order to stain the surface CD59 
epitope, 10 μL of CD59 biotinylated antibody (BD Biosciences, 
555762, 100 tests, 2.0 mL) was added to 100 μL of CTO-stained 
cells. For negative surface-stained cell control, 10  μL of HBSS 
was added. Both the tubes were incubated at room temperature 
for 20 min with occasional inverting and flicking. Subsequently, 
13 mL of HBSS was added to each tube and centrifuged at 300 × g 
for 5  min. The pellet was resuspended in 100  μL of HBSS. To 
this, 0.5  μL of Streptavidin Alexa Fluor® 647 (Thermo Fisher 
Scientific, S32357, 2 mg/mL stock) was added to positive-stain 
tube with CD59 biotinylated antibody in 100-μL cell suspension. 
This solution was mixed gently by pipetting up and down five 
times. Following this, the stain solution was incubated at room 
temperature for 15 min with occasional flicking. Again, 13 mL 
of HBSS was added to each tube, mixed by gently pipetting up 
and down, and centrifuged at 300 × g for 5 min. The supernatant 
was removed, and the pellet was resuspended in ~100–150 μL 
culture medium with FBS, but without phenol red, to prevent 
high background fluorescence during cell selection on the Polaris 
system. The resuspension volume of culture medium accounts for 
cell losses during the staining procedure and was chosen to yield 
a cell concentration greater than the target concentration of 550 
cells/μL. Typically, 10 μL of cell mix is loaded into a C-Chip™ 
Disposable Hemocytometer (INCYTO, DHC-N01) and imaged 
on the Polaris system to estimate the staining intensity and 
purity. In order to achieve optimal buoyancy, cells in the range of 
333–550 cells/μL are mixed with suspension reagent (Fluidigm, 
101-0434). Typically, the ratio of cells to cell suspension reagent 
is 3:2. However, this ratio might need optimization depending on 
the cell type.

IFc operation
The Polaris IFC is first primed to fill the control lines on the 
fluidic circuit, load cell capture beads, and the inside of PDMS 
channels is blocked to prevent non-specific absorption/adsorp-
tion of proteins. In order to capture and maintain the single 
cells in the sites, the capture sites (48 sites) are preloaded with 
beads that are linked on-IFC to fabricate a tightly packed bead 
column during the IFC prime step. In the case of adherent cells, 
ECM is coated inside the cell capture chambers during prime 
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FIgURe 5 | (A) Cells in suspension are loaded into a serpentine partition 
channel (CAD design image). (B) Image analysis shows movement of 
fluorescent cells inside the serpentine channel during reagent flow. Once  
the reagent flow is stopped, single cells are separated from each other.  
The system software identifies single cells based on desired fluorescent 
markers. (c) After identification, single cells are isolated by moving them  
to the capture sites through a fluidic multiplexer. (D) Image of cultured BJ 
fibroblast cells. The Polaris IFC can be imaged on a microscope to obtain 
high-resolution micrographs.
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the cells are imaged in the partition channel for different fluo-
rescent markers, as selected by the user. Based on automated 
image analyses by the system’s software, only single cells with 
the desired combination of fluorescent markers are selected 
and isolated to the cell capture site. Any doublets or single cells 
with undesired fluorescent combinations are not selected by the 
software for further experimentation (Figure 5B). The selected 
single cells are moved to capture sites through a multiplexer 
(Figure 5C). The system takes images of the capture sites to con-
firm the arrival of single cells from a particular position in the 
partition to a particular capture site number. Figure 5C shows 
a typical image from the Polaris system showing K562 single 
cells captured inside sites packed with a column of beads. The 
system will then select and isolate all available single cells from 
a partition fill as per desired fluorescent marker combination. 
Once it completes selection of candidate cells, the system refills 
the serpentine partition to look for more candidate single cells. 
The system repeats this process to select and isolate single cells 
until it fills all 48 capture sites.

If desired, the single cells can then be cultured in the 
capture sites. It is possible to culture either suspension (e.g., 
K562) or adherent (e.g., BJ fibroblast) cells. For adherent cells, 
extracellular matrix can be coated inside the capture site dur-
ing the IFC priming step. Figure 5D shows a Polaris image of 
a cultured BJ fibroblast (adhered). Based on the experimental 
design, it is possible to dose these single cells and on-IFC-
cultured single cells with drugs or other cell stimuli. Finally, 
the single cells are processed through template-switching 
mRNA-seq chemistry for full-length cDNA generation and 
preamplification on-IFC.

Full-length cDnA generation
Preamplified full-length cDNA of selected single cells are 
generated on-IFC, and the amplicons are harvested through 
48 different outlets. We used the SMARTer Ultra® Low RNA 
Kit for Illumina Sequencing (Clontech®, 634936) to generate 
preamplified cDNA. The selected and sequestered single cells 
were lysed using Polaris cell lysis mixture. The 28-μL cell lysis 
mix consists of 8.0  μL of Polaris Lysis Reagent (Fluidigm, 
101-1637), 9.6  μL of Polaris Lysis Plus Reagent (Fluidigm, 
101-1635), 9.0 μL of 3′ SMART™ CDS Primer II A (12 μM, 
Clontech, 634936), and 1.4  μL of Loading Reagent (20X, 
Fluidigm, 101-1004). Synthetic RNA spikes can be optionally 
used with cell lysis mix. We typically use ArrayControl™ 
RNA spikes 1, 4, and 7 (Thermo Fisher Scientific, AM1780) to 
establish the functionality of RT and PCR on-IFC. We also use 
ERCC spikes at 1:50,000 dilution (final in lysis mix) for effi-
ciency and quantification estimations. In order to implement 
synthetic RNA spikes, we thoroughly mix 96.5 μL of loading 
reagent with 2.5 μL of SMARTer Kit RNase Inhibitor (40 U/μL; 
Clontech, 634936) and subsequently add 1 μL of synthetic RNA 
spike to this spike mix. If RNA spike is used, then 1.4 μL of the 
loading reagent is replaced with the spike mix. The thermal 
profile for single-cell lysis is 37°C for 5 min, 72°C for 3 min, 
25°C for 1 min, and hold at 4°C.

The 48-μL preparation volume for RT contains 1X SMARTer 
Kit 5X First-Strand Buffer (5X; Clontech, 634936), 2.5-mM 

step. After completion of the prime step, the cell mix (cells with 
suspension reagent) is loaded on the Polaris IFC and single 
CTO+/CD59+ cells are selected to capture sites. We extensively 
tested the performance of the Polaris IFC and system at three 
different cell purities (3, 10, and 50%). The cell purity is defined 
as the ratio of CTO+/CD59+ cells to CTO+/CD59− cells. During 
the cell selection step, the suspended cells are loaded into the 
serpentine partition channel (Figure  3). Subsequently, the 
flow inside the partition channel is stopped (Figure  5A), and 
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FIgURe 6 | Total-RnA-based performance test (two-step) workflow and pipetting map. (A) Workflow to prime Polaris IFC with beads, back-load them with 
RNAspikes 147, simulate front dosing with diluted ERCC spikes, and generate cDNA using mRNA-seq chemistry. The cDNA amplicons from Polaris IFC were 
analyzed on the Fluidigm M96.96 IFC using 85 qPCR assays for specific genes, 8 assays for ERCC RNA spikes, and 3 assays for RNAspikes 147. (B) Pipetting 
map for IFC prime step. During prime step, RNAspikes 147 are back-loaded to 8 specific inlets with cell capture beads. (c) Pipetting map for front-dosing simulation 
with ERCC RNA spikes, followed by mRNA-seq chemistry.
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SMARTer Kit Dithiothreitol (100 mM; Clontech, 634936), 1-mM 
SMARTer Kit dNTP Mix (10  mM each; Clontech, 634936), 
1.2-μM SMARTer Kit SMARTer II A Oligonucleotide (12  μM; 
Clontech, 634936), 1-U/μL SMARTer Kit RNase Inhibitor 
(40 U/μL; Clontech, 634936), 10-U/μL SMARTScribe™ Reverse 

Transcriptase (100 U/μL; Clontech, 634936), and 3.2 μL of Polaris 
RT Plus Reagent (Fluidigm, 101-1366). All the concentrations 
correspond to those found in the RT chambers inside the Polaris 
IFC. The thermal protocol for RT is 42°C for 90 min (RT), 70°C 
for 10 min (enzyme inactivation), and a final hold at 4°C.
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FIgURe 7 | (A) Front-dosing strategy. The capture sites on Polaris IFC are segregated as six groups of eight sites. ERCC spike-in mix is loaded into the second 
capture site of every group (Group alt 2). For negative control, 1X Preloading Reagent was loaded into Group alt 4, 6, and 8. (B) Sequential chambers for multistep 
chemistry. The capture site with beads holds 2 nL of liquid. The lysis mix is loaded into chamber 1 (9 nL), then reverse transcription mix is loaded into chambers 2 
and 3 (9 nL each), and PCR mix is loaded into chambers 4 and 5 (135 nL each). (c) Chemistry loading sequence and its function.
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The 90-μL preparation volume for PCR contains 1X 
Advantage 2 PCR Buffer [not short amplicon (SA)] (10X, 
Clontech, 639206, Advantage® 2 PCR Kit), 0.4-mM dNTP 
Mix (50X/10 mM, Clontech, 639206), 0.48-μM IS PCR Primer 
(12 μM, Clontech, 639206), 2X Advantage 2 Polymerase Mix 
(50X, Clontech, 639206), and 1X Loading Reagent (20X, 
Fluidigm, 101-1004). All the concentrations correspond to 
those found in the PCR chambers inside the Polaris IFC. The 
thermal protocol for preamplification consists of 95°C for 
1 min (enzyme activation), five cycles (95°C for 20 s, 58°C for 
4 min, and 68°C for 6 min), nine cycles (95°C for 20  s, 64°C 
for 30 s, and 68°C for 6 min), seven cycles (95°C for 30 s, 64°C 
for 30 s, and 68°C for 7 min), and final extension at 72°C for 

10 min. The preamplified cDNAs are harvested into 48 separate 
outlets on the Polaris IFC carrier.

qpcR Analysis on Biomark™
Harvested samples from Polaris IFCs were analyzed by qPCR 
using 96.96 Dynamic Array™ IFCs and the Biomark™ HD 
system from Fluidigm. Processing of the IFCs and operation of 
the instruments were performed according to the manufacturer’s 
procedures. For detection using the RNA expression and splice 
variant assays, a Master Mix was prepared consisting of 360-μL 
SsoFast™ EvaGreen® Supermix with Low ROX (BioRad 172-
5211) and 36-μL 20 × DNA Binding Dye Sample Loading Reagent 
(Fluidigm 100-5360), and 3.3  μL of this mix was dispensed to 
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each well of a 96-well assay plate. Diluted harvest product (2.7 μL) 
was added to each well, and the plate was briefly vortexed and 
centrifuged. Following priming of the IFC in the IFC Controller 
HX, 5 μL of the sample + Master Mix were dispensed to each 
sample inlet of the 96.96 IFC. Five microliters of each 10 × assay 
[5 μM each primer, 1 × assay Loading Reagent (Fluidigm 100-
5359)] were dispensed to each Detector Inlet of the 96.96 IFC. 
After loading the assays and samples into the IFC in the IFC 
Controller HX, the IFC was transferred to the Biomark HD, and 
PCR was performed using the thermal protocol GE Fast 96 × 96 
PCR +  Melt v2.pcl. This protocol consists of a thermal mix of 
70°C, 40  min; 60°C, 30  s, hot start at 95°C, 1  min, PCR cycle 
of 30 cycles of 96°C, 5 s; 60°C, 20 s, and melting using a ramp 
from 60 to 95°C at 1°C/3 s. Data were analyzed using Fluidigm 
Real-Time PCR Analysis software using the Linear (Derivative) 
Baseline Correction Method and the Auto (Global) Ct Threshold 
Method. The data are exported as a.csv file into an Excel® macro 
to compile and compare the data against in-house specifications.

ReSUlTS

performance evaluation of polaris IFc
In order to statistically evaluate the performance of the 
Polaris IFC, we designed and developed two performance 
tests: (1) total-RNA-based performance test (RNA PT) and 
(2) single-cell-based key performance test (KPT). Since single 
cells are heterogeneous, it would be difficult to evaluate the 
performance uniformity across 48 capture sites using a cell-
based test method. Hence, we developed a 20-cell-equivalent 
total-RNA PT to evaluate and improve the performance of the 
Polaris IFC during the initial phase of the IFC development 
process.

Total RNA-Based Performance Test
The primary objective of this test is to statistically validate a 
workflow that is very close to the cell-based experiments on the 
Polaris system and yet collects critical information about uni-
formity of cDNA synthesis across IFC, reaction line cross-talk 
(on-IFC), and IFC-to-IFC correlation. To achieve this objective, 
we simulated steps such as loading of cell capture beads and the 
thermal step for cell lysis in the total-RNA PT. The workflow of 
the total-RNA PT is shown in Figure 6A. Briefly, the RNA-PT 
is a two-step procedure. In the first step, the control lines on the 
Polaris IFC are primed, channels are blocked, and cell capture 
beads are back-loaded with ArrayControl RNA SPIKES (1, 
4, and 7 only, Thermo Fisher Scientific, AM1780; henceforth 
referred to as RNAspikes 147) in eight specific capture sites 
(Figure 6B).

The ArrayControl RNA Spikes are used to evaluate the back-
dosing cross-talk using highly sensitive qPCR assay designed to 
detect RNA spikes 1, 4, and 7 (three total ArrayControl RNA 
Spikes). After the priming step, six specific capture sites are 
loaded with ERCC RNA Spike-In Mix (Thermo Fisher Scientific, 
4456740) to estimate the cross-talk for front-loaded reagents and 
dosing agents. Although the ERCC RNA mix contains 92 spike-
ins, only 8 ERCC spike-ins were probed using qPCR assays. The 

front-dosing strategy is illustrated in Figure 7A and the pipetting 
map is shown in  Figure 6C.

For negative control, 1X Preloading Reagent (Fluidigm, 100-
9942) was loaded into specific inlets and capture sites (Figure 7C). 
After completion of front dosing, the mRNA-seq chemistry 
prep is integrated with the dosing step. The lysis mixture for the 
RNA-PT contains Leukemia (K562) Total RNA (Thermo Fisher 
Scientific, AM7832) at a concentration equivalent to 20 cells of 
total RNA in every cell capture site (48 sites). The cell capture site 
is serially connected to five chambers to enable multistep reac-
tion chemistry (Figure 7B). Cell lysis mixture is loaded into the 
first 9-nL chamber. Then, RT mixture is loaded in 18-nL volume 
(two 9-nL chambers). Finally, PCR mixture for preamplification 
of full-length cDNA is loaded in 270-nL volume (two 135-nL 
chambers).

The preamplified cDNA is harvested in ~7 μL volume. The 
harvest is further diluted by addition of 10 μL of DNA Dilution 
RGT (Fluidigm, 100-9167). In order to evaluate IFC uniformity 
and other performance metrics, we designed 88 Delta Gene™ 
assays (Fluidigm) for K562 (85 genes covering high and low 
expressors) and RNAspikes 147. In addition to these 88 assays, we 
used 8 ERCC qPCR assays from a published work (Devonshire 
et al., 2011). In total, we used 96 intercalating dye-based qPCR 
assays for read-out of RNA PT on an M96.96 Dynamic Array™ 
IFC (Fluidigm). We routinely test positive and negative tube 
controls for every chemistry preparation by qPCR assays on 
the M96.96. In order to do this, 2 out of the 48 samples from a 
Polaris IFC are replaced by positive and negative tube controls 
on M96.96. The positive tube control contains total RNA from 
K562, RNAspikes 147, and ERCC. The tube controls are used 
to validate the functionality of chemistry preparation on a 
particular day. Harvest products from two Polaris IFC are tested 
on a single M96.96 Dynamic Array IFC run. A typical qPCR Ct 
heat map and associated Excel macro for two Polaris RNA PTs 
are shown in Figures 8A,B. In order to statistically validate the 
performance, we tested 44 Polaris IFCs with RNA PTs. IFC and 
reagents from minimum of three manufacturing lots were used. 
Tolerance limit or interval analyses were performed on more 
than 40 Polaris IFC runs. The distribution of data and tolerance 
limit analyses for different metrics for the RNA PTs are shown 
in Figure 9.

Single-Cell-Based Key Performance Test
Key performance test was developed and validated using one 
cell type each for suspension (K562) and adherent (BJ fibro-
blast) cells. As described in Section “Materials and Methods,” 
cells are stained with the universal fluorescent marker, CTO. 
A subset of these cells were stained for surface marker using 
antibody conjugated with Alexa 647. In the case of K562, we 
used Anti-Human CD59-Biotin (BD Biosciences, 555762) 
with Streptavidin Alexa 647, and for BJ fibroblast, we used 
Anti-Mouse/Human CD44-Alexa 647 (BioLegend 103018). 
The double-stained cells (universal CTO and surface marker 
Alexa 647) were mixed with cells stained with CTO only to 
achieve three different purity percentages (3, 10, and 50%). The 
cells were selected for universal CTO and surface marker. For 
BJ fibroblasts, we tested two different workflows, one with cell 
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FIgURe 8 | (A) Typical heat map of high-throughput qPCR assay for RNA-based performance test. The M96.96 IFC (96 samples) can accept amplicons from two 
Polaris IFCs (48 samples each). For every Polaris IFC, we replace two samples with positive and negative control samples. The columns are assays (85 high- and 
low-expressing assays; 8 ERCC spike assays; and 3 RNAspike 147 assays). The rows are diluted amplicons from Polaris IFCs. (B) Excel macro for the RNA-based 
performance test.
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FIgURe 9 | Tolerance limit analyses from 44 polaris IFc runs using RnA-based performance test. n is the sample number after removal of outliers. 
Outliers are estimated by Tukey’s box plot. The percentage of outliers removed ranged from 0 to 5%. (A) Average assay SD. The data fit a normal distribution  
with goodness of fit P-value of 0.2813. The upper tolerance interval for this metric is 0.395. (B) Distribution of drop outs for high-expressing assays only.  
(c) Distribution of drop outs for both high and low expressors. (D) Back-loaded dosing cross-talk. (e) Distribution of slope for IFC-to-IFC correlation. The data fit a 
normal distribution with tolerance interval of 1–1.08. (F) Distribution of R2 for IFC-to-IFC correlation. The data fit a normal distribution with lower tolerance limit of 
0.959.
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selection followed by chemistry (immediate) and another to 
dose the BJ fibroblasts with medium every 4 h for 24-h adherent 
culture, followed by chemistry (BJ dosing). In order to evaluate 
the cell viability prior to the cell lysis step, we used Zombie 
Yellow™ cell viability stain (BioLegend, 423103; λex = 396 nm 
and λem = 572 nm), which stains dead cells. Performance metrics, 

such as number of sites occupied with single cells out of the total 
48 sites (cell selection), number of cells retained after dosing 
and prior to cell lysis (cell retention), and number of viable cells 
prior to lysis, were evaluated. On average from 20 Polaris IFC 
runs, our cell selection was ~95% for K562 and BJ fibroblast with 
different purity percentages (Figure  10A). For cell retention, 
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FIgURe 10 | Single-cell selection, retention, and viability performance 
using single-cell key performance test. (A) Percentage of single cells 
selected (out of 48 total capture sites) for K562 (suspension) and BJ 
fibroblast (adherent) at different cell purity concentrations (3, 10, and 50%). n 
is number of Polaris IFCs tested. (B) Single cells retained after dosing and 
culture. Cells are imaged and counted before the cell lysis step. K562 and BJ 
fibroblasts were selected and immediately processed for mRNA-seq 
chemistry preparation. BJ fibroblasts were also selected, cultured, and dosed 
with cell culture medium for 24 h (BJ dosing). Data from three IFCs are 
presented here. (c) Single-cell viability as assessed by Zombie stain on-IFC.
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>47/48 sites showed presence of single cells as enumerated after 
the cell selection step and prior to cell lysis step (Figure 10B). 
The average cell viability was ~90% as estimated from 20 Polaris 
IFC runs (Figure 10C).

The Polaris system generates very high quality (size distribu-
tion) and quantity (yield) of preamplified cDNA from single 

cells. The size distribution of preamplified cDNA from single 
cells, as evaluated using Bioanalyzer 2100 and the DNA high-
sensitivity chip (Agilent), is typically in the size range of 0.3–7 kb 
(Figure  11A). For yield, preamplified cDNA from single cells 
was quantified using PicoGreen-based dsDNA quantification 
assay (Quant-iT™ PicoGreen® dsDNA Assay Kit, Thermo Fisher 
Scientific, P7589). The average total cDNA yield per single K562 
cell is 38.42 ± 8.08 ng (Figure 11B). We randomly selected ~14 
single cells from three Polaris IFC runs, barcoded them using 
modified Nextera library prep, and pooled them to generate a 
single sequencing library. A representative library profile from 
42 single cells is shown in Figure  11C. The majority of the 
single-cell library falls in the range of 200–2,000  bp. For three 
sequencing libraries from nine Polaris IFCs tested with K562 
immediate chemistry, sequencing data from three MiSeq™ runs 
using v2 150 bp PE kit were compiled, and tolerance limits (90% 
confidence with 95% population coverage) were estimated for 
two key sequencing metrics (Figure 12). The average percentage 
of reads mapping to rRNA/total reads is 0.122%. The Box–Cox 
transformed data fit a normal distribution with a Shapiro–Wilk 
P-value of 0.0983. Based on the normal distribution, the upper 
tolerance limit for percentage of reads mapping to rRNA is 0.3% 
(Figure 12A). The mean number of genes detected is 6,967 ± 115. 
The data fit a normal distribution with a lower tolerance limit 
of 5,919 genes as estimated from 115 single-cell datapoints 
(Figure 12B).

We extensively analyzed our single-cell sequencing data 
for transcript coverage bias and possible positional bias of 
single cells selected across 48 capture sites on the Polaris IFC 
(Figure  13). We noted uniform coverage along the transcript 
length (Figure 13B) without any positional bias on the Polaris 
IFC. The plot of normalized coverage vs. normalized distance 
along the transcript with respect to capture sites (2, 3, 4 and 40, 
41, 42) from a Polaris IFC is shown in Figure  13B. A plot of 
median 3′ end bias of transcript coverage with respect to capture 
site number indicates no positional bias across three Polaris IFC 
runs (Figure 13A). In order to understand if there is any pos-
sible effect of hypoxia on single cells due to spatial location of 
capture sites on the Polaris IFC, we analyzed the expression value 
of HIF1A gene across different capture sites. Up-regulation of 
hypoxia-induced factor 1 gene (HIF1A) is a known consequence 
of hypoxia (Choudhry and Mole, 2015). Expression analyses of 
HIF1A did not show any positional bias with respect to the cap-
ture sites (Figure 13C). It should be noted that we recommend 
strictly following the Polaris workflow as described in the Polaris 
protocol document (Fluidigm, 101-0082). Any deviation from 
the validated workflow might lead to introduction of possible 
bias at multiple levels.

Sensitivity Studies Using eRcc Spike-Ins
An alternative way to evaluate performance of single-cell mRNA-
seq on the Polaris system is to implement use of the ERCC RNA 
Spike-In Mix 1 in the lysis mix. The ERCC control mix consists 
of 92 polyadenylated transcripts with a size range of 273–2,022 
bases and six orders of magnitude range in concentration. We 
tested both qPCR- and sequencing-based methods for detec-
tion of ERCC spikes. Ninety-two primer pairs were designed 
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FIgURe 11 | (A) Typical cDNA distribution from single cells from three different Polaris IFC runs (A1–A3). The peak for RNAspikes 147 is around 1,000 bp. 
(B) Distribution of cDNA yield from 358 single K562 cells from multiple Polaris IFC runs. The average cDNA yield per cell is 38.42 ng with a SD of 8.08 ng. 
(c) Library profile of 42 single cells.
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to target the corresponding transcripts for qPCR testing. qPCR 
was performed on a Fluidigm 96.96 Dynamic Array IFC. 
Stochastic distribution of transcripts was observed when the 
input concentration was 25 copies per reaction or less on the 
Polaris IFC followed by qPCR detection on the 96.96 Dynamic 
Array (Figure 14A). Single-copy RNA detection is demonstrated, 
although intermittently, likely due to sampling at the reaction site. 
Transcripts at 1.6 copies per reaction were intermittently detected 
by qPCR on the 96.96 Dynamic Array IFC. We also evaluated 

the detection rate of ERCC spikes (>1.6 copies/reaction) using 
an approach based on massive parallel sequencing. There were 7 
ERCC spikes (ERCC-00170; ERCC-00148; ERCC-00126; ERCC-
00099; ERCC-00054; ERCC-00163; ERCC-00059), which were 
at a concentration of 1.6 copies per Polaris reaction chamber. 
One of the 7 ERCC spikes (ERCC-00054) was not detected in 
any of the 19 single-cell samples. If we remove this datapoint as 
an outlier, the average detection rate of ~1.6 copies is 28%. Based 
on Poisson estimates, single-copy detection rate should be ~33% 
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FIgURe 12 | Distribution of sequencing metrics for single cells. (A) Percentage of reads mapped to rRNA/total reads. The average mapping to rRNA is 
0.122% from 116 single-cell sequence datapoints. The upper tolerance limit for percentage rRNA mapping is 0.3%. (B) Number of genes detected (TPM > 1). 
Distribution of genes detected from 115 single-cell sequence data. The average genes detected is 6,967, with a SD of 115. The data fit a normal distribution, with a 
lower tolerance limit of 5,919.
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(67% should be a failure event). The single-copy detection rate 
(28%) from the Polaris system is very close to expected theoreti-
cal estimates based on Poisson statistics (Figure 14B).

Single-cell Transfection of ngFp mRnA 
and gFp expression Analyses
In order to demonstrate dosing and functional response analyses, 
we transfected single K562 cells with nuclear green fluorescent 
protein (nGFP) mRNA and cultured the transfected single K562 
for 16  h. During this culture duration, the cells translated the 
nGFP mRNA and expressed the GFP inside the cell. The imag-
ing capability of Polaris enables monitoring of GFP expression. 
Subsequently, the cells were processed for mRNA-seq chemistry 
on-IFC and sequenced on MiSeq to quantify the reads mapped 
to GFP. K562 cells stained with CTO were selected on Polaris 
IFC. To carry out the single-cell transfection, 10 μL of Stemfect 
RNA transfection reagent was mixed with 240-μL Stemfect 
transfection buffer (Stemgent® Stemfect™ RNA Transfection Kit, 
00-0069) (Mix A). The stock nGFP mRNA (Stemgent, 05-0019) 
at 100 ng/μL was diluted with Stemfect transfection buffer first 
and then further diluted with Mix A to make mRNA transfec-
tion complex. This complex was incubated at room temperature 

for 15 min and further diluted with K562 cell culture medium 
(refer to Section “K562 Cell Culture and CD59 Staining”) to 
achieve different final concentrations (0.5 and 1 ng/μL) of nGFP 
mRNA. Selected single K562 cells were cultured with the nGFP 
mRNA transfection complex with culture medium at 37°C with 
5% CO2 on the Polaris IFC. During this cell culture incubation 
time, images were taken every hour to monitor the onset of GFP 
expression. Image analyses (Figure 15) showed that single cells 
picked up nGFP mRNA at 0.5 and 1 ng/μL concentrations and 
expressed the green fluorescent proteins, thereby reinforcing 
the fact that single cells on Polaris IFC are healthy and are able 
to uptake naked mRNA and translate it to protein capable of 
being transfected. Figure 15A shows typical time-series images, 
which can be obtained from the Polaris system. It should be 
noted that for this particular experiment, the imaging interval 
was set to 1 h, but the Polaris system is capable of taking suc-
cessive images in a rapid mode. We noted onset of GFP gene 
expression around the 3-h time frame at single-cell resolution. 
The cDNA pool showed a length range from 0.3 to 9.2 kb, with an 
average length ~2 kb. It is also noted that >85% of the total cDNA 
pool lies between 0.5 and 9.2 kb (Figure 15B). Sequencing data 
show that the cells transfected with nGFP mRNA harbored the 
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FIgURe 13 | Bias vs. capture site number. (A) Median 3′ end bias was analyzed for random single cells picked for sequencing. No 3′ bias was noted for cells 
from three Polaris IFC runs (B) HIF1A gene expression of cells across different capture sites. (c) Sequencing coverage as estimated by Picard for single cells. 
Uniform coverage noted across different capture sites from a Polaris IFC.
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extracellular mRNA even after 16 h of culture. As expected, the 
control cells without nGFP transfection did not show any map-
ping to GFP sequence. The transfection of nGFP did not alter the 
mapping to genome and transcriptome when compared to the 
control cells (Figure 15C). The nGFP-transfected cells showed 
percentage average reads mapping of 0.57, 87.99, and 47.82% to 
GFP, genome, and transcriptome, respectively (n = 7), while the 

control K562 showed percentage average mapping of 0, 88.03, 
and 49.22 (n = 7).

DIScUSSIon

In this work, we report design and development of an inte-
grated system to perform functional studies on single cells. 
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FIgURe 14 | (A) Heat map (qPCR assay) for ERCC spike-in with single SKBR3 cells. The columns are 92 qPCR assays designed and developed for ERCC 
spike-in. The rows are amplicons from single SKBR3 cells with ERCC spike-in. The ERCC assays on the columns are sorted by concentrations. (B) Detection rate of 
ERCC spikes with >1.58 copies per Polaris IFC chambers.
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We developed a nanoscale IFC, which employs fluidic logic to 
actively select single cells, and a system capable of performing 
multiple functionalities. The performance of the developed 
IFC and system was extensively tested using RNA-based and 
single-cell-based performance tests. These tests were specifi-
cally designed to evaluate different functionalities of the IFC 
and system. The functional capability of the Polaris IFC and 

system has been successfully demonstrated using transfection 
of naked nGFP mRNA, followed by monitoring of nGFP 
expression and finally analysis of the whole set of mRNA 
transcripts by massive parallel sequencing. It is noted that it is 
not currently possible to perform studies reported in this work 
on any other single-cell platforms. The limitation of the current 
system includes limited number of cells for functional studies 
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(up to 48 cells). However, the requirement on the number of 
cells depends on the biological question, and it is possible to 
expand the capability of the IFC consumable to process more 
cells in the future.
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Direct measurement of protein expression with single-cell resolution promises to deepen

the understanding of the basic molecular processes during normal and impaired

development. High-resolution mass spectrometry provides detailed coverage of the

proteomic composition of large numbers of cells. Here we discuss recent mass

spectrometry developments based on single-cell capillary electrophoresis that extend

discovery proteomics to sufficient sensitivity to enable the measurement of proteins in

single cells. The single-cell mass spectrometry system is used to detect a large number

of proteins in single embryonic cells in the 16-cell embryo of the South African clawed

frog (Xenopus laevis) that give rise to distinct tissue types. Single-cell measurements of

protein expression provide complementary information on gene transcription during early

development of the vertebrate embryo, raising a potential to understand how differential

gene expression coordinates normal cell heterogeneity during development.

Keywords: single-cell analysis, mass spectrometry, proteomics, cell differentiation, Xenopus laevis

INTRODUCTION

Single-cell analysis technologies are essential to understanding cell heterogeneity during normal
development and disease. Characterization of the genomes and their expression at the levels of the
transcriptome, proteome, and metabolome provides a molecular window into basic cell processes.
Singe-cell measurements complement traditional cell population-averaging approaches by enabling
studies at the level of the building blocks of life, where many critical processes unfold (Raj and van
Oudenaarden, 2008; Altschuler and Wu, 2010; Singh et al., 2010; Zenobi, 2013). For example, by
studying individual cells, it is possible to ask how cells give rise to all the different types of tissues
in the body (stem cells) and specialize for defense (immune cells), communication (neurons), and
support (glia). This information in turn lays the foundation to developing diagnosis and treatments
for addressing pressing health concerns, such as emergence of drug resistant bacteria, onset and
development of neurodegeneration, and cancer, as well as infections.

Single-cell investigations take advantage of rapid developments in technology. With more
than million-fold amplification of DNA and RNA and the commercialization of high
throughput DNA and RNA sequencing, it is now possible to query cell-to-cell differences
(Kolisko et al., 2014; Mitra et al., 2014), including but not limited to chromosomal
mosaicism in tissues (Vijg, 2014; Gajecka, 2016) and embryonic somatic cells (Liang et al.,
2008; Jacobs et al., 2014), establishment of cell heterogeneity in the nervous system
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(McConnell et al., 2013), and mutations during disease states
(Junker and van Oudenaarden, 2015; Kanter and Kalisky, 2015).
How gene expression translates into the functionally important
proteins and how they then feedback to modulate gene
expression is essential to systems cell biology. Multiple reports
found differences between transcription and translation (Vogel
and Marcotte, 2012; Smits et al., 2014; Peshkin et al., 2015),
and transcription is known to be controlled by translational
factors during development (Radford et al., 2008); therefore,
characterization of the proteome is critical to understanding
cell heterogeneity. Translational cell heterogeneity has
traditionally been measured by immunohistochemistry and
Western blot analyses. Protein-targeted assays have recently
gained substantial throughput by the development of mass
cytometry (CyTOF), which uses inductively coupled plasma
and mass spectrometry (MS) to simultaneously quantify ∼35
different proteins tagged with rare earth elements in thousands
of cells. This level of multidimensionality has promoted
applications in cell differentiation during erythropoiesis (Bendall
et al., 2011), and was recently coupled to laser-ablation to
spatially survey cell heterogeneity in the tumor environment
(Giesen et al., 2014).

Cell heterogeneity has functional implications during
embryonic development. Over four decades of innovative
embryological manipulations combined with gene-by-gene
identifications and functional characterizations in Xenopus
have shown that molecular asymmetries in the distribution
of maternal mRNAs occur upon fertilization and lead to the
formation of the three primary germ layers and the germ
line (King et al., 2005; Lindeman and Pelegri, 2010). Recent
approaches have defined the spatial and temporal changes of
mRNAs and abundant proteins and metabolites in the whole
embryo (Flachsova et al., 2013; Wuhr et al., 2014; De Domenico
et al., 2015). However, very little is known about how these
molecules change over time in individual blastomere lineages as
they acquire germ layer and body axis fates. In many animals,
mRNAs that are synthesized during oogenesis are sequestered to
different cytoplasmic domains (Davidson, 1990; Sullivan et al.,
2001), which after fertilization then specify the germ cell lineage
(King et al., 2005; Haston and Reijo-Pera, 2007; Cuykendall
and Houston, 2010) and determine the anterior-posterior and
dorsal-ventral axes of the embryo (Heasman, 2006b; Kenyon,
2007; Ratnaparkhi and Courey, 2007; White and Heasman, 2008;
Abrams and Mullins, 2009). For example, in Xenopus several
mRNAs are localized to the animal pole region, which later
gives rise to the embryonic ectoderm and the nervous system
(Grant et al., 2014), whereas localization of VegT mRNA to
the vegetal pole specifies endoderm formation (Xanthos et al.,
2001), and region-specific relocalization of the Wnt and Dsh
maternal proteins govern the dorsal-ventral patterning of the
embryo (Heasman, 2006a; White and Heasman, 2008). However,
there is abundant evidence that in developing systems not all
transcripts are translated into proteins; therefore, analyses of
the mRNAs may not reveal the activity state of the cell. In fact,
different animal blastomeres of the 16-cell Xenopus embryo that
are transcriptionally silent can have very different potentials to
give rise to neural tissues (Gallagher et al., 1991; Hainski and

Moody, 1992; Yan and Moody, 2007), even though they appear
to express common mRNAs (Grant et al., 2014; Gaur et al.,
2016).

High-resolution MS is the technology of choice for the
analysis of the proteome (Aebersold and Mann, 2003; Guerrera
and Kleiner, 2005; Walther and Mann, 2010; Zhang et al.,
2013). Using millions of cells, contemporary MS enables
the discovery (untargeted) characterization of the encoded
proteomes of various species in near complete coverage, as
recently demonstrated for the yeast (Hebert et al., 2014),
mouse (Geiger et al., 2013), and human (Wilhelm et al.,
2014). Recent whole-embryo analyses by MS revealed that
transcriptomic events are accompanied by gross proteomic
and metabolic changes during the development of Xenopus
(Sindelka et al., 2010; Vastag et al., 2011; Flachsova et al.,
2013; Shrestha et al., 2014; Sun et al., 2014), raising the
question whether these chemical changes are heterogeneous also
between individual cells of the embryo at different embryonic
developmental stages. However, the challenge has been to collect
high-quality signal from the miniscule amounts of molecules
contained within single blastomeres for analysis. Since different
blastomeres in Xenopus are fated to give rise to different
tissues (Moody, 1987a,b; Moody and Kline, 1990), elucidating
the proteome in individual cells of the embryo holds a great
potential to elevate our understanding of the cellular physiology
that regulates embryogenesis. For a deeper understanding
of the developmental processes that govern early embryonic
processes, it would be transformative to assay the ultimate
indicator of gene expression downstream of transcription: the
proteome.

To address this cell biology question, we and others have
developed platforms to extend MS to single cells (see reviews in
References Mellors et al., 2010; Rubakhin et al., 2011; Passarelli
and Ewing, 2013; Li et al., 2015). For example, targeted proteins
have been measured in erythrocytes (Hofstadler et al., 1995;
Valaskovic et al., 1996; Mellors et al., 2010). Discovery MS has
been used in the study of protein partitioning in the nucleus
of the Xenopus laevis oocyte (Wuhr et al., 2015). Recently, we
have developed single-cell analysis workflows and custom-built
microanalytical capillary electrophoresis (CE) platforms for MS
to enable the discovery (untargeted) characterization of gene
translation in single embryonic cells (blastomeres). Using single-
cell CE, we have measured hundreds–thousands of proteins in
blastomeres giving rise to distinct tissues in the frog (X. laevis),
such as neural, epidermal, and gut tissues (Moody, 1987a).
We have also established quantitative approaches to compare
gene translation between these cell types. Quantification of
∼150 different proteins between the blastomeres has captured
translational cell heterogeneity in the 16-cell vertebrate embryo
(Lombard-Banek et al., 2016a). These results complement
known transcriptional cell differences in the embryo, but also
provide previously unknown details on how differential gene
expression establishes cell heterogeneity during early embryonic
development.

In this contribution, we give an overview of the major steps
of the single-cell CE-MS workflow (Figure 1). Protocols are
provided to isolate single cells, extract and process proteins,
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FIGURE 1 | Analytical workflow for the bottom-up measurements of protein expression in single embryonic cells. A custom-built high-sensitivity capillary

electrophoresis electrospray ionization mass spectrometer (CE-ESI-MS) is used to identify and quantify proteins.

TABLE 1 | Troubleshooting advice for CE-ESI-MS for bottom-up proteomics.

Issues Potential causes Advice

No peptides detected Failed enzymatic digestion Repeat analysis; if problem persists, repeat protein

digestion (use standard proteins as quality control)

CE current drops drastically Capillary is clogged or a bubble was injected Flush the capillary with the BGE for ∼10–15 min;

repeat analysis

Electrospray is unstable Electrolysis in the CE-ESI interface; the sheath flow

connection is loose

Lower the spray voltage; revise connections; repeat

analysis

Low number of protein identifications Erroneous injection; inaccurate calibration of the

mass spectrometer

Repeat analysis; calibrate the mass spectrometer

and use the CE-MS platform to identify and quantify protein
expression. Additional details on technology development and
validation are available elsewhere (Nemes et al., 2013; Onjiko
et al., 2015; Lombard-Banek et al., 2016a,b). These protocols have
allowed us to study proteins (Lombard-Banek et al., 2016a,b)
and metabolites (Onjiko et al., 2015, 2016) in single blastomeres
in 8-, 16-, and 32-cell X. laevis embryos. Additionally, trouble-
shooting advice (Table 1) is provided to help others adopt
single-cell MS toward the systems biology characterization
of molecular processes in cells and limited amounts of
specimens.

MATERIALS AND EQUIPMENT

Single Blastomere Dissection
a. Fine sharp forceps (e.g., Dumont #5). One forceps should have

a squared tip, while the other should be sharpened to a fine tip.
b. Sterile Pasteur pipets.
c. Hair loop: place a fine hair (∼10 cm long) into a 6′′ Pasteur

pipet to form a 2–3mm loop and secure it in place with melted
paraffin. Sterilize the hair loop before usage by dipping it in
70% methanol.

d. 0.6mL centrifuge tubes.
e. 60 and 90mm Petri dishes.
f. Incubator set to 14◦C.
g. Dejellying solution: 2% cysteine hydrochloride in water, pH 8,

prepared by adding 20 g of crystalline cysteine hydrochloride
into 1 L of distilled water. pH is adjusted to 8 by adding 10 N
NaOH drop-wise.

h. 100% Steinberg’s solution (SS): Dissolve the following salts
into 1 L of distilled water: 3.5064 g NaCl, 49.9mg KCl, 99.9mg
MgSO4, 55.8mg Ca(NO3)2, 0.6302 g Tris-HCl, and 80.0mg
Tris-base. Adjust the pH to 7.4. Autoclave and store in 14◦C
incubator.

i. 50% Steinberg’s solution: Dilute 50mL of 100% SS with 50mL
of distilled water.

j. Dissection dish: add 2 g of agarose in 100mL of 100%
Steinberg’s solution. Dissolve the agarose by autoclaving. Once
the bottle is cool enough to handle, pour the agarose mixture
to ∼1mm in thickness into 60mm in diameter Petri dishes.
Alternatively, the agarose mixture can be stored at 4◦C, and
reheated in a microwave before use. Dishes should be stored
wrapped in plastic at 4◦C to prevent dehydration of the
agarose.

k. X. laevis (adult male and female). Protocols related to
the handling and manipulation of animals must adhere to
Institutional and/or Federal guidelines; the work reported
here was approved by the George Washington University
Institutional Animal Care and Use Committee (IACUC
#A311).

Protein Extraction, Enzymatic Digestion,
and Quantification
a. Refrigerated centrifuge (4◦C)
b. Heat blocks (2) set to 60 and 37◦C.
c. A−20◦C freezer.
d. Sonication bath (e.g., Brandson CPX 2800).
e. A vacuum concentrator (e.g., CentriVap, LabConco).
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f. Lysis buffer: for 1mL of lysis buffer, mix 100µL of 10% sodium
dodecyl sulfate (SDS), 100µL of 1.5M NaCl, 20µL of 1M
Tris-HCl (pH 7.5), 10µL of 0.5M EDTA, and 770µL of H2O.

g. Enzymatic digestion solution, 50mM ammonium
bicarbonate: add 0.1976 g of crystalline ammonium
bicarbonate to HPLC grade water.

h. Dithiothreitol (1M): Dissolve 0.1543 g of solid dithiothreitol
into 1mL of 50mM ammonium bicarbonate. Divide in 50–
100µL aliquots and store at−20◦C for months.

i. Iodoacetamide (1M): Dissolve 0.1850 g of crystalline
iodoacetamide into 1mL of 50mM ammonium bicarbonate.
Iodoacetamide is light sensitive and therefore should be kept
away from any light sources. It is suggested to make freshly
before use, but storage in 50–100µL aliquots at −20◦C is
acceptable for up to 2 months. Aliquots are only for single use,
do not freeze-thaw.

j. Trypsin solution 0.5 µg/µL: dissolve a 20µg vial in 40µL of
1mMHCl in water.

k. Tandem mass tags kit (e.g., TMT10plex, Thermo Scientific).

CE-ESI-MS Analysis
a. HPLC grade solvents and reagents: water, acetonitrile,

methanol, formic acid, and acetic acid.
b. Regulated high voltage power supplies (2) outputting up to

5 kV for maintaining the electrospray (e.g., P350, Stanford
Research Systems), and up to 30 kV for CE separation (e.g.,
Bertan 230-30R, Spellman).

c. Separation capillary: 40/110µm (i.d./o.d.) bare fused silica
capillary from Polymicro.

d. Sample solvent: mix 500µL methanol with 500µL water and
0.5µL acetic acid.

e. Sheath solution: add 50mL of methanol to 50mL of water and
50µL of formic acid.

f. Background electrolyte: to prepare 50mL, mix 12.5mL of
acetonitrile, and 1.887mL of formic acid with 35.613mL of
water.

g. High-resolution mass spectrometer (e.g., Orbitrap Fusion,
Thermo).

PROCEDURES

Sample Preparation
The goal of sample preparation is to extract proteins from single
cells and process the proteins for MS analysis. The workflow
(Figure 1) starts with the identification of blastomeres in the
embryo in reference to established cell fate maps (Moody,
1987a,b; Moody and Kline, 1990; Lee et al., 2012) and differences
in cell size and pigmentation. Cells are microdissected using
sharp forceps and collected into individual microcentrifuge
tubes. Figure 2 shows the dissection of the V11 cell. Next, isolated
blastomeres are lysed using chemical (detergent) and physical
(ultrasonication) methods, and their proteins are extracted.
The proteins are processed via standard bottom-up proteomics
protocols (Zhang et al., 2013), whereby reduction, alkylation,
and enzymatic digestion are performed to convert proteins into
peptides that are more readily analyzable by MS.

Single Blastomere Dissection and Isolation
As detailed protocols are available on the identification and
dissection of blastomeres (Moody, 2012; Grant et al., 2013), only
a brief summary of the major steps follows.

(1) Prepare consumables:

• 2% cysteine solution
• 100% Steinberg solution (SS)
• 50% Steinberg solution (SS)
• Sterile Pasteur pipet
• Petri dish filled with 2% agarose (w/v in 100% SS)
• Sharp forceps
• Hair loop
• 0.6mL microcentrifuge tubes

(2) Remove jelly coats that naturally surround the embryos:

a. Add 4× volume of the cysteine solution to the embryos
(Table 2) and gently swirl the solution for∼4 min.

b. Once the embryos are free of the jelly coat, immediately
wash them with 100% SS (Table 2) 4 times for 2 min each.

FIGURE 2 | Isolation of identified cells and processing of their protein content. Example shows how the epidermal-fated ventral-animal cell (named V11) was

identified in the 16-cell X. laevis embryo based on pigmentation, cell size, and location in reference to established cell fate maps (Moody, 1987a). The cell was

processed via bottom-up proteomic workflow, and the resulting peptides collected for proteomic analysis. Key: DTT, dithiothreitol; IAD, iodoacetamide. Scale bar =

200µm (embryo), 1.25mm (vial).
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TABLE 2 | Solutions and their uses.

Solution/buffer Composition Usage Storage

conditions

Cysteine Hydrochloride 2% (w/v) cysteine hydrochloride, pH 8 adjusted with 10N NaOH drop wise Removes the jelly coats

surrounding embryos

Make fresh

Steinberg’s Solution (SS) 60mM NaCl, 0.67mM KCl, 0.83mM MgSO4, 0.34mM Ca(NO3)2, 4mM

Tris–HCl, 0.66mM Tris base, in distilled water, pH 7.4. Autoclaved. Store in

incubator for months.

Provides media for culturing

embryos

4–14◦C

Lysis Buffer 1% sodium dodecyl sulfate (SDS), 150mM NaCl, 20mM Tris-HCl pH 8, 5mM

EDTA in distilled water

Lyses cells/tissues 4◦C

Sample Solvent 50–60% acetonitrile in water, 0.05% acetic acid (all solvents are LC-MS grade) Reconstitutes protein digest 4◦C

Background Electrolyte (BGE) 25% acetonitrile in water, 1M formic acid (all solvents are LC-MS grade) Electrolyte for CE 4◦C

Electrsopray Sheath Liquid 50% methanol in water, 0.1% formic acid (all solvents are LC-MS grade) Stabilizes ESI-MS operation 4◦C

c. Transfer the embryos to a clean Petri dish filled with 100%
SS and store them at 14–20◦C in an incubator.

(3) Dissect cells from the embryos as published elsewhere (Grant
et al., 2013). A representative example is shown in Figure 2.
Briefly:

a. Transfer the selected embryos to a 60mm Petri dish
coated with 2% agarose and filled with 50% SS.

b. Place the embryo of interest in a groove made in the
agarose coating.

c. Orient the embryo for easy handling of the cell of interest
using a hair loop.

d. Remove the vitelline membrane gently using sharp
forceps. During this step, take care not to damage the
embryo.

e. Hold the embryo using sharp forceps on the opposite side
of the cell of interest, and gently pull on either side to
isolate the cell.

f. Transfer isolated cells using a sterile Pasteur pipet into a
micro-centrifuge tube.

Protein Extraction and Enzymatic
Digestion
(1) Prepare consumables:

• Lysis buffer
• Acetone chilled to−20◦C
• 50mM ammonium bicarbonate
• 1M dithiothreitol
• 1M iodoacetamide
• Sonication bath (e.g., Brandson CPX 2800)

(2) Lyse the cells to release their content:

a. Remove the excess 50% SS from around the cell. Take care
not to disrupt the cell.

b. Add 10µL of lysis buffer (Table 2) and vortex for∼30 s.
c. Sonicate for ∼5 min, vortex for ∼30 s. Repeat this step 3

times.
d. (Optionally) Add protease inhibitor to the lysis buffer

to minimize/avoid protein degradation during this
step.

(3) Reduce and alkylate protein disulfide bonds:

a. Add 0.5µL of 1M dithiothreitol to the sample, and
incubate for 20–30 min at 60◦C.

b. Add 1µL of 1M iodoacetamide and incubate for 15 min
in the dark at room temperature.

c. Quench the reaction by adding 0.5 µL of 1M
dithiothreitol.

(4) Purify proteins by cold acetone precipitation.

a. Add to the cell extract a volume of pure acetone that is
5 times that of the cell extract (∼50µL), and incubate at
−20◦C overnight.

b. Recover the precipitated proteins by centrifugation at
10,000× g for 10 min and 4◦C.

c. Remove the supernatant.
d. Dry the pellet using a vacuum concentrator.
e. (Optional) Store the protein pellet at –20 or−80◦C for up

to 3 months.

(5) Digest proteins for bottom-up proteomics analysis. A variety
of enzymes or a combination of enzymes can be used for
this task (e.g., trypsin, lysine C). We choose trypsin due to
its benefits for MS analysis (Zhang et al., 2013).

a. Reconstitute the protein pellet in 50mM ammonium
bicarbonate.

b. Add 0.3µL of 0.5µg/µL trypsin (trypsin in 1mM HCl),
equivalent to a protease/protein ratio of∼1/50.

c. Incubate overnight at 37◦C.

(6) (Optional) Store the digest at−80◦C for up to 3 months.

Quantification
The presented technology is compatible with well-established
protocols in quantitative proteomics. Stable isotope labeling with
amino acids in cell culture (SILAC) allows barcoding of proteins
with isotopic labels for multiplexing quantification (Geiger et al.,
2013). Label-free quantification (LFQ) is an alternative strategy
whereby peptide signal abundance is used as a proxy for
protein concentration. We have recently demonstrated LFQ for
single blastomeres of neural fates in the 16-cell embryo using
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the protocol presented here (Lombard-Banek et al., 2016b).
Alternatively, relative quantification can be performed using
designer mass tags. In this approach, proteins are digested to
peptides and the peptides barcoded with isotopic labels that
can be distinguished by high-resolution MS. Multiple protocols
allow for quantifying protein expression at the level of peptides
in high throughput via multiplexing, including tandem mass
tags (TMT) (Thompson et al., 2006; McAlister et al., 2014),
and isobaric tag for relative and absolute quantitation (iTRAQ;
Ross et al., 2004), and di-Leu (Xiang et al., 2010; Frost and Li,
2016). We have recently downscaled TMT-based multiplexed
quantification to the protein content of single blastomeres using
the following strategy (adapted from the vendor), which we then
used to compare protein expression between the D11, V11, and
V21 cells (Lombard-Banek et al., 2016a) that are fated to give
rise to different types of tissues (neural, epidermal, and hindgut,
respectively):

a. Add 15µL of TMT reagent to each digest and incubate for 1 h
at room temperature.

b. Add 3.5µL of hydroxylamine and incubate for 15min at room
temperature.

c. Mix the samples together at a 1:1 ratio (volume or total protein
content)

d. Dry the sample using a vacuum concentrator.
e. Add 5µL of 60% acetonitrile containing 0.05% formic acid.

Sample Analysis Using CE-ESI-MS
Peptides are analyzed using a custom-built CE-ESI-MS platform
(Nemes et al., 2013; Onjiko et al., 2015; Lombard-Banek et al.,
2016a). Instructions regarding the construction and operation
of the platform are available from elsewhere (Nemes et al.,
2013). Schematics of the CE-ESI-MS instrument are shown in
Figure 3. CE is selected to electrophoretically separate peptides
in a fused silica capillary by applying voltage difference across the
capillary ends. As a general rule, peptides with smaller size and
higher charge state migrate faster through the capillary. A high
resolution mass spectrometer is used to sequence peptides via
data-dependent acquisition. In this approach, eluting peptides

are detected based on single-stage (full) scans (MS1) and are
sequenced by tandem-MS (MS2 scans) using collision-induced
dissociation (CID), higher-energy collisional dissociation (HCD),
or other fragmentation technologies. The tandem mass spectra
reveal sequence information for the peptides, as also exemplified
for LGLGLELEA in Figure 4. During quantification experiments,
the TMT labels also dissociate from the peptide, and the relative
abundance of these TMT signals serves as quantitative measure
of protein abundance (Figure 4C, right panel).

CE-ESI-MS Measurements
(1) Build the CE-ESI-MS system as described elsewhere (Nemes

et al., 2013; Onjiko et al., 2015). For bottom-up proteomics
of single Xenopus blastomeres, operate the system as recently
established (Lombard-Banek et al., 2016a,b).

(2) Prepare the CE system ∼15 min prior to start the
experiments as follow:

a. Flush the capillary with background electrolyte (25%
acetonitrile with 1 M formic acid).

b. Flush the sheath capillary with electrospray solution (50%
methanol with 0.1% formic acid)

c. Turn on the electronics (high voltage power supplies,
syringe pumps, mass spectrometer, etc.) for ∼30 min to
stabilize operation.

(3) Inject the sample into the capillary as follows:

a. Transfer the capillary into the background electrolyte vial.
b. Deposit ∼1 µL of sample onto the sample microvial (see

Figure 3).
c. Transfer the capillary from the BGE vial to the sample vial.
d. Elevate the injection stage by ∼15 cm for ∼3 min to

siphon∼20 nL of the sample into the CE capillary.
e. Lower the injection stage to level the capillary inlet to the

outlet, and transfer the capillary inlet end into the BGE
vial.

f. Apply ∼10,000 V to the background electrolyte vial to
start electrophoretic separation of the peptides.

FIGURE 3 | Schematics of the high-sensitivity proteomic analyzer. The platform integrates microanalytical capillary electrophoresis (CE), electrospray ionization

(ESI), and high-resolution tandem mass spectrometry (HRMS2). Scale bar = 150µm (ESI), 1.5mm (CE panel). Key: HVPS, high-voltage power supply. Figure adapted

with permission from Lombard-Banek et al. (2016a).
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FIGURE 4 | Peptide identification/quantification in CE-ESI-HRMS2 using a bottom-up strategy. (A) Peptides are electrophoretically separated (left panel) and

their accurate mass is measured (right panel). (B) Peptide signals are sequenced by tandem MS (MS2). For example, a signal was detected with m/z 572.33 at ∼50

min separation, which was assigned to the sequence LGLGLELEA based on the MS2 data. (C) Peptides are quantified and assigned to the source protein. Tandem

mass tags (TMT) with different m/z values (indicated by asterisks of different color in left panel) are used to barcode peptides from different cells, allowing their

simultaneous analysis (multiplexing) with higher throughput (left panel). For example, the sequence LGLGLELEA was unique to the voltage-dependent anion channel 2

protein in the Xenopus proteome. The presence of other peptides allowed identifying this protein in high sequence coverage; see detected sequence in green (right

panel).

g. Increase the electrospray voltage gradually until the cone
jet mode is established for efficient ionization (Nemes
et al., 2007). Using a long-distance microscope, carefully
inspect the electrospray emitter to avoid electrical
breakdown; electrical discharge, spark, or arc risks the
mass spectrometer. In our experiments, the electrospray
emitter is positioned∼0.5 cm from themass spectrometer
orifice and is biased to 3000 V to generate the cone-jet
spray.

h. Ramp the separation voltage to ∼18,000 V. In our
system, we limit the separation voltage to keep the

CE current <8µA to prevent/minimize electrolysis or
solvent heating. Monitor the CE current and adjust the
separation voltage as necessary. For instructions on how
to measure the current, refer to Nemes et al. (2013).

i. Start MS acquisition with data-dependent acquisition
as specified by the mass spectrometer vendor. For
example, we use the following settings for a quadrupole-
orbitrap linear ion trap mass spectrometer (Fusion,
Thermo Scientific): MS1 analyzer resolution (orbitrap),
60,000 FWHM; m/z scan range, 350–1600; injection
time, 100ms; precursor ion selection window, 0.8 Da
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in the quadrupole cell; fragmentation, HCD with 30%
normalized energy in the multipole cell using nitrogen
collision gas; MS2 analyzer rate, rapid scan; MS2

maximum injection time, 50ms.

Protein Identification
Last, peptide sequences are compared to the proteome of the
specimen (X. laevis here) to identify proteins (see Figure 4). This
step is facilitated by readily available proteomes from SwissProt,
UniProt, and experimentally determined RNA expression (Wang
et al., 2012; Smits et al., 2014; Wuhr et al., 2014). Well-established
bioinformatics software packages are used to process raw mass
spectrometric data. For example, Proteome Discoverer (Thermo
Scientific), ProteinScape (Bruker Daltonics), and MaxQuant
(Cox and Mann, 2008) interpret MS–tandem-MS datasets by
executing well-established search engines, such as SEQUEST
(Eng et al., 1994), Mascot (Perkins et al., 1999), and Andromeda
(Cox et al., 2011). The general strategy of bottom-up proteomics
has recently been reviewed in detail (Sadygov et al., 2004; Cox
et al., 2011; Zhang et al., 2013). We typically acquire tens of
thousands to a million mass spectra, which identify 2000–4000

peptides in single blastomeres in the 16-cell embryo. These data
allow us to identify∼1700 protein groups and quantify hundreds
of proteins between the D11, V11, and V21 cells.

Anticipated Results
The CE-ESI-MS can be used to identify gene translational
differences between cells. As shown in Figure 5, we have used this
approach to assess protein differences between blastomeres of the
16-cell X. laevis embryo (Lombard-Banek et al., 2016a,b). Cell
types with different tissue developmental fates were analyzed: the
midline dorsal-animal cell (named D11) develops mainly into
the retina and brain, the midline ventral-animal cell (named
V11) gives rise primarily to the head and trunk epidermis, and
the midline ventral-vegetal cell (named V21) is the primary
precursor of the hindgut. The approach allowed the identification
of 1709 protein groups (<1% false discovery rate, FDR) from
∼20 ng of protein digest, corresponding to ∼0.2% of the total
protein content of the blastomere (Lombard-Banek et al., 2016a).
Many of the identified proteins are known to be involved in
different cell fates. For example, Geminin (Gem) and Isthmin
(Ism) were detected in the D11 cells in our measurements,

FIGURE 5 | Examples of protein identification–quantification between single embryonic cells. (A) The D11, V11, and V21 cells have different tissues fates in

the frog X. laevis. Scale bars: 250µm. Figure reprinted with permission from Onjiko et al. (2015). (B) These cells were dissected from different 16-cell X. laevis

embryos and analyzed using multiplexed (left panel) and label-free quantification (right panel). Volcano plots reveal gene translation differences between the V11, D11,

and V21 cell types (left). Pearson correlation analysis of protein expression finds similar protein expression for the majority of proteins between D11 blastomeres, and

detectable differences for others (right panel). Figures adapted with permission from Lombard-Banek et al. (2016a,b).
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and these proteins are involved in brain development (Pera
et al., 2002; Seo et al., 2005), which is the stereotypical fate of
D11 cells (Moody, 1987a). Multiplexed quantification by TMTs
provided comparative evaluation for 152 non-redundant protein
groups between the cell types (Figure 5B, left), including many
that were significantly differentially expressed between the cell
types (p < 0.05, fold change ≥1.3). We have also performed
label free quantitation (LFQ) to compare D11 cells that were
isolated at similar developmental phase of the 16-cell X. laevis
embryos (Figure 5A). A Pearson correlation analysis showed
similar expression levels for the majority of proteins between the
D11 cells (see proteins along linear fits). The study also found
25 proteins that were differentially accumulated in the respective
cells, suggesting highly variable expression (Figure 5B, right;
Lombard-Banek et al., 2016b). These data on translational cell
heterogeneity complement transcriptomic information on cell
differences (Flachsova et al., 2013), but also provide new insights
into how differential gene expression sets up different cell fates
and the major developmental axes of the early embryo.

CONCLUSIONS

High-sensitivity MS enables the identification and quantification
of a sufficiently large number of proteins to study cell
and developmental processes at the level of individual cells.

Advances in sampling (smaller single cells), protein processing,
microanalytical MS, and bioinformatics have enabled the
discovery characterization of hundreds to thousands of proteins
in single cells. Unbiased measurement of protein translation
by MS complements genomic and transcriptomic information,
essentially laying down the foundation of the molecular
characterization of cell heterogeneity. Knowledge of genomic,
transcriptomic, proteomic, and metabolomic processes paves
the way to understanding how differential gene expression
establishes cell heterogeneity during normal development and
disease states.
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Cell proliferation includes a series of events that is tightly regulated by several checkpoints

and layers of control mechanisms. Most studies have been performed on large cell

populations, but detailed understanding of cell dynamics and heterogeneity requires

single-cell analysis. Here, we used quantitative real-time PCR, profiling the expression of

93 genes in single-cells from three different cell lines. Individual unsynchronized cells from

three different cell lines were collected in different cell cycle phases (G0/G1 – S – G2/M)

with variable cell sizes. We found that the total transcript level per cell and the expression

of most individual genes correlated with progression through the cell cycle, but not

with cell size. By applying the random forests algorithm, a supervised machine learning

approach, we show how a multi-gene signature that classifies individual cells into their

correct cell cycle phase and cell size can be generated. To identify the most predictive

genes we used a variable selection strategy. Detailed analysis of cell cycle predictive

genes allowed us to define subpopulations with distinct gene expression profiles and to

calculate a cell cycle index that illustrates the transition of cells between cell cycle phases.

In conclusion, we provide useful experimental approaches and bioinformatics to identify

informative and predictive genes at the single-cell level, which opens up new means to

describe and understand cell proliferation and subpopulation dynamics.

Keywords: cell cycle, cell size, single-cell gene expression, machine learning, variable selection, random forests,

cell subpopulations, cell transitions

INTRODUCTION

Cell proliferation is a tightly organized process that involves cell division and cell growth, where cell
division can be divided into distinct cell cycle phases: G0, G1, S, G2, and M. Transitions through
the phases are regulated by several layers of checkpoints and control mechanisms (Baserga, 1981;
Lubischer, 2007; Bertoli et al., 2013; Grant et al., 2013). The molecular processes behind cell cycle
progression have been dissected by numerous morphological studies on live or fixed single cells
using a plethora of techniques to visualize components and processes during cell division. Many
more investigations have been made on cells, sorted according to size, or artificially arrested at
various cell cycle checkpoints. However, most of our knowledge about cell proliferation comes
from studies that average data from large and mixed cell populations. Such data are only indirectly
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related to quantitative changes in cells at different states of
division and growth. Analysis at the single-cell level can
overcome most of these limitations. Detailed single-cell analyses
have shown that transcript numbers fluctuate in individual
cells, even in seemingly homogeneous populations (Raj et al.,
2006), and that features of the typical or average cell in a
population cannot be deduced from measurements on cell
population samples (Bengtsson et al., 2005). Variations in
transcript numbers allow cells to produce unique responses to
internal and external cues that lead to defined paths of cell
proliferation and differentiation (Levine et al., 2013). Recent
development of single-cell analytical platforms opens up new
possibilities to define the molecular profiles of cells at different
states and to determine the importance of cell heterogeneity on
cellular processes and cell fate decisions (Kalisky et al., 2011;
Ståhlberg et al., 2011b; Sanchez and Golding, 2013; Shapiro et al.,
2013).

Here, we employed single-cell gene expression profiling to
describe the dynamic transition between cell proliferative states
in three different cell lines using a panel consisting of 93 marker
genes. Function of selected genes related to cell proliferation,
cell cycle regulation, TP53 function, stemness, differentiation, cell
signaling, and housekeeping functions (for gene details, see Table
S1). We assessed cell division by collecting cells in the G0/G1, S
and G2/M phases, and cell growth by selecting small and large
cells in respective cell cycle phase. In contrast to cell population
data, single-cell data are reported as transcripts per cell without
any further normalization (Ståhlberg et al., 2013), allowing total
transcript levels to be determined and compared between cell
states (Sanchez and Golding, 2013). To determine if, and to
what degree, the gene expression profile of individual cells were
associated with cell division and growth we applied the random
forests algorithm (Hastie et al., 2009; Gareth et al., 2013), which
is a supervised machine learning approach. By applying variable
selection, a recursive feature elimination (RFE) scheme (James
et al., 2013; Candia et al., 2015), we were able to identify the
genes with strongest cell proliferation association and to define
distinct subpopulations. Finally, we calculated a cell cycle index
based on the most predictive genes that allowed us to visualize
and biologically interpret cell cycle progression.

MATERIALS AND METHODS

Cell Culture
All cell lines were cultured at 37◦C and in 5% CO2. The myxoid
liposarcoma cell line MLS 402-91 was cultured in RPMI 1640
GlutaMAX medium supplemented with 10% fetal bovine serum,
100 U/mL penicillin, and 100 µg/mL streptomycin (all Life
Technologies). Cells were passaged with 0.25% trypsin and 0.5
mM EDTA (both Life Technologies). The breast cancer cell line
MCF7was cultured inDMEMmedium supplemented with 2mM
L-glutamine, 1% penicillin/streptomycin (all PAA Laboratories),
10% fetal bovine serum (Lonza), and 1% non-essential amino
acids (Sigma-Aldrich). MCF7 cells were passaged with 0.05%
trypsin-EDTA (PAA Laboratories). Mesenchymal stem cells
(MSC) derived from human embryonic stem cells (hES-MP
002.5, Takara Bio), were cultured in DMEM GlutaMAX,

supplemented with 10% fetal bovine serum, 100 U/mL penicillin,
100 µg/mL streptomycin, and 4 ng/mL fibroblast growth factor
2 (all Life Technologies) as described (Karlsson et al., 2009).
MSCs were passaged with TrypLE Select (Life Technologies).
Dissociation enzyme inactivation was performed using complete
medium, containing fetal bovine serum for all cell lines.
Cell cultures were confirmed as mycoplasma-free using the
Mycoplasma PCR Detection Kit (Applied Biological Materials).

Fluorescent Activated Cell Sorting
Vybrant DyeCycle violet stain (Life Technologies) and CellVue
Claret far red dye (Sigma-Aldrich) were used to stain genomic
DNA and membrane lipids, respectively. Suspension of 106 cells
in 1 mL Hanks’ balanced salt solution (Life Technologies) was
first stained with Vybrant DyeCycle violet stain (5 µM, final
concentration) at 37◦C for 30 min. Then, 1 mL CellVue Claret
far red dye diluted in diluent C (Sigma-Aldrich, 3.3 µM, final
concentration) was added followed by an incubation step at 37◦C
for 5 min. Staining was inactivated by complete medium and the
cells were finally resuspended in Hanks’ balanced salt solution.

G1/S cell cycle arrest was performed using a double thymidine
block (Sigma-Aldrich). Thymidine (2 mM, final concentration)
was added to 25–30% confluent cells for 18 h. Cells were then
released by addition of fresh medium without thymidine. Finally,
after 9 h cells were re-exposed to thymidine for additional 17 h.
Complete cell cycle arrest was confirmed by Vybrant DyeCycle
violet staining followed by fluorescence activated cell sorting
analysis.

Cell aggregates were removed by filtering with a 40 µm
cell strainer (BD Biosciences) and single cells were sorted with
a BD FACSAria II (BD Biosciences) into 96-well-plates (Life
Technologies), each well-containing 5µL 1mg/mL bovine serum
albumin (Thermo Scientific; Svec et al., 2013). Collected single
cells were frozen on dry ice and kept at −80◦C until subsequent
analysis. Gating strategies for cell size and cell cycle phase are
shown in Figure S1. The cell size/cell volume was estimated from
the average CellVue Claret far red signal, assuming a spherical cell
shape. All single-cells from respective biological condition were
collected from an individual culture, to minimize batch-to-batch
differences as described (Wills et al., 2013).

Single-Cell Gene Expression Profiling
Reverse transcription was performed with SuperScript III
(Life Technologies). Lysed single cells, 0.5mM dNTPs (Sigma-
Aldrich), 5.0 µMOligo(dT12−18), and 5.0 µM random hexamers
(both Life Technologies) were incubated in 6.5 µL at 65◦C for 5
min. Next, 50mM Tris–HCl, 75mM KCl, 3 mM MgCl2, 5mM
dithiothreitol, 10 U RNaseOut, and 50 U SuperScript III (all
Life Technologies) were added to a final volume of 10 µL. Final
reaction concentrations are shown. Reverse transcription was
performed at 25◦C for 5min, 50◦C for 60 min, 55◦C for 10min,
and terminated by heating to 70◦C for 15min. All samples were
diluted to 30 µL with water.

Targeted cDNA preamplification was performed with the iQ
Supermix (BioRad) in 50 µL reactions. Each reaction contained
10 or 15 µL diluted cDNA and 40 nM of each primer. Primer
sequences are shown in Table S1. Optimization and validation of
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good performing qPCR assays and preamplification are described
elsewhere (Ståhlberg and Bengtsson, 2010; Andersson et al.,
2015). The temperature profile was 95◦C for 3min followed by 20
cycles of amplification (95◦C for 20 s, 60◦C for 3min, and 72◦C
for 20 s). All preamplified samples were chilled on ice and diluted
1:20 in TE-buffer (pH 8.0; Life Technologies). Preamplification
was performed as two separate reactions for each single cell,
each containing half of the assays. The products of the two
reactions were pooled after preamplifciation. Reproducibility and
efficiency of the preamplification were evaluated by standard
curve analysis using cDNA from MLS 402-91 (Figure S2).
The overall preamplification efficiency was assessed using five
different cDNA concentrations (n = 4) generated from 0.04,
0.2, 1, 5, 25 ng total RNA, respectively. The average cycle of
quantification value of all genes expressed in four or more
dilutions were used to determine the overall preamplification
efficiency.

The BioMark real-time PCR system with 96 × 96 dynamic
arrays (Fluidigm) was used for gene expression profiling
according to the manufacturer’s instructions. The 5 µL sample
reaction mixture contained 1X SsoFast EvaGreen Supermix
(BioRad), 1X ROX (Life Technologies), 1X GE Sample Loading
Reagent (Fluidigm), and 2 µL diluted preamplified cDNA. The
5 µL primer reaction contained 1X Assay Loading Reagent
(Fluidigm) and 5µMof each primer. Preamplification and qPCR
were performed with the same primers (Table S1). The chip was
first primed with the NanoFlex IFC Controller (Fluidigm) and
then loaded with the sample and primer reaction mixtures. The
cycling program was 3 min at 95◦C for polymerase activation,
followed by 40 cycles of amplification (96◦C for 5 s and 60◦C for
20 s). After qPCR, all samples were analyzed by melting curve
analysis (60–95◦C with 0.33◦C per s increment). All assays were
confirmed to generate correct PCR product length by agarose
gel electrophoresis. Data pre-processing was performed with
GenEx (v.6, MultiD) as described (Ståhlberg et al., 2013). Briefly,
samples with aberrant melting curves were removed and cycle of
quantification values larger than 25 were replaced with 25. Data
were transformed to relative quantities assuming that a cycle of
quantification value of 25 equals one molecule. Missing data were
replaced with 0.5 molecules. All data were calculated per cell if
not stated otherwise. For all data analysis we assumed 100% PCR
efficiency. The impact of the chosen cut-off value and applied
PCR efficiency had negligible effect on downstream analysis.

Immunofluorescence
MLS 402-91 and MCF-7 cells were seeded on Millicell EZ SLIDE
4-well-glasses (Merck Millipore). After 24 h, cells were rinsed
with phosphate buffer saline (Life Technologies) and fixed in
3.7% formaldehyde for 5 min (Sigma-Aldrich), washed three
times with phosphate buffer saline and permeabilized in AB
buffer (phosphate buffer saline supplied with 1% bovine serum
albumin and 0.5% Triton X, Sigma-Aldrich). Cells were stained
with anti-MCM6 antibody (HPA004818 rabbit, diluted 1:50,
Sigma-Aldrich). Detection was performed with a Cy3 conjugated
secondary antibody (PA43004, diluted 1:1000, GEHealthcare Life
Sciences). Slides were mounted using Prolong Gold anti-fade
with 4′,6-diamidino-2-phenylindole (Life Technologies). Cellular

fluorescence was imaged using a Zeiss Axioplan 2 microscope
(Zeiss). Relative protein level per cell was estimated using
Volocity 3D Image Analysis Software (PerkinElmer).

Single-Cell Data Analysis and Statistics
Principal component analysis, hierarchical clustering, and
Kohonen self-organizing maps were performed in GenEx
software using autoscaled gene expression data as described
(Ståhlberg et al., 2011a). The Ward’s algorithm and Euclidean
distance measure were applied for hierarchical clustering.
Parameters for Kohonen self-organizing maps were: 3–4 × 1
map, 2 neighbors, 0.4 learning rate, and 150 iterations. The
resulting clusters were not sensitive to parameter choice.

A random forests algorithm was implemented to pairwise
classify different cell cycle phases and cell sizes. Two cell states
were compared at a time. Random forests are collections of
decision trees. At the top-most level of each decision tree, all
genes are scanned one by one, to determine the best gene, and
corresponding gene expression threshold to optimally partition
the original cells into two branches. The optimal partition is
algorithmically determined based on the minimization of a
quality function such as the cross-entropy or the Gini index
(Hastie et al., 2009; Gareth et al., 2013), which aim to increase
the class purity of each branch. Subsequently, each branch is
considered for further separation based on the expression values
of other genes. The process continues until the full decision tree
is grown in such amanner that each of its leaves, i.e., the endpoint
of each branch, contains cells of a single class. To generate robust
solutions and avoid data overfitting, additional parameters are
usually incorporated to the model in order to either limit the
length of the tree (or, alternatively, the size of the nodes that
can undergo further branching) or to prune the tree. In this
context, a popular technique is to generate a so-called random
forest that contains a large number of partially decorrelated
trees built out of bootstrapped samples from the original data
set. Compared to single decision trees, random forests are less
intuitive, since they lack a direct visualization of the structure and
relations among predictor genes, but random forests are more
powerful and robust. In this study, we implemented a random
forest analysis using the random Forest (v4.6-10) package in R.
This implementation uses the decrease of Gini index impurity
as a splitting criterion and selects the splitting predictor from a
subset of predictors, randomly chosen at each split. Each random
forest consisted of 1000 trees. For each random forest we scanned
the size of the predictor subset in the full range from one to
the total number of predictors and selected the smallest subset
that minimized the out-of-bag error. The so-called out-of-bag
error is calculated from predictions on out-of-bag instances,
i.e., those cells that have not been used in building a particular
tree. Moreover, in order to assess model variance, for each class
comparison we generated ensembles consisting of 100 different
random forests. Only genes with detectable expression in at least
50% of the cells in at least one cell class were included in our
analysis. We report averages and standard deviations calculated
over these random forest ensembles throughout.

Cell classification performance can be quantified by several
measures. In addition to the out-of-bag error, another measure is
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the balanced accuracy. The balanced accuracy is the classification
accuracy averaged over all classes, where the classification
accuracy for each class is the percentage of cells in the class that
are correctly classified by the random forest. Yet another measure
is Fisher’s p-value obtained by applying Fisher’s exact test on
the confusion matrix, which consists of the number of correctly
and incorrectly classified cells in each class. Moreover, we also
computed the so-called gene importance, a quantitative measure
of the impact of the gene on the node purity.

To address the question of which, and how many, genes
are needed to best separate two classes we applied a recursive
feature elimination (RFE) scheme, a standard approach for
feature selection (Tarca et al., 2007; Candia et al., 2013). In the
first RFE cycle, we generated a random forest ensemble using
all (N) genes and computed classification statistics, including
confusion matrices with associated Fisher’s p-value, balanced
accuracy, out-of-bag error, and gene importance. We determined
the least significant gene based on gene importance and removed
it. Then, in the second RFE cycle we used the remaining N–1
genes and repeated the random forest analysis to eliminate the
second least significant gene. The procedure was subsequently
iterated until one gene was left. By comparing the classification
performance across all RFE cycles we could then determine the
number of genes in the optimal gene signature. We verified
that, for this optimal gene signature, the out-of-bag error and
Fisher’s p-value were minimized, while the balanced accuracy was
maximized. The intended redundancy of separately considering
three classification performance metrics allowed us to ensure the
robustness of the optimally obtained gene signature.

The most predictive genes identified by RFE was used to
calculate a cell cycle index as the sum of all G1 to S and/or G2/M
upregulated genes subtracted by the sum of all G1 to S and/or
G2/M downregulated genes divided by the number of genes used.
The lg2 expression value of each gene was used.

RESULTS

Gene expression and cell heterogeneity of proliferating cells
were studied by fluorescence activated cell sorting combined
with single-cell gene expression profiling. Three different cell
lines were investigated: a genetically stable myxoid liposarcoma
cell line (MLS 402-91) (Aman et al., 1992); a breast cancer
adenocarcinoma derived cell line (MCF7; Soule et al., 1973) and
mesenchymal stem cells (MSC) differentiated from an embryonic
stem cell line (Karlsson et al., 2009). Cells were stained with lipid
and DNA binding dyes, visualizing cell size, and DNA content.
Utilizing this double-labeling approach we collected small and
large cells in the G0/G1, S, and G2/M phases (Figure S1). DNA
staining cannot distinguish between G0 and G1 phase cells, or
between G2 and M phase cells. We refer the G0/G1 phase as G1
phase only, since few G0 cells are expected in our continuously
passaged cell cultures. The average volume ratio between large
and small collected cells was 2.8 for MLS 402-91, 2.5 for MCF7,
and 4.5 for MSC (Figure S1). Expression of 93 genes were
analyzed in each cell using reverse transcription quantitative real-
time PCR. One gene (FUS) was assessed by two assays. Assay
information and gene function are shown in Table S1. All basic

data, including number of positive cells expressing each gene and
mean single-cell expression with standard deviation, are shown
in Table S2.We tested the reproducibility of our data by collecting
individual MLS 402-91 cells in the G1, S, and G2/M phases
without any cell size selection in an independent experiment.

Total Transcript Level Correlates with Cell
Cycle Phase at the Single-Cell Level
Transcript numbers were measured per single cell without any
further normalization between cells (Ståhlberg et al., 2011a,
2013). Hence, the total transcript level could be calculated as the
sum of all measured transcripts per cell. Figure 1A and Table 1

show that the total transcript level correlated with cell cycle
phase, but not with cell size. In MLS 402-91 the total transcript
level reached maximum in G2/M phase cells with about two-
fold higher levels compared to G1 phase cells. In MCF7 the total
transcript level reached maximum in S phase cells and remained
at the same level in G2/M phase cells. MSC only displayed a weak
correlation between total transcript level and cell cycle phase.

The total transcript level varied highly between individual
cells (Figure 1B). The distributions were skewed with few cells
containing high total transcript levels. The total transcript level
was 17, 120, and 820 times higher in the cell with highest
total transcript level compared to the cell with lowest total
transcript level in MLS 402-91, MCF7, and MSC, respectively (all
cells included). Correlation analysis between transcript levels of
individual genes at single-cell level showed positive correlations
between most genes: 74% in MLS 402-91 (total number of
comparisons = 4278), 85% (total number of comparisons =

3081) in MCF7 and 90% (total number of comparisons = 3486)
in MSC. Consequently, cells with high total transcript level also
displayed elevated transcript numbers of most individual genes.

Identification of Genes with Cell Cycle
Phase and Cell Size Dependent Expression
Principal component analysis (PCA) showed that individual
cells partly clustered based on their cell cycle phase in all
three cell lines (MLS 402-91 in Figure 2A, MCF7 in Figure 3A,
and MSC in Figure 4A), but only MSC displayed cell size
depended clustering. However, large overlaps between cells of
different cell cycle phases and cell sizes were observed for all
cell lines. Double thymidine treated MLS 402-91 cells showed
a completely divergent expression profile compared to non-
treated G1, S, or G2/M phase cells, demonstrating that artificial
cell synchronization result in severe and unintended side effects
(Figure 2A).

To determine if individual cells can be correctly classified into
cell cycle phase or cell size based on their gene expression profile
we applied the random forests algorithm, a machine-learning
approach based on decision trees. As a classifier, a decision
tree is a hierarchically organized structure that optimally can
separate cell cycle phases and cell sizes (see Section Materials
and Methods for details). Figures 2B, 3B, 4B show how well-cell
cycle phase and cell size could be distinguished using a multi-
gene signature at the single-cell level. InMLS 402-91, we obtained
best classification comparing G2/Mwith G1 phase cells, while the
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FIGURE 1 | Total transcript levels are mainly cell cycle phase dependent. (A) The total transcript level for small and large cells in the G1 (blue), S (gray), and

G2/M (red) phases are shown (MLS 402-91: nsmall−G1 = 15, nlarge−G1 = 16, nsmall−S = 15, nlarge−S = 15, nsmall−G2/M = 15, nlarge−G2/M = 15; MCF7: nsmall−G1

= 16, nlarge−G1 = 15, nsmall−S = 15, nlarge−S = 15, nsmall−G2/M = 15, nlarge−G2/M = 16, and MSC: nsmall−G1 = 16, nlarge−G1 = 13, nsmall−S = 16, nlarge−S =

12, nsmall−G2/M = 14, nlarge−G2/M = 15). In addition, G1/S phase arrested MLS 402-91 cells with any cell size were analyzed, using a double thymidine block (n =

61). As a separate experiment, MLS 402-91 cells were collected and analyzed based on cell cycle phase only (nG1 = 30, nS = 29 and nG2/M = 30). Box-Whisker

plots are shown; the box ranges between the 25 and 75% and the whiskers range between the 5 and 95% of all data. *indicate 95% significance using the

Mann-Whitney U-test with Holm-Bonferroni correction for multiple testing. (B) Distribution of total transcript levels among individual cells in MLS 402-91, MCF7, and

MSC. The total transcript level per cell is calculated as the sum of all measured transcript for all 93 genes.

classifications between other cell cycle phases were less efficient
(Figure 2B). For example, 29.86 ± 0.35 out of 31 MLS 402-91
cells were correctly classified as G1 phase cells, while 1.14 ± 0.35
G1 phase cells were falsely predicted to be G2/M phase cells. The
ability to classify MCF7 cells was similar (Figure 3B). The gene
expression profile was less predictive to classify cell size than cell
cycle phase in both MLS 402-91 and MCF7 cells (Figures 2B,
3B). Similar gene expression profiles and classifications were
also observed for the independent MLS 402-91 data set (Figure
S3). The gene expression profile of individual MSC was less
predictive for cell cycle phases compared to the two other cell
lines, but the ability to classify cell size was more efficient in
MSC (Figure 4B). We also compared small and large cells within
respective cell cycle phase, but no distinct cell size dependency
was found in any of the three cell lines (data not shown). The
random forests approach also allowed us to rank the individual
genes based on their importance in the classification (Figure S4).
Figures 2C, 3C, 4C show the genes with strongest cell cycle phase
and cell size dependent expression. Even if the median expression
level of these predictive genes correlated well with their ability
to classify cell cycle phase or cell size, individual cells showed
highly variable, and overlapping gene expression (Figures 2C,
3C, 4C).

TABLE 1 | Spearman’s correlation coefficient between total transcript

level and cell proliferation parameters at single-cell level.

MLS 402-91 MCF7 MSC

Cell cycle phase combined with cell size 0.27* 0.34** 0.28**

Cell cycle phase 0.51** 0.47** 0.23*

Cell size 0.03 0.19

*p < 0.05, **p < 0.01.

Identification of Predictive Genes and Cell
Line Specific Subpopulations
Expression data for all genes were used in the random forests
classification algorithm to predict cell cycle phase and cell size. To
determine if a similar prediction model could be generated with
fewer genes, we applied a recursive feature elimination (RFE)
approach. In RFE, the least informative gene is eliminated from
the random forests analysis. This procedure is repeated until
only one gene remains. Figure S5 shows how well the random
forests algorithm performed with decreasing number of genes.
We found that expression data from the following gene sets
were almost as accurate as the complete gene panel in classifying
cell cycle phase in MLS 402-91: G1 vs. S: MKI67, RB1, E2F1,
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FIGURE 2 | Cell cycle phase and cell size dependent gene expression in MLS 402-91. (A) PCA of small and large MLS 402-91 cells in the G1, S, and G2/M

phases. Note that the double thymidine treated cells (T block) show a completely different expression profile than non-treated cells. Each dot, square, and triangle

represents a single cell. (B) Confusion matrices of cell classifications using the random forests algorithm. Fisher’s exact test was used to calculate significance (p <

0.0001) for all matrices. (C) Box-Whisker plots for the genes with highest importance to classify cell cycle phase and cell size using the random forests algorithm. The

box ranges between the 25 and 75%, the whiskers range between the 5 and 95% of all data and outliers are indicated as diamonds.

HIST1H2AE, and CCNB1; S vs. G2/M: CCNB1, CBX3, and ND1
and G2/M vs. G1: MKI67, GAPDH, CCNB1, and CCNB2. The
gene lists are ordered with the most predictive gene listed first.
Refined PCA using only these nine predictive genes revealed a
distinct subpopulation that was not clearly visible using all genes
(Figure 5A). The same subpopulation was also identified using
other algorithms, including hierarchical clustering and Kohonen
self-organizingmaps (Figure S6). This new subpopulationmainly
consisted of G1 cell cycle phase cells and was characterized
by upregulation of MCM6 and downregulation of 21 other
genes, mainly cell cycle related genes (Figures 5B,C). We refer
to this subpopulation as the G1′ subpopulation. The total
transcript level in the G1′ subpopulation was on average 32%
lower compared to the other G1 phase cells (p < 0.01, Mann-
Whitney U-test), suggesting a distinct G1 cell state with low
transcriptional activity. We also confirmed the presence of
the same G1 subpopulation with almost an identical gene
expression profile in the independent MLS 402-91 data set
(Figure S7).

InMCF7, the following sets of predictive genes were identified
by RFE: G1 vs. S phase: HIST1H2AE, CCNB1, CDK4, and

GMNN; S vs. G2/M phase: CCNB1, CCNB2, and HIST1H2AE
and G2/M vs. G1 phase: MKI67, CCNB1, RPS10, RPL7, and
EIF1. Refined PCA revealed a G1 subpopulation with similar
characteristics as the G1′ subpopulation found in MLS 402-
91 (Figures 5D–F). The existence of the MCF7 defined G1′

subpopulation was confirmed by hierarchical clustering and
Kohonen self-organizing maps (data not shown). The total
transcript level was 47% lower in the G1′ subpopulation
compared to the other G1 phase cells (p < 0.01, Mann-Whitney
U-test). One gene, MCM6, displayed opposite regulation in
the G1′ subpopulation in MCF7 compared to MLS 402-91.
The variable and divergent MCM6 expression prompted us
to analyze its protein expression. Immunofluorescence analysis
showed variable MCM6 protein expression in both MLS 402-
91 and MCF7 with somewhat higher variability in MCF7 cells
(Figure S8).

In MSC, RFE generated the following sets of predictive genes:
G1 vs. S phase: HIST1H2AE, MKI67, ATF4, and YWHAZ; S vs.
G2/M phase: HIST1H2AE, E2F4, TAF15, and RB1 and G2/M vs.
G1 phase: CCNA2, NOTCH1, CCNB1, and VIM. In contrast to
MLS 402-91 and MCF7, MSC displayed a distinct subpopulation
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FIGURE 3 | Cell cycle phase and cell size dependent gene expression in MCF7. (A) PCA of small and large MCF7 cells in the G1, S, and G2/M phases. Each

dot and square represents a single cell. (B) Confusion matrices of cell classifications using the random forests algorithm. Fisher’s exact test was used to calculate

significance (p < 0.0001) for all matrices. The confusion matrix of small compared to large cells was not significant. (C) Box-Whisker plots for the genes with highest

importance to classify cell cycle phase and cell size using the random forests algorithm. The box ranges between the 25 and 75%, the whiskers range between the 5

and 95% of all data and outliers are indicated as diamonds.

of small S and G2/M phase cells that was characterized
by upregulated cell proliferation genes (Figures 5G–I). The
existence of this MSC specific subpopulation was also confirmed
by other algorithms (data not shown).

Cell Cycle Progression Can Be Visualized
By a Cell Cycle Index Based on Gene
Expression
Multi-gene profiles are usually hard to visualize and interpret.
Hence, we calculated and plotted a cell cycle index based on the
expression of all cell cycle regulated genes identified by RFE for
each cell line (Figure 6). The index correlated with the cell cycle
progression for all three cell lines, where G1 phase cells showed
low indexes, while G2/M phase cells displayed high indexes. The
cell cycle index varied most between individual G1 phase cells in
MLS 402-91 and MCF7, where a distinct index crossover point
could be identified for cells in the transition from G1 to S phase.
In contrast, MSC showed a different pattern with a more uniform
G1 to S phase transition. The cells in the G1′ subpopulations
identified in MLS 402-91 and MCF7 displayed the lowest cell
cycle indexes, while the cells in the subpopulation defined inMSC
showed the highest indexes.

DISCUSSION

The mechanisms governing cell growth and division of
mammalian cells have long been a subject of intense research.
Many of the decisive regulatory events occur by post translational
modifications of pre-existing proteins (Pagliuca et al., 2011),
but underlying this regulatory level is also synchronized
de novo production of cell cycle regulated components. A
large number of genes have been reported to be timely
transcribed as part of cell cycle progression (Sun et al., 2007;
Simmons Kovacs et al., 2008; Muller and Engeland, 2010).
Here, we have taken advantage of emerging technology to
study gene expression profiles in single cells of different cell
cycle phases and of different cell sizes. To date, most studies
aimed at cell cycle regulated gene transcription were based
on large cultures and artificial cell synchronization. We and
others (Cooper, 2002, 2003) have observed that standard
synchronization strategies affect cell states in unintended ways
as they cause cell stress and abnormal expression profiles
(Figures 1A, 2A). Our approach to collect unsynchronized
individual cells avoids these issues and our data clearly
demonstrate some of the benefits using single-cell analysis.
Both the observed cell-to-cell variability and the identified
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FIGURE 4 | Cell cycle phase and cell size dependent gene expression in MSC. (A) PCA of small and large MSC cells in the G1, S, and G2 phases. Each dot

and square represents a single cell. (B) Confusion matrices of cell classifications using the random forests algorithm. Fisher’s exact test was used to calculate

significance (p < 0.05) for all matrices. (C) Box-Whisker plots for the genes with highest importance to classify cell cycle phase and cell size using the random forests

algorithm. The box ranges between the 25 and 75%, the whiskers range between the 5 and 95% of all data and outliers are indicated as diamonds.

subpopulations would have been challenging to study at cell
population level.

Traditional expression analysis usually involves normalization
processes before samples can be compared. Normalization
assumes that selected house-keeping genes, i.e., reference genes,
or the total amount of transcripts is essentially identical across
samples. However, single-cell RT-qPCR data are reported as
transcripts per cell without the need of additional normalization
between cells, which enable us to calculate the total transcript
level of all analyzed genes (Ståhlberg et al., 2011a, 2013). This
strategy is possible, since single cells are analyzed directly without
any extraction steps. Our data show that the assumption of equal
total transcription levels between individual cells is not valid.
Instead, we observed that the total transcript level correlated with
the cell cycle phase (Table 1). This was further tested by analyzing
an additional published single-cell astrocyte data set generated
directly from dissociatedmice brains (Figure S9; Rusnakova et al.,
2013). Taken together, our data show a considerable cell-to-cell
variation in total transcript levels where most genes are positively
correlated. In addition, only a minority of cells displayed elevated
total transcript levels. Consequently, these few cells expressed
high number of transcripts of most genes. The absolute values
of the calculated total transcript levels are dependent on the
applied gene panel. However, the observation of subpopulations

expressing elevated levels of transcripts for most genes is not
gene panel dependent. Our results are in agreement with earlier
observations that transcription occurs in bursts (Raj et al., 2006;
Sanchez and Golding, 2013), generating skewed distributions of
transcripts among individual cells (Bengtsson et al., 2005).

In many organisms cell size is strongly correlated to cell
division and growth rate (Dungrawala et al., 2010; Marguerat and
Bahler, 2012), but the role of cell size in mammalian cells is less
clear (Echave et al., 2007; Tzur et al., 2009). Our cell size data
are in line with these reports. We observed increased numbers
of small cells in the G1 phase using fluorescence activated cell
sorting (Figure S1), but no clear correlation between cell size and
total transcript levels were observed in any cell line. In MSC,
we identified a subpopulation of small S and G2/M phase cells
with distinct gene expression profile. The divergent results of
MSC could be connected to the larger span in size variation of
these cells compared to the other two cell lines (Figure 1A and
Figure S1).

A large number of genes displayed correlations between
their expression levels and cell cycle phase, while the number
of correlations between expression level and cell size was
fewer (Table 1 and Table S2). However, even for the genes
with highest correlations we observed large overlap in gene
expression levels among individual cells of different cell cycle
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FIGURE 5 | Identification and characterization of distinct subpopulations. (A) A MLS 402-91 subpopulation (encircled) was defined using PCA and RFE

identified genes (MKI67, RB1, HIST1H2AE, CCNB1, CBX3, ND1, GAPDH, CCNB2, and E2F1). Individual small (squares) and large (dots) MLS 402-91 cells in G1

(blue), S (gray), and G2/M (red) phase are shown. (B) The volcano plot shows regulation and significance of all analyzed genes, comparing the defined G1

subpopulation and the remaining G1 phase cells. Dunn-Bonferroni correction for multiple testing (p < 0.00054) was applied using 95% significance. Red (p > 0.05),

yellow (0.05 > p > 0.00054), and green (p < 0.00054) dots indicate at least two-fold regulated genes. (C) All significantly MLS 402-91 regulated genes identified in

the volcano plot are listed. (D) A MCF7 subpopulation (encircled) was defined using PCA and RFE identified genes (HIST1H2AE, CCNB1, CDK4, GMNN, CCNB2,
MKI67, RPS10, RPL7, and EIF1). Individual small (squares) and large (dot) MCF7 cells in G1 (blue), S (gray), and G2/M (red) phase are shown. (E) The volcano plot

shows regulation and significance for all analyzed genes in MCF7, comparing the defined G1 subpopulation and the remaining G1 phase cells. Dunn-Bonferroni

correction for multiple testing (p < 0.00062) was applied using 95% significance. Red (p > 0.05), yellow (0.05 > p > 0.00062) and green (p < 0.00062) dots indicate

at least two-fold regulated genes. (F) All significantly MCF7 regulated genes identified in the volcano plot are listed. (G) A MSC subpopulation (encircled) was defined

using PCA and RFE identified genes (HIST1H2AE, MKI67, ATF4, YWHAZ, E2F4, TAF15, RB1, CCNA2, NOTCH1, CCNB1, and VIM). Individual small (squares) and

large (dot) MCF7 cells in G1 (blue), S (gray), and G2/M (red) phase are shown. (H) The volcano plot shows regulation and significance for all analyzed genes in MSC,

comparing the defined subpopulation and the remaining cells. Dunn-Bonferroni correction for multiple testing (p < 0.0006) was applied using 95% significance. Red (p
> 0.05), yellow (0.05 > p > 0.0006), and green (p < 0.0006) dots indicate at least two-fold regulated genes. (I) All significantly MSC regulated genes identified in the

volcano plot are listed.

phases and cell sizes (Figures 2C, 3C, 4C and Table S2). To
further analyze the relations between gene expression and
cell cycle phase respective cell size we applied the supervised
random forests learning algorithm. This strategy generated a
multi-gene signature that optimally separated pre-defined cell
populations. Further, to identify the most predictive genes
we applied RFE. Most of the predictive genes were similar
in MLS 402-91 and MCF7, while MSC displayed a different
gene list. Some genes, including CCNB1 and MKI67, were
predictive in all three cell lines. The RFE results showed that
none of the measured genes alone or in combination could

predict all cells into correct cell cycle phase or cell size in any
cell line.

By excluding non-informative genes in the PCA we identified
distinct G1′ subpopulations in both MLS 402-91 and MCF7. The
G1′ subpopulations were characterized by low total transcript
levels and downregulation of several proliferation associated
genes. We speculate that these G1 phase cells are cells that have
recently divided (Martinsson et al., 2005). One gene, MCM6,
was upregulated in MLS 402-91, while downregulated in MCF7.
MCM6 belongs to the MCM gene family, where the MCM
complex is loaded on chromatin exclusively during the G1 phase
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FIGURE 6 | Cell cycle index. The cell cycle index of each cell is shown in

relation to its cell cycle phase. Subpopulation cells identified in Figure 5 are

also indicated. (A) The MLS 402-91 index was calculated as: (MKI67 + RB1 +

HIST1H2AE + CCNB1 + CBX3 + ND1 + GAPDH + CCNB2 – E2F1)/9. The
lg2 expression value of each gene was used. The cell cycle index crossover

point where the index enters a plateau is indicated. The linear fits are shown to

guide the eye. (B) The MCF7 index was calculated as: (HIST1H2AE + CCNB1
+ CDK4 + GMNN + CCNB2 + MKI67 + RPS10 + RPL7 +EIF1)/9. The lg2

expression value of each gene was used. The cell cycle index crossover point

where the index enters a plateau is indicated. The linear fits are shown to guide

the eye. (C) The MSC index was calculated as: (HIST1H2AE + MKI67 + ATF4
+ YWHAX + E2F4 + TAF15 + RB1 + CCNA2 + NOTCH1 + CCNB2 +

VIM)/11. The lg2 expression value of each gene was used.

with help of other proteins, including CDT1 and CDC6 (Shetty
et al., 2005). Interestingly, the second most upregulated gene in
the MLS 402-91 G1′ subpopulation was CDT1, further indicating
that the MCM complex may be differently regulated in MLS 402-
91 compared to MCF7. The heterogeneously MCM6 expression
also translated into variable protein expression levels. Transcript
data suggest that the cells with high MCM6 protein level in MLS
402-91 correspond to the G1′ subpopulation, while the opposite
seems true for MCF7. Further, analyses are needed to define the
cell line specific regulation ofMCM genes.

A single parameter is easier to visualize and interpret than
a multi-gene signature. Hence, we developed a cell cycle index
to illustrate cell cycle progression. The index shows that cells
are in continuous transition throughout the cell cycle until
mitosis. In MLS 402-91 and MCF7 we observed a distinct cell
cycle index crossover point for cells that were in the G1 to
S phase transition (Figures 6A–B). We speculate that this cell
cycle index breakpoint is related to the G1 restriction check
point (Lubischer, 2007). The identified G1′ subpopulations in
MLS 402-91 and MCF7 were characterized by low indexes,
illustrating that these cells are not likely to enter the S phase in
the near future. However, further analysis of more cell lines in
different conditions, degree of differentiation and various genetic
backgrounds is needed to determine general cell proliferation
constraints. In addition, whole transcriptome analysis would
most likely reveal more predictive genes allowing for a more
detailed understanding of cell transitions between cell cycle
phases.
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As the vast majority of all microbes are unculturable, single-cell sequencing has become 
a significant method to gain insight into microbial physiology. Single-cell sequencing 
methods, currently powered by multiple displacement genome amplification (MDA), 
have passed important milestones such as finishing and closing the genome of a pro-
karyote. However, the quality and reliability of genome assemblies from single cells are 
still unsatisfactory due to uneven coverage depth and the absence of scattered chunks 
of the genome in the final collection of reads caused by MDA bias. In this work, our new 
algorithm Hybrid De novo Assembler (HyDA) demonstrates the power of coassembly of 
multiple single-cell genomic data sets through significant improvement of the assembly 
quality in terms of predicted functional elements and length statistics. Coassemblies 
contain significantly more base pairs and protein coding genes, cover more subsystems, 
and consist of longer contigs compared to individual assemblies by the same algorithm 
as well as state-of-the-art single-cell assemblers SPAdes and IDBA-UD. Hybrid De novo 
Assembler (HyDA) is also able to avoid chimeric assemblies by detecting and separating 
shared and exclusive pieces of sequence for input data sets. By replacing one deep 
single-cell sequencing experiment with a few single-cell sequencing experiments of 
lower depth, the coassembly method can hedge against the risk of failure and loss of the 
sample, without significantly increasing sequencing cost. Application of the single-cell 
coassembler HyDA to the study of three uncultured members of an alkane-degrading 
methanogenic community validated the usefulness of the coassembly concept. HyDA 
is open source and publicly available at http://chitsazlab.org/software.html, and the raw 
reads are available at http://chitsazlab.org/research.html.

Keywords: genome assembly, single-cell genomics, uncultivable bacteria, colored de Bruijn graph, genome 
coassembly

1. INtRodUCtIoN

Enormous progress toward DNA sequencing has brought a realm of exciting applications within 
reach, including genomic analysis at single-cell resolution. Single-cell genome sequencing holds 
great promise for various areas of biology including environmental biology (McLean et al., 2013). In 
particular, myriad unculturable environmental microorganisms have been studied using single-cell 
genome sequencing powered by high-throughput DNA amplification methods (Dean et al., 2001, 2002; 
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Hosono et al., 2003; Gill et al., 2006; Rusch et al., 2007). Since the 
majority of microbes to date are unculturable, single-cell sequenc-
ing has enabled significant progress in elucidating the genome 
sequences and metabolic capabilities of these previously inacces-
sible microorganisms.

Single-cell sequencing, which was challenging and limited for 
years, is now accessible and attractive for many scientific fields 
according to the Nature Method of the year 2013. It helps various 
types of projects such as antibiotics discovery (Li and Vederas, 
2009), Earth Microbiome Project (EMP) (Caporaso et al., 2012), 
and Human Microbiome Project (HMP) (Gill et al., 2006). The 
importance of single-cell sequencing is particularly due to the 
fact that only 1% of environmental bacteria have been cultured 
in the laboratory as they need their natural habitant for cultiva-
tion (Lasken, 2007). Also, single-cell sequencing can preserve 
the uniqueness of each cell and its individual mutations and 
structural variations, which are valuable information, especially 
in cancer studies.

Nevertheless, single-cell sequencing is still far from perfect 
as whole-genome amplification procedures are needed to aug-
ment femtograms of DNA material of one cell into micrograms. 
All known amplification reactions to date introduce some 
form of bias. Today, the dominant amplification method in 
single-cell sequencing technology is the Multiple Displacement 
Amplification (MDA) (Dean et  al., 2001, 2002; Lasken and 
Egholm, 2003). Another popular amplification method is 
MALBAC, which causes its type of amplification artifact 
(Lu et al., 2012; Zong et al., 2012).

Multiple Displacement Amplification (MDA) is the preferred 
amplification method for single-cell sequencing, since it is an 
isothermal (without thermo cycling) process as opposed to PCR 
(Illumina, 2013, 2014). Compared to PCR-based amplification 
methods, it produces less amplification coverage bias and error 
(Tindall and Kunkel, 1988; Esteban et al., 1993; Pinard et al., 2006).

Recently, a new whole-genome amplification method has been 
demonstrated on individual human cells, which is called Multiple 
Annealing and Looping Based Amplification Cycles (MALBAC) 
(Lu et al., 2012; Zong et al., 2012). MALBAC coverage of the human 
genome has less bias than that of MDA. Nevertheless, amplifica-
tion bias is still a challenge despite the improvements achieved 
by MALBAC (Daley and Smith, 2014). Furthermore, sensitivity 
of MALBAC to background noise makes it not suitable for many 
applications, such as de novo assembly (de Bourcy et al., 2014).

Although single-cell sequencing methods have passed impor-
tant milestones, such as capturing ≥90% of genes in a prokaryotic 
cell (Chitsaz et al., 2011) or finishing and closing the genome of 
a prokaryote using MDA (Woyke et  al., 2010), the quality and 
reliability of genome assemblies from single cells lag behind those 
of sequencing methods from multi cells due to a bias arising from 
MDA. The main factors that affect quality are uneven coverage 
depth and the absence of scattered chunks of the genome in the 
final collection of reads. There is no known deterministic pat-
tern for the preferred amplified regions, and they are currently 
treated as the result of a random process. Also, the outcome of 
MDA is widely variable ranging from total loss of the sample and 
any information therein to nearly complete reconstruction of 
the genome. In this sense, an MDA-based single-cell sequencing 

experiment is currently a gamble that can potentially lead to the 
loss of the sample and sequencing expenses.

The uneven depth of coverage of a single-cell data set makes 
the result of de novo assembly with uniform sequencing depth 
assumption inaccurate (Rodrigue et al., 2009; Woyke et al., 2009). 
This makes the challenges of single-cell sequencing more compu-
tational than experimental (Rodrigue et al., 2009). A novel com-
putational solution proposed by Chitsaz et al. (2011) overcomes 
some of the complications caused by uneven depth of coverage. 
That method is implemented into a tool called Velvet-SC and 
adapted by other subsequent single-cell assembly tools, such 
as SPAdes (Bankevich et  al., 2012) and IDBA-UD (Peng et  al., 
2012), which introduce further advanced algorithmic features 
and outperform Velvet-SC.

No matter how sophisticated the algorithmic features of 
an assembler, there is no way to assemble those regions of the 
genome that are not amplified enough to be captured in sequenc-
ing. Chitsaz et al. (2011) called those absent parts of the genome 
blackout regions. We propose an elegant solution to retrieve those 
blackout regions using the information vested in other single-cell 
data sets. Coverage data of identical DNA molecules suggest that 
the MDA process has a strong random component to the extent 
that it is likely that the blackout regions in one reaction are fully 
covered in another one. We introduce a coassembly strategy, 
which can fill the blackout regions in a data set by using the 
information in another coassembled data set using the idea of 
colored de Bruijn graph (Iqbal et al., 2012).

Colored de Bruijn graph was initially introduced for structural 
variation detection. We modified and implemented the algorithm 
for single-cell coassembly. Furthermore, our algorithm modifies 
the iterative k assembly algorithm, which is implemented by 
SPAdes (Bankevich et al., 2012) and IDBA-UD (Peng et al., 2012), 
and adapts it to the colored graph (Shariat Razavi et al., 2014). It 
has been shown that the weakness of the coassembly is related 
to breaking contigs due to various colored branches (Movahedi 
et  al., 2012). Iterative assembly with variable k overcomes that 
contiguity weakness.

We demonstrate in this work how to hedge against the risk of 
poor assembly results through sequencing and coassembly of few 
single cells. Our method replaces a single-cell deep sequencing 
experiment with multiple single-cell shallow sequencing experi-
ments, allowing for the simultaneous acquisition of supposedly 
synergistic information about multiple single cells.

2. MAteRIALs ANd Methods

2.1. Media and Cultivation of the 
Methanogenic Alkane-degrading 
Community
The microbial community was enriched from sediment from 
a hydrocarbon-contaminated ditch in Bremen, Germany 
(Zengler et al., 1999). The consortium was propagated in the 
laboratory in anoxic medium containing 0.3  g NH4Cl, 0.5  g 
MgSO4⋅7H2O, 2.5 g NaHCO3, 0.5 g K2HPO4, 0.05 g KBr, 0.02 g 
H3BO3, 0.02 g KI, 0.003 g Na2WO2⋅2H2O, 0.002 g NiCl2⋅6H2O, 
trace elements, and trace minerals as previously described 
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FIGURe 1 | two sample colored de Bruijn graphs with colors red and 
blue. Nodes are k-mers and edges represent k + 1-mers. A colored bar 
shows multiplicity of the k-mer in the corresponding colored input data set. 
Each box is an output contig, and the color of a box shows non-zero colored 
average coverage, which is shown on the right hand side of the contig in (A). 
Our coassembly algorithm (A) rescues a poorly covered region of the 
genome in one color when it is well covered in the other, and (B) allows 
pairwise comparison of colored assemblies through revealing all of their 
shared and exclusive pieces of sequence.
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(Zengler et al., 1999). The medium was sparged with a mixture 
of N2/CO2 (80:20 v/v), and the pH was adjusted to 7.0. After 
autoclaving, anoxic CaCl2 (final concentration 0.25  g/L) and 
filter-sterilized vitamin solution (Zengler et  al., 1999) were 
added. Cells were supplemented with anoxic hexadecane 
as previously described (Embree et  al., 2013). Bottles were 
degassed as necessary to relieve over-pressurization.

2.2. single-Cell sorting, MdA, and 
Genomes sequencing
Individual cells from the alkane-degrading consortium were 
obtained by staining (SYTO-9 DNA stain) and sorting of single 
cells by FACS (Embree et  al., 2013). Single cells were lysed 
as previously described, and the genomic DNA of individual 
cells was amplified using whole-genome multiple displacement 
amplification (MDA) (Swan et  al., 2011). Amplified genomic 
DNA was screened for Smithella-specific 16S rDNA gene 
sequences. Six amplified Smithella genomes were selected for 
Next-Generation Sequencing. The MDA amplified genomes 
were prepared for Illumina sequencing using the Nextera kit, 
version 1 (Illumina) using the Nextera protocol (ver. June 
2010) and high molecular weight buffer. Libraries with an 
average insert size of 400 bp were created for these samples and 
sequenced using an Illumina Genome Analyzer IIx. The 34-bp 
paired-end reads were generated for K05 (20.9 million reads), 
C04 (23.3 million reads), F02 (26.9 million reads), and A17 
(22.2 million reads). The 58-bp single-end reads were generated 
for MEB10 (41.3 million reads), MEK03 (54.1 million reads), 
and MEL13 (18.0 million reads). The 36-bp paired-end reads 
were generated for F16 (11.0 million reads), K04 (27.2 million 
reads), and K19 (22.9 million reads).

2.3. Assembly of single-Cell Genomes
Assemblies were obtained using HyDA version 1.1.1, SPAdes ver-
sion 2.4.0, and IDBA-UD version 1.0.9. SPAdes and IDBA-UD 
were run with the default parameters in the single-end mode. 
The scripts to generate all of the assemblies are provided in 
Supplementary Material. The length of k-mers in the de Bruijn 
graph was 25, and the coverage cut off to trim erroneous branches 
in the graph was selected to be 100. The contigs were then anno-
tated using RAST (Aziz et al., 2008), and the resulting annotation 
was used to generate a draft metabolic reconstruction using 
Model SEED (Henry et al., 2010). The Whole Genome Shotgun 
project has been deposited at DDBJ/EMBL/GenBank under the 
accession AWGX00000000. The version described here is version 
AWGX01000000.

3. ResULts

3.1. Colored de Bruijn Graph
Algorithmic paradigms for fragment assembly, such as overlap-
layout-consensus and de Bruijn graph, depend on the characteris-
tics of sequencing reads, particularly read length and error profile. 
Overlap-layout-consensus is a paradigm that is usually applied 
to assembly projects using long reads, and the de Bruijn graph 
is another widely adopted paradigm that is used for short-read 

data sets (Compeau et al., 2011). A number of consecutive k-mers 
(a sequence of length k nucleotides) replace each read in the de 
Bruijn graph paradigm. Each k-mer is represented by a unique 
vertex. An edge is present between two vertices if there is a read 
in which the two respective k-mers are consecutively overlapping. 
When there are at least k consecutive common bases, reads share 
a vertex (respectively, k +  1 common bases for an edge) along 
which contigs are efficiently constructed.

Colored de Bruijn graph is a method proposed for coassembly of 
multiple short-read data sets (Iqbal et al., 2012). It is an extension of 
the classical approach by superimposing different uniquely colored 
input data sets on a single de Bruijn graph. Each vertex, which is a 
representation of a k-mer, accompanies an array of colored multi-
plicities. In this way, input data sets are virtually combined while 
they are almost fully tracked, enabling separation after assembly. 
Iqbal et al. (2012) proposed the colored de Bruijn graph in Cortex 
for variant calling and genotyping, whereas our tool Hybrid De novo 
Assembler (HyDA) (Movahedi et al., 2012) is developed for de novo 
assembly of short-read sequences with non-uniform coverage, which 
is a dominant phenomenon in MDA-based single-cell sequencing 
(Chitsaz et al., 2011). To fill the gaps and compare colors, contigs 
in HyDA are constructed in a color-oblivious manner, solely based 
on the branching structure of the graph. First, this method rescues 
a poorly covered region of the genome in one data set when it is 
well covered in at least one of the other input data sets (Figure 1A; 
Table  1). Second, it allows comparison of colored assemblies by 
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tABLe 2 | Pairwise relationships between three coassembled data sets, E. coli lanes 1 and 6 and S. aureus lane 7, in a coassembly of E. coli lanes 1–4, 
6–8, and S. aureus lanes 7 and 8.

Pair of data sets Pair 1 Pair 2 Pair 3

E. coli lane 1 E. coli lane 6 S. aureus E. coli lane 1

Total (bps) 5,228,480 5,240,302 3,366,622 5,228,480

Shared (bps) 5,210,548 335,648 336,184

Exclusive (bps) 179,32 29,754 4,904,654 3,030,974 3,030,438 4,892,296

Exclusivity ratioa 0.003 0.005 0.9359 0.9003 0.9001 0.9357

Total is the total size of those contigs that have non-zero coverage in the corresponding color. Shared is the size of those contigs that have non-zero coverage in both colors. 
Exclusive is the size of those contigs that have non-zero coverage in the corresponding color and zero coverage in the other color in the pair.
aExclusivity ratio = exclusive/total.

tABLe 1 | the GAGe (salzberg et al., 2012) statistics of hydA assemblies for the six scenarios in Figure s1 in supplementary Material.

Lane 1
single color

Lane 6
single color

Identical cells
Mixed

Identical cells
Colored

Non-identical cells
Mixed

Non-identical cells
Colored

Assembly size 4,532,221 4,642,640 5,262,077 5,204,061 8,273,488 5,212,674

Missing E. coli reference bases (%) 314,009 (6.77%) 123,687 (2.67%) 1,555 (0.03%) 2,023 (0.04%) 1,289 (0.03%) 2,136 (0.05%)

Extra bases (%) 280,998 (6.20%) 198,072 (4.27%) 653,307 (12.42%) 584,534 (11.23%) 3,661,052 (44.25%) 597,088 (11.45%)

SNPs 60 19 11 3 5 5

Indels < 5 bp 6 4 10 6 8 6

Indels ≥ 5 bp 13 14 6 5 4 4

Inversions 0 0 0 0 0 0

Relocations 12 11 2 3 2 3

NG50 42,257 54,422 41,964 34,752 54,505 37,794

Corrected NG50 39,975 44,872 39,334 32,876 39,334 36,868

GAGE (Salzberg et al., 2012) was based on MUMmer 3.23 aligner (Kurtz et al., 2004).
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revealing all shared and exclusive pieces of sequence not shorter 
than k (Figure 1B; Table 2).

3.2. Coverage Characteristics of  
single-Cell Read data sets
Genomes amplified from single cells exhibit highly non-uniform 
genome coverage and multiple gaps, which are called blackout 
regions (Chitsaz et al., 2011). For the evaluation of such coverage 
characteristics in this study, we used amplified DNA originating 
from two single Escherichia coli cells as well as from one single 
Staphylococcus aureus cell (Chitsaz et al., 2011). Although these 
amplified DNAs were quality checked for preselected genomic 
loci using quantitative PCR (Rodrigue et  al., 2009), they still 
did not cover the entire genome (Table S1 in Supplementary 
Material; Figure 2). One single E. coli cell was sequenced in four 
technical replicate lanes (1–4), and the other was sequenced in 
three technical replicate lanes (6–8) each with a sequencing depth 
of 600 per lane. The single S. aureus cell was sequenced in two 
technical replicate lanes each with a sequencing depth of 1,800. 
All nine lanes were sequenced on Illumina GAIIx platform in 
paired 2–100 bps read mode.

The coverage bias in technical replicates is almost identical, 
which suggests that the vast majority of bias is caused by MDA. 
The coverage bias, particularly of the blackout regions, does not 
always occur at the same genomic loci for different cells of the 
same genome (Chitsaz et al., 2011). Blackout regions in E.  coli 
lanes 1 and 6 sequenced from two independently amplified 
single cells make up 1.8 and 0.1% of the genome, respectively, 

but there are no common blackout regions between these two 
data sets (Table S1 in Supplementary Material). This means 
that combining the two data sets could fill all gaps and yield a 
complete genome, which is the property that HyDA exploits with 
colored coassembly.

3.3. Colored Coassembly of E. coli and 
S. aureus Mitigates the effect of dropout 
Regions due to Amplification Bias
Single-cell read data sets have highly variable coverage 
(Raghunathan et  al., 2005; Rodrigue et  al., 2009) (Table S1 
in Supplementary Material; Figure  2), which poses serious 
challenges for downstream applications such as de novo 
assembly. A  number of single-cell assemblers, including 
EULER + Velvet-SC (Chitsaz et al., 2011), SPAdes (Bankevich 
et al., 2012), and IDBA-UD (Peng et al., 2012), have been devel-
oped to mitigate the adverse effects of non-uniform coverage 
and maximize the transfer of sequencing information into the 
final assembly. These efforts have been successful, and the exist-
ing single-cell assemblers are able to extract nearly all of the 
information contained in the input data set. However, the vast 
majority of single-cell data sets do not encompass the entire 
genome. We report that combining multiple data sets from the 
same or closely related species significantly improves the final 
assembly by filling genome gaps (Table S1 in Supplementary 
Material). The challenge presented by this method is the sub-
sequent deconvolution of single-cell genomes to avoid chimeric 
assemblies.
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A

B

FIGURe 2 | Genome coverage in (A) single-cell E. coli lane 1 vs. (B) 
normal multicell E. coli. Both have an average coverage of ~600×.

tABLe 3 | evaluation results obtained from GAGe (salzberg et al., 2012) 
for assembly of E. coli lanes 1 and 6 using e + V-sC (Chitsaz et al., 2011), 
sPAdes (Bankevich et al., 2012), and IdBA-Ud (Peng et al., 2012).

tool Missing ref. bases (%)

Lane 1 Lane 6

E + V-SC 281,060 (6.06%) 109,994 (2.37%)

SPAdes 128,600 (2.77%) 15,831 (0.34%)

IDBA-UD 145,536 (3.14%) 28,583 (0.62%)
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The ideal solution involves the coassembly of multiple data sets 
without explicitly mixing sequencing reads such that individual 
assemblies can benefit from the synergy without suffering from 
chimerism. We propose and implement this solution using the 
colored de Bruijn graph in HyDA.

We report in Table 1 the coassembly results for six distinct 
scenarios (Figure S1 in Supplementary Material), each consist-
ing of a combination of the input read data sets: (i) single-cell 
assembly of E. coli lane 1; (ii) single-cell assembly of E. coli lane 6; 
(iii) mixed monochromatic assembly of E. coli lanes 1–4 and 6–8, 
technical replicates of two biologically replicate single cells; (iv) 
multichromatic coassembly of E. coli lanes 1–4 and 6–8; (v) mixed 
monochromatic assembly of non-identical cells: E. coli lanes 1–4 
and 6–8, and S. aureus lanes 7 and 8; and (vi) multichromatic 
coassembly of non-identical cells: E. coli lanes 1–4 and 6–8, and 
S. aureus lanes 7 and 8, each assigned a unique color. GAGE, a 
standard genome evaluation tool, which reports the size statistics 
and number of substitution, indel, and chimeric errors of an 
assembly, was used to evaluate our assemblies (Salzberg et  al., 
2012). In all six scenarios, GAGE results (Table  1) comparing 

the assembly of color 0 with the E. coli reference genome are 
reported. Color 0 corresponds to E. coli lane 1 in (i), (iv), and 
(vi); E. coli lane 6 in (ii); and the mixture in (iii) and (v) (Figure 
S1 in Supplementary Material).

While the state-of-the-art individual single-cell E. coli 
assemblies by SPAdes (SPAdes outperforms IDBA-UD and 
Euler + Velvet-SC in this case) miss 128,600 (2.77%) and 15,831 
(0.34%) base pairs of the reference genome in the two different 
single cells (Table 3), our coassembly misses only 2,023 (0.04%) 
of the genome (Table  1), an improvement of 126,577 (2.72%) 
base pairs of the E. coli cell 1. Our coassembly of the two single 
E. coli cells and one S. aureus cell misses only 2,136 (0.05%) of 
the genome. The coassembly algorithm in this work, without any 
error correction, k-mer incrementation, or scaffolding, increases 
the total assembly size for both E. coli lanes 1 and 6 using only 
the synergy in the input data sets. Our exclusivity ratio (defined 
below) obtained from the coassembly results completely differen-
tiates E. coli and S. aureus data sets (Table 2).

3.4. Quantification of similarities and 
differences between Colors
Input data sets can be clustered based on the similarity between 
their assemblies. For a pair of colors i and j, contigs belonging to 
both colors are considered shared and contigs belonging to color 
i but not to color j are considered exclusive of color i with respect 
to color j. We define the exclusivity ratio of color i with respect 
to color j as the ratio of the size of exclusive color i contigs to 
the total assembly size of color i. The exclusivity ratio for E. coli 
lane 1-lane 6 (Pair 1 in Table 2) is less than 0.5%, while that ratio 
for E. coli and S. aureus in the two other pairs (Pair 2 and 3 in 
Table 2) is greater than 90%. This large difference in exclusivity 
ratio between Pair 1 and Pairs 2 and 3 is expected in this case, 
as E. coli and S. aureus are phylogenetically divergent species 
belonging to different phyla.

3.5. De Novo single-Cell Coassembly of 
Members of an Alkane-degrading 
Methanogenic Consortium
The genomes of 10 cells from three dominant but uncultured 
bacterial members of a methanogenic consortium (Zengler et al., 
1999; Embree et al., 2013), belonging to the families Syntrophacea 
and Anaerolineaceae were sequenced from their amplified single-
cell whole DNAs: six cells belonging to Smithella, two cells belong-
ing to Anaerolinea, and two cells belonging to Syntrophus. Single 
cells were isolated from the consortium by fluorescence-activated 

123

www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


tABLe 5 | the exclusivity ratio (%) of row with respect to column for the 10 cells from Anaerolinea, Smithella, and Syntrophus single-cell data sets 
coassembled using 10 colors with squeezambler (taghavi et al., 2013), a tool in the hydA package.

Anaerolinea Smithella Syntrophus

A17 F02 F16 K04 K19 MeB10 MeK03 MeL13 C04 K05

Anaerolinea A17 0 24 87 95 96 80 82 86 22 19
F02 77 0 96 98 99 71 68 72 12 5

Smithella F16 96 96 0 73 73 37 22 38 96 55
K04 97 97 49 0 67 42 25 45 97 73
K19 98 98 54 68 0 35 32 32 98 55
MEB10 96 96 74 48 69 0 24 39 95 57
MEK03 97 97 73 54 74 38 0 37 96 58
MEL13 97 97 76 51 68 39 22 0 97 59

Syntrophus C04 44 39 89 96 97 85 86 90 0 64
K05 77 75 54 76 75 45 41 49 73 0

Only the contigs of coverage at least 1 in the corresponding color are considered. Coverage cutoff was chosen to be 24 for all HyDA assemblies (−c = 24).

tABLe 4 | Quast (Gurevich et al., 2013) analysis of 10 cells from Anaerolinea, Smithella, and Syntrophus single-cell data sets assembled with hydA 
(individual assembly), hydA (10-color coassembly), sPAdes, and IdBA-Ud.

Anaerolinea Smithella Syntrophus

A17 F02 F16 K04 K19 MeB10 MeK03 MeL13 C04 K05

HyDA Total 54,237 1,278,742 604,769 449,148 371,311 1,182,622 1,666,233 1,150681 252,402 502,469
N50 2,935 8,461 8,303 9,959 5,416 5,718 6,167 7,315 5,578 4,963

HyDA-Cl Total 260,386 1,352,341 1,323,536 720,188 840,236 1,569,709 1,945,701 1,590,259 465,091 1,265,548
N50 850 8,201 6,088 5,239 7,295 5,887 5,952 6,977 1,928 3,782

SPAdes Total 169,413 1,698,195 982,263 618,500 653,866 1,514,813 1,960,722 1,415,399 390,923 869,586
N50 1,187 5,944 5,366 9,332 3,834 8,861 11,372 10,475 4,234 3,128

IDBA-
UD

Total 144,512 1,441,353 927,009 56,6327 613,399 1,327,742 1,746,656 1,351,465 318,914 804,313
N50 2,894 8,756 3,163 3,178 5,751 6,851 8,209 1,0253 4,706 5,618

All statistics are based on contigs of size ≥100 bp. Only those HyDA contigs that have a coverage of at least 1 in the corresponding color are considered. Coverage cutoff was 
chosen to be 24 for all HyDA assemblies (−c = 24). Total is the total assembly size and N50 is the assembly N50 (the size of the contig, the contigs larger than which cover half of 
the assembly size). Best result is in bold face.
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cell sorting, and the genomes of individual cells were amplified 
using MDA. MDA products were sequenced using an Illumina 
GAIIx with 34, 36, or 58 base pair reads. In total, 10 data sets, one 
per cell, were obtained. The 10 data sets were coassembled with 
HyDA in a ten-color setup, and to exhibit the advantage of the 
coassembly method, each data set was assembled individually by 
HyDA. Individual assemblies created by SPAdes and IDBA-UD 
were used as comparison. The QUAST (Gurevich et  al., 2013) 
length statistics of the resulting assemblies (≥100  bp contigs) 
are compared in Table 4 and Figures S2–S11 in Supplementary 
Material. The comparison between individual assembly and 
coassembly by HyDA demonstrates that coassembly rescues 
on average 101.4% more total base pairs for all 10 cells (Table 
S2 in Supplementary Material). Although HyDA does not use 
advanced assembly features such as variable k-mer sizes and 
paired read information, it can assemble 3.6–54% more total 
base pairs than both SPAdes and IDBA-UD do in all cells except 
two cases: Anaerolinea F02 and Smithella MEK03 (Table 4; Table 
S2 in Supplementary Material). When all contigs are considered, 
HyDA coassemblies of Anaerolinea F02 and Smithella MEK03 
are 11% smaller and 41% larger than their SPAdes counterparts, 

respectively. Smithella MEK03 input reads are longer (58 bp) than 
the reads in some of the other data sets; therefore, the Smithella 
MEK03 assembly contains many short contigs and suffers because 
of the small k-mer size (k = 25) dictated by the shorter reads.

3.6. exclusivity Analysis of ten Assemblies 
from single Uncultured Bacterial Cells
Exclusivity analysis revealed that the six Smithella cells clustered 
into a consistent group as their exclusivity ratios with respect to 
the two Anaerolinea and two Syntrophus cells are almost identi-
cal (Table 5). It is important to note that Anaerolinea A17 and 
Syntrophus C04 assemblies are relatively short, meaning the 
exclusivity ratios must be interpreted with caution. Although 
Syntrophus K05s exclusivity signature with respect to the six 
Smithella cells is indistinguishable from the six Smithella signatures 
with respect to themselves, the exclusivity ratios of Syntrophus 
K05 with respect to the two Anaerolinea cells and Syntrophus C04 
differentiate Syntrophus K05 from the six Smithella cells. Slight 
differences between the Syntrophus C04 and K05 exclusivity 
signatures are not surprising because of the existence of potential 
intraspecies variations.
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tABLe 6 | summary of coding sequences and subsystems predicted by the RAst server (Aziz et al., 2008) for hydA, IdBA-Ud, and sPAdes assemblies 
of the three alkane-degrading bacterial genomes.

hydA-colored spades IdBA-Ud

Coding sequence subsystem Coding sequence subsystem Coding sequence subsystem

Anaerolinea A17 212 8 146 9 132 7
F02 1,283 122 1,653 153 1,375 121
F16 1,197 117 899 91 866 89
K04 659 89 559 75 508 66

Smithella K19 757 82 581 54 572 57
MEB10 1,491 151 1,504 156 1,297 138
MEK03 1,856 180 1,955 200 1,178 170
MEL13 1,535 165 1,435 154 1,384 148

Syntrophus C04 416 48 375 49 320 36
K05 1,216 121 873 68 854 77

Best result is in bold face.
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3.7. Annotation of the Anaerolinea, 
Smithella, and Syntrophus Assemblies
To assess the quality of coassemblies with HyDA, IDBA-UD, and 
SPAdes, we used the RAST server to predict the coding sequences 
and subsystems present in each assembly. The HyDA assemblies 
are superior to those of SPAdes and IDBA-UD in terms of the 
number of coding sequences and captured subsystems for one 
Anaerolinea, four Smithella, and both Syntrophus assemblies 
(Table 6). For Smithella MEB10 and MEK03, the HyDA assembly 
closely follows the SPAdes assembly, which provides the largest 
annotation (Table  6). For Smithella F16 and Syntrophus K05, 
HyDA assemblies contain significantly more coding sequences 
(33 and 39%, respectively) and cover more subsystems (29 and 
57%, respectively) in comparison to the best of SPAdes and 
IDBA-UD assemblies.

To confirm the accuracy of the assemblies, the closest related 
species to each assembly was computed by the RAST server. 
For the HyDA, SPAdes, and IDBA-UD Anaerolinea F02 assem-
blies, the closest species was Anaerolinea thermophila UNI-1 
(GenomeID 926569.3) (no closest genomes data found for 
Anaerolinea A17 by the RAST server). For the HyDA, SPAdes, 
and IDBA-UD Smithella and Syntrophus assemblies, the closest 
species is Syntrophus aciditrophicus SB (GenomeIDs 56780.10 
and 56780.15). Note that Syntrophus aciditrophicus SB is the 
closest finished genome to the Smithella family. This verifies that 
coassembly does not create chimeric assemblies; otherwise, we 
would see Syntrophus aciditrophicus SB among close neighbors 
of the Anaerolinea assemblies and/or Anaerolinea thermophila 
UNI-1 among close neighbors of the Smithella and Syntrophus 
assemblies by HyDA.

3.8. Metabolic Reconstruction of 
Anaerolinea, Smithella, and Syntrophus
Assembly and subsequent annotation of these genomes enables 
the elucidation of the functional roles of individual, unculturable 
constituents within the community. Anaerolinea, Syntrophus, and 
Smithella each represent genera with very few cultured members 
and only two sequenced genomes  –  Anaerolinea thermophila 
(no  genome paper) and Syntrophus aciditrophicus (McInerney 
et  al., 2007) are the only available sequenced genomes from 

these genera to date. The only member of Smithella that has been 
isolated, Smithella propionica (Liu et  al., 1999), has not been 
sequenced yet. In addition to understanding the genetic basis for 
the unique metabolic capability of this microbial community, the 
genomes of these particular organisms present an opportunity to 
explore the breadth of genetic diversity in these elusive genera. 
Using the advanced genome assembly algorithm, we recently 
identified the key genes involved in anaerobic metabolism of 
hexadecane and long-chain fatty acids, such as palmitate, octa-
decanoate, and tetradecanoate, in Smithella (Embree et al., 2013). 
Based on sequence homology, Syntrophus is closely related to 
Smithella, but we cannot determine if it is also actively degrading 
hexadecane at this point in time. Only two species of Anaerolinea 
have been isolated and characterized thus far. These species, both 
isolated from anaerobic sludge reactors, form long, multicel-
lular filaments and are strictly anaerobic (Sekiguchi et al., 2003; 
Yamada et al., 2006). Each species is capable of growing on a large 
number of carbon sources, and both isolates produce acetate, 
lactate, and hydrogen as the main end products of fermentation. 
Comparison of the Anaerolinea sp. genome derived from single-
cell sequencing with the genome of Anaerolinea thermophila UN-1 
revealed many similarities in potential metabolic capability. The 
Anaerolinea genome obtained from a single cell contains genes 
for the utilization of galactose and xylose, consistent with a previ-
ous physiological characterization of A. thermophila (Sekiguchi 
et al., 2003). Additionally, the single-cell Anaerolinea sp. genome 
encoded for several transporters and genes related to trehalose 
biosynthesis, suggesting extended metabolic capabilities of this 
strain. Furthermore, the genome has an extracellular deoxyribo-
nuclease, an enzyme required for catabolism of external DNA, 
hinting at the strains ability to scavenge deoxyribonucleosides.

4. dIsCUssIoN

We demonstrated the power of genome coassembly of multiple 
single-cell data sets through significant improvement of the 
assembly quality in terms of predicted functional elements and 
length statistics. Coassemblies without any effort to scaffold 
or close gaps contain significantly more protein coding genes, 
subsystems, base pairs, and generally longer contigs compared 
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to individual assemblies by the same algorithm as well as the 
state-of-the-art single-cell assemblers (SPAdes and IDBA-UD). 
The new algorithm is also able to avoid chimeric assemblies by 
detecting and separating shared and exclusive pieces of sequence 
for input data sets. This suggests that in lieu of single-cell assem-
bly, which can lead to failure and loss of the sample or signifi-
cantly increase sequencing expenses, the coassembly method 
can hedge against that risk. Our single-cell coassembler HyDA 
proved the usefulness of the coassembly concept and permitted 
the study of three bacteria. The improved assembly gave insight 
into the metabolic capability of these microorganisms, thereby 
proving a new tool for the study of uncultured microorganisms. 
Thus, the coassembler can readily be applied to study genomic 
content and the metabolic capability of microorganisms, and 
increase our knowledge of the function of cells related to envi-
ronmental processes as well as human health and disease. The 
colored de Bruijn graph uses a single k-mer size for all input 
data sets, which has to be chosen based on the minimum read 
length across all data sets. For instance, Smithella MEK03 input 
reads are longer (58  bp) than the reads in some of the other 
data sets, while the Smithella MEK03 assembly contains many 
short contigs because of the small k-mer size (k = 25) dictated 
by the shorter reads. This minor disadvantage can be remedied 
by using advanced assembly features such as variable k-mer 

size, alignment of reads back to the graph and threading, and 
utilization of paired-end information.
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